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Chi non sa sedersi sulla soglia dell’attimo,
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chi non sa stare ritto su un punto senza vertigini

e paura come una dea della vittoria,

non saprà mai che cos’è la felicità e ancor peggio,

non farà mai qualcosa che renda felici gli altri.
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Abstract

In recent years, due to the rapid convergence of multimedia services,

Internet and wireless communications, there has been a growing trend of

heterogeneity (in terms of channel bandwidths, mobility levels of termi-

nals, end-user quality-of-service (QoS) requirements) for emerging inte-

grated wired/wireless networks. Moreover, in nowadays systems, a mul-

titude of users coexists within the same network, each of them with his

own QoS requirement and bandwidth availability. In this framework,

embedded source coding allowing partial decoding at various resolution

is an appealing technique for multimedia transmissions. This disserta-

tion includes my PhD research, mainly devoted to the study of embedded

multimedia bitstreams in heterogenous networks, developed at the Uni-

versity of Bologna, advised by Prof. O. Andrisano and Prof. A. Conti,

and at the University of California, San Diego (UCSD), where I spent

eighteen months as a visiting scholar, advised by Prof. L. B. Milstein

and Prof. P. C. Cosman. In order to improve the multimedia trans-

mission quality over wireless channels, joint source and channel coding

optimization is investigated in a 2D time-frequency resource block for an

OFDM system. We show that knowing the order of diversity in time

and/or frequency domain can assist image (video) coding in selecting

optimal channel code rates (source and channel code rates). Then, adap-

tive modulation techniques, aimed at maximizing the spectral efficiency,

are investigated as another possible solution for improving multimedia

transmissions. For both slow and fast adaptive modulations, the effects

of imperfect channel estimation errors are evaluated, showing that the

fast technique, optimal in ideal systems, might be outperformed by the

slow adaptive modulation, when a real test case is considered. Finally,

the effects of co-channel interference and approximated bit error proba-

bility (BEP) are evaluated in adaptive modulation techniques, providing

new decision regions concepts, and showing how the widely used BEP

approximations lead to a substantial loss in the overall performance.





Chapter 1

Wireless multimedia

transmission overview

Only those who dare may fly.

- Luis Sepúlveda

The high demand of high quality multimedia applications has pro-

moted a significant development in multimedia transmissions at high data

rate. In this framework, great interest is reposed in cross-layer optimiza-

tion for joint source and channel coding/decoding (JSCC/D) as well as

in adaptive modulation algorithms, aimed at optimizing the transmitting

parameters taking into account both the physical and the application

layer conditions. Moreover, in multiuser networks, where requirements

from different users must be met at the same time, a multi-rate (i.e.,

multi-quality) transmission is needed. With this aim, an enormous sim-

plification in the transmission overhead is represented by the progressive

image and video bitstreams. The combination of source and channel

coding and modulation parameters optimization in systems transmitting

progressive multimedia bitstreams is therefore an appealing technique,

able to provide a system that is robust enough to the channel impair-

ments, still satisfying the multiusers constraints. In the following thesis,

several optimized multimedia wireless transmissions will be discussed.

In the introductory chapter, we provide an outline of the thesis mainly

focusing on the contributions of this work as compared to existing liter-

ature. Next, we provide a basic overview of the system model adopted

3



4 Chapter 1. Introduction

in the thesis.

1.1 Introduction

In recent years, due to the rapid convergence of multimedia services,

Internet and wireless communications, there has been a growing trend of

heterogeneity (in terms of channel bandwidths, mobility levels of termi-

nals, end-user quality-of-service (QoS) requirements) for emerging inte-

grated wired/wireless networks. In multi-services multi-users networks,

different users need different QoS requirements due to the multitude of

applications and scenario coexisting within the modern networks. The

quality required for a real-time video played on a PAD, for example, is

lower than the one reproduced on a laptop. The heterogeneity comes not

only from different data rates and QoS requirements, but also from dif-

ferent scenarios, as the PAD might be for example connect to a wireless

networks with an high level of mobility, and the latpot to a wired connec-

tion. Embedded source coding [1], allowing partial decoding at various

resolution and quality levels from a single compressed bitstream, is a

promising technology for multimedia communications in heterogeneous

environments. Thanks to the progressive image features, in a multi-user

networks, each user is able to decode the same transmitted bitstream

at the desired data rate. A typical case can be the one represented in

Fig. 1.1, where only one transmitter can provide embedded progressive

bitstream to a multitude of users. Although a single progressive bit-

stream can be decoded at different data rates, providing a multitude of

decoded quality levels, an error in the bitstream would make the subse-

quent bit useless. Thus, a single error can cause an unrecoverable loss in

synchronization between encoder and decoder, and produce substantial

quality degradation. It follows that embedded source coders are usually

extremely sensitive to channel impairments which can be severe in mo-

bile wireless links due to multipath signal propagation, delay and Doppler

spreads, and other effects. In order to cope with the channel, it is there-

fore clear the importance of making the signal as reliable as possible,

introducing redundancy in the bitstream [2–4], or optimizing the trans-
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Figure 1.1: Simplified scheme of heterogenous scenarios. The same en-
coded bitstream is transmitted to different users, each of whose receives
the image at its achievable data rate.

mitting parameters [5–7]. The suitable level of redundancy introduced by

the channel coding depends on the channel conditions. The optimization

of joint source and channel coding able to exploit both the physical and

application layer diversity is investigated in this thesis. Beyond JSSC, an-

other solution to improve robustness in multimedia wireless transmission

is the adaptive modulation technique. Here, the modulation parame-

ters are adapted to the channel conditions, leading to an improvement

of the received throughput, and thus of the decodable data rate. In this

thesis, adaptive modulation techniques in real systems are investigated,

taking into account all the possible effects impairing the performance,

i.e., channel estimation errors or co-channel interference.

1.2 Outline of the work

Aimed at maximizing the performance for multimedia wireless sys-

tems, the following work is focused on the optimization of the trans-
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mission parameters (at physical level), such as code rates or modulation

levels. First, the design of channel coding is investigated in image trans-

missions applications. In addiction to the physical layer gain, an applica-

tion layer diversity [8] can be exploited by adopting a multiple description

encoding. Thus a symmetric n-channel forward error correction (FEC)-

based multiple description is investigated, with the FEC level based on

channel conditions. Then, this study has been extended to video trans-

missions. Due to the high complexity of a video bitstream, the channel

coding is optimized in conjunction with the source coding parameters.

It follows that the JSSC design is investigated, aimed at evaluating the

optimal channel code rate together with the suitable compression rate to

be employed for the transmission over a given wireless channel.

Since, in embedded bitstreams, the quality of the decoded image is

proportional to the data-rate to be decoded, adaptive modulation tech-

niques, aimed at maximizing the received throughput, can also be em-

ployed. In perfect systems, adaptive modulation techniques allow a sub-

stantial improvement on the averaged received throughput, without com-

promising the outage probability [5, 6]. In this thesis, adaptive modula-

tion techniques are investigated for real systems, i.e., systems experienc-

ing imperfect channel estimations or the presence of interference or other

issues that might compromise the bit error probability performance. The

remainder of the Thesis is organized as follows.

In Chapter 2, channel coding in both time and frequency domain is

optimized for progressive images transmission. The topic is investigated

for OFDM systems and several Doppler values of the channels. It has

been demonstrated that the optimization of the FEC protection in both

the domains provides a system that results to be robust to channel im-

pairments, for channels with both fast and slow variations.

In Chapter 3, the embedded video transmission is investigated. A

JSSC is considered, and the channel coding is optimized in conjunction

with the source coding in OFDM systems experiencing several orders

of diversity in both time and frequency domain. Important results are

reported for the rate distortion curve evaluation. The method we pro-

pose achieves worthy quality transmissions, optimizing the transmitting
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scheme, and satisfying the imposed temporal constraints.

Chapter 4 investigates adaptive modulation techniques in systems

with imperfect channel estimation. Both the cases of imperfect channel

estimation at the transmitter and at the receiver are considered, for both

slow and fast adaptive modulation techniques. Pilot symbols insertion is

considered for the channel estimation, and the design of the optimal pilot

scheme is optimized, based on the tradeoff estimation quality-throughput

reduction. The results show that the fast technique, optimal in ideal sys-

tems, might be outperformed by the slow adaptive modulation technique.

In Chapter 5, adaptive modulation techniques are investigated for

more general systems, experiencing a shift in the SNR thresholds. Some

applicative examples are considered, as systems experiencing co-channel

interference and/or the employment of the bit error probability approxi-

mated expression. Depending on the channel configurations, the median

SNR values that achieve satisfactory performance can be evaluated in all

the applicative examples. Moreover, we highlight the lost of performance

in terms of mean throughput that the system experiences when the widely

used exponential bit error probability approximation is employed.

In Chapter 6, concluding remarks and future directions are reported.

1.3 System modeling

In this section, the system model has been described in details. In par-

ticular, starting from basic concepts on wireless channels, the assumption

employed in the analysis of the thesis are described. The characterization

of the wireless channels, the descriptions of SIMO and OFDM systems

are here presented.

1.3.1 Wireless channel modeling

It is well known that the additive white gaussian noise is not the only

issue affecting the performance in wireless systems [9–12]. Because of

reflection, diffusion and refraction of signals through scattering objects,

a short impulse transmitted over the channel is received as a sum of mul-

tiple impulses, each of whose with its own amplitude and delay. These
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amplitude and phase fluctuations, varying with the time, are named fad-

ing, and they can be modeled statistically, as described in the following.

Moreover, for long distance communications, the signal suffer of a power

reduction due to the path loss.

The equivalent low-pass response of the channel at time t to an im-

pulse at time t− τ can be represented as

h(t, τ) =

N(t)∑

n=1

αn(t)ej2πf0τn(t)δ(τ − τn(t)),

where we denote by αn(t) the possibly time-variant attenuation factor

of the N(t) multipath propagation and by τn(t) the corresponding time

delays. For stationary channels, the channel response results in a function

of only τ . Knowing the correlation function in the time and frequency

domain, the channel can be characterized as follows.

Frequency-flat or frequency-selective channel. The coherence band-

width ∆fc, defined as the frequency range in which the fading process

results correlated, can be expressed as ∆fc = 1/τmax, where τmax is the

maximum delay spread. When the system bandwidth is smaller than

the coherence bandwidth (for example, narrow band systems), the chan-

nel is defined a flat-frequency channel, and the frequency components

are affected in similar manner. Conversely, when the system bandwidth

exceeds ∆fc (for example, wide band systems), the channel is frequency-

selective.

Slow or fast fading channel. Defining the coherence time Tc as the

period over which the fading process is correlated, it can be related to

the maximum Doppler spread, fD, as Tc ≃ 1/fD.

In general, the multipath fading, characterizing the short-term signal

fluctuation, is usually too complex for an exact physical analysis, thus, it

is considered statistically distributed. Assuming the fading h zero-mean

complex Gaussian distributed, its phase is uniform distributed between

0 and 2π, and the envelope is Rayleigh distributed. It follows that the

channel power has the following probability density function (PDF)

f|h|2(x) =
1

Ω
exp

[
− x

Ω

]
x ≥ 0, (1.1)
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where E{|h|2} = Ω. The corresponding moment-generating function is

M|h|2(s) = [1 − Ωs]−1. Another fading distribution adopted throughout

the thesys is the Nakagami-m distribution, that usually arises when the

dimension of the cluster of scatters is comparable to the signal wave-

length. In the case of a Nakagami-m channel, the PDF of the channel

power is given by

f|h|2(x) =
mmxm−1

ΩmΓ(m)
exp

[
−mx

Ω

]
m ≥ 1

2
(1.2)

One sided Gaussian can be modeled for m = 1/2, while m = 1 corre-

sponds to Rayleigh fading, as it can be observed from (1.1) and (1.2).

As briefly mentioned before, the signal suffers of a power reduction

due to the path-loss (large-scale fading), that is typically assumed log-

normal distributed. Denoting by γ the log-normal SNR averaged over the

small-scale fading, γdB = 10 log10(γ) is Gaussian distributed with mean

µdB and variance σ2
dB, i.e., γdB ∼ N (µdB, σ

2
dB). Note that the effects of

the shadowing in adaptive systems are considered only in Chapter 4 and

Chapter 5.

Jakes model or block fading assumption. When the symbol

period is lower than the coherence time, the fading is said to be slow. In

particular, a possible assumption, that can be made in case of slow fading,

is the block fading channel. In this case, the fading channel coefficients are

assumed constant within the transmitted packet period, Tp. Note that the

block fading assumption implies that Tp ≪ Tc. A block fading channel for

both Rayleigh and Nakagami-m fading channels is assumed in Chapter 4

and Chapter 5. Conversely, in the Chapter 2 and Chapter 3, a Rayleigh

fading channel without the block fading assumption is considered. In the

literature, many different approaches have been used for modeling mobile

radio channels, as the well known mathematical model due to Clarke [13]

and its simplified model due to Jakes [14]. However, the Jakes’ simulator

is a deterministic model, leading to a complicated implementation of

uncorrelated fading waveforms for frequency-selective fading channels, or

multiple-input multiple-output (MIMO) channels. Thus, the model we

consider in the thesis is a modified Jakes’ model, described in [15].
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1.3.2 SIMO system - spatial diversity

In order to overcome the performance reductions due to the presence

of fading, the adoption of diversity-combining of independently fading

signal paths is one of the most powerful technique [9, 10, 12,16, 17]. The

basic idea is to send the same message x over independent channels, that

are less likely to experience deep fades simultaneously. A spatial diversity

is exploited when multiple antennas are considered at the receiver, (i.e.,

antenna array)1. In this case, the receiver combines the independent

fading paths to obtain a resultant signal which is then passed through

a standard demodulator. In particular, the received signal on each k-th

branch, after the receiver filter and sampling, is weighted with a given

value, wk, and then it is combined to the other weighted received signals.

It follows that the decision variable can be expressed as

z = wHh
√
Px+ wHn,

where h = [h1, . . . , hN ]H is the channel coefficient vector and hk is the

channel experienced by the signal received on the k-th branch; n =

[n1, . . . , nN ]H is the noise vector, and w is the N × 1 weight vector.

The combining can be done in several ways which vary in complexity

and overall performance. In the following, a brief description of the most

common techniques is reported.

Minimum Mean Square Error (MMSE). MMSE addresses both prob-

lems of multipath fading of the desired signal and the presence of co-

channel interference. With MMSE, or optimum combining (OC), the sig-

nals received by several antenna elements are weighted and combined to

maximize the output signal-to-interference-plus-noise ratio (SINR) [18].

The weight vector w is given by

w =
[
RI + σ2

NI
]−1

h,

where RI = HIHI
H is the covariance matrix of the interfence signals. It

follows that the SINR at the output of the combiner is given by

γT = hH
[
RI + σ2

NI
]−1

h.

1In order to have a spatial diversity available, the distance between each antennas
has to be so that the signal on each branch can be not correlated from each other.
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Maximum Ratio Combining (MRC). MRC is the optimum linear com-

bining technique for coherent reception with independent fading at each

antenna element in the presence of spatially white Gaussian noise. The

complex weight at each element compensates for the phase shift in the

channel and is proportional to the signal strength. The weight vector w

is given by

w =
h

||h|| ,

At the cost of the knowledge of channel coefficients, the MRC allows to

maximize the instantaneous SNR at the combiner output, given by

γT =

N∑

i=1

γi.

It is well known that γT is a chi-square distributed with 2N degrees

of freedom [9, 10] and its MGF can be easily derived. In particular,

assuming the channel coefficients independent from each other, the MGF

of γT can be derived as the product of the MGF of the single SNR on

each branch, γi. Thus, MγT
(jν) = (1 + jνγ)−N . MRC mitigates fading,

however, it ignores co-channel interference.

Equal-Gain Combining (EGC). To overcome the high complexity of

the MRC, the equal-gain combining technique can be adopted, which is

essentially a maximal-ratio combiner with all of the weight wi = 1. In

practice, EGC is often limited to coherent modulations with equal energy

symbols (M-ary PSK signals). Indeed, for signals with unequal energy

symbols such as M-QAM, estimation of the path amplitudes is needed

anyway for automatic gain control (AGC) purposes, and thus for these

modulations MRC should be used to achieve better performance.

Selection Combining (SC). In contradiction with the previous combin-

ers, the SC do not combine all the branches and it does not require the

channel knowledge. In particular, in SC techniques, the branch signal

with the largest amplitude (or signal-to-noise ratio) is selected for de-

modulation. Therefore, the SC scheme can be used in conjunction with

differentially coherent and noncoherent modulation techniques since it

does not require knowledge of the signal phases on each branch as would

be needed to implement MRC or EGC in a coherent system. Clearly, SC
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Figure 1.2: Combiner schemes at the receiver. a) A generic scheme, b)
descriptions of a hybrid-selection/maximum ratio combiner.

and MRC (or EGC) represent the two extremes in diversity combining

strategy with respect to the number of signals used for demodulation.

Hybrid-Selection/ Maximum Ratio Combining (H-S/MRC). This hy-

brid combining technique processes a subset of the available diversity

branches, reducing the system complexity, but achieving better perfor-

mance than SC. The H-S/MRC selects the L branches (over N) with

the largest SNR at each instant, and then combines these branches to

maximize the instantaneous output. It means, that the L most powerful

branches are processed by a MRC, as it can be observed from Fig. 1.2.

Here, the model scheme of a hybrid-selection/maximum ratio combiner ,

together with the scheme of a general combiner receiver, is reported. The

main issue in the H-S/MRC, from an analytical point of view, is that af-

ter the reordering, the branches are not independent from each other. An

enormous simplification can be derived by adopting the virtual branches

technique, introduced in [19]. In particular, the instantaneous SNR of

the ordered diversity branches, γ[N ], are transformed into a new set of

virtual branch instantaneous SNRs, Vns, by using the following relation

γ[N ] = TVBVN ,

where TVB is an upper triangular virtual branch transformation matrix,
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defined in [19]. The gain in adopting this transformation matrix is that

the virtual branches SNRs are independent and identically-distributed

random variables, with characteristic function given by ψVn
(jν) = (1 −

jν)−1.

1.3.3 Multicarrier systems - OFDM

The basic idea of multicarrier systems is to split the bitstream into

multiple substreams transmitted over multiple channels, overcoming the

performance degradation due to frequency selective channels. When the

subchannels are orthogonal, the multicarrier technique is defined as or-

thogonal frequency division multiplexing (OFDM). Considering a system

with baseband bandwidth B and desired data rate R, we assume the

channel divided into N subchannels, each of those will have a baseband

bandwidth equals to BN = B/N . Usually, N is set sufficiently large so

that BN is smaller than the coherence bandwidth, i.e., BN ≪ (∆f)c. It

follows that the flat fading assumption in each subcannel can be consid-

ered, leading to a reduction of the ISI generated by the fading channels.

Moreover, in the discrete implementation of OFDM2, the ISI can be

completely eliminated by inserting a cyclic prefix. It is worth noting that

each substream will have a data rate equals to RN = R/N , but the total

data rate will equal NRN = R, and also the total bandwidth will be

NBN = B. The discrete OFDM baseband model is reported in Fig. 1.3

and it can be easily implemented by adopting the fast fourier transform

(FFT), and the inverse fast fourier transform (IFFT). Considering Xi,j,n

the i-th constellation point of the j-th symbol transmitted in the n-th

subcarrier, the vector {Xi,j,n}N−1
n=0 is processed by the IFFT. Then, after

the serial-to-parallel (S/P) converter, the cyclic prefix is added to the

signal, that is processed by a D/A converter and a band-limiting filter

before the transmission. The transmitted signal reads as

y(t) =
∑

i

∑

j

N−1∑

n=0

Xi,j,ne
j2πnt/Tg(t− jT ),

2Note that, in the following, only the discrete implementation will be described in
details, being the model considered in the next chapters.
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Figure 1.3: OFDM implementation scheme at the transmitter and at the
receiver.

where T is the OFDM symbol period, comprehensive of the guard time

added in the cyclic prefix, and g(t) is the rect function of period T.

At the receiver, after the filter and the A/D converter, the cyclic prefix

is removed and the signal is reported to the frequency domain by the

FFT. In order to better understand the ISI cancellation due to the cyclic

prefix, let consider the signal y(t) sampled at the rate T/N and let assume

that the channel has a maximum time delay spread equal to pT/N . It

follows that, in the first p received samples, the current signal might be

interfered from the previous one (ISI), and the insertion of a cyclic prefix

with duration greater than pT/N provides an ISI free system.

In order to combact channel errors caused by multipath, due to the

frequency selectivity of multiple parallel channels, the system can ex-

perience frequency diversity, by adding redundancy across the subcar-

riers. The same information, for example, can be sent over multiple

subchannnels, so that multiple independently faded replicas of the in-

formation symbol can be obtained and a more reliable reception can be

achieved. This gain comes at the cost of a data rate reduction. On the

opposite, in order to maximize the data rate, a different message can be



1.3 System modeling 15

sent over each subchannels, leading to an higher transmitted data rate,

but a lower reliability of the information. It is worth noting, therefore,

the tradeoff between diversity gain and information rate in OFDM sys-

tems experiencing frequency selectivity. It will be observed in the next

chapters, for example, that an important parameter in this tradeoff is

the channel coherence bandwidth. In particular, the diversity gain can

be roughly evaluated as (∆f)c/N , and the optimal tradeoff can be found

depending on the diversity naturally offered by the channels.





Chapter 2

Channel coding for

progressive images

In this chapter, the optimization of channel encoder for image trans-

missions is addressed. The transmission of progressive image bitstreams

using channel coding in a 2-D time-frequency resource block in an OFDM

network, employing time and frequency diversities simultaneously is in-

vestigated. The physical channel conditions arising from various different

coherence bandwidths and coherence times, leading to various orders of

diversities available in the time and frequency domains, are considered

in the optimization. We investigate the effects of different error patterns

on the delivered image quality due to various fade rates. We also study

the tradeoffs and compare the relative effectiveness associated with the

use of erasure codes in the frequency domain and convolutional codes in

the time domain under different physical environments.

The remainder of this chapter is organized as follows: In Section 2.1

a description of progressive images, together with a brief overview of the

multiple description coding are provided. In Section 2.2, progressive im-

age transmissions are deeply explained and further details on MD coding

is reported. In Section 2.3, we give a description of the OFDM system and

the channel model. We also describe the proposed transmission system

and discuss some of the issues associated with the use of channel coding

in a time-frequency block. In Section 2.5, we describe the optimization

problem. In Section 2.6, we provide simulation results and discussion.

Finally, in Section 2.7, we provide a summary and conclusion.

17
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2.1 Motivation and outline of the work

In recent years, with the rapid convergence of multimedia, Inter-

net and wireless communications, there is a growing trend of hetero-

geneity (in terms of channel bandwidths, mobility levels of terminals,

enduser quality-of-service (QoS) requirements) for emerging integrated

wired/wireless networks. Embedded source coding, allowing partial de-

coding at various resolution and quality levels from a single compressed

bitstream, is a promising technology for multimedia communications

in heterogeneous environments. Early study of embedded transmission

includes [20, 21]. Both papers studied the transmission of a progres-

sively compressed bitstream employing the Set Partitioning in Hierar-

chical Trees (SPIHT) source coder combined with rate-compatible punc-

tured convolutional (RCPC) codes. Coding and diversity are very ef-

fective techniques for improving the transmission reliability in a mobile

wireless environment. However, time diversity achieved by channel cod-

ing plus intra-packet interleaving in a single carrier communication sys-

tem becomes less effective in a slow fading environment where correlated

and prolonged deep fades often result in the erasure of the whole packet

or even several contiguous packets. Hence, although improvement could

still be achieved due to the coding gain associated with the use of RCPC

codes, the performance was not satisfactory [21].

To improve the performance against deep fades in a wireless environ-

ment, two approaches have been proposed to exploit diversity in the time

domain at the physical layer for SC communication systems. One was

to add systematic Reed-Solomon (RS) codes across multiple packets [22].

Specifically, channel codes consisted of a concatenation of RCPC and

CRC codes as the row codes and RS codes as the column codes. With

the addition of RS codes across multiple packets, lost packets might still

be recoverable due to independently faded time slots [22].

Another approach [23–26] uses contiguous information symbols from

the progressive bitstreams, which, instead of being packed in the same

packets [20, 22], are spread across multiple packets (descriptions). The

information symbols are protected against channel errors using system-

atic RS codes with the level of protection depending on the relative im-
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portance of the information symbols. This coding scheme is sometimes

referred to as symmetric n-channel FEC-based multiple description (MD)

coding. Due to the individually decodable nature of the multiple packets,

the source can be recoverable despite packet loss, although at a lower fi-

delity that depends on the number of successfully received packets. Anal-

ogous to the physical layer diversity techniques offered by channel coding,

this has sometimes been referred to as application layer diversity [8].

While both approaches perform well in slow fading environments, the

order of diversity of the physical channel is vital to the selection of sys-

tem parameters (e.g., choice of channel codes and corresponding channel

code rates) as shown in [27]. Despite their importance, such factors are

usually overlooked in the literature. More importantly, studies of these

channel coding techniques have been limited to 1-D time domain cod-

ing in a slow fading environment [22, 26]. For fast fading, rapid channel

variations due to high mobility can potentially provide a high diversity

gain and significantly improve the effectiveness of channel coding in the

time domain. Unfortunately, rapid channel variation also poses a sig-

nificant challenge for channel estimation [28–30]. The accuracy of this

channel state information (CSI) is particularly important in optimizing

channel coding. In particular, it has been shown that imperfect CSI due

to estimation errors affects the performance of communications systems

designed to take advantage of the diversity opportunities [31–33].

In recent years, orthogonal frequency division multiplexing (OFDM)

has drawn intense interest. OFDM differentiates itself from an SC com-

munications system in many ways, such as robustness against frequency-

selective fading. Frequency diversity by adding redundancy in the fre-

quency domain can combat channel errors due to multipath fading and

achieve a more reliable overall system performance. In other words,

OFDM offers a unique opportunity to improve system efficiency by em-

ploying both time and frequency domain channel coding depending on

the propagation environment and user’s mobility. A highly scattered

environment may make the frequency domain coding more effective. A

highly mobile user will probably make time domain coding more com-

pelling. Although there have been some works investigating transmission
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of embedded bitstreams over OFDM networks [34–36], none has explic-

itly characterized the time and frequency domains independently and

jointly optimized the coding scheme based on these different physical

environments.

In this work, we study the transmission of progressively coded image

bitstreams using channel coding in a 2-D time-frequency resource block

in an OFDM network under different physical environments. By properly

decoupling the time domain and frequency domain channel variations, we

propose a 2-D channel coding scheme which employs time and frequency

diversities simultaneously. In particular, in the frequency domain, based

on the order of diversity, we construct FEC-based multiple descriptions

using channel erasure codes combined with embedded source coding. In

the time domain, concatenated RCPC codes and CRC codes protect

individual descriptions. Both the effects of inter-carrier interference (ICI)

and channel estimation errors, which may become severe in a fast fading

environment, are taken into consideration. We use pilot symbol assisted

modulation (PSAM) with pilot symbol density depending on the channel

selectivities in both time and frequency. As diversity is the primary factor

determining the performance of a wireless system, the results presented

can provide some design criteria for other progressive transmission coding

schemes over mobile wireless networks.

2.2 Progressive image and multiple descrip-

tion

Progressive images coding has interrupted the well known simultane-

ous progression of efficiency and complexity in multimedia transmissions.

Thanks to a progressive nature of the encoded bitstream, the same trans-

mitted image can be reconstructed at different quality levels. In particu-

lar, progressive images have many attractive features. First, the quality

of the decoded image is proportional to the received data rate, it means

that the more the bits used for the decoding, the higher the quality of

the reconstructed image. Second, the decoding process can be stopped

as soon as a target bit rate or a target distortion metric is met, and
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the quality will be the best possible for that bit rate. Third, as a con-

sequence of the previous properties, one bitstream can be truncated at

different data rates, providing several qualities. Thus, progressive images

are suitable for heterogeneous networks. For Internet image applications,

for example, embedded coding is desirable because the server can easily

partition a scalable bit stream into layers to accommodate clients with

different bandwidth. This can be observed also in Fig. 2.1, where the

same encoded bitstream is transmitted to two different users, each with

different received data rate. It is obvious that the user with lower data

rate will experience a higher distortion of the received image. Extensive

research has shown that the images obtained with wavelet-based meth-

ods yield very good visual quality; even simple coding methods produced

good results when combined with wavelets. One of the pioneristic work

for embedded encoding was introduced by Shapiro [37], who attempted

to design a wavelet image encoder, embedded zerotrees wavelet (EZW).

The algorithm introduced was able to encode the bits in the bitstream

accordingly with their importance, inherent of progressive images, with

no apparent sacrifice in image quality. In addition to producing a fully

embedded bitstream, EZW consistently produced compression resulting

competitive with all known compression algorithms on standard test im-

ages. The Shapiro’s algorithm has been significantly improved by Said

and Pearlman [1], by introducing the set partitioning in hierarchical trees

(SPIHT). The zerotrees method is still exploited in SPIHT, but the tree

structure is slightly different. Moreover, it has been observed that this

algorithm is capable of providing good quality levels without arithmetic

coding. In this work, we adopt the SPIHT algorithm as source coding.

Since in progressive image bitstreams an error generally renders the

subsequent bit useless, embedded images results highly sensible to chan-

nel impairments. In order to make the system more robust, the insertion

of unequal error protection (UEP) is desirable. In particular, mapping

the encoded bitstream in multiple descriptions system with redundancy

achieves a quality improvement in the system. Early study of embedded

transmission was due to Sherwood and Zeger who considered transmis-

sion of a progressively compressed bitstream employing the SPIHT source
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Figure 2.1: Scheme of a Lena image transmission to two different users,
with different data rates at the receiver, and indeed different qualities of
the received image.

coder over a binary symmetric channel (BSC) [20]. In particular, the au-

thors considered a concatenation of outer cyclic redundancy check (CRC)

codes for error detection and inner rate-compatible punctured (RCPC)

codes for error correction in the transmission of the SPIHT-coded em-

bedded bistream. The joint source channel image coder was shown to

outperform previously reported techniques at that time. Unfortunately,

the performance of this scheme was not satisfactory for certain physical

channels, commonly observed in a mobile wireless environment. To im-

prove the performance against deep fades in wireless channels, systematic

Reed-Solomon (RS) codes across multiple packets were added [22]. The

main weakness of this algorithm is that contiguous information symbols

from the bitstream are packed in the same packets, leading to substantial

lost in terms of quality if the first packets are not correctly received.

This high sensibility to packet loss was overcame by Sach et al. [26].

Although the authors still considered a CRC/RCPC time encoder and
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RS codes across the packets, contiguous symbols from the bitstream were

here spread across the packets rather than being distributed in the same

packets. A priority encoding transmission (PET)-like model is assumed

for the evaluation of the RS code rates. Since the first symbols are more

important than the others, they required a lower code rate. This coding

scheme is sometimes referred to as symmetric n-channel FEC-based mul-

tiple description (MD) coding. The basic concept of multiple description

(MD) source coder is the generation of multiple bitstreams of the source

such that each description individually describes the source with a certain

level of fidelity. The main features of the MDs is that each description

can be individually decoded and then combined with the other received

and decoded MDs. It follows that, the more descriptions are correctly

received, the higher is the quality of the decoded image, and also, the

corruption of one description does not jeopardize the decoding of the

correctly received descriptions. It is worth noting that in this algorithm,

and also in the one proposed in the next sections, maximum distance sep-

arable (MDS) (n, k) erasure codes are considered, where k information
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symbols are encoded into n channel symbols. In MDS codes, the mini-

mum distance dmin equals n− k + 1. Knowing that in each (n, k) codes,

the reception of each (n − dmin + 1) channel symbols allows to recover

the k information symbols, in MDS codes, the k information symbols are

recovered if any k channel symbols are correctly received. In Fig. 2.2, a

general mechanism for converting an embedded bitstream from a source

encoder into multiple descriptions is considered. In this example, n = 5

descriptions are considered, and an UEP is assumed. Considering the first

RS codeword, that is a (5, 1) codeword, the single information symbols

can be reconstructed if up to 4 descriptions are lost. Is is worth noting

that assuming all the descriptions equally important is an approxima-

tion, leading to a lower bound of the expected distortion. For example,

receiving the first g out of n descriptions provides a lower distortion than

the reception of the last g descriptions. In the MD scheme in Fig. 2.2,

for example, receiving correctly the first three descriptions rather than

the last three allows to recover up to eight information symbols rather

than up to five. Anyway, since increasing the number of the descriptions

the probability of a particular combination of the received packets is less

likely, the descriptions are usually assumed equally important.

2.3 Channel model and time-frequency chan-

nel coding

As already mentioned in Section 1.3.3, the basic principle of OFDM

is to split a high-rate data stream into a number of lower rate streams

that are transmitted over overlapped but orthogonal subcarriers. Since

the symbol duration increases for the lower rate parallel subcarriers, the

relative amount of dispersion in time caused by multipath delay spread is

decreased. Depending on the propagation environment and the channel

characteristics, the resource block in an OFDM system can be used to

exploit time and/or frequency diversities through channel coding. For

time diversity, channel coding plus interleaving can be used in the time

domain. However, for the technique to be effective, the time frame has to

be greater than the channel coherence time (∆t)c. The maximum time-
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Figure 2.3: Subcarrier spectrum assignment.

diversity gain Dt is given by the ratio between the duration of a time

frame and (∆t)c.

In addition to time diversity, frequency diversity by adding redun-

dancy across the subcarriers can be applied to combat channel errors.

Generally, the maximum achievable frequency diversity Df is given by

the ratio between the overall system bandwidth WT and the coherence

bandwidth (∆f)c.

In this chapter, we consider a frequency-selective environment and use

a block fading channel model to simulate the frequency selectivity [38]. In

this model, the spectrum is divided into blocks of size (∆f)c. Subcarriers

in different blocks are considered to fade independently; subcarriers in

the same block experience identical fades. As illustrated in Fig. 2.3, we

assume an OFDM system with an overall system bandwidth WT , such

that we can define N independent subbands. Each subband consists of

M correlated subcarriers spanning a total bandwidth of (∆f)c. The total

number of subcarriers in the OFDM system is NM . In the time domain,

we assume the channel experiences Rayleigh fading. We use the modified

Jakes’ model [39] to simulate different fading rates, resulting in different

time diversity orders.

Fig. 2.4 illustrates the proposed scheme for transmission of an em-

bedded bitstream over a mobile channel characterized by a doubly se-

lective environment. In the frequency domain, Stot = NM symmetric

descriptions of approximately equal importance are constructed in which
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Figure 2.4: Transmission of the embedded bitstream over OFDM mobile
wireless networks. The dark shaded area to the right of the RCPC cod-
ing boundary line represents the bits for CRC and RCPC coding. The
lighter shaded area under the RS coding boundary staircase represents
Reed-Solomon parity symbols. The unshaded area represents informa-
tion symbols. Note that the CRC/RCPC parity symbols are interleaved
with the RS symbols in the actual system. Nt = N ×M total subcarri-
ers and LRS Reed-Solomon symbols are considered. For each (n, k) RS
codeword, k information symbols are encoded into n = Nt total symbols.

contiguous information from the embedded bitstream is spread across

the multiple descriptions/packets [23, 24]. The algorithm adopted for

the MD encoding is the one presented in [24]. In particular, because

of the progressive nature of the encoded bitstream, MD encoding based

on the priority of the bits in the bitstream is adopted, and the opti-

mization of the FEC allocation in the frequency domain is designed to

minimize the expected distortion. Specifically, the information symbols

are protected by systematic (n, k) RS codes1, with the level of protec-

1In each (n, k) RS codeword, k information symbols are encoded into n total
symbols. While k is variable, n is constant in each codeword and equals Nt.
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tion depending on the relative importance of the information symbols,

as well as on the order of diversity available in the frequency domain.

Generally, an (n, k) MDS erasure code can correct up to n− k erasures.

Hence, if any g out of n descriptions are received, those codewords with

minimum distance dmin ≥ n− g + 1 can be decoded. As a result, decod-

ing is guaranteed at least up to distortion D(Rg), where D(Rg) refers to

the distortion achieved with Rg information symbols.

The individual descriptions are then mapped to the Stot = NM sub-

carriers. A concatenation of CRC codes and RCPC codes, for possible

diversity and coding gains in the time domain, are applied to each de-

scription. Since the descriptions are approximately equally important,

RCPC codes with the same channel code rate can be applied to protect

each individual description. This results in a vertical boundary (RCPC

coding line), as illustrated in Fig. 2.4. The LRS symbols on the left of the

boundary are the RS symbols, while those on the right are CRC/RCPC

parity symbols. It should be noted that the multiple description RS sym-

bols and RCPC parity symbols would be interleaved in an actual system.

However, for illustration, we show the de-interleaved version throughout

the paper so that the relative amounts of RCPC parity symbols and RS

symbols can be clearly indicated.

Since both forms of diversity are not necessarily simultaneously avail-

able at any given instant of time, the channel coding scheme should be

designed to synergistically exploit the available diversity. For example,

in a slow fading environment, channel coding plus interleaving is usually

ineffective, especially for delay-sensitive applications such as real-time

multimedia services. Hence, in this case, frequency diversity techniques

may be more effective than time diversity techniques.

As stated previously, traditional studies of progressive transmission

have concentrated on slow fading channels. In fact, in addition to the

performance differences in channel coding efficiencies and channel estima-

tion accuracies, the error patterns for different fade rates also affects the

application layer throughputs and hence the end-user delivered quality.

In particular, in a fast fading environment, the errors are more scattered

among multiple packets due to the higher level crossing rate which mea-
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Pros Cons
Higher orders of time domain diversity Larger channel estimation errors
⇒ higher coding gain ⇒ Lower channel decoding efficiency
⇒ higher diversity gain Higher level crossing rates

⇒ Errors scattered across multiple packets
⇒ Lower application layer throughput

Table 2.1: Factors affecting the application layer quality-of-service (QoS)
in a fast fading environment.

sures how often the fading crosses some threshold [40]. However, for a

slow fading environment, the errors appear more bursty. Consequently,

the application layer throughput, measured by the number of successively

transmitted packets, of a fast fading environment can be dramatically

lower than that of a slow fading system. In Table 2.1, we summarize the

factors affecting the selection of an optimal channel coding scheme and

end-user performance due to different fading rates.

On the other hand, information on frequency diversity can assist

a source-channel codec in selecting a more robust source-cannel cod-

ing scheme [27]. For example, while unequal error protection (UEP)

is considered as primarily important for robustness for some of the pro-

gressive transmission schemes proposed in the literature (e.g., [26]), it

was shown that in a highly frequency selective environment, UEP only

provides marginal improvement over equal error protection (EEP), while

in a frequency diversity deficient system, UEP can greatly improve the

performance of progressive transmission over an OFDM system.

2.4 ICI and channel estimation errors

The assumptions of perfect channel estimation and orthogonality be-

tween subcarriers cannot be considered accurate for fast fading environ-

ments. Rapid channel variations may cause severe ICI [41–43] and chan-

nel estimation errors, thereby degrading overall system performance. In

this work, we model the ICI as in [41], i.e., a zero mean Gaussian random
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process with variance σ2
ICI expressed as

σ2
ICI = Es −

Es

N2
t

{
Nt + 2

Nt−1∑

i=1

(Nt − i)J0(2πfndi)

}
(2.1)

where Es is the modulated symbol energy, Nt is the number of subcarriers

in the OFDM system, fnd is the normalized Doppler spread and J0(·) is

the zero-order Bessel function of the first kind. The ICI varies directly

with the Doppler frequency.

In addition to ICI, channel variations in the time domain may also in-

crease the difficulty in channel estimation. The accuracy of this channel

state information (CSI) is particularly important for coherent demodula-

tion and channel decoding. We adopt pilot symbol assisted modulation

(PSAM), commonly used in practical OFDM networks [29,30,44–48]. We

refer the reader to [44] for details of PSAM and the analysis of channel

estimation errors.

In this work, as shown in Fig. 2.5(a), pilot symbols are periodically

inserted in the transmitted data symbols with a spacing equal to L mod-

ulated symbols. At the receiver, a linear minimum mean square error

(MMSE) channel estimator [49] is adopted to estimate the fading coef-

ficient using the following procedures: First, pilot symbols are extracted

from the received sequence and the associated channel coefficients are

evaluated. Then, the channel coefficient at the l-th data time (l 6= jL)

is estimated by interpolating the K nearest pilot symbols with a Wiener

filter. In particular, we consider K = 2, i.e., each channel parameter

is estimated by interpolating the two closest pilot samples. Let us de-

note the received pilot symbol of the generic i-th slot2 as h̃[iL] and as-

sume that the l-th data symbol is transmitted in this i-th slot. Hence

h̃ = [h̃[iL], h̃[(i + 1)L]]T is the set of two pilot symbols interpolated to

estimate the l-th channel coefficient h[l]. Defining ĥ[l] as the estimator

of h[l], the channel estimation errors can be expressed as

ε[l] = h[l] − ĥ[l], l = iL . . . (i+ 1)L− 1. (2.2)

2The transmitted bitstream is divided into slots of length equal to the pilot spacing,
i.e., L symbols. The first symbol of each slot is a pilot symbol, the other (L-1) symbols
are data, as shown in Fig. 2.5.
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The quality of the estimation is expressed in terms of the mean square

error σ2
e = E[ε2], where E[·] denotes the expectation operator. Defining

w [l] = E[h̃h∗[l]] and R = E[h̃ h̃
†
], the variance of the channel estimation

errors can be expressed as [44] [30]3

σ2
e [l] = 1 −w

†[l]R−1
w [l], (2.3)

where superscripts ∗, T and † stand for conjugate, transpose and trans-

pose conjugate respectively. From (2.3), it can be seen that the es-

timation error variance depends on the channel correlation function.

3A multiplicative coefficient (the total average power of the channel impulse re-
sponse) has been set equal to 1 and therefore ignored.
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Recalling that we use a Jakes’ model, the time correlation function is

r[n] = E[h[l]h∗[l + n]] ∝ J0(2πnfnd). This means that both the correla-

tion function and the estimation error variance depend on the normalized

Doppler frequency (fnd). In particular, the channel estimation gets worse

when the Doppler frequency increases. It is worthwhile to notice that the

variance σ2
e [l] depends also on the received pilot samples h̃ , and thus on

the signal-to-noise-ratio (SNR).

In this work, the pilot and data symbols are transmitted at the same

power level. Since a frequent pilot insertion improves channel estima-

tion, at the cost of reduced throughput, a fixed pilot scheme for different

Doppler frequency environments is not the best solution. Thus, we con-

sider a pilot spacing equal to the coherence time. It follows that for a

slow fading channel, the number of pilot symbols is negligible, leading

to a high transmitted throughput. In high Doppler systems, to achieve

good channel estimation, we have to reduce significantly the number of

transmitted data symbols in each packet. Since under the block fad-

ing model, correlated subcarriers experience the same fading channel in

the frequency domain, pilot symbols inserted once every coherence time

are distributed among correlated subcarriers, as shown in Fig. 2.5(b).

Thanks to this pilot scheme, the number of inserted pilot symbols de-

creases drastically in systems with low frequency diversity order.

2.5 Problem formulation

In this section, we describe the optimization problem to be solved.

Consider N i.i.d. subbands, each withM subcarriers and packet size equal

to LRS code symbols before channel coding using RCPC/CRC codes.

Since each vertical column corresponds to one RS codeword, there are

altogether LRS RS codewords. The constraint on the bit budget/packet

can then be written as

(LRS × Stot ×BRS +BCRC)/Rrcpc ≤ Btot, (2.4)

where BCRC is the bit budget allocated for the CRC codes and Rrcpc is the

channel code rate of the RCPC codes. BRS is the number of bits-per-RS

symbol and Btot is the total bit budget of the RB.
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We assume that for RS codeword l, where l ∈ [1, LRS], cl code symbols

are assigned to information data symbols. Hence, the number of RS

parity symbols assigned to codeword l is

fl = Stot − cl l ∈ [1, LRS]. (2.5)

Let φth be the minimum number of descriptions that a decoder needs

to reconstruct the source, and g be the number of correctly received

packets. The reception of any number of packets g ≥ φth leads to im-

proving image quality D(Rg), where Rg is the allocated bit budget for

the information symbols,

Rg =
∑

{l:cl≤g}
cl ×BRS . (2.6)

Hence, the overall RS channel code rate equals Rrs = RStot
/(Stot×LRS ×

BRS). Given the source code rate-distortion curve D(Rg) and the packet

loss probability mass function PJ (j), where j = Stot − g is the number

of lost packets, we can minimize the expected distortion as follows:

E∗[D] = min
{cl,Rrcpc}

{
Stot−φth∑

j=0

PJ (j)D(RStot−j) +
Stot∑

j=Stot−φth+1

PJ (j)D0

}
,(2.7)

subject to the constraint on the overall bit budget

RStot
/Rrs +BCRC

Rrcpc
≤ Btot (2.8)

where D0 corresponds to the distortion when fewer than φth descriptions

are received and so the decoder must reconstruct the source without being

able to use any of the transmitted information. For a still image, this

typically means reconstructing the entire image at the mean pixel value.

The packet loss probability mass function PJ (j) depends on (∆f)c,

(∆t)c and Rrcpc. Although PJ (j) can be found analytically for uncor-

related fading channels, due to the correlated fading in both time and

frequency domains of the mobile environment considered here, we use

simulations to find PJ (j). We use the iterative procedure described in [24]

to solve the optimization problem (2.7).
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2.6 Results and discussion

We carried out simulations on the 512 × 512 gray-scale images Lena,

Peppers and Goldhill. Similar results were obtained for all three. Hence,

in this paper, we only present the results using the Lena image. The

image was encoded using the SPIHT [1] algorithm to produce an em-

bedded bitstream. The serial bitstream was converted into 128 parallel

bitstreams using the FEC-based multiple description encoder. The 128

descriptions were mapped to the OFDM system with 128 subcarriers.

We used RS codes in the frequency domain and there were 8 bits per

RS symbol. The packet size was set equal to 512 bits. We used QPSK

modulation and considered both perfect and imperfect CSI. It should be

noted that more sophisticated modulation schemes could be used to fur-

ther improve the system performance, such as the one discussed in [50].

However, for the sake of simplicity and better understanding of the funda-

mental impact of the time and frequency diversities on the construction

of the 2-D OFDM block, a fixed modulation scheme using QPSK was

chosen. The RCPC codes of rates Rrcpc = 8
9
, 8

10
, . . . , 8

24
, were obtained by

puncturing an Rc = 1/3 mother code with K = 7, p = 8 and generator

polynomials (133, 165, 171)octal with the puncturing table given in [51].

In the following figures, we illustrate the proposed channel coding

scheme under different fading environments and study the effects of chan-

nel estimation on the selection by comparing performance of systems with

perfect CSI to systems with imperfect CSI and ICI. From here onwards,

for systems with imperfect CSI and ICI, ICI is omitted from the notation

for sake of brevity, although it is considered as well. We begin by studying

the optimized construction of RS information and parity symbols for

• Different values of RCPC coding rate,

• Both perfect and imperfect CSI, and

• Different frequency diversity orders and different fading rates.

Then we study how the received image PSNR varies for different

Doppler spreads, for perfect and imperfect CSI, and for different fre-

quency diversity orders.

In Fig. 2.6, we show the optimized construction of RS information

symbols, RS parity symbols and RCPC parity symbols for different Rrcpc’s
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for (N,M) = (4, 32) and normalized Doppler spread fnd = 10−3 at

SNR = 16 dB for systems with perfect CSI and imperfect CSI. The

maximum order of diversity achieved in the frequency domain is Df = 4,

while the maximum order of diversity in the time domain is Dt = 1.

In other words, no diversity can be exploited by using RCPC codes, al-

though coding gain can still be obtained. In general, lower code rates

in the time domain improve the packet loss performance, thus reducing

the number of RS parity symbols required for minimizing the expected

distortion E[D], as can be noticed from the figures. Moreover, since for

a fixed code rate in the time domain the perfect-CSI system outperforms

the imperfect-CSI system, the latter system requires more protection in

the frequency domain than does the perfect system.
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As can be seen from Fig. 2.6, the RS code boundaries exhibit similar

degree of tilting for both Rrcpc rates, and for both the perfect CSI and

imperfect CSI systems for the same diversity order. As discussed in [27],

the degree of tilt of the RS boundary indicates the importance of unequal

error protection (UEP) relative to equal error protection (EEP) which

has a horizontal RS boundary line. Hence, the results demonstrate that

although the packet loss performance of an individual subcarrier can

be improved by using a lower channel coding rate, the degree of UEP,

represented by the tilt of the RS boundaries, mainly depends on the

frequency diversity order of the system, and is relatively insensitive to

the selection of the channel code rate in the time domain. In addition

to the similar degree of tilting, the curves also show similar stepwise

behavior. In particular, the RS boundaries show similar leveling behavior

at approximately the same FEC value with step-size roughly equal to the

coherence bandwidth. This observation agrees with the simulation results

shown in [27] which is mainly due to, in addition to the same diversity

order, the perfectly correlated fading within a subband in the frequency

domain, which results in, with high probability, the simultaneous loss of

the correlated subcarriers when a subband is under a deep fade.

In general, as the frequency diversity order increases, the variation

of the number of lost packets decreases and thus reduces the need and

hence the relative advantages of UEP, as shown in Fig. 2.7. In particular,

in Fig. 2.7, we show the optimal allocation of source and channel sym-

bols for imperfect CSI systems with different frequency diversity orders

(N = 1, 4, 32, 128) in an environment with fnd = 10−2. The time domain

channel code rate Rrcpc is fixed at 8/24. As can be seen, in spite of signif-

icant difference in the time domain channel conditions due to the effect

of fast fading and the time domain channel coding, similar behavior of

the RS boundaries can still be observed when compared with the slow

fading system reported in Fig.12 of [27]. Specifically, the amount RS

code rate increases with the increasing frequency diversity order while

the degree of UEP decreases with increasing frequency diversity order.

Observe that at N = 128, the RS boundary is almost flat.

The tradeoff between RCPC codes and RS codes for both perfect and
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imperfect CSI is further illustrated in Fig. 2.8, where the optimal Rrs

vs. Rrcpc is shown. By lowering the RCPC code rates, better packet loss

performance is achieved due to the coding gain, and less protection in

the frequency domain is required.

In Fig. 2.9, we plot the optimal peak-signal-to-noise ratio (PSNR)

performances against Rrcpc for selected normalized Doppler spreads in

systems with (N,M) = (4, 32), SNR = 16 dB and imperfect CSI at

the receiver. In the figure, for each selection of the time domain channel

coding rate Rrcpc, the RS boundary is optimally constructed to maximize

the delivered PSNR based on the frequency diversity order of the system.

For comparison, in the plot, we also include the curves for the normalized

Doppler spread with fnd = 10−1 and 10−4 with perfect CSI, representing
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the fast fading and slow fading scenarios with ideal channel estimation.

As can be observed, the curve corresponding to of fnd = 10−4 with perfect

CSI tracks the performance of the system with imperfect CSI closely, with

minor degradation due to channel estimation errors. However, the curve

corresponding to fnd = 10−1 and imperfect CSI deviates significantly

from the system with perfect CSI due to the high channel estimation

errors in a fast fading environment. It is worth mentioning that for the

fast fading fnd = 10−1 environment and high signal-to-noise ratio, the

system with imperfect CSI performs close to the perfect CSI system,

indicating that extra redundancy can effectively compensate for channel

estimation errors in a highly mobile scenario. Note that if the signal-to-

noise ratio is low, even the lowest channel code rate in the time domain

cannot sufficiently compensate for the effects of channel estimation errors.

Perhaps the more interesting observation is the crossovers among the

curves with different fade rates. To explain crossovers, we look at the
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two extremes of the plot, i.e., the highest and lowest time domain chan-

nel code rate Rrcpc = 1 and Rrcpc = 0.333. For the selected fade rates, at

Rrcpc = 0.333, the PSNR performance increases monotonically with the

fade rate, while the PSNR performance at Rrcpc = 1 shows a monotonic

decreasing behavior with increasing fade rate. The different behaviors

are due to the two countering effects on the system performance as a

result of increasing fade rate. As stated previously, on the one hand, the

increase in fade rate increases the diversity order in the time domain and

hence the efficiency of the RCPC channel coding. However, on the other

hand, due to the higher level crossing rate in a fast fading system, errors

are scattered across multiple packets rather than being bursty. For sys-

tems with little or no channel coding in the time domain, this scattered

nature of the error pattern can significantly increase the packet loss rate

and reduce the application layer throughput. Consequently, the PSNR

performance drops drastically, as can be noticed by the significant perfor-

mance degradation for fnd = 10−1 and 10−2. As we shall see below, due

to the higher level crossing rate associated with fast fading environments,
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the correct selection of an RCPC rate is more important for a fast fading

system than for a slow fading system.

To further illustrate the effect of the error pattern on the PSNR per-

formance, in Fig. 2.10, we plot the optimized PSNR performance vs. the

normalized fading speed (fnd) for Rrcpc = 1 for a system with a frequency

diversity order N = 16 and SNR = 16 dB. We include the PSNR perfor-

mance curves for both perfect CSI and imperfect CSI. As expected, the

performance difference between perfect CSI and imperfect CSI widens as

the fade rate increases due to the increasing channel estimation errors.

However, more importantly, both curves show a monotonic decreasing

behavior with an increasing fade rate due to the increasingly scattered

error pattern. In the Appendix A, we provide some further analysis for

the packet error rates due to the effects of error patterns resulting from

different fading rates on the application layer throughput. In particular,

by combining the threshold model [52] and the analysis on fade duration

distribution [53, 54], we provide a simple analytic solution showing that

for an uncoded system, the application layer throughput decreases ex-

ponentially with increasing fade rates due to the fact that deep fading

events are shorter but occur more frequently.

In Fig. 2.11, we illustrate the effects of the frequency and time diver-

sity orders on the selection of optimal coding schemes. In Fig. 2.11(a),

we show the optimal PSNR performance vs. Rrcpc for different diversity

orders (N = 1, 2, . . . , 128) in a system with fnd = 10−3, SNR = 16 dB

and imperfect CSI. In the figure, we also mark with a circle (◦) the op-

timal Rrcpc. As the system experiences low Doppler spread with Dt = 1

and channel estimation becomes more accurate, the selection of optimal

coding schemes is dominated by the frequency diversity order of the sys-

tem. As can be observed, generally a better performance can be achieved

with a higher diversity order. More importantly, as the diversity order

N increases, the optimal Rrcpc increases and the delivered image quality

improves accordingly. Notice also that, except for the case N = 1 , the

PSNR performance curves are relatively flat around the optimal Rrcpc. To

give a specific example, consider the PSNR performance curve for N = 8.

Although Rrcpc = 0.62 gives the optimal performance, if Rrcpc = 0.5 or
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Figure 2.10: Optimized PSNR vs. fnd for systems with (N,M) = (16, 8),
SNR = 16 dB and Rrcpc = 1 for perfect and imperfect CSI systems.

0.87 is selected instead, only minor degradation is suffered. This is be-

cause, in a slow fading environment, the performance loss due to the

non-optimal selection of Rrcpc is partly compensated by the RS coding in

the frequency domain. The results indicate that in a slow fading environ-

ment, by using the proposed 2D coding scheme, the results are relatively

insensitive to the selection of Rrcpc, which can be selected on a broad

range. The sub-optimal approach only sacrifices marginal performance

degradation. The case N = 1 represents a flat fading environment, in

which RS coding across the subcarriers becomes ineffective. The imper-

fect CSI system can now be compared to the perfect CSI system, reported

in Fig. 2.11(b). As expected, since a slow fading channel is considered,

the effects of ICI and estimation errors are negligible.

In Fig. 2.11(c), instead of a slow fading environment, we study the

performance of under fast fading conditions. Specifically, we plot the

optimal PSNR performance vs. Rrcpc for different frequency diversity

orders for a fast fading system with fnd = 10−1, SNR = 16 dB and im-
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Figure 2.11: Optimized PSNR vs Rrcpc for different coherence band-
widths.

perfect CSI. As can be easily noticed, by comparing Fig. 2.11(c) with

Fig. 2.11(a), the performance of a fast fading system is drastically dif-

ferent from that of a slow fading system due to a combination of higher

diversity, more scattered errors and poorer channel estimation accuracy

associated with fast fading environments. In particular, the system ex-

periences a relatively flat region at low Rrcpc rates and a drastic drop in

PSNR as it moves towards high Rrcpc. Observe that, although the system

with a higher frequency diversity order generally provides a better perfor-
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Figure 2.12: Optimized PSRN vs. fnd for systems with (N,M) = (16, 8),
SNR = 16 dB and different RCPC code rates.

mance, unlike the slow fading systems, the optimal Rrcpc’s are relatively

insensitive to the frequency diversity order. This is because in the time

domain, the performance is dominated by the high time diversity gain,

and thus PSNR depends only slightly on the frequency diversity order.

Moreover, it is worth noting that, due to the high time diversity order,

the time domain channel coding is very effective and the optimal channel

code rate in the time domain is dominated by the channel estimation

errors and ICI.

This can be illustrated by comparing Fig. 2.11(c) with Fig. 2.11(d).

In Fig. 2.11(d), we plot the corresponding system with perfect CSI as op-

posed to the system with imperfect CSI shown in Fig. 2.11(c). Observe

that, generally, high Rrcpc’s are preferred for better system performance.

However, the performance is relatively insensitive to the frequency diver-

sity order. Moreover, both systems exhibit precipitous drops in PSNR

performance due to a more dispersed error pattern, leading to poor ap-

plication layer throughput if the system is under-protected.
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Now that the effects of slow or fast channel impairments has been ob-

served, the motivation of this works can be better understand observing

Fig. 2.12. Here, the PSNR as a function of the normalized Doppler is re-

ported for a system with (N,M) = (16, 8) for different RCPC code rates.

In particular, systems with fixed RCPC code rates are compared to the

system adopting the optimal code rates in both time and frequency do-

main. It is worth noting that a low temporal code rate (i.e. Rrcpc = 1/3)

achieves good performance for fast fading systems, but it represent a

waste of resources for low Doppler values. Note that, since the con-

straint (2.8) is imposed, by lowering the RCPC code rate, the maximum

number of information symbols that can be transmitted decreases. Con-

versely, the system experiencing a high code rate (i.e., Rrcpc = 1, 8/10) is

robust to the channel impairments in slow channel systems. As well as

the Doppler increases, a drop of the overall performance occurs. Hence,

the good performance of the system adopting the optimal RCPC code

rate can be observed. Although the normalized doppler varies, the sys-

tem is able to sufficiently protect the transmitted packets over wireless

channel, without wasting information symbols.

In Fig. 2.13(a) and Fig. 2.13(b), we show the optimized PSNR

vs. both normalized Doppler spread fnd and the number of independent

subbands (N) using the proposed coding scheme for a 2D time-frequency

OFDM resource block with perfect and imperfect CSI, respectively. The

SNR is set to 16 dB. As can be observed from Fig. 2.13(a), without

channel estimation errors, systems with greater diversity opportunities

in time and/or frequency domains generally give better performance.

However, more importantly, observe the relatively stable performance

under different physical environments. Only for both low Doppler and

flat fading environments does the system perform poorly. For other values

of frequency and time diversity, the PSNR provided is always more than

30dB, even in the case of systems with low time or low frequency diversity

order.

In Fig. 2.13(b), we plot the corresponding system with imperfect CSI.

Complicated by the effects of channel estimation errors, the optimal per-

formance becomes more irregular. While in general systems with higher
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Figure 2.13: Optimal PSNR performances vs. both N and fnd in systems
with SNR = 16 dB for both perfect CSI systems (a) and imperfect CSI
systems (b).

frequency diversity orders outperform systems with lower frequency di-

versity orders, some irregularities are observed in the time domain. In

particular, the PSNR drops with decreasing fade rate and starts to rise
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again at fade rates around 10−2 and 10−3. To have a better understand-

ing of the optimal behavior, in Fig. 2.14 we show the optimal PSNR

performance vs. fnd for systems with two different frequency diversity

orders, Df = 4 and Df = 32. The SNR is set to 16 dB. The OFDM

resource block is constructed with optimal RS profiles and RCPC rates

based on the proposed scheme. For comparison, systems with both per-

fect and imperfect CSI are considered. By first looking at the slow fading

section, i.e., the region with fnd < 10−3, it can be observed that the opti-

mal PSNR performances are relatively flat, with some degradation in the

systems with imperfect CSI due to channel estimation errors. The per-

formance gap between the perfect CSI and imperfect CSI in this region

is relatively small due to better channel estimation accuracy in a slow

fading environment. At the middle section, i.e., (10−3 < fnd < 10−2), the

drops in PSNR performance are steepened for systems with imperfect

CSI, due to the combined effects of low time diversity gain, increasing

channel estimations errors, and the impact of the more scattered nature

of the error pattern. For fnd > 10−2, the large channel variations provide

significant time diversity gain which improves the efficiency of the RCPC

codes and partly compensate for the performance loss due to the channel

estimation errors.

Finally, results in terms of reconstructed images in Fig. 2.15 for sys-

tems with fnd = 10−1, (N,M) = (32, 4), and imperfect CSI, provide some

subjective comparisons. Here, the advantage of the proposed scheme and

the effect of channel impairments under a fast fading environment can be

observed by comparing the reconstructed images with the original one.

The five reconstructed images (Fig. 2.15(b)-(f)) represent 5 different sim-

ulated results based on 5 different RCPC code rates. In each of the cases,

the corresponding RS boundary is optimally selected based on the chosen

RCPC code rate. Fig. 2.15(c) shows the result for optimal channel coding

for the 2D time-frequency OFDM block. It can be shown that the choice

of the optimal 2D channel coding which includes the proper selections

of RCPC codes in the time domain and RS boundary in the frequency

domain turns out to be critical. As can be observed, RCPC code rates

higher than 0.66 do not provide sufficient protection against the degra-
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dation caused by the imperfect channel estimation and the intercarrier

interference that the system experiences at high Doppler. Conversely,

when an extremely low code rate is chosen, the system might be over

protected, leading to too low a source rate.

In Table 2.2 and Table 2.3, by defining the total/combined channel

code rate as Rtot = Rrcpc ·Rrs and the total system diversity order avail-

able as Dtot = Df ·Dt, we provide further analysis regarding the proposed

2D channel coding scheme. In particular, in Table 2.2, the optimal PSNR,

Rrcpc, Rrs, and Rtot are presented for a system with SNR = 16dB4, per-

fect CSI and different diversity orders in both the time and frequency

domains. In each row, we keep Dtot fixed and investigate the correspond-

ing performance for different combinations of Df and Dt. To provide a

specific comparison, consider systems with Dtot equal to 4. Obviously,

4Although only SNR = 16dB is reported, we also considered other SNR values and
behavior similar to the one for SNR = 16dB were observed.
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this can be achieved with three different combinations: (Df = 4,Dt = 1),

(Df = 2,Dt = 2), and (Df = 1,Dt = 4). Generally, as expected, the

higher the total diversity, the better is the quality of the received image,

and the less is the required redundancy, which is reflected by the increase

in combined channel coding rate Rtot. Comparing a system with no di-

versity to a system with D = 2, a substantial gain in terms of PSNR

can be observed (at least 2dB), although the gain diminishes with in-

creasing diversity orders. This is because, although the error rate of a

wireless communication system is generally a strictly decreasing function

of the order of diversity, the gain diminishes with increasing order of

diversity [55]. What is worth noting from the table is the behavior of

optimal PSNR and Rtot for a constant total diversity order. Specifically,

it can be seen that for a given Dtot, with perfect CSI, both the optimal

PSNR and the Rtot are roughly constant for all the possible combinations

of Df and Dt, independent of whether the diversity gain comes from the

frequency domain or time domain.

In Table 2.3, we provide a similar study for a system with imperfect

CSI. Similarly to the observation above, we see an enhancement of the

performance with an increase of the total diversity. However, for a fixed

Dtot, moving from slow fading to fast fading results in a decrease of the

optimal PSNR, because of the channel estimation errors. Thus, for a fixed

total order of diversity, the system with maximum frequency diversity

order performs better than the system with maximum time diversity

order.
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Table 2.2: Optimal PSNR, Rrcpc, Rrs, and Rtot for a system with per-
fect CSI, SNR = 16dB and different diversity order in both time and
frequency domains.

DIVERSITY ORDER=1:
(
N = 1, fnd = 10−4

)

psnr = 27.28 dB
Rrcpc = 0.36, Rrs = 0.91

Rtot = 0.33

DIVERSITY ORDER = 2

Df = 2,Dt = 1
(
N = 2, fnd = 10−4

)
Df = 1,Dt ∼ 2

(
N = 1, fnd = 3, 3 · 10−3

)

psnr = 29.49 dB psnr = 30.71 dB
Rrcpc = 0.73, Rrs = 0.69 Rrcpc = 0.53, Rrs = 0.95

Rtot = 0.50 Rtot = 0.51

DIVERSITY ORDER = 4
Df = 4,Dt = 1 Df = 2,Dt ∼ 2 Df = 1,Dt ∼ 4(

N = 4, fnd = 10−4
) (

N = 2, fnd = 3, 3 · 10−3
) (

N = 1, fnd = 8 · 10−3
)

psnr = 30.55 dB psnr = 30.96 dB psnr = 31.38 dB
Rrcpc = 0.89, Rrs = 0.60 Rrcpc = 0.61, Rrs = 0.89 Rrcpc = 0.67, Rrs = 0.92

Rtot = 0.54 Rtot = 0.54 Rtot = 0.61

DIVERSITY ORDER = 8
Df = 8,Dt = 1 Df = 4,Dt ∼ 2 Df = 2,Dt ∼ 4 Df = 1,Dt ∼ 8(

N = 8, fnd = 10−4
) (

N = 4, fnd = 3.3 · 10−3
) (

N = 2, fnd = 8 · 10−3
) (

N = 1, fnd = 1.5 · 10−2
)

psnr = 31.23 dB psnr = 31.22 dB psnr = 31.59 dB psnr = 32.01 dB
Rrcpc = 0.90, Rrs = 0.65 Rrcpc = 0.73, Rrs = 0.78 Rrcpc = 0.73, Rrs = 0.83 Rrcpc = 0.73, Rrs = 0.92

Rtot = 0.58 Rtot = 0.57 Rtot = 0.60 Rtot = 0.67

DIVERSITY ORDER = 16
Df = 16,Dt = 1 Df = 8,Dt ∼ 2 Df = 4,Dt ∼ 4 Df = 1,Dt ∼ 16(

N = 16, fnd = 10−4
) (

N = 8, fnd = 3.3 · 10−3
) (

N = 4, fnd = 8 · 10−3
) (

N = 1, fnd = 3 · 10−2
)

psnr = 31.75 dB psnr = 31.64 dB psnr = 31.82 dB psnr = 32.37 dB
Rrcpc = 0.89, Rrs = 0.70 Rrcpc = 0.73, Rrs = 0.82 Rrcpc = 0.73, Rrs = 0.88 Rrcpc = 0.73, Rrs = 0.95

Rtot = 0.62 Rtot = 0.60 Rtot = 0.64 Rtot = 0.69

DIVERSITY ORDER = 32
Df = 32,Dt = 1 Df = 16,Dt ∼ 2 Df = 8,Dt ∼ 4 Df = 4,Dt ∼ 8(

N = 32, fnd = 10−4
) (

N = 16, fnd = 3.3 · 10−3
) (

N = 8, fnd = 8 · 10−3
) (

N = 4, fnd = 1.5 · 10−2
)

psnr = 32.13 dB psnr = 32.03 dB psnr = 32.16 dB psnr = 32.23 dB
Rrcpc = 0.89, Rrs = 0.75 Rrcpc = 0.80, Rrs = 0.81 Rrcpc = 0.80, Rrs = 0.83 Rrcpc = 0.73, Rrs = 0.93

Rtot = 0.67 Rtot = 0.64 Rtot = 0.66 Rtot = 0.68
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Table 2.3: Optimal PSNR, Rrcpc, Rrs, and Rtot for a system with im-
perfect CSI, SNR = 16dB and different diversity order in both time and
frequency domains.

DIVERSITY ORDER=1:
(
N = 1, fnd = 10−4

)

psnr = 26.15 dB
Rrcpc = 0.33, Rrs = 0.90

Rtot = 0.30

DIVERSITY ORDER = 2

Df = 2,Dt = 1
(
N = 2, fnd = 10−4

)
Df = 1,Dt ∼ 2

(
N = 1, fnd = 3, 3 · 10−3

)

psnr = 28.75 dB psnr = 25.47 dB
Rrcpc = 0.61, Rrs = 0.67 Rrcpc = 0.33, Rrs = 0.72

Rtot = 0.41 Rtot = 0.24

DIVERSITY ORDER = 4
Df = 4,Dt = 1 Df = 2,Dt ∼ 2 Df = 1,Dt ∼ 4(

N = 4, fnd = 10−4
) (

N = 2, fnd = 3, 3 · 10−3
) (

N = 1, fnd = 8 · 10−3
)

psnr = 30.00 dB psnr = 27.06 dB psnr = 28.13 dB
Rrcpc = 0.80, Rrs = 0.58 Rrcpc = 0.33, Rrs = 0.70 Rrcpc = 0.33, Rrs = 0.87

Rtot = 0.47 Rtot = 0.23 Rtot = 0.28

DIVERSITY ORDER = 8
Df = 8,Dt = 1 Df = 4,Dt ∼ 2 Df = 2,Dt ∼ 4 Df = 1,Dt ∼ 8(

N = 8, fnd = 10−4
) (

N = 4, fnd = 3.3 · 10−3
) (

N = 2, fnd = 8 · 10−3
) (

N = 1, fnd = 1.5 · 10−2
)

psnr = 30.74 dB psnr = 27.72 dB psnr = 28.48 dB psnr = 28.94 dB
Rrcpc = 0.89, Rrs = 0.59 Rrcpc = 0.36, Rrs = 0.66 Rrcpc = 0.36, Rrs = 0.82 Rrcpc = 0.36, Rrs = 0.90

Rtot = 0.52 Rtot = 0.24 Rtot = 0.29 Rtot = 0.33

DIVERSITY ORDER = 16
Df = 16,Dt = 1 Df = 8,Dt ∼ 2 Df = 4,Dt ∼ 4 Df = 1,Dt ∼ 16(

N = 16, fnd = 10−4
) (

N = 8, fnd = 3.3 · 10−3
) (

N = 4, fnd = 8 · 10−3
) (

N = 1, fnd = 3 · 10−2
)

psnr = 31.33 dB psnr = 28.22 dB psnr = 28.75 dB psnr = 29.79 dB
Rrcpc = 0.89, Rrs = 0.65 Rrcpc = 0.36, Rrs = 0.71 Rrcpc = 0.36, Rrs = 0.83 Rrcpc = 0.44, Rrs = 0.88

Rtot = 0.58 Rtot = 0.26 Rtot = 0.30 Rtot = 0.39

DIVERSITY ORDER = 32
Df = 32,Dt = 1 Df = 16,Dt ∼ 2 Df = 8,Dt ∼ 4 Df = 4,Dt ∼ 8(

N = 32, fnd = 10−4
) (

N = 16, fnd = 3.3 · 10−3
) (

N = 8, fnd = 8 · 10−3
) (

N = 4, fnd = 1.5 · 10−2
)

psnr = 31.77 dB psnr = 28.70 dB psnr = 29.23 dB psnr = 29.26 dB
Rrcpc = 0.89, Rrs = 0.70 Rrcpc = 0.44, Rrs = 0.66 Rrcpc = 0.44, Rrs = 0.75 Rrcpc = 0.44, Rrs = 0.77

Rtot = 0.62 Rtot = 0.29 Rtot = 0.33 Rtot = 0.34

2.7 Conclusion

We studied channel coding in a 2D time-frequency resource block of

an OFDM system. In particular, we used symmetric n-channel FEC-

based multiple descriptions based on the diversity order in the frequency
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domain. In the time domain, a concatenation of RCPC codes and CRC

codes was employed to protect individual descriptions. We studied the

performance of the proposed system in a doubly-selective channel with

channel estimation errors. In a slow-fading environment, it was shown as

the frequency diversity order increases, the optimal Rrcpc increases and

the delivered image quality improves accordingly. On the other hand, in a

fast-fading environment, the optimal Rrcpc is relatively insensitive to the

frequency diversity order while the performance is limited by the channel

estimation errors and ICI. It was also illustrated that the advantages of

UEP protection diminishes as the frequency diversity order increases in

both slow and fast fading environment. Thus, since both the optimal

Rrcpc and Rrs vary depending on the channel conditions, a system can

be robust only employing a 2D channel coding adaptable to both time

and frequency diversity orders. Lastly, we illustrated that the bursty

nature of a slow fading environment can lead to a higher application

layer throughput and thereby deliver a better image quality while the

scattered error pattern in a fast fading environment may lead to poor

image quality.
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(a) Original Image. (b) Received Image. Rrcpc =

0.33, Rrs = 0.99, PSNR = 29.0 dB,

RTX = 0.08 bpp, RRX = 0.073 bpp.

(c) Received Image. Optimal Rate.

Rrcpc = 0.5, Rrs = 0.89, PSNR = 30.5

dB, RTX = 0.15 bpp, RRX = 0.1 bpp.

(d) Received Image. Rrcpc =

0.66, Rrs = 0.18,PSNR = 25.35 dB,

RTX = 0.03 bpp, RRX = 0.02 bpp.

(e) Received Image. Rrcpc =

0.73, Rrs = 0.03, PSNR = 20.5 dB,

RTX = 0.007 bpp, RRX = 0.004 bpp.

(f) Received Image. Rrcpc = 1, Rrs =

0.008, PSNR = 14.5 dB, RTX = 0.001

bpp, RRX = 10−5 bpp.

Figure 2.15: Image quality for a system with fnd = 10−1, (N,M) = (32, 4),
SNR = 16 dB, and imperfect CSI. We denote by RTX the transmitted source
rate and by RRX the received source rate.





Chapter 3

Joint source and channel

coding for

motion-compensated fine

granularity scalable video

The previously investigated channel coding optimization is here ex-

tended to a joint source and channel coding optimization for video trans-

missions. Cross-layer motion-compensated multiple descriptions coding

for progressive video bitstream is investigated. Based on the diversity

order offered by the channel in both time and frequency domain, the

optimal compression rate and channel code rates are evaluated.

The remainder of the chapter is organized as follows. In Section 3.1, a

description of progressive video bitstreams, together with a brief overview

of the multiple description coding, is reported. In Section 3.2, we provide

a detailed description of FGS video, considering motion compensation

with leaky prediction. In Section 3.3, we describe OFDM systems and

the channel model considered in our analysis. In Section 3.4, we pro-

vide a framework for the construction of n-channel symmetric motion-

compensated MD coding and we formulate the optimization problem, de-

scribing the rate-distortion evaluation algorithm adopted. In Section 3.5,

we provide simulation results and discussion. Finally, in Section 3.6, we

provide a summary and conclusion.

53
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3.1 Motivation and outline of the work

Due to the increasing demand for multimedia services on mobile ter-

minals, and the recent advances in mobile computing, video services are

expected to be widely deployed. Moreover, the rising of Internet and wire-

less communications has widely increased the diffusion of heterogeneity

in multiuser systems, and modern studies are focused on meeting each

user requirement at the same time. To this aim, network-adaptive scal-

able video coding and cross-layer optimization have been under intense

research [56–60]. Note that, in the past, the aim of video coding was the

optimization of the video quality at a given bit rate. The encoder should

compress the video bitstream to a fixed bit rate, less and hopefully close

to the channel capacity, and the decoder should be able to reconstruct

the video source from the received bit rate. However, the channel ca-

pacity is an information not always available, and unknown is also the

bit rate to which optimize the compression. Moreover, due to channel

impairments in wireless transmissions, the received data rate is variable,

resulting to be a function of the channel conditions. Thus, the decoder

has to be able to reconstruct the video from several ranges of received

bit rate. For these reasons, the aim of video coding studies is changed to

optimizing the video quality over a given bit rate range instead of a given

bit rate [61–64], meeting the requirements of heterogenous networks.

Moving Pictures Experts Group (MPEG) has provided scalable video

coding schemes to accommodate the various levels of picture quality de-

pending on the transmission environments and the performances of the

user-level terminals [65], and has also put its considerations in a new ad-

vanced video coding standard with ITU-T for broadcasting and internet

multimedia services [66]. In scalable coding techniques (SNR, temporal

or spatial scalability), adopted in the MPEG-2 for example [67–69], the

compressed bitstream is partitioned into a Base Layer (BL) and an En-

hanced Layer (EL). The main weakness of this layered scalable coding

is that the EL can be either entirely transmitted/received/decoded or

it does not provide any enhancement at all. To address this limitation

of earlier scalable video coding standards, the Fine Granularity Scalable

(FGS) video coding technique was introduced. In addition to the Base
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Layer, FGS consists of a single Enhanced Layer encoded in a progressive

manner. Although the BL is encoded at a certain rate RBL, such that the

minimum received bandwidth is higher than RBL (RBL ≤ Rmin), the EL

can be compressed over any desired bit rate range [Rmin, Rmax]. Thanks

to the progressive nature of the enhanced layer, the decoder is able to re-

construct the EL at any received bit rate, i.e., the EL can be truncated at

any arbitrary location. While in scalable video coding the EL is entirely

received or lost, in the FGS, any portion of the EL correctly received im-

proves the quality of the decoded video bitstream. Note that, as deeply

described in the previous chapter, a MD coding improves the robustness

of the system, and so even of the transmitted EL1 [27, 70, 71]. However,

even considering more reliable transmissions, scalable video standards

still preserve their limit.

Most state-of-the-art video codecs incorporate motion-compensated

prediction (MCP), leading to a higher compression of the source video [58,

60]. With MCP, a single bit error can cause the so called drift prob-

lem, that is the quality degradation due to an error propagation as a

result of predictor mismatch between the encoder and the decoder. In

FGS MPEG-4 coders, the MCP is considered for the BL but not for the

EL, avoiding the drift problem when the EL is lost. The encoded bit-

stream is therefore robust to channel impairments, and the embedded

structure support the adoption of prioritized transport protocol or any

unequal error protection UEP, as in [24, 72]. However, the robustness

of errors propagation is paid by the reduction of compression efficiency.

To overcome this issue, motion compensation was introduced within the

enhanced layer [64,73]. In [73], the authors included the EL layer in the

MCP loop to exploit the remaining (not coded in the base layer) tempo-

ral correlation within this layer. The tradeoff between coding gain and

prediction drift is found by varying the portion of the EL included into

the MCP loop. However, MC-FGS suffers from error propagation when

the portion of the EL employed for the prediction is lost. In [64], the

authors proposed a progressive FGS (PFGS) coding scheme by adopting

a separate MCP loop in the embedded EL. To address the drift problem

1We refer the reader to Section 2.3 and Section 2.5 for further details on MD
coding.
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in the PFGS coding scheme, a prediction path going from the BL to the

highest bitplanes of the EL across several frames is maintained so the

coding scheme can gracefully recover from channel errors. To circum-

vent coding inefficiency and drift issues, leaky prediction layered video

coding is considered, and an attenuated version of the enhanced layer

is included within the MCP loop. MC-FGS coding with leaky predic-

tion improves the coding efficiency maintaining graceful error resilience

performance, thus the tradeoff between coding efficiency and error drift

can be achieved. Note that the leaky factor α assumes values between 0

and 1; when α = 0 the EL is completely excluded from the MCP loop,

avoiding the drift issue and minimizing the coding efficiency. Conversely,

when α = 1, the whole EL is included in the MCP loop, maximizing the

compression efficiency, but having the less error resilience. In [74], the

MCP portion of the EL together with the leaky prediction factor was

optimized to the channel conditions, i.e., signal-to-noise ratio and order

of diversity in both time and frequency domain. The authors proposed

an n-channel symmetric motion-compensated multiple description coding

and transmission scheme for the delivery of scalable video over OFDM

systems. Since the analysis is limited to a slow fading channel case, only

a frequency coding is considered.

In this chapter, the delivery of scalable video over OFDM systems

is investigated in varying channel conditions. In order to provide a sys-

tem robust in both time and slow fading as well as in systems with ei-

ther high and low frequency correlation, a n-channel symmetric motion-

compensated MD coding is considered, by adopting a channel coding

both in time and frequency domain. The MD mapping scheme, intro-

duced in the previous chapter, is here extended to a video transmission,

considering not only the channel coding optimization but also the MCP

loop and leaky factor optimization. The best tradeoff between coding

efficiency and error resilience is addressed by a joint source and channel

coding optimization.
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Figure 3.1: Encoder structure of the FGS coding methodology based on
MPEG-4.

3.2 Motion-compensated FGS with leaky

prediction

As already mentioned, conventional scalable video coding schemes

consist of both a base layer and an enhancement layer. The base layer

guarantee the basic quality of the encoded video, while an improved

quality can be obtained receiving the enhancement layer in addiction to

the BL bitstream. Fig. 3.1 shows the encoder structure of the MPEG-

4 FGS system. As reported in the figure, the FGS encoder consists of

two parts: base layer and enhancement layer. In the base layer, the basic

information of the input signal is coded in the same way as the traditional

block-based coding method. Note that the encoder structure in the BL

is the same of that in MPEG-4 Part 2 coding [65]. In the enhancement

layer, the residual signal that is not coded in the base layer is divided into

8 × 8 blocks and each block is discrete cosine transformed (DCT). After

collecting all of the weighted DCT coefficients, the maximum value of

the coefficients is found to determine the maximum number of bit-planes.
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Finally, the bitplane- based variable length coding (VLC) procedure is

then carried out for each bit-plane of each block of the DCT residues.

We refer the readers to [64, 75–77] for further details on FGS coding

techniques.

When the motion compensated prediction for video coding is con-

sidered, high compression is achieved by exploiting similarities between

successive frames. Fig. 3.2 illustrates a general framework for MC-FGS

coders with leaky prediction [62, 73, 78, 79]. The MCP is considered for

both the BL and a portion of the EL, the last opportunely attenuated by

a leaky factor α. For sake of simplicity, in this chapter, we assume that

the BL, including coding modes and motion vectors (MVs), is correctly

received. However, it should be noted that the loss of the BL would cause

a substantial degradation of the delivered video quality, rendering some-

times the sequence not decodable [73]. It follows that the BL should be

extremely protected, for example, by considering higher FEC level dedi-

cated to the BL rather than the forward error correction (FEC) for the

EL in the channel coding process [74].

As already pointed out, the EL is progressively encoded, and the

whole block or only a portion of it can be considered for the MCP loop.

Note that the portion of the EL included in the MCP loop is denoted

by EL-MCP, while EL-extra is the residual EL, not considered for the

MCP loop. Being Rel,max the total bit budget of the EL, the portion of

EL included into the MCP loop (MCP point) is denoted by β, which will

range between 0 and 1. The MCP point is defined as β = Rel,mcp/Rel,max,

where Rel,mcp is the amount of bits considered for the EL-MCP. When

β = 1 (i.e., Rel,mcp = Rel,max ), the whole EL is included into the MCP

loop, while only the BL is considered when β = 0. By increasing β, the

coding efficiency is improved, at the cost of a less robust system. In fact,

the higher the β, the higher is the quality degradation in case of EL-

MCP loss. An optimal MCP point can be found regarding the channel

conditions and the protection level associated to the EL.

The leak factor α ∈ [0, 1] is aimed at attenuating the EL-MCP before

it is included into the MCP loop [62, 80, 81]. Its purpose is to reduce

the drift issue once the EL-MCP is lost. In particular, when α = 0,
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since the EL is not considered in the MCP loop, the drift problem is

avoided. By increasing the leak factor, the coding efficiency is improved

and the drift effects increase when the EL-MCP is not received. When

α = 1, the whole EL-MCP is considered within the MCP loop without

any attenuation, leading to the best coding efficiency and the least error

resilience, and the drift problem can be limited by reducing the portion

of the EL considered for the prediction loop only. As a result of the

leaky prediction algorithm, the reference Ŝ
(n−1)
el,β for the prediction of the

current EL is a weighted sum of the BL reference S
(n−1)
BL and the partial

EL reference S
(n−1)
el,mcp, i.e.,

Ŝ
(n−1)
el,β = (1 − α)S

(n−1)
BL + αS

(n−1)
el,mcp. (3.1)

In [21], Huang et al. showed that the simultaneous utilization of

both parameters α and β on a frame-by-frame basis can greatly improve

the delivery of FGS video over wired networks. Similar studies were

done by Han and Girod [23], using a multistage embedded quantizer and

leaky prediction. In [74], Chan et al. optimized both the parameters

for the construction of a n-channel symmetric motion-compensated MD

coding, for slow fading channels. Here, the work has been extended to



60 Chapter 3. JSCC for MC-FGS Video

fast fading channels, providing an optimized scheme robust in several

channel conditions.

3.3 System model overview

The system model and the channel coding adopted in this chapter

have been already described in the Chapter 2, and they are briefly re-

ported in the following.

3.3.1 Channel model

We assume an OFDM system with an overall bandwidth WT , in which

N independent subchannels can be individuated. Being (∆f)c the coher-

ence bandwith, the number of independent subchannels is evaluated as

N = Nt/M , where Nt is the number of total subcarriers (spanning a

total bandwidth of WT ) and M is the number of correlated subcarriers

(spanning a total bandwidth of (∆f)c). Frequency diversity by adding

redundancy across the subcarriers can be applied to combat channel er-

rors. Generally, the maximum achievable frequency diversity Df is given

by the ratio between the overall system bandwidth WT and the coherence

bandwidth (∆f)c. In addiction to frequency domain, for time diversity,

channel coding plus interleaving can be used in the time domain. How-

ever, for the technique to be effective, the time frame has to be greater

than the channel coherence time (∆t)c. The maximum time-diversity

gain Dt is given by the ratio between the duration of a time frame and

(∆t)c. In the time domain, a Rayleigh fading is assumed, while in the fre-

quency domain a block fading channel is considered . A modified Jakes’

model [39] is considered to simulate different fading rates, resulting in

different time diversity orders.

3.3.2 Time-frequency MD coding

In Section 2.3, the proposed scheme for the transmission of an embed-

ded bitstream over a mobile channel characterized by a doubly selective

environment was described. In the frequency domain, Nt = N ×M sym-
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metric descriptions2 of approximately equal importance are constructed

in which contiguous information from the embedded bitstream is spread

across the multiple packets [23, 24]. In the previous chapter the infor-

mation symbols represented the progressively encoded images, now they

represent the progressive EL bits (both the EL-MCP and EL-extra por-

tions). Because of the progressive nature of the encoded bitstream, MD

coding based on the priority of the bits in the bitstream is adopted, and

the optimization of the FEC allocation in the frequency domain is de-

signed to minimize the expected distortion. In the frequency domain,

a (n, k) MDS erasure RS code is adopted, and the code rates are opti-

mized based on the importance of the information symbols. In the time

domain, a concatenation of cyclic redundancy check (CRC) codes and

rate-compatible punctured convolutional (RCPC) codes, for possible di-

versity and coding gains, are applied to each description. We recall that

it has been demonstrated the importance of the MD coders optimization

for multimedia transmissions, [59, 72–74]. In particular, in [72] (for slow

channels) and in the previous chapter (for both slow and fast channels),

it has been highlighted how the knowledge of the order of diversity of-

fered by the channel greatly improves the system performance for image

transmissions. The FEC profile in the MD coding can be optimized based

on these diversity orders in both time and frequency domain. When the

diversity is available at least in one of the two domains, the system re-

sults to be robust in both slow and fast fading channels. Moreover, in

flat fading conditions, the UEP in the frequency domain is the optimal

FEC allocation, while in highly frequency selective channels, the optimal

FEC staircase merges to an EEP. These considerations were extended to

video source transmissions in [74], for slow fading channels. The FEC

staircase in the frequency domain was optimized together with the α

and β parameters for motion-compensated MD coding. In [74], no time

conding was considered, leading to a collapse of the performance with

the increasing of the Doppler. Here, the CRC/RCPC coding is inserted

in the time domain, and both time and frequency coding are optimized

in conjunction to the α and β parameters.

2Note that each description is a single packet, so we shall use the terms “descrip-
tion” and “packet” interchangeably throughout the paper.
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3.4 Problem formulation

In this section, we describe the optimization problem to be solved, and

we provide some worthy details on methods and parameters useful for the

optimization analysis, as the drift-management and the rate-distortion

curve.

3.4.1 Drift management

As already mentioned, the multiple description stream is insensitive to

the position of losses in the bitstream, and thus it has the desired feature

that the delivery quality is dependent only on the fraction of packets

delivered reliably. Most of the initial works in this area has focused on

the case of Nt = 2 descriptions [82, 83]. Then, the case of Nt > 2 was

addressed by other authors. In most of these works, one of the main issue

is the error propagation that occurs when there is a mismatch between

encoder and decoder.

Consider a generic 2-channel nonsymmetric MD system which can be

characterized by the quintuple (R1, R2, D
(1)
1 , D

(2)
1 , D2), where R1 and R2

are the bitrates of the two individual descriptions. D
(1)
1 is the distortion

when description 1 is received, D
(2)
1 is the distortion when description 2

is received and D2 is the distortion when both descriptions are received.

As a result, there are three possible prediction states at the decoder, cor-

responding to the successful reception of only description 1, only descrip-

tion 2, or both descriptions (decoded by the central decoder). Each of the

three states can form its own prediction loop. Whenever the encoder uses

a predictor that depends on a state not available at the decoder, there will

be a mismatch between the prediction loops at the encoder and decoder.

Similar to single description (SD) MCP coding, this mismatch between

encoder and decoder will trigger error propagation, or drift. To avoid

such mismatch, one can, for example, construct two independent predic-

tion loops, each based on a single-channel reconstruction. At the expense

of decreased compression efficiency, this can completely avoid the mis-

matches for the side decoders, even when one of the two descriptions is

lost [82,84]. For the symmetric counterpart, since the video quality only
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depends on the number of descriptions received, the two independent

prediction loops can be reduced to one. Hence, the symmetric property

significantly reduces the complexity of encoding and decoding. In general,

there are as many as (2n − 1) possible prediction states, while there are

n prediction states for the corresponding symmetric counterpart. How-

ever, when n is large, aside from the complexity issue, the probability

of simultaneous failure of all but one of them is typically small. Hence,

although this approach completely eliminates mismatches, it is not useful

in practice. More importantly, as stated above, mismatch-free or drift-

free approaches generally suffer from poorer compression efficiency [85].

Hence, as opposed to the traditional predictive coding paradigm that sys-

tems should not be designed to allow drift/mismatch, there is a growing

interest in predictive coding schemes (both SD and MD) that attempt

to allow some drift/mismatch so as to improve the overall compression

efficiency. This is called the drift-managed approach [58, 62, 86–89]. A

drift-managed approach does not preclude drift in the prediction strat-

egy. Instead, it allows drift/mismatch to be introduced incrementally,

and encompasses drift-free as a special case. In other words, a drift-

managed approach optimizes the system performance by trading off the

compression efficiency and the amount of mismatch, allowing the drift-

free solution to emerge when it is optimal.

The design paradigm can be applied to the construction of n-channel

symmetric motion-compensated MD codes. One can, for example, assign

m ∈ [0, n] descriptions as a reference for the temporal prediction, where

m = 0 corresponds to the drift-free case. Note that if the number of re-

ceived descriptions m′ < m, there will be a mismatch. Generally, a higher

prediction efficiency can be achieved by using a larger m. However, this

comes at a price of greater probability of mismatch. More importantly,

although the number of descriptions to be included for the MCP has

often been thought as a fine-tuning method for trading off compression

and error resilience, and allowing drift to be introduced incrementally

(see [87], Section III-G]), the correlation among the subcarriers/channels

may make this less effective. For instance, if M out of n descriptions are

delivered through M highly correlated channels, i.e., systems with low
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diversity order, these M descriptions are likely to be lost or received all

together. The encoder should decide whether to include M more or M

fewer descriptions in the MCP loop, instead of attempting to fine-tune

by including one more or one fewer description in the loop, because the

correlated nature of the subcarriers makes it unlikely that only one more

or one less of description would be received. The effect becomes more

significant when M is large, or, equivalently, when the order of diversity

is small. This erratic behavior due to the simultaneous loss of several

descriptions transmitted through highly correlated channels may greatly

affect the degree of encoder-decoder mismatch, and, hence, the effective-

ness of drift control, which may subsequently result in severe unexpected

error propagation.

3.4.2 Motion-compensated FEC-MD coding construc-

tion

In the following, we describe the problem formulation to be solved,

that is the optimal motion compensated FEC-MD coding construction.

We extend the cross-layer diversity technique already described in [74],

employing time coding in addition to the already considered frequency

coding. Based on the channel conditions, a joint source and channel

coding optimization is provided. In particular, we demonstrate that tak-

ing into consideration the time and frequency diversity in the coding

optimization leads to an improvement of the performance, in both fast

and slow fading channels as well as in both flat and frequency selective

channels. In Fig. 3.3, a MD construction is illustrated. In the FGS en-

hancement layer bitstream (Fig. 3.3(a)), a portion of the EL is included in

the MCP loop (EL-MCP), while the remaining bits are not included into

the MCP loop (EL-Extra). Less important EL-Extra can be discarded,

based on available bandwidth and channel conditions. In Fig. 3.3(b),

the motion compensated MD coding is considered. Similarly to the MD

coding of Chapter 2, the embedded bitstream of the EL is mapped into

n-channel multiple descriptions. In particular, contiguous symbols of the

bitstream are spread across the subcarriers and protected against chan-

nel impairments by a (Nt, k) MDS RS coding in the frequency domain,
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Figure 3.3: Transmission of the embedded bitstream over OFDM mo-
bile wireless networks. (a) FGS embedded bitstream. (b) Motion-
compensated MD coding. The white shaded area represents the parity
symbols (both in time and frequency domain), the light-grey shaded area
represents the EL-MCP symbols, and the dark-grey shaded area repre-
sents the EL-Extra symbols. Note that the CRC/RCPC symbols are
interleaved with RS symbols in real systems.

where Nt is the number of total subcarriers in the OFDM system. The

level of protection on each RS codeword depends on the importance of

the symbols in the bitstream and it is actually one of the parameters

to be optimized. Then, each description is temporally encoded with a

concatenation of CRC codes and RCPC codes. The reception of at least

φth descriptions out of Nt allows us to start reconstructing the source. In

a (Nt, k) MDS code, in order to reconstruct the k information symbols,

up to Nt − k descriptions can be lost. It follows that when more than

Nt − φth descriptions are lost, the source can not be reconstructed, and
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all the EL of the transmitted frame is discarded. In Fig. 3.3(b), M is the

number of highly correlated subcarriers3, and N is the number of inde-

pendent subbands in the frequency domain such that Nt = N ×M . The

white area represents the parity symbols for both CRC/RCPC codes and

RS codes. It should be noted that, in actual systems, RS symbols and

RCPC parity symbols of each description would be interleaved. How-

ever, for illustration, we show the de-interleaved version throughout the

chapter so that the relative amounts of RCPC parity symbols and RS

symbols can be clearly indicated. Unlike the MD coding with no motion

compensation, the information symbols are here classified into EL-MCP

(light-grey shaded area), used for the MCP loop at the decoder, and EL-

Extra (dark-grey shaded area) carrying information for enhancing the

video without being included into the MCP loop. Note that, since the

leaky prediction is considered, the EL-MCP symbols are α-attenuated

before being included into the MCP loop. Denoting by m the minimum

number of descriptions to be received for reconstructing the EL-MCP, the

reception of m′ < m descriptions leads to an encoder-decoder mismatch.

The quality degradation caused by the mismatch depends on the number

of EL-MCP descriptions missed, as well as the leaky factor considered

in the coding. Intuitively, the mismatch is proportional to α(Ŝm − Ŝm′),

where Ŝm and Ŝm′ are the reconstructed frame using m and m′ received

descriptions.

Mathematically, the optimization for the construction of n-channel

symmetric motion-compensated MDs is formulated as follows. Consider

N i.i.d. subbands, each with M subcarriers and packet size equal to

LRS code symbols before channel coding in the time domain. Since each

vertical column corresponds to one RS codeword, before the time cod-

ing there are altogether LRS RS codewords. The constraint on the bit

budget/packet can then be written as

(LRS ×Ntot × BRS +BCRC)/Rrcpc ≤ Btot, (3.2)

where BCRC is the bit budget allocated for the CRC codes and Rrcpc is

the channel code rate of the RCPC codes. BRS is the number of bits-per-

3We recall that a block fading model is considered for the channel in the frequency
domain.
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RS symbol and Btot is the total bit budget of the OFDM resource block

(RB).

We assume that for the RS codeword l, where l ∈ [1, LRS], cl code

symbols are assigned to information data symbols, therefore, fl = Nt−cl
are the FEC symbols. The reception of m′ > φth descriptions leads

to a reconstruction of the source with distortion D(Rm′), where Rm′

is the allocated bit budget for the information symbols in the first m′

descriptions,

Rm′ =
∑

{l:cl≤m′}
cl × BRS. (3.3)

Hence, the overall RS channel code rate equals Rrs = RNt
/(Nt × LRS ×

BRS). Given the source code rate-distortion curve D(•) and the packet

loss probability mass function PJ (j), where j = Nt −m′ is the number

of lost packets, we can minimize the expected distortion as follows

E∗[D] = min
{cl,Rrcpc,β,α}

{
Nt−φth∑

j=0

PJ (j)D(RNt−j , β, α) +
Nt∑

j=Nt−φth+1

PJ (j)DBL

}
,

(3.4)

subject to the constraint on the overall bit budget

RNt
/Rrs +BCRC

Rrcpc

≤ Btot (3.5)

where DBL corresponds to the distortion when fewer than φth descrip-

tions are received and only the BL is decoded in the current frame. It is

worth noting the tradeoff between reliability and throughput. Given the

constraint (3.5), lowering Rrs and/or Rrcpc will cope with channel impair-

ments, but it will lead to a reduction of RNt
, that is the number of total

information symbols transmitted within the resource block (RB). The

packet loss probability mass function PJ (j) depends on (∆f)c, (∆t)c

and Rrcpc. Although PJ (j) can be found analytically for uncorrelated

fading channels, due to the correlated fading in both time and frequency

domains of the mobile environment considered here, we use simulations

to find PJ (j). Different algorithms can be considered for solving the opti-

mization problem [90–93], here, we use the iterative procedure described

in [24] due to its simplicity. We set the parameter Q = Nt for a full
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search. The rate-distortion curves D(•) in (3.4) can be evaluated theo-

retically [79], or by real video simulations. In both the cases, a careful

description of the adopted algorithm is necessary, and it is presented in

the following subsection.

3.4.3 Rate-Distortion curve

The overall MC FEC-MD coding construction described in the previ-

ous section is based on the rate-distortion (RD) curve of the encoded

video sequence. Several works considered theoretical frameworks for

studying MCP encoders and RD curve evaluation, [79, 81]. Since we

investigate real video sequences, to better estimate the drift issue the

simulated RD curve is considered. In theoretical systems as well as in

the realistic ones, the algorithm for the RD curve evaluation is a focal

point. Two possible methods are compared in the follwing4: i) off-line

method, ii) on-line method. It is important to recall that the rate con-

sidered in the RD curve is the EL rate, including both EL-MCP and EL-

extra. Since we consider the BL always correctly received, the decoded

video quality can not be lower than a minimum value, DBL, achieved

by receiving only the BL, i.e., D(R0) = DBL
5, where R0 is the received

rate when all the EL is lost. Denoting by R(i) the portion of the EL

received for the i-th frame, because of the EL-MCP loop, the RD curve

of the (i + 1)-th frame will be a function not only of R(i+1), but also of

the R(i) and D(R(i)). In particular, if R(i) < Rel,mcp, the EL-MCP for

the i-th frame is not correctly received, and a mismatch occurs when

the (i + 1)-th frame is decoded. Moreover, since the (i)-th frame is a

reference for the current frame, the quality of the decoded (i)-th frame

is another important information for the RD curve of the current frame.

This concept is graphically explained in Fig. 3.4(a). Considering the first

frame of a given sequence, an I-frame6, the RD curve is evaluated taking

4Note that several works are focused on RD curve and rate control algorithms.
Here, we presents the two methods that we elaborated.

5Note that, since the rate is the EL rate, a subscript EL should be considered (i.e.,
REL), but for sake of simplicity in the notation we omit this subscript. We explicit
the subscript only when we refer to the EL-MCP rate, denoted by Rel,mcp.

6An I-frame is an intra-coded frame, while P and B frames are inter-coded frames.
In particular, each P frame is encoded with previous frames as reference, and the B
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therefore, the RD curve of the third frame can be evaluated.

Figure 3.4: Rate-Distortion curve evaluation.

into account the received rate employed in the decoding. If the received

frames has a bi-directional reference, i.e., either previous and successive frames are
references for the B frame.
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rate is greater than the EL-MCP rate (R(1) ≥ Rel,mcp), no mismatch will

occur during the decoding of the second frame. In this case, the amount

of bits received for the first frame does not influence the evaluation of the

RD of the second one (black RD curve). Conversely, when R(1) < Rel,mcp,

the bit budget received for the first frame is a required information for

the evaluation of the RD curve of the second frame. It is important to

know how much drift occurs during decoding process (blue, red or orange

curve). When the third frame is considered (Fig. 3.4(b)), the RD curve

evaluation depends on R(3), R(2), and R(1), or analogously, on R(3), R(2),

and D(R(2)). In fact, it is important to know if the second frame, used as

reference for the third one, is drift-free. It follows that, for the evaluation

of the D(R(3)), it is important to know if a mismatch occurs during the

third frame decoding, but also if one was experienced in the past frames.

More generally, the rate distortion curve for the (i + 1)-th frame de-

pends on the rate vector [R1, R2, . . . , R(i+1)], or equivalently, it depends

on (R(i+1), R(i), D(R(i))), since the distortion of the i-th frame has an

implicit dependency on the rates of the previous frames.

Therefore, it is understandable that the RD curve evaluation of an

entire sequence is extremely complex and onerous from a computational

point of view, and a simplification has to be considered. In [74], the

authors based the FEC staircase on an average rate distortion curve, or

off-line method, graphically described in Fig. 3.5(a). In this algorithm,

first the mean RD curve is evaluated for the entire sequence, then the

optimal FEC level for the 2D RB is investigated. Since the FEC op-

timization is based on the same RD curve for each frame, the off-line

method leads to a single FEC staircase for the whole sequence. To eval-

uate the average RD curve, the received rate is assumed constant for the

entire video, and the distortion values of all the frames are averaged, i.e.,

D =
1

GOP

GOP∑

k=1

D
(
R

(k)
i

)
.

Since each frame experiences its own channel noise and fading level,

the correctly received rate might me variable from one frame to another.

Moreover, the complexity level may vary from one frame to another one,

leading to extremely different RD curves within the sequence. Thus,
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Figure 3.5: RD curve evaluation methods.

considering the received rate constant for all the frames might be a too

rough assumption, most of all when a fast fading channel is considered.

However, the approximation error introduced by this method is well-

balanced by the gain in simplicity of the off-line method, that results

to be extremely quick and not expensive from a computational point of

view.

The second algorithm for the evaluation of the RD curve, reported

in Fig. 3.5(b), is aimed at being a tradeoff between the simplicity of the

mean RD curve method and the accuracy of the exact method. Un-

like the off-line method, the RD curve and the optimized FEC level are

evaluated for each frame. In particular, the expected distortion and the

expected rate, evaluated during the FEC optimization step of the (i−1)-

th frame, are assumed to be the received rate and the decoded quality for

the previous frame, when the RD curve is evaluated for the i-th frame.

As expected, the first frame will be an I-frame, and the feedback from

the FEC optimization block will not be considered. It means that, in

this algorithm, the RD function evaluation is not run off-line before the

channel coding optimization process, but it is one of the two steps jointly

considered in the overall optimization process for each frame. Rather
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than only one FEC level for the entire sequence, here, each frame has its

own optimized FEC level. Note that, in the exact RD evaluation process,

the complexity is of the order of (Nr)GOP, where Nr is the number of rate

considered in the evaluation. While in this instantaneous RD algorithm,

the complexity is downscaled to Nr × GOP. A comparison between the

two algorithms are reported in the following showing that, respect to the

off-line method, the on-line one achieves a substantial improvement of

the performance.

3.5 Results and discussion

We carried out simulations of the Foreman sequence. The operational

RD curves are obtained based on the H.26L-FGS video codec, comprised

of an H.264 TML 9 base layer codec and an EL codec with MPEG-4

FGS syntax. The FGS property is achieved by bitplane coding.We incor-

porate both partial and leaky predictions into the codec with a coding

scheme shown in Fig. 3.3. In the simulations, we apply a uniform quan-

tization parameter (QP) value to all blocks of the BL for both I-frames

and P-frames. To facilitate the studies, we set BL QP = 31 (the largest

quantization step) so as to increase the dynamic range of the EL bi-

trate. The MV resolution in H.264 is set to be 1/4. The loop filter

option is also used. Each sequence is encoded with a frame rate of 30

fps. The serial bitstream was converted into 128 parallel bitstreams us-

ing the FEC-based multiple description encoder. The 128 descriptions

were mapped to the OFDM system with 128 subcarriers. We used RS

codes in the frequency domain and there were 8 bits per RS symbol. The

packet size was set equal to 512 bits. We used QPSK modulation and

considered perfect CSI. It should be noted that more sophisticated modu-

lation schemes could be used to further improve the system performance,

such as the one discussed in [50]. However, for the sake of simplicity

and better understanding of the fundamental impact of the time and fre-

quency diversities on the construction of the 2-D OFDM block, a fixed

modulation scheme using QPSK was chosen. The RCPC codes of rates

Rrcpc = 8
9
, 8

10
, . . . , 8

24
, were obtained by puncturing an Rc = 1/3 mother
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Figure 3.6: Rate-Distortion function for the MC-FGS with various MCP
values (β), without leaky prediction (α = 1), and with no time coding
(Rrcpc = 1).

code with K = 7, p = 8 and generator polynomials (133, 165, 171)octal

with the puncturing table given in [51]. The decoded quality is reported

in terms of PSNR of the luminance, i.e., PSNR-Y , 10 log10(2552/MSE2).

We begin showing the mean rate-distortion curve, to make the reader

understand the importance of receiving the motion compensated loop.

Then, a comparison between the two proposed algorithms are reported,

showing that the on-line method achieves a substantial improvement in

the PSNR quality. Finally, we evaluate the luminance PSNR for several

levels of mobility (i.e., several orders of diversity in the time domain) and

numbers of correlated subcarriers (i.e., several order of diversity in the

frequency domain), to make understand the importance of an optimiza-

tion not only of the α and β parameters, but also of the code rate in the

time domain.

In Fig. 3.6, the average RD function vs. the EL-MCP rate is reported

for a sequence encoded with several EL-MCP values, and without leaky

prediction. No time coding is considered in this first plot. In the figure,

the x-axis corresponds to the received (decoding) bit rates of the EL. It
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can be noted that sequences encoded with higher β values achieve a good

gain in the decoded quality (high PSNR) when the received EL rate is

greater than the EL-MCP rate. For example, compare the sequence with

β = 0.02 (Rel,mcp = 1.30 kps) with the curve β = 0.65 (Rel,mcp = 42.598

kps). If the bitbudget received in the EL is greater than the EL-MCP,

for example equal to 44 kbps, the gain achieved by using Rel,mcp = 42.598

kps rather than Rel,mcp = 1.30 kps is almost 4 dB. Unfortunately, when

the EL-MCP is not received, a mismatch in the predictors of the encoder

and decoder occurs, leading to a substantial drop in PSNR performance,

as shown in the plots. In the example, considering a received rate of

10 − 20 kbps, the Rel,mcp = 1.30 kps curve outperforms the one with

β = 0.65.

In Fig. 3.7, the off-line method for the RD curve evaluation is com-

pared to the on-line one. In Fig. 3.7(a), a channel with (N,M) = (2, 64),

fnd = 10−4 is considered for the transmission of a sequence encoded with

β = 0.35 and α = 1, and mapped into a RB with a RCPC code rate equal

to 8/10. Conversely, in Fig. 3.7(b), a system with different order of diver-

sity and channel code rates is considered. In particular, (N,M) = (4, 32),

fnd = 10−3, β = 0.20, α = 1, and Rrcpc = 1. In both the figures, the

PSNR for each decoded frame of the sequence is provided. Even with

different system conditions, the on-line method achieves a satisfying gain

respect to the off-line RD curve evaluation. Since the latter method in-

troduces an approximation, an outperforming of the on-line method was

expected, but, the most interesting observation is that it is achieved a

gain of the order of 3 dB or even more. Thus, the drop in terms of PSNR

due to the assumption of an off-line method rather than the on-line one

is substantial and it can not be ignored. Therefore, in the following the

on-line method is considered for the evaluation of the RD curve and

the FEC allocation optimization. In Fig. 3.8, the averaged RD curve

(Fig. 3.8(a)) and the optimal FEC allocation (Fig. 3.8(b)) are reported

for the two methods. Note how the rough approximation in considering

a mean RD curve rather than the instantaneous one leads to a different

protection level between the two methods.

In Fig. 3.9, we show the optimized construction of RS information
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Figure 3.8: Rate-distortion function and optimal FEC profiles for both
the off-line and the on-line method for systems with fnd = 10−3, Rrcpc =
1, (N,M) = (2, 64). Note that the frame nr. 10 and nr. 30 are considered
in the on-line method.
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encoded with different α and β parameters. The profile for the 20-th
frame is considered.

symbols, RS parity symbols and RCPC parity symbols for normalized

Doppler fnd = 2.5 × 10−3, Rrcpc = 8/12, several order of diversity in

the frequency domain, and sequences encoded with different α and β

parameters. Note that in the figure, the profile of the 20-th frame is

considered7. As already observed in [74], due to their importance, the

EL-MCP bits are more protected than the EL-extra bits. For example,

the Rel,mcp = 2.15 kbps curve has few bits highly protected, having a

low portion of the EL included into the MCP loop. Conversely, the

Rel,mcp = 12.9 kbps curve has a high protection level for the first 25 RS

symbols. Finally, it should be highlighted that, as already observed in

the previous chapter, the higher is the order of diversity available, the

lower is the required protection level, as it can be observed comparing

the optimal profile of the Rel,mcp = 2.15 curve with N = 2 to the one

with N = 16. Because of the more reliable transmission, the N = 16

7Since the behavior of the staircase, from a qualitative point of view, is similar in
each frame, we report the FEC staircase fon only one single frame.
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curve may reduce the FEC level in the frequency domain respect to the

N = 2 system.

In Fig. 3.10, the behavior of optimal staircase is reported for sev-

eral coding rates. The optimal profile of the FEC level in both time

and frequency domain is provided for the 20-th frame for a system with

fnd = 2× 10−4,(N,M) = (2, 64), and different Rrcpc values for the trans-

mission of sequences encoded with α = 1 and several β parameters. The

maximum order of diversity achieved in the frequency domain is Df = 2,

while the maximum order of diversity in the time domain is Dt = 1.

In other words, no diversity can be exploited by using RCPC codes, al-

though coding gain can still be obtained. In general, lower code rates

in the time domain improve the packet loss performance, thus reducing

the number of RS parity symbols required for minimizing the expected

distortion E[D], as can be noticed from the figures. Since the diversity
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achieved in the frequency domain is the same in the three systems consid-

ered in the figure, the RS code boundaries exhibit similar degree of tilting

for both Rrcpc rates. As discussed in the previous chapter, although the

packet loss performance of an individual subcarrier can be improved by

using a lower channel coding rate, the degree of UEP, represented by

the tilt of the RS boundaries, mainly depends on the frequency diversity

order of the system, and is relatively insensitive to the selection of the

channel code rate in the time domain. It is worthwhile noting that by

lowering the RCPC code rate, the optimum β value increases, due to a

higher protection of the transmitted bitstreams, and due to the reduction

of the Rel,max. Because of the imposed constraint, (3.5), a reduction of

the RCPC code rate leads to a decreasing of the total number of infor-

mation symbols that can be transmitted. For example, for Rrcpc = 1,

Rel,max = 66.535 kbps, while when Rrcpc = 0.5, the maximum EL rate

equals 32.768 kbps. It follows that the same EL-MCP rate represents a

different portion of the total EL rate, when two RCPC code rates are

employed. Finally, because of the more reliable transmission for low time

code rates, by lowering the Rrcpc the portion of the EL dedicated to the

MCP loops can increase, due to less likely mismatch. Note that, although

in the Rrcpc = 1 curve the optimal EL-MCP rate and the total EL rate are

higher than the ones for the Rrcpc = 0.5 curve, drift issues at the decoder

are more likely (because of the less reliable transmission) and therefore,

the expected quality is lower than the one achieved by Rrcpc = 0.5.

In Fig. 3.11, the optimum β value vs. Rrcpc is provided for systems

with fnd = 10−2, (N,M) = (2, 64) and sequences encoded with three

different α values. As concluded from the previous figure, by lowering

the RCPC code rate, the optimum β value increases. Moreover, since

the drift issue can be mitigate with a low α value, for constant packet

loss rates (i.e., Dt, Df , and Rrcpc constant), an increasing of the optimum

β value is experienced when a reduction of α occurs. For example, for

Rrcpc = 0.5, fnd = 2 × 10−4, and (N,M) = (2, 64), the reliability of each

packet can be evaluated. In correspondence to this packet loss rate, the

α = 0.7 curve achieves an optimum β equal to 0.65, while 0.45 is the

optimum β for a source coding with no leaky prediction. Rater than
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varying the source coding parameters (α and β), we now investigate the

behavior of the system when the orders of diversity in time and frequency

domain are variable.

The importance of code rate optimization when different orders of

diversity are available in the frequency domain is shown in Fig. 3.12.

The PSNR-Y vs. Rrcpc values is provided for systems with several orders

of diversity in the frequency domain, and both fast (3.12(a)) and slow

(3.12(b)) fading. In the figure, we also mark with a circle (o) the optimal

Rrcpc value. Note that, from here onwards, the mean PSNR is the average

of the expected distortion of each frame, evaluated by means of the on-

line method. As expected from what observed in the previous chapter, in

fast fading systems the Dt is substantial, and diversity in the frequency

domain is not required. Therefore, a minimum protection in the time do-

main is sufficient to guarantee extremely satisfying video transmissions,

even when the number of independent subchannels equals 1. Conversely,

as the system experiences low Doppler spread with Dt ∼ 1, Fig. 3.12(b),

the selection of optimal coding scheme is dominated by the frequency

diversity order of the system. As can be observed, generally a better
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Figure 3.12: PSNR performance for several orders of diversity available
in the frequency domain in both slow and fast fading systems.

performance can be achieved with a higher diversity orders. More im-

portantly, as the diversity order N increases, the optimal Rrcpc increases

and the delivered video quality improves accordingly. The importance of
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having a RCPC code rate optimized to the orders of diversity available

can be understood from Fig. 3.12(b). Consider, for instance, a system

with N = 1 and Rrcpc = 0.57. This time code rate achieves the best

performance for the given system. Then, consider a case of high number

of independent subchannels (N = 128, 64), and Rrcpc always sets to 0.57.

Keeping the time code rate constant, rather than employing the optimal

one (i.e., Rrcpc = 0.9), leads to a lost in the PSNR of ∼ 3.5 dB.

In Fig. 3.13, the PSNR of a system with optimal Rrcpc is compared to

other systems with constant source and channel coding parameters. The

mean PSNR of the luminance vs. the normalized Doppler is provided for

systems with both variable and constant RCPC code rates. In particular,

systems with Rrcpc = 1 and Rrcpc = 8/14 are considered and compared

to a system with the RCPC code rate optimized to each Dt value. In the

figure, the order of diversity in the frequency domain is Df = 4, and no

leaky prediction is supposed in the source coding. The most interesting

observation is the monotonic decreasing behavior with an increasing fade

rate due to the increasingly scattered error pattern, when no time coding
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Figure 3.14: PSNR-Y vs. number of frame for systems with (N,M) =
(4, 32), fnd = 10−4, and several β and α values.

is considered. It is therefore required a temporal coding for fast fading

systems. In the Appendix A, to better understand this PSNR drop, we

provide some further analysis for the packet error rates due to the effects

of error patterns resulting from different fading rates on the application

layer throughput. When a time coding is considered, as the Rrcpc = 8/14

curve in the figure, the system is able to cope with the scattered error

pattern in fast fading environments. As expected, in slow fading chan-

nel a low RCPC code rate might overprotect the signal, at the cost of

a reduction of the maximum EL rate Rel,max. Thus, for fnd = 10−4 for

instance, the Rrcpc = 8/14 curve is outperformed by the system with no

temporal coding. In order to optimize the performance in each channel

conditions (i.e., for each diversity order offered by the channel), a vari-

able code rate has to be considered in both time and frequency domain.

The RCPC code rate should be such that to exploit the diversity order

available in the time domain, improving the reliability of the packets,

without wasting information symbols. As observed from the figure, the

joint optimization of α, β, and Rrcpc outperforms all the other systems,

achieving a gain of at least 2 dB.
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The worthy performance of the optimized systems compared to other

possible suboptimal configurations is reported in Fig. 3.14 in terms of

instantaneous PSNR (rather than average). Here the PSNR-Y for each

frame of the sequence is provided for systems with fixed coding parame-

ters. Again, a substantial improvement of the decoded quality is experi-

enced by the optimal system, as observed from the figure.

3.6 Conclusion

In this section, we studied the delivery of MC-FGS video employ-

ing an OFDM signal format on the physical layer to transmit over a

frequency-selective Rayleigh fading, with both low and high level of mo-

bility. We proposed a n-channel symmetric motion-compensated multiple

description coding and transmission scheme, employing leaky prediction

for mismatch control. We showed that knowing the orders of diversity

offered by the channel in both time and frequency domain can improves

the overall performance in the construction of symmetric MDs. We pro-

posed an algorithm for the evaluation of the rate-distortion curve for the

considered sequence, and, based on this function, the optimal tradeoff

between coding efficiency and reliability can be investigated, by varying

the EL-MCP rate and the leak factor α, together with the code rates in

both time and frequency domain. Moreover, we demonstrated the impor-

tance of a time coding in the construction of 2D MDs, and we showed the

behavior of the optimal RCPC code rate for different order of diversity

in both time and frequency domain.



Chapter 4

Adaptive modulation

techniques

In this chapter, adaptive modulation techniques are investigated for

systems experiencing channel estimation errors. We evaluate the perfor-

mance of both slow and fast adaptive modulation techniques when im-

perfect pilot-assisted channel estimation is considered at both the trans-

mitter and the receiver. Taking into account the number of pilot symbols

transmitted, the effective throughput is investigated and the tradeoff be-

tween channel estimation quality and throughput is addressed.

The reminder of the chapter is organized as follows. In Section 5.1

an introduction to the work together with a state-of-the-art overview in

adaptive modulation techniques is provided. In Section 5.2 we present

the system model, describing both adaptive modulation techniques and

pilot-assisted channel estimation. Imperfect channel state information at

the transmitter is investigated in Section 4.3, and a comparison of the

performance between two adaptive modulation techniques is considered.

In Section 4.4, we evaluate the effects of estimation errors at the receiver.

In particular, slow adaptive modulation systems are investigated for both

Rayleigh and Nagakami-m fading channels, and the optimization of the

pilot scheme design is addressed in details. In Section 5.6 numerical

results are provided, and conclusions are given in Section 5.7.

85



86 Chapter 4. Adaptive modulation techniques

4.1 Motivation and outline of the work

The diffusion of high-speed digital wireless communications has in-

creased the need of reliable high data rate transmission in variable chan-

nel conditions. Since adaptive modulation techniques allow to maximize

the transmitted throughput1 without compromising the performance (in

terms of bit error probability or outage probability), they has become

very popular in high data rate wireless applications [5–7, 94–96]. By

matching system parameters to channel conditions the optimal modula-

tion level can be selected maximizing the transmitted throughput still

satisfying the QoS requirement, in terms of bit error probability (BEP)

and bit error outage probability (BEO).

SinceM-QAM modulation achieves high spectral efficiency, it is widely

used in adaptive modulation systems. In [5], for example, power and rate

were both adopted to channel conditions for a M-QAM uncoded sys-

tem. The gain derived from an adaptive rather than a fixed transmitted

scheme is reported, together with the negligible channel capacity penalty

that the system displays varying only the data-rate rather than both rate

and power. In the literature, some authors proposed as adaptive mod-

ulation techniques systems that track instantaneous channel variations:

the receiver has to estimate the instantaneous signal-to-noise ratio (SNR)

and send a feedback to the transmitter with the optimal constellation size

and transmitting power to be used, [5–7,94,96,97]. Those parameters are

tuned to exploit good channel conditions by increasing the transmitted

throughput but, at the same time, to preserve the performance in case of

bad channel conditions. It is worth noting that, in perfect channel state

information (CSI) systems, tracking the small scale fading, fast adaptive

modulation (FAM), leads to best performance, at the cost of a frequent

channel estimation and feedback. With respect to FAM, a gain in terms

of feedback and complexity can be achieved by slow adaptive modula-

tion (SAM) techniques, that adapt modulation parameters to the average

channel variations. In [6], the authors investigated SAM techniques with

perfect channel estimation, adapting the system to the shadowing level

1Throughout this chapter, we use the terms “throughput” and “spectral efficiency
(SE)” interchangeably.
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of the channel. Although the throughput achieved with FAM system

is slightly better than the one obtained with SAM technique, SAM still

achieves improvements in terms of SE and BEO when compared to a fixed

modulation scheme, despite the lower complexity and the less frequent

feedback.

In fast as well as slow adaptive modulation, a critical role is played

by the channel estimation. Imperfect channel estimation poses a serious

issue that has been addressed in several ways. The effects of outdated

channel estimation are investigated for adaptive coding systems in [7]

and for adaptive modulation systems with Rayleigh and Nakagami fad-

ing channel in [5] and [97], respectively. In both [5] and [97], authors

evaluated the maximum acceptable delay that does not drastically affect

the performances. For a BEP target of 10−3, the maximum delay nor-

malized to the Doppler frequency corresponds to 10−2 for both Rayleigh

and Nakagami fading channels. Rather than delayed channel state infor-

mation, imperfect channel estimation are quickly investigated in [5]. A

general criterium is given to probe the effects of channel estimation er-

rors in the instantaneous SNR in the feedback. More detailed analysis on

adaptive modulation system with imperfect CSI are addressed in [98–101]

for both single- and multi-carrier systems with or without diversity at the

receiver. To the best of our knowledge, the receiver was always assumed

to be channel estimation error free and the imperfect CSI was addressed

for FAM systems only.

In order to evaluate the effects of channel estimation errors in FAM

and SAM systems, in this chapter we investigate both fast and slow

adaptive modulation techniques for M-QAM systems with subset diver-

sity (SSD) [102] and with imperfect channel state information. Imperfect

CSI will affect diversity, bit reconstruction, and the choice of the opti-

mal modulation size. We recall that, in SAM systems, the large scale

fading has to be estimated, while in FAM, the knowledge of the small

scale fading is required. Since the coherence time of the small-scale fad-

ing is lower than the coherence time of large scale fading, a slower and

more accurate estimation can be provided for SAM systems rather than

FAM. It follows that, although FAM achieves the best performance in
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perfect CSI systems, when errors occur in channel estimation, SAM may

even outperform FAM technique, as it will be demonstrated by numerical

results, reported in Section 5.6. This explain the importance of investi-

gating FAM and SAM in real systems. In this work, the simplification

of assuming the receiver channel estimation error free is not considered.

Thus, pilot-based channel estimation errors are assumed to happen at

both the transmitter and the receiver. In order to study separately those

effects, we address the imperfect CSI at the transmitter first, and then

we consider channel estimation errors at the receiver.

4.2 System model

In this section the system model is described and further details

on adaptive modulation techniques are provided, following the notation

adopted in [6]. We assume a M-QAM modulated symbol transmitted

over composite Rayleigh fading and log-normal shadowing channels, em-

ploying microdiversity at the receiver, i.e., the shadowing level is the same

on each branch. At the receiver, N antennas are considered and a hybrid-

selection maximal ratio combiner (H-S/MRC) [19] is adopted for process-

ing the signal. Among N branches, the most powerful L are selected for

being processed by the maximal ratio combiner. We define by hi the fad-

ing gain Rayleigh distributed, by Es the mean (over the fading) symbol

energy transmitted and by N0/2 the two-sided spectral density of the

AWGN. Since we consider microdiversity, for sake of simplicity, we omit

the branch subscript in the averaged SNR notation. The mean signal-to-

noise ratio on each branch can be expressed as γ = E{|h|2}Es/N0. Since

a log-normal shadowing is considered, γdB = 10 log10(γ) is Gaussian dis-

tributed with µdB mean and σ2
dB variance.

4.2.1 Adaptive modulation

As briefly stated before, adaptive modulation techniques achieve the

best throughput accordingly with channel conditions, minimizing in the

meanwhile the outage probability. When a discrete variable rate is con-

sidered, a set of J modulation levels can be adopted in adaptive modula-
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Figure 4.1: Adaptive modulation technique. Starting from the bit error
probability expression, the SNR thresholds are evaluated, and then, the
optimal modulation level to be adopted is chosen. Note that if FAM
(SAM) is considered, the bit error probability, Pb, considered is the in-
stantaneous (mean) BEP, the SNR parameter, χ, is the instantaneous
(mean) SNR, and the observed fluctuations variable with the time are
hte small-scale (large-scale) fading.

tion systems, {M0,M1, . . . ,MJ}. The optimal modulation level is chosen

depending on the instantaneous SNR or the mean SNR in FAM and

SAM, respectively. We denote by χ the SNR parameter based on which

the modulation to be adopted is chosen. In particular, χ = γT in FAM

systems and χ = γdB in SAM systems. When χ is not sufficient to guar-

antee the required target BEP (P ⋆
b )2 even with the lowest modulation

level M0, the system is in outage and no bits are transmitted. Other-

2The target BEP to be guaranteed is the instantaneous target BEP in FAM systems
and the mean target BEP in SAM systems.
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wise, the transmitted data rate corresponds to log2Mj , j = 0, . . . , J .

The optimal data rate is chosen comparing the estimated SNR value in

the feedback with the required SNRs per each modulation level, i.e. SNR

thresholds, that are set to guarantee the minimum BEP required when

the j-th modulation level is adopted, i.e., Pb(χ
⋆
j) = P ⋆

b . In particular,

when the SNR value falls within the j-th region (χ⋆
j < χ ≤ χ⋆

j+1), the

j-th modulation level is adopted for the transmission and log2Mj is the

transmitted throughput. If χ up-cross (down-cross) the SNR threshold,

the modulation level is switched to a higher (lower) level, leading to an

increasing (decreasing) of the throughput. It follows that an important

figure of merit is the mean throughput [bps/Hz] defined as

η =
J−1∑

j=0

M̃j P
{
χ⋆

j < χ ≤ χj+1

}
+ M̃J P {χ⋆

J < χ}

=
J−1∑

j=0

M̃j

[
Fχ(χ⋆

j+1) − Fχ(χj)
]
+ M̃J [1 − Fχ(χ⋆

J)] (4.1)

where M̃j = log2Mj and Fχ(x) is the cumulative density function (CDF)

of the SNR parameter χ. As far as perfect CSI is concerned, both

slow and fast adaptive modulation techniques achieve a mean through-

put higher than the one offered by a fixed modulation system, keeping

the bit error probability below the BEP target required. Another im-

portant measure of the QoS is the bit error outage probability (BEO),

i.e., the probability that the BEP is greater than the minimum BEP

target [103, 104]:

Po(P
⋆
b ) = P {Pb(χ) > P ⋆

b} = Fχ (χ⋆
0) . (4.2)

As already mentioned, when a fast adaptive modulation is considered,

χ = γT and the cumulative density function of the instantaneous SNR

is expressed in the canonical expression, derived in [6, eq. (21)], and

reported in the Appendix B, (B.1). For SAM systems, χ = γdB and the

CDF is expressed as

FγdB
(ξ) = Q

(
µdB − ξ

σdB

)
(4.3)

where the last equality follows from the Gaussian behavior of the log-

normal shadowing and Q(x) =
∫∞

x
e−t2/2dt is the Gaussian-Q function.
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Figure 4.2: Transmitted pilot scheme.

4.2.2 Channel estimation

In order to estimate the complex fading level, a pilot symbols assisted

modulation (PSAM) is adopted [44]. By assuming that the transmitted

symbols can be grouped together in frames, each of those is equal to the

coherence time, Ñp symbols are inserted in each frame, and transmitted

with Ep energy per pilot symbol, as observed in Fig. 4.2. In a generic

system with SSD, the number of transmitted pilot symbols, Ñp, might

be different from the number of received pilot symbols, Np
3. We consider

a single carrier transmission, and we model the channel as a block fading

channel in the time domain. Since a Maximum-Likelihood estimator is

considered, the estimated channel coefficient is [102]

ĥk = hk + ek, (4.4)

where hk and ek are zero-mean Gaussian processes with variance per

dimension σ2
h and σ2

e = N0

2NpEp
, respectively. It follows that at the output

of the MRC with N branches4, the estimated SNR can be defined as

γ̂T =
N∑

k=1

γ̂k =
N∑

k=1

|ĥk|2
Es

N0

. (4.5)

Note that |ĥk|2 = Re{ĥk}2+Im{ĥk}2, and both Re{ĥk} and Im{ĥk} are

zero-mean gaussian distributed with variance σ2 = σ2
h + σ2

e . Therefore,

z =
∑N

k=1 |ĥk|2 is chi-square distributed with 2N degrees of freedom, and

3Although in our system model Ñp = Np, in order to make the study suitable for
any SSD system, we denote the number of received or transmitted pilot symbols with
two different notations.

4We investigate a MRC output first. Then, in Appendix B we extend the frame-
work to H-S/MRC systems.
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its PDF is:

fz(ζ) =
ζN−1

γ̆ N Γ(N)
exp

[
−ζ
γ̆

]
, ζ ≥ 0 (4.6)

where γ̆ = 2σ2Es/N0 is the estimated mean signal-to-noise ratio 5. It

is worthwhile noting that, for M-QAM adaptive modulation systems,

imperfect channel state information affects both the transmitter side (in

the choice of the optimal modulation) and the receiver side (in the bit

reconstruction, for example). It follows that channel estimation errors

can doubly affect the system. In order to study separately those effects,

we address first imperfect CSI in the feedback, and then at the receiver.

Since effects of delayed CSI (outdated channels) have been already deeply

investigated in the literature [5, 101], we mainly focus on not delayed

feedback.

4.3 Imperfect CSI at the transmitter

In this section, the mean throughput and the BEO for systems with

imperfect CSI at the transmitter are investigated. In particular, estima-

tion errors will occur in the estimated fed back SNR value . Recalling that

a perfect CSI is assumed at the receiver, we consider the exact BEP ex-

pressions, evaluated in [6]. For sake of simplicity, both the instantaneous

and mean BEP for systems with SSD are reported in (4.7) and (4.8),

respectively.

Pb(e|γT ) =
2√

M log2(
√
M)

log2(
√

M)∑

h=1

(1−2−h)
√

M−1∑

i=0

(−1)
⌊ i2h−1

√
M

⌋

×
(

2h−1 −
⌊
i2h−1

√
M

+
1

2

⌋)
Q

(
(2i+ 1)

√
3γT

(M − 1)

)
(4.7)

Pb(γ) =
2√

M log2(
√
M)

log 2(
√

M)∑

h=1

(1−2−h)
√

M−1∑

i=0

(−1)
⌊ i2h−1

√
M

⌋

×
(

2h−1 −
⌊
i2h−1

√
M

+
1

2

⌋)
IN

(
3(2i+ 1)2

2(M − 1)
b̃n

)
(4.8)

5Note that the estimated mean SNR should be noted by γ̂, but for sake of simplicity,
we denote it by γ̆.
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where Ik(x) = 1
π

∫ π/2

0

(
sin2θ

x+sin2θ

)k

dθ. From the bit error probability, ex-

act SNR thresholds are evaluated and compared to the estimated SNR

value, i.e., χ⋆
i < χ̂ ≤ χ⋆

i+1. In order to evaluate the mean throughput

and the outage probability in systems affected by estimation errors in the

feedback, the cumulative density function of χ̂, Fχ̂(χ), has to be evalu-

ated. Considering a fast adaptive modulation system, the PDF of the

instantaneous estimated SNR γ̂T, conditioned on a given γ is

fγ̂T|γ(ξ) =

{
ξN−1

γNσ2N
t Γ(N)

exp
[
− ξ

γσ2
t

]
, ξ ≥ 0

0, otherwise
(4.9)

where σ2
t =

σ2
e+σ2

h

σ2
h

and γ is the averaged signal-to-noise ratio per branch,

already defined as

γ = E{|hk|2}
Es

N0

= 2σ2
h

Es

N0

.

It can be observed that σ2
t = 1/ρ2, where ρ is the envelope of the complex

correlation between hk and ĥk defined as

ρ =
E{hkĥ

∗
k} − E{hk}E{ĥ∗k}√

E{|hk − E{hk}|2}E{|ĥk − E{ĥk}|2}
=

σ2
h√

σ2
h(σ

2
h + σ2

e)
=

√
σ2

h

σ2
h + σ2

e

.

(4.10)

It is worth noting that the correlation depends on the mean SNR per

branch and the parameter Npε, in particular

σ2
t =

1

ρ2
=
σ2

h + N0

2NpεEs

σ2
h

=
γ + 1

Npε

γ
, (4.11)

where ε = Ep/Es is the ratio between the energy dedicated to pilot sym-

bols and the data symbols energy. Substituting (4.11) in (4.9), the con-

ditioned PDF of the instantaneous estimated SNR fγ̂T|γ can be expressed

as

fγ̂T|γ(ξ) =
ξN−1

(
γ + 1

Npε

)N

Γ(N)
exp

[
− ξ

γ + 1
Npε

]
, ξ ≥ 0 (4.12)

and 0 otherwise (ξ < 0). From (4.12), the marginal PDF and CDF of

the estimated instantaneous SNR can be derived as

fγ̂T
(ξ) =

{∫∞
0
fγ̂T |γ(ξ)fγ(w)dw, ξ ≥ 0,

0, otherwise
(4.13)
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and

Fγ̂T
=

∫ γ⋆
T

0

fγ̂T
(ξ)dξ =

∫ γ⋆
T

0

∫ ∞

0

fγ̂T |γ(ξ)fγ(w)dw dξ (4.14)

where the pdf of the average SNR results to be

fγ(w) =
ν√

2πσdBw
exp

[
−(10log10w − µdB)2

2σ2
dB

]
, w ≥ 0 (4.15)

where ν = 10/ln(10).

When a slow adaptive modulation is considered, the system is adapted

to the estimated mean SNR, γ̆. The estimated mean SNR per branch

can be expressed as

γ̆ = Ehk
{γ̂k} = 2σ2Es

N0
= σ2

t γ = γ +
1

Npε
. (4.16)

Note that if the variance of the channel estimation error (σ2
e) is zero, σ2

t

is equal to 1 and γ̆ = γ. Knowing the marginal PDF of the log-normal

shadowing (4.15), the PDF of the estimated mean SNR is obtained by

making a change of variable and it is given by

fγ̆(υ) =
ν√

2πσdB (υ − 1
Npε

)
exp


−

(
10log10(υ − 1

Npε
) − µdB

)2

2σ2
dB


 , υ ≥ 1

Npε

(4.17)

From (4.17), the CDF of the averaged estimated SNR can be derived as

follows

Fγ̆(x) =

∫ x

1
Npε

fγ̂(υ)dυ =
1

2

[
erfc

(
µdB − 10log10(x− 1

Npε
)

√
2σdB

)]
(4.18)

The presented analysis is limited to systems employing MRC at the

receiver, but it can be easily extended to a SSD system, as explained in

the Appendix B.

4.3.1 Mean throughput

In adaptive modulation systems with imperfect CSI, the mean through-

put strictly depends on the adopted pilot scheme. Since in each frame, Ñp
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symbols are inserted (Fig.4.2), only a fraction ns of Ntot symbols within a

frame is dedicated to data transmission. Assuming the following notation





Ñp = np Ntot

⇒ np + ns = 1
Ns = ns Ntot

(4.19)

it can be observed the tradeoff between ns and np, that is the tradeoff

between performance and the determined throughput: the more pilot

symbols are adopted, the better is the channel estimation quality, but

the less is the transmitted throughput. In addition to np and ns, another

important parameter in the pilot scheme design is the ratio between the

energy dedicated to pilot symbols and the one dedicated to data symbols,

that has been already defined as ε = Ep/Es. In a system with no con-

straint on the maximum transmitted energy, a high Ep would provide an

improvement in the channel quality, without affecting the BEP perfor-

mance. Unfortunately, in real systems, a maximum transmitted energy

is imposed and the following constraint has to be considered

ÑpEp +NsEs ≤ Etot. (4.20)

Imposing the constraint (4.20), an increasing of the energy dedicated

to the pilot symbols has to be balanced by a reduction of the number

of pilot symbols Ñp, or by a reduction of the energy Es. Note that,

when ε = 1, the constraint (4.20) merges to the constraint (4.19), i.e.,

Ñp+Ns = Ntot. The optimization of the energy distribution between data

and pilot symbols has been already investigated in [105]. In this section

we assume ε = 1. Note that the aim of this section is the comparison

of FAM and SAM techniques in the presence of estimation errors in the

feedback. In the next section, we will investigate the effects of imperfect

CSI at the receiver for the SAM case only, and the Ñpε optimization issue

will be addressed in more details.

Considering the mean throughput evaluation, it is worth noting that,

knowing the CDF for both SAM and FAM systems, (4.18) and (4.14), the

mean throughput η can be evaluated from (4.1). For both the techniques,

η is the mean throughput for each symbol among the Ns data symbols

transmitted. To obtain the effective mean throughput per frame, the
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number of pilot symbols has to be considered. In particular, the effective

mean throughput per symbol per frame is:

η(eff) = η ns = η (1 − np) = η

(
1 − Ñp

Ntot

)
. (4.21)

Since we are interested in a comparison between FAM and SAM, the

effective mean throughput per symbol per frame has to be considered.

We recall that in SAM systems, the coherence time as well as the frame

size are greater than the ones in FAM. Therefore, keeping constant the

channel estimation quality, (i.e., Np), the symbols dedicated to informa-

tion symbols in SAM systems are greater than the ones in FAM systems,

that is nFAM
s ≤ nSAM

s . Conversely, when the np value is constant, in SAM

systems the number of symbols dedicated to pilot insertion is greater

than the one in FAM, it follows that ns is constant between SAM and

FAM, but the former has a better channel estimation. This is obvious if

we consider that ÑFAM
p ≤ ÑSAM

p , and we assume Ep constant.

4.3.2 Outage probability

In systems with imperfect CSI at the transmitter, the estimated SNR

χ̂ can be either underestimated or overestimated. The former case leads

to a reduction of the throughput, while the latter leads to an increase of

either the mean throughput and outage probability. In particular, when

χ̂ > χ, although the real SNR falls within the j-th modulation range,

the (j + 1)-th modulation might be adopted. In this case, the effective

bit error probability is greater than the target BEP and the system is in

outage. It means that the system is in outage when χ < χ⋆
0, and also

when the following condition is verified

{
χ̂ > χ⋆

i

χ ≤ χ⋆
i

∀i. (4.22)

Assuming that χ̂ = χ + ∆χ, the previous condition can be expressed as

χ⋆
i − ∆χ < χ ≤ χ⋆

i . (4.23)
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It follows that the outage probability of an adaptive modulation system

with imperfect CSI at the transmitter can be expressed as

Po = Fχ(χ⋆
0) +

J∑

j=1

[
Fχ(χ⋆

j ) − Fχ(χ⋆
j − ∆χ)

]
. (4.24)

For a slow adaptive modulation, considering the CDF of the average

SNR in (4.16), ∆χ = 1/Npε and the outage probability conditioned on

the adopted pilot scheme is

Po = Q

(
µdB − γ∗0,dB

σdB

)
+

+
J∑

j=1


Q



µdB − γ∗j,dB

σdB︸ ︷︷ ︸
aj


−Q



µdB − 10log10

(
γ∗j − 1

Npε

)

σdB︸ ︷︷ ︸
bj





 =

= Q

(
µdB − γ∗0,dB

σdB

)
+

J∑

j=1

∫ bj

aj

e−
y2

2 dy. (4.25)

As expected, increasing Npε, the estimation accuracy increases and the

outage probability converges to the BEO of systems with perfect CSI.

4.4 Imperfect CSI at the receiver

In this section, the bit error probability (BEP) and bit error outage

(BEO) expressions for SSD are evaluated in slow adaptive modulation

systems with imperfect CSI at the receiver and Rayleigh or Nakagami-m

fading channels. We recall that, to estimate the channel, a pilot sym-

bols assisted modulation (PSAM) is adopted and a Maximum-Likelihood

estimator is employed. We denote by Ñp the pilot symbols inserted in

each frame equal to the coherence time and transmitted with Ep energy

per pilot symbol. The estimated channel coefficients are given by (4.4),

where ek is a zero-mean Gaussian process with variance per dimension

σ2
e = N0

2NpEp
.
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4.4.1 Bit error probability

The performance of N -branch diversity combining in the presence of

imperfect CSI was studied in [102] and [106] for MRC and SSD, respec-

tively. In [106], the symbols error probability (SEP) was obtained for

i.i.d. Nakagami-m fading channels for arbitrary two-dimensional signal-

ing constellations. When M-QAM modulation is considered, the SEP as

a function of the SNR averaged over the small scale fading and the {si}
symbols is expressed by

Pe(γ,Npε) =
1

M

∑

i

ω
(a)
i IN

(
ζ (i),Φ2,

π

4

)
+

1

M

∑

i

ω
(b)
i IN

(
ζ (i),Φ4, 0

)
, (4.26)

IN (ζ, φ, ψ) =
1

2π

∫ φ

0

N∏

n=1

(
sin2(θ + ψ)m

sin2(θ + ψ)m+ bnζ

)m

, (4.27)

where ΦM = π(M−1)/M , andNp is the number of received pilot symbols.

The set of {ζ (i)} is a function of the averaged SNR:

ζ (i)(γ,Npε) ,
Esρ

2

σ2
h

(
N0

2
+ |si|2σ2

eρ
2
)

=
γNpε cMQAM

1
γ

+Npε+ ξi
, (4.28)

where cMQAM = 3/(2(M − 1)), and ρ = σ2
h/(σ

2
h + σ2

e). The parameters

ω
(a)
i , ω

(b)
i and ξi , Ei/ES depend on the modulation format, and are

given in [106]. Note that the summation in (4.26) is performed over

the non zero values ω
(a)
i , ω

(b)
i and ξ. Moreover, the BEP for Rayleigh

fading channels can be obtained by setting m = 1, ∀n in (4.26). In the

case of ideal channel estimation (Npε −→ ∞), (4.28) results given by

ζ (i) = γ cMQAM. The set {bn} depends on the SSD technique. When a

hybrid-selection maximal ratio combiner (H-S/MRC) [19] is adopted at

the receiver, among N branches the strongest L are selected for being

processed by the maximal ratio combiner. For such systems, the bn’s are

expressed as

bn =

{
1 n ≤ L
L/n otherwise.
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When a MRC is considered at the receiver, L = N and bn = 1, ∀n.

In a perfect CSI system, as well as in an imperfect one, the modulation

regions are bounded by SNR thresholds evaluated from the BEP. Starting

from the SEP, and assuming Gray coding between bits and symbols, the

bit error probability, Pb, can be expressed by a lower bound:

Pb(γ,Npε) ≥
Pe(γ,Npε)

log2(M)
. (4.29)

By numerical root evaluations, the SNR estimated thresholds γ̆⋆ are ob-

tained from (4.29) as the values that satisfy the target BEP, i.e. Pb(γ̆
⋆, Npε) =

P ⋆
b . Note that, in an imperfect CSI system, the thresholds are a function

of the modulation level as well as the channel estimation quality.

Together with the bit error probability, the BEO depends on the

quality of the channel estimation. Since the estimated thresholds γ̆⋆ are

greater than the ideal ones (∆γdB is always greater or equal to zero), the

condition (4.22) is not verified and the BEO can be expressed as

Po = Fχ(χ̂0). (4.30)

4.4.2 Mean throughput

As already observed, the throughput in adaptive modulation systems

with imperfect CSI strictly depends on the adopted pilot scheme. For

systems with SSD, the portion of the frame dedicated to pilot insertion

is defined as np = Ñp/Ntot, and the following constraints are imposed





Ñp +Ns = Ntot

ÑpEp +NsEs = Etot.

(4.31)

As already observed, when ε 6= 1, the increasing of Ep has to be balanced

by the reduction of Ñp or Es. It follows that the energy dedicated to the

information symbols strictly depends on the adopted pilot scheme. In

particular, from (4.31), it can be derived the following expression

Es =
E

Ñp

Ntot
(ε− 1) + 1

, (4.32)
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where E , Etot/Ntot. It can be better understood that the increasing of

Ñpε leads to an improvement of the performance due to a better qual-

ity of the channel estimation on one hand, and to a reduction of the

performance due to a lowering of Es on the other hand. It follows that

even the exact mean SNR in (4.26) is a function of the pilot scheme, i.e.,

γ = γ(Ñpε), as expressed in the following

γ = E{|h|2}Es

N0
=

E{|h|2}
N0

E
Ñp

Ntot
(ε− 1) + 1

=
1

Ñp

Ntot
(ε− 1) + 1

Υ, (4.33)

where Υ = E{|h|2}E/N0. Substituting (4.33) in (4.26), the bit error

probability can be expressed as a function of two parameters: Npε char-

acterizing the pilot scheme design, and Υ representing the mean SNR per

frame.

Pb = Pb

(
γ(Ñpε), Npε

)
= Pb


Υ

1
Ñp

Ntot
(ε− 1) + 1

, Npε


 =⇒ Pb = Pb(Υ, Ñpε)

(4.34)

Note that, unlikely the mean SNR γ, Υ does not depend on the pilot

scheme, but only on the mean energy over the frame, N0 and E{|h|2}.
This independent variable might be employed to compare systems with

different pilot schemes. Thus, from here onwards, the SNR averaged

over the frame, Υ, will be the SNR variable in the BEP expression, and

thus the SNR thresholds will be denoted by Υ⋆. We assume that the

SNR averaged over the frame is a log-normal distributed6, i.e., ΥdB ∼
N(µdB, σ

2
dB). Thus, the cumulative density function of ΥdB is

FΥdB
(ξ) = Q

(
µdB − ξ

σdB

)
(4.35)

and the mean throughput of each information symbols of the frame is

η =

J−1∑

j=1

M̃j

[
FΥdB

(Υ⋆
dB,j+1) − FΥ(Υ⋆

dB,j)
]
+ M̃J

[
1 − FΥ(Υ⋆

dB,J)
]
. (4.36)

6Note that, in the previous section, γ was log-normal distributed. Since here we
do not have any comparison with performance of the previous case, or with any FAM
systems (i.e., we do not have any comparison with systems employing γ as variable
rather than Υ), we make the simplification that Υ is log normal with mean µdB and
variance σ2

dB. Note that, eventually, knowing the PDF of γ, the PDF of Υ can be
easily derived.
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Recalling that in SSD systems, the number of transmitted pilot symbols

is not necessarily equal to the received pilot symbols, the effective mean

throughput per symbol per frame is

η(eff) = η ns = η
Ntot − Ñp

Ntot
. (4.37)

From (4.21), the tradeoff between estimation quality and transmitted

data can be observed. The more pilot symbols are transmitted, the better

is the channel quality at the cost of a lower effective throughput.

4.5 Numerical results

In this section, numerical results are presented in terms of effective

throughput
(
η(eff)

)
and BEO for both slow and fast adaptive modulation

systems. Coherent detection of M-QAM with H-S/MRC and Gray code

mapping in composite Rayleigh or Nakagmai-m fading and log-normal

shadowing channels with both perfect and imperfect CSI was considered.

In the subsection 4.5.1, we provide numerical results when channel esti-

mation errors occur at the transmitter side, while in the subsection 4.5.2,

results for systems with imperfect CSI at the receiver are considered.

In both the cases, pilot symbol assisted modulation with Ñp = Np is

considered.

4.5.1 Imperfect CSI at the transmitter

For systems with imperfect CSI at the transmitter, the effective through-

put is evaluated by (4.21) and (4.1), by imposing a target BEP of 10−2,

and a maximum outage probability of 5%. The exact BEP expressions

are reported (4.8) and (4.7), while the CDFs are given by (4.18) and

(4.14) for SAM and FAM systems, respectively. In the effective through-

put evaluation, the constraint (4.19) is assumed for the energy repartition

(ε = 1).

In Fig. 4.3, the outage probability as a function of µdB is reported

for SAM systems, with MRC with 4 branches and Mmax = 256. Sev-

eral channel estimation quality levels are considered and compared to
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Figure 4.3: BEO vs. µdB for SAM system with maximum modulation
size 256, N = 4, P ⋆

b = 10−2, and σdB = 8. A comparison between perfect
and imperfect CSI is reported.
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Figure 4.4: BEO vs. Npε for SAM systems with imperfect CSI, maximum
modulation size 256, N = 2, 4, and 8, P ⋆

b = 10−2, µdB = 35 and σdB = 8.

the outage probability of the perfect CSI system. As expected, a low

channel estimation quality deeply affects the system in terms of outage
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Figure 4.5: Effective throughput vs. µdB for SAM systems with MRC
(N = 4), maximum constellation size 256, maximum outage 5%, P ⋆

b =
10−2, and σdB = 8. Results are evaluated for both perfect and imperfect
CSI, considering several channel estimation quality levels.

probability (see, for example, Npε = 1). By increasing the channel esti-

mation quality (increasing Npε), the outage probability curve merges to

the BEO of a perfect CSI system. This behavior can also be observed in

Fig. 4.4, where the outage probability as a function of Npε is reported

for systems with N = 2, 4, and 8 branches at the receiver. For all the

diversity orders, the outage probability experiences an asymptotic behav-

ior. Increasing Npε the BEO tends to the outage probability of a perfect

CSI system. In Fig. 4.5, the effective throughput vs. µdB is reported

for system with slow adaptive modulation, MRC (N = 4) and imperfect

CSI at the transmitter. As already preannounced from the theory, the

increasing of pilot symbols improves the channel estimation quality, but

it reduces at the same time the transmitted data symbols. The tradeoff

between estimation quality and throughput can be observed in the fig-

ure, where for the considered system, Np = 2 provides a sufficient quality

estimation, without affecting the mean throughput.

A comparison between SAM and FAM in terms of effective through-

put is reported in Fig. 4.6. It is worth noting that, since SAM and FAM

have different coherence times, the comparison can be done keeping con-
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Figure 4.6: Comparison between effective throughout in SAM and in
FAM systems with imperfect CSI, maximum modulation level 256, max-
imum outage 5%, P ⋆

b = 10−2, and σdB = 8.

stant the number of pilot symbols (Np) or the portion of coherence time

dedicated to pilot symbols (np). In our simulation, we kept constant

Np, thus, in SAM systems, the number of data symbols in a coherence

time will be greater than the Ns in FAM systems. It follows that, when

an imperfect channel estimation is considered, SAM can outperform fast

adaptive modulation technique, as observed in Fig. 4.6. For both Np val-

ues considered in the figure, it can be noticed a crossing point (in terms of

µdB) where the SAM system outperforms the FAM one, and it decreases

with the number of pilot symbols. This means that, by increasing the

number of pilot symbols inserted within the frame (i.e., by increasing the

estimation quality), the crossing point beyond which SAM outperforms

FAM is reduced. This very important result allow to demonstrate the

sentence already mentioned in the introductory section, that is “Although

FAM achieves the best performance in perfect CSI systems, when errors

occur in channel estimation, SAM may even outperform FAM technique”.

It follows that, in real systems, in addiction to the fact that SAM are less

expensive than FAM because of the less frequent feedback, SAM takes

advantage from the lower coherence time, leading to an effective SE close
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Figure 4.7: BEO vs. µdB for a non adaptive scheme with P ⋆
b , σdB = 8,

N = 4 (MRC), different constellation sizes M (M = 4, M = 64) and
both perfect and imperfect CSI systems.

(and sometimes even higher) than the one achieved by FAM.

4.5.2 Imperfect CSI at the receiver

We now present the numerical results in terms of effective throughput(
η(eff)

)
and outage probability for slow adaptive modulation systems with

imperfect CSI at the receiver. The effective throughput is evaluated by

(4.37) and (4.1), by adopting a target BEP of 10−2 and an maximum

outage probability of 5%. For the imperfect channel estimation case, the

BEP is obtained from (4.29) and (4.26). The SEP for perfect CSI systems

is easily derived substituting in (4.37) ζ (i) = γ cMQAM. In the effective

throughput evaluation, the constraint (4.31) is assumed for the energy

repartition. In the following, first we show the results for the case ε = 1,

then we provide results for a more general case ε 6= 1.

In Fig. 4.7, the outage probability as a function of the median value

µdB for non adaptive modulation systems with eight-branches MRC is

shown for both perfect and imperfect CSI (Npε = 1, 2, and 4) uncon-

strained systems. As expected, increasing the Npε parameter, the esti-

mation quality improves, leading to a reduction of the BEO. In Fig. 4.8,
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Figure 4.8: Effective throughput vs. µdB for adaptive and non-adaptive
scheme with P ⋆

b , σdB = 8, N = 4 (MRC), ε = 1, maximum modulation
Mmax = 256, and Ntot = 180.

we compare the fixed modulation scheme with SAM in terms of effective

throughput for various Np values and modulation levels ranging from

M = 4 to M = 256. A four-branches MRC is considered at the receiver,

and ε = 1. Even for systems with imperfect CSI, it can be observed

the gain achieved by adopting the SAM technique rather than the non-

adaptive one. Note that if an outage level of 5% is considered, the min-

imum µdB value that guarantee that minimum outage depends on the

channel estimation quality, as a consequence of the fact that the BEO

is affected by estimation errors. Note that the channel estimation errors

affect not only the minimum µdB, but also the effective spectral efficiency.

Increasing the channel estimation quality, and thus Np, the number

of transmitted data (Ntot − Np) decreases, leading to a reduction of the

effective throughput. It follows that the number of pilot symbols has

to be the optimal tradeoff between the effective throughput penalty and

the gain achieved by having an improved channel estimation. It is worth

noting that, increasing µdB, the system with low Np may outperform

system with better channel estimation quality. This crossing behavior
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Figure 4.9: Effective throughput vs. µdB for SAM systems with P ⋆
b ,

σdB = 8, H-S/MRC (L/N=2/8) and MRC (L/N=8/8), ε = 1, maximum
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Figure 4.10: Effective throughput vs. µdB for SAM systems with P ⋆
b =

10−2, Nakagami−m channels with m = 0.5 and m = 4, σdB = 8, MRC
(N=8), ε = 1, maximum modulation Mmax = 64, and Ntot = 180.

can be better observed in Fig. 4.9 and in Fig. 4.10. In the former, the

effective throughput is shown as a function of µdB for both H-S/MRC
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(L/N = 2/8) and MRC (L/N = 8/8) systems with Mmax = 64, and

ε = 1. As expected, the more complex MRC system achieves higher

diversity than the H-S/MRC with L/N = 2/8, leading to a higher mean

throughput and a lower outage probability. In Fig. 4.10, the effective

throughput is shown as a function of µdB for a four-branches MRC and

Nakagami-m channel with m=0.5 and m=4, Mmax = 64, and ε = 1.

As expected from the Nakagami channels properties, even with channel

estimation errors, higher m values achieves better effective throughput.

More important, in both the figures, channel estimation errors affect the

system and the tradeoff between estimation quality and transmitted data

can be evaluated. The more pilot symbols are inserted, the better is the

estimation quality but the lower is the number of transmitted data. It

follows that, only for low performance system, it is worthy having a high

number of pilot symbols. The throughput penalty paid for inserting pilot

symbols can be observed from the asymptotic behavior of the throughput.

For high µdB values, for example µdB = 40, the system with good channel

estimation quality (Np = 4) is outperformed by the system with a lower

estimation quality (Np = 1 and Np = 2). On the contrary, for low µdB

values, for example µdB = 20, 25, the system with Np = 4 achieves the

best performance.

In Fig. 4.11 the effective throughput as a function of Np is shown for

different median values µdB and an eight-branches MRC receiver. Here,

the optimal pilot scheme design issue is addressed for a system with

ε = 1. Increasing of the number of pilot symbols, the effective through-

put does not have a monotonically behavior, as it can be observed in

the figure, where the Np value that achieves the best throughput is high-

lighted with a circle. The pilot scheme that adopts the best Np value

is able to compensate the throughput penalty with the improvement of

the performance, given by the channel estimation improvement. Consid-

ering the curve of µdB = 25, for example, the best effective throughput

is achieved by Np = 4. For Np higher than this value (Np = 4 for the

system with µdB = 25), the lost of effective throughput is not rewarded

by the channel estimation, and a reduction of the effective throughput

is experienced. By increasing the median value µdB, a worthy channel
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Figure 4.11: Effective throughput vs. Np for SAM systems with P ⋆
b ,

σdB = 8, MRC (N = 8), ε = 1, and maximum modulation Mmax = 256.
Several median values µdB are considered, µdB = 25, 30, 40. Ntot = 180.

estimation quality can be achieved by a low number of received pilot

symbols. Thus, the optimal the optimal number of pilot symbols per

frame decreases by increasing the µdB value, as observed in the figure.

A more general system (ε 6= 1) is considered in Fig. 4.12 and Fig. 4.13,

where the constraint (4.31) is considered. In Fig. 4.12, the effective

throughput vs. Np is provided for SAM systems with Mmax = 256,

and MRC receiver with order of diversity 4. Several µdB and ε values

are considered. The first important observation to be done is that, by

keeping the Npε product constant, but varying both the values Np and

ε values, different results can be achieved. For example, for the curve

of µdB = 20, considering Npε = 9, the systems with Np = 3 and ε = 3

outperforms the one with Np = 9 and ε = 1. This is due to the fact, for a

constant frame size, that the latter has a lower number of data symbols.

Note also that Es decreases at the increasing of Np. Thus, for high Np

values, a low ε parameter might outperform systems with high ε values.

Considering µdB = 20, and Np = 12 in Fig. 4.12, for example, the system

with ε = 0.5 achieves a higher η(eff) than the other systems. The pilot

scheme design issue, and therefore the tradeoff between channel estima-

tion quality and throughput, can also be observed in the Fig. 4.13, where
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10−2, σdB = 8, MRC (N=4), maximum modulation Mmax = 256. Several
median values µdB (µdB = 25, 30, 40) and ε values (ε = 0.5, 1, 3) are
considered. Ntot = 100.

the SNR outage penalty and the throughput penalty vs. ε are reported

for SAM systems with Mmax = 256, 8-branch MRC receivers, amd sev-

eral Np values. The SNR outage penalty, reported in Fig. 4.13 (a), is

the difference between the µBEO
dB value that reaches the minimum BEO

for a perfect CSI system and the µBEO
dB of imperfect CSI system. Again,

although the Npε product is constant, varying Np or ε does not pro-

vide the same effective throughput. In particular, the minimum SNR

BEO penalty is achieved by Np = 6 and ε ∼ 1. Analogously, the mean

throughput penalty (Fig. 4.13 (b)) represents the difference (in dB) be-

tween the mean throughput achieved by the perfect and imperfect CSI

systems. Note that, in this case, Np = 6 does not provide the minimum

penalty, that is reached by Np = 1 and ε ∼ 9. It means that, in order to

reduce the throughput penalty, low Np values are preferred, due to the

fact the the higher the pilot symbol number, the lower the data symbol

number within each frame. In conclusion, based on the requirement of

the user (minimization of the BEO or η(eff) ) the best performance might

be achieved employing the most suitable pilot scheme design.
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Figure 4.13: SNR outage penalty and Mean throughput penalty vs. ǫ
for SAM systems with P ⋆
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4.6 Conclusion

In this chapter, we investigated both fast and slow adaptive modu-

lation techniques when channel estimation errors are assumed. We ad-

dressed the effects imperfect CSI both at the transmitter and the receiver

on adaptive modulation. In the former case, a comparison between FAM

and SAM was provided for systems with MRC, showing that, for some

system configurations, the slow adaptive modulation technique can out-

perform the FAM. Then, channel estimation at the receiver was inves-

tigated for SAM systems with H-S/MRC for Rayleigh and Nakagami-m

channels. We compared SAM with fixed-modulation schemes in terms

of outage probability and effective spectral efficiency. Even for imper-

fect CSI systems, SAM technique achieves substantial improvement over

non adaptive schemes. Moreover, the optimal pilot scheme design was

investigated for systems employing subset diversity. A high number of

pilot symbols achieves a good estimation quality at the cost of a spectral

efficiency reduction. Thus, the tradeoff between estimation quality and

throughput was addressed. In particular, the higher is the median value

µdB, the lower is the number of pilot symbols required.



Chapter 5

Adaptive modulation in the

presence of interference and

imperfect thresholds

In this chapter, we address the effects of signal-to-noise ratio thresh-

olds shifting in adaptive M-ary quadrature amplitude modulation sys-

tems with diversity at the receiver. As already mentioned in the pre-

vious chapter, in adaptive modulation systems the optimal modulation

to be employed in the transmission is evaluated by comparing the esti-

mated signal-to-noise ratio (SNR) to some thresholds levels. Co-channel

interference signals or approximated bit error probability expressions em-

ployed in the system may lead to a variation of the thresholds. Here, we

investigate the effects of this thresholds variation on the system perfor-

mance, evaluated in terms of bit error outage and mean throughput.

The remainder of this chapter is organized as follows. In Section 5.1,

the motivations of the work together with a brief description of adaptive

modulation techniques are provided. In Section 5.2, the system model

description is provided for both slow and fast adaptive modulation tech-

niques. Then, the analysis of the effects of SNR thresholds shifting is

reported in Section 5.3 and two applicative examples are considered in

Section 5.4 and Section 5.5. In Section 5.6 numerical results are provided,

and conclusions are given in Section 5.7.

113
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5.1 Motivation and outline of the work

The diffusion of high speed digital wireless communications has in-

creased the need of reliable high data rate transmission in variable chan-

nel conditions. As already observed in the previous chapter, adaptive

modulation techniques allow to maximize the transmitted throughput 1

without compromising the performance in terms of bit error probability

(BEP) and bit error outage (BEO). Adaptive modulation techniques can

be classified into slow or fast adaptive modulation, SAM and FAM re-

spectively. The former adapts modulation parameters to the large-scale

fading, while FAM tracks the small-scale fading. In both FAM and SAM,

the overall performance might be affected by imperfect channel estima-

tions (as investigated in Chapter 4) or by approximations in the SNR

thresholds that reach the target BEP for possible system configurations.

When the system experiences any non-idealities that affect the BEP per-

formance compared to in ideal system, a SNR thresholds shift occurs,

compromising therefore the overall performance. In particular, the mod-

ulation level switch can appear later (before) than the ideal case, leading

to a reduction (increasing) of the mean throughput (outage probabil-

ity). A possible cause of this thresholds shifting can be represented by

any approximation introduced in the system, leading to a computational

simplification, as the employment of approximation BEP expressions.

Being the exponential BEP expression [5] invertible, for example, it is

extremely appealing and widely used in the literature, but, on the other

hand, the SNR thresholds achieved by the approximated BEP expression

may diverge from the original ones [107]. To the best of our knowledge,

there is no evaluation of the effects of SNR thresholds shifting in terms

of mean throughput and outage probability. Moreover, another possible

issue that affects the system performance is the presence of interfering

signals. Thus, in interfered systems, SNR thresholds shifting might oc-

curs, and the rising question is “How much an adaptive system is robust

to interferers?”. In the literature, some works addressed this question,

as in [108] and in [109]. In the former, the performance are quantified

1Throughout this chapter, we shall use the terms “throughput” and “spectral
efficiency (SE)” interchangeably.
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in terms of BER for OFDM systems, while in the latter, the authors

evaluated the mean throughput of an interfered system. Both the works

were limited to FAM systems and did not provide performance in terms

of BEO.

In this chapter, we probe the effects of SNR thresholds shifting, due

to co-channel interference or approximated BEP, investigating both slow

and fast adaptive modulation techniques for M-QAM systems with op-

timum combiner at the receiver. First, the thresholds shifting issue is in-

vestigated in the most general way, including all the possible causes, i.e.,

imperfect channel estimation, presence of interference, employment of ap-

proximated BEP expressions, or any other issue that affects the system

performance. Then, we address two applicative examples of thresholds

shifting: approximated bit error probability expressions and presence of

co-channel interference signals [110, 111]. The performance in terms of

mean throughput and bit error outage probability are then quantified in

the result section.

Notation: throughout the chapter, vectors and matrices are indicated

by bold m and M, respectively; det[M] denotes the determinant of the

matrix M; the superscript H indicates the conjugation and transposition,

and IN is the N ×N identity matrix.

5.2 System model

We assume M-QAM modulated symbols transmitted over Rayleigh

fading and log-normal shadowing channels employing microdiversity at

the receiver, i.e., the shadowing level is the same on each branch. At the

receiver, N antennas are considered and the optimum combiner is em-

ployed for processing the signal. Maximum ratio combining (MRC) and

minimum mean square error (MMSE) are adopted for uninterfered and

interfered systems, respectively. We denote by ES the mean (over the fad-

ing) symbol energy transmitted, by h = {hi}i=1,...,N the channel vector,

whose elements hi represent the Rayleigh distributed fading gain, and by

n(k) the additive Gaussian noise with zero mean and E{n(k)n(k)H} =

N0IN , where N0/2 is the two-sided thermal noise power spectral den-
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sity. For sake of simplicity, we omit the branch subscript in the mean

SNR notation. The average signal-to-noise ratio on each branch can be

expressed as γ = E{|h|2}Es/N0 = Es/N0, where E{|h|2} = 2σ2
h = 1.

Since we consider a log-normal shadowing, γdB = 10 log10(γ) is Gaussian

distributed with mean µdB mean and σ2
dB variance.

As briefly stated before, adaptive modulation techniques allow to

achieve the best throughput accordingly with channel conditions, mini-

mizing in the meanwhile the outage probability, [6]. In particular, when

a discrete variable rate is considered, a set of J modulation levels can

be adopted, {M0,M1, . . . ,MJ}. As observed in the previous chapter, the

optimal modulation level is chosen depending on the instantaneous or

mean SNR in FAM or SAM, respectively. We denote by χ the SNR pa-

rameter, in particular, in SAM systems χ = γ, while in FAM systems

χ = γT, where γT is the instantaneous SNR at the combiner output2.

When, even with the lowest modulation level M0, χ is not sufficient to

guarantee the target BEP P ⋆
b , the system is in outage. Otherwise, the

transmitted data rate corresponds to log2Mj , j = 0, . . . , J . The op-

timal data rate is chosen comparing the χ value with modulation level

thresholds, that are set to guarantee the minimum BEP required when

the j-th modulation level is adopted, that is Pb(χ
⋆
j) = P ⋆

b . In particular,

when the SNR value falls within the j-th region (χ⋆
j < χ ≤ χ⋆

j+1), the

j-th modulation level is adopted for the transmission. It follows that an

important figure of merit is the mean throughput [bps/Hz] defined as

η =

J−1∑

j=0

M̃j P
{
χ⋆

j < χ ≤ χ⋆
j+1

}
+ M̃J P {χ⋆

J < χ}

=
J−1∑

j=0

M̃j

[
Fχ(χ⋆

j+1) − Fχ(χ⋆
j )
]
+ M̃J [1 − Fχ(χ⋆

J)]

=
J−1∑

j=0

M̃j

[
FχdB

(χ⋆
dB,j+1) − FχdB

(χ⋆
dB,j)

]
+ M̃J

[
1 − FχdB

(χ⋆
dB,J)

]

(5.1)

where M̃j = log2Mj and FχdB
(x) is the CDF of the SNR value in dB,

2Note that, unlike the notation in the Chapter 4, here χ represents the SNR
parameter in linear scale in both FAM and SAM.
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i.e., χdB = 10 log10(χ). Another important measure of the QoS is the

bit error outage probability (BEO), i.e., the probability that the bit error

probability is greater than the target BEP:

Po(P
⋆
b ) = P {Pb(χ) > P ⋆

b} = Fχ (χ⋆
0) . (5.2)

For SAM systems, in log-normal shadowing, the CDF of the averaged

SNR is expressed as

FγdB
(ξ) = Q

(
µdB − ξ

σdB

)
(5.3)

where Q(·) is the Gaussian-Q function.

5.3 Imperfect thresholds

In this section, the effects of imperfect thresholds in terms of through-

put and outage probability are investigated for a general system, i.e.,

without explicating the causes of threshold shifting. When the system

experiences a decreasing of the performance, the BEP expression diverges

from the ideal one, and a shift of the SNR thresholds occurs. This ap-

proximation can be expressed as χ̆⋆
j,dB = χ⋆

j,dB + ∆j,dB. Note that ∆j,dB

might be either a deterministic or a random variable that might assume

positive and negative values.

To evaluate the mean throughput in realistic systems, (5.1) can still be

considered by replacing the ideal thresholds χ⋆
j,dB with χ̆⋆

j,dB. Conversely,

the outage probability is not always given by (5.2). In particular, when

χ̆⋆
j,dB < χ⋆

j,dB, although the real SNR falls within the j-th modulation

range, the (j + 1)-th modulation might be adopted. In this case, the

effective bit error probability is greater than the target BEP and the sys-

tem is in outage. It means that the system is in outage when χdB < χ⋆
0,dB,

and also when the SNR value falls within the range (χ⋆
j,dB−|∆j,dB|, χ⋆

j,dB]

for j = 1, . . . , J . Thus, when approximated thresholds are obtained, the
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BEO is given by3

Po = FχdB
(χ⋆

dB,0) +
J∑

j=1

[
FχdB

(χ⋆
j,dB) − FχdB

(χ⋆
dB,j − |∆j|)

]
(5.4)

For a slow adaptive modulation, considering the CDF of the averaged

SNR in (5.3), the outage probability is given by

Po = Q

(
µdB − γ∗0,dB

σdB

)
+

J∑

j=1


Q



µdB − γ∗j,dB

σdB︸ ︷︷ ︸
aj


−Q



µdB − γ⋆

j,dB − |∆j|
σdB︸ ︷︷ ︸
bj







= Q

(
µdB − γ∗0,dB

σdB

)
+

J∑

j=1

∫ bj

aj

e−
y2

2 dy (5.5)

It is worth noting that the greater is the mean value µdB, the more Po

tends to the outage probability of a system with fixed modulation equals

to the maximum modulation level MJ .

We now consider approximated BEP expressions or co-channel inter-

ference as possible causes of the SNR threshold shifting. In both the

cases, the average BEP expression is deduced and the thresholds shifting

is quantified.

5.4 Approximated BEP expressions

Although M-QAM has been studied for several years, only recently

an exact BEP expression was carried out [107, 112], and the averaged

exact BEP was derived in [6] for a system with diversity. For sake of

simplicity, the instantaneous and average BEP expressions for M-QAM

with SSD, derived in [6], have been reported in the Appendix C in (C.1)

and (C.5), respectively.

In the literature, several invertible approximations are considered.

Starting from the exponential expression for the instantaneous BEP [96],

reported in (C.2), and considering the characteristic function ψγT
(jν) =

3Note that, when random thresholds are considered, both the mean throughput
and the outage probability evaluated in this section are conditioned to the error ∆j,dB.
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Table 5.1: ∆j,dB for SAM and FAM techniques for different modulation
levels when no diversity is considered (N = 1).

SAM

M = 4 M = 16 M = 64 M = 256 M = 1024
A1 −1.34 −0.32 0.68 1.62 2.46
A2 ∼ 10−10 0.21 0.34 0.40 0.43
A3 −0.44 −0.96 −1.24 −1.40 −1.51

FAM

M = 4 M = 16 M = 64 M = 256 M = 1024
A1 0.16 0.58 0.98 1.35 1.71
A2 ∼ 10−10 ∼ 10−10 ∼ 10−9 ∼ 10−9 ∼ 10−9

A3 −0.007 −0.15 −0.025 −0.03 −0.05

EγT
{ejνγT} =

∏Ñ
n=1

[
1

1−γjν

]
, as explained in the Appendix C, the aver-

aged BEP expression (A1) can be derived as

P
(A1)
b (γ) ≃

∫ ∞

0

P
(A1)
b (e|γT)fγT|γ(ξ)dξ = 0.2

[
1

1 + 1.6
M−1

γ

]N

. (5.7)

Starting from another approximation introduced in [113], (C.3), aver-

aging the instantaneous BEP over the fading, the averaged BEP expres-

sion (A2) can be expressed as

P
(A2)
b (γ) ≃ 2AM

log2M

√
M/2∑

i=1

Ik
[
(2i− 1)2BMγ

]
, (5.8)

where Ik(x) = 1
π

∫ π/2

0

(
sin2θ

x+sin2 θ

)N

dθ, AM = 2[1 − (1/
√
M)] and BM =

[3/2(M−1)]. Starting from the third instantaneous approximation [107], (C.4),

the approximated averaged BEP (A3), as derived in the Appendix C, can

be expressed as

P
(A3)
b (γ) ≃ 2AM

log2M
Ik (BMγ) −

A2
M

log2M

1

π

∫ π/4

0

(
sin2 θ

BMγ + sin2 θ

)N

dθ.

(5.9)

Although MRC receivers are considered in this chapter, for sake of

completeness, in the Appendix C, the approximated BEP expressions for
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Table 5.2: ∆j,dB for SAM technique for different modulation levels and
orders of diversity when the approximation (A1) is considered.

SAM

M = 4 M = 16 M = 64 M = 256 M = 1024
N=1 −1.34 −0.32 0.68 1.62 2.46
N=2 −0.33 0.42 1.11 1.74 2.31
N=8 0.09 0.58 1.04 1.48 1.87

a more general system employing H-S/MRC are reported. In Table 5.1,

the thresholds shifting values, ∆j,dB, are reported for different modu-

lation levels, for both SAM and FAM techniques, when no diversity is

considered (N = 1), while several orders of diversity are considered in

Table 5.2, where the ∆j,dB values are reported for SAM systems em-

ploying the exponential approximation. Note that the gap between the

perfect and imperfect thresholds increases accordingly with the modu-

lation level. Moreover, it is worth noting that |∆j,dB
(A1)| results to be

higher than the other delta values, leading to a rough BEP approximation

when the exponential expression is employed. Finally, from Table 5.1, it

can be observed that, for the approximation (A3), ∆j,dB < 0 . It follows

that, compared to the exact system, (A3) will achieve a higher mean

throughput at the cost of a higher outage probability, given by (5.4).

5.5 Co-channel interference

We now consider the case in which the SNR thresholds shifting, ∆j,dB,

is given by the presence of co-channel interference. We denote the re-

ceived signal on each branch after the matched filtering and the sampling

at the symbol rate by zi(k) = z
(P)
i (k) + jz

(Q)
i (k), where k represents the

time index. The vector output z(k) = [z1(k), . . . , zN(k)] can be written
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as4 [114]

z(k) = z(P)(k) + jz(Q)(k)

=
√
ESh b0(k) +

√
EI

NI∑

n=1

hI,nbI,n(k) + n(k), (5.10)

where EI is the mean symbol energy transmitted of each interfering sig-

nals; b0(k) = b
(P)
0 (k) + jb

(Q)
0 (k) is the desired signal sample and bI,n(k) =

b
(P)
I,n (k) + jb

(Q)
I,n (k) is the interfering signal sample of the n-th interferer.

Since we assume a slow frequency flat Rayleigh distributed fading, the

vectors h and hI,n, n = 1, . . . , NI have distribution CN (0, IN), and we

denote by HI = {hI,j}j=1,...,NI
the interference channel matrix. Being

the desired signal affected by fading, the Gaussian approximation for

the interferers is justified [115]. Thus, b1(k), . . . , bNI
(k) are independent

zero-mean complex Gaussian random variables, each with variance one

because of the normalization.

Following the steps in [114], we derive the bit error probability as

a function of the averaged signal-to-interference-plus-noise ratio (SINR)

for a M-QAM system with optimum combining at the receiver. The

optimum weight vector that maximizes the SINR is w = αR−1cD, where

α is an arbitrary constant and R the covariance matrix, expressed as

R = En(k),bj(k)





[
√
EI

NI∑

n=1

hI,nbI,n(k) + n(k)

][
√
EI

NI∑

n=1

hI,nbI,n(k) + n(k)

]H




= EI

NI∑

j=1

hI,jh
H
I,j

︸ ︷︷ ︸
RI

+N0IN , (5.11)

where the last equality holds because the desired signal, the interference

and the noise are assumed independent from each other. Considering

an overloaded system (i.e., NI ≥ N)5 the SINR of the output at the

combiner can be written as

γ =
N∑

i=1

ES

∣∣hH
S ui

∣∣2

EIλi +N0
,

4Note that the superscripts (P) and (Q) stand for the in-phase and quadrature
symbols, respectively.

5The extension to the underloaded case is reported in the Appendix D.
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where u1, . . .uN are the orthonormal eigenvectors of the interference cor-

relation matrix RI , corresponding to the eigenvalues λ1, . . . , λN . The in-

stantaneous exact bit error probability for M-QAM systems is expressed

in (C.1) and the averaged BEP can be determined by averaging over the

SINR,

Pb =

∫
P (e|γT)fγT

(ξ)dξ

=
2√

M log2(
√
M)

log 2(
√

M)∑

h=1

(1−2−h)
√

M−1∑

n=0

(−1)
⌊n2h−1

√
M

⌋

×
(

2h−1 −
⌊
n2h−1

√
M

+
1

2

⌋)
1

π

∫ π/2

0

ΨγT

{
− cM,n

sin2 θ

}
dθ

︸ ︷︷ ︸
ζn(γT)

, (5.12)

where cM,n = 3(2n+1)2

2(M−1)
and the last equality is due to the use of the

Craig’s formula of the Gaussian Q function [9]. Using the chain rule of

conditional expectation, we obtain

ζn(γT) =

∫ π/2

0

∫ ∞

0

. . .

∫ ∞

0

ΨγT|λ

{
− cM,n

sin2 θ

}
fλ(x)dθdx.

Since the elements of the (N ×NI) matrix HI, hI,j,i, are complex random

variable belonging to a normal distribution CN (0, 1), the Hermitian ma-

trix W = HIH
H
I is the central Wishart matrix. A useful property of W

is the joint pdf of the unordered real eigenvalues, fλ(x), that can be ex-

pressed as [116]. Knowing fλ(x), and considering the Lemma 1 in [114],

after some mathematical steps, reported in the Appendix D, the mean

BEP expression can be expressed as

Pb =
2√

M log2(
√
M)

log 2(
√

M)∑

h=1

(1−2−h)
√

M−1∑

n=0

(−1)
⌊n2h−1

√
M

⌋

×
(

2h−1 −
⌊
s2h−1

√
M

+
1

2

⌋)[
π

N∏

i=1

(N − i)!(NI − i)!

]−1 ∫ π/2

0

detG(θ)dθ,

(5.13)

where G = {Gi+j+NI−N}i,j=0,...,N−1 is the Hankel matrix, with elements
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given by

Gk(θ) =

(
cM,nN Iγ

sin2 θ γ I

+
NI

γ I

)k

exp

(
cM,nN Iγ

sin2 θ γ I

+
NI

γ I

)
k!

×
[(

cM,nN Iγ

sin2 θ γ I

+
NI

γ I

)
(1 + k)Γ

(
−1 − k,

cM,nN Iγ

sin2 θ γI

+
NI

γ I

)

+
NI

γ I

Γ

(
−k, cM,nN I

sin2 θ γI

+
N I

γ I

)]
, (5.14)

where γI = (NIEI)/N0 denotes the interference-to-noise ratio (INR).

Note that, when no interference signals are considered, the optimum

combiner merges to the MRC, thus the mean BEP expression is given by

(4.8).

It is worthwhile noting that, since also the interference signal is af-

fected by the shadowing, the γI is a RV, modeled as a log-normal RV,

i.e. γI ∼ N (µI,dB, σdB). A simplified analysis of the effects of co-channel

interference is considered first. In particular, as starting point, we con-

sider the overall performance conditioned to the signal-to-interference

ratio, SIR = ED/(NIEI) = γ/γI
6. In this conditioned model, (5.13) is

considered for the SNR thresholds evaluation, that is, we evaluate that

SNR value such that Pb|SIR(γ) = P ⋆
b . Once evaluated these thresholds,

the mean throughput and the BEO can be evaluated by (5.1) and (5.4),

respectively. Then, a more general case is investigated assuming that the

interference shadowing level does not equal the useful signal shadowing

level. It follows the the evaluation of the performance is not limited to

conditioned cases. In particular, the BEP expression is a function of two

random variables, SNR and INR, and therefore the couple (γI, γ) has

to be evaluated as the SINR threshold that reaches the target BEP for

given system configurations. As far as an interfered system is concerned,

the SINR thresholds are represented by a threshold line rather than a

single point, as it can be observed in Fig. 5.1. Here, the SINR threshold

lines are reported for a system with Nd = 1, NI = 2, and M ranging

from 4 to 256. Note that a floor is observed for low INR values, due

6Conditioning the system to the SIR value implies that, for further evaluation
analysis (i.e., BEO or SE evaluation), the interference shadowing level follows the
useful signal shadowing level.
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Figure 5.1: Approximated and Exact threshold lines for a system with
Nd = 1, NI = 2, and M ranging from 4 to 256.

to the lowering of the interference signal power. In particular, the lines

merges to the SNR threshold value (γ⋆) of the uninterfered system. It

is worthwhile noting the almost linear behavior of the threshold line for

high INR values. This can be explained from (5.13), where by increasing

the INR value, the value NI/γI become negligible, and only the linear re-

lation between SNR and INR is present in the BEP expression. Thus, the

thresholds lines might be approximated with some straight line limited

by the floor value. These approximated threshold lines are represented

in the Fig. 5.1 by the dashed lines.

In the considered system, when the couple (γI,dB, γdB) falls within

the region (Oj+1 ∩ Oj), the j-th modulation is adopted, where ∩ stands

for the intersection operator. We denote by Oj the region limited by

the threshold line of the Mj modulation, and by Oj = R2 − Oj the

complementary region of Oj . When (γI,dB, γdB) ∈ O0, the target BEP

can not be reached and the system is in outage. The bit error outage



5.6 Numerical results 125

probability can be defined as

Po = F(γI,dB,γdB)(O0) = P
{
(γI,dB, γdB) ∈ O0

}

=

∫ ∞

−∞

∫ γ⋆
0,dB(γI,dB)

−∞
fγdB

(ξ)fγI,dB
(ξI)dξdξI

=

∫ ∞

−∞
Q

(
µdB − γ⋆

0,dB

σdB

)
fγI,dB

(ξI)dξI, (5.15)

where fγI,dB
(·) and fγdB

(·) are the PDF of the SNR and INR, respectively,

and γ⋆
0,dB(γI,dB) is the SNR value that reaches the target BEP when

INR= γI,dB. Analogously, the mean throughput is given by

η =

J−1∑

j=0

M̃j P
{
(γI,dB, γdB) ∈ (Oj+1 ∩ Oj)

}
+ M̃J P

{
(γI,dB, γdB) ∈ OJ

}

=
J−1∑

j=0

M̃j

[
F(γI,dB,γdB)(Oj+1) − F(γI,dB,γdB)(Oj)

]
+ M̃J

[
1 − F(γI,dB,γdB)(OJ)

]

(5.16)

where, as already observed from (5.15), since the SNR and INR are log-

normal RVs, the joint CDF can be expressed as

F(γI,dB,γdB)(Oj) = P
{
(γI,dB, γdB) ∈ Oj

}

=

∫ ∞

−∞

∫ γ⋆
j,dB(γI,dB)

−∞
fγdB

(ξ)fγI,dB
(ξI)dξdξI

=

∫ ∞

−∞
Q

(
µdB − γ⋆

j,dB

σdB

)
fγI,dB

(ξI)dξI, (5.17)

5.6 Numerical results

In this section, numerical results are presented in terms of mean

throughput and BEO for both fast and slow adaptive modulation. Coher-

ent detection of M-QAM with optimum combiner and Gray code map-

ping in composite Rayleigh fading and log-normal shadowing channels

with perfect CSI was considered. The mean throughput is evaluated by

(5.1), where the thresholds are evaluated as the SNR values that achieve

a target BEP of 10−2 for different modulation sizes and a maximum out-

age probability of 5% is considered. For the approximated BEP case,
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Figure 5.2: Outage probability vs. µdB for SAM systems with maximum
modulation size 64, 256, 1024, no diversity at the receiver, P ⋆

b = 10−2,
σdB = 8. To evaluate SNR thresholds, the BEP approximation A3 is
adopted.

the BEP expressions are obtained from (C.1)-(C.4) and (C.7)-(C.11) for

FAM and SAM, respectively, and the exact BEP expressions have been

reported in (C.5). In the case of interfered system, the BEP evaluated

in (5.13) is considered.

In Fig. 5.2, the outage probability as a function of the median value

µdB is considered for both fixed modulation systems, with the modulation

level ranging from M = 4 to M = 1024, and adaptive modulation sys-

tems with the approximation (A3) employed, that is the approximation

that provides ∆j,dB < 0. As already mentioned, the outage probability

obtained with a modulation level equals to 4, is also the outage proba-

bility of an adaptive modulation system when the exact BEP expression

is considered. Conversely, when the approximation (A3) in employed,

∆j,dB < 0 and the outage probability will increase, as observed in the fig-

ure. It is worth noting that the higher the maximum modulation adopted

in the system, the higher is the outage probability. Moreover, it can be

confirmed what mentioned before, i.e., asymptotically (µdB → ∞) the

outage probability of an adaptive modulation system, with maximum
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Figure 5.3: Mean SE vs. µdB for SAM systems with maximum modu-
lation size 64, 256, 1024, MRC with N = 1, 2, 8, maximum outage 5%,
P ⋆

b = 10−2, and σdB = 8. The mean SE is evaluated with both perfect
and imperfect BEP expressions.

modulation Mmax and approximation (A3) employed, merges to the out-

age probability of a system with fixed modulation equals to Mmax. This

outage penalty can be observed also in Fig. 5.3, where the mean through-

put as a function of the median value µdB is shown for SAM systems

employing exact BEP or the approximated BEP expressions (A1), (A2),

and (A3) with maximum modulation size equal to 64 and 256. As ex-

pected, when no diversity is considered, the approximation (A3) results

in a higher mean throughput at the cost of a higher outage probability.

Observe that, when Mmax = 256 and N = 1, for example, the median

SNR value that achieves an outage probability lower than 5% is around

42dB, while in the case of perfect BEP expression, it is around 29 dB.

Considering the other approximations, it can be observed that the expo-

nential BEP approximation (A1) achieves a lower SE than the exact BEP

expression for all the diversity orders. It means that the simplification of

system obtained by (A1) has to be payed in terms of mean throughput.

For example, considering N = 2, and µdB = 25, the system employing



128 Chapter 5. Adaptive modulation in the presence of...

0 10 20 30 40
γ 

dB

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

P b

SIR=10dB, N=2, N
I
=5

SIR=15dB, N=2, N
I
=5

SIR=25dB, N=2, N
I
=5

No Interf, N=2
SIR=10dB, N=4, N

I
=10

SIR=15dB, N=4,N
I
=10

SIR=25dB, N=4, N
I
=10

No Interf, N=4
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the exact BEP expression achieves a mean throughput η ∼ 6.1 bps/Hz,

while by employing the approximation (A1) only a mean throughput of

5.6 bps/Hz can be reached. Conversely, (A2) is a tight approximation and

it turns into a transmitted throughput extremely close to one provided

by the exact BEP expression.

We now provide results for systems with co-channel interference. First,

results conditioned to the SIR value are provided. Then, a more general

case is studied, showing the modulation regions and the performance for

SAM systems with MRC receivers. As far as the conditioned case is con-

cerned, the SNR thresholds are evaluated from the bit error probability

in (5.13), while the BEO and mean SE are given by (5.1) and (5.2), re-

spectively. The bit error probability as a function of the mean SNR is

reported in Fig. 5.4 for SAM systems with different number of anten-

nas at the receiver, different numbers of interference signals, and several

SIR values. As expected, the curves show a floor at the increasing of

the mean SNR, and the lower is the SIR, the higher is the BEP floor

value. Moreover, some system configurations (i.e., M or N) might not
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overcome the presence of interference, and the system experiences such

low performance that the target BEP can not be reached for any µdB. It

follows that the system might not switch to the maximum modulation

level, even with asymptotically high SNR. This can be observed also in

Fig. 5.5, where the ∆j,dB = γ̆⋆
j,dB − γ⋆

j,dB is reported for j = 1, . . . , 4, for

SAM systems with different NI and N values. It is worth noting that, by

increasing of the modulation size, the system is less robust to the inter-

ference, and it follows that the system might not reach the target BEP.

This explain why, for some low SIR values (for example 7 dB), the ∆j,dB

can be evaluated only for the modulation size M = 4. Moreover, it can

be observed that, since at the increasing of the SIR value, the interfered

system tends to the uninterfered one, the higher the SIR, the lower the

SNR delta thresholds.

This behavior, together with the fact that in some system configura-

tions the target BEP can not be reached, can be translated in terms of

mean throughput, and observed in Fig. 5.6. Here, the mean SE as a func-

tion of the median value µdB is provided for SAM systems with NI = 6,

different diversity orders N , and different signal-to-interference ratios. It
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is worthwhile noting the extremely low performance of the system when

N = 2 and SIR = 15dB. The system can switch the modulation level

between M = 4 and M = 16, which are actually the only values that

satisfy the target BEP of 10−2. Increasing the SIR value or the diversity

of the system, the mean throughput increases reaching values close to

the exact system throughput.

We now provided results for an unconditioned system affected by

co-channel interference. In particular, the bit error probability is given

in (5.13), the BEO and mean throughput are expressed in (5.15) and (5.16),

respectively. In Fig. 5.7, the bit error probability vs. γdB is reported for

systems with M = 4, MRC receiver with N = 1, and 2 as order of di-

versity. Un overloaded case is considered, i.e, NI = 4 > N . As expected,

the interfered systems preserve the diversity order, but they experience

a decreasing of the performance respect to the uninterfered system. In

particular, the higher the INR value, the more dominant are the inference

signals, and thus the worse is the performance. Considering a system with
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γI,dB = 10 and N = 1, for example, a SNR value of almost 28 dB is re-

quired to reach the target BEP (Pb = 10−2), despite the 17 dB needed in

the uninterfered system. By decreasing the INR value, the performance

get closer to the BEP value of the exact system, as it can be observed

in the figure. As already mentioned in the previous section, a couple

(γdB, γI,dB) has to be evaluated as that thresholds SINR values reaching

the target BEP. It follows that a threshold line can be individuated has

the set of points such that Pb(γdB, γI,dB) = P ⋆
b . These threshold lines are

reported in Fig. 5.8 for a SAM systems with Mmax = 256, N = 1, and 2

interfering signals. Note the almost linear behavior for high INR values,

and the floor behavior for low INR value. In particular, by decreasing

the γI,dB, the SNR thresholds tend to the γ⋆
dB thresholds of uninterfered

systems.

Finally, the mean throughput vs. µdB can be observed in Fig. 5.9

for SAM systems with Mmax = 64, N = 1, NI = 2, and several µI,dB

values, µI,dB = −10,−5, 0. Note that, even with low µI,dB values, i.e.,

µI,dB = −5, a substantial reduction of the throughput is experienced
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together with an increase of the bit error outage probability. Note, for

example, that the system with µI,dB = −5 has a minimum µdB value that

reaches the minimum BEO equal to 34 dB, while the uniterfered system

is in outage only for µdB < 31 dB. Moreover, for a constant value of µdB,

i.e., µdB = 35 the interfered system provides a mean throughput of 4.9

bps/Hz, depside the 5.3 bps/Hz achieved by the uniterfered system. As

expected, increasing µI,dB the performance is even more affected by the

interfering signals, as showed by the µI,dB = 0 system.

5.7 Conclusion

In this chapter, we investigated adaptive modulation techniques when

a signal-to-noise ratio threshold occurs. We investigated the effects of this

shifting in terms of bit error outage and mean throughput. We considered

two applicative examples, showing how the employing of appealing ap-

proximation BEP expressions may lead to a substantial increasing of the

bit error outage or of average throughput, compared to the case with ex-

act BEP expression. Then, we considered the effects of interfering signals
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in slow adaptive modulation systems, by carrying out QoS measurements

for several signal-to-interference ratio, showing the system configurations

able to overcome the interfering issue.





Chapter 6

Conclusion

This final chapter summarizes the contributions of this dissertation

and highlights numerous areas for further research. We developed a

framework for optimizing multimedia applications over wireless channels.

We showed how to take advantage from channel conditions, by adopting

to them transmitting parameters at the physical layer, such as source

and channel coding rates, as well as modulation levels. Specifically, as

far as the joint source and channel coding was concerned, we investi-

gated the optimal design of joint source and channel coding (JSSC) in

a 2D time-frequency resource block for multimedia transmissions over

OFDM systems. We used symmetric n-channel FEC-based multiple de-

scriptions with time coding based on the diversity order in the frequency

and time domains. Results showed that, even with only one of the two

diversities available, extremely worthy performance can be achieved. As

far as video bitstreams are concerned, important considerations on the

methods to evaluate the rate distortion (RD) curve were provided. We

showed that great simplification can be considered in the algorithm for

the RD function and the optimal staircase design, without jeopardizing

the overall performance system. Beyond JSSC, as another method to

improve the reliable data rate to be decoded, adaptive modulation tech-

niques was investigated. We investigated adaptive modulation techniques

in real systems, affected by channel estimation errors, co-channel interfer-

ence or any possible issue compromising the bit error probability (BEP)

performance. First, we compared slow adaptive modulation techniques

to the fast ones in the presence of imperfect channel estimations. Results

135



136 Chapter 6. Conclusion

showed that tracking the large-scale fading achieves an enormous im-

provement in the performance compared to a fixed modulation systems,

and it can also outperform fast adaptive modulation techniques, that fol-

lows the small scale fading. Then, we provide a general analysis for the

evaluation of system performance when imperfect signal-to-noise thresh-

olds are experienced. We also studied two applicative examples, showing

the effects of co-channel interference, and demonstrating that employing

approximated BEP expression might reduce the system performance.

A large number of areas exists for future research on wireless multime-

dia transmissions and related topics. The proposed model can be applied

to some existing standards, as WiMax for example, investigating an opti-

mization suitable for the given system. The channel and model conditions

of the standard might drive us to different considerations in the trans-

mission scheme design. Due to the high decorrelation in the frequency

domain, and due to the high number of subcarriers in WiMax systems,

more than one frame might be transmitted in all the available subcarriers,

for example, introducing a new parameter in the optimization problem.

Moreover, a multicast scenario can be investigated, aimed at satisfying

all the user requirements, providing at least a target quality to each user,

or maximizing the sumrate capacity of the system. Adaptive modula-

tion techniques can be applied to OFDM systems, for transmission of

both images and video bitstreams. The optimal modulation level might

be chosen for each independent subchannel, or suboptimal bit-loading

algorithms can be employed. Finally, a cross-layer (physical-scheduling-

application level) optimization in the multimedia transmission can be

considered, introducing therefore the scheduling level in the optimization

problem.



Appendix A

Packet loss rate

For a Rayleigh fading process r(t), consider a simple two-state thresh-

old model [52] with Rth being the threshold for the Rayleigh fading signal.

If the signal level is above Rth (strong fade), the channel is considered to

be in the good state, in which the probability of receiving the informa-

tion is equal to 1, while if the signal level is below Rth (deep fade), the

probably of receiving the particular information bit is equal to 0. Let us

further assume that τf , τnf and τs are the deep fade duration, the strong

fade duration and the deep fade inter-arrival intervals, so that

τs = τf + τnf . (A.1)

The average deep fade inter-arrival interval is the inverse of the level

crossing rate (the expected rate at which the signal crosses the Rth),

defined as [14]

τs =
1√

2πfDρe−ρ2
, (A.2)

where fD is the maximum Doppler frequency, ρ2 = (Rth/Rrms)
2 is the

inverse of the fade margin and Rrms is the root mean square of the fading

signal. Denoting by Nr the level crossing rate, the average deep fade

duration is defined as [14]

τf =
P (r(t) ≤ Rth)

Nr
=

eρ2 − 1√
2πfDρ

, (A.3)

so that the average strong fade duration can be expressed as

τnf = τs − τf =
1√

2πρfD

. (A.4)

137



138 Appendix A. Packet loss rate

Note that the ratio between the average strong fade duration and the

average deep fade duration is not a function of the Doppler spread. Thus,

increasing fD causes a reduction of the average deep fade inter-arrival

interval (τs), but also a shorter deep fade duration, as can be observed

from (A.2) and (A.3), respectively. Hence, faster fading produces deep

fade events that are shorter in duration but occur more frequently.

Since r(t) is a Rayleigh random process, r2(t) is a χ2 process and thus

its asymptotic1 level down-crossing rate forms a Poisson process [117].

From the properties of Poisson random variables [118], it follows that

Pτs
(τ) = Prob(τs ≤ τ) = 1 − exp

(
− τ

τs

)
, (A.5)

and we can define the probability of having k deep fade arrivals within

an interval of TPL seconds as

Prob {K(TPL) = k} =
(TPL/τs)

ke−TPL/τs

k!
(A.6)

where TPL corresponds to the duration of a packet, and K(TPL) is a

random variable representing the number of deep fade arrivals in TPL

seconds.

Thus, in an uncoded system, the probability of having a packet cor-

rectly received (Psucc) is

Psucc = Pgood · Prob (K(TPL) = 0) = exp

(
−ρ2 − TPL

τs

)
(A.7)

where:

Pgood = Prob (packet starts in good fade) = P (r(t) > Rth) = exp(−ρ2)

(A.8)

is the probability that a packet starts in the good state. From (A.7), it can

be seen that the packet success rate probability decreases with decreasing

inter-arrival time of the deep fades due to the fact that deep fading arrival

are shorter but occur more frequently. In Fig. A.1, we show both the

simulation results and analytical results with different fade rates. As

1We use “asymptotic level down-crossing” to mean the level crossing of a very low
threshold (Rth → 0) [117].
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Figure A.1: Simulation and analytic results for the packet success rate
for an uncoded system with different fnd with SNR(Rth) = 9 dB.

can be seen from the figure, the simulation and analytical results closely

track one another. In particular, the packet success rate decreases with

increasing fade rate. This explains the performance of Fig. 2.10, in which

the PSNR of systems with either perfect CSI or imperfect CSI decreases

monotonically with increasing fade rates.





Appendix B

Canonical expression

Antenna sub-set diversity (ASD) systems uses only a subset of the

branches available at the receiver. When the most powerful branches are

selected, H-S/MRC is adopted. For ASD techniques, the PDF of the

signal-to-noise ratio at the combiner output is [6]

fγT|γ(ξ) =

Ñ∑

n=1

µn∑

k=1

An,k gn,k(ξ) , (B.1)

where Ñ = N − L+ 1 , b̃n and An,k are given in (B.3) and (B.4), respec-

tively, and

gn,k(ξ) =

{
ξk−1

b̃k
n Γ(k)

e−ξ/b̃n ξ ≥ 0,

0 otherwise,
(B.2)

b̃n =

{
γ n = 1,

γ L/(L+ n− 1) n = 2, .., Ñ .
(B.3)

An,k =
ϕn,k

ckn(µn − k)!
, (B.4)

with n = 1, .., Ñ and k = 1, .., µn. In (B.4), ϕn,k denotes the (µn − k)th

derivative of ϕn(x) , xµnψγT
(x − cn) evaluated at x = 0, where ψγT

(x)

represent the characteristic function of γT. Finally, the parameter µn is

defined as

µn =

{
L n = 1,

1 n = 2, .., Ñ ,
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When an imperfect CSI in considered in the feedback, the instanta-

neous SNR at the output of a N branches MRC is expressed in (4.5).

When ASD and imperfect CSI at the transmitter are considered, steps

similar to [19] can be adopted. The instantaneous output signal-to-noise

ratio is given by

γ̂T = 〈a, γ̂ [N ]〉 , (B.5)

where a is a N×1 vector that allow to select the branches to combine.

For a H-S/MRC an = 1 , for 1 ≤ n ≤ L , 0 otherwise. γ̂ [N ] is the N × 1

vector of the ordered SNR, i.e., γ̂ [N ] = [γ̂[1] γ̂[2] . . . γ̂[N ]]
T where γ̂[1] >

γ̂[2] > . . . > γ̂[N ] and (.)T denotes transpose. The joint pdf of the no

longer independent γ̂[i] is

fγ̂ [N]

({
ξ[i]
}N

i=1

)
=

{
N !
γ̆N e−〈a,ξ[N]〉/γ̆ γ[1] > γ[2] > . . . > γ[N ],

0 otherwise.
(B.6)

where γ̆ = Ehk
{γ̂k} = γ+1/Npε, as derived in (4.16). We recall that Np is

teh number of pilot symbols received within each frame, and ε = Ep/Es.

By adopting the virtual branch technique of [19], and considering the

transformation matrix T VB : R
N → R

N given by

T VB =




γ̆/1 γ̆/2 · · · γ̆/N
γ̆/2 · · · γ̆/N

. . .
...

γ̆/N


 (B.7)

the pdf of the SNR at the combiner output is still given by (B.1), with

gn,k(ξ) given by (B.2) and b̃n expressed as

b̃n =

{
γ̆ n = 1,

γ̆ L/(L+ n− 1) n = 2, .., Ñ .
(B.8)

Substituting (4.16) in (B.8), we obtain

b̃n =

{
γ + 1

Npε
n = 1,

(γ + 1
Npε

) L/(L+ n− 1) n = 2, .., Ñ .
(B.9)

Therefore, the PDF and the CDF for a FAM system employing H-S/MRC

at the receiver is given by (4.13) and (4.14), respectively, where the b̃n
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values are given by (B.9). The SNR thresholds are evaluated from the

BEP expression in (C.1). For SAM systems, the PDF and CDF are

represented by (4.17) and (4.18). The SNR thresholds are evaluated

from the BEP expression in (C.6).





Appendix C

Approximation on BEP

expressions

In the following, the derivation of the exact and the approximated

BEP expressions is reported for both the instantaneous and mean case,

for systems with H-S/MRC receiver.

C.1 Instantaneous BEP

The exact BEP expression for a M-QAM system was carried out

in [112]. In particular, for a given modulation level M , the instantaneous

exact bit error proability can be expressed as

Pb(e|γT ) =
2√

M log2(
√
M)

log2(
√

M)∑

h=1

(1−2−h)
√

M−1∑

i=0

(−1)
⌊ i2h−1

√
M

⌋ ×

×
(

2h−1 −
⌊
i2h−1

√
M

+
1

2

⌋)
Q

(
(2i+ 1)

√
3γT

(M − 1)

)
(C.1)

Since (C.1) is not invertible, bounds and approximations has gained

great attention in the last year. One of the most employed BEP ex-

pression is the exponential approximation [96], that results to be easily

invertible but not that tight and it is defined as (A1):

P
(A1)
b (e|γT) ≈ 0.2 exp

[−1.6γT

M − 1

]
. (C.2)
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A more tight approximation but not that easy to invert is the one intro-

duced in [113] (A2):

P
(A2)
b (e|γT) ≈ AM

log2M

√
M/2∑

i=1

erfc
[
(2i− 1)

√
BMγT

]
, (C.3)

where AM = 2[1 − (1/
√
M)] and BM = [3/2(M − 1)]. Finally, a classi-

cal approach is to obtain the BEP expression dividing the symbol-error

probability (SEP) by the number of bits per symbols. The BEP derived

is (A3) [107]

P
(A3)
b (e|γT) ≈ AM

log2M
erfc(

√
BMγT)

[
1 − AM

4
erfc(

√
BMγT)

]
(C.4)

where AM and BM were already defined above.

The three approximations and the exact BEP are reported in Fig. C.1,

where the BEP performance for a 4-QAM and 1024-QAM are provided.

It can be observed as both (A2) and (A3) are tight approximations, while

the exponential approximations get more rough with the increasing of the

modulation level.

C.2 Mean BEP

Since in SAM systems, SNR thresholds are evaluated from the aver-

aged BEP, an approximation on this expression leads to an error in the

SNR thresholds. The exact BEP in an averged case, can be derived from

(C.1):

Pb(γ) =

∫ ∞

0

Pb(e|γT)fγT|γ(ξ)dξ =

=
2√

M log2(
√
M)

log2(
√

M)∑

h=1

(1−2−h)
√

M−1∑

i=0

(−1)
⌊ i2h−1

√
M

⌋ ×

×
(

2h−1 −
⌊
i2h−1

√
M

+
1

2

⌋)∫ ∞

0

Q

(
(2i+ 1)

√
3γT

(M − 1)

)
fγT|γ(ξ)dξ

(C.5)
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Figure C.1: Exact and approximated BEP vs. instantaneous SNR for a
4-QAM and 1024-QAM system.

Simplifying the integral and considering the canonical expression derived

from the virtual branch technique for H-S/MRC [19], the (C.5) can be

simplified as [6]

Pb(γ) =
2√

M log2(
√
M)

log 2(
√

M)∑

h=1

(1−2−h)
√

M−1∑

i=0

(−1)
⌊ i2h−1

√
M

⌋ ×

×
(

2h−1 −
⌊
i2h−1

√
M

+
1

2

⌋)
I

(
3(2i+ 1)2

2(M − 1)
b̃n

)
(C.6)

where

I(x) =

Ñ∑

n=1

µn∑

k=1

An,kIk(x),
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and Ik(x) = 1
π

∫ π/2

0

(
sin2θ

x+sin2θ

)k

dθ. Similarly, from (C.2), the averaged

BEP expression in the exponential expression can be derived

P
(A1)
b (γ) =

∫ ∞

0

P
(A1)
b (e|γT)fγT|γ(ξ)dξ =

= 0.2EγT

{
exp

[
− 1.6

M − 1
γT

]}
=

= 0.2

Ñ∑

n=1

µn∑

k=1

An,k

[
1

1 + 1.6
M−1

b̃n

]k

(C.7)

where EX is the statistical expectation with respect to the random vari-

able X. In the case of MRC receiver, the exponential approximation is

given by (C.7). The approximation (A2) for the averaged BEP can be
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expressed as:

P
(A2)
b (γ) =

∫ ∞

0

P
(A2)
b (e|γT)fγT|γ(ξ)dξ =

=
2AM

log2M

√
M/2∑

i=1

1

π

∫ π/2

0

EγT

{
exp

[
−(2i− 1)2BMγT

sin2θ

]}
dθ =

=
2AM

log2M

√
M/2∑

i=1

Ñ∑

n=1

µn∑

k=1

An,kIk

[
(2i− 1)2BM b̃n

]
. (C.8)

Thus, in the case of MRc receiver, the approximation (A2) becomes (C.8).

Finally, the third approximation can be derived as

P
(A3)
b (γ) =

∫ ∞

0

P
(A3)
b (e|γT)fγT|γ(ξ)dξ =

=

∫ ∞

0

2AM

log2M
Q
(√

2BMγT

)[
1 − AM

2
Q
(√

2BMγT

)]
fγT|γ(ξ)dξ

(C.9)

In order to solve the integral, we need to recall that [9]

Q2(x) =
1

π

∫ π/4

0

exp

[
− x2

2 sin2 θ

]
dθ. (C.10)

Substituting (C.10) in (C.9), the BEP becomes

P
(A3)
b (γ) =

2AM

log2M

1

π

∫ π/2

0

EγT

{
exp

[
−BMγT

sin2 θ

]}
dθ −

− A2
M

log2M

1

π

∫ π/4

0

EγT

{
exp

[
−BMγT

sin2 θ

]
dθ

}
=

=
2AM

log2M

Ñ∑

n=1

µn∑

k=1

An,kIk

(
BM b̃n

)
−

− A2
M

log2M

1

π

Ñ∑

n=1

µn∑

k=1

An,k

∫ π/4

0

(
sin2 θ

BM b̃n + sin2 θ

)k

dθ. (C.11)

It is easy to demonstrate that, for a MRC systems, the approximation

(A3) is given by (C.11)

The approximated BEP expression and the exact one for different

diversity orders are reported in Fig. C.2. We recall that N is the number

of branches before the re-order of the HS/MRC and L are the most

powerful branches processed by the MRC.





Appendix D

Co Channel Interference

In this appendix, we derive the bit error probability of M-QAM

systems in the presence of co-channel interference. We consider N an-

tennas at the receiver, and we assume a fading rate much slower than

the signal rate [114]. The received signal on each branch after the

matched filtering and the sampling at the symbol rate is denoted by

zi(k) = z
(P )
i (k)+ jz

(Q)
i (k), where k represents the time index. The vector

output z(k) = [z1(k), . . . , zN (k)] can be written as1(D.1)

z(k) = z(P )(k) + jz(Q)(k)

=
√
EShb0(k) +

√
EI

NI∑

n=1

hI,nbI,n(k) + n(k), (D.1)

where EI is the mean symbol energy transmitted of each interfering sig-

nals; b0(k) = b
(P )
0 (k) + jb

(Q)
0 (k) is the desired signal sample and bI,n(k) =

b
(P )
I,n (k) + jb

(Q)
I,n (k) is the interfering signal sample of the n-th interferer.

Since we assume a slow frequency flat Rayleigh distributed fading, the

vectors h and hI,n, n = 1, . . . , NI have distribution CN (0, IN), and we

denote by HI = {hI,j}j=1,...,NI
the interference channel matrix. Being

the desired signal affected by fading, the Gaussian approximation for

the interferers is justified [115]. Thus, b1(k), . . . , bNI
(k) are independent

zero-mean complex Gaussian random variables, each with variance one

because of the normalization. Following the steps in [114], we derive the

1Note that the subscript I represents the interference symbols, while the superscript
I is used to indicate the in-phase symbols.
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bit error probability as a function of the averaged signal-to-interference-

plus-noise ratio (SINR) for a M-QAM system with optimum combining

at the receiver. The optimum weight vector that maximizes the SINR

is w = αR−1cD, where α is an arbitrary constant and R the covariance

matrix, expressed as

R = En(k),bj (k)





[
√
EI

NI∑

n=1

hI,nbI,n(k) + n(k)

][
√
EI

NI∑

n=1

hI,nbI,n(k) + n(k)

]H




= EI

NI∑

j=1

hI,jh
H
I,j

︸ ︷︷ ︸
RI

+N0IN , (D.2)

where the last equality holds because the desired signal, the interference

and the noise are assumed independent from each other. As observed

in [114], considering an overloaded system (i.e., NI ≥ N) the SINR of

the output at the combiner can be written as γ = ESh
H
S R−1hS. The

matrix R−1 can be written as UΛUH , where U is a unitary matrix with

elements c1, . . . , cN , and Λ is a diagonal matrix whose elements on the

principal diagonal are the eigenvalues of R, denoted by λ̃1, . . . , λ̃N . The

SINR can be rewritten as

γ = ESh
H
S UΛUHhS =

N∑

i=1

ED

∣∣cH
Dui

∣∣2

EIλi +N0
, (D.3)

where cH
Du1, . . . , c

H
DuN have the same distribution of cD, being U a uni-

tary transformation, and the eigenvalues of R have been written in terms

of the eigenvalues of RI,

λ̃i = EIλI +N0, i = 1, . . . , N.

Since HI is a matrix whose elements are complex values normal dis-

tributed CN (0, 1), then the matrix W = HIH
H
I = RI is called central

Wishart matrix [116], and the distribution of the eigenvalues of a central

Wishart matrix is given by

fλ(x1, . . . , xN) =
1

N !

N∏

i=1

xNI−N
i e−xi

(N − i)!(NI − i)!

N∏

i<j

(xi − xj)
2. (D.4)



153

Starting from the instantaneous exact bit error probability (C.1), the

mean BEP for M-QAM systems can be derived averaging over the SNIR:

Pb =

∫
P (e|γ)fγ(ξ)dξ

=
2√

M log2(
√
M)

log 2(
√

M)∑

h=1

(1−2−h)
√

M−1∑

n=0

(−1)
⌊n2h−1

√
M

⌋ ×

×
(

2h−1 −
⌊
n2h−1

√
M

+
1

2

⌋)
1

π

∫ π/2

0

Ψγ

{
− 3(2n+ 1)2

2(M − 1) sin2 θ

}
dθ

︸ ︷︷ ︸
ζn(γT)

,

(D.5)

where the last equality is due to the use of the Craig’s formula of the

Gaussian Q function [9]. Using the chain rule of conditional expectation,

we obtain

ζn(γT) =

∫ π/2

0

∫ ∞

0

. . .

∫ ∞

0

ΨγT|λ

{
− cM,n

sin2 θ

}
fλ(x)dθdx. (D.6)

where cM,n = 3(2n+1)2

2(M−1)
.

Since the vector [cH
Du1, . . . , c

H
DuN ] is Gaussian with i.i.d. elements,

the conditional characteristic function of γ is given by

Ψγ|λ(jν) =
N∏

i=1

(
1 − jν

ED

EIλi +N0

)−1

(D.7)

Substituting (D.7) in (D.6), we obtain

ζn(γT) =
1

πN !

1
∏N

i=1(N − i)!(NI − i)!

×
∫ π/2

0

∫ ∞

0

. . .

∫ ∞

0

|V1(x)|2
N∏

i=1

sin2 θ

sin2 θ + cM,n
ED

EIxi+N0

e−xixNI−N
i

(D.8)

where V1(x) is the Vandermonde matrix and |V1(x)|2 =
∏N

i<j(xi − xj)
2.

Recalling the Lemma 1 in [114]
∫ ∞

0

. . .

∫ ∞

0

|Ψ(x)||Φ(x)|
K∏

k=1

ξ(xi)dx1 . . . dxK

= K!det

({∫ ∞

0

Φi(x)Ψj(x)ξ(x)dx

}

k,j=1,...,K

)
(D.9)
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considering |Ψ(x)| = |Φ(x)| = |V1(x)|, K = N and

ξ(x) =
sin2 θ

sin2 θ + cM,n
ED

EIxi+N0

e−xixNI−N
i

we obtain

ζn(γT) =
1

π

1
∏N

i=1(N − i)!(NI − i)!

×
∫ π/2

0

det

({∫ ∞

0

e−xxNI−N+j+i−2

(
cM,n

ED

EIxi +N0

)
dx

}

i,j=1,...,N

)
dθ.

(D.10)

Considering the following identity [110, eq. (16)]

∫ ∞

0

e−xxnx+ a

x+ b
dx = bnebn![b(1 + n)Γ(−1 − n, b) + aΓ(−n, b)], (D.11)

where

a =
N0

EI

=
NI

γI

,

b =
ED

N0
+
Ed

EI

cM,n

sin2 θ
=
NI

γI

+
NIγ

γI

cM,n

sin2 θ

n = NI −N + i+ j − 2,

(D.10) can be expressed as

ζn(γT) =
1

π

1
∏N

i=1(N − i)!(NI − i)!

∫ π/2

0

det
({
b(i+j+NI−N)eb(i+ j +NI −N)!

× [b(1 + (i+ j +NI −N))Γ(−1 − i− j −NI +N, b)

+ aΓ(−(i+ j +NI −N), b)]}i,j=0,...,N−1

)
dθ. (D.12)

Substituting (D.12) in (D.5), the mean BEP expression is given by the

equation (5.12).

When an underloaded system is considered, i.e., NI < N , the condi-

tional characteristic function of γ is given by

Ψγ|λ(jν) =

(
1 − jν

ED

N0

)−(N−NI) NI∏

i=1

(
1 − jν

ED

EIλi +N0

)−1

(D.13)
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and the Wishart matrix is equal to W = HH
I HI. Being the pdf of the

eigenvalues λ is expressed as [116]

fλ(x1, . . . , xN ) =
1

NI!

NI∏

i=1

xN−NI
i e−xi

(N − i)!(NI − i)!

NI∏

i<j

(xi − xj)
2

︸ ︷︷ ︸
|V1((x))|2

, (D.14)

considering the Lemma 1 (D.9) and the identity (D.11), with similar step

to the overloaded case, it can be derived that (D.12) become

ζn(γT) =
1

π

1
∏N

i=1(N − i)!(NI − i)!

∫ π/2

0

(
sin2 θ

sin2 θ + cM,nγ

)N−NI
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({
NI

γI

+
NIγ

γI
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sin2 θ

k

exp

[
NI

γI

+
NIγ

γI

cM,n

sin2 θ

]
k!

×
[
NI

γI

+
NIγ

γI

cM,n

sin2 θ
(1 + k)Γ

(
−1 − k,

NI

γI

+
NIγ

γI

cM,n

sin2 θ

)

+ aΓ

(
−k, NI

γI

+
NIγ

γI

cM,n

sin2 θ

)]}

i,j=0,...,N−1

)
dθ. (D.15)

where k = i + j + N − NI. Thus, the mean BEP expression for an

underloaded system can be derived, substituting (D.15) in (D.5).
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