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Introduction

Outline. “Shape from X” is a common expression in computer vision aatiepn
recognition that means extracting knowledge, about thpesb&an object in the scene,
from some of the features of its image(s), be it shadingutextdisparity, motion, etc.
In this thesis we focus on a class of methods for shape uraelisiy whose main pe-
culiarity consists in linking the concept itself of shapgtyceptual instances relative to
the observer [6]. Mathematically, these are formalizedaaqular functions defined on
the shape, whence the neologism we have chad®ape from functions

Shape analysis and understanding are very hot researats timpi the disciplines of
computer vision, computer graphics and pattern recognifiading their motivations
in diverse application areas, such as geometric modeliisgal perception, medical
imaging, and structural molecular biology.

The last decade has been characterized by an explosion muthber of methods
proposed for solving problems related to shape recognitiassification and matching,
because of an incremental growth of digital models. The pogtilar recognition tech-
niques can be mainly divided into two classes: model-basd@dspect-based techniques
[61]. Model-based techniques are object-centered andatséd on theepresentation
of a shape looking for effective and perceptually imporsdrape features based on either
shape boundary information or boundary plus interior cont@spect-based techniques
are viewer-centered and are focused ondhscriptionof a shape on the basis of its
shape features perceived by the viewer.

Recently, the research interest in Computer Graphics hadugHy moved from
methods tarepresentshapes towards methods describeshapes. Indeed, the repre-



sentation of an object is detailed and accurate, but it doeexplicitly contain any
high-level information on the shape of the object. Convgrsiee description is concise
but conveys an elaborate and composite view of the objentitgte

A variety of methods have been proposed in the literature#bwith the problem of
shape description and reasoning. To this scope matherhasdseen confirmed to pro-
vide a suitable setting for formalizing and solving severalblems related to shape de-
scription, analysis and understanding. In particularpibtential of approaches based on
differential topology have been recently recognized bgaeshers in computer graphics,
who gave birth to a new branch of computational mathematimsiputational topology
[5]. It denotes research activities involving both math&osaand computer science, in
order to study the computational aspects of problems witipalbgical flavour, and to
formalize and solve topological problems in computer aggions, without neglecting
the feasibility or the computational complexity of the plerh. The key idea is that many
classical concepts in mathematics can be re-interprete¢@mputational context, thus
furnishing powerful tools also in a discrete setting.

In this context, the classical Morse Theory [51] plays anangnt role, offering a
series of techniques and measures with an extremely higheabsn power. This fact
has lead, today, to an increasing interest towards a clasgetifods finding their roots
in it. The common idea underlying these methods, indeea, etform a topological
exploration of the shape according to some quantitativeng®ac properties provided
by a real-valued function defined on the shape and chosenrtcezhape features.

Note that the ternrgeometrical-topologicalised in the title of this manuscript is
meant to underline that both levels of information contertralevant for the applica-
tions of a shape description: geometrical properties ar@alrfor characterizing specific
instances of features, while topological attributes amesgsary to abstract and classify
shapes according to invariant aspects of their geometry.

The added value of these approaches, that from now on we alilsbape-from-
functions methodss in the possibility of adopting different functions asaple descrip-
tors according to the properties and invariants that onbegito analyze. In this sense,
Morse Theory allows one to construct a general frameworlsf@ape characterization,
parameterized with respect to the mapping function usedl passibly the space asso-



ciated with the shape. The mapping function plays the roke lehs through which we
look at the properties of the shape, and different functimide different insights.

Another attractive feature of shape-from-functions mdthis that they concisely cap-
ture shape information in a manner that can be robust to eheftton while being able

to cope with changes in object viewpoint at a multiresolutevel. All these facts make
understandable the increasing research interest in emmggthe tools provided by these
approaches for solving problems of shape description angadson.

We devoted a large part of the Ph. D. study developing thissctd methods in
different directions, taking into account both their insic advantages and their weak
points.

As for advantages of shape-from-functions methods, cdytaine of the most im-
portant is their high modularity, provided by the posstiito describe different shape
features by choosing different functions. Accordinglyg tibservation that a shape of an
object can be more thoroughly characterized by mear®® efalued functions, whose
n components investigate at the same time different shaperésa has lead us to ex-
plore the multidimensional setting. The framework we hawvesen is that of Persistent
Homology Theory, that belongs to the approaches groundimgarse Theory with the
study of the variations of topological features of the lovestel sets of the function on
the shape. In this treatment, we will describe the theaktesults that lead to construct
concise and complete shape descriptors also in a multidiimeal case, and to define a
stable distance which favours their comparison.

As far as weak points are concerned, shape-from-functiogthads belong to a
class of techniques that have been definegl@sal object methods [57], i.e. methods
working on the shape in its whole. An important drawback dftlase methods is
that in general they do not result to be robust against naigeoaclusion, so failing
in supporting more elaborate shape comparisons, such &al paatching or sub-part
correspondence. With regard to these observations, amsldesimg that a common
requirement for shape descriptors is the robustness dagaan$al occlusions, caused
by foreground objects overlapping the object under ingasitons, we have decided to
investigate the behavior of size functions in the presem@xdusions. Size functions
are geometrical-topological descriptors provided by Siheory in order to analyze
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the variations of connected components of the lower-legtd of a mapping function
ranging on the shape. In this exposition, we will show thaistbess of these descriptors
under occlusions from both a theoretical and an experirhpotat of view.

The thesis is intended to describe all the above resultsinggdrom a detailed math-
ematical background in a manner to render the expositioteas and self-contained as
possible. In particular, it is organized as follows.

Chapter 1 provides a brief overview on the approaches torthi@gm of shape un-
derstanding offered by shape-from-functions methodstichkey each of them in its
main aspects and application environments. Particulantiin is devoted to provid-
ing the reader with a necessary mathematical backgroundzenr8eory and Persistent
Homology Theory, in order to facilitate his access to indal topics.

Chapter 2 deals with our approach to the problem of multidisienal Persistent
Homology Theory. In particular, we will show that the compan between multidi-
mensional rank invariants can be reduced to the 1-dimeakiase by partitioning their
domain into half-planes. The basic idea is to demonstraeamultidimensional per-
sistent homology module to these half-planes turns out @ belimensional persistent
homology module. This important result allows one to usé¢halinstruments available
in the 1-dimensional setting in the multidimensional one.

In Chapter 3 we study the behavior of size functions in thegmee of occlusion,
and their ability to preserve not only global, but also ldoébrmation. The main result
is that an occluded object and a fully visible object sharetaof common features in
the corresponding size functions. This property can beaibgal to support recognition
in the presence of occlusions, as shown by the experimenpsegent here.

We conclude by discussing the main results achieved anesearch activity planned
for the future developments of shape-from-functions mesho

For the convenience of the reader, Appendices A and B coathitef summary on
Cech Homology Theory, a useful tool in Chapter 3.

From the results obtained in Chapters 2 and 3 we have redliaegdapers [9, 22] that,
at the present time are available as preprint.
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Chapter 1
Shape from functions

This chapter is intended to provide the reader with a necgssathematical back-
ground on shape-from-functions methods, to facilitatehsess to the individual topics.

It is organized as follows. In Section 1.1 we briefly sketdhtadse techniques, un-
derlining only their characterizing aspects. The rest efdhapter is devoted to a detailed
exposition of methods developed in this thesis: Size Thaory Persistent Homology
Theory. Section 1.2 summarizes the history of the concepedistencethat can be
seen as the link between these two approaches. Sectiondkedated to an overview on
Size Theory, with a particular attention to the theoretreglults concerning size func-
tions. Section 1.4 contains a detailed exposition on Rergisiomology Theory and
related concepts.
The most important definitions and results concerning thieseries are exposed, con-
nected and organized together, and some examples areethgefacilitate the compre-
hension of the fundamental concepts.

1.1 Shape-from-functions methods

Shape-from-functions methods are geometrical-topoddgipproaches to the prob-
lems of shape description and comparison, increasinglijesiun computer vision, com-
puter graphics and pattern recognition.

The common approach of all these methods to the problem pkstuaalysis is pro-

1



1. Shape from functions

vided by the classical Morse Theory. Indeed, the intuitiehibd Morse Theory is that
of combining the topological exploration of a sp&g®ith quantitative measurements
of its geometrical properties provided by a mapping functiodefined onS. So, for
these methods, a shape is mathematically identified witlird & ) and its description
is translated into an analysis of the behaviorfain S. Analyzing the behavior of such
a function on the space associated with the shape meansrgjeither the properties,
the configuration, or the evolution of its critical points fact, critical points are asso-
ciated with the features of interest that one wishes to etteand the configuration, or
evolution, of these critical points captures a global desion of the shape.

The different approaches can be divided into three mainggou

e methods studying the configuration of critical points ondhace boundaryforse
andMorse-Smale complexes

e methods studying the evolution of level setsf@tontour treesandReeb graphs

e methods studying the evolution of lower-level setsfafSize Theorypersistent
homologyandMorse shape descriptr

Intuitively, Morse and Morse-Smale complexes provide awid shape properties
from the perspective of the gradient of the mapping functibheir aim is to describe
the shape by decomposing it into cells of uniform behaviothef gradient flow. This
decomposition can be interpreted as having been obtainedniegwork on the surface
that joins the critical points of the mapping functiérthrough lines of steepest ascent,
or descent, of the gradient.

Contour trees describe the shape of a scalar fiely analyzing the evolution of
its level sets, ag spans the range of its possible values: components of letehsay
appear, disappeatr, join, split, touch the boundary, or ghayenus. The contour tree
stores this evolution and provides a compact descriptidghefproperties and structure
of the scalar field. The generalization of a contour treevsmgby Reeb graphs [3], even
if their definition and theoretical study date back to 194@niks to the research work
of a French mathematician, George Reeb. A Reeb graph is thteeqtispace defined
by the equivalence relation that identifies the points bgilogn to the same connected
component of each level set 6f Today it represents a suitable tool in computer graphics
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to solve problems related to shape matching, morphing adishgoReeb graphs can be
considered the first example of a fully modular framework studying the shape of
a manifold: here the shape exists by itself and the functieeduo study it can be
arbitrarily chosen.

Beside the possibility of adopting different functions fdescribing shapes, at a
higher level of abstraction, the modularity of the appr@schased on Morse Theory
can be extended to the choice of the space used to represesitape, or phenomenon,
under study. Size Theory and Persistent Homology Theohyrfed this last group,
with the study of topological attributes of lower-levelsef the mapping function. The
Morse shape descriptor differs from the other two as it makesf the theory of relative
homology groups to define a shape description [1].

For technical details on shape-from-functions methods efer rthe reader to the
survey [6].

1.2 Topological persistence

Topological Persistence startedte litteramat the beginning of the 1990s under
the name of Size Theory, with the idea of defining a suitabléheraatical setting for
the problem of shape comparison, supported by the adoptisnitable mathematical
tools: the natural pseudo-distance (Subsection 1.3.1jtendize function (Subsection
1.3.2). This was actually the origin of rather large expemtal research, beginning with
[62, 60, 64]. Size functions were generalized by the same&dh two directions: Size
Homotopy Groups [38] and Size Functor [8] (see Subsecti8r6for more details).
Approximately ten years later, Persistent Homology Theeag independently intro-
duced, re-proposing some ideas from a homological poinievf ysee [27] for a survey
on this topic).

The high modularity of such approaches is given by the pdggito choose arbi-
trarily both the mapping functions and the underlying spalieis possibility supplies
them with an important advantage with respect to other nustiod pattern recognition:
they capture qualitative aspects of shape in a quantitaiye turning out to be particu-
larly suited to the analysis of “natural” shapes (blood<EPR], signatures [25], gestures
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[48, 59], melanocytic lesions [54], proteins [2], ...).

Comparing these two methodologies, the reader will be abtEbserve the affini-
ties characterizing them. Retrospectively, indeed, afsizetion (Definition 1.3) can be
identifiable with the O-th rank invariant (Definition 1.14he value of a size function
in a point ofA™ with the rank of a 0-th persistent homology module (or O-thsjz¢ent
Betti number) (Definition 1.10), the first persistent hongylanodule with the Abelian-
ization of the first size homotopy group [38], and the sizectan[8] with a functorial
formalization of the direct sum of persistent homology meduOn the other hand, Per-
sistent Homology Theory is not properly an extension of Sikeory to all homology
degrees. In fact, some restrictive conditions are impogseithd former. For example,
Size Theory requires only the continuity of the measuringcfions, while Persistent
Homology Theory also requires their tameness, that is tasgprce of a finite number
of homological critical values (Definitions 1.8 and 1.9). Mover, size functions are
computed in terms of connected components instead of a¥awisnected components
as singular homology does.

Different terms have been used to denote the same mathairaiitstructs, which
often overwhelm the understanding of the underlying comifn@mework. Therefore,
to avoid confusion, we will expose the relevant material othlihe approaches, setting
a coherent notation and terminology.

1.3 Size Theory

Size Theory has been developed since the beginning of thes198th the papers
[33], [34] and [64]) in order to provide a geometrical-topgical approach to the com-
parison of shapes.

The basic notion behind size theory is the abstraction ofsthelarity between
shapes in terms of a pseudo-distance between the topdisg@ees representing the
shapes. Accordingly, the degree of similarity (or dissamitly) between shapes is ex-
pressed in terms of variations in the measure of the pr@gsediescribed by the mea-
suring functions when we move from one shape to another. i$nsttting, shapes are
considered similar if there exists a homeomorphism préasgthe properties conveyed
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by the functions.

The formalization of this approach leads us to the introduaf thenatural pseudo-
distance defined as the infimum of the variation of the values of thesendunctions,
when we move from one space to the other through homeomaonphi$ possible.
Therefore, two objects have the same shape if they shareathe shape properties,
expressed by the functions’ values, that is, their natwsalido-distance vanishes.

In order to effectively estimate the natural pseudo-distaand compare shapege
functionsare introduced. They are shape descriptors that analyzeatiaion of the
number of connected components of lower-level sets withaesto the real function
describing the shape properties we are interested in.

This theoretical approach is quite general and flexible, aackntly, has been ex-
tended to multivariate functions. Indeed, the observaiiah a shape of an object can
be more thoroughly characterized by means of measurindifuns; each investigating
specific shape features, has lead to the extension of Sizaryteea multidimensional
setting [4, 14]. Therefore, in the following subsectiorise bverview on this theory
will be exposed in terms of multivariate functions. The fantental results holding in
the 1-dimensional case will be pointed out, when not avhalabthe multidimensional
setting.

1.3.1 Natural pseudo-distance

The main idea in Size theory is to compare shapes via the atsopaf shape prop-
erties, that are described B®f-valued functions defined on topological spaces associ-
ated with the objects to be studied. This leads us to definagesis a paifX, §), called
asize pair whereX is a non-empty, compact, locally connected, Hausdorff gioal
space an@ = (¢1,...,¢n) : X — R"is a continuous function, called an-{limensiona)
measuring functionMoreover, let us denote lfyizethe collection of all the size pairs.

When two objects must be compared, the first step is to findrtgbt” set of corre-
sponding properties, that is, of size pai¥s @), (Y, ). The chosen topological spaces
do not necessarily coincide with the objects we are refgriin For example, we can
consider as a topological space the boundary of the objeits, jarojection onto a line, or
its skeleton, and so on. The choice depends on the kind of aosgm we are interested
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in. As for measuring functions, their choice is driven by & of properties that one
wishes to capture. Particular classes of functions have biegled out as better suited
than others to deal with specific problems, such as obtaimveyiance under groups
of transformations [21, 37, 58], or working with particuldasses of objects [13, 62].
Nevertheless, the choice of the most appropriate funcfmme particular application is
not fixed a priori, but can be changed up to the problem at hand.

The next step in the comparison process is to consider theahgiseudo-distance
d, whose formal definition is the following.

Definition 1.1. Let(X, §), (Y, @) be two size pairs. We shall calatural pseudo-distance
the pseudo-distance:dizex Size— RU{+~} defined as

d((X,9),(Y,9)) = et maX|#(P) — P(f(P)lle TFH(X.Y) #0

400 otherwise,

where HX,Y) denotes the set of all homeomorphisms from X to Y .

It should be noted that the existence of homeomorphismsigeqaired for the two
compared objects but for the associated topological spadeseover, observe that the
term pseudo-distance means taan vanish even ifX, ¢) and(Y, ) do not coincide;
in that caseX andY are only sharing the same shape properties with respeceto th
chosen functiong and, respectively.

Since the set of homeomorphisms between two topologicaksya rarely tractable,
simpler mathematical tools are required to estimate theralpseudo-distance. To this
end, the main mathematical tool introduced in Size Theogiven by size functions,
which provide a lower bound for the natural pseudo-distance

1.3.2 Size functions

Size functions are shape descriptors that analyze theieariaf the number of con-
nected components of the lower-level sets of the studieckspih respect to the chosen
measuring function.

Formally, letR" be endowed with the usual max-norfi{us, . .., un)||., = 1rgial>r<]|ui|.

Moreover, define the following relations, < in R": for @ = (ug,...,uy) and v =
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(V1,...,Vn), we shall sayll < V (resp. U < V) if and only if u; < v; (resp. u; < v;) for
i=1,...,n.

Given a size paifX,$), for everyn-tuplet = (ug,...,un) € R", let us denote by
X($ < U) the lower-level sefP € X, §(P) < U}.

Definition 1.2. Let (X, §) be a size pair. For everyi € R", we shall say that two points
P.Q € X are (¢ < U)-connectedf and only if a connected subset of K < U) exists,
containing both P and Q.

The relation of(¢ < U)-connectedness is an equivalence relation. If two points
P.Qe X are(¢ =< U)-connected we shall write ~@=a) Q-

In what follows, when no confusion arises about the meaguunction we are refer-
ring to, we will denote the lower-level sk < U) simply byX;, and the connectedness
relation betwee® Q € X, P ~ g Q, simply byP ~y Q.

Eventually, letA™ be the open sdf(T, V) € R" x R": U < V}, while A = dA™.

Definition 1.3. The size functionassociated with the size pafX, @) is the function
{ix,¢) - AT — N such that, for everyt,v) € A, £(x 4)(T,V) is equal to the number of
equivalence classes into which the séfX< U) is divided by the relation of¢ < Vv)-
connectedness.

In other words,/(x 4(U,V) is equal to the number of connected components in
X(@ = V) containing at least one point &f(¢ < ). The finiteness of this number
is a consequence of the compactness and local connectexfrésand the continuity
of §.

In the following subsections on Size Theory, we will show thain results involv-
ing 1-dimensional size functions (that, for concisenests b& often called simply size
functions).

1.3.3 An example of 1-dimensional size function

First of all, we want to give a simple example of a 1-dimenalaize function to
facilitate comprehension of the reader. In this examplspldyed in Figure 1.1, we
consider the size paiiX, ¢), whereX is the curve ofR?, represented by a solid line in
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(@) / (b)

Figure 1.1:(b) The size function of the size pdiK, ¢), whereX is the curve represented by a solid line

in (a), and¢ : X — R is the function “Euclidean distance from the pokiit

Figure 1.1 (a), an@ : X — R is the function “Euclidean distance from the pokt.
The size function associated witi, ¢) is shown in Figure 1.1 (b). Here, the domain
of the size functionAt = {(u,v) € R?,u < v}, is divided by solid lines, representing
the discontinuity points of the size function. These didirarity points divideA™ into
regions where the size function is constant. The value aygul in each region is the
value taken by the size function in that region.

For instance, foa < u < b, the setX, has two connected components contained in
different connected componentsXf, whenu < v < b. Therefore/(x 4)(u,v) = 2 for
a<u<bandu<v<b Whena<u< bandv> b, all the connected components of
Xy are contained in the same connected compon@@t.o‘fhereforez(xm(u,v) =1 for
a<u<bandv>b. Whenb <u< candu < v < c, the three connected components of
Xy persist inX,, soﬁ(x7¢)(u,v) = 3 for such values; while fdp < u < c andv > c, all of
the three connected components{gfbelong to the same connected componeriX\of
implying that in this caséx 4(u,v) = 1.

As for the values taken on the discontinuity lines, they alg obtained by observ-
ing that size functions are right-continuous, both in thealdeu and in the variable.

We point out that in less recent papers about size functinasacounters a slightly
different definition of size function. In fact, the origindéfinition of size function was
based on the relation of arcwise-connectedness. The dwfinged here, based on con-
nectedness, was introduced in [20]. This change of definiidheoretically motivated,
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since it implies the right-continuity of size functions,tramly in the variableu but also
in the variablev. As a consequence, many results can be stated more neatly.

1.3.4 Algebraic representation of 1-dimensional size furtions

In [35] a new kind of representation of size functions wasadticed, based on the
fact that they can always be seen as linear combinationsavhcteristic functions of
triangles (possibly unbounded triangles with verticesfity), with a side lying on the
diagonal ofR?, and the other sides parallel to the coordinate axes. Fongheain Figure
1.1 (b), the depicted size function is the sum of the characteristictions of the two
triangles with right angles at verticés, b) and(b, c), respectively, plus the characteristic
function of the infinite triangle defined by the vertical lime= a. This observation
suggested the important property for which the size funstere always representable as
collections of vertices and lines (called proper cornarsoand cornerpoints at infinity,
respectively). The main reference here is [36].

Roughly speaking, a proper cornerpoint £ ) is a point of(u,v) € A" encoding
the levelu at which a new connected component is born and the leaeivhich it gets
merged to another connected component. Formally, a prapeerpoint can be defined
as follows.

Definition 1.4. For every point p= (u,v) € AT and for every positive real number
with u+ & < v—g¢, let us define the numbpufx ¢)(p) as

Z(x7¢)(u+£,v— S) —Z(x7¢)(u— EV— E) —E(X7¢)(u+ E,V+ 8) +€(x7¢)(u— EV+ S).

The finite numbegx 4)(p) = Iin(‘)Lu(sx ¢)(p) will be calledmultiplicity of p for £(x 4).
E— ’

Moreover, we shall calproper cornerpointor ¢ 4) any point pe A* such that the

numberu(p) is strictly positive.

A cornerpoint at infinity, instead, encodes the leueat which a new connected
component oiX is born, and such that no levelv > u, exist at which this connected
component gets merged to another one. In particular, ites peved [36, Prop. 9] that
the number of cornerpoints at infinity corresponds to the Imemof connected compo-
nents ofX, and their abscissas to the level at which they are born. &bracornerpoint
at infinity can be defined as follows.
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ASSEESEEE N,

Figure 1.2: Cornerpoints of a size function: in this examplej andm are the only proper cornerpoints,
and have multiplicity equal to 2pj and 1 (n,q). The pointsis not a cornerpoint, since its multiplicity
vanishes. The line is the only cornerpoint at infinity and it has multiplicity eaf to 1.

Definition 1.5. For every vertical line r, with equation & k, and for every positive real
numbere with k+ € < 1/¢, let us identify r with the paitk,«), and define the number
u(fxm(r) as
g(x7¢)(k+ g, 1/8) - Z(x7¢)(k— £, 1/8)
When the finite numberx 4)(r) = lim pf 4 (r), calledmultiplicity of r for £ 4), is
’ =0t (X¢) s
strictly positive, we shall call the line r eornerpoint at infinityfor the size function.

As an example of cornerpoints in size functions, in Figuievile see that the proper
cornerpoints of the depicted size function are the pgmtsandm (with multiplicity 2,
1 and 1, respectively). The limds the only cornerpoint at infinity (with multiplicity 1):
this means that the underlying topological space is coedect

The importance of cornerpoints is revealed by the next teslibwing that corner-
points, with their multiplicities, uniquely determine sifunctions.

Let us denote by\* the open half-planA™, extended by the points at infinity of the
kind (k, ), i.e.

A= AT U{(k o) ke R}.

Theorem 1.3.1.For every(T,v) € AT we have

{ix,¢)(0,V) = ( )Z Hx.) ((U,V)). (1.1)
u,v)en*
u<t,v>v
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The equality (1.1) can be checked in the example of Figure Tk2 points where
the size function takes value 0 are exactly those for whiehetis no cornerpoint (either
proper or at infinity) lying to the left and above them. Let alkd a point in the region of
the domain where the size function takes the value 3. Acogrtli the above theorem,
the value of the size function at that point must be equal(tg + (p) = 3.

The result stated in Theorem 1.3.1 implies that it is possiblrepresent any size
function by a formal series of points and lines of the reahpla.e. by means of its
proper cornerpoints and cornerpoints at infinity, countét their multiplicities.

1.3.5 Distances between 1-dimensional size functions

The possibility to express size functions as formal serig@ts provides a simple
and concise representation of this shape descriptor, aaoleshone to compare size
functions using distances between sets of points [24], asdie Hausdorff metric or
the matching distance (see e.g. [16, 19, 20, 35, 44]).

The definition of Hausdorff distance between two size fuoniiis the following.

Definition 1.6. Let (X, ¢) and (Y, ) be two size pairs, with X and Y having the same
number of connected components. Let(lesp. A) be the set of all cornerpoints for
Cix.¢) (resp. £y y)), augmented by adding a countable infinity of points of tlaganal

A = {(u,v) € R? u=v}. TheHausdorff distanceetween the size functiofg 4) and
Ciy,y) 1s defined as

dy (¢ /¢ = max{ maxmin||p — maxmin||g— )
H(Cx.)5ovw)) X{peAi(qeL\J'p q||w,qu;<pelAlllq Pllo }

In other words, the Hausdorff distance is the maximum betvike distance of;
from A, and that ofA; from A;. The distance of; from A; is computed as the largest
among all the minimum distances of each poinfpfrom all the points ofA;.

Hausdorff distance is stable with respect to perturbatudnise measuring functions
and, in experimental frameworks, its computational coxiplas low. Nevertheless,
it does not seem to be a suitable metric for the computatiaimefdistance between
size functions, because it does not take into account thépincities of cornerpoints.
Accordingly, in [20] the matching distance between sizecfioms was introduced. It
can be defined in the following way.
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Definition 1.7. Let (X, ¢) and (Y, ) be two size pairs, with X and Y having the same
number of connected components. Le{(@sp. G) be the multiset of all cornerpoints
for £(x ¢) (resp.£y,y)) counted with their multiplicities, augmented by addingoaiat-
able infinity of points of the diagonal = {(u,v) € R? u= v}. Thematching distance
betweer/(x ») and/y y is given by

AmatcH(£(x,¢): £y, p)) = ma'ng;%i@(p, o(p)),

whereo varies among all the bijections between&hd G and

8((u,v), (V) = min{max{|u_u’|, |V—\/|},max{v;2u,\/;u/}} |

The adopted convention abowtis thatoo —v = v — o0 = oo for v # o, 00 —c0 =0,

$ =
Roughly speaking, the matching distartig;:ch between two size functions is the

m’

oo| = 00, min{oo,c} = ¢, max{co,c} = oo.

minimum, over all the matchings between the cornerpointe@two size functions, of
the maximum of thd_..-distances between two matched cornerpoints. Since tveo siz
functions can have a different number of proper cornergpthese can be also matched
to points of the diagonal. An example of computation of matgluistance is illustrated
in Figure 1.3. A size function, representable as the forredks of three proper cor-
nerpoints,a, b, c, and one cornerpoint at infinity, (Figure 1.3,(a)), is compared with
a size function having two proper cornerpoirgsc’, and one cornerpoint at infinity,
(Figure 1.3,(b)). The cost of the optimal matching between cornerpointa@two size
functions (that is of the matching that minimizes the diskirity measure between the
two point sets) equals the cost of moving the cornerpoimto the diagonal.

The stability of this representation has been studied in198 In particular, it has
been proved that the matching distance is continuous wsthere to the measuring func-
tions (in the sense df.-topology), guaranteeing a property of perturbation raess.

Theorem 1.3.2.Let (X, ¢) be a size pair. For every real number> 0 and for every
measuring functiony : X — R, such tha@e}(AMP) —yY(P)| <&, we have
S

Amatch(4(x,¢): £ (x,p)) < €-
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Yoy b v Vi rr b
a 2 a
2 |3 . @ ¢
01 ¢y matching L] | ¢t
distance
r+a+b+c r’+a’+c¢’
u u u

Figure 1.3: Two size functions can be described by cornatpdproper and at infinity) and compared by
the matching distance.

Moreover, in [19] it has been shown that the matching distdetween size func-
tions produces a sharp lower bound for the natural pseustasdie between size pairs.

Theorem 1.3.3.Lete > 0 be a real number and 16X, ¢) and (Y, /) be two size pairs
with X and Y homeomorphic. Then

dmatch(g(x7¢)7£(Y,Lp)) < d((x7 ¢)7 <Y7 LI"))?
where d is the natural pseudo-distance betw@énp) and (Y, ¢).

In addition, in [19] it has been proved that the matchingatise gives the best lower
bound for the natural pseudo-distance, in the sense thaithey distance between size
functions, such as that given in [23], would yield a worsermhul hese results guarantee
a link between the comparison of size functions and the cosgaof shapes [20].

1.3.6 Algebraic topology in Size Theory

Size functions are not the sole tool introduced in Size Thedndeed, algebraic
topology has been used to obtain generalizations of sizgiturs that give a more com-
plete description of a size pgiK, ¢ ), since they take into account not only the number
of connected components, but also the presence of otherésaguch as holes, tunnels
and voids. The first development in this sense can be four8in\heresize homotopy
groupsare introduced (already in a multidimensional settinggpired by the classical



14

1. Shape from functions

mathematical notion of homotopy group. They have been showprovide a lower
bound for the natural pseudo-distance, much in the same svaig@functions do.

The study of size functions in the algebraic topologicalisgtwas also developed
in [8], by observing that, if X, ¢) is a size pair withX a closed smooth manifold and
¢ : X — R a Morse function, the value dfx 4 at a point(u,v) € A", computed in
terms of arcwise connected components (instead of cortheoteponents), equals the
rank of the image ofy" : Ho(Xy) — Ho(Xy), whereiy" is the homomorphism be-
tween 0Oth singular homology groups over a fi@dnduced by the inclusion oX; in
Xv. This observation has led to the definitionsize functoy which studies the maps
Y H(Xu) — Hi(Xy), for everyk € Z. In other words, it studies the process of birth
and death of homology classes as lower-level sets changesiZé functor can be de-
scribed by oriented trees, callelj — trees(see [8, 10]).

Another topological interpretation of size functions, imggzomputed in terms of ar-
cwise connected components, is that given by Allili et al1ih given a size paifX, ¢)
with X a closed smooth manifold arfl: X — R a Morse function, the value dfx 4,
at a point(u,v) € A™ is equal to the difference between the rankdgfX,) and that of
Ho(Xyv, Xu). These two topological interpretations of size functioril e recuperated
in Chapter 3 for proving analogous results involving the wkefinition of size functions
in terms of connected components (see Section 3.1).

1.4 Persistent Homology Theory

The theory of persistent homology was introduced about pess ago [28, 29],
providing an algebraic method for measuring topologicaldess of shapes and of func-
tions. The authors follows a similar approach to Size Théatrpducing the paradigm
of persistencewhich grows a space incrementally and analyzes the tomalbthanges
that occur during this growth. In particular, they produceal, calledpersistent ho-
mology for controlling the placement of topological events (sashthe merging of
connected components or the filling of holes) within thedngtof this growth. The
aim is to furnish a scale to assess the relevance of topalbgitributes. Indeed, the
main assumption of persistence is that longevity is egeiaio significance. In other
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words, a significant topological attribute must have a ldfegiine in a growing com-
plex. In this way, one is able to distinguish the essentatifiees from the fine details. In
experimental frameworks, this theoretical procedure catrdnslated into the follow-
ing: topological events having a long lifetime in the grogicomplex are considered
structural shape features; those whose lifetime is sheridantified with noise.

The two fundamental ingredients in persistent homologgmhare the filtration of
a space and the pairing of homological critical values. Rbugpeaking, the filtration
is a sequence of nested subspaces; pairing homologidehtvialues means linking the
critical level that mark the appearance of a topologicaheeairth) with the critical level
that mark its disappearance (death). These concepts willus¢érated in Subsection
1.4.2.

As for the assumptions on the pé¥, ¢ ) defining the shape of an object, in literature
one can find different kinds of request involving both thecgpé and the functionp :
X — R [27]. In this treatment we requibdé to be a triangulable space afd continuous
tame function (Definition 1.9), in agreement with [16]. Wea# that a topological space
is triangulableif there exist a finite simplicial complex with homeomorphiederlying
space.

1.4.1 1-dimensional persistent homology modules

First of all, we restate two definitions from [16] (accordwgh our notations), that
introduce two important concepts in this theoretical sgttiThe first one is the concept
of homological critical value, representing a level at whitew topological attributes
are born or existing topological attributes die. The seaamalintroduces the concept of
tameness

Definition 1.8. Let X be a triangulable topological space,: X — R a continuous
real function on X and k& Z. A homologicalk-critical valueof ¢ is a real number w
W—E WHE ,

such that, for every sufficiently smalt> 0, the mapi,  Hk(Xw—g) — Hk(Xw+e)
induced by the inclusion of ¢ <w—¢) in X(¢ <w+ ¢€) is not an isomorphism.

This is called &-essential critical valuén the previously quoted paper [8, Def. 2.6]
(see Subsection 1.3.6).
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In the following the values that are niecritical for anyk € Z will be calledk-regular
values

Definition 1.9. Let X be a triangulable topological space. A continuous fiomce :
X — R is tameif it has a finite number of homological k-critical values ®rery ke Z,
and the homology modulesX (¢ < w)) are finite-dimensional for all k Z and we R.

In other words, a function is tame if the homology modulesaiftrelower-level set
have finite ranks and there exist only finitely many valuweat which the homology
modules change.

Examples of tame functions are Morse functions on closedotfimmanifolds and
piecewise linear functions on triangulable topologicasgs.

From now on, a paifX, ¢) with X a triangulable space ada tame function, will
be called aame pait

Definition 1.10. Let(X, ¢) be a tame pair and let,w € R with u< v. The kh persistent
homology moduléH*" (X, ¢) is the image of the homomorphisfh’ : He(X (¢ <u)) —
Hk(X{¢ < V)) induced by the inclusion mapping of(® < u) into X{¢ < V), that is
HV (X, ) =im 1.

For everyk € Z, the rank of the image ofj’v is called thek-persistent Betti number
and is denoted bﬁ,f"’(x, ¢). It counts the number dé-dimensional homology classes
that are born at or beforeand are still alive av.

In the following, when no confusion arises in terms of the suegng function¢g
we are considering, for conciseness we will dertefe (X, ¢) simply by H,"’(X), and

B (X, 9) by B(X).

1.4.2 Barcodes, persistence diagrams and bottleneck disize

Now, we are ready to introduce tlfitration of X defined by the lower-level sets of

By Definition 1.9, the choice of a topological spaXeendowed with a tame real
function ¢ implies, for everyk € Z, the existence of a finite number of homological
k-critical values, sayv,...,Wmn. Then, choosingn—+ 1 k-regular valuesy, . .., Sy such
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thats_1 <w; < s for1<i<m, afiltration ofX can be defined as a finite sequence of
nested subspacdXs }i—o...m, that isXs, C X, C ... C Xs,,. Set alsas_1 =wg = —o
andwmi1 = Smy1 = +. We say that a homology classis born atXs if it does not
come from a class iXs_,. Moreover, ifa is born atXs, we say it dies enterinks; if

the image of the map induced B , C Xsi does not contain the image afbut the
image of the map induced X, , C Xs; does.

Following the above-described procedure, the homologigéital values can be
paired by the following rule. Through the filtration &f a homological critical value
w;, corresponding to the birth of a non trivial homological leyds paired with the
homological critical value (if there exists); > w; corresponding to the death of the
same cycle, that is when the cycle becomes a boundary. Thisteerice of the cycle is
computed in terms of the difference between the paired hognl critical values, and
its lifetime can be graphically described by an open intefwaw;). The cycles that do
not die during the filtration are callezbsential classesf (X, ¢) and are represented by
open intervals of typ@w, ). Therefore, the persistent homology of a filtered topolalgic
space can be portrayed as a collection of open intervaledgagrsistence intervalsr
barcode[11, 39] (see Figure 1.4, bottom).

More recently, a new kind of description of barcode has ba@nduced [16]. The
pairs(wi, w;j), with w; < wj, are represented as points with multiplicities in the estézh
plane, and this set of points is callegersistence diagram

Definition 1.11. The persistence diagram DgiX,¢) C A* associated with the pair
(X, ¢) is a multiset of pointéw;, w;j) counted with multiplicity

He X, 9) = BTHX ) = BHIHX,0) — BIT(X,9) + BT (X, 9)
for 0<i < j<m+1, ke Z, together with all points on the diagonal, counted with
infinite multiplicity.

By conventionH,"" (X, ¢) = {0} wheneveu or vis infinite. Therefore, in Definition
1.11,85 +%(X,9) = B3 = 0 for everyi € {~1,...,m+1} andk € Z.

Let us denotgy, " (X, @) simply by '™ and B¢ (X, ¢) by B, and write the
multiplicity of a point(w;, w;) as the following difference between two differences

Wi ,Wj S,Sj— S.Sj S-1,5j— S-1,S5j
Ukl J:(Bk = K N —( K v l—Bk ! M.
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Recalling tha]BS I-* represents the number of homology classesjn born befores,

it holds that the first di1‘ferenc<ﬁs’s"’1 — Bf’sj counts the classes )Q;H born befores;,

,Sj —1,Sj .
S0t B3S counts the classes in

that die beforesj; while the second differencg,
Xsi_y born befores_1, that die befores;. Thus,uk"W" counts the classes born between
S_1 ands, that die betwees;_; ands;.
The total multiplicity of the persistence diagram minus dnegonal is
4(DgM(X,9) —8) = 5 k™.

1<]
keZ

Persistence diagrams can be compared by stable distancbksasthe Hausdorff dis-
tance and theottleneck distanc&he last one is defined in the following manner.

Definition 1.12. Thebottleneck distanceetweerDgm, (X, ¢) andDgm, (X, ) is given
by

ds(Dgm(X, ¢), Dgm(X, y)) =inf ~ sup = [|p—0(p)];
peDgM(X.9)

whereo ranges over all the bijections betweBgm, (X, ¢) andDgm, (X, ).

In [16] it has been proved that, using the bottleneck disgtapersistence diagrams
are robust against small perturbations of real functions.

Theorem 1.4.1.Let X be a triangulable space endowed with continuous tametifuns
¢,y : X — R. Then, for every k Z, the persistence diagrams satisfy

ds(Dgmy(X; ¢),Dam(X, ¢)) < [[¢ — Y|,

where||¢ — Y|, = max¢ (P) — w(P)|.

Note that persistence diagrams essentially play the sa®asaornerpoints in size
functions (see Chapter 3, Subsection 3.1.1 and [14] for nhetals). Therefore, looking
at these points as vertices of triangular regions (with &&fior infinite area), a general-
ization of a size function to all homology degrees is obtdirlhis kind of representation
is the graph of a function, callednk invariant and defined apli("” : AT — N such that
plz("”(u,v) =rank(H,"'(X, 9)) (see the following section for its general definition). An
example is given in Figure 1.4 (center).
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Figure 1.4: Top: a surface studied with respect to the héigtdtion f in the horizontal direction. Center
and bottom: the associated rank invariants and persistatez@als representing the Oth (light blue), 1st
(middle blue) and 2nd (dark blue) persistent Betti numhesgpectively.
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1.4.3 Multifiltrations and persistence modules

The most general setting for Topological Persistence hes tecently proposed by
G. Carlsson and A. Zomorodian in [12], where an extensiorheftheory to a mul-
tidimensional setting is exposed. The main concept inttedwy the authors is that
of multifiltration of a space, that would be the suitable tool to model richerctires
parameterizable along multiple geometric dimensions.

LetU,ve N". We writed < Vif u; <v; for j =1,...,n. The formal definition of a
multifiltration is the following.

Definition 1.13. A topological space X imultifilteredif we are given a familymulti-
filtration) of subspace$X (") C X }yenn with inclusions X9 € X wheneveri < W, so
that the diagrams

5 (0) 5 x(W)

l l (1.2)

—

X (V2) —— x (W)
commute fold < Vq,Vo < W.

The generality of the above definition is given by the fact tigther conditions on
the topological spacX are imposed nor requirements on the construction of its sub-
spaceX ¥ are made.

Given a multifiltered spack, the homology of each subspaX& over a fieldK is
a vector space. Moreover, there exist inclusion maps ngjdtie subspaces, inducing
maps at homology level.

Figure 1.1(a) displays an example of a bifiltration. The input is a finiteugle
K along with a functionF : R2 — K that gives a subcomplex¥) for any valuev ¢
R2. To convert this input to a multifiltered complex, it is suiiiot to take into account
only the finite set of critical coordinat€s= {V; € Rz}i at which new simplices enter
the complex. So, we can reduce ourself to consider a finitebearof critical values,
such that diagrams (1.2) commute in the discrete séi?f Figure 1.1(b) shows a
commutative diagram isomorphic to the zeroth homologyarespaces of the bifiltered
triangle.
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i
N —
7~ —
NN N
NN N

AN

(a

Table 1.1:(a) A bifiltration of a triangle.(b) The commutative diagram of zeroth homology vector spaces
associated with the subspaces of the bifiltered complextlaid maps induced by the inclusion maps
relating the subspaces.

The homology of a multifiltration in each degree can be dbsdriby a discrete
invariant calledank invariant

Definition 1.14. Let X = {X}ycxn be a multifiltration. We defingy x : {(T,V) €
N" x N" i <V} — N over a fieldK to be

Px k(T, V) = rankH(X@) — H(X)).

Retrospectively, mathematical tools provided by Size Thend Persistent Homol-
ogy Theory can be considered particular examples of thassepted in this section. In
particular, the concept of multifiltration of a space in-dimensional setting (or that of
filtration in a 1-dimensional one) used by these theorietways defined by a mapping
function ranging on the space.

Indeed, to be more precise, in [12] it has also been intraditfee concept okth persis-

tence moduleThe homology of a multifiltration in each degree is a patticpersistence
module. The multidimensional persistent homology is thenblogy of a particular
multifltration: the multifiltration defined by the lower-lel/sets of a multidimensional
measuring function varying on the space.
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Chapter 2

Stability for rank invariants of
multidimensional persistent homology

The interest in extending shape-from-functions techrsqa@ multidimensional set-
ting, in the sense of extracting knowledge from high-dinemal data by means of func-
tions with values iR", is increasing. One of the main reasons for such a gendraliza
Is that certain shape features (such as color) are chaesttdry a multidimensional na-
ture whose description can be achieved necessarily by amaiukd function. Moreover,
another advantage of working wilkl-valued functions is that shapes can be simultane-
ously investigated bw different real-valued functions.

Topological persistence approaches are moving towardsitteéction with the aim
to enhance the ability of their descriptors in recognizistpape by enhancing the ability
of measuring functions in capturing a greater quantity apginformation. However, in
spite of the potentiality of the-dimensional setting, some objective obstacles, concern-
ing, above all, the lack of an efficient computational apphpanake it difficult to purse
such a research line. Indeed, a direct approach to the nmigsional case forces to
work in subsets oR2", implying higher computational costs in evaluating and pam
ing shape descriptors, because of the absence of a re@&seity means of multisets
of points, analogous to persistence diagrams.

As for Persistence Homology Theory, these obstacles iningghe multidimen-
sional setting appear in the approach proposed by CarrisdrZzamorodian in [12].

23
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Indeed, the authors concluded that paper claiming thatidmiknsional persistence has
an essentially different character from its 1-dimensiorm@akion, since their approach
does not seem to lead to a complete, stable descriptor indli@limensional case. The
rank invariant, introduced to describe a multifiltrationecpace (see Subsection 1.4.3),
represents a practical tool for robust estimation of thei Beimbers in a multifiltration,
but it results to be a complete discrete invariant only inXkdimensional setting [12,
Thm. 5].

Recently, Size Theory has been developed inrtlatkmensional framework [4, 14]
in a manner to pave a way out of all the above-mentioned difiigs) and providing a
concise, complete and stable (though not discrete) shegueipt®r also in the multidi-
mensional context, that inherits the good properties afidedsional size functions. The
strategy proposed is the reduction of multidimensiona §imctions to 1-dimensional
ones by a suitable change of variables. In particular, aklgtplanes’ foliation of
AT = {(U,V) € R 0 < V} is defined to make an-dimensional size function, associ-
ated with a topological space endowed withmasimensional measuring function, equal
to a 1-dimensional size function, associated with the sarpelogical space endowed
with a 1-dimensional measuring function, in corresponéasfeach half-plane [4]. The
importance of this result resides in the fact that, on eaafdtthe foliation, it is possible
to translate and use all the results conveyed in the lass yeat-dimensional size func-
tions. In particular, on each half-plane, multidimensiaize functions can be expressed
as formal series of cornerpoints, making their comparismssible through the matching
distance. So,even if, unfortunately, cornerpoints do aotf in general, discrete sets in
the multidimensional case, this approach makes it possilfiad them “slice by slice”
with the familiar discrete technique of dimension one. Agtial use is for sampling of
the sets of leaves, so getting bounds for a stable distamweée size functions. Exper-
imental results shown in [4] have validated this approaath @geamonstrated the higher
discriminatory power achieved usimgdimensional measuring functions, by blending
the information conveyed by thaircomponents.

Our purpose, in this chapter, is to show analogous posigsalts for Multidimen-
sional Persistent Homology, by extending the approach oé $heory to all homol-
ogy degrees. In particular a reduction theorem, assertiagbincidence between a
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n-dimensionakth persistent homology module and a 1-dimensional one dmleat of
the foliation of A™, represents the main tool for the construction of a stablidimen-
sional bottleneck distance betweewlimensionakth rank invariants.

The chapter is structured as follows. Section 2.1 provitesniecessary tools for
our goal, concerning the foliation @". In Section 2.2 we give a new definition of
multidimensionakth persistent homology modules (Definition 2.3), in termsaix-
tame size pairs (Definition 2.2). Moreover, our reductioactiem (Theorem 2.2.1) is
stated and proved. Section 2.3 is devoted to define and shavenies of the multi-
dimensional bottleneck distance. In a 1-dimensionalrsgtit is redefined in terms of
rank invariants (Definition 2.5), instead of persistenagdams (Definition 1.12), lead-
ing us to its extension to a multidimensional context (Dé&fni 2.6). In Section 2.4 we
describe two examples demonstrating the higher discritmiypigoower of multidimen-
sional persistence than 1-dimesional and expose furtrsareltions on the cooperation
of measuring functions. A brief discussion on the resultsie@d and open problems
concludes the chapter.

2.1 A suitable foliation of AT

In this section we show how it is possible to define a foliatamA™ C R" x R"
suitable to reduce computation of persistent homology fileemultidimensional to the
1-dimensional case. Its construction depends on so-caltidissible” vector pairs.

Definition 2.1. For every unit vectol = (I1,...,In) inR"suchthat| > 0for j=1,...,n,
N n
and for every vectob = (by,...,by) in R" such that 3 bj = 0, we shall say that the
=1

pair (T,B) is admissible We shall denote the set of all admissible pair®ihx R" by
Admy,. Given an admissible pa(rT,B), we define the half-planH(rB) in R" x R" by the
following parametric equations:

U=d+b
V=tl+b

forst € R, with s< .
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For every(il,V) € A™, there exists exactly one admissible pib) such tha(@, V) e
) [4, Prop.1].

The following proposition is substantially contained iretproof of [4, Thm. 3]
and represents the fundamental ingredient for proving @duction theorem (Theorem
2.2.1). Indeed, Proposition 2.1.1 asserts that, fixed anssilsie pair, a multidimen-
sional measuring function can be replaced by a 1-dimenk@rg in such a way that
their lower-level sets coincide on the corresponding lé#he foliation.

Proposition 2.1.1.Let (X,$) be a size pair. Letl,b) be an admissible pair, and let

F(?’B) : X — R be defined by setting

— r

for every Pe X. Then, for everyt, V) = (s +b,t
hold:

+
o
m
3
i
\gl
-,
0
D
®
=
5]
3
>
(@]
D
o]
c
o
=
D
w

X(§ <t) = {PeX:9¢j(P)<uj,j=1,...,n}
)

= {PeX ¢j<PI)__bJ<s,j:1,. .n}
j

_ ¢

= X<F(F,B)<S>

Analogously, for every = (v1,...,vn) € R", withvj =tl;+bj,j =1,...,n, it can

be proved thaX (¢ < V) = X(F(?.B) <t). O

Note that the above result holds for an arbitrarily size p&irg).

For our purpose, we need the following further conditign; ..., ¢, : X — R shall
be tame functions (Definition 1.9). In agreement with thipdthesis, throughout all the
chapter, a size paitX,$) such that all the components @fare tame will be called a
tame size pair



2.2 Homological 1-dimensional reduction 27

2.2 Homological 1-dimensional reduction

The results shown in the previous section do not constihgsasle instruments lead-
ing to the definition of a stable distance between multidisn@mal rank invariants. So,
in this section, we investigate further fundamental toorsolur goal.

A necessary requirement for our reduction theorem, is tgaen @ : X — R", both
¢j: X —=Rforj=1,...,n and F(?,B) : X — R are tame functions, and the following
remark states that this condition is not always fullfilled.

Remark 1. The maximum of two tame functions is not necessarily a tanotidun.

B

()

Figure 2.1: In(a) the lower-level seR?(f; < 0) (yellow area - one connected component)(bnlower-
level setR?(f, < 0) (blue area - one connected component).dnlower-level seR?(f < 0) (dark zone
- infinitely many connected components).

As an example, lefy, f, : R2 — R be two tame functions defined as
v—u?sin(i) u#£0 —v—u?sin(1) u#£0
oY) = { ) uF0 - (}) u#
\Y; u=~0
and consider the function
f= max( f]_, fz).
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Figure 2.1 shows the sets whefe((a), yellow area),f, ((b), blue area) and ((c),
dark areas), respectively, take a value smaller or equal tbif easily seen that, even
if f; and f, are tame functions, witlR?(f; < 0) andR?(f, < 0) connected lower-level
sets,f does not result to be tame, sirtdg(R?(f < 0)) is not a finitely generated module.

Given this fault related to tame functions, a preliminarjuson we propose is to
introduce the following concept.

Definition 2.2. Let (X,#) be a tame size pair. We shall say th&, @) is a max-
tame size paiif, for every admissible pai(r, B), the function '(_?’B) : X — R such that

¢ _ ¢i(P)—bj -
F(F’B)(P>_j_”1]?fn{ I }forevery Pe X, is tame.

Let us redefine multidimensional persistent homology meslin view of the above
definition.

Definition 2.3. Let (X, #) be a max-tame size pair. F¢d,V) € AT, let lE’v : Hi(X{(@ <
U)) — Hk(X(¢ =< V)) be the map induced by inclusion of the lower-level set iof that
of v, for a fixed integer k. We cathultidimensionakth-persistent homology moduéd

(X, ®) the image of such a homomorphism, and wriﬂav(—)(, $)=im lE’V.

Now we can state and prove the theorem which, in analogy Wwémtain result of
[4], enables us to reduce the computation of multidimeraiparsistent homology mod-
ules to the 1-dimensional case. This is important, not sanioicfinding the homology
modules themselves point by point, but much more for findiomgs of change of the
modules. However, before its formulation, the introductid some notations would be

necessary.
i ¢ _ ¢;i(P)—bj : TR st. ¢
leenF(ﬁB)(P) = J_rqaxn{ I }foraﬂxed(l,b) € Adm, letk, : Hk(X<F(|jB) <
s) — Hk(X<F(‘I§B) <t)) for s;t € R, s<t andk € Z, be the map induced by inclusion

of the lower-level set of in that oft, and denote by-lf’t(X,F(‘?B)) = imk;* the kth

persistent homology module X, F(?B))'

Theorem 2.2.1.Let (X,$) be a max-tame size pair. Léfb) be an admissible pair.

Then, for everyt,v) = (8 +b,tI+b) € m;5, the equality

HE (X, 8) = HE (X F )
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holds for every ke Z and st € R with s< t.

Proof. By Lemma 2.1.1, we have the equalité$d < U) = X(F(?.B) <s) andX(§ <

V)= X<F(?,B) <t) forevery(t,V) = (3 +b,tI+b) € gy They obviously imply that, for
everyk € Z, Hy(X (# 1) = H(X(F7; <9)) andHi(X{§ 5 ¥)) = H(X (2 <1),
respectively. Thus, sinaéj’v: H(X(§ < T)) — H(X(¢ < ¥)) andky" Hk(X<F(‘?:B)
s)) — Hk(X<F(?7B) < t)) are homomorphisms induced by inclusion, having the same
domain and codomain, it necessarily follows thatlﬂﬂ: imkp', and the claim is

proved. O

<

2.3 Multidimensional bottleneck distance

This section deals with the construction of the bottleneistatice between mul-
tidimensional rank invariants, by mimicking the theoratiapproach of Size Theory
with regard to the generalization of the matching distaricanvs in [4]. In particu-
lar, after a reformulation of the 1-dimensional bottlendstancedg in terms of rank
invariants (Definition 2.5), instead of persistence diagggDefinition 1.12), we will
prove that, using this distance, on each leaf of the folat@nk invariants result sta-
ble under small perturbations of 1-dimensional measumngtions (with respect to the
max-norm) (Proposition 2.3.2), and under small pertudvatiof the leaves (Proposition
2.3.3), respectively. Moreover, we will exteg to a multidimensional distandeg
(Definition 2.6), and prove that the latter is still a lowemnd for the natural pseudo-
distance (Theorem 2.3.4). Eventually, in Proposition3, &g prove the higher discrim-
inatory power of the multidimensional bottleneck distatican the 1-dimensional one,
showing that the former gives a better lower bound for thenadipseudo-distance than
the latter.

First of all, according to the general Definition 1.14, letdegine am-dimensional
kth rank invariant describing the homology of a multifiltcatithat is defined by the
variation of am-dimensional measuring function, with tame components.

Definition 2.4. Let (X, §) be a tame size pair. For eve(y,V) € AT and ke Z, we define
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P At N over a fieldK to be
p ) (0,9) = rankH (X, §).

Let us observe that, in the 1-dimensional setting, the iegjselation between per-
sistence diagrams and rank invariants is analogous to ldtgore between cornerpoints
and size functions. Therefore, rank invariants associattédl-dimensional persistent
modules can be compared through the bottleneck distandmitize 1.12).

Definition 2.5. Let (X,¢), (Y,y) be two tame size pairs, and let&kZ such that
Bx(X) = Bk(Y). Moreover, Ietplgx"p) and p&Y"’U) be the respective 1-dimensional kth
rank invariants. Let @ (resp. G) be the multiset of all pairs of homological critical val-
ues counted with their multiplicities, together with allipts on the diagonal counted
with infinite multiplicity. Thebottleneck distancbetweerp,ﬁx"p) and p&Y"’U) is given by
ds (oY, oY) =inf sup [p—o(p)l.
peCy
whereo ranges over all the bijections betweepn &hd G.

The above definition is more general than the one involvimgipence diagrams
(Definition 1.12). Indeed, in this new version, the bottidndistance betweekth rank
invariants can be computed also when the involved size ave different spaces.
Naturally, the two definitions coincide when the spacesa@di This fact extends the
validity of Theorem 1.4.1 on the bottleneck stability.

In the sequel, let us consider two max-tame size gXir®), (Y, ), associated with
plgx,qs), p&Y"p) respectively, fok € Z. Furthermore, let an admissible pélTrB) be fixed,
and IetF(?:B) : X — R, F(%B) ;Y — R be defined as before.

An easy corollary of our Theorem 2.2.1 is the following, whis the higher degree
version of [4, Cor. 1]. It states that, for fixdde Z, two multidimensionakth rank
invariants coincide if and only if the corresponding 1-dme®nalkth rank invariants

associated with each admissible pdib) coincide; so, the set of 1-dimensional rank
(X,F2 )

invariantsp, ", as(I,b) varies inAdm,, completely characterizq.:éx’m.

Corollary 2.3.1. For each ke Z the identityplgx’m = p&Y"I’) holds if and only if, for
. o (XFEe)  (FE)
every admissible paifl,b), ds{ p, " .p, " | =0.
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The persistence diagrams are known to be stable under possibll perturbations
of 1-dimensional measuring functions (Theorem 1.4.1)h&rhultidimensional setting,
the stability of rank invariants under perturbations ofifreinsional measuring functions
on each leaf of the foliation is stated by the following prsipion.

Proposition 2.3.2.Let (X, #), (X, ) be two max-tame size pairs willg — @||,, < €.
Then, for every admissible pait,b) and for each ke Z, it holds that

Proof. First of all, let us recall that

1 — Pll, = max|(P) — P(P)]l., = max max [¢;(P) — ¢;(P)].

PeXj=1,..,

Moreover, sincéX, @) (X, ) have the same support, we can apply Theorem 1.4.1, for
which it holds that

XF2 ) (xFZ)
dg (pk (B) oy ('B) ) < max|F(?B

=

( )

Fix now P € X and denote by the index for which maﬁ‘i@ is attained. By the
j

definition OfF(F,B) andF(RB), it holds that

IA
|
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max|@(P) — @(P)|, < &, then

PeX

¢ D < |$(P) = P(P)]|s
max|Fire) (P~ Fig (P P min I,
j=1,...,n
&
min |;’
j=1,....,n

IN

Proposition 2.3.3 ensures the robustness of the rank antaunder small changes
of the leaves in the foliation. Roughly speaking, it asstrtd small changes in the

admissible pair(r,B) with respect to the max-norm induce small changes of the rank
(X,F%.)

invariantp, " with respect to the bottleneck distance.

Proposition 2.3.3.1f (X, ) is a max-tame size pair and,b), (I',b') are admissible
pairs with || —1"||, < &, |[0—D/||,, < e ande < min {I;}, it holds that
j=1,...n

7 ? max||@ (P)]|o, + 11l + |0l

0" p(xf@)) p(X,FmA’B/)) . maX| @ (P)lleo + 1o + 1B

X Tk min {lj(lj—¢&)}
j=1,....n

Proof. From the bottleneck stability stated in Theorem 1.4.1, wesha

XF ) (XFP )
dB<pk oy “"b)) < maxF’ (P)-F

Fix now P € X, and denote by the index for which maﬁ‘%@ is attained. By the
J
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definition OfF(ﬁB) andF(r/m, it follows that

p) = maxiP)=bi o Hi(P) =D

j
¢;(P)—b; ¢;(P) — b’
I; 11
(|]A—|JA)¢JA(P) —|}bjA+|jAb’jA
IjAIEA
(|]A—|JA)¢]A(P) +|f(b'jA— by) +bjA(|jA—|EA)
Ij“'}
15— 15l1@5(P)[ + |1 5/[0% — gl + [byl[1 ;= 1%
17
1]
E(|F(P)lleo + Mo + [1Bll)
|J,(|J,_5)
E(1F(P)lleo + Mo + [1Bllr)
jmin {i0i—e)}

77777

IN

IN

IN

¢ E(|6 (P) s IMes +1Bllr)
In the same manner we can see ﬁ%}m(P) - F(ﬁB)(P) < n 0e) There-
fore, _ .
max| @ (P)|le, + 1] + [[bllc
¢ =y <¢. PeX
x| P (P) F(I”zfv)(P)) g min {1;(1;— &)}
i=1..., n
and the claim is proved. O

Definition 2.6. Let (X, ), (Y, ) be two max-tame size pairs, wifla(X) = Bk(Y) for

a fixed ke Z. Then the th multidimensional bottleneck distanbetweerplgx’m and

(Y.9)

p, " is defined by

. XEP ) (vEY )
DB (p&xﬁ),py#ﬁ)) _ sup .:ni"nn I] . dB <pk (T'b) ,pk () ) .
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Note thatDg is by construction a global distance, i.e. not dependin@l}ﬁ), but
since the coefficients are always< 1, there might be distanceg, for particular admis-
sible pairs, which take greater values. On the other hamdddfinition above implies
that each 1-dimensional bottleneck distance obtainednmespondence of an admissi-
ble pair yields a lower bound for the multidimensional beréck distance; so, it suffices
a fine sampling by admissible pairs to produce approximatadrarbitrary precision of
Dg.

The next two results show that, for every homology dedreeZ, the multidimen-
sional bottleneck distandeg <p&x’¢),pg"p)) provides a lower bound for the multi-
dimensional natural pseudo-distard@X,$), (Y, P)) (Theorem 2.3.4), and that this
lower-bound is better than the one provided by the 1-dineadibottleneck distance

ds <p&x’¢i),p|gx"”')) fori=1,...,n(Proposition 2.3.5), respectively.

Theorem 2.3.4.Let(X, @), (Y, ) be two max-tame size pairs, with X homeomorphic
topological spaces. Let(@X, @), (Y, ) be the natural pseudo-distance betwégng )
and(Y, ). Then

Ds (A7) < d((X. ). (Y, )

for every ke Z.

Proof. Let us recall that, by Definition 1.1, the conditid) Y homeomorphic implies
thatd((X, ), (Y. §)) = infmax|#(P) - H(1(P))|
momorphisms irH(X,Y). Moreover, the conditiofiX, Y homeomorphic also implies
that B (X) = Bk(Y), for everyk € Z. So, for any suchf € H(X,Y) and anyk € Z, it

P
(XF T ef)

«» Wheref varies among all the ho-

(Y,F¥ )
holds thato, " = p, . By applying Proposition 2.3.2, wity replaced by

o f ande by max|¢ (P) — ¢(f(P))|.,, and observing that?. o f =F%' itfollows
that ] ot
(X.Fiz)  (YFre)
il (B) R _
min ;- de <pk ) ) < max|#(P) — B((P))]l.

for every admissible paird,b) andk € Z. Furthermore, since it is true for each homeo-
morphismf betweenX andY, the claim immediately follows. O

By the same argument of the analogous Proposition 4 in [4% @asy to prove
the following inequality between the multidimensional terteck distance and the 1-
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dimensional one obtained by considering the componentseofrteasuring functions.
That this inequality can be strict, is shown in an exampledesd in Section 2.4.

Proposition 2.3.5. Let (X, @), (Y, ) be two max-tame size pairs such th&{X) =
Bk(Y) for a fixed integer k. Then, for every=1,. ... n, it holds that

d (p4), o) < Dg (P p0").

Proof. Let 4 = max|@#(P)||» and v = max|P(Q)|l.. Fori =1,...,n, consider the
PeX QeY

admissible pairl’,b'), wherel' = (Ii,...,1}) andb' = (b},...,b}) are defined in the
following way
_1 _
I'J_%, forj=1,...,n,

bl =

2(n-1 P
{ — 20D max{p, v}, ifi= j;
j

2max{u, v}, if i £ j.

From Theorem 2.2.1, for eve(y, V) = (s +b',tI' +b') Tty ) @nd for evenk € Z,
. av t iy t -
it holds thatHV(X, ) = HS (X,F(%Bi)), HIV(Y, @) = H3Y(Y, F(?Z””Bi)), with F(%Bi)(P) -

“max {d’"(P)bI" } = /N(¢i(P) —bl) for everyP € X, and
n

F? (Q) = max {wi(Q_)_bij } = /N(Yi(Q) —bl) for everyQ € Y. Then
v

k ' Mk

— Jn-dg <pl£X,¢ibg),pl£Y,L/Jib2)>
— Jn-ds <pl£X’¢i),p|£Y7L/—’i)>

and hence, using the above definitior ilofj =1,...,n, it holds that

(Xdes Bl ) (YvF B ) i—bi l_bi
dg <pk (5 oy (I*.,b)) — ds <p(x7ﬁ(¢ i) p(Yvﬁ(tﬁ .)))

| XFhg)  (YFL) 1 (XFig) (VR
i (1) (o) _ (Mol (Mol
;i 1} - de (Pk P = (AT A

Finally, the claim immediately follows from the definitioh Dg <p&x’¢),pl£¥’w)>. 0J
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2.4 Examples and remarks

This section provides two simple examples of shape conmgarigheir aim is to
demonstrate that the discriminatory power derivable frara comparison betwear
dimensional persistent homology modules, i.e. comput#un@spect to an-dimensional
measuring function is higher than the one achievabledamparisons between the col-
lection of the 1-dimensional persistent homology modulesputed with respect to
each component.

The first example concerns the comparison of two differerg gairs having the
same support.

Let X be the ellipse embeddedR? defined by the equations

u = cosf
w+v2i=1 .
or parameterized as < v = sin®
V=W
W = Sing0.

Let § = (¢1,02), ¥ = (Y1, ) : X — R? be defined as followsp; = u, gy =V, ¢ =
Yo =w. Then, itis easily seen that the persistent homology medfleX, ¢1), (X, ¢n),
(X, ¢2) = (X, ) are identical, while the persistent homology (in degre®zso the
size function) of(X, §) differs from the one of X, ). Indeed, while the lower-level
sets ofJ are always either empty or connected, the lower-level gets(T,w), with
O<u<1], ﬂ < W < 1 consist of two connected components.

The second example we propose is the comparison of two sligiesd by two
different topological spaces endowed with the s@&?ealued measuring function. The
dissimilarity of these shapes is computed in terms of thédéwck distance between
the respective rank invariants.

In R3 consider the se® = [-1,1] x [-1,1] x [-1,1] and the spher8 of equation
u?+v?4+w? = 1. Let also¥ = (x1,x2) : R® — R? be a continuous function, defined
asX(u,v,w) = (Jul, |v]). In this setting, consider the size pai& ¢) and(S, ), where
C =0Q and@ and{ are respectively the restrictions pfto € ands.

In order to compare the persistent homology module@ ahd§ defined byy, we
are interested in studying the half-planes’ foliation\3f  R%, wherel = (cosB,sinb)
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with 8 € (0, %), andb = (a, —a) with a € R. Any such half-plane is parameterized as

u; = scosO +a
Up = Ssinf —a
vi =tcosf+a
Vo =tsinf —a

withst e R;s<t.

For example, focusing on the plane defined by choo§irg 7 anda=0, i.e. =
(@, @) andb = (0,0), we obtain that

PP = VZmaxgn. g2} = vamax(ul, M},
F(lIPB) = \/émax{l.pl, Yo} = \ﬁmax{|u|, v}

)

Figure 2.2: Lower-level seié(?ﬁ) <1 andF(?B) <1.

Moreover, for everk € Z, denoting by-lf’t((i) andHf’t(S) thekth persistent homol-
5 v _ (eFf) (SFL)
ogy modules of the pair&, F(FB)) and(s, F(FB))' respectively, and by, “°",p, *°
the respectivéth rank invariahts, and obsérving tha(C) = Bk(S), for everyk € Z, by
(e,F? s.FY )

)
Definition 2.5, the bottleneck distandg <pk o ) is finite for everyk € Z.

In particular, we have
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)

)
0, st<0 1

Stioy 2 0<s<t< i\

\1'
=

__

K, otherwise )

TSNS o

0, st<O 1
H'(8)={ K2, 0<s<t<1
K, otherwise

o &

Strey _ oralls,;t € \\\
H3' (@) 0, forallsteR ﬁx\\\§\\\\\\\\\\

S S S S

ESNNANSAN

&

HS(8) = K3, 1<s<t<y2
! 0, otherwise

©6) (S.0)) < V2 ©Fly) SFE)\ 3y
> ou(p® ) 2 (o) - 2 (:50)

K, vV2<s<t 0 §\§ |
st(e) — ’ N |
H (€)= { 0, otherwise \\\\\\\\\\\\\s
VA =
H3Y(8) = € vass<t
2771 0, otherwise

= Ds (Péw),ﬁ)éw)) > ¥2dg <p2 D o) 0D ) ~0
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In other words, the multidimensional persistent homolagigh respect to§ and
{, is able to discriminate the cube and the sphere, while thenknsional persistent
homology, with respect t@¢, ¢ and g, §»o, cannot do that. In fact, for both surfaces
the lower-level sets of the single components (i.e. 1-dsrral measuring functions)
are homeomorphic for all values: they are topologicallyeitcircles, or annuli, or
spheres.

This last example suggests also some other consideratiomiseocooperation of
measuring functions.

Afirstremark regards the possibility to considacobi set$26] onC andS. Loosely
speaking, the Jacobi set of two Morse functions defined omarmn manifold is a set
of critical points of the restrictions of one function to tlegel sets of the other function.
In our case, neither the componentsyof R® — R? (that we recall to ba the function
whose restrictions oR andS8 are ¢ and {, respectively) are Morse functions, nér
is a manifold; nevertheless, considerations in this dibactan be done. Indeed, note
that, although the persistent homology on single companehf cannot distinguish
the two spaces, the persistent homologyyaenfor example, if restricted to lower-level
sets ofx, can, as shown in what follows. Consider again the spbemed = X|.. The
value 1/+/2 (corresponding to the homological critical value ]:(0‘117‘6)) is not critical for

the mapspi, ¢, on§ itself, but it is indeed critical for, restricted taS(yy < 1/1/2).
We believe that , for everk € Z, homologicalk-critical values of the 1-dimensional
reduction of multidimensional measuring functions aresgfsvclues of such phenomena
(the cas&k = 0 has already been treated in [14]).

A further speculation on the use of cooperating measuringtions — from a com-
pletely different viewpoint than the one developed in thevpyus sections — is the
following. A problem in 1-dimensional persistent homoldgyhe computation of ho-
mologicalk-critical values fork > 0. A possibility is the use of several, independent
measuring functions for lowerink, i.e. the degree at which the passage through the
critical value causes a homology change. Lowekng important, since homological
O-critical values are easily detected by graph-theoretécdniques [17]. The following
example shows that a suitable choice of a second, auxili@ssoring function may
actually take homological 1-critical values to O-criticales.
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‘V

Figure 2.3: An example of cooperating measuring functions.

InR3, letT be a torus of revolution around texis, with the innermost parallel cir-
cle of radius 2, the outermost of radius 3 (see Figure 2.3)T @efine(f,—f) = (z, —2).
Suppose we are interested in the persistent homology ofaéeair(7, f). Thenz=2
is a homological 1-critical value fof, i.e. it is a level at which 1-degree homology
changes. The same levelis a homological O-critical valugdoestriction taJ (—f <0),
so it can be recovered by the standard graph-theoretidatigaees used in degree 0, that
is for size functions. The two functions need not be so $yrrefated: for example;- f
could be replaced by the Euclidean distance fr@h0,3) with the same effect. We
conjecture that — at least whenever torsion is not involvedre can recursively take
the homologicak-critical values of a measuring function to homologigdet 1)-critical
ones, down to (easily computable) homological O-critiedlres by means of other (aux-
iliary) measuring functions, as in this example.

2.5 Discussion

The need to extend persistent homology to the multidimeasioase is a rather
widespread belief, confirmed by simple examples (Sectidih 2ZT'he present research
shows the possibility of reducing the computation of peesishomology, with respect
to multidimensional measuring functions, to the 1-dimenal case, following the line
of thought of an analogous extension devised for size fanstin [4]. This reduction
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also yields a stable distance for the rank invariants of g&es.

In the next future, we plan to characterize the multidimenal max-tame measuring
functions in such a way that the reduction to the 1-dimeradioase makes the specific
features of persistent homology modules hold steady. & aisuld be our concern to
give a rigorous definition omultidimensional homological k-critical valued a max-
tame function and to relate them to the homologlcatitical values of the maximum
of its components. Moreover, experimental results wouldiésirable to analyze the
potential of our theoretical approach.

Eventually, in relation to our conjecture about homolobic&ritical values (see
Section 2.4), we plan to build an algorithm to recursivelyuge homologicak-critical
values of a measuring function to homological O-criticaéen
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Chapter 3

The robustness of size functions against
partial occlusions

Shape matching and retrieval are key aspects in the dessgaoth engines based on
visual, rather than keyword, information. Generally spegkshape matching methods
rely on the computation of a shape description, also callsidmature, that effectively
captures some essential features of the object. The ataliperform not only global
matching, but also partial matching, is regarded as oneeofrtbst meaningful proper-
ties in order to evaluate the performance of a shape matchetgod (cf., e.g., [63]).
Basically, the interest in robustness against partialustchs is motivated by the prob-
lem of recognizing an object partially hidden by some otlmedround object in the
same image. However, there are also other situations inhwgactial matching is use-
ful, such as when dealing with the problem of identifying gamties between different
configurations of articulated objects, or when dealing witineliable object segmenta-
tion from images. For these reasons, the ability to recagsimpes, even when they
are partially occluded by another pattern, has been imegstil in the computer vision
literature by various authors, with reference to a variétyt@mpe recognition methods.

In particular, as far as point based representations ofeshggpconcerned, works on
the topic include the partial Hausdorff distance [44] by tdotocher et al. to compare
portions of point sets, and Wolfson and Rigoutsos’ use ofggtac hashing [66] applied
to point features. For shapes encoded as polylines, theséamal Veltkamp’s approach

43
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[56] is that of computing the dissimilarity between mulégbolylines and a polygon
using the turning function, while Latecki et al. [50] propa@smethod based on removing
certain parts of a polyline and see whether the objects beaoore similar without
them. As for the region-based shape descriptors, Hoyndk@mm show that using
central moments instead of the angular radial transformxtcaet features improves
robustness to occlusions [43]. Regarding the shape-fromtions methods, Biasotti et
al. [7] automatically identify similar sub-parts exploitj a graph-matching technique
applied to Reeb graphs.

As explained in Chapter 1, size functions belong to a classethods for shape
description, characterized by the study of the topologibahges in the lower-level sets
of a real valued function defined on the shape to derive itsagige (cf., e.g., [6, 46]).
Here we want to investigate the behavior of size functionthepresence of partial
occlusions. Previous works have already assessed themebaf size functions with
respect to continuous deformations of the shape [20], theiseness of the descriptor
[36], the invariance of the descriptor to transformatioaugrs [21, 58], that are further
properties recognized as important for shape matching adsthSize functions, like
all shape-from-functions methods, work on a shape as a wholgeneral, it is argued
that global object methods are not robust against occlasishereas methods based on
computing local features may be more suited to this task. a&buaris to show that size
functions are able to preserve local information, so they ttan manage uncertainty due
to the presence of occluded shapes.

We model the presence of occlusions in a shape as followsyvish®e object is a
locally connected compact Hausdorff spaceThe object of interesA is occluded by
an objectB, so thatX = AUB. In particular,A andB have the topology induced from
X and are assumed to be locally connected. The shap¥s Af andB are analyzed
through the size function§y ), K(A7¢|A), and£(37¢‘B), respectively, where : X — R is
the continuous function chosen to extract the shape feature

The starting point of this research is the fact that the sinetion/x 4, evaluated at
a point(u,v) of R?, with u < v, is equal to the rank of the image of the homomorphism
induced by inclusion between tf@ech homology groupkio(X,) and Ho(X,), where

Xa={peX:¢9(p) <u}andX,={peX:p(p) <v}.
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Our main result establishes a necessary and sufficienttommdb that the equality

Cix,) (W V) = a6, (U V) +L(B g ) (U, V) = £(anB g ) (U V) (3.1)

holds. This is proved using the Mayer-Vietoris sequencémfh homology groups.

From this result we can deduce that the size functiox cbntains features of the size
functions ofA andB. In particular, when size functions are represented aswadiseries
of points in the plane through theiornerpointgDefinitions 1.4 and 1.5), relation (3.1)
allows us to prove that the set of cornerpointgf, contains a subset of cornerpoints
of Z(A7¢|A). These are a kind of “fingerprint” of the presencefah X. In other words,
size functions are able to detect a partial matching betweershapes by showing a
common subset of cornerpoints.

The chapter is organized as follows. In Section 3.1 somergenesults concern-
ing the link between size functions aech homology are proved, with a particular
emphasis on the relation existing between discontinuitfesze functions and homo-
logical critical values. The reader not familiar wi@ech homology can find a brief
survey of the subject in Appendices A and B. However, we Qeeh homology only
for technical reasons, so that, after establishing thahalbrdinary homological axioms
(Eilenberg-Steenrod) hold in our setting, also @ech homology groups, we can use
them as ordinary (singular) homology groups. Therefore,rérader acquainted with
ordinary homology can easily go through the next sectiomsSdction 3.2 we prove
our main result concerning the relationship (3.1) betwéensize function oA, B and
AUB. The relation we obtain holds, subject to a homological domdderived from
the Mayer-Vietoris sequence @fech homology. In the same section we also inves-
tigate this homological condition in terms of size funcBorMoreover, we introduce
the Mayer-Vietoris sequence of persistéﬁch homology groups. Section 3.3 is de-
voted to the consequent relationship between cornerpingy ¢ ,), £(s,¢|s) aNd¢(x ¢)
in terms of their coordinates and multiplicities. Beforencluding the chapter with a
brief discussion of our results, we show some experimepiali@ations in Section 3.4,
demonstrating the potential of our approach.
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3.1 The link between size functions an€ech homology

In this section we prove that values of size functions candmeputed in terms of
rank ofCech homology groups. We then analyze the links between lugical critical
values and size functions.

As recalled in Subsection 1.3.6, the idea of relating sizections to homology
groups is not a new one. Already in [8], introducing the cqtad size functoy this
link was recognized, when the spaXes a smooth manifold ang is a Morse func-
tion. Roughly speaking, the size functor associated wighpiir (X, ¢) takes a pair of
real numbergu,v) € A* to the image of the homomorphism frok(X,) to Hyk(Xy),
induced by the inclusion of, into X,. Here homology means singular homology. This
also shows a link between size functions and Oth persistenblogy groups [29]. Later,
the relation between size functions and singular homolagus of closed manifolds
endowed with Morse functions emerged again in [1], studyfredMorse shape descrip-
tor.

The reason for further exploring the homological interatien of size function in the
present chapter is technical. As explained in Section liBdefinition of size function
is based on the relation of connectedness (cf. Definition This implies that singular
homology, whose Oth group detects the number of arcwiseeaxiad components, is no
longer suited to dealing with size functions. Adding furthesumptions oiX, so that
connectedness and arcwise-connectedness coincidesuth as askinX to be locally
arcwise-connected, is not sufficient to solve the problemdeéd, we emphasize the fact
that in the definition of(x 4) we count the components not of the spacéself, but
those of the lower-level sets &fwith respect to the continuous functign and it is not
guaranteed that locally arcwise-connectedness is irdudy lower-level sets.

The tool we need for counting connected components insteatwise-connected
components i€ech homology (a brief review of this subject can be found péndix
A). Indeed, in [65] the following result is proved, under thssumption thakX is a
compact Hausdorff space.

Theorem 3.1.1([65], Thm. V 11.3a) The number of connected components of a space
X is exactly the rank of th@th Cech homology group.
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One of the main problems in the use@&ch homology is that, in general, the long
sequence of the pair may fail to be exact. However, the egastof this sequence
holds, provided that some assumptions are satisfied: tloe spast be compact and the
group G must be either a compact Abelian topological group or a vespace over a
field (see Appendix B). In view of establishing a connectietieen size functions and
Cech homology, it is important to recall that whex, @) is a size pairX is assumed to
be compact and Hausdorff agdis continuous. Therefore, the lower-level sitsare
themselves Hausdorff and compact spaces. In order thalebl homology sequence
of the pair be available, we will tak& to be a vector space over a field. Therefore,
from now on, we will take th&€ech homology sequence of the pair for granted and we
will denote theCech homology groups of over G simply by Hi(X), maintaining the
notationHy(X) for ordinary homology. From [30] we know thil (X ) is a vector space
over the same field.

We shall first furnish a link between size functions and fe¢a€ech homology
groups. We need the following preliminary results.

Definition 3.1 ([65], Def. 1 12.2) If X is a space, and,y € X, then a finite collection
of sets X, X2, ..., X" will be said to form asimple chainof sets from x to y if (1) X
contains x if and only if i= 1; (2) X' contains y if and only if i= n; (3) X N X1 £ 0,

i < j,ifandonlyif j=i+ 1.

Proposition 3.1.2([65], Cor. 112.5) A space X is connected if and only if, for arbitrary
X,y € X and coverind! of X by open setg[ contains a simple chain from x to y.

Following the proof used in [65] for proving Theorem 3.1.1e @an interpret also
relative homology groups in terms of the number of connectedponents.

Lemma 3.1.3. For every pair of spacegX,A), with X a compact Hausdorff space and
A a closed subset of X, the number of connected componentthat do not meet A is
equal to the rank oFig(X,A).

Proof. WhenA is empty, the claim reduces to Theorem 3.1.1. In dasenon-empty, if
X is connected theHg(X,A) = 0. Indeed, under these assumptionszdet {zo(U)} be
aCech cycle inX relative tEA’ with zo(U) :_zlj(:]_aj -Uj, aj # 0. SinceA C X is non-
empty, there is an open déte U such thaty € Ua. Now we can use Proposition 3.1.2
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to show that, for every ¥ j <Kk, there exists a sequenggof elements ot(, beginning
with U; and ending withU. So, associated with;, there is a 1-chair¢{ such that
dcl =Uj—U. Henced3*_ja-c} = 55 1a;-Uj—3¥ 1a)-U =20(U) - 55 18- U,
proving thatzp(U) is homologous to 0 irZp(X,A). By the arbitrariness ofl, each
coordinate oy is homologous to 0, implying thady(X, A) = 0.

In general, ifX is not connected, then the preceding argument shows thatlorde
connected components ¥fthat do not meef contain a non-triviaCech cycle relative
to A. So the claim follows from Theorem 3.1.1. O

As an immediate consequence of Lemma 3.1.3, we have thafolidink between
size functions and relativ€ech homology groups. It is analogous to the link given
in [1] using singular homology for size functions, definedtémms of the arcwise-
connectedness relation. Before exposing it, we need aeiugssumption orX, ¢ ):
HO(XU) shall be finitely generated for evetye R. The importance of the following
result in our investigation makes this condition necestangqughout the chapter.

Corollary 3.1.4. For every size paitX, ¢), and everyu,v) € AT, it holds that the value
{(x.¢)(u, V) equals the rank offlp(X,) minus the rank oFlp(X,, Xu).

Proof. The claim follows from Lemma 3.1.3, observing that 4)(u,V) is equal to the
number of connected componentogfthat meeiX,. O

We now show that the size function can also be expressed aarnkef the image
of the homomorphism betwed®ech homology groups, induced by the inclusiorXef
into Xy. This link is analogous to the existing one between the sinetbr and size
functions, defined using the arcwise-connectednessarlfg].

Given a size paifX,¢), and(u,v) € A* C R?, we denote by"“" the inclusion of
X, into X,. This mapping induces a homomorphism@éch homology groupqﬁ”v :
Hi(Xy) — Hi(Xy) for each integek > 0.

Analogously to what is done in [29], we can define the penstsbech homology
groups.

Definition 3.2. Given a size paitX, ¢) and a point(u,v) € AT, the kh persistenéech
homology grougH," (X, ¢) is the image of the homomorphisfh’ induced between the
kth Cech homology groups by the inclusion mapping oo X: (X, ¢) = im 1",
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From now on, for simplicity of notation, we writd,"’(X) instead oH,"" (X, ¢).

Corollary 3.1.5. For every size paitX, ¢), and everyu,v) € AT, it holds that the value
£(x,9)(U,V) equals the rank of théth persistenCech homology grouﬁlg’v(X).

Proof. Let us consider the final terms of the long exact sequencesgdir (X, X,):

~ lu'v ~ ~
.. — Ho(Xy) & Ho(Xy) — Ho(Xy, Xy) — O.
From the exactness of this sequence we deduce that
rankHg"(X) = rankimig" = rankHo(X,) — rankHo(Xy, Xy).-

Applying Theorem 3.1.1 and Lemma 3.1.3, the raanQf’(X) is shown to be equal to
the number of connected componentXpthat meefX, that isz(x7¢)(u,v). O

3.1.1 Some useful results

In this section we show the link between homological critie@ues (Definition
1.8) and discontinuities of size functions (Section 1.3L4} us recall that homological
critical values have been introduced in [16] and intuitiwebrrespond to levels where
the lower-level sets undergo a topological change. Discoities of size functions have
been thoroughly studied in [14, 36].

In particular, we prove that if a poirfi,v) € A is a discontinuity point for a size
function, then eithew or vis a level where the 0-homology of the lower-level set change
(Proposition 3.1.6). Then we show that also the conversagsthen the number of ho-
mological critical values is finite (Proposition 3.1.7). \WM@ver, in general, there may
exist homological critical values not generating discouities for the size function (Re-
mark 2). We conclude the section with a result concerningthgectivity of the homo-
morphism induced by inclusion (Proposition 3.1.8).

Analogously to Definition 1.8, we give the following

Definition 3.3. Let (X,¢) be a size pair. Ahomologicalk-critical valuefor (X, ¢)

is a real number w such that, for every sufficiently sngat 0, the mapr,’~*""# :

Hi(Xw_¢) — Hk(Xw.¢) induced by inclusion is not an isomorphism.
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The following results show the behavior of a size functiooaading to whether it is
calculated in correspondence with homological O-criti@dues or not.

Proposition 3.1.6.1f w € R is not a homologicab-critical value for the size paitX, ¢),
then the following statements are true:

(i) For every v> w, Iirgl+ (Cix.0)(W+E,V) —€(x ) (W—E,V)) =0,
E—

ii) Fo , lim (¢ W—g)— /¢ , =0
(ii) Forevery u<w eﬂ;( x.0) (U, W— &) —£(x ¢)(U,W+£))

Proof. We begin by provingi). Letv > w. For everye > 0 such that/ > w+ &, we can
consider the commutative diagram:

W—€,V
0

~ ~ h ~
o+ —— Ho(Xw—g) — Ho(Xy) —— Ho(Xy, Xw—¢) —— 0

l,gvg,w l,g.v l ; Ol (3.2)
| WEV

~ ~ k ~
- — Ho(Xw+e) —— Ho(Xv) —— Ho(Xv, Xw1e) — 0

where the two horizontal lines are exact homology sequeatése pairs(Xy, Xw—¢)
and (Xy, Xw.+¢ ), respectively, and the vertical maps are homomorphismsciedi by in-
clusions. By the assumption thatis not a homological O-critical value, there exists
an arbitrarily smallg > 0 such thaiz(‘;"_g""“rg is an isomorphism. Therefore, by apply-
ing the Five Lemma in diagram (3.2) with= €, we deduce that alspis an isomor-
phism. Thus, rarfo(Xy, Xw_g) = rankHo(Xy, X.¢), and consequently, by Corollary
3.1.4,0x ) (W+E,V) = £(x 4)(W—E,V). Hence, since size functions are non-decreasing
in the first variable, it may be concluded tfgg:toli(ﬂ(xm (W+E€,V) —{ix ) (W—E,V)) =
0.

Now, let us proceed by proving). Letu < w. For everye > 0 such thatt < w—¢,
let us consider the following commutative diagram:

uw—¢

- —— Fio(Xu) —= Fo(Xu—g) —— Ho(Xu_g, Xu) —— 0
llg.u Wsw l ; OJ (3.3)
o Fo(X) —2 Flo(Xurse) — Fo(Xe, %) —— 0

where the vertical maps are homomorphisms induced by ilmclesand the two hori-
zontal lines are exact homology sequences of the p&ise, Xy) and (Xyre, Xu), re-
spectively. By the assumption thatis not a homological O-critical value, there exists
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an arbitrarily smalle > 0, for which l(\;\,_gwg : Ho(Xw—_g) — Ho(Xwsz) is an isomor-

phism. Therefore, by applying the Five Lemma in diagram)(&igh € = €, we deduce
that alsoj is an isomorphism. Thus, raHl§(Xy_¢, Xu) = rankHo(Xu.¢, Xu), implying
Cix,9)(U,W—E) = £(x ¢)(U,W+E). Hence, since size functions are non-increasing in the
second variable, the desired claim follows. O

Assuming the existence of at most a finite number of homo#&gidtical values, we
state the converse of Proposition 3.3 saying that homadbgratical values give rise to
discontinuities in size functions.

Proposition 3.1.7.Let (X, ¢) be a size pair with at most a finite number of homological
O-critical values. Let we R be a homological O-critical value. The following statengent
hold:

@ If 1(‘;"_8""’“ is not surjective for any sufficiently small positive reahmhere, then
there exists v w such that w is a discontinuity point fér )(-,V);

(i) If l‘év_e"’“e is surjective for every sufficiently small positive real rngme, then
there exists u w such that w is a discontinuity point fégy 4)(u, -).

Proof. Let us prove(i), always referring to diagram (3.2) in the proof of Propasiti
3.1.6. Letv > w. For everye > 0 such thav > w+ &, the mapj of diagram (3.2) is
surjective. Indeedh, k and1y" are surjective.

If we prove that there exists> w for which, for everye > 0 such that > w+¢, |
IS not injective, then, sincgis surjective, it necessarily holds that rzi{takxv, Xw—g) >
ranld:|o(Xv, Xw+e), for everye > 0 such that > w+ €. From this we obtairﬂ(xvd,)(w—
£,V) = rankHo(X,) — rankHo(Xy, Xw—e) < rankHo(Xy) — rankHo(Xy, Xw¢) = £(x ¢)(W+
g,V), for everye > 0 such that > w+¢. Therefore%ligg (ﬁ(x7¢)(w+ €,V) —€ix ¢y (W—

8,V)> > 0, that is,w is a discontinuity point fofx 4)(-,V).

Let us see that there exists> w for which, for everye > 0 such thav > w+¢, j is
not injective.
Since we have hypothesized the presence of at most a finiteerush homological O-
critical values for(X, ¢), there surely exist® > w such that, for every sufficiently small

£>0,v>w+eandiy & Ho(Xwte) — Ho(Xy) is an isomorphism. Hence, from
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the exactness of the second row in diagram (3.2), taking adichio(Xg, Xu.1¢) results
trivial. Now, if j were injective, from the triviality oﬂo(xv, Xw-te), it would follow that
aIsoHo(Xv, Xw—¢) is trivial, and consequenth%"’s"7 surjective. This is a contradiction,
since we are assuming~*""* not surjective, and it implies tha§'~*" is not surjective
becausey *Y andiy" are isomorphisms.

As for (i), we will always refer to diagram (3.3) in the proof of Propimsi 3.1.6. In
this case, by combining the hypothesis that, for any suffttyesmalle > 0, 15 ©""® is
not anisomorphism and’~*""¢ is surjective, it necessarily follows that rad(Xy_¢ ) >
rankl—v|o(xw+g), for every sufficiently smalt > 0. Letu < w. For everye > 0 such that
u+ & < w, the mapj of diagram (3.3) is surjective. Indeeld, k andiy~*"*¢ are sur-
jective.

Now, if we prove the existence af< w, for which, for everye > 0 such thati+ & < w,

j is an isomorphism, it necessarily holds that fepky_¢, Xu) = rankHo(Xue, Xu), for
everye > 0 such thati+¢& < w. Thus, it follows thatx ¢)(u,w—¢€) = rankHo(Xw_g) —

rankHo(Xw—e, Xu) > rankHo(Xwse) — rankHo(Xue, Xu) = £(x ¢)(u, W+ €), for every
€ > 0 such thati+ € < w, implying sir& (E(X7¢)(u,w— €) —Lx,¢)(U,W+ s)) > 0, that
is, wis a discontinuity point fof x 4(u,-).

Recalling thatj is surjective, let us prove that there existsc w for which j is
injective for everye > 0 withu+ & < w.

Since we have assumed the presence of at most a finite nunt@mological O-critical
values for(X, ¢), there surely existg < w such that, for every sufficiently small> 0,
U< w—¢andig"®: Ho(Xa) — Ho(Xw—¢) is an isomorphism. Hence, for suctua
Ho(Xw—e, Xg) is trivial, implying j injective. O

Dropping the assumption that the number of homologicalticat values for(X, ¢)
is finite, the converse of Proposition 3.1.6 is false, as ¢thlewing remark states.

Remark 2. From the condition that w is a homological O-critical valué,does not
follow that w is a discontinuity for the functiofik )(-,v), v> w, or for the function
lix,g)(U,-), u<w,

In particular, the hypothesisankHo(Xw—¢) # rankHo(Xw-¢ ), for every sufficiently small
€ > 0, does not imply the existence of eitherw such thatgli_}rg+ <£(x7¢)(w+ E,V) —
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Cix,gy(W— e,v)) #0oru<wsuch tha'[SILrQ+ (E(Xm(u,w— €) —Lix,¢)(U,W+ s)) # 0.

Two different examples, shown in Figures 3.1 and 3.2 suppartclaim. Let us

VA

3/2

5/4
9/8

Figure 3.1: An example showing the existence of a real numitbat is a homological O-critical value
for (X, ¢) but not a discontinuity point fof(x 4)(-,V).

describe the first example displayed in Figure 3.1. (Xetp) be the size pair wher¥

is the topological space obtained by adding an infinite nurobbranches to a vertical
segment, each one sprouting at the height where the preskpies. These heights are
chosen according to the sequefite- 2—1.1)n6N, converging to 1. The measuring function
¢ is the height function. The size function associated WXh¢) is displayed on the
right side ofX. In this settingw = 1 is a homological O-critical value. Indeed, o= 1,

it holds that rankvlo(XW,g) = 1 while rank—v|o(Xw+g) = 2, for every sulfficiently small
€ > 0. On the other hand, for evewy> w, and for every small enough> 0, it holds that
Cx,g)(W+E,V) =ix gy (W—¢,V) = 1. Therefore,sli()rp<£(x7¢)(w+ &,V) —Lx,p)(W—

e,v)) = 0, for everyv > w. Moreover, it is immediately verifiable that, for evaryx w,

sli_)r& (Z(xm(u,w— €) —{(x,¢)(U,W+ e)) = 0. The second example, shown in Figure 3.2,
is built in a similar way. In the chosen size pé¥, ¢), ¢ is again the height function,
andX is again obtained by adding an infinite number of branchesvartecal segment,
but this time, the sequence of heights of their endpoin{ is 2—1,1)n6N, converging to

2. In this casew = 2 is a homological O-critical value faiX,¢). Indeed, for every
sufficiently smalle > 0, rankdo(Xw_¢) = 2 while rankdo(Xw.¢) = 1. On the other
hand, for everyl < w, and for every small enough> 0, it holds thatx 4)(u,w+¢€) =

lix,9)(U,W—¢) =1 whenu>1andlx 4)(U,W+E) = £x 4)(U,W—E€) =0whenu < 1.
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15/8
7/4

3/2

Figure 3.2: An example showing the existence of a real numitbat is a homological O-critical value
for (X, ¢) but not a discontinuity point fofx 4)(u,-).

Therefore, in both cases, réé(xm(u,w— €) —{(x,¢)(U,W+ e)) = 0 for everyu < w.
E—

)i
Moreover, we can immediately verify th?ioﬂr(\((xm (W+&,V) —€x g)(W—E, v)) =0
for everyv > w.

Before concluding this section, we investigate a condit@mrthe surjectivity of the
homomorphism between the Oftech homology groups induced by the inclusion map

of Xy into Xy, 15" : Ho(Xy) — Ho(X,), because it will be needed in Subsection 3.2.3.

Proposition 3.1.8.Let (X, $) be a size pair. For everyu,v) € A, 15" is surjective if
and only ifx ¢)(U,V) = £(x ¢)(, V), for every ¥> v.

Proof. For everyV > v, let f“—vl (respectively,%) be the space obtained quotienting
Xy (respectivelyX,) by the relation of(¢ < V')-connectedness. Let us define the map
R f“—\/ — Z(—VV,, such thaf, takes the class d® € X, C X, in % into the class oP in
f—;. Fv is well defined and injective, sinee< v < V. The condition that x 4)(u,V) =
ix,¢)(W,V') is equivalent to the bijectivity of, .

Let 15" : Ho(Xu) — Ho(Xy) be surjective. By Corollary 3.1.4 and Corollary 3.1.5,
this is equivalent to saying that, for eveye X, there isQ € X, with P ~, Q. Since
v <V, it also holds thaP ~,, Q and this implied, ([Q]) = [P], for all vV > v. So,F; is
bijective and/x 4)(u,V') = £(x ¢)(v,V), for everyv’ > v.

Conversely, leEy : % — f—; be a surjective map, for all >v. LetP € X,. Let(vy)
be a strictly decreasing sequence of real numbers congetgin The surjectivity of
R, implies that &Qy € X exists, such tha,, ([Qn]) = [P], for alln € N. ThusP ~y,, Qn,
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for all n € N. SinceX is compact and, is closed inX, there is a subsequence of
(Qn), still denoted by(Qy), converging inX,. LetQ = r!iﬂl,Q” € Xy. Then, necessarily,
P ~y, Q, for all n. In fact, let us callC, the connected component ¥, containing
P. Since(vy) is decreasing, we hav@, O C,.1 for everyn € N. Let us assume that
there existd\ € N such thatP =, Q. SinceCy is closed and ¢ Cy, there exists an
open neighborhood (Q) of Q, such thaty (Q) NCy = 0. Thus, surely, there exists at
least one poinQ, € U(Q), with n > N andQ, ¢ Cy. This is a contradiction, because
QneC,CCy,foralln> N.

ThereforeP ~y, Q for all n, and this implies tha® ~, Q, because of Rem. 3in [20].
Hence,i5" : Ho(Xy) — Ho(X,) is surjective. O

Remark 3. The condition that x 4y(u,V) = £x ¢)(v,V), for every ¥ > v, can be re-
stated saying thatx 4) has no points of horizontal discontinuity in the regifix, y) €
AT :u<x<v, y>v}. Inother words, the seft(x,y) € AT :u< x<v, y> v} does not
contain any cornerpoint (either proper or at infinity) g o).

3.2 The Mayer-Vietoris sequence of persisterﬁ:ech ho-
mology groups

In this section, we look for a relation expressing the sizefion associated with the
size pair(X, ¢) in terms of size functions associated with size pghsp») and(B, ¢g),
whereA andB are closed locally connected subsetXosuch thaiX = int(A) Uint(B),
andANB is locally connected. The notatioir® (A) andint(B) stand for the interior of
the setfA andB in X, respectively. The previous assumptiongoB andANB, together
with the fact that the function s, ¢|a, and¢ g are continuous, as restrictions of the
continuous functiorp : X — R to spaces endowed with the topology induced fodm
ensure thatA, ¢)a), (B,¢g), and (AN B, ¢a-s) are themselves size pairs. Moreover,
in order to apply Corollary 3.1.4 t%, A, BandANB as a tool for our investigation, it
is necessary thadlp(X,), Ho(Au), Ho(By), Ho(ANBy) are finitely generated groups for
everyu € R. These hypotheses oy A, B andAnN B will be maintained throughout the
chapter.
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We find a homological condition guaranteeing a Mayer-Vistéormula between
size functions evaluated at a poif,v) € A™, that is, £(x ¢)(U,v) = E(A7¢‘A)(u,v) +
E(B7¢|B)(u,v) —E(Am&q,lm)(u,v) (see Corollary 3.2.6). We shall apply this relation in
the next section in order to show that it is possible to matshleset of the cornerpoints
for £/x ¢) to cornerpoints for eithe@(A7¢‘A) orZ(B7¢|B).

Our main tools are the Mayer-Vietoris sequence and the hoggyaequence of the
pair, applied to the lower-level sets ¥f A, B, andANB.

Using the same tools, we show that there exists a Mayer-Nsetequence for per-
sistentCech homology groups that is of order 2. This implies thadlasproper assump-
tions, there is a short exact sequence involving the OttigteréCech homology groups
of X, A, B, andAN B (see Proposition 3.2.7).

We begin by emphasizing some simple properties of the |devetsets oiX, A, B,
andANB.

Lemma 3.2.1.Let ue R. Let us endow xXwith the topology induced by X. Ther A
and B, are closed sets ingX Moreover, X = int(Ay) Uint(By) and A\,NBy = (ANB)y.

Proof. A, is closed inX, if there exists a sef C X, closed in the topology oX, such
thatC N X, = Ay. Itis sufficient to takeC = A. Analogously forB,,.

About the second statement, the proof tgD int(A,) Uint(By) is trivial. Let us
prove thatX, C int(Ay) Uint(By). If x € X, thenx € int(A) orx € int(B). Let us suppose
thatx € int(A). Then there exists an open neighborhood af X contained inA, say
U(x). Clearly,U(x) N X, is an open neighborhood afin X, and is contained im\,.
Hencex € int(A,). The proof is analogous i € int(B). The proof thatA, N By =
(ANB)yis trivial. O

Lemma 3.2.1 ensures that, far,v) € AT, we can consider diagram (3.4), where the
leftmost vertical line belongs to the Mayer-Vietoris sege of the triad(X,, Ay, By),
the central vertical line belongs to the Mayer-Vietorisisengce of the triadX,, Ay, By),
and the rightmost vertical line belongs to the relative Mayietoris sequence of the
triad ((Xv, Xu), (Av,Au), (By,By)). For everyk > 0, the horizontal map¥, gk, andhy are
induced by the inclusions gANB), into (ANB)y, (Ay, By) into (Ay, By), andX, into X,
respectively. Moreover, g, andh, are induced by the inclusions 6fAN B)y,0) into
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((ANB)y, (ANB)y), ((Ay,0),(By,0)) into ((Ay,Au), (By,Buy)), and(Xy, D) into (Xy, Xy),
respectively.

/
Pt 1

- - h .
s Hk+1(xu) - Hk+1(xv) e Hk+1<xv,xu) e
AY IAY, (AT

/
~

e — ﬁk((AﬂB)u) k F'k((AmB)v) k Hk((AmB)W(AmB)U) e

lay Lay L ayy (3.4)
— Fl(A) @ Fi(Bu) % Fi(A) & Fik(By) % Fi(Av, Ay © Fi(Bu,By) — -
1B, 1B, I Buo
7 O B S Vo0 B S NC P R

Lemma 3.2.2.Each horizontal and vertical line in diagraif8.4) is exact. Moreover,
each square in the same diagram is commutative.

Proof. We recall that we are assuming thxats compact an@ continuous, therefork,
andX, are compact, as am,, Ay, By andB, by Lemma 3.2.1. Therefore, since we are
also assuming that the coefficient grd@js a vector space over a field, it holds that the



58

3. The robustness of size functions against partial ocdions

homology sequences of the paid§,, X,), ((ANB)y, (ANB)y), (Av,Au), (By,By) (hori-
zontal lines) are exact (cf. Theorem B.1 in Appendix B).

Analogously, the Mayer-Vietoris sequenced ¥, Ay, By) and(Xy, A, By), and the rel-
ative Mayer-Vietoris sequence 6fXy, Xu), (Av,Ay), (By,By)) (vertical lines) are exact
(cf. Theorems B.2 and B.4 in Appendix B).

About the commutativity of the top squares, it is sufficiemtapply Theorem B.3
in Appendix B. The same conclusion can be drawn for the corativity of the bot-
tom squares, witkX, replaced by(Xy,0), A, by (A,,0) andBy by (By,0), respectively,
applying Theorem B.5. O

The image of the mapk, gk, andhy of diagram (3.4) are related to thkth persistent
Cech homology groups. In particular, whiea- 0, they are related to size functions, as
the following lemma formally states.

Lemma 3.2.3.For (u,v) € AT, let fi, gk, hx be the maps induced by the inclusions of
(ANB)yinto (ANB)y, (Ay,By) into (Ay,By), and X, into X, respectively. Theim fy =
H Y (ANB), im g =Hi" (A) @ H.Y(B), andim hy = HV(X). In particular, rankim fo =
K(Aﬂ&«mms) (u,v), rankimgp = E(A7¢‘A)(u,v) +£(B7¢|B)(u,v) andrankimhg = £(x 4(u,V).

Proof. The proof trivially follows from the definition okth persistenCech homology
group (Definition 3.2) and from Corollary 3.1.5. O

The following proposition proves that the commutativitysgiuares in diagram (3.4)
induces a sequence of Mayer-Vietoris of order 2 involvingktn persistenf:ech ho-
mology groups oK, A, B, andAN B, for every integek > 0.

Proposition 3.2.4. Let us consider the sequence of homomorphisms of persteht
homology groups

o RS (0 A S ANB) & HYY(A) @ HEY(B) B R (X) — - = HYY(X) 0

whereA = Ayjimn,.,» @ = Ovjim f,, anNdB = B\,“m g FOreveryinteger k- 0, the following
statements hold:

(i) imA C kera;
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(i) ima C kerp;
(iii) im B C kerA,
that is, the sequence is of order

Proof. First of all, we observe that, by Lemma 3.2.2,An¢ im fy, ima C imgg and
im B Cim h,. Now we prove only claingi), considering thatii) and(iii) can be deduced
analogously.

() LetceimA. Thenc € im f andc € im A, = keray, in diagram (3.4). Therefore
c € kera. O

3.2.1 The size function of the union of two spaces

In the rest of the section, we focus on the ending part of diagf3.4), that is on
diagram (3.5), and, in the rest of the chapter, the notati@sse always refer to diagram
(3.5).

We are now ready to deduce the relation améggy), Z(A7¢|A) a”df(aqu)-

Theorem 3.2.5.For every(u,v) € A™, it holds that

Cix,g) (V) = Lia g (UV) +L g (U V) = £(anB g pp) (UsV)
+rankkeray, — rankkery.

Proof. By the exactness of the central vertical line of diagram)(arid by the surjec-
tivity of the homomorphisng,, repeatedly using the dimensional relation between the
domain of a homomorphism, its kernel and its image, we obtain

rankHo(X,) = rankimp,
= rankHo(A,) @ Ho(By) — rankkers,
= rankHo(A,) ® Ho(By) — rankimay, (3.6)
= rankHg(A,) + rankHo(By)
—rankHo((ANB)y) + rankkeray,.
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N 0 NS < N S 0 ) B
vy 1y I By

fo

= Ho((ANB)y) % Ho((ANB)) -2 Ho((ANB)y,(ANB)) — 0O

| ay Lay L avy (3.5)

~

-~ Flo(Au) @ Fio(Bu) & Flo(Ay) @ Fio(By) L Fio(Av, Au) @ Fio(By, Bu) — 0
| By | By 1 Buu

Lo o) Fox) B FowX)  — 0
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Similarly, by the exactness of the rightmost vertical lifi¢ghee same diagram and by the
surjectivity of By, it holds that

rankI:IO(XV?XU) = raan(AWAU) + ranH:IO(BW BU) (37)
—rankHo((ANB)y, (ANB)y) + rank kerry,.

Now, subtracting equality (3.7) from equality (3.6), we bav

rankHo(X,) —rankHg(Xy, Xu) = rankHo(A,) — rankHg(Ay, Ay)
+rankHg(By) — rankHo(By, By)
—rankHo((ANB)y) +rankHo((ANB)y, (ANB)y)

+rankkeray — rankkemy,,

which is equivalent, in terms of size functions, to the tielatlaimed, because of Corol-
lary 3.1.5. O

Corollary 3.2.6. For every(u,v) € AT, it holds that
Cix,0) (W V) = a6, (U V) +L(B o) (U, V) = £(anB g ) (U V)
if and only ifrankkeray, = rankkera,.

Proof. Immediate from Theorem 3.2.5. O

We now show that combining the assumption tbratand ay,, are both injective
with Proposition 3.2.4, there is a short exact sequencevimgpthe Oth persisterﬁ‘:ech
homology groups oK, A, B, andANB.

Proposition 3.2.7.For every(u,v) € A", such that the maps, and ay,, are injective,
the sequence of maps

0— HSY(ANB) % HYY(A) o HYY(B) £ HX) — 0, (3.8)

whered = ayjim f, and = Pyjimg,, IS €Xact.
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Proof. By Proposition 3.2.4, we only have to show tlfats surjective,a is injective,
and rankima = rankker.

We recall that;V(ANB) = im fo, HyY(A) @ HyY(B) = im go, andHg™ (X) = im hg
(Lemma 3.2.3).

We begin by showing thgB is surjective, going through diagram (3.5). let
im hg. There existsl € Ho(xu) such thahp(d) = c. Sincef, is surjective, there exists
d’ € Ho(Au) @ Ho(By) such thatgo By(d’) = ¢. By Lemma 3.2.2f, 0 go(d’) = c. Thus,
takingc = go(d’), we immediately havg(c') = c.

As for the injectivity ofa, the claim is immediate because ket kera, and we are
assumingy injective.

Now we have to show that rankion= rankker. In order to do so, we observe that
for every(u,v) € A* it holds that

Ux.py(uv) = rankdg(X)
= rankimf
= rankHy"(A) @ Hy"(B) —rankkerB (3.9)
Cagp) (UV) + (8,9 ) (U V) — rankkerB.

On the other hand, by Corollary 3.2.6, when rankket rankkeray,, it holds that

Cix,0) (V) = Lia g (U V) +L(B g ) (U V) = £an g ) (U V)-

Hence, if rankkeoy = rankkery,, then rankke = E(AQB:(I’\AQB)(U’V)' Moreover, since
Z(AQB@'AQB) (u,v) = ranMg’V(Aﬁ B) =rankkera +rankima, when rankkea, = rankkeray,
we have rankkeB = rankkerx +rankima. Therefore, when rank ke, = rankkeray,, =

0, it follows that rankkep = rankima. 0J

The condition rank keary = rank keray,, = 0 in the previous Proposition 3.2.7 cannot
be weakened, in fact:

Remark 4. The equalityankkera, = rankkera,, does not imply the injectivity af.

Indeed, Figure 3.3 shows an example of a topological sgaeeAU B on which, tak-
ing the height function as measuring function ang € R as displayed, it holds that
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Figure 3.3: The set& andB used in Remark 4.

rankkeray = rankkemy # 0, but rankkeor > 0, making the sequence (3.8) not exact.
To see that rankker, = rankkem, # 0, we note that the equalities (3.6) and (3.7)
imply rankkera, = rankHo(Xy) — rankHo(Ay) — rankHo(By) + rankHo((ANB),) = 2 —
2—2+3 =1 and rankkeayy = rankHo(Xy, Xy) — rankHo(Ay, Ay) — rankHo(By, By) +
rankHo((ANB)y, (ANB)y) =0—0— 041 = 1, respectively. To see that rank ket= 1,

let us consider the homology sequence of the P&irX,)

-+ = Ha(Xy, Xu) — Hi1(Xy) L H1(Xy) it Hy (Xy, Xy) — -+

that is the first horizontal line in diagram (3.5). In thistimce,Hz(XV,Xu) =0, so
it follows that h;y is injective. Moreover, rarHV{l(Xu) = ranld:|1(Xv) =1 implies the
surjectivity of hy. Recalling from Proposition 3.2.4 th&t = AV\im hy We have that
A = A,. Then, since imM\ C kera C keray = imA, and rankimA = rankimA, = 1, it
follows that rankkeo = 1.

As shown in the proof of Proposition 3.2.7, for evely,v) € A™, it holds that
Cix,g)(U,V) = E(A7¢‘A)(u,v) +£(B7¢|B)(u,v) —rankkerB (see equality (3.9)). So, as an im-
mediate consequence, we observe that

Remark 5. £x 4)(u,V) < E(A7¢|A)(u,v) -I—E(B’(,,‘B)(u,v) holds for every{u,v) € A™.

3.2.2 Examples

In this section, we give two examples illustrating the poexs results.
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In both these examples, we consider a “double open-end Wiahaped objecA,
partially occluded by another objeBt resulting in different shape = AUB c RZ.
The size functionﬂ(A7¢‘A), Z(B@‘B), E(MB@‘MB), l(x,¢) are computed taking : X — R,
¢ (P) = —||P—H|, with H a fixed point inR?.

In the first example, shown in Figure 3.4, it is easy to cheek the relation given in
Corollary 3.2.6,((x ¢)(u,v) = K(A7¢|A)(u,v) + E(B,@B)(U,V) - E(Am57¢‘AmB)(u,v), holds for
every(u,v) € AT,

In the second example, shown in Figure 3.5, a deformatiohebtcluding object
B in Figure 3.4 makes the relation given in Corollary 3.2.6 ems#rywhere valid i\ .
More precisely, the condition rank key = rankkeray,, = 1 holds for everyu,v) € A™,
with —a < u < —b and —c < v, whereas the condition rankkay = rankkera, = 0
holds for every(u,v) € AT with u < —a, for every (u,v) € AT with —a<u<v<
—b, and for every(u,v) € AT with —b < u < v < —c. Therefore, in these regions,
Cix,9)(U,V) = K(A7¢|A)(u,v) —|—€(B7¢|B)(u,v) —K(AQB7¢|AQB)(U,V). In the remaining regions
of A™, this relation does not hold. To be more preciég,4)(u,v) < E(A7¢‘A)(u,v) +
Z(B7¢|B)(u,v) - £(Am37¢‘AQB)(u,V) for every(u,v) € AT with —a<u< —band-b<v<
—c, because rankkes, = 0 and rankkeay,, = 1; while, £(x 4)(u,v) > E(A7¢|A)(u,v) +
E(B7¢|B)(u,v) — E(Am57¢‘AmB)(u,v) for every(u,v) € AT with —b < uand—c < v because
rankkeray = 1 and rank kea, = 0. To simplify the visualization of the regionsAf in
which the equality holds, the reader can refer to Figurél3)swherel x 4 is displayed
using white for pointgu,v) € A that verify/(x 4)(u,V) = L) (V) +LB g0 (U, V) —
E(AQB7¢|AQB)(U,V) and red for the other ones.

3.2.3 Conditions for the exactness of
~uVv MR ~MuVv M'AY;
0—Hy (ANB) — Hy (A)@Hy " (B) — Hy ' (X) — 0
In this section we look for sufficient conditions in orderth@ anday, are injective,
so that the sequence

0 — H¥™@ANB) & HYMAaRYE) £ AYX) —o0 (3.10)

is exact (cf. Proposition 3.2.7), and the relatipg ) (U, v) = K(A7¢|A)(u,v) +L(B.9p) (u,v)—
Z(Am&,plms)(u,v) of Corollary 3.2.6 is satisfied.
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Figure 3.4: In(a) a “double open-end wrench” shaped objads occluded by another objeBt In (b),
(c), (d) and(e) we show the size functions @A, ¢\a), (B, ¢g), (ANB, |ang) and(AUB, ¢ ), respectively,
computed taking : X — R, ¢(P) = —[|P—H||. In this example the relatiofjx 4) = Ciag ) TlBop) —
K(Aﬂ&fbms) of Corollary 3.2.6 holds everywhere ix'".
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Figure 3.5: In(a) the same “double open-end wrench” shaped objeas in Figure 3.4 is considered
together with a different occluding objeBt In (c), (d), (e), (f) we display the size functions ¢A, §|a),

(B, ¢g), (ANB, $|anp) and(AUB, ¢), respectively, computed taking: X — R, ¢(P) = —|[P—H][. In
this case the relatiofyy ) = E(A,qu) + E(B7¢|B) — E(AQB’(I,WB) of Corollary 3.2.6 does not hold everywhere
in A*. In (b) we underline the regions &" where the equality is not valid by coloring them.
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The reason for looking for these conditions lies in the faet they can be used as
a guidance in choosing the most appropriate measuringifumit order to study the
shape of a partially occluded object.

Remark 6. If we require the surjectivity in addition to the injectiyiof a, and ayy,
sequence (3.10) is trivial.

Indeed, as stated by the following Proposition 3.2.9, thexbvity of a, anda,, implies
thatl(x ¢)(u,v) = rankHg "' (X) vanishes, and hence all the homology groups involved in
sequence (3.10) are trivial.

Lemma 3.2.8.For every(u,v) € A", ay is surjective if and only ifr, is surjective.

Proof. It is immediate by the surjectivity of the homomorphisfigsand gy and by the
commutativity of the squares in diagram (3.5). O

Proposition 3.2.9. For every(u,v) € A" such that at least one amorg, ay, ayy is
surjective, we havéy 4)(u,v) = 0.

Proof. Let us suppose@y surjective. In diagram (3.5), it follows that, by surjedtyv
of By, I:|0(Xu) is trivial, and by the exactness of the last horizontal saqeeand the
surjectivity ofhg, it holds that ranklo(X,) = rankHo(Xy, Xu) making?x ¢ (u, V) trivial,
Let a, be surjective. In diagram (3.5), it follows that, by surjeity of By, Ho(X,) is
trivial. Moreover, by the previous Lemma 3.2, is surjective if and only if so isty,.
The surjectivity ofay,, and that off,, imply HO(XV,XU) = 0 and hence the claim. O

The first condition ensuring the injectivity af, and ay,, that we exhibit (Theo-
rem 3.2.11), relates the exactness of the sequence (3.1 t@lues taken by the size
function Z(AQB@'AQB). Roughly speaking, it indicates that the fewer the numberoof
nerpoints in the size function &N B, the larger the region ak™ where the sequence
(3.10) is necessarily exact. We underline that this is ordyficient condition, as the
examples in Section 3.2.2 easily show.

The sketch of proof is the following. We begin by showing ttieg surjectivity offg
in diagram (3.5) is a sufficient condition, ensuring tbQt, is injective. Then we note
that, for points(u,v) € A* where the size function ok B has no cornerpoints in the
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upper right regioq (U,V) e AT : u<u <v,V > v}, fgis necessarily surjective. So we
obtain a condition orﬂ(m57¢‘AmB)(u,v) such thatay, is injective. Finally, showing that
if E(Am&(plms)(u,v) <1, thenay is injective, we prove the claim of Theorem 3.2.11.

Lemma 3.2.10.Leta = Qy|im 1, and 3 = B\,“m % If fg is surjective, themm a = ker3
andayy = 0.

Proof. By Proposition 3.2.4ii), ima C ker3, so we need to prove that K&rC im a.
Let c € kerf C kerf, and consider diagram (3.5). Since am= kerp,, there exists
d € Ho((ANB)y) such thatr,(d) = c. By hypothesisfy is surjective, s¢lo((ANB)y) =
im fo. Henced € im fo, implying a(d) = c. Thus,c € im a, and hence inx = kerf3.

Let us now show that, is trivial. By observing again diagram (3.5), we see that
is surjective if and only iffj is trivial. Sincef| is surjective, it holds thaty is surjective
if and only if Ho((ANB)y, (ANB)y) = 0. Therefore, iffy is surjective, themr,, =0. [

Theorem 3.2.11.Let (u,v) € A™. The following statements hold
() 1 Liang g ) (UV) = C(APB, 9y p) (v,V) for every(v,V) € A", thenay,, = 0.
(i) If LAB ¢re) (v,V') < 1for every(v,V) € AT, thenkera, = 0.

Proof. Let us prove(i). If E(MB@‘MB)(U,\/) = L(A"B,gpp) (v,V) for every(v,V) € AT,
applying Proposition 3.1.8 witAN B in place ofX and fy in place ofl(‘)"", it follows that
fo is surjective. Hence, by Lemma 3.2.10, we hayg trivial.

Let us now provéii). From the assumptiofjang ¢, ) (v,V') <1, for every(v,V) €
A", we deduce that eithé AN B)y is empty or(ANB)y is non-empty and connected. If
(ANB)y is empty, therHo((ANB),) is trivial and the claim is proved. Let us consider the
case wherfANB)y is non-empty and connected. l&t= {zo(Uaqg),) } € Ho((ANB)y).

If zo € keray =im Ay, for eachzo(Uang),) € Ho(U(ang),) there is a 1-chaing (Ua,) on
Ay and a 1-chairm (Ug,) on By, such that the homology class@é; (Ua,) = —dc1(Us,)
is equal tazo(Uang),), Up to homomorphisms induced by the inclusion. We now show
that dci(Up,) is @ boundary o{ANB)y. This will prove thatzo(Uaqg),) is trivial,
yielding the injectivity of ay. If c1(Ua,) = S a- < U2 UL >, thendcy(Up,) =
P ,a-Ult—sh a-Ul Fromdc (Ua,) = —dci(Us,), we deduce that, far=1,...,n,
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Uio andU;! have non-empty intersection witi N B),. By Proposition 3.1.2, the con-
nectedness ofAN B), implies that there is a simple chain ¢AN B), connectingJ?
andUil, fori=1,...,n. Thereforedci(Upa,) is a boundary ottAN B)y. O

We conclude by observing that other sufficient conditionstexmplying that both
ay andayy are injective. An example is given by the following result.

Proposition 3.2.12.1f rankH;(X,) = 0 and rankHo(Xy) = £(x ¢)(u,V), thenkeray =
kerayy = 0.

Proof. The condition ranl?ll(x\,) = 0 trivially implies that ke, = 0. On the other
hand, it implies the injectivity of the homomorphigmin the following exact sequence:

. N, - h o~ hn -~ h, «
= Hp () = Ha (X, Xu) = Ho(Xu) = Ho(Xy) = Ho(Xy, Xu) — O,

which is the first horizontal sequence in diagram (3.5). &fae, by the assumption
rankHo(Xu) = £(x ¢)(u,V), it follows that

rankHy (Xy, Xu) = rankimh = rankkethg = rankHo(Xu) — £(x ¢)(u,v) =0,

and, consequently, the triviality of ke, has been proved. O

3.3 Partial matching of cornerpoints in size functions of
occluded shapes

As recalled in Subsection 1.3.4, in [36] it was shown thae dimctions can be
concisely represented by collections of points, callechequoints, with multiplicities.

This representation by cornerpoints has the importantgitgpf being stable against
continuous deformations of the considered objects. Ferrfason, in dealing with the
shape comparison problem, via size functions, one actoattypares the sets of corner-
points using the Hausdorff distance or the matching diggbefinitions 1.6 and 1.7).
The Hausdorff distance and the matching distance diffdramthe former does not take
into account the multiplicities of cornerpoints, while tla¢ter does.

The aim of this section is to show what happens to cornerpamthe presence of
occlusions.
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We prove that each cornerpoint for the size function of amumtsd shap& is a cor-
nerpoint for the size function of the original shafdeor the occluding shapg, or their
intersectionAN B, providing that a certain condition holds (Corollary 3)3.Blowever,
even when this condition is not verified, it holds that therdawates of cornerpoints of
{(x,¢) are always related to those of the cornerpoint§ Q) Or £8 ¢5) OF £(AB.¢|a-s)
(Theorems 3.3.3 and 3.3.4).

We begin by proving a relation between multiplicities ofmisifor the size functions
associated witiX, A andB. Since cornerpoints are points with positive multiplicity
(Definitions 1.4 and 1.5), we obtain conditions for cornénpeof the size functions of
A andB to persist inAUB. This fact suggests that in size theory the partial matching
an occluded shape with the original shape can be translatiethie partial matching of
cornerpoints of the corresponding size functions. Thisifittn will be developed in the
experimental Section 3.4.

In the next proposition we obtain a relation involving theltiplicities of points in
the size functions associated wikh A andB.

Proposition 3.3.1. For every p= (T,V) € A™, it holds that

Hx(P) — Ha(P) — H(P) + Hang(p) = lim (rankkemy—¢ g — rankkemy_c g

+rankkeray, ¢ g — rank ke, ¢ g—¢) -

Proof. Applying Theorem 3.2.5 four times witfu,v) = (U+&,Vv—¢€), (u,v) = (U—
£,v—¢), (uv) = (U+¢,v+¢), (u,v) = (U—¢g,V+€), ande a positive real number so
small thati+ € < v— g, we get
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Z(x@)(U—F EV— S) - Z(x@)(U— EV— E) - g(x7¢)(U—|— EV+ 8) +£(X7¢)<U_ EV+ 3)
— Z(A7¢|A) (0+¢g,v—¢) +£(B7¢|B) (U+ev—g)— Z(Ava¢|AﬁB) (U+€,v—¢)

+rankkeray_g —rankkemy_g g e
- (E(A@\A) (U—&,V—€)+L(g ¢ (U—&V—E) —LAB e (U—EV—E)
+rankkeray_¢ — rank kera\r_gg_g)
_ <€(A7¢‘A) (U+ E,V+ 5) + g(B7¢‘B) (U+ EV+ 8) - g(Avad’\AmB) (U—l— EV+ S)
+rankkeray, ¢ — rank keruﬂgmg)
+£(Av¢\A) (U — 57\_/+ 5) + 5(574’\3) (U — 5,\_/+ 5) - g(AQBv(p\AmB) (U — 8,\_/—|— 5)
+rankkeray, ¢ —rankkemnz, ¢ g

<

—Lin g (U+EVFE) +Ling,(U—EV+E)

[wn|
<

™M

V—¢)

+£(B:¢\B) (U-l- E,V— S) — E(B:‘P\B)(
_E(Bvd’\B) (U-l- EV+ E) +£(Bv¢\B) (U— EV+ S)

d

—L(AnB gipe) (T E V=€) +L(A1B g ) (U—E,V—E)
LB gpp) O+ E,V+E) = Lpnp g ) (U— €,V +E)

+rankkery_g e — rankkemy_g gy e + rankkemy, ¢ e — rankkemy, ¢ .
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Hence, by definition of multiplicity of a point ok (Definition 1.4), we have that

Iim+ (rankkeray_g g — rankkeroy_¢ e
e—0
+rankkeroy ¢ e — rank ke i)

- S|Lr51+ <£(X7¢)(U+ E,V—¢€)—Llix ) (U—EV—E¢)

_E(AﬂB,(I)‘AQB) (U+ 57\_/+ S) + E(AQBvd)\AﬁB) (U — g’\_/_i_ s))
= lim (Hx.)(P) ~ Hingy) (P) ~ Mg o) (P) + i 0 (P))
= Hix,0)(P) = Ha g0 (P) — H(B.¢) (P) + H(arB gy0) (P)-

O

Using the previous Proposition 3.3.1, we find a conditiorueing that proper cor-

nerpoints for the size function of are also proper cornerpoints for the size function of

A orB.

Corollary 3.3.2. Let p= (1,V) be a proper cornerpoint fofx 4) and

lim (rankkery_g ¢ — rankkeroy_g g
e—0+ / )

+rankkemy ¢ e — rank ke i) < 0.
Then p is a proper cornerpoint for eithéfa ) or £(g ¢|5) OF both.

Proof. By Proposition 3.3.1, the assumptionoli('rank keray_g ¢ — rankkermry_g i ¢
E—

+rankkem ¢ e — rankkera\7+g7g_g) < 0impliesux (p) < Ua(p)+ Hs(P) — HanB(P)-
Since p is a cornerpoint fol?(x 4), it holds thatux(p) > 0. Since multiplicities are
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always non-negative, this easily implies that eitpg(p) > O or ug(p) > 0 (or both),
proving the statement. O

Remark 7. If p = (U,V) is a proper cornerpoint fof x 4 andE(AmB)7¢‘AmB(v,\/) <1for
every V>V, then it is a proper cornerpoint for eithéya ¢|,) OF £(B,¢|5) OF both.

This is easily seen by combining Lemma 3.2.10 with ProposBil.8. Indeed, by
the right-continuity of size functions and the fact thatytla@e non-decreasing in the
first variable, for a sufficiently smadl it holds thatkeray_¢ g—¢ = 0, keray_¢ e =0,
kerag,e aie = 0, keravie g—e = 0.

The following two theorems state that the abscissas of theecpoints for x 4 are
abscissas of cornerpoints ff ¢|,) O £(B ¢|5) OF £(AnB,¢|as): the Ordinates of the cor-
nerpoints for/(x 4 are, in general, homological O-critical values @ ¢,4) or (B, ¢ g)
or (ANB, ¢|ans), and, under restrictive conditions, abscissas or ordsrteornerpoints
for £a ¢ O €(B,p1s) OF £(AnB ¢ |ars)s FESPECLIVELY.

These facts can easily be seen in the examples illustratéidimes 3.4—-3.5. In par-
ticular, in Figure 3.5, the size functidiy 4y presents the proper cornerpointa, —b),
which is neither a cornerpoint fdia ¢|,) NOr £(g ¢|5) NOr £(anB,p|a.s)- NEVErtheless, its
abscissa-a is the abscissa of all cornerpoints fQR ¢,), While its ordinate—b is the
abscissa of the cornerpoint at infinity for batl 4,) and?(ang ¢|a-e)-

Theorem 3.3.3.1f p = (U,V) € A™ is a proper cornerpoint fof x 4, then there exists at
least one proper cornerpoint fd ¢|,) OF (B ¢|5) OF £(AB,¢|ag) NAVINGU as abscissa.
Moreover, if(T, ) € A is a cornerpoint at infinity folx 4), then itis a cornerpoint at
infinity for £ a ¢|,) OF £(B,¢|5)-

Proof. As for the first assertion, we prove the contrapositive statd.
Letu € R, and let us suppose that there are no proper cornerpoirtsfpr), £(s ¢s)
and/(ang,¢|.g) NAVINGU as abscissa. Then it follows that, for every T:

SILrQ+<£(AﬂB7¢|AmB)(U+£V) CanB g |ae) (U— €, >) 0,
Jim (€(ag10)(@+2.Y) ~Eiagly(—£Y)) =0
Jim (¢(@.910)(0-+£.Y) (g gje)(0-£.Y)) =0
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Indeed, if there existg > T, such that

M (C(are g a-e) [0+ V) = (a8 g1 (U—:V) ) £0.

e—0t

thentuis a discontinuity point fof a-g ¢|,5) (+, V), implying the presence of at least one
proper cornerpoint having as abscissa [36, Lemma 3]. Analogously fof 4, and
l®.gle)

Moreover, since size functions are natural valued funstand are non-decreasing in
the first variable, for every > U, there existg > 0 small enough such that-€ > U+ €,
and

0 = im (Vagpiuce) B+ V)~ L(aiB glace) (B £:)

- Z(AﬁvaAﬁB) <U + E’ V) o Z(AﬂB,¢|AﬁB) (U - E? V) .

So, forevery) < &, we havel (ang ¢(-5) (U115 V) = £(AnB ¢ |ag) (U— 11, V). Thisis equiv-
alent to saying that ramdo((AN B)y) — rankHo((ANB)y, (AN B)uyn) = rankHo((AN
B)v) —rankHo((ANB)y, (ANB)g_p), thatis, ranklp((ANB)y, (ANB)g.n ) = rankHo( (AN
B)v, (AN B)u—p). Thus, proceeding in a similar way fdya 4|,y and¢(g ¢|s), we ob-
tain rankdo(Ay, Aus ) = rankHo(Ay, Ay_p) and ranklo(By, By, ) = rankHo(By, By_n).
Now, observing that, by the conditions gjthe same results shown above also hold tak-
ingv+n orv—n in place ofv for everyn < ¢, let us consider the following diagram:

> Ov—n.a-n

Ho((ANB)v—n, (ANB)u—p) Ho(Av—n,Aa-n) ®Ho(Bv-n,Ba-n)

I |

~ aV, U ~ ~
Ho((ANB)v—n,(ANB)utn) — Ho(Av—n,Aan) ®Ho(Bv—n, Busn),

where the homomorphismsgandj, are induced by inclusions. Since they are surjective
and their respective domain and codomain have the samewardeduce thaf; and j»
are isomorphisms. So, we obtain that&er, y—n ~ keray_n usn.

Analogously, from the diagram

3 Ov+n.u-n

Ho((ANB)vin, (ANB)u-n) Ho(Av+n,Au-n) ®Ho(Bvin,Bu-n)

- |

~ Qvinu ~ ~
Ho((ANB)v+, (ANB)asn) ———— Ho(Avin, Aain) ®Ho(Byin, Baiy),
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we can deduce that k&{n u—n ~Keray.,n u+n. Thus, since) can be chosen arbitrarily
small, it follows that

lim (kera\,,,w,,7 —keray_nuin) =0,
f]—>
nllm (kerdysno-n —kerayinurn) =0.

Therefore, applying Proposition 3.3.1, we have

x (P) — Ha(P) — Us(P) + HUanB(P) =0

and, in particular, by the hypothesis that= (T,v) is not a proper cornerpoint for
CaB.glag)s O LA gla)s OF £(B,9|g) fOr anyv >, it holds thatux (p) = 0.

In the case of cornerpoints at infinity, we observe tha{lifo) is a cornerpoint
at infinity for £(x 4y, thent = ereing(P), for at least one connected componénof
X [36, Prop. 9]. Furthermore, sincé = AUB, it follows thattu = PrergrqA¢‘A(P) or
U= PrenCiQBdJB(P), from which (by [36, Prop. 9])(T, ») is shown to be a cornerpoint at
infinity for £ ¢(,) OB ¢/s)- O
Theorem 3.3.4.1f p = (U,V) € AT is a proper cornerpoint fof(x ¢), thenv is a homo-
logical O-critical value for(A, ¢|a) or (B,¢g) or (ANB, ¢ja~g). Furthermore, if there
exists at most a finite number of homological O-critical \eddor (A, ¢|4), (B, ¢8), and
(ANB, qb‘AmB), thenv is the abscissa of a cornerpoint (proper or at infinity) oe tbrdi-
nate of a proper cornerpoint fofa ¢(,) OF £(B ¢[s) OF £(A"B,¢|ae)-

Proof. Regarding the first assertion, we prove the contrapositatement.

Letv e R, and let us suppose thatis not a homological O-critical value for the
size pairgA, ¢|a), (B, ¢;g) and(ANB, ¢|a~g)- Then, by Definition 3.3, for every > 0,
there existg with 0 < € < €, such that the vertical homomorphistmandk induced by
inclusions in the following commutative diagram

-« —— Ho((ANB)y_¢) — Ho(Av_¢) @ Ho(By_s) —— Ho(Xy_¢) —— 0
l“ lk v - J
— HO((Aﬁ B)yre) — HO(AV+5) ©® HO(BVJrS) — HO(Xv+s —0

are isomorphisms. Hence, using the Five Lemma, we can detiatalsor, ©'"*

is an isomorphism, implying that is not a homological O-critical value foiX, ¢).
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Consequently, from Proposition 3.1.£6$0+I|61(X7¢)(u,\7— €) — £ix,¢)(U,V+ s)) =0,

for everyu < v. Hence, it follows that, choosing= 10— ¢, Iirg+ <€(X.¢)(U —&V—
E— ’

€) —{ix,9)(0—€,V+ s)) =0, andgﬂgrl (E(X7¢)(U+ €,V—&) —L(x ¢)(U+EV+ s)) =0,
choosingu = U+ €. Therefore, by Definition 1.4, we obtajrx (p) = 0.

Now, let us proceed with the proof of the second statemestyramg thatv is a
homological O-critical value fo(A, ¢ »). Itis analogous fofB, ¢|g) and(ANB, $ans)-
For such @, by Definition 3.3, it holds that, for every sufficiently sralt> 0, 15 &V :
Ho(Av_¢) — Ho(Av1¢) is not an isomorphism. In particular,i§ > is not surjective
for any sufficiently smale > 0, then, by Proposition 3.1(/), there exist¥ > v, such
thatv is a discontinuity point for(?(A7¢|A)(-,v). This condition necessarily implies the
existence of a cornerpoint (proper or at infinity) 1o 4|,), havingv as abscissa [36,
Lemma 3].

On the other hand, itfg’g’v” is surjective for every sufficiently smadl > 0, then,
by Proposition 3.1.7ii), there existau < v such thatv is a discontinuity point for
La¢10)(U,-). This condition necessarily implies the existence of a praprnerpoint
for £(p ¢|,), havingv as ordinate [36, Lemma 3]. O

3.4 Experimental results

In this section we are going to describe the results we hakewaed in some pre-
liminary experiments concerning the analysis of size fimmst behavior under partial
occlusions.

Psychophysical observations indicate that human and nyqgekeeption of partially
occluded shapes changes according to whether, or not, thedowy pattern is visible
to the observer, and whether the occluded shape is a fillecefguan outline [49]. In
particular, discrimination performance is higher for fillshapes than for outlines, and
in both cases it significantly improves when shapes are dediby a visible rather than
invisible object.

In computer vision experiments, researchers usually wotlk ivisible occluding
patterns, both on outlines (see, e.g., [15, 40, 53, 55, 5&])oa filled shapes (see, e.qg.,
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[43]).

In order to analyze the potential of our approach in the rettmm of occluded
shapes, we have considered both visible and invisible emris. To perform our tests
we have worked with filled images from the MPEG-7 dataset.[38]all the experi-
ments, the occluding pattern is a rectangular shape oagjuidom the top, or the left,
by an area we increasingly vary from 10% to 60% of the heighwidth of the bound-
ing box of the original shape. For both the original shapebsthr occluded ones, size
functions are always computed with respect to a family oheigeasuring functions
having only the set of black pixels as domain. They are defasddllows: four of them
as the distance from the line passing through the origin I@tigoint of the bounding
box), rotated by an angle of §, 7 and?’T’T radians, respectively, with respect to the hor-
izontal position; the other four as minus the distance froengdame lines, respectively.
This family of measuring functions is chosen only for dentoats/e purposes, since the
associated size functions are simple in terms of the numbesraerpoints, but, at the
same time, non-trivial in terms of shape information.

3.4.1 Visible occlusions

In the case of visible occlusions, with reference to thetimtaised in our theoretical
setting, we are considerimgas the original shap® as a black rectangle, andas the
occluded shape generated by their union.

The first experiment aims to show how a trace of the size fanatiescribing the
shape of an object is contained in the size function relaigtlé¢ occluded shape when
the occluding pattern is visible. In order to do that, we warth 70 filled images, each
chosen from a different class of the MPEG-7 dataset (see Tab).

In Table 3.2, for different levels of occlusion, each 3D Waart displays, along the z-
axis, the percentage of common cornerpoints between tloésiee functions associated
with the 70 occluded shapes (x-axis), and the set of sizeimgassociated with the
70 original ones (y-axis). Note that, for each occluded sh#e highest bar is always
on the diagonal, that is, where the occluded object is coetpaith the corresponding
original one.

Three particular instances of our dataset images are showahles 3.3-3.5 (first
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Table 3.1: The training set used in our experiment descritbdéble 3.2, involving visible occlusions,
and in all the experiments with invisible occlusions: 70 gres, each one belonging to a different class of
the MPEG-7 dataset.
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Table 3.2: 3D bar charts displaying, in the case of visibldugions, the percentage of common corner-
points (z-axis) between the 70 occluded shapes (x-axishrend0 original ones (y-axis) correspondingly
ordered. First row: Shapes are occluded from top by 20% feoll), by 40% (column 2), by 60% (col-
umn 3). Second row: Shapes are occluded from the left by 20%r(m 1), by 40% (column 2), by 60%
(column 3).
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column) with their size functions with respect to the secgnaup of four measuring
functions (the next-to-last column). The chosen imageshasacterized by different
homological features, which will be changed in the presaiceclusion. For example,
the “camel” in Table 3.3 is a connected shape without holesthe first homological
group may turn out non-trivial because of the occlusion gs®nd row, first column).
On the other hand, Table 3.4 shows a “frog”, which is a coreteshape with several
holes. The different percentages of occlusion can create s@w holes or destroy them
(see rows 3—4). Finally, the “pocket watch”, representethible 3.5, is primarily char-
acterized by several connected components, whose numberades as the occluding
area increases. This results in a reduction of the numbesrakepoints at infinity in its
size functions. In spite of these topological changes,nteasily be seen that, given a
measuring function, even if the size function related toapghand the size function re-
lated to the occluded shape are defined by different corimggpdecause of occlusion,
a common subset of these is present, making a partial mgtplossible between them.
This result raises a question: what does happen when a shapeonly occluded, but
also deformed?

It has to be expected that, in a situation characterized éptésence of both occlu-
sions and deformations, it will not be possible to find a commbset of cornerpoints
between the original shape and the occluded one, since fohendgion has slightly
changed the cornerpoints position.

As an example, in Table 3.6 (row 3, from left to right) a “ded¢ shape is depicted
with four of its eight size functions. By comparison with tsiege functions of the same
shape occluded from the top (row 1), or from the left (row 2thwespect to the same
measuring functions, it is easily seen that they presentnommsubstructures, since
some cornerpoints are preserved after occlusions. In tstecilumn, rows 4-5, two
different instances of “devicel” are illustrated, and cancbnsidered as perturbations
of the shape in row 3; the respective size functions preseilbs structures if compared
with those associated with the shape in row 3.

To test the behavior of size functions when both occlusiors deformations are
introduced, we perform a retrieval test with a training s®tsisting of 75 images: three
instances chosen from 25 different classes. The test s&iner25 occluded images,
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Table 3.3: The first column: (row 1) original “camel” shap®ws 2—4) occluded from top by 20%, 30%,
40%, (row 5-7) occluded from left by 20%, 30%, 40%. From seccomlumn onwards: corresponding
size functions related to measuring functions defined assrdistances from four lines rotated byrf)4,

11/2, 3r1/4, with respect to the horizontal position.
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Table 3.4: The first column: (row 1) original “frog” shapeo\irs 2—4) occluded from top by 20%, 30%,
40%, (row 5-7) occluded from left by 20%, 30%, 40%. From seccolumn onwards: corresponding
size functions related to measuring functions defined assrdistances from four lines rotated byrfy4,
11/2, 3rt/4, with respect to the horizontal position.
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Table 3.5: The first column: (row 1) original “pocket watchiape, (rows 2—4) occluded from top by
20%, 30%, 40%, (row 5-7) occluded from left by 20%, 30%, 40%onk second column onwards:

corresponding size functions related to measuring funstitefined as minus distances from four lines
rotated by 071/4, 11/2, 3rt/4, with respect to the horizontal position.
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may = =131.100086 max = -110.750808 max = 8.273149 maw = =128.728798
nin = -260.899994 min = -226.250000 min = -189.202480 nin = -209.070881
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~

may = =131.100086 max = -110.699997 max = 7.188423 may = =139.123260
nin = -260.899994 nin = -227_300003 min = -164.791229 nin = -208.575836

ﬂ
N

-
nax = -131,168866 nax = -118.750008 nax = 5,904342 nax = ~126,728798
nin = -260.899934 nin = -226.250008 nin = -139.547516 nin = -299. 878881

- i

4

4

o
e
nax = -181,639957 nax = -114,849997 ~hax = 5,884342 nax = -130,856177
nin = -262.799988 nin = -226.830003 nin = -139.547516 nin = -298.964792

-

"
L
~
*,
N
.,
\
N

P
nax = -124,500063 nax = -161.380603 *hax = 5.004342 nax = -81,953674
nin = -261.768012 nin = -226.699997 nin = -139.547516 nin = -361.298187

Table 3.6: Column 1: in rows 3-5, three “devicel” shapes;oins 1-2, the same “devicel” shape
depicted in row 3, occluded from the top and from the leftpessively. Columns 2—4: corresponding
size functions related to measuring functions defined assrdistances from four lines rotated byrf)4,
11/2, 3r1/4, with respect to the horizontal position.
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each taken from a different class. Each of them is taken aseey@nd is matched
with all the images in the training set. Comparison is penked by calculating the sum
of the eight Hausdorff distances between the sets of coon@gpfor the size functions
associated with the corresponding eight measuring funsti®he retrieval is evaluated
using theBull's Eye PerformancéBEP) criterion. The BEP is measured by computing
the correct retrievals among the tol Petrievals, wherd\ is the number of relevant (or
similar) shapes to the query in the database. The effect mfca@asing occlusion by an
horizontal rectangle (vertical, respectively) on theiestl performance is described by
the graph in Table 3.7a) ((b), respectively).

Rate of recognition with horizontal occlusions Rate of recognition with vertical occlusions

100 100

%0 S 90 —— —-\

) \f_/ \ a0 \

. \\ .

t t t t t . B0 f t t f f

] 10 20 30 40 50 60 70 o 10 20 30 40 50 60 70
Percentage of occlusion Percentage of occlusion

(a) (b)

Table 3.7: Two graphs describing the variation of retrigeaformance when the occlusion area increases
from the left(a) and from the togb).

Percentage of recognition

Percentage of recognition

B0

The atypical trend of the above graphs may be explainedhgoki Table 3.8, where
examples of query tests, with an incremental percentageafided area from the left
are illustrated. As it can be observed, when a low percenvéglee “dog” is hidden
by the black rectangle, the occluded dog looks more simiaart elephant than to a
dog. Indeed, there the rectangle is seen as a shape featpreb@scis) rather than
an occluding pattern. In general, this fact improves theltesn correspondence of
higher percentage of occlusion (30—-40%) than when the p&xge of occlusion is low
(10-20%).
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3YYIIXX
TAATXX X
ZAATXYX X
EA4ATXX X
*447XX X
ZA4ATYX B

Table 3.8: Top retrieval results for a “dog” shape partiakkgluded from the left. Results are depicted in
every column in increasing order of distance from the query.

3.4.2 Invisible occlusions

When invisible occluding patterns are considered, witanexice to the notation used
in our theoretical setting, we tak€ as the original shapd as the the occluded shape,
andB as the invisible part oK. In this case, using again the database shown in Table
3.1, a comparison between cornerpoints of size functiomalogous to that of Table
3.2, has been performed and the results are exhibited ire BaBl The percentages of
occlusion, from the top (first row) and from the left (secoond), here vary from 20 to
40 (columns 1-3).

Moreover, we have also performed a recognition test forumtexd shapes by com-
parison of size functions. By varying the amount of occludesh, we compare each
occluded shape with each of the 70 original shapes. Congpeissperformed by cal-
culating the sum of the eight Hausdorff distances betweerséts of cornerpoints for
the size functions associated with the corresponding ergasuring functions. Then
each occluded shape is assigned to the class of its neargsbaeamong the original



3.4 Experimental results 87

Table 3.9: 3D bar charts displaying, in the case of invisd@elusions, the percentage of common cor-
nerpoints (z-axis) between 70 occluded shapes (y-axisjrendO original ones (x-axis) correspondingly
ordered. First row: Shapes are occluded from top by 20% feolli), by 30% (column 2), by 40% (col-

umn 3). Second row: Shapes are occluded from the left by 20%r(m 1), by 30% (column 2), by 40%
(column 3).
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shapes. Comparison through the Hausdorff distance is cmadpunder the following
convention. When the original shape is disconnected bydblkeision, we retain only the
connected component of greatest area (see some instantaslen3.10). This choice
allows us to obtain always a finite Hausdorff distance, buémhines a high loss of
shape information even when the percentage of occlusiams |

b L

Table 3.10: The first row: some instances from the MPEG-7sa#itéhe second and third rows: by 20%
occluded from the top and from the left, respectively.

In Table 3.11, two graphs describe the rate of correct ratiognn the presence
of an increasing percentage of invisible occlusion. Tharlest graph is related to the
occlusion from the top, the rightmost one is related to timeesacclusion from the left.

3.5 Discussion

The main contribution of this part of our research work isdghalysis of the behavior
of size functions in the presence of occlusions.

Specifically we have proved that size functions can asseadialpnatching between
shapes by showing common subsets of cornerpoints. Theraising size functions,
recognizing a shape which is partially occluded by a foragdshape, becomes an easy
task. Indeed, recognition is achieved simply by assogatith the occluded shape
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Rate of recognition with horizontal occlusions Rate of recognition with vertical occlusions

100 & 100
a0 \.\ : 50 \._\
a0 \\ a0 \\
70 \ 70 \

- »

Percentage of recognition

Percentage of recognition

t f f t 60 f f f t
] 10 20 30 40 A0 0 10 20 30 40 a0

Percentage of occlusion Percentage of occlusion

50

Table 3.11: The leftmost (rightmost, respectively) grapbatibes the recognition trend when the occluded
area from the top (left, respectively) increases.

that form whose size function presents the largest commbsetwof cornerpoints (as
in the experiments in Table 3.2-3.9). The experimentallt®stow that this method is
effective both with visible and invisible occlusions.

In practice, however, shapes may undergo other defornsatlae to e.g. perspec-
tive, articulations, noise. As a consequence of theseadilbeis, cornerpoints may move.
Anyway, small continuous changes in shape induce smallatisments in cornerpoints
configuration. However, when deformations are added tausamhs, the Hausdorff dis-
tance between size functions seems not robust enough fagniion or retrieval tasks.
The reason is that it works globally on the whole set of cqramts and therefore it is
not able to detect substructures. As a consequence, antampopen question is how
to automatically detect similar substructures in size fioms when cornerpoints can be
distorted. This question will be addressed in a future meseaombining the results
shown here with the polynomial representation of size fionst[31].
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Conclusions and future work

This thesis illustrates the main results on shape-fronetfans methods obtained
during my Ph. D study.

Summarizing, we have shown an approach to the problem ofdiménsional Per-
sistent Homology Theory, alternative to that given in [12].

Our strategy is based on the idea to reduce the computatianrafltidimensional
persistent homology module to the 1-dimensional settingdstitioning into half-planes
the domain of the associated rank invariant. This procetkads to the definition
of a stable bottleneck distance between multidimensioarak invariants Dg, as the
supremum, over all admissible vector pairs, of the botttkndistances between 1-
dimensional rank invariantslg. Eventually, it has been proved thag has a higher
discriminatory power thadg, verifying that the former constitutes a better lower bound
for the natural pseudo-distance than the latter.

In Section 2.5, we have discussed some questions arisenduonimvestigation in
multidimensional Persistent Homology Theory, while, & pinesent time, our short term
goal is to weaken the conditions imposed on the P&ii$). To be more precise, we are
looking for analogous results that involve triangulablacgs endowed with continuous
multi-valued functions, instead of max-tame size pairs.

Furthermore, we have exposed a theoretical constructieacban Mayer-Vietoris
sequences ofech homology groups to prove the robustness of size furstgainst
occlusions.

The relation among the size functions associated with aluded object, the orig-
inal object and the occluding pattern proved in this thegispectively, endowed with
the same measuring function, can be translated into aoelathong their cornerpoints.
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In particular, we have proved that, in general, under odatygshe coordinates of cor-
nerpoints are maintained; in addition, a subset of cornetpcs preserved if and only if
an algebraic condition holds. Various experiments, inNn@\both visible and invisible
occlusions, confirm our theoretical results.

In this setting, the only remaining crucial point concerms behavior of size func-
tions when both occlusions and deformations alter the gesan of a shape. A strategy
planned to tackle this problem is to represent a size funa®a complex polynomial
whose roots are the cornerpoints counted with multipési{i31]. In this way, a small
perturbation in a shape can be translated into a small i@miaf the roots of the poly-
nomial.

Finally, with regard to further developments in the field dfpe-from-functions
methods, our present research is concentrated on anotiteokshape descriptor: the
Reeb graph.

Reeb graphs are very popular shape descriptors in commahframeworks, espe-
cially in applications such as 3D shape matching, shapengahd comparison. Today,
even if, in experimental results, they have shown themseivde stable under small
perturbations of mapping functions, theoretical results/img this stability with respect
to a suitable distance are not yet available. Our purpose éetine such a metric to
enhance the theory beside these topological graphs.



Appendix

A A brief review on Cech homology

In this description ofech homology theory, we follow [42].

Given a compact Hausdorff spaxelet>(X) denote the family of all finite coverings
of X by open sets. The coveringsiiX) will be denoted by script lettefig, V, ... and
the open sets in a covering by italic capitalsV, ... An elementU of Z(X) may be
considered as a simplicial complex if we defwertexto meanopen set U inll and
agree that a subcollectidy, . . ., Ui of such vertices constituteskesimplex if and only
if the intersectioqéoui is not empty. The resulting complex is known as tieeve of the
coveringU.

Given a coverindl in Z(X), we may define the chain grou@g(U,G), the cycle
groupsz (U, G), the boundary grouBy (U, G), and the homology grougdy(U,G).

The collectior®(X) of finite open coverings of a spa¥emay be partially ordered by
refinement. A coverin refines the coverind(, and we writéll <V, if every element
of V is contained in some element tf It turns out thatx(X) is a direct set under
refinement.

If U < Vin XZ(X), then there is a simplicial mappingy of V into U called apro-
jection This is defined by takinggy(V),V €V, to be any (fixed) elemefut of U such
thatV is contained irJ. There may be many projections dfinto U. Each projection
Ty induces a chain mapping 6k(V, G) into C(U, G), still denoted byrgy, and this in
turn induces homomorphismsgy of Hy(V,G) into H (U, G). If U <V in Z(X), then
it can be proved that any two projectionsfinto U induce the same homomorphism
of Hk(V,G) into H (U, G).
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Now we are ready to define@ech cycle. Ak-dimensionaCech cycleof the space
X is a collectionz, = {z(U)} of k-cyclesz(U), one for each and every cycle group
Z(U,G), U € Z(X), with the property that ill <V, thenrgyz(V) is homologous to
z(U). Each cyclez(U) in the collectionz, is called acoordinate of theCech cycle.
Hence aCech cycle has a coordinate on every covering of the sgadée addition of
Cech cycles is defined by settifig (1)} + {Z.(U)} = {z(U) +Z(U) }. The homology
relation is defined as follows. &ech cyclez, = {z(U)} is homologous to zero (or is
aboundingCech cyclif each coordinatey(U) is homologous to zero on the covering
U, for all W in Z(X). Then twoCech cyclesy andz, are homologouCech cyclesf
their differencez — z, is homologous to zero. This homology relation is an equivege
relation. The corresponding equivalence clagggsare the elements of thih Cech
homology grougH (X, G), where[z(] + [Z] = [z + 7.

Let us now see how continuous mappings between spaces ihdooemorphisms
on Cech homology groups. Ldt: X — Y be a continuous mapping &finto Y, where
bothX andY are compact Hausdorff spaces. Then each open covéring(Y) can be
associated with an open coverifig?(U) € £(X). In particular, we may define a sim-
plicial mappingfy of f~1(U) into U by settingfy (f~1(U)) = U for each non-empty
setf~1(U),U € U. If U <V, then the maps and f, commute with the projection of
f=1(V) into f~1(U) and the projection o¥ into U. Now we can define theomomor-
phism induced by the continuous mappingsf the magf, : Hi(X,G) — Hy(Y,G) by
setting, for everg € H(X, G), f.(z) = { fu(z(f~1(U))}.

It is also possible to define relati@ech cycles in the following way. Kis a closed
subset ofX, we say that aimplex(Uo,...,Uy) of U € £(X) is on Aif and only if the
mtersectlonﬁOU. meetsA. The collection of all simplexes @f onAis a closed subcom-
plex Ua of U. Therefore, we may consider the relative simplicial grodp&U, Ua, G)
over a coefficient grou. Since forV > U in X(X), the projectionrgy of V into U
projectsVa into Ua, each projectiongy is a simplicial mapping of the paiV, V) into
the pair(U, Ua). We may define &-dimensionaCech cycleof the spac relative to A
as a collectiorg, = {z(U)} of k-chainsz(U), U € £(X), with the property that(U)
is ak-cycle onU relative toUa, and ifU < V, thenrgyz(V) is homologous ta(U)
relative tolla. Evidently,Hy (X, 0) = Hy(X) andHy (X, X) = 0, for each integek.
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B Exactness axiom inCech homology and Mayer-Vietoris

sequence

In Cech homology theory all the Eilenberg-Steenrod axioms,hexcept the ex-
actness axiom. However, if some assumptions are made omtisédered spaces and
coefficients, this axiom also holds. Indeed, in [30], Cha@s. Thm. 7.6 (see also [47]),
we read the following result concerning the sequence ofia(paih)

e Fa (G A) 2 (A 15 F () 25 B (X, A) — -+ Ho(X, A)— 0

which, in general, is only of order 2 (this means that the cositpn of any two succes-
sive homomorphisms of the sequence is zero, i.eCiker).

Theorem B.1. [30, Chap. IX, Thm. 7.6]f (X,A) is compact and G is a vector space
over a field, then the homology sequence of the P&A) is exact.

It follows that, if (X, A) is compact an@ is a vector space over a fieldech homol-
ogy satisfies all the axioms of homology theories, and tloeeedll the general theorems
in Chap. | of [30] also hold foCech homology. In particular, using [30, Chap. I, Thm.
15.3], we have the exactness of the Mayer-Vietoris sequiercech homology:

Theorem B.2. Let (X,A,B) be a compact proper triad and G be a vector space over a
field. The Mayer-Vietoris sequence(f, A, B) with X = AUB

o = Fiy1(X) 2 Fi(ANB) & Fi(A) & Fi(B) £ Fik(X) — - — Flo(X)— 0
is exact.

Concerning homomorphisms between Mayer-Vietoris seqgericom [30, Chap. |,
Thm. 15.4], we deduce the following result.

Theorem B.3. If (X,A,B) and (Y,C,D) are proper triads, X= AUB, Y =CuUD, and
f: (X,A,B) — (Y,C,D) is a map of one proper triad into another, then f induces a
homomorphism of the Mayer-Vietoris sequencé€XafA, B) into that of (Y,C,D) such



3. The robustness of size functions against partial ocdions

that commutativity holds in the diagram

~ ~

-+ = Hiz1(X) = He(ANB) — Hi(A) @ Hi(B) — Hi(X) — -+

~

-+ = Hir1(Y) = H(CND) — Hy(C) @ Hi (D) — Hi(Y) — -+

A relative form of the Mayer-Vietoris sequence, differertrh the one proposed in
[30], is useful in Chapter 3. In order to obtain this sequemeecan adapt the construc-
tion explained in [41] taCech homology and obtain the following result.

Theorem B.4. If (X,A,B) and (Y,C,D) are compact proper triads with % AUB,
Y=CuUD, YCX,CCA, DC B, then there is a relative Mayer-Vietoris sequence of
homology groups with coefficients in a vector space G oveld fie

s |:|k+l<x7Y) - |:||(('A‘m B7Cﬁ D) - HK(A7C) D |:|k(B7 D) - F'k(X,Y) o
- = Ho(X,Y) =0

that is exact.

Proof. Given a coverindl of Z(X), we may consider the relative simplicial homology
groupsHg (U, Uy), Hk(Ua,Uc), Hk(Us,Up), Hk(Uans, UcrD), for everyk > 0. For
these groups the relative Mayer-Vietoris sequence

-+ = Hip 1 (U, Uy) — Hi(Uang, Ucnp) — Hi(Ua, Uc) @ Hi(Up, Up) — Hi (U, Uy) — -

is exact (cf. [41, page 152]).

We now recall that theth Cech homology group of a pair of spadesY) overGis
the inverse limit of the system of groupbl, (U, Uy, G), 15y } defined on the direct set of
all open coverings of the paiiX,Y) (cf. [30, Chap. IX, Thm. 3.2 and Def. 3.3]). Since,
given an inverse system of exact lower sequences, whereealetms of the sequence
belong to the category of vector spaces over a field, the eguence is also exact (cf.
[30, Chap. VII, Thm. 5.7] and [47]), the claim is proved. O
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The following result, concerning homomorphisms of relatMayer-Vietoris exact
sequences, holds. We omit the proof, which can be obtainadiandard way.

Theorem B.5. If (X,A,B), (Y,C,D), (X',A',B'), (Y/,C',D’) are compact proper triads
with X=AUB,Y=CUD,YCX,CCA,DCB,andX=A'UB,Y' =C'uD’,Y CX/,

C' CA,D CPB,and f: X — X"is amap such that(fr) CY’, f(A) CA, f(B)C B,
f(C) CC/, f(D) C D/, then f induces a homomorphism of the relative Mayer-\igtor
sequences such that commutativity holds in the diagram

T Hk+1(X,Y) - Hk(AﬁB,CﬂD) - Hvk(A7C)@|:|k(B7D) - HK(X7Y) e

oo = Hi 1 (XL Y) = H (A NB,C'ND’) — H (A, C') @ Hi (B, D) — Hi (X', Y') — -
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