
Alma Mater Studiorum - University of Bologna

DEIS - DEPARTMENT OF ELECTRONICS, COMPUTER SCIENCE AND SYSTEMS

PhD Course in Electronics, Computer Science and Telecommunications

XXI cycle – scientific-disciplinary sector ING/INF05

Specification and Verification
of Declarative Open Interaction Models

A Logic-Based Framework

Candidate:
Marco Montali

Supervisor:
Prof. Paola Mello

PhD Course Coordinator:
Prof. Paola Mello

Final Examination Year 2009

Dedicated to Valentina and Giulia,
and to Evita and Micol.

M. C. Escher, Up and Down®(1947).

A B S T R A C T

The advent of distributed and heterogeneous systems has laid the foun-
dation for the birth of new architectural paradigms, in which many
separated and autonomous entities collaborate and interact to the aim
of achieving complex strategic goals, impossible to be accomplished on
their own. A non exhaustive list of systems targeted by such paradigms
includes Business Process Management, Clinical Guidelines and Care-
flow Protocols, Service-Oriented and Multi-Agent Systems.

It is largely recognized that engineering these systems requires novel
modeling techniques. In particular, many authors are claiming that an
open, declarative perspective is needed to complement the closed, pro-
cedural nature of the state of the art specification languages. For ex-
ample, the ConDec language has been recently proposed to target the
declarative and open specification of Business Processes, overcoming
the over-specification and over-constraining issues of classical proce-
dural approaches. On the one hand, the success of such novel mod-
eling languages strongly depends on their usability by non-IT savvy:
they must provide an appealing, intuitive graphical front-end. On the
other hand, they must be prone to verification, in order to guarantee
the trustworthiness and reliability of the developed model, as well as
to ensure that the actual executions of the system effectively comply
with it.

In this dissertation, we claim that Computational Logic is a suitable
framework for dealing with the specification, verification, execution,
monitoring and analysis of these systems. We propose to adopt an
extended version of the ConDec language for specifying interaction
models with a declarative, open flavor. We show how all the (extended)
ConDec constructs can be automatically translated to the CLIMB Com-
putational Logic-based language, and illustrate how its corresponding
reasoning techniques can be successfully exploited to provide support
and verification capabilities along the whole life cycle of the targeted
systems.

v

S O M M A R I O

L’avvento dei sistemi distribuiti ed eterogenei ha gettato le basi per la
nascita di nuovi paradigmi architetturali, nell’ambito dei quali entità
separate ed autonome collaborano ed interagiscono al fine di raggiun-
gere obiettivi strategici complessi, impossibili da realizzarsi in solitu-
dine. Una lista non esaustiva di alcuni sistemi affrontati mediante tali
paradigmi include la gestione dei processi aziendali, le linee guida in
campo medico e i protocolli di cura, i sistemi orientati ai servizi e agli
agenti.

L’importanza di fornire nuovi strumenti di modellazione per l’inge-
gnerizzazione di questi sistemi è largamente condivisa in letteratura.
In particolare, vari autori affermano la necessità di affiancare una pro-
spettiva aperta e dichiarativa alla visione chiusa e procedurale degli
strumenti di modellazione presenti nello stato dell’arte. Ad esempio,
il linguaggio ConDec è stato recentemente proposto per affrontare
la modellazione dei processi aziendali superando i limiti dei classici
approcci procedurali, i quali impongono di sovra-specificare e sovra-
vincolare i modelli. Da un lato, il successo di questi nuovi linguaggi
di modellazione dipende fortemente dalla loro usabilità, soprattutto
da parte di utenti sprovvisti di doti tecniche: tali linguaggi devono
supportare una modalità di specifica grafica e di semplice compren-
sione. Dall’altra parte, deve essere possibile verificare questi linguaggi,
al fine di garantirne l’affidabilità e la correttezza, così come di assicu-
rare che le esecuzioni reali del sistema ne stiano davvero seguendo le
prescrizioni.

La tesi sostenuta in questa dissertazione è che la logica compu-
tazionale è un valido strumento per trattare la specifica, la verifica,
l’esecuzione, il monitoraggio e l’analisi di questi sistemi. Si propone di
adottare una versione estesa del linguaggio ConDec per specificare i
modelli di interazione seguendo un approccio dichiarativo ed aperto.
Si mostra come tutti i costrutti messi a disposizione da ConDec (es-
teso) possano essere automaticamente tradotti nel linguaggio CLIMB,
basato su logica computazionale. Infine, si illustra come le tecniche di
ragionamento associate a CLIMB possano essere impiegate con suc-
cesso per fornire supporto e capacità di verifica lungo tutto il ciclo di
vita di tali sistemi.

vii

P U B L I C A T I O N S O F T H E A U T H O R

[1] F. Chesani, P. Mello, M. Montali, S. Storari, and P. Torroni. On
the Integration of Declarative Choreographies and Commitment-
based Agent Societies into the SCIFF Logic Programming Frame-
work. Multiagent and Grid Systems, Special Issue on Agents, Web
Services and Ontologies: Integrated Methodologies, 6(2), 2010.

[2] M. Montali, M. Pesic, W. M. P. van der Aalst, F. Chesani, P. Mello,
and S. Storari. Declarative Specification and Verification of Ser-
vice Choreographies. ACM Transactions on the Web - Under the
second round of reviews, 2009.

[3] M. Montali, F. Chesani, P. Mello, and P. Torroni. Verification of
Choreographies During Execution Using the Reactive Event Cal-
culus. In Proceedings of the 5th International Workshop on Web Service
and Formal Methods (WS-FM2008), pages 129–140, 2009.

[4] F. Chesani, P. Mello, M. Montali, and P. Torroni. Modeling and
Verification of Business Processes and Choreographies in ALP. Il
Milione - Viaggio nella Logica Computazionale in Italia, Special Issue
of Intelligenza Artificiale dedicated to Prof. Alberto Martelli, 2009 (ex-
pected). Accepted for publication.

[5] F. Chesani, P. Mello, M. Montali, and P. Torroni. Ontological Rea-
soning and Abductive Logic Programming for Service Discovery
and Contracting. In A. Gangemi, J. Keizer, V. Presutti, and H. Sto-
ermer, editors, Proceedings of the 5th Workshop on Semantic Web Ap-
plications and Perspectives (SWAP2008), volume 429 of CEUR Work-
shop Proceedings, 2009.

[6] F. Chesani, P. Mello, M. Montali, F. Riguzzi, M. Sebastianis, and
S. Storari. Checking compliance of execution traces to business
rules. In Proceedings of BPM 2008 Workshops, volume 17 of Lecture
Notes in Business Information Processing. Springer Verlag, 2009.

[7] F. Chesani, E. Lamma, P. Mello, M. Montali, F. Riguzzi, and
S. Storari. Exploiting Inductive Logic Programming Techniques
for Declarative Process Mining. LNCS Transactions on Petri Nets
and Other Models of Concurrency (ToPNoC), Special Issue on Concur-
rency in Process-Aware Information Systems, 5460:278–295, 2009.

[8] M. Baldoni, C. Baroglio, G. Berio, A. Martelli, V. Patti, M.L.
Sapino, C. Schifanella, M. Alberti, M. Gavanelli, E. Lamma,
F. Riguzzi, S. Storari, F. Chesani, A. Ciampolini, P. Mello, M. Mon-
tali, P. Torroni, A. Bottrighi, G. Casella, L. Giordano, V. Gliozzi,
V. Mascardi, G. Pozzato, P. Terenziani, and D. Theseider Dupre.

ix

Web Service-Oriented Modeling, Verification and Reasoning Tech-
niques. Intelligenza Artificiale, 2009 (expected). Accepted for pub-
lication.

[9] M. Montali, P. Mello, F. Chesani, F. Riguzzi, S. Storari, and M. Se-
bastianis. Compliance Checking of Execution Traces to Business
Rules: an Approach Based on Logic Programming. In 23th Con-
vegno Italiano di Logica Computazionale (CILC 2008), 2008.

[10] M. Montali, M. Alberti, F. Chesani, M. Gavanelli, E. Lamma,
P. Mello, and P. Torroni. Verification from Declarative Specifica-
tions Using Logic Programming. In M. Garcia De La Banda and
E. Pontelli, editors, 24th International Conference on Logic Program-
ming (ICLP), number 5366 in Lecture Notes in Computer Science,
pages 440–454. Springer Verlag, 2008.

[11] L. Luccarini, G. L. Bragadin, M. Mancini, P. Mello, M. Montali,
and D. Sottara. Process Quality Assessment in Automatic Man-
agement of Wastewater Treatment Plants Using Formal Verifica-
tion. In Proceedings of Simposio Internazionale di Ingegneria Sanitaria
Ambientale (SIDISA 2008), 2008.

[12] F. Chesani, E. Lamma, P. Mello, M. Montali, S. Storari, P. Baldazzi,
and M. Manfredi. Compliance Checking of Cancer-Screening
Careflows: an Approach Based on Computational Logic. In A. ten
Teije, S. Miksch, and P. Lucas, editors, Book Chapter of Computer-
Based Medical Guidelines and Protocols: a Primer and Current Trends.
IOS Press, 2008.

[13] V. Bryl, P. Mello, M. Montali, P. Torroni, and N. Zannone. B-
Tropos: Agent-oriented requirements engineering meets compu-
tational logic for declarative business process modeling and ver-
ification. In F. Sadri and K. Satoh, editors, Post-Proceedings of the
8th International Workshop on Computational Logic in Multi-Agent
Systems (CLIMA-VIII), Revised Selected and Invited Papers, volume
5056 of Lecture Notes in Computer Science, pages 157–176. Springer
Verlag, 2008. Based on a Presentation given at the 22th Convegno
Italiano di Logica Computazionale (CILC 2007).

[14] M. Montali, F. Chesani, P. Mello, and S. Storari. Testing Careflow
Process Execution Conformance by Translating a Graphical Lan-
guage to Computational Logic. In R. Bellazzi, A. Abu-Hanna, and
J. Hunter, editors, Proceedings of the 11th International Conference on
Artificial Intelligence in Medicine (AIME’07), volume 4594 of Lecture
Notes in Computer Science, pages 479–488. Springer Verlag, 2007.

[15] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, Paola Mello,
Marco Montali, and Paolo Torroni. Expressing and Verifying
Contracts with Abductive Logic Programming. Electronic Com-
merce, Special Issue on Contract Architectures and Languages, 12(4):
9–38, 2008.

x

[16] E. Lamma, P. Mello, M. Montali, F. Riguzzi, and S. Storari. Learn-
ing DecSerFlow Models from Labeled Traces. In First International
Workshop on the Induction of Process Models, 2007.

[17] E. Lamma, P. Mello, M. Montali, F. Riguzzi, and S. Storari. In-
ducing Declarative Logic-Based Models from Labeled Traces. In
M. Rosemann and M. Dumas, editors, Proceedings of the 5th In-
ternational Conference on Business Process Management (BPM 2007),
volume 4714 of Lecture Notes in Computer Science, pages 344–359.
Springer Verlag, 2007.

[18] F. Chesani, P. Mello, M. Montali, and S. Storari. Agent Societies
and Service Choreographies: a Declarative Approach to Specifi-
cation and Verification. In International Workshop on Agents, Web-
Services and Ontologies: Integrated Methodologies (AWESOME’007),
2007.

[19] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, M. Mon-
tali, and P. Torroni. A Rule-Based Approach for Reasoning about
Collaboration between Smart Web-Services. In M. Marchiori, J. Z.
Pan, and C. de Sainte Marie, editors, Proceedings of the First Inter-
national Conference on Web Reasoning and Rule Systems (RR’07), vol-
ume 4524 of Lecture Notes in Artificial Intelligence, pages 279–288.
Springer Verlag, 2007.

[20] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, M. Mon-
tali, and P. Torroni. Web Service contracting: Specification and
Reasoning with SCIFF. In E. Franconi, M. Kifer, and W. May,
editors, Proceedings of the 4th European Semantic Web Conference
(ESWC’07), volume 4519 of Lecture Notes in Artificial Intelligence,
pages 68–83. Springer Verlag, 2007.

[21] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, M. Mon-
tali, S. Storari, and P. Torroni. A Computational Logic-Based
Approach to Verification of IT Systems. In H. G. Hegering and
H. Reiser, editors, Proceedings of the 14th Annual Workshop of HP
Software University Association (HP-SUA 2007). HP Software Uni-
versity Association, Infonomics-Consulting, 2007.

[22] F. Chesani, P. Mello, M. Montali, M. Alberti, M. Gavanelli,
E. Lamma, and S. Storari. Abduction for Specifying and Veri-
fying Web Service Choreographies. In 4th International Workshop
on AI for Service Composition (AISC 2006), 2006.

[23] F. Chesani, P. De Matteis, P. Mello, M. Montali, and S. Storari.
A Framework for Defining and Verifying Clinical Guidelines: a
Case Study on Cancer Screening. In F. Esposito, Z. W. Ras,
D. Malerba, and G. Semeraro, editors, Proceedings of the 16th In-
ternational Symposium on Foundations of Intelligent Systems (ISMIS
2006), volume 4203 of Lecture Notes in Artificial Intelligence, pages
338–343. Springer Verlag, 2006.

xi

[24] F. Chesani, A. Ciampolini, P. Mello, M. Montali, and S. Storari.
Testing Guidelines Conformance by Translating a Graphical Lan-
guage to Computational Logic. In Workshop on AI Techniques in
Healthcare: Evidence-Based Guidelines and Protocols, 2006.

[25] M. Alberti, F. Chesani, E. Lamma, M. Gavanelli, P. Mello, M. Mon-
tali, and P. Torroni. Policy-Based Reasoning for Smart Web Ser-
vice Interaction. In A. Polleres, S. Decker, G. Gupta, and J. de Bru-
jin, editors, Proceedings of the First International Workshop on Appli-
cations of Logic Programming in the Semantic Web and Semantic Web
Services, volume 196 of CEUR Workshop Proceedings, pages 87–102,
2006.

[26] M. Alberti, F. Chesani, E. Lamma, M. Gavanelli, P. Mello, M. Mon-
tali, S. Storari, and P. Torroni. Computational Logic for the Run-
time Verification of Web Service Choreographies: Exploiting the
SOCS-SI Tool. In M. Bravetti, M. Nùñez, and G. Zavattaro, edi-
tors, Proceedings of the 3rd International Workshop on Web Services
and Formal Methods (WS-FM’06), volume 4184 of Lecture Notes in
Computer Science, pages 58–72. Springer Verlag, 2006.

[27] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, M. Mon-
tali, and P. Torroni. Policy-Based Reasoning for Smart Web Ser-
vice Interaction. In G. Tummarello, editor, Proceedings of the 3rd
Workshop on Semantic Web Applications and Perspectives (SWAP’06),
volume 201 of CEUR Workshop Proceedings, 2006.

[28] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and
M. Montali. An Abductive Framework for A-Priori Verification
of Web Services. In A. Bossi and M. J. Maher, editors, Proceed-
ings of the 8th International ACM SIGPLAN Conference on Principles
and Practice of Declarative Programming, pages 39–50. ACM Press,
2006.

[29] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and
M. Montali. A-Priori Verification of Web Services with Abduc-
tion. In 21th Convegno Italiano di Logica Computazionale (CILC 2006),
2006.

[30] A. Ciampolini, P. Mello, M. Montali, and S. Storari. Using Social
Integrity Constraints for On-the-Fly Compliance Verification of
Medical Protocols. In A. Tsymbal and P. Cunningham, editors, In
Proceedings of the 18th IEEE Symposium on Computer Based Medical
Systems (CBMS’05), pages 503–505. IEEE Computer Society, 2005.

[31] M. Alberti, F. Chesani, A. Ciampolini, P. Mello, M. Montali,
S. Storari, and P. Torroni. Protocol Specification and Ver-
ification by Using Computational Logic. In F. Corradinin,
F. de Paoli, E. Merelli, and A. Omicini, editors, Proceedings of the
6th AI*IA/TABOO Joint Workshop “From Objects to Agents” (WOA
2005): Simulation and Formal Analysis of Complex Systems, pages
184–192. Pitagora Editrice Bologna, 2005.

xii

We should not be looking for heroes,
we should be looking for good ideas.

— Noam Chomsky

A C K N O W L E D G M E N T S

I wish to thank all the people who have supported me during this PhD.
First of all, I would like to thank my supervisor, Prof. Paola Mello, for
having constantly supported and encouraged my research activity. She
guided me through the intriguing world of Computational Logic with
her deep knowledge and open mind. Thanks to Federico Chesani, for
having shared with me these last three years as a colleague and a
friend. Working with him has been a great pleasure. . . Federico, this
dissertation is also dedicated to you! Thanks to Paolo Torroni, for hav-
ing always encouraged me in pursuing my research and for having
shared with me his strong research attitude. I am also greatly indebted
to Marco Gavanelli, for his constant support on the SCIFF Framework.
A special thank goes to Prof. Wil van der Aalst and Maja Pesic. The
fruitful and valuable discussions I had with them during my two vis-
its at TU/e strongly contributed to define the goal of my PhD activity.
Without their work on ConDec and Declarative Business Process Man-
agement, this dissertation would have never been possible.

I would like to thank also all the people who contributed to my
education and research activity. In lexicographic order: Marco Alberti,
Matteo Baldoni, Cristina Baroglio, Alessio Bottrighi, Evelina Lamma,
Michela Milano, Fabrizio Riguzzi, Davide Sottara, Sergio Storari, Paolo
Terenziani and all the people in the LIA aquarium. My research activity
has been partially supported by the FIRB Project TOCAI.IT: tecnologie
orientate alla conoscenza per aggregazioni di imprese in internet and by the
PRIN 2005 Project Linguaggi per la specifica e la verifica di protocolli di
interazione fra agenti.

Grazie a Valentina, per essere la mia perfetta metà, per la sua bellezza
e profondità, le sue osservazioni, i suoi libri e il suo amore per le cose
importanti. Grazie a Giulia: il solo fatto di rendermi partecipe di come
vede il mondo con i suoi occhi ha cambiato la mia vita. Grazie a papà
e mamma, per avermi tramandato la loro concezione della vita, per
avermi insegnato a guardare oltre la punta del mio naso e avermi
sempre supportato nelle mie scelte e decisioni. Grazie ad Anna, per
l’allegria che mi mette ogni volta che ci incontriamo e per la sua musica.
Grazie ai nonni e agli zii, senza il loro supporto non sarei mai potuto
arrivare fino a qui. Grazie all’arte di Gigi e alla compagnia di Annetta.
Grazie ad Antonio, per essere stato un grandissimo compagno di studi
ed un ancor più grande fratello di vita. Grazie a Marco&Marco, la nos-
tra amicizia è uno dei più importanti cardini nella mia vita. E grazie a
tutti i nuovi amici bolognesi!

xiii

C O N T E N T S

1 introduction 1

1.1 Contributions of the Dissertation 3

1.1.1 Specification of Interaction Models 3

1.1.2 Static Verification of Interaction Models 4

1.1.3 Run-time Verification, Monitoring and Enactment
Facilities 4

1.1.4 A-Posteriori Verification of Execution Traces 5

1.2 Organization of the Dissertation 5

1.2.1 Part I: Specification 6

1.2.2 Part II: Static Verification 6

1.2.3 Part III: Run-Time and A-Posteriori Verification 7

i specification 9

2 declarative open interaction models 11

2.1 Open Declarative Interaction Models: an Intuitive Char-
acterization 12

2.1.1 Activities, Events and Execution Traces 12

2.1.2 Characterization of Time 13

2.1.3 Procedural Vs Declarative Interaction Models 14

2.1.4 Open Vs Closed Interaction Models 14

2.2 Business Process Management 14

2.2.1 Limits of Procedural Business Process Modeling 15

2.2.2 The Need For Flexibility 17

2.3 Service Oriented Computing 18

2.3.1 Service Oriented Architecture 18

2.3.2 Orchestration and Choreography 19

2.3.3 Limits of Procedural Choreography Modeling 21

2.4 Multi-Agent Systems 23

2.5 Clinical Guidelines 25

2.5.1 The Role of Basic Medical Knowledge in Clinical
Guidelines 26

2.5.2 Semi-openness of Clinical Guidelines 27

2.6 Lessons Learnt 28

2.7 Challenges in Declarative Open Interaction Models 30

2.8 Grounding the Framework 32

3 the condec graphical language 35

3.1 ConDec in a Nutshell 35

3.2 ConDec models 36

3.3 Constraints 37

3.3.1 Existence Constraints 37

3.3.2 Choice Constraints 38

3.3.3 Relation Constraints 39

3.3.4 Negation Constraints 41

3.3.5 Branching Constraints 43

3.4 A ConDec Choreography 43

xv

xvi contents

3.5 Usability of the Language 46

3.6 Linear Temporal Logic 48

3.6.1 LTL Models 49

3.6.2 Syntax of LTL 49

3.6.3 Semantics of LTL 50

3.7 Translation of ConDec to LTL 51

4 the climb rule-based language 53

4.1 The CLIMB Language in a Nutshell 54

4.2 The CLIMB Syntax 55

4.2.1 Event Occurrences and Execution Traces 55

4.2.2 Constraint Logic Programming 57

4.2.3 Expectations 58

4.2.4 Integrity Constraints 60

4.2.5 The Static Knowledge Base 64

4.2.6 SCIFF-lite and Composite Events 66

4.3 CLIMB Declarative Semantics 67

4.3.1 Abduction 67

4.3.2 Abductive Logic Programming 69

4.3.3 Representing a system and its executions 70

4.3.4 SCIFF-lite Specifications 72

4.3.5 A Declarative Notion of Compliance 73

4.4 Equivalence and Compositionality 77

4.4.1 Equivalence w.r.t. Compliance 78

4.4.2 Compositionality w.r.t. compliance 79

5 translating condec to climb 83

5.1 Translation of a ConDec Model to CLIMB 84

5.2 Translation of Events 85

5.3 Embedding a Qualitative Characterization of Time in a
Quantitative Setting 85

5.3.1 Temporal Contiguity 85

5.3.2 Compact Execution Traces 86

5.4 Translation of Constraints 87

5.4.1 Translation of Existence Constraints 88

5.4.2 Translation of Choice Constraints 89

5.4.3 Translation of Relation Constraints 91

5.4.4 Translation of Negation Constraints 94

5.4.5 Dealing with Branching ConDec Constraints 95

5.4.6 Equivalence Between ConDec Constraints 95

5.5 Soundness of the Translation 96

5.5.1 Trace Mapping 96

5.5.2 Compliance Preservation 97

5.5.3 Proof of Soundness 97

5.6 On the Expressiveness of SCIFF 99

5.6.1 A Separated Normal Form for LTL Formulae 100

5.6.2 Translation of SNF Formulae to SCIFF-lite 101

5.6.3 Translation of Arbitrary LTL Formulae to SCIFF-
lite 104

6 extending condec 109

6.1 Temporal-constrained Relationships 109

contents xvii

6.1.1 Temporal Contiguity in a Quantitative Setting 110

6.1.2 Quantitative Formalization of Chain Constraints 110

6.1.3 Metric ConDec Constraints 111

6.2 Data-Related Aspects 114

6.2.1 The MXML Meta-Model 114

6.2.2 The Life Cycle of ConDec Activities 115

6.2.3 An illustrative example 116

6.3 Introducing Data in ConDec++
116

6.3.1 Representing Non-Atomic Activities in ConDec++
117

6.3.2 Formalizing the Activity Life Cycle 117

6.3.3 Modeling the Submit-Review Example 119

6.3.4 Cross-Flow Constraints 120

7 related work and summary 123

7.1 Related Work 123

7.1.1 Business Process Management 123

7.2 Clinical Guidelines 125

7.2.1 Service-Oriented and Systems 126

7.2.2 Multi-Agent Systems 127

7.3 Summary of the Part 128

ii static verification 131

8 static verification of declarative open interac-
tion models 133

8.1 Desiderata for Verification Technologies 133

8.2 Verification of a Single Model vs a Composition of Mod-
els 134

8.3 Static Verification of Properties 135

8.3.1 Existential vs Universal Properties 136

8.3.2 General vs Particular Properties 136

8.3.3 On the Safety-Liveness Classification 138

8.3.4 A ConDec Example 140

8.4 A-priori Compliance Verification 141

8.5 Compatibility and Legal Compositions 142

8.5.1 Compatibility Between Local Models 143

8.5.2 From Openness to Semi-Openness 145

8.5.3 Augmenting ConDec Models with Roles and Par-
ticipants 146

8.6 Conformance With a Choreography 149

9 Proof Procedures 153

9.1 The SCIFF Proof Procedure 154

9.1.1 Data Structures and Proof Tree 155

9.1.2 Transitions 157

9.2 Formal Properties of the SCIFF Proof Procedure 163

9.2.1 Soundness 163

9.2.2 Completeness 163

9.2.3 Termination 164

9.2.4 ConDec Models and Termination of the SCIFF
Proof Procedure 165

9.3 The g-SCIFF Proof Procedure 165

xviii contents

9.3.1 Generation of Intensional Traces 166

9.3.2 Data Structures Revisited 166

9.3.3 Transitions Revisited 167

9.3.4 Comparison of the Proof Procedures 168

9.4 Formal Properties of the g-SCIFF Proof Procedure 169

9.4.1 Soundness 169

9.4.2 Completeness W.r.t. Generation of Traces 169

9.4.3 Termination 171

9.4.4 ConDec Models and Termination of the SCIFF
Proof Procedure 171

9.5 Implementation 171

10 Static Verification of ConDec Models With g-SCIFF 173

10.1 Existential and Universal Entailment in CLIMB 174

10.1.1 Specification of Properties with ConDec 174

10.1.2 Formalizing Existential and Universal Entailment 175

10.2 Verification of Existential Properties With g-SCIFF 176

10.2.1 Conflict-freedom Checking Via g-SCIFF 176

10.2.2 Existential Entailment with g-SCIFF 177

10.3 Verification of Universal Properties With g-SCIFF 178

10.3.1 Complementing Integrity Constraints 178

10.3.2 Reduction of Universal Entailment to Existential
Entailment 179

10.4 ConDec Loops and Termination Issues 181

10.4.1 Reformulation of ConDec relation constraints 183

10.4.2 Unbounded Specifications and Looping ConDec
Models 185

10.5 Pre-processing of ConDec Models and Loop Detection 188

10.5.1 Transformation of ConDec Models to AND/OR
Graphs 188

10.5.2 Detection of ∧- and ∨-loops 189

10.5.3 Pre-Processing Procedure 192

10.6 Dealing With an Infinite Number of Finite Derivations 195

10.6.1 Succession Constraints and Infinite Branching Proof
Trees 195

10.6.2 Solving the Infinite Branches Anomaly 197

11 experimental evaluation 199

11.1 Verification Procedure with g-SCIFF 200

11.2 Scalability of the g-SCIFF Proof Procedure 201

11.2.1 The Branching Responses Benchmark 202

11.2.2 The Alternate Responses Benchmark 203

11.2.3 The Chain Responses Benchmark 206

11.3 Using Model Checking For the Static Verification of Con-
Dec Models 209

11.3.1 Model Checking 209

11.3.2 Verification of ConDec Properties By Satisfiabil-
ity and Validity Checking 211

11.3.3 Reduction of Validity and Satisfiability Checking
to Model Checking 213

11.3.4 Verification Procedure by Model Checking 214

contents xix

11.4 Comparative Evaluation 215

11.4.1 Evaluation Benchmarks 215

11.4.2 Experimental Results 216

11.5 Discussion 217

12 related work and summary 221

12.1 Related Work 221

12.1.1 Verification of Properties 221

12.1.2 A-priori Compliance Verification 225

12.1.3 Model Composition 227

12.1.4 Interoperability and Choreography Conformance 228

12.2 Summary of the Part 229

iii run-time and a-posteriori verification 231

13 run-time verification 233

13.1 The Run-Time Verification Task 234

13.2 Run-time Verification with the SCIFF Proof Procedure 235

13.2.1 Reactive Behaviour of the SCIFF Proof Procedure 235

13.2.2 Open Derivations 236

13.2.3 Semi-Open Reasoning 238

13.3 The SOCS-SI Tool 240

13.4 Speculative Run-Time Verification 241

13.4.1 Speculative Verification with the g-sciff Proof Pro-
cedure 242

13.4.2 Interleaving the sciff and g-sciff Proof Proce-
dures 243

14 monitoring and enactment with reactive event

calculus 245

14.1 Event Calculus 246

14.1.1 The Event Calculus Ontology 246

14.1.2 Domain-Dependent vs Domain-Independent Ax-
ioms 247

14.1.3 Reasoning with Event Calculus 248

14.2 The Reactive Event Calculus 249

14.3 REC Illustrated: A Personnel Monitoring Facility 251

14.3.1 Formalizing the Personnel Monitoring Facility in
REC 252

14.3.2 Monitoring a Concrete Instance 253

14.3.3 The Irrevocability Issue 254

14.4 Formal properties of REC 255

14.4.1 Irrevocability of REC 255

14.5 Monitoring Optional Constraints with REC 261

14.5.1 Representing ConDec Optional Constraints in REC 261

14.5.2 Identification and Reification of Violations 264

14.5.3 Compensating Violations 266

14.5.4 Monitoring Example 266

14.6 Enactment of ConDec Models 269

14.6.1 Showing Temporarily Unsatisfied Constraints 271

14.6.2 Blocking Unexecutable Activities 271

14.6.3 Termination of the Execution 273

xx contents

15 declarative process mining 275

15.1 Grounding the Process Mining Framework: SCIFF Checker,
DecMiner, ProM 277

15.2 The SCIFF Checker ProM Plug-in 278

15.2.1 CLIMB Textual Business Rules 279

15.2.2 A Methodology for Building Rules 280

15.2.3 Specification of Conditions 281

15.2.4 Compliance Verification with Logic Programming 282

15.2.5 Embedding SCIFF Checker in ProM 283

15.3 Case Studies 284

15.3.1 The Think3 Case Study 285

15.3.2 Screening Guideline of the Emilia Romagna Re-
gion 288

15.3.3 Quality Assessment in Large Wastewater Treat-
ment Plans 289

15.4 The DecMiner ProM Plug-in 291

15.4.1 Inductive Logic Programming For Declarative Pro-
cess Discovery 292

15.4.2 Embedding DecMiner Into the ProM Framework 293

15.5 The Checking-Discovery Cycle 294

16 related work and summary 297

16.1 Related Work 297

16.1.1 Run-Time Verification and Monitoring 297

16.1.2 Enactment 299

16.1.3 Log-Based Verification 300

16.1.4 Discovery 301

16.2 Summary of the Part 302

iv conclusions and future work 305

17 conclusions and future work 307

17.1 Conclusions 307

17.2 Future Work 309

bibliography 313

L I S T O F F I G U R E S

Figure 1 The BP life cycle. 15

Figure 2 A procedural Business Process (BP) modeled in
BPMN. 16

Figure 3 Procedural vs declarative perspective in Business
Process modeling. 16

Figure 4 Service Oriented Architecture (SOA). 18

Figure 5 Orchestration and choreography. 20

Figure 6 Declarative vs. procedural style of modeling a
simple choreography [146]. 24

Figure 7 Fragment of a chronic cough treatment guideline
modeled in GLARE (from [33]). 27

Figure 8 The contrasting forces of compliance and flexibil-
ity. 29

Figure 9 Comparison of declarative and open vs procedu-
ral and closed interaction models in the space of
execution trace. 30

Figure 10 Life cycle of declarative open interaction mod-
els. 31

Figure 11 The CLIMB framework. Each number identifies
the part of the dissertation covering the corre-
sponding portion of the schema. 33

Figure 12 ConDec diagram capturing the Customer-Seller-
Warehouse example; for the sake of readability,
the three interacting roles are shown as pools in
the diagram. 46

Figure 13 Hidden dependencies in a ConDec model (shown
as dashed connections). 48

Figure 14 Variants of the SCIFF language and their expres-
siveness. 54

Figure 15 Abstraction of a system execution in terms of oc-
curring events. 55

Figure 16 Agent UML model for a simplified version of the
query-ref FIPA interaction protocol. 71

Figure 17 The two-ways relationship between expectations
and happened events, established by the CLIMB
declarative semantics. 76

Figure 18 Compliance of the execution traces reported in
Examples 4.11 and 4.13 with the query-ref proto-
col. 78

Figure 19 The set of compositional specifications compared
to the variants of SCIFF. 82

Figure 20 A simple ConDec model containing a choice con-
straint. 90

Figure 21 Metric constraints in ConDec++. 113

xxi

xxii List of Figures

Figure 22 An MXML-like meta model for representing the
traces produced by the execution of interaction
instances (the original MXML diagram can be
found in [199]). 114

Figure 23 The life cycle of ConDec activities (from [157]). 115

Figure 24 Atomic and non-atomic activities in ConDec++. 117

Figure 25 Example of a ConDec++ model. 119

Figure 26 Conformance and replaceability of services in a
choreography. 135

Figure 27 ConDec and verification of properties. 136

Figure 28 ConDec model of an order&payment protocol. 140

Figure 29 A-priori compliance verification. 142

Figure 30 Two complementary methods to compose local
interaction models for realizing a global choreo-
graphic model. 143

Figure 31 Local models of a customer and of three candi-
date sellers. 146

Figure 32 Different possible errors in the realization of a
choreography. 149

Figure 33 A simple payment choreography. 151

Figure 34 Three candidate local models (one customer and
two sellers) for the payment choreography shown
in Figure 33. 151

Figure 35 Representation of Query 8.4 – introduced in Sec-
tion 8.3.4 – with extended ConDec. 175

Figure 36 Shifting the perspective when modeling the alter-
nate response constraint. 184

Figure 37 Three ConDec models containing different kind
of loops. 186

Figure 38 The three AND/OR forward graphs correspond-
ing to the ConDec models shown in Figure 37. 189

Figure 39 Pre-processing analysis of ConDec models for de-
tecting and handling the presence of loops. 193

Figure 40 Part of the infinite branching proof tree produced
by g-sciff when the model contains a succession
constraint. 196

Figure 41 Complete proof tree produced by g-sciff when
the model contains a succession constraint, and
the revised formalizations is adopted. The infi-
nite branches anomaly is not experienced any-
more. 198

Figure 42 The branching responses benchmark when 7 activ-
ities and 8 constraints are employed. 202

Figure 43 Trend of g-sciff when reasoning upon the branch-
ing responses benchmark. 202

Figure 44 The alternate responses benchmark, parametrized
on N and K. 204

Figure 45 Trend of g-sciff when reasoning upon the alter-
nate responses benchmark. 204

List of Figures xxiii

Figure 46 The chain responses benchmark, parametrized on
N and K. 206

Figure 47 Trend of g-sciff when reasoning upon the chain
responses benchmark by adopting a qualitative no-
tion of time. 206

Figure 48 Trend of g-sciff when reasoning upon the chain
responses benchmark by adopting a quantitative
notion of time. 207

Figure 49 Kripke structure of a micro-wave oven (from [57]). 209

Figure 50 A non-deterministic Büchi automaton represent-
ing the LTL formula�(start⇒ ♦heat), produced
by the LTL2BA algorithm[83]. 210

Figure 51 Parametric extension to the model presented in
Figure 59. 216

Figure 52 Charts showing the ratio NuSMV/g-sciff run-
time, in Log scale. 217

Figure 53 ConDec and run-time verification. 234

Figure 54 SOCS-SI architecture. 240

Figure 55 An order management ConDec model with hid-
den dependencies. 242

Figure 56 Run-time verification vs monitoring. 246

Figure 57 Fluents tracking with REC. 254

Figure 58 ConDec run-time verification and monitoring. 261

Figure 59 A ConDec choreography fragment, including a
deadline and a compensation. 267

Figure 60 Fluents trend generated by REC when monitor-
ing a specific interaction w.r.t. the diagram of Fig-
ure 59. The verification time spent for reacting to
each happened event is also reported. 268

Figure 61 Enactment of ConDec models. 269

Figure 62 Enactment of the ConDec model shown in Fig-
ure 55, after the execution of activity empty stock. 272

Figure 63 Some process mining techniques (from [197]). 276

Figure 64 Grounding of the process mining general schema
on declarative technologies. 277

Figure 65 An excerpt of the CLIMB textual rules grammar. 279

Figure 66 A methodology for building, configuring and ap-
plying business rules. 281

Figure 67 Basic hierarchy of string and time constraints. 282

Figure 68 A screenshot of the main SCIFF Checker win-
dow. 283

Figure 69 Compliance chart produced by SCIFF Checker at
the end of verification. 284

Figure 70 Basic Think3 workflow for the managament of
manufacturing products. 286

Figure 71 Architecture of an intelligent monitoring and qual-
ity assessment framework for wastewater treat-
ment plants (from [123]). 290

Figure 72 DecMiner plug-in: trace classification. 293

Figure 73 DecMiner plug-in: ConDec template selection. 294

Figure 74 Integration of SCIFF Checker and DecMiner, re-
alizing a checking-discovery cycle. 295

L I S T O F T A B L E S

Table 1 Some similarities between Multi-Agent and Service-
Oriented systems. 24

Table 2 Interplay between CG’s prescriptions and the Ba-
sic Medical Knowledge (from [32]). 28

Table 3 Examples of interaction models. 29

Table 4 ConDec existence constraints. 38

Table 5 ConDec choice constraints. 39

Table 6 ConDec relation constraints. 40

Table 7 ConDec negation constraints. 42

Table 8 Mapping the statements of the Customer-Seller-
Warehouse in ConDec. 44

Table 9 Implicit ConDec constraints involved in the Customer-
Seller-Warehouse example. 45

Table 10 Some cognitive dimensions. 46

Table 11 Core ConDec graphical elements and their corre-
sponding meaning. 47

Table 12 LTL temporal operators. 50

Table 13 Common syntax of SCIFF integrity constraints. 60

Table 14 CLIMB specialization of the integrity constraints
syntax reported in Table 13. 61

Table 15 Common syntax of a SCIFF knowledge base. 64

Table 16 CLIMB specialization of the knowledge base syn-
tax reported in Table 15. 65

Table 17 SCIFF-lite specialization of the syntax reported in
Tables 13 and 15 respectively. 66

Table 18 Translation of ConDec existence constraints to
CLIMB. 88

Table 19 Translation of ConDec choice constraints to CLIMB. 89

Table 20 Guidelines followed for translating ConDec rela-
tion and negation constraints to CLIMB. 92

Table 21 Translation of ConDec relation constraints to CLIMB. 93

Table 22 Translation of ConDec negation constraints to CLIMB. 94

Table 23 Equivalence of ConDec negation constraints[186]. 96

Table 24 Strength of “forward” relation ConDec constraints. 184

Table 25 Timings employed by g-sciff to verify the branch-
ing responses benchmark. 202

Table 26 Timings employed by g-sciff to verify the alter-
nate responses benchmark. 205

xxiv

Table 27 Timings employed by g-sciff to verify the chain
responses benchmark. 207

Table 28 Results of the benchmarks (SCIFF/NuSMV), in
seconds [144]. 217

Table 29 The EC ontology. 247

Table 30 Representing some optional ConDec constraint
in REC. 263

Table 31 REC formalization of the choreography fragment
shown in Figure 59. 267

Table 32 Enactment of a ConDec model. 270

A C R O N Y M S

ALP Abuctive Logic Programming

B2B Business-To-Business

BDD ordered Binary Decision Diagram

BP Business Process

BPM Business Process Management

BPMN Business Process Modeling Notation

CEC Cached Event Calculus

CEP Complex Event Processing

CG Clinical Guideline

CHR Constraint Handling Rules

CLIMB Computational Logic for the verIfication and Modeling of
Business processes and choreographies

CLP Constraint Logic Programming

EBS Event-Based System

EC Event Calculus

FOL First Order Logic

KB Knowledge Base

IC Integrity Constraint

LP Logic Programming

LTL propositional Linear Temporal Logic

xxv

xxvi List of Tables

MAS Multi-Agent Systems

MC Model Checking

MTL Metric Temporal Logic

NAF Negation As Failure

MTL Metric Temporal Logic

REC Reactive Event Calculus

SCIFF Social Constrained IFF Framework

sciff SCIFF Proof Procedure

g-sciff g-SCIFF Proof Procedure

REC Reactive Event Calculus

SOA Service Oriented Architecture

SOC Service Oriented Computing

SNF Separated Normal Form

TPTL Timed Propositional Temporal Logic

WfMS Workflow Management System

WS Web Service

1
I N T R O D U C T I O N

Contents
1.1 Contributions of the Dissertation 3

1.1.1 Specification of Interaction Models 3

1.1.2 Static Verification of Interaction Models 4

1.1.3 Run-time Verification, Monitoring and En-
actment Facilities 4

1.1.4 A-Posteriori Verification of Execution Traces 5

1.2 Organization of the Dissertation 5
1.2.1 Part I: Specification 6

1.2.2 Part II: Static Verification 6

1.2.3 Part III: Run-Time and A-Posteriori Verifi-
cation 7

The thesis defended in this dissertation is that

Declarativeness and openess are needed to deal with dif-
ferent emerging settings, where systems are composed by
several autonomous entities which collaborate and interact
to the aim of achieving complex strategic goals, impossi-
ble to be accomplished on their own. Computational Logic
is a suitable framework to support the entire life cycle of
such systems, ranging from their specification and static
verification to their execution, monitoring and analysis.

The advent of distributed and heterogeneous systems has laid the
foundation for the birth of new architectural paradigms, which enable
to attack the complexity of a targeted domain by splitting it up into
several interacting components and entities. In the field of software
engineering, the difference of this kind of paradigms w.r.t. to classical
centralized and monolithic ones has been identified since 1975, when
DeRemer and Kron conied the two opposite terms of programming-in-
the-small vs programming-in-the-large [66].

A non exhaustive list of systems targeted by programming-in-the-
large paradigms includes Business Process Management (BPM), Clin-
ical Guidelines and Care-flow Protocols, Service-Oriented and Multi-
Agent Systemss (MASs). For example, BPM systems help organizations
in the process of decomposing the work into sub-units, whose exe-
cution is then delegated to different parties. The behaviour of these
parties must be disciplined so as to obtain, from their cooperation, the

1

2 introduction

achievement of strategic business goals, such as supplying a service to
the customer or deliver a product.

In this settings, the focus of the engineering process is on the inter-
action between the entities composing the system. It is largely recog-
nized that engineering interaction requires novel modeling techniques.
In particular, many authors are claiming that an open, declarative per-
spective is needed to complement the closed, procedural nature of the
state of the art specification languages [194, 19, 189, 158, 87, 43, 100,
206, 7, 146].

The main drawback of procedural, closed approaches is that they
impose to explicitly tackle all the ordering constraints among the ac-
tivities carried out by the interacting entities, leading to synthesize a
single pre-defined way for accomplishing the desired strategic goals.
They force the modeler to produce a rigid scheme defining one fixed
algorithm for disciplining the work, ruling out many acceptable pos-
sibilities. This is unreasonable when the system must be able to cope
with an unpredictable, changing and dynamic environment, where the
expertise of workers must be exploited at best [157] or the autonomy of
interacting entities and the possibility of exploiting new opportunities
must be preserved as much as possible [206].

In this respect, open and declarative approaches are gaining consen-
sus as a way to capture requirements, regulations, policies and best
practices involved in the domain under study, but by guaranteeing at
the same time flexibility and, in turn, usability. In order to enable the ef-
fective adoption of such novel modeling approaches, two fundamental
requirements must be satisfied:

• on the one hand, they must provide an appealing, intuitive graph-
ical front-end, for the sake of usability by non-IT savvy;

• on the other hand, they must be prone to verification, in order
to guarantee the trustworthiness and reliability of the developed
model, as well as to ensure that the actual executions of the
system effectively comply with it.

In this dissertation, we describe an integrated framework, called
CLIMB, able to meet both these fundamental requirements. The CLIMB
framework relies on the ConDec graphical language for the high-level,
open and declarative specification of interaction models. ConDec has
been recently proposed by Pesic and van der Aalst [157, 158] for tack-
ling the flexible, declarative and open modeling of Business Process
models. Instead of rigidly defining the flow of interaction, ConDec
focuses on the (minimal) set of external regulations, internal policies,
best practices which must be satisfied in order to correctly carry out
the collaboration. Differently from procedural specifications, the Con-
Dec language provides a number of control-independent abstractions
to constrain activities, alongside the more traditional ones.

To enable reasoning and verification capabilities, we propose a com-
plete and automatic translation of all the ConDec constructs to the
CLIMB formal language. The CLIMB language is a sub-set of the SCIFF

1.1 contributions of the dissertation 3

Computational Logic-based language, which has been originally de-
veloped for specifying the rules of engagement regulating interaction
protocols in open MAS [7]. The language features a clear declarative
semantics which formally captures the notion of compliance of the sys-
tem’s executions with the prescribed rules. The SCIFF framework pro-
vides the sciff and g-sciff proof procedures to reason about the de-
veloped models during the design phase as well as at run-time and
after the execution. We show how the two proof procedures can be
combined to provide complete support to the targeted systems, span-
ning from static verification to execution support, run-time verifica-
tion&monitoring and a-posteriori verification. We demonstrate the fea-
sibility and effectiveness of the approach by means of experimental
evaluations, and by reporting the application of some of the reasoning
techniques to real industrial case studies.

1.1 contributions of the dissertation

The contributions of this dissertation to advancing research in the spec-
ification and verification of interaction models can be grouped into
four categories:

• specification of interaction models;

• static verification of interaction models;

• run-time verification, monitoring and enactment facilities;

• a-posteriori verification of execution traces.

1.1.1 Specification of Interaction Models

We provide an overview of different emerging settings in which open-
ness and declarativeness are of fundamental importance to deal with
their complexity at the right level of abstraction, and guaranteeing flex-
ibility. In particular, we focus our attention on Business Process Man-
agement systems, Clinical Guidelines, Service Composition/Choreog-
raphy, and Multi-Agent Systems, pointing out the limits of state of
the art modeling languages. We then propose the combination of the
ConDec graphical notation and the CLIMB Computational-Logic based
language to obtain a suitable modeling framework. We then introduce
a complete automatic translation from the ConDec constructs to CLIMB
rules. The translation has a twofold advantage: on the one hand, non
IT-savvy have the possibility of developing CLIMB specifications by
working at the graphical level of ConDec, avoiding the direct manip-
ulation of CLIMB formulae; on the other hand, ConDec is equipped
with an underlying formal representation, which can be obtained in
an automatic, transparent way. In particular, the translation enables:

• to exploit the expressiveness of the CLIMB language for extend-
ing the ConDec notation with new interesting capabilities, such
as data-related aspects, a non-atomic model for activities, and
metric temporal constraints;

4 introduction

• the application of the sciff and g-sciff proof procedures for rea-
soning about (extended) ConDec models.

Finally, we provide a comparison between the CLIMB formalization and
the original formalization of ConDec, which has been given in terms
of propositional Linear Temporal Logic (LTL). We demonstrate that our
formalization is sound w.r.t. the LTL one, and investigate a more gen-
eral theoretical comparison between LTL and SCIFF, proving that SCIFF
is strictly more expressive than LTL.

1.1.2 Static Verification of Interaction Models

Although declarative technologies improve readability and modifiabil-
ity, and help reducing programming errors, what makes systems trust-
worthy and reliable is formal verification. Static verification aims at
verifying the model during the design phase, before the execution. It
provides support for guaranteeing a-priori that the model will behave,
during the execution, in a consistent manner, enabling the premature
identification of errors and undesired situations which, if encountered
at run-time, could be costly to repair or could even compromise the
entire system. When the model under study is part of a complex sys-
tem, static verification can be employed to check whether it fits with
the other components of the system, dealing with interoperability and
compatibility/composability issues.

We deal with all these issues, introducing different static verifica-
tion tasks that can be applied on ConDec models and their compo-
sition. We then show how g-sciff is able to accomplish such verifi-
cation tasks. Since CLIMB belongs to a first-order setting, it suffers of
semi-decidability issues, and therefore g-sciff is not guaranteed to ter-
minate in all the possible cases. To overcome termination issues, we
propose a pre-processing technique which is able to analyze a ConDec
model and identify the possible sources of non-termination, allowing
to take suitable counter-measures. We provide an extensive quantita-
tive evaluation aimed at assessing the performance and scalability of
our verification framework, presenting a comparison with state of the
art explicit and symbolic model checking techniques.

1.1.3 Run-time Verification, Monitoring and Enactment Facilities

After the design phase, an interaction model is instantiated and exe-
cuted inside a system. Each instance involves a set of concrete interact-
ing entities, whose behaviour must comply with the prescriptions of
the model.

In this respect, two different scenarios arise, depending on whether
the interacting entities belong to the same system in which the model
has been developed or not. If so, they must be supported during the
execution, informing them about how their actions impact on the pre-
scriptions of the model, in terms of the currently enabled and for-
bidden activities. This task is called enactment. If, instead, interacting

1.2 organization of the dissertation 5

entities work within a third party system, or act in a completely au-
tonomous, uncontrollable and possibly untrusted manner, then they
must be monitored during the execution, in order to assess whether
they are effectively behaving as expected and to report potential viola-
tions as soon as possible. Run-time verification and monitoring deal with
this issue.

In the dissertation, we describe how a combination of sciff and
g-sciff can tackle the run-time verification task, guaranteeing that pos-
sible violations are identified as soon as possible. We then accommo-
date a reactive version of the Event Calculus (EC) [114] in SCIFF, show-
ing how it can be exploited for monitoring ConDec constraints and
reifying the detected violations, enabling the possibility of handling
corresponding compensation mechanisms. We finally present how all
these reasoning techniques can be combined to support the enactment
of ConDec models, preventing the execution of activities which would
surely lead to eventually encounter a violation.

1.1.4 A-Posteriori Verification of Execution Traces

In many different settings, when an instance of the system completes
its execution, the trace composed by all its occurred events is stored
inside an information system, enabling their retrieval and a-posteriori
analysis. The set of all the stored execution traces provides a detailed
insight about the real behaviour of the system. It is therefore of key
importance to provide suitable technologies for analyzing such execu-
tion traces, in order to compare the real system with the model, and
to assess if business goals have been effectively achieved or not. In
the Business Process Management field, this task is commonly called
process mining; however, its application is not restricted to Business
Process models, but it can seamlessly target any Event-Based System
equipped with logging facilities.

We present two tools for declarative process mining. The tools have
been concretely implemented as part of the ProM framework [190],
one of the most popular process mining softwares. The first tool, called
SCIFF Checker, verifies whether a set of execution traces complies
with a business rule, specified using a textual pseugo-natural nota-
tion which resembles the CLIMB language. Beside describing the main
features offered by the tool, we also report its application on three dif-
ferent industrial case studies: a company working in the Product Life
cycle Management market, the Care-flow Protocol realizing a Clinical
Guideline in the Emilia Romagna region of Italy, and a system for the
intelligent monitoring of Wastewater Treatment Plants.

1.2 organization of the dissertation

The dissertation is organized in four parts:

1. Specification;

2. Static Verification;

6 introduction

3. Run-Time and A-Posteriori Verification;

4. Conclusions and Future Work.

Each one of the three central parts is organized as follows.

1.2.1 Part I: Specification

• Chapter 2 introduces declarative open interaction models, pro-
viding an overview of different settings (Business Process Man-
agement, Service Oriented Computing, Clinical Guidelines and
Multi-Agent Systems) in which declarativeness and openness
are needed to overcome the limits of the state of the art ap-
proaches.

• Chapter 3 presents the ConDec graphical language, originally
developed by Pesic and van der Aalst [158, 157] for the flexibile
specification of Business Processes with a declarative and open
flavor.

• Chapter 4 describes the CLIMB rule-based language, a subset of
the SCIFF Computational Logic-based language originally thought
for addressing the formal specification of interaction in open
Multi-Agent Systems; the chapter overviews syntax and declar-
ative semantics of the language, and prove some interesting for-
mal properties related to the CLIMB fragment.

• Chapter 5 investigates how ConDec models can be automatically
translated to CLIMB specifications, obtaining a unified framework
for the specification of declarative open interaction models, which
covers both graphical and formal aspects. The proposed trans-
lation is compared with the original formalization of ConDec,
based on propositional Linear Temporal Logic (LTL), to establish
if the two formalizations are equivalent and, more in general, to
carry out a theoretical investigation about the expressiveness of
the two formalisms.

• Chapter 6 shows how the expressiveness of the CLIMB language
can be exploited to extend the ConDec notation with novel in-
teresting capabilities, maintaining a complete and valid CLIMB
representation.

• Related work and a summary conclude this part.

1.2.2 Part II: Static Verification

• In Chapter 8 we discuss the different kind of verifications that
can be applied to a ConDec model at design-time, taking into
account the case of a single model as well as the one in which
many ConDec local models are composed to obtain a more com-
plex global model.

1.2 organization of the dissertation 7

• In Chapter 9 two proof procedures able to reason upon CLIMB
specification are recalled, presenting their implementation as
well as their formal properties.

• One of these two proof procedure, namely the g-sciff proof pro-
cedure, is then adopted in Chapter 10, showing how it can deal
with the static verification of ConDec models.

• Chapter 11 aims at evaluating the effectiveness of the approach
presented in Chapter 10, by conducting a quantitative evaluation
of g-sciff on different ConDec benchmarks. The chapter shows
how the static verification of ConDec models can be also formal-
ized as a model checking problem, and compares performance
and timings of g-sciff with that of state of the art model check-
ers.

• Related work and a summary conclude this part.

1.2.3 Part III: Run-Time and A-Posteriori Verification

• Chapter 13 introduces the run-time verification problem, show-
ing how the sciff and g-sciff proof procedures can be success-
fully exploited for the run-time verification of interacting entities
w.r.t. ConDec models.

• Chapter 14 discusses how a reactive form of Event Calculus can
be axiomatized on top of sciff, augmenting the CLIMB frame-
work with the possibility of dynamically reasoning upon the ef-
fects of actions and the state of affairs. This added features are
then exploited for monitoring ConDec optional constraints, reify-
ing violations and dealing with compensation mechanisms. The
combination of monitoring and run-time verification techniques
is finally employed to enact the ConDec models.

• In Chapter 15, we present how CLIMB can be applied to the a-
posteriori verification of event logs, to the aim of realizing declar-
ative process mining techniques. We describe two implemented
tools developed for the log-based verification and process dis-
covery, reporting our experience related to their application on
some real case studies.

• Related work and a summary conclude this part.

Part I

S P E C I F I C A T I O N

2
D E C L A R A T I V E O P E N I N T E R A C T I O N M O D E L S

The limits of my language
mean the limits of my world

— Ludwig Wittgenstein

Contents
2.1 Open Declarative Interaction Models: an Intuitive

Characterization 12
2.1.1 Activities, Events and Execution Traces 12

2.1.2 Characterization of Time 13

2.1.3 Procedural Vs Declarative Interaction Mod-
els 14

2.1.4 Open Vs Closed Interaction Models 14

2.2 Business Process Management 14
2.2.1 Limits of Procedural Business Process Mod-

eling 15

2.2.2 The Need For Flexibility 17

2.3 Service Oriented Computing 18
2.3.1 Service Oriented Architecture 18

2.3.2 Orchestration and Choreography 19

2.3.3 Limits of Procedural Choreography Mod-
eling 21

2.4 Multi-Agent Systems 23
2.5 Clinical Guidelines 25

2.5.1 The Role of Basic Medical Knowledge in
Clinical Guidelines 26

2.5.2 Semi-openness of Clinical Guidelines 27

2.6 Lessons Learnt 28
2.7 Challenges in Declarative Open Interaction Mod-

els 30
2.8 Grounding the Framework 32

In this Chapter, we provide an informal overview of different systems
in which interaction plays a central role. We discuss the limits of proce-
dural and closed approaches when modeling such settings, motivating
why we claim that also an open and declarative perspective is needed to
compensate these limits and to capture such systems at the right level
of abstraction.

We then give a precise characterization to open declarative interac-
tion models, describing a generic framework for managing their life
cycle, spanning from their design to their execution, monitoring and

11

12 declarative open interaction models

a-posteriori verification. We conclude the Chapter by introducing how
we propose to fill the building blocks of such a generic framework.

2.1 open declarative interaction models : an intuitive

characterization

The complexity of today’s systems poses important engineering chal-
lenges. Thanks to the increasing pervasiveness of networks, computers
and communication modalities, this complexity is often faced by de-
composing the system under study, and delegating the management
of its sub-parts to a set of autonomous, possibly distributed entities.
Such entities interact and collaborate to the aim of realizing the overall
goal of the system. Models developed to describe these systems are
called, in this dissertation, interaction models.

2.1.1 Activities, Events and Execution Traces

An interaction model focuses on the dynamics of a system rather than
on its static organization: its purpose is to capture the overall behaviour
that must be guaranteed by the interacting entities in order to fruit-
fully accomplish the strategic goals of the system while respecting, at
the same time, its requirements and constraints.

For example, the items involved in an auction must be sold by strictly
adhering to the regulations which express how offers can be placed by
bidders, and how the winner is finally determined.

The dynamics of a concrete interaction (called instance of the system),Instances and
execution traces manifests itself by means of events which occur in the environment due

to relevant activities performed by the interacting entities, attesting that
the instance is evolving. Hence, an instance is completely character-
ized by the set of events which occurred during its execution. A set of
correlated occurred events will be referred to as execution trace1. For ex-
ample, in a sanitary structure the sequence of treatments, exams, drug
administrations related to a single patient constitute an instance of the
system.

Activities are the basic building block upon which interaction mod-Activities
els are built: they represent unit of work that must be accomplished
during the execution. They encompass both actions made by a single
participants without involving the other ones (such as for example the
revision of a mechanical part) as well as interaction between different
participants (e.g., communicating to the customer that a given item is
out of stock).

Since the core first-class object of interaction models is the concept ofEvent-based systems
event, in the remainder of this dissertation we will refer to the targeted
systems as Event-Based Systems (EBSs).

1 An execution trace will be called partial if it covers only a part of the complete evolu-
tion of an instance, complete otherwise.

2.1 open declarative interaction models : an intuitive characterization 13

2.1.2 Characterization of Time

Since interaction models focus on the dynamics of a system, the time
dimension plays a central role in them. From a foundational point of
view, time can be characterized along many different axes. We cite
here only the most relevant for our purposes; the interested reader
may refer to [74] for a comprehensive survey on the topic.

qualitative vs quantitative time Qualitative time expresses rel-
ative positions of temporal objects (i.e., events), while quanti-
tative time supports the definition of distances between time
points[107, 140]. For example, “the white rabbit arrived at work
before Alice” is a qualitative time constraint, whereas “the rabbit
took 20 minutes to get to work” is a quantitative time constraint.

dense vs discrete The time structure is dense if we assume that
the system evolves in a continuous manner, while it is discrete if
the evolution of the system is sampled.

point vs interval-based A point-based algebra of time associates
event occurrences with single time-points, whereas an interval-
based algebra provides intervals and their durations as first-class
objects.

bounded vs unbounded Bounded time states that there exists an
initial (final) time point which does not have predecessors (suc-
cessors); if it is not the case, then time is unbounded. Hybrid ap-
proaches combine the two notions, stating that time is bounded
w.r.t. the initial time but not w.r.t. the final time or vice-versa.

In the remainder of this dissertation, we will characterize time as

• point-based, because each occurred event belonging to an exe-
cution trace of the system is usually associated to a single time
value [199];

• bounded, because an execution trace has a fixed starting time
(corresponding to the time at which the interacting entities started
the instance), and a final time, whose value is not known a-priori,
at which the interaction will terminate.

Boundedness on the final time is needed because interaction models
are developed to accomplish a strategic goal, and it is desirable that
such a goal is reached in finite time or, in the negative case, that the
impossibility of reaching the goal is detected in finite time. In this re-
spect, all the execution traces characterizing instances of an interaction
model will always be finite.

On the contrary, we do not fix whether time is dense or discrete
nor whether it has a qualitative or a quantitative characterization. We
leave this choices open discussing their impact on interaction models
throughout the dissertation.

14 declarative open interaction models

2.1.3 Procedural Vs Declarative Interaction Models

Generally speaking, given a problem. . .

• a procedural approach aims at synthesizing a specific solution to
the problem;

• a declarative approach focuses on the problem itself, eliciting and
capturing its constraint and requirements, and delegating the
search of a solution to a general-purpose algorithm.

Differently from procedural approaches, declarative paradigms aim at
the separation of logic aspects from control aspects, as long advocated
by Kowalski [111].

In the context of this dissertation, a procedural interaction model
provides a complete and explicit description of all the steps that must
be followed by the interacting entities, while a declarative interaction
model adopts a more general and high-level view of interaction spec-
ification, focusing on what is the (minimal) set of constraints to be ful-
filled in order to successfully interact.

2.1.4 Open Vs Closed Interaction Models

Once an interaction model has been specified, there exist two possibil-
ity concerning how it relates with all the information that has not been
explicitly captured in the model itself:

• a closed interaction model makes the implicit assumption that all
that has not been explicitly captured in the model is forbidden;

• an open interaction model makes the opposite assumption, stat-
ing that interacting entities can freely behave where not explic-
itly constrained.

In the next part of this Chapter, we provide an overview of different
systems which can be specified by means of interaction models, argu-
ing that declarativeness and openness are fundamental requirements
to deal with them.

2.2 business process management

Companies can reach their business goals and effectively produce a
specific service or product that is of value the the customer only if all
the involved participants and activities are well organized and regu-
lated. To achieve this goal, a collection of related activities aimed at
producing a service or product is organized in a Business Process (BP).

As clearly defined in [202]:

A BP consists of a set of activities that are performed in
coordination in an organizational and technical environ-
ments. These activities jointly realize a business goal. Each
business process is enacted by a single organization, but it
may interact with BPs performed by other organizations.

2.2 business process management 15

Figure 1: The BP life cycle.

Business Process Management (BPM) is a collection of methods and
techniques to assist business practitioners and employees in the man-
agement of BPs along their entire life cycle [71], depicted in Figure 1.

The first phase of the BPM life cycle is the design, in which the BP The BPM life cycle
models of the company are analyzed and modeled. To develop BP
models, process modeling languages are employed. Such languages
typically provide a graphical notation, for the sake of readability and
user-friendliness. The obtained model is then implemented in a BPM sys-
tem, an information system able to provide support for the execution
of process models.

Thanks to this support, different instances of the BP model are then
enacted, guiding the work of all the participants involved in their execu-
tion. Each performed activity is tracked by the BPM system, in order to
store all the information characterizing the evolution of each instance
(i.e., all execution traces).

In the last diagnosis phase, the information recorded in the collected
execution traces is analyzed to evaluate whether business goals have
been effectively achieved, taking new strategic decisions accordingly.
The outcome of this last phase is then used as a feedback for the orig-
inal BP model, in order to improve it and better align it with business
goals and customer’s needs.

2.2.1 Limits of Procedural Business Process Modeling

By focusing on the control-flow perspective of a BP, that aims at captur-
ing the way in which activities must be performed over time, we will
find that all the state of the art BP modeling/implementation languages
(such as BPMN [203], BPEL [12] and YAWL [187]), adopt a procedural
style. In other words, they impose to explicitly tackle all the ordering
constraints among activities, synthesizing one pre-defined way for ac-

16 declarative open interaction models

Figure 2: A procedural Business Process (BP) modeled in BPMN.

modeling

procedural
model

declarative
model

policies

regulations

business
rules

Figure 3: Procedural vs declarative perspective in Business Process modeling.

complishing the desired business goals. In this respect, BPs can be con-
sidered as a rigid scheme defining one fixed algorithm for disciplining
the work, ruling out other acceptable possibilities [158]. Figure 2 shows
an example of this kind of process, using the BPMN language.

While this assumption is reasonable in BPs showing a high degree
of predictability and repetitiveness (such as classical production work-
flows [120]), it is unreasonable when the company must deal with un-
predictable and frequently changing processes, where the expertise of
workers must be exploited at best. A procedural style of modeling
clashes with the unstructured declarative knowledge of business prac-
titioners, who perceive a BP as a “container” of many different aspects,
including business goals, business rules, external regulations, internal
policies and best practices.

In [157], Pesic points out that the procedural nature of contemporary
BPM approaches tends to determine the way companies organize work,
forcing them to adjust their business processes to the system: instead
of providing support for modeling and implementing the BPs at the
level of abstraction of business practitioners and workers, they force to
adapt BPs in a way that they fit the system (see Figure 3). Pesic argues
that this drawback has a twofold impact:

2.2 business process management 17

• due to the gap between the preferred way of work and the sys-
tem’s way of work, the risk of implementing inappropriate BPs,
supporting undesired behaviors, increases;

• people perceive the system as an obstacle, performing their con-
crete work outside the system and recording what has been done
in a separate moment.

In [186], van der Aalst and Pesic support this claim by considering
a simple yet significative example: expressing a “not coexistence” con-
straint in the process. Such a constraint could be adopted by a business
practitioner to state that two activities are incompatible, i.e., they can-
not be executed both in the same instance. Trying to capture such a
constraint in a procedural setting forces the modeler to explicitly enu-
merate all the possible executions which respect it, introducing am-
biguous decision points and obtaining a complex, unreadable model.
A more detailed discussion of these issues is provided in Section 2.3.3;
in fact, the limits of procedural approaches in a BPM setting strictly
resemble the case of service choreographies.

2.2.2 The Need For Flexibility

The inadequacy of current state-of-the-art BP modeling languages have
pointed out by many authors [158, 201, 165], who argue that to be suc-
cessfully adopted, BPM technologies must make a trade-off between
controlling the way workers do their business and turning them loose
to exploit their expertise during the execution. In other words, they
claim that BPM systems should be flexible, w.r.t. the work of practition-
ers as well as the ability of adapting to environmental changes and to
the acquisition of new knowledge.

In [176], Schonenberg et al. introduce four types of flexibility in BPM: Taxonomy of
flexibility

flexibility by design The ability to model BPs by leaving many
possible alternatives to the users, letting them free to choose for
the best way of execution.

flexibility by underspecification The ability of leaving BPs par-
tially unspecified until the execution.

flexibility by change The ability of re-organizing the BP model at
run-time, selecting which running instances must be migrated to
the revised model.

flexibility by deviation The ability of deviating from the pre-
scriptions contained in the BP model, during a specific execution.

In this dissertation, we will mainly focus on the first type of flex-
ibility, by adopting, formalizing and extending a modeling language
proposed by Pesic and van der Aalst, called ConDec, able to supports
flexibility by design thanks to its declarative style of modeling.

18 declarative open interaction models

Service
Directory

Service
Consumer

Service
Provider

Contract

interact

find publish

network

Figure 4: Service Oriented Architecture (SOA).

2.3 service oriented computing

Service Oriented Computing (SOC) is an emerging computing paradigm
which employs services as the basic constructs to support the devel-
opment of large-scaled distributed applications in heterogeneous en-
vironments. Its underlying enabling technologies and languages are
reaching a good level of maturity and a widespread adoption, draw-
ing the interest of both software vendors and scientists [194]. As stated
in [153]:

The visionary promise of Service-Oriented Computing
is a world of cooperating services where application com-
ponents are assembled with little effort into a network of
services that can be loosely coupled to create flexible dy-
namic business processes and agile applications that may
span organizations and computing platforms.

Roughly speaking, services are self-contained software components
which incapsulate computing functionalities, exposing their core busi-
ness competencies over a network in the form of an usage contract/in-
terface. Third-parties may utilize an exposed functionality through the
use of standardized languages and protocols, without accessing to its
concrete implementation.

2.3.1 Service Oriented Architecture

The basic Service Oriented Architecture (SOA) is depicted in Figure 4.
The architecture relies upon three roles and three fundamental opera-
tions:

service registry maintains a list of known service contracts to-
gether with their location, and provides support for searching
for a certain functionality, returning the location of a service able
to accomplish it.

service provider encapsulates a business function (or a set of busi-
ness functions), exposing a corresponding usage contract; It can
interact with the service registry in order to publish its contract.

2.3 service oriented computing 19

service consumer is the party which requires a certain functional-
ity. If it does not know where a service able to accomplish the
requested functionality is located, it has the possibility to con-
sult the service registry in order to find a suitable service. After
having retrieved the contract and location of a suitable service, it
can finally interact with it by invoking the desired functionality,
and obtaining a result (if any).

In order to enable the possibility to effectively making heteroge-
neous service providers and consumers interact, the three fundamental
operations as well as the published service contracts require standard-
ized languages and protocols. Each concrete SOA implementation must
therefore define its own standards and protocols, tailored to the under-
lying network in which the implementation is deployed.

Thanks to the widespread diffusion of the Internet, the web imple- Web services
mentation of SOA is nowadays the most popular. In the web imple-
mentation, the functionalities provided by business applications are
encapsulated within web services, which can be retrieved and invoked
by service consumers through a stack of Internet standards including
HTTP, XML, SOAP [34], WSDL [54] and UDDI [22].

2.3.2 Orchestration and Choreography

The role of service consumer could be played by a human user but also
by another service provider; in this way, the functionalities realized by
single services can be composed, giving birth to complex collaborative
distributed business applications. Different organizations can mutu-
ally benefit from each other by exposing their own functionalities and
exploiting external services.

Two different complementary approaches can be followed to real-
ize/perceive a service composition[156]:

orchestration perceives the collaboration by the point of view of
a single party. The party synthesizes an executable BP which can
interact with internal and external services, delegating the real-
ization of some activities to such services. The execution is then
controlled by the single party as well: it acts as an orchestrator,
coordinating the other services and correlating the results ob-
tained from them. The invoked external services are unaware
that they are participating in a collaboration. The orchestration
itself could be exposed as a single functionality on the network,
making it possible of realizing even more complex “nested” or-
chestrations.

choreography models the collaboration from a global, objective
point of view, independently from the perception of the single
interacting services. Differently from orchestration, its focus is
not on executability, but rather on capturing the public contract
which provides the necessary rules of engagement for making
all the interacting parties correctly collaborate.

20 declarative open interaction models

OrchestrationOrchestration

Internal
Service

ChoreographyCompany A Company B

Figure 5: Orchestration and choreography.

The choreography vs orchestration perspective of a service compo-
sition are shown in Figure 5. While orchestration is useful when a
single party is interested in aggregating the capabilities of a set of in-
ternal/external services, choreography helps when the collaboration
must be achieved by taking into account the mutual requirements of
interacting parties, without assuming a unique center of control.

Let us for example consider a Business-To-Business (B2B) setting, inChoreographies in a
B2B setting which different organizations share their own services to mutually ben-

efit from each other, trying to accomplish a complex strategic goal im-
possible to be pursued autonomously. In this context, it is often impos-
sible to make the assumption that one of the involved organizations
will take the lead during the interaction, acting as an orchestrator. As
clearly pointed out in the WS-CDL specification [108]:

In real-world scenarios, corporate entities are often un-
willing to delegate control of their business processes to
their integration partners. Choreography offers a means
by which the rules of participation within a collaboration
can be clearly defined and agreed to, jointly. Each entity
may then implement its portion of the choreography as
determined by the common or global view.

In a B2B setting, the birth of a service choreography is often deter-
mined by putting together external norms/regulations and internal
policies, requirements, best practises, business goals of each participat-
ing organization. All these different contributions have the effect of
constraining the possible allowed interactions.

The obtained global model should suitably mediate between com-Compliance vs
flexibility in
choreographies

pliance and flexibility: on the one hand, all interacting services must
respect the agreed constraints; on the other hand, each party should
be able to execute the business processes which cover its part of the
choreography as free as possible, preserving interoperability and re-
placeability of services. In other words, we claim that a service chore-
ography should play the role of a public global contract containing the
rules that must be respected to correctly interact, without stating how
such a collaboration is concretely carried out. This kind of knowledge
is therefore inherently open and declarative.

2.3 service oriented computing 21

As pointed out in [19, 189], while the technologies for implement-
ing and interconnecting basic services are reaching a good level of
maturity, modeling service interaction from a global viewpoint, i.e.,
representing service choreographies, is still an open challenge: the
leading current proposals for modeling service interaction, such as
WS-BPEL [12] and WS-CDL [108], fail to tackle a suitable balance be-
tween compliance and flexibility. The main problem is that, despite
the complementarity of choreography and orchestration, current main-
stream approaches propose very similar languages and methodologies
to model them both. All the state-of-the-art approaches focus on pro-
cedural aspects, aimed at completely specifying control and message
flow of the interacting services. This leads to loose the declarative na-
ture of the knowledge involved in the choreography definition, forcing
the modeler to capture it at a procedural level.

Finally, it is worth noting that when a service is internally modeled Behavioral interfaces
as an orchestration of other services, it could publish an extended us-
age contract, which partially discloses its internal organization. Such
an extended contract is usually called behavioral interface. Behavioral in-
terfaces may be used to enhance a service registry with more advanced
capabilities, such as extracting services which do not only expose the
requested functionalities, but also satisfy policies and regulations re-
quired by the service consumer[109, 6]. For example, a customer could
express that she is looking for an electronic bookshop which supports
credit card payment, and it is also able to provide a guarantee that it
relies on a secure payment method. In this respect, publishing a pro-
cedural behavioral interface would be too restrictive, ruling out the
selection of a service even if a fruitful collaboration could be estab-
lished.

2.3.3 Limits of Procedural Choreography Modeling

To illustrate the difficulty of handling even simple choreography con-
straints with classical procedural approaches, let us consider a frag-
ment of a purchase choreography, regulating the decision of the seller
for what concerns an order confirmation or rejection. The seller could
freely decide whether to confirm or refuse customer’s order, but must
obey to the following constraints:

• if the warehouse cannot ship the order, then the seller must
refuse it;

• the seller can accept the order only if the warehouse has previ-
ously accepted its shipment;

• both the seller and the warehouse cannot accept and reject the
same order, i.e., answers are mutually exclusive.

By considering these global rules, many different compliant interac-
tions can be established by a concrete seller and a concrete warehouse.
For example, when and how the warehouse is contacted is not spec-
ified, and there could be different choreography executions in which

22 declarative open interaction models

the warehouse is not contacted at all: an execution in which the seller
autonomously decides to reject the order, without asking warehouse’s
opinion, is foreseen by the choreography. This execution trace clearly
attests that many different compliant ways to interact are not explicitly
mentioned in the choreography, but are instead implicitly supported.
We argue that this is due to the fact that choreography rules constitute
a form of declarative and open knowledge, which states what is for-
bidden and mandatory in services without giving details about how to
carry out the interaction, nor by making the unreasonable assumption
that all the allowed behaviors can be explicitly captured.

When the user tries to model this kind of knowledge using a classi-Limits of procedural
approaches cal procedural specification language such as BPEL or WS-CDL, she is

forced to explicitly enumerate all the implicitly supported executions,
and to introduce further unnecessary details. Consider for example
the adoption of BPMN [203] collaborative diagrams as a modeling lan-
guage to capture the above described choreography fragment. All can-
didate diagrams will surely contain two separated pools, one for the
seller and one for the warehouse, each containing the set of activitites
pertaining to the corresponding role. The problems arise when the
modeler tries to interconnet these activities by means of control and
message flows: which activities must be executed in sequence? How
to deal with negative information such as “the seller cannot accept
and reject the same order”? How to deal with non-ordered constraints,
such as the one stating that “if the warehouse refuses the order, then
the seller must also refuse (or have refused) it”? Who is in charge to
contact the warehouse? And when?

The difficuly of providing an answer to these question by adopting
a procedural style of modeling is threefold:

lack of proper abstractions Activities can be inter-connected
only by means of positive temporally-ordered relationships (se-
quence patterns, mixed with constructs aimed at splitting/merg-
ing the control or the message flow). Modeling other kind of
constraints forces the user to complicate the model. For exam-
ple, capturing temporally-unordered relationships leads either
to choose one ordering and impose it in the model, compromis-
ing flexibility, or to explicitly capture all the possible orderings,
introducing ambiguous decision points to combine them [186].

closed nature Procedural models makes the implicit assumption
that “all that is not explicitly modeled is forbidden”, and must
therefore enumerate all the allowed executions. Therefore, when
a negative requirement (such as forbidding a certain activity or
stating that two activities must never co-exist in the same exe-
cution) must be considered, it cannot be made explicit in the
model; instead, it is responsability of the user to check whether
the produced model implicitly entails the negative requirement
or not. This is a difficult task, especially when the complexity of
the model increases.

2.4 multi-agent systems 23

premature commitment Since procedural approaches have a close
nature and do not provide proper abstractions, they force the
modeler to prematurely take decisions and make assumptions
about the interaction. For example, even if the considered chore-
ography fragment does not specify how and when the ware-
house must be contacted, a choice must indeed be taken during
the modeling phase.

The combination of these drawbacks has the effect that choreographies
become over-specified and over-constrained: unnecessary activities and
constraints are introduced, and acceptable interactions are dropped
out. As a consequence, while compliance is respected, flexibility be-
comes sacrificed: potential partners are discarded, fruiful interactions
are rejected and, at last, the choreography becomes unusable.

Furthermore, when the modeler tries to get back flexibility by re-
laxing the imposed constraints and reducing premature commitments,
the lack of proper abstraction and the closed nature of procedural ap-
proaches lead to further stress over-specification: the resulting choreog-
raphy tends to become a tangled, unintellegible spaghetti-like model,
and, at the same time, the risk of supporting undesirable behaviors
increases.

Figure 6(a) shows how the choreography fragment described above
can be easily specified with a declarative constaint-based language
such as ConDec. Figure 6(b)-(c) instead depict two possible BPMN col-
laborative diagrams which try to model the described constraints by
mediating between compliance and flexibility. The result is that unnec-
essary activities are introduced (such as the contact warehouse activity)
and that some acceptable execution traces are not supported. For exam-
ple, both diagrams do not support the possibility that the warehouse
refuses the shipment after the refusal of the seller; even if the refusal
of the warehouse seems to be, in this case, insignificant, it could be
involved in other constraints of the choreography, and should there-
fore be supported. Adding this behaviour would require to complicate
the model, replicating execution paths and activities, and introducing
ambiguous decision points. And, obviously, this issue would be even
more difficult to handle when the modeled fragment has to be com-
posed with other constraints to capture the whole choreography.

2.4 multi-agent systems

The issue about what information should be captured or left out by the
global view of interaction has been (and is still) matter of discussion
also in the Multi-Agent Systems (MAS) research community. Here, the
issue is how to specify and to properly constrain agent interactions,
intended as uttered speech-acts or exchanged messages. The problem
is two-faced: on one side, there is the need for a semantics of the ex-
changed messages, on the other it is necessary to allow, constrain and
forbid messages and sequences of messages. The concept of choreogra-
phy is here referred with the term interaction protocol. It is not surpris-
ing, then, that Multi-Agent and Service-Oriented systems share many

24 declarative open interaction models

1) the seller can confirm the order only if the
warehouse has previously confirmed the shipment

2) if the warehouse is unable to execute the shipment,
then the seller should refuse (or have refused) the order

4)
confirmation
and refusal
are mutually
exclusive

3)
confirmation
and refusal
are mutually
exclusive

(a)

seller warehouse

accept
order

refuse
order

contact
warehouse

refuse
shipment conrm

shipment

...

(b)

seller warehouse

accept
order

cancel
request

contact
warehouse

refuse
shipment

conrm
shipment

cancel
request

refuse
order

...

(c)

Figure 6: Declarative vs. procedural style of modeling a simple choreography
[146].

mas soc

interacting parties autonomous hetero-
geneous agents

autonomous heter-
ougeneous services

communication speech-acts messages

local view of interaction (external) agents
policies

behavioral inter-
faces

global view of interaction global interaction
protocols

choreographies

Table 1: Some similarities between Multi-Agent and Service-Oriented sys-
tems.

similarities [16, 100], and that similar solutions have been proposed
(see Table 1).

As in SOA, also in the MAS community several approaches have been
proposed for modeling interaction, spanning from more procedural to
more declarative flavor. Approaches like, e.g., AUML [21], aim to ex-
actly specify how the interaction protocols should be executed by the

2.5 clinical guidelines 25

interacting agents. Other proposals, instead, consider MAS as open
societies and model interaction protocols by means of declarative con-
strains. Social approaches abstract away from the nature of interacting Multi-Agent

Systems as open
societies

entities, supporting heterogeneity, and adopt an open perspective. Fur-
thermore, their aim is not only to support the specification task, but
also to define a precise semantics of interaction, enabling different ver-
ification capabilities.

In [206], the authors propose to adopt the notion of commitment to
provide a semantics to the interaction protocols: an agent (the debtor)
makes a commitment to another agent (the creditor) to bring about a
certain property. Commitments capture and handle mutual obligations
which relate interacting agents, giving a meaning to the exchanged
messages in terms of their impact on commitments. A variant of Event
Calculus (EC) is used to specify how events (e.g., an exchanged mes-
sage) affect the evolution (creation, discharge, release, etc.) of the com-
mitments. Noticeably, Singh et al. have recently applied commitment-
based protocols also in the context of BPM and SOC, by addressing the
problem of BP adaptability [67] and of protocols composition [131].

Another social-based approach has been developed within the SOCS
EU Project2, where global interactions protocols are specified by means
of SCIFF.Protocols are specified only by considering the external ob-
servable behavior of interacting entities, and by the concept of expec-
tation about desired events and interactions; occurred events and pos-
itive/negative expectations are linked by means of forward rules. The
framework is equipped with a clear declarative semantics and with
two proof procedures able to verify the developed models along their
entire life cycle.

We strongly believe that the BPM/SOC and MAS research areas can
mutually benefit from each other. This dissertation goes in this direc-
tion: we propose to formalize the ConDec language by means of SCIFF
specifications, aiming at realizing a unifying framework for the speci-
fication and verification of declarative open interaction models.

2.5 clinical guidelines

In this Section, we discuss the need of integrating procedural and
declarative knowledge to capture Clinical Guidelines (henceforth CGs);
the provided motivation and examples are taken from [32].

In the definition of the USA Institute of Medicine:

Clinical Guidelines are, systematically developed state-
ments to assist practitioner and patient decisions about
appropriate health care in specific clinical circumstances.

They enforce evidence-based medicine, and they can be used to pro-
mote high-quality medicine and cost optimization, as well as to evalu-
ate the quality of health service and its organization over a territory.

2 SOcieties of heterogeneous ComputeeS, IST-2001-32530 (home page http://lia.

deis.unibo.it/research/SOCS/).

http://lia.deis.unibo.it/research/SOCS/
http://lia.deis.unibo.it/research/SOCS/

26 declarative open interaction models

One of the main goals of CGs is to put evidence into practice. How-
ever, from one side, evidence is essentially a form of statistical knowl-
edge, capturing the generalities of classes of patients, rather than the
peculiarities of a specific patient. From the other side, demanding to
expert committees to characterize all possible executions of a CG on
any possible specific patient in any possible clinical condition is an
unfeasible task.

Thus, several conditions are usually implicitly assumed when build-Implicit
assumptions in the
definition of CGs

ing a CG. In particular, CGs are developed by assuming ideality of con-
text and patients, i.e., by hypothesizing their application in a health-
care structure able to provide all the requested resources, and on pa-
tients experiencing only the targeted disease. The first assumption is
needed because guidelines are developed at an abstract level, without
focusing on a specific context of execution. The second assumption is
needed because the variety of possible patients is potentially infinite.
When the CG is applied on a specific patient, healthcare professionals
implicitly employ their Basic Medical Knowledge (BMK henceforth) for
adapting the generic guidelines prescription to her.

2.5.1 The Role of Basic Medical Knowledge in Clinical Guidelines

In the last decade, many different approaches and projects have been
developed to create domain-independent computer-assisted tools for
managing, acquiring, representing and executing clinical guidelines
[61, 155, 182, 184].

CGs are usually specified by adopting a procedural style of mod-
eling. Computer-assisted tools provide graphical languages sharing
many similarities with the ones used in the BPM field: actions are
inter-connected by constructs aimed at defining a fixed schedule for
their execution. Figure 7 depicts a fragment of a CG specified using the
GLARE language [184].

As far as now, all this tools assume that CGs must be strictly followed,
i.e., they make the assumption that all the involved actions are must do
actions, and that all the possible treatments are explicitly contained
in the CG model (closed approach). Only recently, however, some ap-
proaches has started to consider that CGs cannot be interpreted (and
executed) in isolation, but that their challenging integration with the
BMK of healthcare professionals is of fundamental importance. In fact,
actions recommended by a CGs could be prohibited by the BMK, as
well as a CG could force some actions despite the BMK discouraging
them.

Table 2 summarizes some real examples in which the complex in-
terplay between the CG and the BMK gives raise to different “hybrid”
situations, showing that the CG cannot be simply interpreted as a strict,
normative procedure. In particular, the examples points out three dif-
ferent integration modalities between the two kind of knowledge:

a. The CG supports the possibility of choosing among two different
treatments, and the BMK expresses what choice should be taken
when certain circumstances hold.

2.5 clinical guidelines 27

!

Figure 7: Fragment of a chronic cough treatment guideline modeled in
GLARE (from [33]).

b. The BMK emends the CG by stating how to threat a patient when
the CG’s prescriptions are not applicable.

c. The CG defeats the BMK, stating that even if the treatment could
be dangerous for the patient, it has the priority.

2.5.2 Semi-openness of Clinical Guidelines

We have seen that CGs are developed making some simplifications,
in particular hypothesizing that they are applied on “ideal” patients.
The BMK should be used to complement the prescriptions of the CGs,
bridging (at least in part) the gap between the ideal and the actual
application cases.

While CGs have a procedural and closed nature, the BMK is:

declarative , because its aim is not to define rigid procedures that
must be followed by health-care professionals, but is rather fo-
cused on capturing their best practices and expertise, as well as
the underlying common medical knowledge they exploit.

open , because it is unreasonable to assume that it captures the whole
knowledge of health-care professionals, and consequently it should
not preclude unforeseen actions.

The integration of a CG and the declarative BMK gives rise to a hy-
brid “semi-open” knowledge, making it possible to apply the CG on
each patient by taking into account her specific characteristics.

A deep understanding concerning the nature of this hybrid knowl-
edge, and how its building components actually interact, is still far to

28 declarative open interaction models

cg bmk cg+bmk

a . Patients suffering from
bacterial pneumonia
must be treated with
penicillin or macrolid.

Do not administer
drugs to which a
patient is allergic.

Admister macrolid to
a patient with bacterial
pneumonia if she is al-
lergic to penicillin.

b . Patients with post-
hemorragic shock
require blood transfu-
sion.

Do not apply therapies
that are not accepted
by patients.
Plasma expander is
a valid alternative
to blood transfusion,
under the hypothesis
that . . . (omitted)

If the patient refuses
blood transfusion,
in case of post-
hemorragic shock
treat her with plasma
expander.

c . In patients affected by
unstable angina, coro-
nary angiography is
mandatory.

A patient affected by
advanced predialytic
renal failure should
not be subject to
coronary angioraphy,
because the contrast
media administration
may cause a further
deterioration of the
renal functions.

Even in case of a predi-
alytic renal failure, per-
form coronary angiog-
raphy if the patient
is affected by unstable
angina.

Table 2: Interplay between CG’s prescriptions and the Basic Medical Knowl-
edge (from [32]).

be reached. The first necessary step towards such an understanding
is to find suitable specification languages and effective technologies
for capturing the BMK, respecting its open and declarative nature. We
hope that this dissertation could contribute to the investigation of such
a first step.

2.6 lessons learnt

The presented systems can be considered as interaction models, dif-
fering for what concerns the nature of participants and the relevant
events occurring during the executions of the system (see Table 3).

The state of the art proposals share a closed and procedural philos-
ophy for modeling such systems. However, as we have pointed out in
our discussion, there is an increasing demand for incorporating also a
declarative and open perspective, to better fit with the nature of this
systems and the requirements and needs of the involved users.

By abstracting away from the specific features of each discussed do-Compliance and
flexibility as
contrasting forces

main, we can identify two complementary aspects which need to be
suitably captured by a modeling framework [87, 157]3:

compliance constraints the behavior of interacting entities so as to
guarantee that all the external regulations, internal policies, best
practices are met.

3 [157] uses the term support instead of compliance.

2.6 lessons learnt 29

interacting entities events interaction model

Employees, stakehold-
ers, customers, devices,
. . .

Starting/Completion of
activities

Business Process

Distributed heteroge-
neous services

Exchanged Messages Service Composition/
Choreography

Agents, other interact-
ing entities

Speech acts, actions on
the environment

Multi-Agent System

Healthcare profession-
als, patients, administra-
tive staff

actions, treatments, Clinical Guideline + Ba-
sic Medical Knowledge

Table 3: Examples of interaction models.

Universe of Traces

Compliant
Traces

Compliance
Flexibility

Figure 8: The contrasting forces of compliance and flexibility.

flexibility leaves the behavior of interacting entities as unconstrained
as possible, allowing them to exploit their own expertise to take
strategic decisions and evaluate the best ways to interact.

If we refer these two complementary concepts to the space of pos-
sible execution traces that can be generated by the interacting enti-
ties, we can see them as two contrasting forces. On the one hand,
compliance tends to restrict the number of allowed traces, forbidding
(mis)behaviors that would lead to violate one of the imposed prescrip-
tions. On the other hand, flexibility tends to widen the number of
allowed traces, trying to include many different possibilities among
which participants can choose. As we have seen, finding the right bal-
ance between this two contrasting forces is of key importance: compli-
ance must be preserved for “normative” reasons, while flexibility must
be guaranteed to ensure usability and adaptability.

In this respect, procedural and closed approaches provide good sup-
port for ensuring that compliance is guaranteed, but they sacrifice
flexibility, being prone to over-constrain and over-specify the interac-
tion. Declarative and open approaches, instead, focus on the elicita-
tion of mandatory and forbidden behaviors imposed by compliance,
but avoid the insertion of further unnecessary constraints, preserving
both compliance and flexibility. Figure 9 gives an intuitive idea of this
difference.

30 declarative open interaction models

Universe of Traces

(a) Procedural and closed
style of modeling.

Universe of Traces

(b) Declarative and open
style of modeling.

Mandatory
behaviour

Forbidden
behaviour

Supported
behaviour

Figure 9: Comparison of declarative and open vs procedural and closed inter-
action models in the space of execution trace.

2.7 challenges in declarative open interaction models

Having acknowledged the importance of declarative open interaction
models, this dissertation aims at providing a framework supporting
the entire life cycle of such specifications. Beside design support, to
make the developed models and their executions actually trustworthy
and reliable, the framework must be able to formally verify them along
the whole life cycle.

Thanks to formal verification, it is possible to guarantee the correct-Support on the
internal life cycle ness and consistency of a designed model, as well as effectively es-

tablishing whether the behavior of interacting entities really adhere to
the prescriptions of the model. In particular, we identify the follow-
ing requirements and desiderata about a supporting framework (see
Figure 10, top part):

design/implementation phase The framework must provide suit-
able novel specification languages, modeling the targeted EBSs
by following a declarative and open approach; since the designed
models are declarative, they can be directly executed, if a general-
purpose execution engine actually exists. During the design phase,
a model must be verified to guarantee a-priori that it will meet,
during the execution, certain desired properties, as well as to en-
sure that it effectively complies with external regulations and in-
ternal policies.

execution phase The enactment of declarative open interaction mod-
els is a challenging task. While procedural closed models are ex-
ecuted by means of a process engine, which shows at each mo-
ment what are the next steps to be executed (the so-called work
list), declarative open models are enacted by presenting, instant
by instant, what are the expected and forbidden behaviours.

diagnosis phase In the diagnosis phase, the execution traces of the
system are analyzed to study if business goals have been effec-
tively achieved and to assess system’s trends, or to extract a new
model from the concrete traces, in order to better identify the

2.7 challenges in declarative open interaction models 31

Figure 10: Life cycle of declarative open interaction models.

real behaviour exhibited by the interacting entities. This latter
task is commonly known, in the BPM field, as process discovery
[192].

As pointed out in the bottom part of Figure 10, an interaction model Support on a third
party life cyclecould also take part to a third party life cycle. For example, the inter-

nal life cycle could be focused on the development of a choreography
model, which is then not enacted, but it is rather used to verify if local
models of services, possibly provided by external organizations, could
be employed to concretely realize the choreography. In this respect,
our desired framework should support the following task (I denotes
the internal model which takes part to the life cycle of another specifi-
cation):

design/implementation phase I could represent a choreogra-
phy or a regulatory/prescriptive model, used in a third party
life cycle to assess compliance/suitability of the designed model.
Another case is the one in which I represents a partial/local
model, which must be combined with other local/partial models
for achieving a complex strategic goal. Our framework should be

32 declarative open interaction models

able to deal with the a-priori compliance verification of third party
models, as well as with the composition of models developed by
different organizations.

execution phase Suppose we need to carry out the same tasks in-
volved in the design/implementation phase, but the third party
model is unknown, unaccessible, or untrusted. This is e.g. the
case of a service choreography, in which a set of suitable services
is selected to build the underlying composition. Each service is
selected by looking at its behavioural interface, and there is no
guarantee that the exposed interface corresponds to the internal
implementation. Potential mismatches between a behavioural in-
terface and the real implementation of a service may lead to un-
expected/undesired interactions. In this case, verification can be
accomplished by looking at the actual execution of the external
system, checking if the involved interacting entities are behaving
as I prescribes and reporting violations as soon as possible. In
other words, monitoring and run-time verification facilities must
be provided by our framework.

diagnosis phase Since the diagnosis phase is carried out by taking
into account only the execution traces provided by the different
running instances of the system, then the same reasoning mech-
anisms used for the internal life cycle can be seamlessly applied
to third party models, if they make their execution traces avail-
able. In this respect, I could play the role of a regulatory model
used to analyze the execution traces of a third party.

2.8 grounding the framework

We propose to grounding a generic framework for the specification and
verification of declarative open interaction models as depicted in Fig-
ure 11. We call our grounded framework Computational Logic for the
verIfication and Modeling of Business processes and choreographies
(CLIMB).

The CLIMB framework faces the management of open interaction
models by integrating the ConDec language [158, 157], with the SCIFF
formal framework [7], based on Computational Logic.

ConDec is a graphical language which adopts a declarative and open
modeling style. It has been originally developed by Pesic and
van der Aalst to model flexible BPs, but two variants of ConDec
have been proposed also for modeling service flows/choreogra-
phies [186, 146] and clinical guidelines [149].

SCIFF is a framework based on computational logic originally thought
for the formal specification and verification of open heteroge-
neous MAS. It gives a clear declarative semantics to interaction,
and provides two corresponding proof procedures, which en-
able static as well as dynamic reasoning capabilities.

2.8 grounding the framework 33

REASONING
CAPABILITIES

GRAPHICAL
MODELING

3

system

formal
specification

2

1
ba

c
(extended)
ConDec

CLIMB

STATIC
reasoning capabilities

RUN-TIME/A-
POSTERIORI

reasoning capabilities

SCIFF Framework

TRANSLATION

Figure 11: The CLIMB framework. Each number identifies the part of the dis-
sertation covering the corresponding portion of the schema.

In the remainder of the dissertation, we show how the ConDec nota-
tion can be formalized by using a subset of the SCIFF language (called
CLIMB language), and how the expressiveness of this language can be
used to extend ConDec with new interesting features. We then show
how the two proof procedures of the SCIFF framework could be jointly
adopted (and adapted) to tackle all the desiderata pointed out in Sec-
tion 2.7.

3
T H E C O N D E C G R A P H I C A L L A N G U A G E

Contents
3.1 ConDec in a Nutshell 35
3.2 ConDec models 36
3.3 Constraints 37

3.3.1 Existence Constraints 37

3.3.2 Choice Constraints 38

3.3.3 Relation Constraints 39

3.3.4 Negation Constraints 41

3.3.5 Branching Constraints 43

3.4 A ConDec Choreography 43
3.5 Usability of the Language 46
3.6 Linear Temporal Logic 48

3.6.1 LTL Models 49

3.6.2 Syntax of LTL 49

3.6.3 Semantics of LTL 50

3.7 Translation of ConDec to LTL 51

ConDec is a graphical language proposed by Pesic and van der Aalst
for the flexible, declarative and open modeling of Business Process
(BP) models [157, 158]. They claim that these features are needed to fit
with complex, unpredictable processes, where a good balance between
support and flexibility must be found (see the discussion provided
in Chapter 2). Variants of the ConDec language have been developed
for dealing with service flows and choreographies [186, 146] and for
capturing clinical guidelines [149].

In this Chapter, we provide a critical overview of the language, re-
calling its constructs and discussing its style of modeling in the light of
the cognitive dimensions framework [92]. We then introduce the frame-
work of propositional Linear Temporal Logic (LTL), summarizing how
it has been exploited in [157, 158, 186, 146] to provide an underlying
semantics for the ConDec constructs.

3.1 condec in a nutshell

The term “ConDec” stands at the intersection of the words constraint
and declarative.

In fact, ConDec is a declarative, constraint-based language: instead ConDec is
constraint-basedof rigidly defining rigid the flow of interaction, it focuses on the (mini-

mal) set of rules which must be satisfied in order to correctly carry out

35

36 the condec graphical language

the collaboration. Since rules constrain the way activities can be exe-
cuted, they are referred to as constraints. Constraints reflect different
kind of business knowledge: external regulations and norms, internal
policies and best practices, business objectives, and so on.

Differently from procedural specifications, in which activities canConDec is
declarative be inter-connected only by means of sequence patterns, mixed with

constructs supporting the splitting/merging of control flows [191], the
ConDec language provides a number of control-independent abstrac-
tions to constrain activities, alongside the more traditional ones. It is
possible to insert past-oriented constraints, as well as constraints that
do not impose any ordering among activities.

Furthermore, while procedural specifications are closed, i.e., all whatConDec is open
is not explicitly modeled is forbidden, ConDec models are open: ac-
tivities can be freely executed, unless they are subject to constraints.
This choice has two impacts. First, a ConDec model accommodates
many different possible executions, improving flexibility. Second, the
language provides abstractions to explicitly capture not only what is
indispensable, but also what is forbidden. In this way, the set of possi-
ble executions does not need to be expressed extensionally and models
remain compact: models specify the desired and undesired courses of
interaction while leaving undefined other possibilities of interaction
that are neither desired nor undesired.

3.2 condec models

A ConDec model is composed by a set of activities, which represent
atomic units of work (i.e., units of work associated to single time points1),
and relations among activities, used to specify constraints on their ex-
ecution. Optional constraints are also supported, to express preferable
ways to interact, but allowing the possibility to violate them.

Definition 3.1 (ConDec model). A ConDec model is a triple 〈A, Cm, Co〉,
where:

• A is a set of activities, represented as boxes containing their
name;

• Cm is a set of mandatory constraints;

• Co is a set of optional constraints.

Given a ConDec model CM, notations ACM, CCM
m and CCM

o respec-
tively denote the set of activities, mandatory and optional constraints
of CM.

A ConDec model is developed in two steps:Development of
ConDec models

1 In [157], a non-atomic model of activities is presented. However, it cannot be formal-
ized by means of LTL [157]. We therefore make the assumption that the basic version
of the language deals only with atomic activities, delegating the discussion about
non-atomic ones in Section 6.2.2.

3.3 constraints 37

a. The relevant activities of the system are identified and placed in
the model. At this stage, the model is completely unconstrained,
and therefore each activity can be performed an arbitrary num-
ber of times, in whatever order.

b. ConDec constraints are added to reflect the different constraints
of the system, restricting the set of allowed executions.

In the following, we provide a natural language description of all Support of execution
tracesthe ConDec constraints. Note that each constraint is defined in terms

of requirements that it imposes on a given execution trace in order to
evaluate it as compliant. An execution trace is then supported by the
overall model iff each mandatory constraint of the model is respected.

Definition 3.2 (Supported execution trace). Given an execution trace
T and a ConDec model CM, T is supported by CM iff T complies with
each constraint belonging to CCM

m .

3.3 constraints

ConDec constraints are grouped into four families:

existence constraints are unary cardinality constraints express-
ing how many times an activity can/should be executed;

choice constraints are n-ary constraints expressing the necessity
to execute some activities between a set of possible choices, inde-
pendently from the rest of the model;

relation constraints are binary constraints which impose the
presence of a certain activity when some other activity is per-
formed, possibly imposing also temporal constraints on such a
presence;

negation constraints are the negative version of relation con-
straints, and are employed to explicitly forbid the execution of a
certain activity when some other activity is performed.

Note that, in ConDec, the characterization of time is qualitative (see ConDec has a
qualitative notion of
time

Section 2.1.2): temporal constraints could express the required relative
positions among the occurrence of two activities, but they are not able
to deal with metric distances between them.

3.3.1 Existence Constraints

Existence constraints are unary cardinality constraints predicating on
the number of possible executions of an activity. They graphically re-
semble the UML cardinality constraints, and represent either the min-
imal, the exact or the maximum executions of an activity. The init
constraint has a slightly different meaning: it is used to identify the
starting activity of the model.

38 the condec graphical language

name graphical meaning

absence(a)

0

a Activity a cannot be executed.

absence(n+1,a)

0..n

a
Activity a can be executed at most n times, i.e.,
the execution trace cannot contain n+ 1 oc-
currences of a.

existence(n,a)

n..∗
a Activity a must be executed at least n times.

exactly(n,a)

n

a Activity a must be executed exactly n times.

init(a)

init

a Activity a must always be the first activity to
be executed.

Table 4: ConDec existence constraints.

Table 4 summarizes the different existence constraints, showing their
graphical representation.

An existenceN constraint could be employed to state that at least one
item must be ordered by the customer during the interaction:

1..∗
order item

On the contrary, an absenceN constraint could be adopted to state that
at most three payment attempts can be made by the customer:

0..3

pay

3.3.2 Choice Constraints

Choice constraints are shown in Table 5. They are n-ary constraints
asserting that the interacting entities must necessarily perform cer-
tain activities, selecting them among a set of possible choices. They
can be therefore seen as an extension of existenceN/exactlyN con-
straints, whose single involved activity is replaced with a set of ac-
tivities. Choice constraints are very useful when the model contains
different possible activities, which actually accomplish the same busi-
ness goal: interacting entities are free to choose the most suitable on
their own.

An 1 of 2 choice could be used to state that a contributing author
must submit her paper either by uploading it through the web site of
the conference or by sending it via e-mail2:

upload paper −− ♦−− e-mail paper

Note that the constraint supports an execution trace containing three
submissions of the paper (via e-mail and/or by using the web site),
while it evaluates an execution with no submission as non-compliant.

2 We suppose that when n = 1, the 1 of m notation can be omitted.

3.3 constraints 39

name graphical meaning

choice(n of m,[a1,...,am])
a1

am

a2
n of m

...

At least n activities
among a1,. . . ,am must
be executed.

ex_choice(n of m,[a1,...,am])
a1

am

a2
n of m

...

Exactly n activities
among a1,. . . ,am must
be executed.

Table 5: ConDec choice constraints.

An 1 of 2 exclusive choice can be instead adopted to state that the
interacting entities must choose between two alternatives, but such al-
ternatives exclude each other. For example, it could be used to state
that, within an instance of the system, the customer is always commit-
ted to cancel or successfully close the order, but not both.

cancel order −− �−− close order

In conclusion, existenceN, exactlyN and choice constraints could Goal-oriented
constructsbe considered as goal-oriented constructs: they impose the presence of

(some of) the involved activities in any possible execution trace, inde-
pendently from the other parts of the model.

3.3.3 Relation Constraints

Differently from goal-oriented constraints, relation constraints express
positive dependencies among activities; in their simplest form, they in-
terconnect two activities (the generalized case will be discussed in Sec-
tion 3.3.5). As depicted in Table 6, the graphical representation of the
connection communicates to the user the meaning of the relationship,
depending on the number of lines, on where • elements are positioned,
and on the presence/absence of an arrow. In particular, what changes
moving from one relationship to another are the qualitative time con-
straints involved in the relationship. Let us discuss such an issue in
more detail.

When a relation constraint associates a • to an activity, then each Triggering of
relation constraintsoccurrence of that activity (let us call it the constraint’s source) has

the ability to trigger the constraint, imposing that also the activity con-
nected on the other side must be executed (let us call this latter activity
the constraint’s target). In other words, relation constraints are reactive.
Starting from this basic schema, each relation constraint then charac-
terizes when the occurrence of b is expected to happen. The responded
existence and coexistence relation constraints do not impose any tem-
poral ordering, but rather let the interacting entities completely free to
decide when executing the target. For example, let us consider the case
of a seller which relies on a warehouse to deliver the sold goods. When
the warehouse ships a good, then it must also notify the seller that the
amount of stored goods has changed; the notification could be sent

40 the condec graphical language

name graphical meaning

resp_existence([a], [b]) a •−−−− b If a is executed, then b must
be executed before or after a.

coexistence([a],[b]) a •−−−• b Neither a nor b are executed,
or they are both executed.

response([a],[b]) a •−−−I b If a is executed, then b must
be executed thereafter.

precedence([a],[b]) a −−−I• b
If b is executed, then a
must have been previously ex-
ecuted.

succession([a],[b]) a •−−I• b
a and b must be executed in
succession, i.e. b must follow
a and a must precede b.

alt_response([a],[b]) a •===I b
b is response of a and between
every two executions of a,
b must be executed at least
once.

alt_precedence([a],[b]) a ===I• b
a is precedence of b and be-
tween every two executions
of b, a must be executed at
least once.

alt_succession([a],[b]) a •==I• b b is alternate response of a; a is
alternate precedence of b.

chain_response([a],[b]) a •=−=−=−I b
If a is executed, then b must
be executed next (immedi-
ately after a).

chain_precedence([a],[b]) a =−=−=−I• b
If b is executed, then a must
have been executed immedi-
ately before b.

chain_succession([a],[b]) a •=−=−I• b a and b must be executed in
sequence (next to each other).

Table 6: ConDec relation constraints.

3.3 constraints 41

either before or after the actual shipment. In this setting, a responded
existence could be used to connect the shipment and the notification
activities:

ship good •−−−− notify seller

If at the time at which the good is shipped, the seller has been al-
ready notified, then the constraint is automatically fulfilled, otherwise
it “waits” for the notification.

Response and precedence instead impose the two fundamental qual-
itative temporal orderings, i.e., after and before. Alternate constraints
restrict the time window inside the target must occur; for example, the
alternate response constraint states that the target must be executed
after the occurrence of the source, but before a new occurrence of the
source. Chain constraints impose even a more strict ordering relations
among the two occurrences: they must be next to each other. Summa-
rizing, relation constraints range from the completely open approach
of the responded existence constraint to the completely closed perspec-
tive of the chain succession, which resembles the sequence connection
of classical procedural languages.

Finally, it is worth noting that succession constraints are a shortcut
for representing the combination of the corresponding response and
precedence relations, as well reflected by their graphical presentation.
In this case, each activity is at the same time source and target of the
constraint.

For example, a “normal” succession constraint could be employed
to state that when a payment is received, then the warehouse must
eventually deliver the paid good, and, conversely, the warehouse will
ship the good only if a payment has been previously done:

receive payment •−−I• ship good

Since the succession constraint imposes a loosely-coupled time order-
ing among the involved occurrences, other activities can be performed
by the warehouse between the two.

3.3.4 Negation Constraints

As shown in Table 7, negation constraints are specular to relation con-
straints: when a negation constraint is triggered by its source activity,
then it imposes that the target activity cannot be executed between
certain time bounds, determined by the the specific nature of the con-
straint. As a consequence, negation constraints “invert” the open and
close nature of relation constraints: a •=−=−=−I‖ b states that when ac-
tivity a is executed, b can be executed if at least one intermediate occur-
rence of another activity exists; on the contrary, a •−−−−‖ b forbids
the presence of b along the whole instance, if a is performed inside
that instance.

Negation constraints are a peculiar feature reflecting the open nature
of ConDec. Since by default all activities can be executed in any order,

42 the condec graphical language

name graphical meaning

resp_absence([a], [b]) a •−−−−‖ b If a is executed, then b
can never be executed.

not_coexistence([a],[b]) a •−−−•‖ b a and b cannot be exe-
cuted both.

neg_response([a],[b]) a •−−−I‖ b b cannot be executed af-
ter a.

neg_precedence([a],[b]) a −−−I•‖ b a cannot be executed be-
fore b.

neg_succession([a],[b]) a •−−I•‖ b a and b cannot be exe-
cuted in succession.

neg_alt_response([a],[b]) a •===I‖ b
b cannot be executed be-
tween any two occur-
rences of a.

neg_alt_precedence([a],[b]) a ===I•‖ b a cannot be executed be-
tween any two bs.

neg_alt_succession([a],[b]) a •==I•‖ b
b cannot be executed be-
tween any two as and
viceversa.

neg_chain_response([a],[b]) a •=−=−=−I‖ b b cannot be executed
next to a.

neg_chain_precedence([a],[b]) a =−=−=−I•‖ b
b cannot be executed if a
is the last executed activ-
ity.

neg_chain_succession([a],[b]) a •=−=−I•‖ b a and b cannot be exe-
cuted in sequence.

Table 7: ConDec negation constraints.

it would be unfeasible to assume that “positive” constraints suffice to
express significative interaction models: it is sometimes much more
easy and compact to capture what are the undesired behaviours rather
than the allowed ones.

For example, the not coexistence constraint, which is very difficult
to be captured in a closed procedural setting (as the other negation
constraints)3, is a first-class object in ConDec. It could be employed to
express that two activities are incompatible, i.e., for example, that a
seller cannot accept and reject an incoming order:

accept order •−−−•‖ reject order

3 See the discussion made in Section 2.2.1, or refer to [186].

3.4 a condec choreography 43

3.3.5 Branching Constraints

As far as now, we have considered only relation and negation con-
straints involving two activities. Such constraints can be generalized,
by interconnecting multiple activities. When a constraint branches on
multiple activities, the intended interpretation is disjunctive:

• In case of multiple sources, the constraint is triggered by either
one of the source activities.

• In case of multiple targets, when the relation (negation) constraint
is triggered, it can be satisfied by (not) executing either one of
the target activities;

• Succession constraints maintain their decomposition into a re-
sponse and precedence part; for example, in constraint

a

b

c

d

the activity a plays the role of a disjunctive source w.r.t. the re-
sponse part of the succession, and it plays the role of a disjunc-
tive target w.r.t. the precedence part of the succession.

The only exception is constituted by the coexistence constraint, for
which sources and targets are indistinguishable when looking at its
graphical representation. The n-ary interpretation of such a constraint
is: whenever one among the n interconnected activities occur, then at
least one of the other n − 1 involved activities must be executed as
well.

Summarizing, branching constraints enable the possibility to com-
bine the reactive nature of relation and negation constraints with the
flexibility of choice constraints.

3.4 a condec choreography

We illustrate the power of ConDec in modeling a simple yet significa-
tive service choreography, which extends the fragment discussed in
Section 2.3.3.

Let us consider a choreography that aims to define/constrain the be-
haviour of some parties when submitting an “order” for a set of items.
The choreography includes three different roles: a customer which in-
teracts with a seller to place an order of a set of items, and a warehouse
which could participate to the interaction by communicating to the
seller if it is able to ship the ordered items or not. We distinguish dif-
ferent interactions among many services that follow the choreography
by assuming that there is a unique identifier (frequently called instance
identifier) for each interaction: e.g., in this choreography we can as-
sume that all the executed activities related to the same interaction are
identified by means of an order number, intuitively referring to the

44 the condec graphical language

source constraint name target description

cancel
order

C1 negation
response

choose item
in case of cancelation, the user
cannot choose other items [. . .]
anymore

C2 not
coexistence

commit order a canceled order cannot be
committed (and vice-versa)

C3 precedence choose item an order is made up by at least
one chosen item

commit
order

C4 response refuse or
confirm order

after having committed an or-
der, the customer expects a
positive or negative answer
from the seller

C5 precedence confirm
shipment

the seller could confirm the or-
der only if the warehouse has
previously confirmed the ship-
ment

C6 precedence choose item an order is made up by at least
one chosen item

refuse
shipment

C7 responded
existence

refuse order

if the warehouse is unable to
execute the shipment, then the
seller should refuse (or have re-
fused) the order

C8 absence(1) receipt
delivery

the seller will deliver a single
receipt

Table 8: Mapping the statements of the Customer-Seller-Warehouse in Con-
Dec.

concept of “order". Each interaction among services that aim to follow
the choreography represents an instance.

Example 3.1 (The Customer-Seller-Warehouse Scenario). The customer
makes up an order by choosing one or more items from the seller list. Before
committing an order, it is always possible to cancel it; in this case, the user
cannot choose other items within the same instance anymore, and the chore-
ography instance terminates. After having committed an order, the customer
expects a positive or negative answer from the seller. The seller could freely
decide whether to confirm or refuse customer’s order, but sometimes it has also
to consider the opinion of the warehouse about the shipment. In particular:

• the seller can confirm the order only if the warehouse has previously
confirmed the shipment;

• if the warehouse states that it is unable to execute the shipment, then
the seller should refuse (or have refused) the order.

When the order is committed, in case of a confirmation from the seller the
order becomes established, and the customer is in charge to pay for it. Con-
versely, when the seller receives the payment for an established order, she must
deliver a single corresponding receipt. However, the seller is free to change her

3.4 a condec choreography 45

source constraint name target description

refuse
order

C9 precedence commit order

An answer from the seller is
valid only if it is performed af-
ter having committed the or-
der

confirm
order

C10 precedence commit order

payment C11 precedence confirm order
A valid payment should be
preceded by the confirmation
of the order

deliver
receipt

C12 precedence payment
The receipt should be deliv-
ered only if the order has been
paid

refuse
order

C13 negation
response

confirm order

While a confirmed order
can be refused, the opposite
should not happen (nothing is
said in the example)

target constraint name target description

confirm
shipment

C14 not co-
existence

refuse
shipment

Possible warehouse’s answers
are mutually exclusive

commit
order

C15 cardinality
0..1

the choreography centres
around the concept of a single
order, which could possibly be
canceled

commit
order

C16 1 of 2

choice
cancel order

Table 9: Implicit ConDec constraints involved in the Customer-Seller-
Warehouse example.

mind at any time: she can refuse an already established order. Clearly, if the
payment has already been done, this exceptional situation must be handled by
the seller, which is committed to refund the customer.

To model the example in ConDec, a first step is to rearrange all Methodology
the involved constraints in a table, making the activities explicit and
linking the natural language description to a corresponding ConDec
construct. Table 8 shows the result of this process.

By analyzing Example 3.1, we could infer some further useful con-
straints, reflecting common-sense or implicit knowledge, to properly
complete Table 8. The added constraints are shown in Table 9, while
in Figure 12 the whole set of constraints is shown using the ConDec
notation.

Among the added constraints, C15 and C16 deal with the core con- Instance identifier
cept of the choreography, which is actually the commitment of one
order. Since the order could also be canceled, we attach a 0..1 con-
straint (i.e., C15) to the commit order activity (to express that at most

46 the condec graphical language

Customer Seller Warehouse

choose
item

commit
order

0..1
cancel
order

payment

refuse
order

confirm
order

refuse
shipment

confirm
shipment

deliver
receipt

0..1

C1

C2

C4

C5

C7

C8

C9

C10

C12

C11

C15

C16

C3 C6

C13

Figure 12: ConDec diagram capturing the Customer-Seller-Warehouse exam-
ple; for the sake of readability, the three interacting roles are shown
as pools in the diagram.

closeness of mapping Closeness of representation to domain

abstraction
Types and availability of abstraction
mechanisms

consistency
Similar semantics are expressed in similar
syntactic forms

hidden dependencies
Important links between entities are not
visible

premature commitment Constraints on the order of doing things

progressive evaluation Work-to-date can be checked at any time

Table 10: Some cognitive dimensions.

one order can be committed for each choreography instance), and bind
the cancelation and the commitment with a choice ConDec relation (i.e.,
constraint C16), which states that at least one of the two connected ac-
tivities has to be executed: an order should be committed or canceled.

3.5 usability of the language

Although a deep and extensive analysis of ConDec from the end-users
viewpoint has not yet been carried out[157], we will try to briefly re-
view its usability in terms of some cognitive dimensions, whose defini-
tion is briefly listed in Table 10

4. Cognitive dimensions [92] are a usefulCognitive
dimensions tool to subjectively assess the usability of languages and notations in

an easy-to-comprehend way. They have been applied to a broad range
of programming languages and environments/editors, also visual [93].

4 See http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf

http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf

3.5 usability of the language 47

concept notation

unary constraints cardinality constraints a lá UML

source of a relation/negation con-
straint

•

negation ‖

temporal ordering −−I

− (normal)

relationship’s strength = (alternate)

≡ (chain)

succession representation response + precedence part

Table 11: Core ConDec graphical elements and their corresponding meaning.

The main strength of ConDec relies on the closeness of mapping be- Closeness of
mappingtween the notation and the problem of capturing constraints: it pro-

vides a wide range of abstractions to constrain the execution of ac-
tivities in many different ways, overcoming both over-constraining
and over- specification issues. ConDec diagrams can range from clas-
sical procedural models (by only using the chain succession relation) to
loosely-coupled ones. As shown in Section 3.4, many different natural
language statements can be straightforwardly represented as ConDec
constraints.

Another valuable feature of ConDec is the consistency of its con- Consistency
straints: they have a representation which coherently combines only
the few basic intuitive visual elements shown in Table 11. For example,
the representation of succession relationships can be easily inferred
from other constructs: both semantics and representation of this kind
of constraint is determined by combining the semantics and represen-
tation of the corresponding response and precedence ones.

Even though ConDec combines simple concepts, rendered in a con- Hidden
dependenciessistent way, when the complexity of models grows, their readability

would quickly be compromised. The semantics of a ConDec model is
determined by the combination of all its constraints: the user is driven
to adopt a non-structured approach to modeling. While avoiding pre-
mature commitments, this methodology has the main drawback that the
overall meaning tends to become unclear; because of the interplay be-
tween the different constraints, many hidden dependencies among activ-
ities are implicitly introduced.

To better clarify the problem, let us consider the simple example of
Figure 13.

Suppose that activity c is executed; constraint
0..1

c forbids further
executions of c in the same instance. However, such a forbidding im-
plicitly impacts also on the execution of activities a and b. In fact, the

48 the condec graphical language

ba c
0..1

Figure 13: Hidden dependencies in a ConDec model (shown as dashed con-
nections).

response constraints state that the execution of a or b imposes that
c is executed afterwards as well; this would be impossible. In other
words, the interplay between the absence and response constraints in-
troduces two hidden negation responses relating activity c with a and
b respectively. In complex cases, such an interplay could lead to pro-
duce inconsistent or incorrect models.

In this respect, ConDec models demand a constant support alongProgressive
evaluation their entire life cycle, ranging from their static verification to their en-

actment and a-posteriori analysis, for the sake of progressive evaluation.
Only if a suitable support is provided, the hidden dependencies implic-
itly introduced during the design will not undermine the correctness
and consistency of the model.

3.6 linear temporal logic

We introduce the framework of propositional Linear Temporal Logic
(LTL), which has been exploited by Pesic and van der Aalst to provide
an underlying semantics to ConDec [157, 158].

Temporal logics are a special class of Modal Logics where modalities
are interpreted as temporal operators, used to describe and reason
about how the truth values of assertions vary with time [73].

According to [73], temporal logics can be classified along a numberClassification of
temporal logics of axes5:

a. propositional vs first-order

b. global vs compositional

c. linear vs branching

d. point vs interval-based

e. discrete vs continuous

f. past vs tense

Where not explicitly stated, in the following we will refer to propo-
sitional Linear Temporal Logic (LTL) with future-tense operators only.
Hence, in our setting LTL is:

5 Obviously, such axes resembles the different aspects aiming at characterize the no-
tion of time within a system – see Section 2.1.2.

3.6 linear temporal logic 49

qualitative Temporal operators are used to express qualitative time
relations between events. Metric distances are not part of the
logic.

propositional Constraints are built up from atomic propositions, whose
truth values change with the flow of time.

linear A linear course of time means that there is only one possible
future moment for each current situation, and modalities are
exploited for describing the truth of propositions along a single
timeline.

point-based Temporal operators and propositions are evaluated over
points in time.

discrete Time is discrete; the present moment correspond to the cur-
rent state of the system and the next moment to the immediate
successor state (i.e., the first state in the future at which some
event occur, making the system to evolve).

future-tense Temporal operators are used to describe the occur-
rence of events in the future. This is reasonable for systems
which have a definite starting time. All the systems considered
in this thesis show this feature.

3.6.1 LTL Models

In accordance with the described properties, in LTL the time structure
(also called frame) F models a single, linear timeline; formally, F is a Time structure
totally ordered set (S ,≺).

Let P be the set of all atomic propositions in the system. An LTL
model M is a triple (S ,≺, v) where v : P → 2S is a valuation function LTL model
which maps each proposition in P to the set of time instances at which Valuation function
the proposition holds.

In the context of ConDec, propositions represent the possible events LTL models as
execution tracesthat can happen in the system. A proposition e ∈ P is true in a certain

state if at that state the event denoted by e occurs.

Definition 3.3 (LTL execution trace). An LTL execution trace TL is
defined as an LTL model having N as time structure and E , the set
of all events which can potentially occur during the execution of the
system, as the set of atomic propositions: TL = (N,<, vocc), where
vocc : E → 2N is a valuation function mapping each event e ∈ E to the
set of all timestamps at which e occurred.

For convenience, in the following TL(i) will denote the i− th state
of TL; e ∈ TL(i) will be adopted as a shortcut for i ∈ vocc(e).

3.6.2 Syntax of LTL

LTL formulae are defined by using atomic propositions (i.e., events and LTL operators

50 the condec graphical language

op . name meaning intuition

©φ Next time φ will hold in the next
future moment

φ

♦φ Eventually φ will hold sometimes
in the future

φ

�φ Globally φ will always hold in
the future

φ φ φ φ φ

ψUφ Until
φ will hold in a future
moment, and ψ holds
until that moment

ψ ψ φ

Table 12: LTL temporal operators.

the two special constants true and false), classical propositional con-
nectives (¬, ∧, ∧ and⇒) and temporal operators (©, U, ♦, � and W).

An LTL formula is recursively defined as follows:

• each atomic proposition (i.e., event) e ∈ E is a formula;

• if φ is a formula, then ¬φ is a formula;

• if φ and ψ are formulae, then φ∧ψ is a formula;

• if ψ is a formula, then ©ψ is a formula;

• if φ and ψ are formulae, then φUψ is a formula.

Other LTL formulae can be defined as abbreviations:

• φ∨ψ , ¬(¬φ∧ ¬ψ) and φ⇒ ψ , ¬φ∨ψ;

• true , ¬φ∨φ and false , ¬true;

• ♦φ , trueUφ, �φ , ¬♦¬φ and ψWφ , ψUφ∨�ψ.

When parentheses are omitted, the following priority of operatorsPriority of operators
holds: first all the temporal operators, followed by ¬, ∧, ∨ and finally
⇒.

3.6.3 Semantics of LTL

The semantics of LTL is given w.r.t. an LTL model, in a given state. We
will use |=L to denote entailment in the LTL setting. M, i |=L φ means
that φ is true at time i in M. The intuitive semantics of each temporal
operator is described in Table 12. |=L is defined by induction on the
structure of the formulae6:

• (TL |=L φ) iff (TL, 0 |=L φ);

• (TL, i |=L e) iff e ∈ TL(i) (i.e., i ∈ vocc(e));

6 For the sake of readability, we explicitly denote the semantics of ♦, � and W, even
if their meaning can be obtained from the semantics of U.

3.7 translation of condec to ltl 51

• (TL, i 6|=L e) iff e 6∈ TL(i);

• (TL, i |=L φ∧ψ) iff (TL, i |=L φ) and (TL, i |=L ψ);

• (TL, i |=L φ∨ψ) iff (TL, i |=L φ) or (TL, i |=L ψ);

• (TL, i |=L φ⇒ ψ) iff (TL, i 6|=L φ) or (TL, i |=L ψ);

• (TL, i |=L ©φ) iff (TL, i+ 1 |=L φ);

• (TL, i |=L ψUφ) iff ∃k > i s.t. (TL,k |=L φ) and ∀i 6 j < k

(TL, j |=L ψ);

• (TL, i |=L ♦φ) iff ∃j > i s.t. (TL, j |=L φ);

• (TL, i |=L �φ) iff ∀j > i (TL, j |=L φ);

• (TL, i |=L ψWφ) iff either ∃k > i s.t. (TL,k |=L φ) and ∀i 6 j <
k (TL, j |=L ψ), or ∀j > i (TL, j |=L φ).

3.7 translation of condec to ltl

As pointed out in [157, 158], all the ConDec constraints can be formal-
ized in LTL. In fact, the ConDec language itself has been developed
starting from the work of Dwyer et al. [72], in which a pattern-based
analysis of the most diffused LTL formulae is presented. In this light,
ConDec can be seen as a graphical front-end, supporting non-IT savvy
in the rigorous formal specification of interaction models avoiding the
direct manipulation of logical formulae.

We suppose that the translation of an arbitrary ConDec model to
the underlying LTL formalization is embedded in a translation function
called tLTL.

Definition 3.4 (ConDec to LTL translation). tLTL is a function which
translates a ConDec model CM = 〈A, Cm, Co〉 to an LTL conjunction
formula as follows:

tLTL : CM 7−→ tLTL (CM) =
∧

Ci | Ci∈Cm

tLTL (Ci)

where the application of tLTL to a ConDec mandatory constraint fol-
lows the guidelines provided in [157, 158].

As pointed out in the definition, the translation of the whole model
is a conjunction formula embracing the translation of each single con-
straint. Indeed, an execution trace supported by the model must com-
ply with all the constraints of the model.

Having provided a characterization of execution traces and ConDec
model in the LTL setting, the LTL entailment can be used to give a
formal account to the notion of compliance of a trace w.r.t. a set of
constraints, which in turn defines the concept of support provided by a
ConDec model w.r.t. a given trace (see Definition 3.2).

52 the condec graphical language

Definition 3.5 (Supported execution trace in the LTL setting). Given
an LTL execution trace TL and a ConDec model CM, TL is supported by
CM iff:

TL |=L tLTL (CM)

Example 3.2 (Translation of a ConDec constraint to LTL and trace eval-
uation). Let us consider a ConDec model CM containing only a single re-
sponse constraint between the two query and answer activities. It is translated
to LTL as follows:

tLTL (CM) , tLTL

(
query •−−−I answer

)
, � (query⇒ ♦answer)

In accordance with response’s intuitive meaning, the LTL formalization states
that in every state of an instance of the system, it must be true that if query
is performed, then there must be a following state in which the answer is
provided. Formally, by applying the LTL declarative semantics (reported in
Section 3.6.3) and Definition 3.5, an LTL execution trace TL is supported by
such a response constraint iff

TL |=L � (query⇒ ♦answer)⇔
∀ i > 0, (TL, i |=L query⇒ ♦answer)⇔

∀ i > 0, query 6∈ TL(i) ∨ (TL, i |=L ♦answer)⇔
∀ i > 0, query 6∈ TL(i) ∨ (∃ j > i, answer ∈ TL(j))

Therefore, it holds that:

• The empty trace is supported by CM, because all its states do not con-
tain the execution of the query activity.

• The trace containing only an execution of an “external activity” (i.e.,
an activity different than query and answer) is supported as well, be-
cause of the same reason; this example attests the openness of ConDec.

• The trace described by vocc (query) = {0} is not supported, because
the response constraint requires the presence of an answer in at least
one state following 0.

• The trace described by vocc (query) = {0, 1}, vocc (answer) = {2}

is supported, because for both i = 0 and i = 1 there exists a following j
(j = 2 in particular) contained in the valuation function of the answer
activity.

4
T H E C L I M B R U L E - B A S E D L A N G U A G E

Contents
4.1 The CLIMB Language in a Nutshell 54
4.2 The CLIMB Syntax 55

4.2.1 Event Occurrences and Execution Traces 55

4.2.2 Constraint Logic Programming 57

4.2.3 Expectations 58

4.2.4 Integrity Constraints 60

4.2.5 The Static Knowledge Base 64

4.2.6 SCIFF-lite and Composite Events 66

4.3 CLIMB Declarative Semantics 67
4.3.1 Abduction 67

4.3.2 Abductive Logic Programming 69

4.3.3 Representing a system and its executions 70

4.3.4 SCIFF-lite Specifications 72

4.3.5 A Declarative Notion of Compliance 73

4.4 Equivalence and Compositionality 77
4.4.1 Equivalence w.r.t. Compliance 78

4.4.2 Compositionality w.r.t. compliance 79

The CLIMB (Computational Logic for the verIfication and Model-
ing of Business processes and choreographies) language is a declar-
ative rule-based language for the specification of Event-Based Systems
(EBSs). This chapter describes syntax and features of the language,
showing how it can suitably deal with static as well as dynamic as-
pects of EBSs; the declarative semantics of the language is presented,
providing a formal characterization of compliance; finally, some inter-
esting properties, such as compositionality of CLIMB specifications, are
investigated.

The CLIMB language is a first-order logic-based language; quantifi-
cation is left implicit in the language, in order to facilitate readability
and usability. We will briefly discuss in an informal way and by means
of example how variables are quantified. For an exhaustive description
about the quantification of variables and the restrictions imposed on
the language the interested reader may refer to [7, 44].

In the remainder of the dissertation, we assume that the reader is
familiar with First Order Logic (FOL), Logic Programming (LP) and
Prolog. A good introduction to LP is the book by Lloyd [122]; good
introductions to Prolog are the books by Sterling and Shapiro [181]
and by Bratko [35].

53

54 the climb rule-based language

SCIFF
SCIFF-lite
CLIMB

Figure 14: Variants of the SCIFF language and their expressiveness.

4.1 the climb language in a nutshell

As shown in Figure 14, the CLIMB syntax is a subset of the Social Con-
strained IFF Framework (SCIFF) language [7], which has been devel-
oped in the context of the SOCS European Project1.

The purpose of the SOCS EU Project was to develop a logic-basedThe SOCS EU
Project framework for the specification and verification of open and hetoroge-

neous Multi-Agent Systems (MAS), ranging from the implementation
of autonomous intelligent agents (called computees) to the engineering
of their interaction. Within the project, a large part was focused on the
inter-agent perspective, i.e., on the interaction protocols regulating the
exchange of communicative acts among computees and other external,
unknown entities.

Being these systems open and heterogeneous, no assumption about
the number of interacting agents nor about their internal implemen-
tation can be made. Hence, the problem of specifying and verifying
interaction requires an abstraction step, to identify what pieces of in-
formation could be effectively observed and, consequently, targeted by
the specification language. The idea is to characterize (an execution
instance of) the system in terms of events that are generated by the
involved entities when acting on the environment or interacting with
each other (see Figure 15). Thus, in general SCIFF can be applied to any
dynamic context whose executions can be described in terms of events.

CLIMB specifications are mainly composed by two parts:CLIMB
specifications

a. a set of rules which relate events occurring during the execution
with expectations describing the ideal behaviour of the system,
and that are used to characterize the dynamic aspects of the sys-
tem;

b. a knowledge base formalizing the static aspects of the system, i.e. the
background knowledge independent of the specific executions
of the system.

1 Societies Of ComputeeS (SOCS): a computational logic model for the description,
analysis and verification of global and open societies of heterogeneous computees.
IST-2001-32530, 2002-2005.
Web-page: http://lia.deis.unibo.it/research/socs/

http://lia.deis.unibo.it/research/socs/

4.2 the climb syntax 55

SYSTEM
EXECUTION

ABSTRACTION
(events)

Figure 15: Abstraction of a system execution in terms of occurring events.

4.2 the climb syntax

4.2.1 Event Occurrences and Execution Traces

Deciding what has to be considered an event strictly depends on the
application domain. In a service-oriented setting, events may repre-
sent messages exchange, whereas in BPM an event may represent the
fact that a certain activity has been started, completed, or reassigned.
Furthermore, even if the application domain is fixed, there could be
several different notions of events, because of the assumed perspec-
tive, the granularity, and so on. For example, one could adopt a coarse-
grained approach by considering that each activity in a Business Pro-
cess is atomic, thus linking the concept of event to the generic one of
“activity execution”.

Events are represented in CLIMB as LP terms. In this way, the lan- Representation of
eventsguage completely abstracts away from the problem of deciding “what

an event is”, and rather lets the developers decide what are the impor-
tant events for modeling the domain, at the desired abstraction level.
For example, the delivery of a message sent by a web service ws1 to
another web service ws2, with a certain content can be simply denoted
by send(ws1,ws2, content(. . .)).

The evolution of an instance of the system is characterized by events Happened events
which occur when entities act and interact. Therefore, the language
must provide a symbol denoting the occurrence of an event at a cer-
tain time must be provided by the language. Differently from other
approaches (such as for example temporal logics), for which time is
implicitly and qualitatively recalled by means of dedicated operators,
CLIMB adopts an explicit and quantitative notion of time: happened
events are associated with a corresponding numerical timestamp. More
specifically, the occurrence (happening) of an event Ev at a (discrete)
time point T is denoted by the atom

H(Ev, T)

56 the climb rule-based language

where Ev is a term and T is a numerical variable, which can assume
real or integer values, depending on the chosen underlying time struc-
ture.

Definition 4.1 (Time structure). A time structure T is a totally ordered
set (S,≺). If T ≡ (N,<) the structure is discrete-time; if T ≡ (R,<), the
structure is dense-time.

The modeler exploits happened events to refer to (classes of) con-
crete events generated during an execution. Happened events can be
completely or partially specified.

A completely specified happened event is ground, and is thereforeCLIMB execution
traces used to identify a specific occurrence of the involved event, at a given

time. In particular, completely specified happened events represent the
occurrences that dynamically fill the execution trace of an instance of
the system; in the context of CLIMB, execution traces are then simply
defined as sets of ground happened events.

Definition 4.2 (Traces Herbrand base). The traces Herbrand base BH is
the Herbrand base built upon SCIFF happened events:

BH = {H(e, t)|e ∈ U, t ∈ T}

where U is the Herbrand universe of events.

Definition 4.3 (CLIMB Execution trace). A CLIMB execution trace T is
a set of ground happened events, i.e. a subset of the traces Herbrand
base: T ⊆ BH.

Partially specified happened events, instead, contain non-ground
variables, and are used to identify and match with “classes” of con-
crete ground events. If variables contained in a happened event are
completely free, then it will denote any occurrence of any event in the
execution trace (i.e. it will match with all events in the trace); variables
can then be subject to constraints in order to restrict the corresponding
“matching” class. In particular, variables can be constrained by means
of CLP constraints (see below) or Prolog predicates.

Example 4.1 (Happened events). Let us consider some examples of hap-
pened events in the context of a loan process. We assume that the handling
of a loan is a non-atomic activity; the fact that the employee Emp starts
(completes) to handle the loan identified by Loanid can be represented by
the term event(Type,handle_loan,Emp,Loanid), where Type/start
(Type/complete).

H(event(start,handle_loan,alice, l-09-2008), 14164) (†)

represents that Alice started to handle the loan identified by l-09-2008 on
October 13th 2008 (supposing that times are represented as the number of
days from January 1st 1970).

4.2 the climb syntax 57

H(Ev, T) represents that something happens, and matches with any concrete
occurring event. It obviously matches with the concrete occurrence (†), with
the following substitution: Ev/event(start,handle_loan,alice, l-09-2008),
T/14164.

H(event(Type,handle_loan,O, Id), T)∧member(Type, [start, com−

plete]) represents the happening of the start or the completion of the loan
handling activity. It matches with the concrete occurrence (†) with the substi-
tution Type/start, O/alice, Id/l-09-2008 and T/14164.

H(event(start,handle_loan,O, Id), T) ∧ T 6 13966 represents that the
handling of a loan has been started by someone before the end of February
2008 (supposing that times are represented as the number of days from the
1st January 1970). It cannot match with the happened event (†) because
14164 > 13966.

H(event(start,handle_loan,O, Id), T)∧ level(O, 1) represents that a level
1 employee has started to handle a loan, supposing that level(O,L) is a Pro-
log predicate denoting that the employee O belongs to the level L. It matches
with the occurrence (†) only if Alice is a level-1 employee.

H(event(complete,handle_loan,alice, Id), T)∧price(Id,P)∧P > 106

represents that Alice has completed to handle a loan involving an amount of
1K e, supposing that price(Id,P) is a Prolog predicate denoting that the loan
identified by Id involves the price P. It matches with the happened event (†)
only if the loan l-09-2008 involves more than 1K e.

4.2.2 Constraint Logic Programming

Constraint Logic Programming (CLP) [101] is a class of programming
languages that combines the advantages of LP with the efficiency of
constraint solving. This is done by providing an interpretation to some
of the symbols used in the program. In LP symbols are not interpreted,
and therefore the term 2+ 3 does not mean 5, but simply a structure
whose functor is + and whose terms are 2 and 3 (2 + 3 , +(2, 3)).
Unification is a syntactic operation, so the term 5 will not unify with
the term 3+ 2, and the goal 5 = 3+ 2 simply fails.

CLP is defined as a general scheme which can be specialized over
particular domains. In particular, each language of the CLP class is
identified by:

a. a domain, representing the set of values that a variable can as-
sume;

b. the set of constraints;

c. the set of interpreted symbols.

For example, CLP(R) [102] is the instance of CLP that works on the
reals; this means that a variable in CLP(R) can have a real value, and
it can be subject to constraints on the reals. Current implementations

58 the climb rule-based language

typically employ the simplex algorithm as constraint solver and fea-
ture a complete propagation of linear constraints. CLP(FD) instead is
the specialisation of CLP on the Finite Domains [70].

These two CLP languages give an interpretation to numbers, their
relation symbols <, 6, 6=, . . . and operations +, −, ∗, /. Therefore, in
CLP the symbol 5 stands for the number five and the symbol + repre-
sent the addition operation. For these symbols, unification is extended
with a more powerful constraint solving mechanism. For example, the
goal 5 = A+ 3 succeeds, providing the answer A = 2. This behaviour
is obtained by performing a syntactic identification of the interpreted
atoms (called constraints), inserting them in a constraint store and del-
egating their evaluation to a constraint solver instead of applying clas-
sical resolution. CLP constraints have the effect of pruning the domain
of the variables; the constraint solver propagates this information to
other constraints, updating the domains of the involved variables and
iterating the propagation. For example, if we consider times to be real
variables, adopting a dense-time structure, the constraint T 6 13966,
cited in Example 4.1, restricts the domain of T to (−∞, 13966].

Various languages and efficient solvers have been developed to de-
scribe and handle constraints, such as ECLiPSe2 and SICStus3. Such
languages have been successfully exploited for hard combinatorial prob-
lems in many different application domains, such as scheduling [31],
planning [164], and bioinformatics [152].

4.2.3 Expectations

The perhaps most important feature of CLIMB is that it focuses on the
dynamics of the system by adopting a dynamic approach. In particular,
beside the representation of “what” happened and “when”, the lan-
guage explicitly supports the modeling of “what” is expected (not) to
happen, and “when”. The notion of expectation is then used to repre-
sent, at every point in time, the (un)desired evolution of the execution,
and plays a key role when defining the dynamic evolution of an Event-
Based System: it is quite natural, in fact, to think of EBSs in terms of
rules of the form “if e1 happened, then e2 is expected (not) to happen”.

Since CLIMB adopts an open approach, the prohibition of a certain
event should be explicitly expressed in the model; for that reason, the
language supports the concepts of positive and negative expectations.

The fact that the event Ev is expected to happen at time T is modeledPositive
expectations with a positive expectation, whose form is

E(Ev, T)

Conversely, the fact that the event Ev is expected not to happen (i.e.,Negative
expectations is forbidden) at time T is modeled with a negative expectation, whose

form is

EN(Ev, T)

2 http://www.eclipse-clp.org/
3 http://www.sics.se/isl/sicstuswww/site/

http://www.eclipse-clp.org/
http://www.sics.se/isl/sicstuswww/site/

4.2 the climb syntax 59

On the one hand, expectations typically refer to events which have
not yet occurred, and is therefore impossible to have complete knowl-
edge about them. Variables enable the modeler to deal with this source
of incompleteness by modeling expectations on partially specified events
and non-ground time variables. On the other hand, the modeler needs
to put requirements on these expectations. Technically, this is again
done by means of CLP constraints and Prolog predicates.

Roughly speaking, the quantification of variables involved in posi-
tive and negative expectations follows the intuitive meaning. Positive
expectations are existentially quantified: they predicate on the pres-
ence of (at least) one corresponding occurrence; on the contrary, vari-
ables in negative expectations are universally quantified (unless they
are also contained in a positive expectation): they forbid the presence
of all the possible corresponding occurrences. The following example
clarifies this aspect considering some concrete cases.

Example 4.2 (Requirements on expectations). A business manager in a
loan company needs to specify that:

a. “someone must start to handle the loan l-01-2008 by the end of Febru-
ary 2008”.

b. “level-1 employees cannot handle loans involving an amount greater
than 1K e”;

Being workers autonomous, these requirements cannot be enforced, but rather
they are formulated as expectations that the business manager places on em-
ployees. In particular, the first requirement is a positive expectation, whereas
the second requirement is a negative expectation (they respectively describe a
desired and an undesired situation).

Following the approach of Example 4.1, we assume that an event concern-
ing loan handling is represented by event(T ,handle_loan,O, Id), where T
is the event type (start or complete), O is the worker who handles the loan and
Id is the loan identifier. Furthermore, we use a Prolog predicate price(Id,P)
to specify that the loan identified by Id involves an amount P and the predicate
level(O,L) to state that the employee O belongs to the level L.

Under this assumptions, we can be express the first statement with the
following positive expectation:

E(event(start,handle_loan,O, l-01-2008), T) ∧ T 6 13966

The expectation states that there must exist a worker O and a time T 6 13966
at which O starts to handle the loan l-01-2008 (O and T are existentially
quantified).

We can express instead the second statement with the following negative
expectation:

EN(event(_,handle_loan,O, Id), T) ∧ level(O, 1)

∧ price(Id,P) ∧ P > 106

The expectation states that it should never happen that a level-1 employee
O is responsible of an event related to loans which involve more than 1K e

60 the climb rule-based language

IC ::= [IC]?

IC ::= Body "→ " Head "."

Body ::= "true" | BConjunction

BConjunction ::= BConjunct [" ∧ " BConjunct]?

Head ::= "⊥" | HDisjunction

HDisjunction ::= HDisjunct [" ∨ " HDisjunct]?

HDisjunct ::= HConjunct [" ∧ " HConjunct]?

HEvent ::= "H(" Event ", " Time ")"

Expectation ::= ExpType "(" Event ", " Time ")"

ExpType ::= "E" | "EN"

Event ::= Term

Time ::= Number | Variable

Literal ::= Atom | "not"Atom

Table 13: Common syntax of SCIFF integrity constraints. The definition of the
BConjunct and HConjunct non-terminal symbols depends on the
chosen variant (CLIMB, SCIFF-lite, full SCIFF).

(Type and T are universally quantified on the entire domain, O is universally
quantified over the domain of level-1 employees, Id is universally quantified
on the domain of identifiers representing > 1Ke loans).

4.2.4 Integrity Constraints

CLIMB integrity constraints are rules used to relate happened events and
expectations4. They allow the user to specify what is the desired (ex-
pected) behavior of the system’s executions, provided that a certain
state of affairs, described by means of happened events, occurs.

Integrity constraints are represented as forward rules of the form
Body → Head. Their syntax has a part which is common to the three
variants of the SCIFF language (CLIMB, SCIFF-lite and full SCIFF, see Fig-
ure 14 – Page 54). The grammar of this part is reported in Table 13,
where Atom, Term, Variable and CLPConstraint have the same
structure as in LP and CLP, and not denote Negation As Failure (NAF)
[56]. Roughly speaking, it states that the body of each integrity con-
straint is a conjunction of BConjunct symbols, whereas the head is
a disjunction of conjunction of HConjunct symbols. These two non-
terminal symbols are then defined in a different way by the three vari-
ants.

In particular, CLIMB integrity constraints are Body → Head rules
where:

4 They are called social integrity constraints in the SCIFF setting, because they are used
to regulate interaction from a global viewpoint, i.e. at the social level of the MAS.

4.2 the climb syntax 61

BConjunct ::= HEvent | Literal | CLPConstraint

HConjunct ::= Expectation | Literal | CLPConstraint

Table 14: CLIMB specialization of the integrity constraints syntax reported in
Table 13.

• Body contains (a conjunction of) happened events, together with
constraints on their variables;

• Head contains (a disjunction of conjunctions of) positive and
negative expectations, together with constraints on their vari-
ables (and/or on variables contained in the Body).

The corresponding grammar is reported in Table 14.
Each integrity constraint can be perceived as a business rule or pol-

icy which captures and constrains a specific behavioural aspect of the
system. The set of all integrity constraints (which will be usually de-
noted by IC) represents the regulatory model of the entire system. Such
a regulatory model may contain internal policies as well as external
regulations.

Example 4.3 (Integrity constraints). Let us consider the following business
rules:

(Br1) “The person who takes the final decision about the acceptance or rejec-
tion of a paper cannot review that paper.”

(Br2) “If a customer has closed an order and the shop has consequently ac-
cepted it, then the customer is bound to execute the corresponding
payment.”

(Br3) “If a premium customer pays for an order by credit card, then the seller
should answer within 10 time units by delivering a corresponding
receipt, or by communicating a payment failure.”

We adopt an atomic model for the activities, i.e. map their execution to single
events.

Sentence Br1 is an example of the four eyes principle, which states that
two different activities cannot be executed by the same person. It can be repre-
sented by means of the following CLIMB integrity constraint:

H(emit_decision(Person,Paper,Decision), Te)

→EN(review(Person,Paper), Tr).
(Br1-CLIMB)

Sentence Br2 describes a rules which is activated only when two different
events (order closing and order acceptance) occur; in this case, the payment is
expected:

H(close_order(Customer,Shop,Order), Tc)

∧ H(accept_order(Shop,Customer,Order), Ta)

∧ Ta > Tc

→E(pay(Customer,Shop,Order,Method), Tp)

∧ Tp > Ta.

(Br2-CLIMB)

62 the climb rule-based language

The CLP constraint Ta > Tc is used to identify a “legal” ordering of happened
events: the shop can accept an order only if the customer has previously closed
it (if this is not the case, then something was wrong, and the expectation
about the payment is not placed). The second constraint (Tp > Ta) is used to
identify the time range inside which the customer is bound to pay (i.e., after
both the events in the body already occurred).

Sentence Br3 is an example of disjunctive rule: it specifies that when a cer-
tain event happen, s.t. a corresponding requirement is satisfied (the customer
is a premium one), one among two possible behaviors is expected. This can be
captured in CLIMB by using a disjunctive head:

H(pay(Customer,Shop, Item, credit_card), Tp)

∧ premium_customer(Customer,Shop)

→E(deliver(Shop,Customer, receipt(Item, Info)), Td)

∧ Td > Tp ∧ Td < Tp + 10

∨E(tell(Seller,Customer, failure,Reason), Tf)

∧ Tf > Tp ∧ Tf < Tp + 10.

(Br3-CLIMB)

The concept of premium customer is formalized in the integrity constraint by
means of the premium_customer/2 Prolog predicate, and supposing that

premium_customer(C,S)

is true if C is a premium customer for the shop S. To express mutual exclusion
between the receipt delivery and the failure communication, we could also add
a rule like

H(deliver(Seller,Customer, receipt(Item, Info)), Td)

→EN(tell(Seller,Customer, failure,Reason), Tf).

and viceversa.

An interesting aspect of Sentence Br3 in Example 4.3 is that it con-Deadlines
tains an example of deadline, i.e. of a maximum time delay by which
an event (the delivery of a receipt or the communication of a failure)
is expected to occur. Deadlines and other quantitative time constraints
are treated in CLIMB by imposing CLP constraints on time variables.
For example, the fact that a receipt must be delivered by 10 time units
w.r.t. the payment is rephrased by imposing that the delivery time is
constrained to be lower than the payment time plus 10 time units.

Integrity constraints are operationally interpreted in a forward, re-Triggering of
integrity constraints active manner. Occurring events match with the happened events con-

tained in integrity constraints, grounding their variables to actual val-
ues. When the entire body of an integrity constraint becomes true, then
the integrity constraint triggers, and the head must also be true. As we
will see, this leads to the generation of the expectations contained in
the head; if the head is a disjunction, then a choice point is opened.
Variables contained in the body of integrity constraints are universally
quantified with scope the entire integrity constraint: in this way, each
integrity constraint triggers for any possible actual configuration that
makes its body true.

4.2 the climb syntax 63

Example 4.4 (Triggering of integrity constraints). Let us consider the in-
tegrity constraint (Br2-CLIMB) and the following integrity constraint, which
formalizes the fact that a customer has the possibility to close at most one order
at the same shop:

H(close_order(Customer,Shop,OrderA), Tc)

→EN(close_order(Customer,Shop,OrderB), Tc2)

∧ Tc2 6= Tc.

(Br4-CLIMB)

Let us now consider the following execution trace:

(h1) H(close_order(alice,bookShop,order− 1), 2).

(h2) H(accept_order(bookShop,alice,order− 1), 3).

(h3) H(accept_order(bookShop, lewis,order− 2), 5).

(h4) H(close_order(lewis,bookShp,order− 2), 8).

(h5) H(close_order(lewis,bookShop,order− 2), 13).

(h6) H(accept_order(bookShop, lewis,order− 2), 21).

Being the body of the integrity constraints universally quantified with scope
the entire rule, every time that a group of events making the body true hap-
pens, then the rule triggers, generating the involved expectations. In this case:

• Happened Events h1 and h2 unify with the two happened events con-
tained in the body of rule (Br2-CLIMB) with substitution Customer/
alice, Shop/bookShop, Order/order− 1, Tc/2, Ta/3. Since 3 > 2,
the constraint contained in the body is true, and the following expecta-
tion is generated:

E(pay(alice,bookShop,order− 1,Method), T1) ∧ T1 > 3

• Happened Event h4 unifies with the first happened event contained in
the body of (Br2-CLIMB), involving the substitution Shop/bookShp;
this substitution also propagates to the second happened event (the two
events share the same variable), but the execution trace does not contain
any acceptance order executed by a Shop called bookShp. Therefore,
the rule does not trigger.

• Happened Events h3 and h5 unify with the two happened events con-
tained in the body of rule (Br2-CLIMB), but the rule does not trig-
ger, because the substitutions Tc/5, Ta/3 do not satisfy the constraint
Ta > Tc (the ordering of happened events is not the one required by
the integrity constraint).

• Happened Events h5 and h6 unify with the two happened events con-
tained in the body of rule (Br2-CLIMB), also satisfying the ordering
constraint. The following expectation is generated:

E(pay(lewis,bookShop,order− 2,Method), T2) ∧ T2 > 21

64 the climb rule-based language

KB ::= [Clause]?

Clause ::= CHead ["← " CBody] "."

CHead ::= Atom

Table 15: Common syntax of a SCIFF knowledge base. The definition of the
CBody non-terminal symbol depends on the chosen variant (CLIMB,
SCIFF-lite, full SCIFF).

• each one of Happened Events h1, h4 and h5 makes the body of the
integrity constraint (Br4-CLIMB) true, generating respectively the fol-
lowing negative expectation:

EN(close_order(alice,bookShop, _), T3) ∧ T3 6= 2

EN(close_order(alice,bookShp, _), T4) ∧ T4 6= 8

EN(close_order(alice,bookShop, _), T5) ∧ T5 6= 13

4.2.5 The Static Knowledge Base

As far as now, the chapter has been focused on the dynamic of an EBS,
which is captured in CLIMB by means of integrity constraints which
relate occurring events with expectations. Happened events and ex-
pectations contain variables that can be subject to constraints. Among
the possible employed constraints, there are Prolog predicates, which
have been used for example to characterize properties of a certain en-
tity (e.g., the fact that a customer is premium in rule (Br3-CLIMB) –
Example 4.3), or to obtain related informations (e.g., the price of an
order and the level of an employee in Example 4.2).

In order to characterize such a knowledge, i.e. to give a definition
to Prolog predicates, CLIMB provides a Prolog knowledge base (which
will be usually identified with KB). Here the modeler can formalize all
the “static” background knowledge about the system (i.e., the informa-
tion independent from specific instances), completing the definition of
integrity constraints. Examples of this kind of information are roles de-
scriptions, list of participants, a database containing information about
items in a shop, complex conditions and decisions involving data, . . .

As for integrity constraints, CLIMB knowledge bases are a subclass
of SCIFF knowledge bases. Each SCIFF knowledge base is a logic pro-
gram, i.e. a set of clauses, as reported in the common syntax shown in
Table 15, where Atom has the same form as in LP. The three variations
of SCIFF provide different possibilities in the body of clauses, hence the
symbols CBody is left unspecified in the common syntax.

In CLIMB, the body of clauses are literals or CLP constraints. The
syntax is specified in Table 16, where CLPConstraint has the same
form as in CLP.

Example 4.5 (A knowledge base expressing roles in a company). Let
us consider the characterization of the concept of level associated to each
employee inside a company. The company states that:

4.2 the climb syntax 65

CBody ::= Literal | CLPConstraint

Literal ::= Atom | "not"Atom

Table 16: CLIMB specialization of the knowledge base syntax reported in Ta-
ble 15.

• each employee can play different roles, but has a unique “primary” role,
used to determine her level;

• roles are organized in a hierarchy;

• the level of a role is the maximum depth of the role inside the hierarchy,
starting from the leaves.

This kind of knowledge is static: it does not depend on the dynamic of the sys-
tem, but on its structural organization. Therefore, it can be suitably modeled
in a knowledge base. This knowledge base will involve two parts:

a. the formalization of the criterion used to evaluate the level of an em-
ployee (intensional part);

b. the database of all employees together with their corresponding roles
and primary roles (extensional part).

We assume that role(E,R) and primary_role(E,PR) respectively iden-
tify the role(s) R and the primary role PR played by employee E. Furthermore,
we model the hierarchy of roles with predicate children(R,Children), which
identifies the list of roles that are children of a role. Leaf roles do not have chil-
dren. Under this assumptions, the intensional knowledge base can be realized
as follows (level(E,L) states that the level of E is L):

level(E,L) ← primary_role(E,PR) ∧ r_level(PR,L).

r_level(R,L) ← get_children(R,C) ∧ r_levels(C,Levels)

∧max(Lmax,Levels) ∧ L is Lmax + 1.

get_children(R,C) ← children(R,C).

get_children(R, []) ← not(children(R,C)).

r_levels([R|Rs], [L|Ls]) ← r_level(R,L) ∧ r_levels(Rs,Ls).

r_levels([], [0]).

where max(M,L) is true if M is the maximum element of the list L.
A possible extensional knowledge base could be

children(supervisor, [technical_leader, secretary]).

children(technical_leader, [programmer,analyst]).

primary_role(alice,programmer).

primary_role(hatter, technical_leader).

primary_role(lewis, supervisor).

role(lewis,analyst).

According to the whole knowledge base, the level of Lewis is 3.

66 the climb rule-based language

BConjunct ::= HEvent | Literal | CLPConstraint

HConjunct ::= HEvent | Expectation | Literal | CLPConstraint

CBody ::= HEvent | Literal

Table 17: SCIFF-lite specialization of the syntax reported in Tables 13 and 15

respectively.

4.2.6 SCIFF-lite and Composite Events

As depicted in Figure 14 (page 54), CLIMB is a subset of more expres-
sive languages, SCIFF-lite and SCIFF in order of expressiveness. Here
we introduce how the syntax of CLIMB integrity constraints and knowl-
edge base is extended in the case of SCIFF-lite. The syntax of full SCIFF
is outside of the scope of this dissertation; the interested reader may
refer to [7, 44].

From the syntax point of view, SCIFF-lite provides two extensions toSCIFF-lite syntax
the CLIMB syntax: the head of integrity constraints can contain hap-
pened events, which can also be used to define a Prolog predicate
(i.e., inside the body of clauses). The extended syntax is reported in
Table 17.

Happened events contained in the head of integrity constraints rep-Composite events
resent fictitious events that are generated by rules themselves; this
open many possibilities, like for example dealing with composite events,
as they are called in the Complex Event Processing (CEP) field [124].
Composite events are complex events which do not concretely occur
during the execution (i.e., they do not appear inside the execution
trace), but that are determined as a combination of concrete events
(under certain circumstances). They can ease the definition of rules,
providing the possibility of modeling integrity constraints by mixing
different levels of abstractions.

Example 4.6 (Composite Events). Let us consider the following require-
ments:

• if the device encounters a connection problem, then an alert must be
communicated to the user immediately (i.e., at the following moment);

• the device encounters a connection problem if

– the user enters wrong credentials

– or the cable status is “off” for two consecutive detections

Let us now suppose that the only concrete events handled by the device are that
the detection of credentials acceptance/rejection and the detection of the cable
status. Under this assumption, the “problem detected” event is not directly
provided by the device, but rather must be inferred from the occurrence of
other events. Nevertheless, the first requirement can be mapped to an integrity
constraint which includes the detection of a problem as a normal event:

H(problem_detected, Tp)→ E(generate_alert, Ta) ∧ Ta = Tp+ 1.

4.3 climb declarative semantics 67

The second requirement is instead used to characterize the (combination of)
events which lead to the “abstract” occurrence of problem detection. Such a
requirement can be captured in SCIFF-lite by using rules which contain the
occurrence of problem detection in the head. The first rule links the fact that
the user enters wrong credentials with the detection of a problem:

H(wrong_credentials, T)→ H(problem_detected, T).

The second rules states that a problem is encountered if two consecutive “off”
cable status are detected:

H(status(cable,off), T1)

∧ H(status(cable,off), T2)

∧ T2 > T1 →E(status(cable,S), T3)

∧ T3 > T1 ∧ T3 < T2

∨EN(status(cable,S), T3)

∧ T3 > T1 ∧ T3 < T2

∧ H(problem_detected, T2).

The body of the integrity constraints contain the occurrence of two different
“off” status detections. The head is instead modeled by considering the two
possible alternatives that may arise:

• The two “off” detections are not consecutive; this situation happens
if another detection interposes between them.

• The two “off” detections are consecutive, and thus a problem is encoun-
tered; this situation happens if no detection interposes between them.

4.3 climb declarative semantics

The declarative semantics of CLIMB resembles the one of SCIFF [7, 44].
CLIMB specifications are interpreted in terms of abductive logic pro-
grams, giving an abductive characterization to positive and negative
expectations. The declarative semantics goes further: the gap between
expectations and happened events is bridged through the definition of
fulfillment. The basic idea is that when an integrity constraint triggers,
the expectations contained in its head are hypothesized; an hypotheses-
confirmation step is then performed to check if the actual behavior of
the system (a specific execution trace) effectively adheres to the gener-
ated expectations. This, in turn, gives a formal account to the notion of
compliance of an execution trace w.r.t. a CLIMB specification, which is a
central aspect of the dissertation.

4.3.1 Abduction

The notion of abduction has been first introduced by Peirce [98], who
identified three forms of reasoning:

deduction , an analytic process where a general rule is applied to a
particular case, inferring a result;

68 the climb rule-based language

induction , a synthetic process which infers the rule from the par-
ticular case and the result;

abduction , a synthetic process which infers a case (a possible ex-Peirce’s definition of
abduction planation/cause) from the particular result and the rule.

Abductive reasoning focuses on the ”probational adoption of a hypoth-
esis" as a possible explanation for observed facts (results), according to
known laws [106]. It is a form of incorrect reasoning: ”we cannot say that
we believe in the truth of the explanation, by only that it may be true” (Peirce,
[98]).

A well-known introductory example of abductive reasoning [154,
106] is illustrated.

Example 4.7 (Abductive reasoning). Let us consider the following set of
sentences (theory), known by the agent:

• If the grass is wet, then the shoes are wet as well.

• If the last night it rained, then the grass is wet.

• If the sprinkler was on, then the grass is wet.

The agent observes that her shoes are wet and she wants to know why. To
find a (possible) answer, she performs abductive reasoning: she tries to find
a possible explanation for the observation, namely a set of hypotheses which,
together with the known sentences, implies the given observation. In this case,
different hypotheses may be placed: for example, it could be the case that the
sprinkler was on, that it rained, or both.

Example 4.7 clearly illustrates that abductive reasoning is suitable toAbduction and
incomplete
knowledge

deal with situation where knowledge is incomplete: the agent observes
the world (i.e., the effects of unknown causes) and exploits its own
knowledge to hypothesize possible explanations for what is being ob-
served. Obviously, not all explanations are satisfactory for the agent;Basic explanations
for example, it would be desirable to explain an effect in terms of a
cause and not in terms of another effect, i.e., to take into account only
basic explanations [106]. In Example 4.7, “sprinkler was on” is a ba-
sic explanation, whereas “the grass is wet” is not. More generally, it
is important to distinguish between sentences that are known to the
agent (sentences whose truth value can be established by the agent)
and sentences whose validity is unknown by the agent; the latter are
hypothesized when trying to find (basic) explanations for what is be-
ing observed. For this reason, sentences used in the explanations areAbducibles
restricted to belong to a special domain-dependent class of sentences
called abducibles.

When performing abductive reasoning, an agent does not only makeIntegrity constraints
use of the observation and the known laws, but it also exploits rules
which constrain the way possible acceptable explanations are formu-
lated. These rules are employed to characterize what are the legal
states of knowledge, rejecting unintended abductive explanations. They

4.3 climb declarative semantics 69

formalize the integrity of abductive explanations, and are therefore
called integrity constraints5.

Example 4.8 (Abductive reasoning with integrity constraints). Let us
extend Example 4.7 with the following integrity constraint:

• It is impossible that it rained last night if the moon was shining.

This integrity constraint is a typical example of denial, because it explicitly Example of a denial
reject an unlegal state of knowledge. In particular, it forces the rejection of
“it rained” as a possible explanation if the agent knows that the moon was
shining. If it is the case, the only basic abductive explanation for having wet
shoes is that the sprinkler was on.

4.3.2 Abductive Logic Programming

Abuctive Logic Programming (ALP) is the extension of LP to support
abduction [106].

Definition 4.4 (Abductive logic program). An abductive logic program
is a triple 〈T, A, IC〉 where:

• T is a logic program (representing the theory of the agent);

• A is the set of abducible predicates6;

• IC is a set of Integrity Constraints.

In this setting, abductive explanations can be formalized as follows.

Definition 4.5 (Abductive Explanation). Given an abductive logic pro-
gram 〈T, A, IC〉 and a formula γ (goal), the purpose of abduction is to
find a set of ground atoms ∆ ⊆ A which, together with T, entails7 γ

and satisfies IC:

T ∪∆ |= γ

T ∪∆ |= IC

In this case, ∆ is an abductive explanation for G.

Example 4.9 (An abductive logic program). Let us formalize the con-
cepts introduced in Example 4.8 as an abductive logic program 〈T, A, IC〉.
We consider the facts that sprinkler was on and that it rained as possible

5 The term is taken from the field of databases, in which integrity constraints are used
to ensure accuracy and consistency of data.

6 We will use the same symbol to indicate the set of abducible predicates and the set of
all their ground instances. To distinguish abducible predicates, we will depict them
in bold.

7 The notion of entailment depends on the declarative semantics associated with the
theory.

70 the climb rule-based language

(partial) explanations, hence A = {sprinkler_was_on, rained_last_night}.
The agent’s theory T is

shoes_are_wet← grass_is_wet.

grass_is_wet← rained_last_night.

grass_is_wet← sprinkler_was_on.

whereas IC contains

rained_last_night ∧moon_was_shining→ ⊥.

If the agent observes that her shoes are wet (i.e., γ = shoes_are_wet), then
three possible explanations can be hypothesized:

∆1 = {rained_last_night}

∆2 = {sprinkler_was_on}

∆3 = {rained_last_night, sprinkler_was_on}

Let us now suppose that someone informs the agent that the moon was shin-
ing last night. T is extended with moon_was_shining, and ∆1 becomes
the only acceptable abductive explanation (with ∆2 and ∆3 the integrity con-
straint is not entailed anymore).

Remark 4.1 (Goal reformulation). In the following, we will not con-
sider an explicit goal but only the set of integrity constraints. If we are
not interested in the computed answer substitution, this choice do not
lead to loose generality: Definition 4.5 can be simply reformulated as

T ∪∆ |= IC∪ {true→ γ}

4.3.3 Representing a system and its executions

We have described CLIMB specifications as composed by two main
parts: a static part representing the background knowledge of the sys-
tem, modeled by means of a knowledge base; a dynamic part con-
straining the behaviour of the system during the execution, modeled
by means of integrity constraints. We can then map a CLIMB specifica-
tion to an abductive logic program, where expectations are considered
as abducibles, i.e., as pieces of knowledge that are hypothesized (made
true) when rules trigger. The set of hypothesized expectations models
the ideal behaviour that the system must exhibit when a certain situa-
tion (a partial execution trace) occurs.

Definition 4.6 (CLIMB specification). A CLIMB specification is an ab-
ductive logic program 〈KB, A, IC〉 where:

• the theory is the knowledge base of the system and obeys to the
syntax shown in Table 16;

• expectations are abducibles,i.e., A = {E/2, EN/2});

• integrity constraints obey to the syntax shown in Table 14.

4.3 climb declarative semantics 71

Since all CLIMB specifications have a fixed set of abducibles, A will be
omitted.

The following definition and remark explicitly stress that, due to
their syntax, CLIMB integrity constraints do not contain expectations in
the body.

Definition 4.7 (Body and head of an integrity constraint). Given an
integrity constraint IC, body(IC) and head(IC) respectively identify
its body and head. Given an atom a, a ∈ body(IC) iff a is a conjunct of
the body of IC and a ∈ head(IC) iff a is a conjunct of the head of IC.

Remark 4.2 (Structure of CLIMB integrity constraints). Given a CLIMB
specification 〈KB, A, IC〉, no integrity constraint belonging to IC con-
tains expectations in its body:

∀IC ∈ IC, ∀e ∈ U, ∀t ∈ T, E(e, t) /∈ body(IC)∧ EN(e, t) /∈ body(IC)

Example 4.10 (A CLIMB specification modeling the FIPA query-ref
interaction protocol). Let us consider the CLIMB specification of a simplified
version of the FIPA8 query-ref interaction protocol9. As described in the FIPA
specification10, “query-ref is the act of asking another agent to inform
the requestor of the object identified by a descriptor”. In particular, the
initiator agent requests the receiver to perform an inform act containing the
object that corresponds to the descriptor; the receiver can return the requested
information or refuse the request. The Agent UML11 diagram of the protocol
is shown in Figure 16. The query-ref protocol can be suitably represented with

sd FIPA query-ref Protocol

:Initiator :Participant

alternative

query-ref

refuse

inform

Figure 16: Agent UML model for a simplified version of the query-ref FIPA
interaction protocol.

8 http://www.fipa.org
9 The full version supports two different speech acts to start the protocol, and it en-

visages the possibility that the receiving agent does not understand the message or
experiences an exception.

10 Experimental specification XC00037H, available from http://www.fipa.org.
11 http://www.auml.org/

http://www.fipa.org
http://www.fipa.org
http://www.auml.org/

72 the climb rule-based language

the CLIMB specification Q = 〈KB, {(QR1), (QR2), (QR3)}〉 where:

• (QR1) specifies that when an initiator agent I sends a query-ref to
another agent P, then P is expected to answer by uttering an inform
or a refuse. We extend the specification by introducing a (parametric)
deadline on the maximum time by which the answer is expected, and by
accepting executions in which the answer is received before the request
– the goal of the protocol is to obtain the information, not to obtain the
information after the request12.

H(tell(I,P,query− ref(Info)), Tq) ∧ qr_deadline(D)

→E(tell(P, I, inform(Info,Answer)), Ti) ∧ Ti < Tq +D

∨E(tell(P, I, refuse(Info)), Tr) ∧ Tr < Tq +D.

(QR1)

• (QR2) imposes mutual exclusion between the two answers, stating that
if an agent P has accepted a query-ref from an agent I about the infor-
mation Info, then P cannot send a refuse message for the same infor-
mation to the same agent I13.

H(tell(P, I, inform(Info,Answer)), Ti)

→EN(tell(P, I, refuse(Info)), Tr).
(QR2)

• (QR3) expects that the interaction protocol is started by some agent I.

true→ E(tell(P, I,query− ref(Info)), T). (QR3)

• KB specifies the value of the deadline, i.e., contains a fact like

qr_deadline(10). (QRKB)

A specific execution of the system, called instance, is formally identi-Instances
fied by the CLIMB specification that models the system and the execu-
tion trace produced by the instance.

Definition 4.8 (Instance). Given a CLIMB specification S and a trace T,
ST = 〈S, T〉 is the T-instance of S.

4.3.4 SCIFF-lite Specifications

Beside syntactic differences, SCIFF-lite specifications extend CLIMB spec-
ifications by supporting arbitrary sets of abducible predicates, contain-
ining also:

(some) happened events In this way, happened events contained
in the head of integrity constraints are hypothesized (i.e., gener-
ated), simulating their occurrence.

12 To impose that only “proper” answers are acceptable, the rule must be simply mod-
ified by introducing further temporal constraints on expectations.

13 Even if it is not apparent from the rule itself, it suffices for expressing “full” mutual
exclusions between the two speech acts; see Example 4.14 on page 78 for a proof.

4.3 climb declarative semantics 73

other user-defined predicates The modeler is equipped with
the possibility of using integrity constraints to perform abduc-
tive reasoning in general. For example, a rule may contain a
predicate constraining the data of an event, but whose defini-
tion is not known; it can be declared as abducible and subject to
abductive reasoning.

Definition 4.9 (SCIFF-lite specification). A SCIFF-lite specification is an
abductive logic program 〈KB, A, IC〉 where:

• A ⊇ {E/2, EN/2};

• KB and IC obey to the syntax shown in Table 17, with the addi-
tional condition that abducible predicates cannot be negated.

4.3.5 A Declarative Notion of Compliance

The declarative semantics of CLIMB is given in two steps14. Being CLIMB CLIMB abductive
explanationsspecifications mapped to abductive logic programs, the first step is to

characterize their abductive explanations.

Definition 4.10 (Abductive Explanation). Given a CLIMB specification
S = 〈KB, A, IC〉 and a trace T, the abducible set ∆ ⊆ A is an abductive
explanation for ST iff

Comp (KB∪ T ∪∆)∪CET ∪ TX |= IC

where Comp is the three-valued completion of a theory [115], CET
stands for Clark Equational Theory [56] and TX is the constraint theory
[101] (parametrized by X).

Fixing a desired CLP corresponds to instantiating the parameter X.
Therefore, different time structures (see Definition 4.1 on page 56) can
be chosen without affecting the definition of abductive explanation.

The symbol |= is interpreted in three valued logics. In this way, we
can rely upon a three-valued model-theoretic semantics, as done, for
instance, in a different context, by Fung and Kowalski [82] and by
Denecker and De Schreye [65]. A three-valued semantics is a suitable
choice when dealing with systems under incomplete knowledge; this
is the case of open and heterogeneous EBSs, in which unpredictable
events dynamically occur over time.

Note that a set of integrity constraints is entailed if each one is en-
tailed. The following remark clarifies the impact of this observation on
abductive explanations.

Remark 4.3 (Abductive Explanations on Sub-sets). If ∆ is an abduc-
tive explanation for 〈KB, IC〉T , then ∆ is an abductive explanation for
〈KB, IC′〉T , where IC′ ⊆ IC.

Abductive explanations only contain ground abducibles; when vari- Intensional
abductive
explanations

14 In the following, we will focus on CLIMB specifications, but the same notion of declar-
ative semantics holds for SCIFF-lite specifications as well.

74 the climb rule-based language

ables are present, they are used as a shortcut to intensionally represent
the set of all corresponding ground versions. For example, if we adopt
a dense-time structure, EN(tell(hatter,alice, refuse(loc(rabbit)), T)
is used to intensionally represent the set

{EN(tell(hatter,alice, refuse(loc(rabbit)), t) | t ∈ R}

whereas E(tell(hatter,alice, inform(loc(rabbit),X), T) ∧ T > 10 is a
shortcut for representing a ground expectation e s.t.

e ∈ {E(tell(hatter,alice, inform(loc(rabbit), r), t) | r ∈ U, t ∈ (10,∞)}

Another example, with sharing of variables between a positive and
a negative expectation, is the following: E(a, T) ∧ T > 4 ∧ T < 7 ∧

EN(b, T) is a shortcut for representing one of the following three sets
(supposing that the time structure is (N,<):

{ E(a, 4), EN(b, 4) }

{ E(a, 5), EN(b, 5) }

{ E(a, 6), EN(b, 6) }

Example 4.11 (Abductive explanations). Let us consider the CLIMB speci-
fication Q, described in Example 4.10, together with the execution trace

T = {H(tell(alice,hatter,query− ref(loc(rabbit))), 5),

H(tell(hatter,alice, refuse(loc(rabbit)), 10) }

The abducible sets

∆0 = ∅
∆1 = { E(tell(alice,hatter,query− ref(loc(rabbit))), 5) }

are not abductive explanations for QT (due to integrity constraint (QR3) and
(QR1) respectively). Instead, the abducible sets

∆3 = ∆1∪
{ E(tell(hatter,alice, inform(loc(rabbit),garden)), 10),

EN(tell(hatter,alice, refuse(loc(rabbit)), T) }

∆4 = ∆1 ∪ { E(tell(lewis,alice, refuse(loc(rabbit)), 10) }

∆5 = ∆3 ∪∆4

are all abductive explanations for QT .

The second step is to formally characterize the meaning of expec-Consistency of
CLIMB abductive
explanations

tations, focusing on the relationship between positive and negative ex-
pectations and on the relationship between expectations and happened
event. The first relationship is captured by the notion of E-consistency,
which states that positive and negative expectations are conflicting con-
cepts: the same event cannot be expected to happen and not to happen
at the same time.

4.3 climb declarative semantics 75

Definition 4.11 (E-consistency). An abducible set ∆ is E-consistent iff
∀e ∈ U and ∀t ∈ T:

{E(e, t), EN(e, t)} * ∆

Example 4.12 (E-consistency and intensional representations). Let us
consider the abductive explanations of Example 4.11. The sets ∆3 and ∆4
are E-consistent, while ∆5 is not E-consistent, because the same refusal is
expected to happen and not to happen at time 10.

Indeed, remember that EN(tell(hatter,alice, refuse(loc(rabbit)), T)
is used to intensionally represent the (infinite) set of negative expectations
on each ground time, 10 included.

The intensional representation of expectations may sometimes cause confu-
sion w.r.t. E-consistency. For example, the set

{ E(ev, T1) ∧ T1 > 6∧ T1 6 10, EN(ev, T2) ∧ T2 > 7∧ T2 < 10 }

is E-consistent. If we adopt a discrete time structure, it intensionally repre-
sents one of the sets

{ E(ev, 6), EN(ev, 8), EN(ev, 9) }

{ E(ev, 7), EN(ev, 8), EN(ev, 9) }

{ E(ev, 10), EN(ev, 8), EN(ev, 9) }

which are all E-consistent.

The relationship between expectations and happened events is cap- Fulfillment
tured by the concept of fulfillment, which formalizes how expectations
are satisfied by a given instance of the system. More specifically, it
formalizes the intuitive notion that:

• positive expectations must have a corresponding matching event
in the execution trace of the instance;

• negative expectations must have no corresponding matching event
in the execution trace of the instance.

Definition 4.12 (Fulfillment). Given a trace T, the abducible set ∆ is
T-fulfilled iff ∀e ∈ U,∀t ∈ T:

E(e, t) ∈ ∆ =⇒ H(e, t) ∈ T

EN(e, t) ∈ ∆ =⇒ H(e, t) /∈ T

By considering the abductive nature of expectations, fulfillment pro-
vides a notion of hypotheses confirmation:

• Expectations are hypothesized according to the running instance
of the system (i.e. a partial execution trace) and the CLIMB speci-
fication; this leads to the formulation of abductive explanations,
according to Definition 4.10.

76 the climb rule-based language

• The execution of the system follows or deviates from the ex-
pected behaviour; in other words, the execution trace confirms
or disconfirms the formulated expectations, according to Defini-
tion 4.12.

The overall picture depicted in Figure 17 shows how this two-ways
relationship is established by the declarative semantics of CLIMB.

(partial) Execution trace

CLIMB
specification

Expectations

FulfillmentAbductive
explanations

Figure 17: The two-ways relationship between expectations and happened
events, established by the CLIMB declarative semantics.

The most important aspect is that fulfillment can be interpreted asCompliance
a way to isolate legal/correct executions from the wrong ones: the for-
mer satisfy all the expectations, while the latter omit an expected event
or contain the occurrence of a forbidden event. Under this interpreta-
tion, the declarative semantics of CLIMB can be considered as a way to
formally capture if an execution trace complies with a CLIMB specifica-
tion or not. Through the notion of compliance, it is possible to identify,
in the space of all execution traces, those traces that satisfy the integrity
constraints of the specification under study.

Definition 4.13 (Compliance). A trace T is compliant with a CLIMB
specification S iff there exists an abducible set ∆ s.t.:

a. ∆ is an abductive explanation for ST ;

b. ∆ is E-consistent;

c. ∆ is T-fulfilled.

In this case, we write compliant∆ (ST) or simply compliant (ST).
Otherwise, we say that S is violated by T or that T is not compliant
with S, written ¬compliant (ST).

Example 4.13 (Compliant and non compliant execution traces). Let us
consider the CLIMB specification Q described in Example 4.10. The execution

4.4 equivalence and compositionality 77

trace T introduced in Example 4.11 is compliant with Q, because the expecta-
tions set ∆4 defined in Example 4.11 is an E-consistent and T-fulfilled abduc-
tive explanation for Q.

The execution traces

T2 = ∅
T3 = {H(tell(alice,hatter,query− ref(loc(rabbit))), 5),

H(tell(hatter,alice, refuse(loc(rabbit)), 10),

H(tell(hatter,alice, inform(loc(rabbit),garden)), 12)}

T4 = {H(tell(alice,hatter,query− ref(loc(rabbit))), 5),

H(tell(hatter,alice, inform(loc(rabbit),garden)), 20)}

are instead not compliant with Q.
Due to rule (QR3), each abductive explanation must contain a positive ex-

pectation about a query-ref event. Therefore, from the definition of fulfillment
we have that T2 is not compliant with Q: no happened event concerning the
query-ref is contained in the trace, hence the positive expectation is violated.

By combining rule (QR2) with the second happened event of T3, we have
that each abductive explanation ∆i for Q must contain the forbidding of the
corresponding inform event:

∀∆i, ∆i ⊇ { EN(tell(hatter,alice, inform(loc(rabbit),garden)), T }

Since this negative expectation has a corresponding matching occurrence in
T3 (with T/12), there does not exist a ∆i which is T2-fulfilled, and therefore
Q is violated by T3. In particular, T3 violates rule (QR2).

The first event of trace T4 satisfies rule (QR3) and triggers rule (QR1), gen-
erating a positive expectation concerning the answer. Abductive explanations
must therefore contain an expectation e s.t.

e ∈ {E(tell(hatter,alice, refuse(loc(rabbit))), T) | T < 15}

or

e ∈ {E(tell(hatter,alice, inform(loc(rabbit)),L), T) | T < 15∧L ∈ U}

From the definition of fulfillment, e must have a corresponding matching
event in T4, but this is not the case: no refusal is contained in T4, and the
inform speech act is uttered by hatter after the expiration of the (actual)
deadline of 15.

A graphical representation of the considered execution traces and their com-
pliance w.r.t. Q is shown in Figure 18.

4.4 equivalence and compositionality

Two interesting properties of SCIFF specifications are now introduced,
namely equivalence and compositionality w.r.t. compliance, proving
that a certain class of SCIFF specifications (which covers all the CLIMB
specifications) is compositional.

78 the climb rule-based language

Traces Herbrand Base

compliant
with QR2

compliant
with QR3

compliant
with QR1

compliant with the
query-ref protocol

2

3
4

Figure 18: Compliance of the execution traces reported in Examples 4.11

and 4.13 with the query-ref protocol.

4.4.1 Equivalence w.r.t. Compliance

There are many different ways to characterize the same system, or, to
be more precise, the same set of compliant execution traces. In other
words, there are specifications different for what concerns their struc-
ture and their corresponding abductive explanations, but, at the same
time, equivalent from an “external” point of view: given an execution
trace, they will always agree when evaluating if the trace is compli-
ant or not compliant. We say that these specifications are equivalent
w.r.t. compliance.

Definition 4.14 (Equivalence w.r.t. compliance (between two SCIFF
specifications)). Given two SCIFF specifications S1 and S2, S1 is equiv-
alent w.r.t. compliance to S2 (S1 c∼ S2) iff:

∀T
(

compliant(S1T)⇔ compliant(S2T)
)

This notion of equivalence is important because it provides a way
to identify if two different specifications describe the same set of legal
executions, ensuring that one specification can be seamlessly replaced
with the other without affecting compliance. This opens the possibility
of selecting the “best” among the two specifications w.r.t. a certain cri-
terion, such as for example readability or compactness of the integrity
constraints15.

Example 4.14 (Equivalence w.r.t. compliance when modeling the not
coexistence between two events). Let us suppose that, in a given EBS, two
events e1 and e2 cannot both occur within the same instance. To express
the not coexistence between these two events, the modeler could rephrase the
sentence as follows: if e1 occurs, then e2 must not occur, and if e2 occurs,

15 As we will see, an important criterion will be the impact of integrity constraints to
the underlying verification technique.

4.4 equivalence and compositionality 79

then e1 must not occur. This formulation can be translated into CLIMB in a
straightforward way:

H(e1, Ta)→ EN(e2, Tb). (⊗12)

H(e2, Tc)→ EN(e1, Td). (⊗21)

However, it is interesting to note that the two integrity constraints are redun-
dant for what regards compliance: it is sufficient to use only one of them to
express the not coexistence between e1 and e2. In particular, it can be proven
that

S1 = 〈∅, {(⊗12)}〉 c∼ S2 = 〈∅, {(⊗21)}〉

Let us suppose, by reductio ad absurdum, that there exists an execution trace
T s.t. compliant(S1T) and ¬compliant(S2T). To violate S2, T must contain
the occurrence of both e2 and e1. However, rule (⊗21) states that if T contains
e1, then it cannot contain also e2, and therefore it is impossible that T is
compliant with S1. The opposite case can be proven in the same way.

4.4.2 Compositionality w.r.t. compliance

An interesting point now is to understand if and to what extent the in-
tegrity constraints of a SCIFF specification can be partitioned obtaining
two separated specifications which are, together, equivalent w.r.t. com-
pliance to the original one. This intuitive idea is formalized by the
notion of compositionality w.r.t. compliance.

Definition 4.15 (Compositionality). A SCIFF specification 〈KB, A, IC〉
is compositional iff ∀T,∀IC1 and ∀IC2 s.t. IC = IC1 ∪ IC2:

compliant (〈KB, A, IC1〉T)

∧compliant (〈KB, A, IC2〉T)⇔ compliant (〈KB, A, IC〉T)

A compositional specification S can be split up into simpler sub-
specifications S1, . . . , Sn, each one covering a partition of its integrity
constraints set, and compliance can be evaluated separately by each
sub-specification: a trace is compliant with S iff it is compliant with
each Si.

Let us now consider the following situation. We have proven that Replaceability of
integrity constraintsa SCIFF specification containing one integrity constraint, say, IC, is

equivalent w.r.t. compliance to a specification containing the integrity
constraint IC′ (this is the case of Example 4.14). Formally, we have
proven that S = 〈KB, A, {IC}〉 c∼ S′ = 〈KB, A, {IC′}〉. This means that
the two specifications can be substituted for each other without af-
fecting compliance. But what happens now if the original specifica-
tion does not contain only IC but also other integrity constraints, i.e.,
S = 〈KB, A, {IC} ∪ IC〉? Can we still guarantee equivalence w.r.t. com-
pliance by substituting IC with IC′ and maintaining the other integrity

80 the climb rule-based language

constraints untouched? If the original specification (S) is compositional,
the following theorem claims that the answer is “yes”: it holds that
S = 〈KB, A, {IC}∪ IC〉 c∼ S′ = 〈KB, A, {IC′}∪ IC〉.

Theorem 4.1 (Replaceability of integrity constraints). Given four compo-
sitional SCIFF specifications S1 = 〈KB, A, IC1〉, S∪1 = 〈KB, A, IC ∪ IC1〉,
S2 = 〈KB, A, IC2〉, S∪2 = 〈KB, A, IC∪ IC2〉, the following holds:

S1
c∼ S2 ⇒ S∪1 c∼ S∪2

This means that if one demonstrates that S1
c∼ S2, then the integrity con-

straints (sub)set IC1 of S∪1 can be seamlessly replaced with IC2 without
affecting compliance.

Proof. Let us consider α = S1
c∼ S2 and β = S∪1 c∼ S∪2. One has to

prove that α⇒ β. From the definition of c∼ (Definition 4.14), we have

α = ∀T compliant

(
S1T

)
⇔ compliant

(
S2T

)
Since the specifications are compositional, we have:

β = ∀T compliant

(
S∪1T

)
⇔ compliant

(
S∪2T

)
= (Def. 4.14)

= ∀T compliant (ST) ∧ compliant

(
S1T

)
⇔ compliant (ST) ∧ compliant

(
S2T

)
(Def. 4.15)

where S = 〈KB, A, IC〉. Let us now separately discuss the case in which
ST is compliant, and the case in which ST is not compliant, showing
that in both cases α⇒ β is true.
If ST is not compliant (i.e., compliant(ST) is false), then

β = ∀T false∧ compliant

(
S1T

)
⇔ false∧ compliant

(
S2T

)
= ∀T false⇔ false = true

Therefore, α⇒ β = α⇒ true = true.
If ST is compliant (i.e., compliant(ST) is true), then

β = ∀T true∧ compliant

(
S1T

)
⇔ true∧ compliant

(
S2T

)
= ∀T compliant

(
S1T

)
⇔ compliant

(
S2T

)
= α

Therefore, α⇒ β = α⇒ α = true.

An important question now is: given an arbitrary SCIFF specification,Unchained
specifications is it possible to know whether it is compositional or not? The answer

is: if the syntax of the specification has a particular form (called un-
chained), then the specification is compositional. We define the class of
unchained specifications and prove this claim, showing also that all
CLIMB specifications are unchained, hence compositional.

4.4 equivalence and compositionality 81

Definition 4.16 (unchained specification). A SCIFF specification S =

〈KB, A, IC〉 is unchained iff there does not exist an integrity constraint
in IC containing an abducible in the body:

∀IC ∈ IC,∀βi ∈ body(IC), @θ s.t. [βi]θ ∈ A

Example 4.15 (unchained specifications). Let us consider the integrity
constraints

H(external(e1), T1)→ H(internal(e2), T2). (4.1)

H(internal(e2), T2)→ E(external(e3), T3). (4.2)

H(external(e3), T3)→ EN(external(e4), T4). (4.3)

and the SCIFF-lite specifications

S1 = 〈∅, {E/2, EN/2, H(internal(E), T)}, {(4.1), (4.2)}〉
S2 = 〈∅, {E/2, EN/2, H(internal(E), T)}, {(4.1), (4.3)}〉
S3 = 〈∅, {E/2, EN/2, H/2}, {(4.1), (4.3)}〉

S2 is the only unchained specification, because the body of its integrity con-
straints contains the occurrence of an “external” event, and only “internal
events” can be abduced.

Theorem 4.2 (Compositionality of unchained specifications). If a SCIFF Relationship
between unchained
specifications and
compositionality

specification is unchained, then it is also compositional.

Proof. Let us consider the specification S = 〈KB, A, IC〉. By taking into
account also abducible sets, we rephrase compositionality as follows:
for each execution trace T

compliant∆1(S
1
T) ∧ compliant∆2(S

2
T)⇔ compliant∆(ST)

where S1 = 〈KB, A, IC1〉, S2 = 〈KB, A, IC2〉 and IC = IC1 ∪ IC2. One
has to prove that suitable ∆1 and ∆2 exist iff a suitable ∆ exist.
⇐
One has to prove that if an abducible set ∆ exists s.t. ST is compliant,
then also two abducible sets ∆1 and ∆2 must exist s.t. S1T and S2T are
compliant.

This is trivial, by choosing ∆1 = ∆2 = ∆. Remark 4.3 states that
∆ is an abductive explanation for any specification 〈KB, IC′〉 where
IC′ ⊆ IC, hence also for S1 and S2.
⇒
One has to prove that if two abducible sets ∆1 and ∆2 exist s.t. S1T
and S2T are compliant, then also an abducible set ∆ must exist s.t. ST is
compliant.

Let us consider ∆ = ∆1 ∪∆2. The proof reduces to check that such
∆ obeys the three properties required by the definition of compliance
(Definition 4.13). Let us focus on each property separately:

a. ∆ is an abductive explanation for ST . Let us suppose that ∆ is
not an abductive explanation, i.e., that there exists an integrity

82 the climb rule-based language

SCIFF
SCIFF-lite
CLIMB

Compositional
specifications

Figure 19: The set of compositional specifications compared to the variants of
SCIFF.

constraint IC which is not entailed. Let us suppose IC ∈ IC1.
Being ∆1 and ∆2 abductive explanations for S1 and S2 respec-
tively, IC is not entailed only if body(IC) is not made true by ∆1,
but it is made true by ∆1 ∪∆216. If it is the case, then some part
of body(IC) must unify with an element in ∆2: ∃ε ∈ ∆2, ∃β ∈
body(IC) s.t. [β]θ = ε. However, since ∆2 ⊆ A, the existence of
such ε contradicts the hypotheses that S is unchained.

b. ∆ is E-consistent. Let us suppose that ∆ is not E-consistent; since
∆1 and ∆2 are both E-consistent, the only way to make ∆ E-
inconsistent is that there exist e ∈ U and t ∈ T s.t. E(e, t) ∈
∆1 and EN(e, t) ∈ ∆2. But this is impossible, because both ∆1
and ∆2 are T-fulfilled: the T-fulfillment of ∆1 would require that
H(e, t) ∈ T, whereas the T-fulfillment of ∆2 would state that
H(e, t) /∈ T.

c. ∆ is T-fulfilled. Indeed, each element of ∆ belongs to ∆1 or ∆2,
which are both T-fulfilled.

Corollary 4.1 (CLIMB compositionality). CLIMB specifications are com-Relationship
between CLIMB
specifications and
compositionality

positional.

Proof. By looking at Remark 4.2 and at Definitions 4.6 and 4.16, it be-
comes apparent that CLIMB specifications are unchained: the body of
each CLIMB integrity constraint contains only happened events, which
are not abducibles (only expectations can be abduced). Being CLIMB
specifications unchained, Theorem 4.2 guarantees that they are com-
positional.

By taking into account compositionality, the hierarchical schema of
SCIFF specifications shown in Figure 14 becomes the one depicted in
Figure 19.

16 This would require the abductive explanation of ST to contain also a disjunct of
head(IC), a requirement which is not satisfied by ∆.

5
T R A N S L A T I N G C O N D E C T O C L I M B

Contents
5.1 Translation of a ConDec Model to CLIMB 84
5.2 Translation of Events 85
5.3 Embedding a Qualitative Characterization of Time

in a Quantitative Setting 85
5.3.1 Temporal Contiguity 85

5.3.2 Compact Execution Traces 86

5.4 Translation of Constraints 87
5.4.1 Translation of Existence Constraints 88

5.4.2 Translation of Choice Constraints 89

5.4.3 Translation of Relation Constraints 91

5.4.4 Translation of Negation Constraints 94

5.4.5 Dealing with Branching ConDec Constraints 95

5.4.6 Equivalence Between ConDec Constraints 95

5.5 Soundness of the Translation 96
5.5.1 Trace Mapping 96

5.5.2 Compliance Preservation 97

5.5.3 Proof of Soundness 97

5.6 On the Expressiveness of SCIFF 99
5.6.1 A Separated Normal Form for LTL Formu-

lae 100

5.6.2 Translation of SNF Formulae to SCIFF-lite 101

5.6.3 Translation of Arbitrary LTL Formulae to
SCIFF-lite 104

In Chapters 4 and 3 we have discussed two different approaches for
the specification of Event-Based Systems: CLIMB and ConDec (together
with its LTL formalization). On the one hand, the two approaches have
complementary scopes and objectives: while ConDec adopts an intu-
itive graphical notation and pays particular attention to the usability
by non-IT savvy, CLIMB is based on a rigorous, rule-based language, it
provides a formal characterization of its specification (centered around
the notion of compliance), and it is therefore proned to verification.
On the one hand, the two approaches have the same, underlying phi-
losophy: they both rely on the notion of constraint as the basic mean
to capture desired and forbidden courses of interaction, following an
open and declarative approach. This Chapter exploits these similarities
to provide a complete formalization of ConDec terms of CLIMB spec-
ifications. In this respect, it lays the foundation for the verification of

83

84 translating condec to climb

ConDec models along their entire lifecycle, which will be matter of the
next parts of this dissertation.

We show how a ConDec model can be automatically translated to a
CLIMB specification. Then, we discuss the relationship between CLIMB
and propositional Linear Temporal Logic (LTL), which was the first
language exploited for providing an underlying semantics to ConDec.
Such a relationship is investigated along two different dimensions: a
specific dimension related to ConDec aiming at proving that the pro-
vided translation to CLIMB is sound w.r.t. the original LTL mapping, and
a general dimension, focused on the comparison between the two ap-
proaches for what concerns their expressiveness.

In this chapter, we make the assumption that the activities involved
in the ConDec model are all atomic: they identify atomic units of work
and can be represented by a single, punctual event. The next chap-
ter will exploit more deeply the expressiveness of the CLIMB language,
proposing several extensions to ConDec, such as the possibility of ex-
pressing and formalizing non-atomic activities and time/data-related
constraints.

5.1 translation of a condec model to climb

A ConDec model is translated to a CLIMB specification by mapping its
mandatory constraints to CLIMB Integrity Constraints. In this way, an
execution trace is supported by the model iff it is compliant with the
obtained CLIMB specification. In this respect, optional constraints are
not part of the formalization, because they are not employed to effec-
tively constrain the interaction, but only as a mean to express prefer-
able executions, alerting the user if they are not met. Chapter 14 will
show how SCIFF-lite can be employed to deal also with optional con-
straints.

Since the basic ConDec models do not support data, the KB of the
obtained specification will be empty. Chapter 6 will introduce an ex-
tended version of ConDec, able to deal with data as well; in this setting,
the KB can be exploited to formalize data-related decisions and back-
ground knowledge.

The translation of ConDec to CLIMB is encapsulated in a translation
function called tCLIMB.

Definition 5.1 (ConDec to CLIMB translation). tCLIMB is a function
which translates a ConDec model CM , 〈A, Cm, Co〉 to a CLIMB speci-
fication as follows:

tCLIMB : CM 7−→ tCLIMB (CM) = 〈∅, tIC (Cm)〉

where tIC is a function capable to translate a set of ConDec mandatory
constraints to a set of CLIMB ICs.

By looking at Definition 5.1, we can notice that only activities con-
nected to a mandatory constraint will take part of the produced CLIMB
formalization, and that unconstrained activities will not appear at all.

5.2 translation of events 85

The openness of CLIMB specifications guarantees that these activities
can be executed an arbitrary number of times, without producing an
impact on compliance; such a behavior is in accordance with the in-
tended ConDec semantics, pointed out in Chapter 3.

Finally, following the intuitive principle that an execution trace is
supported by a ConDec model iff all its constraints are satisfied, the
application of the tIC to an entire set Cm of mandatory constraints
corresponds to the union of the ICs obtained by applying tIC to each
mandatory ConDec constraint:

tIC (Cm) =
⋃

Ci | Ci∈Cm

tIC (Ci)

In this way, similarly to the case of LTL (discussed in Section 3.7), the
support provided by a ConDec model w.r.t. a given execution trace is
reduced, in the context of CLIMB, to the declarative notion of compli-
ance.

Definition 5.2 (Supported execution trace in the CLIMB setting). Given
a CLIMB execution trace T and a ConDec model CM, T is supported by
CM iff:

compliant (tIC (CM)T)

5.2 translation of events

Each atomic ConDec activity can be simply translated to a CLIMB term;
being atomic, its (non)expected or occurred execution is associated to
a single time-point, and is therefore formalizable by means of a single
expectation/happened event.

Definition 5.3 (Translation of an atomic ConDec activity). Given a
ConDec atomic activity a,

• H(exec (a) , T) states that a has been executed at time T ;

• E(exec (a) , T) states that a is expected to be executed at time T ;

• EN(exec (a) , T) states that a cannot be executed at time T .

5.3 embedding a qualitative characterization of time

in a quantitative setting

As discussed in Chapters 4 and 3, ConDec relies on a qualitative point-
based characterization of time, while CLIMB adopts a point-based quan-
titative characterization, where CLP constraints can be used to express
both qualitative and quantitative constraints on time points.

5.3.1 Temporal Contiguity

From an ontological viewpoint, moving from ConDec to CLIMB re-
quires to define how the first characterization of time can be embedded

86 translating condec to climb

into the second one. We argue that, in the ConDec setting, time does
not flow independently from the interaction, but is instead marked by
the occurring of events. The state of affairs reached during the execu-
tion is determined and changed only by the happening of a new event
(such as performing an activity): when the execution is quiescent, time
remains idle as well. To encode this concept in a quantitative setting,
we could imagine that the current time clock remains fixed when the
execution is quiescent, and then increases of one time units when a
new activity (a set of concurrent activities) is (are) executed. What mat-
ters is not the quantitative value of time/date at which an event occurs,
but only the ordering among event occurrences. Hence, the shift from
a quantitative to a qualitative setting does not affect time ordering, but
changes the concept of temporal contiguity: while in CLIMB two occurred
events are contiguous iff between them no further event has occurred, in this
new vision we can assume without loss of generality that two occurred
events are contiguous iff their execution times differ of a single time unit.
If we focus on the LTL setting, this empirical discourse has a formal
counterpart: the temporal operator © precisely captures this notion of
contiguity, and its semantics is that at a certain state t, ©a holds iff a
is executed in state t+ 1 (see Section 3.6.3).

5.3.2 Compact Execution Traces

We define the notion of compact CLIMB execution trace to capture this
new concept of temporal contiguity: a trace is compact iff all its con-
tiguous events occur at times differing from one single time unit. The
definition exploits the fact that if time is marked only by the execution
of events, then it is not possible to have a time value, inside the trace,
at which nothing happens.

Definition 5.4 (Compact CLIMB execution trace). A CLIMB execution
trace T is compact iff

∀ t ∈ [0, tmax], ∃ H(e, t) ∈ T

where tmax = max(t | ∃ H(e, t) ∈ T).

Example 5.1. Let us consider the following execution traces:

T1 = { H(exec (choose_item) , 0),

H(exec (choose_item) , 7),

H(exec (pay) , 15),

H(exec (send_receipt) , 30) }

T2 = { H(exec (choose_item) , 0),

H(exec (choose_item) , 1),

H(exec (pay) , 2),

H(exec (send_receipt) , 3) }

T2 is compact, while T1 is not.

5.4 translation of constraints 87

The translation presented in the following Sections will take into
account such an issue. However, CLIMB execution traces come with
quantitative time values associated to the events they are composed by.
Let us consider the following example: during the execution of a BP,
activity choose_item is performed at time 5, and then the order is paid
at time 10. Between time 5 and 10, nothing happens, and therefore the
two executions are temporally contiguous. In a qualitative setting, the
two executions would be registered as consecutive; for example, the
LTL trace representing such an execution would state that the valuation
functions of the two events contain two consecutive integers. Instead,
the CLIMB trace representing such an execution would contain two hap-
pened events at respectively time 5 and 10, thus loosing the qualitative
notion of temporal contiguity. A way must be therefore defined to map
an execution trace with quantitative time values to an execution trace
where ordering is maintained, but contiguous occurred events differ
of a single time unit. The compact function is introduced to deal with
this requirement, and can be applied to an arbitrary CLIMB trace be-
fore evaluating its compliance w.r.t. the specification formalizing the
ConDec regulatory model.

Definition 5.5 (Compaction function). compact is a compaction func-
tion which translates an execution trace to a corresponding compact
execution trace. It is defined as follows:

compact : UH −→ UH

T 7−→ Tcomp s.t. ∀ H(e, t), H(e, t′) ∈ Tcomp

having t′ = ‖{t< | H(e∗, t<), t< < t}‖

where UH is the Herbrand universe built upon CLIMB happened events.

By considering the execution traces of Example 5.1, it holds that

T2 = compact (T1)

As pointed out in Chapter 4, one of the most interesting features
of CLIMB is that it supports the possibility of expressing quantitative
temporal constraints such as delays and deadlines. Chapter 6 will dis-
cuss how ConDec can be extended with such additional features, by
maintaining a valid and complete mapping to CLIMB. Obviously, this
extension is possible only if the quantitative nature of CLIMB is recov-
ered, and therefore part of the Chapter will be dedicated to show how
the formalization changes in order to reflect the quantitative notion of
temporal contiguity.

5.4 translation of constraints

tIC maps each ConDec constraint to one or more CLIMB ICs. Obviously,
many possible different mappings can be provided, proving that they
are equivalent w.r.t. compliance (see Definition 4.14); here we try to
preserve as much as possible the simplicity and readability of the trans-
lation, in order to stress the similarities between the two approaches,

88 translating condec to climb

constraint C tIC (C)

0

a true→ EN(exec (a) ,T).

0..n

a

n∧
i=1

H(exec (a) ,Ti) ∧ Ti > Ti−1→EN(exec (a) ,Tn+1)

∧ Tn+1 > Tn.
n..∗
a true→

n∧
i=1

E(exec (a) ,Ti) ∧ Ti > Ti−1.

n

a tIC

 n..∗

a

∪ tIC

 0..n

a


init

a true→ E(exec (a) ,T) ∧ EN(exec (X) ,TX) ∧ TX < T .

Table 18: Translation of ConDec existence constraints to CLIMB. We assume
T0 = 0.

and to show that the natural language description of each ConDec
constraint can be represented in a straightforward manner by means
of CLIMB rules.

5.4.1 Translation of Existence Constraints

The application of the translation function on existence constraints is
shown in Table 18. AbsenceN constraints express a prohibition aboutAbsenceN

constraints executing the involved activity too many times, and are therefore for-
malized by exploiting negative expectations. In the general case (prohi-
bition of executing activity a n times), the formalization states that a is
expected not to be executed if n different executions have already oc-
curred1; as a consequence, a compliant execution trace must contain at
most n− 1 different executions of a. The intended meaning of “differ-
ent executions” is “executions at different times”; in fact, each atomic
activity can be executed, at a given time, at most once. Since CLIMB
adopts an explicit point-based notion of time, the difference between
executions of the same activity is modeled as a difference between their
corresponding execution times, which in turn is captured by means of
CLP constraints.

In a specular way, existenceN constraints express that the involvedExistenceN
constraints activity is expected to be executed at least a minimum number of times.

An existenceN constraint stating that the a must be executed at least n
times is therefore represented by imposing a conjunction of n different
expectations on the execution of a.

A proper combination of the absenceN and existenceN constraintsExactlyN
constraints can be used to formalize the exactlyN one. In particular, expressing

that an activity a must be executed exactly n times can be reformu-

1 The borderline case in which n = 0 is captured by the absenceN constraint, which
simply states that the execution of a is prohibited.

5.4 translation of constraints 89

constraint C tIC (C)

a1

am

a2
n of m

...
true →

n∧
i=1

(E(exec (Xi) , Ti) ∧ Xi :: [a1 , . . . , am])

∧ all_different([X1 , . . . , Xn]) .

a1

am

a2
n of m

...

true →
n∧
i=1

(E(exec (Xi) , Ti) ∧ Xi :: [a1 , . . . , am])

∧ all_different([X1 , . . . , XN])

∧ EN(exec (Y) , T) ∧ Y :: [a1 , . . . , am]

n∧
i=1

Y 6= Xi .

Table 19: Translation of ConDec choice constraints to CLIMB.

lated by stating that a is expected to be executed at least n times and
cannot be executed more than n times. From the CLIMB viewpoint, an
execution trace containing n executions of a:

• satisfies all the n expectations imposed by tIC

(
n..∗
a

)
;

• triggers tIC

(
0..n+1

a

)
, generating a negative expectation about

further executions of a.

Finally, the init constraint is modeled by imposing that a is ex- Init constraint
pected to be executed as the first activity. The concept of “first” is
formalized by means of a general negative expectation, which forbids
the execution of all activities before the time at which a is expected to
be executed.

5.4.2 Translation of Choice Constraints

The formalization of choice constraints is reported in Table 19. It is
a natural extension of the one concerning the existenceN constraint.
None of them has a triggering condition (i.e., the body of the cor-
responding ICs does not contain happened events): the involved ex-
pectations are always generated and must be fufilled independently
from the course of interaction. However, while the existenceN(n, a)

constraint imposes n different expectations on the same activity a,
choice(n of m, [a1,...,am]) imposes n expectations on n different
activities belonging to the set {a1, . . . ,am}; such n activities are not
fixed by the constraint, but must be anyway chosen among a1, . . . ,am.
This intended meaning is formalized in two steps:

• each expectation is not imposed directly on a concrete activity,
but on a variable Xi which belongs to the set {a1, . . . ,am}; this
latter requirement is expressed by means of the CLP membership
constraint (::). The membership constraint V :: List states that V is

90 translating condec to climb

a discrete variable ranging over the domain of elements in List.
Intuitively, it may considered as a compact way to impose, in
a disjunctive non-deterministic manner, that V must unify with
one of the elements in List.

• Difference between expectations is not imposed on the involved
times, as in case of existenceN, but on the expected activities2.
This is achieved by using the all_different(List) global con-
straint, which supports a compact way to express that all the
elements of List must be different, and is handled by the under-
lying CLP solvers in an efficient way[200].

As the following example points out, the combined use of the member-
ship CLP constraint makes it possible to maintain the formalization as
concise as possible, avoiding the combinatorial explosion experienced
when disjunctions are explicitly introduced in the head of the Integrity
Constraints (ICs).

Example 5.2 (Formalization of a choice constraint). Let us consider the
following statements, expressing a fragment of a business process in which
the customer must be alerted:

a. the user can be alerted by ordinary mail, by e-mail, by SMS or by
executing a vocal call;

b. to ensure that the alert is correctly delivered to the user, she must be
alerted using at least two different methods.

The first statement points out that four different activities are available to alert
the user, while the second statement suggests that they must be interconnected
by means of a “2 of 4” choice constraint. The resulting ConDec model is
depicted in Figure 20.

alertByEMail

alertBySMS

alertByMail
2 of 4

alertByCall

Figure 20: A simple ConDec model containing a choice constraint.

By following the directive of Table 19, the choice constraint of the model
can be represented as follows.

2 In fact, the n parameter ranges over activities, and not on the executions of the
same activity; furthermore, it may be possible that two different activities are exe-
cuted concurrently (i.e., at the same time), and therefore time variables must be left
unconstrained.

5.4 translation of constraints 91

tIC (choice(2 of 4,[alertByEMail,alertByMail,alertBySMS,alertByCall])) =

true→X1 :: [alertByEMail,alertByMail,alertBySMS,alertByCall]

∧X2 :: [alertByEMail,alertByMail,alertBySMS,alertByCall]

∧ E(X1 ,T1) ∧ E(X2 ,T2) ∧all_different([X1 ,X2]).

This compact IC could be rewritten by removing the membership constraints
and making an explicit use of disjunctions of expectations, enumerating all
the possible (combination of) choices:

true→ E(alertByEMail, T1,1) ∧ E(alertByMail, T1,2)

∨ E(alertByEMail, T2,1) ∧ E(alertBySMS, T2,2)

∨ E(alertByEMail, T3,1) ∧ E(alertByCall, T3,2)

∨ E(alertByMail, T4,1) ∧ E(alertBySMS, T4,2)

∨ E(alertByMail, T5,1) ∧ E(alertByCall, T5,2)

∨ E(alertBySMS, T6,1) ∧ E(alertByCall, T6,2)

Although the two formulations are equivalent w.r.t. compliance, the head
of the first IC contains a single disjunct, while the head of the second one
contains 6 disjuncts. For a generic n of m choice, the number of disjuncts
required for the first formulation is always equal to 1, while the number of
disjuncts required for the second is equal to

(m
n

)
.

The formalization of ex_choice contains an additional part, used Choice vs exclusive
choice constraintsto impose that the others m − n activities belonging to {a1, . . . ,am}

(the not chosen ones) cannot be executed at all. To express such a
behaviour, a negative expectation is imposed on an activity variable
which belongs to {a1, . . . ,am} but is different than all the n expected
activities (represented by the activity variables X1, . . . ,Xn). Since Y ap-
pears only in a negative expectation, it is universally quantified, and
therefore this additional part states that all the activities belonging to
{a1, . . . ,am}/{X1, . . . ,Xn} are forbidden.

5.4.3 Translation of Relation Constraints

The translation of relation constraints strictly adheres to the guidelines
described in Table 20. These guidelines establish a precise and univocal
link between each single graphical element of the constraint and the
corresponding (part of the) formalization.

Following these guidelines, Table 21 characterizes the tIC function
for each relation constraint.

In this respect, two points deserve a close examination. First of all, it Interposition
constraintis worth noting that the formalization of alternate constraints relies on

a further constraint, called interposition (interpos for short), which
is not a first-class relationship in the ConDec setting. It is a ternary
constraint, where interpos(a, b, c) states that activity b must be
executed between every execution of activity a and every following
execution of activity c. The three activities should not necessarily be
different; in fact, when interposition is used to specify part of the al-
ternate constraint, the first and the third activity are always the same

92 translating condec to climb

aspect description climb representation

binding

a •− Presence of • means that a is
the constraint’s source, its execu-
tion has the effect of triggering
the constraint.

It will contain H(exec (a) ,T)

in the body.

− a Absence of • means that a is
the constraint’s target, its execu-
tion is therefore expected/ for-
bidden when the constraint is
triggered.

It will contain E(exec (a) ,T)

or EN(exec (a) ,T) in the
head.

ordering

− The constraint does not involve
any temporal ordering.

It will not contain CLP con-
straints over time variables.

−I The constraint involves a for-
ward temporal ordering (“af-
ter”)

It will contain a CLP constraint
stating that the target time is
greater than the source time.

−I• The constraint involves a back-
ward temporal ordering (“be-
fore”)

It will contain a CLP constraint
stating that the source and tar-
get time are contiguous.

strength

− Basic constraint. The constraint is mapped to a
single IC (two iff it is a succes-
sion constraint).

= Alternate constraint (the target
activity must/cannot be exe-
cuted between two executions
of the source).

The formalization is decom-
posed in two parts: one express-
ing its basic behavior, one ex-
pressing the alternation.

≡ Chain constraint (source and
target activity must/cannot be
next to each other).

A CLP constraint is used to de-
note that the source and target
times differ of one single time
unit.

kind

− Relation constraint. Use of positive expectations.

−‖ Negation constraint. Use of negative expectations.

succession It is a compact way to ex-
press two mutual constraints (a
response and precedence one).

The formalization is decom-
posed in two parts, which sepa-
rately capture the response and
precedence part.

Table 20: Guidelines followed for translating ConDec relation and negation
constraints to CLIMB.

(i.e., interpositions like interpos(a, b, a) are employed). In this way,
interposition is used to state that a certain activity must be executed
between two different executions of another activity.

A second important issue regards the formalization of chain rela-Chain relations and
temporal contiguity tions. Chain relations informally states that the involved activities have

to be executed next to each other, i.e., that their execution times are con-
tiguous. As discussed in Section 5.3, formalizing temporal contiguity

5.4 translation of constraints 93

constraint C tIC (C)

a •−−−− b H(exec (a) ,Ta)→ E(exec (b) ,Tb).

a •−−−• b tIC

(
a •−−−− b

)
∪ tIC

(
a −−−−• b

)
a •−−−I b H(exec (a) ,Ta)→ E(exec (b) ,Tb) ∧ Tb > Ta.

a −−−I• b H(exec (b) ,Tb)→ E(exec (a) ,Ta) ∧ Ta < Tb.

a •−−I• b tIC

(
a •−−−I b

)
∪ tIC

(
a −−−I• b

)

inter(a,b,c)

b must be executed between any executions of a and c.
H(exec (a) ,Ta) ∧ H(exec (c) ,Tc) ∧ Tc > Ta

→E(exec (b) ,Tb) ∧ Tb > Ta∧ Tb < Tc.

a •===I b tIC

(
a •−−−I b

)
∪ tIC (inter(a,b,a))

a ===I• b tIC

(
a −−−I• b

)
∪ tIC (inter(b,a,b))

a •==I• b tIC

(
a •===I b

)
∪ tIC

(
a ===I• b

)
a •=−=−=−I b H(exec (a) ,Ta)→ E(exec (b) ,Tb) ∧ Tb == Ta+ 1.

a =−=−=−I• b H(exec (b) ,Tb)→ E(exec (a) ,Ta) ∧ Ta == Tb− 1.

a •=−=−I• b tIC

(
a •=−=−=−I b

)
∪ tIC

(
a =−=−=−I• b

)

Table 21: Translation of ConDec relation constraints to CLIMB.

94 translating condec to climb

constraint C tIC (C)

a •−−−−‖ b H(exec (a) ,Ta)→ EN(exec (b) ,Tb).

a •−−−•‖ b tIC

(
a •−−−−‖ b

)
∪ tIC

(
a −−−−•‖ b

)
a •−−−I‖ b H(exec (a) ,Ta)→ EN(exec (b) ,Tb) ∧ Tb > Ta.

a −−−I•‖ b H(exec (b) ,Tb)→ EN(exec (a) ,Ta) ∧ Ta < Tb.

a •−−I•‖ b tIC

(
a •−−−I‖ b

)
∪ tIC

(
a −−−I•‖ b

)

neg_inter(a,b,c)

b cannot be executed between any executions of a and c.
H(exec (a) ,Ta) ∧ H(exec (c) ,Tc) ∧ Tc > Ta

→EN(exec (b) ,Tb) ∧ Tb > Ta∧ Tb < Tc.

a •===I‖ b tIC (neg_inter(a,b,a))

a ===I•‖ b tIC (neg_inter(b,a,b))

a •==I•‖ b tIC

(
a •===I‖ b

)
∪ tIC

(
a ===I•‖ b

)
a •=−=−=−I‖ b H(exec (a) ,Ta)→ EN(exec (b) ,Tb)∧Tb == Ta+1.

a =−=−=−I•‖ b H(exec (b) ,Tb)→ EN(exec (a) ,Ta)∧Ta == Tb−1.

a •=−=−I•‖ b tIC

(
a •=−=−=−I‖ b

)
∪ tIC

(
a =−=−=−I•‖ b

)

Table 22: Translation of ConDec negation constraints to CLIMB.

is a central issue w.r.t. the qualitative vs quantitative characterization
of the temporal dimension. In particular, when the qualitative charac-
terization of ConDec is embedded in the quantitative setting of CLIMB,
then the concept of temporal contiguity can be encoded by stating that
two execution times must be consecutive to each other (i.e., their dif-
ference must be equal to 1). Table 21 provides a formalization of chain
relations which reflects such an idea.

Chapter 6 will discuss the introduction of quantitative temporal con-
straints in ConDec by exploiting the pecularities of CLIMB, showing
also how the formalization of chain relationships must be changed ac-
cordingly.

5.4.4 Translation of Negation Constraints

As pointed out in Table 20, negation constraints are mapped in the
same way as relation constraints, but by substituting positive expecta-
tions with negative ones. The result is shown in Table 22.

5.4 translation of constraints 95

5.4.5 Dealing with Branching ConDec Constraints

As far as now, we have presented the formalization of relation and
negation constraints by considering always only two interconnected
activities. As dicussed in Section 3.3.5, ConDec supports the possibil-
ity of branching constraints, spanning three or more activities. Gener-
ally speaking, the presence of branches is interpreted in a disjunctive
manner, and introduces a choice for those who execute the model. It
therefore comes as no surprise that the extension of the formalization
presented in the basic binary case resembles the one presented for the
choice constraint: happened events and expectations now involve ac-
tivity variables instead of concrete activities, imposing the membership
of such variables to the sets of source/target activities belonging to the
ConDec constraint.

For example, the branched coexistence constraint is formalized as Branched
coexistence
constraint

follows:

tIC

 a2a1

an
...

 , H(X, TX) ∧X :: [a1, . . . ,an]

→E(Y, TY) ∧X 6= Y ∧ Y :: [a1, . . . ,an].

Similarly, the generalized response constraint, with both branched Branched response
constraintsource and target, is formalized in the following way:

tIC

 t1s1

sn
...

tm
...

 , H(X, TX) ∧X :: [s1, . . . , sn]

→E(Y, TY) ∧ TY > TX ∧ Y :: [t1, . . . , tm].

Other ConDec relation and negation extended constraints could be
formalized by exactly following this procedure.

It is worth noting that while the use of membership CLP constraints
in the head implicitly models a disjunction, their effect in the body is to
replicate the IC for each possible choice. For the generalized response

constraint shown above, this means that only one IC is produced, in-
stead of n ICs, differing for what concerns the triggering happened
event.

5.4.6 Equivalence Between ConDec Constraints

Thanks to the mapping of ConDec constraints to CLIMB, it is possible
to prove whether two different constraints are equivalent w.r.t. com-
pliance (see Definition 4.14). In particular, in [186] van der Aalst and
Pesic pointed out that negation constraints can be reduced to a core
set; through the application of the tCLIMB function and the notion of
equivalence w.r.t. compliance, it is possible to provide a formal account
for such a reduction.

For example, Example 4.14 at Page 78 proves that:

tCLIMB

(
a •−−−− b

)
c∼ tCLIMB

(
a −−−−• b

)

96 translating condec to climb

constraint equivalent constraint

a •−−−−‖ b a •−−−•‖ b

a •−−−•‖ b

a •−−−I‖ b

a −−−I•‖ b a •−−I•‖ b

a •−−I•‖ b

a •=−=−=−I‖ b

a =−=−=−I•‖ b a •=−=−I•‖ b

a •=−=−I•‖ b

Table 23: Equivalence of ConDec negation constraints[186].

and, as a consequence, it holds that

tCLIMB

(
a •−−−− b

)
c∼ tCLIMB

(
a •−−−• b

)
Following the approach used in Example 4.14, all the equivalences

introduced in [186], which are listed in Table 23, can be easily proven
by exploiting the mapping to CLIMB.

5.5 soundness of the translation

Thanks to the translation presented in this chapter, ConDec has two
possible different underlying semantics: LTL and CLIMB. However, an
important question arises: do the two mappings effectively provide the
same semantics for a given ConDec constraint? In other words, is the
proposed formalization to CLIMB sound w.r.t. the original one, based on
LTL?

We discuss this issue introducing an isomorphism between LTL and
CLIMB execution traces, and reducing the concept of soundness to the
one of compliance preservation.

5.5.1 Trace Mapping

In order to be able to compare an LTL formula with a CLIMB specifica-
tion, the first step is to define how an execution trace in one setting can
be mapped to an equivalent execution trace in the other setting. Note
that the following Definitions are given on general SCIFF specifications,
and are therefore all valid for CLIMB.

5.5 soundness of the translation 97

Definition 5.6 (Trace mapping). A trace mapping tm is an isomorphism
which maps LTL execution traces TL to SCIFF traces:

tm : (N,<, vocc) −→ UH

TL 7−→ T = {H(exec (e) , t)|t ∈ TL(e)}

where UH is the Herbrand universe built upon SCIFF happened events.

Example 5.3. Let us consider an LTL execution trace TL = (N,<, vocc),
where E = {choose_item,pay, send_receipt, report_failure} and:

vocc(choose_item) = {0, 1} vocc(pay) = {2}

vocc(send_receipt) = {3} vocc(report_failure) = ∅

Then

tm [TL] = { H(exec (choose_item) , 0),

H(exec (choose_item) , 1),

H(exec (pay) , 2),

H(exec (send_receipt) , 3) }

5.5.2 Compliance Preservation

Thanks to the trace mapping function tm, it is possible to evaluate
whether the “same” execution trace complies with an LTL and a CLIMB
specification: if the outcomes agree, then the two specifications impose
the same relevant set of constraints on that trace. Generalizing, if the
outcomes agree for all the possible traces, then the two specifications
are “behaviourally” sound.

Definition 5.7 (Compliance preservation). Given a SCIFF specification
S and an LTL formula φ, S preserves compliance w.r.t. φ (φ c! S) iff:

∀ LTL trace TL, TL |=L φ⇐⇒ compliant

(
Stm[TL]

)
5.5.3 Proof of Soundness

When it comes to the ConDec setting, the proof of soundness between
the two underlying formalizations must compare the LTL mapping pro-
vided in [186, 146] with the CLIMB translation introduced in Section 5.4.
The first step is to consider the formalizations of an arbitrary ConDec
model as a whole, which is formalized:

• in LTL, as a conjunction of the formulae representing each single
constraint;

• in CLIMB, as a specification containing the union of ICs represent-
ing each single constraint.

98 translating condec to climb

The following Theorem states that compliance is preserved for the
model as a whole, iff it is preserved for each single constraint. There-
fore, soundness can be proven by comparing the formalizations of each
single constraint in isolation.

Theorem 5.1 (Compliance preservation w.r.t. whole/parts). Given an
LTL conjunction formulaψ =

∧
iφi and a CLIMB specification S = 〈∅,

⋃
i ICi〉:(

∀ i, φi c! 〈∅, {ICi}〉
)

=⇒ ψ
c! S

Proof. By considering the semantics of LTL w.r.t. conjunction, and re-
membering that CLIMB specifications are compositional, we have:(

∀i, φi c! 〈∅, {ICi}〉
)
⇔ (Def. 5.7)(

∀TL ∀i, TL |=L φi⇔ compliant

(
〈∅, {ICi}〉tm[TL]

))
⇒(

∀TL,
∧
i

TL |=L φi⇔
∧
i

compliant

(
〈∅, {ICi}〉tm[TL]

))
⇔ (Sec. 3.6.3)(

∀TL, TL |=L ψ⇔
∧
i

compliant

(
〈∅, {ICi}〉tm[TL]

))
⇔ (Cor. 4.1)(

∀TL, TL |=L ψ⇔ compliant

(
Stm[TL]

))
⇔ (Def. 5.7)

ψ c! S

We do not report here the proof of soundness for each single ConDec
constraint, but limit our discussion to some illustrative examples.

Lemma 5.1 (Compliance preservation for the absence constraint). It
holds that

tLTL

(
0

a

)
c! tCLIMB

(
0

a

)
, i.e.

�¬a
c! S = 〈∅, {true→ EN(exec (a) , T).}〉

Proof. Let us prove one side of the equivalence (c); the other side can
be proven in a very similar way. To disprove c , one must find an LTL
execution trace which is compliant with �¬a, but whose correspond-
ing CLIMB trace is not compliant with S. To violate S, a CLIMB execution
trace must contain the execution of a at a certain time, say, t. Hence,
Tneg = {H(exec (a) , t)} violates S. The corresponding LTL trace TL =

tm−1(Tneg), has the property that a ∈ TL(t), but this contradicts the
LTL formalization, whose semantics states that 6 ∃ i s.t. a ∈ TL(i).

Lemma 5.2 (Compliance preservation for the response constraint). It
holds that

tLTL

(
a •−−−I b

)
c! tCLIMB

(
a •−−−I b

)
, i.e.

�(a⇒ ♦b) c! S = 〈∅, { H(exec (a) ,Ta)

→E(exec (b) ,Tb) ∧ Tb > Ta.
}〉

Proof. Let us prove one side of the equivalence (c); the other side can
be proven in a very similar way. To disprove c , one must find an LTL

5.6 on the expressiveness of sciff 99

execution trace which is compliant with �¬a, but whose correspond-
ing CLIMB trace is not compliant with S. To violate S, a CLIMB execution
trace must contain the execution of a at a certain time, say, t, s.t. after
t activity b is never executed. By applying the tm−1 function on this
trace, one obtains an LTL trace TL which obeys to the following prop-
erties:

a. a ∈ TL(t)

b. ∀t′ > t, b 6∈ TL(t′)

By combining the first property with the LTL formula �(a ⇒ ♦b), we
obtain (TL, t |=L ♦b), and therefore it must hold that ∃t′ > t s.t. b ∈
TL(t′). However, this contradicts the second property.

Lemma 5.3 (Compliance preservation for the chain response constraint).
It holds that

tLTL

(
a •=−=−=−I b

)
c! tCLIMB

(
a •=−=−=−I b

)
, i.e.

�(a⇒ ©b) c! S = 〈∅, {
H(exec (a) ,Ta)

→E(exec (b) ,Tb)

∧Tb == Ta+ 1.

}〉

Proof. Let us prove one side of the equivalence (c); the other side can
be proven in a very similar way. To disprove c , one must find an LTL
execution trace which is compliant with �¬a, but whose correspond-
ing CLIMB trace is not compliant with S. To violate S, a CLIMB execution
trace must contain the execution of a at a certain time, say, t, s.t. at time
t+ 1 activity b is not executed. By applying the tm−1 function on this
trace, one obtains an LTL trace TL which obeys to the following prop-
erties:

a. a ∈ TL(t)

b. b 6∈ TL(t+ 1)

By combining the first property with the LTL formula �(a ⇒ ©b), we
obtain (TL, t |=L ©b), and therefore it must hold that b ∈ TL(t+ 1).
However, this contradicts the second property.

5.6 on the expressiveness of sciff

Having shown that all the ConDec constraints can be translate not
only to LTL, but also on CLIMB (i.e., on SCIFF), and that compliance is
preserved when switching from one formalization to the other, a more
general question arises: what is the relationship between LTL and SCIFF?
Is it possible to express an arbitrary LTL formula in SCIFF?

We discuss this issue demonstrating that the answer is “yes”. Note
that the opposite question (is it possible to express an arbitrary SCIFF

100 translating condec to climb

specification in LTL?) has a trivial negative answer, because LTL is propo-
sitional whereas SCIFF belongs to the first-order setting. E.g., quantita-
tive (metric) temporal constraints can be expressed in SCIFF by impos-
ing CLP constraints on time variables, while LTL does not support this
feature.

OneTheoretical vs practical issues! point deserves a close examination
here: the fact that each LTL formula can be suitably translated to SCIFF
is investigated at a pure theoretical level, and does not imply that rea-
soning on LTL formulae can be completely carried out by reasoning on
the corresponding SCIFF specifications. As we will see in Chapter 9, the
proof procedures able to perform a-priori and run-time/a-posteriori
reasoning on SCIFF specifications impose syntactic restrictions which
rule out many specifications used to represent LTL formulae.

5.6.1 A Separated Normal Form for LTL Formulae

In [76], the authors introduce a Separated Normal Form (SNF) capa-
ble of expressing an arbitrary LTL formula by adopting a conjunction
of three-basic forms, while preserving satisfiability. The translation of
an arbitrary LTL formula to SNF will take part of the proof aimed at
demonstrating that SCIFF is able to express LTL. Therefore, we briefly
recall here the main Definitions and results given in [76], referring to
[76] for an exhaustive description.

Definition 5.8 (SNF Formula [76]). An LTL formula φ is in Separated
Normal Form iff φ is a conjunction of the following forms:

start =⇒
∧
c

lc (an initial LTL-clause)

�
(∧
a

ka =⇒ ©
∨
d

ld

)
(a step LTL-clause)

�
(∧
b

kb =⇒ ♦l
)

(a sometime LTL-clause)

where ki and lj are literals (i.e., atomic propositions or negation of
atomic propositions) and start is a special symbol true only at the
initial time (i.e., whose valuation function is the set {0}).
In this case, we say that φ is an SNF formula.

Definition 5.9 (LTL to SNF translation [76]). snf is a function which
translates an arbitrary LTL formula to a corresponding SNF formula.
The transformation rules are given in [76]3.

During the transformation, new proposition symbols are introduced:
they do not represent any event, but are used to rename complex sub-
formulae. We differentiate, among the whole set of proposition sym-
bols, the sub-set used to represent activities/events, and the sub-set
used for renaming.

3 Note that in [76] the snf function is called τ.

5.6 on the expressiveness of sciff 101

Definition 5.10 (Formula proposition symbols). Given an LTL formula
φ, P (φ) is the set of proposition symbols contained in φ.

Definition 5.11 (Renaming and event sets). Given an LTL formula φ
and an SNF formula σ s.t. σ = snf(φ), it holds that P (σ) = E(σ)∪R (σ),
where:

a. event set E(σ) is the set of atomic propositions contained in the
original LTL formula φ, which denote “real” events (E(σ) =

P (φ))

b. renaming set R (σ) is the set of atomic propositions used for re-
naming during the transformation.

Example 5.4 (SNF representation of the ConDec response constraint).
Let us consider the response ConDec constraint stating that each excution
of the pay activity must be eventually followed by the send_receipt one:
pay •−−−I send_receipt

Its corresponding LTL formalization is:

φ = � (pay⇒ ♦send_receipt)

Hence, we have P (φ) = {pay, send_receipt}. According to Definition 5.9,
φ is a sometime LTL-clause, and it is therefore already in SNF. Thus, we have:
snf(φ) = φ and R (snf(φ)) = ∅.

Example 5.5 (SNF representation of the ConDec precedence constraint).
Let us consider the precedence ConDec constraint, stating that the send_receipt
activity can be executed only after having executed the pay activity:
pay −−−I• send_receipt

Its corresponding LTL formalization is:

φ = ¬send_receiptWpay

Hence, P (φ) = {pay, send_receipt}. The SNF translation of φ is:

σ = snf [¬send_receiptWpay] =

= start⇒ x ∧

snf [x⇒ ¬send_receiptWpay] =

= start⇒ x ∧

x⇒ (¬send_receipt∨ pay) ∧

x⇒ (y ∨ pay) ∧

y⇒ © (¬send_receipt∨ pay) ∧

y⇒ © (y ∨ pay)

Therefore, R (σ) = {start, x, y}.

5.6.2 Translation of SNF Formulae to SCIFF-lite

We provide a syntactic procedure to translate an arbitrary SNF formula
to SCIFF-lite, and prove that such a translation preserves compliance.

102 translating condec to climb

The target language is SCIFF-lite and not CLIMB, because the abducible
set of the obtained specifications is not limited to expectations, but
contains other predicates as well.

Definition 5.12 (IC-mapping). An IC-mapping icm is a function which
translates an SNF formula to a set of SCIFF-lite ICs. It is defined as fol-
lows:

icm

[∧
i

φi

]
,
⋃
i

icm [φi]

icm

[
start =⇒

∧
c

lc

]
, icm [start, 0]→

∧
c

icm [lc, 0] .

icm

[
�

(∧
a

ka =⇒ ©
∨
d

ld

)]
,
∧
a

icm [ka, T]

→
∨
d

(icm [ld, T2] ∧ T2 == T + 1) .

icm

[
�

(∧
a

ka =⇒ ♦l

)]
,
∧
a

icm [ka, T]→ icm [l, T2] ∧ T2 > T .

icm [true, T] , true(T)

icm [a, T] , occ(a, T)

icm [¬a, T] , not(a, T)

Definition 5.13 (S-mapping). Given an SNF formula φ and a set S of
proposition symbols s.t. S ⊆ P (φ), the S-mapping sm translates φ to a
SCIFF-lite specification depending on S . sm is defined as follows:

sm : φ, S 7−→ 〈∅, {E/2, EN/2, start/1, true/1, occ/2, not/2}, IC)〉

where

IC = icm(φ)∪ { true→ occ(start, 0). (S)

true→ true(0). (T1)

true(T)→ true(T2) ∧ T2 == T + 1. (T2)

∀p ∈ P (φ), true(T)→ occ(p, T) ∨ not(p, T). (2V)

occ(X, T) ∧ not(X, T)→ ⊥. (C)

H(X, T) ∧X ∈ S → occ(X, T). (O)

occ(X, T) ∧X :: S → E(X, T). (E1)

not(X, T) ∧X :: S → EN(X, T). } (E2)

S-mapping works as follows. First of all, the presence of a certain
proposition in a given state is mapped to an abducible stating that the
proposition occurs in that state. Conversely, the absence of the propo-
sition is mapped to an abducible stating that the proposition does not
occur in that state. A further abducible is used to model the concept of
truth in LTL, which is implicitly subject to the formula �true.

5.6 on the expressiveness of sciff 103

• IC (S) translates the special start symbol, which is introduced by
SNF and is true at and only at the initial state (i.e., at time point
0).

• ICs (T1) and (T2) formalizes that the true abducible holds in all
the states, i.e., at all time points.

• ICs (2V) and (C) are used to model the two-valued semantics of
LTL: in LTL, in each state either a proposition is true (ex-)or false.

• ICs (O), (E1) and (E2) relate the (not) occurrence of each propo-
sition in each state with the SCIFF concepts of happened events
and positive (negative) expectations.

The role of the set S , used in the last three ICs, will be discussed later.
At the moment, we consider S to be the same set of all proposition
symbols used in the SNF-formula.

The following Theorem proves that the sm function preserves compli-
ance, hence an arbitrary SNF formula is translatable to a “behaviourally
equivalent” SCIFF-lite specification.

Theorem 5.2 (SCIFF-lite can express SNF formulae). Given an SNF for-
mula σ and the SCIFF-lite specification S = sm [σ, P (σ)], it holds that σ c! S.

Proof. First of all, it is worth noting that LTL and SCIFF share the same
semantics for basic logical connectives: ∧, ∨,⇒ /→. We will therefore
focus only on the simplest SNF-forms, composed by single proposi-
tion symbols instead of conjunctions/disjunctions of them. We con-
sider each basic SNF-form separately.

Let σ be a simple initial LTL-clause, i.e., σ = start ⇒ l. If l is a pos-
itive literal, say, l = a, each compliant LTL execution trace TL must
satisfy the property that a ∈ TL(0), because start always holds in
state 0. The obtained S contains the corresponding IC icm[start⇒ a] =

occ(start, 0) → occ(a, 0). By taking into account also the two general
ICs (S) and (E1), all abductive explanations of S must expect a at time
point 0, i.e., they must contain E(a, 0). Therefore, each compliant trace
T must contain H(a, 0). By considering the trace mapping function tm,
this is exactly the same property required for compliant LTL traces,
and therefore compliance is preserved by switching from σ to S or
vice-versa. The case in which l is a negative literal, say, l = ¬a, can be
proven in a similar way: each compliant LTL trace TL must satisfy the
property that a 6∈ TL(0), each compliant SCIFF trace T must satisfy the
property that H(a, 0) 6∈ T, and the two properties are equivalent.

Let σ be a simple step LTL-clause, i.e., σ = k =⇒ ©l. If both
k and l are positive literals, the formula correspond to the LTL for-
malization of the ConDec chain response constraint. The obtained IC,
together with the general rules (O) and (E1), is equivalent to the trans-
lation of chain response to CLIMB, and therefore the proof is given in
Lemma 5.3. The case in which k is positive and l is negative can be
proven in the same way (in fact, it resembles the proof of compliance
preservation between the two representations of the ConDec negation

104 translating condec to climb

chain response constraint). Let us now consider the case in which k
is a negative literal, say k = ¬a, and l is a positive literal, say l = b

(the case in which l is a negative literal can be proven in the same
way). Each LTL compliant trace must obey to the following property:
∀ t, a ∈ TL(t) ∨ b ∈ TL(t + 1). The IC obtained by the application
of icm is not(a, T) → occ(b, T2) ∧ T2 == T + 1. For each time t, if a
happens at time t then rule (O) states that occ(a, t) is abduced, rule
(C) prevents not(a, t) to be abduced and thus the IC does not trig-
ger. If, conversely, a does not happen at time t, then rule (2V) leads
to abduce not(a, t); the IC triggers, abducing occ(b, t + 1), which in
turn triggers (E1), imposing that b is expected to happen at time t+ 1.
Therefore, each SCIFF compliant execution trace T must satisfies that
∀ t, H(a, t) ∈ T ∨ H(b, t + 1) ∈ T, which is in equivalent, under tm,
with the property on LTL traces.

The case of a simple sometime LTL-clause trivially follows from the
discussion made for the step LTL-clause.

Having proven that sm preserves compliance for each SNF basic form,
we must prove that the translation preserves compliance when applied
to a conjunction of these forms. As shown in Definition 5.12, the trans-
lation of

∧
iφi is the union of the translation applied to each φi. Since

the translation of each φi preserves compliance, Theorem 5.1 guaran-
tees that compliance is preserved translating the whole conjunction as
well.

5.6.3 Translation of Arbitrary LTL Formulae to SCIFF-lite

By exploiting the one of the main result presented in [76], and the fact
that sm is able to represent all the SNF formulae in SCIFF-lite, we now
demonstrate that an arbitrary LTL formula can be represented in SCIFF-
lite as well. The central technical problem that must be still tackled
is the fact that the SNF translation introduces new symbols (used for
renaming complex sub-formulae) which do not represent events. At
the SNF level, the distinction between concrete events and renaming
symbols get lost, and therefore the SCIFF-lite specification produced by
applying in cascade the SNF and the sm translation does not preserve
compliance w.r.t. the original LTL formula: positive expectations are
imposed also on renaming symbols, which however do not appear
in the original LTL formula, leading to a mismatch between the two
notions of compliance.

Example 5.6 (Compliance mismatch). Let us consider the ConDec
1..∗
a

constraint. Its LTL representation is φ = ♦a. The SNF translation of φ is
σ = snf(♦a) = �(start ⇒ y) ∧ �(y ⇒ ♦a). The LTL execution trace
containing only the execution of a in state 0 is compliant with φ, but it is
instead not compliant with σ, which requires also the presence of y in state 0.

To overcome this issue, the intuitive idea is to propose a translation
that does not impose expectations on renaming symbols, i.e., restricts

5.6 on the expressiveness of sciff 105

the set S involved in the definition of the sm function only to events.
The (compliant) execution traces considered by the SNF translation and
the corresponding SCIFF-lite representation extend the execution traces
compliant with the original LTL formula with symbols taken from the
renaming set. The first step is therefore to define, in both settings,
a suitable trace projection, which filters an execution trace by main-
taing only certain symbols (in particular, the ones which correspond
to events), ruling out the other ones.

Definition 5.14 (SCIFF trace projection). Given a SCIFF execution trace
T and a set S of function symbols, the trace projection of T on S (T|S) is
the projection of T containing only events taken from S :

T|S , {H(e, t) | H(e, t) ∈ T ∧ e ∈ S }

Definition 5.15 (LTL trace projection). Given an LTL execution trace
TL = (N,<, vocc) and a set S of proposition symbols, the trace projec-
tion of TL on S (TL|S) is the projection of TL containing only events
taken from S :

TL|S = (N,<, vocc′) s.t. vocc′(e) ,

{
vocc(e) if e ∈ S ;

∅ otherwise.

Lemma 5.4 (Commutativity between trace projection and trace map-
ping). For each LTL execution trace TL and for each set of proposition sym-
bols S , it holds that

tm [TL|S] = tm [TL] |S

Proof. Trivial from the definitions of trace mapping (Definition 5.6) and
of trace projection (Definitions 5.14 and 5.15). Let us first consider an
element e belonging to S . On the left side, the valuation function of e is
maintained by the LTL projection and then subject to the tm mapping;
on the right side, the valuation function of e is subject to the tm map-
ping, and the obtained result is maintained by the SCIFF projection. Let
us now consider an element e′ outside S . On the left side, the valua-
tion function of e′ is "nullified" by the LTL projection, and therefore no
happened event concerning e′ is produced by tm; on the right side, a
set of happened events concerning e′ is produced by tm, but they are
then ruled out by the SCIFF projection.

We now briefly recall one of the main result presented in [76], which
proves that SNF preserves satisfiability, which in our setting means that
it preserves compliance. Lemma 5.5 reviews the satisfiability result by
explicitly taking into account execution traces. In particular, it states
that execution traces compliant respectively with an LTL formula and
its corresponding SNF are exactly the same if we limit the comparison
only on concrete events.

Theorem 5.3 (SNF preserves satisfiability [76]). An LTL formula φ is
satisfiable iff snf(φ) is satisfiable.

106 translating condec to climb

Lemma 5.5 (Compliance preservation via extended traces[76]). For each
LTL formula φ, it holds that

∀ TL, TL |=L snf [φ] =⇒ TL|E(snf[φ]) |=L φ

∀ TL, TL |=L φ =⇒ ∃T′L TL = T′L|E(snf[φ]) ∧ T′L |=L snf [φ]

We are now ready to prove that each LTL formula is translatable to a
SCIFF-lite specification, preserving compliance.

Theorem 5.4 (SCIFF can express LTL). Given an arbitrary LTL formula φ
and the SCIFF specification SE = sm [snf [φ] , P (φ)], it holds that SE c! φ.

Proof. Let us denote σ = snf [φ]. From Definition 5.7, and by remem-
bering that the event set of σ contains all the proposition symbols of φ
(P (φ) = E(σ)), one has to prove that

∀TL, TL |=L φ⇐⇒ compliant

(
sm [σ, E(σ)]tm[TL]

)
=⇒
Let us consider the following schema:

∀ TL, TL |=L φ =======
(∗)
====⇒ compliant

(
sm [σ, E(σ)]tm[TL]

)

∃T′L, T′L |=L σ

∧TL = T′L|E(σ)

Lemma 5.5�
wwwwww

===========
Theorem 5.2

⇒ compliant

(
sm [σ, P (σ)]tm[T′L]

)
(†)

~wwwwww

The schema shows that proving (∗) reduces to prove that

compliant

(
sm [σ, P (σ)]tm[T′L]

)
=⇒compliant

(
sm [σ, E(σ)]tm[T′L|E(σ)]

) (†)

By taking into account abducible sets, Definition 5.11 and Lemma 5.4,
(†) becomes:

compliant∆

(
S

ER
T

)
=⇒ compliant∆′

(
SE

T|E(σ)

)
(‡)

where SER = sm [σ, E(σ)∪ R (σ)], SE = sm [σ, E(σ)] and T = tm
[
T′L
]
.

To prove (‡), we demonstrate that

∆′ = ∆/{E(e, t)|e ∈ R (σ)}/{EN(e, t)|e ∈ R (σ)}

obeys the three properties required by the definition of compliance:

a. ∆′ is an abductive explanation for SE
T|E(σ)

. The only difference be-

tween SE and SER is that, for the first specification, rules (O), (E1)
and (E2) of Definition 5.13 do not trigger for events outside E(σ)

(in particular, they do not trigger for events inside R (σ)). From

5.6 on the expressiveness of sciff 107

Remark 4.3, ∆ is therefore a suitable abductive explanation for
SE too. Furthermore, being (E1) and (E2) the only constraints in-
volving positive and negative expectations concerning elements
in R (σ), it is not required for an abductive explanation to contain
them anymore.

b. ∆′ is E-consistent, because ∆′ ⊆ ∆ and ∆ is E-consistent.

c. ∆′ is T|E(σ)-fulfilled. Since T|E(σ) is a projection of T, ∆′ ⊆ ∆

and ∆ is T-fulfilled, no negative expectation in ∆′ can be vi-
olated by T|E(σ). Positive expectations concerning elements in
E(σ) are maintained in ∆′, and so are the corresponding hap-
pened events after the trace projection. Positive expectations con-
cerning elements in R (σ) are removed from ∆ when obtaining
∆′, and therefore the application of the trace projection, which
rules out happened events concerning elements in R (σ), does
not compromise trace fulfillment.

⇐=
Let us consider the following schema:

tm−1 [T] |=L φ ⇐===============
(∗∗)

∀ T, compliant (sm [σ, E(σ)]T)

tm−1
[
T′
]

|=L σ

Lemmas5.4 and 5.5

~wwwwwwww
⇐=============
Theorem 5.2 ∃ T′, compliant (sm [σ, P (σ)]T′)

∧T = T′|E(σ)

(§)�
wwwwww

The schema shows that proving (∗∗) reduces to prove that

∀ T, compliant∆

(
SE

T

)
=⇒∃ T′, T = T′|E(σ) ∧ compliant∆′

(
S

ER
T′

) (§)

where SER = sm [σ, E(σ)∪ R (σ)] and SE = sm [σ, E(σ)].
First of all, it is worth noting that SER extends SE by imposing that

rules (O), (E1) and (E2) can be also triggered by occ/not abducibles in-
volving symbols in R (σ), generating a larger set of expectations. Since
T′ ⊇ T, an abductive explanation ∆′ can be therefore found for SER by
extending ∆ with the new generated expectations: ∆′ = ∆∪∆E

R ∪∆EN
R ,

where ∆E
R and ∆EN

R respectively represent the inserted positive and
negative expectations.
∆′ is E-consistent. Indeed, since ∆E

R and ∆EN
R contain only expecta-

tions generated by rules (E1) and (E2), by construction we have:

∀ E(a, t), E(a, t) ∈ ∆E
R ⇒ occ(a, t) ∈ ∆′

∀ EN(a, t), EN(a, t) ∈ ∆EN
R ⇒ not(a, t) ∈ ∆′

(§§)

Let us suppose by absurdum that there exist a, t (with a ∈ R (σ))
s.t. E(a, t) ∈ ∆E

R and EN(a, t) ∈ ∆EN
R . In this case, (§§) would state that

108 translating condec to climb

occ(a, t) ∈ ∆′ and not(a, t) ∈ ∆′. This would violate rule (C), making
impossible that ∆′ is an abductive explanation.

An execution trace T∗ compliant with SER can be therefore built as
follows:

T∗ = T ∪ TR , where H(a, t) ∈ TR ⇔ E(a, t) ∈ ∆E
R

Under this choice:

a. ∆′ is left untouched by T∗. Indeed, the only impact of TR on the
ICs of SER is to trigger rule (O), generating corresponding occ
abducibles. However, from (§§) we know that all this abducibles
are already contained in ∆′.

b. ∆′ is T∗-fulfilled by construction.

c. T∗|E(σ) = T, because all the happened events contained in TR

involve symbols belonging to R (σ), and are therefore ruled out
by applying the projection.

6
E X T E N D I N G C O N D E C

Contents
6.1 Temporal-constrained Relationships 109

6.1.1 Temporal Contiguity in a Quantitative Set-
ting 110

6.1.2 Quantitative Formalization of Chain Con-
straints 110

6.1.3 Metric ConDec Constraints 111

6.2 Data-Related Aspects 114
6.2.1 The MXML Meta-Model 114

6.2.2 The Life Cycle of ConDec Activities 115

6.2.3 An illustrative example 116

6.3 Introducing Data in ConDec++ 116
6.3.1 Representing Non-Atomic Activities in ConDec++

117

6.3.2 Formalizing the Activity Life Cycle 117

6.3.3 Modeling the Submit-Review Example 119

6.3.4 Cross-Flow Constraints 120

In this Chapter, we investigate how the first-order nature of the
CLIMB language can be exploited to extend the expressiveness of Con-
Dec along different dimensions, namely:

• quantitative (metric) temporal constraints;

• activity data and data-related conditions;

• support of a non-atomic model of activities.

We call the language extended with such features ConDec++. ConDec++

reconciles ConDec with MXML, a well known meta-model proposed
by van Dongen and van der Aalst for representing and storing execu-
tion traces[199].

6.1 temporal-constrained relationships

As pointed out in Chapters 3 and 4, ConDec adopts a qualitative char-
acterization of time, while CLIMB opts for a quantitative characteriza-
tion, modeling execution times explicitly and relying on CLP for ex-
pressing metric constraints among them.

As we have deeply discussed in Section 5.3–Page 85, the formaliza-
tion of ConDec in terms of CLIMB specifications requires to uniform the

109

110 extending condec

characterization of time: CLIMB must accommodate qualitative time,
formalizing the concept of temporal contiguity as “difference of a sin-
gle time unit” and imaging that execution traces are compact, i.e., that
their associated time points only reflect the ordering of occurrences,
and not the actual times at which they happened.

Anyway, nothing stop us to follow the opposite direction, i.e., to
embed a point-based qualitative characterization of time into a quan-
titative one. The advantage of this choice is that all the expressiveness
of CLIMB w.r.t. the temporal dimension can be exploited at the level
of ConDec. We investigate this possibility, showing how the formaliza-
tion of some ConDec constraints must be properly revised, and how
the ConDec relation and negation constraints can be extended at the
graphical level to accommodate quantitative temporal constraints.

6.1.1 Temporal Contiguity in a Quantitative Setting

Let us remind the key aspects related to the embedding of the qualita-
tive notion of temporal contiguity in a quantitative setting, which have
been discussed in Section 5.3.

When quantitative time is used in a purely qualitative setting, what
matters is not the actual time values at which event occur, but only that
the ordering among event occurrences is preserved. Time evolves only
in view of event occurrences, and therefore it can be assumed, without
loss of generality, that two occurrences differing of a single time unit
are contiguous (and vice-versa).

In a quantitative setting, instead, time evolves independently fromTemporal contiguity
in a quantitative
setting

the flow of events. Two contiguous occurrences may then be separated
by an arbitrary time gap: what matters, to define their contiguity, is
that, between them, no further event has occurred. The absence of a
whatever event inside a certain time interval can be expressed in CLIMB
as a general negative expectation, matching with any possible event
occurrence and ranging inside the targeted time interval.

Definition 6.1 (Temporal contiguity and distance in CLIMB). Given an
execution trace T, two happened events H(exec (e1) , t1) and
H(exec (e2) , t2) belonging to T, s.t. t2 > t1, are contiguous iff

EN(exec (X) , Tx) ∧ Tx > t1 ∧ Tx < t2 is T-fulfilled

Conversely, the two happened events are distant iff

E(exec (X) , Tx) ∧ Tx > t1 ∧ Tx < t2 is T-fulfilled

6.1.2 Quantitative Formalization of Chain Constraints

As pointed out in Section 5.3, temporal contiguity affects the formal-
ization of chain constraints. In particular, to reflect the notion of con-
tiguity given in Definition 6.1, a •=−=−=−I b must be rephrased as
“whenever activity a is executed, then a following occurrence of b is
expected s.t. no further activity is executed inbetween”. Starting from

6.1 temporal-constrained relationships 111

this description, a new CLIMB formalization of the chain response con-
straint can be provided in a straightforward way. We introduce a new
translation function t�CLIMB to represent a revision of the basic trans-
lation function tCLIMB in a quantitative setting; as tCLIMB relies on
tIC for the translation of ConDec constraints, t�CLIMB relies on t�IC. It
is worth noting that, being CLIMB specifications compositional, chang-
ing the formalization of a certain constraint does not impact on the
meaning of the other ones.

The revised formalization of the chain response constraint is:

t�IC

(
a •=−=−=−I b

)
, H(exec (a) , Ta)→E(exec (b) , Tb) ∧ Tb > Ta

∧ EN(exec (X) , Tx)

∧ Tx > Ta ∧ Tx < Tb.

Similarly, the chain precedence constraint is reformulated as follows:

t�IC

(
a =−=−=−I• b

)
, H(exec (b) ,Tb)→E(exec (a) ,Ta) ∧ Ta < Tb

∧ EN(exec (X) ,Tx)

∧ Tx > Ta∧ Tx < Tb.

The last constraint that requires a new formulation is the negation
chain response one1. Here, the notion of distance must be employed,
to state that all the occurrences of the source activity and the following
occurrences of the target activity cannot be contiguous, i.e., that at least
one further occurrence must interpose inbetween:

t�IC

(
a •=−=−=−I‖ b

)
, H(exec (a) , Ta)

∧H(exec (b) , Tb)

∧Tb > Ta → E(exec (X) , Tx)

∧ Tx > Ta ∧ Tx < Tb.

6.1.3 Metric ConDec Constraints

Having fully recovered the quantitative nature of CLIMB, it is now pos-
sible to extend ConDec relation constraints, as well as the “normal”
negation constraints (i.e., negation response and negation precedence)
with metric information, e.g., to express delays and deadlines. Such an
information is used to reduce the validity of constraint’s target time
(or, in the negative case, to delimit the forbidding of the target), by

1 Indeed, negation chain precedence is superfluous, being equivalent to the chain re-
sponse one, as showin in Table 23 and pointed out in [186].

112 extending condec

defining a quantitative lower and/or an upper bound on it. For ex-
ample, the response constraint could be now modified by stating that
“when the source activity occurs, then the target activity is expected to
occur afterwards, but within a maximum timespan”.

To graphically show these temporal extensions, a possible choiceRepresentation of
metric constraints is to annotate the different ConDec constraints with a time interval

marked off by two non negative instants (Tmin and Tmax) which could
be considered both in an exclusive or inclusive manner. As usually,
parentheses (. . .) are used to indicate exclusion and square brackets
[. . .] to indicate inclusion. The interval is treated as relative w.r.t. the
time at which the source happens, and is translated backward or for-
ward w.r.t. it depending on the nature of the constraint (i.e., whether
it is a response or precedence one).

Such a feature can be seamlessly modeled in CLIMB. For example,CLIMB formalization
of metric constraints the formalization of the metric response is2:

t�IC

(
a

(n,m)
•−−−I b

)
, H(exec (a) , Ta)→E(exec (b) , Tb)

∧ Tb > Ta +n

∧ Tb < Ta +m.

The constraint expresses that if activity a is executed at time Ta, then
a following activity b is expected to be executed with a minimum de-
lay of n time units, and a maximum delay of m time units. These two
temporal conditions can be seamlessly expressed by means of CLP con-
straints: activity b is expected to happen at a time Tb which must be
greater than Ta +n and lower than Ta +m.

Symmetrically, precedence is extended as follows:

t�IC

(
a

(n,m)
−−−I• b

)
, H(exec (b) , Tb)→E(exec (a) , Ta)

∧ Ta > Tb −m

∧ Ta < Tb −n.

Metric precedence expresses that activity b is executable only within
the time window ranging from n tom time units after an occurrence of
activity a. In CLIMB, we can express this by stating that if b is executed
at time Tb, then a previous execution of activity a is expected to happen
at a time Ta, s.t. Ta makes Tb belonging to the desired time window.
The membership of Tb to such a time window is expressed by means
of the two CLP constraints Tb > Ta + n and Tb < Ta +m, which are
equivalent to the ones shown in the formalization.

Figure 21 shows how the extended ConDec++ is able to combine
the new notation with “normal” relation constraints (i.e., responded
existence, response and precedence) to cover different metric relations
between the involved activities.

A typical use of the metric extension is to model deadlines. For ex-Deadlines and
latency constraints

2 We show the case in which bounds are exluded. Inclusion of bounds is modeled by
substituting the < and > CLP constraint with 6 and > respectively.

6.1 temporal-constrained relationships 113

after

after(N)
Ta+N

a performed at time Ta

before(N)
Ta-N

before

between(N1,N2)
Ta+N1 Ta+N2

Ta-N2 Ta-N1
between(N1,N2)

anytime

equals(N)

Ta+Nequals(N)

Ta-N

a b

a b

a b

a b

a b

(N,-)

a b

(N,-)a b

(N1,N2)

a b
(N1,N2)

[N,N]

[N,N]
a b

validity of TB

Figure 21: Metric constraints in ConDec++.

ample, a customer could express that she wants to interact only with
sellers able to deliver an ordered good by at most two days after the pay-
ment for the order. By supposing that the time granularity is a hour,
ConDec++ can express such an extended constraint as:

pay
(−,48)
•−−−I delivery

In combination with negation constraints, instead, the metric extension
can be used to model latency constraints, i.e., constraints stating that
at least a minimum amount of time is needed to accomplish a certain
operation after having received a request for that operation. For exam-
ple, a warehouse could state that it takes at least one day to ship a
requested order; ConDec++ models such a latency constraint as:

receive order req
(−,24)
•−−−I‖ ship order

Quantitative temporal constraints should not be interpreted as a way Use of quantitative
temporal constraintsto force the execution of a certain activity within a desired time inter-

val; indeed, interacting entities are autonomous, and cannot be con-
trolled. Instead, temporal constraints should be considered as a mean
to specify further requirements on the interacting parties, contribut-
ing to the definition of the QoS that must be guaranteed during the
interaction: compliant executions must not only respect the modeled
constraints, but also satisfy all the temporal requirements. For exam-
ple, a customer’s QoS requirement stating that she wants to obtain
an ordered good by at most two days after the order could be used

114 extending condec

Log Interaction
Model Instance

Activity

Originator

Datum

Date

Entry

* 1..* 1 0..*

1

1..*

1

1..*

1 0..*

EntryType

Figure 22: An MXML-like meta model for representing the traces produced
by the execution of interaction instances (the original MXML dia-
gram can be found in [199]).

to identify what requirements should be met by a seller in order to
consider it as a potential partner. This information could then be used
either to statically select good candidates among the possible sellers
(e.g., e-sellers whose behavioural interface promises to respect the de-
sired deadline), or to check at run-time if the real behaviour effectively
satisfies it. Identifying a violation may be useful in this setting to alert
the customer that the seller is breaking its published contract.

6.2 data-related aspects

As shown in Chapter 4, CLIMB is not only able to constrain execution
times, but it also support any kind of variable inside events. In this
way, modeling data related to activities and conditions on that data
becomes possible. We briefly introduce the MXML meta-model, and
then show how all its features can be seamlessly expressed in CLIMB.
This opens the way to the insertion of such advanced features also
in the graphical ConDec++ notation; we have not yet investigated how
the graphical notation could be extended in a user-friendly way, but we
will anyway provide some examples of how the resulting framework
could look.

6.2.1 The MXML Meta-Model

The MXML meta-model has been proposed by van Dongen and van
der Aalst as a “universal format” to represent and store execution
traces[199]. The meta-model has been originally developed to address
the execution traces produced by executing BP models, but it can seam-
lessly accommodate execution traces produced in many other settings.
Figure 22 recall the UML schema of the meta-model, by adapting the
name of the different concepts to the case of interaction models.

The MXML meta-model states that a log is associated to a set of exe-
cuted interaction models. Interaction models give raise to many different
executions, called instances. Each instance is described by an execution

6.2 data-related aspects 115

initial execution

execution
successful

execution
failed

started (ts) completed (tc)

canceled (tx)

Figure 23: The life cycle of ConDec activities (from [157]).

trace, composed by a set of entries. An entry, in turn, models the occur-
rence of an event during the execution, and is associated to:

• a corresponding activity of the interaction model;

• an originator, i.e., the interacting entity responsible for the gener-
ation of the event;

• an event type, reflecting the kind of event which has been gener-
ated on the involved activity;

• a date, representing the time-stamp at which the event has been
generated;

• a (possible empty) set of further specific data related to the event.

6.2.2 The Life Cycle of ConDec Activities

In MXML, an activity is associated to a corresponding life cycle, which
defines the set of operations (i.e., events) that can be executed on the
activity, and how the corresponding activity-state is affected. This op-
erations fills the event type part of an occurrence inside the MXML
meta model, and introduces the possibility of modeling non-atomic
activities: the same activity execution spans among different atomic
occurrences of the events involved in its life cycle; for example, the
execution of an activity could be started by someone, then assigned to a
new originator, and finally completed by her.

In [157], a simplified life cycle for the ConDec activities is introduced.
We refer to this simplified life cycle (but the complete MXML life cycle
could be seamlessly handled as well). The states and transitions of this
life cycle are reported in Figure 23. At quiescence, the activity is in
the initial state, representing that it is not currently in execution. When
the ts event related to the activity occurs, then the activity is started,
becoming in execution. To complete the execution of the activity, two
possibilities are supported:

• event tc occurs, and the activity is successfully completed;

• the activity cannot be completed, and therefore its execution is
canceled by means of the tx event.

116 extending condec

6.2.3 An illustrative example

Let us consider a simple but illustrative example, to show how the
introduction of data in the model, as well as the adoption of a non-
atomic model of activities, would enable the possibility of expressing
complex constraints.

Example 6.1 (Fragment of a Submit&Review process). Let us consider a
fragment of a review process. Such a fragment involves two roles: an author
and a reviewer.

A person playing the role of author has the possibility of submitting a pa-
per. If the paper submission is successfully completed, the author receives a
paper identifier, and a review must be provided by a person playing the role of
reviewer within 45 days from the submission.

However, the four-eyes principle must be respected between the execution
of the two activities: the same person cannot start a review of her own paper,
even if she is entitled to play both the roles of author and reviewer.

We now discuss how ConDec++ can extend ConDec with such new
features, maintaing a valid and complete mapping to CLIMB. We then
show how this example can be modeled in the new framework.

6.3 introducing data in condec
++

When formalizing the basic ConDec constraints, CLIMB adopts a simple
exec (A) term to represent the execution of (atomic) activities. Such a
term could be extended with further variables, to reconcile ConDec
with the elements of the MXML meta-model.

Definition 6.2 (Extended event). An extended CLIMB event is the term

exec (Etype,EID, IID,A,O,DataList)

where:

• Etype is the event type, taken from the ConDec activity life cycle,
i.e., Etype ∈ {ts, tc, tx};

• EID is the univocal identifier representing an occurrence of the
event;

• IID is the instance identifier, used to refer the occurrence of the
event to its specific execution context;

• A is the activity the event refers to;

• O is the originator responsible for the occurrence of the event;

• DataList is a list of further data associated to the event.

All these variables can be subject to CLP constraints or Prolog predi-
cates, whose definition must be inserted in the knowledge base of the
CLIMB specification.

6.3 introducing data in condec
++

117

Adatum1:
Type1

datum2:
Type2

(a) Atomic activity with data.

AinputDatum:
Type

outputDatum:
Type

(b) Non-atomic activity with start, com-
plete and cancel ports and input/out-
put data.

Figure 24: Atomic and non-atomic activities in ConDec++.

6.3.1 Representing Non-Atomic Activities in ConDec++

The ConDec activity life cycle shown in Figure 23 cannot be formalized
in LTL, because there is no possibility to correlate two separate events, a
feature that is needed to put in relationship a ts event with the corre-
sponding tc or tx one. With CLIMB, such a correlation could be easily
captured by exploiting the EID datum introduced in the extended rep-
resentation of events (Definition 6.2).

Since the activity life cycle is supported by CLIMB, we give the possi-
bility to adopt, in ConDec++, two kind of activities:

• atomic activity, corresponding to the one of ConDec;

• non-atomic activity, characterized by three ports which graph-
ically capture the ts, tc and tx events, i.e., represent the start,
completion and cancelation of the activity.

The proposed graphical notation is shown in Figure 24. Atomic activi-
ties, as well as the ports of non-atomic ones, can be associated to data
using a notation resembling the one of BPMN; for non-atomic activities,
data connected to the ts port represent the input data for that activ-
ity, whereas data connected to the tc port represent output data. We
suppose that the completion and cancelation port of an activity have a
complete visibility of the data associated to the starting port.

Furthermore, while ConDec++ constraints are directly associated to
atomic activities, they are associated to the ports of non-atomic ones. In
this way, it is possible to state that a certain activity must have at least
one successful completion (by attaching a 1..* cardinality constraint
on the completion port), or that a certain activity can be started only
if another activity has been successfully completed before (by inter-
connecting the start and the completion port of the two activities by
means of a precedence constraint).

6.3.2 Formalizing the Activity Life Cycle

Let us now discuss how the activity life cycle can be modeled as a set
of CLIMB ICs. Such constraints can be considered as fixed axioms that
must be repeated for each non-atomic activity contained in the model.
We therefore introduce the axioms supposing their application on an
arbitrary activity a. The axioms center around the idea of sharing the

118 extending condec

same event identifier among a starting event and a corresponding com-
pletion or cancelation; such a correlation supports the identification of
a non-atomic execution of the activity.

In particular, the first axiom expresses the uniqueness of execution
w.r.t. a given event identifier, whereas the next three axioms deal with
the legal ordering between ts and tc/tx, as depicted in Figure 23.

Axiom 6.1 (Uniqueness of the event identifier). Each event performed on
the activity must occur at most once with a given event identifier:

H(exec (E,EID, IID,a, _, _) , Te)→EN(exec (E,EID, IID,a, _, _) , Te2)

∧ Te2 > Te.

where E is a variable used to intensionally represent either ts, tc and tx.
Since the negative expectation is imposed with the same EID contained in the
body, many occurrences of the same event can happen if they have different
identifiers.

Axiom 6.2 (Completion of a started activity). When a is started by a
certain originator, and an identifier EID is associated to the corresponding
execution of the activity, then the same originator is committed to complete or
cancel the execution of a identified by EID:

H(exec (ts,EID, IID,a,O, In) ,Ts)

→E(exec (tc,EID, IID,a,O, In) , Tc)

∧ Tc > Ts

∨E(exec (tx,EID, IID,a,O, [In,Out]) , Tx)

∧ Tx > Ts.

The IC also achieves the data visibility informally pointed out above: the can-
celation event is associated to the input data, while the completion event is
associated to the input data as well as to the output data produced by the
activity execution.

Axiom 6.3 (Cancelation enabling). An execution of the activity, associated
to an event identifier EID, can be canceled by an originator iff the activity has
been previously started with identifier EID by the same originator:

H(exec (tx,EID, IID,a,O, _) , Tx)→E(exec (ts,EID, IID,a,O, _) , Ts)

∧ Ts < Tx.

Axiom 6.4 (Completion enabling). An execution of the activity, associated
to an event identifier EID, can be successfully completed by an originator
iff the activity has been previously started with identifier EID by the same
originator:

H(exec (tc,EID, IID,a,O, _) , Tc)→E(exec (ts,EID, IID,a,O, _) , Ts)

∧ Ts < Tc.

6.3 introducing data in condec
++

119

submit
paper

P: paper

review
paper

author

ID: paper id

reviewer

(-,45)

R: reviewsubmit_paper.O = review_paper.O
submit_paper.ID = review_paper.ID

submit_paper.ID = review_paper.ID

Figure 25: Example of a ConDec++ model.

6.3.3 Modeling the Submit-Review Example

Figure 25 shows a possible ConDec++ model representing the Sub-
mit&Review process fragment described in Section 6.2.3. When a con-
straint must involve conditions on data, they are inserted in a rounded
box, attached to the constraint.

The following choices have been made to represent the model; we
also report how the corresponding CLIMB formalization looks like.

• A non-atomic activity called submit paper is inserted to represent
the submission of a paper; the activity takes as input a paper and,
if successfully completed, associates an identifier to the paper.
The CLIMB formalization will contain the four axioms modeling
the activity life cycle, grounded on the submit paper activity.

• A non-atomic activity called review paper is inserted to represent
the review of a paper; the activity takes as input the identifier
of a paper, and produces a corresponding result. The CLIMB for-
malization will contain the four axioms modeling the activity
life cycle, grounded on the review paper activity.

• An extended succession constraint is used to connect the com-
pletion of a submission to the completion of a review, modeling
the requirement that a submitted paper must be successfully re-
viewed. The constraint is extended in two respects. First of all,
it must incorporate the desired deadline of 45 days; supposing
that the time granularity is fixed to a single day, then such an
extension can be simply modeled attaching to the succession
constraint the notation (−, 45), following the proposal discussed
in Section 6.1.3. Second, the constraint must express that the re-
view must effectively refer to the submitted paper; this can be
done by imposing that the paper identifier of the two activities

120 extending condec

is the same. By explicitly taking into account the involved roles,
the corresponding CLIMB formalization is:

H(exec (tc,EsID, IID, submit_paper,Os, [ID]) , Ts)

∧ role(Os,author)

→E(exec (tc,ErID, IID, review_paper,Or, [ID,Rr]) , Tr)

∧ Tr > Ts ∧ Tr < Ts + 45∧ role(Or, reviewer).

(•−−−I)

H(exec (tc,ErID, IID, review_paper,Or, [ID,R]) , Tr)

∧ role(Or, reviewer)

→E(exec (tc,EsID, IID, submit_paper,Os, [ID]) , Ts)

∧ Ts < Tr ∧ Ts > Tr − 45∧ role(Os,author).

(−−−I•)

Roles are expressed with predicates which affects the possibility
of triggering the ICs, restricting the matching originators to the
ones which play the requested role. Before an instance of the sys-
tem begins its execution, a knowledge base must be provided to
capture the knowledge which allows to infer who plays a given
role3. An example of role specification in CLIMB can be found in
Example 4.5 – Page 64. Finally, note that equivalence between
data (such as the paper identifier) can be expressed by using
the same variable in the happened event and expectation; e.g.,
when someone complete the submission of a paper obtaining
123 as paper identifier, then the expectation about the review is
directly generated with a ground identifier equals to 123.

• An extended not coexistence constraint states that the submit
paper activity is incompatible with the review paper activity, if
executed by the same originator on the same paper. In CLIMB, it
can be specified as4:

H(exec (tc,EsID, IID, submit_paper,O, [ID]) , Ts)

∧ role(O,author)

→EN(exec (ts,ErID, IID, review_paper,O, [ID,R]) , Tr).

Obviously, the CLIMB knowledge base could be extended by dealing
not only with participant-role relationships, but expressing all the back-
ground knowledge of the system, such as for example pricing condi-
tions in a BP, or the taxonomy of drugs in a clinical setting.

6.3.4 Cross-Flow Constraints

As far as now, we have always made the implicit assumption that all
the constraints of a ConDec model act within a specific instance of

3 Remember that, by default, the knowledge base produced by the translation function
from ConDec to CLIMB is the empty knowledge base.

4 We show only one side of the not coexistence constraint. Indeed, remember that

a •−−−•‖ b is equivalent to a •−−−−‖ b .

6.3 introducing data in condec
++

121

the system; many multiple instances of the system can evolve in paral-
lel, istantiating the model’s constraints independently from each other.
This is well reflected in the example formalized in Section 6.3.3: all the
ICs of the specification use the same instance identifier in happened
events and expectations: an expected occurrence must be generated by
the interacting entities within the same instance, and negative expecta-
tions have a scope limited to the instance.

However, nothing prevent us to relax such a limitation, modeling
cross-flow constraints which span across multiple instance. Let us con-
sider for example the case of an e-commerce choreography, where cus-
tomers and sellers interact to buy/sell goods. If the seller detects that
a certain customer C is behaving in a fraudolent way, then it will never
deliver anything to C in the future, even in new instances of execution.
Another cross-flow example, referred to the Submit&Review ConDec++

fragment discussed in Sections 6.2.3 and 6.3.3, is the insertion of a
global uniqueness constraint, stating that if an author receives a cer-
tain paper identifier attesting that the paper has been correctly submit-
ted, then such a paper identifier must be unique w.r.t. all the possible
instances of the conference submission system. Only if the identifier
is globally unique, it is possible to track all the relevant information
concerning its review. If two instances share the same paper identifier,
then it would be impossible to separate the review process of the two
papers.

Cross-flow constraints can be modeled by simply introducing two
instance identifiers variables, without imposing that they must unify.
For example, to model the “paper identifiers global uniqueness” con-
straint, we could employ the following CLIMB IC:

H(exec
(
tc,Es1ID, Is1ID, submit_paper,Os1, [ID]

)
, Ts1)

→EN(exec
(
ts,Es2ID, Is2ID, submit_paper,Os2, [ID]

)
, Ts2)

∧ Ts2 > Ts2.

The only shared variable among the happened event and the negative
expectation is the paper identifier. Therefore, all the other variables
contained in the negative expectation are universally quantified: they
forbid the presence of a whatsoever submission in each possible in-
stance of the system, if it shares the same identifier of the occurrence
which triggers the IC. Note that, as in the formalization of the 0..1

ConDec constraint, the difference between the two executions is mod-
eled as a difference between the involved execution times5.

5 Forgetting such a time constraint would produce an IC stating that no paper submis-
sion is accepted by the system: the same happened event triggering the IC would be
forbidden by the generated negative expectation!

7
R E L A T E D W O R K A N D S U M M A R Y

Contents
7.1 Related Work 123

7.1.1 Business Process Management 123

7.2 Clinical Guidelines 125
7.2.1 Service-Oriented and Systems 126

7.2.2 Multi-Agent Systems 127

7.3 Summary of the Part 128

In this Chapter, related work regarding the specification languages
of interaction models is presented. Then, the major contributions of
this part of the dissertation are briefly summarized.

7.1 related work

We present related work by taking into account the different areas
discussed in Chapter 2:

• Business Process Management;

• Clinical Guidelines;

• Service-Oriented Systems;

• Multi-Agent Systems.

We discuss in particular those approaches that face the specification of
such systems by adopting a flexible, declarative and open approach.

7.1.1 Business Process Management

The need for flexibility in BPM systems has been recognized by many
different authors as a key feature towards the effective adoption of
Business Processes and their ability to adapt to changing business
strategies and contexts.

In [185], van der Aalst proposes a framework in which process mod-
els are enhanced with the possibility of including generic parts, for the
sake of flexibility. In particular, models are hierarchically decomposed
in sub-processes, which can be of two types: concrete and generic.
While concrete sub-processes are statically linked to an underlying
complete specification, generic sub-processes are linked in a dynamic

123

124 related work and summary

fashion. That is, when the execution reaches a generic sub-process, the
model that must be effectively executed is selected on-the-fly.

In [173], Sadiq et al. introduce an hybrid framework, in which a
procedural and a declarative modeling style benefit from each other.
In particular, BP models mix pre-defined activities, inter-connected by
means of procedural control-flow relations (i.e., sequence, fork, split
and merge constructs), with partially specified parts, called pockets of
flexibility. A pocket of flexibility is a partially specified sub-process,
consisting of activities and a set of order and inclusion constraints. These
constraints share many similarities with the ConDec response, prece-
dence, existence and choice constraints. During the enactment phase,
when a pocket of flexibility is encountered, the user is guided in the dy-
namic construction of a completely specified sub-process model, com-
bining the enclosed activities so as to satisfy all the order and inclusion
constraints. The authors then present Chamaleon, a prototypical man-
agement system supporting the enactment of pockets of flexibility, as
well as a set of verification techniques able to detect conflicting and
redundant constraints.

In [87], Goedertier proposes the EM-BrA2CE framework, which sup-
ports declarative BP modeling by relying on a vocabulary based on the
OMG Semantics for Business Vocabulary and Business Rules (SBVR)
specification. The vocabulary of EM-BrA2CE supports the specifica-
tion of highly expressive statements, concerning business concepts
and rules of the organization, the involved interacting entities (called
agents) and the events characterizing the execution of the systems.
Among the advantages of the EM-BrA2CE specification language, we
cite the use of Natural Language Expressions to characterize business
rules in a human-readable and machine-understandable way, and lo-
cal closure, i.e., the possibility of specifying which parts of the modeled
system must be treated with an open or closed world assumption, mak-
ing it possible to capture semi-open models. Among the limits of the
approach, we cite the lack of an underlying temporal logic: while the
translation from ConDec to LTL and CLIMB enables the formal speci-
fication of qualitative and quantitative time constraints, EM-BrA2CE
cannot deal with temporal constructs.

In [158, 157], ConDec models are specified and enacted by a pro-
totypical management system called DECLARE, thanks to the trans-
lation to LTL. Beside the basic features of ConDec, which have been
presented in Chapter 3, DECLARE provides support for:

• modeling instance-related data, whose value is affected by the
execution of activities;

• dealing with a non-atomic model of activities;

• attaching data-related conditions to relation constraints, inhibit-
ing their triggering when the associated condition is false.

Activities-related data, which have been introduced in Chapter 6, are
not treated. Furthermore, all these added features are not part of the
formalization, i.e., they are treated by DECLARE separately from the

7.2 clinical guidelines 125

LTL conjunction formula which formalizes the model. In this disserta-
tion, instead, all the added features are part of the CLIMB formalization,
and can be therefore formally verified with the reasoning techniques
that will be presented in the next parts.

7.2 clinical guidelines

Several proposals for representing the procedural knowledge of Clin-
ical Guidelines (CGs) can be found in the literature: in [155, 182] the
interested reader can find surveys and comparisons of the most popu-
lar ones.

In [150], Mulyar et al. provide a pattern-based evaluation of four
among the most popular CGs modeling languages, focusing in par-
ticular on the control-flow perspective which, in the clinical setting,
determines the order of actions in medical treatments. In [149], the
authors point out that this comparison reveals limited capabilities of
the modeling language w.r.t. flexibility aspects, which are identified as
a critical issue in the medical setting. In fact, the authors argue that
there is a high degree of unpredictability when treating a patient: ex-
ceptional situations and emergencies may arise at any point in time,
making it difficult or even impossible to foresee what activity should
be performed next. In other words, even if they do not explicitly make
a distinction between CGs and the Basic Medical Knowledge, as we
have done in Section 2.5, they recognize that the application of an
ideal CG in a concrete situation is a complex task, which requires novel
modeling techniques. Instead of investigating the integration of proce-
dural and declarative knowledge, they propose to overcome this lack
by modeling control-flow in a declarative and flexible manner. In par-
ticular, they propose the adoption of CigDec as a suitable modeling
language. CigDec is a variant of the ConDec notation, which has been
described in Chapter 4.

To the best of our knowledge, only the research activity carried out
within the Protocure and Protocure II EU projects1 has attempted to
explicitly couple CGs and the Basic Medical Knowledge. CGs are mod-
eled using the Asbru language[141], while the Basic Medical Knowl-
edge is captured by means of LTL formulae.

The integration between a declarative and a procedural style of mod-
eling have instead been recently investigated in the BPM context. In
[157], a layered integration between ConDec and the YAWL procedu-
ral language [187] is described. The integration is “layered” because a
ConDec non-atomic activity could be internally modeled as a YAWL
process, or, conversely, a YAWL activity could be expanded as a Con-
Dec sub-diagram. The integration of the two kind of knowledge at the
same level, as in the case of Basic Medical Knowledge and CGs, is
however not investigated.

Another approach investigating this line of research is provided in
[126]. The authors propose to complement the specifications of the
adaptive BPM System Adept (which supports flexibility by change and

1 http://www.protocure.org/

http://www.protocure.org/

126 related work and summary

by deviation, and has been largely applied to the medical setting) with
domain knowledge, through the adoption of semantic constraints. A
generic criterion for semantic correctness of processes is given, avoid-
ing semantic conflicts like violation of dependency and mutual exclu-
sion between activites. Semantic constraints resemble the one of Con-
Dec and CLIMB, but CLIMB is more expressive in that it can take into
account also contexts, time, locations and data.

7.2.1 Service-Oriented and Systems

As pointed out in Chapter 2, state-of-the-art approaches model Service-
Oriented systems by adopting a procedural flavor, i.e., by completely
fixing control and message-flow of the interacting services. This is re-
flected also on the underlying formal languages to which these spec-
ification languages are mapped: Petri Nets [139, 193], state machines
[23] and message sequence charts [79] to cite some.

In [207], Zaha et al. argue that the procedural nature of such mod-
elling languages is an obstacle in developing choreographies of au-
tonomous web services because possible orderings of message exchange
between services must be explicitly included in the model. They pro-
pose a declarative language called Let’s Dance for modeling interactions
of web services in a flexible way. Let’s Dance provides a graphical nota-
tion for capturing message exchange patterns, and adopts

• Computation Tree Logic (CTL) for formally modeling the mes-
sage exchange between services;

• π-calculus [142] for capturing the corresponding execution se-
mantics [62].

Let’s Dance and ConDec share the same philosophy: the possible or-
derings among activities/messages are not explicitly enumerated, but
rather are implicitly derived from constraints, as all the orderings
which comply with them.

A vast literature relies on the use of variants of temporal logics for
capturing the properties that a service composition must meet. For
example, in [96] a restricted version of LTL is translated to the XQuery
language for monitoring web services. LTL is also adopted in [69] for
verification of correctness properties of service compositions., while
[81] exploits the SPIN model checker [99] to verify LTL properties of
service conversations.

The issue of flexibility and declarativeness in modeling (semantic)
web services has also been deeply investigated in the semantic web
community. The two principal approaches in this area are the OWL-
based Web Service Ontology2 (OWL-S) and the Web Service Modeling
Ontology3 (WSMO). Both approaches model the contract published
by web services in terms of their Input, Output, Preconditions and
Effect (IOPEs). All these elements are semantically annotated, so as

2 http://www.w3.org/Submission/OWL-S
3 http://www.wsmo.org

http://www.w3.org/Submission/OWL-S
http://www.wsmo.org

7.2 clinical guidelines 127

to express their intended meaning in a machine-understandable way.
In this respect, service retrieval/composition is done by taking into
account the semantics of concepts involved in the published contracts,
overcoming the limitations of a pure syntactic matching. Therefore,
while ConDec is focused on flexibility w.r.t. the specification of control
flow, these approaches guarantee flexibility concerning terminological
issues.

7.2.2 Multi-Agent Systems

To the best of our knowledge, the SOCS Project, upon which SCIFF
found its main motivations, is the first attempt to use Abuctive Logic
Programming (ALP) to reason about agent interaction at a social, open
level. Many other logics have been proposed to represent richer social
and institutional entities, such as normative systems and electronic
institutions.

Artikis et al. [13] present a theoretical framework for providing exe-
cutable specifications of particular kinds of multi-agent systems, called
open computational societies, and present a formal framework for
specifying, animating and ultimately reasoning about and verifying
the properties of systems where the behaviour of the members and
their interactions cannot be predicted in advance. Three key compo-
nents of computational systems are specified, namely the social con-
straints, social roles and social states. The specifications of these con-
cepts is based on and motivated by the formal study of legal and social
systems (a goal of the ALFEBIITE project), and therefore operators of
Deontic Logic are used for expressing legal social behaviour of agents
[204, 196].

SCIFF (and therefore also CLIMB) shares some concepts with norma-
tive systems, being E related with the O (obligation) operator of deontic
logic [174], and EN with the F (forbidden) operator. Similarities and
differences between the two frameworks have been studied in [5].

The social approach to the semantic characterization of agent interac-
tion is adopted by many researchers to allow for flexible, architecture-
independent and verifiable protocol specification. Prominent schools,
including Castelfranchi’s [43], Singh et al.’s [179, 206], and Colom-
betti et al.’s [77, 60] indicate commitments as first class entities in so-
cial agents, to represent the state of affairs in the course of social agent
interaction. The resulting framework is more flexible than traditional
approaches to protocol specification, as it does not necessarily define
action sequences, nor it prescribes initial/final states or necessary tran-
sitions.

For example, an interaction model could state that the seller is com-
mitted to send a certain good if the customer has paid for it. Such a
requirement could be represented as a conditional commitment

CC(seller, customer,orderPaid,orderSent)

The conditional commitment states that the customer is committed
to the seller that when orderPaid becomes true, it will bring about

128 related work and summary

orderSent. It is worth noting that the commitment centers around the
notion of “property that must be brought about”, and that the activities
which have the effect of bringing about the property are left unspeci-
fied. Interacting entities are then free to choose the most suitable activ-
ities on their own, provided that such activities are able to bring about
the desired properties. The ConDec approach is different: effects are
not first-class object of the language, and therefore the activities must
be chosen at design time.

Similarly to the activity life cycle in the BPM setting, commitments
have a life cycle reflecting their evolution in relation to the occurrence
of activities and their corresponding effects. In [206], a variant of the
Event Calculus (EC) [177] is applied to commitment-based protocol
specification. The semantics of messages (i.e., their effect on commit-
ments) is described by a set of operations whose semantics, in turn, is
described by predicates on events and fluents; the commitment life cycle
is specified by a set of EC axioms relating operations and fluents with
the possible states of the commitment. In Chapter 14, we will show
how the SCIFF-lite language can accommodate a reactive form of EC, to
address monitoring issues. This attests that the theory of commitments
can be grounded on SCIFF, and that SCIFF can be therefore considered
as a unifying framework for dealing with both ConDec constraints and
commitments.

7.3 summary of the part

We have provided an overview of different settings, in which the spec-
ification of interaction is still a challenging issue: Business Process
Management (BPM), Clinical Guidelines, Service Oriented and Multi-
Agent Systems. We have shown that current mainstream approaches
fail to model interaction at the right level of abstraction, leading to
rigid, over-specified and over-constrained model. We have claimed that
such a lack comes from their procedural and closed nature, and that
they must be complemented with an open and declarative perspective.

Two different languages for the declarative specification of open in-
teraction models have been then targeted:

• ConDec, a graphical language which focuses on the (minimal)
set of constraints to ensure that the collaboration is correctly car-
ried out, instead of imposing a rigid sequence of steps;

• CLIMB, a formal language inspired by SCIFF which captures the
desired and undesired behaviours by means of rules relating
what has already occurred in the course of interaction to what
is (not) expected to occur, and that provides a clear declarative
semantics of compliance with such rules.

We have then shown that ConDec can be successfully translated to
CLIMB, enabling the possibility of specifying interaction models at a
graphical intuitive level, automatically obtaining a corresponding un-
derlying formalization. We have assessed the suitability of CLIMB in

7.3 summary of the part 129

this context, showing that the proposed formalization is sound w.r.t. the
original formalization of ConDec, which has been given in terms of
propositional Linear Temporal Logic (LTL). We have then broaden the
comparison between the two formalisms, showing that, from a theoret-
ical point of view, SCIFF is strictly more expressive than LTL.

We have then exploited the expressiveness of CLIMB to extend Con-
Dec with new interesting features, such as:

• quantitative time constraints, to express delays, deadlines and
latencies;

• activity-related data, supporting the insertion of data-related con-
ditions and of non-atomic activities;

• cross-flow constraints, ConDec constraints spanning across mul-
tiple instances of the system.

The proposed translation allows us to rely on all the reasoning ca-
pabilities provided by SCIFF, for tackling the verification of (extended)
ConDec models. This is matter of the next parts of this dissertation.

Part II

S T A T I C V E R I F I C A T I O N

8
S T A T I C V E R I F I C A T I O N O F D E C L A R A T I V E O P E N
I N T E R A C T I O N M O D E L S

In formal logic,
a contradiction is the signal of defeat,

but in the evolution of real knowledge
it marks the first step in progress

toward a victory.

— Alfred North Whitehead

Contents
8.1 Desiderata for Verification Technologies 133
8.2 Verification of a Single Model vs a Composition of

Models 134
8.3 Static Verification of Properties 135

8.3.1 Existential vs Universal Properties 136

8.3.2 General vs Particular Properties 136

8.3.3 On the Safety-Liveness Classification 138

8.3.4 A ConDec Example 140

8.4 A-priori Compliance Verification 141
8.5 Compatibility and Legal Compositions 142

8.5.1 Compatibility Between Local Models 143

8.5.2 From Openness to Semi-Openness 145

8.5.3 Augmenting ConDec Models with Roles
and Participants 146

8.6 Conformance With a Choreography 149

This Chapter introduces the issue of static verification of declarative
open interaction models, specified using the ConDec notation. After
having discussed the desiderata that a static verification technology
must accomplish, two main settings in which static verification is adop-
ted are introduced: verification of a single model vs verification of
a composition of models. These two settings are then deeply investi-
gated, discussing the different verification tasks that can be applied on
them. The discussion is grounded on different ConDec examples.

8.1 desiderata for verification technologies

We argue that, in order to effectively help a developer in the process of
ensuring the correctness and safety of an interaction model and in the

133

134 static verification of declarative open interaction models

related debugging tasks, a static verification framework should satisfy
four main desiderata:

soundness and completeness If the verifier states that the sys-
tem will never reach an undesired state of affairs, we must be
sure that this is truly the case. In other words, our verifier should
not compute wrong answers, i.e., it must be sound. On the other
hand, it must be able to provide a positive answer if such a pos-
itive answer exists, i.e., it must be complete. If soundness/com-
pleteness are guaranteed only under certain assumptions, the
verifier must be accompanied by techniques able to identify if
these assumptions are respected by the model, taking specific
countermeasures and alerting the user if that is not the case.

generation of (counter-)examples When the verifier returns
a negative answer, which shows that the model must be revised,
the verifier must help isolating the relevant part of the model
which violates the requirement. In this respect, it would be desir-
able that a verification framework does not only provide correct
answers, but is also able to generate (counter-)examples in terms
of an execution trace which motivates the provided answer

push-button style After having produced the input to the verifier,
the verification process cannot be accomplished manually by the
user, nor should be carried out in a semi-automatic way, requir-
ing a constant user interaction; it should operate, as much as
possible, in an automatic way.

scalability Since static verification is carried out at design time,
the verifier’s performance is not time-critical. However, in a typ-
ical usage scenario, static verification is repeatedly exploited by
the user during the design phase, to constantly check the model
under development and trigger new design cycles when it must
be revised (see Section 8.2). In this respect, the design phase in-
volves a constant interaction between the verifier and the mod-
eler, and therefore scalability and good performances of the ver-
ification framework matter.

8.2 verification of a single model vs a composition of

models

Static verification aims at checking the model under development dur-
ing the design phase, before the execution. More specifically, static ver-
ification can be employed for dealing with two different problems

verification of a single model During the design phase, a model
must be repeatedly verified to ensure its correctness and consis-
tency, to check if it really meets all the requirements of the mod-
eler and the business objectives for which it has been conceived,
and to assess its compliance with internal policies, best practices,
external regulations and norms. In this setting, static verificationRelationship

between static
verification and the
model’s life-cycle

8.3 static verification of properties 135

Figure 26: Conformance and replaceability of services in a choreography.

is constantly exploited to follow the evolution of the model, en-
abling the premature identification of errors and undesired situa-
tions which, if encountered at run-time, could be costly to repair
or could even compromise the entire system. When a problem is
detected, a new design cycle can be triggered to properly revise
the model.

verification of a composition of models When the system un-
der study involves different separated components, and many
possible compositions can be synthesized, static verification sup-
ports the modeler in the process of checking whether differ-
ent concrete components can correctly interact with each other
and, more generally, in the identification of “legal” composi-
tions. A typical example of this setting is Service Composition, Static verification

and service
composition

in which a global choreography is designed to capture in an
abstract way the mutual obligations and requirements of each
interacting party, and then a set of concrete services must be
found s.t. they can interact correctly by accomplishing the chore-
ography rules of engagement. The same methodology is appli-
cable to deal with service conformance and replaceability, i.e.,
to respectively check whether a given concrete service can play
a role inside the choreography or if a service playing a certain
role in the choreography can be substituted with another con-
crete service (see Figure 26).

8.3 static verification of properties

The different static verification tasks carried out on a single model
can be generally characterized as verification of properties, sketched in
Figure 27. Properties formally capture requirements that the user poses
on the system under development. Requirements may differ from one
another in nature and purpose, and can be classified along different
axes.

For example, a requirement may express that an external regulation Examples of
propertiesmust be ensured in every execution of the system, or it may capture

hidden dependencies among activities, which should be entailed by

136 static verification of declarative open interaction models

model

properties
verification

yes

no

property

Figure 27: ConDec and verification of properties.

the model even if not explicitly expressed inside it. Here we focus
on two fundamental dimensions: existential vs universal and general vs
particular properties.

In the following, when the desired property will be expressible in
ConDec, we will use the graphical notation to represent it. For exam-
ple, the property stating that “a receipt must be eventually sent” could

be expressed by means of the
1..∗

send receipt ConDec constraint.

8.3.1 Existential vs Universal Properties

When the modeler is interested in verifying whether the ConDec model
under development always meets a best practice of the company, the
intended meaning is that the property must be respected in any possi-
ble execution of the system. Conversely, the reachability of a certain sit-
uation is guaranteed if there exists at least an execution which reaches
that situation. Generalizing, properties quantify over execution traces
in two complementary ways: existential and universal.CM

Definition 8.1 (∃-entailment). A property Ψ is ∃-entailed by a Con-Existential
entailment of a
property

Dec model CM (CM |=∃ Ψ) if at least one execution trace supported by
CM entails the property as well. If that is the case, then one of the sup-
ported execution traces can be interpreted as an example which proves
the entailment.

Definition 8.2 (∀-entailment). A property Ψ is ∀-entailed by a ConDecUniversal
entailment of a
property

model CM (CM |=∀ Ψ) if all the possible execution traces supported by
the model entail the property. If that is not the case, the generation of an
execution trace which follows the constraints of the model but breaks
the property can be interpreted as a counter-example which disproves
the entailment.

8.3.2 General vs Particular Properties

Properties can be general, if they describe basic/fundamental require-
ments which must be satisfied by an arbitrary interaction model, inde-
pendently from its specific nature, or particular, if they target a specific
model and domain. Examples of particular, domain-dependent prop-Examples of

particular properties

8.3 static verification of properties 137

erties are that a customer will obtain the ordered goods when execut-
ing an e-commerce protocol, or that a physician executing a clinical
guideline will not administer a certain drug twice in the same day.
Examples of general properties in a procedural setting, such as Petri Examples of general

propertiesNets, are liveness and deadlock freedom, whereas examples of general
properties in the ConDec setting are conflict freedom and absence of dead
activities [159, 146, 157], which, roughly speaking, identify global and
local inconsistencies inside a model.

Definition 8.3 (Conflict-free model[157]). A ConDec model CM is Conflict-free models
conflict-free iff it supports at least one possible execution trace, i.e., iff

CM |=∃ true

A conflicting model is an over-constrained model: it is impossible to
satisfy all its mandatory constraints at the same time. It cannot be exe-
cuted at all, and it is therefore globally-inconsistent. As a consequence,
it must be revised by rearranging (a sub-set of) its constraints.

In order to identify which sub-set of constraints is the source of
conflict, one should check conflict-freeness on each possible combina-
tion of mandatory constraints. Therefore, if the ConDec model under
study contains a conflict and is composed by n mandatory constraints,
2n−1 combinations should be checked to exactly identify the conflict-
ing part.

Definition 8.4 (Dead activity[157]). Given a ConDec model CM and Dead activities
an activity a, a is dead w.r.t. CM iff it can never be executed in any
execution trace supported by CM i.e., iff

CM |=∀
0

a

If a dead activity is executed, independently from the other executed
activities at least one constraint of the model is/will be violated. Since
dead activities are non executable, their presence reveals possible local
inconsistencies in the ConDec model, that must be properly treated
during the design phase.

Example 8.1 (Example of dead activities). Let us consider the simple Con-
Dec model

a •−−−I
0

b

Activity b is dead “by construction”: it is associated to an absence constraint,
which directly expresses that it cannot be never executed, i.e., that it is a dead
activity.

Activity a is dead as well. Let us suppose, by absurdum, that there exists an
execution trace supported by the model which contains the execution of a. Due
to the presence of the a •−−−I b constraint, such an execution trace must
also contain a consequent execution of activity b. However, the execution of b

138 static verification of declarative open interaction models

is unlegal, being b a dead activity. Therefore, there does not exist a supported
execution trace containing a; this attests that a is “indirectly” a dead activity.

8.3.3 On the Safety-Liveness Classification

In the field of formal verification, which, roughly speaking, address theFormal verification
problem of proving or disproving the correctness of a model underly-
ing a system w.r.t. a certain property, properties are usually classified
along the safety vs liveness dimension [110].

Intuitively, a safety property asserts that something bad will not happenIntuitive and formal
definition of safety
and liveness

during any execution of the system, whereas a liveness property states
that something good must happen.

In formal verification, the execution traces of the system are usually
of infinite length. Under this assumption, the intuitive concepts of safety
and liveness are formally denoted as follows:

• Ψ is a safety property iff every execution trace which violates Ψ
contains a finite prefix to which the violation can be referred to.
In other words, there is no way to extend such a prefix with an
infinite suffix, s.t. the property becomes satisfied: violation can
be detected in a finite initial part of the trace, and its occurrence
is irremediable.

• Ψ is a liveness property iff, given an arbitrary partial execution
trace of the system, it is possible to find an infinite suffix so that
the resulting infinite execution trace satisfies the property.

As pointed out in [151], there is a gap between the intuitive and the
formal characterization of safety and liveness. Therefore, the intuitive
meaning stated above is misleading, making often difficult to evaluate
whether a given property is a safety or a liveness property. For exam-
ple, while the LTL formalization of the response ConDec constraint is
a liveness property, its metric variation, stating that every execution of
a certain activity must be followed by the execution of another activity
within a maximum time span, is a safety property.

This drawback, together with the discrepancy between the time struc-
ture upon which safety and liveness has been defined and the one of
ConDec1, makes the safety/liveness distinction inadequate for classi-
fying ConDec properties.

We motivate this assertion by considering the following typical LTL
safety and liveness properties used in formal verification, then dis-
cussing if they are reasonable in the context of ConDec or not.

a. ♦a, which corresponds to the LTL formalization of the
1..∗
a Con-Examples of safety

and liveness
properties

Dec constraint , is a liveness property;

b. �(¬a), which corresponds to the LTL formalization of the Con-

Dec
0

a constraint and is commonly called invariant property,
is a safety property;

1 The formal characterization of safety and liveness property is given on infinite-lenght
traces, while in ConDec traces are always finite.

8.3 static verification of properties 139

c. �a is a safety property;

d. �(a ⇒ ♦b), which corresponds to the LTL formalization of the
a •−−−I b ConDec constraint, is a liveness property;

e. a variation of the response property, stating for example that b
must occur no later than 10 time units after a (which is com-
monly called promptness property[116]), is instead a safety prop-
erty;

f. �♦a (fairness property), is a liveness property.

In the ConDec setting, it becomes apparent that only certain safety
and liveness properties have a meaning. Since there is always the un- Termination

property in ConDecderlying assumption that the process must terminate, we should imag-
ine that each property is implicitly put in conjunction with a termina-
tion property [186].

Definition 8.5 (ConDec termination property). Given a ConDec model
CM = 〈A, Cm, Co〉, the LTL termination property term(CM) states that a
termination event e 6∈ A, incompatible with all other activities, must
eventually occur, and then is executed infinitely often in the future2:

term(CM) , ♦e∧�(e⇒ ©e) ∧ ∀ a ∈ A, �(e⇒ ¬a)

The termination property enables the possibility of embedding each
finite ConDec trace TL in an infinite trace, composed by TL followed
by an infinite suffix containing the execution of e in each state.

Let us now for example consider the two safety properties �(¬a)

and �a. Despite their structural similarity, while the first is legitimate
in the ConDec setting (it is in fact a ConDec constraint), the second
one is not, because it states that activity a must be continuously and
infinitely executed, hence it is incompatible with the termination prop-
erty: �a∧♦e∧�(e⇒ ©e) ∧�(e⇒ ¬a) is unsatisfiable.

Similarly, while the liveness property ♦a is acceptable and can be in-
terpreted as “activity a must be performed at least once before the ter-
mination of the execution”, fairness is never guaranteed by a ConDec
model, because it is impossible to execute a certain activity infinitely
often.

In conclusion, the implicit assumption that the execution of a Con-
Dec model must eventually terminate (i.e., that execution traces are
always finite) makes some typical safety/liveness properties senseless.
Therefore, we will not distinct, in the following, between safety and
liveness properties, but we will instead rely on the existential vs uni-
versal dimension.

2 In some cases, the incompatibility between e and the other activities is not expressed,
because there is the implicit assumption that in each state at most one event may
happen, and therefore the presence of e automatically excludes the possibility of
executing the other activities.

140 static verification of declarative open interaction models

payment
failure

choose
item

standard
payment

1-click
payment

payment
done

send
receipt

accept
advert

close
order

register

0..1

0..1

Figure 28: ConDec model of an order&payment protocol.

8.3.4 A ConDec Example

Figure 59 shows the ConDec specification of an order&payment proto-
col. There are three different parties involved–a merchant, a customer,
and a banking service to handle the payment– which are left implicit.

An execution of the model deals with a single order, hence the 0..1

constraint on the close order activity. An order can be closed if at least
one item has been chosen, and after the closure no more items can
be added to the order. Once the order has been closed, two possible
payment methods are available: 1-click payment and standard payment.
1-click payment is a special fast payment method which becomes avail-
able only if the customer has previously registered; registration, in
turn, requires that the customer explicitly accepts to receive advertis-
ing (either before or after the registration). The payment phase involves
an alternate succession between the payment and the answer from the
banking service: after having executed a payment, further payments
are forbidden until a response is received, and only a single response
is allowed for each payment. Finally, only if the banking service sends
a payment confirmation, a single receipt is delivered by the seller, at-
testing that the order has been correctly completed.

Sample supported executions are: the empty trace (no activity exe-
cuted), a trace containing one instance of accept advert followed by a
registration, and a model containing 5 instances of choose item followed
by a close order (in this case, the order is not paid and not delivered by
the seller).

Let us now consider some examples of properties verification on
this model. We present four different queries which reflect the dimen-
sions presented so far (general vs particular properties, existential vs
universal verification).

Query 8.1. Is send receipt a dead activity?

This is a general property, verified in a universal way. A positive
answer to Query 8.1 means that send receipt cannot be executed in any
possible valid model, indicating that probably there is a mistake in the
design (obtaining a receipt is the business goal of the customer). In
our example, a verifier should return a negative answer, together with
a sample valid execution, such as: choose item→ close order→ standard
payment→ payment done→ send receipt, which amounts to a proof that
send receipt is not a dead activity.

8.4 a-priori compliance verification 141

Query 8.2. Is it possible to complete a transaction under the hypotheses that
the customer does not accept to receive ads, and the merchant does not offer
standard payment?

This is a particular domain-dependent property that must be veri-
fied in an existential way. A verifier should return a negative answer.
In fact, to complete a transaction the customer must pay, and, the only
accepted payment modality is 1-click payment; however, this payment
modality is supported only if the customer has previously registered,
which in turn requires to accept ads and thus contradicts customer’s
requirement.

Query 8.3. It is true of all transactions that with 1-click payment a receipt
is always sent after the customer has accepted the ads?

This is a domain-dependent property, which must be verified in
an universal way. A verifier should discover that the property does
not hold: since there is no temporally-ordered constraint associated
with accept advert, accept advert is not forced to be executed before
send receipt. The existence of an execution trace in which the customer
chooses 1-click payment but accepts ads only after having received the
receipt amounts to a counterexample against the universal query. More
specifically, a verifier should produce a counter-example like: choose
item → close order → register → 1-click payment → payment done →
send receipt → accept advert. That could lead a system designer to de-
cide to improve the model, e.g., by introducing an explicit precedence
constraint from send receipt to accept advert.

Query 8.4. Is there a transaction with no accept advert, terminating with
a send receipt within 12 time units as of close order, given that close order,
1-click payment, and standard payment cause a latency of 6, 3, and 8 time
units?

This is an existential query with explicit times, used to express min-
imum and maximum latency constraints on the activities execution. It
turns out that the specification is unfeasible, because refusing ads rules
out the 1-click payment path, and the standard payment path takes more
than 12 time units. A verifier should therefore return failure.

8.4 a-priori compliance verification

A special case of property verification is the one in which the property
represents a set of regulations that must be always guaranteed by the
model (see Figure 29). A typical case is the one in which the model
under development represents the Business Process of an organization,
and the set of regulations formalizes the business contract stipulated
between the organization and the customer; verifying whether the BP
actually meets the business contract is of key importance, especially if

142 static verification of declarative open interaction models

model

a-priori
compliance
verification

yes

no

regulatory
model

Figure 29: A-priori compliance verification.

we think that these two aspects are often maintained separated by the
organization [90].

The importance of this issue has been further grown in the last years,
after the outbreak of high-profile financial scandals (Enron and World-
Com in the USA to cite some). New legislation such as the Sarbanes-
Oxley Act has been produced as a response to such scandals, increas-
ing the interest on corporate governance and compliance and on the
corresponding tools and methodologies.

In the ConDec setting, a-priori compliance evaluation deals withA-priori compliance
verification in
ConDec

the problem of ensuring that each execution supported by a ConDec
model meets all the rules and norms of a regulatory model. Therefore,
it can be reduced to a universal verification of properties.

Definition 8.6 (A-priori compliance). A ConDec model CM complies
with a set of regulations Ψ1, . . . ,Ψn iff all execution traces supported
by CM entail all the regulations:

∀ i ∈ [1,n], CM |=∀ Ψi

We speak of “a-priori” compliance because the analysis is carried out
before the enactment, i.e., by taking into account a model and not its
executions. A positive answer attests that if all the parties will behave
in accordance with the model’s constraints, then the regulatory model
will be surely respected. Anyway, auditing and verifying the actual
executions is fundamental, because in many different settings there is
no guarantee that, at run-time, participants will follow the model, and
behavioural deviations could lead to fraud and non-compliance. This
topic will be discussed in Chapter 15.

8.5 compatibility and legal compositions

When it comes to verification of compositions of models, two different
sub-cases may arise, as sketched in Figure 30 for the service-oriented
setting:

bottom-up composition In this case, the models of all parties (called
local models thereafter) are directly composed, in order to make
them interact and mutually benefit from each other.

8.5 compatibility and legal compositions 143

(a) Service composition: local
models are directly put
together.

(b) Service choreography: in addi-
tion to the constraints of each
local model, the shared global
rules of engagement are ex-
plicitly captured in an abstract
global model.

Figure 30: Two complementary methods to compose local interaction models
for realizing a global choreographic model.

A typical example of this case is the one in which the possibility
of combining a ticket-reservation service with a hotel-booking
service is exploited in order to obtain an integrated service able
to organize travels.

composition with an explicit choreographic model In this
case, the rules of engagement for achieving a global collabora-
tion are explicitly negotiated by the different parties and cap-
tured in a dedicated choreographic model (see Section 2.3.2).
The choreographic model plays the role of a public, global shared
contract which must be respected by the interacting local mod-
els. Such a contract is “abstract”, in the sense that its rules of
engagement do not predicate over concrete services, but on ab-
stract service roles. After having completed the specification of
the choreography, the problem is then to find a legal composi-
tion of local models which is, at the same time, consistent and
compliant with the choreography.

Typical examples of this scenario are B2B settings, where differ-
ent organizations are interested in cooperating with each other.
Here, the choreography makes explicit the mutual agreement be-
tween the parties, which are then free to choose which concrete
services will be employed as long as consistency and compliance
with the choreography are respected.

8.5.1 Compatibility Between Local Models

Checking if two local models can suitably interact is called, in the Con-
Dec setting, compatibility verification [157]. Roughly speaking, if two
local models are compatible, then there exists at least one course of

144 static verification of declarative open interaction models

interaction which is supported by both models. We precisely capture
such an intuitive meaning by defining the concept of composite model,
obtained by combining the activities and constraints of the local mod-
els to be composed, and by relating compatibility of the local models
to conflict-freeness of the composite model.

Definition 8.7 (Composite model[157]). Given n ConDec models CMi =

〈Ai, Cim, Cio〉 and CM2 = 〈A2, C2m, C2o〉 (i = . . . ,n), the composite model
obtained by combining CM1, . . . , CMn is defined as 34:

comp

(
CM1, . . . , CMn

)
, 〈

n⋃
i=1

Ai,
n⋃
i=1

Cim,
n⋃
i=1

Cio〉

Definition 8.8 (Compatibility). Two ConDec models CM1 and CM2

are compatible if their composition is conflict-free, i.e., iff:

comp

(
CM1, CM2

)
|=∃ true

Obviously, the notion of compatibility can be generalized to the case
of n local models. The detection of incompatibility means that a sub-
set of the n local models leads to a conflict. A precise identification
of the conflicting local models would require to build all the 2n−1

possible compositions, checking conflict-freeness on each of them.
It is worth noting that carrying out a compatibility check is a first

important step in the formal evaluation of composition’s feasibility,
but it is not significant if it is not accompanied by further analysis. The
following examples point out this issue.

Example 8.2 (Trivial compatibility). Let us consider a simple situation, in
which the two local models

CM1 = a •−−−I b CM2 = a •−−−•‖ b

must be composed. The two models are compatible, because they both support
the empty execution trace; therefore, by carrying out solely a compatibility
check would seem that a composition can be actually built. However, as soon
as an activity is executed, CM1 and CM2 are contradictory: both activity a
and activity b are dead in the composite model.

In the general case, if none of the local models contains constraints which
impose the execution of a certain activity (i.e., existenceN, exactlyN and
choice constraints), compatibility always returns a positive answer, because
the empty execution trace is supported.

Evaluating compatibility is the first step towards the guarantee that
a composition can be built, but it must be followed by further verifi-
cations, aimed at answering to questions like: “Are all activities of the
local models still executable in the composition?”, “Does the composi-
tion effectively achieve the business goals for which the composition

3 We suppose that the different local models share the same ontology of activities.
4 Note that in [157] the composition operator is defined as ⊕.

8.5 compatibility and legal compositions 145

itself has been built?”, “Does the composition respect the regulations
and norms of each involved party?”. These questions can be answered
by means of properties verification on the global model, obtained by
composing activities and constraints of the local models (as stated in
Definition 8.7). For example, an answer to the first question could be
provided by checking if the composite model contains dead activities.

8.5.2 From Openness to Semi-Openness

Since a ConDec model is open, it supports the execution of activities
not explicitly contained in the model itself. While this feature is desir-
able when the ConDec model is used in isolation, when the model is
composed with another ConDec model, it could cause undesired com-
positions to be evaluated as correct. The following example clarifies
the point.

Example 8.3 (Composition and openness issues). When two local models
must be composed, each one of them poses requirements on the other one.
Let us for example consider the following simple scenario. A customer wants
to find a seller to interact with. The customer comes with a ConDec model
representing its own desired constraints and requirements. In particular, they
express that:

• the customer wants to receive a good from a seller;

• if the customer pays for a good, then she expects that the seller will
deliver it;

• before paying, the customer wants the seller to provide a guarantee that
the payment method is secure.

Figure 31 shows the ConDec graphical models (CMC) of the customer and
of three candidate sellers, providing an explicit distinction of the involved
roles. The three sellers differ for what concerns the possibility of emitting a
guarantee upon request:

1. the seller depicted in Figure 31(b) (CM1
S) explicitly states that it does

not provide any guarantee upon request;

2. the seller depicted in Figure 31(c) (CM2
S) explicitly supports the possi-

bility of providing a guarantee;

3. the seller depicted in Figure 31(d) (CM3
S) does not mention provide

guarantee among its activities.

Following Definition 8.8 checking compatibility between CMC and the three
candidate sellers would state that CMC is not compatible with CM1

S, but it is
compatible with CM2

S and CM3
S. In particular, the two compositions CMC ∪

CM2
S and CMC ∪ CM3

S produce exactly the same global model. However,
while the answer given for the first two compositions is in accordance with
the intuitive notion of compatibility, the third one is not. In fact, when CMC

is composed with CM2
S, the behaviour of the seller is modified in that also

146 static verification of declarative open interaction models

pay send
good

c Seller

provide
guarantee

1..*

(a) Constraints of the cus-
tomer.

pay send
good

Customer s1

provide
guarantee

0

(b) Constraints of a seller
which does not provide
guarantees.

pay send
good

Customer s2

provide
guarantee

(c) Constraints of a seller
which is able to provide a
guarantee.

pay send
good

Customer s3

(d) Constraints of a seller
which does not explicitly
deal with the emission of
a guarantee.

Figure 31: Local models of a customer and of three candidate sellers.

the constraints of the customer must be respected. Contrariwise, when the
composition between CMC and CM3

S is established, the local model of the
customer has the effect of changing the local model of the seller, augmenting
it with a new provide guarantee activity. During the execution, the customer
would expect to receive a guarantee before paying, but this capability has not
been mentioned by the seller in its local model, and therefore there could be
the case that it is not supported.

The example clearly shows that the openness assumption must be
properly revised when dealing with the composition problem. To en-
sure that a composition can be established, the obtained global model
must obey to the following semi-openness requirement: for each in-
volved party, the activities under the responsibility of that party must also
explicitly appear in its local model.

8.5.3 Augmenting ConDec Models with Roles and Participants

In order to ensure the semi-openness assumption, each activity must
be associated to its corresponding originator or role. The following
definition extends the basic definition of a ConDec model with such a
relationship.

8.5 compatibility and legal compositions 147

Definition 8.9 (Augmented ConDec model). An augmented ConDec
model is a 4-tuple 〈AO, AR, Cm, Co〉, where:

• AO is a set of (A,O) pairs where A is an activity and O is its
originator;

• AR is a set of (A,R) pairs where A is an activity and R represents
the role of its originator;

• Cm is a set of mandatory constraints over AO and AR;

• Co is a set of optional constraints over AO and AR.

If AR = ∅, the model is completely grounded. Contrariwise, if AO = ∅
the model is abstract.

In this respect, a ConDec local model is defined as an augmented
model containing also an indication about the identifier of the local
model, and where an activity is associated either to such an identifier,
or to an abstract role.

Definition 8.10 (Local augmented model). A ConDec local augmented
model is a 5-tuple 〈ID, AO, AR, Cm, Co〉, where:

• ID is the identifier of the participant executing the local model;

• the other elements retain the meaning of Definition 8.9;

• AO is a set containing only elements of the type (A, ID).

A role identifies a class of originators; in the composition process,
abstract roles employed in each local model are mutually grounded to
concrete local models which participate to the composition.

Definition 8.11 (Grounding of a model). Given an augmented model
CMaug = 〈AO, AR, Cm, Co〉 and a function plays mapping roles to
concrete identifiers (i.e., stating that a certain identifier “plays” a given
role), the grounding of CMaug on plays is obtained by substituting
each role Ri with the corresponding concrete participant identifier
plays(Ri):

• AO ↓plays, AO ∪ {(A, plays(Ri)) | Ri ∈ dom(plays) ∧ (A,Ri) ∈
AR};

• AR ↓plays, AR/{(A,Ri) |Ri ∈ dom(plays)};

• Cm ↓plays and Co ↓plays are updated accordingly.

If AR ↓plays= ∅, each role has been substituted by a concrete iden-
tifier and the model becomes ground. A legal composite ConDec can
be now characterized as an augmented model obtained by composing
a set of local models, each one grounded by taking into account the
other ones, s.t. the composition is ground.

148 static verification of declarative open interaction models

Definition 8.12 (Augmented composite model). Given a set of aug-
mented local models Li = 〈IDi, AOi, ARi, Cim, Cio〉 (i = 1, . . . ,n) and
a function plays mapping roles to identifiers, the composition of the
local models w.r.t. plays is defined as

comp(L1, . . . , Ln)plays =

n⋃
i=1

Li ↓plays

where the union of two augmented models is a shortcut representing
the union of each corresponding element5. A composition is legal iff
comp(L1, . . . , Ln)plays is ground (see Definition 8.9).

It is now possible to revise the notion of compatibility reflecting also
the semi-openness assumption.

Definition 8.13 (Strong compatibility). n local models
Li = 〈IDi, AOi, ARi, Cim, Cio〉 (i = 1, . . . ,n) are strong compatible un-
der plays iff their augmented composition comp(L1, . . . , Ln)plays =

〈AO∪, AR∪, C∪m, C∪o〉 satisfies the following properties:

• comp(L1, . . . , Ln)plays is legal;

• comp(L1, . . . , Ln)plays is conflict-free;

• for each (a, IDi) which belongs to AO∪ but does not belong to
AOi, it must hold that:

comp(L1, . . . , Ln)plays |=∀ absence((a, IDi))

The third point states that if a certain activity a has been associated
to a participant IDi, but IDi has not explicitly mentioned a in its spec-
ification, then the composition must always ensure that a cannot be
executed.

Example 8.4 (Example 8.3 revisited). Let us re-examine the compatibil-
ity between the local models of the customer and the second seller shown in
Figure 31, supposing that their identifiers are respectively alice and hutter,
and customer and seller represent their roles. In the composition, alice
plays the role of customer, and hutter plays the role of seller. Hence,
plays(alice) = customer and plays(hutter) = seller.

By adopting the definition of augmented models, the ConDec diagram of
alice is:

Lalice = 〈{(pay,alice)},

{(send good,seller), (provide guarantee,seller)},

{existenceN(1, (send good,seller)), . . .},

∅〉

5 I.e., 〈AO1, AR1, C1m, C1o〉 ∪ 〈AO2, AR2, C2m, C2o〉 , 〈AO1 ∪ AO2, AR1 ∪
AR2, C1m ∪C2m, C1o ∪C2o〉.

8.6 conformance with a choreography 149

local localglobal

(a) Conflicting composition.

local localglobal

(b) Local non-conformance.

local localglobal

(c) Global
non-conformance.

Figure 32: Different possible errors in the realization of a choreography.

The grounding of alice w.r.t. the plays function is Lalice ↓plays=

〈{(pay,alice), (send good,hutter), (provide guarantee,hutter)},

∅,
{existenceN(1, (send good,hutter)), . . .},

∅〉

The grounding of hutter is obtained in a similar way.
When the two local models are composed, the grounding of alice causes

(provide guarantee,hutter) to belong to the set AO∪ of the composition.
Since the execution trace provide guarantee→ pay→ send good is compliant
with the composition but (provide guarantee,hutter) 6∈ AOhutter, the
two local models are not strong compatible.

8.6 conformance with a choreography

In presence of a choreographic model, the global model obtained by
composing the chosen local models must not only require their (strong)
compatibility, but it must also ensure that such local models correctly
play the abstract roles mentioned in the choreography.

A choreography is represented as an augmented abstract ConDec
model (i.e., an augmented model associating all the activities to roles
and not to concrete participants – see Definition 8.9).

As shown in Figure 32, when realizing a choreography with a set of
concrete local models, different possible errors may arise:

conflicting composition Independently from the choreography,
the chosen local models are not compatible.

local non-conformance A concrete local models is not able to
correctly play, within the choreography, the role it has been as-
signed to.

global non-conformance Even if each single local model is able
to correctly play the role it has been assigned to, when the whole
composition is built, it could be the case that the global obtained
model does not conforms the choreography anymore.

On the other hand, it could be the case that, if considered in isolation,
a participant would not be able to play the role it has been assigned to,
but it would anyway be able to take part of a conforming composition.

150 static verification of declarative open interaction models

Roughly speaking, such a situation may arise because when the con-
straints of each local model are joint with the ones of the others, the
constraints of the participant could be correctly “completed”.

As a consequence, in order to perform a correct verification, it is
necessary to first check that the composition is conflict-free, and then
verify the whole composition against the choreography.

To verify that a composition conforms to a desired choreography,
two approaches can be followed. The weak approach states that the
composition must be consistent with the choreography constraints in
at least one supported execution, while the strong approach requires to
guarantee that any execution supported by the composition respects
the choreography.

Definition 8.14 (Weak conformance). A composition of local models
comp(L1, . . . , Ln)plays is weak conformant with a choreography Chor

iff:

• L1, . . . , Ln are strong compatible w.r.t. plays (see Definition 8.13);

• comp(L1, . . . , Ln)plays |=∃ Chor ↓plays.

Definition 8.15 (Strong conformance). A composition of local models
comp(L1, . . . , Ln)plays is strong conformant with a choreography Chor

iff:

• L1, . . . , Ln are strong compatible w.r.t. plays (see Definition 8.13);

• comp(L1, . . . , Ln)plays |=∀ Chor ↓plays.

It is worth noting the similarity between strong conformance and
the notion of a-priori compliance introduced in Definition 8.6. In fact,
when verifying strong conformance the composition of local models
could be considered as the ConDec model under study, while the
choreography could represent (and, indeed, it actually represents) a
regulatory model.

The following example discusses the notion of strong and weak com-
pliance on a simple illustrative case, showing that to ensure confor-
mance, it is sufficient that the obtained composition “covers” a part of
the choreography.

Example 8.5 (Weak and strong conformance). Let us consider a simple
(fragment of a) choreography involving two roles – a customer and a seller.
The choreography states that:

a. two possible payment methods are available to the customer (payment
by credit card and payment by cash);

b. the customer can pay only after having closed the order;

c. if the customer pays, then the seller is entitled to send the ordered good
and, conversely, a good is sent to the customer only if a payment has
been previously done.

8.6 conformance with a choreography 151

cc
payment

send
good

Customer Seller

cash
payment

close
order

Figure 33: A simple payment choreography.

cc
payment

send
good

alice Seller
1..*

close
order

(a) Local model of
alice.

cc
payment

send
good

Customer lewis

(b) Local model of
lewis.

cc
payment

send
good

Customer hutter

(c) Local model of
hutter.

Figure 34: Three candidate local models (one customer and two sellers) for
the payment choreography shown in Figure 33.

Figure 33 shows the ConDec model of the resulting choreography, while
Figure 34 depicts three possible local models which can be composed to realize
such a choreography. In particular, alice can play the role of Customer,
while hutter and lewis can play the role of Seller.

Let us first consider the composition obtained by combining the model of
alice with the one of lewis. The composition is strong conformant with the
choreography:

• The choreography allows an open choice on the payment modality, and
both local models only deal with payment by credit card.

• The combination of the constraints which relate the payment with the
delivery of the good in the two local models leads to obtain the follow-
ing constraint cc payment •−−I• send good , which is a “special-
ization” of the choreography one (no choice is present).

• alice states that before paying, she wants to close the order, and that
between two payments at least one close order must be executed; such
a constraint is a specialization of the simple precedence constraint
contained in the choreography.

The composition obtained by combining the model of alice with the one
of hutter is instead not strong conformant. In fact, hutter does not impose
any temporal ordering between the payment and the delivery of the good.
Therefore, it could be possible that the good is sent twice: one time before the
payment of alice, and another time afterwards. In other words, the following

152 static verification of declarative open interaction models

execution trace is supported by the composition: close order→ send good→
cc payment→ send good. The first execution of the send good activity is not
preceded by a payment, thus violating a pescription of the choreography.

However, the composition is weak conformant, because it supports different
possible executions which comply with the choreography.

9
P R O O F P R O C E D U R E S

Contents
9.1 The SCIFF Proof Procedure 154

9.1.1 Data Structures and Proof Tree 155

9.1.2 Transitions 157

9.2 Formal Properties of the SCIFF Proof Procedure 163
9.2.1 Soundness 163

9.2.2 Completeness 163

9.2.3 Termination 164

9.2.4 ConDec Models and Termination of the
SCIFF Proof Procedure 165

9.3 The g-SCIFF Proof Procedure 165
9.3.1 Generation of Intensional Traces 166

9.3.2 Data Structures Revisited 166

9.3.3 Transitions Revisited 167

9.3.4 Comparison of the Proof Procedures 168

9.4 Formal Properties of the g-SCIFF Proof Procedure 169
9.4.1 Soundness 169

9.4.2 Completeness W.r.t. Generation of Traces 169

9.4.3 Termination 171

9.4.4 ConDec Models and Termination of the
SCIFF Proof Procedure 171

9.5 Implementation 171

This Chapter describes two abductive proof procedures able to rea-
son upon SCIFF (and therefore also CLIMB) specifications1:

• the sciff proof procedure verifies whether an execution trace The sciff proof
procedure in a
nutshell

complies with a SCIFF specification2, providing a concrete opera-
tional framework able to:

a. generate positive and negative expectations starting from
the trace and the specification;

b. check if the generated expectations are fulfilled by the ac-
tual occurring events.

1 In the following, we will always take into account CLIMB specifications, but the two
proof procedures are able to reason upon specifications relying on the full-SCIFF lan-
guage.

2 We will use notation sciff to denote the SCIFF proof procedure, differentiating it with
the SCIFF language and framework.

153

154 proof procedures

sciff is able reason upon a complete execution trace, or upon a
growing trace, by acquiring and processing dynamically occur-
ring events.

• the g-sciff proof procedure is an extension of sciff dedicatedThe g-sciff proof
procedure in a
nutshell

to the verification of properties. It adopts a generative approach,
starting from a specification and a property and trying to pro-
duce an execution trace which is compliant with the specifica-
tion and, at the same time, (dis)confirms the property. It is there-
fore especially suitable for static verification.

Thanks to the mapping from ConDec to CLIMB presented in Chapter 5,
these proof procedures will be applied, in the next chapters, to verify
ConDec models.

We describe how the two proof procedures work and recall their
formal properties. Some details are omitted, because the CLIMB and
SCIFF-lite languages are sub-sets of the SCIFF one. For a complete de-
scription, the interested reader is referred to [7].

9.1 the sciff proof procedure

sciff is an abductive proof procedure able to verify compliance of ex-
ecution traces with CLIMB specification. In this respect, it represents
the operational counterpart of the declarative semantics described in
Section 4.3, and of the notion of compliance in particular (see Defini-
tion 4.13 at Page 76). Starting from a (partial) execution trace Ti and
from a CLIMB specification S, sciff is able to dynamically fetch new
events and compute abductive explanations for the evolving course of
interaction, checking if such abductive explanations are E-consistent
and fulfilled by the occurred events. Hence, sciff concretely realizes
the schema depicted in Figure 17 – Page 76.

Being the language and declarative semantics of the CLIMB frame-Relationships
between sciff and
the IFF proof
procedure

work closely related with the IFF abductive framework [82], sciff has
taken inspiration from the IFF proof procedure. The IFF proof proce-
dure is one of the most well-known proof procedures which combine
reasoning with defined predicates together with reasoning with ab-
ducible predicates. While IFF is a general abductive proof procedure,
sciff is a general abductive proof procedure able to solve the specific
problem of compliance verification. In particular, sciff is a substantial
extension of the IFF, and adds, in a nutshell, the following features [7]:

• sciff supports the dynamic acquisition of events, i.e., the inser-
tion of new information during the computation;

• sciff supports universally quantified variables in abducibles and
quantifier restrictions, in order to properly reason with negative
expectations and E-consistency;

• sciff supports quantifier restrictions[40] and CLP constraints on
variables;

9.1 the sciff proof procedure 155

• sciff supports the concepts of fulfillment and violation (see Defi-
nition 4.12), executing a “hypotheses confirmation” step in which
the generated expectations are checked against the actual execu-
tion trace.

9.1.1 Data Structures and Proof Tree

As in the case of IFF, sciff is based on a rewriting system which trans-
forms one node into a successor node or a set of successor nodes by
applying transitions.

Definition 9.1 (sciff node and computed abductive explanation). A
sciff node is defined by the tuple 〈R,CS,psIC, T,∆A,∆P,∆F,∆V 〉, where:

• R is the resolvent, i.e., a conjunction (of disjunctions) of literals
– in CLIMB, literals are positive/negative expectations and predi-
cates defined in the knowledge base of the specification;

• CS is the constraint store, containing CLP constraints and quan-
tifier restrictions;

• psIC is a set of partially solved ICs (PSICs), i.e., rules whose body
has been partially subject to match with occurred events;

• T is the currently fetched (partial) execution trace;

• ∆A is the set of abduced predicates but expectations, which are
treated separately3;

• ∆P, ∆F and ∆V respectively represent the set of pending, fulfilled
and violated expectations.

The abductive explanation computed in the node is the set ∆ of all ab-
duced atoms: ∆ = ∆A ∪∆P ∪∆F ∪∆V . When at least one element of
the node contains⊥, then the node is a failure node, and the whole tuple
can be represented with ⊥. A failure node does not have successors.

Definition 9.2 (Initial node). Given a CLIMB specification S = 〈KB, IC〉
and an execution trace T, the initial node for the instance ST is I(ST) =

〈true, ∅, IC, Ti, ∅, ∅, ∅, ∅〉, i.e., in I(ST) the resolvent is true4, its partially
solved ICs are the ICs of the specification, and the computed abductive
explanation is the empty set.

Definition 9.3 (Derivation). Given a CLIMB specification S = 〈KB, IC〉
and an initial execution trace Ti, a derivation is a sequence of nodes
I(STi)→ N1 → . . .→ Nn, where:

3 in CLIMB, being expectations the only abducible predicates, such a set is always
empty.

4 In the general case of SCIFF, the initial resolvent is a goal, expressed in terms of a
disjunction (of conjunctions) of expectations. As discussed in Remark 4.1 – Page 70,
such a goal can be easily expressed as an IC, and therefore starting with a true
resolvent does not lead to loose generality.

156 proof procedures

• nodesN1, . . . ,Nn are obtained by applying the transitions listed
in Section 9.1.2;

• Nn is a node in which no transition is applicable, i.e., Nn is a
quiescent node.

If the initial execution trace is not explicitly mentioned, it is assumed
to be the empty trace.

In the general case, for a given node different transitions can be
applied by sciff. Therefore, starting from an initial node, the rewriting
system builds a proof (OR) tree, where each leaf node is a quiescent
node. In turn, a quiescent node is either the special failure node ⊥ or
a succcess node. If at least one leaf success node exists, then sciff has a
successful derivation.

Definition 9.4 (Success node). Given a CLIMB specification S = 〈KB,
IC〉 and a (final) execution trace Tf, a success node for STf has the
form S(STf) = 〈true,CS,psIC, Tf,∆A, ∅,∆F, ∅〉, where CS is consisent.
S(STf) has a true resolvent and does not contain pending nor violated
expectations.

Definition 9.5 (sciff successful derivation). Given a CLIMB specifi-
cation S, an initial execution trace Ti and a final execution trace Tf
s.t. Ti ⊆ Tf, there exists a successful derivation for STf starting from
Ti

5 iff the proof tree with root node the initial node I(STi) has at
least one leaf success node of the form S(STf). In this case, we write
STi `

Tf
∆ true, where ∆ is the computed abductive explanation in S(STf)

(as defined in Definition 9.10).

It is worth noting that abducibles in ∆ may contain variables, i.e.,Extraction of
(ground) abductive
explanations from
an intensional
computed
explanation

sciff computes intensional abductive explanations (see Section 4.3). Roughly
speaking, variables contained in positive expectations are existentially
quantified, whereas variables contained in negative expectations are
universally quantified (unless they also appear in a positive expecta-
tion). Therefore, the relationship between computed explanations and
the (ground) abductive explanations used in the declarative semantics
is that:

• An abducible containing universally quantified variables inten-
sionally represents the (possibly infinite) abducibles that are ob-
tained by grounding such variables in all possible ways, while
respecting the constraints contained in the constraint store. For
example, supposing that the time structure is (N,<), EN(e, T) ∧

T > 9 intensionally represents the infinite set

{EN(e, 10), EN(e, 11), EN(e, 12), . . .}

5 Without loss of generality, it can be assumed that Ti = ∅. As we will see, starting
from an empty trace or a trace Ti has the only difference that a sequence of happening
transitions must be applied in order to “import” all the events of Ti.

9.1 the sciff proof procedure 157

• An abducible containing existentially quantified variables inten-
sionally represents one among the possible abducibles obtained
by choosing a grounding which respects the constraints con-
tained in the constraint store6. For example, supposing that the
time structure is (N,<), E(e, T) ∧ T > 2∧ T 6 5 intensionally
represents E(e, 3) ∨ E(e, 4) ∨ E(e, 5).

9.1.2 Transitions

We briefly recall the (most relevant) transitions applied by sciff; for
a complete technical description of all transitions see [7]. Transitions
concretely realize inference rules which are applied on a node generat-
ing a set of possible successor nodes, until quiescence is reached. sciff
adapts all the inference rules developed for IFF [82] and extends them
with transitions dedicated to deal with dynamically growing execu-
tion traces, and to check E-consistency and fulfillment. Furthermore,
being CLIMB equipped with CLP constraints, also the transitions of the
underlying CLP solver [101] are incorporated.

A description of the transitions inherited (and adapted) from the IFF-inspired
transitionsIFF proof procedure follows. Each transition is described supposing

its application on node Nk.

propagation Given a PSIC H(E1, T1) ∧Body→ Head ∈ psICk and
an happened event H(E2, T2) ∈ Tk that unifies with H(E1, T1),
part of the PSIC can match with this happened event. sciff prop-
agates such a possibility by generating a new child node Nk+1

in which the rule H(E1, T1)∧Body→ Head is copied, obtaining
a rule H(E′1, T ′1)∧Body′ → Head′7; the copy is then modified by
removing H(E′1, T ′1) from its body and by inserting the equality
constraint between the two elements8. Therefore,

psICk+1 = psICk ∪ { E′1 = E2 ∧ T ′1 = T2 ∧Body′ → Head′ }

The original rule must be maintained in psICk+1 because hap-
pened events belonging to the body of a PSIC have a universal
quantification with scope the entire rule, and a further occurring
event able to match with H(E1, T1) would trigger a new, separate
propagation on the original rule.

case analysis If the body of a PSIC ∈ psICk contains an equality
constraint A = B, case analysis deals with such an equality con-
straint generating two child nodes:

6 If the constraint solver is (theory) complete [103] (i.e., for each set of constraints c,
the solver always returns true or false, and never unknown), then there will always
exist, for each success node, a substitution σ ′ grounding such existential variables.
Otherwise, if the solver is incomplete, σ ′ may not exist. The non-existence of σ ′ is
discovered during the grounding phase, and the result is that the node is marked as
a failure node.

7 A copy is obtained by taking into account each constitutive element of the PSIC,
renaming its variables.

8 Equality will be then handled by the case-analysis transition.

158 proof procedures

a. in the first node, sciff hypothesizes that the equality A = B

holds9;

b. in the second node, sciff hypothesizes that the equality
constraint does not holds, i.e., it assumes A 6= B.

Case analysis is applied in a similar way when the body of the
PSIC contains a CLP constraint.

logical equivalence When the body of a PSIC ∈ psIC becomes
true, i.e., PSIC = true → Head, then a new child node is gener-
ated, where PSIC is removed from psIC and Head is added to
the resolvent:

psICk+1 = psICk/{true→ Head}

Rk+1 = Rk ∧Head

The resolvent is then rearranged as a disjunction of conjunctions.

unfolding When a predicate p defined in the knowledge base of
the specification is encountered by sciff, sciff unfolds it by con-
sidering its definitions. sciff could encounter p in two different
situations:

a. sciff selects p from the resolvent Rk. In this case, the pos-
sible definitions of p are considered in a disjunctive man-
ner. sciff therefore generates a set of candidate successor
nodes; in each node, the predicate is substituted with one
of its definitions.

b. the body of a PSIC ∈ psIC contains a predicate defined in
the knowledge base. Here, all the possible definitions must
be simultaneously taken into account, and therefore sciff

generates a unique child node which contains as many
copies of the IC as the number of definitions of the pred-
icate; each copy substitutes the predicate with one of its
definitions.

abduction When sciff extracts an abducible predicate from Rk, it
abduces such a predicate; a new node is generated, where the
predicate is moved to the ∆Ak+1 set if it is a generic abducible,
or the predicate is moved to the ∆Pk+1 set if it is an expectation
(in fact, the expectation becomes pending).

splitting If the resolvent of the current node contains a disjunction,
i.e., Rk = A∨B, two candidate child nodes N1k+1 and N2k+2 are
generated, each one containing only one of the two disjuncts:
R1k+1 = A and R2k+1 = B.

The following transitions are peculiar to sciff, and are added tosciff peculiar
transitions handle the dynamic acquisition of happened events, CLP constraints,

E-consistency and fulfillment/violation of expectations:

9 The unification is then handled by the underlying constraint solver, taking into ac-
count quantification of the variables and their attached CLP constraints/restrictions.

9.1 the sciff proof procedure 159

clp transitions sciff inherits all the transitions of CLP [101]. A set
of further inference rules is also included, in order to handle
universally quantified variables and their interaction with exis-
tentially quantified variables, taking into account the involved
CLP constraints and quantifier restrictions. Just to cite an exam-
ple, a disunificationA 6= B is replaced with⊥ ifA is a universally
quantified unconstrained variable.

happening This transition takes a new event H(E, T) from an exter-
nal queue and generates a new node in which such a happened
event is inserted in the execution trace: Tk+1 = Tk ∪ {H(E, T)}.

closure Closure is applicabile when no other transition is applica-
ble, and is used to hypothesize that no further event will occur.
Therefore, closure imposes a Closed World Assumption (CWA,
[166]) on the execution trace, making possible to evaluate all the
expectations which are still pending. In the general case, closure
is applied non-deterministically: it generates two child nodes,
where the first child imposes the closure hypotheses, and the
second child states that the closure hypothesis does not hold.
When the execution trace has effectively reached its termination,
closure is applied deterministically, and only the first child node
is generated. In order to inform sciff that the trace is completed,
a flag must be set by the user.

times update This is a special transition which is enabled only by
an explicit request from the user, who must be sure that events
occur always in ascending order, i.e., that each time the happening
transition is executed starting from a node, the newly inserted
happened event is associated to a time which is greater or equal
than all the happened events already contained in the execu-
tion trace of that node. If this assumption holds, then the time
variables associated to pending positive expectations can be up-
dated, stating that they must be greater or equal than the time of
the inserted occurred event. In particular, the times update tran-
sition selects the maximum time contained in the current exe-
cution trace. By supposing that such a time is tMAX, the times
update transition operates as follows: ∀ E(E, T) ∈ ∆Pk,CSk+1 3
T > tMAX.

e-violation Violation of a positive expectation can be proven only
if there will not be any further event matching the expectation.
In particular, let us suppose E(E, T) ∈ ∆Pk; E(E, T) is violated if:

a. The closure transition has been previously applied to the
derivation Nk belongs to. In fact, closure states that no fur-
ther event will occur, and therefore a still pending expecta-
tion cannot be fulfilled anymore.

b. The times update transition has been applied, and T is asso-
ciated to a deadline which has expired.

160 proof procedures

The E-violation transition simply moves the expectation from the
set of pending expectations to the set of violated expectations:
∆Pk+1 = ∆Pk/{E(E, T)} and ∆Vk+1 = ∆Vk ∪ {E(E, T)}

e-fulfillment Let us suppose that E(E1, T1) ∈ ∆Pk and H(E2, T2) ∈
Tk. The E-fulfillment transition tries to fulfill the expectation
with the occurred event. In particular, it generates two child
nodes, N1k+1 and N2k+2.

a. InN1k+1, sciff hypothesizes that the expectation is fulfilled
by the happened event:

∆Pk+1 = ∆Pk/{E(E1, T1)}

∆Fk+1 = ∆Fk ∪ {E(E1, T1)}

CSk+1 = CSk ∪ {E1 = E2 ∧ T1 = T2}

b. in N2k+1, a sort of case-analysis is applied, by stating that
the happened event does not match with the expectation,
and therefore fulfillment does not hold:

∆Pk+1 = ∆Pk

∆Fk+1 = ∆Fk

CSk+1 = CSk ∪ {E1 6= E2 ∨ T1 6= T2}

en-violation Symmetrically with E-fulfillment, when EN(E1, T1) ∈
∆Pk and H(E2, T2) ∈ Tk, EN-violation generates two child nodes
N1k+1 and N2k+1.

a. InN1k+1, sciff hypothesizes that the happened event matches
with the negative expectation, leading to a violation:

∆P
1
k+1 = ∆Pk/{EN(E1, T1)}

∆V
1
k+1 = ∆Vk ∪ {EN(E1, T1)}

CS1k+1 = CSk ∪ {E1 = E2 ∧ T1 = T2}

b. in N2k+1, a sort of case-analysis is applied, by stating that
the happened event does not match with the expectation,
and therefore that the expectation remains pending:

∆P
2
k+1 = ∆Pk

∆V
2
k+1 = ∆Vk

CS2k+1 = CSk ∪ {E1 6= E2 ∨ T1 6= T2}

The constraint store will then deal with the inserted unifica-
tion/disunification constraints, taking into account how E1 and
T1 are quantified. For example, it could be the case that, despite
the fact that T1 belongs to a negative expectation, it is existen-
tially quantified (e.g., because it also appears in a positive expec-
tation). If it is the case, case-analysis is necessary.

9.1 the sciff proof procedure 161

Contrarywise, if both E1 and T1 are universally quantified, the
constraint solver will substitute the two inequalities imposed in
CS2k+1 with ⊥, and therefore the entire node will be declared as
a failure node; in this case, violation is deterministic.

en-fulfillment Symmetrically to E-violation, fulfillment of a neg-
ative expectation EN(E, T) ∈ ∆Pk can be ensured

a. After the closure transition, if no event in the execution
trace matches with the negative expectation10; in this case,
no further event will occur, and therefore the negative ex-
pectation cannot be violated anymore.

b. (If the negative expectation is associated to a deadline) after
a times update transition, which causes the deadline to ex-
pire, provided that none of the previously occurred event
matches with the negative expectation.

If one of these two situations holds, EN-fulfillment simply moves
the negative expectation from the set of pending expectations to
the set of fulfilled expectations: ∆Pk+1 = ∆Pk/{EN(E, T)} and
∆Fk+1 = ∆Fk ∪ {EN(E, T)}.

consistency To deal with E-consistency, sciff adds the following IC
to each specification:

E(X, T) ∧ EN(X, T)→ ⊥.

If two contradictory expectations exist, then sciff derives ⊥, and
the current derivation fails. It is worth noting that when a pos-
itive and a negative expectation matches with such an IC, case
analysis is applied. In this way, sciff restricts the domains of
the variables contained in the positive expectation so that E-
consistency is guaranteed.

Let us consider, for example, that Nk contains two pending ex-
pectations E(a, T) ∧ T > 4 and EN(a, T2) ∧ T2 > 8. By applying a
combination of the consistency, propagation and case analysis tran-
sitions, two paths are explored by sciff. In the first path, match-
ing between these two expectations and the expectations used in
the consistency IC is imposed, leading to a failure node. In the
other path, matching is avoided, and the result is that variable
T is affected by imposing, in the constraint store, that T 6 8: to
have an E-consistent explanation, the positive expectation must
be fulfilled by an “a” event happening after 4 and before or at 8.

Example 9.1 (A sciff derivation). Let us consider the CLIMB specification
S = 〈∅, {IC = H(a, T) → E(b, T2) ∧ T2 > T } and the execution trace
Ti = {H(a, 5), H(b, 10)} – we suppose that Ti represents a complete course
of interaction, hence the dynamic acquisition of new event occurrences is not
exploited. Let us briefly recall how the transitions of sciff are applied in order
to prove that such a trace is compliant with S (for the sake of simplicity, some
transitions are omitted):

10 ∀ E2 ∀ T2, H(E2,T2) ∈ Tk⇒ (E1,T1) does not unify with (E2,T2).

162 proof procedures

1. sciff starts from Ti, i.e., the root node is I(S, Ti).

2. sciff applies propagation, because there is a happened in the trace
which can match with the body of IC. A new node is generated, in
which a copy of IC is inserted by imposing the matching between T
and 5: psIC2 = {IC}∪ {T ′ = 5→ E(b, T ′2) ∧ T ′2 > T }

3. the equality constraint T ′ = 5 is imposed, generating a new node N3
in which the constraint store is properly extended, and the body of the
second PSIC is consumed:

psIC2 = {IC}∪ {true→ E(b, T ′2) ∧ T ′2 > 5}

CS2 = {T ′ = 5}

Note that being T universally quantified with scope the entire clause,
the node in which case analysis is applied imposing T 6= 5 is a failure
node.

4. Transition logical equivalence is applied, moving the head of the
PSIC with body true to the resolvent; the CLP constraint T ′2 > 5 is
then asserted:

psIC3 = {IC}

CS3 = {T ′ = 5∧ T ′2 > 5}

R3 = {E(b, T ′2)}

5. Abduction moves the expectation from the resolvent to the set of pend-
ing expectations:

psIC4 = {IC}

CS4 = {T ′ = 5∧ T ′2 > 5}

R4 = {true}

∆P4 = {E(b, T ′2)}

6. The second happened event in the trace is able to fulfill the pending
expectation. sciff therefore takes into account two possibilities, by ap-
plying E-fulfillment:

a) Fulfillment is effectively executed: constraint T ′2 = 10 is inserted
in the constraint store (note that such an equality constraint is
consistent with T ′2 > 5), and the expectation is moved from the
pending to the fulfillment set. Since no further event is present
in the external queue, the execution can be declared as closed;
transition closure is then applied deterministically, and a suc-
cess node is reached, because no expectation is violated and the
resolvent is true.

b) Fulfillment is avoided: constraint T ′2 6= 10 is imposed, waiting
for a new happened event able to fulfill the pending expectation.
However, there is no further event, and the execution is declared
as closed. Transitions closure and E-violation are applied in
sequence, because the expectation cannot be fulfilled anymore.

9.2 formal properties of the sciff proof procedure 163

sciff has therefore a single successful derivation, with an abductive explana-
tion ∆ = {E(b, 10)}.

If the trace given in input would have included also a further event H(b, 15),
then also the derivation through node N6b would have led to a successful
derivation, with ∆ = {E(b, 15)}. In fact, such an extended trace includes two
executions of b, and both executions are good candidates to fulfill the gener-
ated expectation.

9.2 formal properties of the sciff proof procedure

Three fundamental formal properties have been proven on sciff: sound-
ness, completeness and termination. We briefly recall the general defi-
nition of such properties, then grounding the analysis on sciff, dis-
cussing which restrictions are needed on the framework in order to
satisfy them. The interested reader may find the proofs of theorems in
[7].

9.2.1 Soundness

Generally speaking, a logic-based system meets the soundness property
if its inference rules prove only formulae valid w.r.t. its declarative
semantics.

In the context of CLIMB, soundness states that whenever sciff has
a successful derivation (as defined in Definition 9.5) for ST , then T

is compliant with S according to CLIMB declarative semantics (Defini-
tion 4.13).

Theorem 9.1 (Soundness of sciff). Given an arbitrary CLIMB instance ST ,

S∅ `T
∆ true⇒ compliant (ST)

Proof. See [7].

9.2.2 Completeness

A logic-based system is complete if its inference rules are able to prove
all formulae valid w.r.t. its declarative semantics.

In the CLIMB setting, completeness states that for each compliant
CLIMB instance ST , sciff has a successful derivation for S starting from
the empty trace and leading to T.

Theorem 9.2 (Completeness of sciff). Given an arbitrary CLIMB specifi-
cation S,

∀ T, compliant (ST)⇒ S∅ `T
∆ true

Proof. See [7].

164 proof procedures

9.2.3 Termination

A logic-based system meets the termination property every derivation
produced by applying its inference rules is finite.

First Order Logic (FOL) does not always guarantee termination whenSemi-decidability of
FOL proving if a certain formula is entailed by a theory. In particular, given

a provable sentence, a successful derivation will be always provided
in finite time, but when the sentence is not provable, the application
of the inference rules may run forever. This issue is known as semi-
decidability. Fortunately, decidable fragments of FOL, i.e., fragments
which guarantee termination, can be found.

Since CLIMB belongs to the first order setting, it suffers from the
semi-decidability issue as well. Therefore, suitable restrictions on the
CLIMB language are needed to guarantee termination.

Such restrictions are an extension of the classical acyclicity condi-Termination and
acyclicity conditions tions imposed on logic programs [105] to ensure termination. Roughly

speaking, acyclicity imposes the absence of loops in a logic program,
i.e., it requires that if predicate p is defined in terms of q, then q cannot
be defined by means of p. Acyclicity conditions need to be extended
to deal also with Integrity Constraint (IC), as described by Xanthakos
in [205].

We briefly recall such extended acyclicity conditions, which have
been defined for IFF, and therefore also apply to the SCIFF frame-
work11.

Definition 9.6 (Level mapping [205]). A Level mapping for a logic pro-
gram P is a function which maps ⊥ to 0 and each ground atoms ∈ BP

to a positive integer, i.e., | · | : BP →N/{0}, where BP is the Herbrand
base of P. For A ∈ BP, |A| denotes the level of A.

Definition 9.7 (Boundedness [205]). Given a level mapping | · |, a lit-
eral L is bounded w.r.t. | · | iff | · | is bounded on the set of ground in-
stances of L. In this case, we assume

|L| , max{|Lg| s.t. Lg is a ground instance of L}

Definition 9.8 (Acyclic knowledge base [205]). Given a CLIMB knowl-
edge base KB, a clause C ∈ KB is acyclic w.r.t. a level mapping | · |
if, for every ground instance H ← B1 ∧ . . . ∧ Bn of C, it holds that
∀ i ∈ [1, . . . ,n], |H| > |Bi|. The entire KB is acyclic w.r.t. | · | if all its
clauses are. KB is called acyclic if it is acyclic w.r.t. some level map-
ping.

Definition 9.9 (Acyclic CLIMB specification). A CLIMB specification
S = 〈KB, IC〉 is acyclic w.r.t. a level mapping | · | iff:

a. KB is acyclic w.r.t. | · |;

11 For the sake of simplicity, we do not discuss here the case of negated literals; the
interested reader is referred to [205].

9.3 the g-sciff proof procedure 165

b. each IC ∈ IC is acyclic w.r.t. | · |; an IC is acyclic w.r.t. | · | iff for
each ground instance B1 ∧ . . .∧ Bn → H1 ∨ . . .∨Hm, it holds
that ∀ i ∈ [1, . . . ,n] ∀ j ∈ [1, . . . ,m], |Bi| > |Hj|

12.

S is called acyclic if it is acyclic w.r.t. some level mapping.

The following theorem states that sciff is guaranteed to terminate
the computation if the specification under study is acyclic and bounded.

Theorem 9.3 (Termination of sciff). Given a CLIMB instance ST , if S =

〈KB, IC〉 is acyclic and all the literals occurring in KB and IC are bounded,
then every sciff derivation for ST is finite.

Proof. See [7].

9.2.4 ConDec Models and Termination of the SCIFF Proof Procedure

Let us now consider the CLIMB specifications obtained by translating
ConDec models, i.e., obtained by applying the tCLIMB function intro-
duced in Section 5.1. An important result is that sciff is guaranteed to
terminate for such specifications.

Theorem 9.4 (sciff terminates when reasoning upon ConDec specifi-
cations). Given a ConDec model CM, sciff is guaranteed to terminate when
reasoning upon tCLIMB (CM).

Proof. We prove that tCLIMB (CM) = 〈∅, IC〉 is acyclic. Since the knowl-
edge base obtained by applying tCLIMB is always empty (see Defini-
tion 5.1 – Page 84), it is always acyclic. Furthermore, all ICs belonging
to IC contain only happened events in their body, and expectations in
their head. Hence, the following level mapping can be established:

a. for each ground happened event H(e, t), |H(e, t)| = 2;

b. for each ground positive expectation E(e, t), |E(e, t)| = 1;

c. for each ground negative expectation EN(e, t), |EN(e, t)| = 1.

From Definitions 9.7 and 9.9, tCLIMB (CM) is acyclic and bounded
w.r.t. | · | and, from Theorem 9.3, termination is therefore guaranteed.

9.3 the g-sciff proof procedure

g-sciff is an abductive proof procedure specifically dedicated to veri-
fying entailment of properties by SCIFF specifications. g-sciff relies on
the data structures and transitions of sciff, extending them with a tran-
sition which transforms positive pending expectations into happened

12 If Bi is a predicate defined inside KB then also all the (ground) atoms appearing
in its definition must have a level mapping greater than the one of all Hj.

166 proof procedures

events. In this way, given a CLIMB specification, g-sciff is able to gener-
ate execution traces compliant with the specification. We will describe
how g-sciff concretely realizes this generative approach, delegating
the discussion related to the verification of properties (in the ConDec
setting) to the next chapter.

9.3.1 Generation of Intensional Traces

g-sciff is able to generate execution traces because it considers happened
event as abducibles. In this way, abduction is used to simulate execution
traces compliant with the specification under study.

To concretely realize such a feature, g-sciff incapsulates in a dedi-Generative
behaviour of g-sciff cated transition the following behaviour: “if there is a pending posi-

tive expectation, then abduce a corresponding happened event able to
fulfill the expectation”. Such abduced happened event is treated as a
“normal” happened event, and it can therefore have an impact on the
specification under study, matching with happened events contained
in the body of its ICs and causing them triggering. Triggered ICs, in
turn, will generate new expectations, leading to a new iteration of the
generative process. In a nutshell, in each step g-sciff takes into ac-
count the current execution trace and “simulates by abduction” the
occurrence of new events according to the ICs of the specification.

Since pending positive expectations could contain variables (e.g.,Intensional
execution traces node N2 of Example 9.1 has a pending positive expectation with a

variable time), when a corresponding happened event is generated by
g-sciff, it will contain variables as well. In this respect, execution traces
generated by g-sciff are intensional: they represent classes of (ground)
execution traces compliant with the specification under study.

In the general case, also an initial execution trace Ti could be pro-
vided as input for g-sciff: the proof procedure will try to extend Ti in
order to comply with the specification under study.

9.3.2 Data Structures Revisited

The data structures and the concepts of initial and success node are
identical to the ones of sciff, defined in Section 9.1.1. The only differ-
ence is that in the case of g-sciff, also happened event can be abduced,
hence the definition of computed explanation must be revised accord-
ingly.

Definition 9.10 (g-sciff node and computed abductive explanation).
A g-sciff node is defined by the tuple 〈R,CS,psIC, T,∆A,∆P,∆F,∆V 〉,
where:

• R is the resolvent, i.e., a conjunction (of disjunctions) of literals
– in CLIMB, literals are positive/negative expectations and predi-
cates defined in the knowledge base of the specification;

• CS is the constraint store, containing CLP constraints and quan-
tifier restrictions;

9.3 the g-sciff proof procedure 167

• psIC is a set of partially solved ICs, i.e., rules whose body has
been partially subject to match with occurred events;

• T is the generated execution trace, which contains the initial
trace Ti given in the initial node;

• ∆A is the set of abduced predicates but expectations, which are
treated separately13;

• ∆P, ∆F and ∆V respectively represent the set of pending, fulfilled
and violated expectations.

The abductive explanation computed in the node is the set ∆ of all ab-
duced atoms: ∆ = ∆A ∪∆P ∪∆F ∪∆V ∪ (T/Ti).

Definition 9.11 (g-sciff successful derivation). Given a CLIMB specifi-
cation S and an initial execution trace Ti, there exists a g-sciff successful
derivation for S starting from Ti iff the proof tree with root node the
initial node I(STi) has at least one leaf success node. In this case, we

write STi g

Tf

∆ true, where ∆ is the computed abductive explanation
in a success node (as defined in Definition 9.10) and Tf/Ti ⊆ ∆ is the
set of (intensional) happened events generated by g-sciff during the
derivation.

A ground compliant execution trace can be simply extracted from Extraction of a
ground execution
trace

a success node by choosing a grounding for all the contained vari-
ables, s.t. all the involved CLP constraints are respected14. This is in
accordance with the grounding of a computed explanation described
in Section 9.1.1.

9.3.3 Transitions Revisited

sciff transitions are modified as follows:

happening is removed because dynamic acquisition of external
occurred events is not needed anymore. Indeed, an initial exe-
cution trace could be provided to g-sciff at its start-up, but then
the proof procedure works autonomously, trying to extend such
an initial trace in order to make it compliant with the specifica-
tion.

fulfiller is inserted to concretely implement the generative rule
stating that “if an expectation cannot be fulfilled by a happened
event in the current execution trace, then the trace is extended
by generating a happened event able to fulfill the expectation”.
More specifically, fulfiller is applicabile in node Nk only if:

• ∆Pk 6= ∅;

13 Also in the case of g-sciff, when dealing with CLIMB specifications such a set is always
empty, because only expectations and happened events are abducible.

14 Indeed, when an happened event is abduced, its variables are existentially quantified

168 proof procedures

• E-fulfillment cannot be applied;

• the closure transition has not been applied before in the
derivation.

Such a situation exactly represents the case in which there is
a pending expectation which cannot be fulfilled, and new hap-
pened events can still be generated in order to fulfill it 15. Check-
ing whether E-fulfillment can be applied is a test executed for ef-
ficiency reasons: if E-fulfillment is applicable, there is no need to
generate a happened event, because the execution trace already
contains a good candidate.

When applied to node Nk, fulfiller extracts a pending expecta-
tion E(E, T) from the ∆Pk set, moving it to the set of fulfilled
expectations and inserting in the execution trace a correspond-
ing happened event H(E, T):

∆Pk+1 = ∆Pk/{E(E, T)}

∆Fk+1 = ∆Fk ∪ {E(E, T)}

Tk+1 = Tk ∪ {H(E, T)}

Example 9.2 (A g-sciff derivation). Let us consider again Example 9.1,
but using g-sciff as a reasoning engine. The first derivation is equal to the
derivation of sciff starting from the initial node and leading to nodeN6a. The
difference between the two proof procedures is in nodeN6b: while sciff states
that the expectation E(b, T ′2) cannot be fulfilled if T ′2 6= 10, g-sciff applies the
fulfiller transition, generating a new nodeN7b in which H(b, T ′2) is abduced
and inserted in the execution trace, and E(b, T ′2) is declared fulfilled. N7b is
then a success node.

The answers provided by g-sciff mean that the initial execution trace
{H(a, 5), H(b, 10)} is compliant (node N6a), or that a further b at a time
different than 10 and greater than 5 is required to make the initial trace
compliant (node N7b). In this latter case, the computed explanation is ∆ =

{E(b, T ′2), H(b, T ′2} and the intensional generated execution trace is {H(a, 5),
H(b, 10), H(b, T ′2)}, with T ′2 > 5∧ T ′2 6= 10 (these CLP constraints are con-
tained in the constraint store of node N7b). Each execution trace grounding
T ′2 at a value which is greater than 5 and different than 10 is therefore compli-
ant.

9.3.4 Comparison of the Proof Procedures

g-sciff extends sciff because it abduces happened events, following
the rule stating that each positive expectation must have a correspond-
ing happened event. Since sciff is a general abductive proof procedure,
it is able to abduce happened events as well, provided that the speci-
fication under study declares H as an abducible predicate. This is the

15 If closure has been applied before, then the application of fulfiller generate a ⊥ child
node: it tries to extend the trace with a new happened event, but closure forbids such
a behaviour.

9.4 formal properties of the g-sciff proof procedure 169

case of SCIFF-lite specifications, which employ happened events as ab-
ducibles in order to deal with composite events (see Section 4.2.6 –
Page 66).

Given a CLIMB specification S, g-sciff computations on S are, from
a theoretical point of view, equivalent to sciff computations over the
“generative” SCIFF-lite version of S.

Definition 9.12 (Generative extension). Given a CLIMB specification
S = 〈KB, IC〉, its SCIFF-lite generative extension is:

gen (S) = 〈KB, {E, EN, H}, IC∪ {E(E, T)→ H(E, T)}〉

However, from a practical point of view g-sciff performs on S much
better than sciff performs on gen (S), because of the efficient imple-
mentation of the fulfiller transition vs the general rule E(E, T)→ H(E, T).

9.4 formal properties of the g-sciff proof procedure

Formal properties of g-sciff are investigated by relying on the results
given for sciff.

9.4.1 Soundness

Soundness of g-sciff states that each trace generated by g-sciff starting
from a specification and an initial trace is compliant with the specifica-
tion, according to CLIMB declarative semantics.

Theorem 9.5 (Soundness of g-sciff). For each CLIMB specification S and
for each (initial) trace Ti:

∀ ∆, STi g

Tf

∆ true⇒ compliant

(
STf

)
Proof. Soundness of g-sciff can be reduced to soundness of sciff by
considering the generative extension of S (as defined in Definition 9.12).

9.4.2 Completeness W.r.t. Generation of Traces

The completeness result shown in Theorem 9.2 for sciff trivially holds
also for g-sciff. In fact, for an arbitrary CLIMB specification S and for
each trace T compliant with that specification, a g-sciff derivation for
S starting with T as the initial execution trace corresponds exactly to a
sciff derivation: being T compliant, the fulfiller transition is never em-
ployed, because all the generated positive expectations can be fulfilled
by happened events contained in T. Formally, it holds that, given an
arbitrary CLIMB specification S:

∀ T, compliant (ST)⇒ ST g

T

∆ true

However, in the context of g-sciff a more interesting notion of com- Completeness
w.r.t. trace
generation

170 proof procedures

pleteness concerns the generative nature of the proof. In this respect,
completeness would state that, given a CLIMB specification S and an
initial execution trace Ti, g-sciff is able to generate all the possible
execution traces which contain Ti and are compliant with S:

∀ Ti ∀ Tf ⊇ Ti, compliant

(
STf

)
⇒ STi g

Tf

∆ true

We will refer to this notion of completeness as completeness w.r.t. trace
generation.

g-sciff does not meet such a completeness property: since its gen-
erative approach is driven by the ICs of S and by the initial execution
trace, only a sub-set of these traces will be found.

Example 9.3 (g-sciff is not complete w.r.t. trace generation). As shown
in Example 9.2, given the CLIMB specification S = 〈∅, {H(a, T)→ E(b, T2) ∧

T2 > T }〉 and the (initial) execution trace Ti = {H(a, 5), H(b, 10)}, g-sciff
intentionally computes the following infinite compliant execution traces:

{H(a, 5), H(b, 10)}

{H(a, 5), H(b, 6), H(b, 10)}

{H(a, 5), H(b, 7), H(b, 10)}

. . .

{H(a, 5), H(b, 10), H(b, 11)}

. . .

However, many other execution traces compliant with S and including Ti
exist, such as for example:

{H(a, 2), H(a, 5), H(a, 6), H(b, 10)}

{H(a, 2), H(b, 4), H(a, 5), H(b, 10), H(b, 12)}

Let us now consider the same specification S, but with an empty initial ex-
ecution trace (Ti = ∅). In this case, there is only one successful derivation
produced by g-sciff, in which the final execution trace is the empty trace. In
fact, the behaviour of g-sciff is driven by the initial trace and by the IC of S:
when the initial trace does not contain at least one execution of a, the IC does
not trigger, no expectation is generated and no fulfiller transition is applied.

As shown by the example, g-sciff does not guarantee completenessWeak completeness
w.r.t. trace
generation

w.r.t. trace generation. Nevertheless, it is guaranteed that if an initial
execution trace can be extended to obtain a compliant execution trace,
then g-sciff has at least one successful derivation; we call this property
weak completeness w.r.t. trace generation. This is a key property: as we
will see in the next chapter, g-sciff will be employed to verify whether
a given specification is consistent, i.e., admits at least one compliant
execution; weak completeness w.r.t. trace generation guarantees that
g-sciff handles such an issue in a complete way.

9.5 implementation 171

Theorem 9.6 (Weak completeness w.r.t. trace generation). Given an ar-
bitrary CLIMB specification S:

∀ Ti,
(
∃ Tf ⊇ Ti, compliant

(
STf

))
⇒
(
∃ ∆, S∅ g

T′f
∆ true

)
Proof. A compliant execution trace extending Ti can be found iff STi
admits at least one abductive explanation which is E-consistent. g-sciff
therefore starts from STi and computes an (intensional) E-consistent
abductive explanation (in this first part of the computation, it behaves
exactly as sciff). In the general case, such an explanation is not Ti-
fulfilled: further event occurrences are needed to comply with S. g-sciff
then fulfills such pending positive expectations by repeatedly applying
the fulfiller transition, until a success node is reached.

9.4.3 Termination

Termination of g-sciff is reduced to termination of sciff via the appli-
cation of the generative extension of a specification (Definition 9.12).

Theorem 9.7 (Termination of g-sciff). Given a CLIMB specification S, if
gen (S) is acyclic and all the literals occurring in it are bounded, then every
g-sciff derivation for S starting from an arbitrary execution trace is finite.

Proof. A g-sciff derivation for S starting from an initial trace Ti cor-
responds to a sciff derivation for gen (S)Ti , for which, under the hy-
potheses, termination is guaranteed by Theorem 9.3.

9.4.4 ConDec Models and Termination of the SCIFF Proof Procedure

Acyclicity and boundedness conditions imposed on CLIMB specifica-
tions in order to guarantee g-sciff termination are much more restric-
tive than conditions required for sciff.

While Theorem 9.4 guarantees termination for all CLIMB formaliza- Interaction between
the generative rule
and level mappings

tions of ConDec models, for g-sciff this is no more the case. In fact,
ConDec formalizations must be augmented with the generative rule
E(E, T) → H(E, T), which must be taken into account when defining
a level mapping. Since the generative rule contains a (general) expec-
tation in the body and a corresponding happened event in the head,
a suitable level mapping cannot be defined for all such specifications,
but must be adapted to each specific case.

Chapter 10 will introduce examples of ConDec model for which
g-sciff does not terminate, discussing how such an issue can be over-
come.

9.5 implementation

sciff and g-sciff defines a set of transitions for building proof trees, Search strategy
leaving the search strategy to be defined at implementation level. The

172 proof procedures

basic implementation is based on a depth-first strategy. This choice, en-
abling us to tailor the implementation for the built-in computational
features of Prolog, supports a simple and efficient implementation of
the proof-procedure.

The proof procedures are implemented in SICStus 4
16 and its Con-Adopted

technologies straint Handling Rules (CHR) library [80], and they are freely avail-
able17. The Constraint Handling Rules (CHR) library is used to imple-
ment the transitions of the proof procedures. The data structures are
implemented as CHR constraints, so the transitions can be straightfor-
wardly implemented as CHR rules.

The implementation relies on constraint solvers to handle CLP con-CLP solvers
straints and quantifier restrictions. Both the CLP(FD) [70] and the
CLP(R) [102] solvers embedded in SICStus have been integrated with
the proof procedures. The user can thus choose the most suitable solver
for the application at hand, which is an important issue in practice. It
is well known, in fact, that no solver dominates the other, and we mea-
sured, in different applications, orders of magnitude of improvements
by switching solver. Moreover, some domains require discrete time,
other dense time. In the following experimentations we will report the
results obtained with the CLP(R) solver, which is based on the simplex
algorithm, and features a complete propagation of linear constraints.

16 http://www.sics.se/sicstus.html
17 http://www.lia.deis.unibo.it/research/sciff/

http://www.sics.se/sicstus.html
http://www.lia.deis.unibo.it/research/sciff/

10
S T A T I C V E R I F I C A T I O N O F C O N D E C M O D E L S W I T H
G - S C I F F

Contents
10.1 Existential and Universal Entailment in CLIMB 174

10.1.1 Specification of Properties with ConDec 174

10.1.2 Formalizing Existential and Universal En-
tailment 175

10.2 Verification of Existential Properties With g-SCIFF 176
10.2.1 Conflict-freedom Checking Via g-SCIFF 176

10.2.2 Existential Entailment with g-SCIFF 177

10.3 Verification of Universal Properties With g-SCIFF 178
10.3.1 Complementing Integrity Constraints 178

10.3.2 Reduction of Universal Entailment to Exis-
tential Entailment 179

10.4 ConDec Loops and Termination Issues 181
10.4.1 Reformulation of ConDec relation constraints 183

10.4.2 Unbounded Specifications and Looping Con-
Dec Models 185

10.5 Pre-processing of ConDec Models and Loop De-
tection 188
10.5.1 Transformation of ConDec Models to AND/OR

Graphs 188

10.5.2 Detection of ∧- and ∨-loops 189

10.5.3 Pre-Processing Procedure 192

10.6 Dealing With an Infinite Number of Finite Deriva-
tions 195
10.6.1 Succession Constraints and Infinite Branch-

ing Proof Trees 195

10.6.2 Solving the Infinite Branches Anomaly 197

In this Chapter we describe how the g-sciff proof procedure can be
adopted for the static verification of ConDec models, respecting the
five desiderata described in Section 8.1.

In particular, the first part of the Chapter demonstrates how exis-
tential and universal properties, as defined in Section 8.3.1, can be
expressed in CLIMB and verified with g-sciff. Thanks to this possibil-
ity, g-sciff can be exploited to deal with all the static verification tasks
introduced in Chapter 8, ranging from discovery of dead activities to
checking composite models and conformance to a choreography. The
second part of the Chapter is instead devoted to deal with termination
issues; as sketched in Section 9.4.4, termination of g-sciff cannot be

173

174 static verification of condec models with g-sciff

generally guaranteed when reasoning upon CLIMB specifications, and
therefore an ad-hoc solution for ConDec must be provided.

10.1 existential and universal entailment in climb

In the CLIMB framework, properties are represented with the same lan-
guage used for specifying models, i.e. by means of ICs. Verification
of existential and universal properties is achieved by suitably quanti-
fying on execution traces and combining the concepts of compliance
with the specification and with the property.

10.1.1 Specification of Properties with ConDec

A CLIMB property is simply a set of CLIMB ICs.

Definition 10.1 (CLIMB property). A CLIMB property Ψ is a set of CLIMB
ICs: Ψ =

⋃
i ICi. A CLIMB property is simple if it is expressed by a single

IC, i.e., i = 1.

Since all the ConDec constraints are translatable to CLIMB IC, thenExpressing
properties in
ConDec

also properties can be specified by means of ConDec models. Obvi-
ously, the CLIMB language is more expressive than the fragment needed
to formalize ConDec constraints; however, specification of properties
in ConDec takes advantage from the fact that also non-IT savvy can
easily capture the intended requirements. In the following, we will
consider ConDec as a graphical language to specify both interaction
models and properties; all the provided results hold for general CLIMB
specifications and properties.

Let us for example consider the four queries introduced in Sec-
tion 8.3.4 to verify an order&payment protocol, interpreting them as
ConDec models:

• Query 8.1, expressing that send receipt is a dead activity, can be
represented by stating that universal entailment w.r.t. the Con-

Dec model
0

send receipt must be guaranteed.

• Query 8.2, checking whether a transaction can be completed
s.t. the customer does not accept ads and the seller does not offer
standard payment, can be represented by the ConDec model

1..∗
send receipt

0

accept advert
0

standard payment

which must be existentially entailed. The 1..* cardinality con-
straint models the correct completion of a transaction, where
the concept of “correct completion” is related to the emission of
a receipt, whereas the two 0 cardinality constraints are used to
express that the customer refuses ads and that standard payment
is not available.

10.1 existential and universal entailment in climb 175

payment
failure

standard
payment

1-click
payment

payment
done

close
order

accept
advert

0

(0,6)

(0,6)

(0,3)

(0,8)

send
receipt (0,12)

1..*

(0,8)

(0,3)

Figure 35: Representation of Query 8.4 – introduced in Section 8.3.4 – with
extended ConDec.

• Query 8.3 is a universal query, which states that each execution
involving 1-click payment must also guarantee that a receipt is
sent only if the customer has previously accepted ads. It can be
rephrased by saying that, for each execution instance, either

– 1-click payment is not involved:
0

1-click payment

– the precedence relationship between send receipt and accept
advert is guaranteed: accept advert −−−I• send receipt

• Query 8.4 is an existential query involving latency times among
activities. It can be easily expressed using the extended ConDec
notation proposed in Section 6.1 to capture quantitative time
constraints. The resulting model is shown in Figure 35. Note

that close order
(0,12)
•−−−I send receipt is used to model the dead-

line by which the completion of the transaction is desired, while
negation response constraints are used to represent latencies. For

example, close order
(0,6)
•−−−I‖ 1-click payment states that if the

order is closed at a certain time T , then it is possible to execute
1-click payment only from time T + 6.

The first three models can be translated to CLIMB by applying the
tCLIMB or the t�CLIMB functions1 (depending on the model that must
be verified, a translation with qualitative or quantitative time could
be chosen). The last model contains quantitative temporal constraints,
hence it can be translated to CLIMB only by means of the t�CLIMB func-
tion. In the remainder of this Chapter, we will always consider simple
ConDec model and the basic translation function tCLIMB, but all the
provided results also hold for extended ConDec models, and for the
t�CLIMB function in particular.

10.1.2 Formalizing Existential and Universal Entailment

The formalization of ∃- and ∀-entailment in CLIMB follows straight-
forwardly from the natural language characterization given in Sec-
tion 8.3.1, using the formal notion of compliance provided by CLIMB
(see Definition 4.13).

1 tCLIMB has been defined in Section 5.1, while t�CLIMB has been defined in Sec-
tion 6.1.2.

176 static verification of condec models with g-sciff

A CLIMB specification S ∃-entails a CLIMB property if there exists at∃-entailment in
CLIMB least one execution trace which is at the same time compliant with

S and the property. Since the property is constituted by a set of ICs
but compliance is referred to an entire specification, when establishing
compliance we assume that the property is embdedded inside a CLIMB
specification such that the same knowledge base of S is used.

Definition 10.2 (∃-entailment). A CLIMB specification S = 〈KB, IC〉
∃-entails a CLIMB property Ψ (S |=∃ Ψ) iff:

∃ T compliant (ST) ∧ compliant (〈KB,Ψ〉T)

S ∃-violates Ψ (S 6|=∃ Ψ) iff:

6 ∃ T compliant (ST) ∧ compliant (〈KB,Ψ〉T)

Similarly, a CLIMB specification ∀-entails a CLIMB property if every∀-entailment in
CLIMB execution trace compliant with the specification is compliant with the

property as well.

Definition 10.3 (∀-entailment). A CLIMB specification S = 〈KB, IC〉
∀-entails a CLIMB property Ψ (S |=∀ Ψ) iff:

∀ T, compliant (ST)⇒ compliant (〈KB,Ψ〉T)

S ∀-violates Ψ (S 6|=∀ Ψ) iff:

∃ T, compliant (ST) ∧ ¬compliant (〈KB,Ψ〉T)

10.2 verification of existential properties with g-sciff

As discussed in Section 9.3, the g-sciff proof procedure is specifically
dedicated to the static verification of CLIMB specifications: it realizes
a “simulation by abduction” approach trying to generate compliant
execution traces starting from an initial execution trace and the ICs of
the specification.

We now exploit g-sciff to verify existential properties on ConDec
models. To deal with this issue, we adopt the following approach: we
first describe how g-sciff is able to verify conflict-freedom of ConDec
specifications (see Definition 8.3), and then show how ∃-entailment of
properties can be reduced to conflict-freedom checking.

10.2.1 Conflict-freedom Checking Via g-SCIFF

Conflict-freedom checking is the process of verifying whether a Con-
Dec model CM supports at least one execution trace, i.e., ∃-entails the
true property.

When checking for conflict-freedom, the user is interested in detect-
ing whether at least one supported execution trace exists, but she is
not interested in finding all the possible supported traces. Therefore,
g-sciff is a suitable technology to deal with this problem: as stated by

10.2 verification of existential properties with g-sciff 177

Theorem 9.6, the formal property of weak completeness w.r.t. trace genera-
tion attests that if supported execution traces exist, then g-sciff is able
to generate at least one of them.

By combining soundness and weak completeness it is guaranteed
that at least one execution trace compliant with a SCIFF specification
exists iff g-sciff has a successful derivation, and therefore g-sciff deals
with the problem of checking conflict-freedom in a correct wayre.

Theorem 10.1 (g-sciff can check conflict-freedom). A ConDec model
CM is conflict-free iff g-sciff has a successful derivation for tCLIMB (CM)

(starting from the empty trace):

tCLIMB (CM) |=∃ true⇔ ∃ ∆, tCLIMB (CM)∅ g
T

∆ true

In this case, the execution trace T generated by g-sciff is an (intensional)
example of execution attesting that CM is conflict free.

Proof. Straightforward from the results of soundness and weak com-
pleteness w.r.t. trace generation (Theorems 9.1 and 9.6).

10.2.2 Existential Entailment with g-SCIFF

As far as now, we have seen g-sciff derivations starting from a single
specification. When relying on g-sciff for carrying out ∃-entailment,
the following issue therefore arise: how is it possible to consider both
the specification of the model and of the desired property when gen-
erating compliant execution traces? We prove that by composing the
model and the property (see the composition operator comp intro-
duced in Definition 8.7), ∃-entailment can be reduced to checking whether
the obtained model is conflict-free.

Theorem 10.2 (∃-entailment with g-sciff). Given a ConDec model CM
and a ConDec property Ψ,

tCLIMB (CM) |=∃ tCLIMB (Ψ)⇔ ∃ ∆, tCLIMB (comp (CM,Ψ))∅ g
T

∆ true

In this case, the execution trace T generated by g-sciff can be considered as
an (intensional) example of execution which respects both the constraints of
the model and the desired property.

Proof. The proof relies on the compositionality of CLIMB specifications,
which has been discussed in Section 4.4 and proven in Corollary 4.1,
and on the definition of tCLIMB (given in Section 5.1), which states
that a ConDec model is translated to a CLIMB specification whose
knowledge base is empty and whose ICs are the union of the trans-
lation of each mandatory constraint.

We have that:

178 static verification of condec models with g-sciff

∃ ∆, tCLIMB (comp (CM,Ψ))∅ g
T

∆ true⇔ (Th. 10.1)

compliant(tCLIMB (comp (CM,Ψ))T)⇔ (Def. 5.1)

compliant(〈∅, tIC
(
CCM
m ∪ CΨm

)
〉T)⇔ (Sec. 5.1)

compliant(〈∅, tIC
(
CCM
m

)
∪ tIC

(
CΨm

)
〉T)⇔ (Def. 4.15)

compliant(〈∅, tIC
(
CCM
m

)
〉T)∧

compliant(〈∅, tIC
(
CΨm

)
〉T)⇔ (Def. 5.1)

compliant(tCLIMB (CM)T)∧

compliant(tCLIMB (Ψ)T)⇔ (Def. 10.2)

tCLIMB (CM) |=∃ tCLIMB (Ψ)

10.3 verification of universal properties with g-sciff

Universal entailment of properties is carried out with g-sciff via a
reduction to existential entailment, which in turn is again reduced to
conflict-freedom checking.

10.3.1 Complementing Integrity Constraints

The idea behind the reduction of ∀-entailment to ∃-entailment resem-
bles model checking [57]2: a property is ∀-entailed iff the negated prop-
erty is not ∃-entailed.

In the CLIMB setting, the negation of a basic property (i.e., a sin-Complementary
Integrity
Constraints

gle IC) cannot be directly applied on the property, due to syntactic
restrictions. However, we notice that “negation” can be referred to the
notion of compliance: given an arbitrary execution trace, the “nega-
tion” of an IC evaluates the trace as compliant iff the IC evaluates it as
non-compliant. This intuitive concept is formalized by introducing the
concept of complementary ICs.

Definition 10.4 (Complementary Integrity Constraints (ICs)). Given a
knowledge base KB, two CLIMB ICs IC1 and IC2 are complementary
w.r.t. KB (written IC1 = IC2

KB, IC2 = IC1
KB) iff:

∀ T, compliant (〈KB, {IC1}〉T)⇔ ¬compliant (〈KB, {IC2}〉T)

We will use the simplified notation IC1 = IC2, IC2 = IC1 where the
context (i.e., KB) is apparent or KB is empty.

Given an IC, there exist many different ICs complementary to it. InComplementation
function for ConDec the general case, the synthesis of a complementary IC is a task that

must be accomplished manually. In the ConDec setting, the formal-
ization of each constraint can be easily complemented; in this way, we

2 Model checking will be described in Section 11.3.1.

10.3 verification of universal properties with g-sciff 179

could imagine that the complemented formalization is encapsulated in
a translation function tIC which, given a ConDec constraint C, returns
an IC complementary to tIC (C).

Example 10.1 (Complementing the response and negation response
ConDec constraints). Let us consider the response ConDec constraint be-
tween activities a and b. Such a constraint is violated by an execution trace if
it contains at least one execution of activity a which is not followed by a conse-
quent execution of b. Starting from this observation, an IC complementary to
the one formalizing the response constraint can be obtain in a straightforward
way:

tIC

(
a •−−−I b

)
, true→ E(exec (a) , Ta)

∧ EN(exec (b) , Tb) ∧ Tb > Ta.

tIC

(
a •−−−I‖ b

)
can be obtained in a very similar way, by simply sub-

stituting the negative expectation on b with a positive expectation:

tIC

(
a •−−−I‖ b

)
, true→ E(exec (a) , Ta)

∧ E(exec (b) , Tb) ∧ Tb > Ta.

Indeed, an execution trace violates a •−−−I‖ b if it contains at least one
execution of activity a which is followed by an execution of activity b.

10.3.2 Reduction of Universal Entailment to Existential Entailment

∀-entailment can be reduced to ∃-entailment by exploiting the concept
of complementary ICs. In particular, since all the constraints of Ψ must
be ∀-entailed, the following theorem states that a ConDec property Ψ is
∀-entailed by a ConDec model CM iff there does not exist a mandatory
constraint of Ψ whose complementation is ∃-entailed by CM. Contrari-
wise, if at least one complemented constraint is ∃-entailed, the execu-
tion trace generated to prove the ∃-entailment amounts to a counter-
example, which demonstrates that the original property is not guaran-
teed in any possible execution.

Theorem 10.3 (Reduction of ∀-entailment to ∃-entailment). Given a
ConDec model CM and a ConDec property Ψ, where CΨm =

⋃n
i=1 Ci,

(∀ i ∈ [1, . . . ,n], tCLIMB (CM) 6|=∃ 〈∅, tIC (Ci)〉)
⇔ tCLIMB (CM) |=∀ tCLIMB (Ψ)

Proof. The proof relies on the compositionality of CLIMB specifications,
which has been discussed in Section 4.4 and proven in Corollary 4.1,
and on the definition of tCLIMB (given in Section 5.1), which states
that a ConDec model is translated to a CLIMB specification whose
knowledge base is empty and whose ICs are the union of the trans-
lation of each mandatory constraint.

180 static verification of condec models with g-sciff

tCLIMB (CM) |=∀ tCLIMB (Ψ)⇔ (Def. 10.3)

∀Tcompliant (tCLIMB (CM)T)

⇒ compliant (tCLIMB (Ψ))⇔ (Def. 5.1)

∀Tcompliant (tCLIMB (CM)T)

⇒ compliant

(
〈∅, tIC

(
n⋃
i=1

Ci

)
〉T

)
⇔ (Sec. 5.1)

∀Tcompliant (tCLIMB (CM)T)

⇒ compliant

(
〈∅,

n⋃
i=1

tIC (Ci)〉T

)
⇔ (Def. 4.15)

∀Tcompliant (tCLIMB (CM)T)

⇒
n∧
i=1

compliant (〈∅, tIC (Ci)〉T)⇔

∀i∀Tcompliant (tCLIMB (CM)T)

⇒ compliant (〈∅, tIC (Ci)〉T)⇔
∀i 6 ∃Tcompliant (tCLIMB (CM)T)

∧ ¬compliant (〈∅, tIC (Ci)〉T)⇔ (Def. 10.4)

∀i 6 ∃Tcompliant (tCLIMB (CM)T)

∧ compliant (〈∅, tIC (Ci)〉T)⇔ (Def. 10.2)

∀i tCLIMB (CM) 6|=∃ 〈∅, tIC (Ci)〉

When g-sciff succesfully computes a ∆ showing that there exists aVerification
decomposition k for which tCLIMB (CM) |=∃ 〈∅, tIC (Ck)〉, the generated execution

trace contained in ∆ can be considered as a counter-example which
amounts to a proof that Ψ is not ∀-entailed. Therefore, verification can
be carried out by considering each single constraint belonging to the
property separately. The constraint is first complemented by means
of tIC, and the complemented version is then subject to ∃-entailment.
The first complemented constraint which is ∃-entailed by the specifi-
cation proves that the original property is not ∀-entailed, and thus the
verification procedure terminates without needing to check the other
constraints ∈ Ψ.

For example, Query 8.1 can be verified in an existential way by com-Examples of
reduction of
∀-entailment to
∃-entailment

plementing the concept of dead activity, i.e., by looking for an execu-
tion trace in which send receipt is executed at least once 3. If such an
execution trace exists, then the activity is not dead.

Query 8.3 cannot be modeled by means of a single ConDec model:
as shown in Section 10.1.1, it is in fact a disjunction of two properties,
each one representable in ConDec. However, the property can be easily
expressed in CLIMB. A possible way to complement it is the following:

3 Indeed, tIC

 0

a

 , true → E(exec (a) ,T) = tIC

 1..∗

a

 is complemen-

tary to tIC

 0

a

 , true→ EN(exec (a) ,T).

10.4 condec loops and termination issues 181

true→E(exec (1− click_payment) , Tp) ∧ E(exec (send_receipt) , Ts)

∧ EN(exec (accept_advert) , Ta) ∧ Ta < Ts.

Intuitively, the IC states that 1-click payment must be chosen, and that
advertising must not accepted before the receipt is sent.

To verify ∃-entailment of such a complemented property, g-sciff

joins it with the specification representing the ConDec model under
study (shown in Figure 59). By adopting a depth-first strategy, in its
first successful derivation g-sciff generates the following intensional
execution trace, which amounts as a counter-example:

H(choose_item, Ti),

H(register, Tr),H(close_order, To)To > Ti,

H(1− click_payment, Tp) ∧ Tp > Tr ∧ Tp > To,

H(payment_done, Td) ∧ Td > Tp,

H(send_receipt, Ts) ∧ Ts > Td,H(accept_advert, Ta) ∧ Ta > Ts.

The trace is intensional and the contained happened events are par-
tially ordered; among such happened events, we can find that the cho-
sen payment is 1-click, and that the customer accepts ads after the
execution of the send_receipt activity.

10.4 condec loops and termination issues

In Section 9.4.4, we have pointed out that the acyclicity and bound-
edness conditions needed for guaranteeing g-sciff termination do not
hold for an arbitrary ConDec model. In fact, the generative rule E(E, T)→
H(E, T), which must be taken into account when defining a suitable
level mapping, interferes with rules containing a happened event in
the body and a positive expectation in the head; all the rules formaliz-
ing ConDec relation constraints are of this kind, as attested by Table 21

– Page 93.

Example 10.2 (A critic ConDec model). Let us consider a simple Con-
Dec model, which is translated to a CLIMB specification which is bounded
w.r.t. sciff but unbounded w.r.t. g-sciffs. The model contains only two op-
posite response constraints between two activities: the first states that b is
response of a, the second that a is response of b. Its CLIMB formalization is
composed by two ICs:

tIC

(
ba
)

= {H(exec (a) , T1)→ E(exec (b) , T2) ∧ T2 > T1,

H(exec (b) , T3)→ E(exec (a) , T4) ∧ T4 > T3 }

The definition of a level mapping w.r.t. g-sciff must take into account the
generative rule E(E, T) → H(E, T). The generative rule is general, i.e. it
triggers for any expected event at any time. Therefore, when trying to define a
level mapping | · | guaranteeing acyclicity and boundedness of the specification,
the following conditions must be satisfied:

182 static verification of condec models with g-sciff

• for every T2 > T1, |H(exec (a) , T1)| > |E(exec (b) , T2)| (first IC of
the specification);

• for every T4 > T3, |H(exec (b) , T3)| > |E(exec (a) , T4)| (second IC of
the specification);

• for every Ta, |E(exec (a) , Ta)| > |H(exec (a) , Ta)| (generative rule,
grounded on exec (a));

• for every Tb, |E(exec (b) , Tb)| > |H(exec (b) , Tb)| (generative rule,
grounded on exec (b)).

Finding a bounded level mapping satisfying all these conditions is infeasible,
because, e.g.:

|E(exec (a) , 10)| > |H(exec (a) , 10)| > |E(exec (b) , 11)| >

>|H(exec (b) , 11)| > |E(exec (a) , 12)| > . . .

Therefore, termination is not guaranteed when g-sciff reasons upon such a
specification.

When the empty execution trace is given at start-up, then g-sciff imme-
diately terminates, stating that the empty execution trace itself is compliant
with the specification. Contrariwise, when the initial trace {H(exec (a) , 1)}
is provided, g-sciff loops, trying to explicitly generate the infinite trace

H(exec (a) , 1),

H(exec (b) , T ′) ∧ T ′ > 1,

H(exec (a) , T ′′) ∧ T ′′ > T ′,

H(exec (b) , T ′′′) ∧ T ′′′ > T ′′,

. . .

Note that the ConDec model ba is not correct: as soon as one
among the activities a and b is executed, the implicit assumption that every
execution must terminate in finite time is violated.

A solution must be therefore provided to identify and treat ConDec
models for which g-sciff termination is not guaranteed. Two possible
approaches may be adopted:

a. the CLIMB formalization of ConDec relation constraints (i.e., the
tCLIMB function) must be revised, in order to avoid interfer-
ences with the generative rule;

b. the structure of the ConDec model under study (or of the un-
derlying formalization) must be investigated in order to identify
sources of (potential) non-termination.

We follow a hybrid approach. First of all, we revise the formalization of
relation constraints. This solves the problem only partially, and there-
fore we also synthesize an analysis procedure able to identify and deal
with problematic ConDec models.

10.4 condec loops and termination issues 183

10.4.1 Reformulation of ConDec relation constraints

We provide an alternative formulation for (some of the) relation con-
straints. After such a reformulation, the identification of ConDec mod-
els which can potentially cause non-termination of g-sciff becomes
straigthforward. The possibility of replacing the CLIMB formalization
of a single ConDec constraint with an equivalent one, without affect-
ing the formalization of the other constraints, is guaranteed by Theo-
rem 4.1 – Page 80.

Reformulation of the Responded Existence Constraint

The old formalization

tIC

(
a •−−−− b

)
, H(exec (a) , Ta)→ E(exec (b) , Tb).

is replaced by

tIC

(
a •−−−− b

)
, true→ EN(exec (a) , Ta) ∨ E(exec (b) , Tb).

In fact, saying that “if a is executed, then also b is executed” is the same
as expressing that “either a is never executed, or b is executed”. The
proof of equivalence is straightforward, either by proving it directly, or
by establishing the soundness of the new formalization w.r.t. the LTL
formula representing the responded existence constraint.

The new formalization does not contain happened events in the
body, and therefore does not interfere with the generative rule of g-sciff
anymore. Such an advantage holds also for the coexistence constraint,
which is defined as two opposite responded existence constraints.

Reformulation of the Alternate Constraints

Alternate constraints are reformulated for what concerns their interpo-
sition part (see Table 21). Such a reformulation enables the possibility
to restructure the formalization of the whole constraints: they are not
decomposed anymore in a response/precedence part plus the inter-
position part, but they are directly modeled as an augmented respon-
se/precedence.

Let us consider the ConDec constraint a •===I b , which states
that:

• if a occurs, then b must be executed afterwards;

• b must be executed between any two occurrences of a.

It can be equivalently formulated as:

• if a occurs, then b must be executed afterwards;

• if a occurs, then another consequent occurrence of a is forbid-
den until b is executed (otherwise, no occurrence of b would be
present between the two as).

184 static verification of condec models with g-sciff

a ab

b expected

b expected

a ab

b expected

a forbidden

Figure 36: Shifting the perspective when modeling the alternate response con-
straint.

constraint strength description

a •−−−I b weak Between the two occurrences of a and b, other
activities can be executed

a •===I b medium Between the two occurrences of a and b, other
activities but a can be executed

a •=−=−=−I b strong Between the two occurrences of a and b, no ac-
tivity can be executed

Table 24: Strength of “forward” relation ConDec constraints.

These two different but equivalent perspectives are depicted in Fig-
ure 36.

By adopting the new perspective, alternate response/precedence
constraints can be simply formalized as follows:

tIC

(
a •===I b

)
, H(exec (a) , Ta)→E(exec (b) , Tb) ∧ Tb > Ta

∧ EN(exec (a) , Ta2)

∧ Ta2 > Ta ∧ Ta2 < Tb.

tIC

(
a ===I• b

)
, H(exec (b) , Tb)→E(exec (a) , Ta) ∧ Ta < Tb

∧ EN(exec (b) , Tb2)

∧ Tb2 > Ta ∧ Tb2 < Tb.

If we consider the “quantitative” representation of the chain response
constraint (i.e., the formalization produced by applying t�CLIMB), this
new formalization of the alternate constraints clearly shows how the
“constraints’ strength” increases moving from plain constraints to chain
ones (see Table 24).

Reformulation of the “Quantitative” Negation Chain Response Constraint

When the negation chain response constraint is formalized by adopt-
ing a quantitative notion of time (i.e., by applying the t�IC function),
the produced IC involves a positive expectation in the head (see Sec-

10.4 condec loops and termination issues 185

tion 6.1.2–Page 110); in fact, the formalization of a •=−=−=−I‖ b ex-
presses that between an occurrence of activity a and each following
occurrence of b, at least one further activity must separate the two
occurrences (interposing between them):

t�IC

(
a •=−=−=−I‖ b

)
, H(exec (a) , Ta)

∧H(exec (b) , Tb)

∧Tb > Ta → E(exec (X) , Tx)

∧ Tx > Ta ∧ Tx < Tb.

Such a formalization can be restructured as an IC imposing expecta-
tions on the future (w.r.t. Ta, the time used in the body of the IC). The
new equivalent formalization expresses the intuitive idea that saying
“between a and b a further activity is expected to occur” is the same
as saying “If a is executed, then either b is never executed afterwards,
or it is executed sometimes in the future; in the latter case, at least one
further activity (different from b and a) should occur inbetween”:

t�IC

(
a •=−=−=−I‖ b

)
, H(exec (a) , Ta)→EN(exec (b) , Tb) ∧ Tb > Ta

∨E(exec (b) , Tb) ∧ Tb > Ta

∧ EN(exec (X) , Tx)

∧X 6= b∧X 6= a

∧ Tx > Ta ∧ Tx < Tb.

10.4.2 Unbounded Specifications and Looping ConDec Models

By adopting the revised formalization discussed in the previous Sec-
tion, ICs containing happened events in the body and positive expec-
tation in the head (which are the ones interfering with the generative
rule of g-sciff) are of two kinds:

forward ics impose a positive expectation at a time greater than Forward vs
backward
constraints

the time of the happened event contained in the body. This is
the case of response, alternate response and chain response con-
straints, whose forward behaviour is caused by their basic “re-
sponse” part4. Following the nomenclature given for ICs, these
constraints will be called forward constraints.

backward ics impose a positive expectation at a time lower than
the time of the happened event contained in the body. This is the
case of precedence, alternate precedence and chain precedence
constraints, whose backward behaviour is caused by their basic

4 If the quantitative CLIMB formalization of ConDec is used instead of the classical one
(i.e., t�CLIMB is applied instead of tCLIMB), also the negation chain response must
be considered among these constraints.

186 static verification of condec models with g-sciff

∧-loopa

cb

e

d

(a) All activities but e are
dead.

∨-loop
a

cb

e

d

(b) No activity is dead.

∧-loop
a

cb

e

d

(c) All activities are dead.

Figure 37: Three ConDec models containing different kind of loops.

“precedence” part. These constraints will be called backward con-
straints.

Using this classification, unbounded specifications can be easily iden-
tified. In particular, a specification is unbounded if two activities x and
y are involved in a “cyclic chain” of forward ICs, i.e., there exist a
forward IC relating x with activity a1, a forward IC relating a1 with ac-
tivity a2, . . . , and a forward IC relating aN with y. The simplest case is
the one presented in Example 10.2, where two activities are mutually
connected with two response constraints. The same holds if the “cyclic
chain” is constituted by backward ICs instead of forward ones.

The interesting fact is that such situations are identifiable by car-
rying out an analysis directly at the graphical level of ConDec: un-
bounded specifications are derived from ConDec models containing
“cyclic chains” of forward or backward contraints. Figure 37 shows
three models covering the different kind of loops that can be encoun-
tered in ConDec5.

For all these models, termination of g-sciff is not guaranteed. Let usTermination of
g-sciff when
reasoning upon
different looping
models

for example consider the problem of checking if activity d is dead in
the three models of Figure 37:

• g-sciff always loops when checking if d is a dead activity in
Figure 37(a). To disprove the property, g-sciff checks if d can
be executed in at least one instance; however, by simulating the
execution of d, it enters in an endless computation, generating
the execution trace d→ c→ a→ b→ c→ Note that activity
d is, in this model, dead, because each execution of a ConDec
model must eventually terminate, while the execution of d leads
to enter within an infinite loop. The same holds for activities a,
b and c.

• In Figure 37(b), activity d is not dead; indeed, even if a loop is
contained in the model, it is possible to exit the loop, by choosing
to execute activity e after c instead of a. Termination of g-sciff

when checking if d is dead is determined, in this case, by the
syntactic structure of the IC which represents the disjunctive re-
sponse spanning from activity c. Since g-sciff adopts a depth-
first strategy,

5 Since the forward or backward nature of a relation constraint is determined only
by its basic response/precedence component, it is not important which specific con-
straints are considered.

10.4 condec loops and termination issues 187

– if a is the first choice, g-sciff loops as in the case of Fig-
ure 37(a);

– if e is the first choice, g-sciff has a finite successful deriva-
tion which proves that d is not dead by producing the exe-
cution trace d→ b→ e as a counter-example.

Adopting an iterative deepening strategy6 would help in this
specific case, but not in general.

• Figure 37(c) extends Figure 37(b) by introducing a further re-
sponse constraint between e and d. In this situation, both choices
spanning from b cause a loop. Therefore, d is a dead activity (and
so are all the other activities), but g-sciff is unable to prove it.

The three models depicted in Figure 37 clearly show that two kind of Classification of
loopsloops could be created by combining relation constraints, and that the

difference lies in whether the model supports the possibility of exiting
from the loop or not. If such a possibility is supported, the loop will
be denoted as an ∨-loop, otherwise the loop will be denoted as an
∧-loop.

Definition 10.5 (∧-loop). Given a ConDec model CM, an activity A ∈
ACM belongs to an ∧-loop if when it is executed, the mandatory con-
straints CCM

m force the re-execution of the same activity afterwards
(forward ∧-loop) or before (backward ∧-loop).

Definition 10.6 (∨-loop). Given a ConDec model CM, an activity A ∈
ACM belongs to a ∨-loop if when it is executed, the mandatory con-
straints CCM

m may force the re-execution of the same activity afterwards
(forward ∨-loop) or before (backward ∨-loop), depending on the made
choices.

In Figure 37(a), activities a, b and c belong to an ∧-loop. In Fig-
ure 37(b), such activities belong to an ∨-loop, because only if activity
a is chosen after c the loop is entered. Finally, in Figure 37(c) all activ-
ities belong to an ∧-loop: no matter what choice is taken after having
performed c, the user is forced to re-execute the same activity again.
Instead, the ConDec model shown in Figure 59 is loop-free.

The most important feature of this classification is summarized in Relationship
between ∧-loops
and dead activities

the following remark.

Remark 10.1 (∧-loops contain dead activities). When the execution
enters inside an ∧-loop, there is no possibility to exit from it, which
means that it becomes impossible to terminate the execution in finite
time. Therefore, each activity belonging to an ∧-loop is a dead activity.

The remark points out that once a method to discover ∧-loops is
provided, then all the involved activities can be automatically marked
as dead, by explicitly adding an absence constraint on them.

6 Where, at each iteration, the maximum depth is related to the maximum number of
happened events that can be generated.

188 static verification of condec models with g-sciff

10.5 pre-processing of condec models and loop detec-
tion

We introduce a set of algorithms able to detect the presence of ∧- and
∨-loops inside a ConDec model. Such algorithms rely on a translation
function which maps the ConDec model to an AND/OR graphs, en-
abling the possibility of carrying out the loop detection task.

The loop detection procedure is then embedded inside a pre-processing
analysis which must be applied:

for ∃-consistency to the composition of the model and the prop-
erty. In fact, event if the model and the property are loop free,
their composition is not guaranteed to be loop-free.

for ∀-consistency to the model. Indeed, ∀-consistency requires
each single element of the property to be complemented, and
the complementation function tIC does not produce ICs which
contain happened events in the body and positive expectations
in the head; therefore, no complemented component can partic-
ipate in the formation of a loop, and it is sufficient to test the
model alone.

10.5.1 Transformation of ConDec Models to AND/OR Graphs

Given a ConDec model, two corresponding AND/OR Graphs
→
G and

←
G are generated, taking into account its forward and backward relation
constraints respectively7.

Definition 10.7 (AND/OR graph). An AND/OR graph is a triple 〈A,
O, E〉, where:

• A is a set of ∧-nodes;

• O is a set of ∨-nodes;

• E ⊆ A ∪O×A ∪O is a set of directed edges, i.e., ordered pairs of
nodes.

∧-nodes will be represented inside single-lined circles, ∨-nodes will
be represented inside double-lined circles and edges will be depicted
by arrows.

In the transformation process, each ConDec activity a is mapped toTransformation of a
single activity to an
AND/OR subgraph

a subgraph containing an ∧-node a∧ connected with an ∨-node a∨:

• a∧ is used to attach incoming forward (backward resp.) relation
constraints, and to handle outgoing forward (backward resp.)
relation constraints which do not involve branches on the target;

7 Forward vs backward relation constraints have been defined in Section 10.4.2.

10.5 pre-processing of condec models and loop detection 189

a∨

c∧b∨

e∨

d∨

a∧

c∨

b∧

e∧

d∧

(a) Presence of an ∧-loop.

a∨

c∧b∨

e∨

d∨

a∧

c∨

b∧

e∧

d∧

(b) Presence of an ∨-loop.

a∨

c∧b∨

e∨

d∨

a∧

c∨

b∧

e∧

d∧

(c) Presence of an ∧-loop.

Figure 38: The three AND/OR forward graphs corresponding to the ConDec
models shown in Figure 37.

• a∨ is used to handle outgoing forward (backward resp.) rela-
tion constraints which involve branches on the target (i.e., have
a disjunctive behaviour).

We will denote the produced graph as a forward (backward resp.) graph
if forward (backward resp.) relation constraints are considered. Activi-
ties that are explicitly subject to an absence constraint, i.e., for which it
is explicitly known that they are dead, are not considered in the trans-
formation process: these activities cannot be executed, and therefore
they “break” all the loops containing them.

The generation of an AND/OR graph starting from a ConDec model
CM is shown in Listing TransformToAndOrGraph(CM, Forward), where
Forward is a boolean representing whether the AND/OR graph must
be built by considering the forward or backward relation constraints
of CM.

The application of this translation procedure to the three diagrams
shown in Figure 37 is depicted in Figure 38

8. In particular, forward
AND/OR graphs are presented: since the models of Figure 37 contain
only forward constraints, the application of the translation method on
backward constraints would produce loop-free graphs with isolated
nodes.

As the three graphs of Figure 38 suggest, an ∧- and an ∨-loop dif- Characterization of
∧- and ∨-loops on
the graph

fer from each other in that an ∨-loop is a loop which contains at least
one ∨-node, and this ∨-node is connected with at least one node which
does not belong to an ∧-loop (the presence of this node reflects the pos-
sibility of exiting from the loop in the corresponding ConDec model).
The following Section handles the discovery of ∧- and ∨-loops in the
general case.

10.5.2 Detection of ∧- and ∨-loops

Detection of ∧- and ∨-loops is tackled by a cascaded application of the
two algorithms embedded into Listing FindAndLoops(G) and Listing
ContainsLoops(G).

The algorithm for detecting ∧-loops is recursively defined as follows. ∧-loop detection
algorithmGiven a set P of already visited nodes and the current node n:

• if n ∈ P, then n belongs to an ∧-loop;

8 The models must be previously composed with the property, which in the case study
simply adds a 1..* constraint on activity d.

190 static verification of condec models with g-sciff

function: TransformToAndOrGraph(ConDec model CM, boolean
Forward)

returns : An AND/OR graph mapping CM by taking into account
its forward or backward constraints, depending on the value
of Forward (true→forward constraints, false→backward
constraints)

begin1

A← ∅;2

O← ∅;3

E← ∅;4

/* ReduceModel(CM) returns a reduced version of CM, by

eliminating each activity a s.t.
0

a ∈ CCM
m , and by

modifying constraints accordingly */

CMRed← ReduceModel(CM);5

foreach activity a ∈ ACMRed do6

A← A∪ {a∧};7

O← O∪ {a∨};8

E← E∪ {(a∧,a∨)};9

cur← ∅; // current set of constraints10

if Forward then // forward graph11

cur = {c(S, T) ∈ CCMRed
m | c is forward ∧ a ∈ S};12

else// backward graph13

cur = {c(S, T) ∈ CCMRed
m | c is backward ∧ a ∈ S};14

end15

foreach c(Source, Target) ∈ cur do16

if ‖Target‖ = 1 then // “normal” constraint17

E← E∪ {(a∧, t)}, having Target = {t};18

else// disjunctive constraint19

foreach activity t ∈ Target do20

E← E∪ {(a∨, t)};21

end22

end23

end24

end25

return 〈A, O, E〉;26

end27

Function TransformToAndOrGraph(CM,Forward)

• if n is an ∧-node, then it belongs to an ∧-loop if at least one
node to which n is connected belongs to an ∧-loop (detected
updating the set of visited nodes by considering also n);

• if n is an ∨-node, then it belongs to an ∧-loop if all the nodes
to which n is connected belong to an ∧-loop (detected updating
the set of visited nodes by considering also n).

Then, we hypothesize that after the detection of ∧-loops, the Con-Model
augmentation Dec model is augmented by explicitly inserting an absence constraint

on each ∧-looping activity, and that the ∨-loop detection algorithm
is applied on this augmented model (after its transformation to an
AND/OR graph). In this way, before ∨-loop detection all the ∧-loops

10.5 pre-processing of condec models and loop detection 191

function: FindAndLoops(AND/OR graph G = 〈A, O, E〉)
returns : The set of nodes belonging to ∧-loops
begin1

L← ∅;2

foreach n ∈ A∪O do3

if BelongsToAndLoop(n, ∅) then4

L← L∪ {n};5

end6

end7

return L;8

end9

function: BelongsToAndLoop(node n, set P of already visited
nodes, AND/OR graph G = 〈A, O, E〉)

returns : true if n belongs to a ∧-loop; false otherwise
begin10

if n ∈ P then11

return true;12

else13

P′ ← P∪n;14

if n ∈ A then15

foreach m | (n,m) ∈ E do16

if BelongsToAndLoop(m, P′) then17

return true;18

end19

end20

return false;21

end22

if n ∈ O then23

foreach m | (n,m) ∈ E do24

if ¬BelongsToAndLoop(m, P′) then25

return false;26

end27

end28

return true;29

end30

end31

end32

Function FindAndLoops(G)

have been already eliminated from the graph9, hence ∨-loops can be
detected by simply looking for “normal” loops.

The algorithm for discovering “normal” loops is recursively defined General loop
detection algorithmas follows. Given a set P of already visited nodes and the current node

n:

• if n ∈ P, then n belongs to an loop;

9 Indeed, remember that activities associated to an absence constraint are ruled out
when the graph is built.

192 static verification of condec models with g-sciff

function: ContainsLoops(AND/OR graph G = 〈A, O, E〉)
returns : true if G contains loops; false otherwise
begin1

L← ∅;2

foreach n ∈ A∪O do3

if BelongsToLoop(n, ∅) then4

return true;5

end6

end7

return false;8

end9

function: BelongsToLoop(node n, set P of already visited nodes,
AND/OR graph G = 〈A, O, E〉)

returns : true if n belongs to a loop; false otherwise
begin10

if n ∈ P then11

return true;12

else13

P′ ← P∪n;14

foreach m | (n,m) ∈ E do15

if BelongsToLoop(m, P′) then16

return true;17

end18

end19

return false;20

end21

end22

Function ContainsLoops(G)

• otherwise, n belongs to a loop if at least one node to which n is
connected belongs to a loop (detected updating the set of visited
nodes by considering also n).

10.5.3 Pre-Processing Procedure

The schema of the pre-processing procedure is depicted in Figure 39

and formalized in Listing PreProcess(CM), where CM represents the
model under study (composition of the model and the property in
case of ∃-entailment). The procedure consists of the following steps:

a. The ConDec model is translated to the two corresponding for-
ward and backward AND/OR graphs, using the TransformToAn-
dOrGraph function, described in Section 10.5.1.

b. ∧-loop detection is carried out on the obtained graphs, using the
FindAndLoops function described in Section 10.5.2.

c. If the model is ∧-loop free, then move to step f; otherwise, move
to the following step.

10.5 pre-processing of condec models and loop detection 193

AND/OR graph transformation

ConDec
model

Does the graph
contain ∧-loops?

no

Augment the model
by adding an absence constraint on each

looping activity

Update the AND/OR graph accordingly

Does the graph
contain ∨-loops?

yes

yesno

- termination
 guaranteed
- completeness
 not guaranteed

Switch g-SCIFF to a
bounded search strategy

- termination
 guaranteed
- completeness
 guaranteed

Figure 39: Pre-processing analysis of ConDec models for detecting and han-
dling the presence of loops.

d. Each activity belonging to an ∧-loop is augmented with an ab-
sence ConDec costraint, used to explicitly denote that the activ-
ity is dead, according to Remark 10.1. In this way, g-sciff can
correctly deal with models containing ∧-loops without experi-
encing non-termination issues; indeed, as soon as g-sciff expects
the execution of an activity belonging to a loop, the explicit pres-
ence of an absence constraint (which is formalized in g-sciff

with a negative expectation) leads immediately to a failure, be-
cause E-fulfillment is not respected.

e. The AND/OR graphs are recalculated by reflecting such an aug-
mentation.

f. ∨-loop detection is carried out on the (possibly recalculated)
AND/ OR graphs, using the ContainsLoops function described
in Section 10.5.2.

g. The outcome of ∨-loop detection is exploited as follows:

• If the model is ∨-loops free, then g-sciff will correctly rea-
son upon the (possibly augmented) model.

• If instead the model contains a ∨-loop, then termination
cannot be guaranteed anymore (see Figure 37(b) and the
corresponding discussion in Section 10.4.2). Nevertheless,

194 static verification of condec models with g-sciff

function: PreProcess(ConDec model CM)

returns : An augmented version of CM, where all activities
belonging to an ∧-loop are subject to an absence constraint,
and a boolean stating whether g-sciff must switch to a
bounded search strategy to guarantee termination.

begin1
→
G ← TransformToAndOrGraph(CM, true) ; // forward graph2
←
G ← TransformToAndOrGraph(CM, false) ; // backward graph3

L∧ ← FindAndLoops(
→
G);4

L∧ ← L∧ ∪ FindAndLoops(
←
G);5

if L∧ = ∅ then6

return [CM,true];7

else8

CMAug← CM;9

foreach activity a ∈ A do10

if a ∈ L∧ then11

C
CMAug
m ← C

CMAug
m ∪

0

a ;12

end13

end14

/* Recalculation of AND/OR graphs */
→
G ← TransformToAndOrGraph(CMAug, true);15
←
G ← TransformToAndOrGraph(CMAug, false);16

Switch← ContainsLoops(
→
G);17

if ¬ Switch then18

Switch← ContainsLoops(
←
G);19

end20

return [CMAug, Switch];21

end22

end23

Function PreProcess(CM)

a maximum bound on the length of the possible execu-
tion traces produced by g-sciff can be imposed, choosing a
bounded depth-first search strategy for g-sciff10 (similarly to
bounded model checking[29]11). The bound can be tuned
by the user, reflecting the “size” of the domain under study.
Anyway, the user must be alerted that the search strategy
has been modified, because even if bounded depth-first pre-
serves termination, it undermines completeness. Indeed,
by adopting a bounded search strategy, a positive answer
is correct, whereas a no answer does not prove that the
ConDec model contains a conflict, but only that there is

10 An alternative solution would be to choose suitable heuristics for driving the search
strategy.

11 Bounded model checking addresses the problem of verifying the validity of a for-
mula within a predefinite number of transitions of a system.

10.6 dealing with an infinite number of finite derivations 195

no compliant execution trace whose length is up to the
bound12.

10.6 dealing with an infinite number of finite deriva-
tions

The pre-processing procedure described in Section 10.5.3 guarantees
that when g-sciff is applied to an arbitrary ConDec model, termination
is always preserved (at the price of loosing completeness when ∨-loops
are contained in the model).

Termination, in turn, guarantees that each derivation produced by The infinite
branches anomalyg-sciff has a finite length. However, it cannot guarantee that also the

number of computed derivations is finite. In other words, it could be pos-
sible that there is an infinite number of finite derivations computed by
g-sciff, i.e., that the generated proof tree has infinite branches. Since
we are interested in finding whether a successful derivation actually
exists, if (some of) these derivations are successful, then g-sciff will
always answer in finite time. On the contrary, if all these derivations
lead to a failure node, then g-sciff will try to explore them all, running
forever. We will call this problem the infinite branches anomaly.

10.6.1 Succession Constraints and Infinite Branching Proof Trees

The case of succession constraints, i.e., a •−−I• b , a •==I• b

and a •=−=−I• b could bring g-sciff to experience the infinite branches
anomaly.

The following example shows how a simple ConDec model contain-
ing a succession constraint is verified by g-sciff producing an infinite
number of finite derivations, i.e., infinite generated traces.

Example 10.3 (Succession constraints and the infinite branching anomaly).

Let us consider the simple ConDec model
1..∗
a •−−I• b , stating that:

• activity a must be executed at least once;

• if a is executed, then b must be executed afterwards;

• if b is executed, then a must have been executed before.

When asking g-sciff if the model contains conflict, the proof procedure
operates as follows:

a. g-sciff starts with a pending expectation E(exec (a) , Ta1), due to

constraint
1..∗
a ;

12 For example, g-sciff would state that the ConDec model
3..∗

a contains a conflict
when verification is carried out by choosing a bounded depth-first strategy with
bound=2. If the bound is changed to 3, then g-sciff correctly states that the model is
conflict-free, providing the sample execution trace a→ a→ a.

196 static verification of condec models with g-sciff

1..∗
a •−−I• b

E(exec (a) , Ta1)

H(exec (a) , Ta1)

E(exec (b) , Tb1) ∧ Tb1 > Ta1

H(exec (a) , Ta1)

H(exec (b) , Tb1)

E(exec (a) , Ta2) ∧ Ta2 < Tb1
a2=a1

qqqqqqq a2 6=a1

MMMMMMM

H(exec (a) , Ta1)

H(exec (b) , Tb1)

H(exec (a) , Ta1)

H(exec (a) , Ta2)

H(exec (b) , Tb1)

E(exec (b) , Tb2) ∧ Tb2 > Ta2
b2=b1

kkkkkkkkkk b2 6=b1

SSSSSSSSSS

H(exec (a) , Ta1)

H(exec (a) , Ta2)

H(exec (b) , Tb1)

H(exec (a) , Ta1)

H(exec (a) , Ta2)

H(exec (b) , Tb1)

H(exec (b) , Tb2)

E(exec (a) , Ta3) ∧ Ta3 < Tb2
a3=a1∨a3=a2

hhhhhhhhhhhhh a3 6=a1∧a3 6=a2

VVVVVVVVVVVVV

H(exec (a) , Ta1)

H(exec (a) , Ta2)

H(exec (b) , Tb1)

H(exec (b) , Tb2)

. . .

Figure 40: Part of the infinite branching proof tree produced by g-sciff when
the model contains a succession constraint.

b. it then fulfills such an expectation, generating a corresponding hap-
pened event H(exec (a) , Ta1) and triggering the response part of the
succession constraint a •−−I• b ;

c. such a triggering leads to generate an expectation about a consequent
execution of b – E(exec (b) , Tb1) ∧ Tb1 > Ta;

d. g-sciff fulfills this expectation (with a generation of H(exec (b) , Tb1)),
triggering the precedence part of the succession constraint and gener-
ating a further expectation about a previous execution of activity a –
E(exec (a) , Ta2) ∧ Ta2 < Tb1;

e. this expectation can be fulfilled by the intensional happened event gen-
erated at step b – g-sciff therefore applies the E-fulfilllment transition,
generating two child nodes:

10.6 dealing with an infinite number of finite derivations 197

a) in the first node, fulfillment is imposed (Ta2 = Ta1) – this is a
success node, associated with the generated execution trace a →
b;

b) in the second node, fulfillment is avoided (by imposing Ta2 6=
Ta1), and a new happened event H(exec (a) , Ta2) is generated
by applying the fulfiller transition.

Since g-sciff adopts a depth-first strategy, it terminates the computation
in node ea, with an open choice point pointing to node e2. If another solution
is requested, i.e., g-sciff is forced to explore node eb, a new trace is generated,
with another choice point left open. Every derivation leaves an open choice
point which can be explored to provide a new execution trace, that inserts a
new execution of a or b because of the inequalities constraints imposed by the
E-fulfillment transition.

The proof tree generated by g-sciff resembles the structure shown in Fig-
ure 4013.

Let us now suppose that
1..∗
a •−−I• b is part of a bigger ConDec model,

and that this model contain a conflict. For a conflicting model, all the deriva-
tions produced by g-sciff are failure derivations, and therefore g-sciff tries
to explore all the infinite branches of a proof tree similar to the one shown in
Figure 40, experiencing the infinite branches anomaly and running forever.

10.6.2 Solving the Infinite Branches Anomaly

To solve this issue, we provide a further revision to the formalization
of forward and backward relation constraints. The idea is to insert
inside each IC a negative expectation, such that the semantics of the IC
w.r.t. compliance is not affected, but E-consistency can be exploited by
g-sciff to prune the proof tree, making it finite.

In particular, we insert a negative expectation to formalize the intu-
itive fact that when the constraint triggers, the target is expected to
happen, but the expectation will match only with the nearest event oc-
currence able to fulfill it. In this respect, constraint a •−−−I b is
reformulated as “when activity a is executed, then b is expected to
be executed afterwards, and the expectation will match with the first
consequent occurrence of b”:

tIC

(
a •−−−I b

)
,

H(exec (a) , Ta)→ E(exec (b) , Tb) ∧ Tb > Ta

∧ EN(exec (b) , Tbn) ∧ Tbn > Ta ∧ Tbn < Tb.

Similarly, the precedence constraint can be revised as follows:

tIC

(
a −−−I• b

)
,

H(exec (b) , Tb)→ E(exec (a) , Ta) ∧ Ta < Tb

∧ EN(exec (a) , Tan) ∧ Tan > Ta ∧ Tan < Tb.

13 The tree is simplified, and shows only the application of the E-fulfillment and fulfiller
transitions.

198 static verification of condec models with g-sciff

1..∗
a •−−I• b

E(exec (a) , Ta1)

H(exec (a) , Ta1)

E(exec (b) , Tb1) ∧ Tb1 > Ta1

EN(exec (b) , Tbn) ∧ Tbn > Ta1 ∧ Tbn < Tb1

H(exec (a) , Ta1)

H(exec (b) , Tb1)

EN(exec (b) , Tbn) ∧ Tbn > Ta1 ∧ Tbn < Tb1

EN(exec (a) , Tan) ∧ Tan > Ta2 ∧ Tan < Tb1

E(exec (a) , Ta2) ∧ Ta2 < Tb1
a2=a1

qqqqqqq a2 6=a1

MMMMMMM

H(exec (a) , Ta1)

H(exec (b) , Tb1)

H(exec (a) , Ta1)

H(exec (a) , Ta2)

H(exec (b) , Tb1)

EN(exec (b) , Tbn) ∧ Tbn > Ta1 ∧ Tbn < Tb1

EN(exec (a) , Tan) ∧ Tan > Ta2 ∧ Tan < Tb1

EN(exec (b) , Tbn2) ∧ Tbn2 > Ta2 ∧ Tbn2 < Tb2

E(exec (b) , Tb2) ∧ Tb2 > Ta2
b2=b1

kkkkkkkkkk b2 6=b1

SSSSSSSSSS

H(exec (a) , Ta1)

H(exec (a) , Ta2)

H(exec (b) , Tb1)

⊥

Figure 41: Complete proof tree produced by g-sciff when the model contains
a succession constraint, and the revised formalizations is adopted.
The infinite branches anomaly is not experienced anymore.

Such a revised formalization solves the infinite branching anomaly.
Figure 41 shows how the infinite proof tree produced by g-sciff in Ex-
ample 10.3 is modified when such a revised formalization is adopted.

It is worth noting that such a revised formalization can be seamlessly
(and must be) applied to alternate constraints and to constraints with
quantitative temporal conditions. For example, in case of a response
with quantitative conditions, the updated formalization would be:

tIC

(
a

(n,m)
•−−−I b

)
,

H(exec (a) , Ta)→ E(exec (b) , Tb) ∧ Tb > Ta +n∧ Tb < Ta +m

∧ EN(exec (b) , Tbn) ∧ Tbn > Ta +n∧ Tbn < Tb.

The revised formalization states that “the expectation will match the
first occurrence of activity b happening inside the requested time interval”.

11
E X P E R I M E N T A L E V A L U A T I O N

Contents
11.1 Verification Procedure with g-SCIFF 200
11.2 Scalability of the g-SCIFF Proof Procedure 201

11.2.1 The Branching Responses Benchmark 202

11.2.2 The Alternate Responses Benchmark 203

11.2.3 The Chain Responses Benchmark 206

11.3 Using Model Checking For the Static Verification
of ConDec Models 209
11.3.1 Model Checking 209

11.3.2 Verification of ConDec Properties By Satis-
fiability and Validity Checking 211

11.3.3 Reduction of Validity and Satisfiability Check-
ing to Model Checking 213

11.3.4 Verification Procedure by Model Checking 214

11.4 Comparative Evaluation 215
11.4.1 Evaluation Benchmarks 215

11.4.2 Experimental Results 216

11.5 Discussion 217

Chapter 10 has discussed how g-sciff can deal with the static veri-
fication of ConDec models. In order to assess the usability of the pro-
posed approach, a key point is to evaluate its performance and scala-
bility, comparing it with other state-of-the-art verification techniques.

This Chapter is focused on such a topic: it aims at showing that
g-sciff is an effective technology for dealing with static verification. An
extensive experimental evaluation is presented, to stress g-sciff and
emphasize its performance results in both favorable and unfavorable
cases. After having discussed how the static verification task can be
also interpreted as a model checking problem, we compare g-sciff

with state-of-the-art explicit and symbolic model checkers, providing
an empirical discussion on their advantages and drawbacks.

The benchmarks will stress scalability and performance of the veri- Dimensions used to
evaluate verification
technologies

fication techniques along two significative dimensions:

size of the model Number of mandatory constraints contained in the
model;

cardinality on activities Presence of existence constraints im-
posing a minimum number of required executions on the activities
of the model.

199

200 experimental evaluation

function: CallGSCIFF(CLIMB specification S, initial trace Ti, integer
Bound)

returns : true, together with a sample execution trace Tf if there is a
g-sciff successful derivation for S starting from Ti, false
otherwise; the result is produced by adopting a depth-first
strategy if Bound = −1, a bounded depth-first strategy with
bound Bound otherwise

begin1

if Bound > 0 then2

Set the search strategy of g-sciff to3

bounded-depth-first(Bound);
else4

Set the search strategy of g-sciff to depth-first;5

end6

if STi g

Tf

∆ true then7

return [true, Tf];8

end9

return [false, -];10

end11

Function g-sciff(S,Ti,Bound)

All experiments have been performed on a MacBook Intel CoreDuoHardware used for
the experiments 2 GHz machine.

11.1 verification procedure with g-sciff

In Chapter 10, we have shown how the issue of ∃- and ∀-entailment
of properties in the ConDec setting can be tackled by the g-sciff proof
procedure, reducing them to conflict-freedom checking.

Starting from these theoretical results (Theorems 10.2 and 10.3 in par-
ticular), we now synthesize an effective procedure to verify ∃- and ∀-
entailment of properties by g-sciff. The verification procedure are em-
bedded in Functions ∃-entailment(M,Ψ) and ∀-entailment(CM,Ψ). The
two procedures rely on a function CallGSCIFF(S,Ti,Bound), which en-
capsulates the g-sciff computation on the specification S, starting with
Ti as initial trace and possibly providing a bound Bound in order to
make g-sciff selecting a bounded depth-first search strategy.

The pre-processing procedure PreProcess is devoted to perform loop
detection on ConDec models, augmenting them with absence constraints
when ∧-loops are contained, and returning whether a bounded search
strategy must be chosen to guarantee termination (this happens when
the model contains ∨-loop). All the details and the usage guidelines
of this function have been deeply investigated in Section 10.5.3; the
∃-entailment and ∀-entailment functions strictly adheres to such guide-
lines.

11.2 scalability of the g-sciff proof procedure 201

function: ∃-entailment(ConDec model CM, ConDec property Ψ)
returns : true, together with a sample execution trace if

tCLIMB(CM) |=∃ tCLIMB(Ψ), false otherwise
begin1

CMΨ← comp (CM,Ψ);2

[CMΨAug,Switch]← PreProcess(CMΨ);3

S← tCLIMB(CMΨAug);4

if ¬Switch then5

return CallGSCIFF(S, ∅, −1);6

else7

Bound← ask a bound to the user;8

return CallGSCIFF(S, ∅, Bound);9

end10

end11

Function ∃-entailment(CM,Ψ)

function: ∀-entailment(ConDec model CM, ConDec property Ψ)
returns : true if tCLIMB(CM) |=∀ Ψ, false, together with a

counter-example execution trace, otherwise
begin1

[CMAug,Switch]← PreProcess(CM);2

if Switch then3

Bound← ask a bound to the user;4

else5

Bound← −1;6

end7

〈∅, ICAug〉 ← tCLIMB(CMAug);8

foreach Ci ∈ Ψ do9

ICcompl ← tIC(Ci);10

S← 〈∅, ICAug ∪ ICcompl〉;11

[Success, T]← CallGSCIFF(S,∅,Bound);12

if Success then13

return [false, T];14

end15

end16

return [true, -];17

end18

Function ∀-entailment(CM,Ψ)

11.2 scalability of the g-sciff proof procedure

A first quantitative evaluation is focused on “artificial” yet significative
ConDec models, which employ different kind of relation constraints.

The focus on relation constraints rather than negation constraints is Why relation
constraints impact
on g-sciff more
than other
constraints

due to the nature of g-sciff: since it adopts a generative approach, the
most time-consuming task is related to the generation of happened
events from positive expectations and to the management of the conse-
quent situation; positive expectations are involved only in the formal-
ization of the existence constraint and of all the relation constraints.

202 experimental evaluation

a3
a6

a7

a2
a4

a51..*

a1

Figure 42: The branching responses benchmark when 7 activities and 8 con-
straints are employed.

Figure 43: Trend of g-sciff when reasoning upon the branching responses
benchmark.

of constraints times (sec.)

4 0.00

8 0.01

16 0.01

32 0.02

64 0.04

128 0.10

256 0.34

of constraints times (sec.)

512 1.04

1024 3.64

2048 14.01

4096 56.85

8192 249.77

16384 1100.26

32768 6149.99

Table 25: Timings employed by g-sciff to verify the branching responses bench-
mark.

11.2.1 The Branching Responses Benchmark

The first benchmark aims at evaluating the scalability of g-sciff when
a growing number of branching response constraints is used. For this

11.2 scalability of the g-sciff proof procedure 203

reason, it will be referred as the branching responses benchmark. Each
response has a branching-factor of 2. The structure of the model is as
follows:

• the model contains an activity a1 which is expected to be exe-
cuted at least once;

• a1 is source of a branching response, which states that one among
activities a2 and a3 must be executed after a1;

• both a2 and a3 are sources of a branching response as well, and
this structure is repeated until a “frontier” is reached;

• all the activities belonging to this “frontier" have an outgoing
negation precedence constraint pointing to a1.

The benchmark is then built by increasing the number of activities con-
nected by means of branching response constraints – Figure 42 shows
the benchmark when 7 activities and 8 constraints are employed. Note
that each instance of the model contains a conflict: after having exe-
cuted activity a1, no matter what choice is made to fulfill each trig-
gered branching response, one among the activities in the “frontier”
must be eventually executed; however, the execution of an activity in
the “frontier” forbids the presence of a previous a1.

The proof tree built by g-sciff when reasoning upon this benchmark
strictly resembles the structure of the model itself, due to the depth-
first strategy of the proof procedure. In the instance of the benchmark
shown in Figure 42, g-sciff tries to generate, in order, the following
execution traces:

a. a1 → a2 → a4;

b. a1 → a2 → a5;

c. a1 → a3 → a6;

d. a1 → a3 → a7.

All these attempts lead to a failure, because the execution of ai (i =

4, . . . , 7) forbids a previous execution of a1; each failure is detected by
g-sciff through the consistency transition.

In general, g-sciff must explore the entire model to detect the con-
flict, trying each possible combination of choices. Nevertheless, as at-
tested by the timings reported in Table 25 and Figure 43, g-sciff scales
very well: it is able to detect the presence of conflict on a model con-
taining 4096 constraints in less than one minute.

11.2.2 The Alternate Responses Benchmark

This benchmark focuses on alternate response constraints and their in-
terplay with the existence constraint; it will be referred as the alternate
responses benchmark. Its structure is shown in Figure 44; it is paramet-
ric w.r.t. two values, N and K, and is characterized as follows:

204 experimental evaluation

a1 a2 ...
N..*

aK
0..N-1

Figure 44: The alternate responses benchmark, parametrized on N and K.

Figure 45: Trend of g-sciff when reasoning upon the alternate responses bench-
mark.

a. K − 1 alternate response constraints are adopted to connect a
sequence of K activities;

b. the first activity of the sequence is associated with an existence
N..* constraint;

c. the last activity of the sequence is associated with an absence
0..N-1 constraint.

An interesting property of alternate response constraints is that the
target activity must be executed at least as many times as the source
activity is executed: each occurrence of the source requires a “dedi-
cated” occurrence of the target activity. Hence, in the benchmark the
number of executions of activity a2 must be greater than the one of
a1 (i.e., always greater than N), the number of executions of activity
a3 must be greater than the one of a2, and so on. This implies that
aK must be executed at least N times, but this contrasts with the ab-
sence constraint attached to it. As a consequence, each instance of the
benchmark contains a conflict.

When reasoning upon the alternate responses benchmark, g-sciff must
intensively apply the consistency transition and the underlying CLP
solver. In fact, each generated occurrence triggers an expectation about
the next one, together with a negative expectation expressing the inter-
position, i.e., stating that the activity cannot be executed again until the
next activity is effectively executed (see the formalization provided in
Section 10.4.1). By looking at the timings reported in Table 25 and the
trends depicted in Figure 43, it is apparent that the N value is critical.

11.2 scalability of the g-sciff proof procedure 205

time (sec.)

K N=1 N=2 N=3

1 0.00 0.01 0.02

2 0.00 0.02 0.10

3 0.00 0.03 0.35

4 0.00 0.05 1.12

5 0.00 0.1 3.17

6 0.00 0.16 7.96

7 0.00 0.28 17.54

8 0.01 0.45 40.03

9 0.00 0.74 76.65

10 0.01 1.11 140.95

11 0.00 1.74 279.48

12 0.00 2.58 460.38

13 0.01 3.76 754.50

time (sec.)

K N=1 N=2 N=3

14 0.01 5.47 1263.34

15 0.01 7.65 2184.68

16 0.01 10.62 3010.70

17 0.01 14.53 >1 h

18 0.01 19.58 >1 h

19 0.01 26.16 >1 h

20 0.01 34.73 >1 h

21 0.01 45.28 >1 h

22 0.02 58.43 >1 h

23 0.02 75.37 >1 h

24 0.02 93.94 >1 h

25 0.02 116.44 >1 h

26 0.02 140.60 >1 h

Table 26: Timings employed by g-sciff to verify the alternate responses bench-
mark.

When N = 1, verification reduces to the case in which simple response
constraints are adopted instead of alternate ones, because the interpo-
sition part is not used: for each activity, there is only a single generated
occurrence. Hence, g-sciff answers almost immediately even for large
values of K.

On the contrary, when N is increased, each one of the N required
executions generates its own “interposition” expectation, which must
be combined with the expectations about the other N− 1 occurrences
of the same activity, to the aim of preserving E-consistency. In total,
N× (N− 1)× (K− 1) combinations must be considered. Such combi-
nations require to impose, handle and propagate a huge amount of
temporal constraints. In particular, g-sciff must try to compute each
possible partial ordering among the activities in order to respect all the
interpositions, before becoming aware that no solution actually exists.

Anyway, notice that it is rather uncommon to find models in which
a certain activity is a-priori constrained by an existence formula to
be executed always a huge amount of times; furthermore, when the
modeler adopts many strict relationships (such as alternate response
constraints) in the same diagram, she is breaking the ConDec philoso-
phy, which aims at leaving the execution as unconstrained as possible.
When a ConDec model tends to contain too many strict constraints,
then it could be the case that the modeler has not chosen the right

206 experimental evaluation

a1 a2 ...
N..*

aK
0..N-1

Figure 46: The chain responses benchmark, parametrized on N and K.

Figure 47: Trend of g-sciff when reasoning upon the chain responses bench-
mark by adopting a qualitative notion of time.

notation, and that a procedural approach would fit better with the
problem she is trying to solve.

11.2.3 The Chain Responses Benchmark

The chain responses benchmark is a modification of the alternate re-
sponses one, where all the alternate response constraints are substituted
with chain response constraints.

As pointed out in Sections 5.3 and 6.1, chain response constraints
are the only elements of ConDec which need to be reformulated when
switching from a qualitative to a quantitative notion of time, due to
the different intended meaning of the temporal contiguity concept. We
therefore carry out a comparison between the two formulations, to
estimate the impact of adopting quantitative time instead of qualitative
time.

By adopting qualitative time, the CLIMB formalization of a chain re-
sponse constraint simply states that the target activity must be exe-
cuted immediately after the source one, i.e., at the next time:

tIC

(
a •=−=−=−I b

)
, H(exec (a) , Ta)→ E(exec (b) , Tb)∧ Tb == Ta+ 1.

In this way, when g-sciff generates an (intensional) occurrence of the
source activity, say, H(exec (a) , Ta1), then the generation of a corre-
sponding occurrence of the target activity is generated with a fixed
time equal to Ta1+ 1. As a consequence, the behaviour of g-sciff when
reasoning on the chain responses benchmark is the following:

11.2 scalability of the g-sciff proof procedure 207

Figure 48: Trend of g-sciff when reasoning upon the chain responses bench-
mark by adopting a quantitative notion of time.

qualitative time (tCLIMB)

time (sec.)

K N=1 N=2 N=3

1 0.00 0.01 0.04

2 0.00 0.02 0.07

3 0.00 0.03 0.15

4 0.00 0.05 0.24

5 0.10 0.07 0.39

6 0.00 0.09 0.60

7 0.01 0.13 0.89

8 0.00 0.17 1.27

9 0.01 0.21 1.81

10 0.01 0.28 2.38

11 0.00 0.33 3.18

12 0.00 0.41 4.25

13 0.00 0.53 5.55

14 0.01 0.65 7.24

15 0.00 0.78 9.36

(a) Qualitative time.

quantitative time (t�CLIMB)

time (sec.)

K N=1 N=2 N=3

1 0.00 0.01 0.03

2 0.00 0.02 0.35

3 0.00 0.09 4.04

4 0.00 0.34 27.12

5 0.01 1.13 134.77

6 0.00 3.02 616.94

7 0.00 7.63 2733.64

8 0.00 17.10 >1 h

9 0.01 37.09 >1 h

10 0.01 71.73 >1 h

11 0.01 137.03 >1 h

12 0.00 256.48 >1 h

13 0.01 756.34 >1 h

14 0.01 1460.47 >1 h

15 0.01 2332.65 >1 h

(b) Quantitative time.

Table 27: Timings employed by g-sciff to verify the chain responses bench-
mark.

a. an occurrence of a1 is generated, and an expectation about the
next activity is raised;

208 experimental evaluation

b. a sequence of expectations and of corresponding occurrences in-
volving a2-aK is generated, where the time of each occurrence is
completely determined by the occurrence of the previous activ-
ity;

c. the process is repeated until the N-th expectation about aK is
generated;

d. as soon as this last expectation is generated, g-sciff detects the
presence of a conflict, caused by the E-inconsistency between
such an expectation and the negative expectation expressing that
at most N− 1 executions of aK are allowed.

Since each generated occurrence of activities a2-aK has a completely
determined time, such a time is not subject to case analysis and non-
determinsm when the E-fulfillment transition is applied.

As shown in Figure 47 and Table 27(a), g-sciff is therefore very fast
and scalable when reasoning upon the benchmark by adopting the
qualitative formalization of chain responses: it employs less than 10

seconds when the model contains 15 chain response constraints and
imposes that the first activity must be executed at least 3 times. As
in the case of the alternate responses benchmark, the most influencing
parameter isN: when it changes from 2 to 3, the performance of g-sciff
degrades of one order of magnitude.

When temporal contiguity is modeled in a quantitative manner, the
chain response constraint is modeled by including a negative expecta-
tion forbidding the occurrence of all activities between the executions
of the source and the target activity:

t�IC

(
a •=−=−=−I b

)
, H(exec (a) , Ta)→ E(exec (b) , Tb) ∧ Tb > Ta

∧ EN(exec (X) , Tx)

∧ Tx > Ta ∧ Tx < Tb.

Such a negative expectation is even more difficult to be handled than
the one used to express the “interposition” behaviour of alternate
constraints, because its involved activity is a variable (X), and thus
matches with all the possible ground activities. Timings and trend ex-
perienced by g-sciff when reasoning upon the chain responses bench-
mark are reported in Figure 48 and Table 27(b), and clearly points out
such a difficulty.

Indeed, each occurrence of activity a1 triggers a sequence of K −

1 positive expectations (and corresponding executions) on a1-aK, to-
gether with K− 1 negative expectations used to impose the temporal
contiguities. When N > 1, multiple sequences are generated, and all
the negative expectations of a sequence must be combined with the
positive expectations of the other sequences, to guarantee that all tem-
poral contiguities are respected. g-sciff must therefore suitably carry
out N× (N− 1)× (K− 1)2 combinations, making an extensive use of
the underlying CLP solver.

11.3 using model checking for the static verification of condec models 209

start
error

start
close
error

start
close
heat

close
heat

close start
close

start oven

close door

open door

open door

start cooking

warmup

start oven

reset

close door

open door

done
1 3 6

2

4

5

7

cook

Figure 49: Kripke structure of a micro-wave oven (from [57]).

11.3 using model checking for the static verification

of condec models

By relying on the original formalization of ConDec in terms of proposi-
tional Linear Temporal Logic (LTL) formulas[157, 158], we discuss how
the static verification of ConDec models can be carried out by means
of model checking techniques. This opens the possibility of comparing
the performance and scalability of g-sciff with the ones of state-of-the-
art model checkers.

11.3.1 Model Checking

Generally speaking, model checking[57] designates a collection of tech-
nique for the automatic verification of finite state concurrent systems.
Model checking started in the 1980s from seminal research conducted
by Clarke and Emerson and followed by many others, and has found
widespread application in the hardware and software industries, rang-
ing from verification of security and cryptographic protocols to debug-
ging of software programs and digital circuits.

The model checking process consists of three steps[57]: The model checking
process

modeling The first task that must be accomplished is to convert the
design of the system into a formalism accepted by the model
checking tool. The most widespread formalism is the Kripke
structure, a non-deterministic finite state machine in which each
state is labeled with the set of propositions true in that state. An
example of Kripke structure is given in Figure 49. Kripke struc-
tures may support infinite execution traces, and can be trans-
lated to automata on infinite words.

specification The properties that the design must satisfy are ex-
presses in some logical formalism. Temporal logics, such as LTL,
are commonly employed to accomplish this task, because they

210 experimental evaluation

init 1

¬start||heat true

true

heat

Figure 50: A non-deterministic Büchi automaton representing the LTL for-
mula �(start⇒ ♦heat), produced by the LTL2BA algorithm[83].

support a powerful yet intuitive way to characterize the evolu-
tion of the system over time.

verification Verification is carried out automatically, by checking
whether the desired properties are entailed by the model of the
system. If a property is not met, then the model checker provides
an error execution trace, which amounts as a counter-example
useful to identify where the error is located. For example, the
Kripke structure of Figure 49 could be verified against the prop-
erty �(start ⇒ ♦heat), specifying that it must always be guar-
anteed that every time the oven is started, then it must eventu-
ally heat. A model checker would state that the property does
not hold, providing e.g. an error trace starting from state 1 and
containing the infinite sequence start oven → close door → reset
→ open door → start oven→

Formally, given a Kripke structure M representing the model of the
system and a temporal property ϕ, the model checking problem is1

M, s |= ϕ

where s represents a state of the model from which the property must
hold (usually, s is one of the initial states of the Kripke structure –
in this case, it can be omitted). If M 6|= ϕ, then a counter-example is
returned by the model checker as a proof.

Among the advantages of model checking techniques, we find that:Major advantages of
model checking

a. they do not require the intervention of the user during the veri-
fication phase, i.e., they are fully automated;

b. they can handle properties on infinite-length executions;

c. they always guarantee that an answer is generated in finite time.

Classical model checkers, called explicit-state, face the model check-Explicit model
checking ing problem by relying on the translation of a temporal logic formula

onto a Büchi automaton, and by intersecting such an automaton with
the automaton obtained from the Kripke structure of the model [99].
Figure Figure 50 shows how the LTL formula �(start⇒ ♦heat) can be

1 It is worth noting that the |= symbol does not denote, in this setting, entailment or
logical consequence.

11.3 using model checking for the static verification of condec models 211

translated to a non-deterministic Büchi automaton. SPIN2[99] is one of
the most popular state-of-the-art explicit model checker.

The major drawback of explicit model checking is known as the state- The state explosion
problemexplosion problem[58], which essentially states that the Kripke structure

is exponential in the size of the system description, and thus that mod-
eling even small systems leads to produce intractable Kripke struc-
tures; for example, in a concurrent system the Kripke structure is ex-
ponential in the number of interacting processes. State explosion is also
experienced when the property to be verified is too large: the construc-
tion of a Büchi automaton starting from an LTL formula is exponential
in the size of the formula [57, 64]. From a theoretical point of view, the
time and space complexity of LTL model checking is

O
(
|M|× 2|ϕ|

)
where M is the Kripke structure of the model, and ϕ the property to
be verified.

The state explosion problem motivated research about how to rep- Abstraction
techniques and
symbolic model
checking

resent the states in a compact way. Two major mainstream approaches
emerged in the last decades[58]:

abstraction techniques exploit the domain knowledge on the
system and the desired properties to insert in the Kripke struc-
ture only the relevant portions of the system.

symbolic verification employs more compact data structures to
store the Kripke structure and the translation of the properties,
without experiencing information loss. As stated in [58]: “ A
fundamental breakthrough [w.r.t. the state explosion problem] was
made in the fall of 1987 by Ken McMillan, who was then a graduate
student at Carnegie Mellon. He argued that larger systems could be
handled if transition relations were represented implicitly with ordered
Binary Decision Diagrams (BDDs) [37]. By using the original model
checking algorithm with the new representation for transition relations,
he was able to verify some examples that had more than states [39]”.
NuSMV [55] is one of the most popular state-of-the-art symbolic
model checkers.

11.3.2 Verification of ConDec Properties By Satisfiability and Validity Check-
ing

In the ConDec setting, LTL properties represent the formalization of the
ConDec model under study, which is a conjunction formula built by
applying the tLTL function (see Section 3.7). In other words, the model
of the system is not represented by a (procedural) Kripke structure, but
it is itself specified by means of (declarative) LTL formulae. In order
to employ state-of-the-art model checkers for the static verification of
ConDec models, it is therefore necessary to precisely identify which

2 http://spinroot.com

http://spinroot.com

212 experimental evaluation

kind of verification must be carried out, and how it can be encoded as
a model checking problem.

In the ConDec setting, the model checking problem is grounded as
follows:

M, s |= tLTL (CM)

where tLTL (CM) is the LTL formalization of the ConDec model CM,
and M is a Kripke structure modeling possible execution traces; a pos-
itive answer is obtained iff all the traces which can be produced by M

are supported by CM.
In this respect, the problem of checking if a ConDec model is conflict-Conflict-freedom as

a satisfiability
problem

free can be reduced to LTL satisfiability checking.

Definition 11.1 (Satisfiability problem). An LTL formula is satisfiable
iff there exists at least one Kripke structure which satisfies the formula.

However, it is important to remember that model checking and tem-
poral logics work on infinite-length execution traces, while supported
ConDec executions must always eventually terminate. E.g., a conflict-
freedom test providing an infinite trace as a sample showing that it is
possible to meet all the ConDec constraints in at least one way, would
be a wrong response, because such a trace cannot be reproduced in
reality. The LTL encoding of such a termination property has been pro-
vided in Definition 8.5 – Page 139; we briefly recall the definition for
the sake of readability; given a ConDec model CM = 〈A, Cm, Co〉, the
LTL termination property term(CM) states that a termination event e 6∈ A,
incompatible with all other activities, must eventually occur, and then
is executed infinitely often in the future:

term(CM) , ♦e∧�(e⇒ ©e) ∧ ∀ a ∈ A, �(e⇒ ¬a)

The Conlict-freedom issue is then faced by checking if the conjunc-
tion of the LTL formula representing the model with its termination
property is satisfiable.

Definition 11.2 (Conflict-freedom checking in LTL). A ConDec model
CM is conflict-free iff tLTL (CM) ∧ term (CM) is satisfiable.

When carrying out properties verification, it is therefore not suffi-∃-entailment as a
satisfiability
problem

cient to combine the LTL formula representing the ConDec model with
the LTL formula encoding the property, but the implicit termination
property must be explicitly taken into account as well.

Definition 11.3 (∃-entailment in LTL). Given a ConDec model CM and
a ConDec property Ψ,

tLTL (CM) |=∃ tLTL (Ψ)⇔ tLTL (comp (CM,Ψ))∧ term (CM) is satisfiable

Differently from ∃-entailment, ∀-entailment of a property Ψ instead∀-entailment as a
validity problem states that all the possible Kripke structures supported by the ConDec

11.3 using model checking for the static verification of condec models 213

model augmented with the termination property, also satisfy Ψ. In the
LTL setting, this issue is called validity problem3.

Definition 11.4 (Validity problem). An LTL formula is valid iff every
possible Kripke structure satisfies the formula.

∀-entailment is therefore encoded as a validity problem where the
formula is an implication whose body is the LTL formula of the ConDec
model plus the termination property and the head is the LTL formula
of the ConDec property.

Definition 11.5 (∀-entailment in LTL). Given a ConDec model CM and
a ConDec property Ψ,

tLTL (CM) |=∀ tLTL (Ψ)⇔ (tLTL (CM) ∧ term (CM)⇒ tLTL (Ψ)) is valid

For example, the process of checking if d is a dead activity in the

model shown in Figure 37(a), is tackled as follows. First, the
0

d
property is expressed in LTL as �¬d. Second, we check whether the
formula

tLTL (CM) ∧ term (CM)⇒ �¬d

is valid. The answer is positive: there does not exist a finite execution
trace supported by the model which contains d.

If we erroneously forget to take into account the term (CM) property,
then we obtain a wrong answer: formula

tLTL (CM)⇒ �¬d

is not valid, because the infinite-lenght trace d→ c→ a→ b→ c→ . . .
contains an execution of activity d. The problem is that such a sample
cannot be reproduced in reality.

11.3.3 Reduction of Validity and Satisfiability Checking to Model Checking

In order to deal with static verification of ConDec by exploiting state-
of-the-art model checkers, satisfiability and validity checking must be
expressed as model checking problems.

Rozier and Vardi tackled this issue in [169], showing how LTL sat- Universal Kripke
structureisfiability and validity checking can be reduced to model checking.

The reduction process centers around the construction of an universal
Kripke structure.

Definition 11.6 (Universal Kripke structure). Given a set of proposi-
tion symbols S , the universal Kripke structure on S (written U (S)) is a
Kripke structure able to generate all the possible execution traces over
the proposition symbols belonging to S .

3 Note that validity and satisfiability have a strong correspondence: an LTL formula ϕ
is valid if ¬ϕ is unsatisfiable.

214 experimental evaluation

function: ∃-entailmentMC(ConDec model CM, ConDec property Ψ)
returns : true, together with a sample LTL execution trace if

tLTL(CM) |=∃ tLTL(Ψ), false otherwise
begin1

ψµ← tLTL(comp (CM,Ψ));2

← tLTL(Ψ);3

U← universal(P (ψµ)∪ P (term (CM)));4

[Success, TL]← model_checking(U, ¬ (ψµ∧ term (CM)));5

if ¬Success then6

return [true, TL];7

else8

return [false, -];9

end10

end11

Function ∃-entailmentMC(CM,Ψ)

Thus, given the LTL formula µ representing a ConDec model, the cor-
responding universal Kripke structure is obtained by considering all
the proposition symbols appearing in µ, i.e., P (µ) (see Definition 5.10

– Page 101).
Given an LTL formula ϕ,

• validity checking can be tackled by model checking ϕ against
U (ϕ): if the model checker returns a negative answer, the gen-
erated counter-example shows that there exists a possible execu-
tion trace violating ϕ, i.e., that ϕ is not valid;

• satisfiability checking can be instead tackled by model checking
¬ϕ against U (ϕ): if the model checker returns a negative answer,
the generated counter-example is actually a positive example for
the original formula ϕ, proving that there exists at least one
possible execution satisfying ϕ, i.e., that ϕ is satisfiable.

Definition 11.7 (Validity checking via model checking[169]). An LTL
formula ϕ is valid iff U (ϕ) |= ϕ.

Definition 11.8 (Satisfiability checking via model checking[169]). An
LTL formula ϕ is satisfiable iff U (ϕ) 6|= ¬ϕ.

11.3.4 Verification Procedure by Model Checking

Functions ∃-entailmentMC(CM,Ψ) and ∀-entailmentMC(CM,Ψ) implement
the ∃- and ∀-entailment of properties in the LTL setting, by reducing
satisfiability and validity to model checking.

Besides the function tLTL, which maps a ConDec model to the cor-
responding LTL conjunction formula, two others support functions are
used:

• universal(ϕ) builds a universal Kripke structure able to generate
all the execution traces over the proposition symbols of ϕ, i.e.,

11.4 comparative evaluation 215

function: ∀-entailmentMC(ConDec model CM, ConDec property Ψ)
returns : true if tLTL(CM) |=∀ tLTL(Ψ), false, together with an

execution trace amounting as a counter-example, otherwise
begin1

µ← tLTL(CM);2

ψ← tLTL(Ψ);3

U← universal(P (CM)∪ P (ψ)∪ P (term (CM)));4

return model_checking(U, µ ∧ term (CM)⇒ ψ);5

end6

Function ∀-entailmentMC(CM,Ψ)

over all the activities of the ConDec model and the property
under study;

• model_checking(M,ϕ) model checks M againtsϕ, returning true
if M meets ϕ in every possible execution, false, together with a
counter-example, otherwise.

11.4 comparative evaluation

In order to choose a suitable model checker and run a comparative
evaluation of g-sciff with the state of the art, we referred to the results
of an experimental investigation conducted by Rozier and Vardi on
LTL satisfiability checking [169]. The authors found that the symbolic
approach is clearly superior to the explicit approach, and that NuSMV
is the best performing model checker for the benchmarks they con-
sidered. We thus chose NuSMV and ran our benchmarks to compare
g-sciff with it.

In fact, some preliminary tests we carried out by using the SPIN ex-
plicit model checker confirmed the results of Rozier and Vardi: SPIN
could not handle in reasonable time even a ConDec chart and proper-
ties as simple as the ones we described in Section 8.3.4. g-sciff, instead,
correctly handles all the queries described in Section 8.3.4 with the fol-
lowing timings: Query 8.1 in 10 ms, Query 8.2 in 20 ms, Query 8.3 in
420ms and Query 8.4 in 80ms.

Unfortunately, the comparison could not cover all relevant aspects
of the language, such as quantitative temporal aspects (presented in
Query 8.4), because neither NuSMV nor any other model checker cited
in [169] supports Metric Temporal Logic (MTL). Anyway, since existing
MTL tools seem to use explicit model checking and not symbolic model
checking, our feeling is that g-sciff would largely outperform them on
these instances.

11.4.1 Evaluation Benchmarks

To obtain our evaluation benchmarks, we complicated the model shown
in Section 8.3.4 – Figure 59 so as to stress g-sciff and emphasize its per-
formance results in both favorable and unfavorable cases. In particular,

216 experimental evaluation

standard payment

complete
payment

start
payment

step
1

step
2

step
K

...

start
failure

step1
failure

stepK-1
failure

stepK
failure

Figure 51: Parametric extension to the model presented in Figure 59.

as in the alternate responses and chain responses benchmark (see Sections
11.2.2 and 11.2.3), verification techniques are stressed along two axes:

size of the model Instead of a single activity, standard payment con-
sists of a chain of K activities, in which every two consecutive
steps are linked by an alternate succession relation:

start payment •==I• step1 •==I•. . .•==I• complete payment

Furthermore, we model a possible failure at each of these steps
(start failure, step 1 failure, . . .), thus making each alternate suc-
cession disjunctive. This extension to the model is depicted in
Figure 51.

number of required executions We add an existence N..* con-
straint on activity payment failure, simulating that payment failure
must occur at least N times.

11.4.2 Experimental Results

The comparison between g-sciff and NuSMV has been carried out
on the parametrized version of Figure 59, by focusing on two sets of
benchmarks:

1. Query 8.1, augmented with an absence constraint on the start

payment activity
0

start payment , to make the property unsat-
isfiable (benchmark exp1);

2. Query 8.1 (benchmark exp2).

Of the two benchmarks, the first one concerns verification of an un-
satisfiable property and the second one verification of an ∃-entailed
property. The latter requires producing an example demonstrating ∃-
entailment, which generally increases the runtime. The input files are
available on a Web site4. The runtime resulting from the benchmarks
has been presented in [144] and is reported in Table 28. Figure 52

shows the ratio NuSMV/g-sciff runtime, in Log scale.
It turns out that g-sciff outperforms NuSMV in most cases, up to

several orders of magnitude. This is especially true for the first bench-
mark, for which g-sciff is able to complete the verification task always

4 See http://www.lia.deis.unibo.it/research/climb/iclp08benchmarks.zip.

http://www.lia.deis.unibo.it/research/climb/iclp08benchmarks.zip

11.5 discussion 217

N \K 0 1 2 3 4 5

benchmark exp1

0 0.01/0.20 0.02/0.57 0.03/1.01 0.02/3.04 0.02/6.45 0.03/20.1

1 0.02/0.35 0.03/0.91 0.03/2.68 0.04/4.80 0.04/8.72 0.04/29.8

2 0.02/0.46 0.04/1.86 0.05/4.84 0.05/10.8 0.07/36.6 0.07/40.0

3 0.03/0.54 0.05/2.40 0.06/8.75 0.07/20.1 0.09/38.6 0.10/94.8

4 0.05/0.63 0.05/2.34 0.08/9.51 0.10/27.1 0.11/56.63 0.14/132

5 0.05/1.02 0.07/2.96 0.09/8.58 0.12/29.0 0.14/136 0.15/134

benchmark exp2

0 0.02/0.28 0.03/1.02 0.04/1.82 0.05/5.69 0.07/12.7 0.08/37.9

1 0.06/0.66 0.06/1.67 0.07/4.92 0.08/9.21 0.11/17.3 0.15/57.39

2 0.14/0.82 0.23/3.44 0.33/8.94 0.45/22.1 0.61/75.4 0.91/72.86

3 0.51/1.01 1.17/4.46 1.87/15.87 3.77/41.2 5.36/79.2 11.4/215

4 1.97/1.17 4.79/4.43 10.10/17.7 26.8/52.2 61.9/116 166/268

5 5.78/2.00 16.5/5.71 48.23/16.7 120/60.5 244/296 446/259

Table 28: Results of the benchmarks (SCIFF/NuSMV), in seconds [144].

(a) benchmark exp1 (b) benchmark exp2

Figure 52: Charts showing the ratio NuSMV/g-sciff runtime, in Log scale.

in less than 0.15s, while NuSMV takes up to 136s. For the second bench-
mark, g-sciff does comparatively better as K increases, for a given N,
whereas NuSMV improves w.r.t. g-sciff and eventually outperforms
it, for a given K, as N increases.

11.5 discussion

The main difference of g-sciff with model checking is that queries are Exploration of the
search spaceevaluated top-down, i.e., starting from expectations and using abduc-

218 experimental evaluation

tion as a mechanism to simulate events. No intermediate format needs
to be generated, which eliminates a computationally expensive step.
By going top-down, the verification algorithm only considers relevant
portions of the search space, which can boost performance. On the
downside, the performance strongly depends on the way CLIMB pro-
grams are written w.r.t. the property. Due to the left-most, depth-first
search tree exploration strategy that g-sciff inherits from Prolog, the
order of clauses influences performance, and so does the ordering of
atoms inside the clauses. However, this does not impact on soundness,
completeness and termination.

In particular, since verification is performed by g-sciff starting from
expectations, its performances are heavily influenced by the presence
of existence/choice constraints in the ConDec model and query. In-
deed, existence and choice constraints are the ones that, translated to
CLIMB, impose expectations about the execution of a certain activity
independently from the other activities and constraints. At the begin-
ning of the g-sciff computation, these expectations are transformed to
happened events via the fulfiller transition. These happened events, in
turn, trigger new parts of the model under study, leading to the gener-
ation of new expectations and happened events. This is why the perfor-
mance of g-sciff decreases as the N value of the benchmarks increases:
all the N expected executions are simulated, triggering the outgoing
relationships N times, and so on. On the other side, if a portion of
the ConDec model is not affected by this propagation, i.e., its execu-
tion is not mandatory, then its constraints do not affect verification at
all. The extreme case is the one in which no activity is expected to be
executed by the ConDec model nor by the (complemented) query: in
this situation, independently of the size of the model, g-sciff answers
immediately by returning the void execution trace as an example. This
is the case, for example, when presence of conflict is checked on the or-
der&payment diagram shown in Figure 59. This smart exploration of
the search space motivates why when K (i.e., the number of constraints)
increases, performances of g-sciff degrade gracefully. Furthermore, it
suggests that suitable heuristics that choose how to explore the search
tree could help to improve the g-sciff performance. This is subject for
future research.

Differently from g-sciff, model checking techniques first translate
the formula representing the ConDec model and the query to an in-
termediate structure: a Büchi automaton in the case of explicit model
checking, a BDD in the case of symbolic model checking. As we have
already pointed out, this translation is exponential in the size of the
formula [57, 64]. When model checking is adopted to check if declar-
ative specifications are satisfiable, this is a critical point, because both
the model of the system and the property are represented by means
of LTL formulae. Even if symbolic model checking experiences a more
graceful degradation rather than explicit model checking (mainly due
to the compactness of BDDs), it cannot avoid state explosion when ver-
ifying declarative specifications such as the ones produced by translat-
ing ConDec models to LTL. Furthermore, practical experiments show

11.5 discussion 219

that the performance of symbolic methods is highly unpredictable; this
phenomenon can be partially explained by complexity theoretical re-
sults which state that the use of BDDs does not improve worst case
complexity [58].

It then comes as no surprise that NuSMV experiences an exponen-
tial degradation as the K value of our benchmark increases: K reflects
the number of constraints contained in the ConDec model, and thus
indirectly also the size of the underlying LTL formalization. When N
increases, the degradation is more graceful; indeed, an existence con-
straint stating that activity a must be executed at least N times is mod-
eled in LTL by applying the (recursive) translation

tLTL

(
N..∗
a

)
, ♦

(
a∧♦tLTL

(
N−1..∗

a

))

and the the size of the formula does not dramatically increase from
N− 1 to N.

A great advantage of model checking w.r.t. g-sciff is that it always Termination issues
guarantees that an answer is provided in finite time. In this respect,
while g-sciff needs to be accompanied by a pre-processing procedure
to avoid non-termination issues (for the specific case of ConDec), and
it must necessarily switch to a bounded (incomplete) search strategy
when the ConDec model contains ∨-loops, model checking techniques
can seamlessly deal with infinite-lenght computations: the implict re-
quirement that “each supported execution must eventually terminate”
can be made explicit in the logic, and combined with the formulae for-
malizing the model and the property. If ConDec had been extended
with new constraints, then g-sciff would require to update the pre-
processing procedure, while model checking techniques would be able
to seamlessly reason upon such a new capabilities.

However, it is important to point out that non-termination issues Expressiveness of
the formalismsexperienced by g-sciff are due to its first-order nature: the CLIMB lan-

guage is able to express metric and data-related constraints by exploit-
ing variables, a feature which is not available for state-of-the-art model
checkers, which employ propositional temporal logics. All the features
added in ConDec++ can be expressed in CLIMB and verified by apply-
ing g-sciff, while they cannot be tackled by LTL, thus making model
checking inapplicable. Enlarging the range of features that can be ex-
pressed by the temporal logic leads model checking to experience the
same drawbacks of g-sciff; just to cite an example, the translation of
a temporal logic formula to the underlying automaton becomes unde-
cidable for variants of temporal logic with explicit time, such as Metric
Temporal Logic (MTL) with dense time[9].

Last but not least, as we will see in the next part of this disserta-
tion, the same CLIMB formalization produced for g-sciff can be used
in conjunction with the sciff proof procedure enabling monitoring and
run-time verification capabilities. This eliminates the problem of hav-
ing to produce two sets of specifications (one for static and one for
run-time verification) and of verifying that they are equivalent.

12
R E L A T E D W O R K A N D S U M M A R Y

Contents
12.1 Related Work 221

12.1.1 Verification of Properties 221

12.1.2 A-priori Compliance Verification 225

12.1.3 Model Composition 227

12.1.4 Interoperability and Choreography Confor-
mance 228

12.2 Summary of the Part 229

In this Chapter, related work concerning the topic of static verifica-
tion of interaction models and their composition is presented. Then,
the major contributions of this part of the dissertation are briefly sum-
marized.

12.1 related work

We present related work by dedicating particular attention to the fol-
lowing research areas:

• static verification of properties;

• a-priori compliance verification;

• formalisms and reasoning techniques for model composition;

• approaches dealing with interoperability and choreography con-
formance issues.

12.1.1 Verification of Properties

Existing formal verification tools rely on model checking or theorem
proving. A drawback of most model checking tools is that they typ-
ically only accommodate discrete time and range on finite domains,
and that the cardinality of domains impacts heavily on their perfor-
mance, especially in relation to the production of an automaton (or
other more compact structures such as BDDs) starting from a temporal
logic formula. On the other hand, theorem proving in general has a low
level of automation, and it may be hard to use, because it heavily relies
on the user’s expertise [97]. g-sciff presents interesting features from

221

222 related work and summary

both approaches. Like theorem proving, its performance is not heav-
ily affected by domain cardinality, and it accommodates domains with
infinite elements, such as dense time. Similarly to model checking, it
works in a push-button style, thus offering a high level of automation.

In [159], Pesic et al. describe an integrated framework in which Con-
Dec models can be graphically specified, automatically obtaining the
underlying LTL formalization, which is then used for enactment and
verification purposes. Verification is limited to conflict-freedom and
discovery of dead activities, and does not support ∃- nor ∀-entailment
of properties. Instead of adopting standard model checking techniques,
verification is carried out by exploiting the finite-trace model checking
approach proposed by Giannakopoulou and Havelund in [86]. The ap-
proach reviews the semantics of LTL in a finite setting, adding an (ideal,
i.e., not fixed) upper bound on the application of temporal operators.
For example, the semantics of the U operator is revised as follows (n
is the upper bound):

TL, i |=L ψUφ iff ∃ k, i 6 k 6 n s.t. (TL,k |=L φ)

∧ ∀i 6 j < k (TL, j |=L ψ)

The authors then modify a translation algorithm, which produces a
Büchi automaton starting from an LTL formula, to reflect such a finite-
trace semantics. The modified automaton embeds by construction the
ConDec termination condition stating that each supported execution
of the model must eventually terminate. This enables the possibility of
performing verification without explicitly asserting the ConDec termi-
nation condition in the logic. Nevertheless, the approach presents the
same computational drawbacks of explicit model checking: the trans-
lation phase has a cost which is exponential in the size of the formula,
thus making it not suitable for the verification of even small-sized mod-
els.

As pointed out in Section 11.4, the quantitative evaluation presented
in Chapter 11 does not cover all aspects of ConDec++, which con-
tains data-related constraints, supports a non-atomic model of activ-
ities and accomodates quantitative time constraints. Different exten-
sions of propositional LTL have been proposed to explicitly referenc-
ing time and expressing quantitative time constraints. For example,
the timed requirement of Query 8.4, Figure 35, stating that a receipt
is expeted by 12 time units after having executed accept advert, can be
expressed in MTL[9] as:

�(accept_advert⇒ ♦612send_receipt)

which is equivalent to the Timed Propositional Temporal Logic (TPTL)[10]
formula:

�x.(accept_advert⇒ ♦y.(y− x 6 12∧ send_receipt))

Many tools have been developed to verify real-time systems w.r.t. timed
temporal logics, relying on timed automata [25]. For example, UP-
PAAL [11] is an integrated environment for modeling and verifiying

12.1 related work 223

real-time systems as networks of timed automata; it supports a limited
set of temporal logic properties to perform reachibility tests. A timed
automaton is a Büchi automaton extended with a set of real-valued
(constrained) variables modeling clocks. As in standard explicit model
checking, building and exploring (product of) timed automata is a very
time and space-consuming task, made even more complex due to pres-
ence of such clocks. g-sciff incorporates CLP solvers to deal with metric
temporal constraints, and therefore the complexity of verification does
not change if quantitative time constraints are involved.

Among the temporal logic-based languages able to specify quanti-
tative time constraints, we cite TRIO[84], a language, based on a met-
ric extension of first-order temporal logic, for modeling critical real-
time systems. Similarly to ConDec, TRIO systems are modeled in a
declarative manner, i.e., as a conjunction of TRIO formulae. Different
approaches have been investigated for model checking TRIO specifi-
cations, but many important features of the initial language are lost
in the effort to obtain a decidable and tractable specification language.
For example, the time domain is reduced to natural numbers, there
is no quantification over time variables, and the language can range
only on finite domains. Such a restricted language can be translated
onto a Promela alternating Büchi automaton using the Trio2Promela
tool[28], or encoded as a SAT problem in Zot [163]. Zot is specifically
focused on TRIO satisfiability checking, without exploiting the reduc-
tion method proposed by Rozier and Vardi [169] and used in this paper.
As g-sciff, Zot is not only able to perform satisfiability checking, but
it also supports the possibility of inserting an initial partial execution
trace of the system, which is then completed, if possible, in order to
make it compliant with the formulae of the model. As stated in [163],
it is in general slower than NuSMV.

Zot exploits SAT-based technologies to perform bounded satisfia-
bility checking of TRIO specifications. SAT-based technologies have
been introduced to overcome the state-explosion problem of classi-
cal bounded and unbounded model checking. One represents with
boolean formulas the initial state of the system I(Y0), the transition
relation between two consecutive states T(Yi, Yi+1), and the (denied
safety) property F(Yi). Then, the property is verified in the set of states
0 . . . k iff the formula [132]

I(Y0) ∧

(
k∧
i=0

T(Yi, Yi+1)

)
∧

(
k∨
i=0

F(Yi)

)

is unsatisfiable. Bounded model checking is obviously not complete,
in that a fixed bound is imposed. Furthermore, in a metric setting the
bound represents a maximum time, and thus, differently from CLP,
verification of temporal constraints is affected by the time granular-
ity (e.g., verifying a deadline of 120 time units is more difficult than
verifying a deadline of 12 time units).

SAT-based unbounded model checking is based on analogous for-
mulae, but it also adds formulae that verify loop freeness (as in induction-
based unbounded model checking [178]) or use SAT specific features

224 related work and summary

(as in interpolant-based unbounded model checking [138]). In all cases,
the transition function should be unfolded for a set of possible states,
which makes the boolean formula quite large. Indeed, modern SAT
solvers can handle millions of boolean variables, but even generating
a large SAT can be very costly.

In [76], Fisher and Dixon propose a clausal temporal resolution
method to prove satisfiability of arbitrary LTL formulae. The approach
is two-fold: first, the LTL formula is translated into the SNF form (which
has been recalled in this manuscript – Section 5.6.1); then a resolution
method, encompassing classical as well as temporal resolution rules,
is applied until either no further resolvents can be generated or ⊥ is
derived. In this latter case, the formula is unsatisfiable. From a theoreti-
cal point of view, clausal temporal resolution always terminates, while
avoiding the state-explosion problem; however, the translation to SNF
produces large formulas, and finding suitable candidates for applying
a temporal resolution step makes the resolution procedure exponen-
tial in the size of the formula. Furthermore, in case of satisfiability no
example is produced.

Many approaches have been developed also in the field of LP to
statically verify interaction models. For example, Alessandra Russo et
al. [171] exploit abduction for the verification of declarative specifica-
tions expressed in terms of required reactions to events. They use the
Event Calculus (EC) and include an explicit time structure. Global sys-
tems invariants are proven by refutation, and adopting a goal-driven
approach similar to ours. The main difference concerns the underlying
specification language: while Russo et al. rely on a general purpose
abductive proof procedure to handle EC specifications and require-
ments, we adopt a language which directly captures the notion of
occurred events and expectations, and whose temporal relationships
are expressed as CLP constraints.

Another system aimed at proving properties of graphical specifica-
tions translated to LP formalisms is West2East [42], where interaction
protocols modeled in Agent UML are translated to a Prolog program
representing the corresponding finite state machine, whose proper-
ties can be verified exploiting the Prolog meta-programming facilities.
However, the focus of that work is more on agent oriented software en-
gineering, rather than verification: the system allows (conjunctions of)
existential or universal queries about the exchanged messages (i.e., to
check if a given message is guaranteed to be exchanged in at least one
or all of the possible protocol instatiations) or guard conditions, and it
is not obvious how to express and verify more complex properties.

Differently from the approach here presented, in other works LP and
CLP have been exploited to implement model checking techniques. Of
course, since they mimic model checking, they inherit the same com-
putational drawbacks of classical model checkers when applied for
the static verification of ConDec models. For example, Delzanno and
Podelski [63] propose to translate a procedural system specification
into a CLP program. Safety and liveness properties, expressed in Com-
putation Tree Logic, are checked by composing them with the trans-

12.1 related work 225

lated program, and by calculating the least and the greatest fix-point
sets. In [94], Gupta and Pontelli model the observed system through
an automaton, and convert it into CLP. As in our approach, they can-
not handle infinite sequences without the intervention of the user: the
user must provide a predicate that generates a finite number of event
sequences, representing all the possible finite evolutions of the system.

12.1.2 A-priori Compliance Verification

A vast literature is focused on the a-priori compliance verification of
interaction models, with particular attention to the BPM field. Indeed,
after the outbreak of high-profile financial scandals, new legislation
such as the Sarbanes-Oxley Act has been produced to regulate the
behaviour of companies, and it has therefore become fundamental to
statically verify if a BP design effectively complies with such regula-
tions.

The specification of BPs by means of declarative approaches such as
ConDec is a very recent topic; they are usually modeled by means of
graphical procedural specifications such as BPMN [203]. Business rules,
regulations and policies have instead an inherent declarative nature.
As a consequence, most of the literature on this topic adopts procedu-
ral specifications to represent BPs, and declarative (usually logic-based)
languages to capture the regulatory models against which BPs must be
verified.

Two major mainstream approaches emerge:

• logic-based approaches which formalize regulatory models by
relying on the deontic notions of obligations and permissions;
verification is then carried out by exploiting resolution techniques
underlying the logic.

• approaches which adopt model checking techniques for verifi-
cation; the procedural specification of the BP is formalized as a
Kripke structure, while business rules are captured as temporal
logics formulae.

In [90], the authors introduce the Formal Contract Language (FCL)
to formalize business contracts. FCL combines concepts from the logic
of violations and normative positions based on Deontic Logic with
Directed Obligations. FCL is reduced to a normal form which makes it
possible to reason upon execution traces, verifying if all the obligations
are satisfied. Possible execution traces are extracted from BPMN models
before verification.

Another approach relying on obligation and permissions is presented
in [88]. The authors introduce PENELOPE as a declarative language to
capture obligations and permissions imposed by business policies (se-
quencing and timing constraints between activities). Instead of using
these policies to verify an external process model, the policies itself are
then employed to automatically generate BPs that are, by construction,
compliant with them.

226 related work and summary

Although CLIMB does not directly rely on the deontic notions of obli-
gations and permission, a relationship between these concepts and the
ones of positive and negative expectations has been established in [5].
The suitability of SCIFF as a framework to represent and verify business
contracts has been instead discussed in [8].

In [14], Awad et al. adapt the BPMN-Q graphical notation (based
on the BPMN elements), to express business rules and queries, and
exploit BPMN as a modeling notation for BPs. The process model is
then translated to a Petri Net via a multi-step methodology able to
isolate its relevant sub-parts, while the BPMN-Q query is expressed as
a past-LTL formula. Model checking is then employed to verify if the
formula is satisfied by the Petri Net.

A similar approach is proposed in [78], where UML Activity Dia-
grams are used to specify the BP, and a graphical language inspired
by Activity Diagrams, called PPSL, is used to represent the regulatory
business rules. Model checking is exploited by mapping PPSL onto
past-LTL formulae.

It is worth noting that both BPMN-Q and PPSL support constructs
very similar to a sub-set of ConDec, such as for example response,
precedence and existence/absence constraints.

In [121], Liu et al. present a static compliance-checking framework in
which BPEL[12] specifications are model checked against rules speci-
fied with the BPSL notation, a graphical language able to express order-
ings among activities possibly associated to metric constraints. BPEL
specifications are then mapped to Pi-calculus, which is in turn trans-
lated to a finite state machine. BPSL requirements are instead mapped
to LTL; temporal constraints are translated by nesting the © operator.
For example, a BPSL requirement stating that “if a request is received,
then an answer must be provided exactly after 3 time units” is formal-
ized by means of the following LTL formula:

�(request⇒ ©©©answer)

A slightly different approach is the one of [85], in which a method-
ology to check compliance of business processes and the resolution
of violations is presented. Semantic Process Networks (SPN) are intro-
duced to formalize BPs specified with the BPMN notation, augmented
with annotations used to associate effect predicates to activities. Busi-
ness rules are then verified against the produced network.

Verification of procedural specifications w.r.t. a ConDec regulatory
model could be seamlessly carried out with model checking techniques,
by exploiting the mapping of ConDec to LTL. With g-sciff, the problem
is related to the specification of the procedural BP, which cannot be eas-
ily captured by means of CLIMB rules. In this respect, two possibilities
could be exploited:

• the BP model is maintained separated from CLIMB. Simulations
are then performed on the model to produce different possible
execution traces (this assumption is made in many other works,
such as for example [90]); then, the simulated execution traces

12.1 related work 227

are subject to compliance verification with CLIMB rules, by adopt-
ing the sciff proof procedure. Such a verification is exactly the
same that is carried out a-posteriori, i.e., by considering concrete
actual executions of the BP. The discussion on this topic is there-
fore postponed to Chapter 15.

• the BP is translated to CLIMB, and the obtained specification is
then combined with the CLIMB specification formalizing the Con-
Dec regulatory model. A simple structured BP notation used to
specify clinical guidelines has been translated onto CLIMB rules
in [143]; however, when the focus is on static verification, to guar-
antee termination of g-sciff the BP model must must avoid the
presence of loops.

12.1.3 Model Composition

The issue of composing local models to obtain a unique global model
has been subject to extensive research in the last years, especially in the
fields of Component-Based Engineering, Business Process Management
(BPM) and Service Oriented Computing (SOC).

In [147], Moschoyiannis and Shields provide a set-theoretic mathe-
matical framework for modeling components and their composition.
In particular, each component is characterized by a set of behavioural
constraints which associate a sequence of operation calls to each inter-
face exposed by the component itself. Based on this notion, a formal
definition of composition is provided, examining its effect on the indi-
vidual components. A well-behaved composition is defined as a com-
position which preserves the sequencing of operation calls supported
by each component. The proposed framework can be used for guiding
the composition of components as it advocates formal reasoning about
the composite before the actual composition takes place.

In [89], a framework for component-based composition encompass-
ing heterogeneous interaction and execution is described. It adopts
an abstract layered model of components, where each component is
described by its dynamic behaviour, the architectural constraints on
that behaviour, and its concrete execution model. Such descriptions
are captured by using timed automata with dynamic priorities, which
are then composed by means of a commutative and associative com-
position operator which preserves deadlock-freedom.

Petri nets are used for design-time conformance and compatibil-
ity in [133, 134, 136, 175]. For example, [134] focuses on the prob-
lem of consistency between executable and abstract processes while
[136] presents an approach where for a given composite service the re-
quired other services are generated. Also related is [79], were Message
Sequence Charts (MSCs) are compiled into the “Finite State Process”
notation to describe and reason about web service compositions. Auto-
matic service composition has been addressed in OWL-S [135] which
looks how atomic services interact with the real world, the Roman
model approach [26] that uses finite state machines, and Mealy ma-

228 related work and summary

chine [38] that focuses on message exchange between services. Com-
patibility of synchronous communication via message exchange in web
services is investigated in [30, 27, 24, 162], while ConDec allows asyn-
chronous communication and focuses on the process perspective, rather
than message exchange. ConDec contributes to this area are with the
verification techniques aimed at checking if a composition of local
models meets certain properties, such as conflict-freedom and absence
of dead activities. However, while the cited approaches focus on auto-
matic composition of services (i.e., automatic choreography generation
from participating services), ConDec assumes that all relevant process
models of the composition are available and then verifies their interop-
erability.

To the best of our knowledge, the work presented in [146], is the
first attempt to automatically verify declarative service models. Such
models are graphically described by means of the DecSerFlow notation
[186], which has been developed by the same authors of ConDec and
presents many similarities with it. Verification of service composition
is carried out by exploiting the possibility of mapping DecSerFlow
onto LTL as well as onto the SCIFF framework, in the same way that has
been described in this dissertation.

12.1.4 Interoperability and Choreography Conformance

As in the case of model composition, the notions of conformance and
interoperability have been, and still are, deeply investigated, especially
in the Service Oriented Computing setting. In the research literature it
is possible to find several deÞnitions of interoperability and conformance,
and there is not a complete agreement about its exactly meaning. For
example, in [17, 127] the authors state that choreography conformance
aims to check if a service, described by its behavioural interface, can
play a given role within a choreography. The proposed conformance
test is less restrictive than classic bi-simulation techniques [41]. Differ-
ently from the notion of conformance presented in Chapter 8, Baldoni
et al. guarantee that if a service is evaluated as conformant with the
choreography, then it will be able to interoperate with any other ser-
vice conformant to the choreography. Verification is therefore carried
out on each specific service independently from the other concrete ser-
vices. The advantage of this approach is that any single service can be
replaced by another conformant service playing the same role, with-
out needing to touch the other concrete services; the drawback is that
this notion of conformance is sometimes too strong: it rules out many
possible allowed compositions whose services cover only a part of the
whole choreography. The approach proposed in this dissertation em-
braces the opposite philosophy: verification is carried out on a specific
service composition as a whole, checking if the composed services can
fruitfully interact while respecting the choreography constraints. It is
worth noting that, in [2], the SCIFF framework has been successfully
adapted to address the type of interoperability and conformance veri-

12.2 summary of the part 229

fication described in [17]. An interesting research activity would be to
study whether this adaptation could fit with the ConDec setting.

A different notion of interoperability is given in [53], where the au-
thors represent global choreographies and local services in terms of
state transition systems (and their composition as the product of the
two transition systems). They define a notion of interoperability as a
set of features that the resulting transition system should guarantee.
Although their idea of interoperability is in some sense “broader” that
the one given in [17, 2], it is still related to the procedural aspects of
the interaction.

Differently from all these approaches, the notion of conformance
and interoperability provided in this dissertation is instead more re-
lated to ensuring that declarative constraints specified in terms of Con-
Dec are indeed satisfied, given the ConDec representation of both a
global choreography and of a composition of local models. ConDec,
in fact, focuses on the declarative aspects and features of global chore-
ographies, leaving the interaction unconstrained as much as possible.
The introduction of more restrictive forms of conformance and inter-
operability would clash with the openness philosophy of ConDec.

The composition of local models and their conformance with a chore-
ography, as described in this dissertation, is tightly related to the prob-
lem of service contracting. In Semantic Web technologies, searching
for a service means to identify components that can potentially satisfy
the user needs in terms of outputs and effects (discovery), and that,
when invoked by the customer, can fruitfully interact with her (con-
tracting). Differently from the composition problem described in this
dissertation, contracting could involve a negotiation phase, in which
two parties partially disclose and negotiate their interaction policies,
private information and mutual requirements.

In this setting, Roman and Kifer have proposed a framework which
relies on Concurrent Transaction Logic (CTR) to model and reason
about (semantic) web services [167]. Local services, as well as the
global choreography, are represented by a set of CTR declarative for-
mulae, which are able to express all the DecSerFlow/ConDec con-
straints. Then, a proof theory is given to solve a twofold problem:

contracting Verification is carried out to verify that at least one
execution exists, s.t. the policies of a service and a client as well
as the choreography constraints are guaranteed.

enactment A variation of contracting, in which the aim is to build
a constructive proof for such an execution. The obtained proof
can be seen as a possible way to enact the interaction while re-
specting the constraints of all the involved parties.

12.2 summary of the part

In this part of the dissertation, we have faced the problem of static
verification of open declarative interaction models, specified using the
ConDec notation.

230 related work and summary

We have introduced many interesting kind of verifications that can
be applied during the design phase of a ConDec model, ensuring its
correctness/consistency and verifying its compliance to regulations
and policies, again expressed in ConDec. We have also introduced the
concepts of local and global ConDec models, discussing how composi-
tions of local models as well as conformance of a composition w.r.t. a
global model can be verified. All these verifications have been reduced
to ∃- and ∀-entailment of properties, which respectively state that a
ConDec (possibly composite) model meets a given property in at least
one/all its supported executions.

We have recalled the sciff and g-sciff proof procedures, which can
be employed for the verification of CLIMB specifications. sciff is de-
voted to checking whether a given execution trace actually complies
with a CLIMB model, while g-sciff is a generative extension of sciff

able to generate intensional execution traces compliant with a CLIMB
model, exploiting its constraints.

We have then shown how g-sciff is able to effectively deal with ∃-
and ∀-entailment of properties in the ConDec setting. We have pro-
vided a discussion relating the non-termination issued of g-sciff with
the presence of loops in the ConDec model under study. This issue has
been overcome with a loop detection procedure used to pre-process
ConDec models taking suitable countermeasures in the presence of
loops.

The effectiveness of the approach has been quantitatively assessed
by means of different benchmarks, emphasizing the performance re-
sults of g-sciff in both favorable and unfavorable cases. Timings and
scalability of g-sciff have been compared with the ones of model-
checkers, after having shown how the ∃- and ∀-entailment of prop-
erties can be also encoded as a model checking problem.

Part III

R U N - T I M E A N D A - P O S T E R I O R I
V E R I F I C A T I O N

13
R U N - T I M E V E R I F I C A T I O N

“Begin at the beginning”,
the King said, very gravely,

“and go on till you come to the end: then stop”

— Lewis Carroll

Contents
13.1 The Run-Time Verification Task 234
13.2 Run-time Verification with the SCIFF Proof Proce-

dure 235
13.2.1 Reactive Behaviour of the SCIFF Proof Pro-

cedure 235

13.2.2 Open Derivations 236

13.2.3 Semi-Open Reasoning 238

13.3 The SOCS-SI Tool 240
13.4 Speculative Run-Time Verification 241

13.4.1 Speculative Verification with the g-sciff Proof
Procedure 242

13.4.2 Interleaving the sciff and g-sciff Proof Pro-
cedures 243

Static verification techniques are useful to assess the correctness, safety
and consistency of the designed models. However, they suppose that
the model is completely accessible, i.e., that it is a white box.

There are many situations in which such an assumption is not rea-
sonable. For example, a ConDec choreography could be applied to an
already existing service composition. Here, the internal implementa-
tion of concrete services taking part to the composition is unaccessible,
i.e., they are black boxes. Also the case in which a service composition
is built to realize a desired choreography cannot relies only on static
verification to ensure that the composition correctly deals with all the
choreographic constraintd. In fact, the composition is built by looking
at the behavioural interface of the selected parties, without having ac-
cess to their complete internal implementation (they are gray boxes).
In this respect, there is no guarantee that the behaviour exposed by a
third-party service really corresponds to its internal implementation.
Potential mismatches between the exposed and the implemented be-
haviours could produce unexpected/undesired interactions, breaking
the choreographic global contract.

233

234 run-time verification

model

run-time
verification

partial
trace

yes

no

Figure 53: ConDec and run-time verification.

In all these cases, verification must shift from static-time to run-time,
where the events generated by the (concrete implementation of) inter-
acting entities can be collected an analyzed, checking if they actually
adhere to the global choreographic model.

In other words, static verification must be complemented by run-time
verification.

13.1 the run-time verification task

As defined in [59]:

Run-time verification techniques are used to dynami-
cally verify the behavior observed in the target system
with respect to given requirements. Verification is used
both to check that the observed behavior matches speci-
fied properties and to explicitly recognize undesirable be-
haviors in the target system.

In the ConDec setting, run-time verification aims at checking whether
the current execution trace complies with all the constraints contained
in the model.

During the execution of an instance of the system, the interacting en-
tities generate events which are collected in a corresponding execution
trace. Hence, run-time verification is carried out on a partial execu-
tion trace, represented by the course of interaction reached so far (see
Figure 53).

A run-time verifier must be able to deal with incomplete informa-Reasoning with
incomplete
information

tion: at each time, the observed execution trace is only a partial ver-
sion of the whole trace describing the instance, and therefore verifica-
tion cannot provide a definitive answer. For example, if the model pre-
scribes that a certain event emust eventually occur within the instance,
and at the current time such an event has not yet been generated by
the interacting entities, the verifier should not infer that the execution
is wrong, but only that the requirement has not yet been satisfied so
far.

On the other hand, a run-time verifier must be able to detect on-the-On-the-fly detection
of violations fly whether the behaviour of the interacting entities is respecting the

prescriptions of the model, detecting violations as soon as possible.
In the following, we will identify three kind of reasoning capabilitiesOpen, semi-open

and closed reasoning

13.2 run-time verification with the sciff proof procedure 235

needed for run-time verification:

open reasoning to deal with partial execution traces; when the in-
teraction is ongoing, new events will occur, and therefore rea-
soning must be “open” w.r.t. the acquisition of new knowledge.

closed reasoning to conclude the reasoning process when the in-
stance reaches an end, i.e., when the current execution trace
is actually a complete execution trace, providing an exhaustive
knowledge about the evolution of the instance.

semi-open reasoning to properly combine the two kind of reason-
ing when certain assumptions can be made on the system. As we
will see, a typical example is the one in which events always oc-
cur in ascending order: reasoning is, in this case, closed on the
past and open w.r.t. the future.

13.2 run-time verification with the sciff proof proce-
dure

State of the art approaches face the run-time verification problem by
proposing ad-hoc solutions, which rely on specific software implemen-
tations or customized decision procedures, lacking a strong formal
basis. This makes it impossible to prove formal properties about the
verifiers, such as soundness and completeness. However, this proper-
ties are of key importance; only if they are met, the correctness of the
results produced by the verifier is guaranteed.

As far as we are concerned, the sciff proof procedure [7] is one of the
few methods which deal with the run-time verification task by relying
on a strong formal basis. As we have pointed out in Section 9.2, sciff
is sound and complete, and meets termination for any CLIMB specifi-
cation, i.e., it will always provide an answer in finite time. Differently
from many approaches found in the literature, the SCIFF framework
has been originally thought for specifically targeting the run-time veri-
fication problem, and has been later extended to deal with static verifi-
cation. The run-time verification facilities of sciff have been applied to
many different systems, including Multi-Agent Systems [7], business
contracts [8], web service choreographies [3] and clinical guidelines
[143].

13.2.1 Reactive Behaviour of the SCIFF Proof Procedure

As described in Section 9.1, sciff checks wether an execution trace
complies with a given CLIMB specification. This task can be seamlessly
carried out on a complete trace, or by dynamically reasoning on a
partial trace. In fact, the transition system used to implement sciff

(see Section 9.1) is specifically thought for dealing with the dynamic
occurrence of events:

a. sciff supports both an “open” and a “closed” reasoning modal- Open vs closed sciff

reasoning

236 run-time verification

ity, reflecting whether the current trace is partial or complete. By
default, sciff works in an open modality: when a positive ex-
pectation is not fulfilled by any event occurred in the (current)
trace, it is stored in the set of “pending” expectations, waiting
for a further occurrence able to fulfill it. When the course of inter-
action reaches its end, then sciff is alerted, by setting a flag, that
no more events will occur; sciff then applies the closure transi-
tion, which in turn makes it possible to evaluate the expectations
which are still pending1.

b. sciff has a transition, called happening, specifically dedicated to
acquire a new event occurrence from an external queue.

In other words, sciff exhibits a reactive behaviour. As soon as a hap-Reactivity of SCIFF

pened event, say, h, is inserted in the external queue of sciff, then it
is imported by means of the happening transition. This starts a new
reasoning phase in which sciff (i) checks whether h fulfills a pending
positive expectation or violates a pending negative expectation, and (ii)
combines h with the partially solved ICs of the model, generating new
expectations if h has the ability of triggering some of them. By suppos-
ing that sciff is working in open modality, two possibilities may then
arise:

a. sciff reaches a failure node; it then performs backtracking, try-
ing a different derivation2. If all the possible branches of the
proof tree lead to a failure node, then sciff states that the cur-
rent partial trace violates the specification.

b. sciff reaches a non-failure node in which no further transition is
applicable; in this case, we say that the proof procedure reaches
quiescence.

13.2.2 Open Derivations

The fact that sciff reaches a non-failure node, where no further tran-
sition is applicable, attests that the partial execution trace analyzed so
far does not violate the constraints prescribed by the model. In this
case, we say that sciff has a successful open derivation for the partial
trace w.r.t. the model.

Definition 13.1 (sciff open successful derivation). Given a CLIMB spec-
ification S, an initial execution trace Ti and a current partial execution
trace Tp ⊇ Ti, there exists an open successful derivation for STp start-
ing from Ti iff the proof tree with root node the initial node I(STi)

has at least one non-failure node containing Tp. In this case, we write
STi∼

Tp
∆ true, where ∆ is the abductive explanation computed in that

non-failure node.

1 Each pending positive expectation is declared as violated; each pending negative
expectation is declared as fulfilled.

2 Remember that sciff adopts a depth-first search strategy

13.2 run-time verification with the sciff proof procedure 237

Let us now suppose that sciff has an open successful derivation for
STp . This means that, after having processed the last happened event of
Tp, sciff has reached a node in which no more transition is applicable.
Here, two further possibilities may arise:

• The current instance reaches its termination, i.e., Tp is actually
a complete execution trace. The “closure flag” is set on sciff,
which can then evaluate the expectations which are still pending;
in particular, if at least one positive expectation is still pending,
then a failure node is generated, and the open successful deriva-
tion leads, in fact, to a closed failure derivation. Contrariwise,
if no positive expectation is pending at the closure time, then a
success node is reached.

• A new event occurs and is inserted into the external queue of
sciff. sciff imports it through the happening transition, which in
turn triggers a new reasoning phase.

We illustrate how sciff works on two simple examples. The exam-
ples concern different execution instances which must obey to the fol-
lowing ConDec diagram:

query •===I inform

Such a model can benefit from the run-time verification facilities of
sciff, thanks to the ConDec-CLIMB mapping. In particular, the appli-
cation of the (revised) translation function described in Section 10.4.1
produces a CLIMB specification QI = 〈∅, {(†)}〉, where (†) is:

H(exec (query) , Tq)→E(exec (inform) , Ti) ∧ Ti > Tq

∧ EN(exec (query) , Tq2)

∧ Tq2 > Tq ∧ Tq2 < Ti.

(†)

Example 13.1 (Violation at closure). Let us suppose that sciff is used to
verify an execution instance against QI. At the beginning of the computation,
the execution trace is empty. (†) does not trigger, and therefore sciff reaches
immediately the quiescence, waiting for an event occurrence.

Let us now suppose that a query is sent at time 5, i.e., that the new partial
execution trace is T1 = {H(exec (query) , 5)}. The happening of the query
activity triggers (†), leading to generate a positive expectation about a con-
sequent inform, and a negative expectation about a further query inbetween.
Then, a new quiescence node N1 is reached, and therefore sciff has a success-
ful open derivation for T1: S∅∼

T1
∆1
true, where

∆1 = {E(exec (inform) , T ′i) ∧ T ′i > 5,

EN(exec (query) , T ′q2) ∧ T ′q2 > 5∧ T ′q2 < T
′
i}

The two generated expectations are put in the pending set, and sciff waits for
a new event occurrence.

238 run-time verification

Now sciff is notified that no further event will happen in the current
instance (i.e., that T1 is a complete trace). The closure transition is conse-
quently applied, leading to a failure node, which states that the positive expec-
tation about the execution of inform is violated. In other words, S∅ 6`

T1
∆1
true,

and thus T1 is not compliant with S.

Example 13.2 (Successful verification). As in Example 13.1, a query is
sent at time 5. sciff reaches quiescence in a node whose abductive explanation
is the set ∆1 shown in Example 13.1.

Then, a new event occurs within the instance, attesting that the inform
activity is executed at time 10. Such an activity is able to fulfill the positive
pending expectation, and therefore sciff generates two successor nodes (N2,1
and N2,2), one in which fulfillment is applied, one in which fulfillment is
avoided. Then, sciff selects the first node. Such a node is characterized by the
following elements:

T2,1 = {H(exec (query) , 5), H(exec (inform) , 10)}

∆F2,1 = {E(exec (inform) , 10)}

∆P2,1 = {EN(exec (query) , T ′q2) ∧ T ′q2 > 5∧ T ′q2 < 10}

Now sciff is notified that no further event will happen in the current
instance (i.e., that T2,1 is a complete trace). sciff applies closure, followed by
EN-fulfillment: since no further event will happen, the negative expectation
concerning the query is satisfied. sciff finally reaches a success node, attesting
that T2,1 is compliant with QI.

13.2.3 Semi-Open Reasoning

In its basic form, sciff does not make any assumption about the order-
ings in which events occur and are fetched. This is a desired feature,
because in a distributed system, there is no guarantee that events gen-
erated by two different parties are delivered to sciff in the same order
as they occurred. In other words, during the execution sciff is open
w.r.t. both the past and the future.

However, there exist also many systems in which such an orderingOrdering of event
occurrences is preserved (especially when the time granularity is coarse-grained).

If it is the case, sciff can seamlessly suppose that event occurrences
are fetched in ascending order: when a new event occurring at time t
is fetched, then it is guaranteed that all the event fetched in the future
will involve times greater than t.

Such an information can be exploited to “close” the reasoning w.r.t. the
past: since happened events will not happen at a time lower than t, all
the time variables associated to pending positive expectations can be
updated, stating that they must be greater or equal than t. This be-
havior is encapsulated in the times update transition, which has been
described in Section 9.1.2 - Page 159.

By taking into account the following definition of current time, if the
current execution trace is Tp, the transition has the effect of adding a
CLP constraint on each positive pending expectation, imposing that its
corresponding time variable must be greater or equal than ct(Tp).

13.2 run-time verification with the sciff proof procedure 239

Definition 13.2 (Current time). Given an execution trace T, the current
time associated to T is:

ct(T) , max{t | H(e, t) ∈ T}

Thanks to the times update transition, sciff becomes “eager” to eval-
uate expectations. Such an eager evaluation is exploited to detect vio-
lations of ConDec constraints as soon as possible.

Example 13.3 (Eager evaluation of the precedence constraint). Let us
consider a ConDec model involving a precedence constraint

pay −−−I• delivery

which is formalized in CLIMB as:

H(exec (delivery) , Td)→ E(exec (pay) , Tp) ∧ Tp < Td.

Let us now suppose that the execution of activity delivery at time 8 is dy-
namically fetched by sciff. Such happened event matches with the antecedent
of the IC formalizing the precedence constraint, and thus the IC is triggered,
generating the expectation E(exec (pay) , T ′p) ∧ T ′p < 8.

After the generation of this expectation, the default behaviour of sciff

would be to wait for the occurrence of a next event, or for the notification
stating that the execution has reached an end. If, instead, the times update
transition is enabled, sciff will infer that T ′p must be greater or equal than
8. The insertion of this CLP constraint into the constraint store immediately
leads to a failure, due to the inconsistency of T ′p < 8∧ T ′p > 8.

Example 13.4 (Eager evaluation of deadline expiration). Let us consider
a ConDec++ model involving a metric response constraint

pay
(−,48)
•−−−I delivery

which is formalized in CLIMB as:

H(exec (pay) , Tp)→ E(exec (delivery) , Td)∧Td > Tp∧Td < Tp+48.

Let us now suppose that the execution of activity pay at time 21 is dynam-
ically fetched by sciff. Such happened event matches with the antecedent of
the IC formalizing the metric response constraint, and thus the IC is triggered,
generating the expectation E(exec (delivery) , T ′d) ∧ T ′d > 21∧ T ′d < 69.

If the times update transition is enabled, then the deadline expiration
can be detected by sciff as soon as the first event occurring after time 69
is fetched. Indeed, let us suppose that the deadline expires, and that a new
activity req info is performed at time 72. sciff applies the times update
transition, imposing T ′d > 72, which is however in conflict with T ′d < 69 and
thus leads sciff to a failure.

In conclusion, the times update transition implements a sort of Closed Semi-open
derivationWorld Assumption on the past: given a trace T, it states that no further

240 run-time verification

execution
traces

SOCS-SI

Conformance
Verifier

SICSTUS
Runtime Libraries

SCIFF
Proof

Procedure

History Manager

Event Recorder

GUI
Init &

Control
Module

new event
collector...

JADE
infrastructure

CLIMB
model

Figure 54: SOCS-SI architecture.

event can happen at a time lower than ct(T) – the execution trace is
complete until the current time – but admits future event occurrences,
i.e., events occurring at a time greater or equal than ct(T). In this re-
spect, sciff performs semi-open derivations, i.e., derivations which are
closed on the past and open w.r.t. the future. We identify semi-open
derivations with notation ∼.

13.3 the socs-si tool

SOCS-SI [4] is a tool fur run-time compliance verification of interacting
entities. The tool is composed by the sciff proof procedure, interfaced
to a graphical user interface and to a component for the observation of
the interaction. SOCS-SI has a twofold purpose:

• providing the possibility of intercepting event occurrences, play-
ing the role of external queue for sciff;

• returning to the user the results computed by sciff, showing the
evolution of pending, fulfilled and violated expectations.

As shown in Figure 54, the SOCS-SI software application is com-
posed by a set of modules3:

event recorder fetches events from different sources and stores
them inside the history manager.

3 All components, except the proof procedure, are implemented in the Java language.

13.4 speculative run-time verification 241

history manager receives events from the event recorder and com-
poses them into an external queue for sciff.

social compliance verifier wraps the sciff proof procedure, fetch-
ing events from the history manager. As soon as sciff is ready
to process a new event, it imports one from the history man-
ager. The event is processed and the results of the computation
are returned to the GUI. The proof procedure then continues its
computation by fetching another event if there is any available. If
not, it suspends, waiting for new events, or for a communication
that no more events will arrive.

init&control module provides for initialization of all the compo-
nents in the proper order. It receives as initial input a set of speci-
fications defined by the user. Therefore, thanks to the translation
of ConDec to CLIMB, SOCS-SI can be adopted for the run-time
verification of interacting entities w.r.t. a ConDec model.

The event recorder is the core of the tool. It fetches events from
an external system through specialized modules. Each module is ded-
icated to fetch events from a specific event source. The tool can be
easily extended by inserting as many specialized modules as desired:
to insert a new module, the user must implement it by extending
a RecorderInterface,which exposes the basic methods for fetching
events. The new module can then be selected through the GUI.

13.4 speculative run-time verification

We now discuss a problem related to the run-time verification of Con-
Dec models, showing how a proper integration between sciff and
g-sciff can be successfully exploited to overcome it.

Although sciff is able to reason upon a dynamically incoming ex-
ecution trace, in a reactive manner, it is not always able to detect a
violation as soon as possible. To point out such an issue, we use the
ConDec model shown in Figure 55 as a running example. The model
illustrates an order management process consisting of a sequence of
four steps:

a. first of all, an order is selected from the list of pending orders;

b. the price of the order is calculated;

c. a package for the order’s shipment is prepared;

d. the order is finally delivered to the customer.

The process contains a further activity, modeling the exceptional situ-
ation in which the stock is empty. In this case, no delivery can be exe-
cuted afterwards. The relation between the empty stock and the deliver
order activities is therefore modeled as a negation response constraint.

Now let us consider the following (partial) execution: the warehouse
realizes that the stock is empty at time 1, and then the seller selects an

242 run-time verification

deliver
order

empty
stock

prepare
package

select
order

calculate
price

Figure 55: An order management ConDec model with hidden dependencies.

order at time 5. At time 5, the execution should be evaluated as non-
compliant: the seller has selected an order, and therefore such order
must be eventually delivered; but this contrasts with the fact that be-
ing the stock empty, no delivery can happen. We have identified this
problem as “presence of hidden dependencies” in ConDec models (see
Section 3.5).

sciff is not able to detect non-compliance at time 5, because theDelayed violation
detection inconsistency point has not yet been reached. However, such an incon-

sistency point will surely appear in the future, either because one of the
remaining three steps will not be executed, or because the execution
eventually comes to the deliver order activity, which is however forbid-
den.

13.4.1 Speculative Verification with the g-sciff Proof Procedure

In order to make sciff able to deal with this issue, it must be extended
with a speculative part, able to carry out hypothetical reasoning forward
in the future, checking if at least one possible extension of the current
trace exists, s.t. all the constraints of the model are respected. If it is not
the case, then a violation can be identified in advance. In our running
example, speculative reasoning could complement sciff, providing a
negative answer, at time 5, to the question: is it possible to go on by
respecting the ConDec model?

We argue that this speculative form of reasoning resembles very
strictly the conflict-freedom checking issue, introduced in Definition 8.3
– Page 137. In its original formulation, conflict-freedom checking aims
at statically evaluating whether a ConDec supports at least one pos-
sible execution. In this context, instead, the question is whether the
ConDec model supports at least one possible execution containing the
events occurred so far.

In Theorem 10.1 – Page 177, we have shown that the conflict-freedomSpeculative
reasoning as
checking
conflict-freedom

problem can be suitably tackled by g-sciff: a ConDec model CM is

conflict-free iff tCLIMB (CM)∅ g

T

∆ true. However, it is worth noting
that g-sciff seamlessly supports the possibility of starting from an ini-
tial execution trace: in this case, g-sciff tries to extend such a trace so
as to make it compliant with the ConDec model. Therefore, g-sciff can
be effectively employed to accomplish speculative reasoning.

13.4 speculative run-time verification 243

function: SpeculativeRunTimeVerification(ConDec model CM)

returns : false, if a violation is detected during the verification, true
otherwise

begin1

enable the times update transition in g-sciff;2

[CMΨAug,Switch]← PreProcess(CM);3

S← tCLIMB(CMΨAug);4

if ¬Switch then5

Bound← -1;6

else7

Bound← ask a bound to the user;8

end9

Tcur ← ∅;10

while Open do11

Told ← Tcur;12

Occurrence← extract an event occurrence from the queue;13

Tcur ← Told ∪ {Occurrence};14

if STold
6 ∼Tcur
∆ true then15

return false;16

end17

[OKfuture,_]← CallGSCIFF(S, Tcur, Bound);18

if ¬OKfuture then19

return false;20

end21

end22

if STold
`Tcur
∆ true then23

return true;24

else25

return false;26

end27

end28

Function SpeculativeRunTimeVerification(CM)

13.4.2 Interleaving the sciff and g-sciff Proof Procedures

Speculative run-time verification can then be suitably tackled by inter-
leaving the application of sciff and g-sciff:

a. first, a sciff open derivation is used to check if the execution
trace collected so far does not violate the constraints of the model;

b. then, g-sciff is employed to check whether there exists at least
one course of interaction, extending the current one, which com-
plies with the model.

The algorithm enclosed into the SpeculativeRunTimeVerification(CM)
function relies on this interleaving for performing speculative run-time
verification. It supposes that events are guaranteed to be fetched in as-
cending order, but such a hypotheses is not a mandatory requirement
for the algorithm. The verification procedure is organized as follows:

244 run-time verification

a. first of all, the times update transition is enabled in g-sciff – in
this way, g-sciff generates happened events only in the future,
i.e., after the current time;

b. then, the ConDec model given as input is pre-processed in order
to guarantee the termination of g-sciff4;

c. while the interaction is open (i.e., accepts new event occurrences)

a) a new event occurrence is extracted from the external queue
(if the queue is empty, then the operation waits until an
event is inserted in the queue);

b) sciff is used to evaluate whether the trace, extended with
the last fetched event, is violating the ConDec model;

c) if there does not exist a semi-open successful derivation
for sciff, then a violation is detected, and the procedure
terminates;

d) otherwise, g-sciff is used to accomplish speculative reason-
ing5;

e) if the speculative reasoning task returns a negative answer,
then a violation is detected, and the procedure terminates.

d. when the execution has reached an end s.t. no violation has been
detected, a sciff closed derivation is performed to evaluate still
pending expectations, and computing the final verification re-
sult.

4 The pre-processing procedure has been described in Section 10.5.
5 The g-sciff call is encapsulated in a dedicated function, which has been described in

Section 11.1.

14
M O N I T O R I N G A N D E N A C T M E N T W I T H R E A C T I V E
E V E N T C A L C U L U S

Contents
14.1 Event Calculus 246

14.1.1 The Event Calculus Ontology 246

14.1.2 Domain-Dependent vs Domain-Independent
Axioms 247

14.1.3 Reasoning with Event Calculus 248

14.2 The Reactive Event Calculus 249
14.3 REC Illustrated: A Personnel Monitoring Facility 251

14.3.1 Formalizing the Personnel Monitoring Fa-
cility in REC 252

14.3.2 Monitoring a Concrete Instance 253

14.3.3 The Irrevocability Issue 254

14.4 Formal properties of REC 255
14.4.1 Irrevocability of REC 255

14.5 Monitoring Optional Constraints with REC 261
14.5.1 Representing ConDec Optional Constraints

in REC 261

14.5.2 Identification and Reification of Violations 264

14.5.3 Compensating Violations 266

14.5.4 Monitoring Example 266

14.6 Enactment of ConDec Models 269
14.6.1 Showing Temporarily Unsatisfied Constraints 271

14.6.2 Blocking Unexecutable Activities 271

14.6.3 Termination of the Execution 273

In Chapter 13, we have shown how sciff can be used to perform run-
time verification of an execution instace w.r.t. a given ConDec model.
The main drawback of the approach is that, when a violation is de-
tected, then sciff generates a “no” answer, terminating the computa-
tion.

Differently from run-time verification, we identify monitoring as a
task aimed at dynamically checking the behaviour of interacting enti-
ties, by capturing the detected violations without terminating its com-
putation (see Figure 56); a captured violation could trigger a corre-
sponding alarm, or warning the system adiminstrator.

In the ConDec setting, monitoring comes in support for dealing with
optional constraints. Optional constraints express preferred scenario;
in other words, it would be preferable that the interacting entities re-
spect them, but their violation does not undermine compliance [157].

245

246 monitoring and enactment with reactive event calculus

model

run-time
verification

partial
trace

yes

no model
monitoring

partial
trace alarms

warnings

Figure 56: Run-time verification vs monitoring.

As pointed out by Pesic in [157], “allowing users to violate an optional
constraint without any warning would totally hide the existence of
the constraint”. Monitoring optional constraints is therefore important
to report warning when the behaviour of interacting entities deviates
from optional constraints.

In this chapter, we show how a reactive form of the Event Calculus
(EC) [113] can be encoded as a SCIFF-lite program, enabling the possi-
bility of

• monitoring optional constraints;

• inserting compensation constructs in ConDec, aimed at express-
ing what countermeasures should be taken when an optional
constraint is violated;

• tracking the evolution of constraints.

The latter point is of key importance when dealing with the enactment
of ConDec models, which is discussed in the last part of the chapter.

14.1 event calculus

More than 20 years ago, Kowalski and Sergot [113] introduced the
Event Calculus (EC) as a general framework to reason about time and
events. EC overcomes limitations of other previous approaches, such
as the Situation Calculus, providing a solid theoretical basis to express
and reasoning upon complex requirements in Event-Based Systems
(EBSs). Basic concepts are that of event, happening at a point in time,
and property (or fluent), holding during time intervals.

EC has many interesting features. Among them: an extremely simple
and compact representation, symmetry of past and future, generality
with respect to time orderings, executability and direct mapping with
computational logic frameworks, modelling of concurrent events, im-
munity from the frame problem, and explicit treatment of time and
events. It has therefore been applied in a variety of domains.

14.1.1 The Event Calculus Ontology

As described in [177], EC “is a logical mechanism that infers what is
true when given what happens when and what actions do”.

14.1 event calculus 247

happens_at(Ev, T) Event Ev happens at time T

mvi(F, Ti, Tf) Fluent F begins to hold from time Ti and persists
to hold until time Tf: (Ti, Tf] is a maximum validity
interval for F

holds_at(F, T) Fluent F holds at time T

initially_holds(F) Fluent F holds from the initial time

initiates(Ev, F, T) Event Ev initiates fluent F at time T

terminates(Ev, F, T) Event Ev terminates fluent F at time T

Table 29: The EC ontology.

“What actions do” is the background knowledge about actions and
their effects. This background knowledge formalizes what properties
becomes true or false when actions are performed, i.e., events occur.
In the EC terminology, properties/effects are called fluents, and the
capability of an event to make a fluent true (false respectively) at a
certain time is formalized by stating that the event is able to initiate
(terminate resp.) the fluent.

“What happens when” is represented by the execution trace of a
specific instance of the system under study. Fluents status is affected
by the occurring events of the instance, according to the background
knowledge. When the happening of an event causes a fluent to not
hold (hold resp.), we say that the fluent becomes (de)clipped. Fluents,
together with the evolution of their validity over time, describe partial
states of the instance; this is the main difference between EC and Situ-
ation Calculus [137], where situations capture complete state of affairs.

By combining the background knowledge about actions and effects
and a concrete execution trace of the system, “what is true when”, i.e.,
the intervals inside which fluents hold, can be inferred. In the literature,
a fluent does not hold at the time it is declipped, but it holds at the
time it is clipped: fluents validity intervals are open on the left and
closed on the right.

The EC ontology is shown in Table 29; differently from the classical
EC ontology, this one reports the concept of Maximum Validity Interval
(MVI [51]), represented by the mvi/3 predicate. MVIs are maximum
intervals inside which fluents uninterruptedly hold. Furthermore, note
that EC adopts a time structure with a minimal element. At the minimal
time, the system is in its initial state, which can be characterized by
describing the set of fluents holding at the beginning of the execution.
This is done by means of initially_holds predicates.

14.1.2 Domain-Dependent vs Domain-Independent Axioms

The EC formalization of a system is constituted by two parts:

248 monitoring and enactment with reactive event calculus

• A domain-independent part, which formalizes the meaning of the
EC ontology reported in Table 29. It contains a set of general
axioms which capture the mutual relationships between the EC
predicates, expressing how they impact on the status of fluents.
These general axioms are valid for each domain-dependent for-
malization.

• A domain-dependent part, which uses the predicates of the EC
ontology to declaratively formalize the specific system under
study, describing the allowed actions and their effects, and char-
acterizing the initial state.

There are many different formulations, in the LP setting, of the domain-
independent axioms [52]. One possibility (P stands for Property, E for
Event):

holds_at(P, T)← initiates(E,P, TStart)

∧ TStart < T ∧ ¬clipped(TStart,P, T).
(ec1)

clipped(T1,P, T3)← terminates(E,P, T2)

∧ T1 < T2 ∧ T2 < T3.
(ec2)

initiates(E,P, T)← happens_at(E, T) ∧ holds_at(P1, T)

∧ ... ∧ holds_at(PN, T).
(ec3)

terminates(E,P, T)← happens_at(E, T) ∧ holds_at(P1, T)

∧ ... ∧ holds_at(PN, T).
(ec4)

(ec1) and (ec2) are the general EC axioms, while (ec3) and (ec4) are the
domain-specific axioms. Dual axioms and predicates, such as declipped,
can be added to define when properties do not hold and to model ac-
tions with duration [177].

An example of a domain-dependent axiom is: “if someone touches
the light, then the light becomes broken and it is no more on”, where
“touch” is an action and “broken” and “on” are fluents. It can be en-
coded in the EC ontology e.g. as:

initiates(touch_light, light(broken)).

terminates(touch_light, light(on)).

14.1.3 Reasoning with Event Calculus

By grounding the classification of Peirce (see Section 4.3.1) on the EC
setting, different reasoning tasks can be carried out:

deductive reasoning Given the EC formalization of a system and
an execution trace, in the form of a list of happens/2 predicates,
it deduces the validity intervals of fluents; in this way, queries
can be placed to know if a given fluent held at a certain time.

14.2 the reactive event calculus 249

abductive reasoning Given the EC formalization of a system and
a query, describing a desired state of affairs, it seeks an execu-
tion trace which can be exhibited by the system, leading to the
desired state; the synthesized execution trace is often considered
as a plan.

inductive reasoning Given an execution trace and the correspond-
ing evolution of fluents, it tries to generalize the connection be-
tween the trace and the fluents by looking for a general theory
of the effects of actions, accounting for the observed data.

All these tasks take place after or prior to execution, but not during Cached Event
Calculusexecution. The reason is that each time an event occurs, the EC enables

a straightforward update of the theory (it suffices to add happens_at
facts), but it incurs a substantial increase of the query time, since back-
ward reasoning has to be restarted from scratch. However, runtime rea-
soning tasks, such as monitoring, would greatly benefit from the EC’s
expressive power. For this reason, some propose to cache the outcome
of the inference process every time the knowledge base is updated
by a new event. The Cached Event Calculus (CEC) [51] computes and
stores fluents’ MVIs, which are the maximum time intervals in which
fluents hold, according to the known events. The set of cached validity
intervals is then extended/revised as new events occur or get to be
known.

10 years ago, following a different line of research, Kowalski and The lack of
logic-based reactive
EC reasoners

Sadri [112] proposed to use Abuctive Logic Programming (ALP) as a
way to reconcile backward with forward reasoning inside an intelligent
agent architecture. However, beside planning, ALP has not been used
in combination with the EC. Nor are we aware of other logical frame-
works that implement the EC in a reactive way. For that reason, we
only find reactive EC implementations outside of logical frameworks,
or else logic-based implementations of the EC that do not exhibit any
reactive feature. As a consequence, large application domains such as
run-time monitoring and event processing have been tackled so far
by EC-inspired methods but only based on ad-hoc methods without a
strong formal basis. In particular, it is very difficult to understand and
prove the formal properties of current reactive EC implementations.

We now show how to overcome this limitation. Building on Kowal-
ski et al.’s work, we equip the EC framework with the reactive features
of sciff, which have been described in Chapter 13. We obtain a reactive
version of the calculus, which we call Reactive Event Calculus (REC). In
this reactive calculus, fluents are initiated and terminated by dynam-
ically occurring events, thanks to the run-time capabilities offered by
the sciff proof procedure.

14.2 the reactive event calculus

The EC can be elegantly formalized in LP, but as we said above, that
would be suitable for top-down, “backward” computation, and not for
run-time monitoring. For this reason, we resort to the SCIFF framework,

250 monitoring and enactment with reactive event calculus

which reconciles backward with forward reasoning and is equipped
with the sciff proof procedure, specifically thought for reactive, dy-
namic reasoning.

The SCIFF-lite1 axiomatization of EC that follows draws inspiration
from Chittaro and Montanari’s CEC and on their idea of MVIs. The
basic predicates of the calculus are presented below (Axioms (rec1)
through (rec7)). Events and fluents are terms and times are integer
CLP variables, 0 being the “initial” time.

REC uses the abduction mechanism to generate MVIs and defineMVIs as abducibles
their persistence. It has a fully declarative axiomatization: no oper-
ational specifications are needed. It uses two special internal events
(denoted by the reserved clip/declip words) to model that a fluent is
initiated/can be terminated. The expressive power of REC is the same
as the one of CEC, specifically it enables the definition of a context. A
use case will be shown below.

Axiom 14.1 (Holding of fluent). A fluent F holds at time T if a MVI con-
taining T has been abduced for F.

holds_at(F, T)← mvi(F, [Ts, Te]) ∧ T > Ts ∧ T 6 Te. (rec1)

Axiom (rec1) is a backward rule (clause), as well as Axiom (rec7),
whereas Axioms (rec2) through (rec6) are forward implications (SCIFF-
lite ICs). Such a mixture of backward and forward inference rules is
enabled by ALP [112] and it represents the backbone of REC’s reactive
behaviour.

Axiom 14.2 (MVI semantics). If (Ts, Te] is a MVI for F, then F must be
declipped at time Ts and clipped at time Te, and no further declipping/clipping
must occur in between.

mvi(F, [Ts, Te])

→E(declip(F), Ts) ∧ E(clip(F), Te)

∧ EN(declip(F), Td) ∧ Td > Ts ∧ Td 6 Te

∧ EN(clip(F), Tc) ∧ Tc > Ts ∧ Tc < Te.

(rec2)

Axiom 14.3 (Initial status of fluents). If a fluent initially holds, a corre-
sponding declipping event is generated at time 0.

initially(F)→ H(declip(F), 0). (rec3)

Operationally, Axiom (rec3) enforces the generation of a set of H
events that are needed for the correct extension of MVIs.

1 As we will see, the expressiveness of CLIMB is not sufficient to express REC, in that
happened events and a further predicate must be defined as abducibles.

14.3 rec illustrated : a personnel monitoring facility 251

Axiom 14.4 (Fluents initiation). If an event Ev occurs at time T which
initiates fluent F, either F already holds or it is declipped.

H(event(Ev), T) ∧ initiates(Ev, F, T)

→H(declip(F), T)

∨ E(declip(F), Td) ∧ Td < T

∧ EN(clip(F), Tc) ∧ Tc > Td ∧ Tc < T .

(rec4)

Axiom (rec4) does not use the holds_at predicate and it does not incur
a new MVI.

Axiom 14.5 (Impact of initiation). The happening of a declip(F) event
causes fluent F to start to hold.

H(declip(F), Ts)→ mvi(F, [Ts, Te]) ∧ Te > Ts. (rec5)

Axiom 14.6 (Fluents termination). If an event Ev occurs which terminates
a fluent F, and F holds, then it is clipped.

H(event(Ev), T) ∧ holds_at(F, T)

∧terminates_at(Ev, F, T)→ H(clip(F), T).
(rec6)

Axiom 14.7 (Final clipping of fluents). All fluents are terminated by the
special complete event.

terminates(complete, F). (rec7)

The complete event is used to state that no more events will occur,
and therefore it clips all the still holding fluents. It can be used also to
alert sciff that the closure transition must be applied in a deterministic
way.

14.3 rec illustrated : a personnel monitoring facility

The following illustration shows the usage and potential impact of REC
in a real-world case study. It was proposed to us by a local medium-
sized enterprise based in Emilia-Romagna, but the same situation can
apply to any organization of any size, in the private or public sector.
It is about a personnel monitoring activity, which costs a considerable
amount of human resources, but could be solved instantly and in a
fully automated way using REC.

A company wants to monitor its personnel’s time-sheets. Each em- System events
ployee punches the clock when entering or leaving the office. The sys-
tem recognizes two events:

• check_in(E): employee E has checked in;

• check_out(E): employee E has checked out.

The following requirements on employee behaviour require moni- Requirements on
personneltoring:

252 monitoring and enactment with reactive event calculus

(r0) after check in, an employee must check out within 8 hours;

(r1) as soon as a deadline expiration is detected, a dedicated alarm
fires at an operator’s desk. It reports the employee ID, and an
indication of the time interval elapsed between deadline expira-
tion and its detection. The alarm is turned off when the operator
decides to handle it.

Note that the second requirement is activated when the first one is
violated. Hence, such a system cannot be modeled directly by means
of a ConDec model or a CLIMB specification, because the violation of
the first requirement would cause sciff to terminate the verification.

We assume that the following actions are available to the operator:Operator actions

• handle(E) states that the operator wants to handle the situation
concerning the employee identified by E;

• tic is used to take a snapshot of the current situation of the
system, by updating the current time.

14.3.1 Formalizing the Personnel Monitoring Facility in REC

We capture requirements (R0) and (R1), using three fluents:

• in(E): E is currently in;

• should_leave(E, Td): E is expected to leave her office by Td;

• alarm(delay(E,D)): E has not left the office in time – D repre-
sents the difference between the time a deadline expiration is
detected and the deadline expiration time itself.

It is possible to model such requirements declaratively using initiates
and terminates predicate definitions. We assume hour time granular-
ity.

Let us first focus on the in(E) fluent. E is in as of the time she checks
in. She ceases to be in as of the time she checks out:

initiates(check_in(E), in(E), _).

terminates(check_out(E), in(E), T)← holds_at(in(E), T).

When E checks in at Tc, a should_leave fluent is activated, express-
ing that E is expected to leave the office by Tc + 82:

initiates(check_in(E), should_leave(E, Td), Tc)← Td is Tc + 8.

Such a fluent can be terminated in two ways: either E correctly
checks out within the 8-hour deadline, or the deadline expires. In the
latter case, termination is imposed at the next tic action.

2 Note that Tc is ground at body evaluation time, due to Axiom (rec4).

14.3 rec illustrated : a personnel monitoring facility 253

terminates(check_out(E), should_leave(E, Td), Tc)←
holds_at(should_leave(E, Td), Tc) ∧ Tc 6 Td.

terminates(tic,should_leave(E, Td), T)←
holds_at(should_leave(E, Td), T) ∧ T > Td.

The same tic action also causes an alarm to go off:

initiates(tic,alarm(delay(E,D), T)←
holds_at(should_leave(E, Td), T) ∧D is T − Td.

Note that in these equations the time of event termination/start (Tc Past vs future
dependent propertiesand T) is the same time present in their respective body’s holds_at

atoms. This is perfectly normal, but it is not a requirement. In partic-
ular, times could be different, as long as the times of holds_at atoms
do not follow event termination/start times. That again would be al-
lowed, but it would amount to defining properties that depend on
future events: properties that are thus not suitable for runtime mon-
itoring. For that reason, we assume that well-formed theories do not
contain such kind of clauses. More details on this matter will be given
below when we discuss the irrevocability property in a formal way.

Finally, an alarm is turned off when the operator handles it:

terminates(handle(E),alarm(delay(E,D)), T)← holds_at(delay(E,D), T).

14.3.2 Monitoring a Concrete Instance

Based on such a theory, REC becomes able to dynamically reason from
the employees’ flow inside the company. In particular, REC tracks the
status of each employee, and generates an alarm as soon as a tic action
detects a deadline expiration.

Let us consider an execution trace involving two employees e1 and
e2, where e2 does respect the required deadline while e1 does not:

H(event(check_in(e1)), 9), H(event(tic), 10),

H(event(check_in(e2)), 11), H(event(tic), 14),

H(event(tic), 16), H(event(tic), 18).

Figure 57 shows the global state of fluents at 18, when REC generates
an alarm because e1 was expected to leave the office no later than 17,
but she has not left yet. The operator can check all pending alarms,
and pick an employee to handle in case. The execution now proceeds
as follows:

H(event(check_out(e2)), 19), H(event(handle(e1)), 22),

H(event(check_out(e1)), 23).

254 monitoring and enactment with reactive event calculus

Figure 57: Fluents tracking with REC.

e2 correctly leaves the office within the deadline, bringing her corre-
sponding in and should_leave fluents to termination. At 22 the oper-
ator handles an alarm involving e1, who eventually leaves her office at
23.

14.3.3 The Irrevocability Issue

In general, a monitoring application is usable only if it provides stable,
deterministic outputs, which do not flutter due to algorithmic issues
but only change as a sensible response to the inputs. The reasons of
an undesired fluttering behaviour could be of two types: a bad set of
specifications, or an unsuitable underlying reasoning machinery.

As an example of the former, imagine to replace

initiates(check_in(E1), in(E2), _).

by
initiates(check_in(E1), in(E2), _).

This is an ambiguous specification since it does not clearly state which
employee should change status as a consequence of E1 checking in. An-
other different source of ambiguity could lay hidden in an alternative
formulation of fhe firing alarm rule:

initiates(tic,alarm(delay(E,D), T)←
holds_at(should_leave(E, Td), T1)

∧D is T − Td ∧ T1 > T .

The meaning would be that an action is a consequence of an alarm
which has not fired yet. Only speculations are possible in that case,
and no run-time monitoring algorithm could provide deterministic an-
swers (save freezing until the alarm fires, but in that case the applica-
tion would no longer be called “run-time”).

14.4 formal properties of rec 255

Thus we need to isolate “good” sets of specifications. Once we have
them, we must ensure that the reasoning machinery does not make un-
justified retractions. In other words, we must guarantee irrevocability.

14.4 formal properties of rec

REC is implemented on top of the SCIFF-lite language, it thus inherits REC is sound and
completethe soundness and completeness results of the declarative semantics

with respect to the sciff operational semantics3. These are important
results. The operational behaviour of REC is faithful to its axiomatiza-
tion. We are unaware of other implementations of the EC that provide
such a guarantee. This is a consequence of the axiom implementation
by SCIFF-lite formulae. The next results concern uniqueness and irrevo-
cability, and they are instead relative to the special kind of reasoning
needed for the monitoring applications.

14.4.1 Irrevocability of REC

As in the case of run-time verification, we could often rely on the as-
sumption that events occur in ascending order. As we have pointed
out in Section 13.2.3, this assumption enables semi-open reasoning of
sciff.

In this context, it is required that the generated MVIs are never re- The concept of
irrevocabilitytracted, but only extended or terminated as new events occur. If that is

the case, the reasoning process is called irrevocable. Some target appli-
cations need irrevocable tracking procedures, which can give a contin-
uously updated view of the status of all fluents. Fluttering behaviours
must be by all means avoided. This is true, e.g., when the modeled
fluents carry a normative meaning. It would be undesirable, for in-
stance, to attach a certain obligation to an agent at runtime, and see it
disappear later only because the calculus revises its computed status.

In the reminder of this section, we first define a class of REC theories,
then we show that semi-open reasoning on the resulting REC specifica-
tions is irrevocable.

Definition 14.1 (Well-formed REC theory). A well-formed REC theory
T is a set of clauses of the type4

initiates(Ev, F, T)← body.

terminates(Ev, F, T)← body.

which satisfies the following properties:

1. negation is not applied to holds_at predicates;

3 The soundness and completeness results of sciff have been recalled in Section 9.2 for
the case of CLIMB; the theorems and proofs for the general full-SCIFF language can be
instead found in [7].

4 The body is a conjunction of holds_at predicates and CLP constraints. It can be
omitted when true.

256 monitoring and enactment with reactive event calculus

2. for initiates/3 clauses, fluent F must always be resolved with a
ground substitution.

3. ∀holds_at(F2, T2) predicate used in body, T2 6 T .

In the Section 14.3.1 our illustration was modeled by a well-formedWhy
well-formedness REC theory. Using the same example, in Section 14.3.3 we have dis-

cussed the consequences of ill-formed specifications in the REC theory
in a concrete case. Definition 14.1 identifies in the general case the
three possible sources of non irrevocability. In particular, 1. ensures
monotonicity, 2. prevents non-determinism due to the case analysis tran-
sition of sciff and 3. restricts us to reasoning on stable, past conditions.
REC theories that violate 2. and 3. would introduce choice points that
hinder irrevocability.

Definition 14.2 (REC specification). Given a well-formed REC theory
T, the corresponding REC specification RT is defined as the SCIFF-lite
specification5:

RT ≡ 〈KBREC ∪ T, {E, EN, H, mvi}, ICREC〉

where KBREC = {(rec1), (rec7)} and ICREC = {(rec2), (rec3), . . . , (rec6)}.

The following three lemmas establish interesting properties of REC,
defining the link between MVIs and the internal events used to clip
and declip them.

Lemma 14.1 (Groundedness of MVIs’ starting times). For each well-
formed REC theory T, for each intial execution trace Ti and for each final
execution trace Tf, the abduced MVIs always have a ground starting time,
i.e.

∀ ∆, RT
Ti

∼
Ti
∆ true⇒ ∀ mvi(F, [Ts, Te]) ∈ ∆, Ts ∈N

Proof. Axiom (rec5) is the only IC in which the abducible represent-
ing a MVI appears in the head. The starting time Ts is bound to the
time at which the declip event in the body happens. This event is not
contained in the execution trace, but is instead generated by applying
axiom (rec3) or (rec4). By axiom (rec3), a declip event is generated at
time 0, whereas by axiom (rec4), a declip event is generated using the
same time of the body’s external H event. Since all happened events
contained in an execution trace are ground, then also the declip event
is abduced to happen at a ground time. Therefore, also the starting
time Ts of the corresponding MVI is ground.

Lemma 14.2 (Relationship between clipping events and MVIs). The ex-
pectation about the clipping of a MVI can be fullfilled by exactly one happened
event, in particular the nearest which occurs after the declipping of the MVI.

5 Throughout the discussion, we will simply use R to identify a generic REC specifica-
tion. We will also state that a REC specification is well-formed as a shortcut to state
that its theory is.

14.4 formal properties of rec 257

Proof. Let us consider by abdsurdum that there exists mvi(f, [ts, Te])
triggering Axiom (rec2) and generating an expectation about clip(f)
which can potentially be fulfilled by two distinct event happening, say,
at time te1 > ts and te2 > te1. If E(clip(f), Te) is fulfilled at time te2,
then Axiom (rec2) also imposes EN(clip(f), Tc) between ts and te2.
However, this time interval also includes te1, leading to inconsistency.

Lemma 14.3 (Interleaving between declipping and clipping events).
For each fluent, between two declipping events at least one clipping event
must occur.

Proof. Let us suppose that there exists a fluent f for which two declip(f)
events occur, say, at time t1 and t2 > t1, without having a clip(f) in-
between. An MVI is generated for f starting at t1 (thank to Axiom
(rec5)); this MVI will be clipped by the first consequent time at which
a clip(f) occurs (see Lemma 14.2). The hypothesis which states that
this clip(f) event must occur after t2 is however inconsistent, because
Axiom (rec2) would state that between t1 and this time (thus t2 in-
cluded) no further declip(f) event can occur.

We are now ready to state the following:

Theorem 14.1 (Uniqueness of derivation). For each well-formed REC the-
ory T, for each initial execution trace Ti and for each final execution trace Tf,
there exists exactly one successful semi-open derivation computed by sciff,
i.e. ∃1∆ s.t. RT

Ti
∼

Tf
∆ true.

Proof. First, we prove that at most one computed explanation exists.
Different explanations are computed when inclusive disjunctions are
contained in the head of some integrity constraint, or if there are dif-
ferent ways to fulfill a positive expectation6.

Let us first consider the case of disjunctions in the head. The only in-
tegrity constraint containing a disjunctive head is (rec4);7 however, we
prove that these two disjuncts are mutually exclusive. Let us consider
the second disjunct. It states that fluent F has been already declipped at
a certain past time (let us denote it with td), and that between td and
T no clipping event has been generated: thus F still holds at time T . In
fact, when declip(F) happened at time td, a mvi abducible was gener-
ated by applying rule (rec5); due to the negative expectation contained
in the second disjunct of (rec5)’s head, this maximal validity interval
must be clipped at a time greater than T (say, tc). The application of
rule (rec2), in turn, states that it is forbidden to declip F between td
and tc, i.e., also at time T . Therefore, the first disjunct of (rec5)’s head
cannot be true at time T . A further important observation concerns the

6 The other possibilities of having multiple explanations are ruled out by the fact
that initiates predicate are resolved with a ground fluent, thus MVIs are always
ground.

7 The presence of negated abducibles in the body of a rule would also produce inclu-
sive disjunctive head [82], but Definition 14.1 forbids negated holds_at predicates.

258 monitoring and enactment with reactive event calculus

semi-open nature of the derivation. Event if the first disjunct of Ax-
iom (rec5) did not lead to violation, an open derivation would open a
choice point, waiting for a suitable past declipping event to fulfill the
expectation in the second disjunct. As we have just proven, this sec-
ond possibility is impossible, because the two disjuncts are mutually
exclusive. A semi-open derivation is immediately able to detect this
situation, because the second disjunct refers to the past, and the first
one to the present. Therefore, no choice point is left open.

Let us now consider the reasons to fulfill positive expectations, which
are present in Axioms (rec2) and (rec4). E(declip(F), Ts) in Axiom
(rec2) can be fulfilled in one way, because both F and Ts are ground,
the former because the theory is well-defined by hypothesis, the latter
as stated in Lemma 14.1. ByLemma 14.2, also the expectation about the
clipping of the fluent can be fulfilled by exactly one event, in particular
by the first clipping occurring after declip. Finally, the positive expecta-
tion in Axiom (rec4) can be fulfilled by only one declip event; the proof
is obtained by combining the negative expectation about the clipping
of the fluent in Axiom (rec4) and the result proven in Lemma 14.3.

Now we prove that there always exists a computed explanation,
i.e. that all execution traces comply with the REC specifications. The
axioms imposing expectations are (rec2) and (rec4). If the positive ex-
pectation in the second disjunct of (rec4)’s head cannot be fulfilled,
then the involved fluent is not holding, and therefore it can be de-
clipped by choosing the first disjunct. When the goal is true, Axiom
(rec2) only fires if Axiom (rec5) fires, and therefore the positive expec-
tation about the declipping of the fluent has a corresponding matching
event (exactly the one which has caused Axiom (rec5) to fire). The pos-
itive expectation about the clipping of fluent is eventually fulfilled by
the special complete event, which is able to terminate all fluents (see
Axiom (rec7)). Finally, the negative expectations contained in Axioms
(rec2) and (rec4) are simply used to select the “nearest” declipping/-
clipping, but are not used to rule out executions.

Theorem 14.1 ensures that exactly one ∆ is produced by a semi-open
derivation of sciff. This, in turn, means that there exists exactly one
“configuration” for the MVIs of each fluent. We give a precise defini-
tion of this notion of state, which is the one of interest when evaluat-
ing the irrevocability of the reasoning process, and define the notion of
progressive extension between states, which gives a formal account for
irrevocability. Note that the definitions rely on the definition of current
time given in Definition 13.28.

8 For the sake of readability, we report the definition here. Given an execution trace T,
the current time associated to T is:

ct(T) , max{t | H(e, t) ∈ T}

14.4 formal properties of rec 259

Definition 14.3 (MVI State). Given a REC specification R and an exe-
cution trace T, the resulting MVI state at time ct(T) is the set of mvi
abducibles contained in the computed explanation generated by sciff:

MVI(RT) ≡ {mvi(F, [Ts, Te]) ∈ ∆}, where R∅∼
T
∆true

Definition 14.4 (State sub-sets). Given a REC specification R and a
(partial) execution trace T, the current state MVI(RT) is split into two
sub-sets:

• MVI$(RT), is the set of (closed) MVIs, terminating at a ground
time:

MVI$(RT) = {mvi(F, [s, e]) ∈MVI(RT) | s, e ∈N};

• MVI (RT), is the set of (open) MVIs, terminating at a variable
time:

MVI (RT) = {mvi(F, [s, T]) ∈MVI(RT) | s ∈N, var(T)}.

Definition 14.5 (Trace extension). Given two execution traces T1 and
T2, T2 is an extension of T1, written T1 ≺ T2, iff

∀ H(e, t) ∈ T2/T1, t > ct(T1)

Definition 14.6 (State progressive extension). Given a well-formed
REC specification R and two execution traces T1 and T2, the state of
RT2 is a progessive extension of the state of RT1 , written MVI(RT1) E
MVI(RT2), iff

1. the set of closed MVIs is maintained in the new state:
MVI$(RT1) ⊆MVI$(RT2)

2. if the set of MVIs is extended with new MVIs, these are de-
clipped after the maximum time of T1:
∀ mvi(f, [s, t]) ∈MVI(RT2)/MVI(RT1), s > ct(T1)

3. ∀ mvi(f, [s, Te]) ∈MVI (RT1), either

a) it remains untouched in the new state:
mvi(f, [s, Te]) ∈MVI (RT2), or

b) it is clipped after the maximum time of T1:
mvi(f, [s, e]) ∈MVI$(RT2), e > ct(T1).

Progressive extensions capture the intuitive notion that a state ex-
tends another one if it keeps the already computed closed MVIs and
affects the status of fluents only at later times w.r.t. the time the first
state was recorded. The extension is determined by adding new MVIs
and by clipping fluents which held at the previous state. We can state
the main result leading to irrevocability, namely that extending a trace
results in a progressive extension of the MVI state.

260 monitoring and enactment with reactive event calculus

Lemma 14.4 (Trace extension leads to a state progressive extension).
Given a well-formed REC specification R and two execution traces T1 and T2,

T1 ≺ T2 ⇒MVI(RT1) EMVI(RT2)

Proof. Let us consider Definition 14.6, showing that MVI(RT1) and
MVI(RT2) obey to its four requirements:

1. Let us consider an element of MVI$(RT1), say, mvi(f, [s, e]). The
presence of this element is evidence that an event ∈ T1 occurring
at time e exists s.t. fluent f is declipped. Since this event belongs
to T1, e < ct(T1). From the hypotheses that T1 ≺ T2, all the
events that belong to T2/T1 happen at a time greater than ct(T1).
Lemma 14.2 thus ensures that none of these events can change
mvi(f, [s, e]), which is maintained untouched in MVI$(RT2).

2. As pointed out in the proof of Lemma 14.1, a happened event
can start a new MVI at the time it happens. Since T1 ≺ T2, each
MVI generated by events belonging to T2/T1 will always have
a starting time greater than ct(T1). The only unfortunate case
would be that there exists an event associated to an initiates
predicate that can be evaluated as true after the time at which
the event occurs. This case arises when the initiates predicate
is defined in terms of holds_at predicates which refer to the
future9 However, Definition 14.1 rules out theories of this kind.

3. Axiom (rec6) is the rule which regulates the way fluents are
clipped; a happened event can cause the termination of an MVI
exactly at the time at which it occurs. From the hypotheses that
T1 ≺ T2, if an MVI is open at time ct(T1) (i.e., it belongs to
MVI$(RT1)), it is impossible for an event belonging to T2/T1
to clip it before time ct(T1). Indeed, as in the case of initiates
predicates, theories which lead to violate this property are not
well-formed. Two possible cases for such an MVI may then arise:

a) no event ∈ T2/T1 is able to terminate the fluent associated
to the MVI, which is therefore maintained untouched in
MVI$(RT1);

b) there exists at least one event ∈ T2/T1 able to terminate the
fluent associated to the MVI; the first one (see Lemma 14.2)
will shift the MVI from the open to the closed set and re-
spect the requirement that the MVI termination time must
be greater than ct(T1).

Theorem 14.2 (Irrevocability of REC). Given a well-formed REC specifi-
cation and a temporally ordered narrative, each time sciff processes a new
event, the new MVI state is a progressive extension of the previous one.

9 For example, if the user states that “event e initiates fluent f at time T if fluent f2
holds at time T + 2”, then it could be the case that at time T + 2 f2 indeed holds,
causing f to be declipped in the past and violating Item 2 of Definition 14.6.

14.5 monitoring optional constraints with rec 261

MonitoringRun-Time Verification

SCIFF Proof Procedure

Reactive Event Calculus

Fluent-Based Formalization
of ConDec

Model-Specific
Optional Constraints

Model-Specific
Mandatory Constraints

Figure 58: ConDec run-time verification and monitoring.

Proof. Let us suppose that the current execution trace is T1, and that
a new happened event H(e, t) is acquired by SCIFF. Let us denote
the new execution trace with T2, having T2 = T1 ∪ {H(e, t)}. If the
execution of the system always grows by increasing times, then t >
ct(T1). Therefore, from Definition 14.5 it holds that T1 ≺ T2 and, in
turn, Lemma 14.4 ensures that MVI(RT1) E MVI(RT2), i.e. that the
new state is a progressive extension of the previous one.

14.5 monitoring optional constraints with rec

Having shown how a reactive irrevocable form of EC can be embed-
ded into the SCIFF framework, we now exploit the advanced features
provided by REC to monitor optional ConDec constraints. Being REC ax-
iomatized on top of SCIFF, it can be seamlessly combined with a CLIMB
specification formalizing the mandatory constraints, using sciff as a
monitoring and run-time verification infrastructure at the same time
(see Figure 58).

14.5.1 Representing ConDec Optional Constraints in REC

To enable monitoring facilities, a translation of ConDec (optional) con-
straints to REC must be provided. We propose a formalization sepa-
rated in two parts:

• a general part, which describes how the different ConDec con-
straints can be formalized as fluents in the EC setting, and how
such fluents are initiated and terminated, independently from
the specific models;

• a specific part, whose purpose is to describe a specific ConDec
diagram.

262 monitoring and enactment with reactive event calculus

Both parts are inserted in the knowledge base of the specification, and
are then used in conjunction with the general reactive axioms of REC
for monitoring.

The model-specific part is a set of opt_con/2 facts. Each fact corre-Model-specific part
sponds to a ConDec optional constraint in the diagram, associating a
unique identifier to it. For example

opt_con(c1, response(query, inform))

states that the ConDec model contains an optional constraint

query •−−−I inform

and that such a constraint is identified by c1. The translation of op-
tional constraints is therefore straightforward.

The general part is a set of predicate definitions aimed at formalizingGeneral part
optional constraints in terms of fluents and linking their initiation and
termination to the occurrence of activities. Since fluents are used to
characterize a partial state of the system, we provide a formalization
capturing the status of optional constraints. In particular, constraints
can be divided into two families:

• Constraints that must be eventually satisfied, and that could be-
come temporarily unsatisfied when a certain activity is executed.
An example is the response constraint. a •−−−I b is initially
satisfied; if a is performed, the constraint switch to a temporary
unsatisfied state, becoming satisfied again after an execution of
activity b.

• Constraints that forbid the presence of a certain activity when
they are active. An example is the negation response constraint.
When activity a occurs, a •−−−I‖ b is activated and forbids
the execution of b in the future.

We therefore rely on two different fluents:

• sat(c) states that the optional constraint c is currently satisfied;

• forb(a, c) states that the optional constraint c is currently active,
and it is forbidding the execution of activity a.

Table 30 briefly indicates our usage of fluents in the formalization
of some ConDec constraints. The full theory can be found in [145].
It is worth noting that the proposed theory is well-formed, and thus
guarantees irrevocability.

Some parts of the formalization are left implicit for ease of presenta-
tion. In particular, Table 30 omits the binding between each formaliza-
tion and its corresponding opt_con/2 fact. For example, the complete
formalization of response would be:

initially_holds(sat(C))← opt_con(C, response(A,B)).

terminates(A, sat(C), _)← opt_con(C, response(A,B)).

initiates(B, sat(C), _)← opt_con(C, response(A,B)).

14.5 monitoring optional constraints with rec 263

constraint intuition formalization

1..∗{c}

a sat(c)

a (n-th)aa ...

initiates(a, sat(c), Tn)←
H(exec (a) , Tn−1)

∧Tn−1 < Tn ∧ . . .

∧H(exec (a) , T1)

∧T1 < T2.

a
{c}
•−−−I b sat(c)

a b

sat(c)
initially_holds(sat(c)).

terminates(a, sat(c), _).

initiates(b, sat(c), _).

a
{c}
−−−I• b

a

forb(b,f) initially_holds(forb(b, c)).

terminates(a, forb(b, c), _).

a
{c}
•−−−I‖ b forb(b,c)

a
initiates(a, forb(b, c), _).

a
{c}
•===I b sat(c)

a b

sat(c)

forb(a,c)

initially_holds(sat(c)).

terminates(a, sat(c), _).

initiates(b, sat(c), _).

initiates(a, forb(a, c), _).

terminates(b, forb(a, c), _).

a
{c}
•=−=−=−I‖ b

a X≠b

forb(b,c)
initiates(a, forb(b, c), _).

terminates(X, forb(a, c), _)

← X 6= b.

Table 30: Representing some optional ConDec constraint in REC.

The first clause states that if the ConDec model under study con-
tains an optional response constraint, then such a constraint is initially
satisfied. The second clause points out that when the source of the re-
sponse occurs, then the constraint is no more satisfied. The last clause
brings the constraint back to a satisfied status when the target activity
of the response is executed.

Note that, differently from the CLIMB formalization, all the ConDec
constraints are represented in REC as forward constraint, in order to
ensure irrevocability. For example, constraint a −−−I• b , which has
been represented in CLIMB by stating that if b is executed, then a previ-
ous occurrence of a is expected, is now represented as “b is forbidden
by the constraint unless a is executed”. In the REC ontology, this means
that b is initially forbidden by the precedence constraint, until an exe-
cution of a terminates such a prohibition.

The proposed formalization can be easily adapted to deal also with Dealing with
branching
constraints

branching constraints. To model branches, we extend the way con-
straints are represented by considering lists of activities instead of in-
dividual activities. We then adapt the formalization shown in Table 30,
using membership constraints to specify that intitiating/terminating

264 monitoring and enactment with reactive event calculus

activities range into a set. For example, the formalization of the branch-
ing response optional constraint is extended as follows:

initially_holds(sat(C))← opt_con(C, response(_, _)).

terminates(A, sat(C), _)← opt_con(C, response(As, _) ∧A :: As.

initiates(B, sat(C), _)← opt_con(C, response(_,Bs)) ∧B :: Bs.

14.5.2 Identification and Reification of Violations

Having equipped REC with a fluent-based formalization of ConDec
optional constraints, it is now possible to monitor an instance of the
system, having a constantly updated and irrevocable view about the
current status of each optional constraint. The last step is to identify
violations of optional constraints, in order to report them to the system
administrator.

We focus on two kind of violations:Kind of violations

• violation of a prohibition, which occurs when an activity hap-
pens, but an holding fluent is forbidding its execution;

• deadline expiration, for optional constraints extended with met-
ric temporal constraints (as specified in Section 6.1.3).

There exists a third kind of violation, related to unsatisfied constraints
at the end of the execution. However, if the end of the execution has
been reached, no identification of violation is needed anymore; if the
user is anyway interested in controlling whether some optional con-
straints has finally been violated, she can simply observe the last status
of constraints.

Deadlines are expressed, in this context, as a maximum time spanModeling deadlines
during which a certain constraint could persist in a “non satisfied”
state10. For example, let us suppose that the model contains an op-
tional constraint, called c1, of the form

pay
(−,24)
•−−−I deliver

c1 specifies that when an order is paid, a receipt must be delivered
within 24 time unit. It can be modeled in our framework by adding the
information that c1 cannot persist in a non satisfied state for more than
24 time units. We suppose that, to describe this condition, the user sim-
ply uses a deadline(sat(c1), 24) declaration. In general, deadline(F,D)

states that fluent F can persist in a “not-holding" state at most D time
units.

Since REC provides us a constantly updated view of the status as-Reification of
violations sociated to each constraint, we can easily combine the current status

of a given constraint and the current occurrence of an activity, to ex-
plicitly identify if a violation is taking place. We add new axioms to

10 In the following, we will focus only on deadlines; delays can be handled in a com-
plementary way.

14.5 monitoring optional constraints with rec 265

capture the two kind of violations described above. Such axioms state
that, if a violation takes place at time t , then a special event occurrence
H(violation(f), t) is generated11, where f is the fluent involved in the
violation. In other words, violations are reified as happened events.

Violation of a Prohibition

Violation of a prohibition is related to the current presence of a holding
forbidding fluent. In particular, we can identify and reify this kind of
violation by stating that if an event occur at time T , and at that time
there exists at least one holding fluent forbidding the event, then a
violation takes place:

H(exec (A) , T) ∧holds_at(forb(A,C), T)→ H(violation(forb(A,C)), T).

Deadline Expiration

The identification of a deadline expiration resembles the Personnel
Monitoring Facility realized in Section 14.3.1. To capture and verify
deadlines, we add four new axioms.

Let us suppose that fluent F is associated to a deadline(F,D) con-
dition. When F is terminated, a new fluent d_check(F, Te) is initiated.
This fluent represents that F is currently monitored, to check if the as-
sociated deadline will be met by the execution; Te denotes the time at
which the deadline will expire. Such a situation can be formalized by
means of the following axiom:

initiates(A,d_check(F, Te), T)← deadline(F,D), terminates(A, F, T),

Te == T +D.

The fluent d_check(F, Te) can be terminated in two cases. In the first
case, an event capable to terminate F happens within the deadline (i.e.,
within Te):

terminates(A,d_check(F, Te), T)← deadline(F, _), initiates(A, F, T), T < Te.

The second case deals with the expiration of the deadline. sciff has no
notion of the flow of time: it becomes aware of the current time only
when a new event occurs. Therefore, we can keep sciff up-to-date by
generating special tic events. The deadline expiration is then detected
and handled as soon as the first tic event after the deadline occurs:

terminates(tic,d_check(F, Te), T)← deadline(F, _), T > Te.

11 Remember that SCIFF-lite allows for happened events in the head of ICs.

266 monitoring and enactment with reactive event calculus

A further axiom recognizes this abnormal situation, by evaluating
whether the deadline check fluent has been terminated after the expi-
ration time (and generating a violation if it is the case):

H(tic, T)

∧ holds_at(deadline_check(F, Te), T) ∧ T > Te → H(violation(F), T).

14.5.3 Compensating Violations

Among the many possibilities offered by the reification of violations,
an interesting option is to attach further constraints involving the spe-
cial violation events. This could be a way to specify how the interacting
parties must compensate for a violation, or to define a context for viola-
tions, i.e. to model constraints which become optional only in certain
situations.

Compensation can be modeled by e.g. inserting a mandatory re-Modeling (critical)
compensations sponse constraint having a violation event as source, and the compen-

sation activity as target; chain response could be then used to handle
critical violations: it states that when the violation is detected, the next
immediate activity to be executed is the compensating one.

Contextualization of violations can be modeled using backward Con-Contextualization of
violations Dec mandatory constraints (e.g., precedence). For example, modeling a

precedence constraint involving an activity a and the event violation(f)

states that as soon as the violation is raised, REC verifies if an execution
of activity a has been previously performed (the activity a representing
some how the idea of context). In such a case, the violation can be man-
aged, otherwise a definitive, negative answer attesting non-compliance
is provided as a result.

14.5.4 Monitoring Example

We now briefly discuss a simple yet significative example of a choreog-
raphy fragment, showing how the proposed approach can be fruitfully
applied for run-time monitoring. Figure 59 shows the graphical Con-
Dec representation of the example, augmented with a (contextualized)
compensation. In order to show REC’s ability to track the status of each
constraint, we suppose that all the involved constraints are optional.

The choreography involves a customer, who creates an order by
choosing one or more items, and a seller, who collects the ordered
items and finally gives a receipt. The seller is committed to issue the
final receipt within a pre-established deadline. Moreover, the seller of-
fers the customer a fixed discount if he/she accepts some delays; in
case of a delay, the seller also promises a further discount directly on
the receipt.

In particular, the following rules of engagement must be fulfilled by
the interacting services. It is worth noting that each constraint can be
easily mapped by means of a (possibly extended) ConDec relation.

14.5 monitoring optional constraints with rec 267

(0..10)

refuse
item

choose
item

accept
item

close
order

send
receipt

send discounted
receipt

cu
st
om
er

se
lle
r

c1

c2 c4

c3

c6

c5

accept possible
delays

c7

Figure 59: A ConDec choreography fragment, including a deadline and a
compensation.

id rec representation

c1 opt_con(c1,alternate_succession([choose_item],

[refuse_item,accept_item])).

c2 opt_con(c2,precedence([accept_item], [close_order])).

c3 opt_con(c3,negation_response([close_order], [choose_item])).

c4 opt_con(c4, response([close_order], [send_receipt])).

deadline(satisfied(c4), 10).

c5 opt_con(c5, response([violation(c4)], [send_discounted_receipt])).

c6 opt_con(c6,precedence([accept_possible_delays],

[send_discounted_receipt])).

Table 31: REC formalization of the choreography fragment shown in Fig-
ure 59.

• Every choose item activity must be followed by an answer from
the seller, either positive or negative; no further upload can be ex-
ecuted until the response is sent. Conversely, each positive/neg-
ative response must be preceded by a choose item activity, and
no further response can be sent until a new item is chosen (con-
straint c1).

• If at least one uploaded item has been accepted by the seller,
then it is possible for the customer to close the order (constraint
c2).

• When an order has been closed, no further item can be chosen
(constraint c3); moreover, the seller is committed to send a cor-
responding receipt by at most 10 time units (constraint c4).

• If the seller does not meet the deadline, it must deliver a dis-
counted receipt (constraint c5, modeled as a response constraint
triggered by the violation of constraint c4; the graphical repre-
sentation of the violation is inspired by the BPMN intermediate
error event).

268 monitoring and enactment with reactive event calculus

Figure 60: Fluents trend generated by REC when monitoring a specific inter-
action w.r.t. the diagram of Figure 59. The verification time spent
for reacting to each happened event is also reported.

• Discounted receipt is enabled only if the customer has previ-
ously accepted the possibility of experiencing delays (constraint
c6).

Figure 60 illustrates how REC monitors a specific course of interac-
tion w.r.t. the above described model. Clipping and declipping of flu-
ents are handled at run-time, thus giving a constantly updated snap-
shot of the reached interaction status. In the bottom part of the fig-
ure, verification performance is reported, showing the amount of time
spent by REC in order to dynamically react to and reason upon occur-
ring events.

The central part of the execution shows how REC deals with a dead-
line expiration. Indeed, as soon as the activity close order is executed
(at time 50), constraint c4 becomes unsatisfied, and a corresponding
deadline check is initiated, having 60 as expiration time. At time 62, a
tic event makes the proof aware that the deadline related to the satis-
faction of constraint c4 is expired. As a consequence, sciff reacts by
terminating the d_check fluent and by installing the corresponding
compensation; this is attested by the fact that constraint c5 becomes
unsatisfied.

14.6 enactment of condec models 269

partial
execution

Enactment

CLIMB
model

choose what
to do now

block unexec.
activities

alert if the model
is currently

satisfied

show pending
constraints

continue terminate

Figure 61: Enactment of ConDec models.

14.6 enactment of condec models

The enactment of ConDec models consists in providing support to the
interacting entities during the execution.

In the BPM setting, the enactment is supported by a process engine, Enactment in a
procedural settingwhich takes in input a BP model and shows to the users the so-called

worklist, representing the list of activities that must be currently ex-
ecuted. When a new activity is performed, the process engine logs
the operation (extending the execution trace of the instance) and then
moves one step forward, updating the worklist.

For ConDec, enactment must be adapted to the declarative nature of Enactment in a
declarative settingthe approach; instead of showing to the interacting entities what to do

next, the enactment of ConDec, schematized in Figure 61, is about

a. highlighting constraints that are temporarily unsatisfied (i.e., con-
straints that are waiting for the execution of some activity);

b. showing the forbidden, non-executable activities (i.e., activities
that cannot be currently executed);

c. showing the enabled activities (i.e., activities that can be cur-
rently executed) – an activity is currently enabled iff it is not
forbidden;

d. informing whether the execution can be currently terminate, i.e.,
whether the interacting entities can quit without breaking some
mandatory constraint.

In other words, the aim of enactment is to inform the user about the
current status of each constraint, as well as to block the activities whose
execution would surely lead to violate the model (i.e., to violate one of
its mandatory constraints) [157, 159].

Example 14.1 (Enactment of a ConDec model). Table 32 shows the en-
actment of a (fragment of a) ConDec model (taken from Figure 12). At the

270 monitoring and enactment with reactive event calculus

trace status

commit
order

0..1

refuse
order

confirm
order

refuse
shipment

confirm
shipment

commit order commit
order

0..1

refuse
order

confirm
order

refuse
shipment

confirm
shipment

confirm
shipment

commit
order

0..1

refuse
order

confirm
order

refuse
shipment

confirm
shipment

confirm order commit
order

0..1

refuse
order

confirm
order

refuse
shipment

confirm
shipment

Table 32: Enactment of a ConDec model.

beginning, refuse order and confirm order are blocked, because they need a
previous commit order. Then, an order is committed; the effect is that

• refuse order is no more blocked;

• confirm order is blocked, because it needs a previous confirm shipment;

• commit order is blocked, due to the 0..1 cardinality constraint;

• the disjunctive response constraint is temporarily unsatisfied, waiting
for an order confirmation or refusal.

Now the shipment is confirmed, enabling the possibility of executing the or-
der’s confirmation and blocking shipment’s refusal. Finally, the order is con-
firmed, and the response constraint binding commit order with the two pos-
sible answers goes back to a satisfied state. The execution can then correctly
terminate, because all constraints are satisfied, i.e., the execution trace commit
order→ confirm shipment→ confirm order is compliant with the model.

14.6 enactment of condec models 271

14.6.1 Showing Temporarily Unsatisfied Constraints

At each time, the partial execution trace collected so far can be used by
REC to highlight temporarily unsatisfied constraints. In fact, the trans-
lation discussed in Section 14.5.1 can be seamlessly applied to manda-
tory constraints as well. The ConDec model under enactment can then
be represented as a REC theory; using REC, the execution of the sys-
tem can be monitored, extracting the current status of each constraint.
Given a partial execution trace Tp, the current time is represented by
ct(Tp); if at time ct(Tp) a certain sat(c) fluent is not holding, then c
is currently temporarily unsatisfied.

14.6.2 Blocking Unexecutable Activities

REC can be exploited also to highlight the set of currently unexecutable
activities, i.e., activities forbidden by some constraints. Given a partial
execution trace Tp, if at time ct(Tp) a certain forb(a, c) fluent is hold-
ing, then activity a is currently unexecutable. Obviously, this does not
mean that a is a dead activity: in the future it could be possible that it
will become executable.

However, not all the unexecutable activities are highlighted by ex- Speculative
reasoning for
enactment

ploiting REC. In fact, exactly as in the case of run-time verification,
there could exist activities which are not explicitly forbidden, but are
unexecutable as well. An unexecutable activity is an activity that, if ex-
ecuted at the current time, will surely bring the system, sooner or later,
in a violated state (a state in which at least one mandatory constraint
is violated). Therefore, to complete the set of unexecutable activities,
speculative reasoning is needed.

In Section 13.4, speculative reasoning has been exploited to iden-
tify violations as soon as possible. This task has been accomplished
by asking g-sciff about the possibility of completing the current par-
tial execution trace so as to comply with the ConDec model. Now we
exploit g-sciff to ask a slightly different question: whether, given the
current partial execution trace, it is possible to extend it with a new oc-
currence of an activity a, s.t. there will be at least one way to continue
the interaction without violating the model. If it is the case, then a is
executable, otherwise it is not.

In the general case, given Discovery of
non-executable
activities• A ConDec model CM, which has been suitably pre-processed

before the execution12

• A partial trace Tp representing the evolution of the instance
reached so far

the discovery of non-executable activities proceeds as follows:

1. By means of REC, obtain the set Uexpl of activities made explic-
itly non executable by some constraint;

12 Using the pre-processing procedure described in Section 10.5, which aims at guaran-
teeing termination of g-sciff when reasoning upon the model.

272 monitoring and enactment with reactive event calculus

deliver
order

empty
stock

prepare
package

select
order

calculate
price

Figure 62: Enactment of the ConDec model shown in Figure 55, after the exe-
cution of activity empty stock.

2. For each activity a in ACM/Uexpl

a) Suppose that a is the next executed activity, i.e., that the
new execution trace of the system will be

Tanext = Tp ∪ {H(exec (a) , t) | t = ct(Tp) + 1}

b) Check if the hypothetical execution of activity a will bring
the system to a state which will surely lead to violation
– if it is the case, then a is added to the set of implicitly
unexecutable activities Uimpl.

3. All the activities which do not belong to Uexpl ∪Uimpl are en-
abled at time ct(Tp).

Point 2-b is accomplished by exploiting g-sciff in a semi-open set-
ting13 (i.e., by enabling the times update transition). This is needed be-
cause g-sciff must speculate only on the future: the evolution of the in-
stance reached so far is completely determined by the happened events
contained in the partial execution trace Tp.

In particular, we check if g-sciff has a successful derivation start-
ing from the CLIMB translation of CM and the execution trace Tanext.
A positive answer means that a can be executed as the next activity;
instead, a negative answer means that no possible extension of Tanext
exists s.t. all the mandatory constraints of CM are respected.

Example 14.2 (Discovery of unexecutable activities). Let us consider the
ConDec model shown in Figure 55 – Page 242, after the execution of activity
empty stock, say, at time 1. The resulting state is shown in Figure 62: all the
other activities become unexecutable. The non-executability of deliver order is
directly established as an effect of the negation response constraint which bind
the two activities. For the other activities, non-executability is discovered by
g-sciff’s speculative reasoning.

For example, to verify whether the select order activity is executable, g-sciff
verifies the model against the hypothetical evolution in which the order is se-
lected at time 2, i.e., against the execution trace

Tselect_ordernext = {H(exec (empty_stock) , 1), H(exec (select_order) , 2)}

Due to the presence of empty stock, g-sciff generates a negative expectation
concerning a future execution of deliver order:

EN(exec (deliver_order) , Td) ∧ Td > 1

13 Semi-open reasoning has been described in Section 13.2.3.

14.6 enactment of condec models 273

The hypothesized execution of select order, instead, triggers the sequence
of response constraints, generating two intensional event occurrences:

H(exec (calculate_price) , Tc) ∧ Tc > 2,

H(exec (prepare_package) , Tp) ∧ Tp > Tc.

The second generated occurrence triggers the last response constraint, expect-
ing a future execution of the deliver order activity:

E(exec (deliver_order) , Td2) ∧ Td2 > Tp

However, this positive expectation matches with the previously generated neg-
ative expectation concerning the same activity, thus leading to E-inconsistency.
Activity select order cannot be therefore executed as the next activity. Non-
executability of calculate price and prepare package is identified in a similar
way.

14.6.3 Termination of the Execution

The last task that must be accomplished to support enactment is check-
ing whether, in a given state of affairs, the instance of the system can
be terminated without violating some constraint. If the answer is yes,
then the interacting entities have the possibility to decide whether to
quit or continue the interaction; in the latter case, a new enactment
cycle is triggered.

Given the current execution trace Tp, related to an instance of the
ConDec model CM, the interacting entities can quit by respecting all
the model’s mandatory constraints iff Tp is a complete trace supported
by CM. This can be verified by checking if Tp complies with the con-
straints of CM, which corresponds to evaluate whether sciff has at
least one successful closed derivation for CM and Tp.

Let us for example consider the enactment shown in Table 32, identi-
fying the enacted ConDec model as CM. At the beginning of the execu-
tion, the interacting entities can quit, because no temporarily unsatis-
fied constraint is contained in the model. If we focus on the underlying
CLIMB formalization S = tCLIMB (CM), the absence of a temporarily
unsatisfied constraint means that there does not exists a pending pos-
itive expectation. The possibility to quit the execution is then attested
by the fact that S∅ `∅∅ true.

In the second and third state, the execution cannot be instead termi-
nated without violating CM, because the response constraint binding
the commit order activity with refuse order or confirm order is temporarily
unsatisfied, i.e., there is a pending expectation concerning refuse/con-
firm order which must be satisfied before quitting.

In the last state, the execution trace collected so far is the sequence
commit order → confirm shipment → confirm order. Let us call such a
trace T. It holds that ∃ ∆ s.t. S∅ `T

∆ true, and therefore the execution
can correctly terminate at this stage.

15
D E C L A R A T I V E P R O C E S S M I N I N G

Contents
15.1 Grounding the Process Mining Framework: SCIFF

Checker, DecMiner, ProM 277
15.2 The SCIFF Checker ProM Plug-in 278

15.2.1 CLIMB Textual Business Rules 279

15.2.2 A Methodology for Building Rules 280

15.2.3 Specification of Conditions 281

15.2.4 Compliance Verification with Logic Program-
ming 282

15.2.5 Embedding SCIFF Checker in ProM 283

15.3 Case Studies 284
15.3.1 The Think3 Case Study 285

15.3.2 Screening Guideline of the Emilia Romagna
Region 288

15.3.3 Quality Assessment in Large Wastewater
Treatment Plans 289

15.4 The DecMiner ProM Plug-in 291
15.4.1 Inductive Logic Programming For Declar-

ative Process Discovery 292

15.4.2 Embedding DecMiner Into the ProM Frame-
work 293

15.5 The Checking-Discovery Cycle 294

When an interaction system is executed, the relevant event occur-
rences involved in its instances are tracked and stored in an informa-
tion system. The necessity of logging all the performed operations is
twofold. On the one hand, external regulations, such as the Sarbanes-
Oxley Act, require the presence of complete logs in order to audit the
behaviour of the organization and assess its compliance. On the other
hand, only by analyzing its own behaviour, an organization becomes
aware of its own fallacies and bottlenecks and can improve itself.

All the modern Business Process Management (BPM) systems used
in the industry provide logging facilities to track the evolution of its
running instances. For example, Care-Flow Management Systems store
all the made examinations, treatments, drug administrations, provid-
ing to health-care professionals a complete picture about the current
status of each patient. Web Service-Oriented Systems provide SOAP
interceptors to capture message exchanges and log them.

275

276 declarative process mining

(un)desired
properties

interaction
model

records

event
logs

refers to models

LOG-BASED
VERIFICATION DISCOVERY

CONFORMANCE
CHECKING

system

Figure 63: Some process mining techniques (from [197]).

The extraction of information from the stored logs is called process
mining1. Differently from run-time verification and monitoring, pro-
cess mining techniques are applied a-posteriori, i.e., on traces represent-
ing already completed instances of the system. Process mining can be
considered as a special case of data mining, in which data are focused
on the information regarding the dynamics of a system.

Figure 63 depicts three process mining techniques[197]:Process mining
techniques

log-based verification analyzes the execution traces verifying
whether the instances of the system meet certain desired proper-
ties or not.

discovery aims at extracting a new interaction model starting from
the execution traces; the obtained model provides a feedback
about the real behaviour exhibited by the interacting entities.

conformance checking compares the execution traces with a pre-
established model, in order to assess the discrepancy between
the prescribed and the actual behaviour.

In the last years, process mining is drawing the attention of industry.Process mining and
industries Companies are interested in applying process mining techniques on

their own event logs mainly because:

• The extraction of information from past execution traces is of key
importance, to help business analysts in decision making and to
support the revision and improvement of Business Processes.

• Process mining centers around the event logs, which reflect the
real, concrete behaviour exhibited by the company when run-
ning its Business Processes.

• Process mining techniques rely only on the presence of event
logs, and are therefore independent from the specific BPM system
adopted by the company; companies can therefore benefit from
the outcome of process mining without needing to touch their
software infrastructure.

1 http://www.processmining.org

http://www.processmining.org

15.1 grounding the process mining framework : sciff checker , decminer , prom 277

Figure 64: Grounding of the process mining general schema on declarative
technologies.

In this chapter, we focus on declarative process mining, i.e., on tech-
niques which exploit declarative languages (ConDec++ and CLIMB in
particular – see Chapters 3, 4 and 6) and corresponding reasoning
frameworks in order to extract information from event logs. In par-
ticular, we present two software tools that we have developed in this
setting:

• SCIFF Checker is an analysis ProM [190] plug-in whose purpose SCIFF Checker
plug-inis to classify events as compliant or non-compliant w.r.t. declar-

ative business rules, expressed in a textual pseudo-natural lan-
guage which resembles the CLIMB language and is therefore able
to express all the ConDec++ constraints. The tool provides dif-
ferent template rules whose activity types, originators and ex-
ecution times can be constrained and specialized by the user
through a GUI.

• DecMiner is a ProM plug-in which implements the mining algo- The DecMiner
plug-inrithm described in [118, 117]. Its purpose is to discover a declar-

ative constraint-based specification starting from a set of MXML
execution traces, previously labeled as compliant or not.

We report the experience made on some case studies, in which declar-
ative process mining techniques have been effectively applied on real
execution traces.

15.1 grounding the process mining framework : sciff checker ,
decminer , prom

Figure 64 illustrates how we have grounded the general schema shown
in Figure 63. We adopt ConDec++/CLIMB as modeling languages. As
we have discussed in Chapters 8 and 10, ConDec models and CLIMB
specifications can be used to seamlessly express interaction models,
regulatory models and properties. Therefore, log-based verification
and conformance checking collapse in a single task.

As an underlying infrastructure, our techniques rely on the ProM The ProM
frameworkframework. ProM is an open source framework (under the Common

278 declarative process mining

Public License, CPL) for process mining2; it is plug-able, i.e., people
can plug-in new pieces of functionality. Beside a plethora of mining
techniques, ProM offers a wide range of plug-ins related to model
transformations and model analysis (e.g., verification of soundness,
analysis of deadlocks, invariants, reductions, etc.). ProM currently con-
tains about 200 plug-ins and is in continuous evolution.

A prominent advantage of ProM is that it defines an universal for-
mat for representing event logs: the MXML[199] format. MXML is an
extensible XML-based meta model thought for standardizing the way
event logs are represented. It is able to accommodate a wide-range of
execution traces, produced in different settings3. A third party must
only provide a conversion mechanism which produces an MXML rep-
resentation from its own event logs, and it becomes able to exploit all
the functionalities supported by ProM.

The ProMimport framework4 can support third parties in such aProMimport
conversion process; it provides more than 20 pre-defined import fil-
ters, and it can be easily extended. MXML has been described in Sec-
tion 6.2.1 – Page 114 – of this dissertation.

15.2 the sciff checker prom plug-in

SCIFF Checker [48] is a ProM plug-in aimed at dealing with compli-
ance checking of execution traces w.r.t. reactive business rules. Such
business rules could express external regulations, internal policies or
business trends, and it is important for business analysts to be able
to verify if the company is behaving as expected. Such a demand has
grown in the last years, which have seen the outbreak of financial scan-
dals and the corresponding increase of strict regulations, but also the
evolution of BPM towards flexibility.

Among the different kind of flexibility (see Section 2.2.2), flexibility
by change and by deviation [160, 165] enable the possibility of chang-
ing the process instance or deviating from the prescribed model during
execution, making therefore impossible to assess compliance before the
execution, as we have done in Chapter 8. As claimed in [195] “devia-
tions from the ‘normal process’ may be desiderable but may also point
to inefficiencies or even fraud", and therefore flexibility could lead the
organization to miss its strategic goals or even to violate regulations
and governance directives. Furthermore, as the complexity of BP mod-
els increases, it becomes important to provide support for a business
analyst in the task of analyzing past executions. This analysis can help
the business manager in assessing business trends and consequently
making strategic decisions.

2 ProM can be downloaded from http://www.processmining.org
3 To have an idea about the number of case studies in which ProM has been ap-

plied, just take a look at http://prom.win.tue.nl/research/wiki/publications/

overview
4 http://promimport.sourceforge.net

http://www.processmining.org
http://prom.win.tue.nl/research/wiki/publications/overview
http://prom.win.tue.nl/research/wiki/publications/overview
http://promimport.sourceforge.net

15.2 the sciff checker prom plug-in 279

Rule ::= [IF Body THEN] Head

Body ::= Activity_Exec

[AND Activity_Exec]? [AND Constraints]

Activity_Exec ::= S_Activity | R_Activity

S_Activity ::= activity A_ID is performed

[by O_ID] [at time O_T]

R_Activity ::= activity A_IDis performed N times

[by O_ID][between time O_T and time O_T]

Head ::= Head_Disjunct [OR Head_Disjunct]?

Head_Disjunct ::= Activity_Exp

[AND Activity_Exp]? [AND Constraints]

Activity_Exp ::= S_Activity_Exp|R_Activity_Exp

S_Activity_Exp ::= activity A_ID should [not] be performed

[by O_ID] [at time O_T]

R_Activity_Exp ::= activity A_IDshould be performed N times

[by O_ID] [between time O_T and time O_T]

Figure 65: An excerpt of the CLIMB textual rules grammar.

15.2.1 CLIMB Textual Business Rules

To specify business rules, we introduce a textual pseudo-natural nota-
tion, which has the same expressiveness of CLIMB (and can be straight-
forwardly mapped to it), and can therefore accommodate all the ConDec++

constraints. Such a notation is readable and can be easily customized
by a non-IT savvy. The structure of rules therefore resembles ECA
(Event-Condition-Action) rules [161]; the main difference w.r.t. ECA
rules is that, since CLIMB rules are used for checking, they envisage
expectations about executions rather than actions to be executed.

An excerpt of the grammar describing the syntax of such textual
rules is reported in Figure 65. As in CLIMB, rules follow an IF Body

having BodyConditions THEN Head structure, where Body is a con-
junction of occurred events, with zero or more associated conditions
BodyConditions, and Head is a disjunction of positive and negative
expectations (or false). Each head element can be subject to conditions
as well.

The concept of event is tailored to the one of entry in the MXML Events and the
MXML meta modelmeta model [199]. Events are atomic and mainly characterized by:

• the name of the activity it is associated to;

• an event type, according to the MXML transactional model [199],
which captures the life cycle of each activity with event types
like “start", “re-assignment", “completion";

• an originator, identifying the worker who generated the event;

280 declarative process mining

• an execution time, representing the time at which the event has
been generated.

As far as now, other data are not taken into account, but they could be
seamlessly introduced.

The main distinctive feature of our rules is that all these parametersVariable parameters
are treated, by default, as variables. To specify that a generic activ-
ity A has been subject to a whatsoever event, the rule body will sim-
ply contain a string like: activity A is performed by OA at time

TA, where A stands for the activity’s name, OA and TA represent the
involved originator and execution time respectively, and performed is
a keyword denoting any event type. To facilitate readibility, the part
concerning originator and execution time can be omitted if the corre-
sponding variables are not involved in any condition.

Such a generic sentence will match with any kind of event, because
all the involved variables (A, OA and TA) are completely free, and
the event type is not specified. The sentence can then be configured
in many different ways. In particular, the involved variables can be
grounded to specific values or constrained by means of explicit condi-
tions. The event type can be instead fixed by simply substituting the
generic performed keyword with one of the specific types envisaged in
the MXML transactional model.

Positive (negative) expectations are represented similarly to occurred
events, by only changing the is part with should (not) be.

15.2.2 A Methodology for Building Rules

To clarify our methodology, let us consider a completely configured
rule, expressing that if a person executes a check activity, then the same
person cannot execute the publish activity:

IF activity A is performed by OA

having A equal to check

THEN activity B should NOT be performed by OB

having B equal to publish and OB equal to OA

(R3-Think3)

By analyzing this rule, we can easily recognize two different aspects:
on the one hand, the rule contains generic elements, free variables and
constraints, whereas on the other hand it specifically refers to concrete
activities. The former aspect captures re-usable patterns – in this case,
the fact that the same person cannot perform two different activities
A and B, which is known as the four-eyes principle. The latter aspect
instantiates the rules in a specific domain, grounding A and B to two
activity names. To reflect such a separation, we foresee a three-step
methodology to build, configure and apply business rules (see Fig-
ure 66):

1. A set of re-usable rules, called rule templates, are developed and
organized into groups by a technical expert (i.e., someone having

15.2 the sciff checker prom plug-in 281

Rule Templates

Configuration

Customized Rule

Templates
Development

Log-based
Analysis

Execution
Traces

Figure 66: A methodology for building, configuring and applying business
rules.

a deep knowledge of rules syntax and semantics). It is worth not-
ing that, being the textual notation of rules based on the CLIMB
one, it is more expressive than ConDec++. For For example, the
following re-usable template represents a synchronized response,
i.e. a response triggered by the occurrence of two events:

IF activity A is performed at time TA

and activity B is performed at time TB

THEN activity C should be performed at time TC

having TC after TA and TC after TB.

2. Rule templates are further configured, constrained and customized
by a business manager to deal with her specific requirements
and needs. Here, conditions are exploited to ground the vari-
ables involved in the templates (see the next section).

3. Configured rules are exploited to perform compliance checking
of company’s execution traces.

15.2.3 Specification of Conditions

Conditions are exploited to constrain variables associated to event oc-
curences and expectations inside business rules (namely activity names,
originators and execution times). As shown in Figure 67 two main fam-
ilies of conditions are currently envisaged: string and time conditions.
String conditions are used to constrain an activity/originator by spec-
ifying that it is equal to or different from another activity/originator,
either variable or constant. An example of a string condition constrain-
ing two originator variables is the “OB equal to OA" part in rule
(R3-Think3).

Time conditions are used instead to relate execution times, in par-
ticular for specifying ordering among events or imposing quantitative
constraints, such as deadlines and delays. The semantics of constraints
is determined by time operators, which intuitively capture basic time
relationships (such as before or at). Absolute time conditions con-
strain a time variable w.r.t. a certain time/date, whereas relative time
conditions define orderings and constraints between two variables. Rel-
ative conditions can optionally attach a displacement to the target

282 declarative process mining

StringOP

String
Variable

String
Condition

Variable
Condition

Constant
Condition

Time
Condition

Event

Variable

eventType

activity
name

originator

Time
Variable

execution
time

Absolute
Condition

Relative
Condition

EQUAL TO
DIFFERENT
 THAN

Displace-
ment

0..1

DurationConstant

String DateTime

TimeOP
AT
NOT AT
AFTER
AFTER OR AT
BEFORE
BEFORE OR AT

DisplOP
+
-

Figure 67: Basic hierarchy of string and time constraints.

time variable as well. For example, to specify that the time variable
TB must be within a displacement of 2 days after TA, we simply write
TB BEFORE TA+2days.

15.2.4 Compliance Verification with Logic Programming

The reasoning phase, which aims at verifying whether a set of execu-Verification by sciff

tion traces comply with a given rule, can be tackled by sciff. In this
case, the verification procedure is as follows. For each MXML execu-
tion trace T belonging to the log under study:

a. translate T to a set of CLIMB happened events, forming a CLIMB
execution trace T;

b. express the textual rule in the CLIMB syntax, obtaining an IC BR;

c. if ∃ ∆ s.t. 〈∅, {BR}〉∅ `T
∆ true, then the execution trace is compli-

ant with the rule.

However, it is worth noting that, being the analysis carried out a-Verification by
Prolog posteriori, the reactive nature of sciff is not exploited. We therefore

asked ourselves if, in this specific case, sciff could be substituted with
a classical backward resolution algorithm, such as the one of Prolog.
The answer is yes, as we briefly show below.

An execution trace is treated by Prolog as a knowledge base storing
each audit trail entry as a fact of the type

h(exec (EventType,ActivityName,Originator) ,ExecutionTime))).

The rule used for checking is instead transformed into a Prolog
query by computing the negation of the implication represented by
the CLIMB textual rule. So, if the CLIMB rule is represented by the impli-
cation B → H, then the query would be B∧ ¬H. Such a query tries to
find a set of occurred events in the execution trace that satisfy the rule’s
body but violate its head. For example, rule (R3-Think3) is translated
to the following query:

15.2 the sciff checker prom plug-in 283

Figure 68: A screenshot of the main SCIFF Checker window.

?−A = ’Check’,h(exec (_,A,OA) , TA),

not(B = ’Publish’,OB 6= OA,not(h(exec (_,B,OB) , TB))).

Since the analysis is performed a-posteriori, positive expectations
are flattened to occurred events, and negative expectations to the ab-
sence of events. If the query succeeds, then a counter-example which
violates the rule has been found in the execution trace. The trace is
then evaluated as non-compliant.

15.2.5 Embedding SCIFF Checker in ProM

Drawing inspiration from the LTL Checker ProM plug-in [195], we have
implemented SCIFF Checker as a ProM analysis plug-in. The imple-
mentation supports the three-steps methodology described in Section
15.2.2, providing a user-friendly GUI for the customization of rule tem-
plates.

At start-up, templates are loaded from an XML-based template file.
As far as now, all the templates covering the ConDec language have
been specified using the textual notation. In order to extend or modify
the template hierarchy, the technical expert has simply to change this
file.

As shown in Figure 68, templates are displayed exploiting a tree-like
component; clicking on a template description causes its correspond-
ing textual representation to appear in the center panel. By clicking on
a “configuration" button, the different variables and customizable ele-
ments of the rule become highlighted. When selecting an highlighted
element, a specific customization panel appears, supporting the user
in setting the parameters (such as event types and repetitions) and in
the specification of conditions.

When the chosen rule has been customized, it can be either saved to
a special group containing all the user-defined rules, or directly used
for compliance checking. In the latter case, the user has first to choose a
granularity, which ranges from milliseconds to months and defines the
time unit for converting time quantities into integer values. For each

284 declarative process mining

Figure 69: Compliance chart produced by SCIFF Checker at the end of verifi-
cation.

execution trace contained in the considered MXML log, three steps are
then performed transparently to the user:

a. the execution trace is translated into a Prolog knowledge base,
converting involved execution times; the textual business rule is
mapped to a Prolog query, following the proof-of-concept shown
in Section 15.2.4;

b. a Prolog engine based on SWI5 is exploited to verify whether the
execution trace complies with the specified rule.

All verification outcomes are finally collected and a summarizing pie
chart is shown, together with the explicit list of compliant/non compli-
ant traces. The user can then start a new classification by considering
the whole log or only the (non) compliant execution traces. In this
way, a conjunction of business rules can be verified by performing a
sequence of tests, each one dealing with a single rule, and selecting at
each step only the compliant subset for the next verification.

15.3 case studies

In this section, we describe three real case studies in which we have
applied SCIFF Checker. The first case study involves the verification
of business rules on traces generated by the customers of Think3

®6, a
company working in the Computer Aided Design (CAD) and Product
Life-cycle Management (PLM) market. The second case study aims
at verifying compliance of health-care professionals with a screening
process applied by the Emilia Romagna region of Italy. The last case
study deals with an intelligent framework which aims at automatically
monitoring and assessing the quality of wastewater treatment plants;
SCIFF Checker is used in this context to identify the occurrence of
high-level events in the plant, starting from signal-level events.

5 http://www.swi-prolog.com/
6 http://www.think3.com

http://www.swi-prolog.com/
http://www.think3.com

15.3 case studies 285

15.3.1 The Think3 Case Study

An important current challenge in the manufactoring industry is to
handle, verify and distribute the technical information produced by
the design, development and production processes of the company.
The adoption of a system supporting the management of technical
data and the coordination of the people involved is of key impor-
tance, to improve productivity and competitiveness. The main issue
is to provide solutions for managing all the technical information and
documentation (such as CAD projects, test results, photos, revisions),
which is mainly produced by workers during the design phase. Since
an important part of the design process is spent by testing, modifying
and improving previously released versions, the traceability of relevant
information concerning an item is necessary.

Think3 is one of the leading global players in the field of CAD and
PLM solutions: it provides an integrated software which bridges the
gap between CAD modeling environments and other tools involved in
the process of designing (and then manufacturing) products. All these
tools are transparently combined with a non-intrusive information sys-
tem which handles the underlying product workflow, recording all the
relevant information and making it easily accessible to the workers
involved, enabling its consultation, use and modification. Such an in-
formation system supplies a detailed, shared and constantly updated
vision of the life cycle of each product, providing a complete log of the
executed activities.

The underlying Think3 workflow centers around the design of a
manufacturing product. Different activities can be executed to affect
the progress-status of an item, involving the modification and even the
evolution of multiple co-existing versions of its corresponding project.
Such a workflow can be adapted on each single Think3 client company
in order to meet different specific requirements.

Think3 Workflow

Figure 70 shows the basic Think3 workflow used to handle the de-
sign of a manufacturing product. It describes how different activities
affects the progress-status of an item, supporting the modification and
even the evolution of multiple co-existing versions of its correspond-
ing project. Such a workflow can be adapted on each single Think3

client company in order to meet different specific requirements. The
process starts with the creation of a new project, which is associated
to a unique identifier. The project becomes now in progress: differ-
ent designers work cooperatively on it by developing CAD drawings,
manuals and other documentation. In this phase, a vaulting system
is exploited to handle accesses and changes to resources [183]: read-
accesses can be performed concurrently, whereas modifications are
mutually-exclusive. When a complete draft of the project has been de-
signed, it becomes published and ready to be checked by a technical
reviewer (in the meanwhile, if someone realizes that further details
are needed, the project can be carried back to the previous state by

286 declarative process mining

Work In
Progress

Publish

Rectify

ReleaseCreate Check

Reject
New
Version

Under
Modify

Commit

Cancel

Figure 70: Basic Think3 workflow for the managament of manufacturing
products.

executing the rectify activity). After having been checked, a decision is
made: if all the performed tests have been successufully passed, the
project can be released, otherwise it will be rejected asking for changes,
carrying it back to the work in progress state. The release activity attests
that a completed and checked version of the project actually exists. At
this point, there are three possibility:

• Technical experts decide7 to save the current project and to gen-
erate a new version of it, triggering another design-and-test itera-
tion; if this is the case, two different versions co-exists: the older
one is put in a under modify state, to attest that a new version
is currently being processed, whereas the newer one is put in
progress.

• If at least one previous version of the project exists, it is possible
to cancel the current one; as a consequence, one of the previous
versions is retrieved from the under modify state.

• The project can be finally committed, i.e. passed to the manufac-
turing phase; this choice leads to removing all the previous ver-
sions of the project (the information system will anyway store
them in order to satisfy the traceability requirement).

Think3 Requirements

To support a business analyst in decision making, and in particular
in the tasks of analyzing the life cycle of different projects and pin-
pointing problems and bottlenecks, Think3 is investigating the devel-
opment of a Business Intelligence dashboard. Within the TOCAI.IT
FIRB Project8, Think3 and the University of Bologna are collaborat-
ing to realize one of the main dashboard components: a tool sup-
porting compliance verification of design processes w.r.t. configurable
business rules. This will facilitate the analysts in the identification
of behavioural trends and non-compliances to regulations or internal

7 This decision could have different motivations, one can be the desire to optimize
some specific aspects of the project.

8 http://www.dis.uniroma1.it/~tocai/

http://www.dis.uniroma1.it/~tocai/

15.3 case studies 287

policies. In this particular case study, we elicitated the following non-
exaustive list of interesting properties:

(Br1) Evaluating the time relationship between the execution of two
given activities (e.g. Was a project committed by 18 days after its
creation?).

(Br2) Identifying which projects passed too many times through a cer-
tain activity (e.g., Which projects have been modified at least twice?).

(Br3) Analysing originators, i.e., workers involved in the process (e.g.,
Was a project checked by a person different than the one who published
it?).

Such properties can be easily specified by using the CLIMB textual no-
tation. For example, Rule Br3 can be represented as shown in (R3-Think3)
– Page 280.

Rule Br1 can be instead modeled by grounding the general response
pattern:

IF activity A is performed at time TA

THEN activity B should be performed at time TB

and TB after TA.

The pattern is adapted on Think3’s Rule Br1 by grounding the in-
volved activities to the ones cited in Rule Br1 and by adding a before
relative time constraint having a 18 days-displacement.

IF activity A is performed at time TA

having A equal to Creation

THEN activity B should be performed at time TB

having B equal to Commit

and TB after TA and TB before TA + 18days.

Applying SCIFF Checker to the Think3 Case Study

SCIFF Checker has been concretely applied to analyze the execution
traces of a Think3 client. We have first exploited the ProMimport tool
in order to convert the relevant information from the client database
into an MXML format, by considering the project name as case identi-
fier.

In particular, we extracted a portion of 9000 execution traces, rang-
ing from 4 to 15 events. Then we used, together with a Think3 business
manager, the plug-in to express and test the business rules of inter-
est. The average time for performing compliance checking has been
assessed to be around 10-12 seconds. The verification outcomes have
been finally analyzed with the business manager. For example, con-
sidering Rules Br2 and Br3, we discovered that, fortunately, only 2%
of the execution traces involved more than two project revisions, and

288 declarative process mining

that in 3,5% of the cases only the same person was responsible for both
publishing and checking the project.

The verification of rules like Rule Br1 was found interesting espe-
cially by varying the deadline involved. Indeed, the business analyst
wanted to detect projects taking too much time as well as projects re-
leased too soon, to point out both possible bottlenecks and potential
inaccuracies.

15.3.2 Screening Guideline of the Emilia Romagna Region

The Emilia Romagna Region proposes several screening programs for
the early detection and treatment of cancer. In particular, we have ap-
plied SCIFF Checker on the Cervical Cancer Screening Guideline pro-
posed by the sanitary organization of the Emilia Romagna region of
Italy9.

Cervical cancer is a disease in which malignant (cancer) cells growCervical cancer
screening guideline in the tissues of the cervix. The screening program proposes several

tests in order to early detect and treat cervical cancer, and it is usually
organized in six phases: Screening Planning, Invitation Management,
First Level Test (PAP-test), Second Level Test (Colposcopy), Third Level
Test (Biopsy), and Therapeutic Treatment. Every participant is asked
to repeat the screening process periodically (a round being thus three
years long).

The careflow modeled by the Cervical Cancer Screening GuidelineThe need for
compliance
verification in the
clinical setting

is quite complex and involves more than 50 activities performed by
15 different health care professionals and structures. Furthermore, it is
applied on a huge number of persons at the same time, and involves a
plethora of different activities ranging from administrative procedures
(such as the emission of a letter containing the result of a PAP-test)
to clinical and therapeutic actions (such as the analysis of a biological
sample by anatomo-pathology laboratories). Providing suitable tech-
niques for analyzing how the screening process is being applied on the
territory is therefore of key importance, to assess the quality from the
patient’s perspective, as well as to check the compliance of health-care
professionals with the prescribed recommendations and to evaluate
the amount of undertaken resources. The detection of non-compliant
situations helps to better understand how the ideal Clinical Guideline
is being effectively applied in the concrete setting, providing the basic
information needed for taking proper countermeasures or for revising
the Clinical Guideline, so as to better fit with the specific peculiarities
of the Emilia Romagna region.

To this aim, we have formalized a fragment of the screening process,Formalization of the
cancer screening
process

starting from the recommendations provided by the sanitary organi-
zation of the Emilia Romagna region [143, 46]. The obtained model
consists of a set of rules, constraining the behaviour of administrative
personnel and of health-care professionals. Rules covered many differ-
ent aspects, ranging from normative aspects (such as the emission of
a letter after the PAP-test has been completed) to quality aspects (it

9 http://www.regione.emilia-romagna.it/screening/

http://www.regione.emilia-romagna.it/screening/

15.3 case studies 289

is desirable that a PAP-test takes place no later than 15 days after the
scheduled date).

Then, we have extracted a set of 1950 careflow executions from the
sanitary information system. In order to fully test our tools, some
wrong behaviours have been introduced in this database. Each screen-
ing round has been checked as a single interaction (hence we did not
check the conformance for the repetition of the screening rounds). Each
screening contains several events, up to the maximum of 18 (the whole
careflow).

We first tested the event logs abstracting away from quality aspects, Results
i.e., taking into account only the strict rules that should be followed
by the health-care professionals so as to comply with the recommen-
dations of the regional Clinical Guideline. At a first run of the trace
analysis process, 1091 executions resulted to be non-compliant. These
results were analyzed by a screening expert which confirmed all the
compliant classifications and proposed some changes to the careflow
model: in fact, some traces classified as compliant by the domain ex-
pert were instead considered as non-compliant w.r.t. the initial model.
The major discrepancy between the formalized model and the real
world concerned the initial phase of the screening process, in which
an invitation is sent to a patient, who is then committed to accept or
refuse the invitation. In many concrete cases, however, the patient sim-
ply decided to not answer at all: such a behaviour is not an indicator
of non-compliance from the viewpoint of the sanitary organization.

We have therefore revised the model to reflect also this possibility.
In this way, we avoided false non-compliant classifications, reducing
the number of “wrong” executions to 44: this result agreed with the
“wrong behaviour” executions we artificially introduced.

Finally, we have incorporated also quality aspects, such as the de- Verification of
quality aspectssired requirement stating that if a patient has been invited to attend

the PAP-test, the exam should take place no more than 15 days after
the scheduled exam. We repeated the analysis of the logs, and we dis-
covered that 200 times the PAP-test has been attended more than 15

days later w.r.t. the initial schedule. The delay could be explained by
the fact that the screening center allocates in advance a certain number
of slots: as a consequence, free slots for new booking are not immedi-
ately available.

15.3.3 Quality Assessment in Large Wastewater Treatment Plans

Large wastewater treatment plants are usually equipped with Software
Control And Data Acquisition (SCADA) and / or Programmable Logic
Controller (PLC) systems, but the vast amount of data acquired from
the sensors is seldom actually used in real-time plant management.
An intelligent control software, instead, could act as a “virtual opera-
tor”, monitoring the processes continuously. First of all, it could try to
optimize the yield and detect faults at an early stage, possibly even cor-
recting them. Then, the collected time series, properly validated and
classified, could be used to build a knowledge base describing the var-

290 declarative process mining

Plant Samples
(e.g., pH)

Signal-Level
Events

Process-Level
Event

Process
Validation
&Control

Figure 71: Architecture of an intelligent monitoring and quality assessment
framework for wastewater treatment plants (from [123]).

ious operating conditions of a given plant: this knowledge could be
used to further improve the overall performance of the plant.

Figure 71 shows the overall architecture of an intelligent monitoringAn intelligent
monitoring and
quality assessment
architecture

and quality assessment framework for wastewater treatment plants,
that is currently being realized by the University of Bologna and ENEA,
as part of a collaboration with Hera, one of the leading italian groups
in Waste, Gas and Electricity Business [180].

In the first stage, a multi-parameter converter continuously mea-Signal-level events
sures physical signals (e.g., pH values) during the whole treatment
process: the samples are acquired and stored in a MySQL database for
both immediate and later access. Then, a neural network is exploited
to analyze each obtained signal, to the aim of identifying “low-level”
events of interest (called signal-level events), such as the presence of
an apex, step or knee in the signal.

Starting from these signal-level events, SCIFF Checker is then em-Mapping
signal-level events
to MXML

ployed to identify process-level events, such as the start or the com-
pletion of a reaction in the plant. The first step needed to properly
integrate SCIFF Checker within the architecture concerned the map-
ping of low-level event sequences describing the signals to MXML. In
particular, in [123] the following correspondence has been established:

• the low-level event associated to the signal, i.e., step{+/−},
apex{+/−}, knee{+/−};

• the physical signal, to which the sequence of low-level events
refer to (e.g., pH), represents the originator of the event;

• the activity execution time represents the time-stamp at which
the low-level event has been detected by the neural network.

Starting from this correspondence, the conditions which support theIdentification of
process-level events
with SCIFF Checker

recognition of an higher level event can be defined using a CLIMB tex-
tual business rule. An higher level event occurs when one or more
of the monitored signals present certain characteristics at the same
time. In particular, by combining three signals, namely pH, ORP (re-
dox potential) and DO (dissolved oxygen concentration), three rules
have been specified:

• completion of a denitrification (pH apex+ and ORP knee−);

• completion of a nitrification (pH apex− and ORP knee+ and
DO step+);

• aerobic switch (pH knee− and ORP apex− and DO step+).

15.4 the decminer prom plug-in 291

For example, the CLIMB textual representation of the completion of a
denitrification is:

IF activity A is started by Oa

having A equal to cycle

THEN activity B should be performed by Ob at time Tb

and activity C should be performed by Oc at time Tc

having B equal to apex+ and Ob equal to pH

and C equal to knee− and Oc equal to ORP

and Tc after Tb − 15min and Tc before Tb + 15min

The rule states that a maximum in pH and a knee in ORP must
be detected almost contemporarily. The 30 minutes window has been
introduced to deal with noise due to the measures themselves and the
interpolation error.

In order to assess the performance of the plant, a process instance, Process validation
a cycle modelled by a sequence of signal-level events, is submitted to
a rule, which either accepts or rejects it: a set of instances, then, is
partitioned into two subsets, the “correct” ones and the “wrong” ones.
Each one of these subsets can be further processed by other rules, effec-
tively applying them in cascade. Therefore, starting from the denitri-
fication, nitrification and aerobic switch rules, different combinations
of the rules can be applied to define an acceptance policy for the cycle.
Even if a cycle is discarded, it is not necessarily a failed one: the oc-
currence of a false negative is a likely event since, in addition to errors
of the algorithm itself, probes tend to yield very noisy measurements
(especially if not cleaned daily) which may not satisfy the required con-
ditions. In order to overcome this problem, it is possible to define less
constraining rules by removing or changing some of the conditions in
the basic ones. This can be simply done through the SCIFF Checker
GUI.

15.4 the decminer prom plug-in

Process discovery deals with the extraction of a model starting from
the real execution traces of a system. The extracted model is of key
importance, because it explains the real behaviour exhibited by the
interacting entities.

Traditional process discovery approaches extract procedural BP mod-
els from the execution traces, such as Petri Nets or Event-driven Pro-
cess Chains [188, 198]. However, following the motivations discussed
in the first part of this dissertation (see Section 2.2.1, in particular Fig-
ure 3 at Page 16), it would be desirable to discover declarative specifi-
cations as well. In fact, declarative languages such as ConDec are easily
understandable by business analysts and are not affected by procedu-
ral details.

DecMiner is one of the few effective tools which aims at declarative ILP for declarative
process discoveryprocess discovery. It relies on Inductive Logic Programming (ILP) tech-

niques and, given as input a set of process execution traces, previously

292 declarative process mining

labeled as compliant or not w.r.t. a certain criterion, is able to produce
a SCIFF specification which correctly “replays” the classification. By ex-
ploiting the inverse ConDec++ - CLIMB translation, the produced result
can be finally rendered as a graphical ConDec++ model, for the sake of
readability.

15.4.1 Inductive Logic Programming For Declarative Process Discovery

The idea of exploiting ILP for declarative process discovery comes
form the similarities between learning a SCIFF theory, composed by
a set of ICs, and learning a clausal theory as described in the learning
from interpretation setting of ILP [148]. Besides the fact that both SCIFF
and clausal theories can be used to classify a set of atoms (i.e., an inter-
pretation) as positive or negative, they have strong similarities in the
structure of the logical formula composing the theory[118].

In particular, Lamma et al. have adapted the Inductive ConstraintThe DPML
algorithm Logic (ICL) algorithm [148], in order to learn SCIFF theories starting

from a set of execution traces, labeled as compliant or not [118]. The
new algorithm is called Declarative Process Model Learner (DPML).
Inductive algorithms rely on a clausal language L, specifying which
kind of logical theories can be produced by applying the algorithm.
The clausal language is usually described in an intensional way using a
specific representation language. The description of L in this language
is called language bias (LB). In the DecMiner setting, the LB represents
the structure of SCIFF ICs that can be discovered.

The target of DPML is to find a SCIFF specification S which “replays”
the classification given as input, i.e.:

• for each execution trace T+ initially classified as compliant, it
holds that compliant (ST+);

• for each execution trace T− initially classified as non-compliant,
it holds that ¬compliant (ST−).

To accomplish this task, DPML performs a covering loop in which non-
compliant execution traces are progressively ruled out. At each step,
DPML looks for the most general IC that correctly classifies as many
as possible compliant execution traces and, at the same time, rules out
as many as possible non-compliant execution traces.

DPML is able to learn ICs specified using the SCIFF-full language. InTuning DPML to
learn ConDec++

models
the context of DecMiner, we are interested in obtaining, at the end of
the computation, a SCIFF specification which can be graphically ren-
dered as a ConDec++model. In this respect, in [47, 117] Chesani et
al. have fixed the LB to reflect exactly the structure of ICs which are
obtained by translating ConDec++ (i.e., the ICs syntax is restricted to
a sub-set of the CLIMB language). The translation has been presented
in the Chapters 5 and 6 of this dissertation. Since DPML is now tuned
to learn only such a restricted set of ICs, it is possible to perform an
inverse translation and obtain the corresponding graphical representa-
tion.

15.4 the decminer prom plug-in 293

Figure 72: DecMiner plug-in: trace classification.

15.4.2 Embedding DecMiner Into the ProM Framework

The DPML algorithm has been wrapped into a ProM plug-in which
supports the user in all the process discovery phases, from data prepa-
ration to visualization of the learned ConDec model10.

In particular, the tuned LB is automatically generated from a set of
general templates, one for each ConDec constraint, that can be instanti-
ated to generate specific assertions for the language bias. The number Support for the

manual tuning of
the language bias

of all possible assertions can be huge, while the user could be inter-
ested to models defined only by a small, yet meaningful set of ConDec
constraints. For this reason, we let the user free to select a subset of
the activities contained in the execution traces, and a subset of the
ConDec constraints. Then, our approach uses only the instantiation
of these constraints with the selected activities for learning the model.
Besides providing as output a model that fits the user requirements,
smaller constraint sets allow also better performances of the learning
algorithm.

The accuracy and learning time depends on the choice of these sub- Complexity of the
approach w.r.t. the
language bias

sets. They influence the accuracy of the learned model because an ac-
tivity relation discriminating between compliant and non-compliant
execution traces cannot be learned if the appropriate template and/or
activities were not chosen. The time complexity is linear in the number
of traces and in the number of constraints. With respect to the number
of activities, it is quadratic if there are binary constraints, and linear if
there are only unary constraints.

DecMiner implements all the data preparation and learning phases Discovery phases
of the discovery process described above and guides the user by means
of its GUI. The phases of such a process are:

10 Visualization is currently limited to the basic ConDec language, but the algorithm is
seamlessly able to deal with ConDec++.

294 declarative process mining

Figure 73: DecMiner plug-in: ConDec template selection.

classification The user exploits the GUI shown in Figure 72 to
browse the execution traces and label some of them as compliant
(positive) or not compliant (negative). Such a phase could be
automatically accomplished by using SCIFF Checker as a pre-
processing step (see Section 15.5).

activities The user can choose among all the activities and their
associated parameters the information that she considers impor-
tant for learning the declarative model.

templates The user exploits the GUI shown in Figure 73 to choose
the set of existence, relation and negation ConDec templates to
be used in the discovery phase.

mining When the start mining button is pressed, DPML is used to
discover the declarative model. Before starting DPML, the lan-
guage bias is generated, by instantiating the chosen templates
with the chosen activities.

results The learned SCIFF/CLIMB rules, together with the correspond-
ing ConDec model, are presented to the user11.

15.5 the checking-discovery cycle

An interesting integration between SCIFF Checker and DecMiner, which
we plan to better investigate in the near future, concerns the possibility
of realizing the discovery-checking cycle shown in Figure 74.

The use of SCIFF Checker as a pre-processing step for DecMinerSCIFF Checker to
DecMiner comes into help for dealing with one of the most critical phases of

the declarative discovery process, namely the labeling of each given
execution trace as compliant or not. Quite often, the execution traces

11 The ConDec model is shown by using the DECLARE tool: http://declare.sf.net

http://declare.sf.net

15.5 the checking-discovery cycle 295

Compliant instances

DecMiner

CLIMB specificationConDec
model

Translation

SCIFF
Checker

Non compliant instancesExecution
traces

SCIFF
Checker

DecMiner

Figure 74: Integration of SCIFF Checker and DecMiner, realizing a checking-
discovery cycle.

taken as input do not contain any hint about being positive or negative.
Therefore, the splitting of traces into compliant and non-compliant
subsets must be manually carried out. SCIFF Checker facilitates this
task: instead of explicitly labeling each single execution trace, the user
can state a classification criterion and automatically obtain the desired
splitting. It is worth noting that integration is already implemented:
SCIFF Checker provides as output an annotated log which can be di-
rectly imported into DecMiner. If the language bias is opportunely
tuned, the model learned by DecMiner could be noticeably different
from the adopted criterion, and hence interpreted as an explanation for
the classification.

The integration between the two plug-ins could be exploited also in DecMiner to SCIFF
Checkerthe opposite way. In this respect, a discovered ConDec model can be in-

terpreted as a regulatory model expressing the “real world” behaviour,
and used to check whether new instances of the system maintain or
break such a behaviour.

16
R E L A T E D W O R K A N D S U M M A R Y

Contents
16.1 Related Work 297

16.1.1 Run-Time Verification and Monitoring 297

16.1.2 Enactment 299

16.1.3 Log-Based Verification 300

16.1.4 Discovery 301

16.2 Summary of the Part 302

In this Chapter, related work concerning the enactment, run-time
verification&monitoring and mining of interaction models is presented.
Then, the major contributions of this part of the dissertation are briefly
summarized.

16.1 related work

We organize related work separating the run-time and the a-posteriori
aspects:

• run-time verification and monitoring;

• enactment;

• log-based verification;

• discovery.

16.1.1 Run-Time Verification and Monitoring

The importance of run-time verification and monitoring has been raised
by many researchers, especially in the field of Service-Oriented Com-
puting. Here, monitoring is addressed with several approaches: busi-
ness rules [119], WS-BPEL [18], WS-Agreement [125], to cite some. Ad-
vanced conformance checking techniques described in [170] are used
in [193] and implemented in the ProM framework [190]; this approach
has been applied to SOAP messages generated from Oracle BPEL.

Many authors propose LTL as a suitable language for specifying re-
quirements and properties to be checked at run-time[20, 86]. However,
the construction of suitable monitoring facilities has a twofold impact:

297

298 related work and summary

• The semantics of LTL must be modified to reflect that, during the
execution, reasoning cannot be definitive, but must be “open” to
the acquisition of new event occurrences (see the discussion of
Section 13.1). Let us for example consider a partial, ongoing in-
stance of the system, which does not contain the execution of
activity pay. A liveness property such as ♦pay should not evalu-
ate such an instance as wrong: there is still the possibility to meet
the property, by executing the pay activity in the future. To deal
with this issue, Bauer et al. propose to switch to a three-valued
semantics for LTL [20]; in the example, such a semantics would
evaluate ♦pay as unknown. In [86], instead, Giannakopoulou
and Havelund introduce a finite-trace semantics for LTL, reflect-
ing the fact that partial ongoing executions are finite; their se-
mantics would state that ♦pay is violated, but in their setting
the concept of violation corresponds to a temporary violation
limited to the observed portion of execution.

• The corresponding automata generation algorithms must be mod-
ified ad-hoc, to reflect the new semantics and accomplish the
monitoring task accordingly; ad-hoc methods makes it very dif-
ficult to prove their formal properties, such as soundness and
completeness.

The run-time and monitoring infrastructure presented in this paper
differs from all the cited approaches because:

• It relies on one declarative language (with one declarative se-
mantics), that is employed as it is in all the life cycle of the tar-
geted models, spanning from design and static verification to
run-time verification, monitoring, enactment and mining.

• Reasoning is addressed by combining the sciff and g-sciff proof
procedures, for which the formal properties of soundness, com-
pleteness and termination have been studied.

• By accommodating a reactive form of Event Calculus (EC), en-
hanced features such as monitoring optional constraints and
handling compensation mechanisms can be seamlessly introduced
inside the framework, at a pure declarative level (i.e., without re-
vising the underlying reasoning techniques).

The first two points differentiate our proposal also from the mon-
itoring frameworks which rely on the EC, because they use ad-hoc
methods, outside of logical frameworks. For example, Mahbub and
Spanoudakis present a framework [128] for monitoring the compli-
ance of a WS-BPEL service composition w.r.t. behavioral properties
automatically extracted from the composition process, or assumption-
s/requirements expressed by the user. EC is exploited to monitor the
actual behavior of interacting services and to report different kind of
violations. The approach is pursued in [129], where an extension of
WS-Agreement is used to specify requirements. The monitoring frame-
work relies on an ad-hoc event processing algorithm, which fetches the
occurring events and updates the status of the affected fluents.

16.1 related work 299

While only a few proposals have been focused on the adoption of
EC as a monitoring framework, there is a vast literature on the use
of EC before or after the execution. Rouached et al. propose a frame-
work for engineering and verifying WS-BPEL processes is [168]. EC is
used to provide an underlying semantics to WS-BPEL, enabling ver-
ification before and after execution. In particular, EC is exploited to
verify consistency and safety of a service composition (i.e. to statically
check if the specification always guarantees the desired requirements),
and to check whether an already completed execution has deviated
from the prescribed requirements. The authors rely on an inductive
theorem prover for the verification task. Thanks to the Reactive Event
Calculus (REC) provided in Chapter 14, the mapping of WS-BPEL pre-
sented in [168] could be exploited to monitor WS-BEL processes with
the sciff proof procedure.

In [15], Aydin and colleagues use the Abductive EC to synthesize a
web service composition starting from a goal. The composition pro-
cess is described as a planning problem, where the functionalities
provided by the individual services are (atomic) actions, requiring
some inputs and producing certain outputs. Being sciff an abductive
proof-procedure, it would be interesting to investigate the possibility
of adopting the REC to deal also with this issue.

16.1.2 Enactment

The enactment of ConDec models has been addressed by Pesic and
van der Aalst in [158, 157]. They rely on the formalization of ConDec
as an LTL conjunction formula (see Section 3.7 – Page 51). Such a for-
mula is translated to an automaton using the approach proposed in
[86]. Enactment is then directly supported by starting from the initial
state of the obtained automaton, triggering a transition and moving
to a corresponding successor state every time a new activity is ex-
ecuted. Differently from the approach presented in this dissertation,
the automaton carries directly, by construction, the complete informa-
tion about which activities are enabled or forbidden in a certain state.
Therefore, speculative reasoning is not needed to properly support the
enactment, eliminating a computational step which, in our case, must
be executed each time a new activity is executed. On the other side,
as we have shown in Chapter 11, the construction of the automation
is a highly expensive process, exponential in the size of the formula.
While timing aspects are not critical in this context (the automaton is
built before the execution, and therefore the interacting entities do not
experience delays during the execution), it is important to remember
that also the space needed to store the automaton is exponential in
the size of the formula, making it difficult to handle medium-sized
models.

Enactment of declarative service specifications, specified by means
of Concurrent Transaction Logic (CTR), has been addressed by Roman
and Kifer in [167]. However, their notion of enactment is different than
ours: while we focus on supporting the interacting entities during the

300 related work and summary

execution, showing the status of constraints and identifying the en-
abled and forbidden activities, they focus on the static synthesis of
one possible way to enact the service under study, guaranteeing con-
formance with a choreography. This is done by combining the CTR
specifications of the service and the choreography and finding a con-
structive proof for the global specification.

16.1.3 Log-Based Verification

A huge amount of work has been (and is being) carried out in or-
der to deal with flexibility and adaptivity in Process Aware Informa-
tion Systems [201]. DECLARE [160] is a constraint-based WfMS which
adopt ConDec as a declarative graphical specification language. Flexi-
bility is tackled at design-time, supporting the user in the specification
of a minimal set of constraints that should be met during execution
rather than focusing on a specific procedural solution, and at run-time,
supporting the dynamic removal and insertion of constraints. In [165]
ADEPT2 is proposed as a Workflow Management System capable to
support the change of running instances (flexibility by change). The au-
thors also suggest that Adaptive Process Management System should
store, besides the enactment log, also the log of sequences of changes
applied to a process model during execution.

SCIFF Checker could be considered as complementary to these sys-
tems: it can be used to assess whether executed instances met the de-
sired requirements/regulations. An interesting future work concerns
the verification of process logs containing also the sequence of changes;
in this setting, it would be possible to express requirements involving
also such changes, and to investigate the relationship between non-
compliances and changes.

The closest work to SCIFF Checker is the ProM LTL-Checker [195],
that shares with our approach motivation and purposes. While LTL-
Checker exploits LTL for the formalization of properties, our approach
belongs to the Logic Programming family. The LTL-Checker uses a
variant of LTL which supports some kind of data (such as for example
absolute time conditions), and exploits a verification technique which
does not rely on the translation of the LTL formula to an automaton,
thus avoiding the state-explosion problem. Anyway, the textual rules
employed in the SCIFF Checker are more expressive than the LTL-
Checker formulas, being they e.g. able to express relative metric time
constraints (delays and deadlines). Furthermore, the configuration of
templates inside the LTL-Checker mainly consists of associating ground
values to the available parameters, while SCIFF Checker supports the
specification of many different conditions on the variables, enabling
the possibility of modeling a variety of business rules starting from a
single template.

As discussed in Section 12.1.2, there are many proposals which aims
at assessing compliance with regulations and rules before the execu-
tion. For example, in [172] the compliance of processes to regulations
and standards is enforced by design rather than being checked a pos-

16.1 related work 301

teriori. Obviously, a static approach is not suited to deal with flexi-
bility by change or deviation. Furthermore, it cannot deal with situa-
tions where the outcome of the compliance evaluation inherently de-
pends on the actual configuration (resources and data) of the instance,
e.g. like in the case of the four-eyes principle, where the focus is about
the actual originators.

16.1.4 Discovery

Process discovery is an active research area. Among the many pro-
posals present in the literature, we cite [1, 188, 198, 91, 68, 75]. In [1],
Agrawal et al. introduce the idea of applying process mining to work-
flow management. The authors propose an approach for inducing a
process representation in the form of a directed graph encoding the
precedence relationships. In [188], van der Aalst et al. present the α-
algorithm for inducing Petri nets from data, identifying a class of mod-
els for which the approach is guaranteed to work. The α-algorithm is
based on the discovery of binary relations in the log, such as the “fol-
lows” relation. In [198] van Dongen and van der Aalst describe an
algorithm which derives causal dependencies between activities and
use them for constructing instance graphs, presented in terms of Event-
driven Process Chains. [91] is a recent work where a process model is
induced in the form of a disjunction of special graphs called workflow
schemas.

DecMiner differs from these works because it adopts a representa-
tion that is declarative rather than procedural, without sacrificing ex-
pressiveness. Moreover, the learning process starts from compliant and
non-compliant traces, rather than from compliant traces only.

The works presented in [68, 75] are closer to DecMiner because they
deal with discovering (partially) declarative specifications. In [68], the
learning process starts from runs, which are Petri Nets representing
high level specifications of a set of process traces. Mining is performed
by merging the different runs for the same process. The model that is
obtained is hybrid, in the sense that it may contain sets of activities
that must be executed but for which no specific order is required. We
differ from this work because we start from traces rather than runs:
while runs specify already a partial order among activities, carrying
out significant information about the system, traces are simply event
sequences denoting the execution of activities.

A critical requirement of DecMiner is that each input trace must be
previously classified as compliant or non-compliant. SCIFF Checker
comes into help: the user must only provide a classification criterion,
and then the two sub-sets are automatically computed. However, find-
ing a classification criterion is not always a reasonable assumption,
because it requires that the user already has a deep knowledge about
the domain under study. In order to avoid asking the user to classify
activities, in [87] Goedertier proposes an approach for automatically
generating negative events, i.e., events that are used as negative exam-

302 related work and summary

ples. The integration of this approach with DecMiner is therefore an
interesting line of research.

16.2 summary of the part

In this part of the thesis, we have applied the CLIMB framework for
reasoning upon the execution traces of a system both at run-time and
a-posteriori. We have described how the reactive nature of sciff can be
exploited to accomplish the run-time verification task: sciff is able to
dynamically acquire the occuring events of an instance, checking on-
the-fly whether they comply with a prescriptive ConDec model or not.
We have pointed out that sciff is not always able to detect a violation
as soon as possible, and we have proposed a solution to overcoming
this issue. The solution interleaves a sciff reasoning phase with a spec-
ulative reasoning step in which g-sciff is employed to verify whether
at least one way to continue the interaction by respecting the ConDec
model actually exists.

We have then discussed the rigid nature of run-time verification,
which stops itself as soon as the first violation is encountered. We
have then introduced a more flexible monitoring framework, able to
explicitly capture and reify violations. Such an extended framework
relies on a reactive axiomatization of the Event Calculus (REC) on top
of sciff; beside discussing the axiomatization, we have also proven
that, under the assumption that events occur in ascending order, it is
irrevocable, i.e., it monitors the execution by never retracting the pro-
vided information. REC has been exploited to monitor optional ConDec
constraints, supporting the possibility of reifying violations and han-
dling corresponding compensation mechanisms, again expressed with
the ConDec language. The combination of sciff, g-sciff and REC has
then be used to handle the enactment of ConDec models, providing
support to the interacting entities by showing, instant by instant, the
enabled as well as the forbidden activities, preventing the possibility
of performing activities that would surely lead to violate the model.

The application of CLIMB in the context of (declarative) process min-
ing has given birth to two concrete tools, which have been imple-
mented as part of the well-known ProM framework. The first tool,
called SCIFF Checker, aims at performing log-based verification, check-
ing if the execution traces of a system comply with a given business
rule, specified using a pseudo-natural language which resembles the
CLIMB one. We have explained the architecture of the tool and dis-
cussed its application on three real case studies, belonging to different
settings (Business Process Management, Clinical Guidelines, Wastewa-
ter Treatment Plants). The second tool, called DecMiner, is dedicated to
discover a new ConDec model starting from a set of execution traces,
previously labeled as compliant or not. The obtained model provides
an high-level, declarative description of the real behaviour of a sys-
tem, abstracting away from procedural details. The two tools can be
combined to realize a checking-discovery cycle, where SCIFF Checker
could be employed as a pre-processing step for preparing data to Con-

16.2 summary of the part 303

Dec, and the discovered model could be adopted to assess compliance
of new execution traces.

Part IV

C O N C L U S I O N S A N D F U T U R E W O R K

17
C O N C L U S I O N S A N D F U T U R E W O R K

This dissertation contains at least one error.

— Marco Montali

Contents
17.1 Conclusions 307
17.2 Future Work 309

17.1 conclusions

We have put forwards significant evidence to support our thesis:

Declarativeness and openess are needed to deal with dif-
ferent emerging settings, where systems are composed by
several autonomous entities which collaborate and interact
to the aim of achieving complex strategic goals, impossi-
ble to be accomplished on their own. Computational Logic
is a suitable framework to support the entire life cycle of
such systems, ranging from their specification and static
verification to their execution, monitoring and analysis.

In particular, we have proposed the CLIMB integrated framework to
deal with all this issues. The framework is composed by:

• ConDec, a graphical language proposed by Pesic and van der
Aalst to specify interaction models with an open, declarative fla-
vor [157, 158].

• The CLIMB language, a subset of the SCIFF language [7] which
exhibits some interesting properties (such as compositionality);
the language targets the specification of interaction by means
of Integrity Constraints that must be respected by the interact-
ing entities, and is equipped with a clear declarative semantics,
providing a meaning to the notion of compliance.

• g-sciff, an abductive proof procedure able to statically verify
CLIMB specifications by adopting a generative approach.

• sciff, an abductive proof procedure able to verify, at run-time or
a-posteriori, whether an execution trace describing the (partial)
evolution of the system complies with a CLIMB specification.

307

308 conclusions and future work

• REC, a reactive encoding of the Event Calculus [114] on top of
sciff.

In the first part of the dissertation, we have pointed out that many
different challenging settings, such as Business Process Management,
Clinical Guidelines, Service Oriented and Multi-Agent Systems, re-
quire the adoption of open and declarative approaches. We have pro-
posed the conjunct use of the ConDec notation and the CLIMB language
to overcome the limits of classical, procedural closed approaches. We
have synthesized a translation procedure able to take as input an arbi-
trary ConDec model, automatically producing a corresponding CLIMB
formalization. We have carried out an extensive theoretical compari-
son with the framework of propositional Linear Temporal Logic (LTL),
which has been already used to formalize the ConDec constructs [157].
The comparison showed that the two proposed formalization are equiv-
alent w.r.t. the notion of compliance of an execution trace with a Con-
Dec model, and that CLIMB is strictly more expressive than LTL. Differ-
ently from LTL, CLIMB is a first-order language, which supports vari-
ables and metric temporal constraints; these added capabilities have
been exploited to extend to ConDec with new features, maintaining a
valid CLIMB mapping.

In the second part of the dissertation, we have discussed the issue
of static verification of ConDec models, illustrating different verifica-
tion tasks, such as existential and universal entailment of properties,
a-priori compliance verification and issues related to the composition
of many local specification to realize a global choreographic model.
We have demonstrated that each kind of verification can be reduced to
existential entailment, which in turn can be successfully treated by the
g-sciff proof procedure. We have criticized g-sciff, pointing out that
there exists ConDec model for which its termination cannot be guar-
anteed. We have then proposed a method to overcome this problem in
the specific case of ConDec. The possibility of using model checking
techniques to address the static verification of ConDec models led us
to carry out an extensive quantitative evaluation of g-sciff, compar-
ing it with state of the art explicit and symbolic model checkers. The
comparison support our claims and motivate us to pursue this line of
research.

In the third part of the thesis, we have applied the CLIMB framework
to provide support at run-time and a-posteriori. We have exploited the
reactive nature of sciff to accomplish the run-time verification task.
We have criticized sciff, pointing out that there exists cases in which
it is not able to detect a violation as soon as possible. To overcome this
problem, we have proposed an integration between sciff and g-sciff,
where the first is used to reason about the present and about the past,
and the second is used to speculatively reason about the future. We
have then pointed out that REC can be fruitfully introduced to monitor
the status of optional ConDec constraints during the execution, mak-
ing it possible to reify the detected violations as special event occur-
rences. The application of ConDec constraints to such special events
has been the basis to augment the monitoring process with the con-

17.2 future work 309

cept of compensation to a violation. The combination of (speculative)
run-time verification and monitoring has then been exploited to en-
act ConDec models, preventing the possibility of performing activities
that would surely lead to violate the model.

Finally, the CLIMB framework has been applied to build declarative
process mining tools, which have been concretely implemented on top
of ProM [190], one of the most popular frameworks in the field of
process mining. The first tool, called SCIFF Checker, classifies a set of
execution traces as compliant or non-compliant with a business rule,
specified in a pseudo-natural language which resembles the CLIMB lan-
guage. Beside the description of the main functionalities of the tool,
we have reported its application on three real industrial case studies,
demonstrating its versatility. The second tool, called DecMiner, is one
of the first attempts to discover a declarative specification starting from
a set of execution traces. DecMiner starts from execution traces previ-
ously labeled as compliant or non-compliant w.r.t. a certain user crite-
rion, and relies on Inductive Logic Programming techniques to induce
a SCIFF specification which correctly reproduces the classification. By
properly restricting the language bias of the learning algorithm, the
structure of the induced SCIFF specifications can be set so as to cover
exactly the CLIMB rules that we have previously used to formalize Con-
Dec. In this way, an inverse translation can be applied, obtaining a
graphical ConDec model as a result.

In conclusion, we have shown how the integration of languages and
techniques coming from different mainstreams (Business Process Man-
agement, Multi-Agent Systems, Knowledge Representation and Rea-
soning) can be fruitfully exploited to specify and reason about declara-
tive open interaction models, covering both theoretical as well as prac-
tical aspects.

We hope that we have convinced the reader that Computational
Logic, and in particular extensions of Logic programming, are a sig-
nificant approach, in that they provide both effective technologies to
carry out reasoning, but at the same time provides the possibility of
defining and proving that such technologies meet certain fundamental
formal properties, such as soundness and completeness.

We hope also that this work will stimulate new researcher to com-
bine proposals and approaches coming from different research areas,
contributing to their mutual cross-fertilization.

17.2 future work

Beside the need of further experimentation and application of the
proposed techniques to other industrial case studies, this dissertation
leaves many open challenges and issues for future research. We briefly
discuss some of them in the following.

310 conclusions and future work

Termination of Static Verification and ConDec Extensibility

In [159], Pesic et al. state that ConDec is an extensible language: a
new constraint can be added in the DECLARE tool, by deciding its
graphical representation and providing its corresponding LTL formal-
ization. In our setting, extending the set of constraints could affect the
termination of g-sciff, making the pre-processing algorithm presented
in this dissertation incomplete: new kind of loops could be built by
composing the new constraints in subtle ways. To be sure that the pre-
processing algorithm still guarantees that all looping situations can be
identified, we should rewrite the CLIMB representation of the new con-
straint so as to make it “forward” or “backward” (see Section 10.4.2
– Page 185). However, this is a non-trivial task, nor applicable in the
general case.

The only way to guarantee the termination of g-sciff for an arbitrary
specification would be the incorporation of a general method for deal-
ing with infinite computations. A promising approach to handle infi-
nite computations during verification seems to be Coinductive Logic
Programming [95], because Coinductive LP extends the usual opera-
tional semantics of logic programming to allow reasoning over infinite
and cyclic structures and properties. We will therefore investigate the
possibility of augmenting g-sciff with Coinductive LP techniques in
the future.

Development of an Editor and Enactment Prototype

An ongoing work concerns the development of an editor for the ex-
tended version of ConDec. The main purpose of this editor will be
to support the enactment of extended ConDec models by exploiting
the CLIMB framework. Indeed, the combination of the reasoning tech-
niques proposed to provide enactment support, has not yet been im-
plemented in a concrete prototype.

It is worth noting that such a prototype should include two different
translation procedures:

• one from ConDec to the CLIMB language, for performing compli-
ance verification about the past and speculative reasoning about
the future;

• one from ConDec to REC, for tracking the status of each con-
straint.

An interesting possibility to realize these two translations, would be
to adopt Model Transformation techniques. Given:

• a source meta-model (in our case, the ConDec meta-model)

• a target meta-model (in our case, the structure of the CLIMB lan-
guage and of the REC ontology)

• a set of rules translating each entity of the source meta-model to
the target meta-model (in our case, the translation procedure
which maps ConDec constraints to CLIMB rules, and the REC
fluent-based representation of ConDec’s constraints)

17.2 future work 311

Model Transformation techniques automatically apply the general rule
on a specific source model, producing the corresponding target model.
For example, ATL [104] is a Model Transformation Language which
supports the specification of translation rules, supposing that both the
source and the target meta-models are expressed in EMF1, the core
modeling framework used inside the well-known Eclipse framework2.

The ongoing implementation of the editor is being carried out inside
Eclipse, and therefore we will investigate the use of ATL for reducing
the translation procedures presented in this dissertation to a Model
Transformation problem.

Contracting, Discovery and Interoperability in the Semantic Web

The SCIFF framework and the sciff and g-sciff proof procedures, have
been recently exploited in the context of Semantic Web (Services), to
deal with discovery/contracting [6, 49] and interoperability issues [2].
An open ongoing research activity concerns the comparison between
the verification techniques described in such papers, and the ones ad-
dressed in this dissertation.

Integration Between ConDec and Social Commitments

The Event Calculus has been exploited by Yolum and Singh to for-
malize social commitments [206]3. Social commitments are a powerful
framework for capturing the mutual obligations between interacting
entities during the execution; they are even more flexible than ConDec
because they provide the possibility of describing a desired state of af-
fairs, leaving the interacting entities free to exploit their opportunities
and dynamically find a sequence of activities leading to such a state;
they provide support for compensation mechanisms and exception
handling [130]. Thanks to the translation presented in [206], we can
seamlessly exploit our REC to monitor commitment-based interaction
systems, relying on the CLIMB framework for the integration between
ConDec and commitments. Our preliminary studies pursuing this line
of research [45, 50] show the potentialities of such an integrated frame-
work: commitments are used to capture mutual obligations and state
of affairs, while ConDec is exploited to impose constraints on the activ-
ities that can be executed to reach these state of affairs. The semantics
of the integrated model, as well as the impact on the underlying veri-
fication techniques, needs further investigation and experimentation.

Integration Between Declarative/Open and Procedural/Closed Approaches

In Section 2.5, we have discussed the non-trivial interplay between the
declarative, open background knowledge of the heath-care profession-
als, and the procedural, closed prescriptions of the Clinical Guidelines
that describe how assist patients in specific clinical circumstances. The

1 http://www.eclipse.org/modeling/emf/
2 http://www.eclipse.org/
3 Related work concerning social commitments has been discussed in Section 7.2.2 -

Page 127.

312 conclusions and future work

work of Bottrighi et al. [32] is one of the first attempt to integrate these
two kind of knowledge in order to obtain a hybrid, semi-open system.
We plan to pursue this challenging line of research in the next future.

B I B L I O G R A P H Y

[1] R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process
Models from Workflow Logs. In 6th International Conference on
Extending Database Technology (EDBT1998), volume 1377 of Lec-
ture Notes in Computer Science, pages 469–483. Springer Verlag,
1998. (Cited on page 301.)

[2] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and
M. Montali. An Abductive Framework for A-Priori Verification
of Web Services. In A. Bossi and M. J. Maher, editors, Proceed-
ings of the 8th International ACM SIGPLAN Conference on Principles
and Practice of Declarative Programming, pages 39–50. ACM Press,
2006. (Cited on pages 228, 229, and 311.)

[3] M. Alberti, F. Chesani, E. Lamma, M. Gavanelli, P. Mello,
M. Montali, S. Storari, and P. Torroni. Computational Logic for
the Run-time Verification of Web Service Choreographies: Ex-
ploiting the SOCS-SI Tool. In M. Bravetti, M. Nùñez, and G. Za-
vattaro, editors, Proceedings of the 3rd International Workshop on
Web Services and Formal Methods (WS-FM’06), volume 4184 of Lec-
ture Notes in Computer Science, pages 58–72. Springer Verlag, 2006.
(Cited on page 235.)

[4] M. Alberti, M. Gavanelli, E. Lamma, F. Chesani, P. Mello, and
P. Torroni. Compliance Verification of Agent interaction: a Logic-
Based Software Tool. Applied Artificial Intelligence, 20(2-4):133–
157, 2006. (Cited on page 240.)

[5] M. Alberti, M. Gavanelli, E. Lamma, P. Mello, G. Sartor, and
P. Torroni. Mapping Deontic Operators to Abductive Expecta-
tions. Computational and Mathematical Organization Theory, 12(2-
3):205–225, 2006. (Cited on pages 127 and 226.)

[6] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello,
M. Montali, and P. Torroni. Web Service contracting: Specifi-
cation and Reasoning with SCIFF. In E. Franconi, M. Kifer, and
W. May, editors, Proceedings of the 4th European Semantic Web Con-
ference (ESWC’07), volume 4519 of Lecture Notes in Artificial Intel-
ligence, pages 68–83. Springer Verlag, 2007. (Cited on pages 21

and 311.)

[7] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and
P. Torroni. Verifiable Agent Interaction in Abductive Logic Pro-
gramming: the SCIFF framework. ACM Transactions on Computa-
tional Logic, 9(4), 2008. (Cited on pages 2, 3, 32, 53, 54, 66, 67, 154,
157, 163, 165, 235, 255, and 307.)

313

314 bibliography

[8] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, Paola Mello,
Marco Montali, and Paolo Torroni. Expressing and Verifying
Contracts with Abductive Logic Programming. Electronic Com-
merce, Special Issue on Contract Architectures and Languages, 12(4):
9–38, 2008. (Cited on pages 226 and 235.)

[9] R. Alur and T. A. Henzinger. Real-Time Logics: Complexity
and Expressiveness. Information and Computation, 104:35–77, 1993.
(Cited on pages 219 and 222.)

[10] R. Alur and T. A. Henzinger. A Really Temporal Logic. In
Proceedings of the 30th Annual IEEE Symposium on Foundations of
Computer Science, pages 164–169. IEEE Computer Society, 1989.
(Cited on page 222.)

[11] T. Amnell, G. Behrmann, J. Bengtsson, P. R. D’argenio, A. David,
A. Fehnker, T. Hune, B. Jeannet, K. G. Larsen, M. O. Möller,
P. Pettersson, C. Weise, and W. Yi. UPPAAL: Now, Next, and
Future. In Modeling and Verification of Parallel Processes, pages
99–124. Springer Verlag, 2001. (Cited on page 222.)

[12] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Ley-
mann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and
S. Weerawarana. Business Process Execution Language for Web
Services, Version 1.1. Standards proposal by BEA Systems, Inter-
national Business Machines Corporation, and Microsoft Corpo-
ration, 2003. (Cited on pages 15, 21, and 226.)

[13] A. Artikis, J. Pitt, and M. J. Sergot. Animated Specifications of
Computational Societies. In Proceedings of the The First Interna-
tional Joint Conference on Autonomous Agents & Multiagent Systems
(AAMAS2002), pages 1053–1061, 2002. (Cited on page 127.)

[14] A. Awad, G. Decker, and M. Weske. Efficient Compliance Check-
ing Using BPMN-Q and Temporal Logic. In M. Dumas, M. Re-
ichert, and M.-C. Shan, editors, 6th International Conference on
Business Process Management (BPM 2008), volume 5240 of Lecture
Notes in Computer Science, pages 326–341. Springer Verlag, 2008.
(Cited on page 226.)

[15] O. Aydin, N. K. Cicekli, and I. Cicekli. Automated Web Services
Composition with Event Calculus. In Proceedings of the 8th In-
ternational Workshop in “Engineering Societies in the Agents World"
(ESAW07), 2007. (Cited on page 299.)

[16] M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and C. Schifanella.
Verifying the Conformance of Web Services to Global Interaction
Protocols: A First Step. In M. Bravetti, L. Kloul, and G. Zavattaro,
editors, International Workshop on Web Services and Formal Methods
(WS-FM 2005), volume 3670 of Lecture Notes in Computer Science,
pages 257–271. Springer Verlag, 2005. (Cited on page 24.)

bibliography 315

[17] M. Baldoni, C. Baroglio, A. Martelli, and V. Patti. Verification of
Protocol Conformance and Agent Interoperability. In Toni F and
P. Torroni, editors, Proceedings of the 6th International Workshop on
Computational Logic in Multi-Agent Systems (CLIMA2005), volume
3900 of Lecture Notes in Computer Science, pages 265–283. Springer
Verlag, 2006. (Cited on pages 228 and 229.)

[18] L. Baresi, C. Ghezzi, and S. Guinea. Smart Monitors for Com-
posed Services. In Proceedings of the 2nd International Conference
on Service Oriented Computing (ICSOC ’04), pages 193–202. ACM
Press, 2004. (Cited on page 297.)

[19] A. Barros, M. Dumas, and P. Oaks. A Critical Overview of the
Web Services Choreography Description Language (WS-CDL).
BPTrends, 2005. (Cited on pages 2 and 21.)

[20] Andreas Bauer, Martin Leucker, and Christian Schallhart. Mon-
itoring of Real-Time Properties. In Proceedings of the 26th Inter-
national Conference on Foundations of Software Technology and The-
oretical Computer Science (FSTTCS 2006), volume 4337 of Lecture
Notes in Computer Science, pages 260–272. Springer, 2006. (Cited
on pages 297 and 298.)

[21] B. Bauer, M. Cossentino, S. Cranefield, M. P. Huget, K. Kearney,
R. Levy, M. Nodine, J. Odell, R. Cervenka, P. Turci, and H. Zhu.
The FIPA Agent UML Web Site, 2007 (last update). URL http:

//www.auml.org/. (Cited on page 24.)

[22] Tom Belwood, Luc Clément, David Ehnebuske, Andrew Hately,
Maryann Hondo, Yin Leng Husband, Karsten Januszewski, Sam
Lee, Barbara McKee, Joel Munter, and Claus von Riegen. UDDI
Version 3.0. http://uddi.org/pubs/uddi_v3.htm, 2000. (Cited
on page 19.)

[23] B. Benatallah, F. Casati, and F. Toumani. Analysis and Manage-
ment of Web Service Protocols. In Proceedings of the 23rd Interna-
tional Conference on Conceptual Modeling (ER 2004) , volume 3288

of Lecture Notes in Computer Science, pages 524–541. Springer Ver-
lag, 2004. (Cited on page 126.)

[24] B. Benatallah, F. Casati, and F. Toumani. Representing,
Analysing and Managing Web Service Protocols. Data and Knowl-
edge Engineering, 58(3):327–357, 2006. (Cited on page 228.)

[25] J. Bengtsson and W. Yi. Timed Automata: Semantics, Algorithms
and Tools. In J. Desel, W. Reisig, and G. Rozenberg, editors,
Lectures on Concurrency and Petri Nets, volume 3098 of Lecture
Notes in Computer Science, pages 87–124. Springer Verlag, 2003.
(Cited on page 222.)

[26] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and
M. Mecella. Automatic Service Composition Based on Behav-
ioral Descriptions. Cooperative Information Systems, 14(4):333–376,
2005. (Cited on page 227.)

http://www.auml.org/
http://www.auml.org/

316 bibliography

[27] D. Beyer, A. Chakrabarti, and T.A. Henzinger. Web Service Inter-
faces. In Proceedings of the 14th international World Wide Web Con-
ference (WWW2005), pages 148–159, 2005. (Cited on page 228.)

[28] D. Bianculli, A. Morzenti, M. Pradela, P. San Pietro, and P. Spo-
letini. Trio2Promela: a Model Checker for Temporal Metric Spec-
ifications. In Proceedings of the 20th International Conference on
Software Engineering (ICSE2007), pages 61–62. IEEE Computer So-
ciety, 2007. (Cited on page 223.)

[29] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu.
Bounded Model Checking. Advances in Computers, 58:118–149,
2003. (Cited on page 194.)

[30] L. Bordeaux, G. Salaün, D. Berardi, and M. Mecella. When are
Two Web Services Compatible? In M.C. Shan, U. Dayal, and
M. Hsu, editors, Proceedings of the 5th International Workshop on
Technologies for E-Services (TES 2004), pages 15–28, 2004. (Cited
on page 228.)

[31] F. Bosi and M. Milano. Enhancing CLP branch and bound tech-
niques for scheduling problems. Software Practice & Experience,
31(1):17–42, 2001. (Cited on page 58.)

[32] A. Bottrighi, F. Chesani, P. Mello, G. Molino, Marco Montali, Ste-
fania Montani, Sergio Storari, Paolo Terenziani, and Mauro Tor-
chio. An Hybrid Approach to Clinical Guideline Conformance.
In 12th Conference on Artificial Intelligence in Medicine (AIME’09),
2009 (sibmitted). (Cited on pages xxiv, 25, 28, and 312.)

[33] A. Bottrighi, F. Chesani, P. Mello, M. Montali, S. Montani,
S. Storari, and P. Terenziani. Analysis of the GLARE and
GPROVE Approaches to Clinical Guidelines. In 12th Conference
on Artificial Intelligence in Medicine (AIME’09), 2009 (submitted).
(Cited on pages xxi and 27.)

[34] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn,
H. Nielsen, S. Thatte, and D. Winer. Simple Object Access Proto-
col (SOAP) 1.1. http://www.w3.org/TR/soap, 2000. (Cited on
page 19.)

[35] I. Bratko. Prolog Programming for Artificial Intelligence. Pear-
son Education. Addison–Wesley, 3rd edition, 2001. (Cited on
page 53.)

[36] R. Bringhurst. The Elements of Typographic Style. Version 2.5. Hart-
ley & Marks, Publishers, 2002. (Cited on page 335.)

[37] R. E. Bryant. Graph-Based Algorithms for Boolean Function Ma-
nipulation. IEEE Transactions on Computers, 35(8):677–691, 1986.
(Cited on page 211.)

bibliography 317

[38] T. Bultan, X. Fu, R. Hull, and J. Su. Conversation Specification:
A New Approach to Design and Analysis of E-Service Composi-
tion. In Proceedings of the 12th International World Wide Web Con-
ference (WWW2003), pages 403–410. ACM Press, 2003. (Cited on
page 228.)

[39] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan,
David L. Dill, and L. J. Hwang. Symbolic model checking: 1020

states and beyond. In Proceedings of the IEEE Symposium on Logic
in Computer Science, pages 428–439, Washington, DC, USA, 1990.
IEEE Computer Society. (Cited on page 211.)

[40] H. J. Bürckert. A Resolution Principle for Constrained Logics.
Artificial Intelligence, 66:235–271, 1994. (Cited on page 154.)

[41] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro. Chore-
ography and Orchestration Conformance for System Design. In
P. Ciancarini and H. Wiklicky, editors, Proceedings of the 8th In-
ternational Conference on Coordination Models and Languages (CO-
ORDINATION 2006), volume 4038 of Lecture Notes in Computer
Science, pages 63–81. Springer Verlag, 2006. (Cited on page 228.)

[42] G. Casella and V. Mascardi. West2East: exploiting WEb Service
Technologies to Engineer Agent-based SofTware. Agent-Oriented
Software Engineering, 1:396–434, 2007. (Cited on page 224.)

[43] C. Castelfranchi. Commitments: From individual intentions to
groups and organizations. In V. R. Lesser Les. Gasser, editor,
Proceedings of the First International Conference on Multiagent Sys-
tems (ICMAS1995), pages 41–48. The MIT Press, 1995. (Cited on
pages 2 and 127.)

[44] F. Chesani. Specification, Execution and Verification of Interaction
Protocols: an Approach based on Computational Logic. PhD thesis,
University of Bologna, 2007. (Cited on pages 53, 66, and 67.)

[45] F. Chesani, P. Mello, M. Montali, and S. Storari. Agent Societies
and Service Choreographies: a Declarative Approach to Specifi-
cation and Verification. In International Workshop on Agents, Web-
Services and Ontologies: Integrated Methodologies (AWESOME’007),
2007. (Cited on page 311.)

[46] F. Chesani, E. Lamma, P. Mello, M. Montali, S. Storari, P. Bal-
dazzi, and M. Manfredi. Compliance Checking of Cancer-
Screening Careflows: an Approach Based on Computational
Logic. In A. ten Teije, S. Miksch, and P. Lucas, editors, Book Chap-
ter of Computer-Based Medical Guidelines and Protocols: a Primer and
Current Trends. IOS Press, 2008. (Cited on page 288.)

[47] F. Chesani, E. Lamma, P. Mello, M. Montali, F. Riguzzi, and
S. Storari. Exploiting Inductive Logic Programming Techniques
for Declarative Process Mining. LNCS Transactions on Petri Nets

318 bibliography

and Other Models of Concurrency (ToPNoC), Special Issue on Con-
currency in Process-Aware Information Systems, 5460:278–295, 2009.
(Cited on page 292.)

[48] F. Chesani, P. Mello, M. Montali, F. Riguzzi, M. Sebastianis, and
S. Storari. Checking compliance of execution traces to business
rules. In Proceedings of BPM 2008 Workshops, volume 17 of Lecture
Notes in Business Information Processing. Springer Verlag, 2009.
(Cited on page 278.)

[49] F. Chesani, P. Mello, M. Montali, and P. Torroni. Ontological
Reasoning and Abductive Logic Programming for Service Dis-
covery and Contracting. In A. Gangemi, J. Keizer, V. Presutti,
and H. Stoermer, editors, Proceedings of the 5th Workshop on Se-
mantic Web Applications and Perspectives (SWAP2008), volume 429

of CEUR Workshop Proceedings, 2009. (Cited on page 311.)

[50] F. Chesani, P. Mello, M. Montali, S. Storari, and P. Torroni. On
the Integration of Declarative Choreographies and Commitment-
based Agent Societies into the SCIFF Logic Programming Frame-
work. Multiagent and Grid Systems, Special Issue on Agents, Web
Services and Ontologies: Integrated Methodologies, 6(2), 2010. (Cited
on page 311.)

[51] L. Chittaro and A. Montanari. Efficient Temporal Reasoning in
the Cached Event Calculus. Computational Intelligence, 12:359–
382, 1996. (Cited on pages 247 and 249.)

[52] L. Chittaro and A. Montanari. Temporal Representation and
Reasoning in Artificial Intelligence: Issues and Approaches. An-
nals of Mathematics and Artificial Intelligence, 28(1-4):47–106, 2000.
(Cited on page 248.)

[53] A. K. Chopra and C. P. Singh. Producing Compliant Interac-
tions: Conformance, Coverage, and Interoperability. In 4th Inter-
national Workshop on Declarative Agent Languages and Technologies
IV (DALT 2006), Selected, Revised and Invited Papers, volume 4327

of Lecture Notes in Computer Science, pages 1–15. Springer Verlag,
2006. (Cited on page 229.)

[54] E. Christensen, F. Curbera, G. Meredith, and S. Weer-
awarana. Web Services Description Language (WSDL) 1.1.
http://www.w3.org/TR/wsdl, 2001. (Cited on page 19.)

[55] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV:
a new symbolic model checker. Software Tools for Technology Trans-
fer, 2(4):410–425, 2000. (Cited on page 211.)

[56] K. L. Clark. Negation as Failure. In H. Gallaire and J. Minker,
editors, Logic and Data Bases, pages 293–322. Plenum Press, 1978.
(Cited on pages 60 and 73.)

[57] E. M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. The
MIT Press, 1999. (Cited on pages xxiii, 178, 209, 211, and 218.)

bibliography 319

[58] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Progress
on the State Explosion Problem in Model Checking. In R. Wil-
helm, editor, Informatics - 10 Years Back, 10 Years Ahead, volume
2000 of Lecture Notes in Computer Science, pages 176–194. Springer
Verlag, 2001. (Cited on pages 211 and 219.)

[59] S. Colin and L. Mariani. Run-Time Verification. In M. Broy,
B. Jonsson, J. P. Katoen, M. Leucker, and A. Pretschner, editors,
Model-Based Testing of Reactive Systems, Advanced Lectures, volume
3472 of Lecture Notes in Computer Science, pages 525–555. Springer
Verlag, 2005. (Cited on page 234.)

[60] M. Colombetti, N. Fornara, and M. Verdicchio. A Social Ap-
proach to Communication in Multiagent Systems. In J. A. Leite,
A. Omicini, L. Sterling, and P. Torroni, editors, First Interna-
tional Workshop on Declarative Agent Languages and Technologies
(DALT2004), volume 2990 of Lecture Notes in Artificial Intelligence,
pages 191–220. Springer Verlag, 2004. (Cited on page 127.)

[61] D. B. Fridsma (guest editor). Special Issue on Workflow Man-
agement and Clinical Guidelines. Journal of the American Medical
Informatics Association, 22(1):1–80, 2001. (Cited on page 26.)

[62] G. Decker, J.M. Zaha, and M. Dumas. Execution Semantics for
Service Choreographies. In M. Bravetti, M. Núñez, and G. Za-
vattaro, editors, Proceedings of the 3rd Workshop on Web Services
and Formal Method (WS-FM 2006), volume 4184 of Lecture Notes
in Computer Science, pages 163–177. Springer Verlag, 2006. (Cited
on page 126.)

[63] G. Delzanno and A. Podelski. Model Checking in CLP. In
Proocedings of the 5th International Conference on Tools and Algo-
rithms for Construction and Analysis of Systems (TACAS 1999), vol-
ume 1579 of Lecture Notes in Computer Science, pages 223–239.
Springer Verlag, 1999. (Cited on page 224.)

[64] S. Demri, F. Laroussinie, and P. Schnoebelen. A Parametric Anal-
ysis of the State-Explosion Problem in Model Checking. Journal
of Computer and System Sciences, 72(4):547–575, 2006. (Cited on
pages 211 and 218.)

[65] M. Denecker and D. De Schreye. SLDNFA: An Abductive Pro-
cedure for Abductive Logic Programs. Logic Programming, 34(2):
111–167, 1998. (Cited on page 73.)

[66] F. DeRemer and H. Kron. Programming-in-the-large versus
programming-in-the-small. In Proceedings of the international
conference on Reliable software, pages 114–121. ACM Press, 1975.
(Cited on page 1.)

[67] N. Desai, A. K. Chopra, and M. P. Singh. Business Process Adap-
tations via Protocols. In 2006 IEEE International Conference on

320 bibliography

Services Computing (SCC 2006), pages 103–110. IEEE Computer
Society, 2006. (Cited on page 25.)

[68] J. Desel and T. Erwin. Hybrid Specifications: Looking at Work-
flows From a Run-Time Perspective. Computer System Science &
Engineering, 15(5):291–302, 2000. (Cited on page 301.)

[69] A. Deutsch, L. Sui, V. Vianu, and D. Zhou. Verification of
Communicating Data-Driven Web Services. In Proceedings of the
twenty-fifth ACM SIGMOD-SIGACT-SIGART symposium on Prin-
ciples of Database Systems (PODS ’06), pages 90–99. ACM Press,
2006. (Cited on page 126.)

[70] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf,
and F. Berthier. The Constraint Logic Programming Language
CHIP. In Proceedings of the International Conference on Fifth Gener-
ation Computer Systems, pages 693–702, 1988. (Cited on pages 58

and 172.)

[71] M. Dumas, W. M. P. van der Aalst, and A. H. M. ter Hofst-
ede. Process-Aware Information Systems: Bridging People and Soft-
ware through Process Technology. Wiley & Sons, 2005. (Cited on
page 15.)

[72] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Property Specifi-
cation Patterns for Finite-State Verification. In M. A. Ardis and
J. M. Atlee, editors, Proceedings of the Second Workshop on Formal
Methods in Software Practice (FMSP1998), pages 7–15. ACM Press,
1998. (Cited on page 51.)

[73] E. A. Emerson. Temporal and Modal Logic. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, Volume B: Formal
Models and Sematics. Elsevier and MIT Press, 1990. ISBN 0-444-
88074-7, 0-262-22039-3. (Cited on page 48.)

[74] F. A. Schreiber. Is Time a Real Time? An Overview of Time
Ontology in Informatics. Real Time Computing, F 127:283–307,
1994. (Cited on page 13.)

[75] H. M. Ferreira and D. R. Ferreira. An Integrated Life Cycle
for Workflow Management Based on Learning and Planning.
Cooperative Information Systems, 15(4):485–505, 2006. (Cited on
page 301.)

[76] M. Fisher, C. Dixon, and M. Peim. Clausal Remporal Resolution.
ACM Transactions on Computational Logic, 2(1):12–56, 2001. (Cited
on pages 100, 104, 105, 106, and 224.)

[77] N. Fornara and M. Colombetti. Operational Specification of a
Commitment-Based Agent Communication Language. In Pro-
ceedings of the First International Joint Conference on Autonomous
Agents & Multiagent Systems (AAMAS 2002), pages 535–542.
ACM Press, 2002. (Cited on page 127.)

bibliography 321

[78] A. Förster, G. Engels, T. Schattkowsky, and R. van der Straeten.
Verification of Business Process Quality Constraints Based on
Visual Process Patterns. In First Joint IEEE/IFIP Symposium on
Theoretical Aspects of Software Engineering (TASE 2007), pages 197–
208. IEEE Computer Society, 2007. (Cited on page 226.)

[79] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based Veri-
fication of Web Service Composition. In Proceedings of 18th IEEE
International Conference on Automated Software Engineering (ASE),
pages 152–161, 2003. (Cited on pages 126 and 227.)

[80] T. Frühwirth. Theory and Practice of Constraint Handling Rules.
Logic Programming, 37(1-3):95–138, 1998. (Cited on page 172.)

[81] X. Fu, T. Bultan, and J. Su. Synchronizability of Conversations
among Web Services. IEEE Transactions on Software Engineering,
31(12):1042–1055, 2005. (Cited on page 126.)

[82] T. H. Fung and R. A. Kowalski. The Iff Proof Procedure for
Abductive Logic Programming. Logic Programming, 33(2):151–
165, 1997. (Cited on pages 73, 154, 157, and 257.)

[83] P. Gastin and D.Oddoux. Fast LTL to Büchi Automata Transla-
tion. In G. Berry, H. Comon, and A. Finkel, editors, Proceedings
of the 13th International Conference on Computer Aided Verification
(CAV’01), volume 2102 of Lecture Notes in Computer Science, pages
53–65. Springer, 2001. (Cited on pages xxiii and 210.)

[84] C. Ghezzi, D. Mandrioli, and A. Morzenti. TRIO: A Logic Lan-
guage for Executable Specifications of Real-Time Systems. Sys-
tems and Software, 12(2):107–123, 1990. (Cited on page 223.)

[85] A. Ghose and G. Koliadis. Auditing Business Process Compli-
ance. In B. J. Krämer, Kwei-Jay Lin, and Priya Narasimhan, ed-
itors, Fifth International Conference on Service-Oriented Computing
(ICSOC 2007), volume 4749 of Lecture Notes in Computer Science,
pages 169–180. Springer Verlag, 2007. (Cited on page 226.)

[86] D. Giannakopoulou and K. Havelund. Automata-Based Verifica-
tion of Temporal Properties on Running Programs. In 16th IEEE
International Conference on Automated Software Engineering (ASE
2001), volume 412-416. IEEE Computer Society, 2001. (Cited on
pages 222, 297, 298, and 299.)

[87] S. Goedertier. Declarative Techniques for Modeling and Mining Busi-
ness Processes. PhD thesis, Katholieke Universiteit Leuven, 2008.
(Cited on pages 2, 28, 124, and 301.)

[88] S. Goedertier and J. Vanthienen. Designing Compliant Business
Processes with Obligations and Permissions. In J. Eder and
S. Dustdar, editors, Proceedings of the Business Process Management
Workshops (BPMN2006), volume 4103 of Lecture Notes in Computer
Science, pages 5–14. Springer Verlag, 2006. (Cited on page 225.)

322 bibliography

[89] G. Gößler and J. Sifakis. Composition for Component-Based
Modeling. Science of Computer Programming, 55(1-3):161–183,
2005. (Cited on page 227.)

[90] G. Governatori, Z. Milosevic, and S. W. Sadiq. Compliance
Checking Between Business Processes and Business Contracts.
In Proceedings of the 10th IEEE International Enterprise Distributed
Object Computing Conference (EDOC 2006), pages 221–232. IEEE
Computer Society, 2006. (Cited on pages 142, 225, and 226.)

[91] G. Greco, A. Guzzo, L. Pontieri, and D. Saccà. Discovering Ex-
pressive Process Models by Clustering Log Traces. IEEE Trans-
actions on Knowledge and Data Engineering, 18(8):1010–1027, 2006.
(Cited on page 301.)

[92] T. R. G. Green. Cognitive Dimensions of Notations. People and
Computers, V:443–460, 1989. (Cited on pages 35 and 46.)

[93] T. R. G. Green and M. Petre. Usability Analysis of Visual Pro-
gramming Environments: a ’Cognitive Dimensions’ Framework.
Journal of Visual Languages and Computing, 7:131–174, 1996. (Cited
on page 46.)

[94] G. Gupta and E. Pontelli. A Constraint-Based Approach for Spec-
ification and Verification of Real-Time Systems. In Proceedings of
the 18th IEEE Real-time Systems Symposium (RTSS 1997), pages
230–239. IEEE Computer Society, 1997. (Cited on page 225.)

[95] G. Gupta, A. Bansal, R. Min, L. Simon, and A. Mallya. Coinduc-
tive Logic Programming and Its Applications. In Proceedings of
the 23rd International Conference on Logic Programming (ICLP2007),
pages 27–44, 2007. (Cited on page 310.)

[96] S. Hallé and R. Villemaire. Runtime Monitoring of Web Service
Choreographies Using Streaming XML. In Proceedings of to the
24th Annual ACM Symposium on Applied Computing (ACM SAC
2009), 2009. (Cited on page 126.)

[97] J. Y. Halpern and M. Y. Vardi. Model Checking vs. Theorem Prov-
ing: A Manifesto. Artificial intelligence and mathematical theory of
computation: papers in honor of John McCarthy, pages 151–176, 1991.
(Cited on page 221.)

[98] C. Hartshorn and P. Weiss. Collected Papers of Charles Sanders
Peirce, volume 2. Harvard University Press, 1932. (Cited on
pages 67 and 68.)

[99] G. J. Holzmann. The SPIN Model Checker: Primer and Refer-
ence Manual. Addison-Wesley, 2003. (Cited on pages 126, 210,
and 211.)

[100] M. N. Huhns and M. P. Singh. Service-Oriented Computing:
Key Concepts and Principles. IEEE Internet Computing, 9(1):75–
81, 2005. (Cited on pages 2 and 24.)

bibliography 323

[101] J. Jaffar and M. J. Maher. Constraint Logic Programming: a Sur-
vey. Logic Programming, 19-20:503–582, 1994. (Cited on pages 57,
73, 157, and 159.)

[102] J. Jaffar, S. Michaylov, P. J. Stuckey, and R. H. C. Yap. The
CLP(R) Language and System. ACM Transactions on Programming
Languages and Systems, 14(3):339–395, 1992. (Cited on pages 57

and 172.)

[103] J. Jaffar, M. J. Maher, K. Marriott, and P. J.Stuckey. The Semantics
of Constraint Logic Programs. Logic Programming, 37(1-3):1–46,
1998. (Cited on page 157.)

[104] F. Joualt and I. Kurtev. On the Architectural Alignment of ATL
and QVT. In Proceedings of the ACM Symposium on Applied Com-
puting (SAC06), 2006. (Cited on page 311.)

[105] K. R. Apt and M. Bezem. Acyclic Programs. In D. H. Warren,
editor, Logic Programming, pages 617–633. MIT Press, 1990. (Cited
on page 164.)

[106] A. C. Kakas, R. A. Kowalski, and F. Toni. Abductive Logic Pro-
gramming. Logic and Computation, 2(6):719–770, 1992. (Cited on
pages 68 and 69.)

[107] H. Kautz and P. Ladin. Integrating Metric and Qualitative Tem-
poral Reasoning. In Proceedings of the 9th National Conference
on Artificial Intelligence (AAAI 1991), volume 1, pages 241–246.
AAAI Press/The MIT Press, 1991. (Cited on page 13.)

[108] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, and Y. Lafon.
Web Services Choreography Description Language Version 1.0,
2004. http://www.w3.org/TR/ws-cdl-10/. (Cited on pages 20

and 21.)

[109] M. Kifer, R. Lara, A. Polleres, C. Zhao, U. Keller, H. Lausen, and
D. Fensel. A Logical Framework for Web Service Discovery. In
Workshop on Semantic Web Services: Preparing to Meet the World of
Business Applications, 2004. (Cited on page 21.)

[110] E. Kindler. Safety and Liveness Properties: a Survey. EATCS-
Bulletin, 53, 1994. (Cited on page 138.)

[111] R. A. Kowalski. Algorithm = Logic + Control. Communications of
the ACM, 22(7):424–436, 1979. (Cited on page 14.)

[112] R. A. Kowalski and F. Sadri. Towards a Unified Agent Architec-
ture that Combines Rationality with Reactivity. In Proceedings of
the International Workshop on Logic in Databases (LID’96), volume
1154 of Lecture Notes in Computer Science, pages 137–149. Springer
Verlag, 1996. (Cited on pages 249 and 250.)

[113] R. A. Kowalski and M. Sergot. A Logic-Based Calculus of Events.
New Generation Computing, 4(1):67–95, 1986. (Cited on page 246.)

324 bibliography

[114] R. A. Kowalski and M. Sergot. A Logic-Based Calculus of Events.
New Generation Computing, 4(1):67–95, 1986. (Cited on pages 5

and 308.)

[115] K. Kunen. Negation in Logic Programming. In Logic Program-
ming, volume 4, pages 289–308, 1987. (Cited on page 73.)

[116] O. Kupferman, N. Piterman, and M. Y. Vardi. From Liveness to
Promptness. In W. Damm and H. Hermanns, editors, Proceedings
of the 19th International Conference on Computer Aided Verification
(CAV 2007), volume 4590 of Lecture Notes in Computer Science,
pages 406–419. Springer Verlag, 2007. (Cited on page 139.)

[117] E. Lamma, P. Mello, M. Montali, F. Riguzzi, and S. Storari. In-
ducing Declarative Logic-Based Models from Labeled Traces. In
M. Rosemann and M. Dumas, editors, Proceedings of the 5th In-
ternational Conference on Business Process Management (BPM 2007),
volume 4714 of Lecture Notes in Computer Science, pages 344–359.
Springer Verlag, 2007. (Cited on pages 277 and 292.)

[118] E. Lamma, P. Mello, F. Riguzzi, and S. Storari. Applying In-
ductive Logic Programming to Process Mining. In Proceedings
of the 17th International Conference on Inductive Logic Program-
ming (ILP2008), volume 4894 of Lecture Notes in Artificial Intelli-
gence, pages 132–146. Springer Verlag, 2008. (Cited on pages 277

and 292.)

[119] A. Lazovik, M. Aiello, and M. Papazoglou. Associating Asser-
tions with Business Processes and Monitoring their Execution. In
Proceedings of the 2nd International Conference on Service Oriented
Computing (ICSOC ’04), pages 94–104. ACM Press, 2004. (Cited
on page 297.)

[120] F. Leymann and D. Roller. Production Workflow - Concepts and
Techniques. Prentice Hall, 2000. (Cited on page 16.)

[121] X. Liu, S. Müller, and K. Xu. A Static Compliance-Checking
Framework for Business Process Models - References. In IBM
Systems Journal, volume 46, pages 335–362, 2007. (Cited on
page 226.)

[122] J. W. Lloyd. Foundations of Logic Programming. Springer Verlag,
2nd edition, 1987. (Cited on page 53.)

[123] L. Luccarini, G. L. Bragadin, M. Mancini, P. Mello, M. Mon-
tali, and D. Sottara. Process Quality Assessment in Automatic
Management of Wastewater Treatment Plants Using Formal Ver-
ification. In Proceedings of Simposio Internazionale di Ingegneria
Sanitaria Ambientale (SIDISA 2008), 2008. (Cited on pages xxiii
and 290.)

[124] D. Luckham. The Power of Events: An Introduction to Com-
plex Event Processing in Distributed Enterprise Systems. Addison-
Wesley, 2001. (Cited on page 66.)

bibliography 325

[125] H. Ludwig, A. Dan, and R. Kearney. Crona: An Architecture
and Library for Creation and Monitoring of WS-agreements. In
Proceedings of the 2nd International Conference on Service Oriented
Computing (ICSOC ’04), pages 65–74. ACM Press, 2004. (Cited
on page 297.)

[126] L. T. Ly, S. Rinderle, and P. Dadam. Integration and Verification
of Semantic Constraints in Adaptive Process Management Sys-
tems. Data and Knowledge Engineering, 64(1):3–23, 2008. (Cited
on page 125.)

[127] M. Baldoni and C. Baroglio and A. Martelli and V. Patti. A Pri-
ori Conformance Verification for Guaranteeing Interoperability
in Open Environments. In A. Dan and W. Lamersdorf, editors,
Proocedings of the 4th International Conference on Service-Oriented
Computing (ICSOC 2006), volume 4294 of Lecture Notes in Com-
puter Science. Springer Verlag, 2006. (Cited on page 228.)

[128] K. Mahbub and G. Spanoudakis. Run-Time Monitoring of Re-
quirements for Systems Composed of Web-Services: Initial Im-
plementation and Evaluation Experience. In Proeedings of the 3rd
IEEE International Conference on Web Services (ICWS 2005), pages
257–265. IEEE Computer Society, 2005. (Cited on page 298.)

[129] K. Mahbub and G. Spanoudakis. Monitoring WS-Agreements:
An Event Calculus-Based Approach. In L. Baresi and E. Di Nitto,
editors, Test and Analysis of Web Services, pages 265–306. Springer
Verlag, 2007. (Cited on page 298.)

[130] A. U. Mallya and M. P. Singh. Modeling Exceptions Via Commit-
ment Protocols. In Proceedings of the 4rd International Joint Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS 2005),
pages 122–129. ACM, 2005. (Cited on page 311.)

[131] A. U. Mallya, N. Desai, A. K. Chopra, and M. P. Singh. OWL-
P: OWL for protocol and processes. In 4rd International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS
2005), pages 139–140. ACM Press, 2005. (Cited on page 25.)

[132] J. Marques-Silva. Model Checking with Boolean Satisfiability.
Algorithms, 63(1-3):3–16, 2008. (Cited on page 223.)

[133] A. Martens. Analyzing Web Service Based Business Processes.
In M. Cerioli, editor, Proceedings of the 8th International Conference
on Fundamental Approaches to Software Engineering (FASE 2005),
volume 3442 of Lecture Notes in Computer Science, pages 19–33.
Springer Verlag, 2005. (Cited on page 227.)

[134] A. Martens. Consistency between Executable and Abstract
Processes. In Proceedings of International IEEE Conference on e-
Technology, e-Commerce, and e-Services (EEE’05), pages 60–67. IEEE
Computer Society, 2005. (Cited on page 227.)

326 bibliography

[135] D. L. Martin, M. H. Burstein, D. V. McDermott, S. A. McIl-
raith, M. Paolucci, K. P. Sycara, D. L. McGuinness, E. Sirin, and
N. Srinivasan. Bringing Semantics to Web Services with OWL-S.
In Proceedings of the 16th International World Wide Web Conference
(WWW2007), pages 243–277, 2007. (Cited on page 227.)

[136] P. Massuthe, W. Reisig, and K. Schmidt. An Operating Guideline
Approach to the SOA. In Proceedings of the 2nd South-East Euro-
pean Workshop on Formal Methods 2005 (SEEFM05), 2005. (Cited
on page 227.)

[137] J. McCarthy and P. J. Hayes. Some Philosophical Problems From
the StandPoint of Artificial Intelligence. Machine Intelligence, 4:
463–502, 1969. (Cited on page 247.)

[138] K. L. McMillan. Interpolation and SAT-Based Model Checking.
In W. A. Hunt Jr. and F. Somenzi, editors, Proceedings of the 15th
International Conference on Computer Aided Verification (CAV 2003),
volume 2725 of Lecture Notes in Computer Science, pages 1–13,
2003. (Cited on page 224.)

[139] M. Mecella, F. Parisi Presicce, and B. Pernici. Modeling E-service
Orchestration through Petri Nets. In Proceedings of the Third In-
ternational Workshop on Technologies for E-Services, volume 2644 of
Lecture Notes in Computer Science, pages 38–47. Springer Verlag,
2002. (Cited on page 126.)

[140] I. Meiri. Combining Qualitative and Quantitative Constraints in
Temporal Reasoning. Artificial Intelligence, 87(1-2):343–385, 1996.
(Cited on page 13.)

[141] S. Miksch, Y. Shahar, and P. Johnson. Asbru: a Task-Specific,
Intention-Based, and Time-Oriented Language for Representing
Skeletal Plans. In Proceedings of the 7th Workshop on Knowledge
Engeneering Methods and Languages, pages 9–20, 1997. (Cited on
page 125.)

[142] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Pro-
cesses. Journal of Information and Computation, 100(1):1–40, 1992.
(Cited on page 126.)

[143] M. Montali, F. Chesani, P. Mello, and S. Storari. Testing Careflow
Process Execution Conformance by Translating a Graphical Lan-
guage to Computational Logic. In R. Bellazzi, A. Abu-Hanna,
and J. Hunter, editors, Proceedings of the 11th International Confer-
ence on Artificial Intelligence in Medicine (AIME’07), volume 4594

of Lecture Notes in Computer Science, pages 479–488. Springer Ver-
lag, 2007. (Cited on pages 227, 235, and 288.)

[144] M. Montali, M. Alberti, F. Chesani, M. Gavanelli, E. Lamma,
P. Mello, and P. Torroni. Verification from Declarative Specifica-
tions Using Logic Programming. In M. Garcia De La Banda and

bibliography 327

E. Pontelli, editors, 24th International Conference on Logic Program-
ming (ICLP), number 5366 in Lecture Notes in Computer Science,
pages 440–454. Springer Verlag, 2008. (Cited on pages xxv, 216,
and 217.)

[145] M. Montali, F. Chesani, P. Mello, and P. Torroni. Verification
of Choreographies During Execution Using the Reactive Event
Calculus. In R. Bruni and K. Wolf, editors, Proceedings of the
5th International Workshop on Web Service and Formal Methods (WS-
FM2008), volume 5387 of Lecture Notes in Computer Science, pages
55–72. Springer Verlag, 2009. (Cited on page 262.)

[146] M. Montali, M. Pesic, W. M. P. van der Aalst, F. Chesani, P. Mello,
and S. Storari. Declarative Specification and Verification of Ser-
vice Choreographies. ACM Transactions on the Web - submitted to
the second round of reviews, 2009. (Cited on pages xxi, 2, 24, 32, 35,
97, 137, and 228.)

[147] S. Moschoyiannis and M. W. Shields. A Set-Theoretic Framework
for Component Composition. Fundamenta Informaticae, 59(4):373–
396, 2004. (Cited on page 227.)

[148] S. Muggleton and L. De Raedt. Inductive Logic Programming:
Theory and Methods. Logic Programming, 19/20:629–679, 1994.
(Cited on page 292.)

[149] N. Mulyar, M. Pesic, W. M. P. van der Aalst, and M. Peleg. Declar-
ative and Procedural Approaches for Modelling Clinical Guide-
lines: Addressing Flexibility Issues. In Proceedings of BPM 2007
Workshops, pages 335–346, 2007. (Cited on pages 32, 35, and 125.)

[150] N. Mulyar, W. M. P. van der Aalst, and M. Peleg. A Pattern-
based Analysis of Clinical Computer-Interpretable Guideline
Modelling Languages. Journal of the American Medical Informat-
ics Association, 14:781–787, 2007. (Cited on page 125.)

[151] G. Naumovich and L. A. Clarke. Classifying Properties: an Alter-
native to the Safety-Liveness Classification. In Proceedings of the
8th ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering: 21st Century Applications, pages 159–168. ACM
Press, 2000. (Cited on page 138.)

[152] A. Dal Palú, A. Dovier, and E. Pontelli. Heuristics, Opti-
mizations, and Parallelism for Protein Structure Prediction in
CLP(FD). In P. Barahona and A. P. Felty, editors, Proceedings of
the 7th International ACM SIGPLAN Conference on Principles and
Practice of Declarative Programming, pages 230–241, 2005. (Cited
on page 58.)

[153] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann.
Service-Oriented Computing: a Research Roadmap. Cooperative
Information Systems, 17(2):223–255, 2008. (Cited on page 18.)

328 bibliography

[154] J. Pearl. Embracing Causality in Formal Reasoning. In Proceed-
ings of the National Conference on Artificial Intelligence (AAAI1987),
pages 369–373, 1987. (Cited on page 68.)

[155] M. Peleg, S. Tu, J. Bury, P. Ciccarese, N. Jones, J. Fox, R. A.
Greenes, R. Hall, P.D. Johnson, N. Jones, A. Kumar, S. Miksch,
S. Quaglini, A. Seyfang, E. H. Shortliffe, and M. Stefanelli. Com-
paring Computer-Interpretable Guideline Models: A Case-Study
Approach. Journal of the American Medical Informatics Association,
10(1):52–68, 2003. (Cited on pages 26 and 125.)

[156] C. Peltz. Web Services Orchestration and Choreography. IEEE
Computer, 36(10):46–52, 2003. (Cited on page 19.)

[157] M. Pesic. Constraint-Based Workflow Management Systems: Shifting
Controls to Users. PhD thesis, Beta Research School for Opera-
tions Management and Logistics, Eindhoven, 2008. (Cited on
pages xxii, 2, 6, 16, 28, 32, 35, 36, 46, 48, 51, 115, 124, 125, 137,
143, 144, 209, 245, 246, 269, 299, 307, and 308.)

[158] M. Pesic and W. M. P. van der Aalst. A Declarative Approach
for Flexible Business Processes Management. In Proceedings of the
BPM 2006 Workshops, volume 4103 of Lecture Notes in Computer
Science, pages 169–180. Springer Verlag, 2006. (Cited on pages 2,
6, 16, 17, 32, 35, 48, 51, 124, 209, 299, and 307.)

[159] M. Pesic, H. Schonenberg, and W. M. P. van der Aalst. DE-
CLARE: Full Support for Loosely-Structured Processes. In Pro-
ceedings of the 11th IEEE International Enterprise Distributed Object
Computing Conference (EDOC 2007), pages 287–300. IEEE Com-
puter Society, 2007. (Cited on pages 137, 222, 269, and 310.)

[160] M. Pesic, M. H. Schonenberg, N. Sidorova, and W. M. P. van der
Aalst. Constraint-Based Workflow Models: Change Made Easy.
In R. Meersman and Z. Tari, editors, Proceedings of the OTM 2007
Confederated International Conferences CoopIS, DOA, ODBASE,
GADA, and IS, volume 4803 of Lecture Notes in Artificial Intelli-
gence, pages 77–94. Springer Verlag, 2007. (Cited on pages 278

and 300.)

[161] N. Pissinou, R. T. Snodgrass, R. Elmasri, I. S. Mumick, T. Özsu,
B. Pernici, A. Segev, B. Theodoulidis, and U. Dayal. Towards an
Infrastructure for Temporal Databases: report of an invitational
ARPA/NSF workshop. ACM SIGMOD Record, 23(1):35–51, 1994.
(Cited on page 279.)

[162] S. R. Ponnekanti and A. Fox. Interoperability Among Indepen-
dently Evolving Web Services. In Proceedings of the 5th ACM/I-
FIP/USENIX International Conference on Middleware (Middleware
’04), pages 331–351. Springer Verlag, 2004. (Cited on page 228.)

[163] M. Pradella, A. Morzenti, and P. San Pietro. Refining Real-
Time System Specifications through Bounded Model- and

bibliography 329

Satisfiability-Checking. In Proceedings of the 23rd IEEE/ACM
International Conference on Automated Software Engineering (ASE
2008), pages 119–127. IEEE Computer Society, 2008. (Cited on
page 223.)

[164] R. Barruffi and M. Milano and R. Montanari. Planning for Se-
curity Management. IEEE Intelligent Systems, 16(1):74–80, 2001.
(Cited on page 58.)

[165] M. Reichert, S. Rinderle, U. Kreher, and P. Dadam. Adaptive
Process Management with ADEPT2. In Proceedings of the 21st
International Conference on Data Engineering (ICDE 2005), pages
1113–1114. IEEE Computer Society, 2005. (Cited on pages 17,
278, and 300.)

[166] R. Reiter. On Closed-Word Data Bases. In H. Gallaire and
J. Minker, editors, Logic and Data Bases, pages 55–76. Plenum
Press, 1978. (Cited on page 159.)

[167] D. Roman and M. Kifer. Semantic Web Service Choreography:
Contracting and Enactment. In A. P. Sheth, S. Staab, M. Dean,
M. Paolucci, D. Maynard, T. W. Finin, and K. Thirunarayan,
editors, Proceedings of the 7th International Semantic Web Confer-
ence (ISWC 2008), volume 5318 of Lecture Notes in Computer Sci-
ence, pages 550–566. Springer Verlag, 2008. (Cited on pages 229

and 299.)

[168] M. Rouached, W. Fdhila, and C. Godart. A Semantical Frame-
work to Engineering WSBPEL Processes. Information Systems and
E-Business Management, 7(2):223–250, 2008. (Cited on page 299.)

[169] K. Y. Rozier and Moshe Y. Vardi. LTL satisfiability checking. In
Model Checking Software. Proceedings of the 14th International SPIN
Workshop, volume 4595 of Lecture Notes in Computer Science, pages
149–167. Springer Verlag, 2007. (Cited on pages 213, 214, 215,
and 223.)

[170] A. Rozinat and W.M.P. van der Aalst. Conformance Testing: Mea-
suring the Fit and Appropriateness of Event Logs and Process
Models. In Proceedings of the BPM 2005 Workshops, volume 3812

of Lecture Notes in Computer Science, pages 163–176. Springer Ver-
lag, 2006. (Cited on page 297.)

[171] A. Russo, R. Miller, B. Nuseibeh, and J. Kramer. An Abduc-
tive Approach for Analysing Event-Based Requirements Specifi-
cations. In P. J. Stuckey, editor, Proceedings of the 18th International
Conference on Logic Programming (ICLP 2002), volume 2401 of Lec-
ture Notes in Computer Science, pages 22–37. Springer Verlag, 2002.
(Cited on page 224.)

[172] S. W. Sadiq, G. Governatori, and K. Namiri. Modeling Control
Objectives for Business Process Compliance. In Proceedings of the
5th International Conference on Business Process Management (BPM

330 bibliography

2007), volume 4714 of Lecture Notes in Computer Science, pages
149–164. Springer Verlag, 2007. (Cited on page 300.)

[173] S. Wasim Sadiq, M. E. Orlowska, and W. Sadiq. Specification and
Validation of Process Constraints for Flexible Workflows. Infor-
mation Systems, 30(5):349–378, 2005. (Cited on page 124.)

[174] G. Sartor. Legal Reasoning, volume 5 of Treatise. Kluwer, 2004.
(Cited on page 127.)

[175] B. H. Schlingloff, A. Martens, and K. Schmidt. Modeling and
Model Checking Web Services. Electronic Notes in Theoretical Com-
puter Science: Issue on Logic and Communication in Multi-Agent Sys-
tems, 126:3–26, 2005. (Cited on page 227.)

[176] H. Schonenberg, R. Mans, N. Russell, N. Mulyar, and W. M. P.
van der Aalst. Towards a Taxonomy of Process Flexibility. In
Z. Bellahsene, C. Woo, E. Hunt, X. Franch, and R. Coletta, edi-
tors, Proceedings of the Forum at the CAiSE’08 Conference, volume
344 of CEUR Workshop Proceedings, pages 81–84, 2008. (Cited on
page 17.)

[177] M. Shanahan. The Event Calculus Explained. In M. Wooldridge
and M. M. Veloso, editors, Artificial Intelligence Today: Recent
Trends and Developments, volume 1600 of Lecture Notes in Com-
puter Science, pages 409–430. Springer Verlag, 1999. ISBN 3-540-
66428-9. (Cited on pages 128, 246, and 248.)

[178] M. Sheeran, S. Singh, and G. Stålmarck. Checking Safety Prop-
erties Using Induction and a SAT-Solver. In W. A. Hunt Jr. and
S. D. Johnson, editors, Proceedings of the Third International Confer-
ence on Formal Methods in Computer-Aided Design (FMCAD 2000),
volume 1954 of Lecture Notes in Computer Science, pages 108–125,
2000. (Cited on page 223.)

[179] M. P. Singh. Agent Communication Language: Rethinking
the Principles. IEEE Computer, pages 40–47, 1998. (Cited on
page 127.)

[180] D. Sottara, L. Luccarini, and P. Mello. AI Techniques for Waste
Water Treatment Plant Control Case Study: Denitrification in a
Pilot-Scale SBR. In B. Apolloni, R. J. Howlett, and L. C. Jain, ed-
itors, Proceedings of the 17th Italian Workshop on Neural Networks,
part of the 11th International Conference on Knowledge-Based Intelli-
gent Information and Engineering Systems(KES2007), volume 4692

of Lecture Notes in Computer Science, pages 639–646. Springer Ver-
lag, 2007. (Cited on page 290.)

[181] L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 2nd
edition, 1994. (Cited on page 53.)

bibliography 331

[182] A. Ten Teije, S. Miksch, and P. Lucas, editors. Computer-based
Medical Guidelines and Protocols: A Primer and Current Trends, vol-
ume 139 of Studies in Health Technology and Informatics. IOS Press,
Amsterdam, July 2008. (Cited on pages 26 and 125.)

[183] M. H. ter Beek, M. Massink, D. Latella, S. Gnesi, A. Forghieri,
and M. Sebastianis. A Case Study on the Automated Verifica-
tion of Groupware Protocols. In G. C. Roman, W. G. Griswold,
and B. Nuseibeh, editors, Proceedings of the 27th International Con-
ference on Software Engineering (ICSE 2005), pages 596–603. ACM,
2005. (Cited on page 285.)

[184] P. Terenziani, G. Molino, and M. Torchio. A Modular Approach
for Representing and Executing Clinical Guidelines. Artificial
Intelligence in Medicine, 23(3):249–276, 2001. (Cited on page 26.)

[185] W. M. P. van der Aalst. How to handle dynamic change and cap-
ture management information? An approach based on generic
workflow models. Computer Systems, Science and Engineering, 16

(5):295–318, 2001. (Cited on page 123.)

[186] W. M. P. van der Aalst and M. Pesic. DecSerFlow: Towards
a Truly Declarative Service Flow Language. In M. Bravetti,
M. Núñez, and G. Zavattaro, editors, Proceedings of the 3rd Work-
shop on Web Services and Formal Methods (WS-FM2006), volume
4184 of Lecture Notes in Computer Science, pages 1–23. Springer
Verlag, 2006. (Cited on pages xxiv, 17, 22, 32, 35, 42, 95, 96, 97,
111, 139, and 228.)

[187] W. M. P. van der Aalst and A. H. M. ter Hofstede. YAWL: Yet
Another Workflow Language. Information Systems, 30(4):245–275,
2005. (Cited on pages 15 and 125.)

[188] W. M. P. van der Aalst, T. Weijters, and L. Maruster. Workflow
Mining: Discovering Process Models from Event Logs. IEEE
Transactions on Knowledge and Data Engineering, 16(9):1128–1142,
2004. (Cited on pages 291 and 301.)

[189] W. M. P. van der Aalst, M. Dumas, A. H. M. ter Hofstede, N. Rus-
sell, H. M. W. Verbeek, and P. Wohed. Life After BPEL? In
M. Bravetti, L. Kloul, and G. Zavattaro, editors, Proceedings of
the 2nd International Workshop on Web Services and Formal Methods
(WS-FM 2005), volume 3670 of Lecture Notes in Computer Science,
pages 35–50. Springer Verlag, 2005. (Cited on pages 2 and 21.)

[190] W. M. P. van der Aalst, B. F. van Dongen, C. W. Günther, R. S.
Mans, A.K. Alves de Medeiros, A. Rozinat, V. Rubin, M. Song,
H. M. W. Verbeek, and A. J. M. M. Weijters. ProM 4.0: Compre-
hensive Support for Real Process Analysis. In J. Kleijn and A.
Yakovlev, editors, Proceedings of the 28th International Conference
on Application and Theory of Petri Nets and Other Models of Concur-
rency (ICATPN 2007), volume 4546 of Lecture Notes in Computer

332 bibliography

Science, pages 484–494. Springer Verlag, 2007. (Cited on pages 5,
277, 297, and 309.)

[191] W. M.P. van der Aalst, A. H.M. ter Hofstede, B. Kiepuszewski,
and A. P. Barros. Workflow Patterns. Distributed and Parallel
Databases, 14(1):5–51, 2003. (Cited on page 36.)

[192] W. M.P. van der Aalst, B. F. van Dongen, J. Herbst, L. Maruster,
G. Schimm, and A. J. M. M. Weijters. Workflow Mining: A Sur-
vey of Issues and Approaches. Data and Knowledge Engineering,
47(2):237–267, 2003. (Cited on page 31.)

[193] Wil M. P. van der Aalst, M. Dumas, C. Ouyang, A. Rozinat,
and E. Verbeek. Conformance Checking of Service Behavior.
ACM Transactions on Internet Technologies, 8(3), 2008. (Cited on
pages 126 and 297.)

[194] W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Web
Service Composition Languages: Old Wine in New Bottles? In
G. Chroust and C. Hofer, editors, Proceeding of the 29th EUROMI-
CRO Conference: New Waves in System Architecture, pages 298–
305. IEEE Computer Society, Los Alamitos, CA, 2003. (Cited
on pages 2 and 18.)

[195] W.M.P. van der Aalst, H.T. de Beer, and B.F. van Dongen. Pro-
cess Mining and Verification of Properties: An Approach based
on Temporal Logic. In R. Meersman and Z. Tari, editors, Proceed-
ings of the OTM 2005 Confederated International Conferences CoopIS,
DOA, and ODBASE, volume 3760 of Lecture Notes in Computer Sci-
ence, pages 130–147. Springer Verlag, 2005. (Cited on pages 278,
283, and 300.)

[196] L. van der Torre. Contextual Deontic Logic: Normative Agents,
Violations and Independence. Annals of Mathematics and Artificial
Intelligence, 37(1):33–63, 2003. (Cited on page 127.)

[197] B. F. van Dongen. Process Mining and Verification. PhD thesis,
Eindhoven University of Technology, 2007. (Cited on pages xxiii
and 276.)

[198] B. F. van Dongen and W. M. P. van der Aalst. Multi-phase Pro-
cess Mining: Building Instance Graphs. In 23rd International Con-
ference on Conceptual Modeling (ER2004), volume 3288 of Lecture
Notes in Computer Science, pages 362–376. Springer Verlag, 2004.
(Cited on pages 291 and 301.)

[199] B. F. van Dongen and W. M. P. van der Aalst. A Meta Model for
Process Mining Data. In J. Casto and E. Teniente, editors, Pro-
ceedings of the CAiSE’05 Workshops (EMOI-INTEROP Workshop),
volume 2, pages 309–320. FEUP, Porto, Portugal, 2005. (Cited on
pages xxii, 13, 109, 114, 278, and 279.)

bibliography 333

[200] W. J. van Hoeve. The AllDifferent Constraint: a Survey. In Sixth
Annual Workshop of the ERCIM Working Group on Constraints, 2001.
(Cited on page 90.)

[201] B. Weber, S. Rinderle, and M. Reichert. Change Patterns and
Change Support Features in Process-Aware Information Sys-
tems. In Proceedings of the 19th International Conference on Ad-
vanced Information Systems Engineering (CAiSE 2007), volume
4495 of Lecture Notes in Computer Science, pages 574–588. Springer
Verlag, 2007. (Cited on pages 17 and 300.)

[202] Mathias Weske. Business Process Management: Concepts, Lan-
guages, Architectures. Springer Verlag, 2007. (Cited on page 14.)

[203] S. A. White. Business Process Modeling Notation Specifica-
tion 1.0. Technical report, OMG, 2006. (Cited on pages 15, 22,
and 225.)

[204] G. H. Wright. Deontic logic. Mind, 60:1–15, 1951. (Cited on
page 127.)

[205] I. Xanthakos. Semantic Integration of Information by Abduction.
PhD thesis, Imperial College London, 2003. (Cited on page 164.)

[206] P. Yolum and M. P. Singh. Flexible Protocol Specification and
Execution: Applying Event Calculus Planning Using Commit-
ments. In Proceedings of the First International Joint Conference on
Autonomous Agents & Multiagent Systems (AAMAS 2002), pages
527–534. ACM Press, 2002. (Cited on pages 2, 25, 127, 128,
and 311.)

[207] J. M. Zaha, A. P. Barros, M. Dumas, and A. H. M. ter Hofst-
ede. Let’s Dance: A Language for Service Behavior Modeling. In
R. Meersman and Z. Tari, editors, Proceedings of the 14th Interna-
tional Conference on Cooperative Information Systems (CoopIS 2006),
volume 4275 of Lecture Notes in Computer Science, pages 145–162.
Springer Verlag, 2006. (Cited on page 126.)

colophon

This thesis was typeset with LATEX 2ε using Hermann Zapf’s Palatino
and Euler type faces (Type 1 PostScript fonts URW Palladio L and FPL
were used). The listings are typeset in Bera Mono, originally developed
by Bitstream, Inc. as “Bitstream Vera”. (Type 1 PostScript fonts were
made available by Malte Rosenau and Ulrich Dirr.)

The typographic style was inspired by Bringhurst’s genius as pre-
sented in The Elements of Typographic Style [36]. It is available for LATEX
via CTAN as “classicthesis”.

Final Version as of March 17, 2009 at 8:58.

http://www.ctan.org/tex-archive/macros/latex/contrib/classicthesis/

	Dedication
	Abstract
	Sommario
	Publications of the Author
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Contributions of the Dissertation
	1.1.1 Specification of Interaction Models
	1.1.2 Static Verification of Interaction Models
	1.1.3 Run-time Verification, Monitoring and Enactment Facilities
	1.1.4 A-Posteriori Verification of Execution Traces

	1.2 Organization of the Dissertation
	1.2.1 Part I: Specification
	1.2.2 Part II: Static Verification
	1.2.3 Part III: Run-Time and A-Posteriori Verification

	Specification
	2 Declarative Open Interaction Models
	2.1 Open Declarative Interaction Models: an Intuitive Characterization
	2.1.1 Activities, Events and Execution Traces
	2.1.2 Characterization of Time
	2.1.3 Procedural Vs Declarative Interaction Models
	2.1.4 Open Vs Closed Interaction Models

	2.2 Business Process Management
	2.2.1 Limits of Procedural Business Process Modeling
	2.2.2 The Need For Flexibility

	2.3 Service Oriented Computing
	2.3.1 Service Oriented Architecture
	2.3.2 Orchestration and Choreography
	2.3.3 Limits of Procedural Choreography Modeling

	2.4 Multi-Agent Systems
	2.5 Clinical Guidelines
	2.5.1 The Role of Basic Medical Knowledge in Clinical Guidelines
	2.5.2 Semi-openness of Clinical Guidelines

	2.6 Lessons Learnt
	2.7 Challenges in Declarative Open Interaction Models
	2.8 Grounding the Framework

	3 The ConDec Graphical Language
	3.1 ConDec in a Nutshell
	3.2 ConDec models
	3.3 Constraints
	3.3.1 Existence Constraints
	3.3.2 Choice Constraints
	3.3.3 Relation Constraints
	3.3.4 Negation Constraints
	3.3.5 Branching Constraints

	3.4 A ConDec Choreography
	3.5 Usability of the Language
	3.6 Linear Temporal Logic
	3.6.1 LTL Models
	3.6.2 Syntax of LTL
	3.6.3 Semantics of LTL

	3.7 Translation of ConDec to LTL

	4 The CLIMB Rule-Based Language
	4.1 The CLIMB Language in a Nutshell
	4.2 The CLIMB Syntax
	4.2.1 Event Occurrences and Execution Traces
	4.2.2 Constraint Logic Programming
	4.2.3 Expectations
	4.2.4 Integrity Constraints
	4.2.5 The Static Knowledge Base
	4.2.6 SCIFF-lite and Composite Events

	4.3 CLIMB Declarative Semantics
	4.3.1 Abduction
	4.3.2 Abductive Logic Programming
	4.3.3 Representing a system and its executions
	4.3.4 SCIFF-lite Specifications
	4.3.5 A Declarative Notion of Compliance

	4.4 Equivalence and Compositionality
	4.4.1 Equivalence w.r.t. Compliance
	4.4.2 Compositionality w.r.t. compliance

	5 Translating ConDec to CLIMB
	5.1 Translation of a ConDec Model to CLIMB
	5.2 Translation of Events
	5.3 Embedding a Qualitative Characterization of Time in a Quantitative Setting
	5.3.1 Temporal Contiguity
	5.3.2 Compact Execution Traces

	5.4 Translation of Constraints
	5.4.1 Translation of Existence Constraints
	5.4.2 Translation of Choice Constraints
	5.4.3 Translation of Relation Constraints
	5.4.4 Translation of Negation Constraints
	5.4.5 Dealing with Branching ConDec Constraints
	5.4.6 Equivalence Between ConDec Constraints

	5.5 Soundness of the Translation
	5.5.1 Trace Mapping
	5.5.2 Compliance Preservation
	5.5.3 Proof of Soundness

	5.6 On the Expressiveness of SCIFF
	5.6.1 A Separated Normal Form for LTL Formulae
	5.6.2 Translation of SNF Formulae to SCIFF-lite
	5.6.3 Translation of Arbitrary LTL Formulae to SCIFF-lite

	6 Extending ConDec
	6.1 Temporal-constrained Relationships
	6.1.1 Temporal Contiguity in a Quantitative Setting
	6.1.2 Quantitative Formalization of Chain Constraints
	6.1.3 Metric ConDec Constraints

	6.2 Data-Related Aspects
	6.2.1 The MXML Meta-Model
	6.2.2 The Life Cycle of ConDec Activities
	6.2.3 An illustrative example

	6.3 Introducing Data in ConDec1.05++
	6.3.1 Representing Non-Atomic Activities in ConDec1.05++
	6.3.2 Formalizing the Activity Life Cycle
	6.3.3 Modeling the Submit-Review Example
	6.3.4 Cross-Flow Constraints

	7 Related Work and Summary
	7.1 Related Work
	7.1.1 Business Process Management

	7.2 Clinical Guidelines
	7.2.1 Service-Oriented and Systems
	7.2.2 Multi-Agent Systems

	7.3 Summary of the Part

	Static Verification
	8 Static Verification of Declarative Open Interaction Models
	8.1 Desiderata for Verification Technologies
	8.2 Verification of a Single Model vs a Composition of Models
	8.3 Static Verification of Properties
	8.3.1 Existential vs Universal Properties
	8.3.2 General vs Particular Properties
	8.3.3 On the Safety-Liveness Classification
	8.3.4 A ConDec Example

	8.4 A-priori Compliance Verification
	8.5 Compatibility and Legal Compositions
	8.5.1 Compatibility Between Local Models
	8.5.2 From Openness to Semi-Openness
	8.5.3 Augmenting ConDec Models with Roles and Participants

	8.6 Conformance With a Choreography

	9 Proof Procedures
	9.1 The SCIFF Proof Procedure
	9.1.1 Data Structures and Proof Tree
	9.1.2 Transitions

	9.2 Formal Properties of the SCIFF Proof Procedure
	9.2.1 Soundness
	9.2.2 Completeness
	9.2.3 Termination
	9.2.4 ConDec Models and Termination of the SCIFF Proof Procedure

	9.3 The g-SCIFF Proof Procedure
	9.3.1 Generation of Intensional Traces
	9.3.2 Data Structures Revisited
	9.3.3 Transitions Revisited
	9.3.4 Comparison of the Proof Procedures

	9.4 Formal Properties of the g-SCIFF Proof Procedure
	9.4.1 Soundness
	9.4.2 Completeness W.r.t. Generation of Traces
	9.4.3 Termination
	9.4.4 ConDec Models and Termination of the SCIFF Proof Procedure

	9.5 Implementation

	10 Static Verification of ConDec Models With g-SCIFF
	10.1 Existential and Universal Entailment in CLIMB
	10.1.1 Specification of Properties with ConDec
	10.1.2 Formalizing Existential and Universal Entailment

	10.2 Verification of Existential Properties With g-SCIFF
	10.2.1 Conflict-freedom Checking Via g-SCIFF
	10.2.2 Existential Entailment with g-SCIFF

	10.3 Verification of Universal Properties With g-SCIFF
	10.3.1 Complementing Integrity Constraints
	10.3.2 Reduction of Universal Entailment to Existential Entailment

	10.4 ConDec Loops and Termination Issues
	10.4.1 Reformulation of ConDec relation constraints
	10.4.2 Unbounded Specifications and Looping ConDec Models

	10.5 Pre-processing of ConDec Models and Loop Detection
	10.5.1 Transformation of ConDec Models to AND/OR Graphs
	10.5.2 Detection of - and -loops
	10.5.3 Pre-Processing Procedure

	10.6 Dealing With an Infinite Number of Finite Derivations
	10.6.1 Succession Constraints and Infinite Branching Proof Trees
	10.6.2 Solving the Infinite Branches Anomaly

	11 Experimental Evaluation
	11.1 Verification Procedure with g-SCIFF
	11.2 Scalability of the g-SCIFF Proof Procedure
	11.2.1 The Branching Responses Benchmark
	11.2.2 The Alternate Responses Benchmark
	11.2.3 The Chain Responses Benchmark

	11.3 Using Model Checking For the Static Verification of ConDec Models
	11.3.1 Model Checking
	11.3.2 Verification of ConDec Properties By Satisfiability and Validity Checking
	11.3.3 Reduction of Validity and Satisfiability Checking to Model Checking
	11.3.4 Verification Procedure by Model Checking

	11.4 Comparative Evaluation
	11.4.1 Evaluation Benchmarks
	11.4.2 Experimental Results

	11.5 Discussion

	12 Related Work and Summary
	12.1 Related Work
	12.1.1 Verification of Properties
	12.1.2 A-priori Compliance Verification
	12.1.3 Model Composition
	12.1.4 Interoperability and Choreography Conformance

	12.2 Summary of the Part

	Run-Time and A-Posteriori Verification
	13 Run-time Verification
	13.1 The Run-Time Verification Task
	13.2 Run-time Verification with the SCIFF Proof Procedure
	13.2.1 Reactive Behaviour of the SCIFF Proof Procedure
	13.2.2 Open Derivations
	13.2.3 Semi-Open Reasoning

	13.3 The SOCS-SI Tool
	13.4 Speculative Run-Time Verification
	13.4.1 Speculative Verification with the g-sciff Proof Procedure
	13.4.2 Interleaving the sciff and g-sciff Proof Procedures

	14 Monitoring and Enactment with Reactive Event Calculus
	14.1 Event Calculus
	14.1.1 The Event Calculus Ontology
	14.1.2 Domain-Dependent vs Domain-Independent Axioms
	14.1.3 Reasoning with Event Calculus

	14.2 The Reactive Event Calculus
	14.3 REC Illustrated: A Personnel Monitoring Facility
	14.3.1 Formalizing the Personnel Monitoring Facility in REC
	14.3.2 Monitoring a Concrete Instance
	14.3.3 The Irrevocability Issue

	14.4 Formal properties of REC
	14.4.1 Irrevocability of REC

	14.5 Monitoring Optional Constraints with REC
	14.5.1 Representing ConDec Optional Constraints in REC
	14.5.2 Identification and Reification of Violations
	14.5.3 Compensating Violations
	14.5.4 Monitoring Example

	14.6 Enactment of ConDec Models
	14.6.1 Showing Temporarily Unsatisfied Constraints
	14.6.2 Blocking Unexecutable Activities
	14.6.3 Termination of the Execution

	15 Declarative Process Mining
	15.1 Grounding the Process Mining Framework: SCIFF Checker, DecMiner, ProM
	15.2 The SCIFF Checker ProM Plug-in
	15.2.1 CLIMB Textual Business Rules
	15.2.2 A Methodology for Building Rules
	15.2.3 Specification of Conditions
	15.2.4 Compliance Verification with Logic Programming
	15.2.5 Embedding SCIFF Checker in ProM

	15.3 Case Studies
	15.3.1 The Think3 Case Study
	15.3.2 Screening Guideline of the Emilia Romagna Region
	15.3.3 Quality Assessment in Large Wastewater Treatment Plans

	15.4 The DecMiner ProM Plug-in
	15.4.1 Inductive Logic Programming For Declarative Process Discovery
	15.4.2 Embedding DecMiner Into the ProM Framework

	15.5 The Checking-Discovery Cycle

	16 Related Work and Summary
	16.1 Related Work
	16.1.1 Run-Time Verification and Monitoring
	16.1.2 Enactment
	16.1.3 Log-Based Verification
	16.1.4 Discovery

	16.2 Summary of the Part

	Conclusions and Future Work
	17 Conclusions and Future Work
	17.1 Conclusions
	17.2 Future Work

	Bibliography
	Colophon

