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Abstract

Many practical problems arising in real world applications, mainly in the fields

of logistics and telecommunications, can be modeled as network design or ve-

hicle routing problems. In this thesis we study three combinatorial optimiza-

tion problems belonging to the classes of Network Design and Vehicle Routing

problems that are strongly linked in the context of the design and management

of transportation networks. The problems considered in this thesis are the Non-

Bifurcated Capacitated Network Design Problem (NBP), the Period Vehicle Rout-

ing Problem (PVRP) and the Pickup and Delivery Problem with Time Windows

(PDPTW). These problems are interesting from both a theoretical and a practical

viewpoint. They are inherently hard to solve since they all belong to the class

of NP-hard problems and contain as special cases some well known difficult

problems such as the Traveling Salesman Problem and the Steiner Tree Problem.

Moreover, they model the core structure of many practical problems arising in

logistics and telecommunications.

The NBP is the problem of designing the optimum network to satisfy a given

set of traffic demands. Given a set of nodes, a set of potential links and a set

of point-to-point demands called commodities, the objective is to design the net-

work topology, i.e., to select the links to install and dimension their capacities so

that all the demands can be routed between their respective endpoints, and the

sum of link fixed costs and commodity routing costs is minimized. The problem

is called non-bifurcated because the solution network must allow each demand to
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follow a single path, i.e., the flow of each demand cannot be splitted. Although

this is the case in many real applications such as production-distribution with

single sourcing and express package delivery, the NBP has received significantly

less attention in the literature than other capacitated network design problems

that allow bifurcation.

We describe an exact algorithm for the NBP that is based on solving by an

integer programming solver a formulation of the problem strengthened by simple

valid inequalities and four new heuristic algorithms. One of these heuristics is

an adaptive memory metaheuristic, based on partial enumeration, that could be

applied to a wider class of structured combinatorial optimization problems.

In the PVRP a fleet of vehicles of identical capacity must be used to service a

set of customers over a planning period of several days. Each customer specifies a

service frequency, a set of allowable day-combinations, and a quantity of product

that the customer must receive every time he is visited. For example, a customer

may require to be visited twice during a 5-day period imposing that these visits

take place on Monday-Thursday or Monday-Friday or Tuesday-Friday. The prob-

lem consists in simultaneously assigning a day-combination to each customer

and in designing the vehicle routes for each day so that: each customer is visited

the required number of times, the number of routes on each day does not exceed

the number of vehicles available, and the total cost of the routes over the period

is minimized.

With respect to other vehicle routing problems the PVRP can be classified as

strategic because, in practice, in most applications the problem is solved over a

limited planning period but the routes in the solution are operated unchanged

for several months. We also consider a tactical variant of this problem, called

Tactical Planning Vehicle Routing Problem, where customers require to be visited

on a specific day of the period but a penalty cost, called service cost, can be paid

to postpone the visit to a later day than that required. At our knowledge all the
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algorithms proposed in the literature for the PVRP are heuristics.

In this thesis we present for the first time an exact algorithm for the PVRP

that is based on different relaxations of a set partitioning-like formulation. The

effectiveness of the proposed algorithm is tested on a set of instances from the

literature and on a new set of instances.

Finally, we study the PDPTW which is well suited to model a wide range of

distribution problems at the operational level. The problem is to service a set

of transportation requests using a fleet of identical vehicles of limited capacity

located at a central depot. Each request specifies a pickup location and a delivery

location, and requires that a given quantity of load is transported from the pickup

location to the delivery location. Moreover, each location can be visited only

within an associated time window. Each vehicle can perform at most one route

and the problem is to satisfy all the requests using the available vehicles so that:

each request is serviced by a single vehicle, the load on each vehicle does not

exceed the capacity, and all locations are visited according to their time window.

We formulate the PDPTW as a set partitioning-like problem with additional

cuts and we propose an exact algorithm based on different relaxations of the

mathematical formulation and a branch-and-cut-and-price algorithm. The new

algorithm is tested on two classes of problems from the literature and compared

with a recent branch-and-cut-and-price algorithm from the literature.
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Chapter 1

Introduction

1.1. Transportation planning

Freight transportation is a fundamental brick in modern economic systems. Busi-

ness competitiveness is strictly bound to logistic efficiency since transportation

accounts for a significant percentage of companies yearly expenses.

In 2001, road transport alone accounted for 45% of all freight transported

between the 15 member states of the European Union (EU), measured in ton-

kilometers (each corresponding to 1000 kg. of freight transported for one kilome-

ter). Another significant transport type was sea shipping, accounting for 40.4%,

whereas only 7.8% was transported by rail, 4% by inland waterways and 2.8%

through pipelines. Excluding sea shipping, road transportation is undoubtedly

the dominant transport mode, covering 75.5% of total ton-kilometers (Lafontaine

and Valeri [80]). This fraction was only 60% in 1980 (European Commission [98])

and has kept growing significantly in the last decades making the economical

impact of these transport services more and more relevant. In 1998, road carriers

accounted for 5% of GDP in the EU (European Union [97]), and similar statistics

were recorded in the U.S., where trucking accounted for about 6% of GDP in 2001

(Corsi [41]).
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Motor carrier transportation has been regulated for many years. Deregula-

tion took place in the U.S. with the Motor Carrier Act in 1980 and started more

gradually in the EU with most of it completed by the early 1990s [80]. Deregu-

lation significantly changed the approach of carrier companies to transportation

planning. In a deregulated environment competitive rates together with a high

quality of service are crucial in attracting and retaining customers. On the other

hand, increasing cost of fuels, globalization of production and the corresponding

supply chains, and liberalization of transportation services are posing new chal-

lenges together with new options for service carriers. They operate in a highly

competitive environment where customers require reliable and efficient services,

prices must be kept competitive and costs keep growing.

In this context, the optimization of logistic operations plays a fundamental

role, and it is not surprising that starting from early 80s transportation planning

has been the subject of a considerable amount of attention from the research com-

munity. Many prominent studies discuss planning and optimizations systems

that have been successfully employed by major carriers. From an algorithmic

viewpoint, real world logistic problems are extremely interesting as their solu-

tion poses formidable challenges. However, it is often vain to hope studying these

problems as a whole. In practice, even modeling such problems with reasonable

approximation can prove to be a formidable task due to the number of extremely

complex and poorly defined constraints and conflicting objectives. Focusing on

well structured and mathematically well behaved subproblems is common prac-

tice, and represents the key in designing optimization and decision support tools

for solving more complex problems.

The aim of this thesis is to study three combinatorial optimization problems

belonging to the classes of Network Design and Vehicle Routing problems that

are strongly related in the context of freight distribution problems such as express

package delivery, production-distribution planning, and less-than-truckload (LTL)

transportation. Moreover, these problems appear as core subproblems in many

practical problems in logistics.
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LTL transportation planning is an example where network design and vehicle

routing problems are strongly related. Carriers and companies facing this kind of

problems routinely handle a large number of transportation orders, each involv-

ing small quantities of goods, that must be moved between widely spread loca-

tions. To exploit economies of scale in transportation costs and maximize truck

loads, intermediate facilities (or break-bulks terminals) are used to “consolidate”

(i.e. aggregate) several shipments into truckloads. Truckloads are dispatched to

terminal facilities close to the customer location where they are broken down into

individual shipments and finally delivered to the end customers.

In this context LTL operations can be divided into long distance distribution

and regional distribution corresponding, from a planning level viewpoint, to tac-

tical and operational decision levels [see 44, 47]. In long distance distribution

shipments are routed through a network where nodes represent intermediate and

terminal facilities, whereas line-haul trucks can be scheduled to routinely travel

between facilities to connect them and represent arcs. Terminal facilities collect

or deliver shipments from/to their local service region using their own local fleet

of pickup/delivery trucks. From terminal facilities shipments are loaded on line-

haul trucks that bring them to intermediate facilities for consolidation with other

shipments sharing the same destination. Shipments incoming at intermediate fa-

cilities are then unloaded and rearranged to fill other line-haul trucks headed to

the required destination.

Typically, in designing such network companies extrapolate from historical

data a periodic forecast of freight volume (flow) that is to be moved between

endpoint locations, based on their expectations. Using this point-to-point flow

estimation, they schedule trucks or other transportation services on arcs of the

network and define their frequency thus providing “transportation capacity” on

the network. The capacity installed must suffice to simultaneously route the ex-

pected flows to the destination endpoints while minimizing the expenses for pro-

viding transportation service on arcs.

Depending on the application context, this kind of problems can be compli-
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cated by a number of additional constrains. Multiple transportation options may

be available (e.g., different trailer types, rail transports, aircrafts etc.) each having

different capacity and operating cost. Transportation services may be required to

be scheduled on paths (or tours) rather than on single arcs. In some applications

it may be necessary to integrate the time component into the model to represent

quality of service restrictions. Moreover, the objective function may be much

more complicated, keeping into account various operational and service restric-

tions or quality and reliability of service. This class of problems is known in the

literature as Service Network Design (see Crainic [44, 47], Wieberneit [120], Ar-

macost et al. [4]) or Load Planning Problem (see e.g. Powell and Sheffi [103, 102])

in the context of LTL transportation for motor carriers. These problems belong

to the wide class of Network Design problems. At their hearth is the basic net-

work design model that captures for the most part the fundamental structure

(and hence the hardness) of such problems.

As a result of this network design one obtains a plan for moving freights

between end terminals. However, another fundamental problem arises on the

regional scale at the operational level. When shipments reach their destination

terminals they have to be dispatched to end customers or, equivalently, upcom-

ing shipments within the terminal operating area must be collected in order to

be shipped through the network. These operations define a regional distribution

problem where a number of customers scattered across the terminal facility op-

erating region must be serviced by a local fleet of vehicles. Very generally, these

problems are referred to as Vehicle Routing Problems and have been extensively

studied in the literature in many variants. Several additional constraints must

be accounted for at this level to obtain a realistic model. As an example, an in-

teresting overview of the local operations of a small package shipping firm can

be found in Wong [121]. In this thesis we focus on vehicle routing problems in-

volving pickup and delivery operations and time constraints. We also consider

periodic problems where multiple customer visits must be scheduled over a short

planning period. Interestingly, this latter variant lends itself to model problems
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where customer requests are not completely known in advance but may be re-

vealed in a dynamic fashion during the course of a given planning period. Such

problems may be quite relevant in some applications such as package pickup and

delivery.

In the following two sections we describe in more detail the classes of Net-

work Design and Vehicle Routing problems. We describe the variants of such

problems that are relevant for this thesis focusing on their models and applica-

tions.

1.2. Network Design Problems

Network design problems arise in many different application contexts such as

transportation (e.g., airline, rails, freight traffic), communications (telephone and

computer networks), electric power systems, oil, gas and water pipelines. In gen-

eral, the problem can be stated as that of determining a minimum cost configura-

tion of a network, i.e., to place links between nodes and install sufficient capacity

to simultaneously route a set of point-to-point flows through the network. As an

example, in a traffic network nodes correspond both to origin and destination ar-

eas for vehicular traffic and road intersections, arcs define the road network, and

flows represent the amount of traffic between urban areas. The problem of se-

lecting a set of road improvements (i.e., resize some roads) so as to minimize the

total travel cost for all travelers subject to a budget constraint (i.e., a maximum

incurred cost) can be modeled as a network design problem. Another example is

the set up of private telecommunication networks. Here, links correspond to pri-

vate lines whose capacity (i.e., transmission rate) is provided by the transmission

facilities that are leased from a telephone company at a fixed rate. Given a traffic

estimation between various locations of a company, a fundamental problem is to

select a configuration of transmission facilities that is able to carry this traffic at

minimum cost. Solving this problem also means to define a route for each point-

to-point traffic requirement such that all traffic requirements can be routed using
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the installed capacity.

The Capacitated Network Design Problem (CNDP) is defined on a graph rep-

resenting the network where the arc set corresponds to the set of links available

in the network. Between a given set of origin-destination node pairs there is a

flow requirement, called commodity, that must be routed through the network

from the corresponding origin node to the corresponding destination node. On

each arc is available an initial capacity that can be expanded by installing an in-

teger number of copies of some base capacity having fixed size. In general two

types of costs are considered: routing costs and fixed costs. Routing costs are

associated with each arc-commodity pair and represent the cost of shipping the

flow of each commodity through each arc. Depending on the application con-

text, routing costs may correspond to travel times, risk factors, penalties, or other

costs reflecting the amount of traffic on the arcs. On the other hand, fixed costs

represent the installation cost for each base capacity. There are many variants of

this general model. For example models without capacity restrictions (i.e., base

capacities have unlimited size [see 9]) or models with reliability and survivability

constraints and special topological restrictions on the network (e.g., node degree

constraints). This model is quite general and contains as special cases several dif-

ficult problems. Indeed, even computing the optimal paths for the commodities

once fixed the link capacities corresponds to solving a capacitated multicommod-

ity flow problem.

When there is no initial capacity on arcs, routing costs are zero, and the base

capacity size is unlimited, the problem reduces to the Steiner Tree Problem (Hakimi

[69],Dreyfus and Wagner [53]) that is known to be NP-hard (see Karp [77]). To

obtain the Steiner Tree Problem it suffices to define one commodity for each re-

quired node in the Steiner tree except one, say node 1, representing the root. For

each commodity, let node 1 be the source node and define the destination node

as a required node of the Steiner Tree Problem.

Another important special case is the Facility Location Problem (van Roy [119],

Holmberg et al. [74]). To model the Facility Location Problem as a CNDP it suf-
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fices to add a dummy node to the network, representing the source of all flows

required by the customer nodes, and special arcs connecting the dummy node

with each facility node. The cost of each special arc (i, j) is set equal to the fixed

cost for opening facility j, the routing cost is set equal to 0, and the base capac-

ity that can be installed on it is set equal to the capacity of facility j. Conversely,

each arc connecting a facility node with a customer node has no fixed cost and an

unlimited initial capacity, but each commodity traversing it pays a routing cost

equal to the associated facility-customer transportation cost.

Due to the large number of different applications, the network design problem

has been studied in many variants. When routing costs increase linearly with the

amount of each commodity on arcs, and at most one base capacity can be installed

at fixed cost on each arc, the problem is called Capacitated Fixed Charge Network

Design (see e.g. Gendron and Crainic [61], Holmberg and Yuan [73], Crainic et al.

[45]). Other variants include multiple facility extensions where several facilities

having different capacities and costs are available (Agarwal [1], Dahl and Stoer

[48], Bienstock and Günlük [23]), and survivability requirements such as multiple

node-disjoint paths for each commodity.

In the context of the design of communication and transportation systems,

the main objective is often to provide connectivity between a set of points (i.e.,

communication or transportation links), and other than fixed costs there are no

additional costs for routing messages or goods within the system capacity. In this

case routing costs are zero and the problem is purely strategic. In this context,

Magnanti et al. [91] and Magnanti et al. [89] define a subproblem of the CNDP,

called Network Loading Problem (NLP), that models the design of capacitated

networks where routing costs are zero, the network graph is undirected, and fa-

cilities of fixed capacity can be installed in integer multiples on edges. In general,

different facility types t1, t2, . . . , tr are available, each having a different base ca-

pacity ut1 < ut2 < · · · < utr . Base capacities are modular, that is, uti is an integer

multiple of uti−1 , i = 2, . . . , r, and the smallest base capacity ut1 is equal to 1.

Magnanti et al. [89] study a two facility NLP motivated by a private communica-
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tion network leasing problem. In this case, facilities correspond to Digital Signal

Level (DS) channels that can be leased by a company to provide different trans-

mission rates between central offices.

van Hoesel et al. [117] and van Hoesel et al. [118] distinguish between undi-

rected and bidirected NLP models with respect to capacity usage. In the first case

edge capacity has to be shared between commodities routed on the two corre-

sponding arcs, i.e., the total capacity installed on each edge {i, j} gives an upper

bound on the sum of the flows on both directions (i, j) and (j, i). Conversely,

in bidirected models each capacity unit can be used simultaneously in both di-

rections, that is, installing a capacity unit on edge {i, j} permits a simultaneous

flow on both arcs (i, j) and (j, i). Bienstock and Günlük [23] study a bidirected

NLP motivated by a real problem arising as a part of a more complex problem

concerning the design of ATM optical networks. These problems are bidirected

because telecommunication traffic has traditionally been bidirected and telecom-

munication networks have been designed in such a way that each physical link

permits the same traffic flow in both directions. Moreover, even when networks

are specifically designed to handle undirected traffic, they are still built to per-

mit bidirected flows in the event that such traffic will have to be carried in the

future. In telecommunications problems an initial capacity can be available on

arcs to represent a preexistent network that is to be expanded in order to meet

an increased demand. In this case the problem is generally known as Capacity

Expansion Problem [see 23, 68].

An important distinction is between bifurcated and non-bifurcated models

(also called splittable and unsplittable models). The non-bifurcated NLP mod-

els a wide variety of practical situations such as the design of voice networks,

telecommunication networks running ATM protocols, production-distribution

with single sourcing, and express package delivery. In non-bifurcated problems

commodities are restricted to be routed through a single path from the origin

node to the destination node. It is not hard to impose non-bifurcation in the

NLP model as it suffices to restrict the flow variables associated with each arc-
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commodity pair to be binary (0-1) variables. However, the resulting problem be-

comes much harder to solve in practice because the corresponding LP-relaxation

provides a very weak lower bound. Despite their practical significance, non-

bifurcated problems have received much less attention in the literature than bi-

furcated problems.

A non-bifurcated problem, similar to the NLP, is studied in Gavish and Al-

tinkemer [59] for the design of a computer backbone network where the objec-

tive is to simultaneously assign capacity to the arcs and route each commodity

through a single path. A limited number of capacity options is available on each

arc and there are fixed costs for installing capacity on arcs, variable costs that are

function of the flow on arcs, and delay costs taking into account the queueing of

flows due to capacity congestion on arcs. Brockmüller et al. [27] and Brockmüller

et al. [28] study a generalization of the non-bifurcated NLP motivated by a prob-

lem arising in telecommunication industry. The objective is to re-design a com-

pany’s private line network in order to minimize the total lease costs for the lines,

while permitting that a set of commodities are routed through a single path. Dif-

ferent capacity sizes are available and the cost structure for installing capacity on

edges is non-linear. Moreover, only a subset of nodes, called hub nodes, can be

used to route commodities. Non-bifurcated problems are studied also in Bara-

hona [17], Berger et al. [22], Atamtürk and Rajan [6], van Hoesel et al. [117], van

Hoesel et al. [118].

Non-bifurcated NLPs also find important applications in transportation plan-

ning. Here facilities correspond to trucks of fixed size that must be assigned to

routes to define a load plan, whereas commodities correspond to freights loaded

on trucks. In this context Bossert and Magnanti [25] use a non-bifurcated NLP to

model a logistic problem, called Pup Matching, that consists in matching semi-

trailers called pups to cabs that can handle up to two pups simultaneously. Pup

Matching is defined on a transportation network corresponding to a directed

graph, where each arc is associated with a fixed cost that represents the expense

for sending a cab trough it. The problem is to send each pup from an origin node
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to a destination node minimizing cab fixed costs. Since each cab can handle two

pups, assigning a cab to an arc provides the option of routing through it up to

two pups without additional costs. Then, each pup corresponds to an unsplit-

table commodity, generating a single unit of flow, whereas each cab corresponds

to a facility that can be installed on arcs to provide two capacity units. The prob-

lem of minimizing cab costs while assigning an appropriate route to all pups can

be modeled as a non-bifurcated NLP. Indeed, the non-bifurcated NLP represents

the core structure of many problems in freight transportation. These problems

can often be modeled with reasonable approximation as network loading prob-

lems under some simplifying assumptions.

1.3. Routing Problems

Routing problems can be viewed as the operational level in the management

of distribution and transportation networks. Decisions related to the number

and location of facilities (hubs, plants, warehouses or depots), size of the fleet,

customer-depot allocation, and allocation of transportation services between lo-

cations concern the design of the network and may be viewed as strategic and

tactical. On the other hand, the daily problem of routing vehicles to deliver goods

from local depots to customers can be classified as operational. This distinc-

tion does not only depend on the nature of the decisions involved, but is clearly

connected with the time-span and frequency of the decisions. In fact, structural

changes in the network are considered by the management once every few years

and once implemented cannot be changed without incurring in major capital in-

vestments.

The basic and probably most well studied vehicle routing problem is the Ca-

pacitated Vehicle Routing Problem (CVRP). In the CVRP a set of customers, each

with an associated requirement of some product, must be supplied from a single

depot by a homogeneous fleet of vehicles of known capacity. The problem is to

design a set of simple circuits for the vehicles, called routes, starting and ending
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at the depot, and such that each customer is supplied by exactly one route. The

total load of each route (i.e., the sum of the loads required by the customers vis-

ited) must not exceed the vehicle capacity, and the objective is to minimize the

sum of route costs. The CVRP is NP-hard as it contains the well known Travel-

ing Salesman Problem (TSP) as a special case. In fact, the TSP corresponds to a

CVRP where a single vehicle of capacity greater or equal to the sum of all cus-

tomers demands is available at the depot (the depot corresponding to the initial

city). The CVRP is one of the most studied combinatorial optimization problems

and since it was first proposed by Dantzing and Ramser [49] it has been studied

in many variants.

In fact, routing problems arising in real applications usually involve a num-

ber of additional complications which may in practice make the problem much

harder to solve. Typical complications include:

a) the presence of time windows associated with each customer, i.e., an earliest

and latest time at which the customer can be visited;

b) the presence of pickup and delivery transportation requests, i.e., customers

requiring that the associated load is picked up at a specified location and de-

livered to a corresponding delivery location;

c) the presence of multiple depots;

d) a planning horizon of several days in which each customer requires to be vis-

ited a given number of times according to specific day combinations.

Time constrained routing problems have grown as an important research area in

the last two decades as a consequence of the increasing importance of the time

dimension for manufacturing and transportation companies engaged in an effort

to compete on service quality. In many applications such as bank and postal de-

liveries, industrial refuse collection or school bus routing, customer service must

occur according to strict time constraints called time windows. Time windows

correspond to given time intervals, associated with each customer, imposing that

a customer can only be visited at a time within its time window. The Vehicle
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Routing Problem with Time Windows (VRPTW) is a generalization of the CVRP

that models this kind of problems. In the VRPTW a travel time is associated with

each arc (representing the time consumed for traveling between the correspond-

ing endpoints) and with each customer are associated both a time window and a

service time. Usually, vehicles are allowed to arrive at a customer location before

the earliest time imposed by the corresponding time window, but in this case the

vehicle must wait until the the customer earliest time before starting to service

it. The objective of the VRPTW is to design a set of routes of minimum cost to

service all customers within the imposed time windows without exceeding the

vehicle capacity. In some applications involving flexible time schedules it is per-

mitted to violate time window constraints at a cost, usually a linear function of

the amount of time window violation. In this case time windows are called soft

(see Ferland and Fortin [55], Balakrishnan [11]).

A more general model that has received less attention in the literature is the

Pickup and Delivery Problem with Time Windows (PDPTW). In the PDPTW the

set of vertices is partitioned into two subsets of pickup and delivery vertices. Each

pickup has an associated delivery and requires that a quantity of some product

is loaded at the pickup location and delivered to the corresponding delivery lo-

cation by the same vehicle. Each pickup-delivery pair defines a transportation

request and, as for the VRPTW, a time window is associated with each vertex.

Capacity constraints impose that the total load of the vehicle after visiting each

customer cannot exceed the maximum vehicle capacity. Notice that, since the

amount loaded at each pickup must be unloaded at the corresponding delivery

before returning to the depot, when time windows are wide enough all customers

could in principle be visited using a single vehicle.

The PDPTW contains as special cases both the CVRP and the VRPTW. When

the set of delivery vertices is empty and the delivery vertex associated with each

pickup vertex corresponds to the depot, the PDPTW reduces to the VRPTW. In

addition, when all time windows are arbitrarily large, the PDPTW becomes the

classical CVRP.
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A wide class of different pickup and delivery problems have been studied in

the literature motivated by different real applications (see Cordeau et al. [40], Par-

ragh et al. [101] and Berbeglia et al. [21] for recent surveys). With respect to how

vertices are paired to define the transportation requests one can distinguish be-

tween one-to-one (1-1), one-to-many-to-one (1-M-1), and many-to-many (M-M)

problems. The PDPTW model described above belongs to the 1-1 class because

each pickup is paired with a single delivery; whereas in 1-M-1 problems all de-

livery vertices must be supplied from the depot and all pickup demands must be

delivered to the depot. Among 1-M-1 problems a further distinction can also be

made between single demands and combined demands (see Gribkovskaia and

Laporte [67]). In the first case each vertex must be either a pickup or a deliv-

ery (but not both). In the latter, a vertex can be both a pickup and a delivery,

meaning that it may have both a delivery demand, that must be supplied to it

from the depot, and a pickup demand, that must be brought to the depot. A

well known problem in this class is the VRP with backhauls, where pickup and

delivery vertices, here called linehauls and backhauls, have the depot as corre-

sponding delivery and pickup vertex, respectively. Moreover, each route must

visit all delivery vertices before starting visiting pickups, and both the total load

delivered and the total load picked up by the route must not exceed the vehicle

capacity.

In M-M problems pickups and deliveries are unpaired, that is, each unit of

product loaded at a pickup vertex can be unloaded at any delivery customer in

the same route to satisfy one unit of the associated demand. This variant is a

relaxation of the PDPTW described above and models situations where there is

a single product that must be shifted between vertices. When a single vehicle is

available, this problem is called One-Commodity Pickup and Delivery Traveling

Salesman Problem (1-PDTSP) or Traveling Salesman Problem with Pickup and

Delivery (Anily and Bramel [3], Hernandez-Perez and Salazar-Gonzalez [71]).

An important extension of the PDPTW that has received considerable atten-

tion in the literature is the Dial-A-Ride-Problem (DARP) (see e.g. Cordeau [36],
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Cordeau and Laporte [37]). The DARP is concerned with the transportation of

people (elderly and disabled in most applications) that require to be picked up at

a specified origin location within a specified time window and moved to a cor-

responding destination by a specified latest time. The DARP is modeled as the

PDPTW except that an additional constraint is imposed to ensure service qual-

ity, i.e., the time between a person pickup and the corresponding delivery cannot

exceed a maximum ride time.

An attempt to generalize the various PDP variants in unified notation can be

found in Savelsbergh and Sol [113]. They propose a unified model, called General

Pickup and Delivery Problem (GPDP), to model the different pickup and deliv-

ery variants including the DARP. The model can handle various complicating

constraints found in many practical applications such as multiple pickups asso-

ciated with a single delivery or vehicles with different start and end locations.

When the time horizon extends to several days, VRP problems assume a more

strategic meaning. Companies offering periodic services to the customers, such

as grocery distribution and refuse collection, often design a delivery plan over a

given planning horizon that is then operated unchanged for several months. The

Period Vehicle Routing Problem (PVRP) is the problem of designing, for an homo-

geneous fleet of vehicles located at a central depot, a set of routes for each day of

a given p-day period servicing customers with known demands. Each customer

requires to be visited a fixed number of times, called its frequency, and requires

the same quantity of product every time he is visited. The visits of each customer

can only occur according to a given number of allowable day-combinations. For

example, a customer may require to be visited twice during a 5-day period impos-

ing that these visits should take place on Monday-Thursday or Monday-Friday

or Tuesday-Friday. Each vehicle can perform at most one route per day, each

route must start and finish at the depot, and the vehicle can service a total cus-

tomer demand that is smaller than or equal to its capacity. The PVRP consists

in simultaneously assigning a day-combination to each customer and in design-

ing the vehicle routes for each day of the planning period so that each customer
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is visited the required number of times, the number of routes on each day does

not exceed the number of vehicles available on that day, and the total cost of the

routes over the p-day period is minimized.

The PVRP model described above is quite general and contains as special

cases both the CVRP and the Multi-Depot VRP (MDVRP) that is an extension of

the CVRP where a customer can be served from p depots and inter-depot routes

are not allowed. In fact, the PVRP becomes the single depot CVRP when the plan-

ning period is of one day only (i.e., p = 1) and every customer must be visited

exactly once. The MDVRP can be obtained as a special case of the PVRP where

each day corresponds to a depot (i.e. p represents the number of depots), each

customer has frequency 1, and each customer can be visited on any of the p days.

Besides strategic problems, a class of tactical VRPs called Tactical Planning

VRPs (TPVRP) that involve the assignment of delivery days to customers can be

modeled as PVRPs. Examples of such problems arise in application sectors such

as beverage and food industries and companies operating in the service sector.

Here, customer orders are placed over a p-day horizon and with each order is

associated a day-window defined by an initial and a final day of the planning

horizon. Each customer would like to be serviced on the initial day of his day

window but it is possible to service him on a later day within his day window by

paying a service cost that is function of the delay from the initial day. A limited

vehicle fleet does not allow the company to service all customers on the initial

day of their day window. Therefore, a dispatcher must choose every day a sub-

set of customers to be visited from a portfolio of orders placed over the p-day

horizon. This is a typical scenario for business organizations operating in the

service sector, such as utility companies in energy, telecommunications, or wa-

ter distribution that routinely face the problem of scheduling their commercial

and technical personnel over a limited planning period to visit customers. Cus-

tomer requests can result from a planned maintenance schedule defined by the

company and directly from the clients through a call center. Depending on the

urgency of each request a maximum delay is allowed with respect to the required
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visit day, and the effect of postponing a visit can be accounted for by means of a

service cost that must be minimized in order to meet reasonable quality of service

standards. Bostel et al. [26] refer to this kind of problems as “field force planning

and routing” and describe an application for optimizing the service logistic activ-

ities of a company operating in the area of water treatment and distribution. Such

problems can be viewed as PVRPs in that a possible solution method consists in

solving a PVRP that involves both the assignment of a delivery day to each order

of the portfolio and the design of the routes for the p days. The objective is to ser-

vice all orders within day p minimizing the sum of routing costs and customer

service costs.
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1.4. Research motives and goals

This thesis is based on the development of new exact and heuristic algorithms

for three NP-hard combinatorial optimization problems, belonging to the classes

of Network Design and Vehicle Routing problems, that arise in the context of

transportation planning. Specifically, we consider a generalization of the NLP

with single facility where routing costs are non-zero, called Non-Bifurcated Ca-

pacitated Network design problem (NBP), and two important generalizations of

the Capacitated Vehicle Routing Problem: the Period Vehicle Routing Problem

(PVRP) and the Pickup and Delivery Problem with Time Windows (PDPTW).

In contrast to bifurcated network design problems, the NBP has received much

less attention in the literature for what concerns both heuristic and exact algo-

rithms. Exact solution algorithms for the NBP are particularly scarce, and it is

often hard to compare the results achieved by different methods as each method

uses a different set of test instances. Our first aim is to get a more clear picture

for what concerns the limits of the current exact algorithms and their usefulness

in solving NBPs of practical interest. We find that an exact method that is based

on solving a strengthened formulation of the NBP using the commercial inte-

ger programming solver CPLEX [see 43], is competitive with a state of the art

branch-and-cut algorithm from the literature. However, practical problems are

still far from the reach of the current state of the art exact methods.

As far as new heuristic methods are concerned, we will concentrate our at-

tention on different heuristic techniques to compare their effectiveness in solving

the NBP. Our main goal in this direction is to design heuristic algorithms that

can be used to effectively solve problems involving complete networks of mod-

erate size. To this end, we investigate the structure of the optimal solutions of

the problem to derive a necessary condition for optimality that can be enforced

within a constructive heuristic. We also experiment different metaheuristic tech-

niques, namely partial enumeration, adaptive memory and tabu search, with the

aim to perform a wider exploration of the solution space while trying to avoid
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getting trapped in local minima.

Concerning the VRPs we focus our attention on exact methods. We use a Set

Partitioning (SP) like formulation to model these problems aiming at generalizing

to the PVRP and to the PDPTW an effective solution method recently proposed

for the CVRP in Baldacci et al. [16]. In the SP model of the CVRP each column

of the SP matrix represents a feasible route servicing a subset of customers and

an additional constraint limits the total number of routes in any feasible solution.

The same formulation can be used to model the PDPTW as it suffices to remove

from the SP model all routes that are not feasible for the PDPTW. The PVRP re-

quires instead a more involved formulation in order to impose that customers

are visited on each day of one corresponding day combination. However, the

proposed PVRP formulation can still be relaxed to a SP-like formulation.

In both cases the resulting SP problem cannot be solved directly since the

number of variables is exponential, but it can be used to compute a lower bound

on the problem without generating the entire SP matrix. The method that we aim

to investigate combines in an additive manner a number of dual ascent proce-

dures that explore different relaxations of the problem in order to compute a near

optimal dual solution of the LPrelaxation of the SP model. The advantage of us-

ing different bounding procedures is that by executing them in sequence from the

weakest, but computationally faster, to the strongest, but computationally heav-

ier, it is possible to achieve a significant speed up of the overall algorithm. In fact,

the dual solution computed by any bounding procedure can be used as a starting

point for the next procedure reducing its required number of iterations.

Some of these procedures require column generation so that the identification

of a suitable pricing subproblem for generating routes, and the development of

an effective algorithm for solving it, will constitute an important area of inves-

tigation. In fact, the effectiveness of any column generation method is heavily

biased toward the efficiency of the pricing algorithm. In generating routes for

the VRPs considered in this thesis several complications arise with respect to the

CVRP.
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For the PDPTW the pricing problem must also account for time window, pair-

ing, and precedence constraints. Since the pricing problem is solved by dynamic

programming, the introduction of the time dimension can potentially result in a

dramatic increase in the number of states that must be generated. Thus, effective

techniques that reduce the state space by exploiting the structure of the problem

are likely to be crucial to the efficiency of the pricing algorithm.

Regarding the PVRP, since its mathematical formulation is significantly differ-

ent from that of the CVRP due to the constraints involving day-combinations, it

is not straightforward to extend to the PVRP the bounding procedures proposed

for the CVRP that are based on a pure SP model. Yet, in the case of the PVRP it

is crucial to start the column generation phase with a dual solution of reasonable

quality because, at each iteration, the pricing subproblem must be solved for each

day of the planning period.

An important role in computing a tight lower bound is played by valid in-

equalities. In this thesis we aim at generalizing to the PVRP those inequalities that

proved most effective for the CVRP, namely Capacity Constraints and Clique In-

equalities. Moreover, inspired by the recent success reported by Jepsen et al. [76]

in solving the VRPTW, we investigate the effectiveness of a limited subset of the

Subset-Row (SR) inequalities, introduced in such paper, that happen also to be a

subset of the clique inequalities. SR inequalities have the nice property of being

defined on the rows of the SP matrix instead of the columns. Therefore, within

a column generation schema they can grant several advantages from a computa-

tional viewpoint with respect to clique inequalities.

Once computed a lower bound, and knowing an upper bound on the problem,

it is possible to derive a reduced integer problem where the SP matrix contains

only a limited number of columns, but that is still guaranteed to contain an op-

timal solution to the original problem. If this reduced problem is small enough

it can be solved very efficiently using a general purpose integer programming

solver.

The effectiveness of this approach greatly depends on the quality of both the
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lower and the upper bounds available because the number of columns in the

reduced problem depends on the gap between these two values. Moreover, this

method can fail in solving highly degenerate problems having a large number of

equivalent solutions. To overcome this drawback, we propose to experiment a

hybrid method that first tries to derive the reduced problem, and then resorts to

a branch-and-cut-and-price algorithm if the reduced problem is too large.

Ultimately, it is our hope to present new exact methods that are competitive

with, if not better than, other exact methods proposed in the literature for the

same problems. Indeed, at our knowledge no exact algorithms nor lower bounds

have been proposed so far for the PVRP. We aim at demonstrating that PVRP

instances from the literature, for which only heuristics are available, are within

the reach of the proposed exact algorithm within a reasonable computing time.

1.5. Thesis plan

The remainder of this thesis is organized in three main chapters, each dealing

with a different problem, followed by a chapter containing concluding remarks.

In Chapter 2 we study the Non-Bifurcated Capacitated Network Design Prob-

lem and we experiment both exact and heuristic approaches. We describe an

exact algorithm that solves an integer formulation of the problem strengthened

by simple valid inequalities by means of an integer programming solver. Compu-

tational experiments on a set of instances from the literature show that the exact

algorithm is competitive with a recent branch-and-cut algorithm from the litera-

ture. However, both algorithms are time consuming and fail to optimally solve

several instances of limited size.

With the aim to attack problems of more realistic size we propose four new

heuristic algorithms. We describe a two phase heuristic method, called TPH,

based on a necessary condition for optimality and two partial enumerative heuris-

tics called PEM and F&B. Algorithm PEM performs a partial enumeration of the
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solution space and uses TPH to derive an upper bound from each partial solu-

tion. Algorithm F&B is a more general metaheuristic than PEM as it does not

rely on TPH to compute upper bounds, and can be adapted to solve a wider class

of combinatorial problems exhibiting a common substructure. Moreover, we de-

scribe an iterative procedure, called RTS, that uses at each iteration a tabu search

method to improve a starting solution. The new algorithms are compared with

the exact method on two classes of instances. The first class contains the same

instances from the literature that are used to compare the new exact method and

the branch-and-cut algorithm from the literature. The second class contains new

instances corresponding to complete graphs with 30 nodes that are randomly

generated to simulate practical problems.

Routing problems are the subject of chapters 3 and 4 where we describe new

exact algorithms for solving the Period Routing Problem and the Pickup and De-

livery Problem with Time Windows.

In chapter 3 we study the Period Vehicle Routing (PVRP). We describe a set

partitioning-like formulation of the problem and five bounding procedures that

are based on three different relaxations of the mathematical formulation. The first

relaxation corresponds to an integer problem where the planning period is of one

day only and the number of vehicles available is equal to the sum of vehicles over

all days of the planning period. In this relaxation each route can be performed

more than once and each customer must be visited a number of times exactly

equal to its frequency. The second relaxation corresponds to the LP-relaxation of

the integer formulation of the problem, whereas the third relaxation is obtained

by adding to the LP-relaxation a generalization to the PVRP of the capacity con-

straints and the clique inequalities. Different bounding procedures using both

elementary and non elementary routes are used to solve each relaxation and to

find near optimal solutions to the dual of the LP-relaxation of the problem.

Then, we describe an exact algorithm that attempts to derive a reduced integer

problem containing only the variables having a reduced cost smaller than the

difference between a known upper bound and the final lower bound obtained by
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the bounding procedures. The optimal PVRP solution is obtained by solving the

reduced integer problem using a general purpose integer programming solver.

We test the proposed algorithm on a large set of PVRP instances from the lit-

erature comparing the upper and lower bounds achieved against the best known

solutions from the literature. We also test the performance of the algorithm on

a set of randomly generated Tactical Planning VRP (TPVRP) instances and we

report a comparison among the best solutions found by the exact algorithm with

and without service costs. This latter tests are aimed at studying how much tak-

ing into account service costs can impact on the quality of the solutions with

respect to the customer service level. In particular, we are interested in evaluat-

ing the effectiveness of the TPVRP as a tool for optimizing the tradeoff between

customer satisfaction and the associated increase in routing costs.

In chapter 4 we study the pickup and delivery problem with time windows

(PDPTW). We distinguish between two variants of the PDPTW with respect to

the objective function that is to be minimized, called PDPTW-o1 and PDPTW-o2.

The PDPTW-o1 asks to minimize the sum of the route costs, whereas the PDPTW-

o2 involves a fixed cost W associated with each vehicle and asks to minimize the

sum of fixed costs and route costs. The PDPTW-o2 is often used to model prob-

lems where the primary objective is to minimize the number of vehicles used.

We formulate the PDPTW-o1 as a set partitioning-like problem and we pro-

pose an exact method based on two different relaxations of the mathematical for-

mulation and a branch-and-cut-and-price algorithm. The first relaxation corre-

sponds to an integer problem that is obtained by relaxing in a Lagrangian fashion

the set partitioning constraints. Since this problem involves an exponential num-

ber of variables, it is further relaxed by allowing routes to be non feasible. The

route set is therefore replaced with a set containing relaxations of feasible routes,

called t-routes, that are only guaranteed to satisfy time window constraints and

can be computed in pseudo-polynomial time. The second relaxation corresponds

to the LP-relaxation of the original problem and is solved by adapting to the

PDPTW a Lagrangian dual ascent method proposed by Baldacci et al. [16] for the
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CVRP. Finally, a third relaxation is obtained by strengthening the LP-relaxation

using a subset of the Subset-Row inequalities [see 76]. This latter relaxation is

solved by a simplex-based column and cut generation method.

The last two relaxations are based on column generation and in solving the

pricing problem require a dynamic programming (DP) procedure, called GENR,

that permits to generate feasible PDPTW routes. In procedure GENR, DP states

correspond to paths starting from the depot that are expanded to obtain feasible

routes. Procedure GENR differs from other DP algorithms proposed in the litera-

ture for solving the pricing subproblem of the PDPTW. A main difference is that

GENR computes for each path a lower bound on the reduced cost of any route

containing it. This allows GENR to dramatically reduce the number of states that

must be generated by fathoming all states having a lower bound greater than a

known upper bound on the cost of any route. This lower bound is computed by

means of two different state-space relaxations [see 32] that relax in different ways

the feasibility of the routes.

We describe an exact algorithm for the PDPTW-o1 that uses the final lower

bound achieved by the bounding procedures to generate a reduced problem con-

taining only the routes whose reduced costs are smaller than the gap between a

known upper bound and the lower bound achieved. If the resulting problem has

moderate size it is solved by an integer programming solver, otherwise it uses a

branch-and-cut-and-price algorithm to close the integrality gap.

A standard method for solving the PDPTW-o2 is to modify the travel cost ma-

trix by adding the fixed costW to each outgoing arc from the depot and then solve

the resulting problem as a PDPTW-o1. We propose a different strategy that uses

the bounding procedures developed for the PDPTW-o1 and is based on solving a

number of PDPTW-o1 problems, each involving a different number of vehicles.

The new algorithms are tested on two classes of problems from the literature

and compared with a recent branch-and-cut-and-price algorithm from the litera-

ture in order to assess their effectiveness.



Chapter 2

Non-Bifurcated Network Design

The Capacitated Network Design Problem (CNDP) represents a general model

for a wide range of applications in planning the construction, development and

improvement of transportation, logistics, telecommunication and production sys-

tems as well as in many other major areas [see 10, 88, 92]. Given a network, a

set of origin-destination node pairs (commodities) and demand data for the com-

modities, the capacitated network design problem is to install integer multiples

of some base capacity unit on the links of the network and route the flow of com-

modities so that the sum of flows on each link does not exceed the installed ca-

pacity and the sum of capacity fixed costs and flow routing costs is minimized.

The CNDP becomes the Network Loading Problem with single facility (NLP) [see

91, 17, 117] when the same base capacity unit is available on each link and flow

routing costs are zero. This problem has been studied in many variants with re-

spect to network layout, capacity usage and commodity routing options.

When the flow of each commodity must run through a single path along the

network the problem is called non-bifurcated (or unsplittable), whereas if the flow

is allowed to be split among several paths the problem is called bifurcated (or split-

table). Non-bifurcated network design problems arise in the design of telecom-

munication networks running ATM protocols, production-distribution with sin-

gle sourcing and express package delivery (see Barnhart et al. [19] and Gavish

and Altinkemer [59]). With respect to capacity usage the problem is called di-
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rected (or bidirected) if the capacity installed on each link can be used twice, once

in each direction, i.e., if a capacity unit is installed on a link then this capacity can

be used in one or both directions. Conversely, the problem is called undirected

if capacity has to be shared by the commodities routed in each direction. Other

variants include the availability of multiple facilities (i.e., different base capacity

units, each having different size and cost), integer non-binary flows (i.e., flows

can be splitted in integer parts) and non-linear capacity installation costs. In this

chapter we consider the directed non-bifurcated CNDP, called NBP in the follow-

ing. The NBP is NP-hard as MINIMUM COVER polynomially transforms to the

recognition version of NBP (van Hoesel et al. [117]).

In this chapter we describe an exact method as well as four new heuristics

for the NBP. All algorithms have been tested on both a set of instances from the

literature and a new set of bigger NBP instances. The remainder of this chap-

ter is organized as follows. In Section 2.1 we give an overview of the solution

methods presented in the literature for the NBP and for some of its variants shar-

ing the same basic structure. We summarize recent developments focusing on

the distinction between bifurcated and non-bifurcated models. In Section 2.2 we

describe the main notation used in this chapter and we give an integer program-

ming formulation of the NBP. In Section 2.3 we describe the exact methods pre-

sented in the literature for the NBP and we introduce an exact method that solves

a strengthened formulation of the NBP using a commercial integer programming

solver. Sections 2.4 – 2.7 describe new heuristics for the NBP. In Section 2.4 we

present a two phase heuristic method based on a necessary condition for optimal-

ity. In Sections 2.5 and 2.6 we propose two partial enumerative heuristics called

PEM and F&B. We describe how heuristic F&B can be used to solve a broad class

of combinatorial problems exhibiting a common substructure and we show an

application of F&B for solving the NBP. In Section 2.7 we describe an iterative

procedure that uses, at each iteration, a tabu search method to improve a start-

ing NBP solution. In Section 2.8 we present computational experiments on two

sets of problems to test the effectiveness of the proposed heuristics and the per-
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formance of the exact method when compared with a branch-and-cut algorithm

from the literature. Concluding remarks follow in Section 2.9.

2.1. State of the art

In this Section we summarize recent results presented in the literature for differ-

ent variants of the NBP. Comprehensive surveys covering the earlier literature up

to 1989 can be found in Magnanti and Wong [90] and Minoux [92]. This section is

divided in two parts, the first dealing with bifurcated network design problems

and the second with non-bifurcated problems. Bifurcated problems are much

more studied than non-bifurcated problems, possibly because in practice they are

significantly easier to solve. Unfortunately, most often it is not possible to extend

the results obtained for bifurcated problems to the corresponding non-bifurcated

ones.

2.1.1 Bifurcated network design

A well studied variant of the bifurcated CNDP is the Fixed Charge Network De-

sign Problem (FCNDP) that arises in the special case where at most one base

capacity can be installed on each arc.

For the FCNDP Gendron and Crainic [61] describe three formulations to de-

rive different Lagrangian-based relaxations that are strengthened using knapsack

inequalities. They report computational results comparing different bounding

procedures based on a formulation, called strong formulation, that is obtained

by adding a-priori valid inequalities stating that a commodity cannot use an arc

unless the fraction of capacity needed is installed on it. They report that the best

results are achieved when relaxing capacity constraints, however, the end gaps

between the best upper and lower bounds are very large.

Crainic et al. [46] compare two different Lagrangian relaxations obtained by

dualizing capacity constraints and flow conservation constraints, respectively.
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They present a detailed analysis of the resulting relaxations and compare sub-

gradient and bundle methods for solving the associated Lagrangian duals on a

large set of test problems corresponding to graphs with up to 30 vertices, 700 arcs

and 400 commodities. Computational experiments show that bundle methods

converge faster and are more robust with respect to different relaxations, prob-

lem characteristics, and parameter settings. Although the best lower bounds (on

average within 9% of optimality) are obtained by solving the strong formulation

using a commercial integer programming solver, the proposed bounding proce-

dures achieve for large scale problems very close lower bounds in a fraction of

the computing time.

Crainic et al. [45] propose a tabu search meta-heuristic based on a path formu-

lation that explores the space of the path-flow variables using pivot-like moves

and column generation. Ghamlouche et al. [62] develop a new class of cycle-

based neighborhood structures that improves the searching strategy of Crainic

et al. and test such neighborhoods within a tabu-based local search. To define

cycle-based neighborhoods the idea is to identify two points in the network and

two paths between them that form a cycle. Then, the algorithm tries to deviate

flow from one path to the other so that a different solution is obtained where

previously open arcs have no flow and can be dropped. The method was further

improved in Ghamlouche et al. [63] by combining the cycle-based tabu search de-

scribed above with a path relinking framework [see 64]. The algorithm was tested

on two sets of instances also used in Ghamlouche et al. [62] comprising FCNDP

instances with up to 100 nodes 700 arcs and 400 commodities. The comparison

with the cycle-based tabu search and the integer programming solver CPLEX [43]

shows that the new method, on average, outperforms the cycle-based tabu search

in terms of solution quality. The algorithm shows an average gap of 2.32% and

3.08% from the best solutions found by CPLEX on the two sets of instances but

achieves better solutions than CPLEX on 3 instances.

Holmberg and Yuan [73] propose a branch-and-bound algorithm based on a

Lagrangian heuristic. The Lagrangian relaxation is obtained by relaxing the flow
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conservation constraints so that the resulting Lagrangian subproblem is decom-

posable into a problem for each arc of the network. The subproblems satisfy

the integrality property and thus can be solved by the greedy principle. After

solving the Lagrangian subproblems a feasible solutions is obtained by solving

a multicommodity flow problem over a network defined by the subproblems so-

lutions. The proposed Lagrangian schema is embedded into a heuristic branch-

and-bound algorithm that uses heuristic variable fixing and different dominance

rules. The algorithm is compared with the integer programming solver CPLEX

on a large set of problems with up to 150 nodes 1,000 arcs and 282 commodities,

and obtains better solutions or shorter computing times in 52 problems out of 65.

Agarwal [1] presents a heuristic algorithm for solving a multiple facility CNDP

where different base capacities are available on each arc. Here, each unit of flow

between two nodes is considered as a commodity, therefore the problem can be

viewed as bifurcated with the restriction that flows can be splitted in integer

parts. The basic approach can be thought as a neighborhood search technique

based upon local improvement. Starting from an initial feasible solution the al-

gorithm selects at each step a base link {a, b} and defines an associated subnet-

work. The subnetwork contains the base link itself and all pairs of links {a, i} and

{i, b} for each node i in the network. A corresponding subproblem is then solved

to reroute the flow within the subnetwork so as to minimize the total cost of the

subnetwork. The subproblem is reduced to a Multiple Choice Knapsack Prob-

lem which is solved using a dynamic programming approach. The algorithm is

tested on networks having different size and topologies. For networks with up

to 20 vertices the algorithm is tested by comparing its heuristic solution with the

lower bound achieved by a branch-and-cut algorithm. On such instances the gap

between the upper and lower bound is in most cases below 5%. A set of bigger

networks with up to 99 nodes 401 arcs and 4 facilities is also considered. For these

instances the paper reports the worst and best solution achieved over 3 runs of

the algorithm but no evaluation of the solution quality is given.

Different classes of valid inequalities have been proposed in the literature for
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bifurcated CNDPs.

Magnanti et al. [91] introduce the NLP and study two of its subproblems to

derive valid inequalities. The first subproblem is a knapsack-type problem, called

single arc design problem, and is defined by the capacity constraint associated with

a single edge. The second subproblem, called three node network problem, is ob-

tained by considering a 3-node network with an edge between each node pair.

A single arc design problem for each edge arises when relaxing in a Lagrangian

fashion the flow conservation constraints. Therefore, the optimal value of the La-

grangian dual of such relaxation provides an upper bound to the value of the

LP-relaxation that can be achieved by adding all inequalities derived for single

arc design problems. Studying this subproblem the authors introduce a new set

of valid inequalities called residual capacity inequalities. They prove that adding

residual capacity inequalities together with upper bound constraints (stating that

the flow of a commodity on each edge cannot exceed the commodity demand)

to the subproblem provides a complete description of the associated convex hull

of feasible solutions. Studying the three node network problem they introduce

the families of cut set inequalities and three-partition inequalities, expressing lower

bounds on the total capacity that must be installed on two and three-sets par-

titions of the network. These last two classes of inequalities, together with non

negativity constraints, completely describe the convex hull of feasible solutions

of the three node network problem.

In Magnanti et al. [89] the above inequalities are generalized to the Two Facil-

ity NLP, where two facilities are available, the smallest one having unitary base

capacity. Computational results over networks with up to 15 nodes show that the

average integrality gap is around 8%. The authors report that cut-set inequalities

alone are more effective than residual capacity inequalities alone in reducing the

integrality gap. Moreover, they show that even adding a-priori a limited subset

of cut-set inequalities significantly reduces the integrality gap at the root node.

Recently, Atamtürk and Rajan [6] described a linear time algorithm for sep-

arating residual capacity inequalities and present a cutting plane algorithm for
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the bifurcated CNDP where these inequalities are separated exactly. Other valid

inequalities, related to the Mixed-Integer Rounding inequalities, were introduced

in Bienstock and Günlük [23] and Günlük [68] studying different variants of the

bifurcated NLP.

Metric inequalities are a class of inequalities introduced by Onaga and Kakusho

[99] and Iri [75] to characterize the feasibility of (bifurcated) multicommodity

flows that generalize the min-cut max-flow duality to Capacitated Multicom-

modity Network Flow Problems (CMNFP). Metric inequalities can be viewed

as Benders cuts associated with extreme rays of the dual polyhedron of the LP-

relaxation of CMNFPs [see 42]. Therefore, these inequalities can be used to char-

acterize the set of capacity vectors that can accommodate a feasible multicom-

modity flow through the network. Metric inequalities give rise to an alternative

formulation for the bifurcated NLP, called capacity formulation, that uses capacity

variables only but requires an exponential number of constraints. Metric inequal-

ities can be strengthened in different ways, e.g. by rounding arguments giving

rise to the class of rounded metric inequalities [see 24] that contains as a special case

the cut-set inequalities.

Bienstock et al. [24] consider a variant of the bifurcated NLP where the graph

is directed and base capacities of unitary size can be installed independently on

each arc. The authors describe two branch-and-cut algorithms based on two dif-

ferent formulations enforced by valid inequalities. The first formulation is a stan-

dard multicommodity flow formulation based on cut-set inequalities, flow-cutset

inequalities and three-partition inequalities. The second formulation is a capac-

ity formulation that is based on rounded metric inequalities. This formulation

uses two other classes of valid inequalities called partition inequalities and total ca-

pacity inequalities. Partition inequalities are derived as a special case of rounded

metric inequalities and are used to bound the flow that must traverse a partition

of the graph. Total capacity inequalities are obtained by applying the Chvátal-

Gomory procedure to partition inequalities. The two formulations are compared

on two sets of instances with up to 27 nodes, 102 arcs and 702 commodities. The
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results obtained show that the multicommodity formulation with the additional

cuts grants, on average, better results.

The capacity formulation of the bifurcated NLP is also studied in Dahl and

Stoer [48] and Avella et al. [8]. Dahl and Stoer [48] study a generalization of the

NLP with additional survivability requirements and model it using the capacity

formulation. They propose a cutting-plane algorithm where violated metric in-

equalities are generated by solving a LP by column generation and introduce a

new class of inequalities called band inequalities that exploit the Knapsack sub-

structure of the problem. Avella et al. [8] introduce the new class of tight metric

inequalities that completely characterize the convex hull of the integer feasible so-

lutions of the problem. They present a branch-and-cut algorithm that looks for

violated tight metric inequalities in two steps. First it looks for violated metric

inequalities and then attempts to tighten them to derive tight metric inequalities.

This algorithm is able to improve some of the results reported in Bienstock et al.

[24].
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2.1.2 Non-bifurcated network design

Gavish and Altinkemer [59] were among the first to study a non-bifurcated CNDP.

They consider a multiple facility problem where in addition to fixed costs and

flow routing costs each link of the network is associated with a delay cost that

is proportional to the capacity utilization on it. The proposed algorithm is based

on a path formulation of the problem where paths are dynamically generated.

Capacity constraints are dualized in a Lagrangian fashion and cut-set inequali-

ties are added to the model a-priori to strengthen the Lagrangian relaxation. A

Lagrangian heuristic is run at each iteration to obtain feasible solutions. Com-

putational results over a set of different network topologies with up to 32 nodes

show that the gap between upper and lower bounds can be as high as 20%, al-

though most often it is less than 10%. A computational analysis of the impact

of fixed costs on solution quality shows that the percentage difference between

lower and upper bound significantly increases when fixed costs are associated

with base capacities.

Heuristics for the non-bifurcated undirected NLP are proposed in Barahona

[17] and Berger et al. [22]. Barahona [17] proposes a relaxation which is based on

cut-set inequalities and Spanning Tree inequalities. Cut-set inequalities are also

used in Barahona [17] to formulate a relaxation of the NLP that involves only an

integer variable for each edge but requires an exponential number of constraints.

In this formulation, the existence of a multicommodity flow is partially enforced

by adding violated cut-set inequalities while connectivity is enforced by adding

Spanning Tree inequalities. The algorithm proposed by Barahona works as fol-

lows.

First subsets of vertices are aggregated into “supervertices” in order to reduce

the problem size to obtain a so called backbone network. Then, the bifurcated

relaxation of the problem is solved for the aggregated network using a branch-

and-cut method based on cut-set inequalities and Spanning Tree inequalities. The

separation problem for cut-set inequalities is formulated as a max-cut problem.

Once a bifurcated solution is found for the backbone network, the algorithm ex-
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pands this solution to obtain a bifurcated solution for the original network and

successively converts it to a non-bifurcated solution using a heuristic procedure.

The algorithm is tested on a set of instances corresponding to complete undi-

rected graphs with up to 64 vertices, representing real world telecommunication

networks. A 6% increase in the solution cost between the bifurcated and cor-

responding non-bifurcated solution is reported in the worst case. Although so-

lutions to problems with up to 64 vertices have been obtained, the aggregated

networks never contains more than 15 vertices.

Berger et al. [22] present a tabu search method for solving a multiple facility

NLP. Solution neighborhoods are based on the k-shortest paths between the ori-

gin and the destination nodes of each commodity computed with respect to the

flows of the remaining commodities. They report computational results over a set

of randomly generated instances with up to 200 vertices and edge density up to

0.2, and show that the proposed algorithm outperforms 1-opt and 2-opt greedy

neighborhood search heuristics (Raghavan [104]) which are based on a similar

neighborhood.

Brockmüller et al. [27, 28] study a generalization of the NLP motivated by a

real problem in telecommunications where only a subset of nodes can be used

to route commodities and capacity installation costs are non linear. They define

a hierarchy of relaxations to reduce the large number of 0-1 variables needed to

linearize costs and introduce new classes of valid inequalities, called c−strong in-

equalities, that are derived by studying the projection of the feasible region onto

the space of variables related to a single edge. The new inequalities, together

with cut-set inequalities, are embedded in a cutting-plane procedure that uses a

preprocessed formulation obtained by variable reduction and by adding a-priori

special cases of the above inequalities. The algorithm uses a heuristic procedure

that, given a LP solution, derives an integer solution by applying branch-and-

bound on a restricted problem obtained by imposing that the value of each ca-

pacity variable cannot differ more than a constant from its LP value. When the

algorithm is unable to find violated inequalities it stops returning a tightened
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formulation that is solved by branch-and-bound.

van Hoesel et al. [117] study both the directed and undirected variants of the

NLP with single facility. They introduce three classes of valid inequalities, both

including the class of c−strong inequalities, and report the results obtained by a

branch-and-cut algorithm based on the new inequalities on a set of real-life NLP

instances provided by KPN Research in Liendschendam, The Netherlands. In ad-

dition to the new inequalities the algorithm also incorporates cut-set inequalities,

three-partition inequalities[see 23] and the general k-cuts [see 18]. The instances

are defined on complete graphs ranging between 4 and 8 nodes and fully dense

non-symmetric demand matrices. This branch-and-cut algorithm is able to opti-

mally solve instances with up to 7 nodes.

Atamtürk and Rajan [6] consider both the non-bifurcated and bifurcated ver-

sions of the CNDP. They formally prove that the separation problem of c−strong

inequalities is NP-hard and introduce two new classes of valid inequalities, both

of which include the c−strong inequalities as a special case. The effectiveness of

the new inequalities is then tested on a set of NBP instances using a branch-and-

cut algorithm.

2.2. Mathematical formulation of the NBP

Let G = (V, E) be an undirected and connected graph where V is the node set and

E is the edge set. We denote by (ie, je) the endpoints of edge e ∈ E. Let G
′

=

(V,A) be the directed graph associated withG, whereA is the set of arcs obtained

from E replacing every edge e ∈ E with two arcs in opposite directions, i.e. A =

{(ie, je), (je, ie) : e ∈ E}. The mapping e(i, j) gives the edge of E corresponding

to arc (i, j) ∈ A. A set R of p commodities is given. Each commodity k ∈ R

specifies a demand dk ∈ Z+ that must be sent through a single path from a origin

node sk ∈ V to a destination node tk ∈ V , with sk 6= tk. Let wk
ij be the cost for

routing commodity k through arc (i, j) ∈ A. On each edge e ∈ E can be installed

integer multiples of a base capacity ue ∈ Z+, each at fixed cost ce. The total
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capacity installed on edge e represents an upper bound for the flow on edge e in

each direction, so that, the required capacity on each edge e is determined by the

maximum flow on the corresponding arcs (ie, je) and (je, ie).

The NBP is to assign a single path to each commodity and to install on each

edge sufficient capacity to meet the demands of the commodities so that the sum

of capacity installation and flow routing costs is minimized. Let xe be a non-

negative integer variable representing the number of base capacity units ue in-

stalled on edge e ∈ E, and let fkij be a (0 − 1) binary variable that is equal to 1 if

and only if commodity k is sent through arc (i, j) ∈ A. The NBP can be formu-

lated as the following integer program.

(NBP) zNBP = min
∑

e∈E

cexe +
∑

(i,j)∈A

∑

k∈R

wk
ijf

k
ij (2.1)

s.t.
∑

j∈Γi

fkji −
∑

j∈Γi

fkij =






1 if i = tk

−1 if i = sk

0 otherwise

∀i ∈ V

∀k ∈ R
(2.2)

∑

k∈R

dkf
k
ieje

6 uexe, ∀e ∈ E (2.3)

∑

k∈R

dkf
k
jeie

6 uexe, ∀e ∈ E (2.4)

xe ∈ Z+, ∀e ∈ E, (2.5)

fkij ∈ {0, 1}, ∀(i, j) ∈ A, ∀k ∈ R (2.6)

where Γi denotes the set of nodes adjacent to node i ∈ V . Constraints (2.2) specify

the usual flow conservation for each commodity at each node of the graph, while

constraints (2.3) and (2.4) ensure that total capacity installed on edge e can meet

the total flow on arcs (ie, je) and (je, ie), respectively. Notice that by relaxing the

0 − 1 restrictions (2.6) on flow variables we obtain the formulation of the bifur-

cated version of the problem, while the undirected problem can be obtained by

substituting constraints (2.3) and (2.4) with a single capacity constraint summing

up all flows in direction (ie, je) and (je, ie).
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2.3. Exact methods

A mayor difficulty in solving the integer program NBP comes from the fixed costs

associated with each edge capacity and the large number of flow variables and

flow balance constraints. Indeed, just solving the corresponding LP-relaxation

takes considerable computing time and memory and the value of the optimal

LP-solution provides a very weak lower bound. Therefore, in designing exact

algorithms for CNDPs most of the attention has been devoted to strengthening

the LP relaxation with valid inequalities.

In contrast to bifurcated problems very few exacts algorithms have been pro-

posed for non-bifurcated CNDPs. At our knowledge the only exacts methods for

the NBP are due to van Hoesel et al. [117, 118] and Atamtürk and Rajan [6]. These

algorithms and the inequalities they are based on are briefly described below.

Several classes of valid inequalities for the NBP can be derived by partition-

ing the node set and imposing lower bounds on the total capacity that must be

installed between the node subsets induced by this partition. The cut-set inequal-

ities are a class of valid inequalities which are known to significantly improve the

LP-relaxation of the CNDP see [see 91, 89, 23, 17] and express a necessary (but

not sufficient) condition for the existence of a multicommodity flow in a graph.

Roughly speaking, they state that for any cut in G the sum of capacities installed

on edges traversing it must be at least equal to the total demand of the commodi-

ties that must traverse the cut, rounded up to the nearest integer. Let δ(S) be the

cut induced in G by a subset S ⊆ V and let γ+(S) and γ−(S) be the set of com-

modities having origin node in S and destination node in V \ S and the set of

commodities having origin node in V \ S and destination node in S, respectively.

In the special case where the base capacity is the same for all edges (i.e., ue = u

∀e ∈ E) the cut-set inequalities can be strengthened to:

∑

e∈δ(S)

xe > π(S), ∀S ⊆ V, (2.7)

where
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π(S) = max









∑

k∈γ+(S)

dk/u



,




∑

k∈γ−(S)

dk/u








.

Similar inequalities that generalize the cut-set inequalities are the three-partition

inequalities that are obtained by partitioning the node set in three subsets [see

89, 23, 68].

Different classes of valid inequalities have been derived for the NBP studying

a related subproblem, that is a generalization of the well known 0 − 1 Knapsack

problem, defined by the capacity constraint associated with a single edge [see

6, 117, 27]. Consider a relaxation of the NBP defined by constraints (2.3), (2.5),

(2.6) for a fixed edge e ∈ E. For notational convenience let x = xe and fk = fkieje
,

∀k ∈ K, be the variables involved by this relaxation. Dividing equations (2.3) by

ue one obtains the following integer set.

F =

{

(f, x) ∈ {0, 1}
p × Z :

∑

k∈R

akf
k

6 x

}

, (2.8)

where ak = dk

ue
represents the fraction of the base capacity ue required by com-

modity k ∈ R to run through edge e. In the following we denote by conv(F) the

convex hull of the integer set F . Notice that since F is a relaxation of NBP any

valid inequality for F is also valid for NBP.

Brockmüller et al. [27] proved that all non-trivial facet defining inequalities for

conv(F) take the form βx > πf−π0, β, π0 ∈ Z
+
0 , πk ∈ Z+

0 , ∀k ∈ R. Moreover, it has

been proved that when looking for strong valid inequalities for F it is sufficient

to study the set F ′ that is obtained from F by substituting ak with its fractional

part rk = ak − ⌊ak⌋, ∀k ∈ R [see 6, 117]. Strong inequalities for F can then be

obtained by strong inequalities for F ′ [see 117]. Therefore, in the following we

assume 0 6 ak 6 1, ∀k ∈ R.

Brockmüller et al. [27] introduced the c−strong inequalities for a generaliza-

tion of F and characterize necessary and sufficient conditions under which the

inequalities are facet defining. These inequalities can be defined as follows. Let

S ⊆ R be a subset of commodities and let X(S) =

⌈
∑

k∈S

ak

⌉
. The set S is called
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c−strong if c =
∑

k∈S

⌈ak⌉ − X(S) = |S| − X(S), since we assumed 0 < ak < 1. If

S ⊆ R is c−strong the following c−strong inequality is valid for F :

x >
∑

k∈S

fk − c. (2.9)

A c−strong set S ⊆ R is called maximal c−strong if S \ {i} is c−strong and S ∪ {i} is

not c−strong ∀i ∈ R \ S. Inequality (2.9) is facet defining for conv(F) if and only

if the set S is maximal c−strong.

By taking S = {k}, k ∈ R one obtains as a special case of the c−strong inequali-

ties the following inequalities, imposing that no commodity can run through any

arc (i, j) if no capacity is installed on the associated edge e(i, j):

fkij 6 xe(i,j) ∀(i, j) ∈ A,∀k ∈ R. (2.10)

Notice that when dk

ue
> 1 inequalities (2.10) can be strengthened to
⌈
dk

ue

⌉
fkij 6 xe(i,j) ∀(i, j) ∈ A,∀k ∈ R.

The separation of c−strong inequalities is NP-hard because the separation prob-

lem reduces to a number of knapsack problems [see 6]. However, given a frac-

tional solution (f̄, x̄), when looking for violated c−strong inequalities it is possible

to ignore all variables f̄k having integral value because their coefficients in each

violated inequality can be fixed a-priori.

Atamtürk and Rajan [6] describe a branch-and-cut algorithm based on the

c−strong inequalities and two other classes of inequalities called κ−split c−strong

inequalities and lifted knapsack cover inequalities. κ−split c−strong inequalities are a

generalization of c−strong inequalities. For any positive integer κ and any S ⊆ R

let cκ
S =

∑

k∈S

⌈κak⌉−

⌈
∑

k∈S

κak

⌉
. The following κ−split c−strong inequality is valid

for F :
∑

k∈S

⌈κak⌉f
k +

∑

k∈R\S

⌊κak⌋f
k

6 cκ
S + κx. (2.11)

Notice that each inequality (2.11) can be viewed as a c−strong inequality for a

relaxation of F where the capacity variable x is allowed to take values that are

integer multiples of 1
κ

(c−strong inequalities are in fact obtained by taking κ = 1).
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Lifted knapsack cover inequalities are derived by considering the knapsack

set F(ν,N0, N1) that is obtained from F by projecting x to ν ∈ N, all flow variables

indexed by a setN0 ⊆ R to 0 and all flow variables indexed by a setN1 ⊆ (R\N0)

to 1. Then, the setC ≡ R\(N0∪N1) is called a cover if
∑

k∈C∪N1

ak > ν and it is a min-

imal cover if C\{i} is not a cover ∀i ∈ C. Atamtürk and Rajan use sequential lifting

to derive lifted knapsack cover inequalities. The procedure starts from a minimal

knapsack coverC and a corresponding cover inequality for F(ν,N0, N1) and then

lifts it by sequentially introducing first the capacity variable x, and second all the

projected variables in N0 ∪N1. Given a minimal cover C, a corresponding lifted

minimal cover inequality takes the following form:

∑

k∈C

fk +
∑

k∈N0

αkf
k +

∑

k∈N1

αk(1− fk) + α(ν− x) 6 |C| − 1, (2.12)

where α and αk, k ∈ R \ C, are lifting coefficients that are sequentially computed

by solving an appropriate lifting problem. The authors also show that, given a

minimal cover, a lifted inequality (2.12) can be obtained in time O(p3). Similar

inequalities have also been derived in van Hoesel et al. [117].

The branch-and-cut of Atamtürk and Rajan uses an initial formulation that is

strengthened by adding a-priori a subset of the cut-set inequalities defined for

one and two-node subsets of the network. c−strong inequalities are separated by

means of a greedy heuristic, whereas κ−split c−strong inequalities are separated

similarly to c−strong inequalities using values of κ up to 4. Knapsack cover in-

equalities are separated using a greedy heuristic by setting ν = ⌈x̄⌉, where x̄ is

the value of the capacity variable in the current LP-solution, and then lifted by

sequential lifting. A comparison between the improvement of the integrality gap

at the root node after adding the different classes of valid inequalities shows that

on most instances κ−split c−strong inequalities provide the best improvements.

However, the improvement with respect to c−strong inequalities is rather lim-

ited. The branch-and-cut algorithm is tested over a set of NBP instances with up

to 29 nodes and 61 arcs using CPLEX as the integer programming solver. The re-

sults show that adding κ−split c−strong inequalities and lifted cover inequalities
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in addition to c−strong inequalities has in general a positive effect. However, the

impact of adding the new inequalities in addition to c−strong inequalities is not

much significant.

van Hoesel et al. [117] describe a branch-and-cut algorithm for the NBP that

is based on cut-set inequalities, three-partition inequalities, c−strong inequalities

and the new classes of lower convex envelope inequalities and two-side inequalities.

Lower convex envelope inequalities contain the c−strong inequalities as a special

case and are obtained by studying a projection F(R0, R1) of the set F where all

variables indexed by R0 ⊆ R are set equal to 0 and all variables indexed by R1 ⊆ R

are set equal to 1. Letting S = R\(R0∪R1) be the set of free variables, different lover

convex envelope inequalities can be derived for F(R0, R1) having the following

general form:

βx > η
∑

k∈S

fk − ρ, (2.13)

for an appropriate choice of coefficients β, η, ρ ∈ Z+
0 . van Hoesel et al. [117] pro-

vide two choices of the coefficients β, η and ρ that, under some conditions, give

rise to facet defining inequalities for conv(F(R0, R1)). Notice that, since inequali-

ties (2.13) are defined for a projection of F , they have to be lifted to F . van Hoesel

et al. prove that once given an ordering of the commodities in R0 ∪ R1 sequential

lifting of inequalities (2.13) can be done in polynomial time.

Two side inequalities are derived for the NBP by studying a relaxation, similar

to F , that is defined by all solutions satisfying both constraints (2.3) and (2.4) for

a fixed edge e ∈ E, together with integrality constraints (2.5), (2.6). Let k̂ ∈ R and

let α ∈ Z+
0 such that 1 6 α 6 ⌈ak̂⌉. Two side inequalities are as follows:

xe > αfk̂ieje
+

∑

k∈R

(⌈ak⌉ − α)fkjeie
. (2.14)

The proposed branch-and-cut algorithm is tested on a set of instances defined

by complete graphs with up to 8 nodes and fully dense non-symmetric demand

matrices. Since the size of the graphs is small, the separation of cut-set and three-

partition inequalities is performed by complete enumeration. c−strong inequali-

ties are separated for values of c = 1, 2, 3 by means of a greedy heuristic, whereas
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lower convex envelope inequalities are separated by enumeration after defining

the sets R0 and R1. Violated two side inequalities for an edge are found by first

fixing α and then finding the commodity k̂ having the greatest value fk̂ieje
. To

attest the usefulness of the different inequalities the authors compare the bound

at the root node after adding only cut-set and three-partition inequalities or only

lower convex envelope and c−strong inequalities. The results show that cut-set

and three-partition inequalities tend to provide tighter bounds when the com-

modity demands are smaller. Conversely, the percentage of gap closed by lower

convex envelope and c−strong inequalities increases when commodity demands

get bigger. Using all the inequalities the algorithm is able to solve instances with

up to 7 nodes, but it fails in solving instances with as few as 8 nodes.

We attempted to solve the same NBP instances considered by Atamtürk and

Rajan [6] using the integer programming solver CPLEX (see CPLEX [43]) for an

improved formulation, called SNBP, that is obtained by adding a-priori to NBP

the following two types of valid inequalities.

a) The cut-set inequalities (2.7) defined for single-node subsets, that is, defined

for all sets S such that |S| = 1.

b) A subset of inequalities (2.10) defined as follows. We compute for each com-

modity k ∈ R the shortest path P(k) from origin sk to destination tk in the

directed graph G
′

using arc costs ce(ij) + wk
ij, ∀(i, j) ∈ A. Then, we add the

following subset of inequalities (2.10):

fkij 6 xe(ij) ∀(i, j) ∈ P(k),∀k ∈ R. (2.15)

Our computational results (see Section 2.8.3) show that CPLEX using formulation

SNBP (in the following called CPLEX(SF)) is competitive with the branch-and-

cut of Atamtürk and Rajan [6]. However, the size of NBP instances that can be

solved by both exact methods is much smaller than real life problems and, more-

over, both methods are time consuming. Therefore, in the following sections we

propose four heuristic methods for the NBP.
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2.4. Two phase heuristic TPH

In this section we derive a condition that is satisfied by any optimal NBP solu-

tion, then we use this condition to design a heuristic procedure for improving a

feasible NBP solution.

2.4.1 A necessary condition for optimality

Consider a NBP partial solution (x̄, f̄) of cost z̄ for a given subset R̄ ∈ R and let q̄ij

be the total flow of commodities in R̄ on arc (i, j) ∈ A, that is:

q̄ij =
∑

k∈R̄

dkf̄
k
ij, ∀(i, j) ∈ A. (2.16)

We have f̄kij = 0, ∀(i, j) ∈ A, ∀k ∈ R \ R̄, and x̄e = max[⌈
q̄ieje

ue
⌉, ⌈

q̄jeie

ue
⌉], ∀e ∈ E.

Let δ̄ij(Φ) be the additional capacity installation cost for augmenting, in so-

lution (x̄, f̄), the flow on arc (i, j) ∈ A from the current value q̄ij to q̄ij + Φ. It is

quite obvious that δ̄ij(Φ) = 0 if the directed residual capacity (ue(i,j)x̄e(i,j) − q̄ij) on

arc (i, j) is greater than or equal to Φ, while δ̄ij(Φ) > 0 if the residual capacity

is smaller than Φ. Specifically, the values δ̄ij(Φ), ∀(i, j) ∈ A, are computed as

follows:

δ̄ij(Φ) = max

[
ce(i,j)

(⌈
q̄ij +Φ

ue(i,j)

⌉
− x̄e(i,j)

)
, 0

]
, ∀(i, j) ∈ A. (2.17)

For a given commodity r ∈ R\R̄, consider the partial solution (x̃, f̃) of cost z̃

that is obtained from (x̄, f̄) by routing commodity r through some simple path

P(r) from node sr to node tr. Solution (x̃, f̃) is obtained from (x̄, f̄) and P(r) by

setting:

f̃kij = f̄kij,

f̃rij = 1,

f̃rij = 0,

∀(i, j) ∈ A, ∀k ∈ R̄,

∀(i, j) ∈ P(r),

∀(i, j) 6∈ P(r).

(2.18)
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The values x̃e,∀e ∈ E, are given by:

x̃e =






max
[⌈

q̄ieje +dr

ue

⌉
, x̄e

]
, if (ie, je) ∈ P(r),

max
[⌈

q̄jeie +dr

ue

⌉
, x̄e

]
, if (je, ie) ∈ P(r),

x̄e, otherwise.

(2.19)

Associate with each arc (i, j) ∈ A the incremental cost c̄ r
ij for routing commod-

ity r ∈ R \ R̄ through arc (i, j) in solution (x̄, f̄). Incremental cost c̄ r
ij is the sum of

the additional installation cost δ̄ij(dr) for augmenting the capacity of edge e(i, j)

to meet the flow q̄ij + dr and of the flow routing cost wr
ij, that is:

c̄ r
ij = δ̄ij(dr) +wr

ij ∀(i, j) ∈ A, ∀ r ∈ R \ R̄. (2.20)

The following lemma shows the relation between the costs z̄ and z̃ of the two

partial solutions (x̄, f̄) and (x̃, f̃).

Lemma 1 The following relation holds:

z̃ = z̄ +
∑

(i,j)∈P(r)

c̄ r
ij. (2.21)

Proof: Let E(r) be the edge subset covered by path P(r) (i.e. E(r) = {e(i, j) ∈ E :

(i, j) ∈ P(r)}) and R̃ = R̄ ∪ {r}. Using the definitions of c̄ r
ij and δ̄ij(dr), the right

hand side of expression (2.21) can be written as follows:

∑

e∈E\E(r)

cex̄e +
∑

e∈E(r)

cex̄e +
∑

k∈R̄

∑

(i,j)∈A

wk
ijf̄

k
ij

+
∑

(i,j)∈P(r)

max

[
ce(i,j)

(⌈
q̄ij + dr

ue(i,j)

⌉
− x̄e(i,j)

)
, 0

]
+

∑

(i,j)∈P(r)

wr
ij

=
∑

e∈E\E(r)

cex̄e +
∑

k∈R̃

∑

(i,j)∈A

wk
ijf̃

k
ij

+
∑

(i,j)∈P(r)

(
max

[
ce(i,j)

(⌈
q̄ij + dr

ue(i,j)

⌉
− x̄e(i,j)

)
+ ce(i,j)x̄e(i,j), ce(i,j)x̄e(i,j)

])
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=
∑

e∈E\E(r)

cex̄e +
∑

k∈R̃

∑

(i,j)∈A

wk
ijf̃

k
ij +

∑

(i,j)∈P(r)

ce(i,j) max

[⌈
q̄ij + dr

ue(i,j)

⌉
, x̄e(i,j)

]
. (2.22)

Using the definition of x̃ij given by equation (2.19), the expression (2.22) be-

comes:

∑

e∈E\E(r)

cex̃e +
∑

e∈E(r)

cex̃e +
∑

k∈R̃

∑

(i,j)∈A

wk
ijf̃

k
ij = z̃. (2.23)

�

We now describe a condition that is satisfied by any optimal NBP solution.

Theorem 1 (Necessary condition for optimality) Let (x, f) be an optimal NBP solution of

cost z and let P(r) be the path assigned to commodity r ∈ R in solution (x, f). Let (x̄, f̄)

be the partial solution derived from (x, f) removing commodity r (i.e. setting f̄rij = 0,

∀(i, j) ∈ A and f̄kij = fkij, ∀(i, j) ∈ A, ∀k ∈ R \ {r}). The path P(r) corresponds to

the shortest path in graph G
′

from node sr to node tr when with each arc (i, j) ∈ A

is associated the incremental cost given by expressions (2.20) with respect to the partial

solution (x̄, f̄).

Proof: By contradiction. Assume there is a path P∗(r) in G
′

from from sr to tr

such that:
∑

(i,j)∈P∗(r)

c̄ r
ij <

∑

(i,j)∈P(r)

c̄ r
ij. (2.24)

From Lemma 1 we have:

z = z̄ +
∑

(i,j)∈P(r)

c̄ r
ij. (2.25)

Consider the NBP feasible solution (x∗, f∗) obtained from (x̄, f̄) by running com-

modity r through path P∗(r). From Lemma 1 we have:

z∗ = z̄ +
∑

(i,j)∈P∗(r)

c̄ r
ij. (2.26)

Thus, from (2.25) and (2.26) we have:

z − z∗ =
∑

(i,j)∈P(r)

c̄ r
ij −

∑

(i,j)∈P∗(r)

c̄ r
ij. (2.27)
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From expression (2.27) and inequality (2.24) we obtain z > z∗ which contradicts

the assumption that solution (x, f) is optimal. �

Theorem 1 can be used iteratively to improve a feasible NBP solution as de-

scribed in the following.

2.4.2 Heuristic TPH

In this section we describe a Two Phases Heuristic, called TPH, for solving the

NBP that is based on Theorem 1. The first phase generates an initial feasible solu-

tion that is iteratively improved in the second phase until the resulting solution

satisfies the necessary condition of optimality stated by Theorem 1.

The first phase of TPH starts from an empty solution x̄=0, f̄=0 and R̄ = ∅

and iteratively finds the shortest path P∗(k) for a commodity k ∈ R \ R̄ using

the incremental costs c̄k
ij defined by expressions (2.20) with respect to the emerg-

ing solution (x̄,f̄). At each iteration, the solution is updated by setting f̄kij = 1,

∀(i, j) ∈ P∗(k). The quality of the NBP solution achieved at the end of the first

phase strongly depends on the order in which the commodities are considered.

In our computational experience the best results were obtained by numbering the

commodities so that shp1 > shp2 > · · · > shpp, where shpk denotes the cost of

the shortest path in G
′

from sk to tk using arc costs ce(i,j) +wk
ij, (i, j) ∈ A.

The second phase of TPH iteratively removes a commodity k from the so-

lution, computes a new shortest path P∗(k) using the incremental costs c̄k
ij with

respect to the partial solution (x̄, f̄) resulting from (x, f) removing commodity k,

and inserts commodity k in solution (x̄, f̄) along the path P∗(k). To reduce the

effect on the solution quality of the order in which commodities are considered,

a sequence of (2p− 1) iterations are performed. The first p iterations consider the

sequence of commodities (1, 2, . . . , p) while the last (p−1) iterations consider the

commodity sequence (p− 1, p− 2, . . . , 1). The second phase is repeated if during

the previous execution some improvement has been achieved.

In the following, a step-by-step description of algorithm TPH is given.
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Description of heuristic TPH

Phase 1: (Building an initial solution)

1. (Initialization) It is assumed that the commodities are numbered as described

above. Set x̄ = 0, f̄ = 0 and q̄ij = 0, ∀(i, j) ∈ A. Initialize z̄ = 0 and k = 1.

2. (Routing commodity k) Let P∗(k) be the shortest path in G
′

from sk to tk using

the incremental costs {c̄k
ij} given by expressions (2.20) with respect to (x̄, f̄).

3. (Update the partial solution (x̄, f̄)) For each arc (i, j) ∈ P∗(k), set:

f̄kij = 1, q̄ij = q̄ij + dk and x̄e(i,j) = max
[⌈

q̄ij

ue(i,j)

⌉
,
⌈

q̄ji

ue(i,j)

⌉]
.

Update z̄ = z̄ +
∑

(i,j)∈P∗(k) c̄
k
ij.

4. Set k = k + 1. If k = p then return to step 2, otherwise set x = x̄, f = f̄ and

z = z̄.

Phase 2: (Improving the solution (x, f) found by phase 1)

Define L = (1, 2, . . . , p, p− 1, p− 2, . . . , 1).

5. Set zold = z, qij =
∑

k∈Rdkf
k
ij, ∀(i, j) ∈ A and initialize r = 1.

5. (Removing a commodity from solution (x, f)) Let lr be the index of the r-th

commodity in the list L and let (x̄, f̄) be the partial solution derived from (x, f)

removing commodity lr as follows:

x̄e(i,j) =






max
[⌈

qij−dlr

ue(i,j)

⌉
,
⌈

qji

ue(i,j)

⌉]
, if flrij = 1, ∀(i, j) ∈ A

xe(i,j), if flrij = 0, ∀(i, j) ∈ A

f̄kij =






fkij, if k 6= lr, ∀(i, j) ∈ A,∀k ∈ R

0, if k = lr, ∀(i, j) ∈ A,∀k ∈ R

Let z̄ be the cost of solution (x̄, f̄).

5. (Routing commodity lr) Define q̄ij =
∑

k∈Rdkf̄
k
ij, ∀(i, j) ∈ A. Let P∗(lr) be the

shortest path in G
′

from slr to tlr using the incremental arc costs {c̄k
ij} defined

by expression (2.20). Let z = z̄ +
∑

(i,j)∈P∗(lr) c̄
lr
ij .
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5. If z < zold, then compute the new solution (x, f) as follows:

fkij = f̄kij, ∀(i, j) ∈ A, ∀k ∈ R \ {lr},

xe(i,j) = x̄e(i,j), ∀(i, j) ∈ A \ P∗(lr),

qij = q̄ij, ∀(i, j) ∈ A \ P∗(lr),

flrij = 0, ∀(i, j) ∈ A \ P∗(lr),

flrij = 1, qij = q̄ij + dlr and xe(i,j) = max
[⌈

q̄ij+dlr

ue(i,j)

⌉
,
⌈

q̄ji

ue(i,j)

⌉]
, ∀(i, j) ∈ P∗(lr).

If r < (2p− 1), set r = r+ 1 and return to step 6, otherwise return to step 5.

5. If z = zold and r < (2p − 1) then set r = r + 1 and return to step 6, otherwise

Stop.

2.5. Partial enumeration heuristic PEM

In this section we describe a partial enumeration method, called PEM, that gen-

erates a number of feasible solutions of the NBP assuming that each commodity

k ∈ R can be routed using one path of an a-priori defined path set Pk.

Let Pk be the set containing, for each commodity k ∈ R, the largest subset of

the least cost shortest paths in G
′

from sk to tk using arc costs {ce(i,j) +wk
e(i,j)} and

satisfying the following conditions:

1. |Pk| 6 χ, where χ is an a-priori defined parameter;

2. the cost of the path of maximum cost in Pk is smaller than or equal to ρ times

the cost of the least cost path, where ρ > 1 is an a-priori defined parameter.

Consider an enumerative tree where the nodes at level h represent a set Sh of

partial solutions generated at level h involving commodities 1, 2, . . . , h. Each

partial solution S ∈ Sh is represented by an ordered list of h paths, i.e., S =

(P1
j1
, . . . , Pk

jk
, . . . , Ph

jh
), where Pk

jk
is the jk-th element of the path set Pk, k = 1, . . . , h.

With each partial solution S = (P1
j1
, . . . , Pk

jk
, . . . , Ph

jh
), at level h, we define x(S)
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and f(S) as follows:

fkij(S) =






1, if arc (i, j) ∈ Pk
jk
, ∀(i, j) ∈ A, k = 1, . . . , h

0, if arc (i, j) 6∈ Pk
jk
, ∀(i, j) ∈ A, k = 1, . . . , h

0, ∀(i, j) ∈ A, k = h+ 1, . . . , h

(2.28)

and

xe(S) = max

[⌈
gieje(S)

ue

⌉
,

⌈
gjeie(S)

ue

⌉]
, ∀e ∈ E, (2.29)

where:

gij(S) =

h∑

k=1

dkf
k
ij(S), ∀(i, j) ∈ A. (2.30)

Then, the cost z(S) of partial solution S is given by:

z(S) =
∑

e∈E

cexe(S) +
∑

k∈R

∑

(i,j)∈A

wk
ijf

k
ij(S). (2.31)

Moreover, with each S ∈ Sh we associate a label UB(S) which denotes the

upper bound on the NBP solution that is achieved by heuristic TPH (see Section

2.4) where step 1 of phase 1 is modified as follows.

1
′

. (Initialization) Define x̄e = xe(S), ∀e ∈ E, q̄ij = gij(S), ∀(i, j) ∈ A, and f̄kij =

fkij(S), ∀(i, j) ∈ A, k = 1, . . . , h. Set k = h and z̄ = z(S).

At level h the largest subset U ⊂ Sh such that |U| 6 ∆ (where ∆ is an a-priori

defined positive integer) is selected and every S ∈ U is expanded by appending

to S all paths in Ph+1, thus creating |Ph+1| elements of the set Sh+1.

If |Sh| 6 ∆ then set U = Sh, otherwise U contains the first ∆ partial solutions

in Sh for the lexicographical order of the pairs (σ(S), UB(S)), S ∈ Sh, where

σ(S) =
∑

e∈Exe(S), that is, every S ∈ U satisfies σ(S) < σ(S
′

) or σ(S) = σ(S
′

) and

UB(S) 6 UB(S
′

), for every S
′

∈ Sh \U. A backtracking occurs if either all partial

solutions Sh have been previously expanded or level p has been reached. In this

case the algorithm goes back to the first stage h containing some unexpanded

partial solution.
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In expanding a partial solution S ∈ Sh we apply a heuristic dominance rule

that in practice strongly reduces the size of Sh+1. In expanding a partial solu-

tion S the dominance imposes that in case gsh+1th+1
(S) > dh+1, then from S it is

generated only the partial solution of Sh+1 obtained by appending to S the path

P(h+ 1) = (sh+1, th+1) of commodity h+ 1. This dominance rule becomes an ex-

act rule to prevent alternative optimal solutions for the special version of the NBP

where all commodity demands are equal and the routing costs do not depend on

the commodities. More precisely.

Lemma 2.1 Let (x, f) be an optimal solution of cost z of a NBP problem where all the

commodities specify the same demand (i.e. dk = d, ∀k ∈ R) and the routing costs do not

depend on the commodities (i.e. wk
ij = wij, ∀k ∈ R, ∀e ∈ E). Assume that in the optimal

solution (x, f) the arc (sk, tk) is used by commodity r but is not used by commodity k,

that is, fksktk
= 0 and frsktk

= 1. Then there exist an alternative optimal solution (x̃, f̃)

such that f̃ksktk
= 1.

Proof: Consider a new solution (x̃, f̃) derived from (x, f) by routing commodity

k on the arc (sk, tk) and by replacing, in the path assigned to commodity r, the

arc (sk, tk) with the path assigned to commodity k from sk to tk (i.e. by setting

f̃ksktk
= 1, f̃kij = 0, ∀(i, j) ∈ A \ {(sk, tk)}, f̃

r
sktk

= 0, f̃rij = frij, (i, j) ∈ A \ {(sk, tk)} and

f̃rij = fkij, ∀(i, j) ∈ A). The new solution (x̃, f̃) is feasible since both commodities

r and k are routed from the corresponding source node to the destination node.

Moreover, since dk = dr = d, we have
∑

k∈Rdkf̃
k
ij =

∑
k∈Rdkf

k
ij, ∀(i, j) ∈ A,

and thus x̃e = xe, ∀e ∈ E. Finally, as the routing costs do not depend on the

commodity, we have z̃ = z. �

Description of heuristic PEM

In the description of algorithm PEM, we use the following two binary labels:

• β(S) that is set equal to 1 if S has been expanded and equal to 0 otherwise;

• θ(h) that is set equal to 1 if level h does not contain any unexpanded partial

solution and equal to 0 otherwise.
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Moreover, we use a parameter NIT , whose value is a-priori defined, to limit the

maximum number of iterations.

1. (Initialization) Generate the path sets Pk, k ∈ R, as described above. In the

following we assume that the commodities are numbered so that |P1| > |P2| >

· · · > |Pp|. Define S = ∅, β(S) = 0. Set S0 = {S} and Sk = ∅, k ∈ R, zUB = +∞,

h = 0 and iter = 1.

2. (Expansion of the partial solution set Sh) Let Ū = {S ∈ Sh : β(S) = 0}. We have

three cases:

(a) |Ū| > ∆: let U be the first ∆ partial solutions in Ū for the lexicographical

order of the pairs (σ(S), UB(S)), S ∈ Ū. Set θ(h) = 0.

(b) |Ū| = ∆: set U = Ū and θ(h) = 1.

(c) |Ū| = 0: set θ(h) = 1 and go to 4.

In case (a) and (b) repeat 3 for every S ∈ U.

3. (Expansion of S ∈ U) Set β(S) = 1. For each P ∈ Ph+1 consider the partial

solution S
′

obtained by appending to S the path P and let z(S
′

) be the cost of S
′

given by expression (2.31). Compute UB(S
′

) using heuristic TPH as described

above. If UB(S
′

) < zUB, then update zUB = UB(S
′

).

If S
′

is not dominated, then update Sh+1 = Sh+1 ∪ {S
′

} and set β(S
′

) = 0.

4. Set h = h+ 1. If h < p then go to step 2.

5. Set iter = iter+ 1.

If iter = NIT then STOP, otherwise let h = min
16k6p

[k : θ(k) = 0] and go to step 2.

Our computational experiments indicate that heuristic PEM is time consum-

ing as it requires to run algorithm TPH to complete each partial solution. The

computing time can be significantly reduced using only phase 1 of TPH but this

deteriorates the quality of the solution achieved.
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2.6. F&B: an adaptive memory-based algorithm

for structured optimization problems

In this section we propose an iterative memory-based algorithm, called F&B, for

solving a class of structured combinatorial optimization problems, and we show

how the algorithm can be tailored to solve the NBP. Like algorithm PEM also F&B

is based on partial enumeration, but it is much faster than PEM as it does not

require to run heuristic TPH to complete each partial solution. In the following

we first describe the general schema of algorithm F&B and then we present its

application to the NBP.

2.6.1 Forward-Backward trees

Many combinatorial optimization problems exhibit a regular substructure that

makes them decomposable inton smaller (and possibly easier) subproblems which

are linked together by a set of coupling constraints. These problems can often be

modeled by defining, for each subproblem k, a set Pk containing all the feasible

solutions for subproblem k, and by reformulating the coupling constraints so that

the resulting problem consists in choosing from each set Pk, k = 1, ..., n, a single

item skik ∈ Pk in such a way that the selected items S = {s1i1 , . . . , s
n
in

} satisfy all the

constraints. With each item ski ∈ Pk is associated a cost ck
i and a weight ak

i . The

cost z(S) of solution S is a function of the selected items and the objective is to

find a solution S of minimum cost. As an example, consider the Multiple Choice

Knapsack problem (MCKP). In the MCKP are given n item sets Pk, k = 1, ..., n

and a bin of size W. The objective is to select exactly one item from each set so

that the sum of the item weights does not exceedW, and the sum of the item costs

is minimized.

Algorithm F&B tries to avoid being trapped in local minima by adopting a

memory-based look ahead strategy that exploits the knowledge gained in its past

search history. F&B iterates a partial exploration of the solution space by gener-
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ating a sequence of enumerative trees of two types, called forward and backward

trees. Each node at level h of the trees represents a partial solution S ′ containing

h items. At each iteration t, the algorithm generates a forward tree, if t is odd,

or a backward tree if t is even. In generating a tree, each partial solution S ′ is ex-

tended to a feasible solution using the partial solutions generated at the previous

iteration, and the cost of the resulting solution is used to “guess” the quality of

the best complete solution that can be obtain from S ′.

A forward tree is ann-level tree where each level h = 1, ..., n is associated with

the set Ph and each node at level h corresponds to a partial solution containing

one item of each set P1,P2, . . . ,Ph. Conversely, in a backward tree each level

h is associated with the set Pn−h+1, and a node at level h represents a partial

solution containing one item of each set Pn,Pn−1, . . . ,Pn−h+1. Associated with

each level h of a tree built at iteration t there is a list, called Listt(h), containing

∆ nodes generated at level h, where ∆ is an a-priori defined parameter. Once the

tree at iteration t has been completely expanded, the nodes in the lists Listt(h),

h = 1, ..., n, represent the algorithm memory of past iterations 1, ..., t that will

be used to guide the tree exploration in the following iteration t + 1. In order to

make the exposition simpler, in the following no distinction is made between a

node and the corresponding partial solution.

2.6.2 Evaluation of partial solutions

The key idea is to evaluate the completion cost of each partial solution generated

at level h of the tree at iteration t using the partial solutions stored in Listt−1(n−

h) at iteration t− 1. Suppose we are building the forward tree associated with an

odd iteration t. Let Sh be the set of all partial solutions generated at level h, and

consider two partial solutions S ∈ Sh and S ∈ Listt−1(n − h). Notice that, since

t is odd, S contains one item of the sets P1,P2, . . . ,Ph, while S contains one item

of each set Pn,Pn−1, . . . ,Ph+1. These two solutions can be combined to obtain a

(not necessarily feasible) complete solution S ∪ S of cost z
(
S ∪ S

)
. Clearly, if the

resulting solution S ∪ S satisfies all the coupling constraints, then the associated
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cost represents a valid upper bound on the problem. At each iteration t algorithm

F&B builds the associated tree and computes for each node S ∈ Sh a label ψ (S)

as follows:

ψ (S) = min
S∈Listt−1(n−h)

{
z
(
S ∪ S

)
+ α

(
S ∪ S

)}
, (2.32)

where α(S ∪ S) is a (strongly problem specific) function whose value is related

to the degree of infeasibility of S ∪ S and that is equal to 0 if S ∪ S is a feasible

solution. In this latter case ψ (S) represents a valid upper bound on the problem.

When building the first forward tree at iteration t = 1 we assume that the

lists List0(h) = ∅, h = 1, . . . , n. Therefore, at iteration 1, expression (2.32) gives

ψ(S) = z(S), where z(S) is the cost of the partial solution S.

2.6.3 Level expansion

Let ∆ be an a-priori defined parameter that controls the number of nodes ex-

panded at each level of both forward and backward trees. To expand level h of

a tree at iteration t the algorithm computes the value ψ(S) for each node S ∈ Sh,

and builds the set Listt(h) ⊆ Sh containing the∆ nodes in Sh having the smallest

label value ψ(S). For every S ∈ Listt(h) such that ψ(S) represents the cost of a

feasible solution, we update zUB = min {zUB, ψ(S)}, where zUB represents the cost

of the best solution achieved by F&B and is initialized equal to ∞ at the begin-

ning of the algorithm. Each node S included in Listt(h) is expanded to create a

new node S ∪ {s} for each item s of the set Ph+1 associated with level h + 1. Any

node S ∪ {s} that violates the problem constraints is rejected.

Algorithm F&B terminates after NIT iterations (where NIT is an a-priori de-

fined parameter) or after two consecutive iterations where the value of zUB does

not improve.

Figure 2.1 shows an example of algorithm F&B at iteration t + 1 (even) ex-

panding ∆ = 2 nodes per level. The label value for each node S ∈ S4 at level 4

of the backward tree associated with iteration t+ 1 is computed using the partial

solutions stored in Listt(6) of the forward tree computed at the previous iteration
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t. The∆ nodes having the smallest label value are then included in Listt+1(4) and

further expanded.

P1

P2

P5

P9

P10

P6

Listt(1)

Listt(5) Listt+1(4)

S4

Figure 2.1: Example of algorithm F&B

In the following we give a step-by-step description of algorithm F&B. In de-

scribing the algorithm we use a counter flag that records the number of con-

secutive iterations in which the best upper bound zUB does not improve. When

flag takes value 2 the algorithm stops because no further improvements can be

achieved in the following iterations.

Description of heuristic F&B

1. (Initialization): Set t = 1, zUB = ∞ and flag = 0.

2. (build the tree associated with iteration t): set flag = flag+1 and let Listt(0) =

{{∅}}. Repeat the following step 3 for each level h = 1, . . . , n.
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3. (generate the node set Sh): set Sh = {∅}. If t is odd set k = h otherwise set

k = n− h+ 1. Repeat for each node S ∈ Listt(h− 1):

• For each item s ∈ Pk let S ′ = S ∪ {s}:

If S ′ is feasible set Sh = Sh ∪ S ′.

If S ′ is feasible and z(S ′) < zUB set zUB = z(S ′) and flag = 0.

4. (compute label ψ(S) for each S ∈ Sh): For each node S ∈ Sh compute ψ(S)

according to expression (2.32) and let S be the partial solution of Listt−1(n−h)

producing the minimum in expression (2.32). If S∪ S is a feasible solution and

z(S ∪ S) < zUB update zUB = z(S ∪ S) and set flag = 0.

5. (Extract the subset Listt(h) ⊆ Sh):

• If |Sh| 6 ∆ set Listt(h) = Sh.

• If |Sh| > ∆ let Listt(h) be the set containing the ∆ partial solutions of Sh

having the smallest label ψ (·).

6. If flag = 2 the upper bound zUB has not been improved in the last two consec-

utive iterations: Stop.

7. Set t = t+ 1. If t = NIT , then Stop, otherwise return to step 2.

2.6.4 Some applications of algorithm F&B

In the next section we give a detailed description of F&B when applied to the

NBP. However, algorithm F&B described in Sections 2.6.1, 2.6.2 and 2.6.3 can also

be applied to other combinatorial optimization problems than NBP. In this sec-

tion we give some examples of such problems. The aim of this section is to show

how different combinatorial optimization problems, other than NBP, can be re-

formulated to fit the general schema required to use algorithm F&B.

a) Variable Size Bin Packing

It is given a set J = {1, 2, . . . , n} of items, where each item k ∈ J is associated
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with a weight wk, and a set B = {1, 2, . . . , n} of bins, where each bin i ∈ B

is associated with a capacity bi and a cost ci. The Variable Size Bin Packing

Problem (VSBPP) is to select a subset J∗ ⊆ J of bins of minimum cost such that

each item can be assigned to exactly one bin in J∗ and the total weight of the

objects in each bin i ∈ J∗ does not exceed its capacity bi.

To use algorithm F&B, let Pk ⊆ B be the set of bins that can contain item k, for

each item k ∈ J, that is, Pk = {i ∈ B : bi 6 wk}. A partial solution S at level h of

a forward tree built by algorithm F&B represents an assignment of each of the

first h items to a bin, whereas a partial solution S at level n− h of a backward

tree represents an assignment of each of the last items h + 1, . . . , n to a bin.

Therefore partial solutions S and S provide a complete solution S ∪ S. Notice

however that the resulting solution S∪ Smay be infeasible as the total weight

of the objects assigned to a bin could exceed its capacity.

b) Set Covering Problem

It is given a set A = {1, 2, . . . , n} and a family F ⊆ 2A of subsets of A, where

each set S ⊆ F is associated with a cost wS. The Set Covering Problem (SCP)

is to select a subset F∗ ⊆ F such that F∗ covers A at minimum cost, that is,

∪S∈F∗S = A and
∑

S∈F∗

wS is minimized.

To use algorithm F&B, let Pk ⊆ F be the family of sets covering element k ∈ A,

that is, Pk = {S ∈ F : k ∈ S}. Any pair S, S of partial solutions at level h and

n−h of a forward and backward tree, respectively, provides a cover ofA, that

is, a feasible SCP solution S ∪ S.

c) Traveling Salesman Problem

It is given a set N = {1, 2, . . . , n} of cities and a cost cij associated with each

pair of cities i, j ∈ N, representing the travel cost from i to j. The Traveling

Salesman Problem (TSP) is to find the cheapest tour that visits all cities in N

exactly once starting and ending at city 1.

To use algorithm F&B let Pk = {2, 3, . . . , n} be the set of cities that can be visited

in position k of the tour, k = 2, . . . , n. Then, two partial solutions S and S at
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level h and n − h of a forward and backward tree, respectively, provide a,

not necessarily feasible, tour by specifying the city visited in each position k,

k = 1, 2, . . . , n.

Notice that in describing the applicability of algorithm F&B for solving the

VSPBB and the TSP a non trivial issue has been left unspecified. Since the algo-

rithm can generate infeasible solutions, it is necessary to define an appropriate

penalty function α() to correctly define the node labels according to expression

(2.32).

Penalty functions are often used within genetic algorithms as a tool to penalize

the fitness of infeasible solutions [see 66, 105, 114]. An alternative approach is

described by Chu and Beasley [34] who propose to store separately two labels for

each solution representing fitness and unfitness scores, respectively. Fitness and

unfitness are then used to drive the parent selection and solution replacement

mechanisms within a genetic algorithm.

The effectiveness of a penalty function and its most effective integration within

the general framework provided by algorithm F&B strongly depends on the struc-

ture of the problem to be solved. Since the aim of this chapter is to study the NBP,

this topic is not investigated here.

2.6.5 Solving the NBP using Algorithm F&B

As described in Section 2.5 the NBP can be modeled defining for each commodity

k = 1, . . . , p a set Pk containing all the simple paths in G
′

from the origin node

sk ∈ V to the destination node tk ∈ V . Then, a NBP solution is represented by an

ordered list of p paths, one path from each set Pk. Here, objects are paths and each

forward and backward tree has one level for each commodity. As for algorithm

PEM each partial solution S = (P1
j1
, . . . , Pk

jk
, . . . , Ph

jh
) corresponds to an ordered

list of h paths where Pk
jk

is the jk-th element of the path set Pk, k = 1, . . . , h. The

weight ak
i of each object Pk

jk
∈ Pk corresponds to the demand dk of commodity
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k ∈ R, and the NBP is to select a single path from each path set Pk, k = 1, ..., p, to

obtain a complete solution S = (P1
j1
, ..., Pk

jk
, ..., P

p
jp

) of minimum cost z(X).

Notice that, since there is no restriction on the maximum number of base ca-

pacities ue that can be installed on each edge e ∈ E, at each iteration t of algorithm

F&B any two partial solutions S ∈ S(h) and S ∈ Listt−1(n − h) always provide

a feasible solution S ∪ S of cost z(S ∪ S). This means that the label β(S) of any

node S computed by means of expression (2.32) always represents a valid upper

bound on the NBP.

Forward trees are built following the enumerative scheme of the PEM algo-

rithm by considering the commodities in the order (1, 2, . . . , p), while backward

trees are built as in PEM but considering the commodities in the reverse order

(p, p − 1, . . . , 1). The path subsets Pk, k ∈ R, are generated, and the commodities

are numbered, as described in algorithm PEM. At each iteration t > 1 algorithm

F&B builds the associated tree and computes the label β(S) for each S ∈ S(h) gen-

erated at level h using expression (2.32). At iteration t = 1 we define β(S) = ∞,

for each partial solution S generated at level h < p and β(S) = z(S) for every S

generated at level p. Notice that at each iteration t only the lists Listt−1(p − h),

h = 1, . . . , p, are used to compute the labels when expanding level h. There-

fore one only needs to store a single list List(h) for each level h = 1, . . . p that

is updated after expanding each level. For the sake of clarity we also report a

step-by-step description of algorithm F&B for the NBP.

Description of heuristic F&B for the NBP

1. (Initialization) Generate the path sets Pk, k ∈ R, (as described in Section 2.5)

and number the commodities so that |P1| > |P2| > · · · > |Pp|. Initialize

List(k) = ∅, k ∈ R.

Set t = 1 and zUB = ∞.

2. (Initialization of the enumerative tree associated with iteration t) Define S = ∅

and set S0 = S, Sk = ∅, k = 1, . . . , p, and h = 0.
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3. (Expansion of the partial solutions Sh) If t is odd, then set k = h, otherwise set

k = p− h.

• If |Sk| > ∆: let List(k) be the first ∆ partial solutions in Sk for the lexico-

graphical order of the pairs (σ(S), β(S)), S ∈ Sk.

• If |Sk| = ∆: set List(k) = Sk.

Repeat the following step 4 for any S ∈ U.

4. (Expansion of the partial solution S ∈ U) For each P ∈ Pk consider the partial

solution S
′

of cost z(S
′

), given by expression (2.31), obtained by appending

path P to S and set Sk+1 = Sk+1 ∪ {S
′

}. We have two cases:

(a) h+ 1 = p: set β(S
′

) = z(S
′

).

(b) h+ 1 < p:

• If t = 1, then set ψ(S
′

) = +∞.

• If t > 1, then define ψ(S
′

) = min
S̄∈List(p−k)

[
z(S

′

∪ S̄)
]
.

If β(S
′

) < zUB, then update zUB = β(S
′

).

5. Set h = h+ 1. If h < p then go to step 3.

6. Set t = t+ 1. If t = NIT , then Stop, otherwise return to step 2.

Algorithm F&B is significantly faster than algorithm PEM, but in computing

the upper bound ψ(S) (see step 4) strongly depends on the path set Pk of com-

modity k associated with level h, and on the partial solutions S̄p−h generated at

the previous iteration. Algorithm PEM partially avoids this drawback as it uses

algorithm TPH to complete partial solutions. In fact, phase 2 of algorithm TPH

can generate a solution containing one or more paths not included in the path

sets Pk, k ∈ R, generated at the beginning of algorithm PEM.
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2.7. Heuristic RTS based on tabu search

In this section we describe an iterative procedure, called RTS, that performs at

each iteration a Tabu Search algorithm (see [65]), called TS, using a different initial

solution. TS assumes that each commodity k ∈ R can be routed using one of the

paths in the set Pk that is defined with respect to an initial NBP solution (x, f) as

follows. For each commodity k ∈ R let (x̄, f̄) be the partial solution resulting from

(x, f) after removing commodity k. Then, each set Pk contains the best χ shortest

paths in G ′, from node sk to node tk, computed with respect to the incremental

costs {c̄k
ij} given by expressions (2.20) with respect to the partial solution (x̄, f̄).

The neighborhood structure is defined by all solutions N(x, f) that can be

reached from the current solution (x, f) by replacing, for each commodity k ∈ R,

the current path P(k) with all other paths in Pk \ {P(k)}. To avoid cycling, solu-

tions that were recently examined are forbidden, or tabu, for a number of itera-

tions. The next move is made to the non tabu neighbor of minimum cost of the

current solution (x, f). If multiple non tabu solutions of minimum cost are found

in N(x, f) a diversity score is computed for each of them with respect to the solu-

tions in the tabu list TL, and the solution with the highest score is chosen. The

diversity score ϕ(x ′, f ′), of solution (x ′, f ′) ∈ N(x, f) is defined as follows:

ϕ(x ′, f ′) = max
(x̃,f̃)∈TL



√

∑

e∈E

(x ′
e − x̃e)

2


 (2.33)

Algorithm TS performs a fixed number of iterations NIT . At the first iteration

RTS provides to TS the initial solution obtained by phase 1 of algorithm TPH. In

the following iterations RTS gives to TS the best solution (x∗, f∗) achieved at the

previous iteration as the new starting solution.

Algorithm RTS terminates if the solution achieved at the end of an iteration is

not better than the one achieved at the previous iteration.

To alleviate the time requirement for generating the neighbourhood setN(x, f),

we apply the following criteria. If the best solutions obtained by two consecutive
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iterations of RTS use the same path for a given commodity k, then such path is

permanently assigned to commodity k in the following iterations of RTS.

In the description of algorithm RTS we use a binary label ν(k) for each com-

modity k ∈ R that is initialized equal to 0 at the beginning of each iteration of

RTS. During the execution of TS we set ν(k) = 1 every time a better solution is

found where the path associated with commodity k is different from the one used

in the initial NBP solution given by RTS to TS.

Description of heuristic RTS

1. (Initialization) Let (x, f) be the solution of cost zUB produced by phase 1 of

algorithm TPH. Set z∗ = zUB, (x∗, f∗) = (x, f), zold = +∞ and TL = {(x, f)}.

Define ν(k) = 0, ∀k ∈ R.

The following steps 2 - 5 perform TS on the initial solution (x, f)

2. (Initialization of TS) For each commodity k ∈ R such that ν(k) = 0, compute

the path set Pk containing the χ shortest paths in G
′

with respect to the initial

solution (x, f), as described above. Set iter = 1.

2. (Build the neighborhood set N(x, f)) Set N(x, f) = ∅. For each commodity k ∈

R such that ν(k) = 0, add to N(x, f) every solution (x ′, f ′) that is obtained

replacing in (x, f) the current path P(k), assigned to commodity k, with any

other path in Pk \ {P(k)}.

2. (Extract a neighbor solution) Let U ⊆ N(x, f) \ TL be the subset of all non tabu

solutions of minimum cost.

Let (x ′, f ′) be the solution in U of cost z ′
UB such that ϕ(x ′, f ′) = max

(x,f)∈U
[ϕ(x, f)].

If z ′
UB < z∗, then set ν(k) = 1 for every commodity k that in solution (x ′, f ′)

uses a path different from the one used in solution (x∗, f∗). Moreover, update

z∗ = z ′
UB and (x∗, f∗) = (x ′, f ′).

2. (Update the tabu list TL) If TL is full remove the oldest solution from the list.

Set TL = TL ∪ {(x ′, f ′)}.

Set iter = iter+ 1. If iter 6 NIT set (x, f) = (x ′, f ′) and return to step 3.
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2. (Termination criteria of RTS) If zold > z∗, then set R = R \ {k ∈ R : ν(k) = 0},

(x, f) = (x∗, f∗), zold = z∗ and return to step 2; otherwise, Stop.

2.8. Computational Experiments

The algorithms described in this chapter have been coded in ANSI C and exper-

imentally evaluated on the two classes of NBP instances, called A and B, using

a Pentium 4 running at 3.2 GHz with 3 Gb RAM. In the following we briefly

describe the characteristics of the two classes of test instances and we compare

the results achieved by the branch-and-cut algorithm of Atamtürk and Rajan [6]

with those obtained by the new exact algorithm described in Section 2.3. We

discuss the impact of the parameter tuning on the performance of the heuristic

algorithms, and we report detailed computational results comparing the results

achieved by the new heuristics with those obtained by the exact algorithm on

both the classes of instances.

2.8.1 Test instances

Class A instances

The instances of class A were introduced by Atamtürk and Rajan [6] and are pub-

licly available at http://www.ieor.berkeley.edu/ ˜ atamturk/data/ .

These instances correspond to undirected graphs with up to 29 nodes and

61 edges whose characteristics are summarized in Table 2.1. The base capacities

and the installation costs are fixed (i.e., all edges have the same capacity and

installation cost), and commodity demands range between 5 and 60. There are

four possible base capacities 4, 25, 60 and 120, having unit installation cost 50,

250, 450 and 720, respectively. For each problem listed in Table 2.1 five instances

are given, one for each problem and capacity combination. In all instances the

routing costs are defined as: wk
ij = dk, ∀(i, j) ∈ A, ∀k ∈ R.
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Table 2.1: Instances of class A

Problem Commodities Nodes Edges Flow Design Constraints

variables variables

1 70 29 61 8,540 61 2,181

2 58 18 29 3,364 29 1,120

3 93 27 37 7,178 37 2,612

4 87 24 42 7,308 42 2,196

5 81 27 36 5,832 36 2,284

Class B instances

The instances of class B correspond to complete undirected graphs with 30 nodes

and one commodity for each edge. These problems have been randomly gen-

erated to imitate the characteristics of practical network loading problems aris-

ing in the design of telecommunication networks (see Barahona [17]). Table 2.2

summarizes the characteristics of class B instances. These instances are further

partitioned into two subclasses B.1 and B.2 with respect to the method used for

computing the installation costs ce of base capacities. For each subclass we ran-

domly generated 5 instances as follows:

• the node set V is randomly generated in the square [3, 000× 3, 000];

• the base capacity ue is set equal to 56 for each edge e ∈ E, imitating the link

capacity of a DS0 channel (see Kousik et al. [79], and Magnanti et al. [89]);

• associated with each edge e ∈ E there is a commodity ke having as origin and

destination nodes the endpoints of edge e (i.e. ske
= ie, tke

= je);

• the commodity demands are integers chosen from the set {8, 16, 24} with prob-

ability 70%, 20% and 10%, respectively, and all routing costs {wk
ij} are set equal

to 0.

For the instances of subclass B.1, according to Table 4 presented in Kousik et al.

[79], we used the costs for the annual leasing of DS0 channels for computing the
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Table 2.2: Instances of class B

Commodities Nodes Edges Flow Design Constraints

variables variables

435 30 435 26,100 435 13,920

values {ce}. Let eucd(ij) be the Euclidean distance between nodes i, j ∈ V .

The edge costs {ce} for instances of subclass B.1 are computed as follows:

ce =






232+ 7.74 eucd(ieje), if eucd(ieje) 6 50,

435+ 3.68 eucd(ieje), if 50 < eucd(ieje) 6 100,

571+ 2.32 eucd(ieje), if 100 < eucd(ieje) 6 500,

1, 081.4+ 1.30 eucd(ieje), if eucd(ieje) > 500.

For the instances of subclass B.2 the edge costs {ce} are computed as:

ce = 572+ eucd(ieje).

2.8.2 Parameter settings

The quality of the solutions achieved by the heuristics PEM, F&B and RTS (see

sections 2.5, 2.6 and 2.7) strongly depends on the value of the input parameters.

We made several preliminary experiments to identify good parameter settings for

our heuristics. In our experiments we found that both heuristics PEM and F&B

are particularly sensitive to the value of the parameters ∆ and χ, and it was not

possible to choose a parameter set which gives the best results on all the instances.

We found interesting the behavior of algorithm F&B with respect to the value

of parameter ∆ that controls how many nodes are expanded at each level of a

tree. One could expect that, given enough time, the more nodes are expanded at

each level, the better results are obtained. Indeed, we found that in most cases the

best results were obtained by F&B when using small values of ∆, i.e., ∆ 6 20. We
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noticed that by using larger values of ∆ the algorithm was able to obtain better

results in the first iterations but it was then unable to improve them significantly

later on. As an example, figure 2.2 plots the best upper bound achieved by F&B

on an instance of class B.2 (problem 2) within one hour of CPU time, when ∆

ranges between 1 and 100. Figure 2.2 shows that the best solutions are achieved

when expanding a small number of nodes at each level.

This behavior was common to all the NBP instances, showing that the com-

puting time is better invested in performing more iterations (thus refining the

algorithm’s knowledge of the solution space) rather than trying a wider explo-

ration. This could be specially true at earlier iterations when the algorithm mem-

ory is largely ineffective in guiding the exploration toward good solutions. Figure

2.3 shows the percentage distance of the obtained solution costs, for increasing

values of ∆, with respect to the best known upper bounds averaged over all B.1

instances. The general structure is the same as that of figure 2.3. It is interesting to

notice that in general there seems to be a “hot-spot” between values of ∆ ranging

from 20 to 10 where the algorithm provides the best results.

Table 2.4 gives a numerical comparison between the results obtained by algo-

rithm F&B on class B instances for different values of the parameter ∆. For each

value of the parameter Table 2.4 reports:

• zUB: cost of the best solution achieved by F&B within the time limit;

• Gap: percentage distance between the costs of the best known solution (zbest)

and the one found by the algorithm (i.e. Gap = 100× (zUB − zbest)/zbest);

• Time: total computing time in seconds.

Algorithm PEM behaved differently. It relies heavily on the heuristic TPH to

obtain feasible solutions and guide the search of the solution space, in contrast

to the adaptive memory mechanism of F&B. On average, algorithm PEM tends

to give better results when expanding more nodes per level. However, the com-

puting time required to perform each iteration quickly increases as ∆ gets bigger

because heuristic TPH must be run each time a new partial solution is created.
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Table 2.3: Parameter configurations for PEM and F&B

Algorithm Class A Class B

instances instances

PEM ∆ = 50 χ = 30 ∆ = 20 χ = 100

F&B ∆ = 100 χ = 100 ∆ = 10 χ = 100

Depending on the size of the instances, raising ∆ over a certain point (∆ = 50 for

class A instances and ∆ = 20 for class A instances) does not seem to make much

sense because it makes the algorithm unable to perform enough iterations.

Concerning the parameter χ that controls the size of the path sets Pk com-

puted for each commodity k ∈ R, both PEM and F&B obtained the best results

using quite big values of χ. On the other hand, algorithm RTS rarely had signifi-

cant benefits when increasing the value of the parameter χ above 30, even on the

bigger class B instances. This is probably due to the fact that at the end of each

iteration algorithm RTS recomputes the path set Pk for each commodity k ∈ R

with respect to the best solution achieved in the previous iteration.

As a result of these investigations we decided to use in the final computational

tests reported in Section 2.8.3 the values of the parameters ∆ and χ that give, on

average, the best results on each of the two classes of instances (i.e. ∆ 6 20

for class B instances, ∆ > 50 for class A instances). Table 2.3 summarizes the

parameter configurations used in these tests by algorithms PEM and F&B on the

two classes of instances A and B. The maximum number of iterations NIT is not

reported since for both PEM and F&B the value of this parameter was set equal

to 50 for all instances. Concerning algorithm RTS we use the following parameter

settings for all the instances:

χ = 30, NIT = 30, 000, and|TL| = 100.
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Figure 2.2: Problem 2 of class B.2: best results achieved for increasing values of the

parameter ∆

Figure 2.3: Class B.1 instances: percentage distance from the best result achieved for

increasing values of the parameter ∆
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Table 2.4: F&B: results for different values of parameter ∆ on class B instances.

Prob. F&B(∆ = 1) F&B(∆ = 5) F&B(∆ = 10) F&B(∆ = 20)

zub gap time zub gap time zub gap time zub gap time

B.1 1 279,340 1.66 14 275,705 0.34 213 274,781 0.00 1,263 275,381 0.22 3,197

B.1 2 291,269 1.43 16 296,623 3.29 234 287,163 0.00 893 290,144 0.00 893

B.1 3 295,853 5.28 17 286,697 2.02 399 285,442 1.58 992 281,015 0.00 2,571

B.1 4 285,773 0.98 17 283,007 0.00 198 284,547 0.54 754 284,684 0.59 2,695

B.1 5 288,574 1.57 14 290,839 2.37 245 289,003 1.72 735 284,118 0.00 3,568

Avg. 288,162 2.18 16 286,574 1.60 258 284,187 0.77 927 283,068 0.37 2,912

B.2 1 197,747 2.54 16 200,125 3.78 424 192,842 0.00 1,886 197,249 2.29 3,600

B.2 2 204,162 1.63 15 203,715 1.41 281 200,890 0.00 605 205,503 2.30 3,600

B.2 3 191,162 1.03 18 190,516 0.69 273 189,214 0.00 1,333 191,609 1.27 3,600

B.2 4 175,931 0.31 18 179,121 2.13 268 175,389 0.00 1,026 178,965 2.04 3,600

B.2 5 185,760 1.43 21 184,460 0.72 463 183,312 0.10 976 183,138 0.00 3,600

Avg. 190,952 1.39 18 191,587 1.74 342 188,329 0.02 1,165 191,293 1.58 3,600

2.8.3 Computational results

In this section we compare the performance of the algorithms described in this

chapter on the two classes of instances A and B.

The computational results obtained for the instances of class A are reported in

Tables 2.5 and 2.6. Table 2.5 compares the exact CPLEX(SF)) and the branch-and-

cut of Atamtürk and Rajan [6] described in section 2.3. The table reports the LP-

relaxation values of formulations NBP and SNBP, the results achieved by CPLEX

10.1 using formulations NBP and SNBP (columns CPLEX(F) and CPLEX(SF) re-

spectively) and the results obtained by the branch-and-cut of Atamtürk and Rajan

[6] (column B&C-AR). In CPLEX(F) and CPLEX(SF) we activated both the node

heuristic and RINS heuristic. For each exact method Table 2.5 shows the percent-

age gap (column Endgap) between the best upper bound zUB and the best lower

bound zLB at termination (i.e. Endgap = 100×(zUB−zLB)/zLB) and the total com-

puting time in seconds (column Time). Utilizing Dongarra [52], we estimated that

the Sun Ultra 5 Workstation used by Atamtürk and Rajan [6] is approximately 10

times slower than the Pentium 4 3.2 Ghz used to run all our algorithms.

In Table 2.6 we compare the results obtained by the new heuristic algorithms

with those obtained using CPLEX(SF). Table 2.6 reports, for each algorithm, the
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following columns:

• zUB: cost of the best solution found;

• Gap: percentage gap between the cost of the best solution (say, zbest) and the

cost of the solution found by the algorithm (i.e. 100× (zUB − zbest/zbest);

• Time: total computing time. One hour time limit was set for all heuristics and

PEM never terminated before this time limit.

The last line of each block of instances reports the percentage average gap and

the average computing times of each method.

Tables 2.7 and 2.8 show the results obtained by CPLEX(SF) and the new heuris-

tics on the instances of class B within a one hour time limit. The final solution

obtained by CPLEX(SF) within the imposed time limit was improved by running

the CPLEX solution polishing heuristic for an extra hour of computing time.

Table 2.5 clearly indicates that formulation (SNBP) is stronger than NBP as it

concerns the lower bounds given by the LP-relaxation, and often permits an im-

proved performance of the exact procedures CPLEX(SF) with respect to CPLEX(F).

The results of Table 2.5 do not allow to compare the two exact methods CPLEX(SF)

and B&C-AR as the Pentium 4 used by CPLEX(SF) is faster than the Sun work-

station used by B&C-AR. However, it is surprising that using CPLEX with a

straightforward formulation and two simple sets of valid inequalities it is pos-

sible to solve the same instances solved by the very sophisticated branch and cut

algorithm of Atamtürk and Rajan [6].

The results of Table 2.6 show that, in most cases, the best upper bound for the

instances of class A is achieved by CPLEX(SF) with a time limit of 3,600 seconds.

However this is not the case for all the instances. On the instances having a base

capacity ue = 4 the heuristic RTS always achieves the best solutions. Finally, Ta-

bles 2.7 and 2.8 indicate that CPLEX(SF) is not the best method for solving NBP

instances having a large number of edges and commodities. In these cases the

best solutions are achieved for all instances by algorithm F&B. Moreover algo-

rithm TPH produces in a few seconds better solutions than CPLEX(SF) using two

hours of computing time.
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Table 2.5: F&B: Class A instances: exact methods

Cap. Prob. LP-relaxation of CPLEX (F) CPLEX (SF) B&C-AR

NBP SNBP Endgap Time (a) Endgap Time (a) Endgap Time (b)

1 36,032.5 36,127.6 1.54 3,600 1.38 3,600 0.90 3,600

2 19,217.5 19,266.5 0.00 85 0.00 93 0.00 117

4 3 29,025.0 29,177.0 0.00 115 0.00 140 0.00 728

4 35,125.0 35,175.0 0.62 3,600 0.68 3,600 1.10 3,600

5 63,735.0 63,886.0 0.03 3,600 0.00 22 0.00 72

Averages 36,627.0 36,726.4 0.44 0.41 0.40

1 29,520.0 30,101.5 2.72 3,600 2.09 3,600 9.30 3,600

2 15,755.0 16,290.7 0.00 594 0.00 651 0.00 3,600

25 3 23,800.0 24,946.7 0.00 658 0.00 10 0.00 125

4 28,825.0 29,080.0 2.17 3,600 2.00 3,600 7.90 3,600

5 52,210.0 52,783.5 0.00 141 0.00 24 0.00 1,878

Averages 30,022.0 30,640.5 0.98 0.82 3.44

1 23,007.5 24,515.4 4.60 3,600 4.77 3,600 24.80 3,600

2 12,292.5 12,960.0 0.00 141 0.00 133 0.00 1,890

60 3 18,575.0 21,235.1 0.00 118 0.00 15 0.00 289

4 22,525.0 23,418.1 3.46 3,600 3.23 3,600 10.70 3,600

5 40,685.0 43,285.1 0.00 91 0.00 4 0.00 106

Averages 23,417.0 25,082.7 1.61 1.60 7.10

1 19,100.0 23,122.1 14.33 3,600 13.22 3,600 24.90 3,600

2 10,215.0 12,705.7 0.00 298 0.00 337 0.10 3,600

120 3 15,440.0 21,394.1 0.00 12 0.00 3 0.00 67

4 18,745.0 20,559.5 4.78 3,600 7.03 3,600 9.50 3,600

5 33,770.0 38,665.9 0.00 14 0.00 4 0.00 152

Averages 19,454.0 23,289.4 3.82 4.05 6.90

(a): Seconds of a Pentium 4 at 3.2 GHz

(b): Seconds of a Sun Ultra 5 workstation
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Table 2.6: Class A instances: heuristic algorithms

Cap. Prob. CPLEX (SF) PEM (a) F&B RTS TPH (b)

zUB Gap Time zUB Gap zUB Gap Time zUB Gap Time zUB Gap

1 36,975 0.20 3,600 36,935 0.09 37,155 0.69 1,243 36,900 0.00 336 37,070 0.46

2 19,640 0.00 93 19,640 0.00 19,640 0.00 230 19,640 0.00 231 19,775 0.69

4 3 29,400 0.00 140 29,425 0.09 29,425 0.09 128 29,400 0.00 124 29,455 0.19

4 35,560 0.07 3,600 35,580 0.13 35,735 0.56 804 35,535 0.00 617 35,920 1.08

5 64,150 0.00 22 64,155 0.01 64,190 0.06 313 64,150 0.00 298 64,185 0.05

Averages 37,145 0.05 1,491 37,147 0.06 37,229 0.28 544 37,125 0.00 321 37,281 0.49

1 31,870 0.00 3,600 32,130 0.82 32,635 2.40 1,933 33,495 5.10 246 32,840 3.04

2 16,780 0.00 651 16,975 1.16 17,015 1.40 184 17,000 1.31 353 17,435 3.90

25 3 26,175 0.00 10 26,175 0.00 26,185 0.04 129 26,175 0.00 127 26,410 0.90

4 30,205 0.00 3,600 30,465 0.78 31,060 2.75 510 30,230 0.08 378 31,300 3.54

5 53,905 0.00 24 54,140 0.44 53,910 0.01 315 53,905 0.00 327 54,360 0.84

Averages 31,787 0.00 1,577 31,977 0.64 32,161 1.32 614 32,161 1.30 286 32,469 2.45

1 27,075 0.00 3,600 27,915 3.10 28,145 3.95 1,242 30,265 11.78 224 28,960 6.96

2 14,195 0.00 133 14,200 0.04 15,080 6.23 145 14,200 0.04 347 15,170 6.87

60 3 23,165 0.00 15 23,165 0.00 23,165 0.00 129 23,165 0.00 114 23,165 0.00

4 25,050 0.00 3,600 25,925 3.49 26,945 7.56 518 26,825 7.09 543 26,920 7.47

5 45,840 0.00 4 46,265 0.93 45,945 0.23 317 46,335 1.08 430 46,345 1.10

Averages 27,065 0.00 1,470 27,494 1.51 27,856 3.60 470 28,158 4.00 332 28,112 4.48

1 29,465 0.00 3,600 29,960 1.68 30,765 4.41 1,237 30,950 5.04 326 31,025 5.29

2 15,755 0.00 337 16,410 4.16 15,755 0.00 144 16,410 4.16 313 15,970 1.36

120 3 24,515 0.00 3 24,515 0.00 24,515 0.00 129 24,515 0.00 120 24,515 0.00

4 25,060 0.00 3,600 26,300 4.95 26,540 5.91 514 27,010 7.78 466 27,930 11.45

5 42,215 0.00 4 42,220 0.01 42,245 0.07 316 42,215 0.00 279 42,230 0.04

Averages 27,402 0.00 1,509 27,881 2.16 27,964 2.08 468 28,220 3.40 301 28,334 3.63

Overall 30,850 0.01 1,512 31,125 1.09 31,303 1.82 524 31,416 2.17 310 31,549 2.76

(a): Reaches a time limit of 3,600 sec. in all problems

(b): Terminates within 2 sec. in all problems
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Table 2.7: Class B.1 instances: heuristic algorithms

Prob. CPLEX(SF) (a) PEM (b) F&B RTS TPH

zUB Endgap Gap zUB Gap zUB Gap Time zUB Gap Time zUB Gap Time

1 320,281 32.94 16.56 293,058 6.65 274,781 0.00 1,263 298,703 8.71 3,600 294,034 7.01 31

2 337,136 32.43 17.40 303,799 5.79 287,163 0.00 893 327,668 14.11 3,371 314,051 9.36 32

3 309,701 27.71 8.50 300,875 5.41 285,442 0.00 992 322,367 12.94 3,600 306,463 7.36 31

4 331,173 32.91 16.39 298,088 4.76 284,547 0.00 754 303,266 6.58 3,600 307,136 7.94 27

5 327,312 31.02 13.26 302,164 4.55 289,003 0.00 735 325,027 12.46 3,245 312,829 8.24 32

Avg 325,121 31.40 14.42 299,597 5.43 284,187 0.00 927 315,406 10.96 3,483 306,903 7.98 31

(a): Reaches a time limit of 3,600 sec. in all problems and uses additional 3,600 sec. for running CPLEX polishing heuristic

(b): Reaches a time limit of 3,600 sec. in all problems

Table 2.8: Class B.2 instances: heuristic algorithms

Prob. CPLEX(SF) (a) PEM (b) F&B RTS TPH

zUB Endgap Gap zUB Gap zUB Gap Time zUB Gap Time zUB Gap Time

1 225,785 31.74 17.08 207,824 7.77 192,842 0.00 1,886 217,037 12.55 3,600 210,122 8.96 30

2 232,121 31.41 15.55 218,781 8.91 200,890 0.00 605 226,979 12.99 2,842 219,064 9.05 33

3 216,794 31.13 14.58 196,450 3.82 189,214 0.00 1,333 208,583 10.24 3,434 205,648 8.69 29

4 197,212 29.77 12.44 188,224 7.32 175,389 0.00 1,026 203,076 15.79 3,344 191,218 9.03 32

5 220,353 34.87 20.21 194,955 6.35 183,312 0.00 976 207,458 13.17 3,600 195,481 6.64 33

Avg 218,453 31.78 15.97 201,247 6.83 188,329 0.00 1,165 212,627 12.95 3,364 204,307 8.47 31

(a): Reaches a time limit of 3,600 sec. in all problems and uses additional 3,600 sec. for running CPLEX polishing heuristic

(b): Reaches a time limit of 3,600 sec. in all problems
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2.9. Summary

In this chapter we proposed four new heuristic algorithms for the non-bifurcated

capacitated network design problem (NBP), called TPH, PEM, F&B and RTS and

we described a formulation of the NBP, called SNBP, incorporating only a subset

of two well known classes of valid inequalities for the NBP. The results achieved

by solving formulation SNBP by means of the integer programming solver CPLEX

10.1 show that CPLEX, using the simple inequalities described in Section 2.3, is

competitive with a recent branch-and-cut algorithm described in Atamtürk and

Rajan [6]. We reported computational results on two classes of NBP instances

(called class A and B) and compared the results achieved by the new heuristic

algorithms against those obtained by CPLEX solving formulation SNBP.

The results show that CPLEX using 1 hour of computing time, achieves solu-

tions that are, on average, 1-3% better than those achieved by the new heuristics

on the small instances of class A but is outperformed by the new algorithms on

the bigger class B instances. On this last class, CPLEX using 2 hours of comput-

ing time, obtains solutions that are 14-15% worse than those obtained by algo-

rithm F&B in less than 20 minutes. Moreover, on class B instances, algorithm

TPH achieves solutions which are, on average, 8% better than CPLEX in half a

minute of computing time.



Chapter 3

The period routing problem

This chapter presents an exact algorithm for solving strategic and tactical multi-

period vehicle routing problems that can be modeled as Period Vehicle Routing

Problems (PVRPs). The PVRP is defined on a time horizon of several days and

consists in assigning appropriate combinations of delivery days to customers,

and in designing a set of delivery routes for every day of the planning period.

The objective is to service all customers assigned to each day while minimizing

the overall routing cost. We describe an integer programming formulation of the

PVRP that is used to derive different lower bounds and an exact solution method.

Computational results on test instances from the literature and on new sets of test

instances show the effectiveness of the proposed method.

3.1. Introduction

The Period Vehicle Routing Problem (PVRP) is the problem of designing a set of

routes for a homogeneous fleet of vehicles located at a central depot for each day

of a given p-day period. These routes service customers with known demands.

Each vehicle performs at most one route per day and at most mk vehicles are

available at day k. Each route starts and finishes at the depot and services a total

customer demand that is smaller than or equal to the vehicle capacity Q.

Each customer i must be visited on fi different days during the period and
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requires qi units of product every time he is visited. The fi visits of customer i

can only occur in one of a given number of allowable day-combinations. For ex-

ample, a customer may require to be visited twice during a 5-day period and that

these visits can take place on one of the following day-combinations: Monday-

Thursday, Monday-Friday or Tuesday-Friday.

A solution to the PVRP simultaneously assigns a day-combination to each

customer and designs the vehicle routes for each day so that each customer is

visited the required number of times, the number of routes on each day does

not exceed the number of vehicles available on that day and the total cost of the

routes over the p-day period is minimized.

3.1.1 Special cases of the PVRP

The PVRP considered in this chapter contains as special cases the single-depot

Capacitated Vehicle Routing Problem (CVRP), the Multi-Depot Vehicle Routing

Problem (MDVRP) and the Tactical Planning Vehicle Routing Problem (TPVRP).

These problems are now briefly defined.

a) The Capacitated Vehicle Routing Problem (CVRP)

The PVRP becomes the single depot CVRP when the planning period is of

one day only and every customer must be visited exactly once from the depot.

Moreover, any PVRP instance where every customer has frequency 1 and can

be visited on any day of the period can be transformed into a single day CVRP

withm = m1 + ...+mp vehicles located at the depot. Any optimal solution of

the resulting CVRP instance can be converted into an optimal solution of the

original PVRP by splitting the CVRP routes over the p days of the period so

that at mostmk routes are assigned to day k.

b) The Multi-Depot Vehicle Routing Problem (MDVRP)

The MDVRP is an extension of the CVRP where a customer can be serviced

from p depots, and inter-depot routes are not allowed [see 38]. The MDVRP
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can be viewed as a special case of a one day PVRP where vehicles are located

at several depots but each vehicle route starts and ends at the same depot.

c) Tactical Planning Vehicle Routing Problem (TPVRP)

The PVRP in its general form is a strategic model as, in practice, the routes of a

solution of a p-day period are operated unchanged for several months. On the

other hand, several tactical distribution problems where technical personnel

visits to customers are to be planned over a given p-day period can be mod-

eled as PVRPs. This problem, called Tactical Planning VRP (TPVRP), assigns

a visit day over a short term horizon (say five days) to each customer of a set

of customer requests, and designs the routes of each day in order to minimize

the sum of routing and customer service costs. Depending on the application

area also other specific constraints could be needed to model the problem.

In the TPVRP, routes of the first day of the period are executed while new cus-

tomer requests are recorded. The plan is updated in a rolling horizon process

by adding one day to the end of the period and solving a new TPVRP on the

new portfolio obtained by removing customers visited and adding the new

customer requests. The customer service cost is the sum of the service costs

associated with the visit days assigned to the customers. The service cost for

visiting a customer on the first day of its day window is zero, but visiting a

customer on any other day of the period involves a service cost that is pro-

portional to the number of days of delay with respect to the first day. Any

solution having all customers serviced on their first allowable day has service

cost equal to zero. However, this solution can either be (i) infeasible, as it could

require too many vehicles on some day of the period or (ii) too expensive in

terms of routing costs.

Practical applications of the TPVRP with specific constraints arise in differ-

ent fields, such as food and beverage distribution (where routes must satisfy

capacity constraints) and maintenance of logistics activities in the field force
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planning (where routes are usually uncapacitated, but have duration limited

to a working day).

3.1.2 Literature review

The PVRP has many practical applications in the grocery industry [see 29], the

soft drink industry (vending machines), the automotive industry (parts distribu-

tion) and industrial gases distribution and refuse collection [see 110]. This prob-

lem also admits several variants in terms of the objectives, the specific constraints

and the type of solutions that are sought [see 93]. All papers on the PVRP re-

ported in the literature present heuristic methods. However, since no optimal so-

lutions nor lower bounds are known, the quality of the solutions found by these

heuristics is unknown.

Early heuristics were proposed by Russel and Igo [110]. More sophisticated

heuristic algorithms were presented by Christofides and Beasley [31], Beasley and

Tan [20], Russel and Gribbin [109], Chao et al. [30], Gaudioso and Paletta [58] and

Cordeau et al. [38].

The tabu search proposed by Cordeau et al. [38] is capable of solving the PVRP

as well as the Periodic Traveling Salesman Problem (PTSP) and the MDVRP. This

algorithm is based on a heuristic procedure, called GENI [see 60], that is used

to remove or insert customers from routes. In order to insert a new customer i

in a route, this procedure selects from the route two neighbor vertices of i that

are close to it, and evaluates 4-opt modifications of the tour around these two

vertices to insert i. The tabu search algorithm starts by constructing a (not nec-

essarily feasible) initial solution. First customers are arbitrarily ordered, and a

feasible day combination is randomly assigned to each of them. For each day

k = 1, . . . , P of the period the algorithm considers all customers assigned to day

k in the specified order starting from those closest to the depot, and tries to group

them in a route of day k. Whenever a customer cannot be inserted in the cur-

rent route while leaving the route feasible, a new route is created for day k and

successive customers will be inserted in this route. This ensures that only the
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last route of each day can be infeasible. During the search the algorithm allows

in fact infeasible solutions to be generated, but penalizes solution infeasibility in

the objective function. The neighborhood of a solution is constructed by evalu-

ating all solutions that can be reached using two possible moves: (i) remove a

customer from a route and insert him into another or (ii) assign to a customer a

different day-combination and either remove him from its current route or insert

him into a different route that is allowed by the new day-combination. Therefore,

moves can be identified by triplets (customer, route, day), and each solution

is identified by an ordered set of such triplets. Each move performed is made

tabu for a fixed number of iterations, but an aspiration criteria is employed to

partially revoke tabus, that is, the algorithm allows tabu moves that can lead to

an improving solution. A diversification criterion is used to discourage frequent

moves that lead to infeasible solutions. This algorithm is compared on 32 PVRP

instances from the literature with the heuristics proposed in [20, 31, 109, 30]. The

results show that the proposed tabu search algorithm obtains solutions of better

quality than other algorithms from the literature on 24 out of 32 instances.

More recently new heuristic algorithms were proposed by Alegre et al. [2] and

Hemmelmayr et al. [70].

Alegre et al. [2] present a scatter search algorithm for solving a problem of

periodic pick-up of raw materials for a manufacturer of auto parts. In this prob-

lem the time horizon under consideration can be as long as 90 days, and the the

assignment of visit days to customers is particularly critical. The proposed al-

gorithm uses a two-phase approach that first assigns orders to days and then

constructs the routes for each day. The scatter search procedure manipulates day

assignments only and, once given a day assignment for all customers, uses a de-

terministic heuristic to obtain a feasible solution by solving the corresponding

vehicle routing problems. Scatter search is characterized by the use of a Refer-

ence Set of solutions that are combined at each step of the search to generate new

solutions and systematic rules that are used to update the Reference Set. Compu-

tational results over the same instances considered by Cordeau et al. [38] show
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that in 21 out of 32 instances the results obtained by this algorithm are at least as

good as those obtained with the other heuristics from the literature.

Hemmelmayr et al. [70] propose a heuristic algorithm for both the PVRP and

the PTSP based on Variable Neighborhood Search (VNS). The algorithm con-

structs an initial solution by randomly assigning a day-combination to each cus-

tomer and constructing the routes for each day using the Clarke and Wright sav-

ings algorithm [35]. A number of different neighborhoods are used. These are

obtained by applying move operators (remove a segment of a route and insert

it into another), cross-exchange operators (exchange two segments between two

routes) and change-combination operators (change day-combinations of a limited

number of customers). The algorithm extracts new solutions from the different

neighborhoods of the current solution and tries to improve them using 3-opt as a

local search procedure. Each solution generated in this way undergoes an accep-

tance test that evaluates the improvement in the objective function with respect to

the current solution using a scheme that is inspired by Simulated Annealing. The

first solution accepted becomes the new current solution, and the whole process

is started again using the corresponding neighborhoods. In contrast to the classi-

cal VNS schema also non-improving or even infeasible solutions can be accepted

when exploring the neighborhoods of the current solution. Improving solutions

are always accepted, whereas inferior solutions are accepted with a probability

that depends on a given temperature parameter and the difference between the

costs of the new solution (possibly including penalty costs if it is infeasible) and

the current solution. Computational results show that the VNS algorithm is com-

petitive with those of Cordeau et al. [38] and Alegre et al. [2]. With respect to so-

lution quality this algorithm outperforms the other heuristics on instances where

customers require higher frequency of visits and it is able to improve the previ-

ously best known solutions on 8 out of 32 problems.

Mourgaya and Vanderbeck [94] described a column generation based heuris-

tic for tactical planning VRPs that restricts its attention to scheduling visits and

assigning them to vehicles, but leaves sequencing decisions for an underlying
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operational model. A recent survey on the PVRP and its extensions covering dif-

ferent modeling and solution methods can be found in the chapter of Francis et al.

[56].

Very few publications on the TPVRP can be found in the optimization litera-

ture. Applications to field force planning and optimization in the areas of services

building equipment and water distribution can be found in Tang et al. [116] and

Bostel et al. [26], respectively. In Tang et al. [116] a tabu search heuristic is de-

veloped to solve a planned-maintenance scheduling problem arising in the main-

tenance of services building equipment such as heating, ventilation and air con-

ditioning systems and escalators. Bostel et al. [26] describe a memetic heuristic

and a column generation based heuristic for a multiperiod planning and routing

problem of technical personnel that arises in the water distribution sector. In this

problem daily technician schedules and routes must be determined in order to

meet customer visit requirements.

To our knowledge, no exact methods have been proposed in the literature for

both the PVRP and the TPVRP. Exact algorithms for the CVRP are due to Baldacci

et al. [14], Lysgaard et al. [87], Fukasawa et al. [57] and Baldacci et al. [16], whereas

the only exact methods published for the MDVRP are due to Laporte et al. [81, 82]

and Baldacci and Mingozzi [13].

3.1.3 Contributions

In this chapter, we describe an exact solution method for the PVRP based on a set

partitioning-like integer formulation of the problem and three relaxations that are

used by five different bounding procedures to derive valid lower bounds.

The first relaxation converts the PVRP into a variant of the single-day pe-

riod CVRP where each customer i must be visited fi times, routes must satisfy

customer-to-customer objections in addition to the capacity constraints, and a

route can be in solution more than once. From this relaxation we derive two

bounding procedures that generalize two of the bounding methods proposed by
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Baldacci et al. [16]. The second and third relaxations are specific to the PVRP and

are used to derive new bounding procedures.

Each lower bound corresponds to the cost of a different near-optimal dual so-

lution of the LP-relaxation of the integer formulation. The final lower bound and

the corresponding dual solution are used to generate a reduced integer problem

containing only the variables having a reduced cost smaller than the difference

between a known upper bound and the lower bound. The optimal PVRP solu-

tion is obtained by solving the reduced integer problem using a general purpose

integer programming solver.

The main contributions of this chapter are the new bounding procedures and

an exact algorithm for the PVRP. As noted above, neither lower bounds nor exact

algorithms have been proposed in the literature for the PVRP. Further, extensive

computational results on PVRP test instances from the literature and on newly

generated TPVRP test instances show that the lower bounds obtained are tight

and that the exact algorithm can solve for the first time several test instances

involving up to 199 customers.

The remainder of this chapter is organized as follows. Section 3.2 describes

the PVRP and introduces the notation used in this chapter. Section 3.3 describes

a mathematical formulation of the PVRP and three relaxations that are used to

derive valid lower bounds. Section 3.4 presents the exact algorithm. Sections

3.5, 3.6 and 3.7 describe the bounding procedures based on the three relaxations

given in Section 3.3. Section 3.8 reports computational results on test instances

from the literature and on new sets of test instances. Finally, Section 3.9 contains

some concluding remarks.

3.2. Description of the PVRP and its special cases

The PVRP is defined on a complete undirected graphG = (V ′, E) with a planning

horizon of p days where the set V ′ contains n+1 vertices. The set V ′ is partitioned

as V ′ = {0}∪V , where vertex 0 represents the depot and the subset V = {1, . . . , n}
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represents n customers. A fleet ofmk identical vehicles of capacityQ is available

on day k at the depot to supply the customers.

Each customer i ∈ V specifies a service frequency fi, a set Ci of allowable day-

combinations of fi visit days and a quantity qi of product that customer i must

receive every time he is visited. The customer set V is further partitioned as

V = V1∪V2, where V1 contains all customers having frequency equal to one (i.e.,

V1 = {i ∈ V : fi = 1}) and V2 contains the customers having frequency greater

than or equal to two (i.e., V2 = {i ∈ V : fi > 2}).

The visit days of a day-combination are represented by a column of a (0-1)

matrix [aks] of p rows, where aks = 1 if and only if day k is a required visit

day in day-combination s. Hereafter, we assume that Ci is the index set of those

columns of matrix [aks] corresponding to allowable day-combinations of cus-

tomer i ∈ V . P = {1, . . . , p} denotes the set of days of the planning period

and Vk ⊂ V the subset of customers that can be visited on day k ∈ P (i.e.,

Vk = {i ∈ V :
∑

s∈Ci
aks > 1}). With each day k ∈ P is associated a non-negative

cost matrix [dk
ij], where dk

ij represents the cost for traversing edge {i, j} on day k.

A feasible route on a day k ∈ P is a simple circuit in G passing through the

depot and a subset of customers of Vk and such that the sum of the customer

demands is less than or equal to Q. Each vehicle can perform at most one route

for each day and the cost of a route on a day k ∈ P is given by the sum of the costs

dk
ij of the edges traversed by the route.

The PVRP consists in assigning to each customer a day-combination and de-

signing at most mk routes for each day k of the planning period so that each

customer i ∈ V is visited fi times and the sum of the route costs is minimized.

The special cases of the PVRP discussed in Section 3.1.1 can be described as

follows.

a) The CVRP corresponds to the PVRP where p = 1 and fi = 1 for every customer

i ∈ V .

b) Any MDVRP instance with p depots can be converted into an equivalent
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PVRP instance as follows. Let [d̂ij] be a (n+p×n+p) symmetric cost matrix,

where d̂n+k i is the travel cost for going from depot k = 1, . . . , p to customer

i ∈ V . Each day k of the period corresponds to a depot kwheremk vehicles of

capacityQ are stationed. Every customer i ∈ V has frequency fi = 1. The (0-1)

matrix [aks] is the identity matrix of order (p × p) and each day-combination

of customer i corresponds to a depot that can service customer i, that is, Ci

represents the subset of depots that can service customer i ∈ V . The edge cost

matrix [dk
ij] is defined as dk

ij = d̂n+k j, if i = 0; dk
ij = d̂ij, otherwise, ∀k ∈ P and

∀{i, j} ∈ E.

c) The TPVRP is defined on a complete undirected graph as the PVRP. Let d̂ij be

the travel cost associated with each edge {i, j} ∈ E. With each customer i ∈ V is

associated a frequency fi = 1 and a day window [ei, li], with ei > 1 and li 6 p,

where ei and li represent the first and the last day of the period during which

customer i can be visited, respectively. Moreover, let τi(k), k ∈ [ei, li], be the

service cost of customer i ∈ V on day k. Any TPVRP instance can be converted

into an equivalent PVRP instance as follows. Let matrix [aks] be the (p × p)

identity matrix. Associate with each customer i ∈ V the set of allowable day-

combinations defined as Ci = {s : s ∈ [ei, li]}. Define the edge cost matrix [dk
ij]

as dk
ij = d̂ij + τi(k)/2 + τj(k)/2, ∀k ∈ P, ∀{i, j} ∈ E (we assume that τ0(k) = 0,

∀k ∈ P). The cost of a route on day k of the PVRP instance defined above is

equal to the sum of the routing costs and the service costs of the customers

visited by the route in the original TPVRP instance. Thus, the objective of the

resulting PVRP problem is to minimize the sum of routing and service costs.

3.3. Mathematical formulation and relaxations

In this section we describe a set partitioning-like formulation of the PVRP and

three relaxations that are used to derive valid lower bounds on the PVRP.

Let Rk be the index set of all routes of day k ∈ P visiting the customers in Vk

and let Rk
i ⊆ Rk be the index set of the route subset covering customer i ∈ Vk. We
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use Rk
ℓ and ck

ℓ to indicate the subset of customers and the cost of route ℓ ∈ Rk on

day k ∈ P, respectively.

Let yis be a (0-1) binary variable which is equal to 1 if and only if customer

i ∈ V2 is assigned to day-combination s ∈ Ci. Define a (0-1) binary variable xk
ℓ

which is equal to 1 if and only if route ℓ ∈ Rk of day k ∈ P is in solution. The

PVRP can be formulated as follows:

(F) z(F) = min
∑

k∈P

∑

ℓ∈Rk

ck
ℓx

k
ℓ (3.1)

s.t.
∑

k∈P

∑

ℓ∈Rk
i

xk
ℓ = fi (∀i ∈ V), (3.2)

∑

ℓ∈Rk
i

xk
ℓ −

∑

s∈Ci

aksyis = 0 (∀i ∈ V2,∀k ∈ P), (3.3)

∑

ℓ∈Rk

xk
ℓ 6 mk (∀k ∈ P), (3.4)

xk
ℓ ∈ {0, 1} (∀ℓ ∈ Rk,∀k ∈ P), (3.5)

yis ∈ {0, 1} (∀s ∈ Ci,∀i ∈ V
2). (3.6)

Constraints (3.2) impose that each customer i is visited exactly fi times. In par-

ticular, as a consequence of the definition of customer subsets Vk and of the route

sets Rk, k ∈ P, every customer i ∈ V1 is visited exactly once in one of its allow-

able days. Constraints (3.3) impose that every customer i ∈ V2 is visited exactly

fi times during the fi days of the day-combination assigned to the customer. Con-

straints (3.4) force the solution to contain at most mk routes on each day k ∈ P.

Finally, constraints (3.5) and (3.6) are the integrality constraints for the decision

variables xk
ℓ and yis, respectively.

Notice that constraints (3.2) and (3.3) imply that exactly one day combina-

tion s ∈ Ci is assigned to each customer i ∈ V2, that is,
∑

s∈Ci
yis = 1, ∀i ∈

V2. In fact, adding constraints (3.3) associated with customer i ∈ V2 on the

p-days of the period and considering that
∑

k∈Paks = fi, ∀s ∈ Ci, we obtain
∑

k∈P

∑
ℓ∈Rk

i
xk

ℓ =
∑

s∈Ci
fiyis. From the latter expression and equations (3.2) we

derive
∑

s∈Ci
fiyis = fi, that is,

∑
s∈Ci

yis = 1.
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Formulation F can be easily reduced when the PVRP corresponds to the MD-

VRP. In this case we have V2 = ∅ as fi = 1, ∀i ∈ V . Since the customer-depot

objections are implicitly imposed in the construction of the route sets Rk, ∀k ∈ P,

formulation F does not require constraints (3.3) and variables yis and constraints

(3.6) are not needed. Therefore, the mathematical formulation of the MDVRP is

given by expressions (3.1), (3.2), (3.4) and (3.5). Similar reductions of formulation

F apply for both the CVRP and the TPVRP.

Problem F is not practical to solve even for moderate size instances. In the fol-

lowing we describe three relaxations of problem F that are used to derive different

lower bounds.

In the following LF denotes the LP-relaxation of problem F.

3.3.1 Relaxation RF

Relaxation RF corresponds to an integer problem that is derived from problem F

by ignoring constraints (3.3) and (3.6) and by reducing the number of variables

by means of the following observations.

Let us associate with each edge {i, j} ∈ E the cost dij = mink∈P{dk
ij}. It is quite

easy to observe that with respect to costs dij the cost of the least cost route in G

visiting any subset of customers S is a lower bound on the cost ck
ℓ of any route

ℓ ∈ Rk, k ∈ P, such that Rk
ℓ = S.

Let I be a (n×n) symmetric (0-1) compatibility matrix, where Iij = 0 if and only

if there exists at least a day k ∈ P in which both i and j can be visited (i.e., i, j ∈ Vk,

for some k ∈ P). Let R be the index set of all least cost routes in G with respect

to the modified edge costs dij that satisfy, in addition to the capacity constraints,

the following constraint:
∑

i∈Rℓ

∑

j∈Rℓ

Iij = 0, (3.7)

where Rℓ is the subset of customers visited by route ℓ.

We denote by cℓ the cost of route ℓ ∈ R and by Ri ⊆ R the index subset of

the routes visiting customer i ∈ V . Problem RF is to select at most m =
∑

k∈Pmk
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routes from R, where each route can be in the solution more than once, so that

each customer i ∈ V is visited exactly fi times. Let xℓ be a non-negative inte-

ger variable representing the number of times the route ℓ ∈ R is in the solution.

Problem RF is the following.

(RF) z(RF) = min
∑

ℓ∈R

cℓxℓ (3.8)

s.t.
∑

ℓ∈Ri

xℓ = fi (∀i ∈ V), (3.9)

∑

ℓ∈R

xℓ 6 m, (3.10)

xℓ > 0 integer (∀ℓ ∈ R). (3.11)

Any solution (x ′,y ′) of problem F of cost z ′(F) can be transformed into a feasible

RF solution of cost smaller than or equal to z ′(F). In fact, any route ℓ ∈ Rk, k ∈ P,

corresponds to a route ℓ ′ ∈ R of cost cℓ′ 6 ck
ℓ because from the definition of the

edge costs dij we have dij 6 dk
ij, ∀{i, j} ∈ E. Thus, z(RF) is a valid lower bound on

the PVRP.

Problem RF cannot be solved in practice. However, we can compute valid

lower bounds on z(RF) by finding near-optimal solutions of the dual, calledDRF,

of the LP-relaxation of problem RF. Let w = (w0, w1, . . . , wn) be a vector of n+ 1

dual variables, where variables wi, ∀i ∈ V , are associated with constraints (3.9)

and w0 is associated with constraint (3.10). The dual problem DRF is as follows.

(DRF) z(DRF) = max
∑

i∈V

fiwi +mw0 (3.12)

s.t.
∑

i∈Rℓ

wi +w0 6 cℓ (∀ℓ ∈ R), (3.13)

wi ∈ R (∀i ∈ V), (3.14)

w0 6 0. (3.15)

In Section 3.5 we describe two bounding procedures called H1 and H2that pro-

duce two valid lower bounds LH1 and LH2, respectively. H1 is based on q-route
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relaxation [see 33] while H2 is a dual ascent method based on column generation

and on feasible routes. As in a q-route a customer can be visited more than once,

we have that LH1 6 LH2. To improve the computational efficiency of H2it is con-

venient to execute in sequenceH1 andH2so that theDRF solution achieved byH1

can be used to initialize the master problem of H2.

3.3.2 Relaxation LF

A second relaxation of the PVRP is based on the dual problem of LF, called DF.

Associate dual variables vi, i ∈ V , with constraints (3.2), uik, i ∈ V2, k ∈ P,

with constraints (3.3) and σk, k ∈ P, with constraints (3.4). Let us partition the

subset of customers Rk
ℓ visited by each route ℓ ∈ Rk into two subsets Ak

ℓ and Bk
ℓ ,

where Ak
ℓ = Rk

ℓ ∩ V
1 and Bk

ℓ = Rk
ℓ ∩ V

2. Problem DF is as follows.

(DF) z(DF) = max
∑

i∈V

fivi +
∑

k∈P

mkσk (3.16)

s.t.
∑

i∈Rk
ℓ

vi +
∑

i∈Bk
ℓ

uik + σk 6 ck
ℓ (∀ℓ ∈ Rk,∀k ∈ P), (3.17)

∑

k∈P

aksuik > 0 (∀s ∈ Ci,∀i ∈ V
2), (3.18)

uik ∈ R (∀i ∈ V2,∀k ∈ P), (3.19)

vi ∈ R (∀i ∈ V), (3.20)

σk 6 0 (∀k ∈ P). (3.21)

Both problems LF andDF are impractical to solve. However, a valid lower bound

on the PVRP can be computed as a near optimal DF solution without generating

all constraints (3.17).

It is quite easy to observe that the set of DRF solutions is contained in the set

ofDF solutions. In fact, anyDRF solution w ′ of cost z ′(DRF) corresponds to aDF

solution (u ′,v ′,σ ′) of cost z ′(DF) = z ′(DRF) where u ′ = 0, v ′i = w ′
i, ∀i ∈ V , and

σ ′
k = w ′

0, ∀k ∈ P. Thus, we have z(DF) > z(DRF).
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In Section 3.6 we describe two dual ascent heuristics for solving DF, called

H3 and H4, that produce two near optimal DF solutions of cost LH3 and LH4,

respectively. Both H3 and H4 are extensions to DF of H1 and H2. H3 is based on

the q-route relaxation, whileH4 is a column generation method based on feasible

routes.

It can be shown that the following relation holds: LH3 6 LH4, LH1 6 LH3

and LH2 6 LH4. No dominance relation exists between LH2 and LH3 since H2

is based on feasible routes and H3 on q-routes. Procedure H4 must be executed

either after H2 or H3in order to be computationally efficient as it needs a near-

optimal DF solution to initialize the master problem.

3.3.3 Relaxation LF

A better relaxation than LF, called LF, is obtained by adding to LF the following

extensions of two well-known valid inequalities designed for the CVRP.

a) Generalized Capacity Constraints. Let P ⊆ P and let q̂i, i ∈ V , be a lower bound

on the total demand delivered to customer i during days in P. The value q̂i

can be computed as follows. For each i ∈ V :

q̂i =






0, if fi = 1 and {k ∈ P : i ∈ Vk} 6⊆ P,

qi, if fi = 1 and {k ∈ P : i ∈ Vk} ⊆ P,

qi mins∈Ci
{
∑

k∈Paks}, if fi > 2.

Let S = {S : S ⊆ V, |S| > 2} be the set of all customer subsets. The general-

ized capacity constraints derive from the observation that the total demand

delivered to a subset of customers S ∈ S within the set of days P must be

greater than or equal to
∑

i∈S q̂i. Thus, any feasible F solution must satisfy the

following inequalities:

∑

k∈P

∑

ℓ∈Rk(S)

xk
ℓ >

⌈
∑

i∈S

q̂i/Q

⌉
, ∀S ∈ S, (3.22)

where Rk(S) = {ℓ ∈ Rk : Rk
ℓ ∩ S 6= ∅}.
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b) Clique Inequalities. Let H = (R, E) be the conflict graph associated with the

routes of sets Rk, ∀k ∈ P. Node i of graph H represents route ℓ(i) of day k(i)

(i.e., ℓ(i) ∈ Rk(i)). The edge set E contains every pair {i, j}, i < j, such that the

set of conflicting customers S = R
k(i)

ℓ(i)
∩ Rk(j)

ℓ(j)
6= ∅ and one of the following two

conditions is satisfied:

(a) k(i) = k(j);

(b) k(i) 6= k(j) or at least one conflicting customer either has frequency equal

to one or cannot be serviced on both days k(i) and k(j) according to the

customer day combinations (i.e., eitherminh∈S{fh} = 1 or ak(i)s+ak(j)s 6 1,

∀s ∈ Ch, for some h ∈ S).

Let C be the set of all cliques of graph H. Then, any feasible F solution must

satisfy the following inequalities:

∑

i∈C

x
k(i)

ℓ(i)
6 1, ∀C ∈ C. (3.23)

Let z(LF) be the optimal solution cost of LF. Relaxation LF is solved by means

of a standard column and cut generation method, called CG, that is described

in Section 3.7. The initial master problem is generated by using the dual solution

(u,v,σ) computed by the bounding proceduresH1,H2,H3 andH4, as described in

the following Section 3.4.1. The master problem is then solved using the simplex

algorithm. At each iteration a limited subset of inequalities (3.22) and (3.23) that

are violated by the current fractional solution is added to the master (see Section

3.7).

We denote by LCG the cost z(LF) of the final LF solution achieved by CG.

The computational performance of CG strongly depends on the quality of the

DF solution used to initialize the master problem. Thus, it is worth executing CG

after procedures H1, H2 or H3, H4.
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3.4. An exact method for solving the PVRP

The exact algorithm for the PVRP, described in this section, is based on the ex-

act methods proposed by Baldacci et al. [16] for the CVRP and by Baldacci and

Mingozzi [13] for the Heterogeneous Vehicle Routing Problem (HVRP). The al-

gorithm consists in generating a reduced problem F̂ that is obtained from F by

replacing each set Rk with the subset R̂k, k ∈ P, and by adding two subsets of

inequalities (3.22) and (3.23), respectively. The subsets R̂k, k ∈ P, are generated in

such a way that any optimal F̂ solution is also optimal for F.

Problem F̂ is solved by means of an integer linear programming solver. The

main component of the algorithm is the bounding method that combines different

bounding procedures based on the three relaxations described in the previous

section.

3.4.1 Computing the lower bound

A valid lower bound LCG on the PVRP can be obtained by executing in sequence

procedures H1, H2, H3, H4 and CG, where each procedure starts from the dual

solution found by the previous one. However, this method can be time consum-

ing. This method can be improved without affecting the quality of the final lower

bound by removing from the sequence either H1 and H2 or H3 and H4, according

to the type of PVRP instance considered.

In our computational experience we observed that LH2 is almost equal to LH4

for PVRP instances having the following characteristics:

(a) the edge costs of graph G do not depend from the day of the period. In this

case a cost dij is associated with each edge {i, j} ∈ E and dk
ij = dij, ∀k ∈ P,

∀{i, j} ∈ E;

(b) the customer frequencies and the day-combinations are such that every cus-

tomer can be serviced on any day of the period (i.e., Vk = V , ∀k ∈ P).



Chapter 3. The period routing problem 91

For these instances LH4 is not significantly greater than lower bound LH2, and

it is worth executing the sequence of bounding procedures H1, H2 and CG. The

initial master ofCG is generated using theDF dual solution of cost LH2 produced

by H2.

On the other hand, we observed that for PVRP instances not satisfying at least

one of the two conditions (a) and (b) both LH3 and LH4 are better than LH1 and

LH2, respectively. Whenever condition (a) is not satisfied LH3 is significantly

greater than LH2 and it is computationally convenient to execute in sequence H3,

H4 and CG. Notice that conditions (a) and (b) are satisfied by all PVRP instances

proposed in the literature, but they are not satisfied by the PVRP instances corre-

sponding to the MDVRP and the TPVRP.

3.4.2 Finding an optimal solution

The exact method performs the following steps.

1. Compute lower bound LCG by executing either the sequence of procedures

H1, H2 and CG or H3, H4 and CG according to the type of PVRP instances as

described in Section 3.4.1. Let Ŝ and Ĉ be the subsets of constraints (3.22) and

(3.23) that are saturated by the final LF solution achieved by CG.

2. Generate the route subsets R̂k, k ∈ P, containing all routes whose reduced

costs with respect to the dual solution of LF achieved by CGis smaller than the

gap z(UB)−LCG, where z(UB) is a valid upper bound on the PVRP.

3. Define the reduced problem F̂ that is derived from F replacing each Rk with

the subset R̂k, k ∈ P, generated at step 2 and adding the subsets of constraints

(3.22) and (3.23) that are saturated by the optimal LF solution obtained by CG.

4. Solve problem F̂ using an integer programming solver (e.g., CPLEX [43]).

In generating the route subsets R̂k, k ∈ P, we use procedure GENROUTE described

in Baldacci et al. [16] and in Baldacci and Mingozzi [13].
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The effectiveness of the proposed exact method strongly depends on the qual-

ity of the final lower bound LCG achieved by CG. As LCG improves the reduced

costs of the routes of an optimal PVRP solution get smaller and the size of subsets

R̂k, ∀k ∈ P, tends to get smaller making problem F̂ easier to solve.

3.5. Lower bounds based on relaxation RF

In this section we describe the bounding procedures H1 and H2. Procedures H1

andH2 compute two lower bounds LH1 and LH2 on the PVRP that correspond to

the costs of two feasible solutions of the dual problem DRF described in Section

3.3.1. ProceduresH1 andH2 are extensions to relaxation RF of two methods origi-

nally proposed by Baldacci et al. [16] for the CVRP and are based on the following

theorem.

Theorem 2 Associate penalties λi ∈ R, ∀i ∈ V , with constraints (3.9) and λ0 6 0 with

constraint (3.10). A feasibleDRF solution w of cost z(DRF(λ)) is given by the following

expressions:

wi = qi min
ℓ∈Ri

{(cℓ − λ(Rℓ))/q(Rℓ)} + λi, ∀i ∈ V, and w0 = λ0, (3.24)

where q(Rℓ) =
∑

i∈Rℓ
qi and λ(Rℓ) =

∑
i∈Rℓ

λi.

Proof. See Baldacci et al. [16].

A lower bound on problem RF is given by maxλ{z(DRF(λ))} and can be com-

puted using subgradient optimization. Let ℓ(i) ∈ R be the index of the route

producing wi in expressions (3.24) and let ρji be the number of times that cus-

tomer j ∈ V is visited by route ℓ(i). It can be shown that a valid subgradient of

the function z(DRF(λ)) at point λ is given by the vector θ = (θ1, . . . , θn) that is

computed as follows:

θj = fj −
∑

i∈V

fiρjiqi/q(Rℓ(i)), ∀j ∈ V, and θ0 = m−
∑

i∈V

qi/q(Rℓ(i)). (3.25)

The following theorem shows that any feasible DRF solution provides a feasible

solution of the dual problem DF of the same cost.
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Theorem 3 Let w be a feasible DRF solution of cost z(DRF). A solution (u,v,σ) of

problem DF of cost z(DF) = z(DRF) is given by the following expressions:

uik = 0, ∀i ∈ V2,∀k ∈ P,

vi = wi, ∀i ∈ V, (3.26)

σk = w0, ∀k ∈ P.

Proof: It is easy to see that the solution (u,v,σ) defined by expressions (3.26)

satisfies constraints (3.19), (3.20) and (3.21) and that z(DF) = z(DRF). Consider a

route ℓ ∈ Rk for a given k ∈ P. From inequalities (3.17) and expressions (3.26) we

have:
∑

i∈Ak
ℓ

vi +
∑

i∈Bk
ℓ

uik + σk =
∑

i∈Rℓ ′

wi +w0, (3.27)

where ℓ ′ is the index of the route in R such that Rℓ′ = Rk
ℓ . As cℓ′ 6 ck

ℓ and w is a

feasible DRF solution, then from inequalities (3.13) and (3.27) we obtain:

∑

i∈Ak
ℓ

vi +
∑

i∈Bk
ℓ

uik + σk 6 ck
ℓ . (3.28)

This proves that solution (u,v,σ) satisfies constraints (3.17) of problemDF. More-

over, becauseuik = 0, ∀i ∈ V , ∀k ∈ P, constraints (3.18) of problemDF are trivially

satisfied. Finally, it is easy to see that z(DF) = z(DRF). �

3.5.1 Procedure H1

In procedureH1 we relax the requirement that each route in R is a simple cycle in

G and we extend the set R to contain all the q-routes. This relaxation allows us to

compute expressions (3.24) in pseudo-polynomial time as follows.

Associate with each edge {i, j} ∈ E the modified cost d̃ij = dij − 1
2
λi − 1

2
λj.

Compute for each customer i ∈ V and each load value q = qi, . . . , Q the modified

cost φ(q, i) of the least cost cycle (not necessarily simple), called q-route, passing

through the depot and customer i and such that the total load is equal to q. The

valuesφ(q, i) can be computed using dynamic programming in timeO(Qn2) [see
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33] by relaxing constraints (3.7) but imposing dij = ∞, ∀{i, j} ∈ E such that Iij = 1.

It is quite easy to see that φ(q, i) 6 min{cℓ − λ(Rℓ) : ℓ ∈ Ri, q(Rℓ) = q}. Therefore,

a solution to expressions (3.24) is given by setting:

wi = qi min
qi6q6Q

{φ(q, i)/q} + λi, ∀i ∈ V, and w0 = λ0. (3.29)

H1 performs Maxt1 iterations of subgradient optimization to compute LH1=

maxλ{z(DRF(λ))}, where at each iteration the penalties λi, ∀i ∈ V , are modified

using the subgradient vector θ computed according to expressions (4.28). For a

step-by-step description of procedure H1see Baldacci et al. [16].

Let w1 be the final DRF solution of cost LH1 achieved by H1 with respect to

the penalty vector λ1. We denote by (u1,v1,σ1) theDF solution obtained from w1

by setting u1 = 0, v1
i = w1

i , ∀i ∈ V , σ1
k = w1

0, ∀k ∈ P.

3.5.2 Procedure H2

Procedure H2 is an iterative method that uses column generation to solve equa-

tions (3.24) and subgradient optimization to compute LH2= maxλ{z(DRF(λ))}.

H2 is initialized by setting λ = λ1 and LH2 = 0 and by generating a subset R̂ ⊆ R

containing the ∆min-routes of minimum reduced cost with respect to theDF solu-

tion w1 obtained by H1 (where ∆min is a parameter defined a-priori). H2 executes

an a-priori defined number Maxt2 of macro iterations. On each macro iteration

H2 performs the following two steps:

1. Solve the Master Problem. The master problem is obtained by replacing in prob-

lemDRF the set R with the subset R̂. A near-optimal solution w̃ of cost z̃ of the

master problem is obtained by an iterative method that performsMaxt3 itera-

tions. At each iteration it uses expressions (3.24) and subgradient optimization

to modify the penalty vector λ in order to maximize the cost z̃ of the master

dual solution w̃.

2. Generate the largest subset N of routes having minimum reduced cost with

respect to the dual master solution w̃ and such that |N| 6 ∆a, where ∆a is a
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parameter defined a-priori. If N = ∅ and z̃ is greater than LH2, then update

LH2= z̃, w2 = w̃ and λ2 = λ; otherwise, update R̂ = R̂ ∪ N.

The initial route subset R̂ and the subset N are generated using procedure GEN-

ROUTE [see 16, 13].

We denote by (u2,v2,σ2) the DF solution obtained from w2 by setting u2 = 0,

v2
i = w2

i , ∀i ∈ V , σ2
k = w2

0, ∀k ∈ P.

3.6. Lower bounds based on relaxation LF

In this section we describe the bounding procedures H3 and H4 for computing

the lower bounds LH3 and LH4 as the cost of two near-optimal DF solutions.

Procedures H3 and H4 do not require the generation of the entire route sets Rk,

k ∈ P and are based on the following theorem that is a generalization of Theorem

2 (see Section 3.5).

Theorem 4 Associate with constraints (3.2) the penalties µi ∈ R, ∀i ∈ V , with con-

straints (3.3) the penalties λik ∈ R, ∀i ∈ V2, ∀k ∈ P, and with constraints (3.4)

the penalties γk, ∀k ∈ P. For each route ℓ ∈ Rk, k ∈ P, define µ(Rk
ℓ) =

∑
i∈Rk

ℓ
µi,

λ(Rk
ℓ) =

∑
i∈Bk

ℓ
λik and q(Rk

ℓ) =
∑

i∈Rk
ℓ
qi. Compute:

bik = qi min
ℓ∈Rk

i

{(ck
ℓ − µ(Rk

ℓ) − λ(Rk
ℓ) − γk)/q(Rk

ℓ)} + µi + λik, ∀i ∈ V,∀k ∈ P. (3.30)

A feasible DF solution (u,v,σ) of cost z(DF(λ,µ,γ)) can be obtained as follows:

vi = min
k∈P

{bik}, ∀i ∈ V1, (a)

vi =
1

fi
min
s∈Ci

{
∑

k∈P

aksbik

}

, ∀i ∈ V2, (b)

uik = bik − vi, ∀i ∈ V2, ∀k ∈ P, (c)

σk = γk, ∀k ∈ P. (d)






(3.31)
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Proof: First we show that the values assigned to u satisfy inequalities (3.18). Con-

sider a day-combination s ′ ∈ Ci of customer i ∈ V2. From expressions (3.31.b)

we have fivi 6
∑

k∈Paksbik, ∀s ∈ Ci, and from expressions (3.31.c) we derive
∑

k∈Paks′uik =
∑

k∈Paks′bik − fivi > 0.

By substituting solution (u,v,σ) given by expressions (3.31) in the left-hand-

side of the dual constraints (3.17) of a given route ℓ ∈ Rk of day k and considering

that vi 6 bik, k ∈ P, i ∈ V1 because of expressions (3.31.a), we obtain:

∑

i∈Rk

ℓ

vi +
∑

i∈Bk

ℓ

uik + σk =
∑

i∈Rk

ℓ

vi +
∑

i∈Bk

ℓ

(bik − vi) + γk 6
∑

i∈Rk

ℓ

bik + γk. (3.32)

Since ℓ ∈ Rk
i for every i ∈ Rk

ℓ
, from expressions (3.30) we have:

bik 6 qi(c
k

ℓ
− µ(Rk

ℓ
) − λ(Rk

ℓ
) − γk)/q(Rk

ℓ
) + µi + λik, ∀i ∈ Rk

ℓ
. (3.33)

From inequalities (3.33) we obtain the following inequality:

∑

i∈Rk

ℓ

bik +γk 6
∑

i∈Rk

ℓ

qi

(ck

ℓ
− µ(Rk

ℓ
) − λ(Rk

ℓ
) − γk)

q(Rk

ℓ
)

+µ(Rk

ℓ
)+λ(Rk

ℓ
)+γk = ck

ℓ
. (3.34)

Finally, inequalities (3.32) and (3.34) show that the dual constraint (3.17) is satis-

fied by the duals (u,v,σ) given by expressions (3.31), ∀ℓ ∈ Rk, ∀k ∈ P. �

Both procedures H3 and H4 use subgradient optimization to solve max
λ,µ,γ

{z(DF

(λ,µ,γ)}). A valid subgradient of function z(DF(λ,µ,γ)}) at point (λ,µ,γ) can

be computed as follows.

Let ℓ(i, k) ∈ Rk be the index of the route producing the value bik in expression

(3.30), ∀i ∈ V , ∀k ∈ P, and let ki and si be the day and the day-combination

producing vi in expressions (3.31.a) and (3.31.b), respectively.

Let δj
ik be the number of times that customer j is visited by the route Rk

ℓ(i,k) and

let qik = q(Rk
ℓ(i,k)). We denote by Uk the subset of customers visited on day k,

that is, Uk = {i ∈ V2 : aksi
= 1} ∪ {i ∈ V1 : ki = k}. Then, a valid subgradient of

z(DF(λ,µ,γ)) at point (λ,µ,γ) is given by the following vectors α, β and θ whose

components, corresponding to constraints (3.2), (3.3) and (3.4), respectively, are
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computed as follows:

βjk =
∑

i∈Uk

δ
j
ikqi/qik − aksj

, ∀j ∈ V2, ∀k ∈ P,

αj =






∑

k∈P

∑

i∈Uk

δ
j
ikqi/qik − 1, if j ∈ V1,

∑

k∈P

∑

i∈Uk

δ
j
ikqi/qik − fj, if j ∈ V2,

θk =
∑

i∈Uk

qi/qik −mk, ∀k ∈ P.






(3.35)

The penalty vectors λ, µ and γ are modified as follows:

λik = λik − step βik, ∀i ∈ V2,∀k ∈ P,

µi = µi − step αi, ∀i ∈ V,

γk = min{0, γk − step θk}, ∀k ∈ P,






(3.36)

where step = ǫ(z(UB) − z(DF(λ,µ,γ)))/(
∑

k∈P

∑
i∈V2 β

2
ik +

∑
i∈V α

2
i +

∑
k∈P θ

2
k),

and ǫ is a positive constant.

3.6.1 Procedure H3

As in procedure H1 we extend the route sets Rk, ∀k ∈ P, to contain all q-routes.

This relaxation allows us to compute in pseudo-polynomial time a lower bound

bik 6 bik, ∀i ∈ V , ∀k ∈ P, as follows. Given the penalty vectors λ and µ, define

the modified edge costs {d̃k
ij} as follows:

d̃k
ij = dk

ij −
1

2
πik −

1

2
πjk, ∀{i, j} ∈ E, ∀k ∈ P, (3.37)

where πik = λik + µi, ∀i ∈ V2, ∀k ∈ P, and πik = µi, ∀i ∈ V1, ∀k ∈ P. Let

φ(k, q, i) be the cost with respect to the modified edge costs {d̃k
ij} of a least cost

q-route Ω(k, q, i) passing through the depot and vertex i ∈ Vk on day k ∈ P, and

such that the total demand of the customers visited is equal to q (qi 6 q 6 Q).

φ(k, q, i) provides a lower bound on the cost ck
ℓ − µ(Rk

ℓ) − λ(Rk
ℓ) of any feasible

route ℓ ∈ Rk
i of load q(Rk

ℓ) = q. The values φ(k, q, i) can be computed using the
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method proposed in Christofides et al. [33] for each day k ∈ P. Thus, values bik

can be computed as follows:

bik = qi min
qi6q6Q

{
φ(k, q, i)

q

}

+ µi + λik, ∀i ∈ V, ∀k ∈ P. (3.38)

Let qik be the value of q giving the minimum in expression (3.38). As bik 6 bik,

∀i ∈ V and ∀k ∈ P, Theorem 4 remains valid if in expression (3.31) each bik is

replaced with bik, i ∈ V , k ∈ P.

Computing lower bound LH3

ProcedureH3 uses subgradient optimization to compute LH3=maxλ,µ,γ{z(DF(λ,µ,

γ)}) and a corresponding DF solution (u3,v3,σ3).

H3 starts by initializing LH3 = 0, λik = 0, ∀i ∈ V2, ∀k ∈ P, µi = λ2
i , ∀i ∈ V , and

σk = λ2
0, ∀k ∈ P. We assume λ2 = 0, µ2 = 0 in case neither H1 nor H2 is executed

before H3.

At each iteration H3 performs the following two steps.

1. Compute the modified edge costs {d̃k
ij} according to expressions (3.37) and the

values φ(k, q, i), ∀k ∈ P, ∀i ∈ V , qi 6 q 6 Q. Compute the values bik

using expressions (3.38) and the corresponding DF solution (u,v,σ) of cost

z(DF(λ,µ,γ)) using expressions (3.31), where bik is replaced with bik.

If z(DF(λ,µ,γ)) is greater than LH3, then update LH3=z(DF(λ,µ,γ)), u3 = u,

v3 = v, σ3 = σ, λ3 = λ, µ3 = µ and γ3 = γ.

2. Update penalty vectors λ, µ and γ using expressions (3.35) and (3.36), where

qik represents the value of q giving the minimum in expressions (3.38) and δj
ik

is the number of times that j is visited by the q-route Ω(k, qik, i). Notice that

since a q-route is not necessarily simple, we may have δj
ik > 1 for some cus-

tomer j. This does not affect the correctness of expressions (3.35) in computing

the subgradient of z(DF(λ,µ,γ)) at point (λ,µ,γ).

Procedure H3 terminates after Maxt1 iterations, where Maxt1 is a parameter

defined a-priori.
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3.6.2 Procedure H4

Procedure H4 is a column generation method that computes LH4 as the cost of a

near optimal solution (u4,v4,σ4) of the dual problem DF. H4 differs from stan-

dard column generation methods as the master problem is solved heuristically

using expressions (3.30) and (3.31) and subgradient optimization.

Procedure H4 is initialized by setting λ = λ3, µ = µ3, γ = γ3 and LH4 = 0

and by generating for each k ∈ P the subset R̂k ⊆ Rk of the ∆min routes having

minimum reduced cost with respect to theDF solution (u3,v3,σ3) obtained from

procedure H3, where ∆min is a parameter defined a-priori. H4 executes Maxt2

macro iterations, where Maxt2 is an a-priori defined number. On each macro

iteration H4 performs the following two steps.

1. Solve the master problem. The master problem is obtained from LF by replacing

each Rk with R̂k, ∀k ∈ P. The dual solution of the master problem is com-

puted by means of an iterative procedure based on subgradient optimization.

Given the vectors λ, µ and γ, the dual solution (u,v,σ) of cost z(DF(λ,µ,γ))

is computed using expressions (3.30) and (3.31), where Rk is replaced with

R̂k, ∀k ∈ P. The initial values of λ, µ and γ are set equal to the best values

achieved at the previous macro iteration and are iteratively updated as de-

scribed in Section 3.6 using expressions (3.35) and (3.36). Let (u
∗

,v
∗

,σ
∗

) be the

best dual solution of the master, of cost z∗, achieved afterMaxt3 iterations.

2. Check if the master solution (u
∗

,v
∗

,σ
∗

) is a feasible DF solution. For each k ∈ P,

generate the largest subset Nk ⊂ Rk \ R̂k containing the routes having min-

imum reduced cost with respect to the dual master solution (u
∗

,v
∗

,σ
∗

) and

such that |Nk| 6 ∆a, where ∆a is a parameter defined a-priori. We have two

cases:

a) if Nk = ∅ ∀k ∈ P and z∗ > LH4, update LH4 = z∗, u4 = u∗, v4 = v∗ and

σ4 = σ∗.

b) if Nk 6= ∅ for some k ∈ P, update R̂k = R̂k ∪ Nk, ∀k ∈ P.
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The initial route subsets R̂k, ∀k ∈ P, and the subsets Nk, ∀k ∈ P, are generated

using procedure GENROUTE.

3.7. Lower bounds based on relaxation LF

ProcedureCG is a cut and column generation method that computes lower bound

LCG as the cost of an optimal solution to problem LF.

The initial master problem is obtained from LF by replacing the sets Rk, ∀k ∈

P, with the route subsets R̂k, ∀k ∈ P, that are generated using procedure GEN-

ROUTE. For each day k ∈ P the initial route subset R̂k ⊂ Rk contains the largest

subset of routes of minimum reduced cost with respect to the best DF solution

computed by the previous bounding procedures such that |R̂k| 6 ∆min. In ad-

dition, we set S = ∅ and C = ∅. At each iteration CG performs the following

steps:

1. Solve problem LF using the simplex and let (x,y) be the optimal solution of LF.

2. Generate the route subsets Nk, ∀k ∈ P. Use procedure GENROUTE to generate

the largest route subsets Nk ⊂ Rk \ R
k
, ∀k ∈ P, containing the routes having

minimum reduced cost with respect to the optimal dual solution of LF and

satisfying |Nk| 6 ∆a, ∀k ∈ P.

3. Separate violated inequalities. Generalized capacity constraints (3.22) and clique

inequalities (3.23) are separated as follows.

- Generalized Capacity Constraints. Let E(Rk
ℓ) be the subset of edges covered by

a route Rk
ℓ and let ηkℓ

ij be the number of times edge {i, j} is traversed by route

Rk
ℓ . If Rk

ℓ is a single customer route we set ηkℓ
ij = 2; otherwise, we set ηkℓ

ij = 1

for each edge {i, j} ∈ E(Rk
ℓ). In both cases we set ηkℓ

ij = 0, ∀{i, j} ∈ E \ E(Rk
ℓ).

Given the LF solution (x,y) of the master and a subset P ⊆ P, associate with

each edge {i, j} ∈ E a weightωij computed as follows:

ωij =
∑

k∈P

∑

ℓ∈Rk

ηkℓ
ij x

k
ℓ , ∀{i, j} ∈ E. (3.39)
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Note that ωij can be strictly greater than one (i.e., an edge can be traversed

more than once over the days in P). It is quite simple to notice that any

feasible PVRP solution must satisfy the following constraints:

∑

{i,j}∈δ(S)

ωij > 2

⌈
∑

i∈S

q̂i/Q

⌉
, ∀S ∈ S, (3.40)

where δ(S) = {{i, j} ∈ E : i ∈ S, j /∈ S or i /∈ S, j ∈ S} and the values q̂i,

∀i ∈ V , are computed as described in Section 3.3.3. It can be shown that if

the LF solution (x,y) violates inequalities (3.40) for some S, then it also vio-

lates inequalities (3.22) for the same S. Therefore, given a subset P we add to

S all sets S corresponding to a violated inequality (3.40). If fi = 1, ∀i ∈ V , in-

equalities (3.40) are separated using the package CVRPSEP (Lysgaard [85]) as

in this case ωij 6 1 for each edge {i, j} ∈ E. Otherwise, inequalities (3.40) are

separated using an adaptation of the greedy randomized algorithm described in

Augerat et al. [7] for finding violated CVRP capacity constraints. After hav-

ing performed a number of preliminary computational experiments using

different strategies for selecting the subsets P, we decided to set P = P in the

separation of generalized capacity constraints. Moreover, in order to keep

our linear program compact the separation procedure is forced to detect at

most 70 violated inequalities (3.40).

- Clique Inequalities. Let H(x) = (R(x), E(x)) be the subgraph of the conflict

graph H induced by the LF solution (x,y), where R(x) = {ℓ ∈ R̂k : xk
ℓ >

0, k ∈ P} and xk
ℓ is the weight of vertex ℓ ∈ R(x). Separating inequalities

(3.23) that are violated by the current solution (x,y) requires to find all the

maximal cliques in H(x) of weight grater than one. This problem is solved

as described in Baldacci et al. [16] using the CLIQUER 1.1 package [see 96].

Moreover, every new clique is lifted by checking if some of the ĥ least re-

duced cost routes in the sets R̂k, ∀k ∈ P, can be used to extend the clique.

The resulting lifted clique inequality is then added to the set C. In our com-

putational results we set ĥ = 2, 000.
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4. If Nk = ∅, ∀k ∈ P, and no violated constraints (3.22) and (3.23) are found, then

CG terminates; otherwise, the master problem is updated by setting R = R∪N

and by adding to the master problem all violated constraints found at step 3.

In the following we denote by LCG the cost of the final LF solution achieved by

CG.

3.8. Computational results

This section presents computational results for the exact method described in

Section 3.4 and the bounding procedures described in sections 3.5, 3.6 and 3.7.

The algorithms described in this chapter were coded in Fortran 77, compiled

with Intel Visual Fortran 10.1 compiler and linked with the C source codes of

the packages CVRPSEP [see 85] and CLIQUER [see 96]. CPLEX 11.0 was used as

the LP solver in procedure CG and as the integer programming solver in the

exact method. The experiments were performed on a Fujitsu Siemens Primergy

TX200S3 server (Intel Xeon E5310 processor at 1.6 GHz with 8 Gb of RAM).

We considered two sets of instances. The first set is composed of instances

from the literature and the second one contains randomly generated instances

simulating TPVRP problems arising in real world application sectors such as the

beverage and food industries. In the following we give a detailed description of

the two classes of instances.

(a) PVRP instances from the literature. We considered the entire set of PVRP test

instances from the literature involving up to 153 customers. The instances

were proposed by Christofides and Beasley [31], Russel and Igo [110], Russel

and Gribbin [109] and Chao et al. [30]. These instances are publicly available

at http://neumann.hec.ca/chairedistributique/data/pvrp/

and the best upper bounds were taken from Hemmelmayr et al. [70]. The rel-

evant data for these instances are summarized in Table 3.1 that shows under

column m the maximum number of vehicles available in each day of the pe-

riod and under column z(UB) the best upper bound known in the literature.
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(b) TPVRP instances. We derived twenty TPVRP instances from five CVRP in-

stances, namely E-n51-k5, E-n76-k10, E-n101-k8, M-n121-k7, M-n151-k12 and

M-n200-k16 (available at http://branchandcut.org/VRP/data ), involv-

ing up to 199 customers. For each of the five CVRP instances we generated

four TPVRP instances with the same vertex coordinates and customer de-

mands of the original CVRP instance but choosing the vehicle capacity Q in

the set {80, 100, 140, 160}. The data for the other instances were defined as

follows.

i) p was set equal to five and the frequency fi of every customer i was set

equal to one.

ii) The set of n customers was partitioned into four subsets S1 = {1, . . . , α1},

S2 = {α1+1, . . . , α2}, S3 = {α2+1, . . . , α3} and S4 = {α3+1, . . . , n}, where

α1 = ⌊0.15 n⌋, α2 = ⌊0.30 n⌋ and α3 = ⌊0.60 n⌋. For each customer

i the day-window [ei, li] has a maximum width of three days and was

defined as follows: (a) ei = li = 1, if i ∈ S1; (b) ei = li = α, where

α is randomly chosen from the set {2, 3, . . . , p}, if i ∈ S2; (c) ei = 1 and

li = ei + α, where α is randomly chosen from the set {1, 2}, if i ∈ S3; (d)

ei = β and li = ei + α, where β and α are randomly chosen from the

sets {2, 3, . . . , p − 1} and {0, 1}, respectively, if i ∈ S4. Customer subsets

S1 and S2 contain customers that must be visited on a specific day of

the period: customers in S1 must be visited on the first day of the period

while customers in S2 must be visited on a successive day. Both customer

subsets S3 and S4 contain customers having a width of the day-window

greater than one. For customers in S3 the initial day of the day-window

is the first day of the period, whereas for customers in S4 the initial day

of the day-window is a day successive to the first day of the period.

iii) Let Q1 =
∑

i∈S1
qi and Q2 =

∑
i∈S3

qi be the total demand of the cus-

tomers in the sets S1 and S2, respectively. Notice that customers in S1

must be visited on day 1 of the day period. Therefore, the number of
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Table 3.1: Data of the PVRP instances from the literature

Name |V | n |V1| |V2| p Q m z(UB) Name |V | n |V1| |V2| p Q m z(UB)

p01 52 51 51 0 2 160 3 524.61 p17 41 40 16 24 4 20 4 1,597.75

p02 51 50 17 33 5 160 3 1,322.87 p18 77 76 32 44 4 30 4 3,136.69

p03 51 50 50 0 5 160 1 524.61 p19 113 112 48 64 4 40 4 4,834.34

p04 76 75 75 0 2 140 5 835.26 p21 61 60 24 36 4 20 6 2,170.61

p05 76 75 30 45 5 140 6 2,027.99 p22 115 114 48 66 4 30 6 4,193.95

p06 76 75 75 0 10 140 1 835.45 p24 52 51 36 15 6 20 3 3,687.46

p07 101 100 100 0 2 200 4 826.14 p25 52 51 36 15 6 20 3 3,777.15

p08 101 100 40 60 5 200 5 2,034.15 p26 52 51 36 15 6 20 3 3,795.32

p09 101 100 100 0 8 200 1 826.14 p27 103 102 72 30 6 20 6 21,956.00

p10 101 100 40 60 5 200 4 1,593.45 p28 103 102 72 30 6 20 6 22,305.34

p11 140 139 103 36 5 235 4 779.06 p29 103 102 72 30 6 20 6 22,639.85

p14 21 20 8 12 4 20 2 954.81 p30 154 153 108 45 6 20 9 74,464.26

p15 39 38 16 22 4 30 2 1,862.63 p31 154 153 108 45 6 20 9 76,552.25

p16 57 56 24 32 4 40 2 2,875.24 p32 154 153 108 45 6 20 9 78,072.88

vehicles available on each day of the period was set equal tom = ⌈(Q1 +

0.25Q2)/Q⌉ + 1.

iv) The edge costs d̂ij were computed as d̂ij = ⌊eucij+0.5⌋, ∀{i, j} ∈ E, where

eucij is the Euclidean distance between vertices i and j.

v) The service cost τi(k) for visiting customer i ∈ V on day k ∈ [ei, li] was

computed as follows:

τi(k) =






0, if k = ei,

(1+ 0.5(k− ei − 1))qi(2euc0i/Q), if ei < k 6 li.
(3.41)

In order to test the effectiveness of the service cost functions in improving

the customer service quality we also considered the case where τi(k) = 0,

∀i ∈ V , ∀k ∈ [ei, li].

In computing the lower bounds for all the PVRP instances proposed in the lit-
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erature we executed in sequence procedures H1, H2 and CG as all these instances

satisfy conditions (a) and (b) described in Section 3.4.1. The new TPVRP instances

do not satisfy these conditions, therefore we used the sequence H3, H4 and CG to

compute the lower bounds. The upper bounds of the new TPVRP instances were

computed using our implementation of the tabu search heuristic algorithm pro-

posed by Cordeau et al. [38].

Based on the results of several preliminary experiments to identify good pa-

rameter settings for our method we decided to use the following settings in solv-

ing all test problems:

- in H1,Maxt1 = 300;

- in H2,Maxt2 = 25,Maxt3 = 400, ∆min = 5, 000 and ∆a = 200;

- in H3, Maxt1 = 300 and ǫ = 2.0; in H4, Maxt2 = 25, Maxt3 = 200, ǫ = 1.5,

∆min = 5, 000, ∆a = 200;

- in CG, ∆min = 700 and ∆a = 200;

- in order to avoid out-of-memory errors we impose that the size of the final route

set does not exceed the limit of 300, 000 routes (i.e.,
∑

k∈P |R̂k| 6 300, 000).

Tables 3.2, 3.3 and 3.4 of this section report the following columns:

z(UB) : best upper bound value available in the literature;

z∗ : cost of the optimal solution or cost of the best solution found by the exact

method; values printed in bold indicate that the solution cost found is less

than the best known upper bound;

%LHx : percentage ratio of lower bound LHx, x = 1, 2, 3, 4, computed as 100.0 LHx/z∗;

tHx : time in seconds spent by the bounding procedure Hx, x = 1, 2, 3, 4;

%LCG : percentage ratio of the final lower bound LCG computed as 100.0 LCG/z∗;

tCG : time in seconds spent by procedure CG;
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tBP : total time in seconds spent by the sequence of bounding procedures used

for computing the final lower bound LCG. In Table 3.2, tBP = tH1 + tH2 +

tCG, while in Tables 3.3 and 3.4, tBP = tH3 + tH4 + tCG;

|R| : total number of routes in the final route subsets R̂k, ∀k ∈ P, i.e., |R| =
∑

k∈P |Rk|;

tCPX : total computing time in seconds spent by CPLEX to solve problem F̂;

tEM : total computing time in seconds of the exact method; tEM is the sum of

tBP, tCPX and of the time spent by procedure GENROUTE for generating

the final route subsets R̂k, ∀k ∈ P;

For the PVRP instances and the TPVRP instances a time limit of 14,400 seconds

and of 7,200 seconds was imposed to CPLEX, respectively. The last line of tables

3.2, 3.3 and 3.4 reports the average percentage ratios and the average running

times in seconds of each bounding procedure over all instances.

Tables 3.2, 3.3 and 3.4 report the lower bounds obtained by the bounding pro-

cedures and the results of the exact method for the two sets of instances consid-

ered. In particular, tables 3.4 and 3.3 refer to the new TPVRP instances with and

without service costs, respectively.

Table 3.2 shows that the exact method is able to solve to optimality 14 out of

the 28 PVRP instances from the literature and to improve the best known upper

bound of problems p06, p27, p28, p29 and p31. Instance p11 is particularly dif-

ficult and procedure H2 failed to compute the lower bound within the memory

limit imposed to GENROUTE.

Tables 3.3 and 3.4 show that the lower bound achieved on both the variants of

the TPVRP is on average within one percent of optimality. The exact method was

able to solve to optimality 28 out of the 40 instances. All the TPVRP instances

involving up to 100 customers were solved optimality.

Finally, Table 3.5 compares the best solutions found by the exact algorithm

with and without service costs. Columns zr and zs of this table show the total
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routing cost and the total service cost, respectively, whereas column zr+s reports

the sum zr + zs. The purpose of this table is to compare the TPVRP solutions

achieved when ignoring service costs in the model (columns under the heading

“without service costs”) with those obtained when accounting for service costs

in the objective function (columns under the heading “with service costs”). To

this end, column zr + zs, under the heading “without service costs”, reports the

cost of the best solutions found by the algorithm ignoring service costs plus the

total service cost that would be incurred when operating that solution. Moreover,

column #day reports the total number of days of delay with respect to the initial

day of customers’ day-windows. The last line of the table reports for each column

the sum of the entries over rows.

The table clearly shows that the inclusion of service costs induces solutions

of better quality with respect to the customer service level at the expense of a

marginal increase in the routing costs. Indeed, when taking into account service

costs in the model, a reduction of 33% on the total number of days of delay could

be achieved with an extra routing cost of about 3%.

It is also worth mentioning that the exact method proposed in this chapter,

when applied to CVRP and MDVRP instances, produces the same computational

results as those reported in Baldacci et al. [16] and Baldacci and Mingozzi [13].

3.9. Summary

We presented an exact algorithm for the Period Routing Problem (PVRP) for

which neither lower bounds nor exact algorithms have been proposed in the lit-

erature so far. The exact algorithm is based on a set partitioning-like formulation

of the problem and uses five types of bounding procedures based on different re-

laxations of the PVRP. The bounding procedures reduce the number of variables

in the formulation so that the resulting problem can be practically solved by an

integer programming solver.

We also considered a special case of the PVRP, called Tactical Planning VRP
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(TPVRP), arising in food and beverage distribution systems and in field force

planning.

We reported computational results on both a set of PVRP test instances from

the literature and a new set of TPVRP test instances. The results obtained show

that the proposed exact method is able to achieve, on average, lower bounds

within one percent of optimality. The algorithm was able to solve to optimality

several PVRP instances from the literature for the first time and to improve some

of the best known upper bounds. Moreover, TPVRP instances with up to 100

customers could be consistently solved to optimality.
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Table 3.2: Computational results for the PVRP instances from the literature

Bounding Procedure Exact Method

Name |V | p z(UB) z∗ LH1 %LH1 tH1 LH2 %LH2 tH2 LCG %LCG tCG tBP |R| tCPX tEM

p01 52 2 524.61 524.61 516.69 98.5 2.9 520.91 99.3 1.4 524.61 100.0 0.1 4.4 0 0.0 4.4

p02 51 5 1,322.87 1,322.87 (a) 1,248.63 94.4 4.0 1,299.48 98.2 3.8 1307.33 98.8 390.4 398.2 300,000 14,400.0 14,811.0

p03 51 5 524.61 524.61 516.69 98.5 2.9 520.94 99.3 1.6 524.61 100.0 0.1 4.7 0 0.0 4.7

p04 76 2 835.26 835.26 815.52 97.6 4.8 816.99 97.8 2.9 830.87 99.5 73.7 81.3 19,399 201.3 335.6

p05 76 5 2,027.99 2,027.99 (a) 1,912.88 94.3 5.3 1,995.93 98.4 3.2 2005.53 98.9 149.2 157.7 300,000 14,400.0 14,568.8

p06 76 10 835.45 835.26 815.50 97.6 4.8 816.98 97.8 2.7 830.83 99.5 73.7 81.2 27,644 509.7 670.3

p07 101 2 826.14 826.14 (a) 792.79 96.0 18.6 797.88 96.6 8.5 804.39 97.4 367.2 394.3 300,000 14,400.0 14,921.4

p08 101 5 2,034.15 2,034.15 (a) 1,934.74 95.1 21.9 1,994.00 98.0 473.5 2000.10 98.3 2109.9 2,605.3 300,000 14,400.0 17,111.5

p09 101 8 826.14 826.14 (a) 792.79 96.0 18.6 797.88 96.6 8.5 804.39 97.4 367.2 394.3 300,000 14,400.0 14,921.4

p10 101 5 1,593.45 1,593.45 (a) 1,533.53 96.2 18.3 1,546.98 97.1 9.9 1556.43 97.7 1190.7 1,218.9 300,000 14,400.0 15,656.7

p11 140 5 779.06 779.06 (a) 685.47 88.0 40.0 - (b) - - - - - 40.0 - - 40.0

p14 21 4 954.81 954.81 853.05 89.3 0.1 954.81 100.0 0.7 954.81 100.0 0.0 0.7 0 0.0 0.7

p15 39 4 1,862.63 1,862.63 1,773.97 95.2 0.3 1,862.60 100.0 3.3 1862.60 100.0 0.0 3.5 0 0.0 3.5

p16 57 4 2,875.24 2,875.24 2,791.08 97.1 0.7 2,875.24 100.0 6.1 2875.24 100.0 0.0 6.8 0 0.0 6.8

p17 41 4 1,597.75 1,597.75 1,474.02 92.3 0.2 1,594.22 99.8 2.1 1597.75 100.0 0.3 2.6 0 0.0 2.6

p18 77 4 3,136.69 3,136.69 (a) 2,873.61 91.6 0.8 3,088.75 98.5 26.1 3088.90 98.5 433.8 460.7 300,000 14,400.0 15,226.8

p19 113 4 4,834.34 4,834.34 (a) 4,567.15 94.5 2.1 4,766.78 98.6 1529.5 4766.91 98.6 120.1 1,651.7 300,000 14,400.0 16,124.4

p21 61 4 2,170.61 2,170.61 2,008.47 92.5 0.3 2,162.61 99.6 2.0 2169.29 99.9 142.8 145.1 27,005 17.3 163.5

p22 115 4 4,193.95 4,193.95 (a) 3,850.36 91.8 1.6 4,160.31 99.2 322.7 4169.73 99.4 15.0 339.3 300,000 14,400.0 14,829.5

p24 52 6 3,687.46 3,687.46 3,171.85 86.0 0.3 3,680.58 99.8 1.6 3680.63 99.8 0.5 2.3 5,628 59.2 61.6

p25 52 6 3,777.15 3,777.15 3,334.85 88.3 0.2 3,753.36 99.4 2.3 3753.38 99.4 1.7 4.2 18,390 218.9 223.2

p26 52 6 3,795.32 3,795.32 3,437.07 90.6 0.2 3,792.76 99.9 1.5 3792.80 99.9 0.1 1.9 1,500 1.8 3.8

p27 103 6 21,956.00 21,912.85 (a) 16,989.43 77.5 0.8 21,786.26 99.4 9.7 21787.50 99.4 71.1 81.5 300,000 14,400.0 14,519.5

p28 103 6 22,305.34 22,246.69 17,798.65 80.0 0.7 22,210.97 99.8 6.0 22211.10 99.8 5.8 12.5 141,246 12,334.7 12,348.8

p29 103 6 22,639.85 22,543.75 19,370.57 85.9 0.8 22,531.65 99.9 5.9 22531.73 99.9 1.5 8.2 7,680 6,450.1 6,458.8

p30 154 6 74,464.26 74,464.26 (a) 49,586.02 66.6 1.5 73,236.52 98.4 86.4 73248.41 98.4 699.1 787.0 300,000 14,400.0 15,218.0

p31 154 6 76,552.25 76,322.04 (a) 59,579.98 78.1 1.5 75,756.97 99.3 138.8 75757.34 99.3 46.6 186.8 300,000 14,400.0 14,598.3

p32 154 6 78,072.88 78,072.88 (a) 57,841.64 74.1 1.5 77,184.59 98.9 82.8 77185.20 98.9 38.2 122.5 300,000 14,400.0 14,537.4

90.1 5.6 98.9 101.6 99.2 233.3 328.5

(a): optimality not proved

(b): H2 terminates prematurely due to memory overflow in procedure GENROUTE
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Table 3.3: Computational results for the TPVRP instances without service costs

Bounding Procedure Exact Method

Name |V | Q m z(UB) z∗ LH3 %LH3 tH3 LH4 %LH4 tH4 LCG %LCG tCG tBP |R| tCPX tEM

E-n51-k5 51 80 4 899.0 899.0 849.7 94.5 2.4 889.7 99.0 2.9 895.5 99.6 0.6 5.8 8,483 0.6 6.5

E-n76-k10 76 80 6 1,369.0 1,369.0 1,331.7 97.3 4.0 1,357.5 99.2 3.6 1,361.0 99.4 0.6 8.1 10,146 0.8 9.1

E-n101-k8 101 80 5 1,527.0 1,527.0 1,461.2 95.7 6.9 1,506.2 98.6 8.0 1,520.8 99.6 16.2 31.2 20,454 9.3 93.9

M-n151-k12 151 80 7 2,131.6 2,121.0 2,065.7 97.4 15.7 2,096.9 98.9 9.9 2,109.6 99.5 20.0 45.6 43,396 287.1 394.6

M-n200-k16 200 80 9 2,804.8 2,777.0 2,708.2 97.5 27.6 2,753.1 99.1 10.9 2,767.8 99.7 36.9 75.4 56,570 191.1 464.2

E-n51-k5 51 100 3 835.0 835.0 768.0 92.0 3.4 823.4 98.6 4.7 833.7 99.8 0.8 8.9 8,784 0.1 10.0

E-n76-k10 76 100 5 1,234.0 1,234.0 1,169.2 94.8 5.7 1,216.2 98.6 7.5 1,228.6 99.6 4.3 17.5 13,152 1.8 30.4

E-n101-k8 101 100 5 1,341.0 1,341.0 1,293.0 96.4 10.4 1,324.3 98.8 9.5 1,336.6 99.7 28.0 47.9 20,722 9.1 288.2

M-n151-k12 151 100 6 1,856.0 1,856.0 1,801.5 97.1 24.2 1,837.1 99.0 10.2 1,847.7 99.6 35.0 69.4 50,588 246.9 430.3

M-n200-k16 200 100 8 2,449.2 2,413.0 (a) 2,316.7 96.0 38.7 2,371.1 98.3 12.5 2,384.9 98.8 38.2 89.4 300,000 7,200.0 7,451.2

E-n51-k5 51 140 3 784.0 784.0 684.3 87.3 6.3 762.9 97.3 11.0 783.1 99.9 497.3 514.6 16,683 0.6 929.8

E-n76-k10 76 140 4 1,070.0 1,070.0 1,009.5 94.3 11.5 1,053.2 98.4 11.0 1,063.2 99.4 15.5 38.0 19,632 6.0 58.8

E-n101-k8 101 140 4 1,188.0 1,188.0 1,104.1 92.9 22.1 1,170.3 98.5 11.4 1,181.0 99.4 313.9 347.5 31,296 78.7 3,154.6

M-n151-k12 151 140 5 1,629.7 1,612.0 (a) 1,527.7 94.8 42.1 1,574.9 97.7 21.3 1,588.1 98.5 393.3 456.6 300,000 7,200.0 8,104.3

M-n200-k16 200 140 6 2,035.1 2,027.0 (a) 1,910.9 94.3 63.9 1,976.9 97.5 40.9 1,995.5 98.4 546.8 651.6 300,000 7,200.0 8,374.9

E-n51-k5 51 160 3 762.0 762.0 662.4 86.9 8.3 745.1 97.8 10.4 761.5 99.9 571.8 590.5 16,741 0.6 1,292.8

E-n76-k10 76 160 4 1,022.0 1,022.0 961.7 94.1 15.8 1,006.7 98.5 11.3 1,015.6 99.4 36.1 63.3 19,214 5.0 125.8

E-n101-k8 101 160 3 1,153.6 1,141.0 1,052.1 92.2 28.8 1,130.3 99.1 20.8 1,136.7 99.6 553.2 602.8 23,099 9.9 2,006.7

M-n151-k12 151 160 4 1,550.1 1,531.0 (a) 1,446.3 94.5 51.9 1,500.2 98.0 54.2 1,511.8 98.7 570.6 676.7 300,000 7,200.0 8,480.0

M-n200-k16 200 160 5 1,958.6 1,946.0 (a) 1,793.9 92.2 77.0 1,862.2 95.7 100.2 1,878.0 96.5 620.3 797.4 300,000 7,200.0 8,593.8

94.1 23.3 98.3 18.6 99.3 215.0 256.9

(a): optimality not proved



C
hapter

3.
T

he
period

routing
problem

111
Table 3.4: Computational results for the TPVRP instances with service costs

Bounding Procedure Exact Method

Name |V | Q m z(UB) z∗ LH3 %LH3 tH3 LH4 %LH4 tH4 LCG %LCG tCG tBP |R| tCPX tEM

E-n51-k5 51 80 4 989.0 988.98 943.0 95.4 2.4 987.1 99.8 2.8 989.0 100.0 1.5 6.7 0 0.0 6.7

E-n76-k10 76 80 6 1,574.1 1,574.10 1,463.2 93.0 4.1 1,565.7 99.5 3.7 1,573.4 100.0 0.7 8.4 0 0.0 8.4

E-n101-k8 101 80 5 1,791.8 1,791.78 1,602.9 89.5 7.1 1,764.8 98.5 9.3 1,782.9 99.5 18.1 34.4 20,752 12.9 58.0

M-n151-k12 151 80 7 2,648.7 2,648.73 2,287.1 86.3 16.0 2,613.4 98.7 11.2 2,633.7 99.4 51.1 78.3 73,913 1,094.3 1,211.9

M-n200-k16 200 80 9 3,553.1 3,507.50 (a) 2,924.3 83.4 28.3 3,459.1 98.6 13.3 3,478.1 99.2 40.5 82.0 300,000 7,200.0 10,000.6

E-n51-k5 51 100 3 938.0 937.96 857.8 91.5 3.5 932.1 99.4 3.8 938.0 100.0 0.6 7.9 0 0.0 7.9

E-n76-k10 76 100 5 1,418.7 1,418.71 1,313.1 92.6 5.8 1,403.6 98.9 6.8 1,415.5 99.8 2.1 14.7 11,384 0.7 15.4

E-n101-k8 101 100 5 1,517.9 1,517.89 1,423.9 93.8 10.6 1,501.8 98.9 9.0 1,511.4 99.6 14.7 34.4 20,996 13.4 54.8

M-n151-k12 151 100 6 2,259.5 2,246.07 (a) 2,013.5 89.6 24.7 2,209.9 98.4 11.9 2,224.9 99.1 48.9 85.5 300,000 7,200.0 7,851.8

M-n200-k16 200 100 8 2,906.0 2,877.23 (a) 2,520.5 87.6 39.4 2,799.2 97.3 13.5 2,815.5 97.9 44.0 96.9 300,000 7,200.0 7,953.7

E-n51-k5 51 140 3 869.2 869.24 753.9 86.7 6.4 843.1 97.0 10.9 866.7 99.7 481.2 498.5 16,744 1.2 639.3

E-n76-k10 76 140 4 1,203.9 1,203.91 1,130.6 93.9 11.6 1,190.6 98.9 10.8 1,198.4 99.5 3.2 25.5 14,541 1.9 27.5

E-n101-k8 101 140 4 1,330.7 1,330.74 1,223.2 91.9 22.2 1,315.9 98.9 13.9 1,328.7 99.8 583.2 619.3 20,892 1.8 956.1

M-n151-k12 151 140 5 1,876.4 1,867.06 (a) 1,706.9 91.4 42.7 1,818.5 97.4 47.7 1,831.6 98.1 162.3 252.8 300,000 7,200.0 8,123.0

M-n200-k16 200 140 6 2,317.5 2,317.54 (a) 2,092.0 90.3 64.4 2,284.4 98.6 29.0 2,289.9 98.8 711.3 804.7 300,000 7,200.0 9,374.6

E-n51-k5 51 160 3 839.1 839.05 721.9 86.0 8.4 812.8 96.9 10.0 835.6 99.6 605.8 624.2 17,003 2.8 1012.1

E-n76-k10 76 160 4 1,151.7 1,151.66 1,077.7 93.6 16.0 1,141.7 99.1 11.6 1,151.7 100.0 5.7 33.3 0 0.0 33.3

E-n101-k8 101 160 3 1,292.4 1,292.41 1,166.6 90.3 28.9 1,270.2 98.3 22.3 1,278.6 98.9 1,069.7 1,120.9 267,839 6,805.2 10,666.0

M-n151-k12 151 160 4 1,772.3 1,772.27 (a) 1,616.0 91.2 52.8 1,734.6 97.9 90.4 1,740.7 98.2 786.0 929.2 300,000 7,200.0 8,774.6

M-n200-k16 200 160 5 2,241.5 2,241.47 (a) 1,958.9 87.4 78.3 2,158.4 96.3 101.3 2,172.0 96.9 550.8 730.3 300,000 7,200.0 8,844.6

90.3 23.7 98.4 21.7 99.2 259.1 304.4

(a): optimality not proved
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Table 3.5: Comparison of the solutions obtained for the TPVRP instances

without service costs with service costs

Name |V | Q m zr zs zr+s #days zr zs zr+s #days

E-n51-k5 51 80 4 899.00 192.00 1,091.00 25 934.00 54.98 988.98 9

E-n76-k10 76 80 6 1,369.00 340.25 1,709.25 37 1,451.00 123.10 1,574.10 19

E-n101-k8 101 80 5 1,527.00 438.33 1,965.33 45 1,627.01 164.78 1,791.78 26

M-n151-k12 151 80 7 2,121.00 627.43 2,748.43 66 2,183.01 465.73 2,648.73 61

M-n200-k16 200 80 9 2,777.00 892.05 3,669.05 106 2,841.00 666.50 3,507.50 93

E-n51-k5 51 100 3 835.00 178.33 1,013.33 29 874.00 63.96 937.96 14

E-n76-k10 76 100 5 1,234.00 294.53 1,528.53 37 1,271.00 147.71 1,418.71 22

E-n101-k8 101 100 5 1,341.00 315.50 1,656.50 45 1,408.00 109.89 1,517.89 23

M-n151-k12 151 100 6 1,856.00 540.85 2,396.85 69 1,918.00 328.07 2,246.07 54

M-n200-k16 200 100 8 2,413.00 565.27 2,978.27 80 2,550.00 327.23 2,877.23 57

E-n51-k5 51 140 3 784.00 114.79 898.79 25 803.00 66.24 869.24 15

E-n76-k10 76 140 4 1,070.00 168.12 1,238.12 32 1,087.00 116.91 1,203.91 21

E-n101-k8 101 140 4 1,188.00 266.46 1,454.46 50 1,218.00 112.74 1,330.74 26

M-n151-k12 151 140 5 1,612.00 346.20 1,958.20 69 1,682.00 185.06 1,867.06 39

M-n200-k16 200 140 6 2,027.00 385.18 2,412.18 78 2,080.00 237.54 2,317.54 55

E-n51-k5 51 160 3 762.00 91.41 853.41 23 791.00 48.05 839.05 16

E-n76-k10 76 160 4 1,022.00 165.41 1,187.41 30 1,050.00 101.66 1,151.66 21

E-n101-k8 101 160 3 1,141.00 181.02 1,322.02 39 1,191.00 101.41 1,292.41 26

M-n151-k12 151 160 4 1,531.00 325.44 1,856.44 73 1,575.00 197.27 1,772.27 45

M-n200-k16 200 160 5 1,946.00 396.33 2,342.33 91 2,006.00 235.47 2,241.47 62

29,455.00 6,824.89 1,049 30,540.01 3,854.29 704



Chapter 4

The pickup and delivery problem with time

windows

The Pickup and Delivery Problem with Time Windows (PDPTW) is a generaliza-

tion of the Vehicle Routing Problem with Time Windows where a set of identical

vehicles located at a central depot must be optimally routed to service a set of

transportation requests subject to capacity, time window, pairing and precedence

constraints. In this chapter, we present an exact algorithm for the PDPTW which

is based on a set partitioning formulation with additional cuts. We describe a

bounding procedure that finds a near optimal dual solution of the LP-relaxation

of the integer formulation by combining two dual ascent heuristics and a column-

and-cut generation procedure. The final dual solution is used to generate a re-

duced problem containing only the routes whose reduced costs are smaller than

the gap between a known upper bound and the lower bound achieved. If the re-

sulting problem has moderate size it is solved by an integer programming solver;

otherwise, a branch-and-cut-and-price algorithm is used to close the integrality

gap. Extensive computational results over the main instances from the literature

show that the proposed exact method is faster than the best exact method pre-

sented in the literature so far and that it can solve to optimality for the first time

several test instances.
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4.1. Introduction

The Pickup and Delivery Problem with Time Windows (PDPTW) is the problem

of designing a number of routes for a fleet of m identical vehicles stationed at

a central depot to service the transportation requests of n customers. Each cus-

tomer request asks that a given load is transported from a pickup location to an

associated delivery location by the same vehicle. Each vehicle route starts and

finishes at the depot according to the time window of the depot and services a

subset of the customer requests. In order to be feasible each route must be sim-

ple and must satisfy the following constraints: (i) the delivery location of each

request serviced must be visited after the associated pickup location by the same

vehicle (pairing and precedence constraints), (ii) the total load carried by the vehi-

cle after leaving any pickup location cannot exceed the vehicle capacity (capacity

constraints) and (iii) all locations must be visited within their time windows (time

window constraints). The objective is to design a set of at most m feasible routes

of minimum cost so that each customer request is serviced by exactly one route.

However, in some applications it is required to minimize first the number of ve-

hicles used and then the route costs.

The PDPTW is a generalization of the Vehicle Routing Problem with Time

Windows (VRPTW) in that the VRPTW can be seen as a special case of the PDPTW

where the pickup locations of all requests coincide with the depot. Since the

PDPTW generalizes the VRPTW it is NP-hard.

There is a variety of practical situations that can be modeled as pickup and de-

livery problems. Some examples are sealift and airlift of cargo and troops, pickup

and delivery for overnight carriers and urban services, less-than truckload trans-

portation and school buses routing and scheduling. In some applications it is

required that the total time between a pickup stop and the corresponding deliv-

ery stop does not exceed a given threshold. In this case the problem is called the

Dial-a-Ride Problem (DARP) and finds important applications in door-to-door

transportation services for the elderly and the disabled.
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4.1.1 Literature Review

In this section we give an overview of the solution methods presented in the lit-

erature for solving the PDPTW considered in this chapter. Several other variants

of this problem have been studied. For reviews on different pickup and deliv-

ery problems the reader is referred to the works of Savelsbergh and Sol [112],

Desaulniers et al. [50] and Cordeau et al. [39]. Recent surveys on pickup and

delivery problems containing a classification of the different variants together

with a discussion on the corresponding exact, heuristic, and metaheuristic solu-

tion methods can be found in Cordeau et al. [40], Gribkovskaia and Laporte [67]

and Parragh et al. [100, 101]. As this chapter presents an exact algorithm for the

PDPTW we review the latest exact solution methods proposed in the literature

for the PDPTW.

Exact algorithms for the PDPTW have been proposed by Dumas et al. [54],

Savelsbergh and Sol [112], Lu and Dessouky [84], Ropke et al. [107] and Ropke

and Cordeau [106].

The method of Dumas et al. [54] is the first branch-and-price algorithm pro-

posed in the literature for the PDPTW. This algorithm is based on a set partition-

ing formulation of the problem where each column corresponds to a vehicle route

and each constraint is associated with a transportation request. The pricing sub-

problem used is a Shortest Path Problem with Time Windows, Capacity, and Pickup

and Delivery that is solved by a dynamic programming algorithm where states

correspond to paths starting from the depot. The labels associated with each

path allow the algorithm to enforce time window, capacity, pairing and prece-

dence constraints, but do not guarantee that only elementary routes are gen-

erated. Different methods for eliminating states within this dynamic program-

ming procedure are also proposed. These methods are based on the concepts of

dominance (i.e., avoid generating routes that cannot be part of an optimal so-

lution) and non-post-feasibility (i.e., eliminate paths that cannot be extended to

feasible routes). Various preprocessing rules for tightening time windows and

removing arcs that cannot be part of a feasible solution are also proposed. More-
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over, the algorithm makes use of a partial network, obtained from the original

graph by heuristically removing nodes and arcs, to attempt generating nega-

tive reduced cost routes while reducing the computing time when solving the

pricing problem. The branching strategy adopted by this algorithm chooses a

fractional variable corresponding to a route visiting an ordered set of pickups

S = (0, i1, i2, . . . , ik, ik+1 = 0) (0 representing the depot), and creates |S| + 2

branches. Each branch h = 1, . . . , |S| + 2 imposes that the pickups i1, . . . , ih are

visited in the same order as in S but the vertex ih+1 cannot be visited immedi-

ately after ih. Two additional branches are also required, imposing respectively

that i1 cannot be visited just after the depot and that all vertices in S must be

visited in the same order. This method was tested on instances involving up to

55 requests and proved successful in solving tightly constrained instances with a

limited number of requests per route.

Savelsbergh and Sol [112] describe a branch-and-price method based on a set

partitioning formulation that differs from that of Dumas et al. [54] in several

respects. They use heuristics to solve the pricing subproblem before trying to

solve it to optimality and maintain a column pool that contains variables having

a reduced cost not greater than a predefined threshold. The pricing problem is

solved only when no columns of negative reduced cost can be found in this pool.

At the beginning of each iteration the reduced costs of columns in the pool are

updated with respect to the current dual solution, and those columns whose re-

duced cost exceeds the threshold are eliminated. Then, if no negative reduced

cost column exists in the pool the pricing problem is solved using heuristics and

the new columns are added to the pool. If again no column having negative re-

duced cost can be found in the pool, then the pricing problem is solved exactly.

The branching schema of this algorithm combines two strategies. The first one

is the same used by Dumas et al. [54], while the second one is based on a set of

assignment variables {zk
i }, defined for each request i and vehicle k, that represent

the fraction of request i serviced by each vehicle k. This latter strategy chooses

a fractional variable zk
i and creates two branches imposing zk

i = 0 and zk
i = 1,
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respectively. Notice that this strategy can be seen as special case of Ryan and Fos-

ter’s branching schema (Ryan and Foster [111]) since, given two requests i and

j, a branch where zk
i = 1 and zk

j = 0 imposes that i and j cannot be visited by

the same route. A primal constructive heuristic that is based on the assignment

variables {zk
i } is used at each node of the enumerative tree to compute an upper

bound on the associated problem. A set of test instances with up to 30 requests

are randomly generated to test the effectiveness of the proposed exact algorithm.

On 17 out of 40 instances the algorithm is able to solve the problem at the root

node, whereas for the remaining instances the integrality gap at the root node

is under 1%. All the instances are solved to optimality using in the worst case

55, 266 seconds of computing time of an IBM/RS6000, model 500.

Lu and Dessouky [84] consider a variant of the PDPTW where the vehicle fleet

can be heterogeneous and vehicles can be based at different depots. They specif-

ically address the case where time windows are not tight and present a branch-

and-cut algorithm based on a two-index formulation. This formulation involves

a polynomial number of constraints but uses in addition to the usual flow vari-

ables a set of binary precedence variables. These variables specify for each vertex

pair i, j whether vertex i must precede j in a route, or viceversa, and are used

to enforce pairing and precedence constraints. Using precedence variables, four

classes of valid inequalities are derived to strengthen the LP-relaxation of the

mathematical formulation. Even if the number of constraints in the proposed for-

mulation is polynomial, the branch-and-cut algorithm is started with a limited

number of constraints from the original formulation, and violated constraints are

then added at each node together with violated valid inequalities. The algorithm

uses two branching strategies. The first strategy branches on the flow variables.

The second one relies on precedence variables and imposes if a given pair of ver-

tices has to be adjacent or not in a route. Using precedence variables, the latter

strategy computes for each vertex i the number Si of vertices preceding i in the

route. Si represents the position of vertex i within the route. Then, it chooses a

vertex pair i, j such that |Si − Sj| is minimum and creates two branches imposing
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|Si−Sj| 6 1 and |Si−Sj| > 1, respectively. Values {Si} are also used at each node of

the enumerative tree by a heuristic procedure to compute an upper bound on the

problem. The algorithm is tested on two classes of instances. A first class is de-

rived by the Solomon data set for the VRP, and a second class is randomly gener-

ated using a method similar to that of Savelsbergh and Sol [112]. In both data sets

the vehicle fleet is homogeneous. Computational results show that the algorithm

can solve to optimality instances with up to 5 vehicles and 25 requests within 3

hours of computing time on a SUN Fire 4800 system (12 900-MHZ CPUs).

Ropke et al. [107] present a branch-and-cut algorithm that is an improved ver-

sion of the one proposed by Cordeau [36] for the DARP. This paper describes

two different formulations based on two-index variables and involve an expo-

nential number of constraints. Several families of valid inequalities are also used

to strengthen the LP-relaxation of such formulations. The second formulation

provides slight better results and is more compact in terms of the number of vari-

ables, but imposes capacity, time window, pairing and precedence constraints us-

ing three families of inequalities involving an exponential number of constraints.

Capacity constraints are enforced using rounded capacity inequalities [see e.g. 95]

that impose a lower bound on the number of times a vehicle must enter and leave

a set of vertices in order to service all the corresponding nodes. Time window

constraints are imposed by defining the set P of all paths that are infeasible with

respect to time windows. Then, for any path P ∈ P involving a set of arcs A(P),

an infeasible path elimination constraint [see e.g. 5] is imposed stating that at most

|A(P)|−1 arcs inA(P) can be in solution. Finally, a set of precedence constraints [see

108] are used to impose pairing and precedence constraints by stating that at least

one arc must enter each vertex set S that contains the starting depot and at least

one delivery whose corresponding pickup is not in S. The algorithm also uses

additional classes of valid inequalities called successor and predecessor inequalities

and lifted generalized order constraints that were introduced by Cordeau [36] for

the DARP. Three new classes of inequalities for the PDPTW are introduced in

this paper: strengthened capacity constraints, obtained by strengthening rounded
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capacity constraints and strengthened infeasible path constraints and fork constraints,

both expressing different conditions to forbid infeasible paths. Finally the set of

reachability constraints [see 86] is adapted to the PDPTW by extending the sets of

conflicting nodes taking into account precedence and capacity constraints. The

proposed branch-and-cut algorithm is evaluated on two classes of instances con-

taining PDPTW problems involving up to 75 requests and DARP problems with

up to 96 requests. The computational results show that fork and reachability con-

straints are the most useful in terms of the improvement of the integrality gap at

the root node. The algorithm can optimally solve PDPTW instances with up to 75

requests and outperforms the algorithm of Cordeau [36] on the DARP instances.

Ropke and Cordeau [106] present a new branch-and-cut-and-price algorithm

for the PDPTW in which lower bounds are computed by solving through column

generation the linear programming relaxation of a set partitioning formulation

strengthened by valid inequalities. Within the column generation algorithm two

pricing subproblems are experimented, based on elementary and non-elementary

shortest path computations. The first pricing problem, called SP1, corresponds

to an Elementary Shortest Path Problem with Time Windows, Capacity, and Pickup

and Delivery; while the second one, called SP2, is the same used by Dumas et al.

[54]. SP2 is faster than SP1 but produces worst lower bounds because it gener-

ates routes that may contain cycles. The paper also discusses the use of different

classes of valid inequalities introduced for the two-index and three-index formu-

lations by Ropke et al. [107] and Cordeau [36] and their usefulness when added

to the set partitioning formulation. A method for modifying the cost matrix used

in the pricing algorithm is also proposed to allow the use of the dominance cri-

teria within the pricing algorithms after adding valid inequalities to the master

problem. The authors prove that strengthened precedence constraints, fork in-

equalities and reachability inequalities are implied by the LP-relaxation of the

set partitioning formulation when using SP1 as the pricing problem. Therefore

these inequalities are not embedded in the proposed branch-and-cut-algorithm

when using SP1. On the other hand, strengthened infeasible path inequalities,
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rounded capacity inequalities (here strengthened with respect to those used by

Ropke et al. [107]) and 2-path inequalities (proposed by Kohl et al. [78] for the

VRPTW and extended here to the PDPTW) are not redundant in the set parti-

tioning formulation using SP1 and are used by this algorithm. The proposed

branch-and-cut-algorithm uses different combinations of heuristics in order to

reduce the computational effort for solving the pricing subproblem: only when

none of the heuristics is able to provide negative reduced cost routes the exact

dynamic programming procedure is executed. Two different branching strate-

gies are employed. The first one computes the number κ of routes leaving the

depot and then creates two branches imposing m = ⌈κ⌉ and m = ⌊κ⌋, respec-

tively. If κ is integral, however, the current solution may still be fractional. If

this is the case, a second branching strategy is used that branches on the outflow

δ+(S) of a set S of vertices (i.e. on the number of routes leaving S), imposing

δ+(S) = ⌈δ+(S)⌉ or δ+(S) = ⌊δ+(S)⌋. Computational experiments show that the

2-path cuts are the most successful of the valid inequalities tested and most of-

ten, using the pricing problem SP1, yield better results. A comparison with the

method of Ropke et al. [107] shows that the proposed algorithm outperforms the

branch-and-cut method of Ropke et al. [107] and that it can solve three instances

with 500 requests having very tight time windows. At our knowledge the algo-

rithm of Ropke and Cordeau [106] is currently the best solution method available

in the literature for the PDPTW in terms of the size of the instances that can be

solved to optimality .

It is worth mentioning that, as opposed to the vehicle routing problem, there

are few clearly defined benchmark problems for the pickup and delivery prob-

lem. Indeed, most of the exact methods presented in the literature have been

tested on different data sets that are not publicly available, making it difficult to

compare the effectiveness of the proposed algorithms. The only instances that are

publicly available are those used by Ropke and Cordeau [106] which correspond

to two data sets described in Section 4.7.
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4.1.2 Contributions

In this chapter we present an exact algorithm for solving the PDPTW with two

different objective functions. The first objective asks to minimize the total routing

cost, whereas the second asks to minimize the sum of the fixed costs of the vehi-

cles used and of the routing costs. The exact method is based on a set partitioning-

like formulation F of the PDPTW where each column corresponds to a route.

We propose a bounding method that computes a solution of the dual of the LP-

relaxation of F using in sequence three dual ascent procedures, called H1, H2 and

H3, each one exploring a different structure of the problem. Each procedure pro-

duces a different dual solution of the LP-relaxation of F that is used to initialize

the following procedure. Procedures H1 and H2 are based on two different re-

laxations of the PDPTW that do not require the generation of the entire route

set. ProcedureH1 relaxes the route feasibility constraints, and procedureH2 com-

bines a dual ascent heuristic with column generation method and produces a

lower bound of the same quality of the value of the LP-relaxation of F without

being affected by the typical degeneration of the classical simplex-based column

generation methods. H3 is a classical column generation method based on the

simplex algorithm that tries to close the integrality gap by adding to F additional

cuts corresponding to a subset of the clique inequalities. The effectiveness of

H2 and H3 relies on an efficient dynamic programming algorithm for generat-

ing columns of negative reduced cost that uses different bounding functions to

reduce the state space graph. The exact method attempts to generate all vari-

ables of formulation F having a reduced cost smaller then the gap between the

lower bound achieved and a known upper bound. When the number of such

variables is sufficiently small the resulting problem is solved by an integer linear

programming solver; otherwise, the problem is solved by a branch-and-cut-and-

price algorithm. The computational results show that the proposed lower bound

is superior to the lower bounds presented in the literature. The exact algorithm

outperforms the exact method of Ropke and Cordeau [106] and can solve to op-

timality 15 instances that cannot be solved by this latter method.
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The remainder of the chapter is organized as follows. In Section 4.2 we de-

scribe the PDPTW and its objective functions considered in this chapter and a

set partitioning-like formulation F. Section 4.3 describes three relaxations of for-

mulation F and Section 4.4 describes three bounding procedures based on these

relaxations. Section 4.5 describes the exact algorithms for solving the PDPTW.

The algorithms for solving the pricing problem are given in Section 4.6 and com-

putational results on test instances from the literature are reported in Section 4.7.

Finally, Section 4.8 contains concluding remarks.

4.2. Problem Description and Mathematical

Formulation

In this section we describe two variants of the PDPTW which differ for the objec-

tive function to be minimized and we give a set partitioning formulation of the

PDPTW.

4.2.1 Description of the PDPTW and its objective functions

The PDPTW is defined on a complete digraphG = (V,A), whereV = {0, 1, . . . , 2n}

is a set of 2n + 1 vertices and A is the arc set. Vertex 0 represents the depot and

the vertex subsets P = {1, . . . , n} and D = {n+ 1, . . . , 2n} contain the pickup and

delivery vertices of n transportation requests, respectively. With each request

i = 1, . . . , n is associated a pickup vertex i ∈ P and a delivery vertex n+ i ∈ D. In

the following the set Pwill also be used to represent the set of the n transportation

requests.

With each vertex i ∈ V is associated a load qi such that qi > 0, ∀i ∈ P, and

qi = −qi−n, ∀i ∈ D. Moreover, with each vertex i ∈ V are associated a non-

negative service time si and a time window [ai, bi], where ai and bi represent the

earliest and latest time to visit vertex i, respectively. If a vehicle arrives at vertex

i at time τi < ai, then it must wait until time ai before servicing vertex i. We
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assume q0 = 0 and d0 = 0. With each arc (i, j) ∈ A are associated a travel cost dij

and a travel time tij that includes the service time si at vertex i. We assume that

both travel costs and times satisfy the triangle inequality.

A fleet of m identical vehicles of capacity Q located at the depot 0 can be

used to perform routes. A route is a circuit R = (i0 = 0, i1, . . . , ih, ih+1 = 0) in G

starting and ending at the depot 0, that represents the trip of a vehicle servicing

the subset of requests S(R) = V(R)∩P, where V(R) is the subset of vertices visited

by route R. In order to be feasible a route R must be simple and must satisfy the

following constraints: (i) R visits the delivery vertex n+ i after having visited the

pickup vertex i ∈ S(R), (ii) the total load
∑k

r=1qir of the vehicle leaving vertex

ik, k = 1, . . . , h, does not exceed Q, and (iii) the arrival time τik at each vertex ik

is within the associated time window [aik , bik ], k = 0, . . . , h+ 1. The arrival time

τik is recursively computed by setting τi0 = a0 and τik = max{aik , τik−1
+ tik−1ik },

k = 1, . . . , h+ 1. The cost of a route R is equal to the sum of the travel costs of the

arcs traversed.

The PDPTW consists in designing at most one route for each vehicle so that

each customer request is serviced by one route and a given objective function is

minimized. One objective, hereafter called o1, is to minimize the sum of the route

costs. A second one, hereafter called o2, involves a fixed cost W associated with

each vehicle and is to minimize the sum of fixed costs and route costs. If W is

very large (i.e., larger than the route cost of any feasible solution), then objective

o2 minimizes first the number of vehicles used and second the sum of the route

costs. In the following we denote by PDPTW-o1 and PDPTW-o2 the variants of

the PDPTW where the objective is to minimize the objective functions o1 and

o2, respectively. In the following section we give a mathematical formulation

which is valid for both variants of the PDPTW as any PDPTW-o2 instance can

be transformed into a PDPTW-o1 instance by adding the fixed cost W to each

outgoing arc from the depot.
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4.2.2 Set Partitioning Formulation

Let R be the index set of all feasible routes and let Ri ⊆ R be the index subset

of the routes servicing request i ∈ P. Each route ℓ ∈ R has an associated cost

cℓ. In the following we will use Rℓ and S(Rℓ) (or simply Sℓ) to denote the ordered

sequence of vertices and the subset of requests visited by the route ℓ ∈ R, respec-

tively. Let xℓ be a (0 − 1) binary variable that is equal to 1 if and only if route ℓ is

in solution. The PDPTW can be formulated as follows.

(F) z(F) = min
∑

ℓ∈R

cℓxℓ (4.1)

s.t.
∑

ℓ∈Ri

xℓ = 1, ∀i ∈ P, (4.2)

∑

ℓ∈R

xℓ 6 m, (4.3)

xℓ ∈ {0, 1}, ∀ℓ ∈ R. (4.4)

Constraints (4.2) specify that each request i ∈ P must be serviced by exactly one

route; constraint (4.3) imposes that at most m routes are in solution. We denote

by LF the LP-relaxation of problem F.

Relaxation LF provides a tight lower bound on the PDPTW-o1. However it can

be very weak for those PDPTW-o2 instances where the fixed cost W is large. In

Section 4.5 we describe an exact method for the PDPTW-o1 that is based on relax-

ation LF, and an exact method for the PDPTW-o2. This latter method decomposes

a PDPTW-o2 instance intomUB−mLB+1 PDPTW-o1 problems obtained from the

original PDPTW-o2 by setting W = 0, where mUB and mLB represent an upper

bound and a lower bound on the number of vehicles required, respectively. Both

exact algorithms use three bounding procedures that compute different lower

bounds on the PDPTW-o1 by solving three relaxations of problem Fwhich do not

require the a-priori computation of the entire route set R.



Chapter 4. The pickup and delivery problem with time windows 125

4.3. Relaxations of the PDPTW-o1

In this section we describe three different relaxations of the mathematical formu-

lation described in the previous section that are used to derive different lower

bounds on the PDPTW-o1.

4.3.1 Relaxation LR

The first relaxation of the PDPTW-o1 is based on the observation that any feasible

PDPTW-o1 solution is composed of at most m routes, each ending in a different

delivery vertex. LR corresponds to an integer problem that is derived from prob-

lem F by relaxing in a Lagrangian fashion constraints (4.2) using penalties µi ∈ R,

∀i ∈ P, and imposing that each route in solution must visit a different delivery

vertex before returning to the depot. Let Di ⊆ Ri be index subset of the routes

such that i ∈ D is the last vertex visited before returning to the depot. Notice

that Di ∩ Dj = ∅, ∀i, j ∈ D, i 6= j and R = ∪i∈DDi. For a given penalty vector

µ ∈ Rn, the following integer problem LR(µ) provides a valid lower bound on

the PDPTW-o1.

(LR(µ)) z(LR(µ)) = min
∑

i∈D

∑

ℓ∈Di

(
cℓ −

∑

j∈Sℓ

µj

)
xℓ +

∑

i∈P

µi (4.5)

s.t.
∑

ℓ∈Di

xℓ 6 1, ∀i ∈ D, (4.6)

∑

ℓ∈R

xℓ 6 m, (4.7)

xℓ ∈ {0, 1}, ∀ℓ ∈ R. (4.8)

Notice that constraints (4.6) are redundant in the original problem F, but they help

strengthening the relaxation LR(µ). Problem LR(µ) cannot be solved directly as

it requires the entire route set R. In Section 4.4.1 we describe a Lagrangian ascent

procedure, called H1, that solves a relaxation of problem LR(µ) where the routes

are not necessarily feasible.
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Procedure H1 computes a lower bound LH1 on the PDPTW-o1 by solving the

Lagrangian dual problem LH1 = maxµ [LR(µ)] using subgradient optimization.

4.3.2 Relaxation LF

The second relaxation is based on the dual problem, called DLF, of LF. Associate

dual variables ui ∈ R, ∀i ∈ P, with constraints (4.2) and a dual variable u0 6 0

with constraint (4.3). Let u = (u0, u1, . . . , un) be the vector of the dual variables.

Problem DLF is as follows.

(DLF) z(DLF) = max
∑

i∈P

ui +mu0 (4.9)

s.t.
∑

i∈Sℓ

ui + u0 6 cℓ, ∀ℓ ∈ R, (4.10)

u0 6 0 and ui ∈ R,∀i ∈ P. (4.11)

ProblemDLF is impractical to solve because it involves an exponential number of

constraints. However, it is possible to find a near optimal DLF solution without

generating all constraints (4.10), yet any feasible DLF solution provides a valid

lower bound on the PDPTW-o1.

In Section 4.4.1, we will show that the LR(µ) solution of cost LH1 obtained by

procedure H1 can be transformed into a feasible solution u1 of problem DLF. In

Section 4.4.2 we describe a dual ascent heuristic for solving DLF, called H2, that

produces a near optimal DLF solution u2 of cost LH2. H2 is a column genera-

tion method executed after H1 and uses the dual solution u1 produced by H1 to

generate the initial master problem. H2 differs from standard column generation

methods as it uses Lagrangian relaxation and subgradient optimization to solve

the master problem.

4.3.3 Relaxation LSF

Since problem F is a generalization of the set partitioning problem (SP), any class

of valid inequalities for SP can be used to strengthen relaxation LF. However, it
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is well known that several difficulties arise when cuts are added within a column

generation framework because the added inequalities can destroy the structure

of the pricing problem.

A well known class of valid inequalities defining facets of the set partitioning

polytope are the clique inequalities [see 12, 72]. Clique inequalities are known to

significantly improve relaxation LF in the case of the Capacitated Vehicle Routing

Problem (CVRP) [see 16]. However, after adding clique inequalities to problem

LF it is not easy to efficiently compute the reduced cost of the routes when using

a pricing problem based on shortest paths computations because reduced costs

do not only depend on the arcs traversed.

A feasible approach, used by Baldacci et al. [16] for solving the CVRP, is to

generate routes of non-decreasing negative reduced cost with respect to the du-

als of constraints (4.2) and (4.3) ignoring the duals associated with the clique in-

equalities. Once solved the pricing problem, the generated route subset is post-

processed by adding to the reduced cost of each route the dual variable of all

clique inequalities involving it. As a result, all routes whose actual reduced cost

turns out to be non negative are discarded. Notice that, since the pricing problem

generates a superset of the routes having negative reduced cost, special care must

be taken in order to avoid generating duplicated routes. This method was very

effective in solving the CVRP, but it can be time consuming especially when a

large number of clique inequalities are added, each one involving a large number

of variables.

To overcome this drawback we used a subset of clique inequalities whose dual

variables can be easily taken into account when solving the pricing problem. Let

C = {C ⊆ P : |C| = 3} be the set of all request triplets and let R(C) ⊆ R be the

subset of routes servicing at least two requests in C, i.e., R(C) = {ℓ ∈ R : |Sℓ∩C| >

2}. It is quite obvious that the following inequalities are valid:

∑

ℓ∈R(C)

xℓ 6 1, ∀C ∈ C. (4.12)

Inequalities (4.12) are a subset of the clique inequalities and a special case of the
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Subset Row inequalities introduced by Jepsen et al. [76].

We denote by LSF the problem obtained by adding to LF all inequalities (4.12).

Relaxation LSF is solved by means of a column and cut generation method, called

H3, that is described in Section 4.4.3. H3 computes a lower bound LH3 as the cost

z(LSF) of an optimal LSF solution.

4.4. Bounding Procedures for the PDPTW-o1

In this section we describe the three bounding procedures, H1, H2 and H3, that

are based on the three different relaxations of the PDPTW-o1 described in Section

4.3. ProcedureH1 is based on a method originally proposed by Baldacci et al. [15]

for the time constrained vehicle routing problem but uses an original relaxation

of the route set R. Procedures H2 and H3 are extensions to the PDPTW-o1 of

two methods proposed by Baldacci et al. [16] for the CVRP but use a new route

generator (described in Section 4.6) specifically designed for the PDPTW.

4.4.1 Bounding Procedure H1

ProcedureH1 solves the Lagrangian problem LR(µ), described in Section 4.3.1, by

relaxing the requirement that each route in R must be feasible. H1 is based on a

relaxation of feasible routes called (t, i)-routes. A (t, i)-route is a not necessarily

simple circuit in G that starts and ends at the depot and such that: (i) i is the

last vertex visited before returning to the depot and (ii) the arrival time τj at each

vertex j visited is within the associated time window [aj, bj]. In other words, (t, i)-

routes correspond to a relaxation of feasible routes Di that may be non elementary

and may violate capacity, pairing and precedence constraints.

Let λ = (λ1, λ2, . . . , λ2n) be a vector of real penalties associated with the set of

vertices P ∪D and define for each arc (i, j) ∈ A a modified arc cost d ′
ij = dij − λj

(we assume λ0 = 0). Using the modified arc costs {d ′
ij} let φi be the cost of a least
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cost (t, i)-route. The values φi, ∀i ∈ D, can be computed in pseudo-polynomial

time using the (t, i)-path functions described in Section 4.6.

It is easy to see that, by setting µi = λi + λi+n, ∀i ∈ P, the values φ(i) satisfy

the following inequalities:

φi 6 min
ℓ∈Di

[cℓ − µ(Sℓ)] ∀i ∈ D. (4.13)

For a given λ, we denote by z(LR ′(λ)) the problem of choosing m ′ 6 m (t, i)-

routes of minimum cost ending in m ′ different vertices of D. Let ξi be an integer

(0, 1) variable that is equal to 1 if and only if the (t, i)-route of costφi is in solution.

Problem LR ′(λ) is as follows.

(LR ′(λ)) z(LR ′(λ)) = min
∑

i∈D

φiξi +
∑

i∈P∪D

λi (4.14)

s.t.
∑

i∈D

ξi 6 m, (4.15)

ξi ∈ {0, 1}, ∀i ∈ D. (4.16)

It is quite easy to observe that LR ′(λ) is a relaxation of problem LR(µ), where

µi = λi + λi+n, ∀i ∈ P. Therefore, the cost of an optimal LR ′(λ) solution provides

a valid lower bound on the PDPTW-o1.

LR ′(λ) is a single constraint 0−1 integer problem that can be solved by inspec-

tion as follows. Let the delivery vertices in D be ordered such that φi1 6 φi2 6

. . . 6 φin . An optimal solution ξ∗ to problem LR ′(λ) is given by setting:

ξ∗ik =






1, if φik < 0 and k 6 m

0, otherwise
k = 1, . . . , n. (4.17)

Computing Lower Bound LH1

Let aij be the number of times that vertex i ∈ P ∪D is visited by the (t, j)-route of

cost φj. A valid subgradient δ = (δ1, . . . , δ2n) of the function z(LR ′(λ)) at point λ

is given by setting:

δi =
∑

j∈D

aijξ
∗

j − 1,∀i ∈ P ∪D. (4.18)
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H1 is an iterative procedure that performsMaxt1 iterations and uses subgradient

optimization to compute LH1 = maxλ{z(LR(λ))}.

At each iteration, procedure H1 solves problem LR(λ) by computing the least

cost (t, i)-route of cost φi, ∀i ∈ D, with respect to the modified arc costs {d ′
ij},

and derives an optimal LR ′(λ) solution ξ∗ using expressions (4.17). Then, H1

computes the subgradient vector δ and updates the penalty vector λ as:

λi = λi − ǫ
z(UB) − z(LR ′(λ))
∑

k∈P∪D(δk − 1)2
(δi − 1),∀i ∈ P ∪D, (4.19)

where ǫ is a positive constant and z(UB) is an upper bound on the PDPTW-o1.

The following theorem shows that any optimal LR ′(λ) solution ξ∗ provides a

feasible DLF solution u of the same cost.

Theorem 4.1 For a given vector λ, let ξ∗ be an optimal LR ′(λ) solution, and let D∗ =

{i ∈ D : ξ∗i = 1}. Defining µi = λi + λn+i, ∀i ∈ P, a feasible DLF solution u of cost

z(LR ′(λ)) is given by:

ui =






µi, if n+ i 6∈ D∗

µi + φn+i − σ, if n+ i ∈ D∗
,∀i ∈ P, (4.20)

u0 = σ,

where σ = max
i∈D∗

{φi}, if |D∗| = m; σ = 0 otherwise.

Proof: Notice that σ 6 0 since, from the definition of D∗, we have φi < 0,

∀i ∈ D∗. Hence, the DLF solution u defined by expressions (4.20) satisfies con-

straints (4.11). Now we show that the vector u given by expressions (4.20) satisfies

inequalities (4.10) for any route ℓ ∈ R, that is:

∑

i∈Sℓ

ui + u0 6 cℓ. (4.21)

Let S∗ℓ = {i ∈ Sℓ : n + i ∈ D∗} and let β(ℓ) be the last delivery vertex visited by

route ℓ. From expressions (4.20), we have:

∑

i∈Sℓ

ui + u0 =
∑

i∈Sℓ

µi +
∑

i∈S∗

ℓ

(φn+i − σ) + σ. (4.22)

We have two cases.
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A) S∗ℓ = ∅. In this case we have to show that
∑

i∈Sℓ
µi + σ 6 cℓ. Since ℓ ∈ Dβ(ℓ),

from expressions (4.13) we have φβ(ℓ) 6 (cℓ −
∑

i∈Sℓ
µi) and since β(ℓ) /∈ D∗

we have σ 6 φβ(ℓ). Combining these two inequalities we obtain σ 6 (cℓ −
∑

i∈Sℓ
µi), or

∑
i∈Sℓ

µi + σ 6 cℓ.

B) S∗ℓ 6= ∅. Let k∗ ∈ S∗ℓ be such that φn+k∗ = min{φn+i : i ∈ S∗ℓ}. Note that

φn+i − σ 6 0 as σ > φn+i, ∀n+ i ∈ D∗. Therefore we have:

∑

i∈S∗

ℓ

(φn+i − σ) 6 φn+k∗ − σ. (4.23)

From expressions (4.22) and (4.23), we derive the following inequality:

∑

i∈Sℓ

ui + u0 6
∑

i∈Sℓ

µi + σ+ φn+k∗ − σ =
∑

i∈Sℓ

µi + φn+k∗. (4.24)

From the definition of k∗ we have φn+k∗ 6 φβ(ℓ), and because of expression

(4.13) we obtain φn+k∗ 6 φβ(ℓ) 6 (cℓ −
∑

i∈Sℓ
µi). Therefore, from inequality

(4.24), we derive:

∑

i∈Sℓ

ui + u0 6
∑

i∈Sℓ

µi + (cℓ −
∑

i∈Sℓ

µi) = cℓ. (4.25)

�

Let λ∗ be the value that produces the best lower bound LH1 achieved by pro-

cedure H1, i.e., such that LH1 = z(LR ′(λ∗)). We denote by u1 the DLF solution of

cost z(DLF) = LH1 given by expressions (4.20) setting µi = λ∗i + λ∗n+i, ∀i ∈ P.

4.4.2 Bounding Procedure H2

Procedure H2 is an extension to the PDPTW of a method originally proposed by

Baldacci et al. [16] for the CVRP and it is based on the following theorem.

Theorem 4.2 (Baldacci et al. [16]) Associate penalties µi ∈ R, ∀i ∈ P, and µ0 6 0

with constraints (4.2) and (4.3), respectively. Let wi, ∀i ∈ P, be a non-negative weight
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associated with each pickup vertex i. A feasibleDLF solution u of cost z(DLF(µ)) can be

obtained by means of the following expressions:

ui =wi min
ℓ∈Ri

[(cℓ − µ(Sℓ))/w(Sℓ)] + µi, ∀i ∈ P, (4.26)

u0 =µ0 (4.27)

where w(Sℓ) =
∑

i∈Sℓ

wi and µ(Sℓ) =
∑

i∈Sℓ

µi.

A valid lower bound on problem F is given by maxµ{z(DLF(µ))} and can be com-

puted using subgradient optimization. Let ℓ(i) ∈ R be the index of the route

producing ui in expressions (4.26), and let aij be the number of times that cus-

tomer j ∈ P is visited by the route ℓ(i). It can be shown that a valid subgradient

of the function z(DLF(µ)) at point µ is given by the vector θ computed as follows:

θj =
∑

i∈P

aijwi/w(Sℓ(i)) − 1, ∀j ∈ P, and θ0 =
∑

i∈P

wi/w(Sℓ(i)) −m. (4.28)

Procedure H2 is an iterative method that uses column generation to solve equa-

tions (4.26) and subgradient optimization to compute LH2 = maxµ{z(DLF(µ))}.

H2 is initialized by setting µ = u1 and by generating a subset R ⊆ R contain-

ing the ∆min routes of minimum reduced cost with respect to the DLF solution

u1 obtained by H1, where ∆min is an a-priori defined parameter. Procedure H2

executes an a-priori defined numberMaxt2 of macro iterations, each performing

the following two steps:

1. Solve the Master Problem. The master problem is obtained from LF by replacing

R with R. A near-optimal solution ū of cost z̄ of the master problem is obtained

by an iterative method that performs Maxt3 iterations. At each iteration it

uses expressions (4.26) and subgradient optimization to modify the penalty

vector µ in order to maximize the cost z̄ of the master dual solution ū.

2. Check if the master dual solution ū satisfies all DLF constraints. Generate the largest

subset N of the routes having the most negative reduced cost with respect to

the dual master solution ū and such that |N| 6 ∆a, where ∆a is a parameter
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defined a-priori. If N = ∅ and z̄ is greater than LH2, update LH2= z̄ and

u2 = ū; otherwise, update R = R ∪ N.

The initial route subset R and the subsets N are generated using procedure GENR

described in Section 4.6. The weights wi are computed as wi = max[d0i, d0n+i],

∀i ∈ P.

4.4.3 Bounding Procedure H3

Procedure H3 is a column and cut generation method that computes a lower

bound LH3 as the cost of an optimal solution of problem LSF introduced in Sec-

tion 4.3.3. H3 generates the initial master problem using the dual solution u2

given by H2. The initial master problem LSF is obtained by replacing in LSF the

set R with the subset R containing the routes having the smallest reduced cost

with respect to the dual solution u2 achieved by H2, and by replacing C with the

subset C = ∅.

At a given iteration (say t), H3 computes the optimal primal and dual solu-

tions x̄ and (ū, v̄) of LSF using the simplex algorithm, where v̄ is the dual vector

associated with constraints (4.12), and performs the following operations:

i) generates the subset C ′ ⊆ C of the θ most violated inequalities (4.12), where

θ is an a-priori defined parameter;

ii) generates the largest subset N of the ∆a routes having the largest negative

reduced cost with respect to (ū, v̄).

If N = ∅ and C ′ = ∅, then procedure H3 terminates; otherwise, H3 updates R =

R∪N and C = C∪C ′ and performs a new iteration. The initial route subset R and

the subset N are generated using procedure GENR described in Section 4.6. The

separation of violated inequalities (4.12) is performed by complete enumeration

and is based on the following observation.

Let R(x̄) ⊆ R be the subset of routes corresponding to variables x̄ℓ > 0 in the

current master solution x̄ and let ω̄ij =
∑

ℓ∈R(x̄)∩(Ri∩Rj)

x̄ℓ be the sum of the variables
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corresponding to the routes servicing both the vertices i, j ∈ P. Let us associate

with each request triplet C the weight w(C) =
∑

i,j∈C

ω̄ij. It is easy to observe that

any request triplet C = (i1, i2, i3) such that w(C) > 1 corresponds to a violated

inequality (4.12). Violated inequalities (4.12) can be separated exactly in time

O
(
n3 nB

)
, where nB = |R(x̄)|, simply by computing the values ω̄ij, i, j = 1, . . . , n,

i 6= j, and by enumerating all the request triplets in P.

Let C ′ be the subset of violated inequalities (4.12) separated at a given itera-

tion. In our computational experiments we found computationally convenient to

restrict C ′ in such a way that each request triplet C has at most one vertex in com-

mon with any other triplet in C ′. Moreover, we impose that the the set C ′ cannot

contain more than θ violated inequalities (4.12), where θ is an a-priori defined

parameter. At each iteration the set C ′ is computed as follows.

1. Initialize C ′ = ∅ and let (C1, C2, . . . , Ck̂) be the ordered set of all triplets such

that w(Ck) > 1, k = 1, . . . , k̂ and w(C1) > w(C2) > . . . w(Ck̂).

2. For each k = 1, . . . , k̂ perform the following steps:

(a) If |Ck ∩ C| 6 1, ∀C ∈ C ′, then add Ck to C ′

(b) If |C ′| = θ stop.

The peculiar structure of inequalities (4.12), i.e., being completely defined by a

vertex triplet, allows us to easily lift each inequality every time a new set N of

routes is added to R. Indeed, to lift an inequality (4.12) associated with a request

triple C it suffices to check, for each route ℓ ∈ N, if at least two vertices in C are

visited by the route. This being the case the route ℓ belongs to the set R(C) and

the corresponding inequality (4.12) can be extended accordingly.

In the following we denote by (u3,v3) the optimal dual solution of LSF of cost

LH3, obtained by H3.
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4.5. An Exact Algorithm for the PDPTW

In this section we describe an exact algorithm for solving the PDPTW-o1 that

combines the method proposed by Baldacci et al. [16] for the CVRP with a branch-

and-cut-and-price algorithm. We also describe an exact algorithm for solving the

PDPTW-o2 that uses the same bounding procedures developed for the PDPTW-

o1.

4.5.1 Solving the PDPTW-o1

The exact method is made up of two main phases. In the first phase we execute

in sequence the bounding procedures H1, H2 and H3 to compute an optimal dual

solution (û, v̂) of LSF of cost ẑ(LSF). In the second phase, the algorithm attempts

to generate the subset R̂ ⊆ R of all the routes having a reduced cost smaller than

or equal than the gap z(UB) − ẑ(DLSF), where z(UB) is an upper bound on the

PDPTW-o1. If the size of the set R̂ is below a given threshold (defined as an a-

priori defined parameter ∆max), then the algorithm derives a restricted problem

F̂ from problem F by substituting the set R with its subset R̂ and adding to it all

the constraints C produced by H3. F̂ is then solved using a general purpose inte-

ger programming solver. If R̂ is greater than ∆max, then the algorithm resorts to

branching and turns into a branch-and-cut-and-price algorithm. More precisely,

the exact method performs the following steps:

1. Execute in sequence the bounding procedures H1, H2 and H3. Let (û, v̂) =

(u3,v3), ẑ(DLSF) = LH3 and Ĉ = C.

2. Set gap = z(UB) − ẑ(LSF). Generate the largest subset R̂ of routes whose

reduced cost with respect to the dual solution (û, v̂) is smaller than gap and

such that |R̂| 6 ∆max, where ∆max is an a-priori defined parameter.

3. Define the reduced problem F̂ derived from F by replacing the route set R

with the set R̂ and by adding to F all constraints (4.12) corresponding to the

triplets in Ĉ. We have two cases:
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a) |R̂| < ∆max: solve problem F̂ using a general purpose integer program-

ming solver.

b) |R̂| = ∆max: solve the problem using the branch-and-cut-and-price algo-

rithm described in the next section, where the lower bound at each node

of the enumerative tree is computed using procedure H3.

4.5.2 Branch-and-Cut-and-Price Algorithm for PDPTW-o1

The branch-and-cut-and-price algorithm described in this section solves problem

F by using procedure H3 at each node of the enumerative tree. Given an LSF so-

lution x̄ involving a set of routes R, let ζ̄ij =
∑

ℓ∈Rij
xℓ, ∀(i, j) ∈ A, where Rij ⊆ R

is the subset of routes traversing arc (i, j). When H3 terminates with a fractional

solution x̄ the algorithm selects an arc (i, j) having value ζ̄ij closest to 0.5 (in case

of ties the arc having the smallest modified arc cost dij − u3
j is chosen), and cre-

ates two branches imposing the disjunction ζij = 0 ∨ ζij = 1. The nodes are

processed according to a best bound node selection rule. A possible drawback

of this simple branching strategy is that it can result in a larger number of nodes

explored by the enumerative tree with respect to more sophisticated branching

methodologies. On the other hand, it permits to transfer all the branching condi-

tions to the pricing subproblem simply by removing arcs from the graph G and

does not require that additional constraints are added to the master problem.

The algorithm uses a pool of routes R0 ⊆ R and a pool of cuts C0, which are

initialized by setting R0 = R̂ and C0 = Ĉ. At each node of the enumerative tree

the pools R0 and C0 are used to initialize the initial master problem LSF ofH3. The

route subset R is obtained by extracting from R0 the largest set of routes satisfying

the branching conditions, whereas the subset of triplets C is initialized by setting

C = C0. The route pool R0 and the cut pool C0 are enlarged at each node during

the execution of H3 by setting R0 = R0 ∪ N and C0 = C0 ∪ C ′, where N and C ′ are

the route subset and the cut subset generated at each iteration ofH3, respectively.

Notice that as a result of the branching conditions imposed it is possible that at
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a given node suboptimal routes are generated. To overcome this drawback we

reject all those routes that are dominated by a route in the pool R0.

4.5.3 Solving the PDPTW-o2

It is quite easy to observe that any PDPTW-o2 instance can be transformed into

a PDPTW-o1 instance by adding the fixed cost W to each outgoing arc from the

depot. The resulting problem can then be solved using the exact method de-

scribed for the PDPTW-o1. This strategy, however, can be time consuming be-

cause the relaxation LSF of the resulting PDPTW-o1 problem provides a weak

lower bound when W is very large. In this section, we describe an exact method

for the PDPTW-o2 which attempts to overcome this drawback.

Let mLB and mUB be a lower and an upper bound on the number of vehi-

cles used in any optimal PDPTW-o2 solution, respectively. The proposed ex-

act method solves at most mUB − mLB + 1 PDPTW-o1 instances, each obtained

from the original PDPTW-o2 instance by setting W = 0 and m = κ, with κ =

mLB, . . . ,mUB. With each PDPTW-o1 instance involving m = κ vehicles we asso-

ciate a problem F(κ) and the corresponding relaxation LSF(κ) which are derived

from F and LSF by setting m = κ. The values of mLB and mUB are computed as

follows.

Let z(UB) be an upper bound on the original PDPTW-o2 instance. The value

mUB can be computed as mUB = ⌊z(UB)/W⌋. However, a better estimate of mUB

is obtained by computing a valid lower bound rLB on problem F(⌊z(UB)/W⌋),

and settingmUB = ⌊z(UB)−rLB

W
⌋.

Lower boundmLB can be set equal to the smallest integer κ such that problem

F(κ) has a feasible solution and can be computed as follows. Let LH3(κ) be the

optimal solution cost of relaxation LSF(κ) of F(κ), achieved by procedure H3 (we

assume LH3(κ) = ∞ in case LSF(κ) has no feasible solution). Then, mLB can be

set equal to the smallest integer κ such that LH3(κ) < ∞.

Notice that after computingmUB andmLB, a valid lower bound on the original
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PDPTW-o2 problem can be computed as:

LB0 = min
mLB6κ6mUB

{W × κ+ LH3(κ)}. (4.29)

The proposed exact method iteratively solves problems F(κ), κ = mLB, . . . ,mUB,

but terminates prematurely at iteration κ < mUB if W × (κ − 1) + z∗(F(κ − 1)) <

W × κ + LH3(κ), where z∗(F(κ − 1)) is the optimal solution cost of the integer

problem F(κ − 1). A step-by-step description of the exact method for solving

PDPTW-o2 is given below.

Exact algorithm for solving the PDPTW-o2

1. Compute the lower bound rLB on the routing cost of any PDPTW-o2 solution.

Execute in sequence the bounding procedures H1 and H2 on the PDPTW-o1

instance derived from the PDPTW-o2 by settingW = 0 andm = ⌊z(UB)/W⌋.

Let (u2,v2) be the DLF solution of cost LH2 obtained by H2. Set rLB = LH2.

2. Compute an upper boundmUB on the number of vehicles.

Define mUB = ⌊z(UB)−rLB

W
⌋, where z(UB) is a known upper bound on the

PDPTW-o2.

3. Compute the lower boundmLB on the number of vehicles.

Generate the largest subset R of the ∆min routes having minimum reduced

cost with respect to the DLF solution (u2,v2) achieved at step 1 (∆min de-

fined a-priori). ComputemLB using the following iterative procedure.

(3a) Initialize κ = mUB − 1.

(3b) Let F(κ) be the PDPTW-o1 problem derived from the PDPTW-o2 by

setting W = 0 and m = κ. Use the bounding procedure H3 to solve

relaxation LSF(κ) of problem F(κ) and let LH3(κ) be the lower bound

achieved. Notice that the initial master of H3 corresponds to the route

subset R computed at step 3.
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(3c) If LH3(κ) = ∞ (i.e., F(κ) has no feasible solution) set mLB = κ + 1 and

go to step 4.

(3d) If LH3(κ) < ∞ set κ = κ − 1. If κ = 0 set mLB = 1 and go to step 4;

otherwise return to step (3b).

Compute the lower bound LB0 on the PDPTW-o2 using expression (4.29).

4. Find an optimal PDPTW-o2 solution

For each κ = mLB, . . . ,mUB, execute the following procedure.

(4a) Define û = u3(κ), v̂ = v3(κ), where (u3(κ),v3(κ)) is the dual solution

of LSF(κ) of cost LH3(κ) computed by H3 at step (3b). Let rUB(κ) be a

valid upper bound on F(κ) that is computed as described below. Set

ẑ(LSF) = LH3(κ) and ẑ(UB) = rUB(κ).

(4b) Solve problem F(κ) executing steps 2 and 3 of the exact method for the

PDPTW-o1 described in Section 4.5.1 and let z∗(F(κ)) be the optimal

F(κ) solution achieved. Update z(UB) = min{z(UB),W×κ+ z∗(F(κ))}.

(4c) If W × κ + z∗(F(κ)) 6 W × (κ + 1) + LH3(κ + 1), then stop: the opti-

mal PDPTW-o1 solution found above provides an optimal PDPTW-o2

solution of cost z(UB); otherwise, go to step (4a)

Computing upper bound rUB(κ)

A valid upper bound rUB(κ) on F(κ) is given by rUB(κ) = z(UB)−W×κ. However,

this value can be very high for values of κ smaller thanmUB for those PDPTW-o2

instances having a very large value ofW such as those where the first objective is

to minimize the number of vehicles.

A better method for computing rUB(κ), when κ < mUB, consists in comput-

ing rUB(κ) as an upper bound on the optimal cost of a problem F̂(κ) which is

derived from F(κ) by maximizing objective o1. We compute rUB(κ) by solving a

Lagrangian relaxation L̂Rκ(µ) of F̂(κ) derived from LR(µ) (see Section 4.3.1), re-

placing “min” with “max” in the objective function (4.5). Since z(L̂Rκ(µ)) is a
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valid upper bound on F̂(κ) for any µ, we compute rUB(κ) = min
µ

{z(L̂Rκ(µ))} using

a straightforward adaptation of procedure H1.

4.6. Generating feasible routes

In this section we describe a dynamic programming procedure, called GENR,

that allows us to generate the subsets of feasible routes required by the bounding

procedures described in Section 4.4 and by the exact methods described in Section

4.5.

Let (u ′,v ′) be a dual LSF solution, where dual variables u ′ = (u ′
0, u

′
1, . . . , u

′
n)

are associated with constraints (4.2) and (4.3) and variables v ′ = (v ′1, . . . , v
′

|C′|)

are associated with a subset of constraints (4.12) defined by a subset C ′ ⊆ C of

triplets. The reduced cost c ′ℓ of a route ℓ with respect to the dual solution (u ′,v ′)

is computed as follows:

c ′ℓ = cℓ −
∑

i∈Sℓ

u ′

i − u ′

0 −
∑

C∈C′

ℓ

v ′C,

where C ′
ℓ = {C ∈ C ′ : |C ∩ V(Rℓ)| > 2}.

Given the vectors u ′ and v ′ and two user-defined parameters γ and gap, pro-

cedure GENR generates the largest subset B ⊆ R satisfying the following condi-

tions:

a) max
ℓ∈B

{c ′ℓ} 6 min
ℓ∈R\B

{c ′ℓ}

b) |B| 6 γ

c) max
ℓ∈B

{c ′ℓ} < gap






(4.30)

By appropriately setting parameters γ and gap, procedure GENR can be used to

generate the route subsets required by the bounding procedures described in this

chapter as follows:

• the initial route subset R in procedure H2:

define u ′ = u1, v ′ = 0 and set gap = z(UB) − LH1 and γ = ∆min;
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• the route subset N at Step 2 of H2:

define u ′ = u, v ′ = 0 and set gap = 0 and γ = ∆a;

• the initial route subset R in procedure H3:

define u ′ = u2, v ′ = 0 and set gap = z(UB) − LH2 and γ = ∆min;

• the route subset N in procedure H3:

define u ′ = u, v ′ = v and set gap = 0 and γ = ∆a;

• the route set R̂ required by the exact method of Section 4.5.1:

define u ′ = û, v ′ = v̂, set gap = z(UB) − ẑ(LSF) and ∆ = ∆max.

Procedure GENR is a dynamic programming procedure that is analogous to

Dijkstra’s algorithm on an expanded state-space graph dynamically generated as

follows. Associate with each arc (i, j) ∈ A a modified arc cost d ′
ij defined as:

d ′

ij =






dij − u ′
j if j ∈ P ∪ {0},

dij otherwise,
∀(i, j) ∈ A. (4.31)

The reduced cost c ′ℓ of any route ℓ ∈ R with respect to the dual vectors u ′ and

v ′ can be computed as c ′ℓ =
∑

(i,j)∈A(Rℓ)
d ′

ij −
∑

C∈C′

ℓ
v ′C, where A(Rℓ) denotes the

set of arcs traversed by the route ℓ. Procedure GENR dynamically generates a

state-space graph where each vertex corresponds to a feasible forward path.

4.6.1 Forward and backward paths

A forward path L = (i0, i1, i2, . . . , ih), where i0 = 0, is defined as a directed path

in G starting from the depot, visiting a subset of vertices V(L) ⊆ V , and ending

at vertex e(L) = ih. With each vertex ik ∈ V(L) visited by a forward path L is

associated a load δL
ik

and an arrival time τL
ik

which are computed as follows. Let

τL
i0

= a0 and δL
i0

= 0 and set:

τL
ik

= max
[
aik , τ

L
ik−1

+ tik−1ik

]
,

δL
ik

=
∑

r<k

qir ,





k = 1, . . . , h. (4.32)
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In the following we denote by τ(L) = τL
ih

and q(L) = δL
ih

the arrival time and the

load at the last vertex ih = e(L) of a forward path L, respectively.

Similarly, a backward path L = (ih, ih−1, ih−2, . . . , i0), where i0 = 0, is defined

as a directed path in G that starts from an initial vertex e(L) = ih ∈ G, visits

the subset of vertices V(L), and ends at the depot. A backward path L is similar

to a forward path but it is computed “bottom up”, i.e., starting from the last

vertex i0 (the depot) and traversing the arcs in reverse direction. With each vertex

ik ∈ V(L) of a backward path L are associated an arrival time τ̄L̄
ik

and a load δ̄L̄
ik

that are defined as follows. Let τ̄L̄
i0

= b0 and δ̄L̄
i0

= 0 and set:

τ̄L̄
ik

= min
[
bik , τ̄

L̄
ik−1

− tikik−1

]
,

δ̄L̄
ik

=
∑

r<k

−qir ,





k = 1, . . . , h. (4.33)

In the following τ(L) = τ̄L̄
ih

and q(L) = δ̄L̄
ih

denote, respectively, the arrival time

and the load at the initial vertex ih = e(L) of a backward path L.

The reduced cost of any (forward or backward) path Lwith respect to solution

(u ′,v ′) is defined as c ′ℓ =
∑

(i,j)∈A(L)d
′
ij −

∑
C∈C′

L
v ′C, where A(L) is the set of arcs

traversed by L, C ′
L = {C ∈ C ′ : C ∩ V(L) > 2}, and the modified arc costs {d ′

ij} are

computed using expression (4.31).

Feasible paths

Let P(L) = V(L) ∩ P and D(L) = V(L) ∩ D be the set of pickup vertices and

delivery vertices visited by a path L, respectively. For any path L and for each

vertex i ∈ V(L), we denote by Γ(L, i) and Γ−1(L, i) the sets of predecessor and

successor vertices of vertex i in L, respectively.

A path L satisfies forward precedence constraints if for each delivery vertex i ∈

D(L) the corresponding pickup i − n is visited before i, that is, i − n ∈ Γ−1(L, i),

∀i ∈ D(L). Similarly, a path L satisfies backward precedence constraints if for each

pickup vertex i ∈ P(L) the corresponding delivery n + i is visited after i, that is,

n+ i ∈ Γ(L, i), ∀i ∈ P(L).
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Given a path L, let the sets P̃(L) and D̃(L) be the sets of requests visited by L

for which backward precedence constraints and forward precedence constraints

are not satisfied, that is, P̃(L) = {i ∈ P : i ∈ P(L) and n + i 6∈ Γ(L, i)} and D̃(L) =

{i ∈ P : n+ i ∈ D(L) and i 6∈ Γ−1(L, i)}.

A forward path L is feasible if it is simple and satisfies time window constraints

(i.e., ai 6 τL
i 6 bi, ∀i ∈ V(L)), capacity constraints (i.e., 0 6 δL

i 6 Q, ∀i ∈ V(L)),

and forward precedence constraints (i.e., D̃(L) = ∅).

Similarly, a backward path L is feasible if it simple and satisfies time window

constraints (i.e., ai 6 τ̄L̄
i 6 bi, ∀i ∈ V(L)), capacity constraints (i.e., 0 6 δ̄L̄

i 6 Q,

∀i ∈ V(L)), and backward precedence constraints (i.e., P̃(L) = ∅).

4.6.2 Description of procedure GENR

Procedure GENR is based on the following observations.

O1 : any route ℓ ∈ Ri passing through vertex i is the combination of a feasible

forward path L and a feasible backward path L such that:

(a) e(L) = e(L) = i,

(b) τ(L) 6 τ(L),

(c) V(L) ∩ V(L) = {0, i},

(d) D̃(L) = P̃(L ′), where L ′ is obtained from L removing the last vertex e(L);

O2 : any feasible forward path L ending at a vertex e(L) = i ∈ D and such that

P̃(L) = ∅ and τi + ti0 6 b0 can be extended to a feasible route Rℓ = L ∪ {(i, 0)}

having reduced cost c ′(ℓ) = c ′(L) + d ′
i,0;

O3 : let LB(L) be a lower bound on the reduced cost of any route that contains a

forward path L. Any forward path L such that LB(L) > gap cannot be part of

a route in the set B that satisfies conditions (4.30).
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Let T be a set of temporary feasible forward paths that is initialized by setting

T = {L0}, where L0 represents the initial empty path such that e(L0) = 0, τ(L0) =

a0 and q(L0) = 0. The route set B is initialized by setting B = ∅.

At each iteration of algorithm GENR the forward path L∗ ∈ T having the

smallest lower bound value (i.e., such that LB(L∗) = min{LB(L) : L ∈ T}) is ex-

tracted from the set T. If e(L∗) = 0, then path L∗ represents a feasible route and

it is inserted in the set B; otherwise, it is expanded. The expansion of a forward

path L creates 2n new paths that are derived by extending L with arc (e(L), j),

∀j ∈ V \ {e(L)}. All such paths that are not feasible are discarded.

Each feasible path L ′ that is obtained by expanding L∗ and such that LB(L ′) <

gap is then added to the set T. The reduced cost c ′(L ′) of each path L ′ is computed

by setting:

c ′(L ′) = c ′(L∗) + d ′

e(L∗)e(L′) +
∑

C∈C′

L ′
\C′

L∗

v ′C. (4.34)

Notice that the set C ′
L′\C ′

L∗ corresponds to the set of request triplets having exactly

two vertices in common with L ′, one of which is e(L ′). Let C ′
i ⊆ C ′ be the subset

of triplets involving a request i ∈ P. Then, the set C ′
L′ \ C ′

L∗ can be computed in

time O(|C ′

e(L′)|) by taking all the triplets in the set C ′

e(L′).

Procedure GENR terminates when either T = ∅ or |B| = γ. Since the size of

the set T is exponential, we impose that the size of the set T cannot exceed an

a-priori defined limit NSTATB. If |T| becomes greater than NSTATB, procedure

GENR terminates prematurely.

4.6.3 Dominance rules

A significant speed-up in procedure GENR can be obtained by removing domi-

nated paths from the set T. A dominated path is either a path that cannot lead

to a feasible route or a path such that any route containing it cannot be part of

any optimal solution. In general, detecting dominated paths can be very time

consuming and the computational trade-off between the speed-up resulting from
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the reduced number of paths and the effort required to identify dominated paths

must be carefully considered.

Let d ′(L) =
∑

(i,j)∈Ld
′
ij be the cost of path L with respect to the modified costs

{d ′
ij}. In our computational experiments we use the following dominance rules

proposed by Dumas et al. [54] and Ropke and Cordeau [106].

Dominance rule 1: a forward path L1 dominates a forward path L2 if e(L1) =

e(L2), V(L1) = V(L2), τ(L1) 6 τ(L2) and d ′(L1) 6 d ′(L2);

Dominance rule 2: a forward path L cannot lead to any feasible route if τe(L) +

sht(e(L), j) > bj for any delivery vertex j such that j−n ∈ P̃(L), where sht(e(L), j)

is the shortest traveling time between vertices e(L) and j.

The following dominance rule 3 is used by GENR only in generating the sets N

in H2 and H3.

Dominance rule 3: Let L1 and L2 be two forward paths and let ℓ1 and ℓ2 be the

routes of minimum reduced cost c ′ℓ1
and c ′ℓ2

containing L1 and L2, respectively.

If arc costs {d ′
ij} satisfy the condition d ′

ij + d ′
jk > d ′

ik, ∀i, k ∈ V , ∀j ∈ D, and

e(L1) = e(L2), P̃(L1) ⊆ P̃(L2), P(L1) ⊆ P(L2), τ(L1) 6 τ(L2) and d ′(L1) 6 d ′(L2),

then L1 dominates L2, because c ′ℓ1
6 c ′ℓ2

.

Ropke and Cordeau [106] prove dominance rule 3 in case C ′
L1

= C ′
L2

= ∅,

that is, when d ′(L) = c ′(L) for any feasible forward path L. In our case this is

not true because of clique inequalities. However, extending the proof to our case

is straightforward. The validity of dominance rule 3 directly follows from the

following proposition.

Proposition 5 Let L1 and L2 be two feasible forward paths satisfying the conditions

stated by dominance rule 3 and let ℓ2 be the feasible route of minimum reduced cost c ′ℓ2

that contains L2. Then, there exist a route ℓ1 of cost c ′ℓ1
that contains L1 and such that

c ′ℓ1
6 c ′ℓ2

.
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Proof: Let L2 be the feasible backward path that is obtained by removing the

forward path L2 from route ℓ2 (that is, L2 is such that when appended after L2

gives route ℓ2). Consider a backward path L1 that is obtained from L2 by removing

all delivery vertices whose corresponding pickup is in P̃(L2) \ P̃(L1), and let ℓ1

be the route obtained by appending L1 after L1. It is quite obvious that ℓ1 is a

feasible route as travel times satisfy the triangle inequality and ℓ1 services the

same requests of ℓ2 except those in P̃(L2) \ P̃(L1). Notice that, since P(L1) ⊆ P(L2)

and P(L1) = P(L2), we have Sℓ1
⊆ Sℓ2

and therefore C ′
ℓ1
⊆ C ′

ℓ2
. Using the definition

of costs {d ′
ij} the reduced cost c ′ℓ1

of route ℓ1 can be written as:

c ′ℓ1
= d ′(L1) + d ′(L1) −

∑

C∈C′

ℓ1

v ′C (4.35)

By hypotheses d ′(L1) 6 d ′(L2) and since d ′
ij + d ′

jk > d ′
ik, ∀i, k ∈ V , ∀j ∈ D, we

also have d ′(L1) 6 d ′(L2). Moreover, as C ′
ℓ1

⊆ C ′
ℓ2

and v ′C 6 0, ∀C ∈ C ′, we have
∑

C∈C′

ℓ1

v ′C >
∑

C∈C′

ℓ2

v ′C. Therefore, from expression (4.35) we get:

c ′ℓ1
6 d ′(L2) + d ′(L2) −

∑

C∈C′

ℓ2

v ′C = c ′ℓ2
(4.36)

�

Ropke and Cordeau [106] also provide a generalization of dominance rule 3

that is obtained by replacing the set P(L) with a superset U(L) ⊇ P(L) that con-

tains, in addition to P(L), all the pickup vertices that cannot be visited by any

expansion of path L within their time window. Dominance rule 3 is a generaliza-

tion of rule 1 and is therefore stronger. However, given a path L2, finding all the

paths L1 ∈ T satisfying the conditions P̃(L1) ⊆ P̃(L2) and P(L1) ⊆ P(L2) can be

very time consuming. Within GENR we use dominance 3 to test if a path L2 can

be fathomed only when L2 is generated and we only look for dominating paths

L1 that are sub-paths of L2.

Notice that proposition 5 ensures that using dominance rule 3 does not pre-

vent GENR to generate the least reduced cost route of the set B defined by ex-

pressions (4.30). However, using this rule does not guarantee that all the routes
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satisfying conditions (4.30) are generated. Therefore, dominance rule 3 cannot be

used when generating the final route set R̂ in the exact method. Moreover, using

this rule could slow down the convergence of the column generation procedure

by preventing some optimal routes to be generated at earlier iterations. Finally,

since travel times must satisfy the condition d ′
ij+d

′
jk > d ′

ik, ∀i, k ∈ V , ∀j ∈ D, dom-

inance rule 3 cannot be used within a branch-and-bound scheme that branches on

arcs. In our algorithm we only use dominance rule 3 when computing the lower

bounds LH2 and LH3 on PDPTW-o1 problems and when computing lower bound

LB0 on PDPTW-o2 problems.

4.6.4 Computing Lower Bound LB(L)

In this section we describe two methods for computing the lower bound LB(L)

associated with a forward path L. These methods are based on two different

relaxations of the backward paths that are combined with L to derive not neces-

sarily feasible routes. The first relaxation is used for those PDPTW instances that

are loosely capacity constrained, that is, when the ratio Q/qmin is large, where

qmin = min
i∈P

{qi}. The second relaxation dominates the first one but it is time

consuming when the ratio Q/qmin is large. In our computational experiments

we found computationally convenient to use the second relaxation only when

Q/qmin 6 4.

Relaxation based on (t, i)-paths

The first method is based on a relaxation of the backward paths called backward

(t, i)-path. A backward (t, i)-path is a not-necessarily feasible backward path inG

that starts from vertex i ∈ V at time ai 6 t 6 bi, ends at the depot 0, and satisfies

time window constraints.

Let f̄(t, i) be the cost of the least cost backward (t, i)-path starting from vertex

i at time twith respect to the modified arc costs (4.31), and let π̄(t, i) be the vertex

just after i. Moreover, let ḡ(t, i) be the cost of the least cost backward (t, i)-path
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starting from vertex i at time t and such that the vertex after i is different from

π̄(t, i).

The functions f̄(t, i) and ḡ(t, i) can be computed in pseudo-polynomial time

(i.e., in time O(T n2), where T = b0 − a0) using a dynamic programming proce-

dure that is an extension of a method proposed in Christofides et al. [33] for the

CVRP. This method also allows to impose the restriction that a backward (t, i)-

path cannot contain loops of two consecutive vertices. In computing the functions

f̄(t, i) and ḡ(t, i) we ignore the dual variables of inequalities (4.12). The dynamic

programming recursion to compute functions f̄(t, i) and ḡ(t, i) is a follows.

f̄(t, i) = min
j∈V






f̄(τ̄(ijt), j) + d ′
ij, if i 6= π̄(τ̄(ijt), j)

ḡ(τ̄(ijt), i) + d ′
ij, otherwise

where τ̄(ijt) = max{aj, t + tij}, and the functions f̄(t, i) and ḡ(t, i) are initialized

for each vertex i ∈ V by setting:

f̄(t, i) =






d ′
i0, t = ai, . . . , bi

∞, otherwise

ḡ(t, i) = ∞, t = a0, . . . , b0

Notice that since backward (t, i)-paths are a relaxation of feasible backward

paths and the duals of inequalities (4.12) are non-positive, the value f̄(t, i) repre-

sents a lower bound on the reduced cost of any feasible backward path starting

in i at a time greater than or equal to t. Therefore a lower bound LB1(L) on the re-

duced cost of any route containing a forward path L can be computed as follows.

LB1(L) = c ′(L) + min
τ(L)6t6be(L)






f̄(t, e(L)) if π̄(t, i) 6∈ V(L),

ḡ(t, e(L)) otherwise.
(4.37)

The computation of LB1(L) within procedure GENR by means of expression (4.37)

can be time consuming since the value LB1(L) must be computed each time a new

path L generated. A better method for computing LB1(L) consists of avoiding the
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minimization required in the right-hand-side of expression (4.37) as follows. Let

F(t, i) be the cost of the least cost backward (t, i)-path starting from i at a time

greater than or equal to t and let χ(t, i) be the vertex right after i in such path.

Similarly, let G(t, i) be the cost of the least cost (t, i)-path starting from i at a time

greater than or equal to t and such that the vertex after i is not equal to χ(q, i).

Functions F(t, i), χ(t, i) and G(t, i) can be computed before starting GENR using

functions f̄(t, i), ḡ(t, i) and π̄(t, i) as follows:

F(t, i) = min
t6t′6bi

{f̄(t ′, i)}, ∀i ∈ V, ai 6 t 6 bi, (4.38)

and χ(t, i) = π̄(t∗, i), where t∗ is the value of t giving the minimum in expression

(4.38).

G(t, i) = min
t6t′6bi






f̄(t ′, i), if π̄(t ′, i) 6= χ(t, i),

ḡ(t ′, i), otherwise,
∀i ∈ V, ai 6 t 6 bi. (4.39)

Using expressions (4.38) and (4.39) we have:

LB1(L) = c ′(L) +






F̄(t, e(L)), if χ(t, i) 6∈ V(L),

Ḡ(t, e(L)), otherwise.
(4.40)

It is straightforward to extend the above recursion to compute forward (t, i)-

paths and the corresponding functions f(t, i) and g(t, i).

Relaxation based on (D̃, t, i)-paths

(D̃, t, i)-paths are a stronger relaxation than (t, i)-paths that were introduced by

Dumas et al. [54]. This relaxation corresponds to a Shortest Path Problem with

Time Windows, Capacity, and Pickup and Delivery which is also used in Ropke

and Cordeau [106] and in Dumas et al. [54] as a pricing problem to generate non

elementary routes.

(D̃, t, i)-paths are obtained from feasible backward paths by relaxing the re-

quirement that the path must be simple. More precisely a backward (D̃, t, i)-

path is a not-necessarily simple feasible backward path L that starts from i at
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time t and such that D̃(L) = D̃ (i.e., L visits the deliveries of requests D̃ with-

out having visited before their pickups). Moreover a backward (D̃, t, i)-path

must satisfy the condition that after visiting a delivery vertex the same deliv-

ery is not visited again before the corresponding pickup. This condition is triv-

ially satisfied by any elementary backward path and, in general, forbids loops

of two consecutive vertices. In Figure 4.1 it is shown a backward (D̃, t, i)-path

L = (1, n+ 3, n+ 2, n+ 1, 3, n+ 3, 0) with D̃ = {2, 3} and i = 1.

n+ 1

n+ 3

n+ 2

3

0 1

Figure 4.1: Example of (D̃, t, i)-path with D̃ = {2, 3}

Consider any feasible forward path L and let L ′ be the sub-path which is ob-

tained from L removing the last vertex e(L). Combining L with any (D̃, t, i)-path

L such that D̃ = P̃(L ′), i = e(L) and t > τ(L) gives a not necessarily simple circuit

in G satisfying pairing, precedence, capacity and time window constraints. Let

f(D̃, t, i) be the cost of the least cost (D̃, t, i)-path, with respect to the modified arc

costs (4.31), starting from i at time t. Then, a lower bound LB2(L) on the reduced

cost of any route containing L can be computed as follows.

LB2(L) = c ′(L) + min
τ(L)6t6be(L)

D̃=P̃(L′)

{f(D̃, t, e(L))}. (4.41)

The functions f(D̃, t, i) are computed using a backward dynamic programming

procedure where each vertex of the state-space graph corresponds to a backward

(D̃, t, i)-path L. In computing the reduced cost c ′(L) we ignore the dual contribu-

tions of the clique inequalities (4.12), that is, the reduced cost c ′(L) is defined as

c ′(L) =
∑

(i,j)∈A(L)d
′
ij. The recursion is similar to the one described in Section 4.6.2
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except that it is backward and the set of vertices V(L) associated with a path L is

replaced with the set D̃(L). A step-by-step description of the dynamic program-

ming procedure used for computing functions f(D̃, t, i), called GENB, is given in

Section 4.6.5.

Notice that, since (t, i)-paths are a relaxation of forward paths, a lower bound

LB(L) on the reduced cost of the least cost circuit containing a (D̃, t, i)-path L can

be computed using functions f(t, i) as follows:

LB(L) = c ′(L) + min
a

e(L)
6t6τ(L)

{f(t, e(L))} (4.42)

Therefore in computing functions f(D̃, t, i), any (D̃, t, i)-path L such that LB(L) >

gap can be fathomed as, for any feasible forward path L, LB(L) > gap implies

c ′(L) + c ′(L) > gap.

Lower bound LB2 is stronger than LB1 but computing functions f(D̃, t, i) can

be time consuming as, for any t, i and D̃, the number of (D̃, t, i)-paths grows

exponentially with |D̃|. However, the definition of (D̃, t, i)-path implies that an

upper bound on the value |D̃| can be computed as Q/qmin. Therefore, the ratio

Q/qmin can be used as an estimate of the computing time required to compute

functions f(D̃, t, i).

4.6.5 Dynamic programming algorithms GENR and GENB

In this Section we give a step-by-step description of the dynamic programming

algorithms GENR and GENB that are used to compute feasible routes and back-

ward (D̃, t, i)-paths. Both algorithms use a set T of temporary feasible paths.

Procedure GENB uses a straightforward adaptation of dominance rules 1 and

2 described in Section 4.6.3. For the sake of completeness we report here these

rules.

Dominance rule 1 ′: a backward (D̃, t, i)-path L1 dominates a backward (D̃, t, i)-

path L2 if e(L1) = e(L2), D̃(L1) = D̃(L2), τ(L1) > τ(L2) and d ′(L1) 6 d ′(L2);
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Dominance rule 2 ′: Let sht(i, j) be the shortest traveling time between vertices

i and j. A backward (D̃, t, i)-path L can be fathomed if τe(L) − sht(j, e(L)) < aj

for any pickup vertex j ∈ D̃(L).

Step-by-step description of GENR

Step 1 Let L0 = (0) be the empty path containing only the depot. Set T = {L0},

c ′(L0) = 0, e(L0) = 0, τ(L0) = a0 and q(L0) = 0. Compute lower bound

LB(L0) as described in Section 4.6.4. Initialize B = ∅.

Step 2 If T = ∅, then Stop.

Step 3 Let L∗ ∈ T be such that LB(L∗) = min[LB(L) : L ∈ T]. Update T = T \ {L∗}.

Step 4 If e(L∗) = 0 and L∗ 6= L0 then:

• Update B = B ∪ {L∗}. If |B| = γ then stop, otherwise return to step 2.

Step 5 Let i = e(L∗). For every path Lj obtained by appending arc (i, j) at the end

of L∗, ∀j ∈ V \ V(L∗), repeat the following Step 6.

Step 6 Compute τ(Lj) = max[aj, τ(L
∗) + tij] and q(Lj) = q(L∗) + qj. Compute the

cost c ′(Lj) using expression (4.34) and the lower bound LB(Lj) as described

in Section 4.6.4. Test if the expanded path Lj must be rejected because of

one of the following tests:

A) Feasibility test. If Lj is not a feasible forward path, then reject it.

B) Lower bound test. If LB(Lj) > gap then reject path Lj.

C) Dominance test. Check if Lj is dominated according to dominance rules

1, 2 and 3, described in section 4.6.3.

If Lj is not rejected by tests A, B or C, then remove from T any path L

that is dominated by Lj according to dominance rule 1. (i.e., such that
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e(L) = e(Lj), V(L) = V(Lj), d
′(L) > d ′(Lj) and τ(L) > τ(Lj)).

If |T| < NSTATB then insert Lj in T, otherwise Stop.

Step 7 Return to Step 2.

Step-by-step description of GENB

Step 1 Let L0 = (0) be the empty path containing only the depot. Set T = {L0},

c ′(L0) = 0, e(L0) = 0 τ(L0) = b0 and q(L0) = 0. Compute lower bound

LB(L0) using expression (4.42).

Step 2 If T = ∅, then Stop.

Step 3 Let L
∗
∈ T be such that LB(L

∗
) = min[LB(L) : L ∈ T]. Update T = T \ {L

∗
}

and set f(D̃(L
∗
), τ(L

∗
), e(L

∗
)) = c ′(L

∗
).

Step 4 Let i = e(L
∗
). For every path Lj obtained by appending arc (j, i) at the

beginning of L
∗
, ∀j ∈ D ∪ D̃(L

∗
), repeat the following Step 5.

Step 5 Compute τ(Lj) = min[bj, τ(L
∗
) − tji] and q(Lj) = q(L

∗
) − qj. Compute

the cost c ′(Lj) = c ′(L
∗
) + d ′

ji and the lower bound LB(Lj) using expression

(4.42). Compute the set D̃(Lj) as follows:

D̃(Lj) =






D̃(L
∗
) \ {j} if j ∈ D̃(L

∗
),

D̃(L
∗
) ∪ {j− n} if j ∈ D.

(4.43)

Test if the expanded path Lj must be rejected because of one of the follow-

ing tests:

A) Feasibility test . If path Lj violates time window, capacity or backward

precedence constraints then reject path Lj. If j ∈ D and j − n ∈ D̃(L
∗
)

then reject path Lj.

B) Lower bound test. If LB(Lj) > gap then reject path Lj.
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C) Dominance test. Check if Lj is dominated according to dominance rules

1 ′ and 2 ′.

If Lj is not rejected by tests A, B or C, then remove from T any path L

that is dominated by Lj according to dominance rule 1’. (i.e., such that

e(L) = e(Lj), D̃(L) = D̃(Lj), d
′(L) > d ′(Lj) and τ(L) 6 τ(Lj)).

If |T| < NSTATB then insert Lj in T, otherwise Stop.

Step 6 Return to Step 2.

4.7. Computational Results

All the algorithms described in this chapter were coded in Fortran 77 and com-

piled with the Intel Fortran 10.1 compiler. CPLEX 11.0 was used as the LP solver

in procedure H3 and as the integer programming solver in the exact method. All

the experiments were performed on an Intel Xeon E5310 Workstation clocked at

1.6 GHz with 8 Gb RAM running Windows Server 2003 Enterprise x64 Edition.

In our computational experiments we considered the following two sets of

PDPTW instances from the literature that were also considered by Ropke and

Cordeau [106].

a) Class 1 instances. Class 1 instances were introduced in Ropke and Cordeau

[106] and correspond to randomly generated PDPTW-o2 problems with up

to 75 requests where the primary objective consists of minimizing the num-

ber of vehicles used to service the requests. We refer the reader to Ropke

and Cordeau [106] for a detailed description of the characteristics of these in-

stances. Class 1 instances are further partitioned into 4 subclasses with respect

to time windows width and vehicle capacity, called AA, BB, CC and DD. All

these instances are publicly available at http://www.diku.dk/ ˜ sropke/ .

b) Class 2 instances. The second class of instances considered in this chapter cor-

responds to a subset of the instances introduced by Li and Lim [83]. These
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instances are PDPTW-o1 problems, derived from the Solomon VRPTW data

set [see 115], involving approximately 100 requests. Class 2 instances are di-

vided into three subclasses, LR, LC and LRC (identified by the first three let-

ters in each instance name) with respect to the customer distribution. The LC

instances have a clustered distribution of customers, LR instances have a ran-

dom distribution of customers and LRC instances are a mix of clustered and

randomly distributed customers.

We also report computational results on 6 bigger instances involving approx-

imately 500 requests and tight time windows. Class 2 instances are publicly

available at http://www. top.sintef.no/ .

For all the instances we compute the travel cost matrix using real-valued Eu-

clidean distances, that is, each entry {dij}, (corresponding to the travel cost as-

sociated with arc (i, j)), is computed by setting dij =
√
x2

i + y2
i , where xi and yi

represent the planar coordinates of vertex i ∈ V . All travel times are set equal

to the corresponding travel cost rounded down to the 3rd decimal digit. Several

preprocessing rules for tightening time windows and remove arcs that cannot be

in a feasible solution of the PDPTW have been described by Dumas et al. [54],

Cordeau [36] and Desrochers et al. [51]. All these rules have been implemented

and used to obtain the computational results reported in this section.

Based on the results of several preliminary experiments to identify good pa-

rameter settings for our method, we decided to use the following:

• in procedure H1: Maxt1 = 300, ǫ = 1.5;

• in procedure H2: Maxt2 = 30, ǫ = 0.3, Maxt3 = 100, ∆min = 5, 000 and

∆a = 400;

• in procedure H3: ∆a = 500 for Class 1 instances, ∆a = 200 for Class 2

instances, ∆min = 20, 000 and θ = 20;

• in order to avoid out-of-memory errors, we impose that the size of the final

route set R̂ cannot contain more than ∆max = 105 routes, and in procedure
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GENR we set NSTATB = 50× 106.

In our preliminary computational experiments we found that on most Class 1

instances adding inequalities (4.12) permitted only a slight increase of the lower

bound quality at the root node, but resulted in a significant increase in the com-

puting time spent by procedures H3 and GENR. Therefore, we decided to use

inequalities (4.12) only on Class 2 instances.

Tables 4.2 – 4.5 report the results obtained by the new exact method and by

the branch-and-cut-and-price algorithm of Ropke and Cordeau [106] on Class 1

instances. Tables 4.6 – 4.9 report the results obtained on Class 2 instances. A time

limit of 36, 000 seconds is imposed to the exact method described in this paper,

whereas a time limit of 7, 200 seconds was used for the branch-and-cut-and-price

of Ropke and Cordeau. Tables 4.2 – 4.9 report the following columns:

z(UB): best upper bound value available in the literature;

z∗: cost of the best solution found by our exact algorithm; values in bold

indicate an improvement of the best known upper bound in the liter-

ature;

%LBRC: percentage ratio of lower bound LBRC obtained by Ropke and Cordeau

at the root node, computed as 100.0 LBRC/z
∗;

tRC: total computing time in seconds spent by Ropke and Cordeau;

tTOT total computing time in seconds spent by the exact method;

Nodes: total number of nodes of the exact algorithms;

%LHx: percentage ratio of lower bound LHx at the root node achieved by

procedure Hx on PDPTW-o1 instances;

%LB0: percentage ratio of the best lower bound LB0 at the root node, achieved

on PDPTW-o2 instances;
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mUB,mLB: upper and lower bound on the number of vehicles in PDPTW-o2 in-

stances;

tLB: total computing time in seconds to compute the lower bound at the

root node, i.e. the sequence LH1, LH2 and LH3 for PDPTW-o1 in-

stances and LB0 for PDPTW-o2 instances (see Section 4.5.3);

|R̂|: total number of routes in the final route subset;

%Opt: percentage ratio of the best lower bound achieved by the exact method,

a value of 100.000 indicates that the algorithm terminates with an op-

timal solution.

An entry tl under columns tRC and tTOT denotes that the algorithm terminates af-

ter reaching the imposed time limit. Moreover the line after each subclass reports

the average values of %LBRC, %LB0, %LH3, tLB, tRC and tTOT computed over all

subclass instances solved within the imposed time limit by both algorithms.

Finally, Tables 4.10 and 4.11 report a summary of the computational results

presented in Tables 4.2 – 4.9 divided by class. In each table we report for each

subclass:

• the number of instances (#prob.);

• the average percentage ratio of the best lower bound at the root node com-

puted over all instances solved within the imposed time limit by both algo-

rithms (%LB);

• the number of instances solved to optimality (#Opt);

• the average computing time in second over all instances solved within the im-

posed time limit by both algorithms (Time).

The results reported in Tables 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8 and 4.9 for the branch-

and-cut-and-price algorithm of Ropke and Cordeau are, on each instance, the

best achieved by the algorithm using the pricing procedures SP1 and SP2. All the

computing times reported for the algorithm of Ropke and Cordeau are relative
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to an AMD Opteron 250 computer (2.4 GHz) running Linux. In order to allow a

fair comparison between the running times of our exact method and the branch-

and-cut-and-price algorithm of Ropke and Cordeau we used the CPU2000 bench-

marks, reported by the Standard Performance Evaluation Corporation (SPEC

2005), to compare the speed of the machines used to run the two algorithms.

These benchmark are publicly available at http://www.spec.org/cpu/

results/ . Table 4.1 reports the integer and floating point benchmark scores,

together with a normalized speed value, for the CPUs used to run the algo-

rithms compared in this section. According to Table 4.1 we estimate that the exact

method described in this chapter is run on a computer which is approximately 5-

10% faster than that of Ropke and Cordeau.

Table 4.1: Comparison of computer speed

Author(s) CPU SPECint SPECfp Norm (a)

This thesis Intel Xeon E5310 1,680 1,619 1.00

1.6 GHz

Ropke and AMD Opteron 250 1,417 1,700 0.94

Cordeau (2009) 2.4 Ghz

(a)Normalized CPU speed with respect to the average SPECint and SPECfp

The results on Class 1 instances reported in Tables 4.2, 4.3, 4.4 and 4.5 indi-

cate that both the new lower bounds and the new exact method (see Section 4.5)

proposed in this thesis are superior to the lower bound LBRC and the branch-and-

cut-and-price of Ropke and Cordeau [106].

Table 4.10 shows that the new exact algorithm is on average 9 times faster on

PDPTW-o2 instances and solves 9 problems previously unsolved. Notice that our

method can solve all but one instances of Class 1 and produces for the unsolved

instance a lower bound that is close to the upper bound. Moreover, it finds for

problem DD60 an optimal solution with 3 vehicles when the previous best known
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upper bound involved 4 vehicles.

Tables 4.6 – 4.9 show that the proposed exact method outperforms the branch-

and-cut-and-price algorithm of Ropke and Cordeau on Class 2 instances being on

average 8 times faster. Moreover, it can solve for the first time 6 problems of Class

2 previously unsolved.

4.8. Summary

In this chapter we studied the pickup and delivery problem with time windows

(PDPTW), where a given fleet of vehicles of identical capacity located at a central

depot must service a set of customers requests at minimum cost, while satisfying

time window, capacity, pairing and precedence constraints. We considered two

variants of the problem, called PDPTW-o1 and PDPTW-o2, which differ for the

objective function to be minimized.

In the PDPTW-o2 it is required to minimize first the number of vehicles and

second the sum of route costs. In the PDPTW-o1, instead, it is required to min-

imize the route costs only. We developed an exact algorithm for the PDPTW-o1

that is based on a set partitioning formulation involving an exponential num-

ber of variables. Three bounding procedures are used to compute different dual

solutions whose cost provides a valid lower bound on the problem. The exact

method attempts to generate a reduced problem containing only variables hav-

ing reduced cost smaller than the gap between a known upper bound and the best

lower bound achieved by the algorithm. If the resulting problem is of moderate

size it is solved by an integer programming solver; otherwise, a branch-and-cut-

and-price algorithm is used to find an optimal solution. Finally, we described an

exact algorithm for the PDPTW-o2 that decomposes the original PDPTW-o2 in-

stance into a number of PDPTW-o1 instances each involving a different number

of vehicles. The computational results on test problems from the literature show

that the proposed algorithms outperform a recent branch-and-cut-and-price al-

gorithm from the literature on both PDPTW-o1 and PDPTW-o2 problems. The
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proposed algorithms are on average faster on the instances under consideration

and can solve for the first time 15 instances previously unsolved.

Table 4.2: Class 1 instances: subclass AA

Class 1 instances Ropke and Cordeau Our Method

Lower bounds Exact algorithm

Name zUB z∗ %LBRC Nodes tRC mLB mUB %LB0 tLB |R̂| Nodes %Opt tTOT

AA30 31,119.1 31,119.1 84.126 3 6.5 3 3 99.998 3.2 278 – 100.000 3.2

AA35 31,299.8 31,299.8 84.447 5 15.9 3 3 99.961 5.4 ∆max 38 100.000 24.2

AA40 31,515.9 31,515.9 100.000 1 13.4 3 3 99.970 6.6 ∆max 18 100.000 26.1

AA45 31,759.8 31,759.8 100.000 1 15.9 3 3 100.000 10.2 – – 100.000 10.2

AA50 41,775.0 41,775.0 81.648 7 72.0 4 4 99.960 9.6 ∆max 14 100.000 97.6

AA55 41,907.8 41,907.8 88.272 3 65.6 4 4 99.997 9.6 1060 – 100.000 9.7

AA60 42,140.7 42,140.7 92.291 5 235.7 4 4 99.971 24.0 ∆max 24 100.000 91.1

AA65 42,250.2 42,250.2 94.724 9 349.5 4 4 99.975 27.5 ∆max 10 100.000 72.5

AA70 42,452.3 42,452.3 97.196 75 2,477.5 4 4 99.947 23.0 ∆max 200 100.000 438.2

AA75 52,472.7 52,461.6 82.358 188 tl 5 5 99.981 357.2 ∆max 108 100.000 6,442.4

Average 91.412 361.3 99.975 13.2 85.8

Table 4.3: Class 1 instances: subclass BB

Class 1 instances Ropke and Cordeau Our Method

Lower bounds Exact algorithm

Name zUB z∗ %LBRC Nodes tRC mLB mUB %LB0 tLB |R̂| Nodes %Opt tTOT

BB30 31,086.3 31,086.3 73.257 3 6.0 3 3 100.000 2.5 – – 100.000 2.5

BB35 31,281.2 31,281.2 86.564 5 18.0 3 3 99.993 5.0 881 – 100.000 5.1

BB40 31,493.4 31,493.4 96.224 3 18.9 3 3 99.996 3.9 9702 – 100.000 4.8

BB45 41,555.1 41,555.1 78.823 9 46.3 4 4 99.994 6.9 2991 – 100.000 7.2

BB50 41,701.0 41,701.0 86.160 11 159.9 4 4 99.994 6.3 7569 – 100.000 9.6

BB55 41,885.7 41,885.7 94.976 3 55.8 4 4 100.000 8.2 – – 100.000 8.2

BB60 62,420.1 62,420.1 87.994 27 181.7 6 6 99.995 9.9 ∆max 14 100.000 17.6

BB65 62,639.1 62,639.1 89.259 25 294.8 6 6 99.992 14.1 ∆max 40 100.000 44.0

BB70 62,951.0 62,951.0 97.755 139 1,839.4 6 6 99.939 13.4 ∆max 108 100.000 418.1

BB75 63,127.5 63,127.5 98.582 265 tl 6 6 99.822 17.7 ∆max 29 99.892 1,055.3 a

Average 87.890 291.2 99.989 7.8 57.4

a: branch-and-cut-and-price terminates prematurely due to memory overflow in GENR
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Table 4.4: Class 1 instances: subclass CC

Class 1 instances Ropke and Cordeau Our Method

Lower bounds Exact algorithm

Name zUB z∗ %LBRC Nodes tRC mLB mUB %LB0 tLB |R̂| Nodes %Opt tTOT

CC30 31,087.7 31,087.7 73.396 5 11.3 3 3 99.993 3.8 533 – 100.000 3.9

CC35 31,230.6 31,230.6 77.673 17 59.1 3 3 99.983 5.0 3289 – 100.000 5.8

CC40 31,358.5 31,358.5 80.660 29 254.8 3 3 99.976 8.2 ∆max 40 100.000 26.4

CC45 31,509.1 31,509.1 91.844 11 175.9 3 3 99.983 11.6 ∆max 12 100.000 17.0

CC50 41,685.3 41,685.3 81.703 137 1,962.3 4 4 99.981 13.7 ∆max 56 100.000 38.9

CC55 41,836.3 41,836.3 87.083 117 2,729.2 4 4 99.970 16.7 ∆max 288 100.000 185.2

CC60 42,015.5 42,009.3 90.075 162 tl 4 4 99.943 17.8 ∆max 2294 100.000 2,128.2

CC65 42,172.1 42,164.0 93.635 85 tl 4 4 99.929 20.8 ∆max 4884 100.000 7,111.2

CC70 52,201.9 52,201.7 80.696 44 tl 4 5 81.137 78.7 ∆max 899 100.000 5,565.7

CC75 52,375.6 52,359.0 83.204 47 tl 5 5 99.978 52.1 ∆max 148 100.000 259.6

Average 82.060 865.4 99.981 9.9 46.2

Table 4.5: Class 1 instances: subclass DD

Class 1 instances Ropke and Cordeau Our Method

Lower bounds Exact algorithm

Name zUB z∗ %LBRC Nodes tRC mLB mUB %LB0 tLB |R̂| Nodes %Opt tTOT

DD30 21,133.3 21,133.3 100.000 1 25.2 2 2 99.956 5.4 10929 – 100.000 7.1

DD35 31,210.9 31,210.9 69.271 143 765.1 3 3 99.982 5.1 2219 – 100.000 5.4

DD40 31,352.2 31,352.2 73.847 15 160.8 3 3 99.983 7.5 9837 – 100.000 13.7

DD45 31,483.9 31,483.9 79.026 31 525.6 3 3 99.972 12.0 ∆max 70 100.000 62.9

DD50 31,600.9 31,600.9 84.155 77 1,976.0 3 3 99.958 19.5 ∆max 92 100.000 96.7

DD55 31,743.3 31,743.3 90.843 25 1,178.5 3 3 99.971 18.0 ∆max 14 100.000 36.5

DD60 41,869.4 32,069.2 98.121 88 tl 3 4 99.685 24.1 ∆max 2158 100.000 13,048.3

DD65 42,125.7 42,107.3 83.866 59 tl 4 4 99.935 23.6 ∆max 10152 100.000 25,929.1

DD70 42,220.3 42,214.2 86.915 55 tl 4 4 99.943 75.7 ∆max 7542 100.000 20,737.5

DD75 42,396.8 42,359.9 91.507 42 tl 4 4 99.937 113.7 ∆max 4510 100.000 34,718.6

Average 82.857 771.9 99.970 11.3 37.1
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Table 4.6: Class 2 instances: subclass LC1

Class 2 instances Ropke and Cordeau Our method

Lower bounds Exact method

Name zUB z∗ %LBRC Nodes tRC %LH1 %LH2 %LH3 tLB |R̂| %Opt tTOT

lc1 2 1 2,704.6 2,704.6 100.000 1 4.9 99.844 100.000 100.000 3.3 – 100.000 3.3

lc1 2 2 2,764.6 2,764.6 100.000 1 27.6 97.241 100.000 100.000 21.5 – 100.000 21.5

lc1 2 3 2,772.2 2,772.2 100.000 241 240.6 92.682 100.000 100.000 114.9 – 100.000 114.9

lc1 2 4 2,661.4 2,661.4 – – – 90.015 – – 454.2 – 90.015 454.2 a

lc1 2 5 2,702.0 2,702.0 100.000 1 6.3 99.844 100.000 100.000 4.8 – 100.000 4.8

lc1 2 6 2,701.0 2,701.0 100.000 1 9.8 99.844 100.000 100.000 7.4 – 100.000 7.4

lc1 2 7 2,701.0 2,701.0 100.000 1 10.9 98.774 100.000 100.000 7.7 – 100.000 7.7

lc1 2 8 2,689.8 2,689.8 100.000 1 31.5 97.248 99.961 100.000 16.0 – 100.000 16.0

lc1 2 9 2,724.2 2,724.2 99.684 91 6,628.6 92.007 99.629 100.000 55.3 – 100.000 55.3

lc1 2 10 2,741.6 2,741.6 99.756 9 – 90.278 99.729 100.000 137.1 – 100.000 137.1

Average 99.961 870.0 100.000 28.8 28.8

a: H2 terminates prematurely due to memory overflow in GENR

Table 4.7: Class 2 instances: subclass LR1

Class 2 instances Ropke and Cordeau Our method

Lower bounds Exact method

Name zUB z∗ %LBRC Nodes tRC %LH1 %LH2 %LH3 tLB |R̂| %Opt tTOT

lr1 2 1 4,819.1 4,819.1 100.000 1 5.1 98.046 100.000 100.000 1.6 – 100.000 1.6

lr1 2 2 4,093.1 4,093.1 100.000 1 84.0 96.912 100.000 100.000 20.6 – 100.000 20.6

lr1 2 3 3,486.9 3,486.8 99.923 2 – 89.316 99.898 100.000 3,690.8 – 100.000 3,690.8

lr1 2 4 2,830.7 2,830.7 – – – 82.727 – – 1,809.6 – 82.727 1,809.6 a

lr1 2 5 4,221.6 4,221.6 100.000 1 11.7 95.700 99.977 100.000 2.6 – 100.000 2.6

lr1 2 6 3,763.0 3,763.0 100.000 1 1,041.6 91.270 100.000 100.000 180.9 – 100.000 180.9

lr1 2 7 3,112.9 3,112.9 – – – 88.719 – – 1,320.4 – 88.719 1,320.4 a

lr1 2 8 2,645.5 2,645.5 – – – 81.299 – – 566.9 – 81.299 566.9 a

lr1 2 9 3,953.5 3,953.5 99.820 25 418.5 90.580 99.342 100.000 15.4 – 100.000 15.4

lr1 2 10 3,389.2 3,386.3 99.702 4 – 84.909 99.689 100.000 1,376.7 – 100.000 1,376.7

Average 99.964 312.2 100.000 44.2 44.2

a: H2 terminates prematurely due to memory overflow in GENR
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Table 4.8: Class 2 instances: subclass LRC1

Class 2 instances Ropke and Cordeau Our method

Lower bounds Exact method

Name zUB z∗ %LBRC Nodes tRC %LH1 %LH2 %LH3 tLB |R̂| %Opt tTOT

lrc1 2 1 3,606.1 3,606.1 100.000 1 12.6 95.081 99.919 100.000 3.1 – 100.000 3.1

lrc1 2 2 3,292.4 3,292.4 99.830 3 1,053.3 90.830 99.143 100.000 322.3 – 100.000 322.3

lrc1 2 3 3,079.5 3,079.5 – – – 81.112 – – 304.3 – 81.112 304.3 a

lrc1 2 4 2,525.8 2,525.8 – – – 78.426 – – 188.1 – 78.426 188.2 a

lrc1 2 5 3,715.8 3,715.8 99.868 17 517.8 83.254 99.838 100.000 42.1 – 100.000 42.1

lrc1 2 6 3,360.9 3,360.9 100.000 1 27.7 89.202 100.000 100.000 7.0 – 100.000 7.0

lrc1 2 7 3,317.7 3,317.7 99.412 81 – 84.235 99.298 99.941 393.6 1396 100.000 408.2

lrc1 2 8 3,086.7 3,086.5 98.033 2 – 83.390 97.972 99.733 1,444.1 4697 100.000 1,562.7

lrc1 2 9 3,058.6 3,053.8 98.091 2 – 82.816 97.661 99.360 1,194.5 45537 100.000 1,757.2

lrc1 2 10 2,837.5 2,837.5 – – – 82.308 – – 217.4 – 82.308 217.4 a

Average 99.925 402.9 100.000 93.6 93.6

a: H2 terminates prematurely due to memory overflow in GENR

Table 4.9: Class 2 instances: subclass L500 (500 requests and tight time windows)

Class 2 instances Ropke and Cordeau Our method

Lower bounds Exact method

Name zUB z∗ %LBRC Nodes tRC %LH1 %LH2 %LH3 tLB |R̂| Nodes %Opt tTOT

lc1101 42,488.7 42,488.7 100.000 1 704.8 99.576 100.000 100.000 79.5 – – 100.000 79.5

lc1105 42,477.4 42,477.4 100.000 1 762.7 98.997 100.000 100.000 118.7 – – 100.000 118.7

lr1101 56,744.9 56,744.9 99.993 3 1,682.3 93.824 99.988 100.000 233.1 – – 100.000 233.1

lr1105 52,901.3 52,901.3 99.055 8 – 83.639 98.875 99.308 3,532.3 – 1 99.308 4,068.8 b

lrc1101 48,666.5 48,666.5 99.039 9 – 83.466 98.563 99.448 930.0 – 1 99.448 2,533.3 b

lrc1105 49,287.1 49,287.1 – – – 77.464 – – 1,650.3 – – 77.464 1,650.3 a

Average 99.998 1,049.9 100.000 143.8 143.8

a: H2 terminates prematurely due to memory overflow in GENR

b: branch-and-cut-and-price terminates prematurely due to memory overflow in GENR
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Table 4.10: Summary results of Class 1 instances

Ropke and Cordeau Our method

Subclass # prob. %LB # Opt Time %LB # Opt Time

AA 10 91.412 9 361.3 99.975 10 85.8

BB 10 87.890 9 291.2 99.989 9 57.4

CC 10 82.060 6 865.4 99.981 10 46.2

DD 10 82.857 6 771.9 99.970 10 37.1

40 86.055 30 572.5 99.979 39 56.6

Table 4.11: Summary results of Class 2 instances

Ropke and Cordeau Our method

Subclass # prob. %LB # Opt Time %LB # Opt Time

LC1 10 99.961 8 870.0 100.000 9 28.8

LR1 10 99.964 5 312.2 100.000 7 44.2

LRC1 10 99.925 4 402.9 100.000 7 93.6

LL500 6 99.998 3 1,049.9 100.000 3 143.8

36 99.962 20 658.7 100.000 26 77.6



Chapter 5

Conclusions

We studied three combinatorial optimization problems belonging to the classes of

Network Design and Vehicle Routing Problems: the Non-Bifurcated Capacitated

Network Design Problem (NBP), the Period Vehicle Routing Problem (PVRP),

and the Pickup and Delivery Problem with Time Windows (PDPTW). We pre-

sented both new heuristic and exact algorithms for solving such problems and

we tested their effectiveness on different classes of instances from the literature.

For the NBP we proposed an exact algorithm based on solving a mathemat-

ical formulation of the problem that is strengthened by adding only a subset

of two well-known classes of valid inequalities, and four new heuristics. The

computational results showed that the general purpose integer programming

solver CPLEX when solving this strengthened formulation is competitive with

a recent branch-and-cut algorithm from the literature. Nevertheless, both algo-

rithms were unable to solve instances of small size, whereas the new heuristic al-

gorithms, though on average outperformed on small instances, obtained the best

results on the bigger instances. It is interesting to notice that on bigger instances

the best results were obtained by algorithm F&B that represents, in contrast to the

other proposed heuristics, a more general framework for solving a wider class of

combinatorial problems.

For the Period Routing Problem, for which neither lower bounds nor exact al-

gorithms have been proposed in the literature so far, we proposed an exact algo-
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rithm based on different relaxations of the mathematical formulation of the prob-

lem. We tested our algorithm on a set of instances from the literature involving up

to 153 customers for which only heuristic solutions were available. The algorithm

was able to obtain for the first time the optimal solution on several test instances

and to improve some of the previous best known upper bounds. Moreover, the

algorithm was able to achieve tight lower bounds, on average within one per-

cent of optimality, that permitted to estimate the quality of the best known upper

bound for those instances which are still unsolved. We also considered a variant

of this problem, called Tactical Planning VRP, that arises in food and beverage

distribution systems and in field force planning such as maintenance or service

logistics activities undertaken by utility companies. This problem represents a

more tactical problem than the classical Period Vehicle Routing where customers

specify a visit day over the planning period and a dissatisfaction service cost is

incurred if they are visited at a later day than required. We generated a set of Tac-

tical Planning VRP instances and we compared the best solutions found by the

exact algorithm with and without service costs. The results showed that taking

into account service costs permitted solutions of better quality with respect to the

customer service level at the expense of only a slight increase in the routing costs.

Moreover, the exact algorithm was able to solve to optimality 28 out of the 40

Tactical Planning instances and all instances involving up to 100 customers could

be solved to optimality.

For the Pickup and Delivery Problem with Time Windows we considered two

variants of the problem with respect to the objective function to minimize. One

such variant, called PDPTW-o2, has fixed costs associated with each vehicle and

requires to minimize the sum of fixed costs and route costs, whereas the other is

called PDPTW-o1 and requires to minimize the route costs only. We presented an

exact algorithm for the PDPTW-o1 based on three different bounding procedures

to compute a final lower bound on the problem and a branch-and-cut-and-price

algorithm where the pricing subproblem is solved by a dynamic programming

procedure that generates feasible routes. We also described a different exact al-
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gorithm for the second variant that decomposes the original PDPTW-o2 instance

into a number of PDPTW-o1 instances, each involving a different number of vehi-

cles. The results obtained on two classes of problems from the literature showed

that the new algorithms outperformed the best algorithm presented in the lit-

erature so far. The proposed strategy for solving PDPTW-o2 problems turned

out to be superior to the standard approach adopted by this latter algorithm that

consists in adding the fixed costs to the outgoing arcs from the depot. In partic-

ular, the new algorithm ran on average 9 times faster on PDPTW-o2 instances,

achieved tighter lower bounds, and solved to optimality 9 PDPTW-o2 problems

that were previously unsolved. The new algorithm also obtained better results

on PDPTW-o1 instances being on average 8 times faster than the best algorithm

from the literature and solving for the first time 6 PDPTW-o1 problems previously

unsolved.
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[23] D. Bienstock and O. Günlük. Capacitated network design – polyhedral
structure and computation. INFORMS J. on Computing, 8:243–259, 1996.



170 BIBLIOGRAPHY
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