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Abstract

Many research fields are pushing the engineering of large-scale, mobile, and open systems
towards the adoption of techniques inspired by self-organisation: pervasive computing,
but also distributed artificial intelligence, multi-agent systems, social networks, peer-to-
peer and grid architectures exploit adaptive techniques to make global system properties
emerge in spite of the unpredictability of interactions and behaviour. Such a trend is
visible also in coordination models and languages, whenever a coordination infrastructure
needs to cope with managing interactions in highly dynamic and unpredictable envi-
ronments. As a consequence, self-organisation can be regarded as a feasible metaphor
to define a radically new conceptual coordination framework. The resulting framework
defines a novel coordination paradigm, called self-organising coordination, based on the
idea of spreading coordination media over the network, and charge them with services
to manage interactions based on local criteria, resulting in the emergence of desired and
fruitful global coordination properties of the system. Features like topology, locality,
time-reactiveness, and stochastic behaviour play a key role in both the definition of such
a conceptual framework and the consequent development of self-organising coordination
services.

According to this framework, the thesis presents several self-organising coordination
techniques developed during the PhD course, mainly concerning data distribution in tuple-
space-based coordination systems. Some of these techniques have been also implemented
in ReSpecT, a coordination language for tuple spaces, based on logic tuples and reactions
to events occurring in a tuple space. In addition, the key role played by simulation and
formal verification has been investigated, leading to analysing how automatic verification
techniques like probabilistic model checking can be exploited in order to formally prove
the emergence of desired behaviours when dealing with coordination approaches based on
self-organisation. To this end, a concrete case study is presented and discussed.

Keywords: Coordination Models and Languages, Tuple Centre, Self-Organisation, Self-
Organising Coordination, ReSpecT, Collective Sort, SwarmLinda, Tuple Clustering, Tuple
Sorting, Stochastic Simulation, Probabilistic Model Checking, Multi-Agent Systems.
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Introduction

1.1 Motivation and Research Context

Traditional coordination models like LINDA [Gel85], REO [Arb04], and their derivatives,
always enact coordination rules that are predictable, namely, whose impact on system
interactions is known and fully re-producible—of course, they can be non-deterministic
though. This is a natural consequence of coordination models and languages starting as
a branch of traditional software engineering, which promotes methods of software design
with the goal of building correct, efficient, and predictable applications.

However, the emergence of new application scenarios — where dynamism, unpre-
dictability, openness, and large-scale become key system properties — is calling for a
radically new approach [ZP03, MMTZ06], as emerging in the context of many research
fields like distributed artificial intelligence, multi-agent systems, self-organising systems,
and pervasive computing. Today’s and tomorrow’s networks will increasingly require the
ability of communication and coordination services to cope with unpredictable changes,
including changes in load, task, physical and logical topology: this can be achieved by the
development of self-organising infrastructures [DDFT06], where among the others, pecu-
liar features are time and stochasticity. Instead of achieving efficiency, optimality, and
predictable control over system interactions, new properties like robustness to failures and
adaptivity to dynamic changes are instead to be achieved by emergence, i.e. as the result
of local interactions without any form of global and supervised control [CDFT01]—nature
mostly works in the same way in contexts like chemistry, biology, ecology, and so on.

Few works have recently witnessed a similar trend in coordination models and lan-
guages as well. In Tora [MZ04], an infrastructure based on tuple spaces is conceived
where tuples can be copied and spread in neighbouring nodes along with a fading mech-
anism so as to form so-called computational fields (co-fields), which can be exploited by
agents to find one another (and retrieve data items) in spite of their mobility and changes
in network topology. In this infrastructure, topology and locality of interactions play
a crucial role since a distributed data structure of tuples (the co-field) is created on a
step-by-step basis.

As regards stochasticity, few formal models have been introduced to tackle stochastic
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aspects in coordination models. In STOKLAIM [DNLMO05], a formal model extending
LiNDA is described, where agents insert and retrieve tuples in a stochastic way, namely
by specifying an operation rate that affects timing and probability of the corresponding
primitive execution. Similarly in [BGLZ04, BGLZ05], formal underpinnings for proba-
bilistic extensions of LINDA are studied, featuring the ability to specify a probability (or
a rate) for the execution of primitives—e.g. for retrieving certain tuples instead of others.

Finally, we note that several works outside the core coordination community are actu-
ally addressing the problem of mediated interaction through a self-organising environment.
A key example is that of multi-agent-system environments inspired by stigmergy [HM99],
a technique by which ants coordinate their behaviour. The main idea of this paradigm is
that agents leave pheromone-like data items on the local environment that as time passes
(i) distribute in neighbouring nodes, (i) aggregate, and (%ii) fade. By properly exploiting
such data items spread in the environment, agents can self-organise their behaviour, e.g.
by adaptively creating and maintaining a path towards a resource [PBS02]. The potential
applicability of this framework to tuple-based coordination infrastructures is clear—e.g.
as shown by some experiments based on TOTA.

The aforementioned works show that there is an undoubtable interest in the application
of self-organising approaches to coordination models and languages, with the implicit
goal of achieving adaptivity properties in interaction management, as required by today’s
scenarios of pervasive computing.

1.2 Overview and Contribution

According to the above premises, the work presented in this thesis is an effort in the
direction of finding new ways of dealing with coordination issues in today’s software sys-
tems, that cannot be coped with by traditional models and approaches to coordination.
To this end, the thesis proposes the use of self-organisation as an inspiring metaphor,
which has recently proven to be a feasible paradigm for system engineering in computer
science, as witnessed by many research fields in software systems [MMTZ06]. Given
the emergent and local nature of every approach based on self-organisation, the role
of simulation plays a key role for providing an effective design and engineering of self-
organising techniques in coordination. Accordingly, this work also deals with modelling
and simulating self-organising systems. In particular, the main focus here is on stochastic
modelling and simulation approaches, which have been already recognised as essential
in the early stages of system design—this is for instance highlighted in [Gar(8], where
it is also remarked that little work exists on simulation applied to early phases of soft-
ware development [May93, DWHS05, BGP06]. Furthermore, the adoption of simulation
needs to be regulated according to a specific methodology for software system design. In
fact, the exploitation of design methodologies — already recognised as actually important
in traditional software engineering approaches — becomes crucial in self-organising sys-
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tem design because of not only the local and unpredictable nature of self-organisation,
but also the peculiar dynamics and features of many scenarios where self-organisation
is being applied [Gar08, [GVCO08|. Correspondingly, the design of every self-organising
coordination technique presented here is based on the methodological approach described
in [Gar08, [GVCO08|, focussing especially on simulation, but also on verification. Verifica-
tion refers to formally proving and validating system behaviour by exploiting automatic
verification techniques like model-checking [CGP00]. Moreover, in this thesis the proba-
bilistic extension of model-checking [KNP04] has been exploited to validate some of the
proposed coordination techniques.

The activity undertaken over the PhD course is focussed on tuple-space-based co-
ordination as a specific case of data-centric coordination. The resulting self-organising
techniques devised, listed in the following, mainly deal with tuple organisation and dis-
tribution in networks of distributed tuple spaces, definitely targeted at promoting a novel
way of conceiving process/agent interaction.

Collective Sort. Developed in the context of tuple distribution in fully connected net-
works of tuple spaces, this approach allows to sort tuples according to their kind—
kind refers to the type of information contained in the tuple. The resulting distribu-
tion features clusters of tuples of the same kind. Collective sort was prototyped by
exploiting a stochastic simulation framework realised in MAUDE [CDET05], which
is a modelling language based on rewriting logic [MOMO02]. The study of collective
sort was part of the activities carried on in the first year of the PhD course and part
of the second, resulting in several publications, e.g. [CGV07, VCGOT7, [CVG09].

SwarmLinda. Like collective sort, SwarmLinda focusses on tuple distribution in net-
works of tuple spaces. However the overall objective here is quite a different one:
indeed, SwarmLinda is meant to propose an extension to the original LINDA tuple-
space coordination model [Gel85]. In particular, the proposed extension is based on
the adoption of swarm intelligence [BDT99|, so that the resulting extended LINDA
model can be adopted to promote a novel self-organised and decentralised approach
to tuple distribution and retrieval. In particular, the work focussed on tuple dis-
tribution by providing the traditional out operation of LINDA with new seman-
tics. The resulting operation behaviour promotes cluster formation in any-topology
tuple-space networks, so that tuples containing similar information can be stored
in the same area of the network. This can lead to a better system scalability, as
well as ease tuple retrieval by processes/agents. The research on SwarmLinda has
been done in collaboration with Professor Ronaldo Menezes of Florida Institute
of Technology (FIT), as a part of an abroad research period spent at FIT during
the second year of the PhD course. The main results of this work are reported in
[CMVT07al [CMVTO7bl, [CMVTO07d, [CMTV07]. As for collective sort, the prototyp-
ing of SwarmLinda was based on the use of the stochastic simulation framework
developed in MAUDE.
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Tuple Clustering and Tuple Sorting. These approaches can be seen as a generalisa-
tion of collective sort from a twofold perspective: (i) first of all, as a way of dealing
separately with the issues of tuple clustering and sorting; (i) secondly, as a brand-
new version of collective sort aimed at being applied on networks irrespectively of
their topology. Again, as in the case of SwarmLinda, the main inspiration came
from swarm intelligence, in particular from corpse clustering and larval sorting in
ants [BDT99, DGF791) [ICDEFT01]. The results of this activity — carried on in the
last part of the PhD course — are reported in [CVS08, [CV08]. The prototyping was
performed by NetLogo [Wil08], an agent-based simulation framework. Tuple clus-
tering resulted also in an implementation based on ReSpecT, a logic, reaction-based
language for programming tuple spaces [Omi07].

In addition, some experiments were performed, regarding the adoption of ReSpecT as
a sample language to define and concretely implement self-organising coordination strate-
gies. Some of these experiments focussed on devising biochemistry-inspired coordination
strategies. The early results of this activity can be found in [VCOQ9].

Finally, as an activity undertaken also over the last part of the PhD course, we focussed
on issues related to formal automatic verification of self-organising systems with respect to
coordination. To this end, the adoption of probabilistic model checking was investigated
as a means to allow the verification of emergent and desired coordination behaviours on
self-organising coordination systems. In this context, some fundamental questions exist
that still need to be fully answered:

o (i) What is a feasible approach for efficiently devising models of self-organising coor-
dination techniques to be later verified by model checking? Answering this question
is key to cope with the so called state-space-explosion problem, which affects current
model-checking techniques.

e (i) How can the properties to verify be specified according to existing probabilistic
temporal logics? Answering this question requires to consider the related issues from
a twofold perspective: first of all, it is necessary to identify a valid measure for the
coordination behaviour to be verified, then it is crucial to translate such a measure
into a property by exploiting appropriate temporal logic operators.

It is worth noting that this research was not aimed at developing an accurate methodol-
ogy for verification of self-organising coordination systems. In fact the main goal was just
to experiment with probabilistic model checking and assess its suitability for emergent-
property verification on self-organising coordination systems. As such, some verification
experiments on collective sort were performed: the corresponding results are reported
in [CV09D, [CV09al, which also give some suggestion as regards possible ways of deal-
ing with state-space-explosion problem by relying on approximated model-checking tech-
niques. Note that the aforementioned questions still need to be answered in full detail:
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indeed, as it should be clear by know, the work on verification is based on a quite prag-
matic premise, trying simply to experiment with probabilistic model checking and the
corresponding issues.

1.3 Organisation of the Thesis

The rest of the thesis is structured as follows.

Chapter 2, Background. This chapter provides the necessary background to under-
stand the case studies presented in the rest of thesis. In particular, after giving
an introduction of what self-organisation and emergence are all about, the abstract
framework for self-organising coordination is presented by defining a set of founding
principles. In order to better understand the process underlying the development
of the self-organising techniques shown in Chapters 3, 4, and 5, an introduction to
stochastic simulation for self-organising system design is also provided.

Chapter 3, Collective Sort. The collective sort strategy is here presented in full detail,
starting from the development of the formal model and its simulation to the discus-
sion of an improved strategy for complete sorting and a comprehensive analysis of
the simulation results.

Chapter 4, SwarmLinda. As for collective sort, this chapter provides a in-depth anal-
ysis of the research done on SwarmLinda. The formal model of SwarmLinda is
presented, and the results obtained from stochastic simulations carefully analysed
and discussed.

Chapter 5, Self-Organising Tuple Clustering and Sorting. Tuple clustering and tu-
ple sorting can be though of as a generalisation of collective sort targeted at net-
works featuring non-specific topologies. The main inspiration for these strategies
came from swarm intelligence. The modelling framework adopted was NetLogo.
Again, the early simulation results are presented and analysed.

Chapter 6, Self-Organising Coordination by TUCSoN and ReSpecT. In this chap-
ter, the ReSpecT language and the corresponding framework for tuple centres TuC-
SoN are exploited for implementing self-organising coordination techniques. To this
end, an implementation of tuple clustering in ReSpecT is presented. Furthermore,
it is also shown how ReSpecT can be used to prototype self-organising coordination
techniques inspired by biochemistry.

Chapter 7, Formal Verification of Self-Organising Coordination Systems. This
chapter reports some experiments regarding formal-property verification in self-
organising coordination systems by probabilistic model checking. After describing
the research context and related issues, collective sort is taken as a case study and
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the emergence of complete sorting verified by adopting PRISM, one of the most
used probabilistic model checkers.

Chapter 8, Related Work. This chapter discusses related work, focussing on current
trends and approaches in coordination inspired by self-organisation.

Chapter 9, Conclusion. This chapter concludes the thesis, summing up the activity of
the PhD course, providing final remarks, and discussing possible future works.



Background

This chapter provides the necessary background to understand the rest of the thesis. First,
the notions of self-organisation and emergence are briefly recalled, then an introduction to
self-organising coordination is provided and the resulting conceptual framework discussed.
The chapter concludes by reporting a brief introduction to stochastic simulation and the
corresponding simulation framework adopted for devising the self-organising coordination
services presented in the rest of the thesis.

2.1 Self-Organisation and Emergence

The term self-organisation originally arose from research in physics, chemistry, and related
fields, following the idea that there exist systems which are able to increase their inherent
order by themselves as a result of their very same dynamics. It is generally agreed that
the concepts underlying self-organisation were first introduced by a French philosopher of
the XVII century, René Descartes, in [Des37]. Indeed in [Des37], the philosopher argues
on the existence of God, and the fifth part of the book gives an example of how matter
created and chaotically shaken by God can self-dispose and arrange itself as a result of
the same laws established by God himself.

However, the first explicit and much more recent definition of self-organisation is due to
William Ross Ashby, a psychiatrist who, in 1947, defined self-organisation as the ability of
a systems to modify by itself its internal organisation without any intervention of external
forces [Ash47]. Later, the term gained more attention as a result of its adoption by
physicists in the field of complex systems. The last 30 years have witnessed a growing
attention to self-organisation, which has led to the adoption of the underlying principles in
many fields, ranging from social to life sciences. In fact, self-organisation has been adopted
not only in physics in areas such as structure formation in thermodynamic systems, but
also in fields like chemistry (e.g. in areas related to molecular self-assembly and reaction-
diffusion systems) and biology. In particular, in the latter context, research on collective
behaviour — focussing on creation of structures and coordination in social insects, as well as
flocking behaviour such as fish schooling and bird flocking — has driven the development
of a new branch of artificial intelligence called swarm intelligence. Swarm intelligence
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[BDT99| refers to the application of the aforementioned principles to artificial intelligence
so as to affect with novel ideas fields such as robotics, operational research, computer
science, and so on. Swarm intelligence has been with no doubt a great source of inspiration
for the work presented in this thesis.

Along the same line, the book by Scott Camazine [CDFT01] has also been really in-
spiring. In |[CDET01], Camazine gives what is generally considered a key definition of
self-organisation in biological systems, stating that self-organisation refers to a process
whereby patterns at the global level of a system emerge as the exclusive result of the many
interactions among system components. In addition, the rules requlating such interactions
rely only on local information without any correspondence to the pattern observable at the
global level. As made it clear in the coming sections, the above definition contains all
the key ingredients upon which the concept of self-organising coordination is based. Ca-
mazine’s definition allows to further argument about four key characteristics that usually
recur in any self-organising system: (i) autonomy referring to the fact that the evolu-
tion of the system is controlled by the system itself, without any intervention of external
forces; (i) organisation meaning that self-organising systems usually work so as to con-
tinuously re-organise themselves; (7ii) dynamics referring to the fact that self-organisation
requires to study a system from the standpoint of its dynamics and not only from a static
viewpoint; (1) adaptation meaning that self-organising systems are able to automatically
adapt their behaviour to ongoing perturbations occurring in the environment where they
live.

Camazine’s definition of self-organisation is clearly based on the concept of emergence.
The term emergence comes from emergent, a term coined by George Henry Lewes in a well-
known definition [Lew04], stating that the difference between resultants and emergents in
chemical reactions lies in the fact that while resultants are reducible to their reactants, the
same is not true for emergents, which instead show properties that cannot be explained
in terms of the composing entities. The above definition is quite close to the holistic view
arguing that sometimes the properties of a system cannot be understood as the mere sum
of the properties of its composing entities. This view of emergence is sometimes referred
to as strong emergence in contrast to weak emergence, meaning that new properties of a
system can be achieved as a result of elementary interactions among components of the
system.

Though it is undoubtably true that self-organisation and emergence are strongly re-
lated concepts, there is some confusion about the two terms: indeed, it is easy to get
misled by the available literature and convince oneself that self-organisation only occurs
as a result of an emergent process, even though emergence is not a necessary condition for
self-organisation. Self-organisation as well is not a necessary condition for emergence, as
there exist emergent processes which are not self-organising at all. However, emergence is
coupled with self-organisation throughout the thesis, and refers to the feature of the pro-
posed coordination services to show global desired behaviours resulting from simple and
local interactions among the composing entities of the systems: in other words, according
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to the definition given for weak emergence, the global behaviour emerges from the local
interactions among the components of the system.

2.2 Towards a Coordination Model Based on Self-
Organisation

It is a matter of fact that many research fields are pushing the engineering of large-
scale, mobile, and open systems towards the adoption of self-organisation techniques:
pervasive computing first, but also distributed artificial intelligence, multi-agent sys-
tems, social networks, peer-to-peer and grid architectures exploit adaptive techniques
to make global system properties emerge in spite of the unpredictability of interactions
and behaviour. We observe that a similar trend is likely to affect the field of coordina-
tion models and languages as well—in particular, whenever a coordination infrastructure
is charged with the task of managing interactions in such highly dynamic and unpre-
dictable systems. This trend is actually witnessed by some previous works on extend-
ing coordination models with quantitative aspects like timing [ORV05] and probability
[BGLZ04, BGLZ05, DNLMO05|, implementing coordination infrastructures by exploit-
ing nature-inspired techniques [MT04, IMZ04], and devising self-organising services for
managing data-centric coordination systems [CGV07]. Moreover, academic and indus-
trial attempts to devise infrastructures for mediated interactions are converging towards
the adoption of self-organising mechanisms, as in the case of stigmergic infrastructures
[PBS02].

In order to analyse more deeply the links between coordination and self-organisation,
and understand properties, requirements, and opportunities for their cross-fertilisation,
one of the objectives of the thesis is to propose a conceptual framework for self-organising
coordination as a novel paradigm to help conceive and implement real systems. This is
based on the idea of spreading coordination media over the network, and charge them with
services to manage interactions solely based on local criteria, resulting in the emergence of
interesting and fruitful global coordination properties of the system. Namely, spatial and
time patterns will occur in the coordination space in spite of the unpredictable interactions
of agents exploiting such coordination services. By drawing inspiration from previous
works and self-organising mechanisms in nature, the next section highlights the key role
of topology, locality, time-reactiveness, and stochastic behaviour in the development of
self-organising coordination services.

2.3 Self-organising Coordination

This section discusses a reference conceptual framework for self-organising coordination.
First some of the expected features for this meta-model are analysed.
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Topology — Being the target of scenarios like pervasive computing, multi-agent
systems, Internet computing, and distributed artificial intelligence, we assume that the
application at hand is deployed over a topologically-structured distributed system; namely,
each location (i.e., each node) is directly connected to a generally small set of neighbouring
locations—this is actually a quite general model, useful to define the basic terminology
for subsequent discussions. Coordination media and agents are deployed over locations.
As usual, while each agent resides over a single location, coordination media might be
distributed over a connected subset of the system—though this is not a mandatory feature.

Locality — Topology is strictly tight with the scope of interactions. A coordinated
system can feature two kinds of interaction, between an agent and a coordination medium,
and between two coordination media. Note that the latter is not a mandatory one: most
models do not provide inter-medium interactions but simulate it by using an agent-in-the-
middle approach—with few exceptions like e.g. TUCSON [COVO0§|]. Then, both kinds of
interaction should occur locally, i.e. across the same location or across two neighbouring
locations as defined by the topology. In other words, agents will necessarily have a partial
(local) view of the system, and long-path interactions should occur on a step-by-step
basis—both in space and time.

On-line character — Coordination media typically enact coordination rules that are
reactive to interactions, that is, coordination rules fired as some interaction occurs. With
self-organising coordination instead, it is typical to feature coordination rules that can
also react to time passing, namely, a “coordination behaviour” is enacted as an always-
running process. This can be seen as an on-line and background service that, other than
affecting interactions, also evolves the state of coordination media through time. This
process truly couples agents autonomous behaviour with a carefully balanced definition
of system behaviour. For instance, in stigmergic coordination the fading mechanism
should be properly tuned to effectively work: the rate at which pheromone should fade
strictly depends on the rate at which agents move and work.

Time — As the above on-line property implies, the process of self-organising coor-
dination is strongly dependent on time—as any other self-organising process in nature
[PS97]. In particular, coordination rules are generally timed. On the one hand, the self-
organising coordination service must be provided at a certain “rate” (a given part of the
work is to be done within a time unit): this could for instance be achieved by making
coordination rules firing other ones after sometime has elapsed, in a cyclic way. Simi-
larly, certain coordination primitives can also be time-dependent, as typically necessary
in open contexts like Internet computing [ORV07]—e.g. a coordination primitive may fail
as a result of a deadline expiration.

Probability — Non-determinism is a typical coordination pattern, exploited as a
powerful abstraction principle to separate modelling and implementation. For instance,
in LINDA any tuple can be read that matches a specified template: however, this might
cause the same tuple to be retrieved, ultimately leading to an unfair management of
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resources. Self-organisation — originated in the fabric of nature and under its laws — works
in a different way. A self-organising process is typically composed of a huge amount of
instances of the same atomic action, each time leading to different effects—for instance,
noise is known to play a crucial and necessary role in self-organising systems [NPL75]. The
only means to describe the resulting behaviour is hence by stochastic models. It should
be specified that some results are more likely than others, furthermore, high adaptiveness
to unpredictable situations implies the need to give even a very low probability to certain
behaviours—which might eventually have a dramatic impact, e.g. causing a failing system
to recover.

According to the above properties, we can define self-organising coordination as follows:

Self-organising coordination is the management of system interactions featur-
ing self-organising properties, namely, where interactions are local, and global
desired effects of coordination appear by emergence.

Constructively, self-organising coordination is achieved through coordination media spread
over the topological environment, enacting probabilistic and time-dependent coordination
rules.

2.4 Stochastic Simulation for Self-Organising Systems

Stochastic simulation has been used as the main tool for designing and testing the be-
haviour of all the self-organising coordination services presented in the thesis. To this end,
we relied on a stochastic simulation framework based on the work by Gillespie [Gil77] and
developed in the MAUDE term rewriting language, which is meant to speed up the process
of modelling and simulating stochastic systems. Here only some features of this framework
are briefly described.

MAUDE is a high-performance reflective language supporting both equational and
rewriting logic for specifying a wide range of applications [CDET05]. Other than specifying
algorithmic aspects through algebraic data types, MAUDE can be used to provide rewriting
laws — i.e. transition rules — that are typically used to implement concurrent rewriting
semantics, and then able to deal with aspects related to system interaction and evolution.
In the course of finding a general simulation tool for stochastic systems, MAUDE seemed
a particularly appealing framework, as it allows to directly model system structure and
dynamics, or prototype new domain-dependent languages to have more expressiveness
and compact specifications.

Inspired by Priami’s work on stochastic m-Calculus [Pri95], MAUDE was so exploited
to realise a general simulation framework for stochastic systems, which does not mandate
a specification language as e.g. m-Calculus, but is rather open to any language equipped
with a stochastic transition system semantics. Correspondingly, a system can now be
modelled as a LTS (labelled transition system) where transitions are of the kind § —% S,
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meaning that the system in state S can move to state S’ by action a, where r is the (global)
rate of action a in state S. The rate of an action in a given state can be understood as the
number of times action a could occur in a time-unit, i.e. its occurrence frequency. This
idea generalises the activity mechanism of stochastic w-Calculus, where each channel is
given a fixed local rate, and the global rate of an interaction is computed as the channel
rate multiplied by the number of processes willing to send a message and the number
of processes willing to receive a message. Our model is hence a generalisation: in fact
the way global rate is computed is custom, and ultimately depends on the application at
hand—e.g. the global rate can be fixed, or depend on the number of system sub-processes
willing to execute the action.

Given a transition system of this kind and an initial state, a simulation is simply
executed by: (i) checking each time the available actions and their rate; (i) picking one
of them probabilistically (the higher the rate, the higher the probability for the action
to occur); (i) changing accordingly system state; and finally (iv) increasing the time
counter according to an exponential distribution, so that the average frequency is the
sum of action rates.

As an example, consider the Na — Cl chemical reaction dynamics, provided e.g. in
SPiM documentation]] Syntax and semantics of this system is expressed in the MAUDE
framework as follows:

op <_,_,_,_> : Nat Nat Nat Nat -> State .
vars Na Na+ Cl Cl- : Nat
eq < Na,Na+,Cl1l,Cl- > ==> =
( ion # (float(Na * Cl) * 1.0) ->
[< p Na,s Na+,p Cl,s Cl- >] );
( deion # (float(Na+ * Cl-) * 2.0) ->
[< s Na,p Na+,s Cl,p C1- >] )

This system is characterised by a state expressed as <Na,Na+,Cl,Cl->, where Na is
the number of sodium atoms, Na+ the number of sodium ions, C1 is the number of chlorine
atoms, C1- the number of chlorine ions. Two kinds of constant actions are then defined:
ion stands for ionisation and deion for deionisation. The actual transition system is
specified by a single equation, associating any state to two possible effects: one in which
ionization decrements Na and C1 (by prefix predecessor function p) and increments Na+ and
Cl- (by prefix successor function s), the other that behaves instead in the opposite way.
Note that, according to Gillespie’s selection algorithm in [Gil77], the rates of ionisation
and deionisation are here proportional to the product of the two reactants, multiplied
by a constant value: in particular, here the factor of deionisation is as twice as that of
ionisation. By a command of the kind

1SPiM, Stochastic-Pi Machine, is a stochastic simulation framework based on stochastic m-Calculus:
for further details, please refer to http://www.doc.ic.ac.uk/ anp/spim/Chemical .pdf
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rewrite [300: <100,0,100,0> @ 0.0]

the system yields a trace of 300 steps, starting from state <100,0,100,0> and starting
time 0.0; an example of such trace is:

[300 : < 100,0,100,0 > @ 0.0],

[299 : < 99,1,99,1 > @ 5.2282294378567067e-5],
[298 : < 98,2,98,2 > @ 6.9551290710937174e-5],
[297 : < 97,3,97,3 > @ 8.5491215950091466e-5],
[3 : < 57,43,57,43 > @ 4.0424914101137542e-2],
[2 : < 58,42,58,42 > @ 4.0506028901053114e-2],
[1 : < 59,41,59,41 > @ 4.0661029058233995e-2],
[0 : < 60,40,60,40 > @ 4.0695684943167353e-2]

This output can be easily exploited to trace charts of the most relevant quantities for the
application at hand.

The actual implementation details of the simulation framework are not discussed here:
the interested reader can refer to Appendix [A] where the whole MAUDE specification of
the stochastic simulation engine is reported.
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The Collective Sort Problem

In systems coordinated by a distributed set of tuple spaces, it is crucial to assist agents
to retrieve the tuples they are interested in. This can be achieved by devising sorting
techniques that group similar tuples together in a common tuple space, so that the position
of a tuple can be inferred by similarity. Accordingly, this chapter formulates the collective
sort problem for distributed tuple spaces, where a set of (manager) agents is in charge
of moving tuples so as to achieve a complete sorting, namely, each of the N tuple spaces
aggregates just tuples belonging to exactly one of the N available kinds. After pointing out
the requirements for effectively tackling the problem, a self-organising solution resembling
brood sorting performed by ants is proposed. In particular, the solution is based on
simple agents performing partial observations and accordingly taking decisions on tuple
movement. Convergence is addressed by a fully adaptive form of simulated annealing,
based on noise tuples inserted and removed by agents on a need basis so as to avoid sub-
optimal (partially complete) sorting. Emergence of sorting properties and scalability are
evaluated through stochastic simulations performed by the stochastic-simulation engine
written in MAUDE. The main inspiration for collective sort comes from [CGV07, VCGO7]:
however, the content of this chapter is in great part based on [CVG09].

3.1 Introduction

Among many scenarios relying on coordination models and languages, the most popular
is based on the idea that agents in a distributed system can interact with each other
through tuple spaces spread over the network, where tuples can be inserted and retrieved
relying on so-called generative communication [Gel85| [Gel89, [0Z99]. This approach has
been shown to support time and space decoupling, as well as promote a clear separation
between the computational part of the system, which should stay inside agents, and the
coordination part of the system, implemented through tuple spaces.

In open systems, however, due to the unpredictability of agents’ behaviour, it is often
difficult to know in which tuple space a certain tuple may occur. As a consequence,
when an agent needs to retrieve tuples matching a given pattern, the only strategy would
be to randomly select one tuple space among the available ones, and try another one
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in the case the tuple is not found—leading to obvious performance issues. Accordingly,
a strategy is required to assure that agents have some knowledge about the location
of the tuples of interest, so that such tuples can be more quickly retrieved. A general
solution to this problem is to devise approaches for moving tuples to the most proper
tuple space, and locate them accordingly. Works like the TOTA middleware [MZ04] and
stochastic KLAIM [DNLMO5], though starting from different perspectives, all develop on
the idea of extending the basic tuple space model of LINDA with features related to tuple
repositioning by moving or copying.

Collective sort develops along the idea of providing a sorting technique for tuple spaces,
where a set of sorting agents is in charge of moving tuples until each space holds only
tuples of the same kind. To support this behaviour, sorting agents — which are part of
the infrastructure providing the coordination service — must be designed so as to agree
on where to sort (the set of N tuple spaces subject to ordering), and how to sort (a
clustering relation that groups the tuples of interest into N kinds, so that 1 kind can be
exactly associated to 1 space). Similarly to sorting in standard data structures like e.g.
arrays, such an aggregation technique — a case of segregation in the context of collective
robotics [MHHOS8] — can be regarded as an approach with the ultimate goal of simplifying
the process of finding tuples: if a certain tuple is eventually found in a tuple space, then
any tuple of the same kind can be found in the same space. Note that even if full sorting
is not completely reached, partial sorting may still improve performance of tuple retrieval
since the probability of finding the tuple at the first attempt becomes higher than 1/N.
This technique is hereafter referred to as collective sort for distributed tuple spaces.

Such a sorting service is meant to work in “background” to the standard activity of
tuple spaces, that is, tuple sorting proceeds while user agents coordinate their activity
by inserting and retrieving tuples. In other words, as an online service. Unlike standard
sorting techniques, here sorting should effectively work in dynamic and unpredictable
scenarios where user agents keep moving, inserting, and dropping tuples. Therefore, the
tuple space that will eventually aggregate a certain kind of tuples is not known statically:
it is chosen implicitly and probabilistically as tuples start aggregating in a space rather
than another as a consequence of multiple tuple movements. Hence, the main concern
here regards robustness and reactiveness to changes rather than moving rate: sorting
needs to be a property emerging in spite of external interactions—of course, the more
the external environment keeps altering tuple configuration, the more resources must be
devoted to sorting if convergence is to be achieved.

By looking at existing systems, we see that interesting related behaviours already
manifest in Nature. Ants use a self-organising technique called brood sorting to solve a
similar problem [BDT99]: they move items (brood or larvae) based on local and partial
criteria, and sorting emerges as a global system property. The solution to collective
sort proposed here is precisely inspired by brood sorting. Interestingly, full sorting can
be achieved by requiring just sorting agents having neither specific computational ability
(intelligence or memory) nor a complete visibility of tuple spaces—though, such aspects of
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course impact performance. The proposed solution is based on the following ingredients:
(i) probabilistic access to tuples in tuple spaces; (ii) local decision on tuple movement
based on a couple of observations (two read operations, on two spaces); and (i) avoidance
of non-optimal sorting by a fully adaptive approach in the style of simulated annealing
[KGV83].

As for any self-organising technique, probability is a key aspect. Not only small vari-
ations on tuple configuration can lead to completely different system behaviours, but the
same can also happen in different system “runs” from the same initial conditions—since
tuples are retrieved probabilistically. Therefore, we shall rely on stochastic simulation
tools in order to check whether the proposed solution meets our expectations in term of
quality. To this end, we adopt the stochastic simulation library developed in the MAUDE
term rewriting system [CGVO0T7] and described in Chapter 2—of course other tools like
e.g. SPIM [Phi06], SWARM [swa06] and REPAST [rep06], could be used as well.

3.2 Collective Sort

3.2.1 Motivation

A network composed of tuple spaces and agents is assumed, where agents address tu-
ple spaces by identity. Agent interaction relies on so-called generative communication,
namely, agents put tuples (records of primitive values) in tuple spaces and later retrieve
such tuples by content, that is, using a partial specification known as tuple template.

The presence of a tuple in a particular space may affect the behaviour of the overall
system since it reifies the occurrence of an event related to system coordination. Such
events may include: (i) agents requesting services of some kind provided by other agents;
(71) agents providing the outcome of the execution of a service; (iii) agents depositing
data values which are part of the overall system state; (iv) agents publishing part of their
internal state and knowledge; and (v) agents updating some shared variable upon which
other agents synchronise their activity. When storing a tuple, the choice of the tuple space
to be used is critical. If an agent knows the identifier of the tuple space where a specific
tuple is stored, the tuple can be retrieved by only one read operation; however, if this is
not the case, the agent may end up trying different tuple spaces until finding the right
one. Therefore, an agent needs to be aware of the location of the tuples it is interested
in; if this is not possible, even just some kind of awareness could be helpful.

In standard data structures, like arrays, access to data is simplified — i.e. quicker
— by keeping information sorted: typically, a sorting algorithm is exploited along with
insertions and removals that preserve sorting, and fast searching operations are conceived
so as to leverage sorting. Sorting itself is based on a total order relation over data that is
predefined and static.

The idea here is to take a collection of tuple spaces, initially hosting tuples stored in
a completely random manner, and apply a similar approach. Since a tuple space is an
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Figure 3.1: Array Sorting vs. Collective Sorting.

unstructured and unbounded bag (i.e. a multiset), the only relevant information for an
agent is in which tuple space a tuple is located—there is no notion of “position” of a tuple
within a tuple space. Accordingly, our goal is to devise a sorting procedure that moves
tuples from one space to another until each space holds only tuples of the same kind. If a
tuple of kind k is known to reside in space s, all tuples of the same kind can be expected
to be located in s, thus simplifying searches.

Given the goal of ordering N tuple spaces, we hence assume that the tuples to be
sorted (which might be a subset of all the tuples in the system) are clustered into N
kinds, and sorting agents are aware of such clustering. As for the total order relation used
in standard structures like arrays, our order relation may be predefined, that is, conceived
at design-time and before actually powering on the sorting service. On the other hand, it
would be possible to also change the sorting configuration dynamically — due to changes
in the set of spaces, or in case of the adoption of a more symmetric clustering relation
— but a mechanism for making sorting agents aware of this change is necessary. Hence,
the focus here is not on how kinds are formed: in principle, tuples which are “similar”
according to some metric, depending on the coordinated system at hand, should belong to
the same kind—however, as far as tuple retrieval is concerned, a kind is better composed
of all the tuples that match one or more specific templates. See Figure for a pictorial
comparison between standard array sorting and collective sorting in tuple spaces.

Accordingly, the problem of gathering tuples of the same kind over a set of N tuple
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spaces is named as collective sort. It should be clear from now on that, unlike standard
algorithms, collective sort is meant to work at runtime. While it is widely known that the
content of an array is frozen during sorting, tuple spaces work in unpredictable dynamic
scenarios, so that collective sort needs to be conceived as a background activity aimed at
moving the system towards sorting as user agents keep changing the state of tuple spaces/[]
Depending on the ratio between rate of changes and resources devoted to sorting, the
system might evolve according to one of the following three behaviours: () full sorting is
achieved (modulo a small noise due to mutations operated by user agents), (ii) a certain
level of (partial) sorting can be maintained, and (i) the system becomes more and more
unsorted as time passes, until becoming chaotic—in next section we shall quantify the
degree of order in terms of entropy. It is worth noting that agents can take advance of a
partially sorted system as well, since the probability of finding a tuple of kind £, where
a previous one was found, is indeed higher than in other tuple spaces. Accordingly, the
average retrieval cost is lower than in fully unsorted cases.

3.2.2 Seeking for a Self-Organising Solution

Collective sort in distributed tuple spaces is reminiscent of a classical problem in robotics
known as segregation, where robots roam the ground with the goal of finding, grouping,
and separating items—for further details refer to related works in Chapter 8.

In that context, solutions are typically searched in Nature, which is a rich source
of simple but robust strategies. The segregation behaviour has already been observed
in social insects and referred to as brood sorting [BDT99]. When organising brood and
larvae, ants tend to group and keep such items separated from an initial situation where
they are randomly situated in the ground. Although ants’ actual “behaviour” is still
not fully understood, there are several models that are able to mimic the dynamics of
the system. Ants wander randomly on the ground and their behaviour is modelled by
two probabilities, respectively, the probability of picking up F, and dropping F; an item,
which are evaluated with respect to the recently encountered items. The idea is that an
ant (i) picks up an item if its concentration is low with respect to previous experience,
(i1) starts wander randomly, and (77) drops the item where its concentration is higher
with respect to where it was originally picked up.

Brood sorting is intrinsically self-organising [CDET01], i.e.: (i) it is a process in which
a pattern at the global level of the system emerges just as the result of the numerous
interactions among the low-level components of the system, and (i) the rules specifying
interactions among system’s components are executed by using only local information,
without any reference to global pattern. Namely, ants are guided by spatially local ob-
servations and motivated by the only need of picking items up where concentration is

1One could think of an analogy with concurrent garbage collection, where user processes keep mutating
data while the collector tries to manage memory in parallel.
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low, dropping them where concentration is higher: such numerous interactions make full
sorting (i.e. the segregation pattern) emerge at the global level.

The above solution to brood sorting (and any self-organisation-based approach in
general) manifests interesting features. First, it is intrinsically robust, since it does not
require global information: it promptly reacts to changes in the environment (e.g. new
brood, larvae, or ants are dynamically added or removed), to faults like environment
splits (e.g. a barrier splitting the ground in two parts), and to local malfunctioning
(e.g. some ant behaving in a completely different way than expected). Second, it is
intrinsically probabilistic since in the real world small fluctuations always happen that,
due to bifurcation effects, might cause the system behaviour to globally change—this is
indeed a source of robustness. As for all self-organising approaches, performance is of
course worse than solutions based on global observations, due to the overhead caused by
the need of continuously performing pointwise (local) observations. Hence, self-organising
systems stress the tradeoff between performance of global approaches and robustness of
local approaches—consider that global approaches are not always available or feasible,
as for distributed systems in general. Self-organising solutions are therefore considered
interesting for developing robust online services that should function in unpredictable
environments, where performance and robustness live together as key factors.

As a result, it is interesting to seek for a solution to collective sort inspired by ants’
brood sorting. However, it should be noted that the two application scenarios have key
differences, that might require a significant adaptation:

e Topological space — Instead of being a continuous environment, or a network of
connected subparts of the environment, our scenario features a flat set of N tuple
spaces, each being a conceptually unbounded bag of tuples.

e Agent Mobility — Instead of being performed by mobile agents carrying items and
wandering randomly the environment, the sorting service is executed by an infras-
tructure composed of software agents, each associated with a tuple space. Since
sending tuples is typically less expensive than moving software agents, such agents
should not be likely to move.

e Actions and Perceptions — Instead of perceiving items based on a range of locality,
software agents should be able to look for tuples in either the tuple space they
are assigned to (called local tuple space), or a different tuple space (called remote
tuple space)—the latter operation is necessarily more expensive. Similarly, actions
correspond to removing tuples and inserting them elsewhere.

3.2.3 Architectural and Behavioural Constraints

Based on the above considerations, a working solution for the collective sort problem is
developed that could achieve the robustness properties sought by self-organisation ap-
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proaches. First of all, it is important to characterise all the architectural and behavioural
constraints for any candidate solution:

e Service Architecture. In a system with NV tuple spaces, and multiple user agents
coordinating their activity through those spaces, collective sort needs to be consid-
ered as an online service provided by one or more sorting agents, each assigned to
exactly one of the N spaces. Each agent works at a certain rate, that is, it executes
a number of instances of an interaction protocol per time unit. Of course, it is un-
derstood that sorting performance is directly dependent on the sorting rate of such
agents.

e Sorting Agent Behaviour. The behaviour of sorting agents, and ultimately of the
proposed algorithm, is hence described in terms of a (possibly probabilistic) protocol
to be executed multiple times by each agent—most likely, taking an observation
and accordingly performing some actions, inspired by brood sorting. This protocol
is to be the composition of primitive operations over tuple spaces, that is, reading,
removal, and insertion of tuples. Note that tuple counting is not allowed by standard
tuple space systems, hence the only means for observing a space is to repeatedly read
single tuples on it. Some memory and limited symbolic ability might be assumed
but this is not mandatory—e.g. the agent may remember what the last moved tuple
is, or have the ability to check whether two tuples belong to the same kind.

e Data Modelling. We assume there is a strict connection between the notion of
kind and that of tuple template, so that it is easy for an agent to get a tuple of a
certain kind from a tuple space by asking for a tuple matching a template, or get
a tuple of any kind by asking for a more generic template. Whereas LINDA does
not allow to look for tuples matching one of n templates, this is not a conceptual or
technological problem per se, and can in fact be implemented over existing tuple-
based infrastructures such as TUCSON [OZ99] (OD01]—hence, in the collective sort
solution we identify the concept of kind with that of tuple template. Moreover, we
assume that reading or removal of tuples matching a given template is a uniform
operation that yields a probabilistically fair result [VCGO07|, namely, among many
tuples matching a given template, the probability for a specific tuple to be chosen
is the same as others.

3.2.4 Quality Attributes

Other than architectural and behavioural requirements, which are meant to shape the
structure of a solution, it is also interesting to point out the quality attributes expected
from a successful solution, expressed in terms of qualitative and quantitative aspects.

As a way of measuring the degree of sorting of a certain configuration of tuples, we
rely on Shannon entropy [Shad8], which represents the uncertainty in the observation of
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a random variable—this is also called information entropy, or simply entropy from now
on. This is expressed as K * Y . p;log(p;), where K is any constant value and p; is
the probability for the variable to assume the i** of n possible values. In our case, the
ordering of a tuple space can be associated with the variable that represents the kind of
a tuple randomly drawn in the space. Given N kinds k; ..., ky, if we denote with ¢ the
amount of tuples of kind k&, and with n the total number of tuples in the space, then the
probability of a tuple to be of kind k; is gk, /n, which is basically the concentration ¢y, of
tuples of kind k; in the space. Accordingly, the entropy associated with tuple space s can
then be computed as:

N
H, =K x Z cr, log(cy,) (3.1)
i=1
while the global system entropy is simply the sum of each space entropy, namely H =
SN H,,, which ranges from 0 to K * Nlog, N. K is then set to 1/(Nlog, N) in order
to bound the global system entropy between 0 and 1, where 0 means complete sorting
(each space holds tuples of one kind), while 1 means complete disorder (each space has
an equal concentration of tuples per kind).
Concerning the outcome of ordering, the quality attributes we seek for the collective
sort solution can hence be listed as:

e Full Sorting. In case of a quiescent system — one in which the mutation rate of
user agents is zero — complete sorting (H = 0) must be reached from any initial
configuration. Namely, system evolution should never get stuck into unordered
states (where H > 0).

e Reactiveness. Given a certain non-zero mutation rate, and a desired level of sorting
Hp < 1, there should be a sorting rate leading the system to an entropy value
constantly lower than Hp.

Another key issue concerns the performance which can be achieved in sorting. Being
an online service, we note that sorting time strictly depends on the resources devoted to
sorting. Supposing a fixed number of network operations devoted to sorting per time unit,
performance can be characterised in terms of the amount of network operations (reading,
removal or insertion of tuples) required to achieve sorting.

As a starting reference, we can consider an initial situation with N spaces and kinds,
and T tuples per kind chaotically inserted in the spaces (H = 1). The optimal algorithm
would consider only tuples that are out of place, and accordingly move such tuples directly
to the proper destination space: since each space holds 7" tuples and T % (N — 1)/N of
them are out of place, we would have a total of 7" (N — 1) tuples moved. However,
this result would be accomplished only if mutation rate is zero and global information is
available, but this is an ideal situation that does not fit for collective sort.
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First of all, we cannot suppose that mutation rate is zero. In general, “reactiveness”
also highlights the need of promptly reacting to an unpredictable, possibly significant
change in tuple configuration, e.g. a user agent inserting a significant number of tuples into
a single space in few time units. This means that the sorting service should devote some
network resources to space observation (intercepting changing situations) and others to
tuple transfers—as mentioned in the previous section. Different policies can be evaluated
to balance observation and transfer rate, so as to either promoting convergence time in
the static case or prompt reactiveness to changes in the dynamic case. Secondly, in our
framework we do not have global information readily available. As already mentioned,
this is because tuple spaces do not allow to count the number of tuples matching a given
template. Accordingly, multiple probabilistic read operations are used to observe a space.

As a result, collective sort is to be run by continuously observing tuple spaces in
order to be reactive to changes in tuple configuration, and by emergently selecting the
tuple space that should gather a certain kind of tuple. Hence, this causes an unavoidable
overhead with respect to the ideal case above. Moreover, it should be noted that, as
in array sorting, the relative overhead obviously increases with the size of the problem,
namely with the number of tuples and tuple spaces. As a general rule, the following result
is sought for:

e Convergence cost. The average “cost” (network operations) for sorting starting
from a chaotic configuration where H = 1 has to be at most one order of magnitude
greater than the solution based on static, global information. Moreover, sorting cost
should be expected to scale at most polynomially with the number of tuples and
tuple spaces.

3.2.5 An example scenario

A key scenario of nowadays large-scale distributed systems is based on wireless sensor
networks, namely, systems with a high number of small, wireless devices deployed in the
physical world to monitor environmental properties [BDET07]. A fundamental issue in
this context is to devise effective strategies to gather the generated data [KEW02]. Recent
works like [CMPOT, [YLBOS] focus on building suitable algorithms for gathering such a
data into a small set of sink nodes.

Based on this context, we show an application scenario for collective sort, as a way to
clarify its main motivations and applicability. We suppose that sensors are spread on a
wide area to monitor a set of environmental properties (temperature, pressure, humidity,
light) and accordingly generate events reporting changes in such properties and/or faults.
Such sensors form a highly dynamic set, as they may fail, move—e.g. since they could
be deployed on board of a vehicle or a mobile device—or unpredictably hibernate to save
energy. A proper infrastructure like envisioned in [CMPO7] is exploited to gather all the
generated events into a set of N sink nodes, reliably connected to a stable network—e.g.
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' =sensor
® =sink node
_ -+~ = reliable connection among sink nodes

= data transmission among sensors and to sink nodes
Figure 3.2: Applicative scenario with a wireless sensor network and multiple sink nodes.

they can be though of as environmental stations connected through a WAN. Each sink
node is associated with a tuple space that unpredictably receives from sensors tuples of
the kind:

event (sensor_id,sensor_position,time,property name,property value)

Hence, sensors will play the role of user agents. Additionally, other user agents — called
manager agents — are connected to sink nodes, and are in charge of properly managing
the generated data, executing the following tasks: generating a global map of a certain
property, looking for peak values of a certain property, gathering general statistics of
faults, erasing old events when updated data arrives, erasing duplicated events if the
same one arrives to different sinks, and so on. See Figure for a pictorial representation
of this application scenario.

Whereas having multiple sinks enhances the efficiency of data gathering [CMPO7,
YLBOS], this clearly introduces implementation issues since manager agents are forced to
look at the tuples they are interested in throughout the set of spaces: the manager agent
calculating the global temperature map looks for the template event (?,7,7,temperature,?),
the agent searching for faults would look for event (?,7,fault,fault,fault), and so on.
In order to avoid the overhead induced by the need of looking for tuples in all the N tuple
spaces, it is helpful to set up a collective sort service that at runtime keeps the generated
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data sorted in an emergent way. Note that the particular setting of this application is
such that it may be hard to assign tuples to spaces statically, because the space where
certain tuples will be deposited cannot be known at design time—the routing algorithm
for sinks may be probabilistic, sensors can move, faults can occur in unpredictable places,
certain properties may rapidly evolve only in certain places of the network, and so on.

Accordingly, after setting up a finite set of tuple templates of interest and deciding
how they should be clustered into N kinds, N sorting agents can be deployed in the
environmental stations, working at a certain sorting rate. As an example with N = 4,
tuples modelling faults can go to space 1, tuples modelling peek values to space 2, tuples
with updates on temperature and pressure to space 3, and finally tuples with updates
on humidity and light to space 4. If during sorting, it become clear that one space is
gathering much more tuples than others, kinds might be redesigned and sorting agents can
be accordingly updated—here we treat this aspect as orthogonal to the sorting behaviour,
though.

As the sorting service is powered on and reaches the desired level of sorting, each
manager agent will shortly find the tuple space gathering the tuple it is interested in,
thus improving the execution performance of its task.

3.3 A Solution to the Problem

The solution hereafter presented satisfies the quality attributes outlined in the previous
section. In particular, the objective here is to show that this can be obtained without
relying on agent intelligence — as many self-organisation approaches highlight — but by
devising an agent behaviour based on very simple protocols composed of basic tuple
operations.

For presentation purposes, and to make our design choices clearer, this section incre-
mentally introduces the solution conceived for collective sort. An intermediate approach
is discussed, along with some preliminary results that required a design improvement,
ultimately leading to the solution fully evaluated in Section [3.4]

3.3.1 Basic Strategy

After depicting the general architecture for collective sort, a basic strategy for the solution
inspired by ants’ brood sorting is described.

Similarly to ants, each sorting agent performs local system observations, namely, ob-
servations on the local tuple space (where an item is possibly picked up) and observations
on some remote and neighbouring tuple space randomly chosen (where the item may be
dropped). According to such observations, if it can be inferred that some tuple should be
sent to a remote tuple space s, then the agent locally removes the tuple and inserts it in
s. This observation-action cycle is executed by each agent with a fixed rate r, so that the
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Figure 3.3: Architecture for collective sort—The agent on left-bottom should eventually
relocate tuples C and D to different tuple spaces.

global sorting rate is N % r—which represents also the number of moving attempts per
time unit. This scenario is depicted in Figure (3.3}

Therefore, each agent has the general goal of moving away tuples from its local tuple
space whenever they are not forming a collection. In particular, the agent protocol we
consider is as follows:

e FIRE: a remote tuple space R is drawn randomly;

e LOCAL-0BS: a uniform read operation is performed on local space L, yielding a
tuple of kind K7 ;

e REMOTE-0BS: a uniform read operation is performed on R, yielding a tuple of kind
Kg;

e MOVE: if K # Kg a tuple of kind Ky is moved from L (if any exists there) to R.

Uniform read operation, also called urd, is the operation exploited by sorting agents to
read any tuple from the tuple space in a probabilistic way—remember that any tuple has
the same probability of being retrieved. If urd operation on a tuple space yields a tuple
of kind K, it means that (probabilistically) tuples of kind K are those mostly occurring
so that K becomes the best candidate for finally aggregating on that space. Accordingly,
once task REMOTE-0BS is executed, the agent knows that space L is likely to aggregate
K, while space R is likely to Kr. Accordingly, the rationale behind task MOVE, if Kz and
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K, are different, is to fruitfully send a tuple of kind Ky from L to R, so that both Ky in
R and K in L will aggregate more.

The observation and the resulting decision made by the agent are however affected by
probability, so that the correctness of this distributed algorithm needs to be checked by
simulation, in order to test, first of all, whether complete sorting is reached starting from
any initial situation, then evaluate the corresponding quality attributes.

3.3.2 Simulation Method

As far as collective sort evaluation is concerned, system evolution can be modelled as a
Continuous-Time Markov Chain (CTMC), namely a stochastic transition system where
transitions are labelled with rates, representing the average frequency at which the tran-
sition occurs [CGVOT} Let r be the rate of each sorting agent, the basic CTMC model
of a collective sort run initially selects the next sorting agent that fires, through N tran-
sitions labelled with a rate r: this gives each sorting agent the same probability of being
selected, while keeping the global sorting rate fixed to N xr. Then, the steps of the sorting
agent’s protocol are executed through transitions with very high rates (so as to make the
corresponding transitions occur almost instantaneously), but taking into account proba-
bility when executing urd operations—each matching tuple has same probability of being
returned based on the corresponding template concentration. This process is either ex-
ecuted ¢ times, where t characterises the duration of the simulation, or until complete
convergence is reached (H = 0). The state of system configuration is basically a matrix
(q)i of natural numbers, where g;; is the amount of tuples of kind & into space i.

There are many simulation tools that could be used to experiment with collective
sort, all providing different language expressiveness, but of course yielding the same sim-
ulation results—examples include SPIM [Phi06], SWARM [swa06] and REPAST [rep06].
Following the work in [CGV07] we adopted the simulation engine written in the MAUDE
term-rewriting system presented in Chapter [2] The main reasons for this choice are that
MAUDE (i) allows — thanks to term-rewriting paradigm — to flexibly structure system
behaviour as a typed operational semantics in Plotkin’s style [P1o91], (i) executes transi-
tions and computations with high performance thanks to advanced matching algorithms,
(#11) is equipped with a full-fledged library for mathematical computations, and (iv) sup-
ports interaction with external tools—which could be built to control simulations and
draw results. In fact, MAUDE allows to set up the syntax of system configuration in a
flexible way by means of sorts and constructors (i.e., functions). For instance, the code:

sort Tuple TupleMSet Space DataSpace .

op _[_] : Qid Nat -> Tuple [ctor]

subsort Tuple < TupleMSet .

op _|_ : TupleMSet TupleMSet -> TupleMSet [ctor assoc comm]

2Tf modelling time passing is not of interest, but one only cares about counting events, Discrete-Time
Markov Chains could be used instead.
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op <_@_> : Nat TupleMSet -> Space [ctor]
subsort Space < DataSpace .
op _|_ : DataSpace DataSpace -> DataSpace [ctor assoc comm]

defines the sort Tuple (a[100] represents 100 copies of a generic tuple kind a),
TupleMSet (multisets of tuples separated by the associative and commutative compo-
sition operator “|”), Space (<1@M> represents space 1 with a multiset of tuples M), and
DataSpace (a composition of spaces, again by operator “|”). As a result, an initial con-
figuration where each tuple space has the same number of tuples per kind, for instance
T =100 and N = 4, is described as:

T1 @ (K1[25])|(K2[25]) | (K3[25]) | (K4[25])
T2 @ (K1[25])|(K2[25]) | (K3[25]) | (K4[25])
T3 @ (K1[25])1(K2[25]) | (K3[25]) | (K4[25])
T4 @ (K1[25])|(K2[25])|(K3[25]1) | (K4[25])

AN AN AN A
vV V V V

Transition rules are written in our framework as a unary postfixed function ==> asso-
ciating system state with the set of all possible target states, each with its own rate. As
an example, equation

eq (init | DS)==> = (0.25->[[0]D8]); (0.25->[[1]IDS]);
(0.25->[[2]11DS]); (0.25->[[3]|DS]).

associates an initial state including the init term with four possible states (denoting
the choice of one sorting agent), where init is substituted with term [i] (1 is the selected
sorting agent), each labelled by rate 0.25 (global sorting rate is set to I)EI Once the entire
transition system is defined, a simulation run can be executed by a MAUDE command of
the kind:

rewrite < [ 5000 : ( SS ) @ 0.0 ] > .

which produces on the standard output a trace of 5000 system states, starting from
configuration SS and time 0.0: such a trace is then used to draw a chart showing system
evolution. The complete specification for the case N = 4 is reported in Appendix A.

An example of simulation trace starting from the above initial state is pictorially
represented in Figure (a), reporting the dynamics of the “winning” tuple kind in each
tuple space—mamely, the tuple kind that eventually aggregates there. Note that tuples
reach their full aggregation level at different points in time, in an unpredictable way. The
chart in Figure (b) displays instead the evolution of tuple space T1 taken as a reference:
notice that only tuples of kind K1 aggregate there despite the initial concentration of K1
in T1 was the same as other tuples. In particular, at some point around step 1000, there
is a bifurcation which promotes aggregation of K1 tuples instead of K2.

3The above code works only with N = 4 just to simplify the description, but our specification deals
with the general case.
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Figure 3.4: Charts of a simulation trace: (a) Winning tuple kind; (b) Tuple space T1; (c)
Entropy in each tuple space (normalised).

It is interesting to analyse also the trend of the entropy of each tuple space as a way
to estimate the degree of order in the system through a single value: since the simulated
strategy aims at increasing the inner order of the system, entropy is expected to decrease
to zero, as actually shown in Figure (c). Each chart reports the number of protocol
instances (move attempts) executed by agents: the chart shows that in this simulation
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full sorting is reached after around 3000 time units—i.e. 3000 executions of the agent
protocol.

3.3.3 On Convergence

At a first glance, the solution developed so far appears to converge to complete sorting
from any initial configuration of tuples. However, it is easily detectable that there are
some stable states attracting the system trajectory and having positive entropy, that
is, characterised by an incomplete degree of sorting. A state of this kind is called local
minimum (from the standpoint of entropy). An example of such a minimum is the
following state, obtained by the traces shown in Figure [3.5}

< T1 @ (K1[100])|(K2[0]) [(K3[0]) [(X4[0]) > |
< T2 @ (K1[0]) | (K2[69])|(K3[0]) [(K4[0]) > |
< T3 @ (K1[0]) [|(K2[311)1(K3[0]) |(K4[0]) > |
< T4 @ (K1[0]) [(K2[0]) |(K3[100])|(K4[100]) >

Tuple kind K2 is the only aggregating in both T2 and T3, and at the same time, both kinds
K3 and K4 aggregate in space T4. It is easy to recognise that once this state is reached,
no agent will ever move a tuple, since in no space a tuple is found that aggregates less
than elsewhere. Our simulations show that: (i) about 5% of runs from the initial chaotic
configuration with N = 4 ends in a local minimum; () this probability increases with N,
e.g. it is above 15% when N = 7, since many more local minima exist; () simulations
from states that are sufficiently near to a local minimum always end up in it—Ilocal
minima are attractors. This makes the approach discussed so far inadequate with respect
to the quality attributes previously defined, so that a suitable solution is required before
proceeding with any further evaluation. The attempt of solving this problem led to the
solution actually proposed in this chapter, as discussed in the following.

The main reason that the local minimum analysed above cannot be escaped lies in the
fact that the strategy we developed does not explicitly avoid the case where the same tuple
aggregates in two different tuple spaces. In fact, due to task MOVE in the sorting agent
protocol, nothing is done when K; = Kg! As a consequence, it may happen that the
same tuple kind fully aggregates on two different tuple spaces, and dually, two remaining
tuple kinds aggregate in the same space as shown in the local minimum above.

These two issues can actually be coped with by a unique solution coming from a more
careful analysis of brood sorting in social insects. There, an ant picks an item up and
releases it where a new place is found with greater concentration, expressed as quantity
of brood over a unit of space. That is, an ant is implicitly able to compare the amount of
brood with a standard quantity, which in that specific case is represented by the amount
of free space. If a similar notion were defined in collective sort, that could in principle
allow to solve the two issues above. On the one hand, if space T3 could be recognised
as having “less” tuples K2 than space T2, then movements from space T3 to T2 could be

30



CHAPTER 3.

THE COLLECTIVE SORT PROBLEM

31

of Tuples

No.

of Tuples

No.

100

80

60

100

80

60

40

20 |2

T2 e
T T L Ry N
T3
1 1 1 1
0 500 1000 1500 2000
K 4 :...,.-m:: """ :;“:"::»
0 500 1000 1500 2000
Time

Figure 3.5: Charts of a simulation trace leading to a local minimum: (a) Tuple kind K2
aggregating in spaces T2 and T3; (b) Both kinds K3 and K4 aggregating in space T4.

promoted. Hence, as one of the two spaces stops aggregating tuples, some tuples K3 or
K4 could be moved there from space T4.

3.3.4 System annealing by noise tuples

To implement a mechanism supporting this idea, another kind of tuple called noise is
introduced, which is initially supposed to have a constant concentration (i.e. amount)

in all spaces throughout the entire sorting process.

Such tuples are not inserted and

retrieved by user agents, and consequently are not subject to sorting, but managed (in-
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serted /retrieved) by sorting agents. Now, when a sorting agent performs a uniform read
to randomly select a tuple, such an observation gets “perturbed” since there is a non-
zero probability that the result is a noise tuple. Simply, if the tuple space holds, say,
95 regular tuples (those to be sorted) and 5 noise tuples, there is a 5% of probability of
retrieving noise. Following the previous version of the algorithm, the new interaction
protocol is such that a tuple is moved from the local space to a remote space if and only if
the two observations involve different tuple kinds—but now one of them could be noise.
As an example, if the remote observation is noise and the local one provides kind k,
then the locally observed tuple is moved anyway, even though this does not necessarily
decrease entropy. That is, the role of noise tuples is to alter probabilistically the correct-
ness of agent actions, which now may temporarily increase disorder when observations
are perturbed by some noise. As a result, this mechanism causes tuples to be moved even
though the system is in a local minimum, hopefully making system trajectory escape from
it. This technique actually resembles the principles underlying simulated annealing used
in optimisation algorithms [KGVS83]. There, a perturbation is added in order to avoid
the risk of finding non-optimal solutions: such a perturbation is initially high and fades
continuously as the system searches solutions, until completely disappearing.

In our case, the occurrence of noise tuples models such a perturbation: what should
be the dynamics of noise through time, then? A feasible approach would be to set an
initial amount of noise equal in all tuple spaces, and either leave it unaltered during system
life cycle or decrease it at a fixed rate. However, this choice would require to set noise
amount at design time, but then optimality of this amount would depend on the average
occupation of tuple spaces during system execution [VCGOT|: this is not appealing since
the searched approach needs to work independently of the number of tuples in the system.
What it is actually needed is a fully adaptive noise mechanism, where an initially very low
noise concentration increases as the system approaches a local minimum, and decreases
when the minimum is escaped. In this way, we could expect the system performance to
be only slightly affected whenever the system stays sufficiently far from local minima; on
the other hand, noise production may become significant only in unfortunate cases where
local minima are approached.

To achieve this result, noise is managed as follows:

e As already described, noise alters observations performed by uniform read opera-
tions, and hence the pertinence of tuple movements, since a tuple is moved if the
local and remote observations are different—though one of them could be noise.

e Initially only one noise tuple occurs in each tuple space, hence, perturbation is very
low; as a result, sorting performance is not significantly affected.

e Each time two tuple spaces seem to aggregate the same tuple kind—two equivalent
non-noise observations are likely to be performed so that noise is increased; in fact,
since that would mean we are likely approaching a local minimum, system annealing
needs to be increased.
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e When some tuple is transferred due to pertinent observations—two different non-
noise observations are made—mnoise is decreased; as this would mean we are likely
escaping a local minimum, system annealing has to be increased.

Accordingly, the agent protocol is changed as follows:
e FIRE: a remote tuple space R is drawn randomly;

e LOCAL-0BS: a uniform read operation is performed on local space L, yielding a
tuple of kind K7 ;

e REMOTE-0BS: a uniform read operation is performed on R, yielding a tuple of kind
Kr;

e MOVE: if K # Kg a tuple is moved from L to R, i.e.:

— if Kz = noise, such a tuple has to be of kind K7;
— otherwise, the tuple has to be of kind K (if existing in L);

e NOISE: if K # noise and K # noise local noise amount is changed, i.e.:

— if Kr = K, then noise is increased by one in L;

— if Kr # K, then noise is decreased by one in L.

Now both K and Ky could be noise. Task MOVE states that differences in observations
made in L and R should always cause transfer: if Ky is not noise, a K tuple is moved
to R, otherwise, a K, tuple is moved to R. Task NOISE increases noise when L and R
are aggregating the same (non-noise) tuple Kp = K, and decreases noise whenever a
non-perturbed transfer is actually executed.

Consider now the worst case of a symmetric local minimum:

< T1 @ (K1[1001) | (K2[1001) | (K3[01) |(K4[0]) > |
< T2 @ (K1[0]) [(K2[0]) [|(K3[50]1)I|(K4[0]) > |
< T3 @ (K1[0]) [(K2[01]) |(K3[50]1)|(K4[0]) > |
< T4 @ (K1[0]) [ (K2[0]) |(K3[0]) |(K4[100]) >

Noise is initially expected to increase in both tuple spaces T2 and T3 (NOISE). At some
point, movement of tuples K3 is going to occur between T2 and T3 since some noise is
observed (MOVE). Due to a bifurcation effect, if either space T2 or T3 have a greater con-
centration of tuples K3 with respect to noise, this will cause more tuples to be transferred
there, so that space T2 or T3 will eventually fully aggregate tuples K3. Accordingly, the
other tuple space will be emptied, lose noise tuples, and finally become target of tuples
of kind K1 and/or K2. This is actually what can be observed from the traces in Figure
(a) and (b), showing how the local minimum is escaped in spaces T2 and T1: in both
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Figure 3.6: Charts of a simulation trace escaping from a local minimum: (a) Situation in
space T2: winning tuple K3 and noise in evidence; (b) Situation in space T1: kind K1
leaves the space.

cases it is possible to recognise that as noise tuples increase, the system escapes the local
minimum configuration leading to fading of noise tuples.

More simulations performed to evaluate this solution actually show that: (i) using
noise slightly affects performance, for typically systems stay away from local minima and
generate little noise; (7i) starting from a local minimum, the system is always able to
escape it; and (%ii) full sorting is always eventually reached. This solution hence appears
to be a promising one. The next section provides a comprehensive evaluation of the
proposed solution.
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3.4 Evaluation

According to the quality attributes described in Section [3.2.4] concerning convergence,
scalability, and reactiveness, the proposed approach is here evaluated. To this end, stan-
dard analysis techniques for distributed systems usually include automatic machine check-
ing or hand-written proofs.

In the former case, analysis would be obtained e.g. by a probabilistic model check-
ing technique [KNP07, RKNPO04|. There, the graph of all possible states and transitions
is constructed and annotated with probabilities and rates, so that queries in a prob-
abilistic logic like PCTL [HJ94] can be checked by navigating the entire graph: e.g.,
for collective sort we could ask what the probability is that from an initial state with
N = 4,7 = 100, H = 1 an ordered state (H = 0) is reached within 3000 time units.
However, this technique suffers from state-space explosion problem, so that even the con-
struction of the entire graph is a very expensive operation so that proper optimisation
techniques are required for model construction. A more detailed discussion on formal
verification techniques for self-organising systems is reported in Chapter [7| where, as a
reference example, some emergent properties expressed in PCTL logics are verified on
different collective sort instances modelling the first solution described in Section [3.3]

In the latter case, we should try to find proofs that the proposed algorithm converges,
and in general, that the quality requirements are met. However, this is particularly com-
plex, and very few examples exist in literature that apply this approach to self-organising
systems. A recent exception is the work in [YNOS§], which focusses on a very straightfor-
ward self-organisation scenario, in which a chain of cellular-like components is subject to
a repeated applications of local transformation rules. Necessary and sufficient conditions
are provided for the emergence of a certain global pattern of cellular states—similarly to
what happens in certain stages of embryogenesis. This research direction, although very
interesting, is still in its infancy and cannot be applied to generally analyse systems like
collective sort.

On the other hand, computer-based simulation techniques have gained a growing atten-
tion over the past years as an important tool for studying complex systems [Yan97, [Bal00],
especially when previous analytic results are not available [Yan97]—e.g. due to analytical
intractability of the target system. Accordingly, simulation is the main approach adopted
for evaluating collective sort.

3.4.1 Full Convergence

In our solution, on the one hand, non-perturbed tuple movements cause entropy to de-
crease; on the other hand, the noise mechanism successfully perturbs those configurations
that approach local minima. Figure shows examples of how the system can come to
full sorting starting from different initial configurations—these are taken as samples of
several simulations we ran, all of which reached full sorting. Interestingly, we can observe
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Figure 3.7: Sorting from different configurations: winning tuples and noise.

that in these cases — differently from the one shown in Figure|3.6| - total noise is typically
very low: this is mainly because here the system stays sufficiently far from local minima.
In all the three cases, the system dynamics is highly probabilistic and hardly predictable.
Moreover, it is typically the case that the same system shows different dynamics in
different runs. As another illustrative example, consider the starting configuration shown
in Figure , which apparently seems to lead to the full sorted configuration in chart (a)
ever. Many cases — about 20% of times — show that the system actually converges to a
different final state, where one or more kinds actually aggregate in spaces with an initial
smaller concentration than other kinds. This, again, highlights the true unpredictable
character of any self-organising solution like the one provided here for collective sort.
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Figure 3.8: Different sorting result from the same configuration.

As a further measure for evaluating collective sort convergence, we considered the
variability of sorting time throughout a large series of 1000 simulations with N = 4 and
T = 400 tuples per kind. Figure shows how sorting time distributes over the executed
simulations. It is easy to recognise a peak centered around 2500 time units, meaning that
most of the simulation runs (~ 220) led to a sorting time value close to 2500 time units,
while 92.2% of the simulation runs led to a sorting time < 5000 time units. In addition,
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Figure 3.9: Total-sorting-time distribution over 1000 simulation runs executed with N =4
and 400 tuple per kind.

a few percentage of simulations led to a high value of convergence time (up to 40000 time
units): this is due to evolutions of collective sort that approached one or iteratively more
states of local minimum, which usually require a much higher amount of time to achieve
full sorting due to the perturbation effect generated by noise tuples. This chart then
allows to show the influence of noise on convergence: most of the times it does not affect
convergence time, while in other cases where sorting approaches a local minimum, noise
starts working ultimately leading to convergence but requiring a higher convergence time.

3.4.2 Sorting Cost and Scalability

Concerning performance, it should be noted from previous charts that the average time
for reaching full sorting is around 2500 time units, considering the basic case with 4 tuple
spaces, 4 tuple kinds, and an initial set of 400 tuples. The global sorting rate considered
is 1.0, that is, there is an average of one transfer attempt per time unit, and accordingly
a sorting agent rate of 0.25 transfer attempts per time unit.

The optimal solution to the problem — in which a snapshot of the system is taken
and agents are accordingly pre-programmed by an explicit list of tuple movements to be
performed — would require instead around 300 time units (see Section , which is the
time necessary to move the tuples that are not already in the right space. Namely, in the
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Figure 3.10: Scalability in the number of tuples (N = 4): transfers and elapsed time
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Figure 3.11: Winning tuple (a) and noise (b) evolution for a simulation with N = 4 and
4000 tuples per kind initially distributed in a uniform way.
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Figure 3.12: Scalability in NV (n. of tuple spaces/kinds): transfers and elapsed time units.

basic case of the problem, system performance is around one order of magnitude worse
than optimal solution: this is still within the expected range of the quality requirements
sought for.

It is now interesting to see how much our solution scales with the dimension of the
problem. First of all, we consider scalability in the number of tuples, that is, how the size
of the set of tuples affects the system behaviour. Figure shows average performance
values (taken from a set of 20 runs), on a system with N = 4, an initially chaotic config-
uration, and an increasing number of tuples from 80 to 8000. Two values are depicted:
tuple transfers and sorting time. The first one is simply increased each time a tuple is
moved, the second one is instead the elapsed time units—or moving attempts. Another
interesting value is network usage (or number of remote interactions), which can be di-
rectly computed as the sum of tuple transfers and elapsed time—since other than tuple
transfers, we have a remote observation per time unit. As a main result of these charts
(i) the proposed approach scales linearly with the number of tuples, and (7i) the number
of transfers is around 1/3 of the number of moving attempts—this parameter somehow
representing the pertinence of observations.

A simulation trace showing the evolution of collective sort with N = 4 and 4000 tuples
per kind is reported in Figure|3.11] It is easy to see that the evolution of the simulation is
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Figure 3.13: Winning tuple (a) and noise (b) evolution for a simulation with N = 8 and
400 tuples per kind initially distributed in a uniform way.

not greatly affected by the higher tuple concentration, the only difference is that system
evolution appears much more deterministic than e.g. in Figure (c). In addition, total
noise concentration keeps on values which are 2 orders of magnitude lower than total tuple
concentration as in experiments with lower tuple concentrations. This simulation shows
that non-determinism, as well as the need of relying on noise, actually decreases as the
system size becomes larger and larger: hence, unexpected situations are more likely to
occur on smaller-scale systems.

Scalability in N, the number of tuple spaces (and kinds), is a more critical issue.
Figure shows average performance values (taken from a set of 20 runs) on a system
with a fixed number of tuples equals to 400, an initially chaotic configuration, a fixed
sorting agent rate equal to 0.25, and an increasing number of tuple spaces, from 3 to 15—
the global sorting rate is 0.25 « N. As in the previous case, we measured the number of
tuple transfers and elapsed time units. Here we notice that the difficulty for the proposed
solution to scale is higher, though the result appears reasonable anyway: while average
time for full sorting is 2500 with N = 4, it is about 30000 with N = 10—the latter is
indeed a more complex problem.

The sorting cost actually appears to be quadratic in the number of tuple spaces.
This result seems however a key characteristic of collective sort, rather than depending
on the proposed solution—this is a problem even in array sorting, which does not scale
linearly. In general, if some tuple remains far from where its kind is aggregating, the
time (and network operations) needed by its sorting agent to find the proper remote
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Figure 3.14: Evolution of entropy with different perturbation/sorting ratio.

tuple space is linear in N, and this applies to all sorting agents/kinds. This appears to
be an intrinsic consequence of the fact that a global status is not available to sorting
agents, and observations are necessarily pointwise. In addition to the results shown in
Figure |3.12 Figure |3.13| reports a simulation trace executed with N = 8 and 400 tuples
uniformly distributed among the N available kinds. Again, noise keeps on values which
are 2 orders of magnitude lower than tuple concentration even though collective sort
operates on a larger set of tuple spaces. To summarise, even considering scalability, the
proposed approach appears to successfully meet the desired requirements.

3.4.3 Reactiveness

The main reason that collective sort has been solved by using a self-organising approach
is to tackle unpredictable interactions with the environment. A typical usage scenario
includes user agents that exploit the coordination service provided by the tuple spaces,
that is, they keep inserting and removing tuples. The details of this behaviour cannot be
fully known a priori, hence, sorting should be able to react to changes of the surrounding
conditions in an adaptive way. Providing a comprehensive and general set of simulations
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in this context is not easy, since user agents can manifest an extremely wide range of
different interactive behaviours. Here we briefly show how the ratio between user agent
rate and sorting agent rate, called mutation/sorting ratio, influences the result of sorting.
To this end, we keep the global sorting rate fixed to 1.0 and include in the simulation a
mutation rate for user agents, that is, the rate at which each user agent randomly moves a
tuple from one space to another. Starting from an initially sorted configuration of tuples
(400 tuples and N = 4, with H = 0), depending on mutation rate, we easily expect
that (i) full sorting is almost always maintained, (ii) a certain level of (partial) sorting
can be maintained, or (7ii) the system becomes more and more unsorted as time passes.
Evolution through such situations is reported in Figure |3.14] where each chart provides
the evolution of entropy over time for different mutation rates.

As shown in the summary Figure , the key factor is the mutation/sorting ratio,
which gives a clear indication of the adequacy of sorting resources, in terms of the max-
imum level of entropy they can guarantee—a mutation/sorting ratio smaller than 0.5
seems to be a reasonable trade-off between the required sorting resources and the corre-
sponding achieved sorting level. It is clear that a form of load-balancing is required to be
sure that sorting resources are adequate with respect to the current degree of disorder,
and can self-adapt to it—increased on a by-need basis and then decreased. To this end,
techniques related to the prey-predator approach as studied e.g. in [GVO06] I(GVC06a]
could be evaluated in future research.
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SwarmLinda

Coordination systems have been used in a variety of different applications but have never
performed well in large scale, faulty settings. The sheer scale and level of complexity of
today’s applications is enough to make the current ways of thinking about distributed
systems (e.g. deterministic decisions about data organisation) obsolete. All the same,
computer scientists are searching for new approaches and are paying more attention to
stochastic approaches that provide good solutions “most of the time”. The trade-off here
is that by loosening certain requirements the system ends up performing better in other
fronts such as adaptiveness to failures. Adaptation is a key component to fault-tolerance
and tuple distribution is the center of the fault-tolerance problem in tuple-space systems.
Focussing on the aforementioned context, this chapter presents an alternative approach
to collective sort, showing how tuple distribution in LINDA-like systems can be solved by
using an adaptive self-organised approach a la swarm intelligence. In particular, the main
goal of SwarmLinda is to extend the traditional LINDA coordination model by providing
the out primitive with a semantics inspired by swarm intelligence, resulting in a novel
approach to tuple distribution. The main differences from collective sort lie in the fact that
now there is no network topology and number of tuple spaces/tuple kinds fixed in advance.
In addition, the nature of SwarmLinda is online: in other words, tuples are supposed to
get stored in the “right” area of the network as soon as the corresponding insertion phase
occurs by out operations. On the contrary, collective sort does not rely on any specific
semantics of the out primitive. In fact, tuples already stored in the network are simply
moved among tuple spaces as a result of the strategy followed by so-called sorting agents
having the goal of locally ordering the information in the network. The results discussed
in this chapter demonstrate that the approach can efficiently and adaptively address the
problem of tuple distribution. The work presented here is in great part inspired by the
research on SwarmLinda described in [CMVT07al, [CMVTO7b, [CMVT07d, [CMTV07].

4.1 Introduction

Most computer science researchers have realised that the sheer scale of current systems and
applications is “forcing” them to look away from standard approaches to deal with these
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systems and concentrate their efforts in the search for solutions inspired from other areas
such as biology and chemistry. Why have not they done this before? It is quite simple:
(i) computer scientists are used to having total control over their systems’ workings,
and (ii) the scale of the problems they face does not require unconventional solutions.
The consequence is that antiquate ways of thinking flood today’s applications leading to
solutions that are complex and brittle. It is outside the scope to discuss who is to blame
for this scenario. In fact, no one may be to blame since it would have been hard to foresee
such an increase in computer usage let alone people’s dependency on computer systems.

The aforementioned issues could be improved if we better understand that uncertainty
is not a synonym for “incorrectness”. We all live in a world where the causality of events
makes non-determinism /uncertainty a norm. Although far from the level of complexity
of the real world, computer applications exhibit complexity that is hard to deal with even
by today’s most powerful computers. For a sample of challenging problems we are facing,
see the grand challenges listed by the Computing Research Association (CRA) [SDO03]
and by the UK Computing Research Committee (UKCRC) [UK 04].

Coordination systems are constantly being pointed as a mechanism to deal with some
of the complex issues of large-scale systems. The so-called separation between com-
putation and coordination [GC92] enables a better understanding of the complexity of
distributed applications. Yet, even this abstraction has had difficulties in overcoming
hurdles such as fault-tolerance present in large-scale applications. A new path in deal-
ing with complexity in coordination systems has been labelled emergent coordination
[OMO6]. Examples of this approach include mechanisms proposed in models such as
the first SwarmLinda proposal [MT03] and TOTA [MZL03]. This chapter explores one
mechanism proposed in SwarmLinda that refers to the organisation of data (tuples) in dis-
tributed environments using solutions borrowed from natural forming multi-agent swarms,
more specifically based on ant’s brood sorting behaviour [DGFT91].

In tuple-space coordination systems, the coordination itself takes place via genera-
tive communication using tuples. Tuples are stored and retrieved from distributed tuple
spaces. As such, the location of these tuples is very important to performance—if tuples
are maintained near the processes requiring them, the coordination can take place more
efficiently. Standard systems base this organisation on hash functions that are quite effi-
cient but inappropriate to large distributed applications because they are rather difficult
to adapt to dynamic scenarios; particularly to scenarios where distributed nodes/locations
can fail. Here, we propose a mechanism to implement the algorithm suggested in the orig-
inal SwarmLinda. The performance of the resulting approach is tested by using a metric
based on the spatial entropy of the system as for collective sort. We argued that this
approach is more appropriate to faulty systems because it does not statically depend on
the existence of any particular node (as in hashing). In fact, the organisation pattern
of tuples emerges from the configuration of nodes, tuple templates, and connectivity of
nodes. This emergent pattern adapts to variations in environments including node failure.

After presenting the devised strategy in Section [4.3] the resulting approach is initially
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applied on two simple network instances (Section [4.5.2). Then, Section reports a
performance evaluation of the strategy applied to scale-free-topology networks. Finally,
Section introduces the so-called over-clustering problem, proposing a feasible solution.

4.2 SwarmbLinda

LINDA is a coordination model based on associative memory as a communication paradigm.
LINDA provides processes with primitives enabling them to store and retrieve tuples from
tuple spaces. Processes use the primitive out to store tuples. They retrieve tuples using
the primitives in and rd; these primitives take a template (a definition of a tuple) and use
associative matching to retrieve the desired tuple—while in removes a matching tuple, rd
takes a copy of the tuple. Both in and rd are blocking primitives, that is, if a matching
tuple is not found in the tuple space, the process executing the primitive blocks until a
matching tuple can be retrieved.

SwarmLinda uses several adaptations of algorithms taken from the abstraction of natu-
ral multi-agent systems [BDT99, [Par97]. Over the past few years, new models originating
from biology have been studied in the field of computer science [BDT99, [KEQI]. In these
models, actors sacrifice individual goals (if any) for the benefit of the collective. They act
extremely decentralised, carrying out work by making purely local decisions and by tak-
ing actions that require few computations, thus improving scalability. These models have
self-organisation as one of their main characteristic. Self-organisation can be defined as a
process where the entropy of a system (normally an open system) decreases without the
system being guided or managed by external forces. It is a phenomenon quite ubiquitous
in nature, in particular in natural forming swarms. These systems exhibit a behaviour
that seems to surpass the sum of all the individuals’ abilities [BDT99, [Par97].

To bring the aforementioned ideas into SwarmLinda, we interpret the “world” of nodes
as a graph in which ants search for food (similar tuples), leaving trails to successful
searches. Adopting this approach, one can produce a self-organised pattern in which
tuples are non-deterministically stored in specific nodes according to their characteristics
(e.g. size, template).

The above is just an illustration. A more realistic SwarmLinda should consider a few
principles that can be observed in most swarm systems [Par97]:

Simplicity: Swarm individuals are simple creatures, doing no deep reasoning and imple-
menting a small set of simple rules. These rules lead to the emergence of complex
behaviours.

Dynamism: Natural swarms adapt to dynamically changing environments. In open

distributed LINDA systems, the configuration of running applications and services
changes over time.
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Locality: Swarm individuals observe their direct neighbourhood and make decisions
based on their local view.

LINDA systems do not define the idea of ants or food. The description of SwarmLinda
is based on the following abstractions: the individuals are active entities that are able
to observe their neighbourhood, move in the environment, and change the state of the
environment in which they are located; the environment is the context in which individuals
work and observe; the state is an aspect of the environment that can be observed and
changed by individuals.

We aim at optimising the distribution and retrieval of tuples by dynamically deter-
mining storage locations for them based on the template of that particular tuple. It
should be noted that we do not want to program the clustering but rather make it emerge
from the algorithms implemented through the mechanism of self-organisation. Note that
according to Camazine |[CDET01], self-organisation refers to the various mechanisms by
which patterns, structures and order emerge spontaneously within the system. Here, the
clustering of tuples is the pattern that emerges in the system.

SwarmLinda describes four algorithms [TMO03]: tuple distribution, tuple retrieval,
tuple movement, and balancing template. This chapter deals only with issues related to
tuple distribution.

4.2.1 Tuple Distribution

The process of tuple distribution or tuple sorting is one of the most important tasks to be
performed in the optimisation of coordination systems. It relates primarily to the primitive
out as this is LINDA’s way of allowing a process to store information. Tuple distribution
in SwarmLinda stores tuples based on their type (template), so that similar tuples stay
close to each other. To achieve this abstraction we see the network of SwarmLinda nodes
as the terrain in which out-ants roam. These ants have to decide at each hop in the
network, whether or not the storage of the tuple should take place. The decision is made
stochastically but biased by the amount of similar tuples around the ant’s current location.

For the above to work, there should be a guarantee that the tuple will eventually be
stored. This is achieved by having an aging mechanism associated with the out-ant. For
every unsuccessful step the ant takes, the probability of storing the tuple in the next step
increases and is guaranteed to eventually reach 1 (one).

The similarity function is another important mechanism. Note that it may be too
restrictive to have a monotonic scheme for the similarity of two tuples. Ideally we would
like to have a function that says how similar the two tuples are and not only if they are
exactly of the same template. Later in Section we describe the similarity mechanism
used in our experiments.

Now compare the above with a standard approach based on hashing. As a tuple needs
to be stored, a hash function is used to determine the node where to place the tuple. This
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approach, although efficient in closed systems, is inappropriate to dynamic open cases
because:

1. The modification of the hash function to include new nodes is not trivial.

2. The clustering of tuples is quite excessive. All the tuples of the same kind will
(deterministically) be placed on the same node.

3. Due to[2], the system is less fault tolerant. The failure of a node can be disastrous
for applications requiring the tuple kind(s) stored in that node.

Our approach is based on the brood sorting algorithm. We demonstrate that it is
possible to achieve good entropy for the system (level of organisation of tuples) without
resorting to static solutions such as hashing. The approach proposed here adapts to
changes in the network, including failures.

4.3 A Solution for Tuples Distribution

Tuple distribution that can work well when failures are commonplace is still an open issue
in the implementation of large scale distributed tuple spaces [MT03|. Several approaches
for distributing tuple spaces have been proposed [Tol98, [CLZ98, WMLF98|, but none of
them has proven useful (without modifications) in the implementation of failure-tolerant
distributed tuple spaces [MT03].

In order to find a solution to this problem, we took inspiration from self-organisation,
in particular from swarm intelligence. In the past years, many models deriving from
biology and natural multi-agent systems — such as ant colonies and swarms — have been
studied and applied in the field of computer science [MMTZ06]. The solution to the
distribution problem adopted in SwarmLinda is dynamic and based on the concept of
brood sorting as proposed by Deneubourg et al. [DGFT91].

We consider a network of distributed tuple spaces, in which new tuples can be inserted
using the LINDA primitive out. Tuples are of the form N (X, X, ..., X,,), where N
represents the tuple name and X, X, ..., X,, represent the tuple arguments. A good
solution to the distribution problem must guarantee the formation of clusters of tuples in
the network. More precisely, tuples belonging to the same template should be stored in
the same tuple space or in neighbouring tuple spaces. Furthermore, tuples with a similar
template should be stored in near tuple spaces. Note that this should all be achieved in
a dynamically and adaptive way.

In order to decide how similar a tuple and a template are, we need a similarity function
defined as similarity(tu,te), where tu and te are input arguments: tu represents a
tuple and te represents a tuple template. The values returned by this function are floating
point values between 0 and 1:
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e 0 means that tuple tu does not match template te at all; complete dissimilarity.
e 1 means that tuple tu matches template te; complete similarity.

e Other values mean that tu does not match perfectly te but, nonetheless, they are
not completely dissimilar.

In the following, we provide a description of the process involved in the distribution
mechanism, when an out operation occurs in a network of distributed tuple space. For
the sake of simplicity, we assume only one tuple space for each node of the network.

Upon the execution of an out (tu) primitive, the network, starting from the tuple space
in which the operation is requested, is visited in order to decide where to store tuple tu.
According to brood sorting, the out primitive can be viewed as an ant, wandering in the
network searching the right tuple space to drop tuple tu, that is, the carried food. The
SwarmLinda solution to the distribution problem is composed of the following phases:

1. Decision Phase. Decide whether to store tu in the current tuple space or not.

2. Movement Phase. If the decision taken in the previous phase is not to store tu in
the current tuple space, choose the next tuple space and repeat the process starting
from 1.

4.3.1 Decision Phase

During the decision phase, the out-ant primitive has to decide whether to store the carried
tuple tu-food in the current tuple space. This phase involves the following steps:

1. Use the similarity function, calculate the concentration F' of tuples having a tem-
plate similar to tu.

2. Calculate the probability Pp to drop tu in the current tuple space.

The concentration F' is calculated considering all the templates for which tuples are
stored in the tuple space. F'is given by:

F = Z?;l(q@- x similarity(tu, T;)) (4.1)

where m is the number of templates in the current tuple space, ¢; is the total number
of tuples matching template T;. Note that 0 < F' < @), where @ is the total number of
tuples within the current tuple space.

According to the original brood sorting algorithm used in SwarmLinda [DGET91], the
probability Pp to drop tu in the current tuple space is given by:

P () 02
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Differently than the original idea in brood sorting, here the value of K is not a con-
stant; K represents the number of steps remaining for the out (tu) primitive, namely, the
number of tuple spaces that an out-ant can still visit. When an out operation is initially
requested on a tuple space, the value of K is set to Step, that is, the maximum number
of tuple spaces each out-ant can visit. In the experiments that follow, we assume Step as
a parameter specific of the network topology we are using.

Each time a new tuple space is visited by an out-ant without storing the carried tuple
tu, K is decreased by 1. When K reaches 0, Pp becomes 1 and tu is automatically stored
in the current tuple space independently of the value of F'. K is adopted to implement
an aging mechanism to avoid having out-ants wander forever without being able to store
the carried tuple tu. If K > 0 and the tuple tu is not stored in the current tuple space, a
new tuple space is chosen among the neighbours of the current one. The following section
provides a description of the process involved in the choice of the next tuple space.

4.3.2 Movement Phase

The movement phase occurs when the tuple carried by an out is not stored in the current
tuple space. This phase has the goal of choosing, from the neighbourhood of the current
tuple space, the best neighbour for the next hop of the out-ant. The best neighbour is
the tuple space with the highest concentration F' for the carried tuple tu. According to
self-organisation principles, the choice of the next tuple space is local, i.e. based only on
the neitghbourhood of the current tuple space.

If we denote by n the total number of neighbours in the neighbourhood of the current
tuple space, and F; the concentration of tuples similar to tu in neighbour j (obtained
using Equation , we can then say that the total number of tuples similar to tu in the
neighbourhood is given by:

Tote, = > "\ F; (4.3)

The probability P; of having an out-ant move to neighbour j, is calculated by:

L
;= 4.4
J TOttu ( )
Adopting this equation for each neighbour, we obtain:
aP=1 (4.5)

The higher the value of P; for a neighbour 7, the higher the probability for that neighbour
to be chosen as the next hop of the out-ant. After a new tuple space is chosen, the whole
process is repeated starting from the decision phase (as described in Section 4.3.1)).
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4.3.3 A Case Study

In order to provide an example of the SwarmLinda distribution mechanism, we adopt
the case study presented in Figure 4.14] The figure shows a network of four tuple spaces
TS, TSy, TS3,TS,: in TSy the insertion of a new tuple a(1) is being executed. As
reported in the figure, the tuple spaces contain tuples belonging to one of four different
templates: a(X), b(X), ¢(X) and d(X).

For the sake of simplicity, we assume Step = 1, and we use a very simple similarity
function, given by:

similarity(tu, T) {1 if tuple. tu matches template T,
0 otherwise.

Using the SwarmLinda distribution mechanism, the first step is the execution of the
decision phase on tuple space T'S;. Tuple space T'Sy is characterised by the following
concentration values:

Gax) = 6, @x) =3, qex) =2, qax) =0

where g,(x) is the concentration of tuples matching template a(X) and so on. Given these
values, the concentration I (of tuples similar to a(1)) is calculated using Equation [4.1}

Fy = similarity(a(1), a(X)) X ga(x)
+ similarity(a(1),b(X)) X gox)
(a(1), ¢(X)) X gex)

+ similarity(a(1),d(X)) X qqx)

+ similarity(a

and, replacing the symbols with the values we get:
Fil=1x64+0x3+0x2+ 0x0=6
Then, according to Equation [4.2] the probability Pp to drop a(1) in TS is:

o2 6 \°
P, = —(——) ~0.734
b (F{+K) (6+1> 0.73

Supposing that a(1) is not stored in 7'S; — i.e. the calculated Pp is not satisfied — we
have to choose the next tuple space among the neighbours of 7'S;. The neighbourhood
of T'S; is composed of two tuple spaces: TSy and T'S,. If we assume F, = 2 and Fy = 8,
the probabilities to move in T'Sy or T'S, are:

F, 2
P, = -~ 02
T B+ F 10

F, 8
P, = -~ —08
YT R T E 10

o2
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tuple templates in the net
a(x)

Figure 4.1: Case study: a network composed of four tuple spaces.

Before moving to the next tuple space, the value of K is decreased by 1: in this
case the new value of K is 0. Since K = 0, a(1) will be stored in the next tuple space,
independently of the chosen tuple space.

4.4 Experimental Results

The results described in this section are based on an executable specification of Swarm-
Linda developed in the stochastic simulation framework presented in Chapter [2 As pre-
viously explained, our stochastic simulation framework enables a rapid prototyping and
modelling of many complex systems, like SwarmLinda and the collective sort problem
presented in Chapter [3] The next section briefly describes the executable specification of
SwarmLinda. Then, before showing the results, we report a description of the methodol-
ogy adopted for running the simulations. In particular, these simulations were performed
on two different instances characterised by different network topologies.

4.4.1 Executable Specification of SwarmLinda

The executable specification of SwarmLinda is based on the stochastic simulation frame-
work introduced in Chapter 2. According to this framework, the specification adopts the
concept of stochastic transition system. The stochastic functions provided by the frame-
work enable the implementation of the unpredictable time evolution proper of complex
systems.

For the sake of brevity the complete specification of SwarmLinda is not presented here:
the interested reader can refer to Appendix [C] for the complete code of the specification.
In the following, we report the similarity function, defined in our specification using the
MAUDE syntax:

op similarity : Term Term -> Float [comm]
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vars N1 N2 : Term . vars L1 L2 : TermList .

ceq similarity((N1(L1)), (N2(L2))) =
0.0 if N1 =/= N2 .

eq similarity((N1(L1)),(N1(L2))) =
0.6 + similarity(L1,L2)

eq similarity((N1,L1),(N2,L2)) =
similarity(L1,L2)

eq similarity(nil, (N1,L1)) =
-0.1 + similarity(nil,L1)

Given two arguments of type Term (representing a tuple and a template), the function
returns a Float value representing the degree of similarity between the tuple and template.
According to this definition, considering a tuple t(ay, ..., a,) and a template ¢’ (X1, ..., X;),
the resulting behaviour of the function is:

similarity(t(ay, ..., an), ' (X1, ..., X)) =

0.6 if tuple t = ¢’ and n = m,
=140.6—-(0.1 x [[m —mn|) if tuple t =t and n # m,
0 ift £+t

The similarity value is: (i) 0.6, if the tuple has the same name and the same number of
arguments as the template; (%) 0.6 — (0.1 x ||m — n||), if the tuple has the same name of
the template but a different number of arguments; (4ii) 0, if tuple name ¢ is not equal to
template name t'.

We can see that, when ¢ = ¢’ and n = m, the value returned by this similarity function
is different from the value returned by the similarity function described in Section
The maximum value returned by the similarity function — the value returned when a tuple
completely matches a template — affects the maximum value of probability Pp (Equation
. More precisely, the lower the maximum value that the function returns, the lower
the value of Pp considering the same F' and K (see Equations and [£.2)). Since we
want to make the system adaptable to unpredictable state changes, we start choosing an
upper-bound value for similarity lower than 1.

A tuple space is modelled by using the following (MAUDE) syntax

< Id @
[’queue @(out(T1) | ... | out(Tn))] |
[’tot @ Tot] |
[’conc @({TE1,Q1} | ... | {TEk,Qk})] |
[’neighbours @(Idl ... Idm)]
>
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where:

e Id is a natural number representing the identifier of a tuple space.

e [’queue @(out(T1) | ... | out(Tn))] represents the input queue of tuple space
Id, with the out operations to be executed.

e [’tot @ Tot] represents the total concentration of tuples in tuple space Id, where
Tot is a natural number describing such a quantity.

e [’conc @(TE1,Q1 | ... | TEk,Qk)] represents the concentrations Q1,...,Qk of
tuples for the different templates TE1, ..., TEk within tuple space Id.

e [’neighbours @(Idl ... Idm)] represents the neighbours Id1,...,Idm of tuple
space Id.

A network of tuple spaces is defined using the syntax

TS1 | TS2 | ... | TSq | [’steps,S]

where:

e TS1...TSq represents a network of ¢ tuple spaces, each defined according to the
syntax above.

e [’steps,S] implements the aging mechanism, where S is the maximum number of
steps, as described in Section [4.3.1]

4.4.2 Methodology

We want our distribution mechanism to achieve a reasonable distribution of tuples. Tuples
having the same template should be clustered together in a group of nearby tuple spaces.
To this end, the concept of global system entropy H introduced in Section [3.2.4] seems an
appropriate metric to describe the degree of order reached in the network. In particular,
the lower the value of H, the higher the degree of order in the network considered.

For each simulated network, we performed series of 20 simulations, using each time
different values for the Step parameter (representing the maximum number of steps a tuple
can take). One run of the simulator consists of the insertion of tuples in the network of
tuple spaces — via out primitives — until there are no pending out to be executed in the
entire network.

After the execution of a series of 20 simulations, the value of the spatial entropy H
of the network is calculated as the average of the single values of H resulting from each
simulation; we call this value average spatial entropy (Hg,,). For each network topology
presented in the next section, we considered only tuples of four different templates: a(X),
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b(X), c(X), and d(X). Therefore, the possible values returned by the similarity functions
are: (1) 0.6, if a tuple matches the considered template, (7i) 0, otherwise.

The following section presents the results obtained by simulating two different in-
stances of network.

e (ollective sort instance: a network of 4 tuple spaces completely connected, that is
equal to the collective sort case discussed in Chapter [3]

e Star instance: a network of 6 tuple spaces characterised by a star-like topology. Note
that this is used because of its contrast with collective sort. In collective sort we
have nodes forming a clique. The star, instead, contrasts the results with networks
that are not fully connected.

Despite of their simplicity, these networks let us appreciate the behaviour of the pro-
posed scheme in quite distinct scenarios. Note that the values for the parameters (such
as the Step parameter) are chosen to reflect the size of the network.

4.4.3 Star Instance

The network topology for the star instance is reported in Figure As depicted in the
figure, we verified the performance of our SwarmLinda distribution mechanism simulating
the insertion of 15 tuples of each template. The insertion of the tuples takes place in each
tuple spaces of the network. Consequently, at the end of a simulation, we have 90 tuples
per template in the network.

A first set of simulations was run considering the network initially empty. We consid-
ered different values of the Step parameter in the range [0 — 40], performing for each value
a series of 20 simulations. In particular, the situation with Step = 0 corresponds to the
case in which our distribution mechanism is turned off. Indeed, since no steps are allowed,
the tuple carried by each out is stored in the tuple space in which the out operation is
initially requested.

The results related to this set of simulations are reported in Figure (a). The figure
shows the trend of H,,, considering different values for the Step parameter. As expected,
using Step = 0, we obtained a value of H,,, equal to 1 since our distribution mechanism
is not used. In other words, we are in a deterministic situation, since each tuple is stored
in the tuple space in which the corresponding out occurs. Increasing the value of Step
causes H,,, to decrease. In particular, with Step = 16, H,,, reaches the value 0.2, that
is the lowest value for this set of simulations. Further increasing the value of Step has
minimum effect to Hg,,.

The SwarmLinda distribution mechanism works dynamically—each out has to store
the carried tuple tu in a tuple space with a high concentration of tuples similar to tu
without any previous knowledge about the status of the network. For this reason, even
though H,,, = 0.2 does not correspond to complete clustering, nonetheless it represents
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Figure 4.2: Star instance. This network was used in two different experiment: with
seeding and without seeding. The picture depicts the seeds in 4 of the nodes but the
network is assumed empty when we perform the no-seeding experiments.

a good result. Moreover, it is important to find a good balance between the value of the
Step parameter and the value of H,,, we want to achieve. Indeed, a too high value of Step
may lead to a high network traffic. Hence, when we choose a Step value, it is important to
consider not only the performance in terms of H,,,, but also the cost in terms of network
traffic generated. Another point to be made is that complete clustering may actually not
be desirable given that it makes the system less tolerant to failures. Excessive dependency
on single nodes leads to the infamous single-point-of-failure problem.

The other experiment performed measures the behaviour of the tuple distribution
mechanism when faced with a network where clustering is already present. In Figure
this consists of the configuration where the clusters depicted are considered in the
execution. To perform this new set of simulations, we used the same number of tuples
adopted for the previous case, but instead of considering the network initially empty, we
considered an initial network configuration with clusters already formed. In particular,
for each cluster of tuples belonging to a given template, we considered a concentration
equal to 15% of the total number of tuples expected for that template. In the following,
we refer to a cluster by the term seed. Figure (a) also shows a comparison of the trend
of Hg,y obtained considering the presence of seeds against the results without seeds. The
results are characterised by a better value of H,,,. This is expected since the network
already had some level of organisation before the tuple distribution was executed.

Finally, we performed an analysis of the sensitivity of tuple distribution in relation to
the seed concentration when Step = 16. A series of 20 simulations for different initial
seed concentrations in the range [0% — 80%)] was performed. The results related to this
case are shown in Figure (b). As expected, the higher the value of seed concentration,
the lower the value of Hg,,.
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Figure 4.3: Charts showing the results for the Star instance.
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Figure 4.4: Collective sort instance. Again here the network shows nodes with seeds but
these are only considered in the experiments that consider the existence of seeds.

4.4.4 Collective Sort Instance

The network topology for the collective sort instance is shown in Figure[£.4] This instance
corresponds to the case studied in Chapter |3 even though the approach adopted here is
different.

It is worth comparing the two solutions that, although characterised by the same
goal, are based on different approaches. Indeed, in the case discussed here the cluster-
ing process in realised dynamically as soon as an out operation is executed on a tuple
space. Conversely, the approach described in Chapter 3| proceeds asynchronously in back-
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Figure 4.5: Charts showing the results for the Collective Sort instance.

ground, independently of out-operation executions—in other words, it is conceived as a
background service running concurrently to tuple insertions. This means that the tuple
carried by an out is initially stored in the tuple space in which the operation occurs. At
the same time, a set of software agents work in background with the task of moving tuples
from a tuple space to another: the global goal is to achieve the complete clustering in the
network.

We performed on the collective sort instance the same simulations executed previously
on the star instance, using 100 tuples for each tuple template (Figure . Figure (a)
reports the trend of H,,, considering the network initially empty (without seeds). Figure
(a), also shows the trend of H,,, with seeds compared with the one resulting from the
simulation without seeds already formed in the network. Finally, Figure (b) shows the
trend of H,,, considering different seed concentrations, using the same criterion described
in Section £.4.3] The results show the same trend of Hg,g, already described in Section
[4.4.3] for the star instance.

Now, we can compare the approach used here with that presented in Chapter [3| First
of all, by considering the two solutions from the viewpoint of performance, we can notice
that, while collective sort can achieve a perfect clustering of the tuples (H,,, = 0), the
SwarmLinda solution can at most reach 0.2 as a minimum value of H,,,. However, the
SwarmLinda solution tries to store a tuple in the right tuple space upon the execution of
an out operation, whereas in the solution developed in Chapter [3| realises clustering by
using software agents that work in background. Consequently, the latter solution seems
to have a higher computational price than SwarmLinda.

The previous discussion has just the goal of highlighting the differences between the
two solutions. As a consequence, the two approaches do not have to be viewed as conflict-
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ing, but as alternatives, or better, as complementary approaches. Therefore, the choice
of the solution to adopt should mainly depend on the specific application domain.

4.5 Applying SwarmLinda to Scale-Free Networks

In order to verify the applicability of the SwarmLinda distribution mechanism to large
networks, we chose to perform simulations on scale-free topologies [BA99]. This choice
was mainly driven by the consideration that almost every real network of computers
features a scale-free topology—e.g. the WWW [BA99] [Str01]. Next section reports a
brief description of the scale-free networks used for our experiments, and the algorithm
used to generate these networks.

4.5.1 Sample Scale-Free Networks

The networks used in our experiments were generated using the original B-A Scale-Free
Model Algorithm presented by Barabési and Albert in [BA99]. This algorithm is briefly
recalled in the following description. Given an initial small number mg of tuple spaces:

e at each step of the algorithm, a new tuple space is added and connected to m < my
already existing tuple spaces.

e The higher the degree k; of an already existing tuple space ¢, the higher the proba-
bility of connecting the newly introduced tuple space to 1.

Probability P; to have the added tuple space connected to ¢ is:
ki
Z j kj

so that already existing tuple spaces with a large number of connections have a high
probability to get new connections. This phenomenon is also called rich get richer.

P, =

In order to generate our sample scale-free networks we chose mg = m = 2, and started
with an initial network of two tuple spaces linked to each other. Then, each new tuple
space was connected to two already existing ones according to the B-A Scale-Free Model
Algorithm. We generated two scale-free networks composed of 30 and 100 tuple spaces.

The following section presents the results obtained by simulating the two scale-free
instances. First, we performed simulations on a 30-tuple-space scale-free network in or-
der to preliminary evaluate the performance of the distribution mechanism. Then after
having proven that our approach is able to achieve a good tuple distribution, we executed
simulations on the 100-tuple-space scale-free network, in order to further evaluate the
performance of the distribution mechanism on larger networks.
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Figure 4.6: Trend of average spatial entropy Hg,, resulting from the simulation of the two
scale-free networks used in our experiments.

4.5.2 Simulation Results

Both network instances were simulated for values of Step in the range 0 to 80 steps,
considering the occurrence of 60 out operations per tuple space—15 per tuple template.
In particular, Step = 0 corresponds to a simulation performed without applying the
distribution mechanism: indeed in this situation, every tuple is directly stored in the
tuple space in which the corresponding out operation occurs.

The simulation results for the 30-tuple-space scale-free network are reported in Figure
Observing the results, we can clearly see that if we use a value of Step large enough
to let an out-ant explore the network, the value of H,,, becomes small, meaning that the
network features a high degree of clustering. For values of Step > 20, the distribution
mechanism shows a high degree of insensitivity to different values of Step: this is due
to the fact that, even though we choose Step > 20, the capability of our distribution
mechanism to explore the entire network remains the same. For this reason, the trend of
H,,, tends to an horizontal asymptote with a value approximately equal to 0.014.

Figure shows the trend of H,,,, for different values of Step, but it does not provide
any information about actual tuple distribution in the network at the end of a simulation.
Figure reports a qualitative representation of tuple distribution in the network for two
sample simulations chosen out of the 20 simulations used to calculate H,,, with Step = 40.
Moreover, the tuple distribution shown in Figure (left) corresponds to a spatial entropy
value H = 8.51 x 1073, while Figure (right) reports a tuple distribution featuring
H = 1.42 x 1072, Although these final tuple distributions are different, the corresponding
values of H demonstrate that we can achieve a quasi-perfect clustering. Indeed, Figure
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Figure 4.7: Final distribution of tuples obtained with Step = 40 for two different simu-
lations on the 30-tuple-space scale-free network. Spatial entropy corresponding to these
simulation: H = 8.51 x 1073 (left) and 1.42 x 102 (right).

makes it clear the tendency of the distribution mechanism to organise tuples per tuple
template amongst the tuple spaces composing the network.

Looking at the two tuple distributions reported in Figure |4.7] also makes it clear that
even though the SwarmLinda distribution mechanism evolution does not allow to know
in advance where tuples of a certain template will aggregate, a good level of information
clustering (in terms of spatial entropy) can be achieved in every situation. Nonetheless,
as depicted in Figure the final tuple distribution pattern is sensitive not only to
the values assumed by Step, but also to the initial conditions of the network. In fact,
though the previous simulations were performed on an initially empty network, executing
simulations on a network featuring one or more clusters already formed leads to a final
tuple distribution where the inserted tuples tend to aggregate around the clusters. The
outcome of a set of experiments — executed considering the presence of clusters in the
network — is presented and discussed later.

The observed sensitivity of the distribution mechanism to system’s initial conditions
does not however mean that our approach is not self-organising. In fact, the capability
to cluster information is independent of what Camazine et al. [CDET01] call external cue
acting as a template for the aggregation of organisms.

As Camazine et al. point out, the emergence of patterns in organism clustering is
sometimes thought of as the result of a self-organising process even though it is not. As a
consequence, we need to provide indications of the true self-organising nature of our tuple-
distribution mechanism. One first possible indication is reported in Figure showing
the trend of concentration F' for different simulations executed using Step = 5, 10 and
40. More precisely, F' refers to the concentration of tuples similar to the current one in
the tuple space where the tuple is stored.
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Figure 4.8: Evolution of concentration F' for different simulations run on the 30-tuple-
space scale-free network using Step = 5, 10 and 40. The bottom-right graph just highlights
the differences between Step = 5 and Step = 40.

Even though Figure 4.8 allows to know neither the tuple space where a tuple is stored
nor the tuple template of that tuple, we can easily recognise the formation of several clus-
ters. This suggests that our SwarmLinda distribution mechanism exhibits a self-organising
behaviour, making clusters of similar tuples emerge from an initial state characterised by
an empty network. In particular, the emergence of such clusters is only driven by the local
interactions occurring between a tuple space and its neighbours. Furthermore, looking
at the different charts reported in Figure [4.8 makes it clearly visible an increasing order
arising when higher values of Step are used: note in particular the comparison reported
in Figure between the results for Step = 5 and the ones for Step = 40.

In spite of these results, we need a stronger argument to show that the pattern resulting
from our distribution mechanism arises as a result of a self-organising process. In many

63



64 CHAPTER 4. SWARMLINDA

tuple-template a(X) Etuple-template b(X)
tuple-template c(X) tuple-template d(X)

tuple-template a(X) Btuple-template b(X)
tuple-template c(X) tuple-template d(X)

600 1
500

500
400 4

400 A

300 A
300 4

200 A 300

100 4 I 100 A
o . . ‘ . . ‘ — ‘ 0

Figure 4.9: Final distribution of tuples obtained with Step = 40 for two different simula-
tions on the 30-tuple-space scale-free network, considering a starting condition featuring

clusters already formed on the network. Cluster size used in these simulations: 10 tuples
(left) and 100 tuples (right).

cases of collective behaviour, organism clustering arises as a response of the individuals
to an external cue acting as a template, and not as a natural outcome of a self-organised
pattern formation |[CDET01]. In particular, such a behaviour has been observed in the
stable fly of human and wood lice. In all of these cases, the aggregation process is the
result of an external stimulus, an environmental template representing a fixed feature of
the environment. Oppositely, in a self-organised aggregation the individuals respond to
signals that are dynamic and affected over time from the behaviour of the individuals
themselves.

One possible way to understand if one’s system is really self-organising is to find an
environmental template suspected to lead the aggregation of system’s individuals, and
see if that aggregation occurs even though the environmental template is removed. If,
after removing the suspected environmental template, the individuals in the system fail
to aggregate, we have a good indication that the aggregation of those individuals is based
on an environmental cue and not on a self-organising process. Furthermore, systems
achieving aggregation only by environmental templates are insensitive to different initial
conditions, i.e. they come to the same final state independently of any variation in
system’s initial conditions. Nonetheless, other systems feature a behaviour driven by
both a self-organising process and an external cue. Here, it would be desirable to find the
relative contributions of these two factors to the aggregation process.

If we go back to our distribution mechanism, the role of individual is played by the
out-ants wandering the network in the attempt to store the carried tuple, while the role of
possible external cue can be played by clusters already formed in the network at the start
of the simulation. The results shown previously are a first indication of the self-organising
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Figure 4.10: Final distribution of tuples obtained with Step = 40 for two different simu-
lations on the 100-tuple-space scale-free network. Spatial entropy corresponding to these
simulation: H = 5.43 x 1073 (left) and 0 (right).

nature of our distribution mechanism. Even though we considered a network initially
empty — with no clusters already-formed in the network — the results demonstrate that
our distribution mechanisms can however achieve a strong level of information clustering.

In the attempt to provide a stronger argument of the self-organising nature of our
distribution mechanism, we decided to perform further simulations considering the pres-
ence of clusters. More precisely, we ran a first set of simulations on the 30-tuple-space
scale-free network considering four already formed clusters containing 10 tuples each: (i)
10 a(X)-template tuples in tuple space 2, (i) 10 b(X)-template tuples in tuple space 10,
(7i) 10 ¢(X)-template tuples in tuple space 15 and (iv) 10 d(X)-template tuples in tuple
space 29. As in the previous experiments, we simulated the insertion of 60 tuples per
tuple space—15 per tuple template. Figure (left) shows the results of one of these
simulations. It is easy to see that though the size of the clusters is small — compared
to the number of tuples to be inserted in the network — they act as attractors for the
tuples to be stored. Moreover, we are still able to achieve information clustering, but
now the evolution of our distribution mechanism is driven not only by the time-evolving
interaction between out-ants, but also by the presence of clusters. In fact, the distribu-
tion reported in Figure (left) is characterised by the formation of clusters in the tuple
spaces featuring the presence of clusters.

To better understand the role played by already formed clusters in the process of
tuple clustering, we executed a second set of simulations characterised by the same initial
conditions, but using larger clusters. The results of this second set of simulations are
shown in Figure (right). In this situation the attracting tendency of clusters is clearly
recognisable and — due to clusters of larger size — is stronger than in the previous set of
simulations.
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Figure 4.11: Evolution of concentration F' for different simulations run on the 100-tuple-
space scale-free network using Step = 5, 10 and 40. The bottom-right graph just highlights
the differences between Step = 5 and Step = 40.

However, comparing these results with those obtained by simulating the network ini-
tially empty (Figure shows that the distribution mechanism can achieve information
clustering independently of the presence of clusters. Although already formed clusters
tend to attract the evolution of larger clusters towards tuple spaces featuring the pres-
ence of clusters, they are not the only cause leading to information clustering. Indeed,
the dynamic and evolving interactions between out-ants play also an important role in
achieving a good level of clustering.

After having performed simulations on the 30-tuple-space scale-free network, in order
to verify the behaviour of our mechanism on larger networks, we ran a new set of simula-
tions on a 100-tuple-space scale-free network. Figure shows the trend of H,,, for these
simulations, and confirms the trend already observed on the 30-tuple-space scale-free net-
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Figure 4.12: Function used to generate a slope value b given a Max-Size value.

work. Moreover, the value of the corresponding horizontal asymptote is equal to 0.007.
Figure [4.10] reports the final tuple concentration achieved in two sample simulations ex-
ecuted with Step = 40, while Figure 4.11| shows the trend of F' for different simulations
executed with Step = 5, 10 and 40. All these results confirm the qualitative trend already
observed on the 30-tuple-space scale-free network.

4.6 Avoiding Over-Clustering in SwarmLinda

As it should be clear by now, over-clustering can take place if the SwarmLinda algorithm
is used without care. Over-clustering is the phenomenon occurring when a node becomes
a strong aggregator of tuples belonging to the same kind. When such circumstances hold,
the whole network is likely to become highly dependent on that node, resulting in a weaker
system from the standpoint of robustness to failures.

4.6.1 A First Solution to Over-Clustering

In order to avoid over-clustering, we introduced the Maz-Size parameter, that represents
the maximum number of tuples allowed for each cluster. Then we exploit a generalised
logistic function (a sigmoid function), so that probability Pp can be normalised according
to a sigmoid curve. More precisely, we used an instance of the generalised logistic function,
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characterised by the equation:

Pp — 0.01
P =Pp— {0.01 + <(1 - 0.56_1’(){_27”))2)] (4.6)

where Pp is the drop probability calculated by using Equation [4.2] b is the slope of the
curve, and m is the value of the X variable at which we observe the maximum value of
the curve derivative. Equation defines a complemented generalised logistic function,
since we want to obtain the maximum value of P}, when X has a small value. Indeed, the
value assigned to X is the concentration F' calculated considering the current tuple to be
stored. The value of m depends on the total number of tuples per template expected in
the network, while the slope value b depends on the values chosen for Maz-Size: the lower
the value of Maz-Size, the higher the value of b. Figure shows the function used to
obtain a value of b given a value of Max-Size.

According to Equation , as the number of tuples of a given template (the con-
centration F') approximates to Maz-Size, the drop probability P}, degenerates towards 0
(zero). More precisely, the Pp value calculated by Equation is used as the maximum
value returned by our generalised logistic function when F° = 0. Then, depending on
the concentration F' calculated by Equation , the new value P}, of drop probability
is returned by adopting our generalised logistic function—again, a simple normalisation
based on the current level of clustering.

In our experiments Max-Size is set to 100: this choice was based on the number of
tuples stored in the network, and on the size of the network itself. Figure presents the
complemented generalised logistic function obtained with Maz-Size = 100 and Pp = 0.9.
In particular, the value of b is obtained by using the function shown in Figure |4.12| with
Max-Size = 100. Then by applying the obtained value of b to Equation 4.6 we can
generate the curve shown in Figure [£.13] According to Equation [4.6] this curve features
a lower asymptote equal to 0.01, and an upper asymptote equal to Pp. An interesting
future work would be to devise a solution based on a dynamic Max-Size parameter. In
particular, we would like Maz-Size to be a function of the clustering status, the size of
the network, or perhaps the current entropy of a tuple space (its level of organisation).

Adopting this anti-over-clustering strategy, we performed a series of 20 simulations on
the network reported in Figure These simulations were performed by considering
four different tuple templates (a(X), b(X), ¢(X), d(X)) and the insertion of 210 tuples
per template—in other words, for each template, 15 tuple insertions per tuple space.
Simulations were performed by choosing Step = 30 and Maz-Size = 100. Choosing
template ¢(X) as reference, Figure compares the concentration of tuples of template
¢(X) in the network with and without over-clustering. While in the case without anti-
over-clustering we have a heavy concentration of ¢(X) tuples on one tuple space, now
the same amount of tuples is divided on two tuple spaces. More importantly, we do not
lose clustering ability—the tuples are clustered in a group of close nodes rather than in
individual nodes far from each other.
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Figure 4.13: Complemented generalised logistic function obtained with Maz-Size = 100
and an upper asymptote value Pp = 0.9.

Figure 4.14: Topology used in the anti-over-clustering experiments.

4.6.2 Enhanced Anti-Over-Clustering Strategy

Although the approach described in Section[4.6.1] provides a fair solution to over-clustering,
some improvements are needed. In particular, we need to modify the original SwarmLinda
distribution mechanism presented in Section 4.3 adapting its behaviour to the anti-over-
clustering strategy described in Section [4.6] Indeed, in Section [4.6.1] only the decision
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Figure 4.16: Complemented generalised logistic functions obtained using Maz-Size = 100,
400 and 840, with an upper asymptote value Pp = 0.9.

phase of the SwarmLinda distribution mechanism is adapted to cope with over-clustering,
whereas the movement phase is left unchanged. As a major consequence, when a tuple is
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Figure 4.17: Enhanced anti-over-clustering strategy: comparison of the tuple distribution
achieved with Maz-Size = 100, 400 and 840.

not stored in the current tuple space, the choice of a good neighbour does not take into
account over-clustering, making it possible to choose an over-clustered neighbour for the
next hop. Since we wanted to have a distribution mechanism completely coherent with
the anti-over-clustering strategy presented in Section [£.6.1] we developed a new movement
phase by modifying Equation [£.4]
More precisely, the new probability P; of having an out-ant move to neighbour 7'S;
becomes: P
h=s
k=11k
where P/ is obtained by Equation . Fundamentally, the new calculation for P; considers
how good P} is when compared to all the other probabilities of the neighbours. In other
words, it takes P]’ as a relative value instead of an absolute one.
Again, the slope value b used to calculate P! depends on the chosen Mazx-Size value.
The division by > 7_, P/ shown in Equation 4.7is a normalisation that makes it possible
to have:

(4.7)

?:1Pj =1 (4.8)

Adopting this new movement phase, we obtained a completely coherent SwarmLinda
distribution mechanism characterised by an enhanced anti-over-clustering strategy. Note
that the main advantage of this approach is to consider over-clustering even in the move-
ment phase: though, since we are using a self-organised approach, we do not want to
completely avoid the choice of an over-clustered tuple space, but rather, to make it less
likely than other tuple spaces.
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Figure 4.18: Charts reporting an approximated graphical representation of tuple distri-
bution obtained with Maz-Size = 100, 400 and 840.

The next section provides a description of the results achieved by applying the en-
hanced anti-over-clustering strategy on the scale-free network shown in Figure |4.14}

4.6.3 Result Evaluation of the Enhanced Anti-Over-Clustering
Strategy

We performed a set of three simulations adopting the enhanced anti-over-clustering strat-
egy on the same network reported in Figure Since we were mainly interested in
the observation of tuple distribution for different Maz-Size values, we decided to use only
tuple template a(X). More precisely, for each simulation, we simulated the insertion of
840 tuples—60 per tuple space.

Each simulation was run adopting a different Maz-Size value: in particular, we con-
sidered Max-Size equals to 100, 400 and 840. Every execution was performed using
Step = 30. The choice of Step = 30 corresponds to a very critical condition for the
enhanced anti-over-clustering strategy, since such a value, if we do not use any anti-over-
clustering strategy, guarantees a situation of quasi-complete clustering. This choice was
driven by the necessity of testing our enhanced anti-over-clustering strategy in the worst
case.

Figure shows the sigmoid functions corresponding to the Max-Size values chosen
for the simulations. It is easy to see that the higher the Maz-Size value, the lower the value
of b. Given a value of F', a lower value of b generates a higher value of Py,: this corresponds
to a higher probability to store a tuple in the current tuple space. In other words, lower
values of b allow the formation of larger clusters. In particular, the cluster size is directly
related to the chosen Maz-Size value: indeed, fixing Maz-Size, the probability P}, quickly
decreases as the concentration F' becomes close to the fixed Maxz-Size value.

The results obtained by running the three simulations are shown and compared in
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Figure [£.17 The Figure makes it evident the influence of Maz-Size on the cluster size.
Indeed, while with Maz-Size = 100 we obtained clusters characterised by an average size
of 100 tuples, the simulation with Max-Size = 400 led to the formation of two clusters with
an approximate average size of 400 tuples. Moreover, with Maz-Size = 840 we obtained a
quasi-perfect clustering, since the Maz-Size value is equal to the number of tuples inserted
in the network: as a consequence, even though this situation features over-clustering, we
demonstrated that Maz-Size can be used to tune the system behaviour in a custom way.
These results show that we can use Max-Size to influence the tuple distribution in a
self-organised fashion.

Figure [1.1§ (a), (b) and (c) provide an alternative view of the tuple distribution
resulting from the different Max-Size values adopted. More precisely, tuple distribution
is shown with respect to network topology. It is easy to see that every value of Max-
Size guarantees the formation of close clusters, maintaining in any case a good level of
organisation in tuple distribution. We can also recognise that more connected tuple spaces
have a higher probability to store a high number of tuples.

4.6.4 Coping with Over-Clustering: Concluding Remarks

In this section a solution to the over-clustering problem was proposed as an extension
of the basic SwarmLinda strategy for tuple distribution. The work on avoiding over-
clustering was initially driven by the consideration that over-clustering may occur even
though we adopt self-organised solutions based on novel approaches. Using the proposed
anti-over-clustering strategies, we executed some simulations considering the case without
anti-over-clustering and the case with anti-over-clustering. In particular, this first solu-
tion to over-clustering was developed by considering the effect of over-clustering on the
probability to store a tuple in a node. Then we improved this first anti-over-clustering
strategy, making the entire SwarmLinda distribution mechanism coherent with the pre-
viously developed anti-over-clustering strategy. In this improved solution the effect of
over-clustering is considered even in the movement phase, occurring when the considered
tuple is not stored in the current tuple space. This enhanced anti-over-clustering strat-
egy was tested with different Maz-Size values, showing how Maz-Size affects the tuple
distribution in the network.

There are many improvements that need to be performed on this approach but, most
importantly, we need to devise a truly self-organised solution able to dynamically adapt
the Maz-Size value. Indeed, this parameter drives the clustering behaviour as one can see
in Figure [4.18] However a specific Maz-Size value may be inadequate as system changes.
For instance, a system featuring one tuple space containing 10 tuples may be considered
over-clustered if 10 tuples are all the tuples in the system. What one would like is to
make this value change as some of the characteristics change, such as the size of the
network (number of nodes), the reliability of the nodes, the total tuple-space number in
the system, and the number of tuple kinds in the system. However, the main challenge
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consists in the fact that our approach is self-organising. As such, it should not be based
on global parameters that are costly to maintain.

Last but not least, we still need to devise metrics for a more effective evaluation of
the effect of clustering (with and without the approach to anti-over-clustering) in the
survivability of SwarmLinda. Fault-tolerance and survivability of open LINDA systems is
rarely tackled. We believe our approach improves the fault-tolerance of SwarmLinda and
should make it a good choice for faulty systems.
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Self-Organising Tuple Clustering and
Sorting

In this chapter the abstract framework of self-organising coordination introduced in Chap-
ter [2| is exploited for devising two applications inspired by corpse clustering and larval
sorting in ant colonies, where a distributed tuple-space-based scenario is enhanced with
adaptive tuple clustering and sorting, which can be regarded as generalisations of the
collective sort problem and SwarmLinda. In particular, both the collective sort and
SwarmLinda deal exclusively with the problem of tuple sorting from quite a specific per-
spective. In fact, while collective sort addresses the sorting of tuples already present in
a tuple-space network featuring a flat topology, SwarmLinda — even though not relying
on a specific topology — focusses on a tuple sorting mechanism based on out operations
literally wandering the network so as to find a proper storage location for the carried
tuples, i.e. new tuples are supposed to be stored in the proper area of the network as
they are injected in the network itself. Here instead, the problems of tuple clustering
and tuple sorting are addressed separately so as to provide a better clarification of the
corresponding issues and devise solutions appropriate for generic-topology networks.

5.1 Self-Organisation for Tuple Organisation in Dis-
tributed networks

As clarified in Chapters [3] and [ one of the most popular coordination scenario is based
on the idea that agents in a distributed system can interact with one another through
tuple spaces spread over the network, where tuples can be inserted and retrieved relying
on so-called generative communication |Gel85l [Gel89, [(0Z99]. This approach has been
shown to support time and space decoupling, as well as to promote a clear separation
between the computational part of the system, which should reside inside agents, and the
coordination part of the system implemented by tuple spaces.

However, the position of tuples in such a distributed system is crucial since agents
cannot simply try to randomly look for tuples: some searching strategy is required to
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make sure that agents have at least a partial knowledge of the location of the tuples
of interest—indeed, this is the main reason underlying the study of collective sort and
SwarmLinda. A possible solution to this problem is to devise approaches to move tuples
in the most proper tuple space, so as to ease the process of tuple localisation by agents.
In fact, retrieving a tuple might be not so trivial. First of all, if the tuple space resides far
from where an agent is currently situated, obtaining a tuple requires possibly expensive
network operations. Most importantly, if the existence of a tuple is known but its position
is not, an agent has to observe different tuple spaces before finding the right one. Instead,
each agent should always be aware of the position of the tuples it is interested in. If this
is unfeasible, even just some kind of awareness could be extremely helpful.

From a general perspective, one of the main reasons for dealing with the issue of tuple
organisation and distribution is to ease the strategies adopted by agents to find specific
kinds of tuples in distributed networks. Indeed, providing tuple-space-based systems with
specific patterns of tuple distribution can improve the efficiency of the coordinated agents.
In this scenario, the use of traditional centralised approaches becomes unfeasible for to-
day’s application domains, which feature a high degree of unpredictability and dynamism.
For instance, agents of a distributed tuple-space-based system usually insert, move, and
retrieve tuples in unpredictable ways both from a temporal and spatial viewpoint. As a
consequence, the adoption of the self-organising conceptual framework shaped in Chap-
ter [2| becomes crucial for providing adaptiveness and pattern emergence in coordination
settings where state changes occur in a dynamic and unpredictable way. Accordingly, a
possible solution is to provide agents with a background and online service for organising
tuples in the network.

The issue of tuple distribution has been already dealt with in Chapter [3, where an
online, distributed self-organising service — called collective sort — for exact tuple sorting
in flat sets of tuple spaces was presented. In particular, collective sort was considered in
a scenario featuring N tuple kinds and N fully connected tuple spaces. In this context,
the role of tuple kind is played by tuple template. According to this scenario, the goal of
collective sort is to adaptively sort tuples per kind so as to come to a final organisation
where each tuple space stores only tuples of the same kind (template). Furthermore, also
SwarmLinda, discussed in Chapter {4} deals with tuple distribution, though the approach
is not based on a background service for sorting tuples, but on a mechanism to make new
tuples find the proper storage place as they get inserted in the network.

This chapter instead considers separately the issues of data clustering and data sorting
and adopts the self-organising framework depicted in Chapter 2 While the main inspi-
ration for dealing with the latter issue derives from larval sorting in ants [BDT99], the
former is dealt with by taking inspiration from corpse clustering [BDT99]. Corpse clus-
tering is a phenomenon observed in many species of ants: corpses randomly distributed
in the (physical) space tend to be organised and clustered by roaming ants through an
increasing and emergent aggregation process [BDT99]. On the other hand, in larval sort-
ing, larvae are picked up by ants according to larvae size and dropped elsewhere so as to
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form clusters organised per larvae size [BDT99]. As a consequence, larvae with a similar
size tend to be laid down in the same area by an increasing and emergent aggregation
and segregation process.

Drawing inspiration from these natural phenomena, we focus on the problem of tuple
organisation in distributed tuple-space networks from a quite general perspective. Tuple
organisation can be viewed from a twofold perspective: tuple clustering and tuple sorting,
which are key for today’s tuple-space-based coordination systems. In tuple clustering the
main focus is on defining a strategy to spatially aggregate tuples of the same kind — i.e.
tuples carrying information of the same class — in clusters that form on the network in an
emergent way. On the other hand, tuple sorting can be regarded as a generalisation of
tuple clustering: tuples are not only aggregated but also segregated with respect to their
kind. Accordingly, tuples of the same kind are aggregated in the same cluster, but kept
segregated from tuples of other kinds.

In the follows, the solutions to tuple clustering and tuples sorting are presented and
experimental results provided. In particular these solution can be viewed in terms of the
features defined for the conceptual framework of self-organising coordination.

Topology — Topology is represented by the way tuple spaces are connected with one
another. In other words, the space is shaped according to the specific topology
adopted for the tuple-space network. Here, a location is represented by a tuple
space, which can be regarded as a coordination medium. Accordingly, the whole
tuple-space network is a distributed coordination medium.

Locality — Interactions in the network occur between neighbouring tuple spaces, which
enact coordination rules to move tuples according to local criteria.

On-line character — Tuple spaces are provided with coordination rules reactive to
locally occurring interactions. Such rules are online as they need to react to the
dynamic evolution of tuple distribution in the network. This is an essential feature
for providing tuple organisation with a truly self-organising coordination mechanism.

Time — The reaction rules enacted by tuple spaces are timed, i.e. reactive to time
elapsing. In other words, these rules are executed whenever a given time interval
has passed so that the tuple-organisation service is provided at a rate dependent on
the chosen time interval.

Probability — The reaction rules enacted by tuple spaces are probabilistic, which can
give a high degree of adaptiveness to unpredictable state changes.

5.2 Self-Organising Tuple Clustering

This section presents a solution to tuple clustering in distributed tuple-space networks
that takes inspiration from the model of corpse clustering introduced by Deneubourg et
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al. [BDT99, DGFT91]. Each tuple space in the network is provided with coordination
rules, whose goal is to locally move tuples to neighbouring tuple spaces. As described in
Section[5.1] this leads to the emergence of global tuple clustering only by local observations
and actions. In fact, the rules enacted by each tuple space have only a partial view of
system state and act accordingly by moving, if so, tuples to neighbouring tuple spaces.
As prescribed by the LINDA model [Gel85], access to tuple space state is granted by
performing tuple readings (rd operations), retrievals (in operations), and insertions (out
operations).

Moreover, in order to exploit the metaphors coming from corpse clustering, tuples
need to be enriched with some additional meta-data. The first meta-data to be added
is a binary flag describing if the tuple is still or moving. While a still value of the flag
describes a tuple that has not recently been moved, a moving value is assigned to recently
moved tuples. When a still tuple is chosen for being moved, the value of the flag becomes
moving. On the other hand, when a moving tuple is stored in a tuple space, the respective
flag value becomes still. The second meta-data is represented by a value containing the
tuple concentration of the last tuple space visited by a moving tuple. This is key to
facilitate the storage of a tuple in tuple spaces whose tuple concentrations are higher than
the ones observed in the tuple spaces previously visited by the tuple.

Correspondingly, the coordination rules applied by each tuple space are as follows:

1. a rd operation is performed on local space L, yielding a tuple t;
2. if t is still

o t gets moving by a probability P,opie

— if ¢ gets moving: conc(t) = conc(L)
3. else (t is moving)

e a random number r between 0 and 1 is drawn
o if r < e—(conc(t)/conc(L))

— t gets still
e clse

— a neighbouring tuple space R is randomly chosen

— t is moved to R

After having randomly read a tuple ¢ from its tuple space L, there are two possible actions
depending on the state of t. If t is a still tuple, ¢ gets moving by a probability P,,pie, Wwhich
represents the probability of a still tuple to get moving. Furthermore, the concentration
of tuples perceived by t (conc(t)) is updated to the total concentration of tuples in L
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(conc(L)). If t is a moving tuple, it may be stored on the local tuple space: this decision
is made by a probability calculated as

e~ (conc(t)/conc(L))

whose exponent is the relative concentration of tuples perceived by ¢ during the last
movement with respect to the total tuple concentration of L. In particular, a high value
of relative concentration leads to a low probability of storing ¢ in L, since we can suppose
that tuple spaces previously visited by t feature higher concentration of tuples than L.
On the other hand, low values of relative concentration increase the probability of storing
t in L, as this is a clear clue that tuple spaces previously visited by t feature lower
concentration of tuples than L.

5.2.1 Experimental Results

This section shows the results obtained from experiments on tuple clustering run on a
100-tuple-space torus-topology network. The main peculiarity of a torus topology lies in
the lack of a center in the network since even the nodes at the edge of the network are
linked to the nodes on the opposite side. As a result of this topology, every node features
the same connectivity degree so that a torus can also be thought of as a space wrapped
around itself. One of the benefits of adopting such a topology lies in the chance of testing
the effectiveness of the proposed solution on a network whose topology scarcely influences
the way tuples aggregate. As a consequence, the way tuple organise in the network is
mainly influenced by the enactment of the coordination rules and only barely by factors
related to chosen topology.

The simulation framework adopted for the experiments was NetLogd']l In the experi-
ments we considered an initial configuration featuring 2500 tuples uniformly distributed
in the network and P, = 0.2, whose influence on the aggregation process is mainly
related to the speed in cluster formation. The result of a simulation run by considering
these initial conditions is shown in Figure . In particular, Figure (a) reports the
initial state featuring tuples uniformly distributed in the network, while Figure (b)
and Figure (c) depict intermediate states of the simulation. Finally, Figure (d)
reports the final state of the simulation. As clearly visible throughout these figures, tuples
tend to increasingly aggregate until coming to a complete clustering where all the tuples
in the network get stored in the same tuple space: such a tuple space is not chosen a
priori and in a global way but by emergence.
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torus.

5.3 Self-Organising Tuple Sorting

In this section, a solution to the problem of tuple sorting in distributed networks is
proposed by generalising the results obtained on tuple clustering. Now, instead of tuples

'http://ccl.northwestern.edu/netlogo/
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of the same kind, we consider tuples of N different kinds, that is, tuples whose carried
information belongs to N disjoint classes. The kind of a tuple is represented by the
template of the tuple itself. The main inspiration for tuple sorting comes from the models
of larval sorting proposed by Deneubourg et al. [BDT99, DGF*91] and Lumer and Faieta
[BDT99, [LF94]. The scenario of tuple sorting can be regarded as a generalisation of
tuple clustering: indeed, here the goal is not only to aggregate tuples, but also provide
a segregation mechanism to separate tuples belonging to different kinds so as to achieve
tuple sorting. Accordingly, as a desired emergent behaviour, we aim at observing the
formation in the network of clusters sorted per tuple kind.

As described in Section [5.2] access to tuple-space state is granted by exploiting the
traditional LINDA primitives. However, since now we need to deal with different kinds
of tuples, it is key to assume that rd operations work probabilistically in a uniform way,
that is, each tuple matching a specified template is as likely to be retrieved as other tuples
matching the same template—such a kind of operations is hereafter referred to as uniform
read operations urd. Correspondingly, a uniform read operation that matches any tuple
among N kinds is such that the higher the concentration of tuples of kind K, the higher
the probability of reading a tuple of that kind. Therefore, this operation can be used
to probabilistically observe which kind of tuples a space is mostly aggregating. The urd
primitive makes tuple sorting truly self-organising and fully adaptive since it provides
a mechanism for locally and probabilistically perceiving tuple-kind concentrations—as
typically occurs in larval sorting.

The new rules enacted by each tuple space are reported in the following: such rules
represent just a slight generalisation of the rules adopted for tuple clustering.

1. a urd operation is performed on local space L, yielding a tuple ¢, of kind k

2. another urd operation is performed on L yielding a tuple ¢, of a kind m # k (if
existing)

3. if ¢, is still
e let mob(m, L) =1 — conc,,(L)/conc(L)
« P {mob(m, L) if mob(m, L) > 0
C' (constant) otherwise
e t,, gets moving by probability P,,opie
— if t,, gets moving:
concp () = concy, (L)

4. else (t,, is moving)

e a random number r between 0 and 1 is drawn
o if 1 < e~ (concltm)/concm(L))
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— t,, gets still
e else

— a neighbouring tuple space R is chosen

— t,, is moved to R

First, a tuple t; of kind £ is uniformly chosen in a probabilistic way by urd. Due to urd
semantics, local space L is likely to be mostly aggregating tuples of kind k. Accordingly,
since one of the goal is to segregate tuples of different kind, another urd is performed
by considering only tuples whose kind is not K. The so-read tuple t,, is of kind m # k,
whose tuple concentration is likely to be lower than concentration of kind k.

Then, if t,, is still, it gets moving by a probability P, whose value is calculated
as mob(m, L) = 1 — cone,,(L)/conc(L), where conc,,(L) represents the concentration of
tuples of kind m in local space L while conc(L) is the total concentration of tuples in
L. Correspondingly, ratio conc,,(L)/conc(L) denotes the percentage of tuples of kind m
in L. As a consequence, the higher the value of such a ratio, the lower the probability
Popite of a tuple to get moving. This allows tuple of kinds not strongly aggregating on
local space L to be moved away towards tuple spaces featuring higher concentration of
tuples of that kind. On the other hand, if L does not store tuples of kinds other than £k,
the kind of the chosen tuple remains K so as to lead to mob(m, L) = 0. If that is the
case, Ppopite 1s assigned a constant value C' as for tuple clustering.

In case t,, is moving, the applied rules are the same as for tuple clustering. Here, the
only difference lies in the exponent of e, which is calculated by taking into account only the
concentration of tuples of kind m. In particular, conc,,(t,,) represents the concentration
of tuples of kind m perceived by t,, during the last movement.

5.3.1 Experimental Results

This section shows the results obtained from experiments on tuple sorting run on a 100-
tuple-space torus-topology network by adopting Netlogo as in the experiments related
to tuple clustering. We considered tuple of 4 different kinds, an initial configuration of
2500 tuples per kind uniformly distributed in the network, and C' = 0.2—C' is the value
assigned to P,,opie When local space L aggregates only tuples of the same kind. The result
of a simulation run by considering these initial conditions is shown in Figure 5.2} In
particular, Figure (a) reports the initial state featuring tuples uniformly distributed
in the network, while Figure (b) and Figure (c) depict intermediate states of the
simulation. Finally, Figure (d) reports the final state of the simulation. As clearly
visible throughout these figures, tuples tend to be increasingly aggregated and segregated
until coming to complete sorting, which corresponds to the state where all the tuples of
the same kind get stored in the same tuple space: as for tuple clustering, such a tuple
space is not chosen a priori and in a global way but by emergence. It is remarkable that
by slightly extending the rules adopted for tuple clustering, it is possible to achieve a final
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tuple organisation featuring complete aggregation and segregation: indeed, the resulting
tuple configuration is composed of one cluster per tuple kind.

5.4 Concluding Remarks

The self-organising approaches to tuple organisation presented here have some correlation
with amorphous computing [AACT00], in particular with pattern and shape formation
where, starting from a high-level description of the desired pattern, agents forming a
network resembling a lattice are assigned a program by exploiting biologically inspired
primitives. Such agents, which have only a partial knowledge of system’s state, locally
enact the assigned program so as to make desired patterns emerge at the global level.
While in pattern and shape formation a node of the network is represented by an agent,
in our work a node is a tuple space. Amorphous computing has also been applied to
sensor networks so as to define the global behaviour desired on a continuos space and
the corresponding implementation on a sensor network that approximates the continuos
space.

Inspired by previous works such as [MZ04, MT04, [CGV07, DNLMO05], the goal here
was to show how models and techniques coming from the self-organisation community
can be leveraged in the context of coordination models and languages to devise proper
infrastructures to manage interaction in dynamic and unpredictable environments.

The presented solutions to tuple clustering and sorting were not developed considering
performance as a main objective since the main goal was to show that cellular-automata-
like approaches — where the decision on which tuple to be moved to a neighbour is based
on a single championing operation — can actually result in the emergence of the desired
clustering and sorting properties.
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Self-Organising Coordination by
TuCSoN and ReSpecT

This chapter first clarifies the details of the tuple-centre coordination model provided by
TuCSoN and ReSpecT. Then, a suitable framework for enacting self-organising coordi-
nation services is shown that is based on the aforementioned technologies.

6.1 The Coordination Model of TuCSoN

The TuCSoN coordination infrastructure provides Java agents with coordination media
spread over the network, called tuple centres. A tuple centre is a tuple space abstraction
augmented with the possibility of programming coordination rules, which are fired as
a response to interaction events, and which can transform the set of tuples as well as
execute coordination primitives on other tuple centres in the neighbourhood. ReSpecT
(Reaction Specification Tuples) is the logic-based language by which such coordination
rules can be programmed [ODOI].

Agents act on a ReSpecT tuple centre according to the original Linda [Gel85] tuple-
space model: tuples can be inserted by primitive out, retrieved by primitives in and
inp, and read by primitives rd and rdp. Readings and retrievals can be executed by
specifying a template, which serves as an identifier of a set of tuples according to a tuple-
matching mechanism. Some primitives are suspensive (in and rd), so that the requesting
agent waits until a matching tuple is found, while others are non-suspensive (inp, rdp),
so that the agent is immediately provided with a result that may be either a matching
tuple or a failure. However, the matching mechanism is non-deterministic: if more than
one tuple in a tuple centre matches the specified template, the tuple to be returned is
non-deterministically chosen among the matching ones. ReSpecT tuple centres adopt a
logic-based model for tuples: tuples and templates are first-order terms and the matching
mechanism is based on unification.

While the behaviour of a standard tuple space in response to interaction events is fixed
(the effect of coordination primitives follows LINDA model), the behaviour of a tuple centre
is defined by a set of ReSpecT specification tuples called reactions, which determine how
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a tuple centre reacts to incoming/outgoing events.

The version of ReSpecT we rely on adopts the A&A meta-model [ORVO8|—the inter-
ested reader can refer to [COV08, [Omi07] for a complete description of syntax and seman-
tics. In ReSpecT, a reaction is specified by a specification tuple reaction(E, G,R), which
associates (modulo unification) a reaction body R to an event E if the guard G is satisfied:
E expresses the agent interaction to be intercepted, G the condition that the event must
satisfy (concerning status, source, target, and time of the event), and R is a list of goals.
A goal specifies a basic computation, which could be (i) an insertion/retrieval of tuples in
the local tuple space (which might itself fire new reactions leading to a Turing-equivalent
chain of reaction executions); (77) an insertion/retrieval of tuples in a remote tuple space;
and (ii1) a Prolog algorithmic computation.

As an example of a simple ReSpecT program, we consider the following rules, which
change the behaviour of in primitive so that all tuples matching the template are removed:

reaction( in(X), (response, from-agent), ( % (1)
out (remove (X))

).

reaction( out(remove(X)), endo, ( %(2)
in(X), in(remove(X)), out(remove(X))

)).

reaction( out(remove(X)), endo, ( %(3)
no(X), in(remove (X))

)).

Whenever an agent asks to remove a tuple of a generic template X, the first reaction is
triggered and executed: the guard predicate response is true when in(X) gets served—
namely a tuple is found and about to be replied to the agent. The execution of reaction
(1) leads to the insertion of a tuple remove (X) in the tuple space, where X identifies the
template specified by the requesting agent. The insertion of remove (X) triggers reactions
(2) and (3)—both reactions feature guard endo, which is true when the triggering event
is generated by the tuple centre itself. Reaction (2) is successfully executed as long as
there are tuples matching X (in(X) succeeds): in that case, other than removing X, the
reaction is triggered again, recursively. When all the tuples matching X are removed, the
execution of (2) fails while reaction (3) succeeds—reaction goal no(X) succeeds only if
no tuple matching X can be found in the tuple space. Since each reaction is atomically
executed, the resulting behaviour is such that all tuples matching X are removed.

6.2 Self-Organisation in Tuple Centres

TuCSoN can be shown to fit the properties of self-organising coordination as outlined in
Chapter [2}
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Topology — Assuming the network is organised in a topologically structured dis-
tributed system, TUCSON allows one or more tuple centres to be created locally to any
specific node on the network. Java agents, too, are supposed to be localised in a node of
the network.

Locality — In TuCSoN, a coordination primitive can be executed over a tuple centre
provided its identifier (name and host address) is known—and this happens both for
agent-medium and medium-medium interactions. As such, to structure a multiagent
system featuring self-organising coordination, we simply need agents and tuple centres to
be aware of the list of tuple centre identifiers in the neighbourhood. For tuple centres,
e.g., this simply means a tuple neighbour (tc) occurs in the space if tuple centre tc is in
the neighbourhood.

On-line character and Time — ReSpecT supports timed reactions, namely re-
actions whose event E is of the kind time(T). When the tuple centre time (expressed
as Java milliseconds) reaches T, the corresponding reaction is fired. Moreover, a re-
action goal can be of the kind out_s(reaction(time(T),G,R)), which inserts tuple
reaction(time(T),G,R) in the space, thus triggering a new reaction. As a simple exam-
ple, the following reactions are used to update the integer argument N of a tuple tick(N)
in the space each second, starting from time t, so as to define a clock where the value of
N represents the elapsed seconds:

reaction( time(t), true, (
in(tick(N)), N1 is N+1, out(tick(N1)) )).
reaction( out(tick(X)), endo, (
current_time(T), NewT is T+1000,
out_s(reaction( time(NewT), true, in(tick(N)), N1 is N+1, out(tick(N1)))) )).

This mechanism can hence be used to realise either an on-line service that keeps trans-
forming tuples as time passes, or time-dependent coordination primitives.

Probability — Probability of coordination rules is supported in TUCSON in two ways.
On the one hand, it is possible to draw random numbers in Prolog and use them to drive
the reaction firing process, that is, tuple transformation by reactions can be intrinsically
probabilistic. For instance, the following reactions insert either tuple head or tail in the
space (with 50% probability):

reaction( ..., ..., (
rand_float(X), out(rnd(X)) )).
reaction( out(rnd(X)), endo, (
in(rnd (X)),
( X > 0.5, out(head)
s % ’;’ as logic disjunction
out (tail) ) )).
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On the other hand, tuple retrieval can be moved from the non-deterministic version to
a probabilistic version by using a variant of the usual primitives, i.e. urd instead of rd.
As described in [CGV07] and Section [3.3] this is called uniform read operation (and
analogously for uin, uinp, and urdp): its semantics is such that among all tuples that
match the given template, one is chosen equiprobabilistically. As an example, if the space
has 100 tuples t(red), and 50 tuples t(blue), then operation rdp(t (X)) yields t(red)
with probability 66%. This can be extremely useful to exploit tuple retrieval as a sampling
mechanism to partially observe tuple centre state.

6.3 Adaptive Tuple Distribution

Here two complementary application scenarios are presented, the former focussing on self-
organisation through interactions between coordination media (presented in this section),
the latter through interactions (of tuples) inside a coordination medium (presented in
next section). The combination of these two approaches has the potential for leading
to a full-featured self-organisation methodology for coordination—though deepening such
implications is left for future investigations. However, both of them are interesting per se
and also show the usefulness of self-organisation in coordination models and the suitability
of TUCSON as a supporting platform.

We start considering the self-organising approaches in data-centered network systems,
which concern adaptive information distribution presented in Chapter [} The problem
is how and where information items — tuples in our case — are to be moved, copied,
and transformed, so as to achieve certain patterns of distribution, like co-fields [MZ04],
clustering, sorting, and the like [MMTZ06], which may be used to facilitate access to
data and resources. Among the many cases that could be considered, we here focus on
emergent tuple clustering in distributed networks as described in Section and [CV0S],
which is considered as a simple and paradigmatic case.

6.3.1 Tuple Clustering

Drawing inspiration from natural phenomena like corpse clustering by ants [BDT99],
we focus on the problem of tuple clustering in distributed tuple-space networks, which
amounts at defining a strategy to spatially aggregate tuples of the same kind —i.e. tuples
carrying information of the same class — in few and small clusters that form on the network
in an emergent way (see Chapter 5 and |[CV08])—ideally, one cluster made of one space.
As such, each tuple space in the network is provided with coordination rules whose goal
is to locally move tuples to neighbouring tuple spaces if this may increase clustering,
ultimately leading to the emergence of global tuple clustering only by local observations
and actions. As usual, access to tuple space state is granted by performing tuple readings
(rd operations), retrievals (in operations), and insertions (out operations).
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In order to exploit the metaphors coming from corpse clustering, tuples need to be
enriched with some additional meta-data. A tuple can be either still or moving. A still
tuple is one whose current position has been selected as a good candidate final position—it
would represent an item on the ground according to the ant-based metaphor. On the other
hand, a moving tuple is one which has not yet found a good candidate position—dually,
it would represent an item picked up by an ant. A moving tuple additional carries a
numerical value representing the concentration (i.e. number) of tuples in the space where
the tuple started moving—it represents the memory the ant has of the place where the
item was picked up. This is fundamental to facilitate the storage of a tuple in tuple spaces
whose tuple concentration is higher than the one in the spaces previously visited by the
tuple.

Correspondingly, the coordination rules applied by each tuple space are as follows,
which recall those alredy presented in Chapter 5. Let t be a tuple observed by a urd
operation; then

e if ¢ is still, it moves to state moving (storing the local value of concentration) by
probability Pyopize

e if t is mowing, it moves to state still by probability Py

e if t is mowing, it moves to a neighbouring tuple space R randomly chosen by prob-
ablhty 1-— Pstz’ll

Pobite is a fixed value (0.2 in the experiments shown in Section though this value
is likely to depend on the size of the network and the number of tuples to be clustered.
Py = e~ (eone()/localeone) "where conc(t)/localcone (€ [0, 400]) is the relative concentration
of tuples perceived by t during the last movement, with respect to the local concentration.
In particular, a high value of relative concentration leads to a low probability of storing
t (the spaces previously visited by ¢ had higher concentration of tuples); a low value of
relative concentration increases the probability of storing ¢ (the local space is a better
candidate for storing w.r.t. previously visited ones). An example of a system evolution
following this algorithm is shown in Figure 5.1: emergently, one cluster is eventually
selected that stores all the tuples.

6.3.2 TuCSoN Implementation

We suppose that each node of the network hosts one tuple centre, in which the follow-
ing tuples are stored: (i) tuple(still,T) represents the still tuple T to be clustered;
(71) tuple (moving(C),T) represents the moving tuple T to be clustered, where C is the
concentration value stored in the tuple; (i) count(C) means the space has currently
C tuples to be clustered; (iv) movingprob(P) means that P is the moving probability;
and finally (v) neighbour (8) means that S is the identifier of a space in the neighbour-
hood. We suppose that tuples are inserted in spaces in the still state, and that the count
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value is automatically updated by the tuple centre as long as they are inserted, removed,
and replaced. In order to implement clustering as a self-organised coordination problem
in TUCSON, it is then sufficient to inject in each tuple centre the following ReSpecT
specification:

reaction( time(T), true, out(step) ). %(1)
reaction( out(step), endo, ( %(2)
in(step),

uin(tuple(K,T)),
rand_float(Tao),
out (go(X,T,Tao)),
current_time(T), T2 is T+1000,
out_s(reaction( time(T2), true, (out(step))))
D).
reaction( out(go(still,T,Tao)), endo, ( %(3)
in(go(still,T,Tao)),
rd (movingprob(P)),
( Tao < P, rd(count(C)), out(tuple(moving(C),T))
out (tuple(still,T))
)
).
reaction( out(go(moving(C),T,Tao)), endo, ( %(4)
in(go(moving(C),T,Tao)),
rd(count (LC)),
Level is exp(-C/LC),
( Tao < Level, out(tuple(still,T))
urd (neighbour (TCR)),
TCR ? out (tuple(moving(C),T))
)
)).

Reaction (1) is used to fire the movement process in reaction to time, as usual. Reaction
(2) randomly takes a tuple T to be possibly clustered and selects a random number
Tao (to be used next); then, it inserts tuple go to proceed with the algorithm, and fires
reaction (1) again after 1000 time units—this parameter is to be changed depending on
the intended rate of clustering. Still tuples are managed by reaction (3), which inserts
the tuple back in the space, choosing the status according to moving probability. On the
other hand, moving tuples are managed by reaction (4), which (probabilistically) either
inserts a still tuple or moves the tuple in a neighbouring space.

Although simple, this example paradigmatically shows how locality, probability, and
time altogether play a crucial role in constructing a self-organising coordination service.
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6.4 Chemical-like Coordination

When seeing self-organising coordination as enacted by rules that keep transforming and
moving tuples in a distributed setting, it is quite natural to find a connection with chem-
istry and biology, where chemical laws similarly transform molecules floating in a chem-
ical soup. Accordingly, we envision the idea of a “biological” coordination model, where
chemical- and biological-oriented laws are used to coordinate agent behaviour—re-using
concepts like oscillatory chemical systems, catalysts, membranes, DNA-related mecha-
nisms and the like as coordination metaphors. Among the many sources, our work has
been also inspired by previous approaches adopting chemical abstractions for coordina-
tion like the Chemical Abstract Machine [BB92] or Gamma [BLM96]. However, besides
having no explicit interest in self-organisation, those early approaches never brought the
chemical metaphor to its full realisation, while we here address fundamental issues like
concentration /number of molecules, time of reactions, etc. so as to exactly reproduce
chemical processes.

6.4.1 Chemical Reactions for Coordination

Chemical systems are the source scenario where the phenomenon of self-organisation has
been widely studied [PS97]. The large-scale character of chemical systems, along with
the locality of their inner interactions and the intrinsic chaotic behaviour they manifest,
make us observe the emergence of global properties of reactants that cannot be straight-
forwardly ascribed to the shape of chemical laws, such as final concentrations, decay rates,
periods of oscillatory behaviours, and so on. Then, by adding a topological structure to
standard chemical systems — reactants diffuse to certain parts of space, molecules bind
forming complex structures, membranes tend to form separate compartments — we move
into the complexity of biology, where most self-organisation patterns of nature actually
take place—and this can be achieved by combining with inter-space techniques like those
discussed in previous section. It does not come as a surprise then, that many research
activities were developed to build artificial computer-based systems exhibiting organised
complexity and properties of chemical and biological systems.

As in many previous works, we start from the consideration that distributed systems
might well be designed as chemical systems: mobile data-items spread in the network
can be seen as floating molecules, and processes manipulate them so as to enact chemical
laws that make data-items aggregate and transform into other data. Moving to the
coordination setting, we foster the idea of a coordinated system as a system where the
interaction space hosts a chemical dynamics and evolution: coordination-related data
(shared knowledge, reified interactions, and the like) flow in it, and coordination rules
manage such a data like chemical laws do. On the one hand, agents can get simply
coordinated through this chemical space, by inserting new data and retrieving chemically
transformed one. On the other hand, agents can truly influence the chemical system
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Figure 6.1: System evolutions for chemical reactions: (a) Decay, (b) Lotka reactions, (c)
Oregonator.

and behaviour, by inserting e.g. data-items acting like catalysts for certain reactions.
Moreover, the number of tuples of the same kind — namely the concentration of a chemical
substance — can be used by an agent as a dynamic characterisation of its “activity” level:
the higher such a concentration, the more likely the agent will coordinate with others
through the tuple centre. Although it is out of the scope of this work to fully analyse
the impact of this metaphor on coordination, we aim at providing some initial ideas and
implementations, paving the way towards a deeper understanding and exploitation.

A computational model for simulating chemical reactions is given by Gillespie in
[Gil77], which basically provides a characterisation of discrete chemistry — number of
molecules are considered instead of concentrations — as a continuous-time stochastic tran-
sition system & la Markov. Consider a chemical rule A + B - C 4 D, meaning that a
molecule A joins molecule B, forming molecules C and D. Rate r is called reaction con-
stant, and expresses the likelyhood of the reaction between two pairs of molecules A and
B. As shown in [Gil77], the global rate of the reaction is proportional to r and to the
concentration of each reactant in the left-hand side. As a result, given n chemical laws,
in a certain state we can determine the n global rates r,...,r,, one per available chem-
ical law, with R being their sum. According to Markov’s model, an exact simulation of
the system evolution is obtained by a computation step whose duration is described by
negative exponential distribution due to Markov property, and where one law is chosen
probabilistically and applied (law ¢ is chosen with probability r;/R). This approach is
in fact the standard one for stochastic computational models used to simulate biological
systems, as in the case of stochastic m-calculus [Pri95].

In [Gil77] some examples of natural and synthetic chemical systems are described,
which could be of some interest in coordination—Figure [6.1| reports corresponding simu-
lation traces, as computed in the context of [Phi06].

Decay — Rule X = 0 describes the decay of X (irreversible isomerisation), which can
be used as a mechanism to fade pheromone-like data-items—see Figure (a).
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Lotka Reactions — These reactions are used to model a prey-predator system, in
which a prey species Y1 feeds on an inexhaustible food source X to reproduce, and a
predator species Y2 feeds on Y1 to reproduce while dying of natural causes. Three rules
can describe this system: (i) X+Y1 <5 2Y1+4X, (i) Y1+Y2 <5 2Y2, and (iii) Y2 < 0. With
certain rates, populations of Y1 and Y2 develop an oscillatory behaviour: Y2 population
appearently self-adapts to the increase/decrease of Y1 population—see Figure (b). In
a coordination setting, these kinds of rule can be used to keep requests Y1 of accessing a
resource X limited, thanks to a sort of automatically generated “controller item” Y2.

Oregonator — These reactions describe an artificial chemical system that enacts a

stable oscillatory behaviour: (i) X1 + Y2 <L 2X1 4 Y1, (ii) X+ Y1 2,0, (117) X2 + Y1 <,

X2+2Y14Y3, (iv) 2Y1 <5 0, and (v) X3+ Y3 <> X3+ Y2. Under certain rates, reaction (v)
indeed behaves like a time tick, fired at a very stable frequency—see high peaks in Figure
(¢). This behaviour could be used in coordination to simulate time, e.g. to regulate a
time-based scheduler for accessing resources—whose features can be altered by properly
inserting/removing elements of species X1, X2, and so on.

6.4.2 TuCSoN Implementation

A TuCSoN tuple centre can be specialised to act as a chemical system where tuples
model reactant molecules: they combine and transform over time as in true chemical
systems, and agents perceive such transformations through usual tuple retrieval. Let m be
a molecule kind, we assume the tuple centre holds one tuple of the kind reactant (m,N),
where N is the number of molecules. This is just a compact way of expressing the chem-
ical state instead of using one tuple per molecule: agents keep inserting and removing
molecules one a time, and a ReSpecT specification can be used to turn such operations
into proper increment/decrease of molecule count. Moreover, we assume that chemical
laws are expressed as tuples of the kind law(InputList,Rate,OutputlList). For exam-
ple, Lotka reactions leading to the trace in Figure (b) would be expressed by tuples

law([x,y1],10, [y1,y1,x]1).
law([y1,y2]1,0.01, [y2,y2]).
law([y2],10,[1).

reactant (x,1000) .

reactant (y1,1000).
reactant (y2,1000) .

and similarly for any other chemical system as e.g. shown in previous subsection. Algo-
rithmic computations required to obtain rates and probabilities are expressed as a Prolog
theory installed in the tuple centre. Predicate chooseOne(-Law,-Dt) encapsulates Gille-
spie’s algorithm: assuming facts reactant/2 and law/3 properly populate the theory, it
yields the law to be applied and the elapsed time—its implementation is not reported
here for brevity.
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By the following ReSpecT specification, the tuple centre can then be turned into a
true engine for chemical systems:

reaction( time(Time), true, out(engine_trigger) ). %(1)
reaction( out(engine_trigger), endo, ( %(2)
in(engine_trigger),
chooseOne (Law,Dt),
current_time(Time) ,Timel is Time + Dt,
out_s(reaction(time(Timel) ,true,out(engine_trigger))),
out (execution(Law))

).

reaction( out(execution(law([CIT],_,0)), endo, ( %(3)
in(execution(law([CIT],_,0)),
in(reactant(C,N)), N2 is N-1,
out (reactant (C,N2)),out (execution(law(T,_,0))

).

reaction( out(execution(law([],_,[CIT])), endo, ( %(4)
in(execution(law([],_,[CIT])),
in(reactant(C,N)), N2 is N+1,
out (reactant (C,N2)) ,out (execution(law([],_,T))

)).

reaction( out(execution(law([],_,[1)), endo, ( %(5)
in(execution(law([]1,_,[1))

)).

Reaction (1) is used to fire an execution step, as usual. Reaction (2) calls the Gillespie’s
engine obtaining the law to be executed and the elapsed time, re-triggering reaction (1),
and also firing reactions (3,4,5) aimed at applying the chosen chemical law. Reaction
(3) drops one molecule per reactant; recursively, reaction (4) adds the molecules created
by the chemical law, and finally reaction (5) concludes the reaction chain.

By this specification, the content of the tuple centre keeps evolving according to the
chemical laws—in a sense, it indeed simulates the chemical system iteself. As described
above, agents can perceive the current state of the system by executing primitives, or can
affect the chemical behaviour by properly inserting/removing reactants.
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Formal Verification of Self-Organising
Coordination Systems

The global behaviour resulting from self-organising coordination systems can be regarded
as an emergent property since it appears by a process emerging from local interactions
among components. As clearly described throughout the thesis, the corresponding sys-
tem dynamics is usually non-linear and complex so that the adoption of simulation and
verification techniques in the early design stage becomes essential to carry out an effective
design. As far as formal verification is concerned, this chapter discusses a hybrid approach
relying on stochastic simulation and probabilistic model checking, showing an example of
emergent-property check on the collective sort problem presented in Chapter |3l To this
end, the PRISM probabilistic model checker is adopted as a concrete tool for analysing
emergent properties on collective sort. A comprehensive discussion of the corresponding
results is provided.

7.1 Introduction

As clearly remarked so far, the adoption of self-organisation approaches for system coor-
dination leads to a shift in designer’s focus towards a bottom-up-like design where the
key point becomes to define the behaviour of system’s single components rather than the
overall behaviour of the system as a whole. As a consequence, the desired global behaviour
of the system is achieved by emergence |[CDET01, Par97, BDT99].

Given the non-linear and complex dynamics of self-organising systems, the early de-
sign stage becomes essential for a successful design of such systems, e.g. as proposed in
[GVO08], where a methodology for designing self-organising systems is presented. Simi-
larly, even though not relying on a specific methodology, here it is shown how stochastic
simulation and probabilistic model checking can be applied to simulation and verification
of self-organising coordination systems in the early design stage. While simulation is use-
ful to provide informal evidence of expected behaviour, verification becomes key for formal
validation by automatically verifying properties on system models. In particular, since in
self-organising systems desired patterns and behaviours are achieved by emergence, veri-
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fying properties on a model means to automatically check whether such emergent patterns
and /or behaviours may be guaranteed. Correspondingly, the chapter deals with verifying
the probability of properties of self-organising coordination systems by adopting a hybrid
approach, which combines stochastic simulation and probabilistic model checking so as
to provide an approximated technique for self-organising-system verification.

As a reference example of a self-organising-coordination approach, the basic solution
to the collective sort problem described in Chapter [3| (Section is taken in order to
show the suitability of stochastic simulation and probabilistic model checking for sup-
porting the design stage. To this end, as a concrete tool, we relied on PRISM [PRI07],
a probabilistic symbolic model checker developed by University of Oxford. PRISM was
applied on collective sort in order to analyse the emergence of complete sorting, taken as
an example of emergent property. In particular, complete sorting was analysed on several
instances and initial configurations of the system.

7.2 Self-Organising System Design by Stochastic Sim-
ulation and Probabilistic Model Checking

7.2.1 Stochastic Simulation

Computer-based simulation has been widely adopted in the study of hardware systems
over the past years. In addition, computer-based simulation is also becoming increasingly
adopted as a suitable approach for analysing complex systems and supporting software
design. Correspondingly, this chapter focusses on simulation as an important support for
the early phases of software design, especially when self-organisation is adopted.

As far as self-organisation is concerned, the adoption of deterministic simulation ap-
proaches is unfeasible due to the intrinsic stochastic nature of self-organising systems.
Accordingly, stochasticity becomes an important ingredient of any simulation tool for
self-organising systems as it allows unpredictability to be brought to the model level, so
that aleatoric system evolution can be explicitly modelled at the model level. Examples of
stochastic simulation languages and engines are reported in [Phi06l [Gil77, [Pri95l [CGV07,
DPHWO05]. In most of these, the evolution of a self-organising system is modelled in terms
of Continuous-Time Markov Chains (CTMC) or Discrete-Time Markov Chains (DTMC).
Both can be regarded as a stochastic transition system but, while in the latter, tran-
sitions are labelled with probabilities, the former features transitions labelled by rates,
which represent the average frequency at which a transition occurs.

Once a model of the system has been defined, simulation is adopted as a tool for per-
forming qualitative analysis and obtaining some clues about the dynamics of the system.
In order to actually perform simulation, it is first necessary to provide a set of suitable
working parameters for the model to be simulated, decide the initial states to be consid-
ered as test instances, and choose simulation parameters, e.g. the maximum number of
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steps to be considered in the simulation run [GVOO0§].

7.2.2 Probabilistic Model-Checking

Model checking is with no doubt one of the most used techniques for automatic verification
of properties on finite-state-system models [CGP00]. Models are usually expressed by
formal languages in terms of transition systems and the resulting specification given to a
model checker, which translates such a specification in a suitable internal representation,
usually a Binary Decision Diagram (BDD) [CGP00]. Once the model has been loaded
into the model checker, properties to be verified need to be specified: this is typically done
by adopting temporal logics [CGP00]. The model checker can then perform automatic
verification of the declared properties by a full exploration of every possible computational
path resulting from exhaustive model execution. The resulting output is a boolean answer
indicating whether the declared property holds for the model.

Since the focus here is on self-organising systems, the probabilistic extension of tra-
ditional model checking is considered that can be exploited to deal not only with proba-
bilistic but also with stochastic aspects [KNP04, [KNP(O7]. The main difference between
probabilistic and traditional model checking lies in the logics adopted for property spec-
ification. In fact, probabilistic model checking exploits a linear temporal logic extended
with operators for specifying probabilities. As a consequence, the output of a probabilistic
model checker can be either a probability or a boolean value. For instance, the answer to
a property like “will the system reach state S with a probability greater than 80%%” is a
boolean value, while the answer to a property like “Which is the probability for the system
to reach state S?” is a probability value.

A major drawback of model checking is known as state-space-explosion problem, which
is mainly due to a quick increase of state space as system size grows. Even though some
techniques have recently been developed to mitigate this problem, state-space-explosion
remains the main problem preventing a wider applicability of model checking [Del02]. As a
solution to this problem, some approaches have been developed that rely on approximated
model checking. In particular, as regards probabilistic model checking, approximated
techniques based on Monte Carlo simulation have been proposed in [HLMPO04]. The
hybrid approach discussed in the next section relies on such approximated techniques.

7.2.3 The Hybrid Approach

In this section we propose the adoption of a hybrid approach by exploiting stochastic sim-
ulation, probabilistic model checking, and approximated verification techniques so as to
define a framework for supporting the design of self-organising approaches to coordination.

As described in [PRIOT], approximated model checking relies on sampling. In other
words, given a CTMC/DTMC model of the system and a property to be verified, a
large number of simulation runs are executed. For each run, the result is evaluated with
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respect to the property to be verified. Then, once the runs are completed, the final result
is provided as the average of all the obtained values. This makes it possible to perform
approximated verification even on models of large-scale systems, since model checkers
usually do not need to translate the CTMC/DTMC model into an internal representation
(like BDD), which is typically a memory-consuming process.

Let M be a CTMC/DTMC model of a self-organising system and p a property to be
verified on the model, suppose that we are interested in obtaining the probability for p
to be satisfied on M. In order to deliver meaningful results from the standpoint of quan-
titative analysis, it is fundamental to carefully choose confidence (§) and approzimation
(€) values. Let u(x) be the exact probability value resulting from the execution of M
on a probabilistic model checker, M(z,¢€,0) be the probability value resulting from the
execution of M with approximation e, confidence ¢, and initial state x, the equation

Prob[|M(xz,€e,0) —u(x)]| <e >1-4§

is satisfied if the number N of runs performed on M with input x is at least equal to
4log(2)/€*. Put it simply, the probability for M(z,¢,0) to be different from p(z) of a
factor less than or equal to € is greater than 1 — ¢ if N > 4log(§) /€%, As a consequence,
the higher €, the lower the number of runs required and the quality of the obtained result
with regard to p(z). Conversely, fixed €, lower values of § lead to a greater number of
required simulations but at the same time guarantee a higher degree of confidence on the
result. In other words, the lower the error and the greater the confidence required, the
higher the number of runs to be performed.

Another important point is the choice of the length %k of the path generated per
simulation run. Indeed, even though not trivial, k£ should be chosen big enough in order
to provide a result not influenced by the fact that some runs could not satisfy p due to
an insufficient path length. To avoid this problem, simulation can be adopted as a means
to deliver a value of k£ large enough.

In the next section, we show how stochastic simulation, probabilistic model check-
ing, and approximated probabilistic model checking can be used for analysing emergent
properties on the collective sort problem.

7.3 Collective Sort as a Case Study

7.3.1 Relevance and Complexity

The basic solution to the collective sort, described in Chapter 3| (Section , is here
briefly reviewed so as to highlight some of the issues crucial to the verification phase.
Collective sort, as presented in Chapter [3] considers a fully connected set of N tuple
spaces: accordingly, tuples are supposed to be classified at design time in N kinds. Com-
plete sorting is achieved when each tuple space aggregates only tuples of the same kind.
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Accordingly, complete sorting can be regarded as the emergent property we are interested
to analyse on collective sort by adopting the hybrid approach previously outlined. The
behaviour of collective sort is independent of the number of tuples, tuple spaces, initial
tuple configuration, and small perturbations due to user agents randomly moving tuples.
Furthermore, even though performance can be affected by the above aspects, the effec-
tiveness of the algorithm remains unaffected. As shown in Section [3.3.3] a percentage of
cases is characterised by a symmetry between the number of spaces and kinds that might
cause the system evolution to be attracted by stable global states featuring positive val-
ues of entropy, where sorting is only locally achieved. A system configuration featuring a
local minimum of entropy is (100, 0, 0, 0), (0, 70,0, 0), (0, 30, 0, 0), (0, 0, 100, 100)—the con-
tent of each space is presented as a list of 4 values representing the concentration of tuples
per kind. Even though a noise-based solution to this issue is discussed in Section [3.3.4]
noise is not contemplated here since it would lead to a model whose complexity would
make it difficult to keep the focus on the hybrid approach proposed for emergent-property
analysis.

As probabilistic model checking is highly affected by the state-space-explosion prob-
lem, a preliminary analysis of collective sort complexity is important in order to set up
an efficient process for analysing emergence of complete sorting. Let N be the size of a
collective sort instance in terms of number of tuple spaces and number of tuple kinds, the
resulting number of possible transitions for each iteration of the sorting agent in charge of
managing a space is (N — 1)N?, so that the total number of permutations is (N — 1)N3.
Indeed, chosen a sorting agent, the number of tuple spaces to be potentially chosen as
target space is N — 1. Then, after choosing the target space, the possible permutations
as regards source and target kind are N2. This applies for each sorting agent, so that the
total number of permutations is (N — 1)N®. For instance, considering N = 3, the total
number of permutations is 54 and rapidly grows to 192 with N = 4.

Furthermore, as regards complexity from the standpoint of total number of possible
states, it is necessary to introduce Kj;, representing the total concentration of tuples
for tuple kind . If we take into account only tuple kind i and consider every possible
permutation of tuples of kind ¢ around the N available spaces, the resulting number of
possible states is Tot; = (N +féi_1). Accordingly, the total number of states is Tot =
[I;_, Tot;. For instance, considering N = 3 and K; = 9 for each 7, the resulting space-
state size is 166,000 and becomes 753,000 with K; = 12 for each 1.

7.3.2 PRISM

To model and analyse collective sort, we decided to exploit PRISM, the Probabilistic
Symbolic Model Checker developed by University of Oxford [PRIO7]. PRISM comprises
a set of tools and facilities ranging from a modelling language to a simulator and a
probabilistic model checker.

PRISM models are organised in modules specified in a transition system fashion. The
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tool makes it possible to model non-deterministic, probabilistic, as well as stochastic sys-
tems by using respectively Markov Decision Processes (MDP), Discrete Time Markov
Chains (DTMC), and Continuous Time Markov Chains (CTMC) [KNP04, [KNPOT7]. In
other words, models are specified in terms of modules whose behaviour is expressed by
transition rules and whose state is encoded into a set of variables. Transitions are associ-
ated a rate (in CTMC) or a probability (in DTMC), and can be labelled if synchronisation
among modules is required. A transition follows the syntax:

[] guard -> r : (update-variable);

where guard is a sequence of conditions that need to be satisfied to enable the transition,
r represents either a probability (DTMC) or a rate (CTMC), and update-variable is a
list of operations for updating (part of) the state of the system by modifying variables. As
a trivial example, consider the following specification, which defines a stochastic system —
modelled as a CTMC — switching between two states by two transitions featuring different
rates:

ctmc
module swing
state : boolean init false;
[] state=false -> 10.0 : (state=true);
[] state=true -> 100.0 : (state=false);
endmodule

PRISM also provides a simulator whose simulation engine makes it possible to perform
either step-by-step or N-step simulations, where N can be specified by the user. Variable
values are traced so as to facilitate model debugging. The most remarkable feature of
PRISM concerns probabilistic model checking features. Probabilistic model checking can
be performed by choosing one of three model checking engines—the choice is mainly driven
by the size of the model to be verified as the engines differ from one another in terms
of computational and memory costs. Properties are specified according to Probabilistic
Computational Tree Logic (PCTL) for DTMC and Continuous Stochastic Logic (CSL)
for CTMC. For instance, considering a DTMC-based model C' featuring a variable s
ranging from 0 to 10, a property like “Which is the probability for s to reach value 10?”
is expressed by the PCTL formula:

P=? [true U s=10]

As far as collective sort is concerned, the main interest consists in analysing its behaviour
and the resulting emergent patterns. As a consequence, we decided to abstract away the
time dimension from the collective sort model and adopt DTMC.
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7.3.3 Modelling Collective Sort by PRISM

Collective sort was modelled in PRISM as a DTMC by explicitly specifying all the (N —
1) N3 possible transitions resulting from an iteration of one sorting agent’ process. For a
specific value of N, the corresponding model can be automatically generated via a software
program. To make the PRISM specification compact, we decided to model collective sort
as composed of a single sorting agent alternatively working on each of the N available
spaces. The complete specification of collective sort with N = 3 is reported in Figure|7.1
For each tuple space j, tuple concentrations are expressed by global variables Kij where
i represents tuple kind i. On the other hand, total tuple concentration for each space
J is modelled by formula totj. Figure reports the definition of every transition that
can occur between every permutation of 2 tuple spaces chosen as source and destination
among the 3 available. Moreover, each transition refers to a specific permutation of source
and destination kind that could be chosen over an iteration of the sorting agent’s process.
A transition is associated a probability depending on the probability of choosing 2 given
tuple spaces as source and target (% with N = 3) and the concentration of the specific
kinds considered in the transition. For example, consider the transition

[1 k11>0 & k22>0 & k21>0 & k22<n ->
(1/6%k11/tot1xk22/tot2)
(k21°=k21-1) & (k22’=k22+1);

which models the case where kind 1 is chosen as a reference kind on space 1 and kind
2 as a target kind on space 2. Accordingly to the sorting agent’s protocol described
in Section [3.3 this implies that a tuple of kind 2 (if any) is moved from space 1 to
space 2. The probability for this situation to occur is modelled as a joint probability
(1/6%k11/tot1*k22/tot2), where 1/6 is the probability of choosing tuple space 1 and 2
as source and target space respectively, while k11/tot1 and k22/tot2 are the probabilities
of choosing kind 1 on space 1 and kind 2 on space 2. In particular, the latter probabilities
model the semantics of the urd primitive.

The choice of the same kind on both source and destination space is not explicitly
modelled as it does not lead to any change of state in the model. In other words, the choice
of the same kind on both spaces would never influence the achievement of complete sorting,
so that it is pointless to explicitly model such a situation by a transition. Furthermore,
for each of the N(N — 1) possible couples of source and target space, every possible tuple
kind permutation is modelled by a transition

With regard to scalability in IV, the decision of explicitly model all the possible per-
mutations occurring from process execution could appear unreasonable since the number
of permutations to be modelled as transitions grows as (N — 1) N3. However, providing a
model efficient from the standpoint of scalability is out of the scope of the work and will
be matter of future investigation.
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dtmc

const int NK;

global ki1 : [0..n] init NK; global k12 : [0..n] init NK; global k13 : [0..n] init NK;

global k21 : [0..n] init NK; global k22 : [0..n] init NK; global k23 : [0..n] init NK;

global k31 : [0..n] init NK; global k32 : [0..n] init NK; global k33 : [0..n] init NK;

formula totl = k11 + k21 + k31; formula tot2 = k12 + k22 + k32;

formula tot3 = k13 + k23 + k33; formula n = NK * 3;

module ts
//*xxT1 —=> T2%***
//k1
[T k11>0 & k22>0 & k21>0 k22<n -> (1/6 * ki1l/totl * k22/tot2) (k21°=k21-1) (k22°=k22+1) ;
[1 k11>0 & k32>0 & k31>0 k32<n -> (1/6 * k11/totl * k32/tot2) (k31°=k31-1) (k32°=k32+1) ;
//k2
[T x21>0 & k12>0 & k11>0 k12<n -> (1/6 * k21/totl k12/tot2) (k11°=k11-1) (k12°=k12+1);
[1 k21>0 & k32>0 & k31>0 k32<n -> (1/6 * k21/totl * k32/tot2) (k31°=k31-1) (k327=k32+1);
//k3
[1 k31>0 & k12>0 & k11>0 k12<n -> (1/6 * k31/totl * k12/tot2) (k11°=k11-1) (k12°=k12+1);
[T k31>0 & k22>0 & k21>0 k22<n -> (1/6 * k31/totl k22/tot2) (k21°=k21-1) (k22°=k22+1) ;
[/ kKK sk sk ok ok sk ok ok ok ok ok ok ok
//*%xT2 —=> Tilxkkx
//k1
[1 k12>0 & k21>0 & k22>0 k21<n -> (1/6 * k12/tot2 * k21/totl) (k22°=k22-1) (k21°=k21+1);
[T x12>0 & k31>0 & k32>0 k31<n -> (1/6 * k12/tot2 k31/totl) (k32’=k32-1) (k31°=k31+1) ;
//k2
[T kx22>0 & k11>0 & k12>0 k1i<n -> (1/6 * k22/tot2 * ki1l/totl) (k12°=k12-1) (k11°=k11+1);
[1 k22>0 & k31>0 & k32>0 k31<n -> (1/6 * k22/tot2 * k31/totl) (k32°=k32-1) (k31°=k31+1);
//k3
[T x32>0 & k11>0 & k12>0 kii<n -> (1/6 * k32/tot2 k11/totl) (k12°=k12-1) (k11°=k11+1);
[1 k32>0 & k21>0 & k22>0 k21<n -> (1/6 * k32/tot2 * k21/totl) (k22°=k22-1) (k21°=k21+1);
[/ %k k sk skok ok ok ok ok ok ok sk ok
//*%xT2 —=> T3xk*x
//k1
[1 k12>0 & k23>0 & k22>0 k23<n -> (1/6 * k12/tot2 * k23/tot3) (k22’=k22-1) (k23’=k23+1) ;
[T k12>0 & k33>0 & k32>0 k33<n -> (1/6 * k12/tot2 * k33/tot3) (k32’=k32-1) (k33°=k33+1) ;
//k2
[1 k22>0 & k13>0 & k12>0 k13<n -> (1/6 * k22/tot2 * k13/tot3) (k12°=k12-1) (k13°=k13+1);
[T x22>0 & k33>0 & k32>0 k33<n -> (1/6 * k22/tot2 k33/tot3) (k32’=k32-1) (k33°=k33+1) ;
//&3
[T k32>0 & k13>0 & k12>0 k13<n -> (1/6 * k32/tot2 * k13/tot3) (k12°=k12-1) (k13’=k13+1);
[1 k32>0 & k23>0 & k22>0 k23<n -> (1/6 * k32/tot2 * k23/tot3) (k22°=k22-1) (k23’=k23+1) ;
[ /%K KKKk Aok ok Kok ok K Kok
//*xxT3 —=> Tlkkxx
//k1
[T x13>0 & k21>0 & k23>0 k21<n -> (1/6 * k13/tot3 * k21/totl) (k23’=k23-1) (k21°=k21+1);
[1 k13>0 & k31>0 & k33>0 k31<n -> (1/6 * k13/tot3 k31/totl) (k33°=k33-1) (k31°=k31+1);
//k2
[T k23>0 & k11>0 & k13>0 k11<n -> (1/6 * k23/tot3 * ki1l/totl) (k13°=k13-1) (k11°=k11+1);
[T k23>0 & k31>0 & k33>0 k31<n -> (1/6 * k23/tot3 * k31/totl) (k33’=k33-1) (k31°=k31+1);
//k3
[T k33>0 & k11>0 & k13>0 k11<n -> (1/6 * k33/tot3 * kll/totl) (k13’=k13-1) (k11°=k11+1);
[T x33>0 & k21>0 & k23>0 k21<n -> (1/6 * k33/tot3 k21/totl) (k23’=k23-1) (k21°=k21+1) ;
[/ KKKk ok kok ok ok ok ok ok ok ok ok
//*xxT3 —=> T2k¥%x*
//k1
[T k13>0 & k22>0 & k23>0 k22<n -> (1/6 * k13/tot3 k22/tot2) (k23’=k23-1) (k22°=k22+1) ;
[1 k13>0 & k32>0 & k33>0 k32<n -> (1/6 * k13/tot3 * k32/tot2) (k33°=k33-1) (k32°=k32+1) ;
//k2
[T k23>0 & k12>0 & k13>0 k12<n -> (1/6 * k23/tot3 * k12/tot2) (k13’=k13-1) (k12°=k12+1);
[1 k23>0 & k32>0 & k33>0 k32<n -> (1/6 * k23/tot3 k32/tot2) (k33’=k33-1) (k32°=k32+1) ;
//k3
[1 k33>0 & k12>0 & k13>0 k12<n -> (1/6 * k33/tot3 * k12/tot2) (k13°=k13-1) (k12°=k12+1);
[T k33>0 & k22>0 & k23>0 k22<n -> (1/6 * k33/tot3 * k22/tot2) (k23’=k23-1) (k22°=k22+1) ;
[/ %%k Kk kook ok ok ok ok ok ok ok ok ok

endmodule

Figure 7.1: The PRISM program modelling collective sort with N = 3.
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7.4 Simulating and Verifying Collective Sort

Collective Sort was analysed by adopting the model shown in Section [7.3.3] As an in-
teresting emergent property to be analysed, we focussed on complete sorting. Complete
sorting was investigated on different PRISM specifications of the collective sort modelling
the case with N =3, N =4, N =5, and N = 6. To this end, we adopted both exact and
approximated probabilistic model checking techniques as explained in Section

As regards collective sort with N = 3, we performed analysis on complete sorting
by considering different tuple concentrations. Furthermore, we considered initial states
characterised by tuples uniformly distributed per kind among the available spaces: e.g.
considering 6 tuples per kind, the resulting initial configuration for N = 3 would be
(2,2,2),(2,2,2),(2,2,2). The property “Which is the probability for collective sort to
reach complete sorting?” is expressed as a PCTL formula by the PRISM syntax

P=? [true U "complete-sorting"]
where U is the unbounded until operator and complete-sorting is a label expressed as

label "complete-sorting" =
okl & ok2 & ok3 &
totl=n & tot2=n & tot3=n;

kil=n | k21=n | k31=n;
k12=n | k22=n | k32=n;
k13=n | k23=n | k33=n;

formula okl
formula ok2
formula ok3

k11 + k21 + k31;
k12 + k22 + k32;
k13 + k23 + k33;

formula totl
formula tot2
formula tot3

In particular, okj is a boolean formula that gets true if a tuple kind completely aggregates
on space j—n represents the total number of tuples per tuple kind. Accordingly, label
complete-sorting gets true when every space aggregates all the tuples of exactly one
kind and the total number of tuples per space is equal to n. For the sake of brevity,
the probability of achieving complete sorting is hereafter referred to as probability of
convergence P..

Probability of convergence for collective sort with N = 3 was analysed for values
of total concentration of tuples NV; ranging from 3 to 30 tuples per kind. Exact model
checking was adopted for values of N; ranging from 3 to 12. As a reference value of the
dimension of the internal MTBDD model generated by PRISM, the model corresponding
to the instance with N; = 12 is defined by 746, 983 states and 9,603, 897 transitions. The
total time taken for model construction is around 300 seconds on a computer equipped
with a 2.5 GHz P4 processor, 2 GB DDR RAM, and 800 MHz System Bus. For this
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Figure 7.2: Trend of probability of convergence with N = 3 for N, ranging from 3 to 30.

reason, complete sorting on instances with N; > 12 was analysed by using approximated
probabilistic model checking. In particular, this approach was adopted for instances with
N; in the range [15, 30] by performing 16, 481 simulation runs (also known as samples) for
each value of N, in the specified range. This allowed to obtain values of P, featuring an
approximation € = 0.05 and a confidence § = 1071°.

Figure shows the trend of P. for N; ranging from 3 to 30. Exact probabilistic
model checking was used for values of N; up to 12 tuples. For subsequent values of Ny,
given the amount of memory and computational resources needed to build the internal
MTBDD model, approximated model checking was adopted. Figure shows that P,
ranges from 0.92 for N, = 3 to 0.98 for N, = 30. Such a growing tendency is due to
the fact that, as tuple concentration increases, moving a tuple from one space to another
produces less noise in system evolution. In other words, the importance of moving a tuple
is relative to the total concentration of tuples in the system: moving a tuple in a system
with a low tuple concentration has a stronger influence than moving a tuple in a system
with a higher tuple concentration.

The same analysis was also performed considering N = 4 and 20 < N; < 1200. Since
this case is characterised by a much higher complexity in term of model size — 1771% states
with N; = 20 — we relied only on approximated model checking by adopting the same
values of € and 0 as for N = 3. The corresponding results are reported in Figure [7.3
which shows the trend of P. over N; covering the aforementioned range.

As a further analysis, the value of N; was fixed at 100 tuples and the trend of P,
analysed for different values of N in the range (3,6) by relying again on approximated
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probabilistic model checking. The corresponding results are presented in Figure (7.4
which clearly shows that P. decreases as N grows. In fact, as N increases, the number
of potential local minimum states increases as well. As a consequence, the probability of
achieving complete sorting is lower for larger collective sort instances.

The results presented throughout the chapter make it clear that probability of obtain-
ing complete sorting decreases as (i) tuple concentration decreases and/or (i) N grows.
An extension of collective sort for increasing the probability of complete sorting based on
simulated annealing is proposed in Section [3.3.4] and will be matter of future analysis by
adopting the hybrid approach discussed here.

According to the presented results, the adoption of probabilistic model checking, either
in its exact or approximated version, becomes essential to formally validate the behaviour
of systems where self-organisation is exploited like collective sort. In fact, such systems
can often be tested by simulation only, which however can just provide informal evidence
of expected behaviour. We also believe that probabilistic model checking will become
essential also in the tuning stage that has usually to be undertaken since the early stage
of self-organising-system design. As a matter of fact, tuning the working parameters of
a self-organising system is indeed crucial to deliver a behaviour meeting the expected
functional requirements and dynamics. Accordingly, formal verification plays a key role
in defining a methodology to efficiently and rapidly find adequate values of the working
parameters from the standpoint of desired behaviour.
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Related Work

This chapter discusses related works, focussing especially on coordination. The last years
have witnessed a lot of works on self-organisation for software system engineering and com-
puter science in general. Some of the computer-science-related fields where the adoption of
self-organisation has been investigated are cited in [MMTZ06], including grid computing,
pervasive systems, database organisation, security issues, robotic systems, mobile ad-hoc
networks, sensor networks, and amorphous computing. Several conference series on these
topics have as well taken place: the most relevant are the International Workshop on Self-
Adaptive Software (IWSAS) held in 2000 and 2001, the International Workshop on Self-*
Properties in Complex Information Systems (Self-Star) held in 2004, the International
Workshop on Engineering Self-Organizing Applications (ESOA) held from 2003 to 2006,
the International Workshop on Self-Managed Networks, Systems and Services (SelfMan)
held in 2005 and 2006, the International Workshop on Self-Organizing Systems (IWSOS)
held since 2006, and the IEEE Conference on Self-Adaptive and Self-Organizing Systems
(SASO) whose first edition dates back to 2007. In particular SASO, resulting from the
fusion of ESOA, SelfMan, Self-Star, and IWSAS, is now the major event in the field of self-
organisation applied to software systems, acting as a main reference for many computer
science fields [sas07, [sas08]. As regards journals, the ACM Transactions on Autonomous
and Adaptive Systems is with no doubt the most important reference in self-organisation.
However, providing a complete discussion of the many fields where self-organisation has
been applied to is not only out of the scope, but would also require a disproportionate
effort to the actual focus of the thesis. As a consequence, this chapter mainly deals with
describing works regarding self-organisation approaches in coordination and experiments
concerning techniques inspired by swarm intelligence. The decision of including swarm
intelligence comes from the consideration that most of the coordination services described
here — in particular SwarmLinda and tuple sorting — rely on swarm intelligence.
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8.1 Existing Self-Organising Approaches to Coordi-
nation

Traditional coordination models like LINDA [Gel85], REO [Arb04], and their many deriva-
tives, always enact coordination rules that are predictable, namely, whose impact on sys-
tem interactions is known, and fully re-producible, though forms of non-determinism are
possible. This is a natural consequence of coordination models and languages starting as
a branch of traditional software engineering, which promotes methods of software design
with the goal of building correct, efficient, and predictable applications.

However, as highlighted in Chapter 1, the emergence of new application scenarios —
like distributed artificial intelligence, multi-agent systems, self-organising systems, and
pervasive computing — is pushing towards the development of radically new approaches
to coordination [ZP03, MMTZ06].

There still are few works on coordination models and languages, that relate somehow
to self-organisation. For instance, ToTA [MZ04] is an infrastructure of tuple spaces where
tuples get copied and spread in neighbouring nodes along with a fading mechanism so as
to form so-called computational fields (co-fields), which can be used by agents to find each
other (and retrieve data items) in spite of their mobility and of changes in the network
topology. In this infrastructure, topology and locality of interactions play a crucial role
since a distributed data structure of tuples (the co-field) is created on a step-by-step basis.

Moreover, few formal models have been introduced to tackle self-organisation-related
aspects in coordination, such as stochasticity. In STOKLAIM [DNLMO05], a formal model
extending LINDA is described where agents insert and retrieve tuples in a stochastic way,
namely by specifying an operation rate that affects timing and probability of the corre-
sponding primitive execution. Similarly in [BGLZ04, BGLZ05], formal underpinnings for
probabilistic extensions of LINDA are studied, featuring the ability to specify a probabil-
ity (or a rate) for the execution of primitives—e.g. for retrieving certain tuples instead of
others.

Finally, we note that several works outside the core coordination community are actu-
ally addressing the problem of mediated interaction through a self-organising environment.
A key example is that of multi-agent system environments inspired by stigmergy [HM99],
a technique whereby ants coordinate their behaviour. The main idea of this paradigm is
that agents leave pheromone-like data-items on the local environment, that as time passes
(i) distribute in neighbouring nodes, (i) aggregate, and (7ii) fade. By properly exploiting
such data items spread in the environment, agents can self-organise their behaviour, e.g.
by adaptively creating and maintaining a path towards a resource [PBS02]. The potential
feasibility of tuple-based coordination infrastructures to the aforementioned framework is
evident—as witnessed by some recent experiment with TOTA.

All these works show that there is an increasing interest in the application of self-
organising approaches to coordination models and languages, aimed at achieving adap-
tivity properties in the management of interactions, as required e.g. by today’s pervasive
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computing scenarios.

8.2 Swarm Intelligence

Initially developed in chemistry and physics, self-organisation theory describes the emer-
gence of macroscopic patterns generated from microscopic interactions of system’s com-
ponents. In this theory, individual complexity is not excluded, but at some level of
description it is possible to provide an explanation of a complex behaviour in terms of
simple entities [BDT99]. This point is stressed also in some of the self-organising coordi-
nation services presented in the thesis: indeed, the proposed solutions often rely on very
simple agents as well.

Self-organisation theory encompasses biological systems: in particular, it is suitable to
describe the dynamics observed in insect colonies. Social insects are well known for their
ability to collectively solve problems despite the individual limited perception and action
capabilities. The wide repertoire of behaviours exhibited by insect colonies ranges from
cooperative transport to complex structures building [BDT99, (CDET01]. In particular,
sorting and clustering phenomena are observed in various forms and across several insect
species. Those phenomena have also been the main inspiration for the self-organising
coordination services proposed throughout the thesis. Clustering involves gathering items
scattered into the environment and organizing them in piles [DGFT91, BDT99], while
sorting involves more complex patterns and shapes like concentric rings [FSF92]. As an
example of clustering, consider pile formation in termite colonies: termites wander in
the environment, pick up scattered wood chips and arrange them in clusters. Resnick
proposed a simple model able to recreate this collective dynamics [Res97]: individual
termite behaviour is specified by two simple rules: (i) if nothing is carried, pick up an
item as one is encountered; (i) if carrying an item, drop it when encountering another
one. Observations across several ant species reported that corpses are clustered in small
cemeteries in order to clean up nests [BDT99]. Similarly, broods of the same size are
clustered while broods of different size are sorted into concentric annuli. Concentric
patterns have been observed in hive organization by honeybees: central area is occupied by
broods and surrounded by pollen and honey placed in concentric rings [Cam91l, ICDFT01].

Although the actual mechanisms regulating these behaviours are not fully understood
yet, researchers agree on the fundamental role of local density perception. In literature
there are several models able to replicate the observed dynamics: e.g. collective robotics
has produced several notable results through experimentation with physical robots.

8.2.1 Collective Robotics

Collective robotics is characterised by scenarios involving multiple autonomous robots
coordinating one another by using local sensing and actions as well as limited commu-
nication. In the last decade, collective robotics has probably been the most active field
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involved in developing artificial systems inspired by social insects behaviour. For instance,
the main goal of the European project SWARM-BOTS has been to study novel approaches
for developing self-organising and self-assembling swarms of robots [DTM™05]. However,
among the several scenarios investigated in that specific context, none is strictly related
to sorting behaviours.

Instead, other works in collective robotics deal with the problem called spatial sorting
which is closely related to the coordination services presented in Chapters 3-5, but solved
by mechanisms more similar to what observed in social insects. A taxonomy of spatial
sorting problems reflecting actual insect behaviours is provided in [MHHO9S]:

clustering — the only available type of item is grouped in a small fraction of the available
space;

segregation — each type of item is clustered but contiguous to other clusters;
patch sorting — each type of item is clustered but distant from other clusters;

annular sorting — clusters of different types of item are arranged in concentric rings.

Applying this classification to tuple organisation allows a better understanding of the
problem. Let nt be the number of tuple spaces in the network, and nk the number of
tuple kinds:

e when nk = 1 we deal with a problem of clustering;
e the case featuring nk > 1 and nk < nt resembles patch sorting;
e when nk > 1 and nk > nt, we have segregation;

Annular sorting requires a specific notion of topology we have not taken into account so
far, but would be an interesting approach to consider as well. For instance, collective
sort focusses on the case nk = nt, tuple clustering deals with the case nk = 1, while
SwarmLinda and tuple sorting are aimed at solving the general case where nk > 1.

In [DGFT91], Deneubourg et al. proposed a probabilistic model for brood clustering,
based on two probabilities P, and P; which depend on estimating local density f of items:
in [DGFT91] f is evaluated as the number of items encountered in time interval 7. While
researchers agree on the fact that ants actually perceive local density when picking up
an item, whether they do so when dropping an item is still matter of debate [MSEST06].
In the struggle to find a minimal set of rules, as pointed out in [MHH9S], it is possible
to achieve spatial sorting by exploiting techniques similar to self-sorting, i.e. sorting
that occurs under environmental forces like gravity. In [LF94] it has been proposed a
generalisation based on a similarity function for exploratory data analysis [BDT99]. The
Lumer Faieta’s function replaces f: basically, such a function minimises intra-cluster
distance with respect to inter-cluster distance. Results coming from this research could
be applied to evaluate an improved version of the solutions discussed in the thesis.
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Besides, it should be noted that collective sort, SwarmLinda, and tuple sorting are only
apparently related to data clustering as defined in [JMF99|, which is indeed a different
problem than spatial clustering in robotics. Indeed data clustering only defines techniques
for associating patterns to groups of related data items. However, data clustering could
be applied at design-time to the set of tuples an application has to handle, in order to
identify NV clusters of information that will be used as kinds to be grouped.
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Conclusion

This chapter summarises the work presented in the thesis, highlighting the corresponding
contributions and shortcomings, and finally tracing a feasible path for future work.

9.1 Contributions

The work presented in this thesis is one of the really few attempts at understanding the role
of self-organisation for software system coordination, resulting in a concrete proposal in
terms of self-organising coordination strategies. Besides defining quite a general abstract
framework for self-organising coordination systems, this thesis also showed a set of self-
organising coordination services that range from strategies for solving coordination issues
in specific domains, to proposals of middleware extending traditional coordination models
by self-organising principles. In particular, collective sort was the first concrete step in
this direction, devising a self-organising strategy for tuple organisation in distributed sets
of fully connected tuple spaces: the main results of this work are reported in |[CGVO07,
VCGO7, [CVGO9]. Then, the main focus was moved to middleware, realising a swarm-
intelligence-based extension of the traditional LINDA coordination model. The result of
this activity is SwarmLinda, that proposed an extended semantics of the LINDA out
operation leading to a self-organising tuple distribution, whereby it is possible to improve
the scalability of systems built on top of the middleware: the most remarkable results of
this work are shown in [CMVTO07b, [CMVT07a]. Finally, as a result of the generalisation of
the scenario underlying collective sort, a new strategy to tuple clustering and sorting was
provided, that is again inspired by swarm intelligence. In particular, the generalisation
consists in making no assumption about the topology of the tuple-space networks. The
early results of this work are reported in [CVS08| [CV0§].

As a minor contribution, this work also dealt with stochastic simulation as a means for
analysing and prototyping self-organising coordination services. To this end, a stochastic
simulation framework was developed in MAUDE and summarised in [GVCO07]. The work
on simulation resulted also in a proposal of a methodology for the design of self-organising
systems, centred around formal modelling, stochastic simulation, and verification as re-
ported in [GVCOO0§|. There, the importance of verification is also clearly remarked,

113



114 CHAPTER 9. CONCLUSION

though really few works on verifying self-organising systems can be found in literature.
Accordingly, the last year of the PhD course was in part spent working on verification for
self-organising systems: in particular, probabilistic model checking was investigated as a
suitable technique to automatic verification of systems showing probabilistic and stochas-
tic behaviours, as typically occurs in self-organising systems. Among the tools experi-
mented with, the PRISM model checker was chosen and exploited to verify the emergent
property of complete sorting on collective sort, as presented in [CV09al, [CV0O9D].

9.2 Main Shortcomings

The engineering of self-organisation techniques into software systems is still a largely un-
known problem, since it is not clear how to link the very need of software engineering
to find a meaningful set of functional requirements with the fundamental essence of self-
organisation that instead promotes the emergence of global behaviour — which is that
expected to fulfil functional requirements of the system at hand — as a response to lo-
cal interactions among system components. As a consequence, the resulting engineering
complexity of self-organising systems is due to the fact that traditional reductionist ap-
proaches are not feasible when dealing with self-organisation. Probably the first attempt
at solving this issue is represented by the work reported in [GVCOOQ8], where the prob-
lem is addressed by proposing the use of formal modelling, simulation, and verification
tools within a clearly defined design methodology, as a way to cope with the intrinsic
complexity of self-organising systems.

Another limitation of this work regards verification, and lies in the fact that automatic
techniques like probabilistic model checking are still largely unfeasible when applied to self-
organising systems, due to their typically large-scale nature. As a consequence, the model
to be verified often results extremely large in terms of variables required for specifying the
dynamics of the system, definitely leading to the state-space-explosion problem, which is
a well-known issue in model-checking, making memory requirements rapidly grow. So far,
even strategies for building parallel and distributed model checkers seem just a partial
solution to this issue.

9.3 Future Work

There are several works that would be compelling to pursue in future research activities.
First of all, as regards self-organising coordination services, it would be interesting to
capitalise the devises coordination techniques by proposing a comprehensive novel coor-
dination middleware based on self-organisation. We are currently experimenting with a
novel model of self-organising coordination based on biochemistry, where the nodes of
a distributed network can be though of as cell compartments, while the management of
interaction among the processes in the network is handled in terms of chemical reactions
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acting on data, playing the role of chemical reactants. An early proposal of the middleware
can be found in [VZCMOQ9].

As far as coordination languages are concerned, we have also started experimenting
with the ReSpecT language to actually implement some of the coordination services
proposed in the thesis: in the end, the adoption of ReSpecT for devising self-organising
coordination services will play an important role in future research activities.

Last but not least, probabilistic model checking needs to be more deeply investigated
so as to find a set of more effective techniques to be applied to self-organising system
verification.
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Maude Specification of the Stochastic
Simulation Engine

mod RANDOM-UTILITIES is
pr COUNTER .
pr RANDOM .
pr CONVERSION .

op randrange : Nat -> Nat . *%*x A RANDOM NUMBER IN A RANGE
op rand : -> [Float] . *x** A RANDOM FLOAT IN O - 1

*%x IMPLEMENTATION
eq rand = float(random(counter)/ 4294967295)
eq randrange( N:Nat ) = floor( rat (rand) * N:Nat )
endm

mod STOCHASTIC-SELECTION is
pr RANDOM-UTILITIES .
pr LIST{Float} .

sort Event .

op now : -> Float . %% CONSTANT RATE FOR INSTANTANEQOUS ACTIONS

*%% AN EVENT
op @ : [Nat] [Float] -> Event [ctor]

*%*%x RANDOM EVENT GENERATION
op next : List{Float} -> Event .
endm

mod STOCHASTIC-SELECTION-IMPLEMENTATION is
pr STOCHASTIC-SELECTION .
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**xx INTERNALS

vars L L’ : List{Float} .
vars F F’ F’’ : Float .
var N : Nat .

eq now = 1000000000.0 .

eq next(nil) = @( -1, 0.0 )
ceq next(L) = @( $sample(L,F), $dtime(F) )

if F := $sum(L) /\ F =/= 0.0 [owise]
eq next(L) = @( -1 , 0.0 ) [owisel

op $sample : List{Float} Float -> Nat .
ceq $sample( L , F ) = $ssample(rand, F’ ,0, L’ )
if (F’ L’) := $normalize(L,F)

op $dtime : Float -> Float .
eq $dtime( F ) = (1.0 / F) * log( 1.0 / rand )

op $ssample : Float Float Nat List{Float} -> Nat .
ceq $ssample (F , F° , N, L) =N if F < F’
ceq $ssample ( F , F° , N, nil ) = s N if F >= F’
eq $ssample (F , F? , N, (F°> L) ) =
$ssample( F , F? + F?’, s N, L ) [owise]

op $sum : List{Float} -> Float .
eq $sum( nil ) = 0.0 .
eq $sum( F L ) = F + $sum (L)

op $normalize : List{Float} Float -> List{Float} .
eq $normalize( nil , F ) = nil .
eq $normalize( (F’> L) , F ) =
((F’ / F) $normalize( L , F ) ) [owise]
endm

set clear rule off .
fmod STANDARD-CARRIER is
pr FLOAT .
pr BOOL .
pr NAT .

sort State Action States Effect Effects Observation .
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subsort State < States .
subsort Effect < Effects .

op __ : States States -> States [ ctor assoc comm ]

op nil : -> Effects .
op _;_ : Effects Effects -> Effects [ ctor assoc id: nil ]
op _#_->[_] : Action Float States -> Effect [ctor]

op _==> : State -> Effects .
op temp : State -> Bool .
op quit : Nat State Float -> Bool .

op obs : Nat State Float -> Observation .
endfm

fth CARRIER is
pr FLOAT .
pr BOOL .
pr NAT .

sort State Action States Effect Effects Observation .
subsort State < States .
subsort Effect < Effects .

op __ : States States -> States [ ctor assoc comm ]

op nil : -> Effects .
op _;_ : Effects Effects -> Effects [ ctor assoc id: nil ]
op _#_->[_] : Action Float States -> Effect [ctor]

op _==> : State -> Effects .
op temp : State -> Bool .
op quit : Nat State Float -> Bool .

op obs : Nat State Float -> Observation .
endfth

mod STOCHASTIC-TRACES-TYPES{ X :: CARRIER 1} is
pr STOCHASTIC-SELECTION-IMPLEMENTATION .

sort Step Observations Trace Steps Evt Evts .

subsort X$0bservation < Observations .
subsort Step < Steps .
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subsort Evt < Evts .

op [_:_@_] : Nat X$State Float -> Step [ctor format (ni dddddd d)]

op evt(_,_,_) : Nat X$Observation Float -> Evt

[ctor format (ni d ddddddd]

op _,_ : Observations Observations -> Observations

[ctor assoc id: empty format (d d n d)]

op empty : -> Observations [ctor]

op _<_> : Step Observations -> Trace [ctor format (d d ni ni d)].
op <_>_ : Observations Step -> Trace [ctor format (d ni ni d d)].

op nil : -> Steps .

op _+_ : Steps Steps -> Steps [ctor assoc id: nil ]

op nil : -> Evts .

op __ : Evts Evts -> Evts [ctor assoc id: nil ]

endm

mod STOCHASTIC-TRACES-FUNCTIONS{ X ::

%k %

pr STOCHASTIC-SELECTION .
pr STOCHASTIC-TRACES-TYPES{X} .

op activities : X$Effects -> List{Float} .
op newState : Nat X$Effects -> X$State .
op one : X$States -> X$State .

op evalEffects : [X$Effects] -> X$Effects .

INTERNALS

var S : X$State .
var LS : X$States .
var Es : X$Effects .
var E : X$Effect .
var A : X$Action .
vars N N1 : Nat .
vars F F1 : Float

eq evalEffects(Es) = Es .

op $size : X$States -> Nat
op $get : X$States Nat -> X$States .

op activities : X$Effects -> List{Float} .
eq activities( nil ) = nil .

eq activities( ( A # F -> [ LS ] ) ; Es ) = F activities(Es)
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op newState : Nat X$Effects -> X$State .

eq newState( 0 , ( A#F -> [ LS ] ) ) = one( LS )

eq newState( , E; Es ) = newState( 0, E )

eq newState( s N , (E ; Es) ) = newState( N, Es) [owise].

o

eqone (S)=S5.
eq one ( LS ) = $get( LS , randrange($size(LS)) ) [owise]

eq $size (S ) =1 .
eq $size ( SLS ) = s $size ( LS ) [owise]

eq $get (S, 0) =8 .

eq $get (S LS, 0) =

eq $get ( S LS, s N)
endm

$get ( LS , N ) [owise]

I

mod STOCHASTIC-TRACES-ENGINE{ X :: CARRIER } is
pr STOCHASTIC-TRACES-FUNCTIONS{X} .

var 0 : X$Observation .
var 00 : [X$0bservation]
var S S’ S1 S2 : X$State .
var P : Step .

var SS SS1 : [X$State]
var Es : [X$Effects]

vars N N1 N’ : Nat .

vars NN : [Nat]

vars F F1 F2 : Float .
vars FF FF’ FF1 : [Float]
vars L : Observations .

op £ : X$State -> X$State .
eq f(S) = newState(0,evalEffects(S ==>))

op move : Step -> Step .

ceqmove( [ (s N) : S@F] ) =[N:SS@FF] if
Es := evalEffects(S ==>) /\

@( NN , FF’ ) := next(activities(Es)) /\

NN =/= -1 /\
FF := F + FF> /\
SS := newState( NN , Es )

eqmove( [ (s N) : S@F] )=[(sN) : S@F ] [owise]
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op trace : Trace -> Trace .
ceq trace( [N : S @ FI< L > ) = trace( [N : SS @ FFI< L > )
if temp(S)
/N L (N) : 8S@FF ] :=move([ (s N) : S@F1]) .
ceq trace( [s N : S@FI<L >) = trace( [N : SSQ@FF] <L, 0>)

if not temp(S)
/\ not quit(N, S, F)

/\ 0 := obs(s N, S, F)
/N [ (N) : SS @ FF] :=move([ (s N) : S@F ]) .
ceq trace([s N : S @ FI<L > = trace( [0 : S@F] <L, 0>)

if not temp(S)
/\ quit(N, S, F)
/\ 0 := obs(s N, S, F) .

S@F] <L>=<L,0>T[0:
if not temp(S)

ceq trace([0 : S @ F]

/\ 0 := obs(0,S,F) .
op last : Trace -> Evt .
ceq last( [N : S@FI<L >) = 1last( [N : SS @ FFI< L > )
if temp(S)
/N L (N) : SSQFF ] :=move([ (s N) : S@F ]) .

ceq last( [s N :
if
/\
/\
/\

S @ FI<
if
/\
/\

ceq last([s N :

ceq last([0 : S @ F] <
if

/\

op series :

eq series (0 , P

eq series ( s N ,
endm

P)

S @F]<L>) =1last( [N :

n
= last( P < empty > ) series( N , P ) .

SS @ FF] < 0 > )
not temp(S)
not quit(N, S, F)

0 := obs(s N, S, F)
[ (N) : SS @ FF] :=move([ (s N) : S@F 1) .
L> =evt(N, 0, F)

not temp(S)
quit(N, S, F)
0 := obs(s N, S, F) .

L> =evt(0, 0, F)
not temp(S)
0 := obs(0,S,F) .

Nat Step -> Evts .

il .
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Sort Strategy

mod COLLECTIVE-SORTING-TYPES is
pr CONVERSION .
pr QID .

var F : Float

ops rl rh rho : -> Float .
eq rl = 0.025 .

eq rh = 0.25 .

eq rho = 0.1

op decrease : Float -> Float
ceq decrease(F) = F - rho * (rh - rl) if F - rho * (rh - rl) > rl .
eq decrease(F) = rl [owise]

sort TupleType Tuple TupleMSet Space QList Items Rate DataSpace .
subsort Qid < TupleType .

op ? : -> TupleType .

*xxx TUPLES

op _[_] : TupleType Nat -> Tuple [ctor]
subsort Tuple < TupleMSet .

op empty : —-> TuplelMSet [ctor]
op _I_ : TupleMSet TupleMSet -> TupleMSet [ctor assoc comm id: empty prec 6]

**xx TUPLE SPACE
op <_@_> : Nat TupleMSet -> Space [ctor format (n d ddd d) ]

**xx QID LIST, THAT IS, TUPLE KINDS
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subsort TupleType < QList .
op nilgl : -> QList [ctor]
op _,_ : QList QList -> QList [ctor assoc id: nilql prec 7]

sort Total .
subsort Total < Tuple .
op tot : Nat -> Total [ctor]

**xx STATE-ITEMS

op init : -> Items [ctor]

op [_] : Nat -> Items [ctor]

op [_] : TupleType -> Items [ctor]
op {_} : Nat -> Items [ctor]

op #_# : Nat -> Items [ctor]

op #_# : Float -> Items [ctor]

op {_} : DataSpace -> Items [ctor]
op _;_ : Items Items -> Items [ctor assoc prec 8]

**xx RATES
op r : Nat Float -> Rate [ctor]

*** DATASPACE

subsort Items Space < DataSpace . *** Rate

op empty : -> DataSpace [ctor]

op _|_ : DataSpace DataSpace -> DataSpace [ctor assoc comm prec 10]

endm

mod COLLECTIVE-SORTING-FUNCTIONS is
pr COLLECTIVE-SORTING-TYPES .
pr STOCHASTIC-SELECTION-IMPLEMENTATION .
pr LIST{Nat} .

var Q Q1 : TupleType .
var QL QL1 : QList .
var N N’: Nat

var MT : TupleMSet .
var F QT T : Float .
var L : List{Float} .
var LN : List{Nat} .

op one : Nat -> Nat
eq one( N:Nat ) = randrange(N:Nat).
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op size : (QList -> Nat .
eq size( nilgql ) = 0 .
eq size( Q , QL ) = s size( QL ) .

op length : List{Float} -> Nat .
eq length( nil ) = 0 .
eq length( FL ) = s length( L ) .

op get : QList Nat -> Qid .

eqget ((Q,QL) ,0)=Q.

eq get ( (Q , QL ) , s N:Nat ) = get ( QL , N:Nat) .
eq get(nilql, N:[Nat]) = ’noKind [owise]

op choose : QList -> Qid .
eq choose ( Q) =Q .
eq choose ( QL ) = get( QL , one(size(QL))) [owise]

op occurringTuples : TupleMSet -> QList .
eq occurringTuples (tot(N:Nat)) = nilql .
eq occurringTuples ( ( Q [ 01 ) | MT ) = occurringTuples( MT ) .
eq occurringTuples ( ( Q [ N:Nat ] ) | MT ) =
( Q , occurringTuples( MT ) ) [owise]

op noNoise : QList -> QList .

eq noNoise( (7 , QL) ) = noNoise(QL) .

eq noNoise( (Q , QL) ) = (Q, noNoise(QL)) .
eq noNoise( nilgl ) = nilql .

op sample : List{Float} -> [Nat]
ceq sample( L ) = $sample( L , F ) if F := $sum(L) /\ F =/= 0.0 .
eq sample( L ) = one( length ( L ) ) [owise]

op quantities : QList TupleMSet -> List{Float} .
eq quantities( nilql, MT ) = nil .

eq quantities( (Q, QL) , (Q [ N:Nat 1) | MT ) =
( float(N:Nat) quantities( QL , MT ) ) .
eq quantities( (Q, QL) , MT ) = ( 0.0 quantities( QL , MT ) ) [owise]

op log2 : Float -> Float .
eq log2( F ) = log( F ) / log( 2.0 ) .

op info : Float Float -> Float .
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eq info( QT , F ) = C (F / QT ) * 1og2( QT / F ) )

op entropy : Float List{Float} -> Float .

eq entropy( QT , nil ) = ( 0.0 )

ceq entropy( QT , F L ) = info( QT , F ) + entropy( QT , L ) if F > 0.0 .
eq entropy( QT , F L ) = 0.0 + entropy( QT , L ) [owisel

op sp-entropy : List{Float} -> Float .
eq sp-entropy( F L ) =
entropy( $sum( F L ) , F L ) / log2( float (length( F L )) )

op occursQ : TupleType QList -> Bool .

eq occursQ( Q , nilgl ) = false .

eq occursQ( Q , (@ , QL) ) = true .

eq occursQ( Q , (Q1 , QL) ) = occursQ ( Q , QL ) [owisel

op out : DataSpace —> Bool .
eq out( S:DataSpace ) = out ( S:DataSpace , nilql)

op out : DataSpace QList -> Bool .

ceq out ( < N:Nat @ MT > | S:DataSpace , QL ) = false
if QL1 := noNoise(occurringTuples(MT)) /\
size(QL1) >= 2 .
ceq out ( < N:Nat @ MT > | S:DataSpace , QL ) = false
if Q1 := noNoise(occurringTuples(MT)) /\
occursQ( Q1, QL )
ceq out ( < N:Nat @ MT > | S:DataSpace , QL ) =
out ( S:DataSpace , (Q1 , QL) )
if Q1 := noNoise(occurringTuples(MT)) [owise]
eq out ( < N:Nat @ MT > | S:DataSpace , QL ) =
out ( S:DataSpace , QL ) [owise]
eq out ( S:DataSpace , QL ) = true [owise]

op ts-is-ok : List{Float} Float -> Bool .
eq ts-is-ok(nil,T) = true .
eq ts-is-0k(0.0 L,T) = ts-is-ok(L,T)
ceq ts-is-ok(F L,T) = ts-is-ok(L,T)
if F==T /\
F>0.0.
eq ts-is-ok(F L,T) = false [owise]

op out-new : DataSpace -> Bool .
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ceq out-new ( S:DataSpace | # T # ) = true
if N:Nat := count-kind(S:DataSpace) /\
float(N:Nat) ==
eq out-new ( S:DataSpace | # T # ) = false [owisel

op count-kind : DataSpace -> Nat .
eq count-kind(< N’:Nat @ MT | tot(N:Nat) > | S:DataSpace) =
N:Nat + count-kind(S:DataSpace)
eq count-kind(S:DataSpace) = 0 [owise]
endm

mod COLLECTIVE-SORTING is
pr COLLECTIVE-SORTING-FUNCTIONS .
pr STANDARD-CARRIER .
pr NAT .
pr LIST{Nat} .

vars F FO F1 F2 F3 : Float .

vars N N’ N’? N’’> N1 N2 N3 Tot Tot’ : Nat .
var NN : [Nat]

vars Q Q1 Q2 : TupleType .

var QQ : [TupleTypel

vars MT MT1 MT2 MT3 : TupleMSet .

vars QL : QList .

vars DS DS’ : DataSpace .

**%x SYNTAX OF ACTIONS AND STATES

op choose : -> Action .
op choose0 : -> Action .
op ttype : -> Action .
op inl : -> Action .

op in2 : -> Action .

op move : -> Action .

subsort DataSpace < State .

**xx SEMANTICS
eq (init | DS | {N}) ==> =
( choose # 1.0 => [ [one(N)] | DS | {N}] )

*%% CHOOSING OTHER SPACE

eq ([N1] | DS | {N}) == =
( chooseO # now -> [ ([N1];[one(N - 1)]1) | DS | {N} ] )
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eq (([N11;[N1]) | DS | {N}) ==> =
( chooseO # now -> [ ([N1];[ N -1 1) | DS | {N} 1) .

*x*x CHOOSING A TUPLE FROM N1 :
ceq ([N1];[N2] | <N1 @MT > | DS ) ==> =
( in1l # now -> [ ([N1];[N2];[QQ] | < N1 @ MT > | DS ) 1 )
if QL := occurringTuples(MT) /\
QQ := get( QL , sample (quantities(QL, MT))) [owise].

*x*x CHOOSING A TUPLE FROM N2
ceq ([N11;[N2];[Q] | < N2 @MT > | DS ) ==> =
( in2 # now -> [ ([N1];[N2];[Q1;[QQ] | < N2 @ MT > | DS ) 1)
if QL := occurringTuples(MT) /\
QQ := get( QL , sample (quantities(QL, MT))) [owise] .

*%% MOVING OR DISCARDING

op pred _ : Nat -> Nat .
eq pred 0 = 0 .
eq pred s N = N .

op move : TupleType TupleType -> Bool .
ceq move (Q1,Q2) = true if Q1 =/= Q2 .
eq move (Q1,Q2) = false [owise] .

op noise : TupleType TupleType Nat Bool -> Nat .
ceq noise(Q1,Q2,N,false) = N + 1
if Q1 == Q2 /\ Q1 =/=7 /\
Q2 =/= 7 /\ Q1 =/= ’noKind /\
Q2 =/= ’noKind .
ceq noise(Q1,Q2,N,true) = N - 1
if Q1 =/=Q2 /\ N > 1 /\
QL =/=7 /\ Q2 =/=7 /\
Q1 =/= ’noKind /\ Q2 =/= ’noKind
ceq noise(?,Q2,N,true) = N - 1
if N> 1 /\ Q2 =/= ? /\ Q2 =/= ’noKind .
ceq noise(’noKind,Q2,N,true) = N - 1
if N>1/\Q2 =/=7 /\ Q2 =/= ’noKind .
ceq noise(Q2,7,N,true) = N
if Q2 =/= 7 /\ Q2 =/= ’noKind .
ceq noise(Q2,’noKind,N,true) = N - 1
if N> 1 /\ Q2 =/= 7 /\ Q2 =/= ’noKind .
eq noise(Q1,Q2,N,B:Bool) = N [owise] .

var Mov : Bool .

128



APPENDIX B. MAUDE SPECIFICATION OF THE COLLECTIVE SORT
STRATEGY

129

ceq ( [N1];[N2];[Q1]1;[Q2] | # N3 #

| <Nt e Q2 [sN1) | (? [N 1) | MT | tot(Tot) >

| < N2 @ (Q2 [ N2 1) | MT1 | tot(Tot’) > | DS ) ==> =
( move # now -> [ ( init | # s N3 #

| <Nt e @[ NI)I| (2 [N 1) | M|
tot (updateNum((Q2 [ N 1) | MT)) > |

<N2@ (Q2 [ s N’]) | MT1 |
tot (updateNum((Q2 [ s N’]) | MT1)) > | DS ) ] )
if Mov := move(Q1,Q2) /\ Mov == true /\

N’’’ := noise(Q1,Q2,N’’,Mov) .

ceq ( [N1];[N2];[Q2];[?] | # N3 #
N1 e (Q2 [sNI) | (? [N 1) | MT | tot(Tot) >
N2 @ (Q2 [ N 1) | MT1 | tot(Tot’) > | DS ) ==> =
( move # now -> [( init | # s N3 #
| <Nt e @2 [ NI | (2 [N 1) | M|
tot (updateNum((Q2 [ N 1) | MT)) >
| <N2 @ (Q2 [ s N’]) | MT1 |
tot (updateNum((Q2 [ s N’]) | MT1)) > | DS ) 1)
if Mov := move(Q2,?) /\ Mov == true /\
N’’’ := noise(Q2,?,N’’,Mov) .

ceq ( [N1];[N2];[7];[Q2] | # N3 #
N1 e (Q2 [LsNI) | (? [N 1) | MT | tot(Tot) >
N2 @ (Q2 [ N 1) | MT1 | tot(Tot’) > | DS ) ==> =
( move # now -> [( init | # s N3 #
| <Nt e @2 [ NI)I| (2 [N 1) | M|
tot (updateNum((Q2 [ N 1) | MT)) >
| <N2 @ (Q2 [ s N’]) | MT1 |
tot (updateNum((Q2 [ s N’]) | MT1)) > | DS ) 1)
if Mov := move(?,Q2) /\ Mov == true /\
N’’’ := noise(?,Q2,N’’,Mov) .

ceq ( [N11;[N2];[?]1;[Q2] | # N3 #
N1e (@ [01]1) | (? [N 1]) | MT | tot(Tot) >
N2 @ (2 [ N> 1) | MT1 | tot(Tot’) > | DS ) ==>
( move # now —-> [( init | # N3 #
N1e(@@T [ 01) I (? [N 1) | MT | tot(Tot)
N2 @ (Q2 [ N’]) | MT1 | tot(Tot’) > | DS ) ] )
if Mov := move(?,Q2) /\ Mov == true /\ N’’’ := N>’ .

\4

ceq ( [N11;[N2];[Q1];[’noKind] | # N3 #
<N1t@@ [sNI)I| (2 [N 1) | MT | tot(Tot) >
<N2@ (Q1 [ N> 1) | MT1 | tot(Tot’) > | DS ) ==> =
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( move # now -> [( init | # s N3 #
| <N1e@e Q[ N1I)I| (2 [N ]) | M|
tot (updateNum((Q1 [ N 1) | MT)) >
| < N2 @ (Q1 [ s N’]) | MT1 |
tot (updateNum((Q1 [ s N’]) | MT1)) > | DS ) 1)
if Q1 =/= ’noKind /\ N’’’ := noise(Q1,’noKind,N’’,true) .

ceq ( [N1];[N2];[Q1];[Q2] | # N3 #
<Nte@e@@U LoD I (2 [N>1) ]| M >
<N2e@ (@2 [N J) | MTL > | DS ) ==> =
( move # now —> [( init | # N3 #
| <Nt @@2T[01) | (2 [N ]) | MT>
| <N2 @ (Q2 [ N°]) | MTL > | DS ) 1)
if move(Q1,Q2) /\ N’’’ := N>’ .

ceq ( [N11;[N2]1;[Q11;[Q2] | < N1 @ (? [ N> 1) | MT > | DS ) ==> =
( move # now -> [ ( init
| <Nt @ (? [ N> ]) | MT> | DS ) 1)
if Mov := move(Q1,Q2) /\
Mov == false /\ N’’’ := noise(Q1,Q2,N’’,Mov) .

op updateNum : TupleMSet -> Nat .

ceq updateNum((Q2 [ N 1) | MT )
if N>0/\Q2=/=7.

eq updateNum(empty) = O .

eq updateNum((? [ N ]) | MT ) = 0 + updateNum(MT) .

ceq updateNum((Q2 [ 0 1) | MT ) = O + updateNum(MT) if Q2 =/= 7 .

1 + updateNum(MT)

**xx TEMP
eq quit( N, DS, F ) = out-new(DS) .

eq temp( init | DS ) = false .
eq temp( DS ) = true [owisel

*x*x (BS
subsort State < Observation .

sorts TSView-List TSView .
subsort TSView < TSView-List .

op nilTSList : -> TSView-List .
op _,_ : TSView-List TSView-List -> TSView-List [ctor assoc id: nilTSList]
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op ts : Nat Nat Nat -> TSView .

op t : Nat TSView-List -> Observation .

op o : State —> Observation .

eq o ( <N’ @ T:TupleMSet | (7[N°’]) > | S:State | # N # ) =
t(N,getPattern(< N’ @ T:TupleMSet | (7[N’’]) > | S:State )) .

eq obs (N:Nat , S:State, F:Float ) = o(S:State) .

op getPattern : State -> TSView-List .

eq getPattern(< N’ @ T:TupleMSet | (?[N’’]) | tot(N) > | S:State) =
ts(N’,N,N’’), getPattern(S:State) .

eq getPattern(S:State) = nilTSList [owise] .

op SS-4 : -> State .

eq SS-4 = ( init | {4} |
<0e (Ca[256D) 1 Cb[251) 1 (°c[25]1) 1 (°e[251) | (7[01) | tot(4) > |
<1e (Cal251)1Cb[251) 1 (°c[25]) 1 (°e[251) | (7[01) | tot(4) > |
<2e (Ca[256D) 1 Cb[251) 1 (’c[25]) 1 (°e[25]1) | (7[0]1) | tot(4) > |
<3 @ (Cal251)1Cb[251) 1 (°c[251) 1 (°e[251) | (7[01) | tot(4) > |

#O0# | #4.0#) .

op SS-4-local-min : Nat -> State .

eq SS-4-local-min(N) = ( init | {4} |
<0 @ (Cal501) I (’b[0]) 1(C’cl0]) [(Cel0]) [(7IN]) | tot(1)
<10 (Cals0D) 1 C°bl0]) [1Ccl0]) [(Cel0]) [(?IN]) | tot(1)

vV V V V

|
|
< 2@ (’al0l) 1(°b[1001) 1 (°c[100]1)1(e[0]1) I(?[NI1) | tot(2)
< 3@ (alol) 1Cblol) [1Cclol) [Cel100]) I (?INI) | tot(1)
#O0# | #4.0#) .

endm
view COLLECTIVE-SORTING from CARRIER to COLLECTIVE-SORTING is
endv
mod CS-STOCHASTIC-TRACES is
pr STOCHASTIC-TRACES-ENGINE{COLLECTIVE-SORTING} .
endm

set print format on .

**x*xSAMPLE SIMULATION RUNS
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rewrite series( 20 , [20000 : SS-4-local-min(1) @ 0.0] ) .

rewrite series( 100 [200000 : SS-4-local-min(2) @ 0.0] ) .

rewrite series( 100 [20000 : SS-4-local-min(5) @ 0.0] ) .

rewrite series( 100 [20000 : SS-4-local-min(10) @ 0.0] ) .

rewrite series( 100 [20000 : SS-4-local-min(20) @ 0.0] ) .

rewrite series( 100 [20000 : SS-4-local-min(50) @ 0.0] ) .
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Maude Specification of SwarmLinda

mod SWARMLINDA-TYPES is
pr TERMS-SYNTAX .
pr NAT .
pr QID .
pr FLOAT .
pr LIST{Nat}

sort MultiTerm .

subsort Term < MultiTerm .

op nilMT : -> MultiTerm [ctor]

op _|_ : MultiTerm MultiTerm -> MultiTerm [ctor assoc comm id: nilMT]

sorts TS MultiTS .

subsort TS < MultiTS

op nilMTS : -> MultiTS [ctor]

op _l_ : MultiTS MultiTS -> MultiTS [ctor assoc comm id: nilMTS]

sorts Scent MultiScent

subsort Scent < MultiScent

op nilS : -> MultiScent [ctor]

op _|_ : MultiScent MultiScent -> MultiScent [ctor assoc comm id: nilS]
op {_,_} : Term Float -> Scent [ctor]

sorts Item MultiItem .

subsort Item < MultiItem .

op nill : -> Multiltem [ctor]

op _|_ : Multiltem MultiIltem -> Multiltem [ctor assoc comm id: nilTI]
op [_@_] : Qid MultiTerm -> Item [ctor]

op [_@_] : Qid MultiScent -> Item [ctor]

op [_@_] : Qid Float -> Item [ctor]

op [_@_] : Qid List{Nat} -> Item [ctor]
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op <_@_> : Nat Multiltem -> TS [ctor]

endm

mod SWARMLINDA-FUNCTIONS is
pr SWARMLINDA-TYPES .
pr STOCHASTIC-SELECTION-IMPLEMENTATION .
pr LIST{Float} .

op similarity : TermList TermList -> Float [comm]

vars N1 N2 : Term .

vars X Y : TermVar .

vars L1 L2 : TermList

ceq similarity((N1(L1)),(N2(L2))) = 0.0 if N1 =/= N2 .

eq similarity((N1(L1)),(N1(L2))) = 0.6 + similarity(L1,L2)
eq similarity((N1(L1)),(N1)) = 0.6 + similarity(L1l,nil)

eq similarity((N1,L1),(N2,L2)) = similarity(L1,L2)

eq similarity(nil, (N1,L1)) = -0.1 + similarity(nil,L1)

eq similarity(nil,nil) = 0.0 .

op £ : Term MultiScent Float -> Float .

var MS : MultiScent

var S : Scent

vars F F’ Tot : Float

eq f(N2, ({N1,F} | MS),F’) = f(N2,MS,(F’ + (F * similarity(N1,N2))))
eq £(N2,nilS,F’) = F’

op addMem2F : Float List{Float} -> Float .

var Mem : List{Float} .

eq addMem2F (F,nil) = F .

eq addMem2F (F,F’ Mem) = addMem2F((F + F’),Mem)

op calcNeighbsScent : Term List{Nat} MultiTS -> List{Float} .

var LN : List{Nat} .

var MTS : MultiTS .

var TS : TS .

var MI : Multiltem .

var N : Nat

var T : Term .

eq calcNeighbsScent(T,(N LN),(< N @ [’scents @ MS] | MI > | MIS)) =
£f(T,MS,0.0) calcNeighbsScent (T, (LN), (MTS))

eq calcNeighbsScent (T, (nil), (MTS)) = nil .

134



APPENDIX C. MAUDE SPECIFICATION OF SWARMLINDA 135

op choose : List{Float} -> Nat .

vars L : List{Float} .

ceq choose( L ) = $sample( L , F ) if F := $sum(L) /\ F =/= 0.0 .
eq choose( L ) = one( length ( L ) ) [owise]

op one : Nat -> Nat .
eq one( N:Nat ) = randrange(N:Nat).

op length : List{Float} -> Nat .
eq length( nil ) = 0 .
eq length( F L ) = s length( L )

op chooseNeighbs : List{Nat} List{Float} -> Nat .
eq chooseNeighbs(LN,L) = getE1l(LN,choose(L))

op isEveryQueueEmpty : MultiTS -> Bool .
var MQ : MultiTerm .
eq isEveryQueueEmpty( < N @ [’queue @ nilMT] | MI > | MTS ) =
isEveryQueueEmpty ( MTS )
ceq isEveryQueueEmpty( < N @ [’queue @ MQ] | MI > | MTS ) = false
if MQ =/= nilMT .
eq isEveryQueueEmpty( MTS ) = true [owise]

op updateEntropy : MultiTS -> MultiTS .

eq updateEntropy (nilMTS) = nilMTS .

ceq updateEntropy( < N @ [’scents @ MS] | [’entropy @ F]1 | MI > | MTS) =
< N @ [’scents @ MS] | [’entropy @ F’] | MI > | updateEntropy(MTS)

if F’ := calcEntropy(MS)

op calcEntropy : MultiScent -> Float .
ceq calcEntropy(MS) = sp-entropy(L) if L := convert-MS2LF(MS)

op convert-MS2LF : MultiScent -> List{Float} .
eq convert-MS2LF(nilS) = nil .
eq convert-MS2LF({N1,F} | MS) = F convert-MS2LF(MS)

op log2 : Float -> Float .
eq log2( F ) = log( F ) / log( 2.0 )

op info : Float Float -> Float .
var QT : Float .
eq info( QT , F ) = ( (F / QT ) * 1log2( QT / F ) )

op entropy : Float List{Float} -> Float .
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eq entropy( QT , nil ) = ( 0.0 )
ceq entropy( QT , F L ) = info( QT , F ) + entropy( QT , L ) if F > 0.0 .
eq entropy( QT , FL ) = 0.0 + entropy( QT , L ) [owise]

op sp-entropy : List{Float} -> Float .
eq sp-entropy( F L ) =
entropy( $sum( F L ) , F L ) / log2( float (length( F L )) )

endm

mod SWARMLINDA is
pr STANDARD-CARRIER .
pr SWARMLINDA-FUNCTIONS .
pr NAT .
pr TERMS-SUBS .

subsort MultiTS < State .

op chooseNode : -> Action .
op choose : -> Action .

op init : -> Action .

op simil : Nat -> Action .
op store : -> Action .

op move : -> Action .

op movel : -> Action .

op movel-a : -> Action .

op done : -> Action .

sort Status .subsort Status < MultiTS .
op [_] : Qid -> Status [ctor]

op [_] : Nat -> Status [ctor]

op [_] : Float -> Status [ctor]

op [_] : Term -> Status [ctor]

op [_,{_}] : Term List{Float} -> Status [ctor]
op [_,_] : Term Nat -> Status [ctor]

op [_,_] : Term Int -> Status [ctor]

op [_,_] : Term Float -> Status [ctor]

vars TS’ TS : MultiTS .
vars N N1 TMem MemSz : Nat
var MI : Multiltem .

vars MT SC : MultiTerm .

136



APPENDIX C. MAUDE SPECIFICATION OF SWARMLINDA

137

var
var

var

var Neighbs LN :

s T T’

: Term .

MS : MultiScent
vars F F’ Steps Pstore K Tot Fe Ke : Float
BL : BindList .

List{Nat} .

vars Mem Mem’ NeighbsScents L : List{Float} .

op convert-MTS2LN : MultiTS -> List{Nat} .

S : Status .

convert-MTS2LN (nilMTS) = nil .

convert-MTS2LN(< N @ MI > | TS) = N convert-MTS2LN(TS)
convert-MTS2LN(S | TS) = convert-MTS2LN(TS)
convert-MTS2LF : MultiTS -> List{Float} .

convert-MTS2LF (nilMTS) = nil .

convert-MTS2LF(< N @ MI > | TS) = 1.0 convert-MTS2LF(TS)
convert-MTS2LF(S | TS) = convert-MTS2LF(TS)

var
eq
eq
eq
op
eq
eq
eq

op

chooseNode

: MultiTS -> Nat .
ceq chooseNode(TS) = chooseNeighbs(LN,L) if LN := convert-MTS2LN(TS) /\

L := convert-MTS2LF(TS)

*%x SWARMLINDA SEMANTICS

ce

if

eq

€q

eq

q ([’calc-entropy] | [’steps,K] | [’mem,TMem] | [’k,Ke] |
[’f,Fe] | [’chosen,(-1)] | TS ) ==> =
( init # 1.0 -> [[’chooseNode] | [’chosen,(-1)] | [’k,Ke] |
[’f,Fe] | [’steps,K] | [’mem,TMem] | TS’] )
TS’ := updateEntropy(TS)
([’chooseNode] | [’steps,K] | [’chosen,(-1)] | TS ) ==> =
( chooseNode # 1.0 -> [[’init] |
[’chosen, (chooseNode(TS))] |
[’steps,K] | TS 1)
([’init] | [’steps,K] | [’chosen,N] |

<N @ [’queue @((’out(T))| MI)]| MI > | TS ) ==

( choose # 1.0 -> [[’choosel] | [’chosen,(N)] |

([’init]

[’steps,K] | [XK] | [N] | [Cout(T)),{nil}]
< N @ [’queue @ MT] | MI >] )

[’steps,K] | [’chosen,N] |
< N @ [’queue @(nilMT)]| MI > | TS ) ==> =

( init # 1.0 -> [[’chooseNode] | [’chosen,(- 1)] | [’steps,K]

< N @ [’queue @ (nilMT)] | MI >] )
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ceq ([’choosel] | [’k,Kel | [’f,Fel | [K] | [N] | [Cout(T)),{Mem}] |
< N@ [’scents @ MS] | MI > | TS ) ==> =
( store # Pstore -> [[’store] | [’k,K] | [’£,F] | [N] | [(Cout(T))] |
<N @ [’scents @ MS] | MI > | TSI );
( move # (1.0 - Pstore) -> [[’choose2] | [’k,Ke] | [’f,Fe]l | [(K - 1.0)] |
[N] | [Cout(T)),{Mem F}] |
< N @ [’scents @ MS] | MI > | TS] )
if F := £(T,MS,0.0) /\ F’ := addMem2F(F,Mem) /\
Pstore := (F> / (F’> + K)) *x (F’> / (F’> + K)) [owise] .

eq ([’choosel] | [0.0] | [’k,Ke]l | [’f,Fe]l | [N] | [CCout(T)),{Mem}] |
<N Q@ [’scents @ MS] | MI > | TS ) ==> =
( store # 1.0 -> [[’store] | [’k,0.0] | [’f,- 1.0] | NI | [Cout(T))] |
< N @ [’scents @ MS] | MI > | TS] ) .

eq ([’choose2] | [’k,Ke] | [’f,Fe]l | [0.0] | [N] | [(CCout(T)),{Mem}] |
<N @ [’scents @ MS] | MI > | TS ) ==> =
( store # 1.0 -> [[’store] | [’k,0.0] | [’f,- 1.0] | IN] | [Cout(T))] |
< N @ [’scents @ MS] | MI > | TS] ) .

ceq ([’choose2] | [’mem,TMem] | [K] | [’steps,Steps] | [N] |
[(’out(T)),{Mem}] | < N @ [’neighbors @ Neighbs] | MI > | TS ) ==>
( movel # 1.0 -> [[’update] | [’mem,TMem] | [K] | [’steps,Steps] |
[chooseNeighbs (Neighbs,calcNeighbsScent (T,Neighbs,TS))] |
[(Cout(T)),{Mem}] | < N @ [’neighbors @ Neighbs] | MI > | TS] )
if (size(Mem) < TMem) or (size(Mem) == TMem) .

eq ([’update] | [’mem,TMem] | [K] | [’steps,Steps] |
(N] | [Cout(T)),{Mem}] |
< N @ [’neighbors @ Neighbs] | [’mov @ Mov] | MI > | TS ) ==>
( movel-a # 1.0 -> [[’choosel] | [’mem,TMem] | [K] | [’steps,Steps] |
[N] | [Cout(T)),{Mem}] |
< N @ [’neighbors @ Neighbs] | [’mov @ (Mov + 1.0)] | MI > | TS] ) .

ceq ([’choose2] | [’mem,TMem] | [K] | [’steps,Steps] | [N] |
[Cout(T)) ,{Mem}] |
< N @ [’neighbors @ Neighbs] | MI > | TS ) ==> =
( movel # 1.0 -> [[’update] | [’mem,TMem] | [K] | [’steps,Steps] |
[chooseNeighbs (Neighbs,calcNeighbsScent (T,Neighbs,TS))] |
[Cout(T)),{Mem’}] |
< N @ [’neighbors @ Neighbs] | MI > | TS] )
if (size(Mem) > TMem) /\ Mem’ := tail(Mem) .

138



APPENDIX C. MAUDE SPECIFICATION OF SWARMLINDA 139

ceq ([’store]l | [N] | [’chosen,N1] | [(Cout(T))] |
< N @ [’scents @ {T’,K} | MS] | [’tot @ Tot] | MI > | TS ) ==> =
( done # 1.0 -> [[’calc-entropy] | [’chosen,(- 1)] |
< N@ [’scents @ {T>,(K + 1.0)} | MS] |
[’tot @ (Tot + 1.0)] | MI > | TS] )
if BL :=T // T> /\ BL :: BindList .

eq quit( N, TS, F ) = isEveryQueueEmpty(TS) .
eq temp( [’chooseNode] | TS ) = false .
eq temp( TS ) = true [owise] .

sort Plottable .
subsort Plottable < Observation .
subsort List{Float} < Plottable .

op nonP : -> Plottable [ctor] .
op _@_ : Plottable Plottable -> Plottable [ctor assoc comm id: nonP] .

op o : Float State -> (Observation .
op o : Float -> Observation .
op o : State -> Observation .

eq obs (N:Nat , S:State, F:Float ) = o(S:State) .

var Mov : Float .

eq o( < N @ [’scents @ MS] | [’entropy @ Tot] | [’mov @ Mov] | MI > |
TS ) = float(N) getPlottable(MS) Tot Mov @ o( TS ) .

eq o( TS ) = nonP [owise] .

op getPlottable : MultiScent -> List{Float} .
eq getPlottable( {T’,(K)} | MS ) = K getPlottable(MS) .
eq getPlottable( nilS ) = nil .

**xxSAMPLE INSTANCE
op S-star-2 : -> State .
eq S-star-2 = ([’init] | [’steps,10.0] |
< 0 @ [’queue @((CCout(’a(v(’X)))) | CoutCb(w(’X)))) | CoutCa(v(’x)))) |
Cout(Cb(v(’X)))) | CoutCa(v(’X)))) | CoutCb(v(’X)))) |
CoutCob(w(CX)))) | CoutCalv(Cx)))) | CoutCbGwCX)INII
[’tot @ 0.0] | [’scents @ ({’a(v(’X)),0.0} | {’b(v(’X)),0.01)] |
[’neighbors @ (1)] > |
<1 @ [’queue @(C’out(C’a(v(’X)))) | CoutCb(v(’X)))) | CoutCalv(’X)))) |
CoutCo(wCX)))) | CoutCav(CX)))) | CoutCbw(X)))) |
Cout(Ca(v(’X)))) | CoutCb(w(’X)))) | CoutCa(v(’X))))] |
[’tot @ 0.0] | [’scents @ ({’a(v(’X)),0.0} | {’b(v(’°X)),0.01)] |
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[’neighbors @ (0 2)] > |
< 2@ [’queue @(Cout(’a(v(’X)))) | CoutCb(v(’X)))) | CoutCa(v(’X)))) |
CoutCb(w(CX)))) | CoutCa(wv(CX)))) | CoutCb(w(’X)))) |
Cout(Cb(v(’X)))) | Cout(Ca(v(’X)))) | CoutCb(v(’X)))))] |
[’tot @ 0.0] | [’scents @ ({’a(v(’°X)),0.0} | {’b(v(’X)),0.01)] |
[’neighbors @ (1 3 5)] > |
< 3@ [’queue @((CCout(’a(v(’X)))) | CoutCb(w(’X)))) | Cout(Ca(v(’X)))) |
Cout(’b(v(’X)))) | CoutCa(v(’X)))) | CoutCb(v(’X)))) |
CoutCb(w(CX)))) | CoutCa(w(CX)))) | CoutCb(v(’X))))] |
[’tot @ 0.0] | [’scents @ ({’a(v(’X)),0.0} | {"b(v(’X)),0.01)]1 |
[’neighbors @ (2 4)] > |
< 4 @ [’queue @(CCout(’a(v(’X)))) | Cout(Cb(v(’X)))) | CoutCalv(’X)))) |
CoutCb(w (X)) | CoutCa(v(CX)))) | CoutCbwCX)))) |
CoutC’b(w (X)) | CoutCa(v(X)))) | CoutCbwCX)))N] |
[’tot @ 0.0] | [’scents @ ({’a(v(’X)),0.0} | {’b(v(’X)),0.01)] |
[’neighbors @ (3)] > |
5 @ [’queue @(Cout(Ca(v(’X)))) | CoutCb(v(’X)))) | Cout(Cal(v(’X)))) |
CoutCbw(CX)))) | CoutCa(v(Cx)))) | CoutCbGCX)))) |
CoutCb(v(’X)))) | CoutCa(v(’X)))) | CoutCb(v(’X)))))] |
[’tot @ 0.0] | [’scents @ ({’a(v(’X)),0.0} | {’b(v(’°X)),0.01)] |
[’neighbors @ (2)] > ) .

A

endm

view SWARMLINDA from CARRIER to SWARMLINDA is
endv

mod SWARMLINDA-STOCHASTIC-TRACES is
pr STOCHASTIC-TRACES-ENGINE{SWARMLINDA} .
endm

set print format on .

**%*xSAMPLE SIMULATION RUN
rewrite trace( [10000 : S-star-2 @ 0.0] < empty >) .
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