
 

AAllmmaa  MMaatteerr  SSttuuddiioorruumm  ––  UUnniivveerrssiittàà  ddii  BBoollooggnnaa  
 

 
 

Dottorato di Ricerca in Scienze Farmaceutiche 
XXI Ciclo (2006-2008) 

 

CHIM/08 
 

Coordinatore: Chiar.mo Prof. Maurizio Recanatini 
 
 
 
 
 

Computational investigation of the Plasmodium falciparum 

fatty acid biosynthetic pathway  

toward the discovery of novel antimalarials 

 
  

Tesi di Dottorato presentata da  
 

Francesco Colizzi 
  

 
Supervisor: 
 

Advisor: 

Chiar.mo Prof.  
Maurizio Recanatini Dr. Andrea Cavalli 

  
 
 

Doctor Philosophiæ 
 

  
Esame finale anno 2009 



 2 

 

 

 
 
 
 Abstract 
 
 

The structural peculiarities of a protein are related to its biological function. In the 

fatty acid elongation cycle, one small carrier protein shuttles and delivers the acyl 

intermediates from one enzyme to the other. The carrier has to recognize several enzymatic 

counterparts, specifically interact with each of them, and finally transiently deliver the 

carried substrate to the active site. Carry out such a complex game requires the players to 

be flexible and efficiently adapt their structure to the interacting protein or substrate. In a 

drug discovery effort, the structure-function relationships of a target system should be 

taken into account to optimistically interfere with its biological function. In this doctoral 

work, the essential role of structural plasticity in key steps of fatty acid biosynthesis in 

Plasmodium falciparum is investigated by means of molecular simulations. The key steps 

considered include the delivery of acyl substrates and the structural rearrangements of 

catalytic pockets upon ligand binding. The ground-level bases for carrier/enzyme 

recognition and interaction are also put forward. The structural features of the target have 

driven the selection of proper drug discovery tools, which captured the dynamics of 

biological processes and could allow the rational design of novel inhibitors. The model 

may be perspectively used for the identification of novel pathway-based antimalarial 

compounds. 
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“ma guai a chi cede alla tentazione di scambiare una 
ipotesi elegante con una certezza” 

Primo Levi. Il Sistema Periodico, 1975. 



 4 

 

 

 
 
 
 
Contents 
 
 
Prologue  . . . . . . . . . . 6  

 
1. Introduction: the type II fatty acids biosynthesis  . . . .   8 

 
2. Mechanical features of Plasmodium falciparum  

acyl carrier protein in the delivery of substrates   .  . . . 13 
 

3. ACP/FabZ interaction  . . . . . . . 38  
 
4. Conformational plasticity in Pf FabZ . . . . . . 48  

 
5. Atomistic simulations discern active from inactive ligands of 

the β-hydroxyacyl-ACP dehydratase of Plasmodium falciparum  . 52  
  

Concluding Remarks  . . . . . . . . 83  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 5 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 6 

 

 

 

Prologue 

 
Bad Air 

 
Until the mid-nineteenth century, most scientists thought that noxious swamp gases caused 
malaria, indeed the word means “bad air” in italian.1 
  
 
Malaria remains a major and growing threat to the public health and economic development of 

countries in the tropical and subtropical regions of the world.  

This dissertation does not count for explicitly introduce the malaria burden; for this aim, the reader 

will find better satisfaction looking at the references listed at the end of this session.1-13 The 

general aspects of fatty acid biosynthesis in Plasmodium falciparum will be briefly discussed in 

the following pages and some recall can be found along the argumentation of each chapter. 

I will focus my dissertation on the advances that the molecular simulations I carried out may have 

brought in understanding some molecular aspects in the biology of fatty acid biosynthesis in 

parasites. This biological understanding is integrated with a computational drug discovery effort 

aimed at the design of small molecules endowed with the capability to interfere with the fatty acid 

production in Plasmodium falciparum. The organization of each chapter will be likely similar to 

that of a scientific article. The results discussed in each chapter are used as starting point for the 

following one. First, the substrate delivery issue as intrinsic properties of the carrier is discussed. 

Then the delivery of substrates is considered from a wider standpoint which takes into account the 

way the carrier and its counterpart may interact, and recognize each other. Structural plasticity is 

found to play a critical role in each of the above steps and is therefore taken into account to address 

the computational medicinal chemistry part of this dissertation. 
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1. Introduction: the type II fatty acids biosynthesis 

 

The synthesis of fatty acids is organized into two distinct biosynthetic pathways based on the 

enzymes involved. In mammals and fungi, the fatty acid biosynthesis machinery resides on a 

single multifunctional polypeptide with multiple active sites (Type I).14 This multifunctional 

ensemble is supposed to be a product of an evolutionary flow resulting from the fusion of genes 

encoding individual monofunctional enzymes.15 These monofunctional enzymes constitute the 

Type II system.16-18 

Malaria parasite and other members of the phylum apicomplexa harbor a relict plastid, known as 

apicoplast, homologous to the chloroplast of plants and algae. The apicomplexan, together with  

plants and most bacteria use a dissociated Type II fatty acids biosynthesis (FAS II) consisting of at 

least nine separate polypeptides, each of  which  may have a dimeric, tetrameric or higher order of 

quaternary structure.18 A key feature of the FAS II is the presence of a small, acidic and highly 

conserved acyl carrier protein (ACP) that shuttles all the covalently bound fatty acyl intermediates 

from one enzyme to the other. 

Newly synthesized ACP must be converted from its apo into holo form, by the attachment of a 

prosthetic group in order to participate in fatty acid biosynthesis. This posttranslational 

modification is catalyzed by ACP synthase which transfer a 4’-phosphopantetheine group from 

coenzyme A (CoA) to a conserved serine residue on the ACP. The acyl intermediates are bound 

through a thioester linkage to the sulfhydryl of the prosthetic group. Fatty acids biosynthesis 

begins at the acetyl-CoA carboxilase (ACC). The substrate acetyl-CoA is converted to malonyl-

CoA and the malonate group is transferred to ACP by malonyl-CoA:ACP transacylase (FabD) to 

form malonyl-ACP.  
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Figure 1. An insightful portrait of Type II fatty acid biosynthesis elongation cycle. Picture adapted from White et al.18.  

Note the central role of the Acyl carrier protein (ACP).   

 

A Claisen condensation assisted by β-ketoacyl-ACP synthase III (FabH) initiates a cycle that 

elongates the acyl-ACP by two carbons unit for each cycle until a saturated fatty acid of 16 or 18 

carbons is made (the elongation cycle has been insightfully depicted by White et al.18 as shown in 

Figure 1). The first reaction in this cycle is the NADPH-dependent reduction of β-ketoacyl-ACP to 

β-hydroxyacyl-ACP by β-ketoacyl-ACP reductase (FabG), and then the β-hydroxyl intermediate is 

dehydrated to yield trans-2-enoyl-ACP catalyzed by either β-hydroxydecanoyl-ACP 

dehydratase/isomerase (FabA) or β-hydroxyacyl-ACP dehydratase (FabZ, which is the unique β-

hydroxyacyl-ACP dehydratase in Plasmodium). The last step of the cycle is the NADH-dependent 
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reduction of the double bond in the trans-2-enoyl-ACP intermediate by an enoyl-ACP reductase I 

(FabI) or by other analogue reductases. The product of FabI reduction, enoyl-ACP, is the substrate 

for the subsequent elongation cycle by condensation with malonyl-ACP catalyzed either by β-

ketoacyl-ACP synthase I (FabB) or β-ketoacyl-ACP synthase II (FabF). Palmitic acid, for instance, 

formed by reiteration of this cycle can be either elongated by another set of enzymes or 

channelized for the formation of phospholipids and other molecules. All Type II systems have this 

basic set of enzymes to initiate and elongate acyl chains, and the diversity of products is achieved 

by variation on this theme.19, 20 

Even if similar, different gene variations and gene expression regulate in various organisms the 

fatty acids chain length, branches and saturated/unsaturated balance.20 
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2. Mechanical features of Plasmodium falciparum acyl carrier 

protein in the delivery of substrates 

 

The Acyl Carrier Protein (ACP) is a key element in the biosynthesis of fatty acids being responsible 

for the acyl group shuttling and delivery within a series of related enzymes. The molecular 

mechanism of the delivery process is poorly known, and its characterization is essential for the in-

depth understanding of the biosynthetic machinery. A steered molecular dynamics approach has 

been applied to shed light on the putative delivery pathway, suggesting the small α3-helix to act as 

gatekeeper for the transfer process. Preventing the delivery mechanism would be an innovative 

strategy for the development of pathway-based antimalarial compounds. 

 

Plasmodium falciparum (Pf) infections are the most widespread and lethal form of Malaria. 

Despite the centenary effort to eradicate or control the disease, more than one third of the human 

population lives in endemic areas with an estimated half billion of infections annually resulting 

in about two millions of death.1-3 

The recently disclosed type II fatty acid synthesis (FAS-II) pathway of Pf is offering attractive 

targets potentially enabling the discovery and development of efficacious and selective 

antimalarial agents. FAS-II system relies on a dissociative process that exploits a series of 

individual enzymes that are, indeed, structurally different from the multifunctional type I fatty 

acid synthase (FAS-I) system of humans.4,5 A key feature of the FAS-II is the presence of a small 

(~ 9 kDa), acidic and highly conserved Acyl Carrier Protein (ACP) that shuttles all the acyl 

intermediates from one enzyme to the other. The acyl substrates are bound to ACP through a 

flexible arm formed by the serine-bound prosthetic phosphopantetheine (4’-PP) group (Figure 

1a).6 Nevertheless, ACPs are also known to play a fundamental role in numerous other 
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biosynthetic pathways in which acyl transfer steps are required.7-9 The geometric properties of 

several conformationally distinct ACPs have been determined by X-ray crystallography and 

NMR.10-15 These experimental data have suggested that structural plasticity is an intrinsic feature 

of this protein family, providing a possible explanation for ACPs’ capability to recognize 

multiple enzyme partners and transiently deliver the acyl group to the active sites of these 

enzymes.16 

 

Figure 1. a) 2D structure of the acylated 4’-phosphopantetheine (4’-PP) prosthetic group in the β-hydroxydecanoyl-

ACP. b) Overall fold of ACPs; the α3-helix (residues 57-62) is depicted in yellow tube. c) Binding mode of the β-

hydroxylated substrate (carbon atoms in cyan) after the MD equilibration compared to the decanoyl substrate 

(carbon atoms in light green) reported in E. coli crystal structure (pdb code: 2fae). 

 
 

ACP structures are composed of four α-helices delimiting a lipophilic core that forms a binding 

pocket for fatty acids. Helix α2 has highly conserved residues and plays a major role in ACP-

protein interactions (Figure 1b)17 whereas the short α3-helix does not have a conserved folding 

among the published ACP structures and, accordingly, this protein portion was observed to 

experience a helix-loop conformational equilibrium in PfACP.14 Moreover, the analysis of 
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experimental and computational studies suggested the protein region between helices α2 and α4 

to be part of the putative ACP/enzyme interface.18-26 The functional implication of the above 

mentioned structural features are yet unrevealed when observed from the standpoint of the 

delivery of substrates. 

X-ray structures of acylated ACPs have shown the thioester-bound acyl-chain to be embedded 

into a tunnel-like hydrophobic cavity (Figure 1c), which can harbor acyl substrates of different 

length.12,15 Notably, the reactive center of the acyl substrate is buried in the hydrophobic core of 

the carrier, and thus inaccessible to catalytic activities of FAS-II enzymes. Therefore, delivering 

the substrate from the inner ACP core to the FAS-II enzyme active site is a mandatory event for 

each biosynthetic step. The molecular understanding of  ACP’s ability to deliver substrates 

together with the ability of drug designers to interfere with this process might be a new strategy 

for the development of innovative FAS-II inhibitors that could behave as pathway modulators 

rather than single-enzyme blockers. 

Limited structural information about the complex of ACP with biological counterparts and the 

mechanism of substrate delivery is currently available.18,27,28 Recently, Leibundgut et al.,27 

addressed the delivery issue discussing the crystal structure of yeast fatty acid synthase (FAS-I 

type) system with its ACP stalled at one catalytic domain. They have suggested a general 

switchblade-like mechanism in which the 4’-PP arm delivers the acyl chain flipping from the 

ACP core into the catalytic domain active site.27 However, even though ACPs share the same 

structural motif in the acyl-substrate binding region, when compared to the FAS-II ACP, the 

yeast ACP domain (~ 18 kDa) has four additional C-terminal α-helices, which take part in the 

interaction with the catalytic domain. Therefore, differences in the recognition and delivery 

process between FAS-I and FAS-II systems are likely to occur. Furthermore, substrate delivery 
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is a dynamic process, and the detailed but static X-ray picture requires to be complemented with 

other approaches that are able to directly capture the dynamics of the biomolecule under 

investigation. 

In the present work, the dynamics of the delivery mechanism of the β-hydroxydecanoyl 

substrate by PfACP was computationally investigated using a Steered Molecular Dynamics 

(SMD) approach. Analyzing the trajectories and the force profiles, we were able to identify the 

lowest resistance pathway for the substrate delivery process. In addition, our simulations pointed 

out both the role of α3-helix as gatekeeper for the substrate transfer process, and the effect of the 

substrate β-hydroxylation on the enzyme recognition. 

 

Figure 2. a) Root mean square fluctuation (RMSf) of the PfACP backbone along the whole MD simulation (red 

line), and RMSf of up-to-date available crystal structures of E. coli ACP after Cα superposition (dotted gray line). b) 

Stereo view of the β-hydroxydecanoyl-ACP (white ribbon) as it appears after 8 ns of MD. The prosthetic group 

(cyan) lies on the mouth of the fissure between helices α2 and α3. The highly flexible portion going from 53 to 57 is 

magenta. The decanoyl-ACP crystal structure (in green, pdb code: 2fae) is shown for comparison. 
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In SMD simulations, which have been widely and successfully applied to explore the 

properties of non-equilibrium processes of biomolecules,29,30 a moving harmonic potential is 

used to induce a motion along a reaction coordinate. The free end of a virtual spring is moved at 

constant velocity, while a set of “pulled atoms”, attached to the other end of the spring, are 

subject to steering forces. The applied forces are determined by the extension of the spring, and 

can be monitored throughout the entire simulation. If the pulled atoms can easily advance along 

the selected reaction coordinate, the applied force is small and its profile is rather flat. 

Conversely, if the pulled atoms encounter hindrance along the pathway, the force increases to 

allow the pulled atoms overcoming energy barriers, thus resulting in quite relevant drops in the 

force profile. Based on the magnitude of the exerted force, it is possible to determine how easily 

a pathway can be coursed.29,30 

The simulations of the covalently bound β-hydroxydecanoyl-ACP complex were performed in 

explicit water, using the CHARMM31 force field and the program NAMD32 [see Appendix (Ap) 

for details]. To get insights into intrinsic properties of the system, the complex was first 

simulated for 8 ns of unrestrained MD. The average value of RMSD calculated for the backbone 

along the whole simulation time was 2.9 Å. Nonetheless, the region including residues 53-62 

showed high flexibility (RMSf up to 8 Å, red plot in Figure 2a) reflecting the higher ratio of  

conformational diversity observed by superimposing ACP crystal structures (dotted grey plot in 

Figure 2a). During the free MD simulations the β-hydroxyacyl moiety of the bound ligand 

behaved like a fishing float inside the lipophilic core, and the acyl moiety fluctuated assuming 

several conformations, according to the existence of multiple low-occupancy conformers 

observed in the crystal structure of decanoyl-ACP.15 The substrate β-hydroxyl group was able to 

interact with several polar residues (mainly the backbone of D59, A60, and I63) lining the 
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entrance of the ACP binding cavity. As a result, the β-hydroxydecanoyl was less buried in the 

protein core when compared to the experimentally reported decanoyl analogue. This had the 

consequence that the prosthetic group (4’-PP) was more relaxed and able to fluctuate among 

several conformations. Figure 2b shows the prosthetic group protruding towards the solvent, self-

docking at the upper fissure between helices α2 and α3. In such a conformation, the FAS-II 

enzymatic counterparts might still recognize the conserved α2-helix, selectively interact with the 

prosthetic group, and establish connections with protein segment 53-62. Roujenikova et al.15 

proposed that the fairly flexible prosthetic arm may adopt a set of different conformations, likely 

related to the carried acyl substrate, to allow optimal interaction of acyl-ACP intermediates to 

partner enzymes. However, the MD simulations did not provide any mechanistic explanation of 

the delivery process. This is likely a consequence of high potential energy barriers implicated, 

which cannot be sampled by ns-time-scale simulations. To overcome this drawback, we applied 

SMD (Figure 3) to drive the substrate along several putative reaction coordinates (see Figure 3a). 
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Figure 3. a) Acyl-ACP and the delivery pathways investigated. The arrows represent the pulling directions of the 

applied forces. b) Correlation of the pulling velocity with the rupture force. At 1.5e-06 Å/fs the process is close to 

equilibrium. c) Mechanical work done on the system calculated by numerical integration. d) Force profiles of the 

investigated pathways at 1.5e-06 Å/fs. For sake of clarity the curves are obtained averaging the forces every 30 

points. 

 

Based on the inspection of the structural features of the reported acyl-ACPs, and on the 

aforementioned experimental data,18-26 several delivery pathways were initially considered. 

However, some of them were discarded because of either they generated unlikely structural 

distortion or were scarcely in agreement with the available experimental data.18-26 Two main 

putative delivery pathways were finally investigated (Figure 3a): the first one accounting for the 

substrate exposure through the fissure formed by helices α2 and α3 (path 1); the second one 
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accounting for a sword-unsheathed-like mechanism, in which the substrate is unthreaded away in 

a parallel direction with respect to the major axis of the binding pocket (path 2). Since for path 1 

a protein conformational rearrangement was required, and considering critical the role of the 

pulling direction, three slightly different sub-paths (path 1a, 1b, and 1c) were investigated. For 

path 2, preliminary investigations revealed that no relevant protein conformational 

rearrangements were required, and that slight modifications of xyz components of the pulling 

direction provided very similar force profiles (see Ap). Hence, we assumed that the chosen 

pulling direction in path 2 was likewise representative of the sword-unsheathed-like mechanism. 

In SMD, the pulling velocity (v) largely influences both the results of simulations and the 

profile of the applied forces. As v decreases, the pulled atoms have more time to sample the 

conformational space and to search for lowest resistance path along the selected direction. At the 

same time, the non pulled atoms can relax following the movement of the pulled atoms, and thus 

reducing the friction rate of the process. As shown in Figure 3b, a lowering of the pulling 

velocity resulted in a decrease of the observed rupture force likely because of the reduction of 

non-equilibrium effects.29,33 Remarkably, at the pulling velocity of 1.5e-06 Å/fs, a plateau was 

observed, pointing to this pulling rate as the more appropriate one to minimize the friction 

influence on the delivery process. Moreover, at such a slow pulling velocity, some spontaneous 

and SMD-unrelated conformational changes of ACP could also be sampled. 

In Figure 3d and 3c, the force profile and the mechanical work done during each simulated 

pathway are shown, respectively. For each pathway, the force profile correlated well with the 

rupture and formation of interaction between the outgoing substrate and the binding site residues; 

a detailed description of the events is reported in Ap. 
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 The system in both path 1a and 1b encountered relatively high hindrance in the early ns of 

simulations because the substrate moved against the deep portion of the cleft formed by α2- and 

α3-helix, and lined by the α2-α3 loop. Here, the α3-helix could not spontaneously follow the 

pulled atoms and as a consequence the exerted force increased. 

In path 1c (Figures 3 [blue line] and 4), the force profile was much flatter than in paths 1a and 

1b. We observed an initial force peak (~200 pN, Figure 3d) due to the breaking of an H-bond 

network involving the substrate β-OH and the backbone oxygen of A60 and I63. Then, the whole 

process evolved with a force less than 100 pN. A strong electrostatic interaction involving the β-

OH group and the side chain of D59 occurred between ~1.5-2.5 ns (Figure 4c). Concertedly, a 

slow “gate opening” was manifested by the increasing distance between V41 and A60 (see also 

Figure 1b). The flatness of the applied force profile indicated that both the pulled substrate and 

the constraint point were concertedly moving, and the decreasing of the overall vdW contacts 

meant that the substrate was leaving the binding cavity quite slowly. The lack of a significant 

rupture point in the force profile suggested that the substrate did not encounter any relevant 

resistance despite the remarkable shift of the α3-helix. This was possible because, during the 

substrate pulling, the ACP α3-helix could spontaneously rearrange, allowing the substrate 

exposure. This observation was in good agreement with both free MD and experimental data, 18-

26 which pointed to α3-helix as one of the most dynamic segments of ACP structure (Figure 2a). 

Noteworthy, in the same simulation time scale, in the free MD, it was sampled both the helix 

folding of residues 19-26 and the partial unfolding of the short α3-helix (see Ap). 
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Figure 4. a) Snapshots isolated from the SMD trajectory sampled in Path 1c at (i) 300 ps, (ii) 1.6 ns, (iii) 4.2 ns, and 

(iv) 7 ns. The blue arrow in (i) shows the pulling direction and in (iii), the double end arrow indicates the opening 

movement of the fissure formed by helices α2 and α3. b) Evolution of the distance between Cα of V41 and A60. c) 

Electrostatic and vdW interaction energies between the β-hydroxydecanoyl moiety and the protein residues during 

the SMD. 

 

Path 1 delivery hypothesis was then compared to path 2, to investigate if a sword-unsheathed-

like mechanism could provide a flatter force profile. As shown in Figure 3d (magenta line), the 

unthreading of the substrate had a magnitude of forces similar to that registered for path 1b and 

higher than that observed in path 1c. Such a mechanism poorly complied with an ACP-enzyme 

interface comprising both α2-helix and its connection to α4-helix. However, a sword-

unsheathed-like mechanism could be proposed for enzymes, whose interactions with ACP more 

extensively involve the α1-α2 loop connection.16,20 
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In summary, our simulations suggest that the substrate delivery through the cleft between α2- 

and α3-helix is a feasible pathway that exploits intrinsic conformational plasticity of ACP (path 

1c). We also show that ACP portion including the loop connecting helices α2 and α3 and the α3-

helix itself can play a critical role in both the delivery and, as previously reported, the 

recognition processes.18-26 As hypothesized on the basis of X-ray experiments,12,15 we also point 

out the ability of the prosthetic group to function as label for the acyl-intermediates carried by 

the ACP. Such aspects are related to ACP plasticity and may account for a mechanism in which 

ACP and its enzymatic counterparts minimize the solvent exposure of the lipophilic substrate 

moiety. The delivery model would include an ACP/enzyme interface formed by ACP helices α2 

and α3; it might be hypothesized that a slight conformational change of the α3-helix could easily 

allow the substrate to glide into the corresponding enzyme active site. 

Can we use the above uncovered features of ACP to address the development of innovative 

antimalarial compounds? This study sheds light on the functional and plastic features of ACP 

and attempts to contextualize them in the protein-protein interactions network occurring in the 

FAS-II system. During the elongation cycle, ACP-enzyme interactions and the delivery of the 

acyl substrate to the active site are compulsory steps for fatty acid production. These processes 

are currently subject of drug discovery efforts. In this respect, blockers of substrate delivery 

would function as pathway-based antimalarial compounds rather than single FAS-II enzyme 

inhibitors. The design of a delivery-blocker might be achieved through a strategy that considers 

as template-structure for a lead-candidate that region of the α3-helix usually interacting with α2. 

The interaction of such a mimetic compounds with PfACP would interfere with the gate opening 

function managed by the α2/α3 cleft. Moreover, the low-resistance delivery pathways here 

investigated might be used as starting point for further studies aiming at identifying local energy 
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minima along the reaction coordinate. As matter of fact, our simulations suggest that, while the 

substrate transiently leaves the carrier core moving toward the catalytic partner, the ACP core 

itself might become a peculiar binding pocket for small molecules able to interfere with the 

relocation of the substrate into the carrier. Likewise, if the conformational “transient” state of the 

acyl-ACP is an highly populated energy minimum, the probability to block the delivery process 

would dramatically increase. 

 

Methodological details 

 

Starting from the first NMR conformer (out of 20) of the holo structure of PfACP (pdb code: 

2fq0), the prosthetic group carrying a β-hydroxydecanoyl substrate was built using the Sybyl 7.3 

molecular modeling suite of program (Tripos Inc., St. Louis, MO) and manually docked at the 

acyl binding pocket of the carrier using as template the binding solution of the high resolution X-

ray structure of E. coli decanoyl-ACP (pdb code: 2fae). The covalently bound β-

hydroxydecanoyl-ACP complex was first energy-minimized in gas phase for 1000 steps using 

the conjugated gradient method keeping fixed the backbone atoms and restraining the side chain 

with a 10 kcal mol-1 Å-2 spring constant. The complex was then solvated with a 10 Å thick layer 

of water using the solvate package of VMD and seven Na+ cations were added to neutralize the 

system. The simulations were performed using periodic boundary conditions and long-range 

electrostatics calculated by using the particle-mesh Ewald (PME) method with a charge grid 

spacing < 1Å. A cutoff of 10 Å was used for van der Waals and short-range electrostatic 

interactions with a switching function started at 8 Å to ensure a smooth cutoff. Time integration 

step of 2 fs was used and the length of all bonds involving hydrogen atoms was fixed using the 

SHAKE algorithm. The solvated system was minimized with the conjugate gradient method for 

1000 steps restraining the heavy atoms of the protein with a force constant of 10 kcal mol-1 Å-2, 

followed by 1000 steps with a force constant of 3 kcal mol-1 Å-2 and finally fully minimizing the 

system for further 1000 steps. The insertion of the β-hydroxydecanoyl moiety in the PfACP core 

produced only slightly reorientations in the side chains of residues shaping the cavity, with the 

minimized structure having an average overall rmsd less than 0.5 Å. Six subsequent steps were 
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used to heat the system from 1 to 300 K. Every 15 ps the system was heated up by 50 K and 

correspondingly the alpha-carbon were gradually unrestrained (till 2 kcal mol-1 Å-2) starting from 

a 6 kcal mol-1 Å-2 harmonic restraint force constant. In these equilibration steps, constant volume 

was maintained and the temperature was controlled by Langevin dynamics with a dumping 

coefficient of 5 ps-1. The system was subsequently switched to the isothermal-isobaric (NPT) 

ensemble once the temperature was stabilized at 300 K. During the switching, a soft harmonic 

restraint of 2 kcal mol-1 Å-2 was still applied to the Cα atoms and gradually turned off in the next 

60 ps. The constant pressure control was applied using the Nosé-Hoover Langevin piston method 

and 1 atm was set as target pressure. The system evolved for further 100 ps and the final state 

was used as starting point for both SMD study and free MD production. 

All simulations were performed with the molecular dynamics program NAMD 2.6 (Phillips et 

al., 2005) using the CHARMM22 force field (MacKerell et al., 1998) for proteins and the TIP3P 

model for all water in the system (Jorgensen et al., 1983). CHARMM compliant parameters for 

prosthetic group together with the β-hydroxydecanoyl substrate were generated using the 

paratool plugin implemented in VMD (Humphrey et al., 1996. 

http://www.ks.uiuc.edu/Research/vmd/). Missing parameters were estimated from similar terms 

within the force field using an empirical/additive approach. Mulliken charges were calculated at 

the HF/6-31G* level of theory and refined by analogy in order to preserve consistency with 

CHARMM style charges (i.e., always qH = 0.09).   

SMD simulations were performed at constant pulling velocity using a steering velocity of 1.5e-

06 Å/fs with a spring constant of 5 kcal mol-1 Å-2 (several velocities were further considered as 

discussed later in the Appendix). Variation of the constant K of the harmonic restrain influences 

the profile/fluctuation of the applied forces. Here, we used a value of 5 kcal mol-1 Å-2 that 

coupled with an appropriate v gave a force profile in which it was still possible to notice a drop 

of the forces, but at the same time permitted the thermal fluctuation of the pulled atoms to be 

similar to the perturbation arising from the pulling force. 

Using as reference coordinates the structure of the E. coli decanoyl-ACP (pdb code: 2fae subunit 

A) the x, y and z- components of the normalized pulling direction were: for path 1a, -0.9388, 

0.2181, 0.2665; for path 1b, -0.9198, 0.2927, 0.2611; for path 1c, -0.8512, 0.4658, 0.2416; for 

path 2, 0.0326, 0.9300, 0.3640. To avoid shifting of the system during pulling, in path 1, the 

alpha-carbons of protein going from residue 1 to 35 were harmonically restrained to their initial 
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position using a 1 kcal mol-1 Å-2 spring constant and, in path 2 the restraints were applied to 

residue portions 1-16 and 48-52. 

The value of the exerted force (F) were outputted every (dt) 1 ps of simulation and the work 

')'()(
'

0
vdttFtW

t

∫=  done on the system during the SMD was calculated by numerical integration; 

the pulling velocity (v) was 1.5e-06 Å/fs. 

CHARMM force field topology for prosthetic group and substrate can be found at 

http://pubs.acs.org/doi/suppl/10.1021/ci800297v/suppl_file/ci800297v_si_001.pdf 

 
Appendix 
 
 
Pulling velocity and force profiles 

 

To explore the influence of the pulling velocity on the behavior of the system we tested four 

decreasing v values starting from 1.5e-03 Å/fs (0.003 Å/timestep) leading to 1.5e-06 Å/fs 

(0.000003 Å/timestep). For the higher velocity used it was possible to correlate the RMSD of the 

protein with the magnitude of the rupture force, calculated as mean of three individual simulation 

for each path (Figure 1Ap-a), required for the substrate exposure along each investigated 

pathway. As shown, starting from the most “perturbative” pulling direction path 1a, the protein 

was subjected to lower conformational rearrangement going toward the path 2 direction (Figure 

1Ap-b). The reported RMSD of the whole protein actually reflected the deviation whose residues 

57 to 62 were subject (Figure 1Ap-c). This means that at higher velocities path 1a pushed the 

substrate in the deep portion of the cleft formed by α2 and α3 helices and lined by their α2-α3 

loop connection. The protein could only suffer this rustling having not the possibility to give into 

the pushing atoms. As the pulling direction became less drastic as it was in path 1b and 1c, the 

substrate could find less opposition to its flowing, leading to a decrease of the exerted force as 

well as of the RMSD. In path 2, the conformational shift of α3-helix was not remarkable and the 

substrate could be easily threaded away. 

As the pulling velocity is lowered one should expect a decreasing trend of the rupture force 

because of the reduction of non-equilibrium effects. In Figure 1Ap-d this trend is shown, and a 

plateau was reached when v approached to 1.5e-06 Å/fs. Around this velocity the necessary 

forces to extract the β-hydroxyacyl substrate became more similar among the chosen paths and 
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an in-depth inspection of the system was required. Remarkably, at the lower pulling velocity 

used, the substrate took about 6-8 ns to be extracted from the binding cavity. This was the same 

simulation time scale we used in the free MD, where it was possible to sample both the helix 

folding of residues 19-26, and the partial unfolding of the short α3-helix (see Figure 9Ap-d). 

That means that, meanwhile the pulling force was applied to the substrate atoms, the ACP 

system was able to undergo some intrinsic conformational changes normally occurring without 

any constraint. 

 

 

 

 

Figure 1Ap. Effects of the pulling velocity on the force profiles. A) Force profile obtained for the higher velocity 

(1.5e-03 Å/fs); calculated as mean of three individual simulation for each path. B) RMSD of the alpha-carbons of 

the whole protein during the steering process  and  C) RMSD of the protein portion 57-62. Path 1a induces the wider 

movement respect to the other paths. D) Computed rupture force as a function of several pulling velocities. 
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Figure 2Ap. Effects of modification of pulling direction on the force profiles in PATH 2. Force profiles obtained  

using a pulling velocity of 1.5e-03 Å/fs,  calculated as mean of three individual simulation run. 

 

Further details on the pathways 

 

In Figure 3Ap, we report on the force profiles of the four pathways (paths 1a-c and path 2). 

 

 

Figure 3Ap. Force profiles of pathways investigated at 1.5e-06 Å/fs. The green thick curve is obtained averaging 

the forces every 30 points. 
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PATH 1A. In Figure 4Ap, the path 1a is summarized in terms of force profile, V41-A60 distance 

between their alpha-carbons, and electrostatic and van der Waals interaction energy between 

ACP and the β-hydroxydecanoyl moiety of the substrate. The plateau observed at 1.5-3 ns 

(Figure 4Ap-a) was due to the breaking of H-bond interaction between the β-hydroxyl group of 

the substrate and A60 and I63 backbone. Then, the acyl chain followed the unfolding of α3-

helix, being it still able to transiently establish an H-bond interaction with A60 and I63 (Figure 

4Ap-d). 

 

 

Figure 4Ap. PATH 1A. A) Force profile obtained at v = 1.5e-06 Å/fs. B) Evolution of the distance between the 

alpha-carbons of V41 and A60 during SMD simulations. C) Electrostatic and van der Waals interaction energy 

between the β-hydroxydecanoyl moiety and the protein during SMD simulations. D) Magnification of the van der 

Waals interaction energy contribution.   

 

 



 29 

 

 

PATH 1B. In Figure 5Ap, the path 1b is summarized. As shown in Figure 5Ap-b, an 

opening/closure of the α2-α3 fissure was observed. The process could be divided in three steps: 

approach, transit, and escape. During the early stage of the simulation the acyl end was trapped 

into a sub-pocket toward the α1-helix and formed by F29, L47, L44, and I8; this explained the 

force increasing despite both electrostatic and vdW interactions remained constant. Around 1.6 

ns the pulling force released the acyl group from the sub-pocket and slowly it moved towards the 

fissure formed by the juxtaposition of α2 and α3 helices. In the simulation time-range from ~3.7-

6.5 ns, the substrate protruded into the fissure formed by I41, I44, I55 and A60, and by L40 and 

I63 (Figure 6Ap). Furthermore, the side chain of F29 underwent a conformational change; F29 

acted as lid maintaining the cavity core water-free. Finally, in the third step, the substrate 

completely left the binding cavity as suggested by both the decreasing of interaction energies and 

forces magnitude. 

 
 

Figure 5Ap. PATH 1B. A) Force profile obtained at v = 1.5e-06 Å/fs. B) Evolution of the distance between the 

alpha-carbons of V41 and A60 during SMD simulations. C) Electrostatic and van der Waals interaction energy 

between the β-hydroxydecanoyl moiety and the protein during SMD simulations. D) Magnification of the van der 

Waals interaction energy contribution.  
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Figure 6Ap. Stereo view of the transient state sampled in Path 1b (see text). The conformation of F29 related to the 

fully embedded substrate is shown in transparent pink stick. Note the β-OH group of the substrate exposed to 

putative metabolizing enzyme activity. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 31 

 

 

PATH 1C. In Figure 7Ap, the path 1c is summarized. This pathway is in-depth described in the 

paper. 

 

 
 

Figure 7Ap. PATH 1C. A) Force profile obtained at v = 1.5e-06 Å/fs. B) Evolution of the distance between the 

alpha-carbons of V41 and A60 during SMD simulations. C) Electrostatic and van der Waals interaction energy 

between the β-hydroxydecanoyl moiety and the protein during SMD simulations. D) Magnification of the van der 

Waals interaction energy contribution.   
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PATH 2. The unthreading of the substrate is summarized in Figure 8Ap. At the beginning of the 

simulation the force average fluctuated to both positive and negative values reflecting the 

floating behavior of the substrate. The β-OH of the substrate was found to interact with the 

backbone carbonyl group of I63 (Figure 8Ap-d). As the pulling evolved, another H-bond was 

formed with A60 backbone and the exerted forces increased till about 3.8 ns (Figure 8Ap-d). At 

4 ns the acyl moiety started to leave the ACP core as revealed by the decreasing vdW contacts. 

The outgoing of the substrate was related to a decreasing of the V41-A60 distance reflecting the 

core contraction as the substrate left its location. During the outgoing process the prosthetic 

group was, finally, harbored in the mouth of α2-α3 helix cleft. 

 

 
Figure 8Ap. Path 2. A) Force profile obtained at v = 1.5e-06 Å/fs. B) Evolution of the distance between the alpha-

carbons of V41 and A60 during SMD simulations. C) Electrostatic and van der Waals interaction energy between 

the β-hydroxydecanoyl moiety and the protein during SMD simulations. D) Monitored distances between H-bonding 

moieties. 
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Monitored features of the free MD simulation 

 

 

 

 

Figure 9Ap. Monitored features of the free MD. A) Time dependence of the RMSD calculated 

for the Cα  B) Evolution of distance between the alpha-carbons of V41 and A60 during the 

molecular dynamics simulation. C) Electrostatic and van der Waals interaction energy between 

the β-hydroxydecanoyl moiety and the protein during the simulation. D) Time dependence of the 

radius of gyration calculated for the loop portion 19-26 that completed the α helix folding around 

the 6th  ns of simulation. Vice versa, the small α3 helix partially unfolded into a loop at the 

beginning of the simulation. 
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3. ACP/FabZ interaction 

 
The role of ACP’s α3-helix in the delivery of substrate is discussed in the context of the protein-

protein interaction between PfACP and PfFabZ. Several experimental observations reporting on the 

ACP residues involved in interaction with enzymatic counterparts were taken into account and the 

frame of the recognition and delivery process is also outlined.  

 

Whereas the α2-helix of ACP is thought to play the major role in ACP-enzyme interactions,1-4  

other ACP portions are likely involved in the protein-protein binding process. Residues going 

from 57 to 62 (PfACP numeration) and forming the short α3-helix do not have a conserved 

secondary structure among the available ACPs. NMR investigations on PfACP have reported the 

α3-helix to experience a helix-loop equilibrium which in turn formed a longer loop connection 

between α2 and α4 helices. The high mobility of the ACP portion including residues 53 to 62 

was sampled in simulations5 and is consistent with structural data discussed in the previous 

chapter. The putative physiological role of the portion 53-62 was hypothesized in virtue of its 

proximity to the recognition α2-helix and considering its contribution in forming the boundary of 

the cavity pocket hosting the acyl substrate. Moreover, several experimental and computational 

studies aimed at the identification of the residues involved in the interaction of ACP with 

enzymatic counterparts identify this portion, together with α2-helix, as being part of the 

interacting ACP interface. Chemical shift perturbation protein NMR studies of the complex 

ACP/FabA in Escherichia coli have indicated residues E53 and E60 as mediator of the 

interaction.6 In the X-ray crystal structure of Bacillus subtilis ACP-AcpS complex,2 residues I54, 

D56 and E60 of ACP are within an interacting distance from the AcpS.  Zhang et al.,4 described 

the “outsider” mediation of I54 in the ACP-FabG interaction and hypothesized a role for the α2-
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α3 loop in the conformational change associated with ACP binding. Using an environmentally 

sensitive fluoroprobe, the interacting residues of selectively labeled myristoil-ACP with HlyC 

were found to be located in the α1-α2 loop, α2 helix and α2-α4 loop I54, D56 and K61.7 Figure 1 

resume the above experimental observation. 

 

 

Figure 1. Crystal structure of E.coli decanoyl-ACP (pdb code: 2fae). The localizations of residues 

(black arrows) involved in the interactions with enzymatic counterparts are shown.  

 

Typically consisting of 70-100 residues, ACP belongs to a broad family of conserved carrier 

protein. The acyl substrates are bound to ACP through a flexible arm formed by the serine-bound 

prosthetic phosphopantetheine (4′-PP) group. ACP multiple sequence alignment (Figure 2a) 

revealed a high degree of identity centered on the serine linking the 4′-PP group. Conserved 

residues highlight their evolutionary functional importance: Asp36, Ser37, Leu38, Glu42, and 

Glu48, I55, D57 and position 58 which is either occupied by Glu or Asp.  The lipophilic residues 



 38 

 

 

are mainly located in core region of the carrier while charged residues tend to be at the protein 

surface. Importantly, lipophilic amino acids line the core pocket of ACP and allow optimal 

hosting of the substrate acyl chain. However, hydrophobic patches are usually present at protein 

interfaces8, 9 and in the specific case of FAS-II they may account for selectivity among different 

ACP-interacting enzymes. The negatively charged residues strongly influence the electrostatic 

properties of ACP surface. The negative electrostatic potential distribution is focused on both α2 

and α3 helices, therefore increasing the capability of ACP to interact via its α2-α3 face with the 

positively charged residues lining the active site entrance of FAS-II enzymes.3  

The functional role of the ACP portion including helices α2 and α3 is also suggested by an 

evolutionary conservation analysis of ACPs sequence (Figure 2d).10-16 Enzymatic activity as well 

as protein-protein interactions are mediated by clusters of evolutionarily conserved residues 

which are spatially related to each other. Accounting for the phylogenetic relations between 

aligned protein and for the stochastic nature of evolution,17 it is possible to assign a conservation 

score for each residue of a protein sequence/structure. Figure 3d shows how the most conserved 

regions (deep purple) of ACPs included the α2 and α3 helices suggesting their connection with 

the biological function that the carrier protein has to absolve.  

Concordantly, enzymatic and in vivo experiments have illustrated how acyl-ACPs from different 

species can be interchangeably used as substrate by E. coli FAS-II system. Since charged and 

lipophilic residues are conserved on ACPs surface, then ACP/protein interactions are likely 

achieved through such a conserved set of electrostatic and/or hydrophobic contacts. 
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Figure 2. Acyl carrier protein from an evolutionary point of view. a) Sequence alignment of ACP 

homologues using the structural matrix implemented in BODIL.18 b) 3D structure and c) electrostatic 

potential surface for the same view.19 The range was from -8 (red) to 8 (blue) kbT/e.  d) amino acids 

are colored by their conservation level, with turquoise and purple indicating the most variable and 

conserved residues respectively. 

 

Whereas the α2-helix has been widely postulated to represent a “recognition helix,1, 3 the 

functional role of α3-helix in the delivery5 as well as in the recognition and interaction of the 

enzymatic counterparts is here outlined for the first time.  

In the ACP/FabZ interaction, the relevance of a negative charge distribution on ACP surface is 

confirmed by the observation that the binding tunnel of PfFabZ is surrounded by basic residues 

such as R178, K180, K181 and K199 (Figure 3). Favorable long range Coulombic electrostatic 
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forces increase the rate of association rate of a protein complex,20, 21 and the affinity of the 

ACP/enzyme complexes is thought to be strongly affected by electrostatic contributions. 

 

Figure 3. Electrostatic potential surface of PfFabZ. The contours were drawn at 8 kbT/e (with red 

negative and blue positive charge). In the cartoon model the catalytic residues Glu147 and His133 

are shown.  

 

We used a combination of docking algorithms to elucidate the putative ACP/FabZ mode of 

interaction. Typically, a protein-protein docking protocol is composed by two subsequent phases. 

In the first, called global search, the configurational space is sampled thoroughly using efficient 

posing algorithms combined with low resolution energy functions. In the second phase, or local 

search, the configurational sampling is limited to the surrounding of the top ranked outcomes 

generated by the global search and a more accurate scoring function is generally be used.  

In figure 4 is shown a converged outcome of a global search docking of PfACP against PfFabZ. 

Given two interacting counterparts, the algorithms aimed at finding docking transformations that 

yielded good molecular shape complementarity between the macromolecules.22, 23 Several top 

ranked docking poses were further refined using a more detailed energy function and accounting 

for side chain flexibility.24 However, only for the pose shown in Figure 4a it was observed the 
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typical energy funnel (Figure 4b) which is related to the presence of a stable energy minimum 

surrounded by a broad region of attraction. 

 

Figure 4. Interaction model for the PfACP/PfFabZ complex. a) Is shown the protein complex which 

generated b) the energy funnel. Protein-protein docking calculations were performed using the 

ZDOCK,22 PatchDock23 and RosettaDock24 servers. 

  

The binding mode is consistent with a delivery mechanism in which the α3-helix is the 

gatekeeper of the process. The ACP/FabZ interface is formed by ACP helices α2 and α3 and it 

might be hypothesized that a slight conformational change of the α3-helix could easily allow the 

substrate to move into the corresponding enzyme active site. 

To gain further insight in the interaction process between the two macromolecules, preliminary 

molecular dynamics simulations were performed. Trajectories of the binding event were 
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generated in vacuum to reduce the simulation time and to enhance the attractive electrostatic 

contribution to the association of ACP and PfFabZ. Starting from the refined binding model, 

ACP molecule was translated away from PfFabZ in the direction connecting their center of mass 

(c.o.m). In turn, ACP’s c.o.m resulted about 15 Å farther its original docked position. Using a 

dielectric constant (ε) of 1 and 80, five independent short time (100ps) MD simulations were 

performed for each ε value with a cut off 20Å. Few alpha-carbons of FabZ were restrained to 

their original position so that only ACP was freely movable. One of the best ranked docking 

solutions, which not generated any energy funnel, was used as comparison term.  

Because of the short simulation time used, the association of ACP and FabZ was sampled only 

for the lowest value of ε. The distance between the c.o.m was monitored along the simulations 

(Figure 5) and only the funneled binding mode yielded to associating trajectories. Interestingly, 

the trajectories converged into the original docking pose.  

 

Figure 5. Lowering distance in the association between PfACP and PfFabZ. 
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What can be argued from such simulations? α3-helix of ACP is a small flexible protein portion 

containing an high density of charged residues (D57, E59 and K61). The following scenario 

might be hypothesized:  the approaching ACP points its α2 and α3 helices towards the active site 

of FabZ. The active site of FabZ is surrounded by positively charged residues that would have a 

long-rage attractive effect on the acid residues present on ACP surface. The dynamics of α3-

helix might be perturbed by approaching the surface of FabZ. Namely, ACP residues D57, and 

E59 might tend toward FabZ even before the interaction of the two surfaces. The perturbation of 

the α3-helix might trigger a conformational rearrangement in ACP structure5 leading to the 

exposure of the carried substrate. 
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4. Conformational plasticity in Pf FabZ 

 
 This little chapter resumes and augments some conformationals studies which I started during 

my master thesis and completed at the early stage of my PhD. It might be considered a trait 

d’union between the previous and of the following chapter.  

Crystal structure ascertainment of β-hydroxyacyl-ACP dehydratase (FabZ) from diverse organisms 

suggested that a certain extent of structural plasticity may play a critical role influencing the 

capabilities of the enzyme both to interact with ACP but also to harbor acyl-substrates with 

different chain length. Hence, the hypothesis is investigated using Langevin dynamics simulations. 

 
 
PfFabZ is the β-hydroxyacyl-ACP dehydratase that catalyzes the third step in chain elongation 

during fatty acid biosynthesis. The biological relevant form of PfFabZ is a dimer, with two 

active sites symmetrically formed at the interface. The catalytic residues are His133 and 

Glu147’ (where ’ indicates the residue of the symmetric chain). Together with His98’ they 

form the only hydrophilic site in the otherwise completely hydrophobic active site. 

Previous studies1 have shown (Figure 1) that the effects of conformational changes of few 

residues lining the active site pocket of PfFabZ may have large effect on the shape of the 

binding tunnel. In particular, the conformation of Phe169 highly influenced the extension of 

the binding tunnel and accounts for the capability of PfFabZ to metabolize substrate of 

different chain length. Such conformational change was thought to be likely induced upon 

binding of hindered ligands. The inhibitory activity of the bioflavonoid molecule, 

amentofalvone,2 was interpreted as proof of the concept that PfFabZ might undergo various 

conformational change upon ligand binding (Figure 1).  
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Figure 1. PfFabZ active site. Connolly surfaces according to small conformational rearrangement of 

Phe169 (upper row). Structural rearrangement allowed proper docking of the large bioflavonoid 

inhibitor (lower row).    

 

Molecular dynamics simulations were employed to shed light on conformational properties of 

PfFabZ structure. Several conformational ensembles of the enzyme were used as starting point 

for the atomistic simulations. Few issues are reported and shortly discussed below: 

 

1) A large conformational change of the α2-β3 loop was sampled. The entity of such 

rearrangement is shown in Figure 2. Fluctuations in the distance between L168 and L96 

were also sampled and were interpreted as the natural and functional “breath” of the 

protein structure.  

 

 

2) Three phenylalanine residues (F169, F171 and F226 referred as the triad of 

phenylalanine) showed high mobility fluctuating around a “stable” conformation. The 

stable conformation corresponded to a native-similar rearrangement of the triad in 

which, Phe171 and Phe226 stack with a parallel-displaced geometry and Phe169 and 

Phe226 via an edge-to-face interaction. 

 



 48 

 

 

 
 

Figure 2. PfFabZ α2-β3 loop conformational switching. a) Difference between conformations at 0ns 

(red) and  3ns (orange). b) Monitored Cα distance between L168-L96 for five independent simulations 

with different starting configuration.   

 

 
 
 

Figure 3. Snapshot along a 3ns MD trajectory. (A) Initial configuration, (B) Phe171 slips away 

from its position and occupies the catalytic environment nearby His133 and Glu147’. Phe171 

conformational switch is stabilized by ̟-̟ interaction with Trp179 (not shown). (C) Phe226 lost the 

interaction with Phe169. (D) Phe169 is less packed and populates a different conformation energy 

minimum. Phe171 returns in its original position swaying with Phe226. After ~2.5 ns of simulation 

a native like conformational ensemble is restored. 
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Concluding, using molecular dynamics simulations we confirmed the hypothesis arising from 

crystal structure ascertainment. PfFabZ is conformationally versatile and its adaptability may 

account for functionality. The conformational plasticity was associated mainly with a wide 

loop breathing movement and with conformational fluctuations of the active site and in 

particular of the phenylalanine triad.  

 
 
Methodological details  
 
 
MD simulations were performed using NAMD with the CHARMM22 force field for protein 

and the TIP3P model for water molecules. The protein was immerged into a 10 Å thick water 

box leading to a system of about 32,000 atoms. Six chlorine ions were added to neutralize the 

system and PME was used for full electrostatic. The cutoff was of 10 Å with a switching 

distance of 8 Å. The time integration step was 2fs and the SHAKE algorithm was therefore 

used. The system was minimized for 3000 steps gradually releasing the harmonic restraints on 

protein heavy atoms. The Langevin equation was used to generate the Boltzmann distribution 

for canonical (NVT) ensemble simulations. A damping coefficient of 5ps-1 was used for the 

whole simulation length. After the temperature was stabilized at 300K, the constant pressure 

control was applied with the default Nos´e-Hoover Langevin piston method and 1 Atm was set 

as target pressure. The NPT simulation ran for 3ns. 

 
 

1. Colizzi, F., Modeling conformational changes in PfFabZ. In 2005. 

2. Perozzo, R., Personal Communication IC50=0.4uM. In. 
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5. Atomistic simulations discern active from inactive ligands of the 

β-hydroxyacyl-ACP dehydratase of Plasmodium falciparum. 

 

 

Understanding ligand-protein recognition and interaction processes is of primary importance for any 

structure-based drug design project. Several approaches combining molecular docking and molecular 

dynamics simulations have been exploited to investigate the physicochemical properties of putative 

complexes of pharmaceutical interest. Molecular docking is often able to rationalize the structure-

activity relationships of known inhibitors. However, it is well known that, even if the geometric 

properties of a modeled protein-ligand complex can be well-predicted by computational methods, scoring 

functions are prone to rank series of analogue ligands not in a consistent fashion with available 

biological data. 

In the unique β-hydroxyacyl-ACP dehydratase of Plasmodium falciparum (PfFabZ), the application of 

standard molecular docking procedures was partially sufficient to rationalize the activity of previously 

discovered inhibitors. Complementing docking results with atomistic simulations in the steered molecular 

dynamics (SMD) framework, we could hypothesize a binding model able both to fully explain the biological 

activity of known ligands, and to provide sufficient insight to address the design of novel enzyme inhibitors. To 

our knowledge, this is the first time that SMD-derived force profiles have been proven to be useful to clearly 

discern active from inactive compounds. 

 

Introduction 

Malaria kills more than one million people each year and is one of the major causes of death 

in children in the developing world. Plasmodium falciparum infections are estimated to be about half 

billion annually and continuously threaten lives as well as the economic-development opportunity of 

countries in the tropical and subtropical zones of the world.  

Plasmodium species have two distinct replicating life cycle forms in the mammalian host. The first 

occurs in the liver following the inoculation of the parasite by the bite of an infected mosquito. 

Afterwards, an intense hepatic replication occurs and the parasite invades the blood stream and here 
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infects red blood cell and initiate the second cyclic replication. Blood stage infection is responsible 

for most of the malaria symptoms.  

Development of antimalarial compounds is a critical and hanging emergence due to the high 

incidence of drug-resistant parasite strains and since an effective vaccine is still lacking.1 Existing 

alternative medications or prophylaxis are virtually unaffordable in the countries affected most 

seriously (ref). Malaria burden has stimulated investigators to seek out novel inhibitors and drug 

targets. In the last years, the biosynthetic machinery involved in fatty acid production has been 

looked at as a promising antimalarial target because of the different structural organization of the 

enzymatic moieties between plasmodium and human. Together with its structural peculiarities, the 

parasitic fatty acid biosynthesis (FAS II) is essential for the membrane biogenesis necessary during 

invasive stage. Recently, independent studies have shown that FAS II plays a vital role in liver-

stages development and is not essential for the blood stages.2, 3 Moreover, using knockout parasites 

Vaughan et al. have demonstrated that the lack of FAS II renders the pre-erythrocytic parasite unable 

to successfully infect the mammalian host. In this scenario, FAS II inhibitors would be endowed 

with the capability to interfere with the transition stage in which the parasite moves from the liver 

into the blood stream, and initiate red blood cell infection. Ideally, such a prophylactic strategy 

might significantly contribute to malaria eradication. 

The elongation of the acyl chain in FAS II is catalyzed by four key enzymes, FabB/F, FabG, FabZ, 

and FabI. The growing acyl substrate is covalently bound to the acyl carrier protein (ACP) which 

shuttles and delivers the substrate from one enzyme to the other. The unique β-hydroxyacyl-ACP 

dehydratase of Plasmodium falciparum (PfFabZ) catalyzes the dehydration of β-hydroxyacyl-ACP to 

form trans-2-enoyl-ACP, and its three dimensional structure has been well characterized by X-ray 

crystallography.4, 5 Crystal structures ascertainment and comparison reveal a certain extent of 
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structural plasticity in the substrate-binding region, reflecting the functional role of metabolizing 

acyl-substrates with different chain-length. PfFabZ structure has been described as a homodimer in 

which each monomer adopts the typical "hot dog" fold, where six anti-parallel β-sheets wrap around 

a long central α-helix. The dimer forms two independent substrate-binding tunnels with the catalytic 

sites at the interface. The whole substrate-binding site is prevalently hydrophobic with the catalytic 

amino acids His133 and Glu147' (from the other subunit), together with His98', representing the only 

hydrophilic spots. Recently, Zhang et al. have also described the X-ray crystal structure of 

Helicobacter pylori FabZ (HpFabZ).6 Whereas the overall three dimensional structure of HpFabZ is 

similar to other FabZs,5, 7, 8 it contains an additional two-turns helix, α4, which has not been 

observed in similar structures, and which plays a peculiar role in shaping and rigidifying the 

substrate-binding tunnel. Moreover, the short helix α4 of HpFabZ is formed by extra residues, where 

there is usually a flexible loop in other FabZ structures.6 Three different flavonoids, quercetin, 

apigenin, and sakuranetin, have been co-crystallized and solved in the binding site of HpFabZ.9 They 

have been reported as competitive inhibitors against HpFabZ by either binding at the entrance of 

substrate tunnel or nearby the catalytic site. However, since the surrounding of the binding site of 

HpFabZ is significantly different from those previously reported and particularly from PfFabZ, both 

a different biochemical and structural behavior of the same inhibitor is likely to occur. As a matter of 

fact, apigenin has been reported to be a micromolar inhibitor of HpFabZ, while it is inactive against 

PfFabZ.10 Therefore, the binding modes observed for flavonoids at HpFabZ active site are unlikely 

exportable to other FabZ structures.  

Flavonoids are a common component in human diet since they are ubiquitously present in fruits and 

vegetables as well as in different types of beverages; flavonoids are also reported as the major 

bioactive component of several herbal preparations for medical use. The understanding and 
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characterization at the molecular level of their interaction with biologically relevant targets is of 

primary importance in view of designing more potent derivatives and optimizing their medical 

application. 

Despite the three dimensional characterization of PfFabZ and structural information available for 

other FabZ enzymes, no structure-based drug design attempt of novel anti-malarial lead candidates 

has been reported. Nevertheless, there are several recent studies reporting on both synthetic and 

natural compounds able to inhibit PfFabZ enzymatic activity.10, 11 In particular, Tasdemir et al. have 

screened a large flavonoid library against PfFabZ, finding competitive inhibitors showing mid- to 

low-micromolar activity. Despite the large number of tested compounds, structure-activity 

relationships (SARs) interpretation for such a series was found to be far from trivial, and therefore a 

systematic SARs study is still missing. 

In this paper, taking advantage of the recent work on flavonoid derivatives of Tasdemir et al., we 

report on a structure-based computational approach to investigate putative modes of interaction of 

such a flavonoid series with PfFabZ. In particular, combining molecular docking and steered 

molecular dynamics (SMD) simulations, we propose a dualistic binding mode able to shed light on 

the hazy SARs of this series. The model of binding was then perspectively exploited to identify 

novel flavonoid inhibitors. Moreover, analyzing the SMD-trajectories and force profiles we were 

able to discern active from inactive compounds. To the best of our knowledge, the present is the first 

report on a systematic exploitation of SMD-force profiles in structure-based drug design. 
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Results and Discussion 

 

The hydroxy-flavone series 

 

Among the flavonoids derivatives shown in Table1, luteolin (12) has been originally 

considered the lead compound, and therefore its structure is here taken as reference. The minimal 

structural requirements needed to confer inhibitory activity to the flavonoid scaffold is represented 

by the hydroxy-flavone compounds (cmpds 2-5) shown in Figure1a and in Table1. Biological data 

reported in Table 1 suggested the favorable effects on PfFabZ inhibition by 6- and 7-hydroxy 

substitutions (4 and 5), while positioning a hydroxyl group in 5- and 3- (2 and 3) led to completely 

loose the inhibitory activity. To provide a possible explanation of such a behavior, we used standard 

molecular docking calculations and the obtained binding mode is reported in Figure 1.  

  

 

Figure 1. The hydroxy-flavone series. a) Chemical structures of b) 5-, 6-, and 7-hydroxyflavone (HF), carbon atoms in 

green, in the catalytic pocket of PfFabZ. The green dotted curves highlight the steric clashes between E147’ and the 5-

hydroxyl group of 5HF.  For each ligand the representative pose of the unique significantly populated cluster is reported. 

c) Representation of the scoring function trend over 30 docked poses. The concerted behavior of the black and the pink 

lines shows that the more the 5-HF try to find optimal H-bond interactions the more clash penalties are generated  as a 

consequence of positioning the 5-hydroxyl group too close to the E147’ side chain. 
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The docked compounds were embedded into the tunnel leading to the catalytic dyad and shared a 

similar interaction pattern, since the carbonyl group of flavones formed a pivotal H-bond with the 

backbone of Val143. The chromone ring interacted with Phe226 side chain, and the whole molecule 

was surrounded by hydrophobic residues. The 5-, 6-, or 7-hydroxy substituent were involved in 

interactions with Glu147 and His98 of PfFabZ binding site. We could detect that the 6- and 7-

hydroxy derivatives established a network of H-bond interactions with side chains of Glu147 and 

His98 or with the backbone of Phe169, while the 5-hydroxy derivative although compatible for 

interacting with Glu147, suffered from relevant steric clashes. Such repulsion was accounted for by 

the scoring function and its nature was well described by the H-bond and steric-clash scoring (Figure 

1c). Hence, the more the favorable H-bond interaction is sampled (ascending black line), the more 

the steric clash term (violet line) increase. As a consequence, when compared to 6- and 7-hydroxy 

analogues, 5-hydroxy flavone obtained the lowest score (red line) because the H-bond interaction 

was abolished by the steric clash penalties. Similarly, the 3-hydroxyl group of compound 2 clashed 

against the backbone of G142 generating only low scored docking solutions (not shown). In 

agreement with the experimental data, these results point to a destabilizing role for the 3- and 5-

hydroxyl groups of the flavone core, whereas at the 6- and 7- position the same substituent is able to 

efficiently interact with PfFabZ binding site.  
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 Table1. Inhibition of PfFabZ by Flavonoids. (Adapted from Tasdemir et al.10) 
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Luteolin as reference compound: investigation of its interaction with PfFabZ.  

 

The good agreement between scoring function outcomes and biological data was not any 

longer observed when dealing with more complex flavonoid derivatives (compounds 8-16 in 

Table1). Moreover, the geometric properties of ligand-protein complexes were rather different as a 

consequence of multiple binding modes with similar energy scores. This could be due both to the 

ability of polyhydroxylated flavonoids to interact with the biological counterpart in different and 

degenerate way,9 but also to the difficulties of  the scoring function to discriminate amongst 

equivalent binding modes. 

Fast and inexpensive docking protocols have often been used in combination with accurate but more 

computational costly molecular dynamics (MD) techniques to predict reliable ligand-protein 

complexes.12 The synergistic combination of the two techniques can overcome the weaknesses of 

each method taken alone.13 Molecular docking is usually used to rapidly explore the configurational 

space of ligands providing MD simulations with more reliable starting configurations, which are 

then evolved along ns-trajectories. This approach can significantly allow reshaping of the receptor 

conformation, therefore allowing induced-fit effects and postprocessing analyses which lead to likely 

discriminate among configurations with different thermal stability.14 Notably, MD simulations of 

ligand-protein complexes are often used to obtain more accurate energetic evaluation of binding.12, 

15, 16 Seeking out a general binding paradigm useful to lay down rational SARs for the present series 

of flavonoid derivatives, we therefore used MD simulations to assess the relevance of different 

binding modes of the representative compound, 12 (Table 1). 

Docking poses of 12 at the binding site of PfFabZ were generated using a genetic algorithm, which 

provides a population of ligand configurations at the receptor binding site (Jones, 1997). The 
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outcomes were then processed by a hierarchical-agglomerative clustering procedure, which has been 

proven to efficiently reduce the dimensionality of the original dataset and to highlight the most 

relevant docking poses. We obtained two clusters: one significantly populated according to the 

Chauvenet criterion, and the other less populated but containing the best ranked docking pose. 

Together, the two clusters covered more than 90% of the sampled configurational space.  

The two modes of binding (hereafter referred to as A and B, respectively) of 12, corresponding to 

the best ranked docking pose and the most populated one are shown in Figure 2. 

 
Figure 2. Molecular details of the binding model corresponding to the a) best ranked docking solution and b) to the most 

populated docking solution (His133 was not displayed for sake of clarity). Both binding models are here shown as they 

appear at the end of a 3ns MD trajectory. 

 

 In both models, 12 is embedded in the same region of the binding site occupying the tunnel entrance 

in juxtaposition to the catalytically relevant residues Glu147’, His133, and His98’. In A, the catechol 

ring is buried, while in B, it is more solvent exposed. In Figure 3a, the catechol moiety (the B ring) 

pointed deep into the binding pocket with both the hydroxyl groups in 3’ and 4’ establishing H-bond 
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interactions with side chain of residues Glu147’, His133, His98, and backbone of Phe169. Several 

lipophilic residues, such as the triad of phenylalanine (169, 171, and 226) shaped the cavity and 

allowed the favorable docking of the flavonoid core. Other polar groups of the ligand were poorly 

involved in interactions with the protein and, in particular, the 5- and 7-hydroxyl groups tended to be 

partially exposed to the solvent bulk. The di-hydroxylated B ring of the molecule played a pivotal 

role in docking 12 at the enzyme. Vice versa, in the binding mode shown in Figure 3b, the B ring 

scarcely interacted with the protein, whereas the 5- and 7-hydroxyl groups were embedded in the 

binding pocket. As shown in Figure 3b, only the 7-hydroxyl group was actually able to find H-bond 

interactions with Glu147’ and His133, while the 5-hydroxyl and the carbonyl group were shifted 

away from putative interacting residues (like Glu147’ and the backbone of Val143 or Gly142). This 

was likely due to the lack of flavones bearing the 5-hydroxyl groups to satisfy the sterical and 

electronic features required for interacting with PfFabZ using the interaction pattern suggested by 

Figure 1b for 6- and 7-hydroxy-flavone ligands. 

In Figure 3a, the root mean square deviation (rmsd) of 12 in A and B over 3 ns of MD simulations is 

shown. “A” corresponded to the most stable but less populated pose, while B corresponded to the 

pose representative of the most statistically populated cluster. The green plot (B), showed a less 

stable evolution of the associated binding mode, likely reflecting the presence of a wider energy well 

in which several local minima were separated by energy barriers lower than the thermal energy kbT, 

and therefore accessible in the ns-time-scale of simulations. Such a behavior is consistent with the 

most-populated-cluster-pose origin of the starting configuration.17 The most populated cluster could 

be a consequence of a region of the configurational space in which both sampling and scoring 

converged more frequently when compared to other binding modes. This is likely to occur if, for 

instance, the sampled region corresponds to a wide, rather than narrow, energy minimum (Figure 
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3b). A narrow energy minimum, instead, is likely to correspond to the best ranked docking pose (red 

plot in Figure 3), which exhibited a more stable time dependent evolution along the sampled 

trajectory. Whereas we could assume a greater enthalpic stabilization for the narrow energy 

minimum, the entropic contribution could be more relevant for a wide basin. However, this is 

generally not accounted for when the energy of a single ligand-protein configuration is calculated. 

Therefore, finding the narrower energy minimum of a ligand-protein complex might be meaningless 

when its entropy accounts for a sizeable fraction of its free energy. In this regard, clustering may 

help in detecting near-native states by determining whether or not a minimum is located in broad 

energy basins which will be favored for entropic contribution.17-19 

 
Figure 3. Qualitative differences between most populated (in green) and best ranked (in red) docking pose. a) Root mean 

square deviation (rmsd) of the thermalized docking poses along 3ns of unrestrained MD trajectories. b) Schematic 

representation of the energy landscape along and arbitrary association coordinate. The most populated pose likely 

belongs to a wider energy minimum in which similar configurations can easily interchange to each others. The best 

ranked pose fall into a narrow minimum and poorly interchange.    
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The analysis so far conducted well described the thermal stability of each binding mode, but no 

quantitative information about the depth of the free energy wells was provided. In particular, we 

were concerned whether the cluster population could point to a remarkable increase of entropic 

contribution for B when compared to A.  

Various physic-based methods have been developed and successfully applied to quantitatively 

characterize ligand-protein interactions, and to reconstruct the free energy profile of the recognition 

and binding processes.12, 16 The binding/unbinding of a ligand to a receptor, as well as large 

conformational rearrangements of a macromolecule, is an event whose energy barrier is often too 

high to allow its spontaneous sampling by ns-time-scale MD simulations. Among several possible 

approaches to this issue, SMD allows one to apply a time dependent external bias to encourage the 

ligand to overcome energy barriers, and to sample a predefined unbinding pathway. In the SMD 

framework, the ligand is harmonically restraint to a constant velocity moving point thus making it 

possible to obtain the mechanical irreversible work necessary for the transition by integrating the 

exerted force on the system along the unbinding reaction coordinate. Furthermore, if the harmonic 

restrain is large enough so that the ligand does not drift far from the biasing point, the Jarzynski 

nonequilibrium work theorem20 can be exploited to discount the dissipated work, and to reconstruct 

the free energy profile along the selected reaction coordinate (potential of mean force, PMF).21-23 

Notably, SMD is emerging as a promising tool in studying protein-ligand recognition and 

interaction.24 

 

 

 



 62 

 

 

The unbinding reaction coordinate. 

 

Here, the unbinding reaction coordinate was investigated using the Random Expulsion 

Molecular Dynamics approach introduced by Luedemann et al.,25 which shows the following unique 

features in the SMD framework: i) low computational cost; ii) objective pathway search. Hence, an 

unbiased search for ligand escape pathways is pursued by reiterating individual SMD simulations in 

which a randomly oriented force is applied to the ligand in addition to the standard force field. By 

collecting and clustering all the successful expulsion trajectories of 12 from the binding site of 

PfFabZ it was possible to unambiguously identify the preferred ligand escape pathway (Figure 4).  

 
Figure 4. Unbinding trajectories generated by Random Expulsion Molecular Dynamics. The cyan segments represent the 

trail of c.o.m. of luteolin (carbon atoms in green) escaping from the PfZabZ (purple, yellow and white cartoons) binding 

site. The unbinding trajectories, path1, and path2, correspond to the more perturbing force applied within a REMD 

session.  
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The egress path was then used as reaction coordinate (Figures 5) to reconstruct the PMF profile, and 

therefore quantify the energy well-depth, of binding modes A and B obtained from molecular 

docking. As shown in Figure 4, two ligand unbinding pathways were identified without any a priori 

knowledge. Path1, accounting for ligand escape through the most direct connection between the 

ligand and the protein surface, and Path2 exploiting the flexibility of the loop connecting the central 

helix α2 to β3, an intrinsic plastic feature of PfFabZ structure. Importantly, path2 was sampled only 

few times using the highest values of perturbing force and its occurrence tended to zero for smaller 

forces (see Methods). Therefore, we selected the most occurring pathway, path1, as the 

representative one for the unbinding event (Figure 5). Although path2 was discarded from further 

investigation in the current study, it is worth to mention how the “breathing” of the flexible α2-β3 

loop connection may play an important role in facilitating the interaction with the acyl carrier protein 

and therefore the delivery of the substrate from the carrier core to the enzyme active site.  

 
Figure 5. Luteolin docked into the binding site of PfFabZ. The red thick arrow represents the direction of the unbinding 

reaction coordinate derived from averaging the trajectories of path1. The loop connecting α2 to β3 is labeled. 
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PMF calculation. 

 

Besides the unbinding reaction coordinate definition, constant-velocity SMD was used to 

provide a detailed energy profile of the unbinding process. Although employing the Jarzynski’s 

equality (JE) eq. 1 allows in theory the irreversible work to be discounted for any arbitrarily 

irreversible process,  

N

W
N

F ee ββ −
∞→

∆− = lim    Tkb/1=β   Thermal factor      (1) 

 

in practice, its direct application is limited by the number of collectable trajectories together with the 

complexity of the biological system which often leads to a standard deviation (σ) of the work several 

times higher than kbT.26 Estimation of the exponential average We β−  crucially depends on rarely 

sampled trajectories corresponding to the left tail of Gaussian work distribution.20, 23, 26 On top of 

that, SMD pulling paths often sample the region around the peak rather than the tails of the Gaussian 

work distribution. As the spread of σ increases, the probability to sample a region far from the peak 

likely decreases and the accuracy in reconstructing the potential of mean force is strongly biased. 

Such a systematic statistical uncertainness has been variously treated in the last years leading to 

more effective applications of the Jarzynski nonequilibrium work theorem.21, 23 The cumulant 

expansion approach has been widely applied21, 23, 27 to reconstruct the free energy profile of 

biomolecular processes and here exploited to compare the energy well depth of two putative binding 

modes of 12. 

The cumulants up to the second order are shown below (eq. 2). Third and higher cumulants are 

identically zero since within the stiff-spring approximation the distribution of work W is Gaussian. 
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Eq. 2 directly suggests that free energy differences between states can be obtained averaging the 

irreversible work W  and discounting its variance 2
Wσ . Here, follows that higher irreversible 

work trajectories are expected to have higher variance so that discounting its value one can obtain 

the same F∆ . Whereas with limited SMD trajectories one can determine fairly accurately the 

average work W  the variance is generally underestimated due to the above mentioned sampling 

limitations. The application of irreversible work, obtained from forward and reverse SMD 

trajectories, has shown to be a valuable approach to overcome the above shortcomings.28, 29 

However, the bidirectional approach is not straightforwardly feasible in processes such as the 

undocking of a ligand from an enzyme in explicit solvent. For the reconstruction of the PMF, we 

preliminarily tested several unbinding pulling rate balancing the needs for a proper sampling with 

those of limited simulation time. We finally used the extremely slow pulling velocity value of 

0.5Å/ns.27, 30 Such a slow pulling rate was chosen considering the peculiar features of the binding 

modes here investigated. In Figure 2 is shown how, regardless the binding mode selected, the 

anchoring interaction between luteolin and PfFabZ was represented by hydroxyl groups of the ligand 

H-bonding the hydrophilic catalytic residues and particularly Glu147’ with whom the interaction 

was enforced by the net charge. The catalytic residues are located at the end of the tunnel entrance 

and thus not easily accessible to solvent molecules especially if luteolin physically occupies the 

entrance itself. Nonetheless, the binding site exhibits a wide range of structural flexibility (e.g. the 

“breathing” of the α2-β3 loop connection), and beside the tunnel entrance, several water accessible 

pathways might be available to create a catalytically competent environment around the active site. 

Using a relatively high pulling velocity would generate more unlikely vacuum around the breaking 
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interactions respect to a slower rate in which water molecules would be able to properly solvate the 

interacting counterparts and assist the breaking of the interactions at a lower energetic cost. Since the 

irreversible work reflects the energy penalty for inducing a system transformation at a faster velocity 

than its slowest relaxation rate, employing a slower pulling velocity would not only reduce the 

irreversible work done but would also capture intrinsic system peculiarities which would improve 

the likeliness of the simulated event and thereof the meaning of its free energy profile. 

(The breaking of the anchoring interactions between luteolin and PfFabZ was manifested by a drop 

in the force profile and generally this coincided with the highest rupture force along the whole 

steered simulation. Notably, for binding mode A it was univocally possible to identify the rupture 

point from the force profile, while for binding mode B a rupture point was generally more spread or 

not directly deductible from the force profile graphs.) 

 
Figure 6. Potential of mean force (PMF) along the unbinding reaction coordinate of luteolin. The free energy profile of 

the best ranked pose (binding mode A) and the most populated (binding mode B) are compared. 

 

In Figure 6 is plotted the potential of mean force relative to the unbinding of luteolin as to the 

interacting model A and B. The most populated pose (model B) would belong to a wider free energy 

basin whereas the best scored pose (model A) to a narrower one. As shown in Figure 6 the width of 
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the free energy basins was appreciably different and, accordingly the green plot corresponding to 

docking model B described a wider energy well reflecting a broader region of ligand attraction when 

compared to the narrower red plot which is related to the binding model A. Notably, the free energy 

well-depth associated to each of the binding modes investigated can be also deduced from Figure 6. 

The unbinding of luteolin as it interacts with PfFabZ according to binding mode A required to 

overcome an energy barrier of about 9kcal/mol whereas the interaction pattern of binding mode B 

led to a flatter energy barrier of about 5kcal/mol. Whereas the magnitude of the free energy barriers 

here involved cannot be directly compared31 to the about -7 kcal/mol of standard binding free energy 

(estimated from the Ki=11µM10) which a low micromolar inhibitor such as luteolin would exhibit, 

the free energy computations could be used as a quantitative tool to assess different binding models. 

Hence, the higher energy barrier observed for the binding model A pointed out its interaction pattern 

as the more stable and therefore its structural features were taken as reference to rationalize the 

SARs of the flavonoids series shown in Table1. It is worth to stress how the binding mode A 

privileged the catechol portion of luteolin as the most important moiety in the interaction with 

PfFabZ. Relating the free energy barriers to the pivotal interactions herein involved, we can deduce 

that at least two hydroxyl groups in the surrounding of the catalytic residues are needed for an 

effective H-bond interaction network.  

 

 

Rationalizing the SARs of luteolin derivatives. 

 

The importance of bearing at least two hydroxyl groups in the B ring of the flavonoid 

scaffold is dramatically in agreement with the experimental biological data reported in Table1. In 
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fact, all the flavonoids compounds not bearing such a feature are inactive. Exceptions to this rule are 

represented by 4 and 5, for which compounds molecular docking clearly suggested only one 

plausible binding pose. In Figure 1b, it is possible to appreciate how 4 and 5 were able to establish 

interactions with PfFabZ resembling the binding mode B of luteolin. The inactivity of 3 together 

with its structural rationalization shown in Figure 1b, suggest that the scaffold alone has no intrinsic 

capabilities to properly interact with PfFabZ. This is for instance the case of chrisyn (8), which has 

no inhibitory activity, likely as a consequence that a binding mode B-like is discouraged by the 5-

hydroxyl group and, at the same time, a binding mode A-like is not feasible since the B ring bears no 

substituent. Apparently, adding one hydroxyl group is still not enough to reach a medium 

micromolar activity. This is suggested by the inactive apigenin (10) in which the hydroxyl group in 

the B ring is likely insufficient to establish a stable H-bond network in the catalytic environment. 

The 5-hydroxyl group does not allow a stable B-like binding mode and compounds such as luteolin 

(12) or quercetin (13) are actives since they are able to properly compensate the instability arising 

from the presence of the 5-hydroxyl group with the presence of the di-hydroxylated B ring able to 

satisfy the energetic requisites for an effective A-like binding mode. Likely for quercetin (13), the 3-

hydrohyl group in the chromone scaffold can further stabilize the A-like interaction being it able to 

point toward the backbone of residue Gly142 (Figure 2a). 

In this light, we hypothesize the role of the (3-) 5-hyroxyl group as switcher or trigger between 

binding mode A and B. One the one hand, if the flavonoid scaffold does not contain the (3-) 5-

hyroxyl group then a binding mode B-like is accessible while a binding mode A-like is discouraged 

if the B ring does not contain at least the di-hydroxylation. On the other hand, if the (3-) 5-hyroxyl 

group is preserved, then the molecule cannot bind via the B-like model and it will be a binder only 

bearing a hydroxyl rich B ring.  
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A similar argumentation might be put forward for the role of the 3-hydrohyl group in the chromone 

scaffold. If the B ring is di-hydroxylated, as it is in fisetin (14), then the ligand would better adopt 

the A-like binding model with the 3-hydoxyl group positively influencing the activity since no 

clashes arise from this substituent introduction. Given the above binding “rules”, then also the 

inactivity of the various O-methyl derivatives can be rationalized (cmpds 18-24). This is, for 

instance, the case of isorhamnetin (18), in which the O-methylation of the 3’-OH deprives the 

molecule of its capability to form the proper H-bond network typically borne by the catechol ring. 

The hints arising from the computation were then complemented with further experimental data. We 

were confident in understanding why, as suggested by the experimental data shown in Table1, it has 

been possible to convert the inactive kaempferol (11) into the active quercetin (13, as well as 15 or 

16) just adding one more hydroxyl group at the B ring. However, the observed activity might also be 

due to several factors that we may have fully neglected in this study, and therefore the observed 

activity may not be directly connected to the binding model proposed in Figure 2a. To reduce the 

range of speculation we further considered the opportunity to get hints from the hypothesized 

binding model to suggest a micromolar flavonoid inhibitor of PfFabZ not previously reported in the 

literature (Figure 7).  

 

 

 

 

 

 

Figure 7. Transforming the inactive kaempferol into the newly disclosed active rhamnetin. Note the presence of at least 

two hydroxyl groups in the B ring and the 7-O-methyl substitution. 
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The newly disclosed inhibitor rhamnetin, IC50=4.4µM (Personal Communication of Dr. Perozzo at 

University of Geneva), bears a peculiar structural feature that advances our understanding in linking 

biological activity to model of interaction. Indeed, the binding model shown in Figure 2a not only 

suggested the primary role of the catechol ring but also pointed out the non critical role of 

substituent at position 7 in the chromone core. The 7-hydroxyl group is not directly involved in any 

interaction with the enzyme but it is also pointing toward the entrance of the tunnel regions 

suggesting a more sized substitution to be compatible with activity. In contrast, in the binding model 

B-like, the 7-hydroxyl group is instead the primary interacting moiety of the flavonoid scaffold and 

substitution at this position would likely largely interfere with biological activity. In this respect, the 

7-O-methilated flavonoid inhibitor, rhamnetin, fulfills the gap in the structure-activity relationships 

of luteolin derivatives reducing the range of speculation about the general validity of binding mode 

A. Concurrently, as suggested by free energy calculations, the activity of rhamnetin allowed to 

firmly discard the hypothesis of binding mode B (Figure 2b) for the flavonoid inhibitors bearing the 

5-hydroxyl group together with a multi-hydroxylated B ring.  

 

 

Pulling away active from inactive compounds 

 

Finally, we applied an extended SMD approach to further complement the computational as 

well as experimental studies discussed so far. Particularly, we wanted to explicitly test the general 

validity of the binding mode here proposed and at the same time evaluate the capabilities of the 

SMD-approach as a drug discovery tool. SMD simulations have been widely and successfully 

applied to explore the properties of nonequilibrium processes of biomolecules,32 and whereas this 
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methodology has been variously used to investigate and compare the feasibility of putative 

unbinding pathways, this is the first time, to our knowledge, that such approach is rather used to 

compare the behavior of different ligands along the same unbinding path. SMD simulations were 

performed on six representative flavonoid molecules listed in Figure 8a. Three actives, luteolin, 

rhamnetin and myricetin and three inactive compounds kaempferol, galangin and apigenin were 

collected together and, in turn, their structure was superimposed to that of PfFabZ-bound luteolin so 

that their binding mode strictly resembled the one shown Figure 2a. After further equilibrating each 

ligand-protein complex, an external force was applied in order to steer the ligand along the already 

defined unbinding reaction coordinate (shown in Figure 5). The applied forces could be monitored 

throughout the entire simulation length and if the pulled ligand could easily advance along the 

selected reaction coordinate, then the applied force was small and its profile rather flat. Conversely, 

if the ligand was more tightly bound to its receptor and it encountered more resistance along the 

pathway, the applied force increased to overcome the energy barriers, thus resulting in quite relevant 

drops in the force profile. We compared the magnitude of the exerted force in the computational 

attempt to keep apart likely binders from non binders. In this particular case, since all the activities 

of known flavonoids were quite similar we could generalize simply describing this approach as an 

attempt to discern active from inactive compounds. Should a trend in the force profile be manifested, 

then the validity of the binding model proposed for luteolin might be likely extended to the whole 

flavonoid series herein discussed. 

The need to carry out a high number of simulations led us to use a pulling velocity which allowed 

the complete unbinding of the ligand in less than 500 ps. However despite the high velocity, a good 

resolution was still maintained as shown in Figure 8b. As shown in the figure, to induce the 

unbinding of each of the inactive compounds it was needed to apply a force not higher that ~400 pN. 
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The force profile corresponding to all the inactives clearly stacked together along the unbinding 

trajectories. Relatively higher variability was observed for the active compounds. Each force profile 

likely reflected a slightly different interaction pattern which the compound established along the 

unbinding process. The maximum exerted force to unbind each of the active flavonoids was at least 

double (~800pN) the force needed for the inactive ligands. 

a) 

b)  

 
Figure 8.  Comparison of force profile of different flavonoids ligands. a) Chemical structures of ligands analyzed. b) 

Force profiles deriving from pulling the ligands along the unbinding reaction coordinate. For each ligand the plots show 

the resulting mean values from averaging the force profile from five individual SMD runs.     
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Whereas it is unlikely to relate the slightly different biological activities of luteolin, myricetin and 

rhamnetin, to the slightly different magnitude of their force profiles, it is interesting to note how all 

the inactive compounds were similarly described by the same force profile shape. The inactive 

kaempferol or apigenin do have one hydroxyl group in the B ring which is pointing in the 

surrounding of catalytic environment, deep into the entrance tunnel. One would expect for them to 

show an intermediate magnitude of the force profile respect to the inactive galangin which is totally 

lacking of substituent on the B ring. However since they are equally not able to establish a 

productive interaction pattern with PfFabZ, they do equally exhibit a similar force profile. 

Furthermore, one might deduct that passing from a mono- to a di-hydroxylated B ring could 

definitely make the difference in terms of fruitful H-bond network interactions. 

 

Conclusions 

 

Structure activity relationships of a large series of related flavonoids were rationalized using 

a combined docking and (steered) molecular dynamics approach. MD trajectories of a ligand-protein 

complex were not only able to suggest the relative stability among different binding modes but 

allowed to take into account receptor flexibility which was pointed to be critical in FAS-II enzymes. 

The application of SMD to a ligand-protein system allowed to quantitatively discern between 

binding modes of luteolin as well as to reconstruct the whole binding event and its free-energy 

profile. Using SMD-derived forces we were able to pick up active from inactive compounds. In this 

context, it is worth to mention how the particular features of both the binding site, not extremely 

buried, and the binding mode, few pivotal interacting moieties, gave us a good case study for testing 
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our protocol. Further optimization might permit to extend the applicability of SMD-derived forces to 

discern actives from inactives for several biological relevant targets. 

In order to further validate the proposed binding modes and to advance our understanding in ligand-

protein interaction, it would be extremely useful keep testing a higher number of luteolin derivatives. 

Below is reported a short table of molecule whose activity against PfFabZ might strength the validity 

of the binding model proposed.  

 

Whereas compound 5 might sound as a naïve provocation, it would be interesting to understand how 

much farther from the flavonoid scaffold we could go. Compounds 1-4 would be endowed with the 

capability to satisfy both binding model (A and B). Compounds 3, for instance might allow further 

quantifying the role of the 3-hydroxyl-group since its structure resembles that of fisetin. Whereas the 

mono-hydroxylation of the B ring have show to be not enough to confer activity, it would be 

interesting to test if the inactivity is position-dependent or not.  

 There might be many other molecules which could be proposed for testing according to the results 

discussed in this manuscript.  
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Methodological Details 

 

The 3D initial coordinates of PfFabZ were taken from the apo x-ray crystal structure stored in the 

Protein Data Bank (pdb code: 1z6b). Chain A and B were selected to simulate the protein dimer and 

the two disordered portions, with gaps not exceeding 8 residues, of loops connecting α2 and β3 and 

between β4 a β5 were rebuilt using standard parameters of the loop modeling routine implemented in 

MODELLER (ref). The structure of flavonoid ligands was built and geometry optimized using the 

Sybyl 7.3 molecular modeling suite of program (Tripos Inc., St. Louis, MO). Molecular Docking 

was carried out using the default settings parameters of Gold 3.0.1. The binding site definition 

included the γC of chain A Phe169 and every residue within 15 Å. For the 5-, 6-, and 7- hydroxy-

flavone series ChemScore was used to drive and rank the genetic algorithm search. The preliminary 

docking calculations on the whole flavonoid series reported Table1 were performed using both 

GoldScore and ChemScore. Both, geometrical and scoring trends were not observed (see text). 

Docking poses for luteolin were obtained using both GoldScore and ChemScore and one hundred 

poses were generated for each scoring function. Docking outcomes were then aclapsterized 

(clustered by means of the AClAP program) and only one significantly populated cluster was 

obtained (cardinality of 153). According to the Chauvenet criterion implemented in AClAP, a cluster 

is significantly populated only if its cardinality is more than twice the standard deviation apart from 

the average population value for that level of clustering. The second most populated cluster 

(cardinality of 33) was the one containing the best ranked pose of luteolin.  

MD simulations: the best ranked docking solutions of top-two populated clusters (poses A and B) 

were selected and each ligand-protein complex was further investigated by means of molecular 

dynamics as described below. The complex was solvated with a 8 Å thick layer of water using the 

solvatebox command of the LEaP program and the electro-neutrality was imposed by equally 

distributing the excess total charge (+6) over the 4656  atoms of the protein. Periodic boundary 

conditions were applied and long-range electrostatics were calculated every time step by using the 

Particle Mesh Ewald (PME) method. A cutoff of 10 Å was used for van der Waals and short-range 

electrostatic interactions with a smoothing switching function starting at 8 Å. Time integration step 

of 2 fs was used and the length of all bonds involving hydrogen atoms was fixed using the SHAKE 

algorithm. The solvated system was minimized for 1000 steps restraining the heavy atoms, except 
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waters, with a force constant of 5 kcal mol-1 Å-2, followed by 1000 steps with a force constant of 3 

kcal mol-1 Å-2 applied to the backbone and finally minimizing the unrestrained system for further 

1000 steps. At constant volume, the system was heated from 1 to 300K by increments of 50 K every 

15ps and correspondingly the α-carbons were gradually unrestrained by lowering the spring constant 

from 6 to 2 kcal mol-1 Å-2. The temperature was controlled by the Langevin thermostat with a 

dumping coefficient of 5 ps-1. During the subsequent switching to the isothermal-isobaric (NPT) 

ensemble, a soft harmonic restraint of 1 kcal mol-1 Å-2 was still applied to the Cα atoms and 

gradually turned off in the next 60ps. The Langevin piston method was used to set the target pressure 

at 1 atm. The system evolved for further 3ns and from the last 300ps were randomly sampled the 

starting configurations for both unbinding pathway investigation and SMD simulations. All 

simulations were performed with NAMD 2.6 (Phillips et al., 2005) using the ff99SB AMBER force 

field for protein and the TIP3P model for all water in the system (Jorgensen et al., 1983). The 

flavonoid ligands were optimized using the Gussian03 software (Gaussian, Inc. Wallingford, CT) at 

the B3LYP/6-31G* level of theory and partial atomic charges were assigned using the restricted 

electrostatic potential fit (RESP) method. The general AMBER force field (GAFF) was used for the 

ligands and the corresponding topology end parameters files were prepared with the antechamber 

tool of the AMBER suite of programs.    

   

Random Expulsion Molecular Dynamic (REMD) method has been successfully used to disclose 

putative ligand unbinding pathways in biologically relevant targets.27, 33 The protocol allows a 

strongly unbiased search at a relatively low computational cost. A randomly oriented force is applied 

to the ligand atoms for a defined short amount of time steps N. The force has constant magnitude f 

and accelerates the ligand in the context of the binding pocket. If the ligand encounters hindrance 

during the route its average velocity will fall below a pre-set threshold, or, in other words, it will not 

cover in the N time steps the expected distance rmin. If this is the case, a new direction is chosen 

randomly and maintained for further N steps, as long as the ligand find a path which allows the 

coverage of the rmin distance. The probability to sample the unbinding event likely depends on the 

system structural peculiarities, on the type of interactions involved in the ligand-protein complex, 

and finally on the combination of the adjustable parameters f, N and rmin. For the luteolin/PfFabZ 

complex we tested three combinations of parameters finding an expulsion rate ranging from 3% to 



 77 

 

 

41% (table below). For each combination, 100 independent trajectories were generated. If no 

expulsion was observed in the first 50ps, then the run was skipped and considered unsuccessful.  

 

Vashisth and Abrams have recently implemented Random expulsion MD in NAMD via a tcl script 

interface27 which we properly modified to fit the needs of our system. The force was applied to all 

the carbon atoms of the molecule as well as to the intracyclic oxygen. The successful expulsion 

trajectories were clustered and the components of each cluster were then geometrically averaged to 

obtain the representative path. Two ligand egress pathways were identified (see text). Preliminary 

investigations suggested the trend in the expulsion rate ratio between path1 and path2 to be 

maintained regardless the binding mode of luteolin used as starting configuration. 

Comparison of the force profiles among different active and inactive flavonoids were performed 

using constant-velocity SMD with a pulling rate of 5 × 10-5 Å/timestep and with a spring constant of 

7 kcal/mol Å-2. Several pulling velocities were preliminarily tested and the one we chose gave the 

better balance between resolution among different ligands and simulation time length. The time 

length of the simulations was 400ps which was sufficient to observe the complete ligand unbinding. 

The mean force profile for each ligand was obtained by averaging the outcomes of five independent 

runs. To avoid shifting of the system during pulling, the α-carbons of residues from G186 to I196 

and from L207 to N214 on both chains A and B were restrained to their initial position using a 

spring constant of 1 kcal mol-1 Å-2. The starting configurations for the luteolin derivatives were 

obtained by superimposing the flavonoid scaffolds and evolving the resulting ligand-protein 

complex for further 3ns. The number of water molecules was kept constant for both luteolin binding 

mode investigation and flavonoids force profile comparison study.  

The second order cumulant expansion of the Jarzynski’s equality was employed to compute the 

potential of mean force (PMF) along the unbinding reaction coordinate. Six independent trajectories, 

each with length of 10ns, were generated for each luteolin binding mode. The value of the exerted 

force (F) was outputted every (dt) 1 ps of simulation and the work ')'()(
'

0
vdttFtW

t

∫=  done on the 

f  (kcal/mol·Å) N (timesteps) rmin (Å) expulsion rate  (%) pw1/pw2 (%) 

20 10 0.006 41 37/4 

15 15 0.008 13 13/n.s 

10 20 0.008 3 3/n.s. 
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system during the SMD was calculated by numerical integration; the pulling velocity (v) was 0.0005 

Å/ps (1 × 10-6 Å/timestep). The stiff spring approximation was satisfied by a spring constant of 7 

kcal/mol Å-2. 
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Concluding remarks 

 
The elongation of the acyl chain in FAS II is catalyzed by four key enzymes, FabB/F, FabG, 

FabZ and FabI and for each elongation cycle the chain length is increased by two carbon units. 

Structural studies have shown that the binding core of ACP is able to expand its central cavity in 

order to accommodate the growing acyl chain.1  Comparison between apo (no ligand bound) and 

holo (ligand bound) structures have shown that a highly conserved phenylalanine residue might 

assist the harbouring of the acyl chain by switching with different conformers.2, 3 Steered 

molecular dynamics simulations discussed in this dissertation have induced the exposure 

(delivery) of the β-hydroxyacyl substrate. During the trajectory, (along Path 1b) the egress of the 

acyl chain was supported by Phe29. As shown the Figure 1, the side chain of Phe29, which is 

highly conserved in ACPs, underwent a conformational change in order to assist the outgoing 

substrate; with this movement, Phe29 acted as lid maintaining the cavity core water-free and 

therefore permitting the rapid relocation of the substrate after the catalytic cycle. The avoided 

solvation of the core would also increase the stability of the ACP folding during the delivery 

process. 

 

Figure 1. The role of F29 in assisting the outgoing substrate. The starting configuration, before the conformational 

switch, of F29 is in transparent pink. 
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Assuming PfFabZ as the enzymatic counterpart receiving the delivered β-hydroxyacyl substrate, 

then a structural modification is likely to occur after the substrate delivery by ACP. Phe169 has 

shown high mobility both in experimental and theoretical studies. Its conformational switches 

reshaped the tunnel of the active site of FabZ in a remarkable matter (Figure 2).  

 

 

Figure 2. Role of F169 in shaping the binding pocket of Pf FabZ. The green surfaces represent the accessible volume 

of the binding tunnel. 

 

 While it is still under debate whether or not the acyl substrate has to be completely delivered to 

the enzymatic counterparts, we suppose that the role of Phe169 might be equivalent to that of 

Phe29 in ACP. That is, allow substrates of different chain length to be optimally accommodated 

in the binding tunnel. Phe169 was also observed to influence the packing of the active site 

region. The mutation of any residue of the so-called “phenylalanine triad” into Glycine reduced 

the thermal stability of the mutant respect to the wild type.4 Different conformations of Phe69 

may affect the packing of the active site and modulate the “breath” (i.e. fluctuations of the α2-α3 

loop) of the structure. Fluctuation of the α2-α3 loop may also affect the size of the ACP binding 

grow surrounding FabZ active site. In particular, a wider cavity has a bigger attraction on ACP.5 

In virtue of the ACP/FabZ binding model I discussed earlier in this dissertation; one might also 
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hypothesize a role of the loop in facilitating the transfer (delivery) of the substrate from the core 

of the carrier into the enzyme active site.  

The critical role associated with Phenylalanine residues in ACP and FabZ enzymes was our 

prompt to further investigate the structure of enzymes involved in FAS-II elongation cycle. 

PfFabI, a NADH-dependent reductase, is probably the more investigated enzyme among the 

biosynthetic pathway. Several crystal structure are available both in binary (with cofactor) and in 

ternary (with cofactor and inhibitor) complexes. The ascertainment of PfFabI structures revealed 

that, while the binding mode of the ligands is conserved, the protein structure differs for one 

major component in the surrounding of the active site: two different populations of F368 side 

chain were observed (Figure 3). The consequence is that PfFabI active site can assume a pocket-

like as well as a tunnel-like shape. The switch in the active site shape is fully controlled by 

Phe368 side chain. 

 

Figure 3. Active site of PfFabI. A) F368 closes the pocket (pdb code: 1nhg). B) F368 is turned up and the active site 

pocket is in the extended form (pdb code 1zsn). In both pictures triclosan (from 1nhg) is shown with carbon atoms 

coloured in green. 

 

Whereas a large scale investigation should be carried out before lay down any general 

conclusion, this preliminary observation shows that phenylalanine residues laudly claim their key 
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role in active site dynamics. This might be interpreted as follow: Nature provided cells with a 

plenty of fatty acid bearing different saturation level and especially with different chain length. 

Phenylalanine residues might have been privileged by Nature in the accomplishment of 

modulating the shape of fatty acid binging pockets. Phenylalanine has the intrinsic capabilities to 

act as “doorkeeper” as well as “tailor” of binding pockets. Its fluctuation among few conformers 

can generate sized tunnel from apparently small cavities. Protein entrances can be generated by 

switching with only two conformers. Apparently, Nature exploited Phenylalanine to optimize the 

biosynthesis of fatty acids. We might thereof image a universal role of Phe at fatty acid binding 

site in order to adapt the shape of the pocket to the size of the fatty acid which is going to be 

metabolized. 

What is the relevance for drug discovery? The intrinsic plasticity borne by phenylalanine might 

be exploited to identify new lead compounds in the context of fatty acid binding proteins. Below 

is shown how the increased pocket size of PfFabI might be employed to address the design of 

“extended” ligands which might be able to cover the receptor space generated by the 

conformational switches of phenylalanine residues.  
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A) Triclosan into the active site of PfFabI. B, C, D) Putative ligands able to take advances of the conformational 

switch of F368 (not shown for sake of clarity). 

 

I conclude this dissertation highlighting the value of staring at the same target from different 

standpoints. The first would be the ambitious perspective of the “evolution”, the one that Mother 

Nature has. It might allow identifying peculiar target properties, interpreting structure-function 

relationships. The second is the more affordable, yet difficult, medicinal chemist standpoint 

which would be able to take advances of the intrinsic properties of a target (or of a biological 

system) to rationally design more effective ligands. 
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