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Introduction

PhD Work Plan

The Phd thesis entitled Multiwavelength study of GRB emissions and TORTORA

Project concerns my collaboration in TORTORA Project starded during my

diploma thesys in 2003. T.O.R.T.O.RA (stands for Telescopio Ottimizzato per

la Ricerca dei Transienti Ottici RApidi) was designed to study optical properties

of cosmic γ-ray burst with a photometric time-resolution comparable with the

strong variability that characterizes the flux-emission at higher energies of these

objects. The complete randomness of the angular distribution of γ-ray bursts on

the sky forced to build an astronomical instrument with a wide Field of View in

order to capture the unpredictable transients. For this reason several monitoring

system with a considerably large FOV have been built over the years. However, the

optical monitoring systems which operated in the past and those still working, like

ROTSE, RAPTOR, Pi of the Sky are not able to resolve the temporal structure

of prompt optical emission down to timescale shorter than 5–10 seconds. To solve

this problem, the design of wide-field optical camera with high time resolution was

developed. TORTORA is the second version of a prototype named FAVOR placed

at North Caucasus near Russian 6-m telescope. Nowadays, the wide-field optical

camera is mounted on top of REM robotic telescope at La-Silla (Chile) and has

been operating since May 2006.

The TORTORA project was supported by University of Bologna, (Progetti

Pluriennali 2003) by the Presidium of the Russian Academy of Sciences Program

and by the essential collaboration of Brera-Merata Observatory.

I discuss the main phases of implementation of TORTORA camera on the top

of REM telescope and the principal scientific outputs obtained during the opti-
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Introduction

cal serendipity sky survey. Detailed analysis are been performed for the Prompt

Optical Emission occurred simultaneously with naked-eye GRB 080319B that rep-

resents the most significant result achieved by this research program.

The high temporal resolution reached by TORTORA optical monitoring-system

(0.13 sec exposure time without gap between two consecutive frames) sheds new

light on the on the physical mechanisms involved during the stellar black hole

formation. For the first time, joining the high TORTORA temporal resolu-

tion analysis to the high-energy measurements obtained from satellite programs

(SWIFT/BAT and KONUS/WIND), we are able to analyze the different physical

components responsible for the prompt-emission using a comparable sampling-time

from higher to lower energy.

In detail, the PhD Work Plan is divided in 6 chapter.

• As usual, the first chapter presents a brief introduction to the γ–ray burst

(GRB) phenomenon. The argument is summarized by providing a short

background on important events that have gradually improved and made to

evolve the scientific knowledge about these objects.

• In the second chapter an broad overview of the identified GRB correlation

in the literature over the past twenty years is given.

• The possibility to image on time scales of seconds the behavior of transient

events that seem to populate the universe at any epochs, has suggested to

try to seek additional informations using the rescalated range analysis meth-

ods. In particular the use of the Hurst exponent will be extensively covered

in Chapter 3 for an homogeneous sample of the γ-light curve detected by

BAT/SWIFT.

• Our statistical analysis and the new discovered correlations are shown in

chapter 4.

• In the chapter 5 a technical description of the TORTORA and REM complex

and their scientific output are presented.

• The sixth chapter presents the complete high resolution photometry of the

prompt optical emission occurred in GRB 080319B captured with TOR-

TORA wide-field optical camera mounted on REM robotic 60–cm telescope
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Introduction

located at La Silla (Chile). The analysis of the time variability are discussed

in great detail using different statistical approches.

Finally, in the last chapter the general conclusion to our phd work are discussed.

I briefly summarize the main results obtained in this work and the guidelines

of the phd thesis.

It is shown that the observational properties of the prompt γ–ray emission do

not seem to follow any cosmological evolution trend and they are the manifestation

of same physical phenomenon that is self–affinity at every scale and at any epoch

of the universe, while the optical data gathered here show a cosmological evolution

trend on various intrinsic GRB features. That means that the intrinsic optical

afterglow luminosity follows the cosmological evolution of a circumburst environ-

ment which determines the optical afterglow luminosity rate. Strong correlation is

found between the peak occurred during the afterglow emission, and their redshift.

Furthermore, there are correlations between the luminosity, the total energy and

the duration of the γ-ray and optical emission separately, which can arise from

universal features of the observed lightcurves. Furthermore the field of the Naked-

Eye Burst GRB080319B was imaged by TORTORA before, during and after its

γ-ray activity with sub-second temporal resolution and discovered its fast optical

variability. The similarity of the overall structure of the optical and γ-ray light

curves, namely the presence of two stages of emission with different average levels,

a nearly simultaneous rise and fall of the emission, suggests that they reflect the

same prolonged activity of the inner engine. Moreover the presence of four nearly

equidistant peaks in the optical light curve may suggest the periodicity of the inner

engine activity. Finally the observational parameters derived for the prompt opti-

cal emission (∼ 1 delay between the γ–ray and optical peaks in the rest frame of

the source) appear to satisfy the predictions of Li & Waxman, (2008). According

to this theory the optical emission could be produced by ”residual” collisions at

large radii. We rule out the possible interpretation of the optical flash resulted

from external shock emission (Zou et al., 2009) as well as that the optical emission

may arise from internal forward-reverse shocks (Yu, Wang & Dai 2008).
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Chapter 1

Gamma-Ray Burst: An Overview

For theorists who may wish to enter

this broad and growing field, I should

point out that there are a considerable

number of combinations, for example,

comets of antimatter falling onto

white holes, not yet claimed.

M. Ruderman, 1975.

Gamma Ray Bursts (GRBs) are the most instantaneously powerful explosions

in the Universe and are identified as brief, intense and completely unpredictable

flashes of high energy γ-rays on the sky, likely associated with the births of stellar-

size black holes or rapidly spinning, highly magnetized neutron stars.

In this chapter we present a short general introduction into the field of γ-ray

bursts research, summarizing the past and the present status. We give an ensemble

view of the GRBs observations to date, both in the prompt emission phase as well

as in the afterglow evolution.
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Gamma-Ray Burst: An Overview

1.1 Historical background

GRBs made their first appearance in history during the years of Cold War in the

’60s, when the US Defence Department launched a series of spy satellites designed

to verify the conditions of the Nuclear Test Ban Treaty, whose signatories, including

the United States, Britain, and the Soviet Union, agreed not to test nuclear devices

in the atmosphere or in space. Called Vela, from the Spanish verb velar (to watch),

the satellites did record short bursts of γ-ray in keV-Mev energy range, lasting from

0.1 up to 30 seconds. Historically the first γ-ray burst was detected on July 2, in

1969.

This became publish information only several years later, in 1973, when Klebe-

sadel, Strong and Olson (Klebesadel et al., 1973) published a report paper.

The results from Vela satellites were quickly confirmed by data from the Soviet

Konus satellites. The theoreticians became very interested in the new natural

phenomenon and just within a couple of decades more than one hundred GRBs

models had been proposed (Nemiroff, 1994). The phenomenon of γ-ray bursts is

without precedence in the modern astronomy, having no observed property that

would be a direct indicator of their distance and no counterpart object in another

wavelength region. Their brief, random appearance only in the γ-ray region has

made their study difficult. Most of theoretical models invoke supernovae, neutron

stars, flare stars, antimatter effects, white hole and so on. Basically, taking into

account the distance scales only, the models can be divided in three main groups:

those in which the candidate objects are situated in the Galactic Disc (∼ few

hundred parsec), in the halo (∼ tens of kilo–parsec) or at cosmological distances

(∼ giga–parsec parsec). Until the 1990s, the large consensus within the scientific

community was that GRBs are local events related to the galactic old neutron

stars population.

A new era in GRB research opened in 1991 with the launch of Compton

Gamma-ray Observatory (CGRO) carrying on board the Burst and Transient

Source Experiment (BATSE). The most significant results came from the all-sky

survey in which recorded over 2700 bursts: it showed that GRB were essentially

isotropically distributed in the sky, with no significant dipole or quadrupole mo-

ments (fig.1), suggesting a cosmological distribution (Brings et al., 1996).

The GRB field was revolutionized on February 28, 1997, when the Italian-

Dutch satellite BeppoSAX discovered the first afterglow; a X -ray counterpart to

6
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GRB970228 (Costa et al., 1997). In the meantime, GRB970228 had also become

the first GRB for which an optical and radio counterparts was found (van Paradijs

et al. 1997; Frail et al., 1997). Subsequent deep images (Sahu et al., 1997) con-

firmed that the burst was hosted by a distant galaxy at a redshift of 0.695.

A huge step forward was made still in 1997, when spectroscopic observations of

the afterglow of GRB970508 provided the first redshift determination (Metzger et

el., 1997). Accepting that GRBs are extragalactic distant sources, the equivalent

isotropic energy implied is huge: 1051 – 1054 erg (Bloom et al., 2001) Nowadays

the fast and accuracy localization of GRBs by Swift mission and its capability

to alert fast-slewing robotic telescope within few seconds after burst has provided

detailed multi- wavelength measurements of numerous GRBs and their afterglows.

The transition phases between the prompt emission and the early afterglow can

be studied with great frequency thanks to the capability of Swift satellite to re-

pointing very quickly the X-ray and the UltraViolet/Optical space-telescopes (XRT

and UVOT, respectively) at the location of the new burst. Moreover the new gen-

eration of the optical monitoring system (they are discussed in detail in chap.3) are

able to capture multi-wavelength information before and after the random explo-

sion. In spite of all the growing technological capabilities, much work still needs to

be done to get data close the gamma satellite trigger with a high multi-frequency

temporal resolution comparable to the fast-random variability that characterizes

the prompt emission phases of the GRB phenomenon. To date diagnostics within

seconds of GRB formation is only provided in the remarkable case of naked-eye

GRB 080319B. At late times the fireball is already decelerated and has entered a

self-similar regime, in which precious information about the early ultra-relativistic

phase is lost (Zhang et al., 2003). More generally the most timely observations bet-

ter characterize the behavior of the central–engine which produces the GRB-event

(see chap 4).

1.2 Observational Properties: Prompt Emission

In this sections, some of the main temporal and spectral properties of the GRB

emission are described. The GRB detection rate for the BATSE-CGRO detector

was about one per day during its operation period 1991-2000. Assuming no source

evolution, this would correspond to roughly speaking one event per million years

7



Gamma-Ray Burst: An Overview

Figure 1.1: The bimodality (Kouveliotou et al. 1993) in hardness ratio and T90 is
suggestive of two classes of GRBs.

per galaxy (Cohen & Piran, 1995). If the GRBs are beamed, the rate increases

by a factor depending on the opening angle and could become even five orders of

magnitude greater for highly collimated jets (Rhoads, 1997).

1.2.1 Bimodality distribution

The duration of GRBs ranges from about 5 ms to almost 1000 s. The duration is

defined as the time T90 (T50) needed to accumulate from 5 % to 95% (from 25%

to 75%) of the counts in the 50-300 keV band. The distribution of burst duration

is bimodal (Kouveliotou et al., 1993). Those typically lasting two seconds or less

and having hard prompt emission spectra (short/hard GRBs) and those lasting

typically longer than two seconds and having softer prompt spectra often showing

strong hard-to-soft spectral evolution (long/soft GRBs) (Kouveliotou et al., 1993).

The hardness ratio(HR) is defined as the ratio of total counts in two energy

bands. In particular for BATSE these are the 100–300 keV and 25– 100 keV bands.

This γ–ray hardness is plotted versus observed burst duration for a number of

BATSE bursts in Figure 1.1.

8
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Figure 1.2: A sample of BATSE GRB light curves (from
http://www.batse.msfc.nasa.gov/batse/).

1.2.2 Morphology

The time profiles of GRBs exhibit pulse-like shapes of a great diversity (fig. 1.2).

Fishman & Meegan (1995) made an attempt to roughly classify them in four

classes: a) single pulse or spike events; b) smooth, either single or multiple, well-

defined peaks; c) distinct, well-separated episodes of emission; d) very erratic,

chaotic and spiky bursts. The variability of the γ-ray emission can reach a scale

as low as ms (Walker et al., 2000) suggesting a compact central engine.

1.2.3 Spectrum

One of the key feature of a GRB is its non-thermal spectrum.

The energy flux peaks at a few hundred keV and in many bursts there is a

long high energy tail extending in cases up to GeV. The spectrum varies strongly

from one burst to another. An excellent phenomenological fit for the spectrum

was introduced by Band et al., (1993) using two power laws joined smoothly at a

9
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break energy (α̃− β̃)E0:

N(ν) = N0

 (hν)α̃ exp(− hν
E0

) for hν < (α̃− β̃)E0 ;

[(α̃− β̃)E0](α̃−β̃)(hν)β̃ exp(β̃ − α̃), for hν > (α̃− β̃)E0,
. (1.1)

There is no particular theoretical model that predicts this spectral shape. Still,

this function provides an excellent fit to most of the observed spectra. For most

observed values of α̃ and β̃, νFν ∝ ν2N(ν) peaks at Ep = (α̃ + 2)E0. For about

10% of the bursts the upper slope is larger than −2 and there is no peak for νFν

within the observed spectrum. Another group of bursts, NHE bursts, (no high

energy) Pendleton et al., 1997 does not have a hard component (which is reflected

by a very negative value of β̃). The typical energy of the observed radiation is Ep.

The break frequency and the peak flux frequencies are lower on average for bursts

with lower observed flux.

Before the BATSE era various satellites reported observations of absorption and

emission lines in few GRBs (Fenimore et al., 1988). In spite of this, more recent

data from BATSE detector failed to support previous findings. In other words,

there is no clear observational evidence for the existence of spectral features (Band

et al., 1997).

1.3 Observational Properties: Afterglows

A rich trove of information on the burst and afterglow physics has come from

detailed XRT light curves, starting on average 80-100 s after the trigger. In 98% of

cases the X–ray counterpart is detectable in X-Ray Telescope re-pointing. In the

same way UVOT satellite telescope has been regularly collecting optical photons

∼ 100s after the BAT triggers for a large amount of GRBs. Ground-based robotic

telescopes have promptly observed a substantial amount of target. However, the

majority of bursts have very dim or undetectable optical afterglows (Roming et al.

2009).

1.3.1 Canonical X-ray afterglow behavior

One of the major discoveries of Swift is the identification of a canonical X-ray

afterglow behavior (Nousek et al. 2006; Zhang et al. 2006c see Fig. 1.3). Besides

the prompt emission phase (denoted by 0), there are a total of five components in

10
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Figure 1.3: A cartoon picture (from Zhang et al. 2006a). Segment I is generally
attributed to high latitude emission. Segment II is due to continuous energy injection by
the central engine. Segment III is the normal spherical decay of the afterglow. Segment
IV is the post-jet break decay. Segment V is due to flares which can occur during any
phase.

the X-ray light curves. Not every burst has all five components, so that their light

curves may vary from one another. In any case, their afterglow light curve com-

ponents could be generally fit into this generic picture. The five main components

are outlined below:

I. Steep decay phase: Typically smoothly connected to the prompt emission

with a temporal decay slope ∼ −3 or steeper (sometimes up to ∼ −10.

II. Shallow decay phase: Typically with a temporal decay slope ∼ −0.5 or flatter

extending to ∼ (103 − 104)s, at which a temporal break is observed before

the normal decay phase.

III. Normal decay phase: Usually with a decay slope ∼ −1.2, and usually follows

the predictions of the standard afterglow model

IV. Post Jet break phase: Occasionally observed following the normal decay

phase, typically with a decay slope ∼ −2,

V. X-ray flares: Appear in nearly half of GRB afterglows. In rare cases (e.g.

GRB 050502B) the flare fluence could be comparable with that of the prompt

emission.

11
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Figure 1.4: four classes for the early optical emission (from Panaitescu & Vestrand
2008).

While elements of this canonical picture is seen in most X-ray afterglows, few

afterglows contain all 5 components. Moreover canonical jet breaks are rarely

observed in the XRT light curves (Racusin et al.,2007).

1.3.2 NIR/Optical Afterglows

Panaitescu & Vestrand (2008), studying the temporal behaviour of the early optical

emission from γ–Ray Burst afterglows, show that is reliable to divided them in four

classes: fast-rising with an early peak, slow-rising with a late peak, flat plateaus,

and rapid decays since first measurement (fig.1.4).

The overall evolution of the afterglow optical light curves can generally be

described well by one or more power-law decays:

F (t) ∼ t−α (1.2)

R-band magnitude at one day is roughly between 17 and 24 which, together

with their rapid decline in flux, explains why it is so important a rapid response

by the ground based telescopes to search and follow up the afterglow as soon as

possible after the trigger.

Although the afterglow light curves can basically be well described with a

power-law, a number of mechanisms may alter the decay index in the form of

breaks and subsequent steepening in the light curve. Some burst afterglows have

even been observed to exhibit extended plateau periods of constant brightness

12
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and/or even periods of significant rebrightening. In addition light curves have,

for some bursts, revealed the presence of late-time bumps of varying magnitude,

interpreted as due to a supernova component superposed on the afterglow light

curve, that rises when the afterglow emission drops down following power-law

decay.

1.3.3 Radio Afterglow

Due to a higher mean redshift of Swift bursts than that of pre-Swift bursts, the

efficiency to detect radio afterglows is lower in the Swift era. According to GCN

Circular statistics ∼ 25 radio afterglows were detected among about 300 GRBs

detected by Swift in the first 3 years. Short-lived radio transients have been seen

in some of these bursts. The first radio afterglow was detected in the case of GRB

970508 (Frail et al., 1997); the fluctuations shown by this radio afterglow for about

one month have been interpreted as interstellar scintillation effects, connected with

the small angular dimension of the source. Since the distance to this burst was

known by the optical afterglow observation, it has been possible to estimate the

size required to ease this effect, and hence the expansion velocity of the fireball,

that came out to be relativistic (fig 1.5).

Figure 1.5: Radio variations of the afterglow of GRB970508. From Frail et al., 1997.

13
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1.4 The physics of the GRBs and their after-

glows

There are several generally accepted ingredients in all current GRB models. A

quick overview of the basic physical concepts of GRB is presented

1.4.1 Compactness and relativistic motion

As reported in the previous section, GRBs show a non-thermal spectrum with a

significant high energy tail. A naive calculation implies that the source is optically

thick. The fluctuations over a time scale δt imply that the source is smaller than

cδt. Given an observed flux F , a duration T , and an distance d we can estimate the

intrinsic energy E. For a typical photon’s energy Ēγ this yields a photon density

≈ 4πd2F/Ēγc
3δt2. two γ rays can annihilate and produce e+e− pairs, if the energy

in their center of mass is larger than 2mec
2. The optical depth for pair creation is:

τγγ ≈
fe±σT4πd2F

Ēγc2δt
(1.3)

where, fe± is a numerical factor denoting the average probability that photon will

collide with another photon whose energy is sufficient for pair creation. For typical

values and cosmological distances, the resulting optical depth is extremely large

τe± ∼ 1015. This is inconsistent with the observed non-thermal spectrum.

The compactness problem can be resolved if the emitting matter is moving

relativistically towards the observer. I denote the Lorentz factor of the motion by

Γ. Two corrections appear in this case. First, the observed photons are blue shifted

and therefore, their energy at the source frame is lower by a factor Γ. Second, the

implied size of a source moving towards us with a Lorentz factor Γ is cδtΓ2.

The first effect modifies fe± by a factor Γ−2α where α is the photon’s index

of the observed γ (namely the number of observed photons per unit energy is

proportional to E−α.). The second effect modifies the density estimate by a factor

Γ−4 and it influences the optical depth as Γ−2. Together one finds that for α ∼ 2

one needs Γ ≥ 100 to obtain an optically thin source.

The requirement that the source would be optically thin can be used to obtain

direct limits from specific bursts on the minimal Lorentz factor within those bursts.

A complete calculation requires a detailed integration over angular integrals and

14



Gamma-Ray Burst: An Overview

over the energy dependent pair production cross section. The minimal Lorentz

factor depends also on the maximal photon energy, Emax, the upper energy cutoff

of the spectrum. Lithwick & Sari (2001) provide a detailed comparison of the

different calculations and point out various flaws in some of the previous estimates.

Practically all current GRB models involve a relativistic motion with a Lorentz

factor, Γ > 100. This is essential to overcome the compactness problem. At first

this understanding was based only on theoretical arguments. However, now there

are direct observational proofs of this concept. It is now generally accepted that

both the radio scintillation and the lower frequency self-absorption provide inde-

pendent estimates of the size of the afterglow, ∼ 1017cm, two weeks after the burst.

These observations imply that the afterglow has indeed expanded relativistically.

While all models are based on ultra-relativistic motion, none explains convincingly

(this is clearly a subjective statement) how this relativistic motion is attained.

There is no agreement even on the nature of the relativistic flow. While in some

models the energy is carried out in the form of kinetic energy of baryonic outflow

in others it is a Poynting dominated flow or both.

1.4.2 Jets in GRBs

The jets are present in many astrophysical phenomena, such as young stellar ob-

jects, microquasars, blazars, active galactic nuclei. In this context, the speculation

that jets may appear in GRBs also was quite natural (Rhoads, 1997). The notion

jet has two different meanings: geometrical and relativistic (Piran, 2006). In the

first case we are dealing with a relativistic flow of matter intrinsically collimated

into an angle θ. In the other case, a reference to a relativistic effect is made: the

radiation from a source that radiates (isotropically in the comoving frame) and

moves with a Lorentz factor Γ toward the observer, is beamed into an angle Γ−1

around the direction of motion. The angular size of a causally connected region

is Γ−1, therefore as long as Γ−1 < θ the equations describing the dynamics of a

spherical ejecta still holds locally. But, once Γ−1 > θ , a change is expected in the

dynamics; a sideways expansion, with the Lorentz factor decreasing exponentially

with radius, it is assumed to take place in the comoving frame.

As a consequence, an achromatic break will appear in the light curve. There

are several well observed afterglows with known redshifts for which a break was

observed in the light curve and allowed the calculation of the jet opening angle.
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When Γ−1 < θ there is a balance between the dimming of the surface brightness

of the jet and an increasing in the observed emitting area; as soon as Γ−1 = θ and

later on when Γ−1 > θ, the emitting area, limited by the size of the cone, stays

constant.

Writing the observed specific flux in a general form Fν ∝ tανβ , the isotropic

energy in the comoving frame is

Eiso = 4πD2
LF (1 + z)(α−β−1) (1.4)

where F is the observed fluence. The resulting energies for GRBs are huge,

ranging from 1051 up to 1054 erg. But if the energy is emitted in some solid angle

(a jet), the situation is different.

In the isotropic:

Eiso = 4π
dE

dΩ′
(1.5)

Assuming a conical collimated flow, with the half-opening angle θj, it is ob-

tained:

Ejet = Ω
dE

dΩ′
(1.6)

The relation between isotropic energy and collimated emission is:

Ejet = Eiso
Ω

4π
(1.7)

In spherical coordinates dΩ = sinθdθdϕ

Ω = 2
∫ θj

0

∫ 2π

0
(1.8)

The factor 2 take in account the two jet oriented in opposite directions. The

result is:

Ω = 2π(1− cosθj) (1.9)

writing the cosine function in series of Taylor, it is obtained

Ω ≈ 2πθ2
j (1.10)
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Ejet ≈ Eiso
θ2
j

2
(1.11)

An important parameter in the study of GRBs is the event rate. Recent esti-

mations give a value between one and 10 bursts per galaxy at every million years.

But, if the emission is collimated, then the true event rate is higher by a factor

4π/Ω (Rhoads, 1997).

Most GRBs jet models consider an outflow that is uniform within some finite,

well defined opening angle around its symmetry axis, and where the Lorentz factor

and energy density drop sharply beyond this opening angle (Rhoads, 1997). Such

a uniform jet is referred to as ”uniform jet”. The possibility that GRBs jets can

display an angular structure, where the kinetic energy per unit solid angle and

the Lorentz factor vary as a power-law with respect to the jet axis, was proposed

by several authors (§6). This kind of outflow is referred to as ”structured jet”

or ”anisotropic jets”. The structured jet model has been invoked to explain the

extraordinary luminosity of the GRB 0080319B.

1.5 Progenitor models

The long/soft GRBs have been related spectroscopically (e.i. Galama et al. 1998;

Hjorth et al. 2003) to the deaths of massive stars, the so-called collapsar model

(Woosley 1993). Historically it was with the GRB occurred on April 25, 1998

that the first observational evidence of the connection between supernovae (SNe)

and GRBs came out. Galama et al. (1998) indeed reported the discovery of an

optical transient, in the BeppoSAX WFC error box of GRB 980425, which occurred

within about a day of the γ-ray burst. It was the GRB030329 that provided

the first spectroscopic evidence that a very energetic supernova (hypernova) was

temporally and spatially coincident with a GRB (Fig. 1.6, Left panel). The

timing of the supernova indicated that it exploded within a few days of the GRB

(Hjorth et al. 2003). Stanek et al. (2003) reported on the early observations

of the afterglow of GRB030329 and the spectroscopic discovery of its associated

supernova SN 2003dh. They obtained spectra (wavelength range of 350-850 nm) of

the afterglow each night from March 30.12 (0.6 days after the burst) to April 8.13

(UT) (9.6 days after the burst). The spectra taken after 2003 April 5 show broad

peaks in flux characteristic of a supernova. Correcting for the afterglow emission,
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Figure 1.6: (Left panel) spectral evolution of the combined optical flux density of the
afterglow of GRB030329, the associated SN 2003dh, and its host galaxy (Stanek et al.
2003). The lower spectra, dominated by SN 2003dh, reveal the supernova signatures.
The dashed line represents (for comparison) the spectrum of SN 1998bw after 33 days
shifted to the GRB030329 redshift. (Right panel) comparison of the spectral evolution
of SN 2003dh and SN 1998bw (Hjorth et al. 2003). The striking similarity between the
spectra of these supernovae is clearly seen.

they found that the spectrum of the supernova was remarkably similar to the type

Ic hypernova SN 1998bw (Fig. 1.6 Right panel). This strongly suggested that core

collapse events can give rise to GRBs, thereby favouring the collapsar model.

Recent observations show that some long duration GRBs are different. No SN

emission accompanied the long duration GRBs 060505 and 060614 (Della Valle

et al., 2006) down to limits fainter than any known Type Ic SN and hundreds

of times fainter than the archetypal SN1998bw that accompanied GRB980425.

Multi-band observations of the early afterglows, as well as spectroscopy of the

host galaxies, exclude the possibility of significant dust obscuration. Furthermore,

the bursts originated in star-forming galaxies, and in the case of GRB 060505 the

burst was localized to a compact star-forming knot in a spiral arm of its host

galaxy. The properties of the host galaxies, the long duration of the bursts and,

in the case of GRB 060505 the location of the burst within its host, all imply a

massive stellar origin. The absence of a SN to such deep limits therefore suggests a

new phenomenological type of massive stellar death. On the other hand the most

favored model for short/hard GRBs is the merger of two compact objects, i.e. two

neutron stars or a neutron star and a black hole (Piran 2005 and reference therein).

Due of their brevity only recently, only recently it is able to identify well-localized
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afterglows in X , in optical and in radio bands. Thus allowing for the first time an

association between some short/hard GRBs and galaxies at moderate redshift that

show no evidence of recent star-formation. Thus, at least some short/hard GRBs

must stem from a different progenitor class than long/soft GRBs, and several

lines of evidence favor the compact object merger models. Superflares of Soft

Gamma-Repeaters (SGRs) have also been suggested as a source for part of the

short GRB population. For recent reviews on short/hard GRBs, see Nakar (2007)

and reference therein.

1.6 Theoretical model

1.6.1 Fireball model

Cavallo & Rees (1978) were the first to study the behaviour of an ultra-

relativistically expanding source, produced by releasing a very large photon energy

(∼ 1051 erg) in a very small volume of radius (10–1000 km). The expanding ball

naturally forms a shell due to the relativistic motion. If the inner engine is active

for some time, several shells with different Lorentz factors can be produced. It is

believed that collisions between these shells, the so-called internal shocks, power

the gamma-ray burst itself. The shells will merge into one flow and later on sweep

up matter in the interstellar medium. When the rest-mass energy of this matter

will balance the initial energy of the fireball, the flow will slow down converting its

kinetic energy into radiation (the external forward shock). Although it is not clear

how they are formed, magnetic fields present in the flow cause the electrons that

were picked up to produce synchrotron radiation. The electrons move at different

speeds, or Lorentz factors. Assuming that their Lorentz factors (their energies) are

distributed as a power-law, the resulting emitted spectrum also is a power-law. As

the shell slows down in the course of time (also as a powerlaw), the typical Lorentz

factor and the corresponding peak emission frequency (νm) do the same, causing

the entire spectrum to shift toward lower frequencies. Hence, when an afterglow

is observed at a specific frequency, the flux will decrease as a power-law in time.

When the external forward shock is formed, a reverse shock is produced, moving

back into the ejecta.

The mechanism for the afterglow is thought to be syncrotron radiation, which

is confirmed by the often observed broken power-law shape of the broad band
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Figure 1.7: Fireball model. The internal shocks, producing a burst of γ-rays and (as it
decelerates through interaction with the external medium) an external shock afterglow,
which leads successively to X-rays, optical, and radio.

spectrum. Electrons in the fireball are accelerated to ultra-relativistic velocities

and produce the observed synchrotron radiation. A schematic representation of

the afterglow spectrum, which is generally observed on time scales of hours to

weeks after the burst, is shown in Figure 1.8. t0 represents the time corresponding

to the change from radiative expansion to fully adiabatic expansion of the fireball,

when νc = νm. (a) Fast cooling, which is expected at early times (t < t0). The

spectrum consists of four segments, identified as A, B, C, and D. Self-absorption

is important below νa. The frequencies, νm, νc and νa, decrease with time as

indicated; the scalings above the arrows correspond to an adiabatic evolution, and

the scalings below, in square brackets, correspond to a fully radiative evolution.

(b) Slow cooling, which is expected at late times (t > t0). The evolution is always

adiabatic. The four segments are identified as E, F, G, and H.
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Figure 1.8: Synchrotron spectrum of a relativistic shock with a powerlaw electron
distribution (Sari, Piran & Narayan 1998).
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Chapter 2

Gamma–ray burst statistical

correlations

If you have seen one γ–ray burst....

you have seen one γ–ray burst!

Sarah Yost

Saturday Morning Physics

In the first part of this chapter a short overview of the phenomenological rela-

tions of the γ-ray burst emissions is provided. The statistical GRB review is an

introduction to our statistical work for focusing the current status of research.

Statistically, the vast quantity of the empirical relationships, that has rapidly

progressed in recent years, are divided in 3 sub-groups:

• Prompt γ-ray emission relationships

• Afterglow relationships

• Multiwavelength relationships

In the first sub-group, the relations related to GRB prompt emission parameters

are collected. The second sub-group shows the statistical afterglow behaviour and
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finally the relations that connect the prompt emission properties with the afterglow

properties are discussed in Multiwavelength empirical relationships section.

2.1 Prompt Emission Relationships

1.1 Luminosity-spectral lag relation

Luminosity-spectral lag relation (Norris relation) suggests that more luminous

bursts have shorter spectral lags (τlag). For long-soft GRBs the detected relation

is (Norris, 2000):

Liso ∝ τ 1.2
lag (2.1)

It is confirmed in Swift-era by Gehreals et al. (2006), including the peculiar

long-soft GRB 060218 (Liang et al., 2006)

Norris established this relationship using the cross correlation lags between low

(25-50 KeV) and high (100-300 KeV and > 300 KeV) energy bands for a set of 6

bursts with confirmed redshift observed by CGRO/BATSE and BeppoSax, although

GRB 980425 associated with SN 1998 bw falls below the extrapolated power law.

The lag and the isotropic luminosity values for the above-mentioned GRB are 4-5

sec and 1.3× 1047 erg s−1, respectively. Nowdays the correlation is independently

verified by several authors using a large sample of GRBs (e.i. Scheafer, 2007;

Dainotti et al., 2009)

Tsutsui et al. (2008) introduces a new redshift-dependent lag-luminosity rela-

tion consistent with the original one from Norris (2000). They use 565 BATSE

GRBs and their corresponding redshifts are derived from the Yonetoku relation

and lag–luminosity relation.

In the new lag-luminosity relation, the power law index is about a factor of

4 smaller than that in the original lag-luminosity relation and it was introduced

an additional term (1 + z)α which takes into account the cosmological evolution

effect. Statistically the redshift evolution is invoked because Norris lag–luminosity

relation is incompatible with the Yonetoku relation; the extrapoleted redshifts in

the two relationship are completely different. However, if if one takes into account

the effect of the redshift evolution shown in equation, the above mentioned relations

are compatible with one another.
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Liso = 7.5× 1050(1 + z)2.53τ−0.282
lag , [erg/s] (2.2)

The spectral lag estimation also plays a key role in support of the existence of

a hypothetical local group population. Vianello et al. (2008) confirm with a high

significance level the clustering of faint long duration bursts with long spectral lag

around the supergalactic plane.

The association of low luminosity GRBs with the supergalactic plane is not

proof that they are associated with clusters of galaxies but indicates that clusters

may play a role. A merger involving a white dwarf should produce a long GRB

that is likely to be fainter than the formation of a black hole in cosmological GRBs.

There will be no supernova in the merger of a white dwarf with a neutron star

or black hole, and probably a faint afterglow. In addition, the merger could take

place in the intercluster region without a host galaxy if the binary is ripped from

its host in the merger interaction involving the cluster galaxies (Foley et al. (2008)

and reference therein).

Negative lags, which violate the typical hard-soft evolution of GRBs, have been

observed in a small minority of cases (e.g. Chen et al., 2005) (measured spectral

lags in time between the low (25-55 keV) and high (110-320 keV) energy channel

in BATSE/CGRO experiment) and may be more prevalent in short bursts (Yi et

al., 2006).

Short hard bursts also tend to have lower luminosities than classical long GRBs,

and therefore are not consistent with the anti-correlation observed between lag and

luminosity for long GRBs (Norris, 2002).

Finally Norris (2000) reports anticorrelations between the energy-dependent

lag of the long-soft GRB and γ/X peak flux ratio, BATSE spectral hardness ratio

and isotropic γ-ray peak luminosity.

1.2 Relative spectral lag

Zhang et al. (2006a) put forward a new redshift/luminosity estimator using

the relative spectral lag (RSL, τrel,31), which is defined as the the ratios between

the spectral lag between energy bands 1 and 3 of BATSE catalogue and the full

width at half-maximum of the pulses (FWHM). Based on analyzing the RSL

for 9 long BATSE GRBs with known redshift, they found that the RSLs are also

tightly correlated with the redshift or luminosity, as follows:
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logz = a− bτrel,31 (2.3)

logLiso = η − ξτrel,31 (2.4)

where a = 1.56 ± 0.24, b = 9.66 ± 1.86, η = 55.44 ± 0.63, ξ = 23.07 ± 4.88 and

τrel,31 is normally distributed with a mean value of µ = 0.102 and a standard error

of σ = 0.045. The spearman rank-order correlation coefficients of the two relations

are -0.88 (p ∼ 1.5 × 10−3) and -0.83 (p ∼ 5 × 10−3). It needs to clarify that the

redshifts of all sources (with the exception of a grb) are derivated from Yonetoku

empirical relation

Peng et al. (2007) from a sample of 82 GRB pulses find that the spectral lags

are correlated with the pulse widths, however, there is no correlation between the

relative spectral lags and the relative pulse widths.

The physical basis underlying spectral lags is not yet well understood. The

observed lag of a burst is a direct consequence of its spectral evolution because

the peak of the ν Fν spectrum, Epeak, decays with time (Kocevski & Liang, 2003;

Hafizi & Mochkovitch, 2007). The internal shock model allows for three possible

sources of temporal variations in GRB pulses: cooling and geometric angular

effects. Cooling is unable to fully account for the time lag since the synchrotron

timescale is much shorter than the lag timescale (Wu & Fenimore, 2000). It has

been proposed that the lag-luminosity relation may arise kinematically, based

on the viewing angle at which the GRB jet is observed (Salmonson, 2000). In

this interpretation, a high-luminosity GRB with short spectral lag corresponds

to a jet with a small viewing angle, while a low-luminosity GRB with long

spectral lag corresponds to a jet with a large viewing angle (Ioka & Nakamura,

2001). A correlation has also been observed between spectral lag (or luminosity)

and jet-break time, thereby connecting the prompt and afterglow phases of

GRBs. This may be understood in terms of a model in which the Lorentz factor

decreases away from the axis of the GRB jet (Salmonson & Galama, 2002). The

connection between spectral lag and the timescales involved in the hydrodynamic

processes and radiative mechanisms of the burst has been discussed by Daigne &

Mochkovitch (2003).
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1.3 Maximum Spectral lags and redshift correlation

The maximum spectral lags, τmax, is defined as the largest lag of all the pulses

in one burst. By analyzing the BATSE GRBs, Yi, Xie, & Zhang (2008) find a

new anti-correlation between τmax and z, excluding GRB 980425. The correlation

coefficient is R = 0.89 and a change probability is p = 2.4 × 10−3. The best fit

power-law model for τmax-z relation

log(z) = (−0.28± 0.11) + (−0.44± 0.10)log(τmax) (2.5)

To further they confirm the detected relation, but with slightly different slope,

using 10 available HETE–2 GRB data with known redshifts.

It is not clear whether this anti-correlation is present also in Swift GRBs

because the γ light curves have not high signal-to-noise ratio for CCF calculation.

1.4 Quiescent Time and Adjacent Emission correlation

Quiescent times is defined as the intervals between adjacent episodes of

emission during which the γ-ray count rate drops to the background level.

Ramirez-Ruiz & Merloni (2001) find a quantitative relation between the duration

of an emission episode and the quiescent time elapsed since the previous episode

Drago & Pagliara (2008) do not confirm the correlation found by Ramirez-Ruiz &

Merloni (2001).

1.5 Amati and Yonetoku relation

The correlation between the cosmological rest–frame νFν spectrum peak energy,

Epeak, and the isotropic equivalent radiated energy, Eiso, discovered by (Amati et

al., 2002) and confirmed/extended by subsequent observations Amati et al. (2006),

is one of the most intriguing and debated observational evidences in Gamma–

Ray Bursts (GRB) astrophysics. The best fit power–law of the aforementioned

correlation obtained by accounting for sample variance is:

Epeak = 95× E0.49
iso (2.6)
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Sub–energetic GRBs (980425 and possibly 031203) and short GRBs are found to

be inconsistent with the Epeak–Eiso correlation.

A related relation discovered by Yonetoku et al. (2004) is:

Epeak ∼ L0.5
iso (2.7)

where Liso is the isotropic peak luminosity.

Butler et al. (2007) show that pre-Swift correlations found by Amati et al.

(2002); Yonetoku et al. (2004); Firmani et al. (2006) (see following section) are

likely unrelated to the physical properties of GRBs and are likely useless for tests

of cosmology. Also, an explanation of these correlations in terms of a detector

threshold provides a natural and quantitative explanation for why short-duration

GRBs and events at low redshift tend to be outliers to the correlations This

activity has lead to a debate about the usefulness of GRBs as standard candles

with both discouraging (Li et al., 2007); (Butler et al., 2007) and encouraging

(Amati et al., 2008); (Firmani et al., 2006); (Schaefer, 2007) and (Ghirlanda et

al., 2004) results.

1.6 Firmani relation

Firmani et al. (2006) proposed a new Gamma Ray Burst luminosity relation that

showed a significant improvement over the Liso − Epeak relation:

Liso = 1052.11±0.03
(

Epeak
102.37keV

)1.62±0.08 ( T0.45

100.46s

)−0.49±0.07 erg

s
. (2.8)

Liso is the isotropic peak luminosity and Epeak is the photon energy of the

spectral peak for the burst. The new proposed relation simply modifies the

Epeak value by multiplying it by a power of T0.45, where T0.45 is a particular

measure of the GRB duration. There has been no proposed interpretation of

this relation. Collazzi et al. (2008) find that the addition of a duration does not

add any significant improvement to the Liso − Epeak relation. They also present

a simple and direct derivation of the Firmani relation from both the Liso − Epeak
and Amati relations. In brief, they conclude that the Firmani relation neither
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has an independent existence nor does it provide any significant improvement on

previously known relations that are simpler.

1.7 Luminosity-variability relation

A possible Cepheid-like luminosity estimator for the long gamma-ray bursts based

on the variability of their light curves.

This relation suggests that more luminous burst tend to have more variable V

light curve (Reichartet al., 2001):

L ∼ V 3.3+1.1
−0.9 (2.9)

More recently, Guidorzi et al. (2006) applied the D’Agostini (2005) method,

(accounting for the sample variance of the data sets) obtain shallower slopes than

those by Reichartet al. (2001) and larger scatters. In particular, for the sample of

32 GRBs with firm redshift they obtained m = 1.7± 0.4, σlog VR
∼ 0.34.

Rizzuto al. (2007) test the variability/peak luminosity (V/L) correlation with

a homogeneous sample of 36 GRBs detected with Swift/BAT in the 15–350 keV

energy band with firm redshift determination.

The correlation is confirmed, as long as the 6 GRBs with low luminosity

(< 5 × 1050 erg s−1 in the rest-frame 100-1000 keV energy band) are ignored.

They confirm that the considerable scatter of the correlation is not due to the

combination of data from different instruments with different energy bands, but

it is intrinsic to the correlation itself. Thanks to the unprecedented sensitivity

of Swift/BAT instrument, the variability/peak luminosity correlation tested on

low–luminosity γ-ray burst population highlights that these GRBs are definite

outliers.
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1.8 Npeak–luminosity relation

This correlation suggests that the number of peaks is a fast way to spot some high

luminosity GRBs:

logL ≥ 50.32 + 2 log[Npeak] for Npeak ≥ 2. (2.10)

For Npeak = 1, there is no lower limit on the luminosity. For example, if Swift sees

a faint burst with many peaks, then the burst must be at high redshift (Schaefer,

2007). The number of peaks in a light curve depends on how many collisions

between packets of material in the jet occur during the duration of the burst. This

number will be determined by many factors, including the exact realization of

turbulence in the source and the distribution of velocities and densities in the jet.

However, some of the individual peaks might occur sufficiently close in time that

these peaks will appear as one. If the individual pulse durations are somewhat

longer than the separation in time, then the two pulses will not be distinguishable

as being separate. The pulse durations (Dpulse) scale as the rise times (Nemiroff,

2000).

For high luminosity bursts all collisions will result in distinct pulses in the

light curve, while low luminosity events will have many of the collisions resulting

in overlapping broad pulses. Thus, a burst with many peaks can only be a high

luminosity event because this is the only way to get narrow peaks that avoid

merging together. A burst with one or a few peaks could either be high luminosity

(with few shell collisions) or low luminosity (with all the collisions producing

merged peaks). This analysis was a theoretical prediction that was tested and

shown by Schaefer (2003).

1.9 τRT–luminosity relation

The minimum rise time τRT in the GRB light curve is taken to be the shortest

time over which the light curve rises by half the peak flux of the pulse (Schaefer,

2003):

logL = 52.54− 1.21 log[τRT (1 + z)−1/0.1s]. (2.11)

For bright bursts, it is an easy calculation to search time intervals before

each peak for the shortest one in which the rise is half the peak brightness. In

cases where the rise from one time bin to the next is greater than half-peak, the
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rise time is determinated as the appropriate fraction of the bin width. The rise

times will depend on the exact choice of the first bin. To calculate the exact rise

times for faint bursts where the normal background noise provides large Poisson

fluctuations, Schaefer (2007) suggest to adopted the average of the derived rise

times over all possible start bins as being the minimum rise time. The uncertainty

in the minimum rise time is then the rms of the values for all the start bins.

1.10 Correlations Between Lag, Luminosity, and Duration in

Gamma-ray Burst Pulses

Hakkila et al. (2008) found that each pulse appears to be characterized by its

own lag; lag is a consequence of pulse evolution rather than a burst property. Burst

peak luminosity and the CCF lag are not fundamental properties, but result from

pulse combinations.

The best-fit functional form of pulse width vs. pulse peak luminosity relation in

the rest frame of the source is:

log(L51) = E + F log(w0) (2.12)

with E = 1.53± 0.02 and F = −0.85± 0.02 (E in units of 1051 ergs s−1)

Again, the exception to the rule is under luminous GRB 980425.

For GRBs with multiple fitted pulses, they also find that pulse spectral hardness

is anti-correlates with pulse lag and duration, and correlates with pulse intensity.

The same correlations are found in GRB 950325a, and imply that spectral evolution

is present both across pulses and within them.

Pulse lag, pulse luminosity, and pulse duration strongly correlate, could

imply that most GRB pulses have similar physical mechanisms; these are more

consistent with internal than external shocks. Short pulses presumably indicate a

collision of material at larger relative Lorentz factor than long pulses, and a large

Lorentz factor requires a cleaner fireball with less baryonic matter. The fireball

opacity dictates the emission timescale, so a clean, high amplitude fireball should

have a short decay and a short lag, while a dirty, low-amplitude fireball should

produce a long decay and a long lag.
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1.11 Fractal dimension cluster

Arkhangelskaja (2002) presents a work on GRB time profile fractal analysis

using BATSE catalog. The fractal index is a time profile characteristic which

is sensitive to change of shape, if there are two bursts with the same form of

time profile but different duration, the fractal indexes of these bursts will be the

same. She find that there are four subgroups in fractal dimension distribution

for short GRB (D = 1.05 ± 0.03, D = 1.31 ± 0.05, D = 1.51 ± 0.04, D

= 1.90 ± 0.03) and six subgroups for intermediate one (D = 1.05 ± 0.09, D

= 1.24 ± 0.08, D = 1.44 ± 0.07, D = 1.51 ± 0.08, D = 1.64 ± 0.07, D = 1.91 ± 0.1)

1.12 The power-complexity relation

Omodei, Bellazzini & Montangero (2004) have applied the Diffusion Entropy

(DE) analysis to study and statistically characterize Gamma-Ray Burst light

curves. This method allows the study of correlated non-stationary time series

and allows the discrimination between signal and uncorrelated noise. DE provides

a quantitative measure of the complexity by means of a scaling index δ. They

found that the mean values of δ for the whole BATSE catalog in the four energy

bands are 0.80, 0.82, 0.79, and 0.62 respectively. The case of completely correlated

noise, also known as ballistic motion for which the walker always jumps in the same

direction with a constant jump length, is the upper bound for the value δ =1. The

distribution of the values in the first three channels indicates that the diffusive

process is close to the ballistic case. This means that, in general, GRB signals are

highly correlated signals. They find a logarithmic dependence of the complexity of

the data with respect to the fluence of the GRB: the higher the measured power,

the greater the complexity of the GRB system.

δ(F ) = A+Blog(F ) (2.13)

with A = 1.2 and B = 0.07. The fluence is a measure of the energy conversion

efficiency in the GRB source, so the relationship between δ and the fluence can be

interpreted as the increase of the complexity of the energy conversion process.

1.13 The Peak Energy-Duration Correlation

Chang (2006) had investigate the correlation between the peak energy and

the burst duration using available long GRB data with known redshift, whose
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circumburst medium type has been suggested via afterglow light curve modeling.

They find that the peak energy and the burst duration of the observed GRBs are

correlated both in the observer frame and in the GRB rest frame. The Spearman

rank-order correlation values ∼ 0.75 and ∼ 0.65 with the chance probabilities

P=1.0 times 10−3 and P=6.0 times 10−3 in the observer frame and in the GRB

rest frame, respectively.

1.14 Power-law index of Power Density Spectra correlation and red-

shift correlation

Chang, Yoon & Choi (2002) speculate on the possibility of using the Fourier

transform analysis method as a distance estimator of the observed γ-ray bursts.

It is based on a hypothetical empirical relation between the redshift and the

power-law index of power density spectra (PDSs) of the observed GRBs. This

relation is constructed by using the fact that the observed power-law index is

dependent upon a characteristic timescale of GRB light curves. The rms error

of redshift estimates is 0.42 for an empirical relation obtained with the 7 long

(T90 > 15) GRBs observed by the BATSE whose redshift information is available.

The estimator is not yet robust, and they conclude that redshift estimates are

subject to the stochastic nature of the observed PDSs and accuracy of estimates

are limited by unknown properties of the GRBs.

1.15 Successive time intervals, Successive pulse amplitudes, Pulse

amplitudes and Adjacent time intervals correlations

McBreen et al. (2004) have analized the temporal properties of a large sample

of bright gamma-ray bursts (GRBs) with durations between 0.05 s and 674 s.

The large range in duration (T90) is accompanied by a similarly large range in the

median values of the pulse timing properties including rise time, fall time, FWHM

and separation between the pulse. Four times diagrams relating these pulse

properties to T90 are presented and show the power law relationships between the

median values of the four pulse timing properties and T90, but also that the power

laws depend in a consistent manner on the number of pulses per GRB. The timing

diagrams are caused by the correlated properties of the pulses in the burst and

can be explained by a combination of factors including the Doppler boos factor
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G, a jet and emission from below the photosphere. GRBs with similar values of

T90 have a wide range in the number of pulses. The pulses in GRBs have seven

distinctive statistical properties including correlations between successive time

intervals, correlations between successive pulse amplitudes, an anticorrelation

between pulse amplitudes and adjacent time intervals. The timing diagrams and

correlated pulses suggest that GRBs are powered by accretion processes signaling

jets from the formation of black holes.

1.16 Peak of the Power Density and redshift

Yang et al. (2005) presents a possible luminosity estimator for the long gamma-

ray bursts based on the γ-light curves. They use the methods of temporal variabil-

ity analysis in time domain to calculate the power density spectrum (PDS) of the

12 gamma-ray bursts (GRBs) with known redshifts observed by CGRO/BATSE.

The peak of the power density P measures the variability intensity of each light

curve and a strong correlation is found between P and the isotropic peak luminos-

ity. It’s a new relationship between the temporal quantities and the luminosities of

long GRBs, succeeding the lag-luminosity relation suggested by Norris et al.(2000)

and variability-luminosity relation shown by Reichart et al. (2001).

2.2 Afterglow empirical relationships

2.1 shallow decay phase of GRB X-ray afterglows and redshift

Stratta et al. (2008) selected and analyzed all the Swift/XRT afterglows at

known redshift observed between March 2005 and June 2008 featuring a shallow

decay phase in their X-ray lightcurves. For 21 GRBs they find an anticorrelation

of the logarithm of the duration of the shallow phase with redshift, with a

Spearman rank-order correlation coefficient of r = −0.4 and a null hypothesis

probability of 5%. When we correct the durations for cosmological dilation, the

anticorrelation strenghtens, with r = −0.6 and a null hypothesis probability of

0.4%. Finally they found an anticorrelation between the energy of the burst and

the shallow phase duration, with r = −0.80 and a null hypothesis probability of

1.8%, using only GRBs that have a well-measured burst peak energy (8 out of
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21).

2.2 Luminosity Time correlation

Dainotti, Cardone, & Capozziello, (2008) look for statistical correlation using

data on the X- ray decay curve and spectral index of GRBs observed with the

Swift/XRT satellite. They found a correlation between the X - ray luminosity

LX(Ta) and the time constant Ta of the afterglow light curve. The linear relation

between log [LX(Ta)] and log [Ta/(1 + z)] presents an intrinsic scatter σint = 0.33

comparable to previously reported relations. The authors suggest that the high

Spearman correlation coefficient, the low value of the fit residuals and the modest

intrinsic scatter renders the LX(Ta) - Ta relation a new valid tool to standardize

GRBs.

2.3 Peak flux-Peak epoch & post-peak relation

Panaitescu & Vestrand (2008), studing the temporal behaviour of the early

optical emission from γ–Ray Burst afterglows, show that is realible to divided

them in four classes: fast-rising with an early peak, slow-rising with a late peak,

flat plateaus, and rapid decays since first measurement. The fast-rising optical

afterglows display correlations among peak flux, peak epoch, and post-peak

power-law decay index. the peak flux-peak epoch relation exhibited by the

fast and slow-rising optical light-curves could provide a way to use this type of

afterglows as standard candles.

2.4 Afterglow Luminosity cluster

Hints of standardization of the X-ray afterglow luminosities were first dis-

covered by Boër & Gendre (2000), who found evidences for clustering in the

X-ray luminosity of BeppoSAX afterglows, and confirmed later by Gendre & Boër

(2005). This study was completed by Nardini et al. (2006) and Liang & Zhang

(2006b) who found independently that optical afterglows were also clustered in

luminosity, and by Gendre et al. (2008) who extended this study towards infrared

wavelengths.
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2.5 Correlation between the duration and the X-ray luminosity of

the shallow decay phase

Sato et al. (2007) have investigated the characteristics of the shallow decay

phase in the early X–ray afterglows of GRBs observed by Swift X-Ray Telescope

(XRT) during the period of January 2005 to December 2006. They find that the

intrinsic break time at the shallow-to-normal decay transition in the X-ray light

curve T 0
brk is moderately well correlated with the isotropic X-ray luminosity in the

end of the shallow decay phase (LX,end) as

T 0
brk = (9.39± 0.64)× 103s(LX,end/1047ergs/s)(−0.71+/−0.03) (2.14)

while T 0
brk is weakly correlated with the isotropic γ-ray energy of the prompt

emission Eγ,iso

2.6 Apparent magnitude and the Rate of Decay correlation

Oates et al. (2008) present the first statistical analysis of 27 UVOT

optical/ultra-violet lightcurves of GRB afterglows. They have found, through anal-

ysis of the lightcurves in the observer’s frame, that a significant fraction rise in the

first 500s after the GRB trigger, that all light–curves decay after 500s, typically

as a power-law with a relatively narrow distribution of decay indices, and that the

brightest optical afterglows tend to decay the quickest. They find that at 99.8

% confidence, there is a correlation, in the observed frame, between the apparent

magnitude of the light–curves at 400s and the rate of decay after 500s. However,

in the rest frame a Spearman Rank test shows only a weak correlation of low

statistical significance between luminosity and decay rate.

2.3 Multiwavelength empirical relationships

3.1Frail and Ghirlanda correlation

Frail et al. (2001) and Bloom et al. (2003) found that the beaming-corrected

gamma-ray energy is essentially constant;

Eγ,isoθ
2
j = Ej ∼ const. (2.15)
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Ghirlanda et al. (2004) found that the beaming-corrected gamma-ray energy is not

constant, but is related to the rest-frame spectral peak energy:

Ep ∝ E
1/2
γ,isot

1/2
j (2.16)

Notice that the Ghirlanda relation and the Frail relation are incompatible with

each other.

3.2 Liang-Zhang relation

Liang & Zhang (2005) had proposed an empirical relation among three

observables, namely Ep, Eγ,iso and the optical band break time tb. The relation

gives Ep ∝ E0.52
γ,isot

0.64
b . The Liang-Zhang relation is the the Ghirlanda and Amati

relations projected onto a plane.

3.3 Willingale correlation

Willingale et al. (2006) performed a systematic study of the shallow to normal

decay transition breaks in the early X-ray afterglows of a sample of Swift GRBs.

They found a new sequence of correlation which is parallel to the Ghirlanda

relation. This is effectively a new series of Ep−Eγ,iso− tb relation but by replacing

the optical breaks by X-ray breaks. The fact that the two correlations form a

parallel sequence is intriguing.

3.4 Prompt Emission and X/Optical Flux correlation

Nysewander, Fruchter & Peér (2008) present a comparative study of the ob-

served properties of the optical and X-ray afterglows of short- and long-duration

γ-ray bursts. Using a large sample of 37 short GRBs and 421 long GRBs, they

find a strong correlation between afterglow brightness measured after 11 hours and

the energy release in the prompt emission, measured in both the optical (R band)

and X-ray flux and Eγ,iso:

FR,X ∝ Eγ,iso
α (2.17)

with α ' 1 in both cases.

Furthermore, the constant of proportionality is nearly identical for long and

short bursts. A similar correlation between the optical afterglow and the γ-ray

fluence is also reported by Kann et al. (2008).
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3.5 Optical, X-ray and γ-ray emissions correlation

Gehrels et al. (2008) analyze short and long bursts. It is found for both classes

that the optical, X-ray and γ-ray emissions are linearly correlated, but with a

large spread about the correlation line; stronger bursts tend to have brighter

afterglows, and bursts with brighter X-ray afterglow tend to have brighter optical

afterglow. Short bursts are, on average, weaker in both prompt and afterglow

emissions. No short bursts are seen with extremely low optical to X-ray ratio as

occurs for ”dark” long bursts. Although statistics are still poor for short bursts,

there is no evidence yet for a subgroup of short bursts with high extinction as

there is for long bursts. Long bursts are detected in the dark category at the same

fraction as for pre-Swift bursts. Interesting cases are discovered of long bursts

that are detected in the optical, and yet have low enough optical to X-ray ratio

to be classified as dark. For the prompt emission, short and long bursts have

different average tracks on flux vs fluence plots. In Swift, GRB detections tend to

be fluence limited for short bursts and flux limited for long events.

3.6 Peak Spectral Energy and Peak Bolometric Luminosity of SNe

correlation

Based on the four pairs of GRBs and SNe with spectroscopically confirmed

connection Li (2006) find a tight correlation between the peak spectral energy

of GRBs and the peak bolometric luminosity of the underlying SNe. The recent

discovery of X-ray flash 080109 associated with a normal core-collapse SN 2008D

confirmed this relation and extended the GRB-SN connection.

3.7 Extrapoleted X-ray flux, prompt-γ−ray fluence and Extrapoleted

v-band magnitude The Swift Ultra-Violet/Optical Telescope has observed 200

gamma-ray bursts (GRBs) in its first two-and-a-half years of operation. From this

collection of observations Roming et al. (2009) have obtained 40 well sampled

light curves. Using this dataset they present general optical/UV properties of

GRBs, including filter dependent temporal slopes and color–color relationships.

Finally they also show that correlations exist between both the 11 hour X–ray flux

(0.3-10 keV) and the promot γ-ray fluence (15-150 keV) and V − band magnitude
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at ∼ 2000 s.

3.8 Pulse lag, peak luminosity and the jet-break time correlations

Salmonson & Galama (2002) show a correlation between the pulse lag and

the jet-break time for seven BATSE gamma-ray bursts with known redshifts. As

pulse lag and luminosity have been found to be correlated, this also represents

a correlation between peak luminosity and jet-break time. Observed timescales

(variability or spectral lags), as well as peak luminosity, naturally have a strong

dependence on the Lorentz factor of the outflow, so we propose that much of

the variety among GRBs has a purely kinematic origin (the speed or direction

of the outflow). They explore a model in which the variation among GRBs is

due to a variation in jet opening angles and find that the narrowest jets have

the fastest outflows. They also explore models in which the jets have similar

morphology and size, and the variation among bursts is caused by variations in

viewing angles and/or due to velocity profiles. The relations between luminosity,

variability, spectral lag, and jet-break time can be qualitatively understood from

models in which the Lorentz factor decreases as a function of angle from the jet

axis. One expects to see high luminosities, short pulse lags, and high variability

as well as an early jet–break time for bursts viewed on-axis, while higher viewing

inclinations will yield lower luminosities, longer pulse lags, smoother bursts, and

later jet-break times.
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Chapter 3

Prompt Emission: Nonlinear

Analysis

A cloud is made of billows upon

billows upon billows that look like

clouds. As you come closer to a cloud

you don’t get something smooth, but

irregularities at a smaller scale.

B. Mandelbrot

In this chapter the study of morphological features of the prompt γ–ray emis-

sion is presented in detailed manner. It is introduced a new suitable statistical

tool, Hurst exponent, to characterize the complex and random structures that

these emissions manifest during their short and erratic duration. It is shown that

the observational properties of the prompt γ–ray emission do not seem to follow

any cosmological evolution trend and they are the manifestation of same physical

phenomenon that is self–affinity at every scale and at any epoch of the universe.
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3.1 Time series analysis of SWIFT/BAT data

The time properties of BAT γ-ray burst emission are elaborated in a detailed

manner through nonlinear time series analysis methods. We focus primarily on

the properties of the type soft-long GRBs. The timescale of intensity variations

in γ-ray bursts phenomenon is an important observational parameter because this

timescale can be used to place an upper limit on the size of the γ-ray emitting re-

gion and more generally for understanding the nature of the process responsible for

the GRB light curves. The temporal profiles of GRBs are often very variable and

each time profile looks very different. Fishman & Meegan (1995) made an attempt

to roughly classify them in four classes (§1.2.2). High energy emission of GRBs

exhibit a vast range of complex temporal behaviors, so any morphological classi-

fication scheme seem to appear not be comprehensive and systematic. However,

their main properties could appear simpler using suitable statistical analysis. In

fact, any linear, nonlinear or chaotic dynamical phenomena can be described and

quantified, so that it can be distinguished from each other and some conclusions

about the possible underlying mechanism may be obtained. A dynamical system

is linear if the response characteristics are additive (superposition) and homoge-

neous (scaling). The term additive means that the output to a sum of inputs is

equal to the sum of the outputs produced by each input individually. The term

homogeneous means that the output to a sum of inputs is equal to the sum of

the outputs produced by the input alone. Furthermore a nonlinear system is one

whose behavior is not simply the sum of its parts or their multiples and as such it

is often difficult (or impossible) to model it. Moreover its evolution with respect

to a given variable e.g. time, is sometimes difficult to predict or even impossible

after a given time duration. Typical nonlinear systems are the Navier-Stokes equa-

tions. A really interesting category of nonlinear systems are the chaotic systems.

Chaotic systems have the unique ability to appear, through their realization, as

random systems but in fact they comprise a special category of nonlinear systems

characterized by a small number of independent variables.

Unfortunately GRBs are transient phenomena so that each GRB brings insuf-

ficient information to make a conclusive analysis. A more powerful quantitative

analysis can be done using samples of many bursts studying the statistical behavior

of these objects (Stern, 1999).

In the following section we propose to analyze the underlying structure of
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prompt emission of GRBs using the Hurst exponent. This statistical tool is able

to characterize the same statistical behavior without having neither the same time

duration nor fixed occurrence time, making the time series comparable with each

other.

Initially we try to evaluate a method of research in order to provide a correct

estimation of Hurst exponent in SWIFT/BAT light curves. We decided to use an

homogeneous sample of bright light curves provided by BAT instrument to avoid

inconsistent estimates due to the effect of the internal variability in different energy

satellite channels.

After we calculate the Hurst exponents for the GRB with known redshift. It

is found that the value of the Hurst exponents for all analized light curves is more

than 0.5 and futhermore it is not correlated with the redshift.

The results suggest that the prompt emission can be due to realizations of

the same physical process which is self-affinity at any time-scale and the lack

correlation with the redshift suggest that the underlying process producing the

observed prompt emission do not follow a cosmological evolution trend.

3.1.1 Data Reduction and Sample

The BAT is a highly sensitive, large field of view (FOV) (1.4 sr for >50% coded

FOV and 2.2 sr for>10% coded FOV), coded-aperture telescope, which detects and

localizes GRBs in real time. The fast and accurate BAT GRB positions with 1-3

arc-minute error radii are the key to autonomously slewing the spacecraft to point

the XRT and the UVOT. The BAT GRB position, light curves, and the detector

plane image (BAT scaled map) are transmitted through TDRSS to the ground

within 20–200 s after the burst trigger. The BAT detector plane is composed of

32,768 pieces of CdZnTe (CZT: 4 × 4 × 2 mm), and the coded-aperture mask is

composed of ∼ 52,000 lead tiles (5 × 5 × 1 mm) with a 1-m separation between

mask and detector plane. The energy range is 15-150 keV for imaging or mask

weighting1 with a non-coded response up to 350 keV.

Immediately after the first attempt to fit the Crab spectrum with the pre-

launch detector energy response matrices (DRM), BAT team noticed that there

were systematic errors in the pre-launch DRM at low energies (below 25 keV)

1Mask weighting is a background subtraction technique based on the modulation resulting
from the coded mask.
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and also at high energies (above 80 keV). To overcome these problems, the BAT

team has released the software tool, batphasyserr, and the CALDB file (swb-

syserr20030101v002.fits) to apply the energy dependent systematic errors to the

PHA file.

Rizzuto et al. (2007) suggest that the BAT light curves of most GRBs with raw

counts, not masked, are not suitable for temporal variability studies. Therefore the

BAT event files were retrieved from the Swift public archive 2 and analyze through

the standard BAT analysis software distributed within FTOOLS v6.1. For each

GRB we extract mask-tagged light curves for a number of different binning times

in the total nominal energy band (15–350 keV) 3, through the tool batmaskwtevt

adopting the ground-refined coordinates provided by the BAT team for each burst.

These curves are therefore already background subtracted according to the coded

mask technique (Barthelmy et al. 2005). We also applied the energy calibration

to the event file making use of the closest-in-time gain/offset file through the

tool bateconvert, as suggested by the BAT team4. Finally these light curves are

expressed as count rates with uncertainties: the rates are background-subtracted

counts per second per fully illuminated detector for an equivalent on-axis source,

as the default corrections are applied: ndets, pcode, maskwt, flatfield.

Rizzuto et al. (2007) also studied the behaviour of the background fluctuations

and they found that the mask-tagged rates, ri, fluctuate compatibly with a white

noise with sigma σri (ri and σri are the rate and its uncertainty of the i-th bin,

respectively). An upper limit of ∼ 2–4% (4–6%) at 90% (99%) confidence level can

be derived on the presence of a possible extra variance (of instrumental origin, for

instance) in addition to that due to the Poisson counting statistics, implicitly as-

sumed during the light curve extraction with the tool batbinevt. Similar correction

are applied in our data analysis.

The sample includes 109 GRBs with confirmed redshift detected by Swift/BAT

between the launch (2004, November 20) and December 2008. Their redshift dis-

tribution are plotted in fig. 3.1.

2http://swift.gsfc.nasa.gov/docs/swift/archive/
3The effective band is 15–150 keV, because photons with energy above 150 keV become

transparent to the coded mask and are treated as background by the mask-weighting technique
(e.g., Sakamoto et al. 2006).

4http://swift.gsfc.nasa.gov/docs/swift/analysis/threads.
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Figure 3.1: Redshift distribution BAT/SWIFT sample.

3.2 Hurst exponent: statistical methodology for

non-periodic cycles

The first analysis method usually applied in a time series data set coming from a

given source is the Power Spectral Density (PSD). The application of this method

indirectly implies the existence of patterns in the data set that can be broke down

into a sum of sinusoids with different frequencies and amplitudes. Unfortunately

the underlying radiation mechanism of a GRB producing the observed γ-ray flux

is not structured on the basis of periodic cycles. This can be readily seen from the

form of their PSD exhibiting no significant peaks (Beloborodov Stern & Svensson,

2000; see fig.3.2.).

In the case that a multicomponent physical system, such the one of an GRB

or AGN, does not exhibit any periodic cycles at all within its realizations, possi-

ble nonperiodic cycles might still be present. These nonperiodic patterns usually

demonstrate the same statistical behavior without having neither the same time

duration nor fixed occurrence times in comparison to the classical periodic sys-

tems. The existence of cycle can be studied through the estimation of the Hurst

exponent H.

It is worth noticing that very different processes (e.g. hydrodynamical turbu-
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Figure 3.2: BATSE light curves and their PDSs for the four brightest bursts, from
Beloborodov Stern & Svensson (2000). The underlying radiation mechanism of a GRB
producing the observed γ-ray flux is not structured on the basis of periodic cycles. This
can be readily seen from the form of their PSDs exhibiting no significant peaks
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lence, standard and anomalous diffusion) are able to produce signals characterized

by scaling laws that can be discriminated on the basis of their Hurst exponent.

3.3 Hurst exponent, Fractal Dimension and

Power Spectrum and Autocorrelation Func-

tion

Hurst (1951) 5 developed his own analytical method to explain the non-periodic

cycles. To identify a non-random process, he had used the Einstein’s work on

Brownian motion. Brownian motion is a widely accepted model for a random walk.

In a random walk there is no correlation between any element and future element.

Einstein studied the properties of the Brownian motion found that the distance R

covered by a particle undergoing random collisions is directly proportional to the

square-root of time T:

R = k × T 0.5 (3.1)

where k is a constant which depends on the time-series. Hurst generalized the

equation valid for the Brownian motion in order to include a broader class of time

series. The generalization proposed by Hurst was:

R/S = k × TH (3.2)

• H=0.5, the behaviour of the time-series is similar to a random walk;

• H<0.5, the time-series covers less distance than a random walk;

• H>0.5, the time-series covers more distance than a random walk.

where S is the standard deviation of the time series. For the reasons mentioned

previously the Hurst exponent gives an estimate of the average non-periodic cycle

length, with 0 < H < 0.50, they are more volatile than a random walk.

The Hurst exponent is also directly related to the fractal dimension, which

gives a measure of the roughness of a surface. The relationship between the fractal

5H was originally developed in hydrology for the practical matter of determining optimum
dam sizing for the Nile river’s volatile rain

47



prompt γ–ray emission: nonlinear analysis

Figure 3.3: The calculated fractal dimension as a function of the power law index from
Higuchi 1990

dimension D and the Hurst exponent H is (Feder, 1988)

D = 2−H (3.3)

It is now accepted that when the power spectrum of an irregular time series is

expressed by a single power law f−α, the time series shows a property of a fractal

curve. As the fractal length L(k) of the time series is expressed as L(k) ∝ k−D

where k is the time interval, the fractal dimension D is expected to be closely

related to the power law index α ( see fig. 3.3). The relation between α and D has

been investigated by Higuchi (1990) using numerical simulation and it is given by

D =
5− α

2
(3.4)

The decay of the autocorrelation function for γ-ray light curve is a power law:

p(k) = C ×K−% (3.5)

In Equation 3.5, C is a constant and p(k) is the autocorrelation function with
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lag k. The Hurst exponent is related to the exponent % in the equation by (Feder,

1988):

H = 1− %

2
(3.6)

3.3.1 Rescaled range analysis

Rescaled range analysis measure characterising the divergence of time series defined

as the range of the sum of the deviations of data from the mean divided by the

sample standard deviation (Mandelbrot et al, 1972) Both range R and standard

deviation S measure the divergence of the time-series, but the first is a measure of

dispersion based on a sum of the data, the second is a measure based on the squared

data. For some processes (like white Gaussian noise, which has no persistence) the

two measures of dispersion are similar and R/S is asymptotically constant with T,

duration of the data sample. For other processes R/S is proportional to a power

of T.

Roughly speaking the method consists of the following steps. The data set

is partitioned into non-overlapping subsets of the same length NA and then the

cumulative deviation DA is estimated for each one of them. Finally the statistical

range RA and the standard deviation SA for all the subsets are computed and a

mean value of their ratio (R/S)NA is derived. The same exactly procedure is then

repeated having another partitioning configuration of different NA. Then H can be

estimated by linear regression as it consists the slope of the straight line passing

through the points ((R/S)NA, NA) in a log − log representation

In detail, if we consider a stationary time series data set consisting of N mea-

surements, xi, measured at discrete times ti with (i = 1, . . . ,N) separated

by ∆t time units. Starting from the beginning, the data set is partitioned into

A non-overlapping subsets of NA successive number of points. This procedure is

performed for NA = 2, . . . , N and the last points which can not form a complete

subset are simply dropped. The total number of subsets for a given NA is equal to

the greatest integer less than or equal to N/NA, therefore A = 1, . . . , [N/NA].

At the end there are N -1 groups each one consisting of A subsets of NA points.

The total number of points within each group is A × NA and should be the clos-

est possible to N. Initially the arithmetic mean, the standard deviation and the

cumulative deviation respectively for every subset (among the A) consisting of NA
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points within a group, is estimated

xA =

∑NA
n=1 xn,A
NA

(3.7)

SA =

√√√√∑NA
n=1(xn,A − xA)2

NA − 1
(3.8)

DA =
k∑

n=1

(xn,A − xA) (3.9)

Then, the statistical range of DA, RA, is estimated and it is normalized to the SA.

That gives the rescaled range statistic for a given subset of a given group

RA

SA
=

1

SA
(max[DA]−min[DA] (3.10)

Finally the mean value of the rescaled range statistics is computed for all subsets

A within the same group and the same exactly computations are performed for all

the N − 1 groups.

(
R

S

)
NA

=

∑[N/NA]
A=1

[N/NA]
(3.11)

for NA= 1,..., N–1 The Hurst exponent H for the initial data set is then com-

puted based on the following relation

(
R

S

)
n

= CnH (3.12)

and by taking the logarithms of both sides this yields

log
(
R

S

)
n

= logC +H log n (3.13)

The abscissa of this point Np defines the mean time duration (i.e. Np ×∆t) when

the long-term memory of the system starts to dissipate The corresponding group,

consisting of subsets each one being Np × ∆t time units long, displays the biggest

deviations from the mean and therefore it will be the one with the dominant trend.

Practically the Hurst exponent H is equal to the slope of the linear regression model

fitted to the ensemble of points (2, (R/S)2), (3, (R/S)3), ..., (Np, (R/S)Np).

The classical R/S analysis since it is the original one proposed by Mandelbrot
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(1972) for the estimation of the Hurst exponent. In general there is a big variety

of methods aiming to a more robust and less biased estimation of H. All meth-

ods different from the aforementioned analysis only in the normalization factor

of RA, SA (eq.3.67). As it was shown from Davies & Harte (1987) the conven-

tional R/S analysis using a Hurst regression can be biased towards accepting a

long-term dependence hypothesis even when the true process is first order autore-

gressive (AR). Moreover another crucial issue is that the measurements of a data

set might exhibit short-range dependencies (i.e. autocorrelations) fact that make

them depended. Usually small data sets have statistical different properties from

their parent distributions in the sense that they might have significant different

SA from their parent distribution (heteroscedasticity) (Levenbach 1973). A final

matter is that the various estimates ((R/S)NA, NA) might be distributed around

non-Gaussian distributions converging very slowly to Gaussian distributions. All

these issues give raise to biases concerning the estimations of the coefficients of the

linear regression model.

3.3.2 Higushi method

Higuchi (1988)develops a method for calculating the fractal dimension DH suitable

to characterize nonstationary signals.

DH may be calculated in a time window containing few data points and the

window can be moved along the signal. Using moving window one obtains running

fractal dimension that shows changes of the signal complexity in time. Higher

values of DH correspond to presence of higher frequencies in the signal Fourier

spectrum measuring the complexity and relative changes of the signal. Higushi

Method is as follows.

We take a finite set of time series taken at a regular interval:

X(1), X(2), X(3), ...., X(N). (3.14)

From the given time series, we construct a new time series,

X(m), X(m+ k), X(m+ 2k), ..., X(m+ [(N −m)/k].k) (3.15)

where both k and m (m = 1, 2, 3,...,k) are integers, m and k indicate the initial time

and the interval time respectively. Then k sets of new time series are obtained.
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We define the length of the curve of the new time series as follows:

Lm(k) = {(
[(N−m)/k]∑

i=1

|X(m+ ik)−X(m+ (i−)k|) N − 1

[(N −m)/k].k
}/k (3.16)

The length of the curve for the time interval k, 〈L(k)〉 is defined as the average

value over k sets of Lm(k). If 〈L(k)〉 ∝ k−D, we judge the curve is fractal with

dimension D. We deduce fractal dimension D from the slope of the best fitted line

corresponding to the plot of log 〈L(k)〉 against log k. Fractal dimension and Hurst

exponent are related by equation 1.3.

3.4 Evalutation of a reserch method for the es-

timation of Hurst exponent in BAT light

curves

Nowadays a lot of methods for the estimation of Hurst coefficients in time series

are available. All methods different from the aforementioned analysis only in the

normalization factor of RA, SA

For a careful estimation, we use more than one estimate method 6 and draw

plot evaluating the quality of the estimation in terms of accuracy.

We considered the following different algorithms for the evaluation of Hurst

coefficient:

• method of the Aggregate Variance

• method of the Modulus of the Aggregate series

• Higuchi method

• R/S Method

• Dispersional Analysis (DA)

• Detrended Fluctuation Analysis (DFA)

6The theories of the methods can be found in Murad’s Taqqu, Vadim Teverovsky and Walter
Willinger’s paper ”Estimators for long-range dependence: an empirical study” or other related
papers.
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• Periodogram method

• Wavelet method

The Aggregate Variance (Taqqu et al., 1996) a time domain method useful for

non-stationary time series that obtains the multi-scale analysis with the aggrega-

tion of adjacent points and measures the similarity in terms of variance. The Mod-

ulus of the Aggregate series method (Taqqu et al., 1996) is similar to the previous

one but it uses modulus instead of variance. The Higuchi method (Higuchi,1988)

is a time domain method useful for non-stationary series too, but performs the

multi-scale analysis with the creation of subseries, in following iterations, with

points taken at different distances each other. In this case the similarity is de-

scribed beginning from the partial sums of the original time series (derived from

sub-series) and finding a normalized length (Higuchi length) of the sub-series. DA

(Bassingthwaighte & Raymond, 1995) is the differential version of the Aggregate

Variance method, useful for stationary series. DFA (Peng et al., 1994) is the well-

known estimator with detrend, working in the time domain. It is effective both

with stationary and non stationary time series. The Periodogram (Taqqu et al.,

1996) is a frequency domain method, suited for stationary time series, that eval-

uates the slope of the spectrum (calculated by a Discrete Fourier Trasform) near

the zero-frequency axis in a log-log plot. The value of this slope is correlated to

the Hurst’s coefficient by known relations. The function waveletFit computes the

Discrete Wavelet Transform, averages the squares of the coefficients of the trans-

form, and then performs a linear regression on the logarithm of the average, versus

the log of the scale parameter of the transform. The result should be directly

proportional to H providing an estimate for the Hurst exponent.

The reliability of these methods was tested by applying theme to synthetic

and observed time series with high signal to noise. We found that for High non-

stationary series the best estimates are provided by Higuchi method and Aggregate

Variance method. The Detrend Fluctuation Analysis works well for certain types

of nonstationary time series especially slowly varying trends and it can not provide

values for all analyzed curves in our Swift sample.
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Figure 3.4: Histograms of Hurst exponent distribution. Left panel: Higuchi method.
Right panel: Aggragate Variance method.
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Figure 3.5: Box Charts of Hurst exponent distribution. Left panel: Higuchi method.
Right panel: Aggragate Variance method.
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3.4.1 Results: far from a random walk

In our analysis we found H ∼ 0.8 (see table 3.2). This value is significantly larger

than the value of 0.5 that would correspond to variations produced by a white-

noise process indicating that the physics that produces the prompt γ emission is a

correlated random process. Periodically correlated random processes (PCRP, also

known as Cyclostationary or periodically non-stationary) is an adequate model for

describing the physical phenomena, where stochasticity and recurrence play signif-

icant role. In table 1 we report the Hurst exponent for an homogeneous Swift/BAT

light curve with known redshift using the methods mentioned above. Our result

is surprising in many respects, as mentioned in the introduction, a narrow clus-

tering of the Hurst exponent centered at 〈H〉 ∼ 0.9 with small dispersion σ ∼ 0.1

point out that the physical process is far from white noise with the characteris-

tic property of self-affinity (see table 3.1 and graphs 3.4/3.5). In mathematics,

self-affinity refers to a fractal whose pieces are scaled by different amounts in the

x– and y–directions. This means that in order to appreciate the self similarity of

these fractal objects, they have to be rescaled using an anisotropic transformation.

A structure is said (strictly) self-similar if it can be broken into arbitrarily small

pieces, each of which is a small replica of the entire structure. However, there

are several variants of the mathematical definition of self–similarity. Dealing with

erratic signals typical of GRB γ–ray light curves, we are mainly interested in the

statistical self–similarity and self–affinity where the small replica may be somewhat

distorted (for example skewed) with respect to the whole.

Higuchi Method

mean std min median max

0.87 0.09 0.60 0.88 1.01

Aggregate Variance

mean std min median max

0.94 0.10 0.60 0.94 1.13

Table 3.1: Statistical values for Hurst exponent methods. Right table: Higuchi method.
Left table: Aggregate Variance method.

3.4.2 Hurst exponents and redshift

The correlation coefficients between redshift and Hurst exponent caculated using

Higuchi method HH and Aggregate Variance HAV are rH = −0.1 and rAV = −0.15
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Figure 3.6: Hurst exponent versus redshift. Black squares: Aggregate Variance
method. Red filled points: Higuchi method.

respectively. These results can suggest that the physics that produces the prompt

emission is a correlated random process and that it is the same type of process

at any distance and at any cosmological epoch. The phenomena of interest seem

to present specific self-similarity patterns that do not evolve with redshift (see fig.

3.6).

Khan & Tanizuka (2001) analyze the time series data of QSO radio wave flux

density using Higuchi method. They have found a relationship between z and H. In

in subsequent analysis Khan & Tanizuka (2002) speculate that the relation reflects

directly the source dynamics, if there is negligible effect on the wave through its

propagation (the effect of the external noise accumulated on the original radio wave

at the time of the wave passing through the space from the cosmological distance).

The above mentioned effects seem do not to occur in GRB high energy emis-

sion that show a universal curve structure characterized by circular dependence of

similar statistical behavior in time scales having unequal duration. These nonpe-

riodic cycles occur in various time scales probably kept alive by the central engine

of GRB.
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3.4.3 Noise in the time series

The errors of the data points in the SWIFT/BAT light curves are symmetric

around the actual estimates, meaning that the distribution of the parent distribu-

tion is considered to be Gaussian.

A method to incorporate the measurements errors into a statistical method is

through Monte Carlo simulations 7. During each simulation every measurement is

replaced by a randomly selected value coming from a Gaussian distribution having

as mean the actual value of data points and as standard deviation its error. The

same procedure is then repeated 1000 times and every time the same statistical

method, intended to be used for analyzing the original data set, is applied to the

surrogated light curves yielding an ensemble of results. Based on the distribution

of the latter one can check how the measurement errors affect the method and up to

which significance level the results are robust. To taking into account these errors

and so consolidate the significance of our statistical result based on the quality

of the data, we used the method of Timmer & Koenig (1995). In this method is

randomized both the phase and the amplitude of the Fourier transform of the data

set according to the noisy nature of the process.

3.5 Discussion: universal structure

In a different approach Beloborodov et al., (2000), used Fourier analysis to study

the power spectral density of 214 long GRB, reveal that the diversity of GRB

is due to realizations of the same process which is self–similarity over a range of

time scales. The slope of the PSD was −5/3 suggesting that GRBs are related to

fully developed turbulence. The PDS slope found by Beloborodov et al., (2000)

coincides with the Kolmogorov law. The calculation of Hurst exponent in our

analysis suggest opposite conclusion. The H = 1/3 value is the boundary value

for the homogeneous Hurst exponent theoretically identified by Kolmogorov below

which efficiency enhancing turbulence may occur.

We try to investigate the reason of the two different results.

The power spectrum analysis has been conventionally used as a useful and ef-

ficient method for analyzing an irregular time series. Especially when the power

7Press,W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992, Numerical recipes
in FORTRAN. The art of scientific computing (Cambridge: University Press, c1992, 2nd ed.)
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spectrum follows the power law; the exponent α is considered to be the index for

representing the irregularity of a time series. In the actual analysis of the ex-

perimental and observational data, the power spectrum shows noisy fluctuations

superposed on the power law spectrum. In order to get a stable power law index,

we have to take an ensemble average of the power spectra over a long interval in

which the fluctuations are assumed to be statistically stationary. However, since

the statistical characteristics of fluctuations often vary for a short time interval,

it is not appropriate to take an average of the power spectra over a long interval.

Recently studies have been done about quantitative investigation of a time series

which shows non-periodic and turbulent behavior, since new ideas for describing

an irregular time series have been developed. The fractal dimension is introduced

as the index for describing the irregularity of a time series in place of the power law

index. the power spectrum follows a single power law over all ranges of frequency.

In contrast, a Kolmogorov power, spectra is valid only within the inertial range.

When a time series changes its structure in time domain across a certain charac-

teristic frequency, it is difficult to determine power law indices and a characteristic

time scale from the power spectrum.

The power spectrum analysis method intrinsically requires the ensemble average

of the power spectrum to get a stable result, so it tends to be significant for a lot

of data points. The fractal analysis is an efficient and economical alternative

to the spectral analysis for examining the irregular and self-similar time series.

Moreover the work of Arkhangelskaja (2002) show an a wide range of distribution

of fractal dimension of BATSE GRB with t90 longer than 3 seconds. The sample

of Arkhangelskaja consists of 100 GRB, comparable with our Swift sample. Our

results is in agree for the first peaks found in the fractal dimension distribution,

although our distribution is much less scatter without the presence of multiple-

modality. Fractal dimension D is tied to the Hurst exponent used to equation 2.3.

Fractal dimension for Swift GRB with known redshift is D ∼ 1.1.

3.6 Prospective

The aim of this work is to apply this method to study and statistically character-

ize γ-ray burst light curves. Hurst exponent give a quantitative measure of the

complexity of the signals and it represents a new sensitive observational parameter
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to constrain and test GRB models and their simulated light curves. The simple

relationship linking the Hurst exponent of the other methods complete the sta-

tistical description of the phenomenon in compact way and readily usable. Using

Hurst exponent we obtain information on power Spectrum and autocorrelation

function through a specific method for highly non-stationary and series and with a

limited number of sampling points. Our analysis suggest to use for short transient

phenomena the Higuchi and Aggregate Variance Method to calculate the Hurst

exponent.

3.6.1 AGN and GRB

The H exponent is a time profile characteristic which is sensitive to change of

shape, if there are two bursts with the same form of time profile but different

duration, the H indexes of these bursts will be the same. This properties suggest

us, for example, to comparison different astrophysical object: AGN and GRB.

Ghisellini (2004) believe that the radiation that we receive from (GRBs) and radio

loud Active Galacti Nuclei (AGNs) originates from the transformation of bulk

relativistic motion into random energy. Mechanisms to produce, collimate and

accelerates the jets in these sources are uncertain, and it may be fruitful to compare

the characteristics of both class of sources in search of enlightening similarities. He

discuss the way in which the energy in bulk relativistic motion can be transformed

into beamed radiation, and consider the possibility that both classes of sources

can work in the same way, namely by an intermittent release of relativistic plasma

at the base of the jet: shells ejected with slightly different velocities collide at

some distance from the central engine, dissipating part of their kinetic energy, and

keeping the rest to power the extended radio lobes (in AGNs) or to produce the

afterglow (in GRBs).

In the work of Gliozzi et al. (2002) the Hurst exponent for the X-ray emission

in Ark 564 is H ∼ 0.3. A similar analysis was performed by Greenhough and col-

laborators (2002) on RXTE light curves of three galactic objects: the Crab nebula,

Cygnus X-1 and the micro-quasar GRS 1915+105. The three mentioned object

have a Hurst exponent consistent with the values found for Ark 564. Moreover, as

reported in § Khan et al., (2001) analyze the time series data of QSO radio wave

flux density using Higuchi method. They have found a relationship between z and

H
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Considering H ∼ 0.9 for BAT/Swift GRB light curve and the above mentioned

H values, at this stage we can only speculate that the prompt γ–ray emission is

produced by a mechanism not exactly random (accretion black-hole system), which

reflects the work done by the central engine (quasi-periodic oscillation) during the

burst generation. The explosions at lowest energy may follow a more random

pattern with more degrees of freedom due to the properties of the surrounding

cosmological environment.

The Gamma-Ray Large Area Telescope (GLAST) is able to collect more data

and, thanks to its short dead time, it will record GRB signals from the deep Uni-

verse with a temporal resolution never reached before. The light curves of the

GRB will be resolved up to the millisecond time scale, and their structure will

be better understood. Finally the optical monitoring system like TORTORA or

FAVOR (§5.2) able to capture fast transient with high time resolution sheds new

light on the intrinsic properties of these objects providing multi-frequency observa-

tions characterizing the internal dynamics of the engine and its physical properties.

Here we propose to characterize transient events and variable phenomena using this

non-linear analysis method with the advantage that various astrophysical object

(AGN, GRB) can be compared.

Table 3.2

GRB redshift HH Std HAV Std

050126 1.29 0.95 0.04 0.93 0.05

050223 0.59 0.88 0.03 0.95 0.04

050315 1.95 0.97 0.02 0.95 0.04

050318 1.44 0.87 0.03 0.59 0.05

050319 3.24 0.84 0.02 0.83 0.05

050401 2.9 0.76 0.05 0.97 0.04

050416A 0.65 0.79 0.09 1.13 0.15

050502A 3.79 0.79 0.04 0.94 0.05

050505 4.27 0.9 0.02 0.94 0.05

050525 0.61 0.88 0.03 1.04 0.06

050603 2.82 0.8 0.04 1.12 0.08

050724 0.26 0.66 0.02 0.84 0.05

Continued on next page
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Table 3.2 – continued from previous page

GRB redshift HH Std HAV Std

050730 3.97 0.87 0.04 0.92 0.05

050801 1.56 0.94 0.01 0.87 0.04

050814 5.3 0.82 0.04 0.88 0.07

050820A 2.61 0.86 0.04 0.76 0.06

050824X 0.83 0.82 0.05 0.79 0.06

050826 0.3 0.82 0.04 0.88 0.05

050904 6.29 0.88 0.04 0.95 0.04

050908 3.34 0.93 0.03 1.04 0.07

050922C 2.2 0.95 0.02 1.01 0.06

051016B 0.94 0.8 0.03 0.96 0.07

051109A 2.35 0.91 0.02 0.9 0.05

051111 1.55 1.01 0.01 1.01 0.04

060115 3.53 0.95 0.03 0.91 0.04

060124 2.3 0.83 0.02 0.99 0.06

060202 0.78 0.84 0.05 0.89 0.06

060206 4.05 0.88 0.02 0.94 0.05

060210 3.91 0.93 0.02 0.91 0.06

060223A 4.41 0.96 0.02 0.93 0.04

060418 1.49 0.96 0.01 0.97 0.04

060502A 1.51 0.6 0.03 0.65 0.08

060510B 4.9 0.87 0.03 0.94 0.05

060512 0.44 0.88 0.03 0.85 0.06

060522 5.11 0.81 0.03 0.9 0.06

060604 2.68 0.68 0.04 0.79 0.06

060526 3.22 0.86 0.02 0.79 0.07

060605 3.78 0.91 0.05 0.84 0.06

060607A 3.08 0.96 0.02 0.94 0.05

060614 0.13 0.9 0.01 0.98 0.04

060707 3.42 0.91 0.03 0.9 0.06

060714 2.71 0.9 0.04 0.93 0.05

060729 0.54 0.93 0.02 0.89 0.05

Continued on next page
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Table 3.2 – continued from previous page

GRB redshift HH Std HAV Std

060814 0.84 0.98 0.02 0.98 0.03

060904B 0.7 0.93 0.02 0.81 0.06

060906 3.69 0.91 0.02 0.99 0.05

060908 2.43 0.85 0.03 1.03 0.05

060926 3.2 0.82 0.02 1.07 0.09

060927 5.47 0.94 0.01 0.93 0.03

061006 0.44 0.63 0.04 0.82 0.04

061007 1.26 0.94 0.01 1 0.04

061110A 0.76 0.85 0.03 0.99 0.04

061110B 3.44 0.84 0.03 0.84 0.05

061121 1.31 0.95 0.01 1 0.1

061126 1.16 0.86 0.03 1.04 0.05

061222B 3.36 0.95 0.03 0.91 0.06

070208 1.17 0.82 0.03 0.8 0.06

070306 1.5 0.96 0.03 0.87 0.06

070318 0.84 0.99 0.01 0.94 0.04

070411 2.95 0.9 0.04 0.97 0.05

070419A 0.97 0.64 0.03 0.81 0.07

070506 2.31 0.92 0.01 1.09 0.1

070529 2.5 0.75 0.02 0.92 0.06

070611 2.04 0.84 0.04 0.94 0.06

070612A 0.62 0.89 0.04 0.89 0.06

070714B 0.92 0.75 0.03 0.65 0.02

070721B 3.63 0.94 0.03 0.86 0.06

070802 2.45 0.69 0.03 0.99 0.07

070810A 2.17 0.96 0.01 1.03 0.06

071003 1.6 0.97 0.01 0.92 0.04

071010A 0.98 0.82 0.05 0.96 0.1

071010B 0.95 0.95 0.01 1.08 0.06

071020 2.15 0.85 0.06 1.11 0.1

071031 2.69 0.82 0.03 0.8 0.06

Continued on next page
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Table 3.2 – continued from previous page

GRB redshift HH Std HAV Std

071117 1.33 1 0.01 1.09 0.11

071122 1.14 0.71 0.03 0.81 0.06

080129 4.35 0.76 0.04 0.85 0.07

080210 2.64 0.96 0.01 1.01 0.05

080310 2.42 0.89 0.03 0.82 0.06

080319B 0.94 0.91 0.02 1.01 0.04

080319C 1.95 0.91 0.02 1.07 0.06

080330 1.51 0.88 0.02 0.76 0.04

080411 1.03 0.75 0.05 0.98 0.04

080413 2.43 0.85 0.02 0.94 0.03

080413B 1.1 0.93 0.03 1.1 0.09

080430 0.77 0.87 0.04 1.09 0.08

080520 1.54 0.7 0.03 1.08 0.17

080603B 2.69 0.91 0.01 0.94 0.04

080604 1.42 0.8 0.04 0.89 0.06

080605 1.64 0.93 0.01 1.05 0.05

080607 3.04 0.92 0.02 1 0.04

080707 1.23 0.83 0.02 0.83 0.04

080710 0.84 0.78 0.07 0.84 0.05

080721 2.59 0.93 0.02 0.98 0.05

080804 2.2 0.98 0.02 1.02 0.05

080805 1.5 0.98 0.02 0.98 0.04

080810 3.35 0.91 0.01 0.98 0.04

080905B 2.37 0.85 0.02 0.88 0.05

080913 6.7 0.72 0.02 1.04 0.08

080916A 0.69 0.98 0 0.99 0.03

080928 1.69 0.75 0.05 1.04 0.05

081007 0.53 0.92 0.01 1.07 0.08

081008 1.97 0.96 0.04 0.95 0.04

081028 3.04 0.9 0.05 0.92 0.06

081029 3.85 0.73 0.04 0.79 0.06

Continued on next page
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Table 3.2 – continued from previous page

GRB redshift HH Std HAV Std

081118 2.58 0.92 0.04 0.91 0.06

081121 2.51 0.8 0.01 1.02 0.05

081203 2.1 0.95 0.01 0.99 0.04

081222 2.77 0.96 0.01 1.05 0.04
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Chapter 4

Investigation of γ-ray bursts with

known redshifts: Statistical

analysis of parameters.

Over ten and a half years, from February 28, 1997, to December 31, 2008, ∼
580 GRBs are discovered and the redshifts are determinated for ∼ 150 events 1.

Such a vast volume of data already allows one to analyze general properties of

GRBs, for example, to search for correlations between their particular character-

istics. Such studies have already been carried out as the observational data were

accumulated. This has already motivated several groups to perform a systematic

analysis of observational data from various GRB observational parameters (see §2
for an exhaustive review about the detected GRB correlations).

4.1 Introduction

In this work we analyze statistical properties of 87 long-GRBs with confirmed red-

shift and well-sampled light curves observed in R-band (see table 4.3). The optical

data gathered here show a cosmological evolution trend on various intrinsic GRB

features. In particular, we find that the optical burst duration, the isotropic opti-

cal luminosity at the observed maximum and the time integrated isotropic energy

are all redshift dependent. The lack of correlations between the redshift and the

observational GRB quantities (i.e. optical fluence and observed peak flux) points

1http://www.mpe.mpg.de/ jcg/grbgen.html
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out that the detected trends are not affect by significant selection effects. This

fact suggests that the intrinsic optical afterglow luminosity follows the cosmologi-

cal evolution of a circumburst environment which determines the optical afterglow

luminosity rate. It is interesting to note that the similar analysis performed for

the main parameters of the γ-ray emission show no evidence for a hypothetical

redshift-dependent effect according to which the characteristics of a GRB-event

depend on its location in the universe. Furthermore, there are correlations be-

tween the luminosity, the total energy and the duration of the γ-ray and optical

emission separately, which can arise from universal features of the observed light

curves. The linear analysis performed on the observational properties of the high

energy γ–ray emission fully confirm the nonlinear analysis investigation developed

in the previous chapter.

4.1.1 Subject of Investigation

The goal of this paper is a search for possible regularities in GRB properties

through a statistical analysis of their characteristic parameters using the fullest

possible sample of objects. As the studied quantities, we chose the optical and

γ-ray emission characteristics obtained from observational data under a minimum

of model assumptions. The crucial point was a study of both directly measured

parameters and those reduced to the proper GRB frame, which eliminated the

effects of cosmological factors. By the proper frame we mean the frame associated

with a close observer located outside the object itself but at a sufficiently small

distance from it. The light propagation effects due to the relativistic motion of the

emitting matter (see, e.g., the review by Piran (2005) and references therein) are

identical for both close and ground-based observers; as a result, the descriptions

of the physical processes in these frames are equivalent. The difference between

them lies only in the allowance for the cosmological GRB localization. Our sample

includes 87 GRBs, from GRB 970228 to GRB 081203, with known redshifts and

well-sampled optical afterglows observed in the R-band (Due to the much denser

sampling in the Cousin R- band). These GRBs are characterized by the set of

parameters listed below:

The redshift z 2 was taken from publication devoted to spectroscopic obser-

vation.

2http://www.mpe.mpg.de/ jcg/grbgen.html
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The observed optical peak flux Fopt was obtained using the calibration of

Fukugita et al. (1995) and corrected for galactic extinction (based on the map of

Schlegel et al. (1998)) and for the brightness of the host galaxy (if this value is

available). Host galaxy reddening correction AR is not applied; it appears to have

minimal effect on the parameter distribution.

Fopt = 1568× (2.15× 10−9 × 10−0.4×mag), [erg s−1cm−2] (4.1)

The isotropic equivalent Luminosity Lopt optical peaks is related to the

peak optical flux Fopt by

Lopt = 4πκopt(z)D2
l (z)Fopt (4.2)

where D2
l (z) is the luminosity distance for the cosmological standard model and

κopt(z) is the cosmological κ correction that takes into account the transformation

of the R passband in the proper GRB frame:

κopt =

∫ νR1
(1+z)
νR0

(1+z)

ν−βdν∫ νR1
νR0

ν−βdν
=

1

(1 + z)1−β (4.3)

Here, νR0 and νR1 are the frequency boundaries of the R band and β is the

power-law index in the optical spectrum Fν ∝ ν−β. In the absence of information

about β, we used β = 0.7, which is close to its statistically mean estimate, for the

specific GRB.

The optical fluence Sopt was determined by numerically integrating the after-

glow light curve in the interval from the earliest observation to the latest one with

a power-law interpolation of the flux in the segments between the experimental

points. Since only part of the optical afterglow can be recorded in practice, this

parameter is a lower limit for the fluence.

The isotropic equivalent of the total optical energy in R band Eopt in

the rest frame of the source was determinates from the optical fluence Sopt using

the relation:
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Eopt =
4πκopt(z)D2

l (z)Sopt
(1 + z)

(4.4)

The optical duration t90,opt was determined as the time since the afterglow

detection during which 90 % of the optical fluence was received.

The prompt optical emission in the proper frame T90,opt was calculated as

t90,opt/(1 + z)

The delay of the optical peak relative to the time of burst detection in γ-ray,

tpeak, and the corresponding delay in the proper frame Tpeak = tpeak/(1 + z)

The power–law index α of the flux decay with time in the dependence F ∝
t−α at the initial observed afterglow phase. Combined residual test are applied to

obtain the best-fit power law at early stage.

The γ-ray fluence Sγ was determined from published observations by reduc-

ing them to the energy range 15–150 keV. In this case, only the time-integrated

(averaged) γ-ray spectrum was used. The isotropic equivalent of the peak

γ–ray luminosity in the energy range 15–150 keV for the proper burst frame

Liso was calculated from the peak γ-ray flux using the formula

Liso = 4πκγ(z)D2
l (z)Fγ (4.5)

where κγ(z) is the k correction defined as (see, e.g., Bloom et al. 2001)

kγ(z) =

∫ E2/(1+z)
E1/(1+z) FE(E)dE∫ e2

e1
FE(E)dE

(4.6)

Here, FE is the spectral flux density, e1 and e2 are the lower and upper bound-

aries of the energy range in which Fγ was obtained, E1 and E2 are the boundaries

of the energy range of interest in the proper burst frame.

The isotropic equivalent of the total γ–ray energy (the energy range 15–

150 keV in the proper burst frame) Eiso was derived from the γ–ray fluence using

the formula

Eiso =
4πκγ(z)D2

l (z)Sγ
(1 + z)

(4.7)
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As the GRB prompt emission duration tγ, we used the universally accepted

parameter t90 that is published in the results of γ-ray observations.

The GRB duration in the proper frame was determined from the relation Tγ =

tγ/(1 + z) without applying any corrections for the change in the energy range.

The subsequent work was carried out with two samples: the observed one or

the sample of observed parameters (z, Fopt, Sopt, t90opt, tpeak, Fγ, Sγ, tγ, α) and the

intrinsic one or the sample of intrinsic parameters (z, Lopt, Eopt, T90opt, Tpeak, Liso,

Eiso, Tγ, α) Additional optical parameters are added to our investigation using the

interpolated/extrapoleted light curves. We consider the extrapolated optical

luminosity Lexp immediately after the corresponding duration of the prompt γ-

ray emission in the rest frame of the source. The extrapolation is performed using

the slope α calculated at early stage. Considering Ltot parameter, we extrapolate

the total energy Etot and total time duration Ttot of the optical afterglow.

To study in detail the dynamics of external shocks and their relation to the

interstellar medium, do not take into account the optical peaks that occurred

simultaneously with the prompt γ–ray emission phases (e.g, GRB 990123, GRB

050904, GRB 080319B). In 11 GRBs in our sample we detect well-observed peaks

during the afterglow evolution when the γ–ray activity is ended or is below the

detection threshold of satellites instruments. For this sub-sample of objects the

peak luminosity is indicated with Lpeak symbol (§4.3).

4.1.2 Statistical Analysis of Parameters

We determined the correlation coefficients for the parameters in various pair com-

binations and performed a linear least-squares fitting. (for the correlations with

Pearson correlation coefficients r > 0.5). The differences in measurement accuracy

were taken into account by weighting, where possible. Unfortunately, for some

reasons, this procedure did not always yield satisfactory results. In particular,

since we used a large number of sources of data obtained by different observa-

tional groups and published at different times, it was difficult to ensure that the

confidence probabilities of the error estimates for all quantities coincided (e.g., for

the 1 σ level). For some of the measurements, the errors were not published at

all (in these cases, the relative error was taken to be 10 %). In addition, since

the observations were carried out with different instruments using different tech-

niques, the spread in errors is quite significant (up to an order of magnitude). For
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this reason, the result was occasionally shifted to points with particularly small

declared errors that did not correspond to the actual experimental accuracy. For

example, in many cases, hundredths or even thousandths of a magnitude are given

as the errors of optical observations, although the differences between the bright-

ness estimates simultaneously obtained by different groups reach several tenths

of a magnitude. The latter value probably corresponds to the actual measure-

ment accuracy. Finally, even if the error estimates are comparatively reliable, the

spread in parameters can exceed noticeably the errors themselves and weighting

will change the formal regression accuracy only slightly, leading, nevertheless, to

a distortion of the correlation coefficient due to the influence of several estimates

with small formal errors. The results of our analysis of the pair correlations be-

tween the parameters of the observed and intrinsic samples are presented in Tables

4.1 and 4.2, respectively. The linear regression coefficients for the most significant

correlations and the significance levels (SL), the probabilities of the errors of the

first kind when the null hypothesis about the complete lack of correlation (r = 0)

between the parent populations of the corresponding parameters is rejected, are

given in each corresponding plot.

Table 4.2: Pearson correlation coefficients for the observed GRB parameters.
The calculation is performed in logarithmic values of the quantities. The observed quan-
tities show a weaker correlation, which is indicative of the actual physical relationships
between the characteristics of afterglows in their proper reference frame.

log Fopt log Sopt log topt log tpeak log Fiso log Siso log tiso

z 0.15 -0.13 -0.40 -0.25 -0.51 -0.41 -0.01 -0.11

log Fopt 0.57 -0.14 -0.74 -0.09 0.01 0.02 -0.04

log Sopt 0.65 0.01 0.22 0.35 0.26 0.24

log topt 0.57 0.37 0.35 0.25 0.36

log tpeak 0.38 0.34 0.14 0.43

log Fγ 0.73 -0.06 0.47

log Sγ 0.42 0.31

log tγ -0.15
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4.1.3 Correlations between Optical Afterglow Character-

istics

Significant correlations were found between the total energies (Eopt) and peak lu-

minosity (Lopt) of afterglows (r = 0.78), between the peak luminosity and the

times of the peak Tpeak, (r = -0.79), between the peak luminosity and durations of

afterglows (T90opt, r = -0.65). The analogues of these parameters in the observed

quantities show a weaker correlation, which is indicative of the actual physical rela-

tionships between the characteristics of afterglows in their proper reference frame.

For some of the parameters (primarily for Lopt and Eopt), similar relationships

were established when smaller GRB samples were analyzed (Beskin et al. 2000;

Bartolini et al. 2001; Greco et al. 2007). As was noted above, a overwhelming

majority of the peak luminosity (or fluxes in the observed sample) actually cor-

respond only to more or less early afterglow flux measurements. In other words,

when the detection times of the optical emission from a GRB change, we observe

different phases of its afterglow. In this case, it would be natural to assume that

the detected correlations result from a comparative universality of the power-law

pattern of these curves, L(T ) ∝ T−α. In particular, this is directly confirmed by

the high significance of the logLopt vs log Tpeak correlation.

4.1.4 Correlations between γ-Ray Emission Parameters

Another type of clearly revealed correlation is the relationship between the γ-ray

luminosity and total energies of bursts

By analogy with the above correlations, it would be natural to assume that

these correlations also result from a universal pattern of the γ-ray light curves.

Suppose that they are in the shape of pulses with a fast rise and an exponential

decay (FRED pulses), L(T) ∝ L0 exp(−T/T0), where L0 and T0 are the normaliza-

tion coefficients. Then, Eiso,FRED = [L(Ti)–L(Tf )]T0, where the subscripts i and

f correspond to the initial and final times of the exponential pulse decay and the

time is measured from some zero point. If Tf is sufficiently large (L(Tf ) −→ 0),

then log Eiso,FRED ≈ logL(Ti) + logT0. It is easy to verify that this relationship

corresponds to the detected one at a characteristic time T0 ≈ 1 sec . Indeed,

according to Piran (2005), this value is close to the mean pulse duration. Thus,

if the above assumption is valid, then the brightest burst pulse makes a major
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contribution to the γ-ray energy of the bursts with detected afterglows.

4.1.5 Optical Clusterization analysis

The clusterization phenomena in optical light curve at middle time after the main

γ–ray emission was discovered by Nardini et al. (2006); Liang et a. (2006); Kann

et al. (2008) and by Gendre et al. (2008) who extended this study towards in-

frared wavelengths. Hints of standardization of the X-ray afterglow luminosity

were first discovered by Boër & Gendre (2000), who found evidences for clustering

in the X-ray luminosity of BeppoSAX afterglows. The cluster is an other impor-

tant observational clue who that suggests that the afterglow light curves have a

universal structure. One scheme might be that GRB jets are initially structured
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Figure 4.1: Standard deviation vs time in rest frame of the source.

(e.g, Rossi et al. 2002), and the early γ-ray and X-ray properties are sensitive to

the observational viewing angle. The jet structure tends to smear out with time,

so that at later times, the outflow is more isotropic and the viewing angle effect

no longer plays an essential role (see §6). We interpolate the observational data

and calculate the average bin-luminosity at different epochs. The average of the

bin reported in table 4.2, grows exponentially according to the time of sampling

and afterglow variability. The shocks with the interstellar medium should follow a

smoother behavior than the internal shock interactions, so sudden changes in the
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intrinsic afterglow variability do not expect. The graph 4.1 shows the standard

deviation trends of the of the bin luminosity during the time for the extrapolated

light optical curves. A substantial decrease in standard deviation are found at

t=10 min and t > 100 min.

Our sample do not show statistical evidence for bimodality luminosity distri-

bution claim by Nardini et al. (2006; 2008); Liang et al. (2006) and Kann et

al. (2008) in any analyzed epoch. Also the ultra-luminous GRBs (GRB 080319B,

GRB 050904, GRB 061007 and GRB 080319B) show intrinsic standard behavior

at middle/late time stage of their afterglow decay.

Table 4.3: Statistical parameters for interpolated bin-luminosity at various epochs

time N mean Std sum minimum median maximum

0.15 6 47.05 0.95 282.30 45.54 47.23 47.94

0.17 8 47.14 0.92 377.09 45.51 47.20 48.05

0.19 9 47.04 0.98 423.37 45.49 46.91 48.24

0.22 11 47.02 0.95 517.20 45.46 46.89 48.43

0.24 14 47.00 0.93 657.99 45.44 46.97 48.62

0.27 15 47.04 0.96 705.56 45.41 46.89 48.80

0.31 17 46.99 0.94 798.89 45.39 46.84 48.99

0.34 21 47.00 0.84 986.91 45.36 46.89 48.99

0.39 22 46.93 0.82 1032.43 45.34 46.81 48.86

0.43 23 47.02 0.97 1081.40 45.31 46.77 49.62

0.49 24 47.09 1.05 1130.11 45.29 46.86 49.57

0.55 26 46.99 1.05 1221.86 45.26 46.84 49.45

0.61 28 46.89 1.03 1312.82 45.24 46.78 49.31

0.69 28 46.85 1.01 1311.92 45.21 46.73 49.31

0.77 28 46.82 0.99 1311.00 45.19 46.69 49.31

0.87 29 46.74 0.99 1355.48 45.16 46.65 49.32

0.98 30 46.77 1.03 1403.22 45.14 46.62 49.49

1.10 31 46.77 1.00 1449.75 45.11 46.65 49.66

1.23 32 46.70 1.01 1494.26 45.09 46.57 49.71

1.38 34 46.74 0.99 1589.02 45.06 46.58 49.50

1.55 36 46.69 0.95 1680.72 45.03 46.58 49.30

1.75 38 46.61 0.94 1771.14 44.97 46.56 49.09

1.96 40 46.61 0.91 1864.35 44.94 46.56 48.98

2.20 41 46.53 0.92 1907.68 44.91 46.48 48.88

2.47 43 46.42 0.94 1995.99 44.86 46.39 48.79

2.78 43 46.37 0.93 1993.98 44.84 46.31 48.69

3.12 44 46.30 0.91 2037.22 44.83 46.16 48.59

3.51 45 46.22 0.91 2080.05 44.69 46.10 48.50

3.94 46 46.18 0.88 2124.25 44.76 46.10 48.40

4.43 47 46.15 0.86 2169.04 44.69 46.10 48.30

4.97 49 46.07 0.85 2257.52 44.63 46.07 48.21

5.59 50 46.05 0.85 2302.59 44.57 46.01 48.11

6.27 50 46.00 0.84 2299.84 44.50 45.91 48.01

7.05 50 45.95 0.84 2297.53 44.44 45.86 47.92

7.92 50 45.90 0.84 2295.20 44.38 45.84 47.82

8.89 51 45.84 0.83 2337.68 44.31 45.74 47.73

9.99 53 45.78 0.85 2426.31 44.25 45.67 47.63

11.22 53 45.74 0.85 2424.00 44.18 45.63 47.53

12.61 53 45.69 0.86 2421.65 44.12 45.58 47.44

14.16 53 45.65 0.85 2419.29 44.05 45.52 47.34

15.91 53 45.60 0.84 2417.01 43.98 45.42 47.24

17.87 55 45.60 0.86 2507.96 43.91 45.36 47.42

20.08 55 45.56 0.87 2505.81 43.85 45.37 47.39

22.55 56 45.46 0.98 2545.74 42.04 45.31 47.37

25.33 57 45.43 0.96 2589.76 42.11 45.29 47.28

28.46 56 45.40 0.96 2542.42 42.17 45.30 47.23

31.97 56 45.35 0.95 2539.71 42.17 45.26 47.19

35.91 57 45.29 0.92 2581.27 42.17 45.21 47.01

Continued on next page
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Table 4.3 – continued from previous page

time(min) N mean Std sum minimum mediam maximum

40.34 57 45.23 0.92 2578.24 42.19 45.12 46.86

45.31 58 45.18 0.91 2620.52 42.23 45.11 46.88

50.90 58 45.12 0.90 2617.16 42.28 45.01 46.86

57.17 59 45.07 0.89 2659.20 42.32 45.04 46.76

64.23 61 45.04 0.87 2747.38 42.37 45.07 46.65

72.15 61 44.99 0.85 2744.69 42.41 45.04 46.54

81.04 62 44.96 0.84 2787.73 42.46 45.05 46.47

91.04 63 44.92 0.83 2829.99 42.50 45.04 46.54

102.27 63 44.88 0.83 2827.68 42.49 44.97 46.61

114.88 64 44.85 0.84 2870.47 42.48 44.91 46.68

129.04 64 44.79 0.84 2866.47 42.47 44.85 46.75

144.96 64 44.75 0.84 2863.75 42.46 44.81 46.74

162.83 64 44.69 0.84 2860.37 42.30 44.76 46.68

182.92 67 44.64 0.84 2990.82 42.12 44.77 46.62

205.47 67 44.58 0.84 2987.08 41.95 44.72 46.57

230.81 68 44.51 0.84 3026.83 41.77 44.60 46.51

259.28 68 44.47 0.84 3023.65 41.60 44.57 46.45

291.25 69 44.41 0.84 3064.49 41.42 44.56 46.40

327.17 70 44.37 0.84 3105.84 41.25 44.52 46.34

367.52 70 44.32 0.84 3102.07 41.07 44.45 46.29

412.85 70 44.27 0.86 3099.19 40.90 44.43 46.31

463.76 71 44.24 0.86 3141.11 40.72 44.40 46.23

520.95 73 44.16 0.86 3223.66 40.55 44.24 46.15

585.20 74 44.10 0.86 3263.58 40.37 44.26 46.10

657.37 74 44.04 0.87 3258.79 40.20 44.10 46.05

738.44 76 43.99 0.87 3343.06 40.02 44.04 46.00

829.50 76 43.92 0.88 3337.81 39.84 43.96 45.94

931.80 78 43.86 0.89 3420.83 39.67 43.89 45.95

1046.72 79 43.79 0.90 3459.15 39.49 43.89 45.91

1175.80 79 43.71 0.93 3453.09 39.32 43.82 45.87

1320.80 79 43.65 0.95 3448.16 39.14 43.70 45.84

1483.69 79 43.58 0.99 3443.16 38.97 43.61 45.80

1666.67 79 43.52 1.04 3437.94 38.79 43.55 45.76

0.15 6 47.05 0.95 282.30 45.54 47.23 47.94

0.17 8 47.14 0.92 377.09 45.51 47.20 48.05

0.19 9 47.04 0.98 423.37 45.49 46.91 48.24

0.22 11 47.02 0.95 517.20 45.46 46.89 48.43

0.24 14 47.00 0.93 657.99 45.44 46.97 48.62

0.27 15 47.04 0.96 705.56 45.41 46.89 48.80

0.31 17 46.99 0.94 798.89 45.39 46.84 48.99

0.34 21 47.00 0.84 986.91 45.36 46.89 48.99

0.39 22 46.93 0.82 1032.43 45.34 46.81 48.86

0.43 23 47.02 0.97 1081.40 45.31 46.77 49.62

0.49 24 47.09 1.05 1130.11 45.29 46.86 49.57

0.55 26 46.99 1.05 1221.86 45.26 46.84 49.45

0.61 28 46.89 1.03 1312.82 45.24 46.78 49.31

0.69 28 46.85 1.01 1311.92 45.21 46.73 49.31

0.77 28 46.82 0.99 1311.00 45.19 46.69 49.31

0.87 29 46.74 0.99 1355.48 45.16 46.65 49.32

0.98 30 46.77 1.03 1403.22 45.14 46.62 49.49

1.10 31 46.77 1.00 1449.75 45.11 46.65 49.66

1.23 32 46.70 1.01 1494.26 45.09 46.57 49.71

1.38 34 46.74 0.99 1589.02 45.06 46.58 49.50

1.55 36 46.69 0.95 1680.72 45.03 46.58 49.30

1.75 38 46.61 0.94 1771.14 44.97 46.56 49.09

1.96 40 46.61 0.91 1864.35 44.94 46.56 48.98

2.20 41 46.53 0.92 1907.68 44.91 46.48 48.88

2.47 43 46.42 0.94 1995.99 44.86 46.39 48.79

2.78 43 46.37 0.93 1993.98 44.84 46.31 48.69

3.12 44 46.30 0.91 2037.22 44.83 46.16 48.59

3.51 45 46.22 0.91 2080.05 44.69 46.10 48.50

3.94 46 46.18 0.88 2124.25 44.76 46.10 48.40

4.43 47 46.15 0.86 2169.04 44.69 46.10 48.30

4.97 49 46.07 0.85 2257.52 44.63 46.07 48.21

5.59 50 46.05 0.85 2302.59 44.57 46.01 48.11

6.27 50 46.00 0.84 2299.84 44.50 45.91 48.01

7.05 50 45.95 0.84 2297.53 44.44 45.86 47.92

7.92 50 45.90 0.84 2295.20 44.38 45.84 47.82

8.89 51 45.84 0.83 2337.68 44.31 45.74 47.73

Continued on next page
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Table 4.3 – continued from previous page

time(min) N mean Std sum minimum mediam maximum

9.99 53 45.78 0.85 2426.31 44.25 45.67 47.63

11.22 53 45.74 0.85 2424.00 44.18 45.63 47.53

12.61 53 45.69 0.86 2421.65 44.12 45.58 47.44

14.16 53 45.65 0.85 2419.29 44.05 45.52 47.34

15.91 53 45.60 0.84 2417.01 43.98 45.42 47.24

17.87 55 45.60 0.86 2507.96 43.91 45.36 47.42

20.08 55 45.56 0.87 2505.81 43.85 45.37 47.39

22.55 56 45.46 0.98 2545.74 42.04 45.31 47.37

25.33 57 45.43 0.96 2589.76 42.11 45.29 47.28

28.46 56 45.40 0.96 2542.42 42.17 45.30 47.23

31.97 56 45.35 0.95 2539.71 42.17 45.26 47.19

35.91 57 45.29 0.92 2581.27 42.17 45.21 47.01

40.34 57 45.23 0.92 2578.24 42.19 45.12 46.86

45.31 58 45.18 0.91 2620.52 42.23 45.11 46.88

50.90 58 45.12 0.90 2617.16 42.28 45.01 46.86

57.17 59 45.07 0.89 2659.20 42.32 45.04 46.76

64.23 61 45.04 0.87 2747.38 42.37 45.07 46.65

72.15 61 44.99 0.85 2744.69 42.41 45.04 46.54

81.04 62 44.96 0.84 2787.73 42.46 45.05 46.47

91.04 63 44.92 0.83 2829.99 42.50 45.04 46.54

102.27 63 44.88 0.83 2827.68 42.49 44.97 46.61

114.88 64 44.85 0.84 2870.47 42.48 44.91 46.68

129.04 64 44.79 0.84 2866.47 42.47 44.85 46.75

144.96 64 44.75 0.84 2863.75 42.46 44.81 46.74

162.83 64 44.69 0.84 2860.37 42.30 44.76 46.68

182.92 67 44.64 0.84 2990.82 42.12 44.77 46.62

205.47 67 44.58 0.84 2987.08 41.95 44.72 46.57

230.81 68 44.51 0.84 3026.83 41.77 44.60 46.51

259.28 68 44.47 0.84 3023.65 41.60 44.57 46.45

291.25 69 44.41 0.84 3064.49 41.42 44.56 46.40

327.17 70 44.37 0.84 3105.84 41.25 44.52 46.34

367.52 70 44.32 0.84 3102.07 41.07 44.45 46.29

412.85 70 44.27 0.86 3099.19 40.90 44.43 46.31

463.76 71 44.24 0.86 3141.11 40.72 44.40 46.23

520.95 73 44.16 0.86 3223.66 40.55 44.24 46.15

585.20 74 44.10 0.86 3263.58 40.37 44.26 46.10

657.37 74 44.04 0.87 3258.79 40.20 44.10 46.05

738.44 76 43.99 0.87 3343.06 40.02 44.04 46.00

829.50 76 43.92 0.88 3337.81 39.84 43.96 45.94

931.80 78 43.86 0.89 3420.83 39.67 43.89 45.95

1046.72 79 43.79 0.90 3459.15 39.49 43.89 45.91

1175.80 79 43.71 0.93 3453.09 39.32 43.82 45.87

1320.80 79 43.65 0.95 3448.16 39.14 43.70 45.84

1483.69 79 43.58 0.99 3443.16 38.97 43.61 45.80

1666.67 79 43.52 1.04 3437.94 38.79 43.55 45.76

4.2 Cosmological evolution of the optical after-

glow properties

Average cosmological evolution trend may be appreciated during particular time of

the afterglow emission. In the following analysis we show that the intrinsic optical

afterglow luminosity follows a redshift-dependent effect according to which the

characteristics of the early afterglow event depend on its location in the universe.

The random detected peak luminosity in our sample have a dependence on

redshift ∼ 0.56.

This interesting picture invites us to divide the total sample into three parts:

76



statistical analysis of parameters

4 2 4 4 4 6 4 8 5 0
4 6

4 8

5 0

5 2

log
(E op

t) [
erg

]

l o g ( L o p t )  [ e r g / s ]
0 1 2 3 4 5 6

4 0

4 2

4 4

4 6

4 8

5 0

log
(L op

t) [
erg

/se
c]

l o g ( T p e a k )  [ s ]

Figure 4.2: Left: Eopt vs Lopt. Eopt = (30.67± 16.08)× L(0.41±0.35)
opt

Right: Lopt vs Tpeak. Lopt = (48.26± 0.23)× T (−0.89±0.08)
peak

I. Early Optical Luminosity: Lopt,<100, luminosity detected in the time range

of the rest frame of the source in t < 100 sec.

II. Middle Optical Luminosity: Lopt,100−6000, luminosity detected in the time

range of the rest frame of the source in 100sec < t < 6000 sec.

III. Late Optical Luminosity: Lopt,>6000, luminosity detected in the time range of

the rest frame of the source in 1000sec < t < 6000 sec.

The time duration is chosen in order to obtain approximately the same number

of events in each subsample and in according to the clusterization phases of the

afterglow (see graph 1.1) At early stage the trend correlation is r = 0.27 for

30 points, at middle time r=0.78 (SL=6.50 × 10−8) for 33 GRB and finally the

correlation coefficient r = 0.63 for 24 (SL=7.74× 10−4) GRB at late time.

4.3 Luminosity optical peak and cosmological

evolution

In our sample there are 11 well-detected peaks that are not coincident with the

work of the γ-ray activity phase. To date: GRB 050730, GRB 060206, GRB

060210,GRB 060605, GRB 060904B, GRB 060926 GRB 070411A, GRB 070419A,

GRB 071010A, GRB 071010B, GRB 080330. Their peak structure is far from ’γ–

ray afterglow’ (extended late time emission) They are important tool to study the
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Figure 4.3: Left: Lopt vs z. The sample is divided in three sub-sample in according to
the peak time in the rest frame of the source.
Right: Lpeak vs z. Lpeak = (44.62± 2.90)× z(0.63±0.87)

properties of the interstellar medium and the physical mechanism of the external

shock emission during the transition phases. The maximum peak Luminosity Lpeak

for these objects have a strong correlation with the redshift, r=0.92 (SL = 5.46×
10−5).

Table 4.4: GRB sample with known spectroscopic redshift and well-sampled R-band
light curves

GRB redshift GRB redshift GRB redshift

970228 0.69 040924 0.86 061007 1.26

970508 0.83 041006 0.72 061121 1.31

971214 3.42 050315 1.95 061126 1.16

980613 1.10 050319 3.24 070125 1.55

980703 0.97 050401 2.90 070208 1.17

990123 1.60 050408 1.24 070411A 2.95

990510 1.62 050525 0.61 070419A 0.97

990712 0.43 050730 3.97 071003 1.60

991208 0.71 050801 1.56 071010A 0.98

991216 1.02 050820 2.61 071010B 0.95

000131 4.50 050904 6.29 071020 2.15

000301C 2.03 050908 3.34 071112C 0.82

000418 1.12 050922C 2.20 080210 2.64

Continued on next page
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Table 4.4 – continued from previous page

GRB redshift GRB redshift GRB redshift

000911 1.06 051109 2.35 080310 2.42

000926 2.04 051111 1.55 080319B 0.94

010222 1.48 060124 2.30 080319C 1.95

010921 0.45 060206 4.05 080330 1.51

011121 0.36 060210 3.91 080413A 2.43

011211 2.14 060218 0.03 080430 0.77

020124 3.20 060418 1.49 080603A 1.69

020405 0.69 060502 1.51 080603B 2.69

020813 1.25 060512 0.44 080605 1.64

020903 0.25 060526 3.21 080710 0.84

021004 2.34 060605 3.80 080721 2.59

021211 1.01 060614 0.13 080804 2.20

030226 1.99 060714 2.71 080810 3.35

030323 3.37 060904B 0.70 081203 2.10

030328 1.52 060908 2.43

030329 0.17 060926 3.21

030429 2.65 060927 5.47

4.4 Discussion and conclusion

Our statistical analysis has tried to answer the following questions:

I. Are there evidence of cosmological evolution on γ-ray burst features?

II. Are there evidence of cosmological evolution on optical afterglow?

III. Despite the morphological differences between the high-energy emission and

their afterglows, can we assume a universal underlying structure for both

emissions?

IV. The intrinsic properties of prompt γ-ray emission show some degree of cor-

relation with their afterglows or the afterglow ’forget’ the initial physical

conditions ?

The problem about the cosmological evolution of the GRB properties is inter-

esting in many ways. It sheds new light on the possible progenitors because the
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redshift of GRB span from 0.00856 to 6.695. Moreover if the GRB properties may

evolve with redshift the proposed luminosity indicators should consider this.

Between the luminosity indicators proposed over the years and described previ-

ously (Epeak−Eiso, Epeak−Liso, Liso−T0.45, Liso−V , Npeak−Liso, Liso− τlag) only

the luminosity spectral lag relation is corrected for a possible cosmological trend

from the work of Tsutsui et al (§1.1). However this correction was made using

redshift derived from other reported relationship. There have been suggestions

that prompt GRB properties may evolve with redshift (e.g. Amati et al. 2002;

Wei & Gao 2003; Yonetoku et al. 2004).

We have demonstrated, for a sample of 87 GRB with confirm spectroscopic

redshift, that the properties of the γ-ray emission are not affected by any cosmo-

logical evolution. On the other hand the first stage of the afterglow evolution has

a dependence on redshift and is even clearer if we consider the peaks that arise

when the prompt γ-ray emission has been completely extinguished.

It is generally accepted that both the GRB and the afterglow arise due to

dissipation of the kinetic energy of the relativistic flow. The relativistic motion

can be dissipated by either external or internal shocks. The first involve slowing

down by the external medium surrounding the burst. This would be the analogue

of a supernova remnant in which the ejecta is slowed down by the surrounding ISM.

Like in SNRs external shocks can dissipate all the kinetic energy of the relativistic

flow. On the other hand internal shocks are shocks within the flow itself. These

take place when faster moving matter takes over a slower moving shell. In this

scenario, the internal shock is not affected by the cosmological surrounding while

the external shocks interact with the circum-burst environment and carry with

them the signatures of different cosmological epochs.

However, it is not the whole evolution of afterglows to be redshift-dependent,

but only particular stages of its evolution.

The internal shocks take place at a distance Rint ∼ cδtΓ2. These shocks last

as long as the inner engine is active. The typical observed time scale for this

activity ∼ 50sec (for long bursts) and ∼ 0.5sec (for short ones). External shocks

begin at Rext ∼ 1016cm. If Rext/Γ
2 ≤ T = ∆/c, namely if the burst is long, the

afterglows begins while internal shocks are still going on and the initial part of

the afterglow overlaps the late (Sari, 1997) part of the GRB. So when the γ–ray

afterglow is completely extinguished, the external shock following the evolution of

the Universe around them. This phase lasts a few minutes, after the light curves
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gradually standardize showing common behavior. We believe the the redshift-

dependence is well-observed in the peaks that arise during the afterglow evolution,

because their energy exceeds the residual γ–ray flow that contaminates the optical

emission during the transition phase between internal/external shock.

Recently also Stratta et al., (2008) report a cosmological evolution in X-ray

afterglow features (§2.2).

Finally the properties of prompt γ-ray flux seem do not show correlation with

the intrinsic properties of their afterglows in according to the internal/external

shock scenario.
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Chapter 5

Tortora Project: sub-second

universe analysis

Dietro ogni problema c’è sempre

un’opportunità.

Galileo Galilei

This chapter presents my collaboration in TORTORA team; the scientific goal

of the TORTORA project, the description of the set of equipment and the main

installation phase on the top of the REM robotic telescope are described. The

short introduction about the activity of GRB Coordinates Network (GCN) shows

that the first available optical observations (with the exception of rare cases) have

an essential instrumental delay. The loss of optical information at initial stage of

γ-ray emission not allow us to study in detail the multi-frequency behaviour of the

central engine. Internal spatial structure, dynamics of the GRBs and processes

transforming their energy into γ–ray radiation are inevitably reflected within the

temporal properties of the bursts (see Piran, 2005 and references therein). Indeed,

while the full length of the GRBs varies in the 0.1 - 100 sec range, their light curves

in 80% cases of the long bursts present substructures (§3). Moreover, millisecond

features are discovered in the light curves of some long bursts (McBreen et al.,

2004).
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For successful observations of optical emission as well as possible optical precur-

sors from γ-ray bursts, one should monitor the sky continuously to be independent

from space–borne telescopes. The technology involved in TORTORA instrument

seek to remedy these observational problems by combining two essential character-

istics i.e. the wide field of view and the high time resolution. The CCD + image

intensifier layout allows to observe sky in wide field with high temporal resolution

effectively. Fast Wide-Field Camera TORTORA operated from May 2006 at the

ESO-La Silla Observatory has successfully observed the prompt optical emission

of the remarkable case of the naked-eye GRB 080319B (§ 6).

Here we describe the design and implementation of TORTORA camera (Tele-

scopio Ottimizzato per la Ricerca dei Transienti Ottici RApidi) mounted on top

of REM robotic telescope at La-Silla Observatory (ESO, Chile), and the complete

two-telescope TORTOREM system developed by our group. A brief comparison

with its prototype FAVOR (FAst Variability Optical Registration) placed near

Russian 6-m telescope in North Caucasus are also given.

5.1 Communication System in GRB community

5.1.1 GRB Coordinates Network

Historically the dissemination of the spacecraft localisation information from on-

board or ground analysis to the ground-based GRB follow-up community was first

done through publications and informal channels; later, when the need for greater

speed and higher efficiency became apparent, the BACODINE (BAtse COordi-

nates DIstribution NEtwork) system was inaugurated in 1992 to rapidly commu-

nicate processed and analyzed GRB data from the BATSE instrument on the

CGRO spacecraft to the community. After the spectacular success of the Bep-

poSAX spacecraft in rapidly providing a precise localisation of GRB 970228 and

the subsequent discovery of the afterglow at many wavelengths, the BACODINE

messaging system was transformed into the present GRB Coordinates Network

(GCN) system (see fig. 5.1) which is situated physically at the NASA Goddard

Space Flight Center and is aptly maintained by Scott Barthelmy (Barthelmy et

al., 1998) 1. The GRB Coordinates Network (GCN) is composed of 2 parts.

1The GCN contact is: Scott Barthelmy scott@lheamail.gsfc.nasa.gov
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Figure 5.1: The physical GCN network.

I. The first part (Notices) distributes RA, Dec locations of GRBs detected by

various instrument on spacecraft in real-time to ground-based and space-

based follow-up observers. The Notices are simple email-based token-value

style text messages and internet socket packets.

II. The second part (Circulars and Reports) consists of receiving from – and

automatically distributing to – the GRB community prose-style e-mail mes-

sages about follow-up observations on various GRBs.

The Notices are the result of information received by GCN from the various

spacecraft in real-time, processed into a standard format and automatically dis-

tributed to the those people wishing to receive specific Notices (based on a variety

of filtering conditions). No humans are involved in the GCN portion of the se-

quence. This automation minimizes the time delay between when the γ-rays hit

the instrument detectors and when the RA, Dec location information is available

to the follow-up observers telescope. The token-value text style of the email form

of the Notices is a compromise that allows both human reading and computer

program parsing. The binary socket packet format and distribution method is the

fastest way to get the information to robotic telescopes.

The figure 5.2 shows the fastest ultraviolet, optical and infrared observations

obtained by the ground-based robotic telescopes and UVOT/Swift–satellite tele-

scope after having received the GRB Coordinates Network alert (within one minute
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Figure 5.2: The fastest ultraviolet, optical and infrared observations obtained by the
ground-based robotic telescopes and UVOT/Swift–satellite telescope after having re-
ceived the GRB Coordinates Network alert. (within one minute from the explosion)

from the explosion). The total sample consists of 43 GRB afterglow light curves 2.

Systematically the regions close to the trigger range can never be sampled and a

new research strategy is requires, e.g., independent activity monitoring by satellite

surveys and by the alert system of the Gamma ray bursts Coordinates Network.

5.2 Optical Monitoring System & TORTORA

Project.

To study short stochastic optical flares of different objects (GRBs, SNs, etc) of

unknown localizations it is necessary to monitor large regions of sky with high

time resolution (Piccioni et al., 1993). We have developed a system which consists

of wide-field camera (FOV is 400-600 sq.deg.) using TV-CCD with time resolution

of 0.13 sec to record and classify optical transients, and a fast robotic telescope

aimed to perform their photometric investigation just after detection. Thus the

two-telescope complex named TORTOREM combine the wide-field of view of the

TORTORA camera and the precise and fast pointing of the robotic telescope REM

2http://grblog.org/grblog.php
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(Molinari et al., 2006).

The systematic study of night sky variability on sub-second time scales still

remains the important, but practically unsolved problem. This necessity for the

search of non-stationary objects with unknown localization has been noted by

Bondi (1970). Such studies have been performed (Schaefer, 1985), but due to

technical limitations it has been possible either to reach high temporal resolution

of tens of milliseconds in monitoring of 5′ - 10′ fields, or use 5 - 10 seconds time

resolution in wider fields. The wide-field monitoring systems currently in operation,

such as WIDGET (Tamagawa et al., 2005), RAPTOR (Borozdin et al., 2002),

BOOTES (Castro-Tirado et al., 1999) and π of the Sky (Burd et al., 2005), while

have good sky coverage and limiting magnitude, lacks the temporal resolution,

which significantly lower their performance in study of transient events of sub-

second duration (see table 5.1).

The optical transients of unknown localization may be very short. 30% of GRBs

have the duration less than 2 seconds, and details of their light curves may be seen

on time scales less than 1 ms (§1). Also, of great interest are the observations

of very fast meteors which may be of extra-Solar System origin. To study the

variability of large sky areas on such time scales, it has been proposed by Beskin

et al. (1999) to use large low-quality mosaic mirrors of air Cerenkov telescopes.

However, Karpov et al. (2005) and Zolotukhin et al. (2004) have demonstrated

that it is possible to achieve the sub-second temporal resolution in reasonable wide

field with small telescopes equipped with fast CCDs to perform fully automatic

search and classification of fast optical transients. Moreover, the scheme of two-

telescope complex (Karpov et al., 2004; Beskin et al., 2005a) able to study such

transients in a very short time after detection has been proposed.

5.2.1 Design of wide-field cameras

The parameters of FAVOR prototype and TORTORA cameras in comparison with

other wide-field monitoring systems currently in operation are presented in Ta-

ble 5.1. The only cameras combining both wide field of view and high time res-

olution are the ones described here. Their technical characteristics are presented

in Table 5.2, and images in fig. 5.3. Each camera consists of the main objective,

the image intensifier used to downscale and amplify the image, transmission optics

and the fast low-noise TV-CCD matrix (see fig.5.4). TORTORA camera also has
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Figure 5.3: Images of prototype fast wide-field FAVOR camera -Special Astrophysi-
cal Observatory of Russia Academy of the Science, Russia and two-telescope complex
TORTOREM -ESO La Silla Observatory, Chile.

Figure 5.4: Schematic description of TORTORA system

the automatic focusing unit controlled through the PC parallel port interface. For

FAVOR prototype, the focusing is performed by hands. TORTORA camera is

installed on top of REM telescope, which has an alt-azimuthal mounting, while

FAVOR has its own equatorial mounting.

The TV-CCD matrix of each camera operates in 7.5 frames per second regime

with 0.128 s time exposure and gaps between frames negligibly small. The data

from CCD is broadcasted through the gigabit local Ethernet network to the stor-

age RAID array with 0.5 Tb capacity. The data flow rate for the system is about

20 Mb/s, and so the storage may keep the raw data only for one day, until next

observational set. Also, the raw data are transmitted to the real-time processing

88



TORTORA Project

Table 5.1: Wide-field monitoring cameras currently in operation. For FAVOR and
TORTORA the limits correspond to 3σ detection on a single frame, and differ from
their real-time operational values.

Name Field of View (degrees) Time Resolution (seconds) Limit
WIDGET 62 x 62 5 10m

RAPTOR A/B 40 x 40 60 12m

RAPTOR Q 180 x 180 10 10m

BOOTES 16 x 11 30 12m

π of the Sky 33 x 33 10 11.5m

MASTER-VWF 20 x 21 5 11.5m

Yatsugatake Camera 85 x 70 8 5 m

FAVOR 16 x 24 0.13 11.5m

TORTORA 24 x 32 0.13 10.5m

Table 5.2: Technical parameters of FAVOR and TORTORA cameras

FAVOR TORTORA
Main objective

Diameter 150 mm lens 120 mm mirror
Focal length 180 mm 150 mm
Focal ratio 1/1.2 1/1.2

Image intensifier
Photocathode S20 S20
Diameter 90 mm 90 mm
Gain 150 150
Scaling factor 5.5 5.5
Quantum efficiency 10% 10%

CCD matrix
Model VS-CTT285-2001 VS-CTT285-2001
Frame size 1388 x 1036 1388 x 1036
Pixel scale 50′′/pix 81′′/pix
Exposure 0.13 s 0.13 s
Pixel size 6.5 mum 6.5 mum
Read-out noise 6 e−/pix 6 e−/pix
Star FWHM 3.1′ 2.7′

Mount equatorial alt-azimuthal
Focus manual automatic
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PC operating the custom pipeline software under Linux OS. The pipeline per-

forms the detection and classification of transient events of various types, and

tries to recognize already known objects, by comparing the time and position of

each events with catalogues of satellites and with star catalogue to minimize the

number of false events due to stellar scintillations under bad weather conditions.

Also, there are some other software subsystems, the most important is the con-

troller (“BEHOLDER”) process handling the interaction of wide-field camera with

robotic telescope and initializing the auto-focusing process in the beginning of each

observational night, and the compression of pieces of raw data related to detected

events after the night. The overall scheme of all the software subsystems are shown

in Fig. 5.5.

5.2.2 Software Description

The observational data is transmitted to the local PC which broadcasts them

through the LAN to the storage computer equipped with a RAID array and to

the PC for real-time processing. The software is installed at the three PCs and

operated by WINDOWS and LINUX OSes. In order to process in real time the 13

Mb/sec data stream from the camera, one cannot use any standard reduction rou-

tines usually applied for photometry and source extraction. For this reason special

software for the detection and investigation of OTs has been created. The software

is installed on three PCs operated under WINDOWS and LINUX. The incoming

information is a sample of 1388 × 1036 pixel CCD frames with an exposure time

of 0.13 sec. The software performs the following tasks.

• Data transfer in real time from TV-CCD to LAN.

• Accumulation of initial data with volume up to 0.5 Tb per night on the RAID

array.

• Data reduction in real time - detection and classification of OTs, determina-

tion of their equatorial coordinates and magnitudes, their possible identifica-

tion with known objects, and the transfer of information about OTs (alerts)

to the local and global networks.

The OT detection algorithm is based on the comparison of the current frame with

one averaged over the 10-100 previous frames and consists of the following steps:
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I. Extraction from the current frame of all pixels with intensity deviating from

the mean by a given fraction of the RMS noise.

II. Location of any continuous regions of such pixels on the frame and deter-

mination of their parameters - coordinates and fluxes. All these regions are

considered as optical transients (OTs) if observed on at least 3 successive

frames.

III. Analysis of the OTs’ shape (on a single frame) and motion (on three suc-

cessive frames), their classification as meteors, satellites, or stationary tran-

sients, and determination of their parameters (trajectory, light curve, etc.).

IV. For the two latter cases - comparison of object parameters with known objects

from star and satellite catalogs.

V. For stationary transients with an absence of catalog identifications, informa-

tion on their parameters are sent to robotic telescopes or global networks.

Thus, any transient may be classified if it is seen on at least 3 successive

frames (in 0.4 sec).

5.2.3 Detection methodology

Due to very high data flow from the camera, it is impossible to use standard image

reduction packages, as reported in the §5.2.2 so we have developed a fast transient

detection algorithm based on the “differential imaging” method, which implies sta-

tistical analysis of temporal behaviour of each pixel over N = 100 previous frames,

i.e. 13 seconds. The current value of the pixel I is being compared with the running

mean < I >=
∑
I/N and standard deviation σI =

√
(
∑
I2 − (

∑
I)2)/(N − 1), and

the significance of excess over the mean is computed as A = (I− < I >)/σI . Then,

all the pixels with deviations over the mean of 3σ and greater are clustered into

extended objects. Some objects, like single-pixel ones, are filtered out as they are

most likely due to noise.

The response of such analysis to the long transient is highly non-linear, as the

transient itself spoils the statistical properties of the image. It may be easily shown

that the observed deviation A from the mean over the last N frames, when n of
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Figure 5.5: Schematic view of interoperation of various TORTORA subsystems with
REM telescope.
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Figure 5.6: Response of the differential imaging method to the transient event of a given
amplitude A0 (in background noise units) as a function of time since its appearance (in
number of frames).
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Figure 5.7: Left panel – the probability of detection of transient event of a given
peak magnitude by differential imaging method for the TORTORA camera. Right panel
– the distribution of spatial uncertainty of position determination versus photometric
calibration coefficient for the TORTORA camera. The photometric uncertainty is mainly
due to large vignetting towards the edges of the frame.

them are spoiled by the transient with A0 flux, is

A = A0
N − n√

N2 + A2
0
nN(N−n)
N−1

(5.1)

(where we neglected for simplicity the dependence of the image dispersion on its

mean value). This function is shown in Fig. 5.6. It is clear that after roughly 5

frames arbitrarily bright transient is no more detected by the differential imaging,

and so the real-time detection software has to extract all possible information on

it during this time, i.e. in approximately half a second.

So, after the extraction of objects from current frame, the reduction pipeline

compares their positions with trajectories of transients seen on previous ones (all

objects here are assumed to be moving, but some of them – with zero velocity).

Detection of object on three successive frames (in half a second) is enough to

classify it into one of three possible classes – noise, if the object disappears, moving

event, if it has statistically significant motion, or stationary transient. The case of

slowly moving geostationary satellites is handled by comparing of event position

with regularly updated satellite catalogue 3

Detection of meteors, however, requires a different approach, as most of them

may be seen on single or two successive frames only. Also, their motion are

3American department of defense satellite ephemerides database, available at:
http://www.spacetrack.org
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significantly faster than one of satellites. So, the meteors are selected by geometric

length and flux criteria only. The detection efficiency of differential imaging

method can be studied only numerically, as it does not see constant objects

like stars. Results of numerical simulation on probability of object detection for

typical TORTORA camera FWHM is presented in Fig. 5.7. The astrometric

and photometric calibration is performed regularly (once per minute in a case of

TORTORA camera, as it has an alt-azimuthal mounting with rotating field of

view) by means of additional SExtractor (Bertin & Arnouts 1996) -based pipe-line

and custom WCS matching code. The typical distribution of positional and flux

errors are presented in Fig. 5.7. So, the pipeline is able to detect and classify any

bright optical transient in a 0.4 second (3 frames) since its onset, before it hides

from differential imaging algorithm. Example of such short flare is presented

in Fig. 5.8. Then, the information on the event may be sent to the robotic

telescope to perform its detailed investigation. Also, all the relevant information

on the transient, including its light curve, trajectory and pieces of raw images con-

taining it, is stored for the subsequent off-line investigation and statistical analysis.

5.2.4 Installation on the top of the REM telescope

At the begining of the May 2006 TORTORA was installed in the dome of the REM

telescope located at Eso-La Silla (Chile) and successfully achieves its First Light.

The TORTORA’s first light images were taken on 12 May 2006. The camera is

coaxially mounted to the REM telescope and a counterweight of 40 kilograms is

added to the mount of the robotic telescope in order to balance its structure (see

figure 5.11). No significant decrease in the speed of the REM telescope has been

registered after the addition of the weight.

It was also verified that the operation of TORTORA camera has no effect

on other REM devices such as REMIR and ROSS instruments (Calzoletti et al.,

2005). TORTORA is completed automatically and remotely controlled and it use

the weather station of REM dome. Until now he has collected ∼ 150 nights of

observations4. The TORTOREM-complex has a graphical user interface available

4data are available under request.
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Figure 5.8: Example of a short satellite flare detected by the camera. Total length of
the event is 0.4 sec (seen on 3 successive frames).

Figure 5.9: Public graphical user interface of TORTOREM system. Information about
the run of the observations and the photometric conditions during the night are available
in real time.
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Figure 5.10: Example of a fast (approx. 0.3 seconds) and bright (Vpeak ≈ 3)meteor
detected by the camera. Sub-frame brightness variations, as well as long-lasting tail, are
clearly seen.

online. 5 Public information about the run of the observations and the photometric

conditions during the night are available in real time.

5.3 Results

FAVOR camera operates in monitoring regime since June 2003, since December

2006 it follows up the center of Swift field of view. TORTORA camera oper-

ates since June 2006, approximately half of observational time (when REM is not

performing its scheduled programme) it follows up Swift of view too. The back-

reaction mode of TORTOREM is now in testing stage.

For each observational night, the cameras detect approximately 300 meteors

and 150 satellites of various brightness. Example of a fast (0.3s) and bright

(Vpeak ≈ 3) meteor is shown in Fig. 5.10.

5http://polaris.merate.mi.astro.it/trem/
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5.3.1 Follow-up observations of γ-Ray Bursts

Due to REM telescope operation in trigger regime, TORTORA camera has been

able to observe the regions of localization of three γ-ray bursts in a short time

since the event (Guarnieri et al., 2006; Karpov et al., 2006a; Karpov et al., 2006b;

Karpov et al., 2006b).

The field of GRB 060719 was observed by the camera 59 s after trigger. The

summation of 100 frames with 12.8 s. effective exposure did not reveal any source

down to the B = 12.4 min . We performed the Fourier analysis of 15 min data set

(6750 successive frames) to search for the periodic signal at the GRB position. The

upper limit for the amplitude of sinusoidal variability (i.e. the mean brightness

of the sinusoidally-variable object) is B = 15.3 min over the 0.01–3.5 Hz range in

PSF–sized region of the image.

GRB 061218 was initially outside the camera field of view. The system was

repointed and the TORTORA began to acquire 118 sec after trigger with 7.5 Hz

frame frequency (0.128 s exposure). The summation of 100 frames with 12.8 s.

effective exposure did not reveal any source down to the B = 11.3 mag (3-sigma).

We performed the Fourier analysis of 23 min data set (10000 successive frames)

to search for the periodic signal at the GRB position. The upper limit for the

amplitude of sinusoidal variability is B=16.4 (3-sigma) over the 0.01–3.5 Hz range.

Similarly the field of GRB 061202 was observed 92 sec after trigger The sum-

mation of 100 frames with 12.8 s. effective exposure did not reveal any source down

to the B = 11.3 mag (3-sigma) on bright sky background. The upper limit for the

amplitude of sinusoidal variability (Fourier analysis of 10 min data) is B=14.0 (1-

sigma) over the 0.1–3.5 Hz range. Also, FAVOR camera observed the error box of

GRB 070704A, detected by Swift, for 40 seconds before and at the time of satellite

trigger. Unfortunately, according to following analysis of Swift data (Sakamoto

et al., 2007), the actual burst occurred 25 seconds before our observations started

(Karpov et al., 2007). The integral data on all these follow-up observations are

presented in Table 5.3. Stationary flux limits have been derived from 100-frame

average images (12.8 s effective exposure).
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Table 5.3: Upper limits on the constant flux and sinusoidal variability of gamma-ray
bursts, observed with TORTORA and FAVOR (last burst) wide-field cameras in trigger
regime.

Burst Time since event 12 s limit Variab. timescale Variab. limit
(seconds) (100 frames) (Hz)

GRB060719 59 12.4 0.01 – 3.5 15.3m

GRB061202 92 11.3 0.1 – 3.5 14.0m

GRB060719 118 11.3 0.01 – 3.5 16.4m

GRB060719 25 13.0 – –

5.3.2 Untriggered search for prompt emission

One of the important result of our routine observations is the estimation of the rate

of the orphan transients. These hypothetical objects are called orphan afterglows,

since they are not associated with any known GRBs.

Since may 2006 we accumulated approximately 150 nigh of observations in

24deg × 32deg = 768deg2 field up to 10.5 unfiltered magnitude with 0.13 sec

temporal resolution. Untriggered search of optical afterglow taken by ROTSE

team (Rykoff et al., 2005) provided upper limit of GRB orphan afterglow rate

of 1.1 × 10−8s−1deg−2. Our data in terms of aggregate time and field of view

provides 12 times more strict constraint on the object of search rate. ROTSE

search was oriented on afterglow emission (they used 80 sec exposure which

undoubtedly smoothes bright short peaks of prompt emission as mentioned above)

while we perform search of much shorter events (to be accurate, much shorter

phase of the same event) with brighter limiting magnitude. Thus we can state

that prompt optical transients rate is less then 7.7× 10−9deg−2sec−1 for transients

that are brighter then 10.5m on 0.13 s timescale during at least of 3 successive

frames (0.4 sec). Usage of average frames sequence processing allows to strict this

photometrical constraint even more.
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Figure 5.11: The camera is mounted coaxially with the REM telescope and a counter-
weight of 40 kilograms is added to the mount of REM in order to balance its structure.
The TORTORA’s first light images were taken on 12 May 2006.
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Figure 5.12: Fast universal spectrophotopolarimeter (FUSP) principal scheme (left
panel) and sketch of its field of view in various modes (right panel)

5.4 Perspectives

It is important to develop the methodology of wide-field search for fast optical

transients in two directions. The first is the increase of detection threshold by 2-3

magnitudes while keeping the field of view and temporal resolution. It may be

achieved by means of multi-objective (or multi-telescope) systems, by decreasing

field of view of single instrument and, therefore, its pixel scale. To avoid the dom-

inance of CCD read-out noise, the quantum efficiency and amplification of image

intensifier have to be increased. Another direction is the usage of instruments

equipped with dispersive (or polarizing) equipment to record slitless spectra (in

polarimetric mode – at least three per object) of each object in the field. Inter-

mediate variant is possible, too. The robotic telescope carrying the fast wide field

camera may be equipped with universal photospectropolarimeter (FUSP) with
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high time resolution (see Fig. 5.12) able to perform detailed study of spectroscopic

and polarimetric properties of 13m-14m transient in several seconds (Beskin et al.,

2005b).
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Chapter 6

TORTORA Discovery of naked

Eye Burst fast optical variability.

”...sic igitur solem lunam stellasque

putandum ex alio atque alio lucem

iactare subortu et primum quicquid

flammarum perdere semper,

inviolabilia haec ne credas forte

vigere.”

De Rerum Natura-Libro V-

In this chapter we present the complete high temporal resolution photometry

(0.13 sec effective exposure) of the prompt optical emission occurred in GRB

080319B captured with TORTORA wide-field optical camera mounted on REM

robotic 60–cm telescope located at ESO–La Silla (Chile) (§5). Due to the

peculiarity of the prompt optical emission of this burst and its importance for

obtaining information on physics of the central engine, the analysis of the time

variability are discussed with great details using different statistical tools.
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6.1 Introduction to the phenomenon and its im-

plications

6.1.1 Prompt Optical Emission

Over the past nine years the prompt optical emission contemporaneous with the

γ-ray-active phase of a GRB have became subject of exciting debate in astronomy

community; the brevity of these phenomena and their fleeting nature makes them

elusive and difficult to study. Due the relative short duration of the prompt γ-ray

emission (T ∼ 0.5-100 sec) simultaneous follow-up observations at optical wave-

lengths suffered the lacked of rapid and precise burst localizations. GRB 990123

was the first event for which optical emission was detected during the burst phase

(Akerlof et al., 1999).

Nowadays the fast and accuracy localization of GRBs by Swift mission (Gehrels,

2004) and its capability to alert fast-slewing robotic telescopes 1 within few seconds

after burst has allowed to significantly increase the numbers of the events that was

observed optically during the bursting phase.

Although the prompt optical emission are usually not well sampled, in same

cases the optical and γ-ray fluxes appear correlated e.g. GRB 041219A (Vestrand et

al., 2005), GRB 051109A, GRB 051111 (Yost et al., 2007), GRB 060124 (Romano

et al., 2006), GRB 060418 (Molinari et al., 2007), GRB 060526 (Dai et al., 2007),

GRB 060607A (Ziaeepour et al.,2008), GRB 061007 (Mundell et al., 2007), GRB

070616 (Starling et al., 2007); instead in few events e.g. GRB 990123 (Akerlof et

al., 1999) and GRB 060904B (Klotz et al., 2008) the structure of the γ–ray light

curve and the locations of the optical flashes appear anticorrelated.

Li & Waxman (2008) point out that the apparent simultaneity of γ-ray and

optical emission is due to the highly relativistic speed of the plasma expansion

suggesting that the time delay between γ-ray and optical fluxes is expected to be

shorter than one second, too brief to be identified by current optical detections

that usually have lower temporal resolution.

The naked eye GRB 080319B sheds new light on the on the physical mechanism

involved during the stellar black hole formation. For the first time, joining the un-

precedented high TORTORA temporal resolution analysis to the high-energy mea-

1see http://www.uni-sw.gwdg.de/ hessman/MONET/links.html for a recent census of robotic
telescopes in the world
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surements obtained from satellite programs (SWIFT/BAT and KONUS/WIND),

we are able to analyze the different physical components responsible for the

prompt-emission using a comparable sampling-time from higher to lower energy.

6.2 Data Reduction and analysis

6.2.1 Observations

On 2008 March 19 at 06:12:49 UT (hereafter t0) the Swift Burst Alert telescope

triggered on and located GRB 080319B (trigger = 306757; Racusin et al., 2008)

with a ∼3’ radius error box. The bright burst was simultaneously detected by

Konus-Wind (KW) satellite (Golenetskii et al., 2008) yielding the burst fluence

of 6.13 ± 0.13 × 10−4 erg cm−2. Assuming z = 0.937 (Vreeswijk et al., 2008)

and standard cosmology model (H0 = 70 Km/s/Mpc, ΩM= 0.3 and ΩΛ=0.7) the

isotropic energy release is Eiso = 1.32× 1054.

The γ–ray light curve showed a complex structure with several separated pulses

above 70 keV and a generally smoother behaviour at lower energies.

The X-Ray Telescope began observing the burst location at 06: 13: 49.7 UT,

∼60.5 seconds after the BAT trigger finding a very bright fading and uncata-

logued X-ray source at the position: RA(J2000) = 14h:31m:40.7 s, DEC(J2000) =

36d:18’:14.7”. The X-ray afterglow can be fit by a triple broken power-law with

initial decay slope of 1.54 ± 0.01, breaking at 2790 ± 664 s to a slope of 1.85 ±
0.05, breaking again at 41.4 ±9 .0 ks to a slope of 1.17 ± 0.06, and finally breaking

at 1.04 ± 0.43 Ms to a slope of 2.9 ± 2.3. (Racusin et al., 2008). The UV/Optical

Telescope took a finding chart exposure of 400 sec with the V filter starting ∼ 175

seconds after the BAT trigger.

Near detection limit the late-time UVOT white filter observations are also

suggestive of a break at approximately the same time as the X-ray break (Racusin

et al., 2008).

The field of the GRB 080319B was imaged before the GRB event by three

independently ground-based optical sky monitoring. No optical pre-cursors were

detected in TORTORA (Karpov et al., 2008), Pi of the Sky (Cwiok et al., 2008) and

RAPTOR (Wozniak et al., 2008) surveys with observations starting 27 minutes,

16 seconds and 90 minutes before the Swift-BAT trigger, respectively.

In RAPTOR and Pi of the sky the first image with detectable optical emission
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(exposure time 10 and 5 seconds respectively) started ∼ 2 seconds after the BAT

trigger when the optical counterpart became brighter than V ∼ 12.

In TORTORA high temporal resolution dataset (0.13 sec exposure time) the

first frame in which we detected the optical flux started ∼ 9 seconds after the BAT

trigger when the source became brighter than V ∼ 12.

The bright visual peaks occurred during the the prompt γ-ray emission have

reached 5.3 magnitude approximately, this made it visible with naked eye in

BOOTES constellation 2 for ∼ 40 seconds, assuming an observer in a dark lo-

cation. Many other facilities quickly observed the bright optical emission after few

minutes by its explosion after having received the rapid localization by Swift-alert

e.g . REM (Covino et al. 2008), ROTSE-IIIb (Swan et al. 2008), PROMPT

(Schubel et al., 2008), PAIRITEL (Bloom et al., 2008), VLT/UVES (D’Elia et al.,

2008) producing the better data collection never before obtained up to now for a

cosmological transient phenomenon in the universe.

6.2.2 Photometric Condition

For TORTORA system, observational conditions at a time of γ–trigger had been

suboptimal. The burst occurred at Z ≈ 68◦, the sky was bright due to nearly

full moon, and the large part of camera field of view had been covered by the

REM dome, with some in-dome light pollution present. Due to these reasons the

automatic data processing pipeline had been turned off, but all imaged data had

been stored in RAID array.

Since 05:46:22 UT REM telescope observed the box of previous burst,

GRB080319A. At 06:12:49 UT, Naked-Eye Burst, GRB080319B, flashed at ∼10

degrees from the former, near the edge of TORTORA field of view. At 06:13:13

UT, REM started automatic repointing, and since 06:13:20 UT the burst location

stayed at the center of camera field of view. Figure 6.1 shows the sample 2.5 ×
2.5 degrees images centered at burst position for its different phases.

TORTORA limiting magnitude in that conditions had been significantly lower

than ones of ”Pi of the Sky” and RAPTOR, but its superior time resolution allowed

to trace the burst time structure with unprecedented level of details (see Fig. 6.2

for summary light curves of TORTORA, ”Pi of the Sky” and Swift BAT).

The values of the effective air mass at middle time exposure and the seeing as

2http://grb.sonoma.edu/
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Figure 6.1: Sample images (10–frames averaged) of GRB080319B as seen by TOR-
TORA. The trigger (T = 0), first peak (T = 20.5), two repointing (T = 26.4 and
T = 28.4), last peak (T = 36) and early afterglow tail (T = 80) moments are shown.
Image size is 2.5 × 2.5 degrees.

measured by La Silla–Meteo Monitor 3 were estimated ∼ 2.61 and ∼ 0.9” respec-

tively. According to Schlegel et al. (1998) Galactic extinction is E(B-V) = 0.011

mag thus implying (assuming Rv=3.1) AB = 0.048, AV = 0.036, AR = 0.029.

6.2.3 Prompt Optical Data

The TORTORA fast wide-field camera began taking data on the field of GRB

080319B at 05:46:22 UT (t0 = 27 minutes before trigger) until to 06:15:41.00 (t0 =

188 sec after trigger) collecting∼ 14000 unfiltered images with an effective exposure

time of 0.13 seconds without temporal gap between two consecutive frames. From

23 sec up to 30 sec after the burst, the REM-telescope was slewing to the location

of GRB 080319B after the alert message disseminated through the GCN notices

by Swift-BAT instrument. The raw images stored in RAID has been processed

at a day time by a pipeline including TV-CCD noise subtraction, flat-fielding to

compensate vignetting due to objective design, and custom aperture photometry

3www.ls.eso.org/lasilla/dimm/
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Figure 6.2: The light curve of GRB080319B acquired by TORTORA wide-field camera
(upper curve, left axis) alongside with Swift BAT γ-ray one (lower curve, right axis).
Also, transient brightness measurements by Pi of the Sky optical camera (1) are shown.
Swift- BAT light curve is a sum of all four energy channels. TORTORA data points show
both full resolution (original data frames) and low-resolution (10 images co-added). Full-
resolution data are unavailable for a period of REM telescope repointing due to massive
blurring of object image. Only data points with errors less than the value are shown.

code taking into account non-poissonian and non-ergodic pixel statistics caused

by image intensifier (§5.3). Circular aperture photometry was performed with

PHOT/DAOPHOT function in IRAF4. The optimal size radius of aperture was chosen

to be 3.5 pixels after experiments with growth curves and the background sky

annulus and dannulus were set at 10 pixels and 7 pixels, respectively. This optimal

aperture size, which produces the smallest photometric errors, contained also the

spatially varying PSF due to geometric distortions present in the final images.

Independent check to calculate optimized aperture photometry in order to ob-

tain the light curve of GRB 080319B with the lowest possible noise, was also

performed using apcalc routine within the VAPHOT package 5. Corrections for the

amount of missing flux from the source outside this sized aperture were made us-

ing a correction factor estimated from the growth-curve method (Stetson, 1990)

implemented under IRAF task mkapfile, yielding aperture corrections typically of

4IRAF: Image Reduction and Analysis Facility, http://iraf.noao.edu/
5http://www.iac.es/galeria/hdeeg/pubs2000/photproc.pdf
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order 0.008 mag.

A weighted mean of all comparison objects was calculated to produce a single

comparison magnitude for each frame. To construct the light curve (fig. 6.3), dif-

ferential magnitudes of the form dm = mcomp−mOT were calculated. Independent

check for variability in the differential light curve was also produced using ISIS

image subtraction package (Alard & Lupton 1998). Finally the photometry per-

formed in instrumental system was calibrated towards the V magnitudes of several

nearby Tycho2 stars.

We have no data on afterglow color information for GRB 080319B at early time

(to < 60 sec). Thus, no additional color corrections for V-band equivalence have

been applied to TORTORA unfiltered data.

For the REM repointing time interval fluxes have been derived using custom

elliptic aperture photometry code after summation of 10 consecutive frames with

compensated motion of the stars. Unfortunately, it seems impossible to reconstruct

the light curve of this interval with any better resolution due to massive blurring

of star PSF caused by their motion. For all other intervals, photometry has been

performed both with 10-frames (1.3 s effective exposure) binning, and with original

(0.13s) time resolution. As a results, we have one more peak with in the optical

light. Log of optical measurements of GRB 080319B prompt optical emission with

1.3 sec time resolution is reported in table 6.7. No correction has been made for

the expected extinction corresponding to E(B-V) of 0.011. The time of each bin is

in the middle of the bin (seconds). 6

6.3 Light Curve Structure

6.3.1 Fit models and Variability analysis

TORTORA was able to detect optical emission since approximately t0 +10s. It

has tracked a fast emission rise from t0 +10s till t0 +15s, followed by a complex

evolution till t0 +45s and a slow decay thereafter. The rise from V ≈ 7.5m till V ≈
5.5m may be approximated by a ∼ t4 power-law originated at T ≈ 0; while γ–ray

emission started earlier, at t0 ≈ -4s.

The decay since t0 +45s is also a ∼ t−4.6 power-law. The complex evolution

since T+15s till T+45s consists of two regions of different mean intensity levels

6For the large amount of data, the full resolution data are available under request
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Figure 6.3: The light curve of GRB080319B acquired by TORTORA wide–field cam-
era. The γ-emission started at T ∼ –4s and faded at T ∼ 55s. Full resolution (0.13s
exposure, gray lines) data are available for all duration of γ-emission except for interval
of REM telescope repointing (24s < T < 30s), while low-resolution ones (summation of
10 consecutive frames, 1.3 s effective exposure) – for the whole time. The light curve
is approximated using Kocevski profile (see text). Four nearly equidistant flares are
detected; lower panel shows the residuals of such approximation.

Figure 6.4: Zoom in figure 1.3. The TORTORA light curve is approximated using
Kocevski profile (see text) before and after the REM repointing; lower panel shows the
residuals of such approximation
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Figure 6.5: Power density spectrum of the plateau stage. The high resolution (0.13s)
data for the missing second peak interval have been simulated by the white noise using
the low-resolution (1.3 s) light curve. The feature at ∼ 9 s is clearly visible and is not
a continuation of a low frequency red noise. Horizontal lines represent mean noise level
and a level of noise deviations with 10−3 significance, estimated by bootstrapping the
original data set.

Figure 6.6: Power density spectrum of the last peak and the best fit sinusoidal approx-
imation for the feature seen here. Horizontal lines represent mean noise estimated by
bootstrapping the original data set.
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F ∼ 20 Jy from T+15s till T+30s and F ∼ 13 Jy from T+30s till T+45s, which

roughly correspond to two regions of γ-ray light curve (see fig. 6.9).

At the same time interval four peaks can clearly be seen in optical data with an

inter-peak separation of ∼ 9 s. The Power density spectrum of the plateau stage

(10s–50s) shows the feature at ∼ 9s and is not a continuation of a low frequency

red noise. (see fig. 6.5) Horizontal lines represent the mean noise estimated by

bootstrapping the original data set. We used the high resolution (0.13s) data and

for the missing second peak interval (during REM repointing) have been simulated

by the white noise using the low-resolution (1.3 s) light curve. The same result

is obtained (without simulating the missing high time resolution data of the sec-

ond peak interval) using the Lomb-Scargle periodogram algorithm (Scargle, 1982)

suitable for time series with unevenly spaced X-values.

The well detected peaks are approximates with profile describe in Kocevski et

al. (2003). (see figs. 6.3 and 6.4). The best-fit parameters for the decomposition

of the light curve into 4 peaks with shape described by Kocevski profile are shown

in table 6.1. Here, T0 and F0 are the peak maximum positions and fluxes, while r

and d are the power–law indices of their rising and declining parts.

After we subtracted the smooth light curve which approximates these four

peaks from the full-resolution data and performed Fourier analysis of residuals to

look for short time scale variability. There is no evidence of any significant feature

on the first continuous part (before REM repointing) of the light curve. The second

part, however, show a features at ν ∼ 0.9 Hz with a significant level of 0.01, which

seems to be localized around the last peak. No other intervals of transient light

curve show similar features, nor do the comparison stars. The fig. 6.6 shows the

Power Density Spectrum of the last peak and the best fit sinusoidal approximation

for the periodic emission. Horizontal lines represent mean noise level estimated by

bootstrapping the original data set.

6.3.2 Two Regions of Different Mean Intensity Level

As reported in the previous section, the complex evolution since t0+15s till t0+45s

consists of two regions of different mean intensity levels which correspond to two

regions of γ-ray light curve.

The BAT data are processed with the heasoft package (v.6.4) adopting the

ground–refined coordinates provided by Swift team (Cummings et al., 2008). For
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Tpeaks and power–law indices

Tpeak rising r declining d

18.3 ± 0.3 4.0 ± 0.4 5.4 ± 4.1
27.0 ± 0.3 24.8 ± 8.3 9.7 ± 4.9
36.1 ± 0.2 25.9 ± 7.6 22.0 ± 17
44.4 ± 0.5 21.9 ± 3.3 5.1 ± 0.2

Table 6.1: Best–fit parameters for the decomposition of the light curve into 4 peaks
with shape described by Kocevski profile, shown in Figs 6.3 and 6.4. Here, Tpeaks is the
peak maximum positions, while r and d are the power-law indices of their rising and
declining parts
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Figure 6.7: The two regions of the different mean intensity level, in black color the first
part and in red color the second part. In the top panel the two equal parts are arbitrary
shifted to a common time. In the middle panel the second stage of the emission is shifted
∼ 3 sec along the time axis. The correlation coefficient after the 3 sec shift is ∼ 0.8. The
bottom panel show the two stage of the emission arbitrarily normalized to compare the
morphological structures.
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more details on the process of data reduction see §3.

For this reason, we divided the light curve into two equal parts, and computed

the parameters, as the mean the variance, the standard deviation, the skewness and

the kurtosis (listed in Table 6.1) and estimated the autocorrelation functions of the

two halves. Since this is symmetric for real data, only the positive lags are plotted.

We apply the bootstrap method for time series (block bootstrap method) 7 to

derive estimates of standard errors. The algorithm generates bootstrap replicates

of a statistic applied to a time series. The replicate time series can be generated

using fixed or random block lengths or can be model based replicates. The results

of the autocorrelation function are plotted in fig 6.8.

This intrinsic similarities in the temporal properties of the two halves of the

light curve seems also to be reflected in the similarities of the autocorrelation

functions. The rate at which the autocorrelation function decays to zero may be

interpreted as a measure of the memory of the process and thus fig 6.8 indicates

that the memory of the second part of the light curve is the same as the first part.

The mean, the variance, the standard deviation and the autocorrelation function

of the first and second half of the light curve do not show significant differences.

Differences are found in the values of skewness and kurtosis. 8

The fig. 6.7 shows the two regions of the different mean intensity level (in black

color the first part and in red color the second part) in the prompt optical emission

of GRB 080319B. In the top panel the two equal parts are arbitrary shifted to a

common time. In the middle panel the second stage of the emission is shifted ∼
3 sec along the time axis. The correlation coefficient after the 3 sec shift is ∼ 0.8.

7Bootstrapping is the practice of estimating properties of an estimator (such as its variance)
by measuring those properties when sampling from an approximating distribution. One standard
choice for an approximating distribution is the empirical distribution of the observed data. In
the case where a set of observations can be assumed to be from an independent and identically
distributed population, this can be implemented by constructing a number of resamples of the
observed dataset (and of equal size to the observed dataset), each of which is obtained by random
sampling with replacement from the original dataset. In general in all the GRB light curves the
measurements are not independent but correlated so block bootstrap methods are required.

8In many statistical analyzes a characterization of the dataset includes skewness and kurtosis.
Skewness is a measure of symmetry, or more precisely, the lack of symmetry. A distribution, or
data set, is symmetric if it looks the same to the left and right of the center point. Kurtosis is a
measure of whether the data are peaked or flat relative to a normal distribution. That is, data
sets with high kurtosis tend to have a distinct peak near the mean, decline rather rapidly, and
have heavy tails. Data sets with low kurtosis tend to have a flat top near the mean rather than
a sharp peak. The skewness for a normal distribution is zero and the kurtosis for a standard
normal distribution is three.
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The bottom panel show the two stage of the emission arbitrarily normalized to

compare the morphological structures.

It is clear that the two structures are self-similarity. The mean, the variance, the

standard deviation and the autocorrelation function of the first and second half of

the light curve are comparable, while the morphological structures are gradually

distorted (for example skewed) during the emission as shown by the calculated

values of skewness and kurtosis.

We emphasize that these behaviors are directly linked to the internal engine ac-

tivity. The observed variability time scale, δt, reflects the variability of the source,

while the overall duration of the burst reflects the overall duration of the activity

of the inner engine. Numerical simulations (Kobayashi et al., 1997) have shown

that not only are the time scales preserved but the source’s temporal behavior is

reproduced on an almost one-to-one basis in the observed light curve.

The same analysis is performed for the prompt γ–ray emission and opposite con-

clusions are obtained. The intrinsic properties, of the underlying system, change

during their complex evolution. This intrinsic difference in the temporal properties

of the two halves of the light curve seems also to be reflected the difference of the

autocorrelation functions. Like the mean and variance, the autocorrelation func-

tion of the first and second half of the light curve show differences, so the γ-ray

light curve of GRB 080319B is non-stationary. It is interested to note that the

skewness parameter remains unchanged (see table 6.3 and fig. 6.8).

Optical First Stage: Parameters

Mean Std Variance Skewness Kurtosis

5.80 ± 0.03 0.30 ± 0.03 0.09 ± 0.03 0.94 ± 0.04 -0.36 ± 0.05

Optical Second Stage: Parameters

Mean Std Variance Skewness Kurtosis

6.10 ± 0.02 0.24 ± 0.04 0.06 ± 0.03 0.84 ± 0.03 -0.16 ± 0.06

Table 6.2: The optical light curves is divided into two equal parts and mean, variance,
skewness and kurtosis are computed.
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γ First Stage: Parameters

Mean Std Variance Skewness Kurtosis

16.17 ± 0.06 2.1 ± 0.08 4.41 ± 0.08 -0.28 ± 0.04 -0.44 ± 0.07

γ Second Stage: Parameters

Mean Std Variance Skewness Kurtosis

13.31 ± 0.05 1.6 ± 0.06 2.60 ± 0.05 -0.29 ± 0.05 -0.54 ± 0.06

Table 6.3: The γ-ray light curve is divided into two equal parts and mean, variance,
skewness and kurtosis are computed.

6.3.3 Observed and Intrinsic Optical Parameters

The four well-detected optical peak flux Fopt,1..4 [equation 4.1] is obtained using

the calibration of Fukugita et al. (1995) and corrected for galactic extinction

(Schlegel et al. 1998). Host galaxy reddening correction Av is applied assuming

the value reported by (Racusin et al. 2008). The independently fits the extinction

at different SED epoches (T0+150 s, 250 s, 350 s, 720 s, 1500 s, 5856 s, 104 s, 3 ×
104 s, 8 × 104 s, 2 × 105 s, and 5 × 105 s) yield a mean value of E(B–V)=0.05.

The isotropic equivalent Luminosity Lopt for the well-detected optical peaks is

related to the peak optical flux Fopt,1..4 using the equation [4.2] For k-correction

[4.3]we assume β = 0.50± 0.07 as repoted in Racusin et al. (2008). The optical

fluence Sopt is determined by numerically integrating the prompt light curve from

2.75 sec to 86.00 sec. The first optical data from ”Pi of the Sky” is added in our

calculations. The isotropic equivalent of the total optical energy in V band Eopt,V

in the rest frame of the source is determinated from the optical fluence using the

equation [4.4]

The prompt optical duration t90,opt is determined as the time since the afterglow

detection during which 90% of the optical fluence was received. The prompt optical

emission in the proper frame T90,opt was calculated as t90,opt/(1 + z)

In addition the peak distance in the observer and rest frame of the source

are marked with the following notation dPeak1,2, dPeak2,3,dPeak3,4 and distinguished

using capital and lowercase letters.

The event is extreme not only in observed properties but intrinsically: it is the

most luminous event ever recorded at optical wavelengths and has an exceedingly
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Peak Flux

Flux value unit

Fopt,1 2.19× 10−8 ± 1.64× 10−9 erg s−1 cm−2

Fopt,2 2.17× 10−8 ± 2.86× 10−9 erg s−1 cm−2

Fopt,3 1.49× 10−8 ± 8.08× 10−9 erg s−1 cm−2

Fopt,4 1.60× 10−8 ± 8.87× 10−9 erg s−1 cm−2

Peak Luminosity

Lum value unit

Lpeak,1 7.15× 1049 ± 5.35× 1048 erg s−1

Lpeak,1 7.08× 1049 ± 9.32× 1048 erg s−1

Lpeak,1 4.84× 1049 ± 2.63× 1048 erg s−1

Lpeak,1 5.23× 1049 ± 2.89× 1048 erg s−1

Table 6.4: Prompt Optical Parameters: Peak Flux and Peak Luminosity

Fluence and observed duration

Par. value unit

Sopt 7.17× 10−7 ± 1.80× 10−7 erg cm−2

t90,opt 53.6 ± 3 sec

Energy and intrinsic duration

Par. value unit

Eopt,V 1.21× 1051 ± 3.02× 1050 erg
T90,opt 27.63 ± 3 sec

Table 6.5: Prompt Optical Parameters: Energy and observed and intrinsic duration
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high isotropic-equivalent energy release in γ-rays. The previous record was held

in brightness by GRB 990123, GRB 050904, GRB 061007. In spite of its initial

brightness, the behavior of the afterglow at middle/late time does not appear to

be peculiar. The extrapolated luminosity e.g. at 10 hour and 13 hour in the rest

frame of the source (Lopt,10 ≈ 3.16 × 1044 and Lopt,13 ≈ 9.77 × 1043 respectively)

are comparable with the average luminosity of the afterglow sample detected over

the past years. The table 1.2 shows the average extrapolated luminosity during

the afterglow evolution for a sample of 87 GRBs, confirming the universality of

afterglows properties (§4.1.5) at middle/late stage also for the naked–eye GRB

080319B.

It interesting to note that the peaks detected during the γ-ray emission do not

follow a cosmological evolution as show in §4.2

Observed Peak Distance

Par. value unit

dPeak1,2 8.7 ± 0.4 s
dPeak2,3 9.0 ± 0.3 s
dPeak3,4 8.2 ± 0.5 s

Intrinsic Peak Distance

Par. value unit

DPeak1,2 4.48 ± 0.4 s
DPeak2,3 4.64 ± 0.3 s
DPeak3,4 4.22 ± 0.5 s

Table 6.6: Prompt Optical Parameters: Observed and Peak distance

Table 6.7: Log of Observations of GRB 080319B Prompt Optical Emission.
1.3 sec time resolution. Time t0 is measured from BAT trigger.

t0(s) mag exp err t0(s) mag exp err

6.91 8.28 0.65 0.82 47.10 6.05 0.65 0.07

8.21 8.55 0.65 1.05 48.40 6.09 0.65 0.11

9.50 7.41 0.65 0.38 49.70 6.25 0.65 0.08

10.80 6.80 0.65 0.21 50.99 6.35 0.65 0.10

12.10 6.25 0.65 0.15 52.29 6.59 0.65 0.09

13.39 5.96 0.65 0.10 53.59 6.56 0.65 0.10

14.69 5.67 0.65 0.10 54.88 6.82 0.65 0.10

15.98 5.67 0.65 0.10 56.18 6.83 0.65 0.11

17.28 5.53 0.65 0.07 57.48 7.11 0.65 0.13

18.58 5.54 0.65 0.07 58.77 7.17 0.65 0.14

Continued on next page
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Table 6.7 – continued from previous page

t0(s) mag exp err t0 mag exp err

19.87 5.43 0.65 0.07 60.07 7.28 0.65 0.16

21.17 5.50 0.65 0.08 61.37 7.50 0.65 0.20

22.47 5.66 0.65 0.09 62.66 7.51 0.65 0.18

23.76 5.79 0.65 0.09 63.96 7.70 0.65 0.22

25.06 5.57 0.65 0.06 65.26 7.74 0.65 0.24

26.36 5.44 0.65 0.13 66.55 7.72 0.65 0.23

27.65 5.53 0.65 0.17 67.85 7.71 0.65 0.23

28.95 5.72 0.65 0.17 69.15 8.02 0.65 0.30

30.25 6.02 0.65 0.06 70.44 8.08 0.65 0.33

31.54 6.25 0.65 0.10 71.74 8.10 0.65 0.32

32.84 6.38 0.65 0.07 73.03 8.17 0.65 0.35

34.14 6.01 0.65 0.07 74.33 8.85 0.65 0.66

35.43 5.85 0.65 0.05 75.63 8.20 0.65 0.35

36.73 5.94 0.65 0.07 76.92 8.99 0.65 0.69

38.03 5.96 0.65 0.07 78.22 8.41 0.65 0.44

39.32 6.12 0.65 0.07 79.52 9.13 0.65 0.86

40.62 6.04 0.65 0.07 80.81 9.03 0.65 0.78

41.92 6.00 0.65 0.07 82.11 9.16 0.65 0.84

43.21 5.77 0.65 0.06 83.41 8.80 0.65 0.60

44.51 5.89 0.65 0.06 84.70 9.03 0.65 0.78

45.81 5.96 0.65 0.06 86.00 8.91 0.65 0.70

6.4 Prompt γ vs Prompt optical

6.4.1 Peaks Shifted

The cross correlation between the TORTORA light curve and the BAT prompt

emission are performed using a sampling time equal to 1.3 sec in order to mini-

mize the error in cross correlation method. For 1.3 sec bin the photometric error

associated with TORTORA measures are on average less than 25 %. Moreover the

optical light curve has an equidistant sampling in the time so as to ensure proper

cross correlation.
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A visual comparison shows that similar morphological structure are presented

in plateau (15 sec–50sec) phase of the two emission. The power–law index of their

rising and declining part are quite different. This result indicates that optical and

γ emission are generated in different or nearby spatial region. When attempting

to shift back the optical plateaux to a certain time, the correlation coefficient

between the two emission gradually become larger. The maximum correlation

between optical and γ light curve is obtained for a delay ∼ 2 ± 0.65 seconds in

observed frame. The correlation is r = 0.82. The fig 6.11 shows TORTORA optical

flux shifted back 2 seconds along with correspondingly rebinned Swift/BAT γ-ray

flux. γ–ray light curve is in arbitrary unit for illustrative purposes. The error

associated to the peak distance is calculated taking in account the middle time of

the bin.

Finally the the estimation of the Hurst exponent (§3). The Hurst exponent for

the prompt optical emission, HH ∼ 0.95, is consistent with the values found in the

high energy emission, HH ∼ 0.91 (table 3.2).

Though the two emission are related, the degree of stationarity seems to be

different.

6.5 Interpretation of the Chromatic Afterglow

6.5.1 two-component jet model

The optical, X-ray, and γ-ray emissions from this burst are explained reasonably

well by a two-component jet model, consisting of an ultra-relativistic narrow jet

surrounded by a broader and less energetic jet with a lower Lorentz factor (Racusin

et al., 2008).

The empirical triple broken power-law of the X-ray light curve is then inter-

preted as the superposition of two broken power-law components representing these

two jets. On the other hand, the X-ray light curve in the interval 50 s < t < 40 ks

is dominated by the forward shock of the narrow jet component interacting with

a surrounding medium produced by the wind of the progenitor star in the slow

cooling case. The first break in the X-ray light curve is attributed to a jet break in

this narrow jet. Since this break is not seen in the optical light curve, the optical

flux from the narrow jet must be much less than that of the wide jet. The optical

emission after t0 + 800 s is dominated by a single power-law with consistent with
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the expectation for forward shock emission from the wide jet with. The late X-ray

afterglow after 40 ks is also dominated by the forward shock of the wide jet.

At approximately 11 days post-burst, the X-ray light curve breaks to a steeper

slope (confirmed by a late observation with the Chandra X–ray Observaory). This

break can be interpreted as the jet break of the wide jet. The forward shock of the

wide jet also accounts for the observed radio emission, which is strongly modulated

by the effects of Galactic scintillation when the source is small.

In detail the afterglow of GRB 080319B can be well described by a two-

component jet model, with a very narrow (∼ 0.4◦) and highly relativistic jet,

coaxial with a wider (∼ 8◦) jet having more conventional properties. Considering

the rarity of this event, this model is probably statistically acceptable.

The probability of observing within the tiny solid angle of the narrow jet is

small (∼ 10−3). If every GRB has such a narrow jet, we should expect to de-

tect the narrow jet emission from a GRB every ∼ 3–10 years. Had we observed

GRB 080319B even slightly off-axis, the behavior may have appeared similar to

many other GRB afterglows. Despite the incredibly high flux and fluence of GRB

080319B, the total jet-corrected observed energy budget (∼ 4 × 1050 erg) is mod-

erate, and is consistent with the overall distribution for all GRBs.

6.6 Discussion and Conclusion

6.6.1 Residual Collisions at Large Radii

Two-component jet may explains the late time optical/X–ray late afterglow and

the exceptional brightness of this event. To explain the prompt optical emission

additional theoretical considerations must be made.

Here we summarize the observed properties previously reported and discuss

them into the frame of the various theories.

I. The delay between the γ /optical peak emissions is ∼ 1 sec in the rest frame

of the source. They arise from nearby region of the central engine.

II. Optical and γ emission have the same modulation due to internal engine

(self-affinity).

III. Optical emission and γ-ray emission have the same physical nature and fol-

low a similar energetic trend (two contemporary regions of different mean
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intensity level in optical and γ radiations). Moreover the Hurst exponent H

for optical and γ–ray flux are comparable indicating that the processes at

work during the emissions are of the same nature.

IV. the γ–ray emission is non-stationarity while the optical component appears

to be stationarity. Apparently the morphological structure of the two light

curves appear quite similar with respect to their linear properties, however

they are intrinsically different, with state characterized by different degree of

complexity.

V. Although a coherent periodicity is ruled out, the pulses exhibit a recurrence

time ∼ 9 sec.

VI. The last peak shows a short time scale variability

The Observational parameters derived for the prompt optical emission appear

to satisfy the predictions of Li & Waxman, (2008). According to this theory the

optical emission could be produced by ”residual” collisions at large radii. The late

residual collisions seem take in account the relatively bright optical emission (see

fig.6.13). In detail the fluctuations in flow properties on short, ∼ 1 ms, time scale,

which drive the γ-ray producing collisions at small radii, are expected to lead to

residual collisions at much larger radii, where the optical depth to optical photons

is low.

The time delay between γ-ray and optical emission in this model,

τdelay ≈ Rop/2Γ2c ∼ 0.2Rop,15Γ−2
2.5s, (6.1)

is expected to be within few seconds, in agreement with the observational data.

Thus, optical and γ-ray emission may appear to be simultaneous if the temporal

resolution of the optical observations is greater than several seconds. For the

first time the temporal resolution of TORTORA made it possible to determine

systematic time delay between the two wave bands.

Wei (2007) has suggested that optical emission may be generated by strong

internal shocks at radii R/c > 106 s, driven by shells emitted with a large time

delay, ∼ 10 s, following those producing the main γ-ray emission. In the residual

collision model the optical emission is naturally expected to arise, without pos-

tulating the existence of delayed shells, by residual collisions at R/c ∼ 104 s, in
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which the characteristic emitted photon frequency is low, hν ∼ 1 eV, due to the

reduction of the Lorentz factor variance in the flow (rather than by the large radius

R/c > 106 s). The optical emission is produced at large radii, where synchrotron

self-absorption is avoided.

This may explain why we observe self–affinity phenomena in which the small

replica may be somewhat distorted with respect to the whole, retaining a degree

of similarity. The small pieces are rescaled by different amounts in the x and y

directions through anisotropic transformation. The underlying physical process is

the same also if gradually change over time, decreasing the number of collisions

and its energetic so reducing the degree of complexity. Probably this particular

physical shell evolution may explain the detected nonstationarity/stationarity of

the γ–ray emission and optical respectively.

As the flow radius increases, the typical number n(R) of initial shells that

merge into one single shell increases, and the variance of the Lorenz factors of

the resulting shells decreases. For a group of shells with a small Lorenz factor

variance, the velocities vi of the shells in the shells’ center of momentum frame

are not highly relativistic. In this case, conservation of momentum implies that

the velocity of a merged group of shells is given by the average of merged shells’

velocities, v̄ = (1/n)
∑n
i=1 vi, and that the variance of the velocities of merged

groups of shells is σv(n) = σv,0/
√
n where σv,0 is the initial variance. This, in turn,

implies that the variance of (observer frame) Lorenz factors, σΓ(n)/Γ ≈ σv(n)/c,

evolves like σΓ(n) = σΓ,0/
√
n. Collisions of merged groups of n shells will therefore

take place at a radius R(n) ∼ Γ3c× ntvar/σΓ(n), which implies

n ∝ R2/3, σv ∝ σΓ ∝ R−1/3. (6.2)

The outflow energy that may be dissipated and radiated away is the energy asso-

ciated with the random velocities of the shells (in the outflow rest frame). This

energy decreases as

Efluc ∝ Γσ2
v ∝ R−2/3. (6.3)

The γ and optical emissions of GRB 080319B, apparently quite similar with re-

spect to their linear properties, are intrinsically different, characterized by different

degree of freedom. When the initial shells merge into one single shell the variance

of the Lorenz factors and of the resulting shells decreases. The decrease in velocity

and the increase in mass of the shell may gradually generate a phenomenon less
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complex with less degrees of freedom

However we rule out the possible interpretation of the optical flashes resulted

from external shock emission (Zou et al., 2009). This is not consistent with ∼ 1

second delay in the rest frame of the source between the optical and γ-rays signals.

The optical flash may result from external shock emission if we observe several

seconds delay between the optical and γ–rays signals.

We rule out also that the optical emission may arise from internal forward-

reverse shocks (Yu, Wang & Dai 2008) in according to the self-affinity detected in

the two emissions. Into the framework of the internal shock model, Yu, Wang & Dai

2009 speculate that the collisions between a series of relativistic shells generate lots

of paired forward and reverse shocks. If the Lorentz factors of these two types of

shocks are significantly different with each other (e.g., one shock is relativistic and

the other is Newtonian) then the synchrotron emission produced by the forward

and reverse shocks respectively could peak at two quite different energy bands.

In addition, this scenario predicts an accompanying inverse-Compton (IC) GeV

emission with a luminosity comparable to that of the synchrotron MeV emission,

which can be tested with future Fermi observations.

Finally the four nearly equidistant flares and the short time scale variability

detected in the last peak may be explain into the framework of massive accretion

disk instability around the newly born black hole and jet-precession mechanism

(Beskin et al., in preparation)
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Figure 6.8: Autocorrelation functions of the two half. The first part of the emissions are
indicated with square symbols and the second part of the light curves are plotted using
cross symbols. Since this is symmetric for real data, only the positive lags are plotted.
The rate at which the autocorrelation function decays to zero may be interpreted as a
measure of the memory of the process. Top: prompt optical emission. Bottom: prompt
γ-ray emission
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Figure 6.9: From bottom to top: the solid lines show the 15–50, 50–150 (BAT), 300–
1160 keV (KW), and full passband 15–150 keV (BAT) and 18–1160 keV (KW) light
curves of GRB 080319B. The corresponding binning time is 64 ms. The typical error
bar on the count rates is shown in the top left of each panel. In each plot the optical
flux as measured by TORTORA is also shown (dashed line). Flux units are arbitrary.
The vertical line splits the profile in two parts.

124



Prompt Optical Emission GRB 080319B

Figure 6.10: Different SED epoches. There is only a modest amount of dust in the
host galaxy reference frame as shown. SMC consistently provides the best fits. The
SMC law generally best represents the low metallicity dwarf galaxies that host GRBs.
From Racusin et al., 2008.

Figure 6.11: TORTORA optical flux shifted back 2 seconds along with correspondingly
rebinned Swift–BAT γ-ray flux. The correlation is r = 0.82. γ-ray curve is arbitrarily
scaled and shifted for illustrative purposes.
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Figure 6.12: Schematic of Two-Component Jet Model. Summary diagram showing
spectral and temporal elements of our two-component jet model. The prompt γ–ray
emission is due to the internal shocks in the narrow jet, and the afterglow is a result of
the forward and reverse shocks from both the narrow and wide jets.

Figure 6.13: Residual collision model; the short fluctuations in flow properties, which
drive the γ-ray producing collisions at small radii, are expected to lead to residual colli-
sions at much larger radii, where the optical depth to optical photons is low.
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Conclusion

Here we briefly report the results obtained in the present phd thesis work.

The possibility to image on time scales of seconds the behavior of transient

events that seem to populate the universe at any epochs, has suggested to try to

seek additional informations using nonlinear analysis methods. In particular it is

introduced a suitable statistical tool, named Hurst exponent, H, to characterize

the complex and random structures that these emissions manifest during their

short and erratic duration. Our numerical simulations show that for BAT/Swift

GRB the best estimates of H are provided by Higuchi method and Aggregate

Variance method. We have found that the observational properties of the prompt

γ-ray emission do not seem to follow any cosmological evolution trend and they

are the manifestation of same physical phenomenon that is self-affinity at every

scale and at any epoch of the universe. Moreover in our analysis we found H ∼
0.8. This value is significantly larger than the value of 0.5 that would correspond

to variations produced by a white noise process indicating that the physics that

produces the prompt emission is a correlated random process. The PDS slope

found in the previous work coincides with the Kolmogorov law. The calculation of

Hurst exponent in our analysis suggest opposite conclusion and it reveal that the

diversity of GRB is due to realizations of the same process which is self-affinity

over a range of time scales. Finally if there are two bursts with the same form of

time profile but different duration, the H indexes of these bursts will be the same.

This properties suggest us, for example, to comparison different astrophysical

object: AGN and GRB.

The optical data gathered here show a cosmological evolution trend on various
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intrinsic GRB features. In particular, we have found that the optical burst

duration, the isotropic optical luminosity at the observed maximum and the time

integrated isotropic energy are all redshift-dependent. This fact suggests that

the intrinsic optical afterglow luminosity follows the cosmological evolution of a

circumburst environment which determines the optical afterglow luminosity rate.

Cosmological evolution trend in optical afterglow may be appreciated during

particular stage of the afterglow emission (100-6000 sec after their explosion). In

particular in our sample there are 11 well-detected peaks that are not coincident

with the work of the γ-ray activity phase. The peak luminosity for these objects

have a strong correlation with the redshift r=0.92. They are important tool to

study the properties of the interstellar medium and the physical mechanism of

the external shock emission during the transition phases. We have speculated in

the frame work of the internal/external shock model. The afterglows begins while

internal shocks are still going on and the initial part of the afterglow overlaps the

late. Thus, when the γ–ray afterglow is completely extinguished, the external

shock following the evolution of the Universe around them. This phase lasts a few

minutes, after the light curves gradually standardize showing common behavior.

We believe the the redshift-dependence is well-observed in the peaks that arise

during the afterglow evolution, because their energy exceeds the residual γ–ray

flow that contaminates the optical emission during the transition phase between

internal/external shock.

Our team have successfully installed TORTORA camera on the top of the

REM telescope. The TORTORA’s first light images were taken on 12 May

2006. The optical monitoring systems which operated in the past and those

still working, like ROTSE, RAPTOR, Pi of the Sky are not able to resolve the

temporal structure of prompt optical emission down to timescale shorter than

5–10 seconds. TORTORA camera operates since June 2006, approximately half

of observational time (when REM is not performing its scheduled programme)

it follows up Swift of view too. Since may 2006 we accumulated approximately

150 nigh of observations in 24deg × 32deg = 768deg2 field up to 10.5 unfiltered

magnitude with 0.13 sec One of the important result of our routine observations

is the estimation of the rate of the orphan transients. Thus we can state that

prompt optical transients rate is less then 7.7× 10−9deg−2sec−1 for transients that
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are brighter then 10.5m on 0.13 s timescale during at least of 3 successive frames

(0.4 sec).

TORTORA camera has successfully observed the prompt optical emission of

the remarkable case of the naked-eye GRB 080319B before, after and during the

γ-ray activity phase and discovered its fast optical variability.

The similarity of the overall structure of the optical and gamma-ray light

curves, namely the presence of two stages of emission with different average levels,

a nearly simultaneous rise and fall of the emission, suggests that they reflect the

same prolonged activity of the inner engine. Moreover the presence of four nearly

equidistant peaks in the optical light curve may suggest the periodicity of the inner

engine activity. Finally the observational parameters derived for the prompt opti-

cal emission ∼ 1 delay between the γ-ray and optical peaks in the rest frame of the

source) appear to satisfy the predictions of Li & Waxman, (2008). According to

this theory the optical emission could be produced by ”residual” collisions at large

radii. We rule out the possible interpretation that the optical flashes are generated

from external shock emission (Zou et al., 2009) as well as that the optical emission

may arise from internal forward-reverse shocks (Yu, Wang & Dai 2008) taking in

account the self-affinity of the two phenomena.

The afterglow of GRB 080319B can be well described by a two-component jet

model, with a very narrow (∼ 0.4◦) and highly relativistic jet, coaxial with a wider

(∼ 8◦) jet having more conventional properties. Considering the rarity of this

event, this model is probably statistically acceptable.

The probability of observing within the tiny solid angle of the narrow jet is

small (∼ 10−3). If every GRB has such a narrow jet, we should expect to detect

the narrow jet emission from a GRB every ∼ 3–10 years.

The event is extreme not only in observed properties but intrinsically: it is the

most luminous event ever recorded at optical wavelengths and has an exceedingly

high isotropic-equivalent energy release in γ-rays. The previous record was held

in brightness by GRB 990123, GRB 050904, GRB 061007. In spite of its initial

brightness, the behavior of the afterglow at middle/late time does not appear to

be peculiar. The extrapolated luminosity e.g. at 10 hour and 13 hour in the rest

frame of the source (Lopt,10 ≈ 3.16 × 1044 and Lopt,13 ≈ 9.77 × 1043 respectively)

are comparable with the average luminosity of the afterglow sample detected over

the past years. The table 1.2 shows the average extrapolated luminosity during the
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afterglow evolution for a sample of 87 GRBs, confirming the universality of after-

glows properties (§4.1.5) at middle/late stage also for the naked-eye GRB 080319B.

Finally the four nearly equidistant flares and the short time scale variability de-

tected in the last peak may be explain into the framework of massive accretion

disk instability around the newly born black hole and jet-precession mechanism

(Beskin et al., in preparation)

It is the first time that such accurate analysis can be made for the prompt

optical emission of a GRB and many mysteries are yet to be disclosed.
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