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Abstract 

Myc is a transcription factor that can activate transcription of several hundreds genes 

by direct binding to their promoters at specific DNA sequences (E-box). However, 

recent studies have also shown that it can exert its biological role by repressing 

transcription. Such studies collectively support a model in which c-Myc-mediated 

repression occurs through interactions with transcription factors bound to promoter 

DNA regions but not through direct recognition of typical E-box sequences. Here, 

we investigated whether N-Myc can also repress gene transcription, and how this is 

mechanistically achieved. We used human neuroblastoma cells as a model system in 

that N-MYC amplification/over-expression represents a key prognostic marker of 

this tumour. By means of transcription profile analyses we could identify at least 5 

genes (TRKA, p75NTR, ABCC3, TG2, p21) that are specifically repressed by N-

Myc. Through a dual-step-ChIP assay and genetic dissection of gene promoters, we 

found that N-Myc is physically associated with gene promoters in vivo, in proximity 

of the transcription start site. N-Myc association with promoters requires interaction 

with other proteins, such as Sp1 and Miz1 transcription factors. Furthermore, we 

found that N-Myc may repress gene expression by interfering directly with Sp1 

and/or with Miz1 activity (i.e. TRKA, p75NTR, ABCC3, p21) or by recruiting 

Histone Deacetylase 1 (Hdac1) (i.e. TG2). In vitro analyses show that distinct N-Myc 

domains can interact with Sp1, Miz1 and Hdac1, supporting the idea that Myc may 

participate in distinct repression complexes by interacting specifically with diverse 

proteins. 

Finally, results show that N-Myc, through repressed genes, affects important cellular 

functions, such as apoptosis, growth, differentiation and motility. 

Overall, our results support a model in which N-Myc, like c-Myc, can repress gene 

transcription by direct interaction with Sp1 and/or Miz1, and provide further lines of 

evidence on the importance of transcriptional repression by Myc factors in tumour 

biology. 
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Introduction 

Neuroblastoma: an overview 

 

Neuroblastoma is the most common extracranial solid tumour in childhood and the 

most frequently diagnosed neoplasm during infancy. It accounts for more than 7% of 

malignancies in patients younger than 15 years and around 15% of all paediatric 

oncology deaths. The overall incidence is about one case in 7,000 live births, and 

there are about 700 new cases per year in the United States. This incidence is fairly 

uniform throughout the world, at least for industrialized nations. The median age at 

diagnosis for neuroblastoma patients is about 18 months; so about 40% are 

diagnosed by 1 year of age, 75% by 4 years of age and 98% by 10 years of age. [1] 

Neuroblastomas are tumours of the sympathetic nervous system. Due to their neural 

crest cell lineage, neuroblastomas may occur anywhere along the sympathetic 

ganglia. Most primary tumours (65%) occur within the abdomen, with at least half of 

these arising in the adrenal medulla. Other common sites of disease include the neck, 

chest, and pelvis. The disease is remarkable for its broad spectrum of clinical 

behaviour. Presenting signs and symptoms are highly variable and dependent on site 

of primary tumour as well as the presence or absence of metastatic disease. Almost 

half of all patients presenting with neuroblastoma have disease dissemination at 

diagnosis [1] [2]. 

Unfortunately, neuroblastoma has not shown the same remarkable progress in cure 

rate that has been achieved in most other childhood malignancies, and this is one of 

the reasons why this tumour has been studied so extensively by paediatric 

oncologists worldwide. Although substantial improvement in outcome of certain 

well-defined subsets of patients has been observed during the past few decades, the 

outcome for children with a high-risk clinical phenotype has improved only 

modestly, with long-term survival still less than 40% [3]; [4]. 

From a histological point of view, neuroblastomas can be classified into: 

• immature, consisting of a large population of small neuroblasts, highly 

undifferentiated, with little cytoplasm (neuroblastoma, malignant). 

• partially mature, consisting of ganglion cells (ganglioneuroblastoma, with 

reduced malignancy but capable of to metastasize) 

• fully mature ganglion cells in clusters surrounded by a dense stroma of  

Schwann cells (ganglioneuroma, benign) 

(Figure 1) [5] [6] 
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Introduction 

The differentiation state of the tumour has some prognostic significance, but a more 

sophisticated histopathological classification has been developed to help predict 

outcome and select therapy. 

The generally accepted method is the International Neuroblastoma Staging System 

(Table 1) [7]. 

Taken together, the stage of disease, the age of the patient at diagnosis and the site of 

the primary tumour are the most important clinical variables in predicting patient 

outcome [8] [1]. The 2-year disease-free survival of patients with stage 1, 2 and 4S is 

80–90%, whereas those with stages 3 and 4 have a range of 40–50%. The outcome of 

infants who are less than 1 year of age is substantially better than older patients with 

the same stage of disease, particularly those with more advanced stages of disease. 

Patients with primary tumours in the adrenal gland seem to do worse than patients 

with tumours originating at other sites. 

However, these clinical features are imperfect predictors of tumour behaviour, so 

further prognostic markers are needed. Advances in understanding of neuroblastoma 

came from cytogenetics and molecular biological approaches. Integration of 

biological and clinical data is crucial to facilitate predictions about neuroblastoma, 

and in many instances biological parameters seem to be more important than 

traditional clinical features as predictors of outcome [9] [2].  

D'Angio and colleagues [10] first described the striking clinical phenotype of stage 

4S (S=special) disease that occurs in about 5% of cases. These infants have small 

localised primary tumours with metastases in liver, skin, or bone marrow that almost 

always spontaneously regress. Neuroblastoma has the highest rate of spontaneous 

regression or differentiation (i.e. into a benign ganglioneuroma) observed in human 

cancers: the actual frequency of neuroblastomas that are detected clinically and 

subsequently regress without treatment is 5–10% [9]. However the frequency of true 

asymptomatic neuroblastomas that regress spontaneously is probably much higher, 

and might be equal to the number detected clinically. These clinical observations 

lead to considerable interest in understanding the mechanisms underlying 

spontaneous regression or differentiation, which in turn may lead to therapeutic 

approaches to stimulate these phenomena [9]. 
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Figure 1. Degree of differentiation in neuroblastoma. A, Schwann cells and ganglion cells (indicated 
by arrows) are prominent in stroma-rich neuroblastoma. B, Stroma-poor neuroblastoma consists of 
densely packed small round blue cells with scant cytoplasm. [2] 
 

The aetiology of neuroblastoma is still unknown. A subset of patients with 

neuroblastoma shows a predisposition to develop this disease, and this predisposition 

follows an autosomal dominant pattern of inheritance with incomplete penetrance. A 

family history of neuroblastoma is identified in 1–2% of cases [11] [12]. Regression 

analysis of neuroblastoma data was consistent with Knudson's two-mutation 

hypothesis for the origin of childhood cancer [13]. The median age at diagnosis of 

patients with familial neuroblastoma is 9 months, which contrasts with a median age 

of 18 months for neuroblastoma in the general population; these patients often have 

bilateral adrenal or multifocal primary tumours [14] [15]. The concordance for 

neuroblastoma in twins during infancy indicates that hereditary factors might be 

predominant, whereas the discordance in older twins indicates that random mutations 

or other factors might also be important [16].  
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Table 1. International Neuroblastoma Staging System [17] 

Stage Definition 

1 

Localized tumour with grossly complete resection 

with or without microscopic residual disease; 

negative ipsilateral lymph nodes 

2A 

Localized tumour with grossly incomplete 

resection; negative ipsilateral nonadherent lymph 

nodes 

2B 

Localized tumour with or without grossly complete 

resection with positive ipsilateral nonadherent 

lymph nodes; negative contralateral lymph nodes 

3 

Unresectable unilateral tumour infiltrating across 

the midline with or without regional lymph node 

involvement, OR  

Localized unilateral tumour with contralateral 

regional lymph node involvement, OR  

Midline tumour with bilateral extension by 

infiltration (unresectable) or by lymph node 

involvement 

4 

Any primary tumour with dissemination to distant 

lymph nodes, bone, bone marrow, liver, skin or 

other organs (except as defined for stage 4S) 

4S 

Localized primary tumour (as defined for stages 1, 

2A or 2B) with dissemination limited to skin, liver 

and bone marrow (limited to infants <1 year age) 

 

Traditional genetic analyses have identified the short arm of chromosome 16 (16p12-

13) as a likely predisposition locus, though no causal gene has been identified [18]. 

At the present time, it is unclear if this is the only predisposition locus, or if there are 

multiple loci, but this locus could account for most high-risk families. 

Neuroblastoma has also been seen in several patients with constitutional 
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chromosomal rearrangements, including deletions overlapping putative tumour 

suppressor loci at chromosome bands 1p36 and 11q14-23 [19] [20].  

Remarkable disease heterogeneity exists within pedigrees considering affected 

individuals share the same predisposing genetic lesion, suggesting that the pattern of 

acquired secondary genetic alterations ultimately defines the tumour phenotype [9]. 

 

Genetic anomalies in neuroblastoma 

 

Although some patients with neuroblastoma have a predisposition to the disease, 

most neuroblastomas occur spontaneously. Somatic changes, such as gain of alleles 

and activation of oncogenes, loss of alleles or changes in tumour-cell ploidy have 

been shown to be important in the development of sporadic neuroblastomas. Taken 

together, the multiplicity of potential initiating events suggests that neuroblastoma is 

a complex genetic disease in which interaction of effects from multiple genetic 

alterations might be needed for tumourigenesis. 

 

N-MYC and neuroblastoma 

 

Schwab and colleagues first identified a novel MYC-related proto-oncogene, N-

MYC, that was amplified in a panel of neuroblastoma cell lines [21]. N-MYC, a 

transcription factors that can lead to deregulated growth and proliferation when 

overexpressed (see below), is normally located on the distal short arm of 

chromosome 2 (2p24): a large region from this site becomes amplified and the N-

MYC locus is copied to form an extrachromosomal circular element or DM (double-

minute chromatin bodies), with retention of the normal copies of N-MYC at 2p24. 

DMs might accumulate by uneven segregation during mitosis; however, in some 

cases, the amplified DNA integrates into a chromosomal locus to form an HSR 

(homogeneously staining regions) (Figure 2) [22] [23] [24] [25]. Other genes might 

be co-amplified with N-MYC in a subset of cases, but N-MYC is the only gene that 

is consistently amplified from this locus [26]. 
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Figure 2. N-MYC amplification demonstrated by fluorescence in situ hybridisation (FISH) using a 
labelled N-MYC probe. [2] 
 

Currently it is well known that the genetic aberration most consistently associated 

with poor outcome in neuroblastoma is genomic amplification of N-MYC [27] [28]. 

N-MYC amplification occurs in roughly 25% of primary tumours and is strongly 

correlated with advanced stage disease and treatment failure (Figure 3) [29] [30]. Its 

association with poor outcome in patients with otherwise favourable disease patterns 

such as localised tumours or INSS stage 4S disease underscores its biological 

importance [31] [32] [33]. 

Thus, amplification of N-MYC remains the most important genetically based 

independent prognostic factor for neuroblastoma and represents an intrinsic 

biological property of a subset of aggressive neuroblastomas: tumours without 

amplification at diagnosis rarely, if ever, develop this abnormality [9]. 

N-MYC amplification is also associated with other poor prognostic indicators such 

as chromosome 1p deletion and increased expression of multidrug resistance-

associated protein, while counter-correlates with favourable markers such as TrkA 

and p75NTR expression (see below) [34] [35] [36] [37] [38] [39]. 

Activation of the MYC genes by amplification is commonly detected in solid human 

tumours. In neuroblastoma N-MYC is amplified from 5- to 300-fold per haploid 

genome, and all the copies seem to be transcriptionally active [40] [41]. Therefore 

tumours with N-MYC amplification result in an elevated expression of the N-Myc 

protein and this provides selective advantage to the cells through various 
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mechanisms that affect the role of N-Myc as a part of the Myc/Mad/Max 

transcriptional factor network (see below) [42] [40]. 

 

 
Figure 3. Survival of infants with metastatic neuroblastoma based on N-MYC status. A Kaplan–
Meier survival curve of infants less than 1 year of age with metastatic neuroblastoma. The 3-year 
event-free survival (EFS) of infants whose tumours lacked N-MYC amplification was 93%, whereas 
those with tumours that had N-MYC amplification had only a 10% EFS [9]. 
 

The Myc/Mad/Max network and the transcriptional control of cell behaviour 

 

The Myc/Mad/Max network comprises a group of nuclear transcription factors 

whose functions profoundly affect cell behaviour [43].These factors are a subset of 

the larger class of proteins containing basic-region/helix–loop–helix/leucine-zipper 

(BR/HLH/LZ) motifs. BR/HLH/LZ domain is known to mediate protein-protein 

interactions and DNA binding [43]. 

No monomeric Myc proteins have been found in vivo. Instead, Myc is bound to a 

partner protein, Max (MYC-associated factor-X), itself a small BR/HLH/LZ protein 

[44]. Max, physiologically, is present in stoichiometric excess to Myc, and can 

homodimerize and bind DNA, but such Max homodimers appear to be 

transcriptionally inert [45, 46]. Max can also form heterodimers with several related 

proteins, known as Mad1, Mxi1 (also known as Mad2), Mad3, Mad4 and Mnt (also 

known as Rox) (Figure 4). These four proteins, considered to compose the Mad 

protein family, behave much like Myc in that they have only weak homodimerization 
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and DNA-binding capacities but readily heterodimerize with Max and bind the DNA 

[43]. 

 

 
Figure 4. Max-interacting proteins. Max forms heterodimers with members of the Myc and Mad 
protein families as well as with the Mnt (or Rox) and Mga proteins. Each of these proteins interacts 
with Max through its BR/HLH/LZ domain. 
 

Association with Max results in the formation of heterocomplexes that recognize the 

hexameric DNA sequence CACGTG (belonging to the larger class of sequences 

known as E-boxes, CANNTG) with transcriptional activity (Figure 5) [47-49]. 

However, in contrast to Myc, which activates transcription at promoters proximal to 

E-box sites, the Mad-Max heterodimers act as transcriptional repressors at the same 

binding sites [45] [50] [51]. 
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Figure 5. A, Structure of heterodimer Myc-Max bound to DNA; B, Structure of heterodimer Mad-
Max bound to DNA. 
 

The ability to modulate transcription is derived from specific domains within the 

Max interacting factors which, in turn, appear to mediate associations with specific 

coactivators or corepressors, resulting in the formation of higher-order complexes. 

Furthermore, the different complexes may have antagonistic properties whose 

functions play out at the level of chromatin structure (see below). The transcription 

activation function of Myc involves at least in part the recruitment of a histone 

acetyltransferase (HAT) mediated by TRRAP (transactivation/transformation- 

associated protein), whereas Mad–Max complexes act as transcriptional repressor by 

recruiting histone deacetylases (HDACs) through the adaptor protein SIN3 (Figure 6) 

[52] [53]. 

In general, Max interacting proteins have short half-lives (on the order of 20–30 min) 

and their biosynthesis is highly regulated [54]. Max, on the other hand, is stable and 

constitutively expressed, suggesting that the regulation of the network is largely 

dependent on the abundance of the Max associated transcription factors that must be 

tightly regulated [44, 55]. In vivo, Myc–Max complexes are often predominant in 

proliferating cells, whereas Mad–Max or Mnt–Max complexes are predominant in 

resting or differentiated cells (see below) [56]. 
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Figure 6. Transcriptional regulation by Myc/Mad/Max network through E-box elements. 
 

Our understanding of the Myc/Max/Mad network grew out of research on the MYC 

oncogene family. MYC was originally defined as an oncogene (v-MYC) transduced 

by a number of avian retroviruses capable of potently inducing neoplastic disease 

[57]. Subsequently c-MYC, the cellular homolog of v-MYC, was identified and 

eventually shown to be a member of a family of proto-oncogenes comprising c-

MYC, N-MYC, and L-MYC (Figure 7). These genes are considered proto-oncogenes 

in the sense that alterations in their structure and expression have been linked to a 

wide variety of human and other animal cancers [58-62]. 
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Figure 7. Structural domains of Myc oncoproteins. From N-term to C-term: 
Transactivation domain, TAD (amino acids (aa) 1–143): the TAD can confer activation of gene 
transcription to a heterologous DNA-binding domain. 
MYC homology box I, MB I (aa 44–63): MBs are regions highly conserved between MYC, N-MYC 
and MYCL1; within MB I, stability and activity of MYC are highly regulated through 
phosphorylation of Thr58 and Ser62. 
MB II (aa 128–143): this domain is important for transcriptional repression and activation, region of 
interaction with TRRAP and other cofactors involved in transformation. 
MB IIIa (aa 188–199): this domain is conserved in MYC and N-MYC but not in MYCL1 and shows 
intermediate transforming potential compared with the activity of the wild type MBII in vivo. 
MB IIIb (aa 259–270): this domain is conserved, but no specific function has yet been assigned to it. 
MB IV (aa 304–324): this domain is required for full MYC transforming activity and apoptosis. 
Primary nuclear localization signal, NLS (aa 320–328): subcellular localization to the nucleus is 
encoded primarily by this region. 
Basic region, BR (aa 355–369): this region is essential for full transformation of primary and 
immortal cells, and is responsible for specific binding of canonical and non-canonical MYC E-boxes 
to DNA, with MAX. 
Helix–loop–helix–leucine zipper, HLH–LZ (aa 370–439): this domain is essential for full 
transformation of primary and immortal cells, and is responsible for interaction with MAX [63]. 
 

The first compelling idea about MYC was that it functions to drive cell growth and 

proliferation in response to diverse signals. In fact, MYC family genes are broadly 

expressed during embryogenesis, and targeted deletions of c-MYC or N-MYC genes 

in mice lead to lethality in mid-gestation embryos [64] [65]. Moreover, there is a 

strong correlation between MYC expression and proliferation. [66-72]. In cells with 

activated MYC, G1 phase is often shortened as cells enter the cell cycle, and MYC is 

essential for G0/G1 to S phase progression [73] [74] [75]. 

It is now clear that MYC expression is induced in many cell types by a wide range of 

growth factors, cytokines, and mitogens [76-78].The increase in MYC levels occurs 

through both transcriptional and post-transcriptional mechanisms and appears to 

occur as an immediate early response (about 2 hours) to most mitogenic factors [79]. 

On the contrary, anti-proliferative signals trigger rapid downregulation in MYC 

expression [63]. MYC downregulation is required for cells to exit the cell cycle and 

undergo differentiation. This important point of regulation is further enforced by the 
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induction and function of the Mad family members in response to differentiation 

cues [80]. 

It is important to note, however, that in situations where commitment to a specific 

lineage is closely linked to an increase in proliferation, Myc can promote 

differentiation [81]. 

Clearly, these data indicated that MYC is a nexus for multiple growth signal 

response pathways. Therefore MYC expression, and MYC activity, is tightly 

regulated in non-transformed cells and designed to respond quickly to proliferative 

cues from the extracellular milieu. 

The ability of overexpressed Myc to facilitate proliferation and inhibit terminal 

differentiation fits well with the fact that tumours of diverse origins contain genetic 

rearrangements involving MYC family genes, such as genomic amplification in 

neuroblastoma. Indeed, many of the genomic alterations in MYC result in increased 

MYC mRNA levels through increased transcription initiation, decreased 

transcription attenuation, and augmented stability of the MYC messenger RNA [79]. 

Moreover Myc degradation is carried out through the ubiquitin-mediated proteosome 

pathway that involves phosphorylation of Thr58 and Ser62 in MB I: many tumour-

related mutations in Myc result also in significant stabilization of the protein [82, 

83].  

One of the most striking findings of the past years has been the discovery that the 

enhanced expression of Myc proteins contributes to almost every aspect of tumour 

cell biology [84]. Whereas the ability of Myc to drive unrestricted cell proliferation 

and to inhibit cell differentiation had long been recognized, more recent work shows 

that deregulated expression of Myc can drive cell growth and vasculogenesis, reduce 

cell adhesion, promote metastasis and genomic instability. Conversely, the loss of 

Myc proteins not only inhibits cell proliferation and cell growth, but can also 

accelerate differentiation, increase cell adhesion and lead to an excessive response to 

DNA damage [85]. 

This reflects the surprisingly high number of target genes regulated by Myc, as 

emerged in large-scale analyses of MYC-regulated genes. Indeed, in normal cells, 

Myc proteins appear to integrate environmental signals in order to modulate a wide, 

and sometimes opposing, group of biological functions, including proliferation, 

growth, apoptosis, energy metabolism, and differentiation (see below). 
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Biological functions of N-MYC  

 

The vast majority of functional investigations have focused on the c-Myc protein, the 

most studied member of the MYC family. Thus, many of the functions of N-Myc 

were considered common to those of c-Myc. This assumption was based on various 

experimental evidences: 

• the high level of relatedness between N-Myc and c-Myc protein structure; 

• while c-MYC and N-MYC homozygous knockout mice are embryonic lethal, 

transgenic mice in which N-MYC replaced c-MYC showed a gross normal 

development, indicating that both proteins have largely overlapping functions [64] 

[65] [86]; 

• c-Myc and N-Myc share >40% of their target genes [87] 

Nonetheless, since the late 80s, differences between the two members of the MYC 

family appeared to be important and seem more pronounced in recent years of 

research: actually N-Myc and c-Myc appear to bind different subsets of genes with 

different affinities in neuroblastoma tumours and in hematopoietic stem cells [88] 

[89]. 

Furthermore, it is well known the existence of direct negative cross-regulation 

between N-Myc and c-Myc [90] [91] [92]. 

Indeed, by analogy with c-Myc, N-Myc has related functions in regulating cell 

growth and proliferation, but in a more specialized context. N-Myc is subjected to a 

strict, rather similar temporal and spatial expression pattern, as shown by 

comparisons of fetal and adult human brain cells [93] and by analysis of tissues from 

different stages of the fetal and the developing mouse embryo [94] [95]. These 

results suggest that N-Myc may play an important role during mammalian 

development. The overall expression of the c-MYC gene, in contrast, is virtually 

constant during embryonal development and occurs in all proliferating cells of an 

organism.  

Altogether, the N-MYC and c-MYC genes, in spite of their structural relationship, 

have distinctly different functions. The c-MYC gene plays a more ‘basic’ role, 

whereas N-MYC has more specialized functions. 

During murine development N-MYC mRNA can be detected as early as day 7.5 in 

the primitive streak [96]. A peak of expression is reached between days 9.5 and 11.5, 

followed by a sharp decrease after day 12.5 [95]. During this time N-MYC mRNA is 
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present in many tissues including heart, limb buds, and neural tube [94]. N-MYC 

mRNA has also been detected during organogenesis in tissues such as hair follicles, 

lung, liver, and stomach [97]. Within a tissue N-MYC expression is not 

homogeneous. For example, in the heart, expression is restricted to the myocardium; 

in the liver it occurs mainly in the peripheral layer; in the neural crest it is initially 

expressed homogeneously, but after colonization of ganglion areas becomes 

restricted to those cells undergoing neuronal differentiation; in the human fetal 

kidney it is observed exclusively in the epithelially differentiating mesenchyme; in 

the somites it is stronger in the posterior than in the anterior half; and in the brain it is 

observed in the neural precursor cells but becomes more restricted after lineage 

commitment [98]. Thus N-MYC expression is dynamic not only in space but also in 

time. At birth N-MYC is still expressed in the brain, kidney, intestine, lung, and heart 

but then becomes down-regulated within several days or weeks depending on the 

tissue. In adults, N-MYC expression has mainly been detected at early stages of B-

cell development. However, weak expression may be maintained in the adult brain, 

testis and heart [95]. The lack of N-Myc in any tissue where it is normally expressed 

results in developmental defects [98]. 

Taken together, these results reveal a complex expression pattern of N-MYC which 

is reflected in a correspondingly complex promoter with multiple tissue-specific, 

stage-specific, and signal-dependent regulatory elements. As the different expression 

patterns would lead one to expect, the regulatory regions of c-MYC and N-MYC are 

divergent [98]. Among the candidate pathways involved in differential regulation of 

Myc proteins are the Sonic hedgehog pathway (Shh) for N-MYC activation [99] and 

the Wnt/beta-catenin pathway for c-MYC activation [100]. Sonic hedgehog (Shh) 

signalling upregulates expression of the proto-oncogene N-MYC in cultured 

cerebellar granule neuron precursors. The temporal-spatial expression pattern of N-

MYC, but not other MYC family members, precisely coincides with regions of 

hedgehog proliferative activity in the developing cerebellum [101]. 

These findings are paralleled by studies of human tumour cells. N-Myc normally 

inhibits neuronal differentiation by driving germinal cells to maintain their early 

embryonic short-duration cell cycles and, therefore, favours self-renewal, genetic 

instability and cancer [98]. 

Consistent with a critical role of N-MYC in the development, overexpression of N-

MYC within a specific developmental window may cause several paediatric tumours 
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of mostly, but not exclusively, neuroectodermal origin, including neuroblastoma, 

rhabdomyosarcoma, medulloblastoma, retinoblastoma, astrocytoma, glioblastoma, 

Wilms’ tumours and small cell lung carcinoma [102] [103].  

These data are supported by in vivo experiments: transgenic mice overexpressing N-

MYC in neural crest-derived tissues show frequent development of neuroblastomas 

[104]. 

Deregulation, for example as the result of amplification in neuroblastoma, could 

disrupt the intrinsic control of N-MYC expression and contribute to the neoplastic 

phenotype. It is possible that the cellular mechanism which evolved to regulate 

expression of a single copy of N-MYC is incapable of efficiently controlling the 

expression of multiple gene copies. 

It is clear that although neuroblastomas without N-MYC amplification show 

heterogeneity in the level of N-MYC expression, they never produce as much N-Myc 

as tumours with amplification do. In fact, several studies failed to find a correlation 

between the expression of N-MYC in non-amplified tumours and an unfavourable 

outcome, suggesting that a threshold level of N-MYC expression has to be exceeded 

for an unfavourable outcome to occur [105].  

                      

N-MYC as an activator 

 

N-MYC encodes a phosphoprotein of apparent molecular weight of 65/67 kDa that is 

localized in the nucleus and binds to DNA [106] [107]. 

When introduced into cells, N-MYC can activate transcription of synthetic reporter 

genes containing promoter proximal E-boxes in both yeast and mammalian cells [45, 

46]. In addition, N-MYC stimulates natural E-box-containing promoters or 

sequences derived from putative Myc target genes [49, 108-110]. 

Myc-Max heterodimers have relatively weak transactivation activity both 

endogenously and in transient assays [46]. A plethora of microarray studies 

published recently have concurred that Myc proteins activate the majority of target 

genes by two-fold (generally ranging from 3- to 10-fold transactivation) [111]. 

Although Myc is now firmly ensconced as a transcription factor, it is certainly feeble 

compared to other transcription factors. 
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In general, transactivation domains of N-Myc function by facilitating recruitment of 

the basal transcription machinery either directly or indirectly. In nearly all cases, 

TAD function involves interactions with other proteins. 

The prevailing model of MYC-mediated transcription postulates, as mentioned 

above, that N-Myc increases local histone acetylation at promoters [85]. N-Myc 

binds to histone acetyltransferase complexes including TRRAP 

(transformation/transcription-domain-associated protein) and either general control 

of amino-acid-synthesis protein-5 (GCN5) or TIP60, which preferentially acetylate 

histones H3 or H4, respectively [112] [53]. Myc also binds to the p300/CBP (CREB-

binding protein) acetyltransferases [113].  

The histone acetylation that results then opens the chromatin and provides docking 

sites for acetyl-histone-binding proteins, including GCN5 and the SWI/SNF 

chromatin-remodelling complex, both of which correlate with increased transcription 

(Figure 8a) [114] [115]. Transcription-factor-mediated recruitment of histone 

acetyltransferases is now recognized to be a major mechanism of transactivation, and 

many other transcription factors, including TCF (T-cell factor), E2F, the tumour 

suppressor p53 and Gal4, have been subsequently found to use this mechanism 

[116]. The region of chromatin opened through Myc would permit subsequent 

binding and activation by constitutive transcription factors. 

Most of the genes whose expression is induced by Myc are transcribed by RNA 

polymerase II. 

Among others, target genes include the cyclin-dependent kinase CDK4 [117], the 

Cdc25A phosphatase that activates CDKs [118], cyclin D2 [119] [120] and the E2F 

family [121]. In addition to target genes involved in cell cycle progression, Myc has 

been found to stimulate expression of multiple genes that control cell size and 

growth, including those encoding ribosomal proteins, translation factors, and 

metabolic enzymes [122]. These findings are consistent with the evidence that 

recruitment of TRRAP and associated acetylation activity is also present in vivo at 

both RNA polymerase III (RNA pol III)-dependent genes and RNA-pol-I-dependent 

and ribosomal RNA genes [123] [124] [125] [126].  

Recently Myc has been shown to promote oxidative phosphorylation as well as 

glycolysis through coordinate transcriptional control of the mitochondrial metabolic 

network [127] [128].  
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Regulation of transcription also occurs at the level of transcriptional elongation and 

not just at transcriptional initiation. RNA pol II undergoes a cycle of phosphorylation 

and dephosphorylation during transcription and, with its C-terminal domain (CTD) in 

a hypophosphorylated form, RNA pol II is recruited to promoters. Phosphorylation 

of the CTD occurs during transcription initiation and elongation, whereas the CTD 

must be dephosphorylated to allow RNA pol II to be recycled for another round of 

transcription. RNA pol II has been found to pause on most promoters after 

transcribing approximately 20–40 bases. This model fits well with the finding that 

Myc stimulates the release of paused RNA pol II from the promoter and stimulates 

subsequent transcriptional elongation [129]. This correlates with a Myc-dependent 

increase in RNA pol II phosphorylation: Myc transactivation domain (TAD) binds 

directly CTD kinases (Figure 8b) [130] [131].Myc induction of RNA pol II 

phosphorylation occurs globally throughout the nucleus; it can be detected in the 

total cellular pool of RNA pol II rather than simply at MYC target-gene promoters 

[132].  

 

 
Figure 8. Mechanisms of MYC-induced transcription. A, Myc recruits histone acetyltransferases, 
which promote localized modification of chromatin through acetylation of nucleosomes. B, Myc 
recruits basal transcription factors and promotes the clearance of promoters through RNA polymerase 
(pol) II. The Myc protein can promote a paused RNA pol to continue transcription of the mRNA by 
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recruiting the P-TEFb (positive transcription-elongation factor-b) complex, which phosphorylates the 
CTD on Ser2 and promotes transcriptional elongation [133]. 
 

Moreover Myc can control protein expression through mRNA translation by 

promoting the methylation of the 5' mRNA guanine or 'cap', which is an essential 

step for protein-coding gene expression. As native levels of Myc regulate the 

expression of their targets without changes in mRNA abundance, this transcription-

independent activity has the potential to influence all aspects of MYC biology in 

both normal and tumour cells [132]. 

Along with transcription, the most important nuclear function is DNA replication. 

The genome must be faithfully replicated each cell cycle and the chromosomes must 

be segregated to the daughter cells. Disruption of any step in this process, such as a 

stalled replication fork or DNA damage incurred during S phase, activates a 

checkpoint that halts the cell cycle until the lesion can be repaired. Failure to correct 

this damage leads to a mutation and/or genomic instability. 

Previous studies have provided a link between MYC and genomic instability, but it 

was postulated that this was an indirect consequence of transcriptional activity [134]. 

A recent study describes a direct, non-transcriptional role for MYC in the initiation 

of DNA replication. Myc was found to bind to numerous components of the pre-

replicative complex, and localize to early sites of DNA replication. These 

observations suggested that MYC might directly control the initiation of S phase and 

that the MYC effects on genomic instability might not depend on the transcriptional 

induction of S-phase-promoting genes [135]. 

Furthermore much excitement has been generated in the past years about the role of 

non-coding, regulatory RNAs. The first oncogenic microRNA polycistron is shown 

to be regulated by MYC [136] [137]. 

Taken together, these findings bring into question the definition of MYC just like a 

traditional transcription factor. It seems to exist an apparent disconnect between 

MYC’s dramatic effects on multiple cellular functions and its molecular 

characterization as a relatively weak transcriptional activator. 

Indeed, the notion that Myc is a general chromatin regulator, while to our knowledge 

unprecedented for an oncoprotein, is nonetheless consistent with several recent 

observations concerning MYC function. First, a series of independent expression 

microarray studies have collectively identified an unexpectedly large group of 

potential genes that are transcriptionally regulated by Myc [138]. Second, recent 
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experiments directly assessing genomic binding by Myc suggest binding to 

thousands of sites throughout the genome encompassing approximately 15% of 

genes as well as intergenic regions [139] [140] [141] [111]. Potentially, therefore, 

Myc regulates a significant proportion of all genes in an organism. The number of in 

vivo binding sites exceeds the number of Myc molecules in proliferating cells, which 

indicates that each site is bound by Myc only temporarily. Most probably, therefore, 

transcriptional regulation by Myc occurs by a 'hit-and-run' mechanism whereby the 

relatively brief binding of Myc triggers longer-lasting changes in the chromatin 

organization at the bound loci [63]. 

Ultimately there are many evidences that N-Myc has a robust role in the human 

genome in regulating global cellular euchromatin, including that of intergenic 

regions. Strikingly, N-Myc maintains 90% to 95% of total genomic euchromatic 

marks histone H3 acetylated at lysine 9 and methylated at lysine 4 modifications in 

human neuroblastoma, with enhancer-like function [142]. In neural stem cells, loss 

of N-Myc is sufficient to cause nuclear condensation, most likely due to a global 

spread of heterochromatin [142]. Myc's recruitment of histone acetyltransferases 

such as GCN5 and TIP60, as well as its regulation of histone acetylation at a number 

of genic loci, suggests that the regulation of euchromatin through histone acetylation 

is involved. Additional evidence suggests that the Myc-regulated chromatin program 

involves also methylation of lysine 4 of histone H3, possibly through the 

demethylase LID [143]. Furthermore Myc may regulate chromatin at a distance such 

that Myc binding at one location can influence chromatin at another through higher 

order chromatin structure. 

Nonetheless, it is intriguing that intergenic binding sites for N-Myc are not enriched 

for E-boxes. Although E-box–independent binding has been reported and may be 

fairly widespread [144] such binding may be of particular importance for Myc 

intergenic function. 

A specific global hyperactive chromatin state could be regulated by Myc and locked 

in place during tumorigenesis such as neuroblastoma genesis. 

Furthermore, Myc has been shown to possess another feature outside the context of  

E-boxes: surprisingly Myc can act as well as a transcriptional repressor at certain 

target promoters (see below) [145]. 
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N-MYC as a repressor 

 

One of the first indicators that MYC might also function as a transcriptional 

repressor came from studies published in the 1980s that suggested that MYC 

participates in a negative feedback loop [146] [147]. After this, genome-wide 

analyses demonstrate that MYC represses at least as many targets as it activates, 

further emphasizing the role of repression in MYC function, including 

transformation [63].  

Moreover recent findings show that Myc plays a fundamental role as part of the 

“magic quartet” of transcription factors that can reprogram somatic cells to induced 

pluripotent stem (iPS) cells. Ectopic expression of Myc augments the ability of Oct4, 

Sox2, and Klf4 to induce the formation of pluripotent cells from mouse and human 

fibroblasts, liver cells, and mature B cells by a factor of twofold to 10-fold, 

depending on the cell type [148] [149] [150] [151]. Silencing of the somatic cell 

expression program appears to be an important initial step required for the induction 

of the ES-like expression program, and it is evident a major contribution of Myc to 

this first step [152]. 

The basic mechanism underlying MYC's activation of transcription is well 

understood, but the mechanisms through which MYC negatively regulates or 

represses transcription are far less understood. Once again, several mutant analyses 

have pointed to the importance of Myc BoxII and the BR/HLH/LZ region in both 

activation and repression by MYC. 

Initially, no simple consensus sequence for transcriptional repression by Myc had 

emerged. This opened the possibility that transcriptional repression is simply an 

indirect consequence of the altered physiological (e.g., transformed) state of a cell 

that is induced by Myc. Indeed, there is evidence in the literature for such indirect 

mechanisms of gene repression by Myc [153] [154]. 

One argument against the notion that all repression is similarly indirect was the 

identification of mutants of Myc that distinguish transcriptional activation from 

repression and the detailed analysis of the resulting phenotypes [155] [156]. 

Furthermore DNA elements required for Myc-mediated repression has been 

demonstrated to lie within the promoters of repressed target genes, indicating that 

Myc repression is likely mediated at the transcriptional level [145]. 
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The repressed genes, like induced genes, fall into multiple functional classes: the first 

class of genes encodes proteins that are selectively expressed in quiescent cells or 

that directly or indirectly inhibit cell proliferation. This group encompasses the cell 

cycle inhibitors p21Cipl [156] [157] [158] [159] [160], p27kipl [161], pl5ink4b [159] 

[162] [163], pl8ink4c [122], and p57kip2 [164], as well as the differentiation-

inducing proteins C/EBP-a [165] [166], the growth-arrest proteins gas1 and gas2 

[155], the growth arrest and DNA damage proteins gadd34, gadd45, gadd153 [167] 

[168], and the Myc-antagonist Mad4 [169]. This long list points to a role for Myc-

mediated gene repression in the control of cellular differentiation and in the response 

to growth arrest signals. It appears clear that the repression of individual genes could 

significantly contribute to the phenotype of MYC-transformed cells. 

A second class of genes that is often repressed by Myc encodes proteins involved in 

cell adhesion, including a number of integrins: these mRNAs include those encoding 

cell surface proteins such as the class I HLA molecules in melanoma cells, the α3 β1 

integrin in neuroblastomas, and the LFA-1 (αL β2 integrin) cell adhesion protein in 

transformed B cells as well as [43, 170] [171]. Altered cell adhesion is a hallmark of 

many Myc-transformed cells and has been observed in different cell types [172]. 

Finally, genes involved in metabolic pathway such as thrombospondin and H-ferritin 

[173] [174]. Suppression of thrombospondin plays a causative role in the induction 

of angiogenesis by Myc. 

Taken together, these data indicate that MYC has a powerful combination of 

functions that, when deregulated, may drive the limitless replicative potential 

characteristic of nearly all tumours. 

Understanding of MYC repression is significantly advanced with the identification of 

both the specific DNA sequence and the specific MYC-binding proteins that are 

required for repression. 

Recent studies show that not all genes repressed by Myc are silenced by the same 

mechanism. 

A number of Myc-repressed targets contain a subclass of initiator elements (INRs; 

consensus, YYCAYYYYY, where Y is a pyrimidine base) which are usually, but not 

invariably, present at TATA-less promoters. INR elements are recognized by TFIID 

as well as a number of regulatory proteins, such as the transcription initiation factor 

TFII-I, YY-1, and the Myc-interacting zinc-finger protein 1 (Miz-1). Interestingly, 

the last three proteins have been reported to associate with the BR/HLH/LZ region of 
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Myc [43]. While there has been little follow-up on the initial reports involving Myc 

interaction with TFII-I or YY-1, the association of Miz-1 with Myc has been recently 

confirmed and shown to promote stabilization of Myc by inhibiting its ubiquitin-

dependent degradation [83]. Miz1 contains 13 zinc fingers and, at its amino-

terminus, carries a BTB/POZ-domain, which is a protein/protein interaction domain 

found in multiple zinc-finger proteins. Miz1 binds to the 'outside' of the helix–loop–

helix domain of Myc, but does not interact with Max, Mad or Mnt proteins  [156] 

[175]. 

Perhaps a stable Myc-Miz1 interaction blocks the ability of Miz1 to initiate 

transcription at INR-containing and other promoters [175]. 

Some Myc-repressed genes, such as gadd45, do not contain INR sequences; rather, 

repression appears to be mediated by a GC-rich region that is potentially recognized 

by WT1 and p53 [167]. Another GC-rich binding protein that seems to be important 

for Myc-mediated repression is the basal transcription factor Sp1 (specificity protein 

1), a zinc-finger protein involved in gene expression in the early development of an 

organism. Other results show that repression by Myc happens through the Smad and 

the NF-Y binding sites due to direct protein/protein interactions between Myc and 

Smad2 and nuclear factor Y (NFY), respectively [176] [177]. 

The data clearly support the notion that several pathways of repression exist. Finally 

the present mechanistic model is that Myc–Max complexes interact with 

transcriptional activators that are bound directly to DNA through enhancer or 

initiator elements [178] [179]. These multi-protein complexes are thought to displace 

co-activators and recruit co-repressors [180].  

Indeed some genes are repressed by MYC through a mechanism that does not 

involve the Max protein [74] [158]. In fact it was shown that Myc recruits a DNA 

methyltransferase, DNMT3a, to the Myc-Miz1 complex (without Max) on the 

promoter of p21, indicating that Myc-dependent gene repression could at least partly 

be mediated by methylation of its target promoters (Figure 9) [181]. Since Dnmt3a is 

complexed with histone deacetylases, its recruitment by Myc might lead to local 

histone deacetylation and inhibition of transcription [182]. Recruitment of Dnmt3a 

by Myc is an attractive mechanism for repression, since it might provide an 

explanation of the aberrant DNA methylation of some tumour suppressor genes that 

is observed in human tumours. 
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That Myc can form complexes with proteins outside the Max/Mnt context has been 

recently shown by Orian and colleagues who have found that, in Drosophila, dMyc 

can directly interact with the co-repressor Groucho without Max to control neuronal 

development [183]. 

Taken together these findings reveal another level of complexity to the mechanisms 

of Myc mediated repression. 

As mentioned above, despite further support for the provocative idea of Myc as a 

repressor, knowledge of the molecular mechanism lagged behind that of MYC as a 

transactivator. Nonetheless, it seems likely that both activation and repression are 

required for Myc biological function. To date still less is known about N-MYC-

mediated repression. Only two genes have been found to be repressed by N-Myc: the 

differentiation-related NDRG1 and -2 genes (N-Myc Downstream-Regulated Genes) 

via Miz-1-dependent interaction with their core promoter [184] [185]. 

Whereas the above, this thesis will be focussed to the study of the mechanism(s) 

underlying N-MYC-mediated repression. 

 

                    
Figure 9. Multiple factors employ distinct mechanisms to repress the p21 promoter. Myc exerts their 
action through the proximal promoter region. Myc oncoproteins tend to interfere with positive 
regulators of p21 transcription, such as Sp1 and Miz1.  
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Amplification of other loci 

 

Amplification of at least six regions that are nonsyntenic with the N-MYC locus at 

2p24 has been shown in neuroblastoma cell lines or primary tumours. These include 

amplification of DNA from chromosome 2p22 and 2p13, the MDM2 gene on 12q13 

and the MYCL gene at 1p32 [186] [187] [188] [189]. However, no neuroblastoma 

has been shown to amplify another gene that did not also amplify N-MYC. Allelic 

gain or amplification of other loci, including 4q, 6p, 7q, 11q and 18q, and other sites, 

have been identified using comparative genomic hybridization (CGH) approaches 

[190] [191] [192], but they mainly occur concurrently with N-MYC amplification, so 

their prevalence, as well as biological and clinical significance, is unclear. 

 

HRAS and oncogene activation 

 

Although NRAS was first identified as the transforming gene of a human 

neuroblastoma cell line, subsequent studies of primary neuroblastomas indicate that 

activating mutations of RAS proto-oncogenes are rare [193] [194]. However, there is 

evidence that high expression of HRAS in neuroblastomas is associated with a lower 

stage of disease and a better outcome [195]. RAS protein activation is a frequent 

consequence of activating tyrosine kinase receptors (such as TrkA, see below), 

which, in turn, are associated with neural differentiation. So, RAS activation or 

overexpression could mimic activation of this aspect of the signal-transduction 

pathway. However, the ultimate clinical use of the analysis of oncogene expression 

in neuroblastomas remains to be determined. Activation of other oncogenes by 

amplification, mutation or other mechanisms has not been found except for a few 

rare examples seen primarily in established cell lines. So, other than N-MYC 

amplification, which occurs in only a subset of tumours, there is no consistent 

evidence for activation of any other oncogene in human neuroblastomas. 
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Specific tumour-suppressor genes 

 

The TP53 gene, which encodes the p53 protein, is one of the most commonly 

mutated genes in human neoplasia. p53 is a key regulator of cell-cycle control, and 

so inactivation of p53 function can contribute to malignant transformation. However, 

mutations are rarely found in primary neuroblastomas [196] [197]. There is recent 

evidence that the TP53 gene might be mutated more commonly in cell lines that are 

derived from patients at relapse [198] [199], but there is still controversy about the 

involvement of this gene in neuroblastomas. Some reports have shown cytoplasmic 

sequestration in undifferentiated neuroblastomas, so impairing the normal G1 

checkpoint after DNA damage [200] [201]. 

Recently, a critical negative regulator of the p53 tumour suppressor, MDM2, has 

been characterized in neuroblastoma cell lines as a transcriptional target of N-MYC. 

These data suggest the possibility that N-MYC-driven expression of MDM2 might 

play a role in counterbalancing the p53-dependent apoptotic pathways concurrently 

stimulated by overexpression of MYC proteins [202].  

Furthermore, there are evidences that N-Myc cooperates with Twist-1 (a highly 

conserved transcription factor that belongs to the family of basic helix–loop–helix 

proteins) in the development of neuroblastoma. N-Myc promotes cell proliferation 

whereas Twist-1 counteracts its pro-apoptotic properties by knocking-down the 

ARF/p53 pathway [203]. 

These observations provide a mechanistic explanation for the rarity of p53 mutations 

in neuroblastomas. 

Other examples of suppressor-gene inactivation are deletions or mutations in the 

CDKN2A gene (which encodes INK4A, also known as p16, important in cell-cycle 

control and frequently inactivated in various cancers) and NF1 gene (a negative 

regulator of the ras signal transduction pathway). These alterations have been found 

in neuroblastoma cell lines, but it seems to be uncommon in primary tumours [204] 

[205]. 
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Chromosome deletion or allelic loss at 1p 

 

Deletions of the short arm of chromosome 1 (1p) is a common abnormality that can 

be identified in 25–35% of neuroblastomas [206] [207] [208] [209]. Deletions of 

chromosome 1 are found more commonly in patients with advanced stages of 

disease, and 1p allelic loss is highly associated with N-MYC amplification [34]. 

Most studies indicate that there is a single site of deletion on distal 1p36 in 

neuroblastomas, but there might be more than one. Indeed, there is not agreement as 

to the exact site, as studies by different groups have identified at least three discrete 

regions. 

These regions are being mapped intensively to identify potential candidate genes for 

the putative tumour-suppressor gene that has been deleted from this region. 

However, the gene or genes within chromosome 1p involved in the pathogenesis of 

neuroblastoma have not been identified despite intensive investigation. Whether the 

loss of heterozygosity due to deletion of alleles from 1p is an independent indicator 

of prognosis remains controversial. However, evidence suggests that allelic loss at 

1p36 predicts an increased risk of relapse in patients with localised tumours [210] 

[211] [212] [213].  

 

Allelic loss of 11q 

 

Allelic loss of 11q has been detected by analysis of DNA polymorphisms and by 

CGH techniques in 35–45% of primary tumours [190] [191] [192] [214] [215]. 

Deletion of 11q was directly associated with 14q deletion (see below), but it was 

inversely correlated with 1p deletion. Notably, this genomic aberration is rarely seen 

in tumours with N-MYC amplification, yet remains highly associated with other 

high-risk features. Therefore, loss of 11q might prove to be a useful predictor of 

outcome in clinically high-risk patients without N-MYC amplification [216]. 
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Allelic loss of 14q 

 

Loss of heterozygosity (LOH) also occurs for the long arm of chromosome 14 with 

[217] [218] [219]. A recent study of 280 neuroblastomas found allelic loss in 23%, 

and a consensus region of deletion was found in 14q23-32 [220]. There was a strong 

correlation with 11q allelic loss and an inverse relationship with 1p deletion and N-

MYC amplification. However, no correlation was found with other biological or 

clinical features or outcome.  

 

17q gain 

 

A gain of 1–3 additional 17q copies, often through unbalanced translocation with 

chromosome 1 or 11, can also correlate with a more aggressive phenotype. 

Allelotyping and CGH studies have indicated that this abnormality might occur in 

more than half of all neuroblastomas [221] [222] [223]. The 17q breakpoints vary, 

but gain of a region from 17q22-qter suggests that a dosage effect of one or more 

genes provides a selective advantage rather than interruption of a gene [224] [225]. 

Candidate genes include BIRC5 (survivin), NME1, and PPM1D, which are 

overexpressed in this subset of tumours [226] [227] [228]. Gain of 17q is associated 

with more aggressive neuroblastomas, although its prognostic significance relative to 

other genetic and biological markers awaits a large prospective trial and multivariate 

analysis. 

 

DNA content 

The DNA content of neuroblastomas fall into two broad categories: near-diploid or 

hyperdiploid (often near triploid). Genetic models of neuroblastoma suggest that less 

aggressive tumours have a fundamental defect in mitosis associated with whole 

chromosome gains and losses, which could explain why near-triploidy seems to be 

favourable. Conversely, more malignant neuroblastomas have a fundamental defect 

in genomic stability, resulting in chromosomal rearrangements, unbalanced 
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translocations, and maintenance of a near-diploid DNA content [229]. DNA index is 

a prognostic marker for patients younger than 2 years who have disseminated 

disease. This is probably because hyperdiploid and near-triploid tumours from 

infants generally have whole chromosome gains without structural rearrangements, 

whereas hyperdiploid/near-triploid tumours in older patients also have several 

structural rearrangements [230] [231] [232].  

However karyotype analysis is frequently unsuccessful in predicting outcome. 

Finally, deletion or allelic loss has been shown at various other sites by genome-wide 

allelotyping or by CGH, but their biological or clinical significance is unclear (Figure 

10). 

 

 
Figure 10. Genetic abnormalities in neuroblastoma: in green are represented the “gain of function” 
and in red the “loss of function”. 
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Abnormal patterns of gene expression 

 

Expression of neurotrophin receptors 

 

The factors that are responsible for regulating the malignant transformation of 

sympathetic neuroblasts to neuroblastoma cells are not well understood, but they 

probably involve one or more neurotrophin-receptor pathways that signal the cell to 

differentiate. 

The neurotrophin receptors (NTRK1, NTRK2, and NTRK3 encoding TrkA, TrkB, 

and TrkC) and their ligands (NGF, BDNF, and neurotrophin-3, respectively) are 

important regulators of survival, growth, and differentiation of neural cells [233]. All 

three neurotrophins also bind with a lower affinity to another receptor known as 

p75NTR, a member of the tumour necrosis factor receptor (TNFR)/Fas death-

receptor super-family (Figure 11). 

The Trk receptors are tyrosine kinases and derives its name from the oncogene that 

resulted in its discovery [234]. This oncogene consists of the first seven exons of 

nonmuscle tropomyosin fused to the transmembrane and cytoplasmic domains of a 

novel tyrosine kinase. Consequently, the proto-oncogene was named tropomyosin-

related kinase (TRK) and is now commonly referred to as TRKA. The TRKB and 

TRKC genes were identified because of their high homology to TRKA. Comparisons 

of their sequences to those of other transmembrane tyrosine kinases indicated that 

they constitute a novel family of cell surface receptor tyrosine kinases.  

Specific patterns of expression within the nervous system suggested roles in neuronal 

development and function: thus the neural development and maintenance of the 

neural network are spatiotemporally controlled by neurotrophin signalling in both 

peripheral and central nervous systems [235].  
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Figure 11. Schematic representation of neurotrophin family receptors. (A) Trks and p75NRT are 
high-affinity and low-affinity receptors for their cognate ligands, respectively. Each Trk has a single 
transmembrane domain and a single cytoplasmic tyrosine kinase domain. The second immunoglobin-
like domain (Ig2) of TrkA and TrkB is the major ligand-binding interface.The neuronal form of TrkA 
receptor has a short insertion in the juxtamembrane region of its extracellular domain. Both TrkB and 
TrkC have truncated isoforms without the kinase domain. An isoform of TrkC has been identified 
with a kinase insert domain. p75NRT consists of four cysteine-repeat domains (CR). Both CR2 and 
CR3 have been implicated in neurotrophin-binding interactions. p75NTR has single transmembrane 
and cytoplasmic domains. The latter contains a “death domain” similar to those identified in TNF 
receptors. [233]. 
 

TrkA is a transmembrane receptor that functions as a homodimer. Binding of TrkA 

to a homodimer of NGF activates autophosphorylation of the receptor, docking of 

signalling proteins, signal transduction and induction of gene transcription (Figure 

12).  

TRKA is physiologically expressed at high levels in most neurons during the last 

stages of embryological development of the sympathetic nervous system, as a result 

of a "switch" expression by TRKB or C [236]. 

Explanted neuroblastoma cells with high TrkA expression differentiate when 

exposed to NGF or undergo apoptosis in the absence of NGF [37]. Thus, NGF/TrkA 

signalling could provoke differentiation or regression in favourable neuroblastomas 

depending on the particular microenvironment. 

 34



Introduction 

 
Figure 12. Signal-transduction pathway of the TrkA tyrosine kinase receptor. Binding of nerve 
growth factor (NGF) to the ligand-binding domain of TrkA leads to TrkA autophosphorylation and 
activation of various signalling cascades. Proteins that are thought to interact directly with the Trk 
intracellular domain are SHC, PLC 1, SH2B and IAPs, some of which are shown here. Binding of a 
ligand to TrkA can also trigger the RAS signalling pathway, leading to survival and differentiation, 
and an alternative survival signalling pathway through phosphatylinositol 3-kinase (PI3K) [9]. 
 

  

Indeed TRKA expression represents a powerful prognostic factor in neuroblastoma. 

The highest levels of TrkA are expressed in tumours with good prognosis which 

often showed spontaneous regression. Such tumours usually occur in patients under 

one year of age, with lower stage and their DNA ploidy is aneuploid. On the other 

hand, TrkA expression is strongly down-regulated in neuroblastomas with aggressive 

behaviour which usually have amplification of the N-MYC oncogene as well as 

allelic loss of the region of chromosome lp36. The combination of TrkA expression 

and N-MYC amplification provided even greater prognostic power (Figure 13). [237] 

[37] [9] [38] [39] [238]. 

A limited amount of NGF may be supplied from the stromal cells such as 

schwannian cells and fibroblasts, that, like normal sympathetic neurons, at least 

partly regulates differentiation and programmed cell death of the NBL cells [239]. 
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A                                                                                    B 

                    

 
Figure 13. Probability of survival of patients with human neuroblastoma in accordance only with 
levels of expression of TrkA (A) and according to the relationship between expression of TrkA and 
amplification of N-Myc (B). 
 

TRKB, conversely, occurs at an early stage compared TrkA in neurons of the 

sympathetic system, and it is commonly expressed in biologically unfavourable 

neuroblastomas. 

Although a truncated isoform lacking the catalytic tyrosine kinase domain could be 

expressed in favourable tumours, full-length TrkB is expressed along with its ligand, 

BDNF, predominantly in tumours with N-MYC amplification [240]. Thus, this might 

represent an autocrine or paracrine loop, thereby providing some survival or growth 

advantage that additionally promotes chemotherapy resistance, angiogenesis and 

metastases [241] [242] [243] [244] [245].  

This scenario is very similar to that observed in normally developing sympathetic 

neurons which survive and differentiate by the target-derived supplement of 

neurotrophins (a trophic theory). However, aggressive neuroblastoma cells shut off 

TrkA signals by down-regulating its expression and disturbing the downstream 

signalling cascades, whereas they utilize BDNF /TrkB autocrine system to grow 

much efficiently [233]. 

 

By contrast, the expression of TRKC was found predominantly in lower-stage 

tumours, and, like TrkA, TrkC was not expressed in N-MYC-amplified tumours 

[246] [247]. Like TrkB, however, TrkC is expressed in the early stages of 

development of the sympathetic nervous system [236].  
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p75NTR activates a distinct set of signalling pathways within cells that are in some 

instances synergistic and in other instances antagonistic to those activated by Trk 

receptors. Several of these are proapoptotic, as can be expected from a member of 

the tumour necrosis factor receptor (TNFR)/Fas death-receptor super-family, but are 

suppressed by Trk receptor-initiated signalling.  

p75NTR also regulates the responsiveness of TrkA receptors to NGF: its presence 

increases the rate of NGF association with TrkA [248] [249] [250] [251]. Thus, the 

specificity of neuronal responses to neurotrophins can be modulated by the type of 

receptor, differential splicing, and the absence or presence of p75NTR. 

Theoretically, p75NTR could lead to either cell death or differentiation in response to 

ligand, depending on whether or not TrkA receptors were co-expressed [252] [253]. 

However, although Trk receptors suppress p75NTR -mediated signalling, Trk 

receptors are not always completely efficient at preventing p75NTR -mediated 

apoptosis [254] [255]. 

As for TRKA, the expression of p75NTR is downregulated in neuroblastomas with 

amplification of N-MYC and is therefore generally associated with a favourable 

outcome of this tumour [37] [38] [39]. Recently, furthermore, it has been shown that 

the expression of TRKA p75NTR is specifically silenced during tumour progression 

driven by the amplification of N-MYC in a model of transgenic mice for N-MYC 

[256]. Thus, taken together, these data suggest that there may be a direct involvement 

of N-MYC in the repression of TRKA and p75NTR, and that this mechanism may 

play a pivotal role in the malignancy of neuroblastoma. 
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Expression of ABC drug transporter genes 

 

As mentioned above, amplification of the N-MYC oncogene is present in about 25% 

of primary untreated neuroblastomas, which is associated with advanced stage 

disease, rapid progression and unfavourable prognosis [21]. Moreover, this patient 

subgroup often demonstrates a multiple drug resistant (MDR) phenotype that 

develops from exposure to chemotherapeutic agents and increases with intensity of 

the therapy accommodated. 

Cancer cells become resistant to anticancer drugs by several mechanisms. One way is 

to pump drugs out of cells by increasing the activity of efflux pumps, such as ATP-

dependent transporters [257]. 

The ATP-binding cassette (ABC) genes represent the largest family of transporter 

genes: 48 genes in H. Sapiens, organized in seven subfamilies and highly conserved 

between species. Many of these genes are implicated in disease processes and/or 

drug resistance [258-261]. The prototype ABC protein binds ATP and uses this 

energy to transport molecules across cell membranes (Figure 14). 

 

 
Figure 14. The structure of three categories of ABC transporters. 
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The genes generally associated with this phenomenon are the multidrug resistance 

gene 1 (MDR1, also know as ABCB1), the gene for multidrug resistance-related 

protein (MRP1, also know as ABCC1) and other members of these families. Most of 

the investigation of these genes and their encoded proteins has been done in vitro, but 

their expression and potential clinical significance in neuroblastomas has been 

addressed recently [262] [263] [35]. 

 

ABCB1 gene is the most studied ABC drug pump, and the first human ABC 

transporter cloned and characterized through its ability to confer a multidrug 

resistance phenotype to cancer cells that had developed resistance to chemotherapy 

drugs [264]. 

As not all multidrug-resistant cells express ABCB1, a search for other efflux pumps 

was initiated, leading to the discovery of ABCC1 [265]. The discovery of ABCC1 

stimulated, in turn, a genomic search for homologues, leading to the discovery of 12 

additional members of the ABCC subfamily of transporters [266]. Like ABCC1, 

many ABCC family members have the potential, in model systems, to confer drug 

resistance, according to the theory that cancer cells may use several different types of 

ABC transporters to gain drug resistance [267]. 

Treatment of neuroblastoma includes induction chemotherapy, maintenance of high 

dose chemotherapy, radiotherapy, tumour surgery and consolidation therapy. 

Chemotherapeutic protocols combine alkylating agents with microtubule active 

drugs, topoisomerase inhibitors and antibiotics. Following initial treatment with 

cytotoxic drugs, tumours are highly chemoresponsive, displaying significant partial 

or complete remission in about 80% of tumours, even those with unfavourable 

prognostic outcome [268]. Although many high-risk neuroblastomas initially respond 

to the first cycles of intensive chemotherapy, they frequently become refractory to 

treatment as the disease progresses.  

The role of ABCB1 gene in mediating multidrug resistance in neuroblastoma is still 

unclear, and recent evidences suggest that ABCB1 gene expression fail to predict for 

outcome in this tumour. Conversely ABCC1 gene expression is a powerful 

prognostic indicator for children with neuroblastoma. High levels of ABCC1 

expression are strongly associated with reductions in both survival and event-free 

survival (Figure 15). [35]. Although available evidence strongly suggests that 

ABCC1 is critically associated with the drug-resistant behaviour of primary 
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neuroblastoma, this drug efflux pump does not appear to mediate resistance to either 

alkylating agents or platinum compounds [269]. Members of both these classes of 

compounds, such as cisplatin and cyclophosphamide, are commonly used in the 

treatment of neuroblastoma.  

 
Figure 15. Expression of the MDR1 (ABCB1) and MRP (ABCC1) genes and cumulative survival in 
60 patients with neuroblastoma. The survival of patients whose tumours expressed high levels of 
ABCC1 was significantly worse than that of patients whose tumours expressed low levels, but 
ABCB1 expression was not predictive of survival [35]. 
 

Thus, despite the high levels of ABCC1 observed in many aggressive tumours at 

diagnosis, the use of these non-ABCC1 substrate drugs may explain why the 

majority of neuroblastomas do initially respond to chemotherapy. Nevertheless, over 

half of these previously responsive tumours will eventually relapse with 

chemoresistant disease, suggesting the development of additional drug-resistance 

mechanisms [270]. 

Also ABCC4 is expressed in primary neuroblastoma and also its overexpression is 

significantly associated with N-MYC amplification and ABCC1 expression. The 

drug resistance phenotype of ABCC4 has to date been thought to encompass 

primarily nucleoside analogues (including antiretroviral agents) and methotrexate. 

ABCC4 is also able to confer significant resistance in vitro to the topoisomerase I 

poison irinotecan and its active metabolite SN-38. Thus, like ABCC1, also high 

ABCC4 expression correlate with poor clinical outcome in neuroblastoma (Figure 

16) [271]. 
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Figure 16. Survival in 52 neuroblastoma patients according to expression of the MRP4 (ABCC4) 
gene [271]. 
 

The laboratory of Dr. Giovanni Perini, where I am spending my Ph.D. studentship, in 

collaboration with the group of Dr. Michelle Haber (Children's Cancer Institute 

Australia, Sidney), was able to demonstrate that N-Myc in neuroblastoma and c-Myc 

in other cancer cell types, transcriptionally regulate a distinct set of ATP-binding 

cassette (ABC) transporter genes. Amongst the ABCC subfamily high levels of 

ABCC1 and ABCC4 are driven by N-Myc, through direct binding on their promoter. 

Moreover specific silencing of the ABCC1 or ABCC4 genes leads to growth 

inhibition, increased morphological differentiation and impaired motility of N-MYC-

amplified neuroblastoma cells. Thus, these Myc-dependent changes in ABC protein 

levels directly affected the malignant behaviour of neuroblastoma cells in vitro and 

tumour aggressiveness in vivo (unpublished data). 

On the contrary, in primary untreated neuroblastoma tumour samples, the group of 

Dr. Michelle Haber showed that low levels of ABCC3 expression are strongly 

predictive of poor outcome in patients with this disease (unpublished data). Indeed, 

although a number of reports have associated ABCC3 expression with outcome in 

certain cancers, there is no evidence linking this transporter with clinical drug 

resistance in any malignancy. 

So, as well as TRKA and p75NTR, the relationship between N-MYC and ABCC3 

remains to be defined. 
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Expression of tissue transglutaminase (TG2) 

 

Tissue transglutaminase (TG2) is a multifunctional protein that has structural and 

functional homology to both transglutaminases and BH3-only protein families, and 

that catalyzes transamidation and multimerization of proteins in many type of normal 

tissues. TG2 plays an important role in many biological processes, such as blood 

coagulation, skin-barrier formation, hardening of the fertilization envelope, 

extracellular-matrix assembly, that are dependent on the rapid generation of covalent 

crosslinks between proteins [272] [273]. 

Significantly one of its functions is to promote programmed cell death by inducing a 

proapoptotic conformational change in the Bax protein and activation of the 

mitochondrial apoptosis pathway [274]. 

Furthermore the group of Dr. Glenn M. Marshall (Children's Cancer Institute 

Australia, Sidney), with which my laboratory is collaborating, has found from 

microarray analysis that TG2 is the gene most significantly repressed by N-Myc in 

neuroblastoma cells (unpublished data).  

Finally, together with those already mentioned, TG2 is another example of a gene 

whose expression is generally inversely correlated with that of N-MYC, and for 

which it was not yet defined a possible mechanism underlying this repression. 

 

Treatment 

 

The current treatment of neuroblastoma may involve surgery, chemotherapy, 

radiation therapy, bone marrow rescue and/or innovative biological approaches. 

Localized tumours, especially those with favourable biology, are curable by surgery 

alone, as residual tumour tissue is prone to spontaneous regression or differentiation. 

An intermediate group may be curable with chemotherapy of moderate intensity. 

However, patients over one year of age and with metastatic disease, as well as those 

with biologically unfavourable regional tumours, seem to have a benefit of a 

treatment with intensive multiagent chemotherapy with bone marrow rescue. 

Radiation therapy is useful for local control, but is of limited utility overall because 

of the propensity of this tumour to disseminate.  
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Although there are highly effective salvage therapies for patients with low-risk and 

intermediate-risk disease who have local relapses, recurrent disease in patients with 

high-risk neuroblastoma remains a clinical challenge. In the last years innovative 

approaches to treatment offer hope of cure with limited toxicity, such as 

immunotherapy, retinoids, angiogenesis inhibitors and tyrosine kinase inhibitors. 

Among all possible targets, there are three features that, taken together, make N-Myc 

the most attractive target for tumour therapy. Firstly, there is a clear association 

between N-Myc amplification on the one hand and tumour aggressiveness and poor 

prognosis on the other. Secondly, two mouse models of tumorigenesis with 

experimentally controlled, reversible c-Myc expression suggest that a tumour 

requires continuous Myc expression and that down-regulation of Myc expression 

results in tumour regression [275] [276]. Thirdly, due to its restricted expression 

pattern after birth, side effects of even systemic down-regulation of N-Myc 

expression can be expected to be moderate. 

However, because it is a nuclear transcription factor, it is difficult to directly target 

N-MYC with small-molecule inhibitors. On the other hand, gene silencing is an 

effective method to downregulate N-MYC activity: siRNA targeted to N-MYC 

resulted in increased differentiation and apoptosis, with concurrent growth inhibition 

[277] [278]. 

Finally, in the last years, it has attracted much interest the use of histone deacetylase 

in therapy. 

Regulation of the epigenome includes DNA methylation and histone acetylation. In 

cancer, the balance can be pathologically altered especially in favour of histone 

deacetylation and DNA hypermethylation [279]. Histone deacetylase (HDAC) 

inhibitors are currently being tested in various clinical trials [280]. Interestingly, 

HDAC-1 is correlated with the multidrug resistance phenotype in neuroblastoma 

cells [281]. In a preclinical study of embryonal tumours, including neuroblastomas, 

an array of HDAC inhibitors increased the level of apoptosis in a time and dose-

dependent manner [282].  
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Final remarks 

  

Neuroblastomas are enigmatic, multifaceted tumours that predominantly affect 

children under 5 years of age. For over two decades, therapeutic advances have failed 

to significantly increase the 5-year survival rates of children with aggressive, 

advanced-stage neuroblastomas. As heterogeneity is a hallmark of neuroblastoma, 

current biomedical research is focused on addressing the various pathogenic 

intricacies of this tumour (Figure 17). Understanding the various biological and 

molecular components regulating tumour progression in neuroblastoma is necessary 

to successfully improve survival rates. 

 

 
Figure 17. Advances in neuroblastoma research. Potential pathways to target for adjunct therapy 
include retinoid-induced differentiation, stimulators of angiogenic pathways, histone deacetylase, and 
N-MYC along with its transcriptional targets [17]. 
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Results 

N-MYC expression inversely correlates with that of TRKA, 

p75NTR, ABCC3 and TG2 

 

As mentioned above, there exists a set of genes, such as the neurotrophin receptors 

TRKA and p75NTR, the ATP-binding cassette transporter gene ABCC3, and the 

tissue transglutaminase (TG2), whose expression is strongly downregulated in 

neuroblastoma when N-Myc is overexpressed. These genes may potentially play an 

important role in differentiation and/or apoptosis of neuroblastoma cells, since their 

expression is correlated with lower-stage tumours and favourable outcome. 

In order to determine whether N-Myc can regulate the expression of TRKA, 

p75NTR, ABCC3 and TG2, we analysed their expression profile in different cellular 

systems. 

First, we used Tet-21/N cells, a human neuroblastoma cell line, in which N-Myc 

expression can be transcriptionally shut off by adding tetracycline in the culture 

medium [283]. Expression of TRKA, p75NTR, ABCC3 and TG2 genes was 

measured by real-time PCR as a function of tetracycline treatment and correlated 

with that of N-Myc. As shown in Figure 1A-B, all the analysed genes increased 

significantly their expression upon silencing of N-Myc expression. Second we 

determined the expression of TRKA, p75NTR, ABCC3 and TG2 in human 

neuroblastoma SK-N-BE 2C and SK-N-BE 9N cells, in response to treatment with 

retinoic acid. As it is well established from literature, retinoic acid treatment induces 

cellular differentiation of neuroblastoma cells and turns off N-Myc expression. SK-

N-BE 9N derives from SK-N-BE but has been engineered to express a N-Myc 

recombinant construct under the control of a viral promoter which makes it 

unsensitive to retinoic acid. SK-N-BE 2C cells, on the contrary, carry the same 

construct without N-Myc coding sequence and were used as control. Results show 

that the expression of our genes significantly increased only in SK-N-BE 2C cells, 

where N-Myc expression can be downregulated by retinoic acid but not in SK-N-BE 

9N cells where N-Myc expression remains elevated (Figure 1C-D). Furthermore we 

obtained several cell clones by stably transforming SH-SY-5Y, another human 

neuroblastoma cell line which expresses a low level of N-Myc, with a N-Myc 

expression vector. The Figure 1E-F shows that each cellular clone overexpressing N-

Myc, downregulates TRKA, p75NTR, ABCC3 and TG2 as compared to parental 
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SH-SY-5Y cells and to a clone transfected with the empty vector. Finally we treated 

SK-N-BE and LAN-1, two human neuroblastoma cell lines carrying amplified 

MYCN, with a specific siRNA targeting MYCN mRNA. As shown in Fig 1F-G, 

RNAi mediating silencing of N-MYC correlated with upregulation of TRKA, 

p75NTR, ABCC3 and TG2. 

APEX1, a gene positively regulated by N-Myc, was used as a control in every 

cellular system tested and, as expected, its expression paralleled that of N-Myc. 

Taken together these findings support the initial hypothesis regarding a direct role of 

N-Myc in repressing this specific set of genes. 
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Figure 1. N-MYC expression inversely correlates with that of TRKA, p75NTR, ABCC3 and TG2 in 
neuroblastoma cell lines. A, quantification of gene transcripts by Real Time PCR as a function of N-
MYC expression in TET-21/N cells. B, western blotting. C, different response to Retinoic Acid 
treatment between SK-N-BE 2C and 9N cells depending on N-MYC expression. D, western blotting. 
E, expression of tested genes in SH-SY 5Y neuroblastoma cell clones selected to overexpress N-
MYC. F, western blotting. G, effect of RNAi knock-out of N-MYC in SK-N-BE and LAN-1 
neuroblastoma cells on transcription of tested genes. H, western blotting. APEX1 is a gene activated 
by N-Myc and was used as a control. 
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The core promoters of TRKA, p75NTR, ABCC3 and TG2 are 

required for N-Myc-mediated repression  

 

In order to formally confirm the functional role of N-Myc in repression of TRKA, 

p75NTR, ABCC3 and TG2 genes, we cloned the promoter regions of these genes 

upstream of a luciferase reporter gene (Figure 2). The luciferase activity of the 

recombinant reporters was determined in different cellular systems as a function of 

N-Myc expression: 

• in TET-21/N as a function of tetracycline treatment; 

• in SH-SY-5Y MYCN clones as a function of the level of N-Myc 

overexpression; 

• in HeLa cells as a function of the amount of the pCMV-N-MYC expression 

vector co-transfected along with the luc-reporter; HeLa cells  were used in order to 

extend these findings to a model diverse from neuroblastoma. 

As shown in Figure 2, the presence of N-Myc significantly reduced the luciferase 

activity driven by TRKA -860/+60, p75NTR -900/+100, ABCC3 -1462/+754 and 

TG2 -1603/+378 reporters. On the contrary expression of N-Myc did not affect the 

activity of a viral promoter, such as Cytomegalovirus, and positively modulated the 

APEX1 -1000/+443 construct, used as a negative and positive control, respectively. 

Finally, through a deletion analysis of the repressed promoters, we could map the 

region necessary for N-Myc-mediated repression within the core promoters of 

TRKA, p75NTR, ABCC3 and TG2. Deleted promoters were tested in the same 

conditions as described above and, as shown in Figure 2, they lost their 

responsiveness to N-Myc expression. 

Overall these results demonstrate that the core promoter regions of the TRKA, 

p75NTR, ABCC3 and TG2 genes are required for N-Myc-mediated repression. 

These findings prompted us to further investigate the mechanisms by which N-Myc 

mediate transcription repression. 
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Figure 2. The core promoter region of tested genes is required to mediate repression by N-MYC. 
Whole promoters and mutated derivatives were cloned into a Firefly Luciferase reporter vector. 
Luciferase activity was tested as a function of N-MYC expression levels in distinct cell systems (TET-
21/N, SH-SY 5Y clones and HeLa cells). Luciferase activity was normalized to that of Renilla 
Luciferase. APEX1 and CMV promoters were used as a positive and negative control respectively.  
 

Repression of the neurotrophin receptors TRKA and p75NTR 

 

Dissecting the core promoter regions of TRKA and p75NTR  

 

As shown in the transient luciferase assays, we identified the regions critical for N-

Myc-mediated repression in TRKA and p75NTR promoters. In order to better 

address this point, we had bioinformatically analysed these core promoters and we 

found several consensus sequences for Sp1 and Miz1 transcription factors. Sp1 and 

Miz1 binding sequence are present also in the core promoter of the cell cycle 

inhibitor p21 that is repressed by c-Myc in limphoblastoid cells (see Introduction, 

Figure 9) (Figure 3). 

Brenner and colleagues have demonstrated that c-Myc recruits a DNA 

methyltransferase, DNMT3a, to the Myc-Miz1 complex on the promoter of p21, 

indicating that Myc-dependent gene repression could partly be mediated by 

methylation of its target promoters [181].  
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Figure 3. Schematic representation of TRKA, p75NTR and p21 promoters. The distribution of Sp1 
and Miz1 binding sites is very similar among the three promoters.  
 

To verify whether this mechanism may be extended to TrkA and p75NTR we 

analysed the methylation status of TRKA and p75NTR promoters by performing a 

Southern Blot analysis. We digested genomic DNA with MspI, which recognizes and 

cleaves the CCGG sequences independently of their methylation status and with 

HpaII, which instead cleaves the same sequence only when demethylated. The results 

showed that, in different human neuroblastoma cell lines, both TRKA and p75NTR 

promoters were not methylated (Figure 4).After excluding methylation as a 

mechanism of repression mediated by N-Myc, another possibility is that N-Myc, 

likewise c-Myc with p21, may repress TRKA and p75NTR expression, by targeting 

the activator functions of Sp1 and/or Miz1. 
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Figure 4. Southern Blot analysis of TRKA (A) and p75NTR (B) promoters. Genomic DNA (15 µg) 
digested with the indicated enzymes was electrophoresed on an agarose gel and analyzed by Southern 
blot hybridization. The probes extend from the promoter region to within the coding sequence. The 
positions of the HpaII/MspI sites are shown schematically over the diagrams.  The digestion profile of 
genomic DNA with MspI was the same compared to that of HpaII, indicating that the CpG sites are 
not methylated. 
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Sp1 and Miz1 are activator factors of TRKA and p75NTR 

 

To address this point we investigated the role of Sp1 and Miz1 transcriptional factors 

in the regulation of TRKA and p75NTR expression. First, we generated, two SK-N-

BE stable cell clones by transfecting either Sp1 or Miz1 coding sequences under the 

control of a ponasterone inducible promoter. After the treatment with ponasterone, 

and the consequent induction of the Sp1 or Miz1 expression, we tested the 

expression of endogenous TrkA and p75NTR mRNA by qRT-PCR and observed a 

significant increase in the endogenous levels of TRKA, p75NTR. p21, which also 

increased was used as positive control (Figure 5A-B). Furthermore we also tested the 

reporter constructs of TRKA and p75NTR promoters in these two cell lines, by 

evaluating the luciferase activity as a function of ponasterone treatment. As shown in 

Figure 5C the activity of both reporters increased upon induction of Sp1 or Miz1 

expression. Furthermore, the treatment with ponasterone had no effect on the activity 

of the CMV reporter, while it positively modulated the p21 -850/+120 construct, used 

as a negative and positive control, respectively. Moreover, the core promoter region 

of either TRKA or p75NTR had the ability to confer responsiveness to both Sp1 and 

Miz1 when cloned in the CMV reporter between the CMV promoter and the coding 

sequence of the luciferase (Figure 5C). 

These findings support the idea that Sp1 and Miz1 play an important role in the 

transcriptional activation of the TRKA and p75NTR core promoters.  

In order to establish if N-Myc could interfere with the transcription activation 

mediated by Sp1 and Miz1, we measured the luciferase activity of TRKA and 

p75NTR reporter constructs as a function of co-transfection with either a Sp1 or a 

Miz1 expression vector, in two different cellular context: with or without N-Myc 

expression (TET-21/N without and with tetracycline, respectively). 

As expected, both Sp1 and Miz1 mediated upregulation of the reporters was 

significantly reduced in presence of N-Myc (Figure 5D). Once again the deleted 

constructs lost responsiveness to N-Myc, Sp1 and Miz1 while the reporters with the 

core promoters cloned downstream the CMV promoter, were sensitive to it. 

Furthermore, we found that, like c-Myc, even N-Myc affect the luciferase activity of 

p21 promoter. These transient luciferase assays were repeated and the results 

confirmed also in SH-SY 5Y clones and in HeLa cells (not shown). 
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Taken together these findings show that N-Myc could repress transcription of TRKA 

and p75NTR possibly by interfering with the positive regulation mediated by SP1 

and Miz1 transcription factors at the level of core promoter. 

N-Myc is physically associated with the core promoter of TRKA and 

p75NTR in vivo 

  

According to the model generally accepted for Myc-mediated repression, N-Myc 

does not bind directly DNA (and in fact we could not find putative E-boxes within 

the core promoters of TrkA and p75NTR), but rather through interactions with 

proteins that bind DNA directly. So, in order to demonstrate that N-Myc contacts the 

core promoters of TRKA and p75NTR we employed the dual-crosslinking chromatin 

immunoprecipitation assay (dual ChIP), a variant of the standard ChIP in which two 

distinct crosslinking agents are used: first Di (N-succinimidyl) glutarate 

 (DSG) that causes links between proteins and then formaldehyde that generates links 

between proteins and DNA and assures the recovery of proteins not in direct contact 

to DNA [284]. So, when dual ChIP assay was performed on SK-N-BE cells, we 

found that N-Myc together with its partner Max, Sp1 and Miz1 can specifically co-

occupy the core promoters of TRKA, p75NTR and p21 in vivo. For Miz1 dual ChIP 

was performed using the inducible clone derived from SK-N-BE, which expresses a 

Miz1-HA protein after ponasterone treatment, as shown above. In this way we used 

an anti-HA antibody for immunoprecipitation, considering the lack of an anti-Miz1 

available for ChIP assay. 

These results strongly support the existence of a multi-proteic complex of repression 

involving N-Myc on the core promoters of TRKA, p75NTR and p21, too (Figure 6). 
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Figure 5. N-Myc represses transcription through Sp1 and Miz1 transcription factors. A, induced 
transcription of either Sp1 or Miz1 increases expression of tested genes in neuroblastoma cells. B, 
western blotting. C, relative luciferase activity of reporter vectors in the inducible cell lines. D, 
relative luciferase activity of reporter vectors as a function of Sp1 and Miz1 in the absence or presence 
of N-Myc. p21 and CMV promoters were used as controls. 
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Figure 6. Dual Chromatin Immunoprecipitation analysis reveals that N-MYC is physically associated 
with the core promoter regions of repressed genes in SK-N-BE human neuroblastoma cell line. 
Relative enrichments were calculated as the ratio between the enrichment obtained with the specific 
antibody and that obtained with the pre-immune serum (IgG). Amplification of a distal region was 
used as negative controls for each promoter. Results represent the average of three independent 
experiments in which each region was amplified by qPCR in triplicate. Standard error is indicated. 
  

N-Myc interacts with Sp1 and Miz1 through distinct domains 

 

To confirm whether N-Myc can interact with Sp1 and Miz1 we performed a co-

immunoprecipitation assay. We co-transfected HEK293 cells with an expression 

vector for N-Myc with a FLAG tag and an expression vector for Sp1-HA or for 

Miz1-HA tag proteins.  
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Figure 7. Co-Immunoprecipitation and GST pull-down assays show that distinct N-Myc domains can 
contact Sp1 and Miz1. A, tagged proteins were expressed in HEK293 cells. Immunoprecipitation was 
performed using anti-HA antibodies. Western Blotting was performed using anti-FLAG antibodies. 
The Mad protein was used as a negative control of the assay. B, association of endogenous N-Myc 
with endogenous Miz1 or Sp1 was determined by Co-IP using specific nuclear extracts from SK-N-
BE neuroblastoma cell line. Antibodies against Sp1 or Miz1 (Immunoprecipitation) or N-Myc 
(western blotting) were used. C, schematic representation of N-Myc-GST constructs. D, GST pull-
down assays were performed by incubating in vitro translated Sp1 or Miz1 proteins with GST (as 
negative control) and with N-MYC-GST constructs for 1h at 4°C followed by incubation with 
glutathione beads for 1h. Bound proteins were subjected to SDS/PAGE followed by immunoblotting 
with anti-HA antibody. 
 

When N-Myc-FLAG was immunoprecipitated with an anti-FLAG antibody, we 

specifically recovered both Sp1 and Miz1 proteins, as determined by western blotting 

using an anti-HA antibody. We obtained the same results when Sp1-HA or Miz1-HA 

was immunoprecipitated with an anti-HA antibody: in summary we found that the 

three proteins present in the repression complex may interact with each other. 
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Moreover, to confirm the specificity of these interactions, we showed that Mad-

FLAG, another member of the Myc/Mad/Max network that does not interact with N-

Myc (see introduction), did not co-immunoprecipitate with Sp1 and Miz1 (Figure 

7A). The importance of these interactions was highlighted by co-

immunoprecipitation assays with endogenous proteins in SK-N-BE confirming the 

existence of such interactions in vivo (Figure 7B). 

Finally we used a GST pull-down assay in order to determine which N-Myc 

region(s) could contact Sp1 or Miz1. For this purpose several N-Myc mutants, 

designed to cover all the length of the onco-protein, was expressed as GST 

derivatives and incubated with in vitro translated Sp1-HA or Miz1-HA proteins 

(Figure 7C). Interaction between GST-N-Myc proteins and in vitro translated ones 

was determined by western blotting. As shown in Figure 7D, two distinct regions of 

N-Myc, one containing the MB II transactivation domain and the other the 

BR/HLH/LZ domain, can interact with Sp1 and Miz1, respectively.  

 

N-Myc, Sp1 and Miz1 together are necessary to mediate transcriptional 

repression 

 

To formally demonstrate a functional role for the two interacting-domains of N-Myc, 

we generated three N-Myc mutants: 

• N-Myc delta 82-136 without the domain of interaction with Sp1; 

• N-Myc delta 400-464 without the domain of interaction with Miz1; 

• N-Myc delta 248-362 as negative control; 

By performing a transient luciferase assay we found that only the mutants without 

the interacting-domains have lost the ability to repress both TRKA and p75NTR 

reporters when co-transfected in SH-SY 5Y human neuroblastoma cell line (Figure 

8A-B). 

Furthermore, silencing of each component of the putative repression complex (with 

specific siRNA targeting N-Myc, Sp1, or Miz1), is sufficient to re-activate the 

endogenous expression of both the neurotrophin receptors (Figure 8C-D). 
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Figure 8. Functional role of N-Myc, Sp1 and Miz1 in TRKA and p75NTR repression. A, schematic 
representation of N-Myc mutants. B, luciferase activity was measured when each N-Myc mutant, 
cloned into an expression vector, were co-transfected in SH-SY 5Y with both TRKA and p75NTR 
reporter. The empty vector and the full-length coding sequence were used as negative and positive 
control, respectively. C, quantification of tested gene transcripts by Real Time PCR as a function of 
RNAi knock-out of N-Myc, Sp1 and Miz1 in SK-N-BE neuroblastoma cells. Once again p21 was 
used as positive control of the repression. D, western blotting.  
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From this analysis we obtained strong evidences that the two interacting domains of 

N-Myc may play an important role in mediating repression in complex with Sp1 and 

Miz1 transcription factor. Furthermore, considering that all the proteins of the 

complex contact each other (from Co-IP experiments) and that each protein of the 

complex is necessary to mediate repression (from RNAi knock-out experiments) we 

can speculate on the existence of a stable ternary complex (plus Max) on the core 

promoter regions of TRKA and p75NTR, responsible for their repression in 

neuroblastoma cells (Figure 9). 

 

 
Figure 9. Plausible model of a ternary complex (plus Max) through which N-Myc may contact gene 
promoters in vivo to repress transcription. 
 

NGF treatment increases apoptosis rate after re-expression of both 

TRKA and p75NTR 

 

In order to explore the biological significance of TRKA and p75NTR re-expression, 

N-Myc, Sp1 and Miz1 siRNAs were used again to inhibit the repressive action of 

these genes in N-MYC-amplified human neuroblastoma SK-N-BE cell line. We 

found a significant increase in the percentage of cells undergoing apoptosis only 

when cells treated with each RNAi against N-Myc, Sp1 or Miz1, were also treated 

with NGF (Figure 10A). This finding was obtained by a BrdU incorporation assay, in 

which we noticed an evident increment of the sub-G1 peak, typical of apoptotic cells. 

To better address this point we directly assessed apoptosis using an anti-PARP rabbit 

polyclonal antibody on protein extracts from SK-N-BE treated as shown in Figure 

10B. 
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Figure 10. TRKA and p75NTR re-expression influences the rate of apoptosis upon treatment with 
NGF 50 ng/ml. A, BrdU incorporation assay was performed to monitor modification of cell cycle. B, 
Western blot assay with anti-PARP antibody. Both assays showed an increment of apoptosis in 
response to NGF treatment, depending on the re-expression of the endogenous levels of neurotrophin 
receptor. 
 

Anti-PARP recognizes Poly-ADP-Ribose-Polymerase (PARP), a 113 kD protein that 

binds specifically at DNA strand breaks. PARP is also a substrate for certain 

caspases (for example, caspase 3 and 7) activated during early stages of apoptosis. 

These proteases cleave PARP to fragments of approximately 89 kD and 24 kD. Thus, 

detection of the 89 kD PARP fragment with Anti-PARP in a Western Blot assay 

serves as an early marker of apoptosis. 

As expected, the PARP fragment of 89 kD appeared clearly only in the presence of 

the RNAi knock-out of N-Myc, Sp1 or Miz1, followed by treatment with NGF 

(Figure 10B). 
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Finally these data suggest that the re-expression of the neurotrophin receptors, 

mediated by the inhibition of each component of the ternary repression complex (i.e. 

N-Myc/Sp1/Miz1), can induce apoptosis in response to NGF in human 

neuroblastoma cells. Overall, results support the idea that N-Myc may play a pivotal 

role in tumour progression by inhibiting the apoptotic pathway mediated by 

TrkA/p75NTR signalling. 

 

Repression of the ATP-binding cassette transporter ABCC3 

 

Similarly to the study we have applied to TRKA and p75NTR, we analyzed ABCC3 

promoters for the presence of N-Myc, Sp1 and Miz1 binding sites. Like neurotrophin 

receptors, ABCC3 promoter does not contain E-Boxes in close proximity to its 

transcriptional start site, whereas GC boxes (that bind Sp1) are located around its 

start site. On the contrary we did not find any putative Miz1 binding site (Figure 11). 

 

    
Figure 11.  Schematic representation of ABCC3 gene promoter. The localization of the CpG island is 
indicated by sky-blue line, while Sp1 binding sites are represented by the vertical red lines. 
 

As expected, we found that the reporter construct of ABCC3 promoter responded to 

the levels of Sp1 but not to those of Miz1 in a transient luciferase assay. Furthermore 

this construct required the Sp1 core region for N-Myc-mediated repression (not 

shown).  
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N-Myc represses the ABCC3 promoter by interacting with Sp1 

transcriptional factor 

 

Thus, we evaluated the binding of Sp1 to its cognate sites and checked if also N-Myc 

could bind ABCC3 promoter through specific interaction with Sp1. We tested this 

hypothesis in a Dual ChIP assay.  

 

 
Figure 12. N-Myc is physically associated with the core promoter of ABCC3. Dual ChIP and 
quantitative PCR were applied to Tet-21/N- cell line. Fold enrichment is relative to the pre-immune 
serum. Results represent the mean ± SE of three independent ChIP experiments. Promoter diagram: 
bent arrow, transcription start site; red arrow, canonical E-box; black arrow, non-canonical E-box; 
open boxes, amplicons indicated with a capital letter; chromosome and coordinates (bp) are also 
given. 
 

We found that either Sp1 or N-Myc (and its partner Max) bind ABCC3 promoter on 

a specific region containing the three Sp1 binding sites (Figure 12). Therefore, N-

Myc can repress ABCC3 transcription through a direct interaction with Sp1, even in 

absence of Miz1. This finding supports the hypothesis that N-Myc may repress gene 

expression through distinct mechanisms. 
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ABCC3 expression levels affect multiple neuroblastoma cell 

characteristics  

 

As mentioned in the introduction, ABCC1, ABCC3 and ABCC4 were the only genes 

from the entire ABCC family that were shown to be directly regulated by N-Myc and 

these were also the only genes that exhibited prognostic significance in primary 

neuroblastoma. 

In collaboration with the group of Dr. Michelle Haber (Children's Cancer Institute 

Australia, Sidney), we were able to demonstrate that high levels of ABCC1 and 

ABCC4 are driven by N-Myc, through direct binding on their promoter. Moreover 

specific silencing of the ABCC1 or ABCC4 genes leads to growth inhibition, 

increased morphological differentiation and impaired motility of N-MYC-amplified 

neuroblastoma cells. Thus, these Myc-dependent changes in ABC protein levels 

directly affected the malignant behaviour of neuroblastoma cells in vitro and tumour 

aggressiveness in vivo (unpublished data). 

To investigate the significance of suppressed ABCC3 expression in neuroblastoma, 

SK-N-BE cells, which display low endogenous levels of ABCC3, were induced to 

constitutively express ABCC3 (Figure 13A). Cell clones expressing ABCC3 were 

investigated for several cellular parameters. For example, expression of ABCC3 at 

significant levels induced neurite formation (Figure 13B). The enhanced 

morphological differentiation was accompanied by impaired clonogenic ability and 

decreased cell proliferation, as measured either by increase in cell number over time 

or by incorporation of BrdU over time (Figure 13C), and reduced migratory activity 

(Figure 13D).  

Taken together these data indicate a potential critical role for ABCC3 in multiple 

aspects of tumour cell phenotype. 
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Figure 13. ABCC3 gene expression levels influence multiple properties of human neuroblastoma 
cells. A, Western blot analysis of ABCC3 protein expression following stable transduction of SK-N-
BE cells with either empty vector or pCMV-ABCC3. B, Expression of ABCC3 enhanced neurite 
extension in SK-N-BE cells; **P<0.0001. C, Clonogenic capacity (left panel), total cell numbers 
(centre panel) and BrdU incorporation (right panel) were significantly reduced in cells overexpressing 
ABCC3; *p<0.05, **p<0.02. D, Quantification (left panel) and representative images (right) 
displaying impaired motility of SK-N-BE cells overexpressing ABCC3. **P<0.0001. In parts A-D, 
data is presented as mean ± SE from at least three separate experiments.  
 

 

 

 65



Results 

Repression of tissue transglutaminase (TG2) 

 

TG2 transcriptional activation is mediated by HDAC inhibitor  

 

A recent collaboration of our lab with that of Dr. Glenn Marshall (Children's Cancer 

Institute Australia, Sidney) led to the finding that the TG2 gene is one of the most 

significantly repressed genes   by N-Myc in neuroblastoma cells (unpublished data). 

Surprisingly, reviewing published cDNA microarray gene profiling studies, TG2 

results to be also commonly up-regulated by HDAC inhibitors, such as Trichostatin 

A (TSA), SAHA, and butyrate, in cancer cells of various organ origins, such as 

leukaemia and liver, renal, nasopharyngeal, and breast cancer [285] [286] [287]. 

To understand how TSA revert N-Myc mediated repression of TG2, we performed 

semiquantitative RT-PCR analysis of TG2 gene expression in neuroblastoma cells. 

As shown in Figure 14A, treatment with 0.1 µM TSA for 6 h reactivated TG2 gene 

expression in BE(2)-C, IMR-32, SHEP S1, and LAN-5 neuroblastoma cell lines. 

Immunoblot analysis with an antibody that identified chromatin histone H4 revealed 

a marked increase in histone acetylation 3 h after TSA treatment, confirming that 

TSA acetylated histones in the cells (Figure 14B). In contrast, TSA did not have an 

effect on TG2 transcription in normal nonmalignant cells (not shown). These data 

suggested that TG2 gene transcription is repressed by HDAC activity across cancer 

cells but not in normal nonmalignant cells. 
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Figure 14. Up-regulation of TG2 by the HDAC inhibitor TSA. A, BE(2)-C, IMR-32, SHEP S1, and 
LAN-5 neuroblastoma cells were treated with control or 0.1 µM TSA for 6 h, followed by RNA 
extraction and semiquantitative competitive RT-PCR. B, Treatment with HDAC inhibitor acetylates 
histone H4 protein. Chromatin histone protein was extracted from BE(2)-C and IMR-32 cells after 3 h 
of treatment with control or 0.1 mM TSA, and subject to immunoblot analysis with an anti-acetylated 
histone H4 antibody. 
 

N-Myc represses TG2 transcription by directly recruiting the HDAC1 

protein to the Sp1-binding site of the TG2 gene core promoter 

 

Considering the presence of several Sp1 binding sites in the core promoter of TG2, 

and based on previous findings, we tested the hypothesis that N-Myc might repress 

TG2 transcription through a direct mechanism involving a specific interaction with 

Sp1. 

Dual ChIP was applied to N-Myc-amplified neuroblastoma cells (IMR-32 and LAN-

1), using specific antibodies against N-Myc, Sp1, and HDAC1 proteins. A 

preimmune serum was used as a negative control to determine the baseline of the 

nonspecific background. As shown in Figure 15A, all tested antibodies could 

efficiently immunoprecipitate the TG2 core promoter that contained the Sp1-binding 

sites (Amplicon B). A DNA region (Amplicon A) located ≈1.6 kb from the TG2 core 

promoter, was tested in ChIP as a negative control. We obtained similar results with 

a second neuroblastoma cell line, IMR-32 (not shown). Once again the N-Myc 

repression complex appeared to have distinct protein components compared to the 

others analysed above: specific antibodies did not identify Max, the partner of 

heterodimerization with N-Myc. Conversely, HDAC1 was not present neither on the 

promoters of neurotrophin receptors nor on ABCC3.  
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To understand the dynamics of how N-Myc, Sp1, and HDAC1 contributed to TG2 

repression, dual cross-linking ChIP was performed on LAN-1 neuroblastoma cells 

treated with TSA for 24 h. Our results showed that TSA dramatically reduced the 

association of HDAC1 with the TG2 promoter (P < 0.01), but not that of Sp1 and N-

Myc (Figure 15B). Because TSA induced reactivation of TG2 transcription, this 

result suggested that N-Myc required HDAC1 to repress TG2 transcription, possibly 

by direct interaction. 

 

 
Figure 15. N-Myc represses TG2 gene transcription by recruiting HDAC1 to the TG2 gene core 
promoter. A, Dual ChIP and quantitative PCR were applied to LAN-1 cells. Quantitative PCR with 
primers targeting the Sp1-binding site (Amplicon B) or Amplicon A, 1.6 kb up-stream of TG2 gene 
transcription start site, was performed in triplicate. Results were the average of three independent dual 
cross-linking ChIP experiments. B, Dual ChIP was performed on LAN-1 cells treated with control or 
TSA for 24 h, when a maximal transcriptional reactivation of TG2 was observed. Error bars indicate 
standard error. 
 

N-Myc can interact with HDAC1 

 

In order to prove that N-Myc and HDAC1 can interact in situ, we performed a Co-IP 

assay. Nuclear extracts obtained from LAN-1 cells were incubated with specific anti-

N-Myc antibodies or with preimmune IgG used as a negative control. The IP-

complexes were subsequently separated in an SDS/PAGE and analyzed by Western 

blot, using antibodies that recognized Sp1, HDAC1 and Max. Results shown in 

Figure 16A showed that the anti-N-Myc antibodies co-immunoprecipitated Sp1, 

HDAC1 and Max, thus confirming that N-Myc was directly bound in all repression 

complexes identified by our dual ChIP experiments. However, when the same 
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nuclear extracts were incubated first with an anti-HDAC1 antibody, only Sp1 and N-

Myc were identified in the repressor complex. 

Next, in order to determine which domain of the N-Myc protein directly interacts 

with HDAC1, we performed a GST pull-down assay. We found that HDAC1 bound 

only the C-terminal N-Myc DNA binding domain, interestingly the same bound by 

Max in the repression complex of TRKA and p75NTR. 

 

 
Figure 16. N-Myc directly interacts with Sp1 and HDAC1 through its carboxyl-terminal domain. A, 
Protein coimmunoprecipitation (IP) of N-Myc or HDAC1. One milligram of nuclear protein extract 
from LAN-1 cells was incubated with either a preimmune serum, or an anti-N-Myc antibody (Left) or 
an anti-HDAC1 antibody (Right). The purified IP-complex was analyzed by Western blot, using 
antibodies for the following proteins: Sp1, HDAC1 and Max. Lane 1, input; lane 2, preimmune serum 
IgG IP; lane 3, anti-N-Myc or anti-HDAC1 antibody IP. B, GST-N-Myc fusion proteins carrying 
different N-Myc domains were incubated with nuclear extracts expressing HA-HDAC1. GST pull-
down complexes were analyzed by Western blot analysis, using an anti-HA monoclonal antibody.  
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Transcriptional activation of TG2 contributes to HDAC inhibitor-

induced growth inhibition in human neuroblastoma cells 

 

In order to assess the role of TG2 gene up-regulation in HDAC inhibitor effects, we 

used neuroblastoma SHEP S1, which expresses a very low basal level of TG2. In the 

absence of TSA, TG2 siRNA transfection had no effect on cell proliferation in SHEP 

S1. Although TSA suppressed cell proliferation, TG2 siRNA partly blocked this 

effect in the cell line tested, indicating that TG2 reactivation is required for the 

growth arrest induced by HDAC inhibitors in the cancer cells (Figure 17A). 

TG2 has been reported to induce apoptosis by activating a BAX conformational 

change leading to BAX-mediated mitochondrial apoptosis [273], one of the main 

pathways through which HDAC inhibitors induce apoptosis [288]. We therefore 

tested whether up-regulation of TG2 could be responsible for HDAC inhibitor-

induced apoptosis. Treatment with 0.1 µM TSA induced significant cell death in 

BE(2)-C cells. As shown in Figure 17B, compared with scrambled siRNA, TG2 

siRNA did not affect the proportion of BE(2)-C cells stained with TUNEL 48 h after 

TSA treatment (P > 0.05). These results did not support a role for TG2 in HDAC 

inhibitor-induced apoptosis. 
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Figure 17. A, Up-regulation of TG2 by the HDAC inhibitor TSA and its role in cell proliferation in 
neuroblastoma cells. SHEP S1 cells were transfected with control or TG2 siRNA for 8 h, followed by 
treatment with control or TSA for 48 h and incubation with BrDu for the last 6 h. BrDu incorporation 
was measured as OD units of absorbance. *, P < 0.05 indicates a statistically significant increase in 
BrDu incorporation. Error bars indicate standard error. B, Up-regulation of TG2 did not contribute to 
HDAC inhibitor-induced apoptosis. BE(2)-C cells were transfected with scrambled or TG2 siRNA for 
8 h, followed by treatment with 0.1 mM TSA for 48 h. After fixation, cells were stained with the 
TUNEL reagent, examined under fluorescence microscope, and the percentage of TUNEL positive 
cells was quantified. 
 

Repression of TG2 expression by N-Myc is required for neuritic 

differentiation arrest in human neuroblastoma cells. 

 

N-Myc-induced malignant transformation has been associated with arrest of 

differentiation and subsequent indefinite cell proliferation [289]. To test whether 

suppression of TG2 gene expression is responsible for N-Myc-induced 

neuroblastoma cell differentiation arrest, we transfected scrambled siRNA, TG2 

siRNA, N-Myc siRNA, or TG2 siRNA plus N-Myc siRNA into N-Myc-amplified 

BE(2)-C cells and IMR-32 neuroblastoma cells. Although scrambled siRNA and 

TG2 siRNA alone did not show a significant effect on cell morphology, N-Myc 

siRNA alone induced neurite outgrowth within 72 h of transfection, and neurite 

formation was more dramatic 48 h later. In contrast, cotransfection of TG2 siRNA 

blocked N-Myc siRNA-induced neuritic differentiation (Figure 18). 
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Overall we demonstrated that TG2 is a common target of the N-Myc-mediated 

repression in neuroblastoma cells and that transcriptional activation of TG2 

contributes to HDAC inhibitor-induced cell growth inhibition. 

 

 

 
Figure 18. N-Myc blocks neuroblastoma cell differentiation by suppressing TG2 gene transcription. 
BE(2)-C (a) and IMR-32 (b) cells were transfected with scrambled control siRNA (A), TG2 siRNA 
(B), N-Myc siRNA (C), or N-Myc siRNA plus TG2 siRNA (D). Five days after transfection, cell 
differentiation was assessed by analyzing neurite outgrowth under phase contrast microscopy. Cell 
images were captured and stored, and neurite outgrowth was quantified. Error bars indicate standard 
error. 
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Discussion 

 

N-MYC belongs to the MYC oncogene family characterized by transcription factors 

that share a conserved BR/HLH/LZ DNA binding motif capable of dimerizing with 

proteins of the MAX subfamily and binding a specific unmethylated DNA sequence, 

called E-box [43] [49]. Altered expression and/or amplification of the N-MYC 

oncogene are often found in human neuroblastoma, one of the most common solid 

tumours in childhood originating from the sympathetic nervous systems. N-MYC 

amplification/overexpression has been long proposed as the most critical predictor of 

neuroblastoma outcome [21] [30], although a few other genetic markers have been 

identified as important for prognosis such as ploidy status, loss of chromosome 1p 

[30], expression of ABCC1 [35] and neurotrophin receptors such as TRKA and 

p75NTR [9]. 

Surprisingly, neuroblastoma has the highest rate of spontaneous regression or 

differentiation observed in human cancers. These clinical observations lead to 

considerable interest in understanding the mechanisms underlying spontaneous 

regression or differentiation, which in turn may lead to therapeutic approaches to 

stimulate these phenomena [9]. 

Lately, genome-wide analyses demonstrate that MYC represses at least as many 

targets as it activates, further emphasizing the role of repression in MYC function, 

including transformation [63]. Precisely how Myc switches from being activator to 

"repressor" is an open question; similarly, the chromatin-modifying events triggered 

by Myc in gene repression are not so well definite. In contrast to activation, which 

appears mediated by binding of Myc/Max complexes to E-box elements, several 

pathways of repression exist, due to the interaction of Myc with different 

transcription factors. Most of the information in our possession about MYC-mediated 

repression concern c-MYC, the principal member of the MYC family and, till now, 

very little is known about N-MYC-mediated repression. 

Nonetheless, according to several studies, N-MYC amplification/overexpression 

correlates with transcription silencing of many genes that may play a key role in the 

mechanisms underlying tumour regression/differentiation, typical of neuroblastoma. 

Furthermore, it has been reported recently that overexpression and amplification of 

the MYCN transgene in mice result in the repression of TRKA and p75NTR, the 

receptors of NGF that could mediate apoptosis and/or cellular differentiation in 

neuroblastoma [256]. 
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We have confirmed these findings in several neuroblastoma cellular models for a 

subset of 5 genes: 

• TRKA and p75NTR, mentioned above; 

• the ATP-binding cassette transporter gene ABCC3; 

• the tissue transglutaminase TG2; 

• the cell cycle inhibitor p21, already found repressed by c-Myc, but never by N-

Myc. 

Moreover we have found that the core promoter of each gene in analysis is required 

for N-Myc-mediated repression.  

 

Taken together these findings suggest that N-Myc may be directly involved in 

mechanisms of gene transcription repression.  

 

Repression of TRKA and p75NTR neurotrophin receptors 

 

Neuroblastoma is a tumour that retains the genetic program of its ancestor cells. Thus 

it originates in the neural crest precursors that are committed to differentiate into 

cells comprising sympathetic ganglia or the adrenal medulla. During normal 

development of the nervous system, a large number of neurons die via apoptosis. 

This large-scale cellular suicide may be phenomenologically akin to the spontaneous 

and quantitative regression of favourable neuroblastoma. This unusual tumour 

behaviour has led to the hypothesis that neuroblastoma cells may be susceptible to 

the death signal. Conversely the same characteristic also generate the hypothesis that 

the apoptotic signalling may be defective in aggressive neuroblastoma. 

In this context it has been suggested that an altered function of the signals mediated 

by neurotrophins/receptors may have a role. 

TrkA, the receptor of NGF, is physiologically expressed at the later stages of 

embryonic development of the sympathoadrenal lineage, and induces differentiation 

or apoptosis depending on the presence or absence of its ligand, respectively. Recent 

molecular analyses have suggested that a similar mechanism may be functioning in 

neuroblastomas with favourable prognosis, of which TRKA expression is an 

important marker. On the contrary the amplification of N-MYC, typical of aggressive 

neuroblastoma and inversely correlated with TRKA expression, may be involved 
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directly in the repression of TrkA, and thus in the arrest of the differentiation 

process. 

The role of p75NTR in neuroblastoma is still less understood; however, its 

expression in the tumour correlates with good prognosis and with normal N-Myc 

expression.  

As mentioned above, N-Myc-mediated repression is a new field of research and in 

many ways still unknown. When c-Myc functions as a repressor, it does not bind 

DNA directly, instead, it associates with gene promoters by docking the promoter-

bound Sp1 and/or Miz1 transcription factors, perhaps by interfering with their 

activation functions or by recruiting other co-repressors like Dnmt3a [157] [290] 

[291] [181]. However we did not find the TRKA and p75NTR promoters methylated 

in any of the human neuroblastoma cell lines analysed, suggesting that recruitment of 

DNA CpG methyltransferase 3a (Dnmt3a) may not be involved in the repression of 

the neurotrophin receptors. 

Sp1 and Miz1 binding sites are indeed present in the core promoters of TRKA and 

p75NTR, and we have showed that both transcriptional factors can mediate 

upregulation of the endogenous levels of the neurotrophin receptors. These data may 

provide a mechanistic explanation to the study of Ikegaki and colleagues, who 

proposed that Miz1 is a new favourable gene in neuroblastoma and found it to 

correlate with TRKA expression [292]. 

Importantly, we have also found that N-Myc can interfere with Sp1 and Miz1 

transcriptional activity by interacting with both of them, through different domains, 

at the level of TRKA and p75NTR core promoters.  

We have achieved these results through diverse experimental approaches.   

First, we have set up a new technique, named Dual ChIP, through which we could 

overcome some limits of normal ChIP, regarding the weak retrieval of protein not 

directly bound to DNA, such as N-Myc in the repression complex. To improve the 

formation of covalent links between proteins and stabilize the association of protein 

complex to DNA, we used Di (N-succinimidyl) glutarate (DSG) cross-linking agent 

in addition to formaldehyde [284]. Thus we were able to demonstrate that N-Myc 

with its partner Max, Sp1 and Miz1 are together present, in vivo, on TRKA and 

p75NTR core promoters. 
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Second, we have confirmed the physical interaction of each component of the 

repression complex in Co-IP assay, both in transiently transfected cells and with 

endogenous protein extracts from neuroblastoma cells. 

Third, through GST pull-down assays, we have demonstrated that MB II 

transactivation domain and the BR/HLH/LZ domain of N-Myc can interact with Sp1 

and Miz1, respectively. 

In support of our model, in which N-Myc (with Max), Sp1 and Miz1 take part in a 

stable ternary repression complex, we have found that the deletion of each interacting 

domain of N-Myc causes the loss of TRKA and p75NTR repression. Moreover we 

have shown that N-Myc, Sp1 and Miz1 together are required to repress transcription, 

since the silencing of each component of the repression complex results in the re-

expression of the endogenous levels of the neurotrophin receptors. 

Although TrkA has been much studied over the years, and it is well known for its 

activities in mediating differentiation or apoptosis depending on the presence or 

absence of its ligand, in recent years the role played by p75NTR has emerged with 

even greater force. 

After many years of study, p75NTR emerges as a unique receptor species, capable of 

both signalling independently and modifying the binding and signalling capabilities 

of its coreceptors, members of the tropomyosin-related kinase (Trk) family of 

receptor tyrosine kinases [253].  

Numerous examples of p75NTR-mediated cell death have been well characterized: 

what emerges from in vivo and in vitro studies is that this response is frequently cell-

type specific, and restricted to distinct developmental stages or pathologic states 

[293] [294] [295] [296]. Thus, p75NTR activates a distinct set of signalling pathways 

within cells that are in some instances synergistic and in other instances antagonistic 

to those activated by Trk receptors. Several of these are proapoptotic but are 

suppressed by TrkA receptor-initiated signalling. p75NTR also influences the 

conformations of TrkA receptors: presence of p75NTR enhances the specificity of 

TrkA for NGF. Although TrkA receptor suppress p75NTR-mediated signalling, it is 

not always completely efficient at preventing p75NTR-mediated apoptosis. NGF, for 

example, increases apoptosis of cultured motor neurons from wild-type, but not from 

p75NTR-/- embryos [254]. 

Interestingly we have found that human neuroblastoma cells undergoes to apoptosis 

after re-expression of TrkA and p75NTR, mediated by silencing of both N-Myc and 
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Sp1 and Miz1, only upon treatment with NGF. A point to be stressed is that the 

induced levels of p75NTR have been shown to be slightly larger than those of TrkA, 

suggesting that p75NTR signalling might have the upper hand on TrkA. 

However, still much remains to be clarified on the complexity of the signals 

mediated by TrkA and p75NTR in neuroblastoma tumours. Indeed, in a recent study, 

also TrkA expression has been shown to mediate apoptosis in neuroblastoma cells 

[297]. 

Finally, these findings indicate that transcription repression mediated by N-

Myc/Sp1/Miz1 (plus Max) complex may play a pivotal role in promoting tumour 

progression by inhibiting the proapoptotic functions of TRKA and p75NTR. Thus, 

the neurotrophin receptors may be eligible as a further possible target for the design 

of new drugs capable of inducing their expression in the treatment of neuroblastoma.  

 

Repression of ABCC3 

 

Resistance to chemotherapeutic agents is a major obstacle for successful treatment of 

cancer. The failure of the curative treatment of cancer patients often occurs as a 

result of intrinsic or acquired drug resistance of the tumours to chemotherapeutic 

agents. The resistance of tumours occurs not only to a single cytotoxic drug used, but 

also occurs as a cross-resistance to a whole range of drugs with different structures 

and cellular targets. This phenomenon is called multiple drug resistance (MDR). 

Multidrug resistance (MDR) severely limits the effectiveness of chemotherapy in a 

variety of common malignancies and is responsible for the overall poor efficacy of 

cancer chemotherapy [298]. Therefore, understanding how chemoresistance develops 

and eventually how it can be contrasted becomes crucial to fight cancer effectively. 

Chemoresistance of cancer cells is in part caused by misregulation of the activity of 

membrane proteins, named ATP-binding cassette transporters, responsible for the 

efflux of chemotherapeutic agents in cancer cells [260] [299]. The human genome 

codes for forty-eight functional ABC transporter genes, which can be grouped into 

seven subsets (from A to G) based on their degree of sequence homology [300].  

Although many high-risk neuroblastoma tumours initially respond to the first cycles 

of intensive chemotherapy, they frequently become refractory to treatment as the 

disease progresses. Multidrug resistance in neuroblastoma is particularly apparent in 
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patients whose tumours exhibit amplification or over-expression of the N-MYC 

oncogene. N-MYC clearly contributes to the drug resistance phenotype of 

neuroblastoma and as mentioned above, it represents one of the most powerful 

indicators of poor outcome in this disease. The N-Myc oncoprotein is associated with 

increased growth potential and tumorigenicity [301] and appears to act as a 

transcriptional regulator, perhaps influencing the transcription of critical genes 

involved in multidrug resistance phenomenon, such as ABC transporter genes. 

Establishing how ABC genes are regulated at transcription level and which 

transcription factors concur to such a control, is crucial to understanding their in 

physiological as well as in pathological contexts, such as cancer. Although many 

studies have focused on the transcriptional regulation of the ABCB1 gene, which 

encodes the P-glycoprotein [302], yet very little is known about the molecular 

mechanisms underlying transcription of the large family of ABC transporter genes. 

In neuroblastoma cells, the ABCC1, ABCC3 and ABCC4 genes were among the 

most strongly regulated of the ABC transporters. The importance of this regulation is 

reinforced by the analysis of ABCC subfamily gene expression done by the group of 

Dr. Michelle Haber (Children's Cancer Institute Australia, Sidney) in primary 

untreated neuroblastoma tumour samples, revealing that high levels of ABCC1 and 

ABCC4, but low levels of ABCC3 expression were strongly predictive of poor 

outcome in patients with this disease. These genes are the only ones in the entire 

ABCC subfamily to demonstrate prognostic significance in neuroblastoma and also 

the only members found to be directly regulated by N-Myc.  Furthermore, their 

combined expression stratify neuroblastoma patients into groups having excellent, 

intermediate or poor outcome, suggesting that this combination represents one of the 

most powerful independent prognostic markers yet identified for this disease. 

In collaboration with Dr. Haber’s group we found that N-Myc in neuroblastoma, and 

c-Myc in other cancer cell types, transcriptionally activate ABCC1 and ABCC4 

through direct binding to E-boxes on their promoter. Moreover specific silencing of 

the ABCC1 or ABCC4 genes led to growth inhibition, increased morphological 

differentiation and impaired motility of N-MYC-amplified neuroblastoma cells 

(unpublished data). 

In this thesis I focused on the regulation of the ABCC3 transcription by N-Myc. 

Although a number of reports have associated ABCC3 expression with outcome in 

certain cancers, there is no evidence linking this transporter with clinical drug 
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resistance in any malignancy. Now we find that specific over-expression of ABCC3 

as well as silencing of the ABCC1 and ABCC4 genes leads to growth inhibition and 

increased morphological differentiation in neuroblastoma. 

Thus, these Myc-dependent changes in ABC protein levels directly affected the 

malignant behaviour of neuroblastoma cells in vitro and tumour aggressiveness in 

vivo.  

In particular, we provide the first evidence showing that the human ABCC3 gene is a 

real N-Myc down-stream regulated gene. 

ABCC3 promoter contains three Sp1 binding sites, whereas no E-Box is found in 

close proximity to the transcriptional start site. We tested the binding of N-Myc in 

the region where Sp1 binding sites are located. Through dual-ChIP, we show that 

either Sp1 or N-Myc binds ABCC3 core promoter region containing multiple Sp1 

binding sites. The dual-ChIP data show that, even in this case, Max co-occupies the 

same ABCC3 promoter region, indicating that not only N-Myc, but the heterodimer 

N-Myc/Max, may be required for repression.  

Thus, we hypothesize that ABCC3 may be silenced during the development of 

neuroblastoma tumour at the same time with N-MYC amplification or 

overexpression. Furthermore, non steroidal anti-inflammatory drugs induce ABCC3 

expression in colorectal cancer and seem to be involved in the suppression of 

tumorigenesis [303]. These evidences support the hypothesis that ABCC3 may act as 

tumour suppressor gene and for this reason it might be necessary to silence its 

expression during tumour development. 

 

Repression of TG2 

 

As mentioned in the introduction, more than a dozen HDAC inhibitors are currently 

in clinical trials for the treatment of malignancies of almost all organ origins, and the 

HDAC inhibitor SAHA is already in clinical use for the treatment of cutaneous 

lymphoma. In this study, we demonstrated that TG2 is a common transcriptional 

target of a HDAC inhibitor in neuroblastoma but not in normal nonmalignant cells 

and that transcriptional activation of TG2 contributes to HDAC inhibitor-induced 

cell growth inhibition.  
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TG2 promotes programmed cell death by inducing a proapoptotic conformational 

change in the BAX protein and activation of the mitochondrial apoptosis pathway 

[273] [274], which has been defined as one of the main pathways through which 

HDAC inhibitors exert their cytotoxic effects [288]. However, our results show that 

up-regulation of TG2 does not contribute to HDAC inhibitor-induced apoptosis.  

This study demonstrated that TG2 is commonly repressed by the N-Myc oncoprotein 

in neuroblastoma cells that the neuritic differentiation of neuroblastoma cells induced 

by N-Myc siRNA depends on transcriptional activation of TG2. The transamidation 

activity of TG2 has been confirmed to be essential for the neuroblastoma and 

leukaemia cell differentiation response to retinoid therapy, and TG2 overexpression 

alone induces neuritic differentiation in neuroblastoma cells [304] [305] [306]. 

Therefore, we conclude that suppression of TG2 is essential for the differentiation 

block in N-Myc overexpressing neuroblastoma cells. Moreover, HDAC inhibitor 

therapy alone reverses the action of N-Myc on the transcriptional suppression of 

TG2. 

Furthermore our data suggest a general mechanism by which Myc oncoproteins 

affect the malignant phenotype and highlight the importance of HDAC inhibitors for 

the treatment of cancer types overexpressing Myc oncoproteins.  

In particular, we found that N-Myc can recruit the HDAC1 protein to the TG2 core 

promoter at the Sp1-binding site and that HDAC inhibitor treatment reactivates TG2 

gene transcription without affecting N-Myc and Sp1 binding to the Sp1-binding site. 

This suggests that N-Myc and HDAC1 are contemporaneously bound to Sp1, which 

is bound to DNA at its consensus binding site, and that recruitment of HDAC1 is 

essential for N-Myc-induced transcriptional suppression of TG2. 

Contrary to neurotrophin receptors and ABCC3, the dual-ChIP analysis shows that 

Max does not co-occupy the core promoter region of TG2. 

That Myc can form complexes with proteins outside the Max/Mnt context has been 

recently shown by Orian and colleagues who have found that, in Drosophila, dmyc 

can directly interact with the co-repressor Groucho without Max to control neuronal 

development [183]. 

The latter result is also consistent with a recent study by Margolis and colleagues 

who have shown that c-Myc contributes to HIV-1 proviral latency by recruiting 

Hdac1 to the HIV-1 promoter [307]. 
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Taken together these findings indicate that transcription repression mediated by a 

Myc/Hdac complex is a much broader phenomenon than expected. 

Finally our findings highlight TG2 as a potential drug development target for the 

treatment of cancers overexpressing Myc oncoproteins, such as neuroblastoma: 

therapies that augment the expression or function of TG2 may have a synergistic 

therapeutic effect on cancer when combined with HDAC inhibitors. 

 

Final remarks 

 

Overall our study contributes to highlight the mechanisms that underlie the N-Myc-

mediated repression, and how these may contribute to the tumour progression. As 

shown, N-Myc, through repressed genes, affects important cellular functions, such as 

apoptosis, growth, differentiation and motility. 

Although this thesis has been focused on neuroblastoma, we have obtained evidence 

demonstrating that c-Myc can also regulate transcription of the same set of ABCC 

membrane transporter genes as N-Myc, raising the possibility that ABCC1, ABCC3 

and ABCC4 may also have prognostic significance in a range of other cancers in 

which c-Myc dysregulation occurs. Importantly, we also have found that c-Myc can 

form a repression complex with Hdac1 at the TG2 promoter gene in breast cancer 

cell lines providing again a more general significance to our original observation. 

Taken together these findings support the idea that Myc may participate in distinct 

repression complexes by interacting specifically with diverse proteins. 

In normal condition, one of the principal functions of Myc proteins, together with 

their partner Max, is to promote the cell cycle progression: thus physiologically Myc 

expression is tightly regulated and restricted during the G1/S transition. Furthermore 

Myc proteins have short half-lives (on the order of 20–30 min), whereas Max, on the 

other hand, is stable and constitutively expressed (Figure 1A). We hypothesize that 

deregulation of Myc expression could contribute to the neoplastic phenotype through 

the interaction with novel partner outside the usual E-box context. 

When Myc is dysregulated and expressed during the whole cell cycle, the Myc/Max 

heterodimers may become overabundant and available to bind the core promoter of 

repressed gene and interfere with other transcriptional factors such as Sp1 and Miz1. 

Moreover, when significantly overexpressed, for example as the result of 
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amplification in neuroblastoma or in other tumours, Myc may establish interactions 

even outside the Max context, such as with Dnmt3a and Hdac1 (Figure 1B and C). 

Interestingly, we found that the same domain of N-Myc involved in the interaction 

with Hdac1 also interacts with Max, suggesting that, at saturating levels of Max, 

Myc is available to interact with Hdac1 at lower affinity. 

Finally our work, consistent with the latest findings, confirms the centrality and 

complexity of Myc function in cell fate, whose full comprehension, despite the 

thousand of studies published in the past 25 years remains a great challenge for all of 

the field. 
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Figure 1. Schematic representation of distinct N-Myc complexes, depending on its cellular levels 
during cell cycle, in physiological (A) and pathological (B-C) conditions. 
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Materials and Methods 

CELL CULTURES 

 

Human neuroblastoma Tet-21N, SHEP and IMR-32 cells were cultured in DMEM 

containing 10% heat-inactivated FBS and 50 mg/ml gentamycin. Human 

neuroblastoma SK-N-BE(2)C, SH-SY5Y, LAN-1 and SK-N-SH cells were cultured 

in RPMI medium 1640 containing 20% FBS and 50 mg/ml gentamycin. Tet-21N 

cells were treated with tetracycline as described (Lutz et al., 1996; Schuhmacher et 

al., 2001).  

 

RNA EXTRACTION 

 

The step by step protocol is described for cultured cells grown in two 100-mm 

dishes, containing 1-1,5  x  107 cells per dish. Remove the medium and add slowly 

1ml of PBS1X. Wash and remove. Harvest the cells using trypsin treatment and 

when the cells detach from the culture dish, add 1 volume of fresh medium and 

transfer the sunspension to a tube. Centrifuge for 5 minutes at 1000 rpm, and then 

remove the supernatant. Add 1-1,5 ml of TriReagent (Sigma). Pipet gently up and 

down and incubate for 5 minutes at room temperature. Add 300 µl of chloroform and 

vortex for 10 seconds. Incubate 5-10 minutes at room temperature. Centrifuge fo 5 

minutes at 12000rpm at 4°C. Transfer acqueous phase in a new tube and add 750 µl 

of isopropyl alcohol. Mix gently and incubate for 5-10 minutes at room temperature. 

Centrifuge at 12000rpm for 10 minutes at 4°C. Remove the supernatant and wash the 

pellet with 1,5 ml EtOH 75% treated with DEPC and centrifuge at 12000 rpm for 5 

minutes at 4°C. Remove the supernatant and dry the pellet. Then, resuspend the 

pellet in 30-50 µl of DEPC-treated water and heat the sample at 55°C for 10 minutes. 
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THERMOSCRIPT RT-PCR SYSTEM 

 

The ThermoScript RT-PCR was designed for the sensitive and reproducible 

detection and analysis of RNA molecules in a two-step process. ThermoScript RT, 

an avian reverse transcriptase with reduced RNase H activity, was engineered to have 

higher thermal stability, produces higher yields of cDNA, and produce full-length 

cDNA. cDNA synthesis was performed using total RNA with oligo(dT).  

In a 0,2-ml tube, combine primer (oligo(dT)), 2µg total RNA and dNTP 10mM mix, 

adjusting volume to 12 µl with DEPC-treated water. Denature RNA and primers by 

incubating at 65°C for 5 min and then place on ice. Vortex the 5X cDNA Synthesis 

buffer for 5 sec just prior to use. Prepare a master reaction mix on ice, with 5X 

synthesis buffer, 0,1M DTT, RNaseOUT (40U/ µl), DEPC-treated water and 

ThermoScript RT (15units/ µl). Vortex this mix gently. Pipet 8 µl of master reaction 

mix into each reaction tube on ice. Transfer the sample to a thermal cycler preheated 

to the appropriate cDNA synthesis temperature and incubate for 100 min at 50°C. 

Terminate the reaction by incubating at 85°C for 5 min. Add 1 µl of RNase H and 

incubate at 37°C for 20min. Add 80 µl of MQ-water for each reaction and store at -

20°C or use for qPCR immediately. Use only 2-5 µl of the cDNA synthesis reaction 

for qPCR. 

 

SYBR GREEN qPCR   

 

SYBR GreenER qPCR SuperMix (Invitrogen) for ICycler is a ready to use cocktail 

containing all components, except primers and template, for real-time quantitative 

PCR (qPCR) on ICycler BioRad real time instruments that support normalization 

with Fluoresceina Reference Dye at final concentration of 500nM. It combines a 

chemically modified “hot-start” version of TaqDNA polymerase with integrated 

uracil DNA glycosilase (UDG) carryover prevention technology and a novel 

fluorescent dye to deliver excellent sensitivity in the quantification of target 

sequences, with a linear dose response over a wide range of target concentrations. 

SYBR GreenER qPCR SuperMix for ICycler was supplied at a 2X concentration and 

contains hot-start TaqDNA polymerase, SYBR GrenER fluorescent dye, 1 µM 
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Fluorescein Reference Dye, MgCl2, dNTPs (with dUTP instead of dTTp), UDG, and 

stabilizers. The SuperMix formulation can quantify fewer than 10 copies of a target 

gene, has a broad dynamic range, and is compatible with melting curve analysis. The 

TaqDNA polymerase provided in the SuperMix has been chemically modified to 

block polymerase activity at ambient temperatures, allowing room-temperature set 

up and long term storage at 4°C. Activity is restored after a 10-minutes incubation in 

PCR cycling, providing an automatic hot start for increased sensitivity, specificity 

and yield. UDG and dUTP in the SuperMix prevent the reamplification of carryover 

PCR products between reactions. dUTP ensures that any amplified DNA will contain 

uracil, while UDG removes uracil residues from single or double-stranded DNA. A 

UDG incubation step before PCR cycling destroys any contaminating dU-containing 

product from previous reactions. UDG is then inactivated by the high temperatures 

during normal PCR cycling, thereby allowing the amplification of genuine target 

sequences. Fluorescein is included at a final concentration of 500nM to normalize the 

fluorescent signal on instruments that are compatible with this option. Fluorescein 

can ajust for non-PCR-related fluctuations in fluorescence between reactions and 

provides a stable baseline in multiplex reactions. Program real time instrument for 

PCR reaction as shown following: 50°C for 2 minutes hold (UDG incubation), 95°C 

for 10 minutes hold (UDG inactivation and DNA polymerase activation), 40 cycles 

of: 95°C for 15 seconds and 60°C for 60 seconds. For multiple reactions, prepare a 

master mix of common components, add the appropriate volume to each tube or plate 

well, and then the unique reaction components (e.g. template, forward and reverse 

primers at 200nM final concentration). Cap or seal the reaction tube/PCR plate, and 

gently mix. Make sure that all components are at the bottom of the tube/plate, 

centrifuge briefly and place reactions in a pre-heated real-time instrument 

programmed as described above. 

 

 88



Materials and Methods 

ChIP- CHROMATIN IMMUNOPRECIPITATION 

 

The step by step protocol is described for cultured cells grown in two 100-mm 

dishes, containing 1-1,5  x  107 cells per dish. Two 100-mm dishes are used for each 

immunoprecipitation. In the specific case the protocol is intended for human 

neuroblastoma cells growing adhesively. Minor adjustments have to be introduced 

for other cell types especially for those growing in suspension. Based on our 

experience, one of the most critical steps in performing ChIP regards the conditions 

of chromatin fragmentation, which need to be empirically set up for each cell types 

employed. 

In each plate add 270 µl of formaldehyde from a 37% stock solution and mix 

immediately. Incubate samples on a platform shaker for 10 minutes at room 

temperature. In each plate add 500 ml glycine from a 2,5 M stock solution and mix 

immediately. Incubate on a platform shaker for 10 minutes at room temperature. 

Transfer the plates in ice and remove the medium. Harvest the cells with a scraper 

and then centrifuge at 1500 rpm for 4 minutes in cold centrifuge, then keep samples 

on ice. Remove the supernatant and wash pellet 3 times with 10 ml ice-cold PBS1X/ 

1 mM PMSF. After each washing centrifuge at 1500 rpm for 5 minutes at 4°C. 

Remove supernatant and resuspend pellet in 500 µl ice-cold Cell Lysis Buffer. Pipet 

up and down 10-20 times, then incubate on ice for 10 minutes. Centrifuge at 3000 

rpm for 5 minutes at 4°C. Remove supernatant and resuspend pellet in 600 µl ice-

cold RIPA buffer. Pipet up and down 10-20 times, then incubate on ice for 10 

minutes. Sonication of crosslinked cells is performed in two distinct steps. First, cells 

are sonicated with a Branson Sonifier 2 times for 15 seconds at 40% setting. Next, 

cell samples are further sonicated with the Diogene Bioruptor for 20 minutes at high 

potency in a tank filled with ice/water in order to keep cell samples at low 

temperature during sonication. Centrifuge samples at 14000 rpm for 15 minutes at 

4°C. Transfer supernatant to a new tube and pre-clear lysate by incubating it with 50 

µl of Immobilized Protein A [141] for 15 minutes in the cold room at constant 

rotation. Centrifuge samples at 3000 rpm for 5 minutes at 4°C.  Take the supernatant, 

after having saved 50 µl aliquot for preparation of INPUT DNA, and add 5 µg of 

specific antibody. Rotate the sample O/N in the cold room. Add 50 µl of 

Immobilized Protein A [141] and incubate by constant rotation for 30 minutes at 
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room temperature. Centrifuge the sample at 4000 rpm for 5 minutes at room 

temperature. Remove the supernatant and proceed to wash the beads. For each wash, 

incubate the sample by constant rotation fro 3 minutes at room temperature and the 

centrifuge at 4000 rpm for 2 minutes at room temperature. Wash 4 times with 1 ml 

Ripa Buffer. Wash 4 times with 1 ml Washing Buffer. Wash 2 times with 1 ml TE 

buffer. Remove the supernatant and add 200 µl TE buffer to the beads. Add 10 µg 

RNAse A and incubate at 37°C for 30 minutes. Add 50 µl Proteinase K Buffer 5X 

and 6 µl Proteinase K (19 mg/ml). Then, incubate at 65°C in a shaker at 950 rpm for 

6 hrs. Centrifuge at 14000 rpm for 10 minutes at 4°C, then transfer the supernatant 

(250 µl) to a new tube.  

Extract once with phenol/chlorophorm/isoamylalcohol. Recover the aqueous phase 

(200 µl) and transfer to a new tube. Add 100 µl TE buffer to the remaining 

phenol/chlorophorm fraction and re-extract DNA. Recover the aqueous phase and 

add it to the previous one. Extract once with chlorophorm/iso-amyl-alcohol. Recover 

the aqueous phase (200 µl) and transfer to a new tube. Add 1 µl glycogen (Glycogen 

is 20 mg/ ml stock solution), 10 µg Salmon Sperm, 1/10 volumes Na-acetate 3M pH 

5.2, and 2.5 volumes of cold ethanol100% Vortex and precipitate at -80°C for 40 

minutes. Centrifuge at 14000 rpm for 30 minutes at 4°C. Remove the supernatant 

and wash pellet with 200 µl EtOH 70%. Resuspend IP-DNA and INPUT samples in 

50-100 µl 10 mM TrisHCl pH 8.  Use 2-4 µl of IP-DNA for Real Time PCR 

analysis. 

Cell Lysis Buffer:                                     RIPA Buffer                             

Washing buffer 

5 mM PIPES pH 8                                      150mM NaCl                              100mM 

TrisHCl pH 8 

85 mM KCl                                                 1% NP40                                    500mM 

LiCl  

0,5% NP40                                                  0,5% NaDoc                               1% NP40 

1 mM PMSF                                                0,1% SDS                                   1% 

NaDoc 

Protease inhibitor cocktail  [308]            50 mM TrisHCl pH 8 

                                                                     1 mM PMSF 

                                                                     Protese inhibitor cocktail [308] 
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DUAL-STEP CHROMATIN IMMUNOPRECIPITATION 

 

The step by step protocol is described for cultured cells grown in two 100-mm 

dishes, containing 1-1,5  x  107 cells per dish. Two 100-mm dishes are used for each 

immunoprecipitation. In the specific case the protocol is intended for human 

neuroblastoma cells growing adhesively. Minor adjustments have to be introduced 

for other cell types especially for those growing in suspension. Based on our 

experience, one of the most critical steps in performing ChIP regards the conditions 

of chromatin fragmentation, which need to be empirically set up for each cell types 

employed. 

Remove medium and add 2 ml PBS 1X/ 1 mM PMSF to each plate  and scrape cells 

at room temperature. Pool together the cells from two plates and centrifuge at 1500 

rpm for 5 minutes at room temperature. Wash cell pellet with 20 ml PBS1X/ 1 mM 

PMSF at  room temperature and centrifuge at 1500 rpm for 5 minutes. Repeat this 

step 3 times. Resuspend pellet in 20 ml PBS1X/ 1 mM PMSF.  Add disuccinimidyl 

glutarate (DSG) to a final concentration of 2mM and mix immediately. DSG is 

prepared as a 0.5 M stock solution in DMSO. (Note1) Incubate for 45 minutes at 

room temperature on a rotating wheel at medium speed (8-10 rpm). At the end of 

fixation, centrifuge the sample at 1500 rpm for 10 minutes at room temperature. 

Wash cell pellet with 20 ml PBS1X/ 1 mM PMSF at room temperature and 

centrifuge at 1500 rpm for 5 minutes. Repeat this step 3 times. Resuspend pellet in 

20 ml PBS1X/ 1 mM PMSF. Add 540 µl formaldehyde from a 37% stock solution 

and mix immediately. Incubate samples on a rotating wheel for 15 minutes at room 

temperature. Add 1 ml glycine from a 2,5 M stock solution and mix immediately. 

Incubate on a rotating wheel for 10 minutes at room temperature. Centrifuge samples 

at 1500 rpm for 4 minutes in cold centrifuge, then keep  samples on ice. Remove the 

supernatant and wash pellet 3 times with 10 ml ice-cold PBS1X/ 1 mM PMSF. After 

each washing centrifuge at 1500 rpm for 5 minutes at 4°C. Remove supernatant and 

resuspend pellet in 500 µl ice-cold Cell Lysis Buffer. Pipet up and down 10-20 times, 

then incubate on ice for 10 minutes. Centrifuge at 3000 rpm for 5 minutes at 4°C. 

Remove supernatant and resuspend pellet in 600 µl ice-cold RIPA buffer. Pipet up 

and down 10-20 times, then incubate on ice for 10 minutes. Sonication of crosslinked 

cells is performed in two distinct steps. First, cells are sonicated with a Branson 

Sonifier 2 times for 30 seconds at 40% setting. Next, cell samples are further 
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sonicated with the Diogene Bioruptor for 20 minutes at high potency in a tank filled 

with ice/water in order to keep cell samples at low temperature during sonication. 

(Note 3)  Centrifuge samples at 14000 rpm for 15 minutes at 4°C. Transfer 

supernatant to a new tube and preclear lysate by incubating it with 50 µl of 

Immobilized Protein A [141] for 15 minutes in the cold room at constant rotation. 

Centrifuge samples at 3000 rpm for 5 minutes at 4°C.  Take the supernatant, after 

having saved 50 µl aliquot for preparation of INPUT DNA, and add 5 µg of specific 

antibody. Rotate the sample O/N in the cold room. Add 50 µl of Immobilized Protein 

A [141] and incubate by constant rotation for 30 minutes at room temperature. 

Centrifuge the sample at 4000 rpm for 5 minutes at room temperature. Remove the 

supernatant and proceed to wash the beads. For each wash, incubate the sample by 

constant rotation fro 3 minutes at room temperature and the centrifuge at 4000 rpm 

for 2 minutes at room temperature. Wash 4 times with 1 ml Ripa Buffer. Wash 4 

times with 1 ml Washing Buffer. Wash 2 times with 1 ml TE buffer. Remove the 

supernatant and add 200 µl TE buffer to the beads. Add 10 µg RNAse A and 

incubate at 37°C for 30 minutes. Add 50 µl Proteinase K Buffer 5X and 6 µl 

Proteinase K (19 mg/ml). Then, incubate at 65°C in a shaker at 950 rpm for 6 hrs. 

Centrifuge at 14000 rpm for 10 minutes at 4°C, then transfer the supernatant (250 µl) 

to a new tube.  

Extract once with phenol/chlorophorm/isoamylalcohol. Recover the aqueous phase 

(200 µl) and transfer to a new tube. Add 100 µl TE buffer to the remaining 

phenol/chlorophorm fraction and re-extract DNA. Recover the aqueous phase and 

add it to the previous one. Extract once with chlorophorm/iso-amyl-alcohol. Recover 

the aqueous phase (200 µl) and transfer to a new tube. Add 1 µl glycogen (Glycogen 

is 20 mg/ ml stock solution), 10 µg Salmon Sperm, 1/10 volumes Na-acetate 3M pH 

5.2, and 2.5 volumes of cold ethanol100% Vortex and precipitate at -80°C for 40 

minutes. Centrifuge at 14000 rpm for 30 minutes at 4°C. Remove the supernatant 

and wash pellet with 200 µl EtOH 70%. Resuspend IP-DNA and INPUT samples in 

50-100 µl 10 mM TrisHCl pH 8 Use 2-4 µl of IP-DNA for Real Time PCR analysis. 

 

Notes 
1).We have tested several crosslinking agents including DSG (disuccinimdyl 

glutarate), EGS [ethylene glycol bis(succinimidylsuccinate], DMA (dimethyl 
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adipimidate) and DSS (disuccinidimyl suberate). In our conditions, DSG was the one 

that worked best, although we also obtained good results with EGS. 

2) Sometimes, insoluble aggregates form when DSG is added to cells resuspended in 

PBS 1X . However, this seems not to preclude the efficiency of the crosslinking 

reaction.  

3) Through this procedure we could efficiently fragment chromatin in a range 

between 500 and 200 bp. As stated above, this is a critical step that must be 

empirically set up for each cell line tested. For example, HL-60 cells that grow in 

suspension, are sonicated with a Branson Sonifier 4 times for 30 seconds at 40% 

setting and subsequently with the Biogene Bioruptor at a full power for 30 minutes. 

This procedure allows fragmentation of HL-60 chromatin to a size range of 1000-500 

bp. 

 

Cell Lysis Buffer:                                     RIPA Buffer                             

Washing buffer 

5 mM PIPES pH 8                                      150mM NaCl                              100mM 

TrisHCl pH 8 

85 mM KCl                                                 1% NP40                                    500mM 

LiCl  

0,5% NP40                                                  0,5% NaDoc                               1% NP40 

1 mM PMSF                                                0,1% SDS                                   1% 

NaDoc 

Protease inhibitor cocktail  [308]            50 mM TrisHCl pH 8 

                                                                     1 mM PMSF 

                                                                     Protese inhibitor cocktail [308] 

LUCIFERASE ASSAY 

 

The Dual-Luciferase® Reporter (DLR.) Assay System (Promega) provides an 

efficient means of performing dual-reporter assays. In the DLR. Assay, the activities 

of firefly (Photinus pyralis) and Renilla (Renilla reniformis, also known as sea 

pansy) luciferases are measured sequentially from a single sample. The firefly 

luciferase reporter is measured first by adding Luciferase Assay Reagent II (LAR II) 

to generate a stabilized luminescent signal. After quantifying the firefly 

 93



Materials and Methods 

luminescence, this reaction is quenched, and the Renilla luciferase reaction is 

simultaneously initiated by adding Stop & Glo® Reagent to the same tube. The Stop 

& Glo® Reagent also produces a stabilized signal from the Renilla luciferase, which 

decays slowly over the course of the measurement. In the DLR. Assay System, both 

reporters yield linear assays with subattomole sensitivities and no endogenous 

activity of either reporter in the experimental host cells. Furthermore, the integrated 

format of the DLR. Assay provides rapid quantitation of both reporters either in 

transfected cells or in cell-free transcription/translation reactions. 

 

Note: The LAR II, Stop & Glo® Reagent and samples should be at ambient 

temperature prior to performing the Dual-Luciferase® Assay. Prior to beginning this 

protocol, verify that the LAR II and the Stop & Glo® Reagent have been warmed to 

room temperature. 

 

The assays for firefly luciferase activity and Renilla luciferase activity are performed 

sequentially using one reaction tube. The following protocol is designed for use with 

a manual luminometer or a luminometer fitted with one reagent injector.  

Predispense 100µl of LAR II into the appropriate number of luminometer tubes to 

complete the desired number of DLR. Assays. Program the luminometer to perform a 

2-second premeasurement delay, followed by a 10-second measurement period for 

each reporter assay. Carefully transfer up to 20µl of cell lysate into the luminometer 

tube containing LAR II; mix by pipetting 2 or 3 times. Do not vortex. Place the tube 

in the luminometer and initiate reading. 

 

Note: We do not recommend vortexing the solution at Step 3. Vortexing may coat 

the sides of the tube with a microfilm of luminescent solution, which can escape 

mixing with the subsequently added volume of Stop & Glo® Reagent. This is of 

particular concern if Stop & Glo® Reagent is delivered into the tube by automatic 

injection. 

If using a manual luminometer, remove the sample tube from the luminometer, add 

100µl of Stop & Glo® Reagent and vortex briefly to mix. Replace the sample in the 

luminometer, and initiate reading.Discard the reaction tube, and proceed to the next 

DLR. Assay. 
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CO-IMMUNOPRECIPITATION AND GST PULL-DOWN 

ASSAYS 

 

The interaction between different proteins is assessed by immunoprecipitation and 

Western blotting. Cells are washed two times in PBS 1X+ PMSF (0,1%) and lysed in 

the following buffer for isolation of nuclei: Hepes 10mM, NaCl 50 mM, EDTA 

1mM, DTT 1mM, NaPirophosphate 1 mM, NaOrtovanadate 1 mM, 

Nafluorophosphate 1 mM, PMSF 1 mM, protease inhibitor (Complete, ROCHE). 

Nuclei are lysed in  Tris-Cl pH 7,5 50 mM, NaCl 150 Mm, EDTA 10 mM, DTT 1 

mM, protease inhibitors. Nuclear lysate (1 mg) is immunoprecipitated with  antibody 

to HDAC (Upstate), N-Myc, SP1 (Upstate) overnight at 4°C. The day after, specific 

immunoprecipitated material is incubated with 40µl of slurry-beads protein A, 

allowing the link between our specific antibody and protein A. The beads with 

immunocomplexes are washed five times with  nuclear lysis buffer + NP40 0,25% 

and boiled in Laemmli sample buffer for  5 min at 100°C.  Eluted proteins are 

separated by SDS-PAGE and analyzed by Western blot. 

For GST pull-down assay HEK293 cells are transfected with pRK7-SP1-HA 

construct and harvest 48 hrs after transfection. Cell lysates are pre-cleared by 

incubation with GST-saturated glutathione beads for 1 hr. lysates are incubated with 

GST-N-Myc 1-88, GST-N-Myc 82-254, GST-N-Myc 249-361 and GST-N-Myc 336-

644 for 1 hr at 4°C followed by incubation with glutathione  beads for 1hr. bound 

protein are eluted with sample buffer and subjected to SDS/PAGE and analyzed by 

Western blot. 

 

IMMUNOBLOTTING ANALYSIS 

 

Western blots were performed according to Invitrogen procedures for NuPAGE 

Novex 4-12% Bis-Tris Gel Electrophoresis system, using 100 µg of whole-cell 

extracts.  

 95



Materials and Methods 

SOUTHERN BLOT 

Southern blotting is the transfer of DNA fragments from an electrophoresis gel to a 

membrane support. The transfer or a subsequent treatment results in immobilization 

of the DNA fragments, so the membrane carries a semipermanent reproduction of the 

banding pattern of the gel. After immobilization, the DNA can be subjected to 

hybridization analysis, enabling bands with sequence to a labeled probe to be 

identified. The blotting is performed onto a positive charged nylon membrane with 

an alkaline buffer. The advantage of this combination is that no post-transfer 

immobilization step is required, as the positively charged membrane binds DNA 

irreversibly under alkaline transfer conditions. The method can also be used with 

neutral nylon membranes but less DNA will be retained. Digest the DNA samples 

with appropriate restriction enzymes, run in a agarose gel with appropriate DNA size 

markers, stain with ethidium bromide, and photograph with a ruler laid alongside the 

gel so that bend positions can later be identified on the membrane. The gel should 

contain the minimum agarose concentration needed to resolve bands in the area of 

interest and should be < 7mm thick. The amount of DNA that must be loaded 

depends on the relative abundance of the target sequence that will subsequently be 

sought by hybridization probing. Rinse the gel in distilled water and place in a clean 

glass dish containing ~10 gel volumes of 0,25 M HCl. Shake slowly on a platform 

shaker for 30 min at room temperature. This step results in a partial depurination of 

the DNA fragments, which in turn leads to strand cleavage. The length reduction 

improves the transfer of longer molecules.pour off the HCl and rinse the gel with 

distilled water. Add ~10 vol of 0,4M NaOH into the dish and shake slowly on a 

platform shaker for 20 min. This is the denaturation step. Set up the transfer via 

downward capillary transfer in a glass dish filled with enough 0,4M NaOH solution. 

The transfer pyramid is composed of 2-3 cm of paper towels, Whatman 3MM nylon 

membrane and gel. An O/N transfer is sufficient for most purposes. Make sure that 

the reservoir of 0,4M NaOH does not run dry during the transfer. At the end of the 

transfer remove the paper towels and filter paper and recover the membrane. Rinse 

the membrane in 2XSSC, place on a sheet of Whatman 3MM filter paper, and 

allowto air dry. Baking or UV crosslinking is not neede with a positevely charge 

membrane; in fact UV crosslinking is detrimental. Store the membranes dry between 

sheets of Whatman 3MM paper for several months at room temperature. 
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Materials and Methods 

HYBRDIZATION ANALYSIS OF DNA BLOTTED 

Heat pre-hybridization buffer at 65°C and equilibrate the membrane in 50ml of this 

buffer. Incubate on a rotor for 1hr. Then eliminate this solution and incubate with 

10ml of pre-hybridization buffer for 3hrs, adding 1mg of placental DNA previously 

denatured at 100°C for 5 min. Labell the probe. The Megaprime (Biosciences) 

systems allow DNA from a variety of sources to be labelled in vitro to high specific 

activity with 32P and other radionuclides. Dissolve the probe to be labelled to a 

concentration of 2,5-25ng/µl in TE buffer. Place the rquired tubes from the 

Megaprime system, with the exception of the enzyme, at room temperature to thaw. 

Leave the enzyme at -15°C to -30°C until required, and return immediately after use. 

Place 25ng of template DNA into a microcentrifuge tube and to it add 5 µl of primers 

and the appropriate volume of water to give a total volume of 50µl in the final 

reaction. Denature by heating to 95-100°C for 5 minutes in a boiling water bath. Spin 

briefly in a microcentrifuge to bring the contents to the bottom of the tube. Keeping 

the tube at room temperature and add the nucleotides and reaction buffer followed by 

radiolabelled dNTPs and enzyme. Mix gently by pipetting up and down and cap the 

tube. Spin for a few seconds in a microcentrifuge to bring the contents to the bottom 

of the tube. Incubate at 37°C for 10 minutes and then stop the reaction by the 

addition of 5µl of 0,2M EDTA. Denature the labelled DNA by heating to 100°C for 

5 min, then chill on ice. At the end of pre-hybridization remove the buffer and add 10 

ml of hybridization buffer with the denatured probe. Incubate O/N at 65°C and then 

wash 2-3 times the membrane with 50ml of washing buffer at 65°C for 45 minutes 

for each washing. Place the membrane in a x-ray film cassette with a sheet of 

autoradiography film on top of themembrane. Close the cassette and expose at -80°C 

for 1 week. 

 

 97



Materials and Methods 

GENE SILENCING, TRANSFECTION AND CELLULAR 

ASSAYS  

 

Lipofectamine RNAiMAX reagent (Invitrogen) was used to deliver short interfering 

RNAs (siRNA) according to the manufacturer’s instructions. Stable clones 

expressing N-Myc were generated by transfection of SH-SY 5Y cells with 

p3XFLAG-CMV-14-N-MYC, with C-terminal FLAG tag (Sigma) followed by 

neomycin selection. Stable clones expressing ABCC3 were generated by transfection 

of SK-N-BE cells with p3XFLAG-CMV-14-ABCC3, with C-terminal FLAG tag 

(Sigma) followed by neomycin selection. 

To quantify neurite outgrowth cells with one or more neuritic extensions of at least 

twice the length of the cell body, were scored as positive. 100 cells were counted per 

random field, and at least 5 fields were taken per treatment in each of 3 separate 

experiments. 

Colony forming assays were performed as previously described (Verrills et al., 

2006). 

For wound closure assays, a pipette tip was used to remove cells from 5 separate 

areas of the growth substrate. Medium was replaced and the wound areas 

photographed at regular intervals. Wound size was quantified by averaging six 

measurements per wound. 

For viable cell counts, cells were plated in 6-well plates at a cell density of 100,000 

cells per well and counted after five days in culture using trypan blue exclusion 

method. 

BrdU incorporation was measured using a Cell Proliferation ELISA (Roche 

Diagnostics). Transduced SK-N-BE cells were plated in 96-well plates at a cell 

density of 15,000 cells per well with 100 ml DMEM medium and cultured for 48h 

before addition of BrdU for 2h followed by assay according to the manufacturer’s 

protocol. 
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