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1Chapter 1 

Introduction 

1.1 Objectives and structure of the thesis 

The simulation and forecasting of passive tracers in the ocean is a challenging 

task concentrating great interest in the international scientific community for its 

important ocean applications, including pollutant spreading preventive actions and 

search and rescue activities. 

The objective of this thesis is to develop a suitable set of numerical tools to 

simulate and predict passive tracer dispersion in open oceans and coastal seas. A 

Lagrangian particle tracking model coupled with an Eulerian circulation model is 

proposed. 

Since small errors in estimating ocean currents can drastically change particle 

trajectories (Griffa et al., 2004), an interesting topic is investigating the change in 

Lagrangian predictability increasing the resolution of the eulerian current field. 

The objective is then the design and implementation of a relocatable high 

resolution model nested in coarse resolution operational systems. 

The advent of operational oceanography (Pinardi et al., 2002) has prompted the 

possibility to have first guess fields that are realistic so that particle tracking errors 

can be controlled. The concept of Maritime Rapid Environmental Assessment 

(MREA, Robinson et al., 1996) has been extended in this thesis to couple with 

operational oceanographic products and drifter trajectories simulations. The 
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results arising from this study can give new tools to a future oil spill model 

forecasting systems. 

This thesis is organized into 4 chapters and one appendix. Each chapter consists of 

the content of a manuscript which is nearly ready to be submitted for publication 

in a refereed academic journal. 

In Chapter 2, after a brief description of the Lagrangian formulation, four particle-

tracking routines are presented. These Lagrangian numerical schemes have been 

intercompared and the sensitivity of the numerical schemes to time resolution of 

the Eulerian field is investigated. This work has put the basis to understand the 

effects of numerical scheme errors in particle trajectories simulations. 

In Chapter 3, the predictability and the accuracy of the Lagrangian trajectory 

model, coupled to a realistic operational numerical forecasting model, is explored 

by means of a large observational drifter dataset deployed in the Adriatic Sea 

from 2002 to 2004. In our study the observed drifters are treated as passive tracers 

and can help us to estimate the uncertainty of the Lagrangian simulation. 

Chapter 4 contains the first part of the MREA experiment carried out in the 

Ligurian Sea in spring-summer 2007 (MREA07). A system of relocatable models, 

embedded in an operational existing general circulation model, is implemented. 

The relocatable model represents an affordable solution in order to provide fine 

resolution forecasting at short time for any sea region of the world. The 

characteristics of the nested model system are described and the model 

performance is evaluated using data collected in situ. 

Chapter 5 is dedicated to the second part of MREA07 experiment. The hypothesis 

that higher resolution models could increase the predictability of drifter 

trajectories is investigated for the specific drifters of the experiment. 

Finally, Appendix A contains the MREA08 experiment report, carried out in 

October 2008 again in the Ligurian Sea. The report describes the oceanographic 

data collected and presents the preliminary model results provided by a 

forecasting operational system based on the relocatable model. The operational 

system was implemented during the experiment in order to release every day a 

three days current field forecast coupled to drifter predictions. This work is still 
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preliminary and the scientific study of the results will be restructured in a paper 

after the thesis. 
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2Chapter 2 
 

Lagrangian Modelling for Particle Prediction in 

Oceanography 

2.1 Introduction 

Over recent years, special attention has been paid to the prediction of particle 

trajectories in the sea. A wide variety of applications are associated with the 

spreading of tracers considered to be sediments, larvae, phytoplankton or 

pollutants such as oil or sewage outfalls in the ocean. In particular, the forecast of 

oil spills in the open ocean and coastal seas is becoming one of the most important 

applications of operational oceanography. Oil spill predictions will help in 

preserving a healthy marine environment and developing tools for managing 

emergencies. The prediction of particle transport in the open ocean and coastal 

seas has become a reliable tool since numerical models have developed in 

accuracy and realism. Transport processes are governed by known fluid dynamics 

equations and numerical solutions of these equations are becoming reliable and 

standardized. However, the limit of predictability of particle transport is not yet a 

properly understood problem: the numerical models are affected by uncertainties; 

small numerical errors can markedly change the trajectories and affect particle 

path predictions. 
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In this chapter we review the mathematical description of the advection-diffusion 

problem and its Eulerian and Lagrangian formulations. Furthermore, we describe 

several numerical algorithms for the Lagrangian equations. The numerical 

accuracy is investigated under particular conditions and an estimate of the 

efficiency and accuracy of the various methods is given. 

2.2 The advection-diffusion equation for tracers 

The movement and spreading of a tracer in the water can be described by the 

advection-diffusion equation, which describes the evolution of the tracer 

concentration in an Eulerian form as (Fischer et al., 1979): 

(2.1)    SCKCu
t

C +∇⋅∇+∇⋅−=
∂
∂

)(
r

 

where C  is the tracer concentration, the t∂∂  operator represents the local time 

rate of change of the tracer, u
r

 represents the mean field velocity, K
r

 is the ‘eddy-

diffusivity’ coefficients which parameterize the turbulence and S  incorporates all 

the tracer sources and sinks. This simple parameterization of the tracer dispersal is 

obtained using the Reynolds theory: the predictive equation is for the mean 

components of C , while smaller turbulent scales are parameterized as diffusive 

processes. 

The Lagrangian form of equation (2.1) is: 

(2.2)    SCK
Dt

DC +∇⋅∇= )(  

where 
Dt

D
 is now the operator that describes changes occurring at the water 

particle motion. 
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2.3 Eulerian and Lagrangian formulations 

The numerical methods developed to solve the advection-diffusion equation (2.1) 

can be divided into two main categories: Eulerian and Lagrangian. Hybrid 

methods are also used in some cases. 

The Eulerian method in general solves equation (2.1) on a fixed set of grid points 

in space; the Lagrangian method, known as ‘particle-tracking’, transforms the 

concentration into a discrete and passive set of particles and follows them over 

time. The concentration at a certain point and time is found assembling the 

particle trajectories together. 

A summary of these methods and an investigation into their efficiency is given in 

Noye (1987) and Hunter (1987). 

The Eulerian method, with the application of finite-difference and finite-element 

techniques, appears the most popular solution, given that similar techniques are 

used for the hydrodynamic equations. However, particle-tracking technique can 

simulate advection to a high degree of accuracy, although the processes of 

diffusion require stochastic methods (Hunter, 1987). 

The particle-tracking model is preferred to the Eulerian for several reasons, 

summarized as follows by Dimou and Adams (1993): 

1. The Lagrangian method represents the sources of contaminant described 

with particles more easily, while the Eulerian approach cannot resolve 

processes on a spatial scale smaller than the Eulerian grid resolution; 

2. In the particle-tracking method the computational cost is concentrated only 

in the region where the particles are located, unlike the concentration model, 

where all domain points are treated at the same time (particle-tracking 

models may be significantly more computationally efficient); 

3. The new parallel computing technique is compatible with the nature of the 

Lagrangian model and contributes to increase the speed of calculations; 

4. Particle-tracking models can describe several natural processes like larva 

dispersion better; 
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5. Particle-tracking models can be a mandatory choice when we are interested 

in properties like residence time. 

The particle-tracking methods have been used successfully for the simulation of 

different natural processes: groundwater dynamics (Tompson and Gelhar, 1990), 

transport of oil spills (Al-Rabeh et al., 1989; Spaulding et al., 1994), pollutant 

dispersion (Al-Rabeh et al., 1992; Schönfeld, 1995), larva and sediment transport. 

2.4 Lagrangian particle-tracking methods 

In this thesis the particle-tracking method has been chosen to simulate particle 

spreading due to the three-dimensional hydrodynamics of sea water which 

provides the Eulerian current field. In the Lagrangian model the tracer is modelled 

by a cloud of massless discrete particles identified by their spatial coordinates. 

The displacement of each Lagrangian particle is given by a sum of an advective 

deterministic and a stochastic component; the latter representing the chaotic 

nature of the flow field, the sub-grid turbulent diffusion. 

In the following sections, details of the determinist and stochastic components are 

given and a brief description of the stochastic theory is presented. 

2.4.1 Advection modelling 

The movement of Lagrangian particles due to the advection in a three-

dimensional current field can be described by the following ordinary differential 

equations: 

(2.3)     ),( txv
dt

xd
p

p rr
r

=  

where v
r

 is the vector velocity with components (u ,v , w ) in the x , y  and z  

direction and px
r

 is the coordinate of the particle in the three directions. The 

movement of the particles can be computed applying a numerical integration 

scheme to the equation (2.3). 

The velocity field is given by an external hydrodynamic model at a series of 

fixed-point grid and time instants. Particles composing tracers are normally given 
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at intermediate grid points so that spatial and temporal interpolation is needed. In 

this thesis we will test different interpolation methods. 

2.4.2 Diffusion Modelling 

The movement of the particles due to the turbulent part of the flow field is 

modelled with a random walk scheme (i.e., a Brownian motion process). 

The tracer position ( ))(),(),(()( tztytxtx =r
) in a random-walk model can be 

described by the non-linear Langevin equation (Gardiner, 1985): 

)(),(),(
)(

ttxtxA
dt

txd ξ
rrrr

r

B+=     (2.4) 

where the vector ),( txA
rv

 represents the deterministic part of the flow field that 

acts to change )(tx
r

 (i.e., transport by the mean velocity field), while the second 

term is a stochastic or diffusion term composed by the tensor ),( tx
r

B  that 

characterizes the random motion and a vector )(tξ
r

 the components of which are 

random numbers with values between 0 and 1. 

If we define ∫=
t

dsstW
0

)()( ξ  and applying the Itō assumption (Tompson and 

Gelhar, 1990), the equation (2.4) becomes equivalent to the Itō stochastic 

differential equation: 

)(),(),()( tWdtxdttxAtxd
rrrrr

B+=    (2.5) 

where )(tWd
r

 is an increment of the ‘Wiener process’ )(tW
r

. The Wiener process 

describes the path of a particle due to Brownian motion and consists of the 

accumulation of independently stochastic increments )(tdW . This term is also 

called ‘white noise’ or random forcing with these following properties (Gardiner, 

1985): 

1. Zero Mean: 0)( =tdW  

2. Mean square value proportional to dt : dtdWdW =  
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In a next step we replace the )(tWd
r

, in equation (2.5), by a vector of independent 

random numbers from a standard normal distribution )1,0(NZ ∈
r

 multiplied by 

dt : 

(2.6)    dtZtxdttxAtxd
rrwrr

),(),()( B+= . 

The unknown parameters A
r

 and B  can be determined by deriving the Fokker-

Planck equation associated with equation 2.6 (Risken, 1989). Under this 

assumption we can write the 3-D version of the equation (2.6) as follows: 

(2.7)  dt

Z

Z

Z

D

D

D

dt

txw

txv

txu

txd

z

y

x


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where 321 ,, ZZZ  are the independent random numbers normally distributed 

around a zero mean value and unit variance and xD , yD  and zD  are the diffusive 

coefficients. 

2.5 Implementation of the Lagrangian particle-tracking model 

In this thesis we have developed different schemes of integration of the Langevin 

equation (2.4). Four different particle-tracking algorithms have been used, 

identified by the following names: ARIANE, TRACE, SINCEM and SINCEM2. 

The first two algorithms were developed by Blanke and Raynaud (1997) and Jarle 

Berntsen (Institute of Marine Research, Bergen-Nordnes, Norway) and they have 

been adapted to be coupled with the Eulerian velocity field from our models. The 

diffusion part of the algorithm has been initially taken to be zero. 

The main differences and similarities of the algorithms are listed in Table 2.1. 

In the follwing sections we will describe the general characteristics of four 

algorithms and we will show a first validation with analytical solutions. 
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 ARIANE TRACE SINCEM SINCEM2 
Integration 

Scheme 
Analytical 
Solution 

Euler forward Euler forward 
Fourth-order 
Runge-Kutta 

Spatial 
Interpolation  

Linear 
interpolation 

Linear 
Interpolation 

Bilinear 
Interpolation 

Bilinear 
Interpolation 

Temporal 
Interpolation  

Persistence 
Linear 

Interpolation 
Linear 

Interpolation 
Linear 

Interpolation 

Table 2.1 Main characteristics of the particle-tracking algorithms. 

2.5.1 ARIANE Algorithm 

The ARIANE algorithm was developed by Blanke and Raynaud (1997). ARIANE 

computes 3D trajectories in the velocity field provided by an ocean general 

circulation model and it has been used for several studies of water mass dispersion 

(Blanke et al. 1999, 2001; Döös, 1995). 

The algorithm is based on the basic assumption of 3D non-divergence (i.e., mass 

conservation) and it approximates the calculation of analytical streamlines within 

each model gridcell crossed by a given particle. The trajectory computation 

involves the interpolation of the three-dimensional Eulerian velocity at the 

location of a given particle and then its advection by the current. ARIANE is 

implemented for a C grid (Arakawa, 1972). The three components of the velocity 

are known over the six faces of each cell grid and a linear variation of each 

velocity component along each direction is assumed. The final particle position is 

calculated using the minimum crossing time evaluated independently in each 

direction by imposing this position as one of the six sides of the grid cell. 

Here we report the main equations of the algorithm; for detailed calculations see 

Blanke and Raynaud (1997). 

In each grid cell, the non-divergence of the three-dimensional velocity field 

),,( WVUV =
r

 is defined as function of the transport: 

0=
∂
∂+

∂
∂+

∂
∂

z

H

y

G

x

F
    (2.8) 
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where F , G  and H  represent the transports in the three directions with 

dydzUF = , dxdzVG =  and dxdyWH = . For a given cell, F , G  and H  vary 

linearly in x , y and z . 

In the cell extending from 0=x  to 1=x , the transport F  can be written as: 

(2.9)    FrFrF ∆+= 0)(  

with ]1,0[∈r , 0)0( FF =  and )0()1( FFF −=∆ . 

Applying to the transport (F ) the equation that links the position to the velocity 

( Udtdx = ) we can obtain: 

(2.10)     F
ds

dr =  

where )(dxdydzts =  is called the pseudo-time. 

Combining equations (2.9) and (2.10) and assuming initially that at 0=r , 0=s , 

the time dependency of r  within the considered cell is found: 

(2.11)    ]1)[exp(0 −∆
∆

= Fs
F

F
r . 

If 0=∆F , we have: 

(2.12)     sFr 0= . 

A similar relation can be obtained along the other directions. 

The time necessary for the particle to switch to another cell is obtained from a 

different form of equation (2.10): 

(2.13)     
F

dr
ds = ; 

using the relation (2.9) we obtain FdrdF ∆=  and then (2.13) is rewritten as: 

(2.14)     
)( FF

dF
ds

∆
= . 

The crossing time in the zonal direction is obtained only if )1(F  and )0(F  have 

the same sign and 0≠F  in the cell. The three-dimensional non-divergence of the 

velocity field for the grid cell ensures that at least one direction satisfies the 

former condition. The pseudo-time s  is related to the transport F  by: 
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








∆
=

0

ln
1

F

F

F
s     (2.15) 

or if 0=∆F , we have: 

0

1

F
s =∆ .     (2.16) 

The equation (2.15) is applied to compute the crossing pseudo-time in each 

direction ( xT , yT , zT ), if 0≠∆F , 0≠∆G , 0≠∆H : 

( )0ln
1

FF
F

Tx −
∆

= ; ( )0ln
1

GG
G

Ty −
∆

= ; ( )0ln
1

HH
H

Tz −
∆

= ; (2.17) 

the shortest time ( ),,min( zyx TTTT = ) defines the travelling time of the particle in 

the considered grid cell and the new particle position is computed using the value 

T  as timestep: 

)1)(exp(1 −∆
∆

+=+ FT
F

F
xx nn ;   (2.18)

 )1)(exp(1 −∆
∆

+=+ GT
G

G
yy nn ;   (2.19) 

)1)(exp(1 −∆
∆

+=+ HT
H

H
zz nn .   (2.20) 

The same computations are done for the next cell, with a starting point equal to 

the exit point of the previous one and the age of the particle is regularly updated. 

2.5.2 TRACE Algorithm 

The TRACE algorithm was written by Jarle Berntsen (Institute of Marine 

Research, Bergen-Nordnes, Norway) as a subroutine of the Princeton Ocean 

Model (POM; Blumberg and Mellor, 1987) and was published in Beletsky et al. 

(2007). 

TRACE integrates the following Lagrangian equations: 

),,( zyxu
dt

dx p =     (2.21) 

),,( zyxv
dt

dy p =     (2.22) 
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where px , py  are the positions of the particle; u  and v  are the horizontal 

components of the velocity and t  is the time. 

The particle position in the horizontal space is computed with an Euler forward 

scheme: 

(2.23)     tuxx n
p

n
p

n
p ∆+=+1  

(2.24)     tvyy n
p

n
p

n
p ∆+=+1  

where the subscript p indicates the particle label, n  is the current time step and 

t∆  is the time interval. The values npu , n
pv  are the zonal and meridional velocity 

for the current time step at the particle position; they are computed by linear 

interpolation of the horizontal currents provided by an external Eulerian model 

from the sides of the C-grid with the following expression (Figure 2.1): 

(2.25)  ),1(),()1( jiji
n
p muumu ++−=  ; )1,(),()1( ++−= jiji

n
p nvvnv  

Furthermore, the algorithm marks the particle as lost when it moves out of the 

domain of integration and prevents it from crossing the sea bottom or free surface. 

The algorithm also applies a linear interpolation in time to find the velocity values 

for the Lagrangian timestep. 

This algorithm has been used for several studies, such as the circulation in 

southern Lake Michigan (Beletsky et al., 2006) and the transport of larval yellow 

perch in Lake Michigan (Beletsky et al., 2007). 

 

 

Figure 2.1 The position of the particle p relative to velocity grid points (u) in the linear and 

bilinear interpolation with the weighting factors m, n, (1-m) and (1-n). 



Chapter 2-Lagrangian Modelling for Particle Prediction in Oceanography 

 29 

2.5.3 SINCEM Algorithm 

The SINCEM algorithm has been developed at the Laboratorio di Simulazione 

Numeriche del Clima e degli Ecosistemi Marini (SINCEM) of the University of 

Bologna to compute particle trajectories in a given velocity field; it has been 

written for terrain-following (sigma) and z-coordinate Eulerian models. 

The Lagrangian horizontal particle motion is resolved applying an Euler forward 

scheme to the ordinary differential equations (2.21) (2.22), following the same 

methods as TRACE algorithm. 

Unlike the previous code, the horizontal velocity values ( n
pu , n

pv ) at the particle 

location are computed applying a bilinear interpolation to the velocities 

surrounding the particle position px . Let particlep  be located in the grid cell of 

Figure 2.1, and the velocity of the particle is determined from the equations: 

)1,()1,1(),1(),( )1()1()1)(1( ++++ −++−+−−= jijijiji
n
p nummnuunmunmu  (2.26) 

)1,()1,1(),1(),( )1()1()1)(1( ++++ −++−+−−= jijijiji
n
p nvmmnvvnmvnmv  (2.27) 

As with TRACE, the algorithm uses a linear interpolation in time for the velocity 

values. 

In this code the particles are prevented from crossing the bottom and the surface 

and they are labelled as lost when they reach the boundaries of the numerical 

domain. 

2.5.4  SINCEM2 Algorithm 

The final algorithm considered is SINCEM2, developed at the SINCEM 

laboratory of University of Bologna. This algorithm adopts the same principles as 

SINCEM for time and space interpolation but uses a different time integration 

scheme for the particle position. 

The numerical time stepping scheme is the fourth-order Runge-Kutta integration 

method (RK4) that approximates the solutions of ordinary differential equations 

with an iterative method. 
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In particular, the integration of the function is carried out by computing four 

intermediate points called the ‘Runge-Kutta coefficients’, for direction x , 

expressed as: 

(2.28)    ),(*1
n
p

n xtutk ∆=  

(2.29)    )
2

1
,

2

1
(* 12 kxttutk n

p
n +∆+∆=  

(2.30)    )
2

1
,

2

1
(* 23 kxttutk n

p
n +∆+∆=  

(2.31)    ),(* 34 kxttutk n
p

n +∆+∆=  

where u  is the zonal velocity component, t∆  is the time step and npx  is the 

location of the particle at the time nt . The algebraic derivation of this method is 

obtained starting from a Taylor-series expansion. 

The final position of the particle is predicted with the following expression: 

(2.32)    
6336
43211 kkkk

xx n
p

n
p ++++=+ . 

Similar relationships are obtained for the other directions. 

The algorithm uses a linear time interpolation to find the Eulerian velocity field at 

the current time step and the same control is applied to the particle position close 

to the boundary of the computational domain. 

2.5.5 Lagrangian diffusion parameterizations 

The diffusion coefficients for the Langevin equation (2.7) are added to each of the 

four algorithms used to compute the advective components of the same equation. 

At each timestep we add a diffusive motion gave by: 

(2.33)   tKrandtZD Hx ∆−= 2]1)1,0(2[2 1  

(2.34)   tKrandtZD Hy ∆−= 2]1)1,0(2[2 2  

(2.35)   tKrandtZD Vz ∆−= 2]1)1,0(2[2 3  
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where HK  and VK  are the horizontal and vertical diffusivities coefficients 

respectively, t∆  is the Lagrangian timestep and )1,0(ran  represents a random 

number with uniform distribution in the interval 0 and 1. 

The random number generator used is the routine RAN1 described by Press et al. 

(1986). 

2.6 Validation of Lagrangian numerical schemes 

The Lagrangian particle-tracking algorithms, introduced above, have been tested 

on two particular solution of the Eulerian equation of motion: inertial oscillations 

and the Stommel solution. 

2.6.1  Inertial motion 

The response of the ocean surface to an impulse like a wind blowing for a few 

hours at the surface of the sea is composed of inertial oscillations. 

The water starts to accelerate under the influence of the Coriolis force following 

the non-advective and non-diffusive equation of motion: 

0=−
∂
∂

fv
t

u
     (2.36) 

0=+
∂
∂

fu
t

v
.     (2.37) 

The solutions of these differential equations are: 

)cos(0 ftuu =      (2.38) 

)sin(0 ftuv −=     (2.39) 

with the initial condition that )0,( 00 uu t == . 

This current is called an inertial current or inertial oscillation. 

The water particle trajectory in this velocity field is obtained integrating u
dt

dx = ; 

v
dt

dy = . 
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The solution is: 

(2.40)    )sin(0
0 ft

f

u
xx +=  

(2.41)    ))cos(1(0
0 ft

f

u
yy −−=  

with ),( 00 yxx =r  at 0=t . 

The particle then describes an inertial circle with constant radius fur 0= . 

Taking a further step, we consider a geostrophic current ( gu ) superimposed and 

the equations become: 

(2.42)     0=−
∂
∂

fv
t

u
 

(2.43)     gfufu
t

v =+
∂
∂

. 

The solutions are: 

(2.44)     )cos()( 0 ftuuuu gg −+=  

(2.45)     )sin()( 0 ftuuv g−−= . 

For this velocity field, the particle trajectory is: 

(2.46)     )sin(
)( 0

0 ft
f

uu
tuxx g

g

−
++=  

(2.47)     ))cos(1(
)( 0

0 ft
f

uu
yy g −

−
−= . 

The oscillation radius is now proportional to the difference between initial and 

geostrophic velocity: 

(2.48)     
f

uu
r g )( 0 −

= . 

In the third and last case study we also introduce the dissipative effects 

represented by the viscosity term into the equations of motion: 

(2.49)     ufv
t

u γ−=−
∂
∂
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gfuvfu
t

v +−=+
∂
∂ γ      (2.50) 

The solutions are now: 

)cos()( 0 fteuueuu t
g

t
g

g γγ −− −+=    (2.51) 

)sin()( 0 fteuuv t
g

γ−−−= .    (2.52) 

The equations of the particle trajectory are: 










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
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+−+= −− )cos()sin(
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f
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u
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γγ  (2.53) 
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
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0
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f
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f

fuu
yy tg γ

γ
γ .  (2.54) 

The water particle describes circles with a drift to the East due to geostrophic 

velocity and with a decreasing oscillation radius depending on γ : 

22

0 )(

γ+
+

=
f

fUu
r g .    (2.55) 

These three approximations of the inertial motion have been used to test and to 

validate the particle-tracking algorithms. 

In the three different experiments, we have imposed the Eulerian motion given by 

equations (2.38) and (2.39), (2.44) and (2.45), (2.51) and (2.52). 

We then used the ARIANE, TRACE, SINCEM and SINCEM2 algorithms to 

deduce the particle trajectory and a comparison was made with the analytical 

solutions of equations (2.40) and (2.41), (2.46) and (2.47), (2.53) and (2.54). 

For the first experiment we consider a parcel at the latitude of 45° with an initial 

smu /3.00 = . 

The particle motion is simulated with the four different Lagrangian schemes for 

two days using an integration timestep of 180=∆t  seconds and mdydx 250== . 

The results are shown in Figure 2.2; the particle trajectory obtained with the four 

algorithms describes a circle in agreement with the analytical solution. 
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Figure 2.2 Analytical solution of the inertial motion (red line) superimposed on numerical 

particle trajectories computed with ARIANE (green line), TRACE (blue line), SINCEM 

(magenta line) and SINCEM2 (cyan line). 

The second case study was carried out with two different sets of parameters: (1) 

smu /3.00 =  superimposed on an initial geostrophic flow smu g /04.0=  and (2) 

smu /05.00 =  and smu g /1.0= . 

For the Lagrangian simulation we used a timestep of 180 seconds and 

mdydx 250== . The results are shown in Figure 2.3A,B for both experiments. 

The trajectories reproduce the analytical solution accurately except for ARIANE 

for the case guu >0  (Figure 2.3A). 

In the last experiment we used smu /3.00 = , smu g /04.0=  and a damping time 

of daystd 89.21 == γ  and dayst gg 9.281 == γ  with st 180=∆ . Figure 2.4 

illustrates the numerical trajectories compared with the analytical solution: once 

again, ARIANE is the least accurate of the schemes. 
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(A) (B) 

Figure 2.3 Particle trajectories simulated with ARIANE, TRACE, SINCEM and SINCEM2 

superimposed on inertial oscillation for: (A) initial velocity value higher than geostrophic 

velocity and (B) initial velocity value lower than geostrophic velocity. 

 

 

Figure 2.4 Analytical solution of the inertial motion (red line) for the third study case 

superimposed on numerical particle trajectories simulated with ARIANE (green line), 

TRACE (blue line), SINCEM (magenta line) and SINCEM2 (cyan line). 

2.6.2 The Stommel solution 

The Stommel steady-state solution for the stream function ψ  is obtained 

integrating the Stommel (1948) equation: 



36 

(2.56)    






−=+∇
b

y

bD
r x

π
ρ

πτβψψ sin
00

02  

where a zonal wind stress 






−=
b

yx πττ cos0  has been used. 

The boundary conditions are 0=ψ  at ax ,0= ; and by ,0= . 

In equation (2.56) the parameter r  is the inverse time scale characterizing 

damping by bottom friction and β  represents the latitudinal variation of the 

Coriolis parameter (f ), dydf=β . 

The analytical solution of (2.56) is: 

(2.57)    )sin()1( yxe Sx ππψ ε −−= −  

where Sε  is the thickness of the Western boundary layer: 1)( <<= arS βε . A 

detailed mathematical description of this solution can be found in Pedlosky 

(1987). 

The Eulerian velocity field is obtained from (2.57) by taking: 

(2.58)    
y

u
∂
∂−= ψ

 ; 
x

v
∂
∂= ψ

 

The analytical Stommel solution has been used to validate the particle-tracking 

algorithms introduced above. The validation was only carried out for TRACE and 

SINCEM. 

The numerical values used to apply the Stommel solution are: 

ma 10000=  ; mb 10000=  ; mD 2000 =  ; 6.11=day  

1)(11102 −−= msxβ  ; 1)86400(1 −= sdayxr ; 

Figure 2.5A.B shows the stream function (ψ ) superimposed on the particle 

trajectories advected with the analytical solution (2.58) using the SINCEM and 

TRACE schemes. The trajectories for both cases reproduce a reasonable trajectory 

solution but they are different and further study will be needed to say why. 

 



Chapter 2-Lagrangian Modelling for Particle Prediction in Oceanography 

 37 

  
(A) (B) 

Figure 2.5 Ocean streamlines of the Stommel model solution (black line) that show a strong 

Western boundary current superimposed on numerical trajectories simulated with the 

SINCEM (A) and TRACE (B) algorithms (red line). 

2.7 Sensitivity of Lagrangian numerical schemes to time 

resolution of the Eulerian field 

There are several factors that affect the accuracy of the trajectory simulation. In 

this chapter we consider the time resolution of the Eulerian field and the 

Lagrangian timestep used in the different algorithms, (ARIANE, TRACE, 

SINCEM and SINCEM2). 

In the next following sections we will illustrate the results of the sensitivity 

experiments performed. 

2.7.1 Description of the Lagrangian experiments 

The Lagrangian experiments were carried out in the Adriatic Sea ([39°-46° N, 

12°-21°E]) where a cluster of 8977 particles was released evenly a distance of 

5km from each other. The Eulerian current field is provided by a model solution 

based on the Princeton Ocean Model (POM, Blumberg and Mellor, 1987), 

implemented first by Zavatarelli and Pinardi (2003) and Oddo et al. (2006). The 

model has been implemented on a regular latitude and longitude grid with 
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approximately 5km of horizontal resolution and 21 vertical sigma layers and the 

minimum depth has been set to 10m. 

We performed a total of 19 Lagrangian sensitivity experiments, the parameters of 

which are summarized in Table 2.2. For each experiment the particles have been 

integrated for 13 days using the four particle-tracking algorithms: ARIANE, 

TRACE, SINCEM, SINCEM2. 

The Experiment 1 is considered as the reference case (the ’true case’) against 

which all other experiments (Experiments 2-19) are compared; the integration is 

carried out with the Eulerian current at the highest time resolution of 600 seconds 

(the Eulerian model time step) using the four numerical schemes. 

Experiments 2-11 are performed using daily mean current fields and with variable 

Lagrangian timesteps ( =∆t 600, 1800, 3600, 7200, 10800, 14400, 21600, 28800, 

43200, 86400 seconds). Experiments 12-16 use 3-hour mean velocity fields and 

=∆t 600, 1800, 3600, 7200, 10800 seconds. The last set, Experiments 17-19, 

have been carried out with hourly mean fields and =∆t 600, 1800, 3600 seconds. 

Furthermore, Experiments 2-19 have been carried out under three different 

conditions: 

� CASE1: activating only the deterministic component in the Lagrangian 

model; 

� CASE2: also introducing the stochastic component; 

� CASE3: using snapshot instead of mean current fields. 

Experiment performance is evaluated computing the distance between predicted 

particle position and reference case particle position. 

2.7.2 Definition of the numerical error 

The behaviour of the Lagrangian algorithms with respect to the time frequency of 

the Eulerian field and the integration time step has been valuated comparing the 

particle positions of the reference experiment (Experiment 1) with the other 

simulations (Experiments 2-19). 



Chapter 2-Lagrangian Modelling for Particle Prediction in Oceanography 

 39 

 

Experiment 
N°  Temporal resolution of Eulerian field Lagrangian Time step ( t∆ ) 

(Seconds) 
1 600 seconds 600 
2 Daily mean 600 
3  1800 
4  3600 
5  7200 
6  10800 
7  14400 
8  21600 
9  28800 
10  43200 
11  86400 
12 3-hour mean 600 
13  1800 
14  3600 
15  7200 
16  10800 
17 Hourly mean 600 
18  1800 
19  3600 

Table 2.2 Summary of the Lagrangian sensitivity experiments. 

The comparison is carried out through ensemble averages of the difference 

between the positions of reference and test trajectories; the statistical behaviour of 

an ensemble of Lagrangian trajectories is more relevant than the trajectories of 

each fluid parcel. 

To quantify the Lagrangian sensitivity two error statistics are introduced: the 

absolute error ae  and total error te ; the brackets define ensemble average 

over all particle trajectories. 

The absolute numerical error defines the average distance between particle 

positions from reference and perturbed experiments at a given travel time: 

∑
=

∆−∆=∆
NP

p

pp
refa tnrtnr

NP
tne

1

)()(
1

)(   (2.59) 

where refr  and r  represent either the zonal, meridional or vertical positions of the 

reference and test trajectories respectively; superscript p  is the particle label 
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( NPp ,...,1= ) with 8977=NP ; t∆  is the trajectory integration time step, and n  

identifies the time step number. 

The total numerical error represents the total distance between the positions of the 

reference and test experiment averages in space and time: 

(2.60)    ( )∑
=

∆=
T

n
at tne

T
e

1

)(
1

 

where T  is the total number of the integration time steps ( tnT ∆= ). This total 

error measured in kilometres gives a first evaluation of the accuracy of the 

trajectory simulation for 13 days. 

2.7.3 Result 

2.7.3.1 CASE1 

For CASE1 simulations 2-19 have been carried out with only the deterministic 

component in the particle-tracking algorithms. 

The absolute error curves are shown as a function of days and the time frequency 

of the current field in Figure 2.6, Figure 2.7 and Figure 2.8 (Panels A,B,C and D). 

The different colours of the curves indicate the experiments obtained with diverse 

Lagrangian time steps (t∆ ). The absolute error is considered acceptable if it is 

less than 5 km of the horizontal resolution of the Eulerian model. 

Common behaviour is that ae  increases with time whatever the temporal 

frequency of the Eulerian current, t∆  and numerical integration scheme. 

Furthermore, we notice that ae  decreases with high temporal frequency of the 

current field, using hourly mean velocity the ae  is less than 5 km at 13 days of 

integration (Figure 2.8). 

For TRACE, SINCEM and SINCEM2 (Figure 2.6, Figure 2.7 and Figure 2.8 

panels B,C,D), ae  is also correlated to the Lagrangian timestep; better results 

are achieved with small timestep ( 600=∆t seconds) and high ae  corresponds 

with experiments with larger t∆ . TRACE and SINCEM algorithms, which use 
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both an Euler forward scheme, show similar absolute error curves. ae  decreases 

significantly increasing the time frequency of the Eulerian field and decreasing the 

t∆ . On the contrary, ARIANE shows anomalies in behaviour, insofar as ae  

decreases with high t∆ , and the relation between absolute error and Lagrangian 

timestep is non-linear. With daily mean currents (Figure 2.6A) low error values 

are obtained with st 86400=∆  (1 day); with 3-hours mean (Figure 2.7A) the 

better result is with st 10800=∆  (3 hours) and finally with an hourly mean 

(Figure 2.8A) the optimal is with st 3600=∆  (1 hour). Probably this is due to the 

assumptions made in writing the ARIANE equations, which we have already 

partially discussed in this chapter. SINCEM2 (Figure 2.6, Figure 2.7 and Figure 

2.8D) represents the most accurate algorithm, giving the lowest ae  values. 

Similar general conclusions can be derived from the figures of the total error te  

(Figure 2.9A,B,C,D). We observe that: 

� Eulerian field at high time frequency resolution improves the trajectory 

simulation; hourly field and 3-hour field give better results than daily mean 

currents; 

� For TRACE, SINCEM and SINCEM2, the trajectory simulation also depends 

on Lagrangian timestep. Small t∆  decreases the total error. 

� ARIANE shows a non-linear relationship between te  and t∆ .
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(C) (D) 

Figure 2.6 CASE1. Absolute error (km) for trajectories for Experiments 2-11 against 

simulation time (days), using daily mean current field for: ARIANE (A), TRACE (B), 

SINCEM (C) and SINCEM2 (D) algorithms. 
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(C) (D) 

Figure 2.7 CASE1. Absolute error (km) for trajectories for Experiments 12-16 against 

simulation time (days), using 3-hour mean current field for: ARIANE (A), TRACE (B), 

SINCEM (C) and SINCEM2 (D) algorithms. 
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(C) (D) 

Figure 2.8 CASE1. Absolute error (km) for trajectories for Experiments 17-19 against 

simulation time (days), using hourly mean current field for: ARIANE (A), TRACE (B), 

SINCEM (C) and SINCEM2 (D) algorithms. 
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(C) (D) 

Figure 2.9 CASE1. Total error values (km) for Experiments 1-19 against Lagrangian 

timestep (seconds), for: ARIANE (A), TRACE (B), SINCEM (C) and SINCEM2 (D) 

algorithms. The different coloured lines refer to experiments with diverse temporal 

frequency currents. 
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2.7.3.2 CASE2 

For CASE2 the Lagrangian simulations 2-19 have been carried out with the 

deterministic and diffusive component in the different algorithms (with 

smK H /20 2= ) and in the reference experiment too (Experiment1) we introduce 

the turbulence part. We show only the figure of the total error ( te ) as a function 

of Lagrangian timestep and frequency of the Eulerian field (Figure 2.10 A,B,C,D).  

For TRACE, SINCEM and SINCEM2 the average te  increases with high 

Lagrangian t∆  and low temporal resolution of the Eulerian velocity field (Figure 

2.10 B,C,D). The results obtained with hourly mean velocity (green line) are very 

similar to results computed with the 3-hour mean (red line). For the ARIANE 

experiment we note the same non-linear behaviour observed in CASE1. 

Comparing CASE2 (Figure 2.10) with CASE1 (Figure 2.9), we notice that the 

introduction of the stochastic component, of random motion, in the Lagrangian 

model makes the experiment less consistent and determine an enhancement of 

te . 

The te  trend depends on the choice of the diffusion coefficients ( HK ); for high 

value of the coefficients te  increases substantially; the correction diffusion term 

dominates the mean flow velocity (not shown). 

2.7.3.3 CASE3 

In these final experiments the particles have been advected with current snapshots 

instead of average velocities, and always have the same frequency: daily, 3-hour 

and hourly. The results are shown in Figure 2.11 A,B,C,D. 

Analyzing the results, we can detect the same performances seen in CASE1. The 

Eulerian field at high temporal resolution improves the prediction; in TRACE and 

SINCEM algorithms the total error is strongly related to t∆ ; the SINCEM2 

scheme is less influenced by the Lagrangian timestep and ARIANE shows 

different trends. Furthermore, comparing these results (Figure 2.11) with the 

results of CASE1 (Figure 2.9), we notice that the te  are higher. Thus the 
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particle advection with snapshots of current fields reduces the predictability of the 

Lagrangian trajectories with respect to a true field calculated by the snapshots 

themselves. 

 

  
(A) (B) 

  

  
(C) (D) 

Figure 2.10 CASE2. Total error values (km) for Experiments 1-19 against Lagrangian 

timestep (seconds), for: ARIANE (A), TRACE (B), SINCEM (C) and SINCEM2 (D) 

algorithms. The different coloured lines refer to experiments with diverse temporal 

frequency currents. 
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(C) (D) 

Figure 2.11 CASE3. Total error values (km) for Experiments 1-19 against Lagrangian 

timestep (seconds), for: ARIANE (A), TRACE (B), SINCEM (C) and SINCEM2 (D) 

algorithms. The different coloured lines refer to experiments with different temporal 

frequency currents snapshots. 
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2.8 Summary and Conclusions 

In this chapter we have studied the different algorithms used in particle tracking 

from Eulerian velocity fields. Different methods to resolve the Lagrangian 

advection-diffusion equations have been analyzed. The Lagrangian particle 

trajectories are coupled with the advection field provided by an external Eulerian 

circulation model and a random-walk scheme is used to simulate diffusive 

processes. 

Four different numerical schemes have been proposed and they have been 

validated comparing them with analytical solutions. To apply these schemes to the 

numerical simulations of particle trajectories in realistic ocean system solutions 

we have analyzed the algorithms as a function of time frequency of the Eulerian 

field and the Lagrangian timestep. 

A set of sensitivity experiments have been performed in the Adriatic Sea. The 

Lagrangian predictability is strongly affected by the temporal resolution of the 

Eulerian field; accurate predictions are provided with high resolved velocity 

datasets. The Lagrangian timestep is a function of the Eulerian frequency; for 

hourly mean velocity the optimal value of the Lagrangian timestep is 1 hour. 

Furthermore, Eulerian average current fields provide smaller errors than for 

snapshots. The diffusive component of the trajectory equation introduces 

uncertainties in the particle prediction that could decrease the simulation accuracy 

noticeably. 

Finally, out of the four algorithms tested, the most accurate scheme is SINCEM2 

using a Runge-Kutta scheme and SINCEM with an Euler forward scheme. Both 

use a bilinear spatial interpolation scheme and time interpolation for the Eulerian 

velocity field. 
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3Chapter 3 
 

Numerical Trajectory Comparison with Drifter Data i n 

the Adriatic Sea 

3.1 Introduction 

The first step for the development of Lagrangian dispersion applications is the 

estimation of a generic predictability for Lagrangian trajectories in realistic 

Eulerian flow field simulations. 

This present study is one of the recent attempts to quantify the Lagrangian 

predictability in the ocean using real drifter data; the goal is to provide error 

estimates for particle trajectories. 

This work has been carried out in collaboration with Dr Pierre-Marie Poulain of 

the National Institute of Oceanography and Experimental Geophysics (OGS), 

Trieste. Eulerian and Lagrangian comparisons have been performed between 

drifter data, deployed in the Adriatic Sea as part of the Dynamics of Localized 

Currents and Eddy Variability in the Adriatic (DOLCEVITA) project, and 

numerical trajectories simulated with the Lagrangian model one-way coupled with 

the Adriatic Forecasting System operational model (Oddo et al., 2007). 

The Adriatic Sea is a semi-enclosed sub-basin of the Mediterranean Sea (Figure 

3.1). It extends northwest from 40° to 45° 45’N with a length of about 770 km and 

a mean width of about 160 km; it communicates at the south with the Ionian Sea 
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through the Strait of Otranto. The Northern part of the basin is characterized by 

very shallow water with gently sloping bathymetry with an average bottom depth 

of about 35 metres. The central part is 140 m deep on average, with two small 

bottom depressions (the so-called ‘Pomo’ or ‘Jacuba’ Pits) having a maximum 

depth of 250 m. The southern part is characterized by a wide depression deeper 

than 1100 m. 

 

 

Figure 3.1 Bathymetry of the Adriatic Sea (the depth is given in metres) and schematic map 

of the circulation. 

The two major wind regimes affecting the Adriatic basin are the so-called “Bora” 

(NEE) and “Scirocco” (SE). The Bora blows during the winter, affecting 

particularly the northern Adriatic with intense episodic events, while the Scirocco 

blows mainly in spring and autumn. The Adriatic Sea shows a significant net fresh 

water gain determined by the strong river runoff contribution (Raicich, 1996); the 
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larger river is the Po, located in the Northern part of the basin, having an average 

runoff of about 1500 m3/s. Despite the large fresh water input, the Adriatic Sea is 

a site of dense water formation that occurs at two distinct locations: in the shallow 

northern Adriatic (Artegiani et al., 1989) and in the deeper southern Adriatic 

(Ovchinnikov et al., 1987; Manca et al., 2001). 

The climatological circulation is characterized by well-known current and gyre 

structures (Artegiani et al. (1997a,b), Poulain (2001), Zavatarelli et al. (2002), 

Zavatarelli and Pinardi (2003)). The circulation (Figure 3.1) is generally cyclonic, 

with three main cyclonic gyres located in the southern, central and northern sub-

basin, named, respectively, by Artegiani et al. (1997b) Southern, Middle and 

Northern Adriatic gyres. The three cells are interconnected with seasonally 

varying characteristics by two coastal currents: the Western Adriatic Coastal 

Current (WACC) and the Eastern Southern Adriatic Current (ESAC). The WACC 

flows southward along the western coast from the Po river delta to the Otranto 

Strait; the ESAC flows northward from the Otranto Strait along the eastern coast 

and reaches the central Adriatic sub-basin. 

Section 2 gives a general description of the data used in this study and a brief 

review of the numerical models applied. Section 3 shows the Eulerian statistic of 

the drifter data set and modelled velocity field. The result of Lagrangian 

comparison and the estimation of the prediction uncertainty are given in Section 

4. Summary and conclusions follow in Section 5. 

3.2 Data and methods 

3.2.1 Drifter data 

The observations derive from the surface drifters deployed in the Northern and 

Central Adriatic between September 2002 and March 2004. A total of 124 drifting 

buoys were launched during the international DOLCEVITA project, 

corresponding to 188 deployments because some drifters were recovered and 

redeployed several times. The main objective of the DOLCEVITA project was to 
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quantify the kinematic and dynamic properties of the northern and middle 

Adriatic Sea and to define the mesoscale variability with special attention to 

coastal Italian current. 

Two versions of the CODE drifters (Davis, 1985; Poulain, 1999, 2001) are used, 

with ARGOS telemetry and GPS systems which permit a finer resolution in space 

(~10 m) and time (Barbanti et al., 2005) to be obtained. The position sampling for 

GPS-CODE drifters, transmitted to the ARGOS satellite system, was programmed 

at 1-hour intervals. These surface drifters are considered efficient instruments for 

measuring and describing ocean circulation due to their accuracy in following the 

surface current at 1-2 cm/s. 

The ARGOS and GPS drifter data positions have been subjected to quality 

control. The data have been interpolated at half-hour intervals with the‘kriging’ 

optimal interpolation method (Hansen and Poulain, 1996; Barbanti et al., 2004), 

low-pass filtered with a hamming filter (36-hour cut-off) in order to eliminate 

tidal and inertial variability and then the data have been re-sampled every 6 hours. 

Finally, the surface velocities have been calculated as finite differences of the 

position data. Detailed explanation of the data editing can be found in Ursella et 

al. (2004). 

The data sets analyzed in this work span from September 2002 to March 2004; the 

total drifter trajectories are shown in Figure 3.2. The Northern and Central 

Adriatic are well covered by drifters, with a maximum of density in the 

northernmost part of the basin, while the south Adriatic shows a limited drifter 

distribution. 
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Figure 3.2 Map of the Adriatic Sea with drifter trajectories for September 2002-March 2004. 

3.2.2 Model data 

The current field simulation, used in this work, is provided by the Adriatic 

REGional Model (hereafter AREG). AREG is a free-surface, three-dimensional, 

finite difference numerical model with Boussinesq and hydrostatic approximation; 

it is based on the Princeton Ocean Model, POM (Blumberg and Mellor, 1997), as 

implemented by Zavatarelli and Pinardi (2003) and Oddo et al. (2006). The 

AREG grid has a horizontal resolution of about 1/45° (approximately 2.2 km) 

with 31 vertical sigma levels; detailed description of the model implementation 

can be found in Oddo et al. (2007). 

Surface forcing is computed interactively by means of bulk formulae using the 

atmospheric data provided by the European Centre for Medium-Range Weather 

Forecasts (ECMWF) with 0.5° horizontal resolution and 6hr frequency and the 

model predicted sea surface temperature. The model has been used in the 

forecasting operational system since April 2003 and it releases a nine-day ocean 

forecast for all Adriatic basins every day. The modelled velocity analyzed in this 

work is daily mean field. 
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3.2.3 Lagrangian Trajectory Model 

The trajectory predictions are performed with one of the Lagrangian Trajectory 

Models (LTM) described in Chapter 2. The Lagrangian experiments have been 

carried out considering only the deterministic component of LTM; the 

displacement of the particle is due to the advection of the current field. 

Furthermore, we assume that the particle moves in two dimensions only at the 

surface. The Lagrangian algorithm applied is SINCEM, which gave very similar 

results to the SINCEM2 numerical scheme. 

3.3 Mean and eddy kinetic energy 

In this section the comparison of average properties of the flow provided by 

drifter data and numerical model is explored. The analysis consists of the 

calculation of mean kinetic energy (MKE) and eddy kinetic energy (EKE) from 

the period September 2002-March 2004 for both the Eulerian model and the 

drifters. 

The goal is to investigate the overall consistency of the Eulerian current field used 

to advect the particles and verify the agreement between model and observations. 

Drifter density is high enough to provide significant information on the ensemble 

average circulation of the Adriatic basin. In order to represent the surface currents 

from drifters a spatial scale of averaging must be chosen. Following Poulain 

(2001), we have chosen to compute the mean Eulerian field in bins of 10 km 

radius circular separated by 10 km (with approximately 50% of overlap) assuming 

stationary and uniform statistics within the bins. The size of the bins has been 

defined in such a way that the drifters, sub-sampled every 6 hours, contribute to 

the bin statistics with 1-2 observations. Furthermore, to guarantee robust statistical 

analysis, the bins with less than 5 observations have been rejected (Ursella et al., 

2007). 

The Eulerian property has been estimated following the definition given by 

Poulain (2001). The mean flow has been computed averaging the six-hourly low-
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pass filtered drifter velocity observations for a given bin and in time. The MKE of 

the mean flow is computed as: 

( )22

2

1
vuMKE +=    (3.1) 

where u  and v  are average components of the zonal and meridional velocity 

respectively; the EKE has then been evaluated as: 

( )''''

2

1
vvuuEKE +=    (3.2) 

where uuu −=' , vvv −='  are the residual velocity components and ''uu  

and ''vv  are diagonal elements of the velocity covariance matrix. 

The mean AREG current field has been represented in two different conditions: 

(1) sampling the modelled current in the drifter position and binning in a box of 

10 km following the same method used for the drifters (hereafter AREGa); (2) 

without post-processing (hereafter AREGb), using the full model resolutions. 

The mean drifter flow is shown in Figure 3.3A; the main well-know features of 

the surface circulation in the entire Adriatic Sea are depicted. A global cyclonic 

circulation is represented, with a fast Eastern Adriatic Current (EAC) that flows 

northward along the eastern side. The EAC controls the major sub-basin 

recirculation cells: in the south and in the middle Adriatic around the Jacuba Pit, 

in the northern basin, close to the tip of the Istrian Peninsula and at the north end 

of the basin. The northward current returns south along the Italian coast within the 

WACC. Maximum velocities are found in WACC and EAC. 

The AREGa mean surface current (Figure 3.3B) reproduces the main 

characteristics of the Adriatic circulation. We note the basin cyclonic circulation, 

with the intensified currents along the boundaries: the WACC on the western side 

and the EAC on the eastern side. The cyclonic recirculation cells are well-

reproduced in the south, middle and north Adriatic. The simulated EAC and 

WACC show less energy than the observed one in the southern basin. Finally, 

Figure 3.3C shows the mean flow of AREGb; the current circulation is cyclonic 

and is well represented, with the middle and south cyclonic cells well evident. 
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The comparisons of the mean surface currents show a good agreement between 

observed data and simulated Eulerian field. The model appears to capture 

successfully the circulation structures. 

 

  
(A) (B) 

  

 
(C) 

Figure 3.3 Mean current field computed from drifter dataset (A); AREG interpolated and 

binning (AREGa) (B); AREG without post-processing (AREGb) (C). 

Horizontal maps of the MKE for drifters and AREG model are shown in Figure 

3.4 (panels A,B and C). For drifter data, high values of MKE are found: (1) in 

front of the Po river (with 50 cm2/s2); (2) along the central and south Italian 
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coasts; (3) close to the Jacuba Pit in the Middle Adriatic and off Dubrovnik on the 

eastern side. The highest value is reached along the WACC current, south of Italy, 

while the minimum MKE is found in the open sea. 

The MKE distribution for AREGa is shown in Figure 3.4B. High MKE values are 

localized: (1) close to the Po delta; (2) south of the Po river along the western side 

of the Italian coast and (3) in the middle of the Adriatic. Compared with the drifter 

MKE, the model values are lower with an appreciable attenuation in the southern 

Italian coasts. Figure 3.4C shows the MKE for AREGb; the field is smoother 

compared with the drifter MKE; high values are found along the north and middle 

Italian coasts: off Ancona, around the Gargano Promontory and the Po river delta 

and in the open sea around the Jacuba Pit. 

Finally, we compare the maps of EKE for drifters and model (Figure 3.5). The 

EKE map for drifters shows high spatial variability with maximum values located 

along WACC, in the middle and south of the Italian coast and in the eastern side 

off the Albanin coast. The map of EKE from AREG does not show the same 

energy structure; the field is smoother than observations. In particular, the WACC 

signal is not well represented and the EKE is spread over larger areas with respect 

to observations. 

The comparison between the observed data and the circulation model gives a 

rough validation of the AREG Eulerian product, giving an idea of the accuracy of 

the numerical simulation. We will now use this current field to simulate 

Lagrangian trajectories and depict the limited predictability of the trajectories 

themselves. 
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Figure 3.4 Mean Kinetic Energy computed from drifters dataset (A); AREG interpolated 

and binning (AREGa) (B); AREG without post-processing (AREGb) (C). 
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Figure 3.5 Eddy Kinetic Energy computed from drifters dataset (A); AREG interpolated and 

binning (AREGa) (B); AREG without post-processing (AREGb) (C). 



62 

3.4 Lagrangian comparison between drifters and model 

In this section we analyze the predictability of the simulated trajectories in the 

Adriatic Sea using the drifter dataset described above. The goal is to give a first 

evaluation of the quality and accuracy of the Lagrangian model, quantify the 

predictive skill and evaluate the uncertainty associated with trajectory simulations. 

The Lagrangian statistical analysis was performed on a dataset consisting of 1663 

numerical trajectories computed as follows. The particle-tracking routine is 

applied for clusters of particles released around the initial position of the drifter 

and along its trajectory every 5 days. The cluster consists of 100 particles evenly 

distributed in a square of 5 km around the initial and intermediate drifter 

positions; it is integrated for 10-days periods. The predictability has been studied 

computing the ensemble average distance error (Ed ) between the drifter 

position and the centre of mass of the simulated cluster with a temporal frequency 

of 6 hours: 
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where TN  represents the total number trajectories computed, Dx  and Mx  are the 

drifter position and the centre of mass position of the cluster respectively, n  is the 

total number of time steps with t∆  the timestep of the Lagrangian algorithm. 

This analysis has been performed applying the SINCEM algorithm, which gave 

very similar results to SINCEM2. 

The Lagrangian error results are shown in Figure 3.6; the ensemble average 

distance (km) with its standard deviation is represented in function of the 

simulation time (days). Ed  grows linearly with the integration time; the distance 

error after the first day is kmd E 7≈ ; after 3 days it becomes kmd E 20≈  

reaching approximately km50  after 10 days. We conclude that the trajectory 

simulation accuracy is limited to 2-3 days. 
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Figure 3.6 Ensemble average of the distance error between drifters and simulated particles 

in function of the simulation time. 

In order to identify areas of different predictability the same Lagrangian analysis 

has been done for subregions. The Adriatic Sea has been divided into 5 different 

regions (Figure 3.7) on the basis of the MKE distribution. For each area we 

computed the Ed  as a function of the simulation time. 

Figure 3.8 shows the distance errors for each area; after 3 days of simulation area 

A has kmd E 22≈ ; area B ( kmd E 17≈ ; area C kmd E 24≈ ; area D 

kmd E 35≈ , and finally area E kmdE 26≈ . 

Lowest Ed  values are found in area B ( kmd E 17≈ ), while higher Ed  values 

are present in areas D and E (respectively kmd E 35≈  and kmdE 26≈ ). The 

distance errors computed for each area have been correlated with MKE and EKE 

values of the AREG model. In Table 3.1 the mean values of MKE and EKE for 

each area computed by the drifter dataset and by the numerical model with the 

Ed  values after 5 and 10 days of integration are indicated. We note that the 

lowest error is obtained in area B where there is the lowest difference (%) of MKE 

between model and observations. It seems that EKE differences are not as relevant 
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as MKE differences in explaining the behavior of Ed . These results have to be 

repeated again with a higher precision model output now available. 

 

 

Figure 3.7 Areas of the Adriatic Sea used to analyze the Lagrangian prediction skill. 

 

 

Figure 3.8 Ensemble average of the distance error  between drifters and simulated particles 

in function of the simulation time for each area. 
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Areas N°  MKE 
Drifter 
(cm2/s2) 

MKE 
AREG 
(cm2/s2) 

Diff. 
MKE 
(%) 

EKE 
Drifter 
(cm2/s2) 

EKE 
AREG 
(cm2/s2) 

Diff. 
EKE 
(%) 

Ed  
5 days 
(km) 

Ed  
10 days 

(km) 
A 406 75 66 12% 101 69 31% 34.5 60.6 
B 771 15 12 20% 51 47 0.7% 25.8 44.6 
C 307 39 30 21% 82 76 0.7% 35 61.7 
D 105 158 15 90% 112 96 14% 53.6 91.5 
E 74 196 31 84% 171 108 36% 36.5 74.7 

Table 3.1 Statistics obtained from drifters and numerical model. See text for definition of the 

displayed quantities. 

3.5 Summary and Conclusions 

The predictability and the accuracy of the Lagrangian model developed have been 

explored in the Adriatic Sea using an extensive drifter dataset. This work tries to 

quantify the uncertainty of the simulation of particles and to evaluate the 

importance of the model as a tool for practical applications of the Lagrangian 

trajectory model. The Lagrangian model, described in detail in Chapter 2, has 

been forced by daily mean currents provided by a numerical circulation model at 

high horizontal resolution implemented in the Adriatic Sea. 

Firstly, the model behaviour has been compared with the drifter dataset to 

determine if the Eulerian modelled field reproduces the overall Adriatic Sea 

circulation. The Eulerian comparison performed analyzing the mean flow MKE 

and EKE maps has shown that the agreement between model and data is 

satisfactory for MKE but not for EKE. In addition, the values of MKE and EKE 

are underestimated. We note a weakening of the WACC signal along the southern 

Italian coast. 

The prediction skill of the Lagrangian model has been quantified by calculating 

the error in the distance between the observed drifter position and the centre of 

mass of a cluster of numerical particles traced by advective components of the 

Lagrangian model. The distance error value is of the order of 20 km after 3 days 

of integration. The distance error increases quickly with the time reaching 

approximately 50 km after 10 days. The predictability time limit of the 

Lagrangian simulation is there set to 2-3 days. Finally, an analysis has been 
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performed for different MKE and EKE subregions with the aim of identifying 

areas of greater and lesser predictability. This study has shown that the predictive 

skill may be correlated to areas of high MKE reproducibility, while it is 

insensitive to EKE. 

The simulation skill estimated from this work can be used for practical application 

of the Lagrangian model for pollutant dispersion predictions. In the future we 

intend to investigate the Lagrangian predictability time using a better Eulerian 

model output now available. 

 



 

4Chapter 4 

Maritime Rapid Environmental Assessment Experiment 

in the Ligurian Sea, Part 1: Development of a Relocatable 

Nested System 

4.1 Introduction 

A Maritime Rapid Environmental Assessment Experiment (hereafter MREA) took 

place in May/June 2007 in the Ligurian Sea (Figure 4.1). The MREA exercise was 

a joint effort of several Italian institutes and international organizations. The 

general objective of an REA is to provide in a very short time a methodology 

package that can be used in emergency situations in order to predict 

environmental parameters. 

MREA is based on an ocean observational network and a model prediction 

system; the former collects environmental information of the present status of the 

ocean and the latter possible integration of the observed information, supplying 

ocean nowcasting and forecasting in a short time. 

The origin of REAs is connected to NATO military operations and met to need of 

having the environmental information to support navy operations. The NATO 

MREA concept involves the development of a capability to set up a portable and 

generic ocean observing and prediction system in any region of the world ocean 
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efficiently in a short time (Pouliquen et al., 1997) relevant to numerous civilian 

applications, such as crisis response and temporary marine operations. 

This work investigates two main novel aspects of the MREA concept: 

1. Its possible application in order to manage environmental emergencies such 

as oil spill accidents, pollutant dispersion and search and rescue activities in 

open sea and coastal areas. 

2. The usage of existing ocean operational forecasting system products in 

order to have a first guess of the ocean state and initialize ad-hoc designed 

limited area model. 

The purposes of the MREA07 experiment in the Ligurian Sea were: (1) to collect 

oceanographic data to calibrate and validate the MREA concept for environmental 

applications in open sea and coastal areas; (2) calibrate and validate a relocatable 

model system embedded in the basin-scale operational oceanographic model; (3) 

demonstrate the utility of MREA model systems for contaminant dispersal 

forecasting. 

Considering that pollutant spreading is strongly determined by the surface current 

field, the ocean forecasting system plays a crucial role in contaminant dispersion 

modelling. The relocatable nested model for a limited region represents a possible 

strategy to forecast ocean currents at high resolution and improve the Lagrangian 

prediction. 

In this study we focus on the description of oceanographic data collected during 

the experiment and on the implementation of a nested system model while the 

MREA application for particle prediction will be the subject of Chapter 5. 

The principal objective of this work is to show that an existing operational 

forecasting system can be used successfully in operational oceanography, to 

initialize and update the open boundaries of a limited-area model in order to 

provide a fine-resolution forecast at short notice for any sea region. 

Description of the modelling set-up and comparisons between model results and 

observed hydrographic data collected during the MREA07 exercise will be 

shown. A secondary objective is to analyze the dataset coming from the MREA07 
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campaign during which a large amount of observations are collected and 

hydrographic characteristics of the water masses are examined. 

The modelling system consists of a hierarchy of the following three numerical 

models: (1) the coarse Ocean General Circulation Model (OGCM) that covers the 

whole Mediterranean Sea at a resolution of approximately 6.5 km and is the 

modelling part of the Mediterranean Forecasting System providing ocean 

forecasts for the whole Mediterranean Sea on a daily basin; (2) the intermediate 

relocatable model for the whole Ligurian Sea (hereafter named Ligurian 

Intermediate Model, LIM), at a horizontal resolution of approximately 3 km; (3) 

the finer relocatable model for the central Ligurian Sea (hereafter named Ligurian 

High Resolution Model, LHRM), with a horizontal resolution of approximately 1 

km. 

The models are interconnected along the lateral open boundary from coarse to 

finer model applying the one-way off-line nesting technique; the dynamics of the 

finer model thus do not influence the coarse dynamic model. 

The study area is the Ligurian Sea, a sub-basin of the north-western 

Mediterranean Sea connected to the Tyrrhenian basin through the Corsica 

Channel. To the East and North, the sea borders the Tuscan and Ligurian coasts 

respectively, while in the West it is open towards the western basin of the 

Mediterranean. The dominant large scale feature of the water dynamic is a 

permanent cyclonic circulation, more intense in winter than in summer that affects 

the surface and intermediate layer of the water (Astraldi and Gasparini, 1992). 

The southern water enters the Ligurian basin through two main currents that run 

along each side of Northern Corsica. The West Corsica Current (WCC) flows 

along the western side of Corsica while the warm and salty Tyrrhenian Current 

(TC) flows trough the Corsica Channel. The two currents merge north of Corsica 

forming the Ligurian-Provençal Current (LPC) which moves along the Ligurian 

and the Provence coast toward the Gulf of Lions (Astraldi et al., 1990). Previous 

works have demonstrated the existence of seasonal variability of currents in the 

eastern Ligurian Sea. A stronger seasonal signal was observed in the Corsica 

Channel than in the West Corsican Current; the warmer Tyrrhenian Current is 
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more energetic in winter and spring than in summer (Astraldi and Gasparini, 

1992). 

 

 

Figure 4.1 Map of the Ligurian Sea and locations of CTD stations (dots) collected during the 

first survey (from 7 to 9 May 2007) superimposed over the bathymetry (metres). 

The monthly climatological mean for May computed from the OGCM (MFS) 

model for the period 2001-2007 (Figure 4.2A) shows the main features of the 

Ligurian Sea circulation: the northward WCC and TC that join to the north of 

Corsica and the LPC along the Italian coast. Furthermore, we note the eastern 

branch of the Tyrrhenian current, called here the ‘Elba Island Current’ (EIC), that 

flows northward around the Isle of Elba and meets the LPC. Figure 4.2B depicts 

the June climatology from MFS; the characteristic circulation of the Ligurian 

basin is maintained with an attenuation of the TC and LPC currents. The 

climatology fields are compared with the monthly mean circulation for May and 

June 2007 provided by OGCM (MFS) (Figure 4.2C, D). Significant differences 

can be detected in the circulation pattern: an intensification of the northward 

WCC which creates at the centre of the basin the large-scale cyclonic gyre located 

farther to the coast and the reversal of the TC along the eastern side of Corsica. 
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Figure 4.2 Near-surface (1.5m depth) currents [m/s] superimposed on salinity [PSU] field for 

the Ligurian Sea from the OGCM (MFS) model: A) Monthly mean climatology for May 

(period 2001-2007), B) Monthly mean climatology for June (period 2001-2007), C) Monthly 

mean for May 2007, D) Monthly mean for June 2007. 

The temperature and salinity profiles for the Ligurian Sea are shown in Figure 4.3; 

they are extracted from MEDATLAS climatology (MEDAR/MEDATLAS Group 

2002) and describe the properties of the water masses of the basin. Three different 

layers of water can be identified: the surface water, known as Modified Atlantic 

Water (MAW), extends to a depth of 100-200 metres; the end of this layer is 

characterized by a temperature minimum. The MAW is related to the Atlantic 

water coming from the Strait of Gibraltar and entering the Ligurian Sea from the 

western and eastern sides of Corsica. The intermediate water is characterized by a 

maximum of temperature and salinity; it consists of Modified Levantine 



72 

Intermediate Water (MLIW) coming from the east part of the Mediterranean basin 

and entering from the western side of Corsica. The MLIW extends approximately 

down to 600 m but its lower boundary is not as well defined as its upper one. The 

third is the deep water layer that extends from a depth of approximately 800m to 

the bottom and its physical properties are very different from the MLIW; this 

layer probably has a local origin. 

This paper is organized as follows: in Section 2, the dataset collected during the 

MREA07 experiment is shown and the hydrographic observations are discussed. 

Description of the three numerical models and practical aspects of the nesting 

system implementation are given in Section 3. The results of the one-way nested 

models are shown in Section 4. Section 5 offers summary and conclusions. 

 

  
(A) (B) 

Figure 4.3 Vertical profiles of (A) temperature [°C] and (B) salinity [PSU] for the Ligurian 

Sea extracted from the MEDATLAS dataset for the period of May. 
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4.2 The MREA07 observations 

4.2.1  Data Collection 

The hydrographic data for MREA07 was collected by the Italian Navy Vessels 

Aretusa and Galatea during two oceanographic surveys. The first cruise was 

conducted in May by the Aretusa; weather conditions prevented the completion of 

the original sampling plan, and the position of the CTD collected are shown in 

Figure 4.1. The second campaign was carried out in June by the Galatea; the 

station positions are given in Figure 4.4. A total of 58 CTD casts are available 

over the time period 7 May-18 June 2007 used in this work to analyze the 

hydrographic properties of the Ligurian basin and to calibrate and validate the 

relocatable systems. 

 

 

Figure 4.4 Locations of CTD stations (dots) in the Ligurian Sea during the June survey in 

three different periods: stations 1-20 were collected from 4 to 6 June; stations 21-38 on 13-14 

June and CTD 39-46 on 18 June. 

4.2.2 Hydrographic observations 

In this section we describe the hydrographic observations collected in the Ligurian 

Sea during the first and second surveys of the MREA07 experiment. 
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Figure 4.5A,B shows the vertical profiles of temperature and salinity respectively 

for 12 CTDs collected during the period 7-9 May. We can discern in the vertical 

profiles the three layers of water described in the previous section. The surface 

layer presents the MAW signal; it extends between the surface and a depth of 200 

metres where the temperature reaches the minimum value (T~13.5 °C, S~38.4 

PSU). The intermediate layer is located between 200 and 800 metres and is 

characterized by a slight increase in temperature and a maximum of salinity 

(T~13.7 °C, S~38.6 PSU) distinctive of MLIW mass. Furthermore, we note a 

seasonal shallow thermocline in the first 50 metres of depth with a narrow upper 

mixed layer; the salinity at the sea surface presents a high variability ranging from 

37.3 PSU to 37.9 PSU. The MAW and MLIW water masses are depicted in the 

T,S diagram (Figure 4.5C), which also highlights the presence of two branches of 

MAW, one slightly more salty than the other. The less salty branch is recorded by 

CTDs located in the central area of the basin while the more salty branch is 

measured by the coastal CTDs. This water mass distribution is also confirmed by 

the horizontal salinity field (Figure 4.6B) constructed with Objective Analysis 

(Carter and Robinson, 1987). The salinity field at a depth of 4 metres has only 

been visualized in the areas where the relative error of the interpolated field 

normalized about the field variance is less than 30%. 

We note a particular pattern distribution: low-salinity water in the central basin of 

the Ligurian Sea and high salinity close to the Italian coast. The horizontal 

temperature field at 4 metres (Figure 4.6A) shows the thermal front which divides 

the warmer coastal waters from those in the interior. 
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(A) (B) 

  

 
(C) 

Figure 4.5 Vertical profiles of (A) temperature [°C] and (B) salinity [PSU] and (C) 

temperature-salinity diagram with potential density contours obtained from the CTD 

stations collected during the May survey in the Ligurian Sea. MAW, Modified Atlantic 

Water; MLIW Modified Levantine Intermediate Water. 
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Figure 4.6 Horizontal maps of (A) temperature [°C] and (B) salinity [PSU] fields at 4 m 

depth constructed with the Objective Analysis technique for CTDs collected on 7-9 May, 

represented with dots. 

The vertical profiles of temperature and salinity collected during the second cruise 

in June are shown in Figure 4.7A,B. The temperature profiles show stable 

stratification with a strong thermocline in the upper 50 metres typical of the 

summertime period. At the surface the temperature ranges from 17 °C to 23 °C 

and the salinity from 37.5 PSU to 38 PSU. A subsurface salinity maximum 

(S~38.6 PSU) located at 300-500 metres identifies the MLIW mass. The T,S 

diagram Figure 4.7C confirms the presence of the MAW and MLIW water masses 

and the lack of the MAW branching at different salinity observed in the May 

period. 

The horizontal temperature and salinity fields (Figure 4.8A, B), constructed with 

the OA using the CTD observations collected in June, show different pattern 

distribution of salinity and temperature compared with May. Low-salinity water 

dominates the coastal area close to the Italian coast, while water of higher salinity 

is located in the central basin. This change can be related to seasonal variability of 

the TC and consequently to the EIC that weakens in the summer period. Instead 

the temperature field shows the thermal front with high temperature close to the 

coast and low temperature in the central area of the basin. 
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(A) (B) 

  

 
(C) 

Figure 4.7 Vertical profiles of (A) temperature [°C] and (B) salinity [PSU] and (C) 

temperature-salinity diagram with potential density contours obtained from the CTD 

stations collected during the June survey in the Ligurian Sea. MAW, Modified Atlantic 

Water; MLIW Modified Levantine Intermediate Water. 
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Figure 4.8 Horizontal maps of (A) temperature [°C] and (B) salinity [PSU] field at 4 m depth 

constructed with the Objective Analysis technique for CTDs collected on June (represented 

with dots). 

4.3 Numerical Models for MREA 

In this section we introduce the modelling system. The OGCM downscaled is the 

Mediterranean Forecasting System (hereafter MFS), which covers the whole 

Mediterranean basin, while the double nesting system embedded in the Ligurian 

Sea is based on the Harvard Ocean Prediction System (HOPS). The relocatable 

model domains are shown in Figure 4.9. 

 

 

Figure 4.9 Domains of the two models. MFS is over the whole Mediterranean Sea; LIM at 

3km is the area enclosed by the dashed lines and LHRM at 1km is the area enclosed by the 

solid line. 
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4.3.1 MFS Model 

MFS is the operational forecasting system for the Mediterranean Sea developed in 

the framework of the EU-MFSTEP project (Pinardi et al., 2003) and is currently 

maintained operative by the Italian Group of Operational Oceanography (GNOO). 

The numerical code is based on version of the Océan PArallélisé (OPA) code 

(Madec et al., 1998) with hydrostatic, Boussinesq and incompressibility 

assumptions; a detailed description of the model implementation can be found in 

Tonani et al. (2008). The MFS solves prognostic primitive equations of the ocean 

fields of temperature, salinity, momentum and surface elevation and applies an 

implicit free-surface parameterization described by Roullet et al. (2000). The 

model implementation presents a horizontal resolution of 1/16°x1/16° degrees 

(approx. 6.5 km) and 72 unevenly-spaced vertical z-levels, with the first level 

located at a depth of 1.5 m. The values of the main parameters selected in MFS 

are listed in Table 4.1. 

The model is forced at the surface with the atmospheric forcing; the air-sea fluxes 

of momentum and heat are interactively computed using the MFS sea surface 

temperature and atmospheric fields from the European Centre for Medium-range 

Weather Forecasts (ECMWF) with a temporal frequency of 6 hours provided by 

the Italian National Meteorological Office. 

The MFS model also includes a data assimilation scheme based on reduced order 

optimal interpolation, called SOFA (System for Ocean Forecasting and Analyses 

code); a detailed description can be found in De Mey and Benkiran (2002) and 

Dobricic et al. (2007). The system assimilates the sea level anomaly (SLA) 

observed by satellites, temperature and salinity profiles from XBT and Argo floats 

while the sea surface temperature (SST) is assimilated using a flux correction at 

ocean surface (Pinardi et al., 2003). 

4.3.2 The LIM and the LHRM 

The LIM and the LHRM are based on the Harvard Ocean Prediction System 

(HOPS), an integrated system of software for multidisciplinary oceanographic 
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research developed by the physical oceanography group of Harvard University; a 

detailed description can be found in Robinson et al. (1996), Lozano et al. (1994, 

1996), Robinson (1996,1999) and Robinson and Lermusiaux (2002, 2004). 

The core of HOPS is a free-surface primitive equation model and the prognostic 

variables are temperature, salinity and total velocity arranged on an Arakawa B 

grid (Arakawa and Lamb, 1977). The set of analytical equations are the following: 
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Thermal energy: 
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Conservation of mass: 
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Equation of state: 
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where u  and v  are the velocity components, T  the temperature, S  the salinity, 

θsin2Ω=f  the Coriolis term with Ω  the constant earth rotation rate and θ  the 

latitude, 0ρ  is the reference density , p  the water pressure, ρ  the density, g  is 

the gravity, hA  and hK  are the horizontal eddy viscosity and diffusivity, vA  and 
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vK  are the vertical eddy viscosity and diffusivity. The vertical coordinate system 

is a topography-following system (“double-sigma”) for accurate modelling of 

steep topography. The values of the main parameters used in LIM and LHRM are 

listed in Table 4.1. 

The horizontal subgrid-scale processes (hA , hK ) are parameterized by applying a 

Shapiro filter (Shapiro, 1970) to the variations of the total velocity, tracers and 

barotropic vorticity tendency (UF , TF , WF ), see Table1. For the vertical mixing 

near the surface, a mixing-layer model function of the local wind-stress transfers 

and dissipates the atmospheric forcing; the depth of the mixed layer called in the 

model ‘Ekman depth’ (eh ) is computed as fEtzyxh ke /)(),,,( 0ρτ=  

(Rossby and Montgomery, 1935; Cushman-Roisin, 1994) where kE  is an 

empirical factor, τ  the wind stress vector, 0ρ  and f  as above; this depth is also 

constrained by adjustable bounds (ehmin  and ehmax). The vertical eddy coefficients 

( e
vA  and e

vK ) are set to empirical values inside the mixed layer while below eh  

they are based on the local gradient Richardson number (Ri ), using a scheme 

similar to that of Pacanowski and Philander (PP) (1981). Following PP 

parameterization: 

)51( 2
0
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v
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vv +
+=  ; 

)51( 3
0

Ri

v
KK b

vv +
+=   (4.8) 

where b
vA  and b

vK  are the background coefficients, 0v  the vertical eddy viscosity 

coefficient at 0=Ri . The model also uses the ‘convective adjustment’ that 

consists of applying high mixing coefficients (cvct
vA , cvct

vK ) in regions where the 

stratification is unstable ( 0<Ri ) in order to restore a stable vertical density 

profile. 

Across coastlines, normal flow and tracer flux are set to zero. At the bottom, a 

dynamic stress balance is applied to the momentum equations, with a drag 

coefficient ( dC ). Along coastlines and in the bottom an additional Rayleigh 
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friction is applied using a Gaussian weighting of distance from the bottom or the 

coast respectively (Lermusiaux, 1997). 

The HOPS model version of LIM and LHRM interactively computes the heat and 

momentum surface fluxes starting from ECMWF 6-hour meteorological fields 

using bulk formulae. Surface flux formulation is called interactive because the 

heat fluxes depend on the sea surface temperature computed by the model. The 

bulk formulations used are: the Hellerman and Rosenstein (1983) to compute the 

wind stress from surface winds, the Gill (1982) for latent heat flux, the Reed 

(1977) for solar radiation, the Bignami et al. (1995) for net long-wave flux and the 

Kondo (1975) for sensible heat flux. 

The fresh water flux is calculated by the difference between the evaporation 

minus the precipitation. The evaporation flux has been estimated from the latent 

heat flux while the precipitation values are taken from climatologically monthly 

dataset CPC Merged Analysis of Precipitation (CMAP) obtained by merging 

gauge and satellite estimates (Xie and Arkin,1997). 

For lateral open boundary condition a simple off-line, one-way nesting technique 

is implemented. A provided Orlanski implicit radiation condition is applied to the 

open boundary for tracers and velocity. This boundary scheme follows the 

algorithm of Perkins et al. (1997); corrections to the provided values to the 

boundary are obtained by applying the Orlanski (1976) algorithm to the difference 

between the model values and the provided values. 
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 MFS LIM LHRM 
Numerical Parameters 

Horizontal 
Resolution 

~ 6.5 km ~3 km ~1 km 

Vertical Resolution 72 z-level 30 double σ-level 30 double σ-level 
Time step model 600 sec 100 sec 100 sec 

    
Physical Parameters 

Horizontal mixing 

Constant Coefficients 

smxAh /105 49=  

smxK h /103 49=  

 
Shapiro filter 

1;1;4: === kmnFU  

1;1;4: === kmnFT  

1;1;2: === kmnFW  

 

 
Shapiro filter 

1;1;4: === kmnFU  

1;1;4: === kmnFT  

1;1;2: === kmnFW  

 

Surface vertical 
mixing  

(mixed layer) 
Not present 

 
25.0=kE  

mh e 1min = ; mh e 35max =  

scmAe
v /30 2=  

scmK e
v /5 2=  

 

25.0=kE  

mh e 1min = ; mh e 35max =  

scmAe
v /20 2=  

scmK e
v /3 2=  

Interior vertical 
mixing 

(Pakanowsky-
Philander) 

 

smxAb
v /105.1 24−=  

smxK b
v /103.0 24−=  

smAcvct
v /1 2=  

smK cvct
v /1 2=  

 

 

scmAb
v /1.0 2=  

scmK b
v /01.0 2=  

scmAcvct
v /100 2=  

scmK cvct
v /100 2=  

scmv /100 2
0 =  

 

scmAb
v /1.0 2=  

scmK b
v /01.0 2=  

scmAcvct
v /100 2=  

scmK cvct
v /100 2=  

scmv /100 2
0 =  

Bottom drag 
coefficient 

 
310−=DC  

 

3105.2 −= xCD  3105.2 −= xCD  

Table 4.1 Numerical and physical model parameters of the MFS, LIM and LHRM. hA  and 

hK  are horizontal eddy viscosity and diffusivity coefficients; UF , VF  and WF  represent the 

Shapiro filtering parameterization of horizontal subgrid-scale processes on the total 

velocities, tracer fields and barotropic vorticity tendency with n  the order, m  the number of 

application for timestep and k  its frequency. For the other parameters see the text. 

4.3.3 The LIM and LHRM: configuration and initialization 

The LIM domain covers the region from 42.14° N to 44.49° N and from 6.9° E to 

11.8° E. The horizontal grid resolution is approximately 3km and consists of 
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130x88 points. The vertical grid has 30 double–sigma levels. The model presents 

two open boundaries located to the South and West (Figure 4.9). 

The LHRM domain lies between 43.26°N and 44.49°N and between 8.34° E and 

10.02°E. The horizontal resolution is 1km and in the vertical 30 double-sigma 

levels with similar distribution of LIM. The model has three open boundaries to 

the South, West and East (Figure 4.9). 

The bathymetry for both models has been obtained from the U.S. Navy 

unclassified 1/60° bathymetric database DBDB-1, by linear interpolation of the 

depth data into the model grid. The minimum depth has been set to 10 m for both 

models. 

The LIM model’s initial and lateral boundary conditions are taken from the coarse 

model MFS. The variables temperature, salinity and the total velocity (meridional 

and zonal component) have been extracted from MFS and bilinearly interpolated 

onto the horizontal grid and mapped from flat (z-levels) to terrain-following 

levels. The LHRM initial and lateral boundary conditios, however, have been 

obtained from the LIM model with the same technique. 

4.3.4 The numerical experiments 

LIM and LHRM have been integrated for three different periods for which the 

CTD data are available. The experiments carried out are summarized in Table 4.2. 

The LIM has been initialized 7 days before the first CTD data available, and has 

been forced at the lateral boundary using MFS output. LIM has been integrated 

for 15 days for three different periods: 1) from 1 May to 15 May; 2) from 29 May 

to 12 June and 3) from 7 June to 21 June. 

Initial and open boundary conditions for LHRM have been provided by LIM 

fields. The LHRM model has been initialized three days before the first ‘CTD 

time’ and integrated for 12 days forward for the following periods: 1) from 4 May 

to 15 May; 2) from 1 June to 12 June and 3) from 10 June to 21 June. 

These experiments have been performed using two different vertical grids: the 

original at 40 sigma-levels and the final with 30 sigma-levels. The comparison 

between simulated and observed vertical profiles of temperature and salinity (not 
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shown here) have detected a better model performance using the configuration 

with 30 vertical levels, which is able to represent more accurately the vertical 

structure of the observed ocean and which has been chosen as the final setup for 

the LIM and LHRM. 

The following section shows the simulation results comparing the nested system 

with MFS model and observation data. 

 

 LIM  LHRM 

Exp1 
1-15 May 

(Initialized from MFS) Exp1A 
4-15 May 

 (Initialized from LIM-Exp1) 

Exp2 
29 May-12 June 

(Initialized from MFS) Exp2A 
1-12 June 

(Initialized from LIM-Exp2) 

Exp3 
7-21 June 

(Initialized from MFS) Exp3A 
10-21 June 

(Initialized from LIM-Exp3) 

Table 4.2 Numerical Experiments. 

4.4 Results and Discussion 

In this section we present the assessment of the results obtained with the nested 

system comparing the observed salinity and temperature vertical profiles with 

profiles simulated by LIM, LHRM and MFS; furthermore, the current fields 

simulated will be shown. 

4.4.1 LIM & LHRM: Comparisons with MFS 

The accuracy and the quality of the LIM and LHRM relocatable models have been 

studied by using bias and Root Mean Square (RMS) error indices. The bias 

represents the difference between the model (iM ) and observed (iO ) values and 

the correspondent RMS error is computed as: 

( )∑
=

−=
N

i
ii OM

N
RMS

1

21    (4.9) 

where N  is the total number of data. 

The bias and RMS error are calculated between observed temperature and salinity 

vertical profiles and profiles extracted from MFS, LIM and LHRM. 
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Figure 4.10 shows the bias and RMS error for the first experiment (Exp1) carried 

out with LIM configuration initialized on 1 May at 00:00 from the MFS analysis; 

the comparison has been carried out using the 12 CTDs collected on 7-9 May. 

Figure 4.10A depicts a negative temperature bias for MFS and LIM; that is, the 

modelled profiles are colder than observed data. However, the salinity bias for 

MFS and LIM (Figure 4.10B) is positive in the first 30m of depth and the model’s 

behaviour is essentially equivalent. The RMS error profiles (Figure 4.10C, D) 

indicate good agreement between models and observed values below depths of 

30m; in the surface we note a slight improvement in LIM temperature RMS error 

that can be related to the vertical mixing scheme chosen. 

 

    
(A) (B) (C) (D) 

Figure 4.10 Averaged vertical profiles for the upper 100m for: (A) temperature bias, (B) 

salinity bias, (C) temperature RMS error, (D) salinity RMS error. Blue lines indicate MFS 

results and red lines LIM results for Exp1. 

In the second experiment (Exp2), LIM was initialized on 29 May at 00:00 from 

the MFS analysis; the bias and RMS error have been computed using the 20 CTDs 

collected in the period 4-6 June (Figure 4.11). The main differences between MFS 

and LIM performance are in the temperature vertical structure for the first 70m of 

depth: the LIM simulated temperature are higher than observed values and the 

model is not able to improve the MFS result; this may be a direct consequence of 
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the initialization. The LIM temperature RMS (Figure 4.11C) presents a subsurface 

maximum located at 25 metres. At the surface water (0-20 depth) there is an 

overestimation of the salinity in MFS and LIM represented by a positive salinity 

bias: the models are more salty than observed values (Figure 4.11B). 

Figure 4.12 shows the bias and RMS error computed from the third experiment 

(Exp3) using the 26 CTDs collected on 13-18 June; the LIM is initialized on 9 

June at 00:00. We observe a still positive salinity bias in the surface water and a 

negative temperature bias; the MFS and LIM simulated temperatures are colder 

than observed data. The RMS error profile for LIM temperature presents a 

subsurface maximum located at 40 metres (Figure 4.12C). 

 

    
(A) (B) (C) (D) 

Figure 4.11 Averaged vertical profiles for the upper 100m for: (A) temperature bias, (B) 

salinity bias, (C) temperature RMS error, (D) salinity RMS error. Blue lines indicate MFS 

results and red lines LIM results for Exp2. 

The performance of LIM simulation has also been analyzed comparing its 

horizontal temperature and salinity fields with those of MFS and the observed 

data shown above (Figure 4.6, Figure 4.8). The temperature and salinity fields at 4 

m have been obtained applying the OA scheme to both observation and model 

results sampled in the CTD positions. The MFS (Figure 4.13A, C) and LIM 

(Figure 4.14A, C) temperature fields build for May and June 2007 show a well 
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represented thermal front with the LIM temperature slightly closer to the observed 

fields than MFS. The LIM horizontal salinity field (Figure 4.14B, D), although 

saltier than observed data, presents a better pattern salinity distribution compared 

to MFS, which shows (Figure 4.13B, D) a smooth salinity field. For the May 

period the LIM matches the salinity gradient of the observed field; the salinity 

decreases from coast to central basin. 

 

    
(A) (B) (C) (D) 

Figure 4.12 Averaged vertical profiles for the upper 100m for: (A) temperature bias, (B) 

salinity bias, (C) temperature RMS error, (D) salinity RMS error. Blue lines indicate MFS 

results and red lines LIM results for Exp3. 
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Figure 4.13 Horizontal maps at 4 m depth constructed with the Objective Analysis technique 

from MFS analyses: (A) temperature map for 7-9 May, (B) salinity map for 7-9 May, (C) 

temperature map for 4-18 June, (D) salinity map for 4-18 June. 
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Figure 4.14 Horizontal maps at 4 m depth constructed with the Objective Analysis technique 

from LIM simulation: (A) temperature map for 7-9 Ma y, (B) salinity map for 7-9 May, (C) 

temperature map for 4-18 June, (D) salinity map for 4-18 June. 

The comparisons of the vertical profiles and the horizontal fields have also been 

carried out for LHRM simulations. Not all CTD data have been used for the 

quantitative comparison because the LHRM domain does not cover all data 

positions; the location of the CTD used for each campaign is shown in Figure 

4.18.  

In Figure 4.15 the bias and RMS error for Exp1A is shown; the major differences 

are evident in the temperature RMS error profiles (Figure 4.15C). The LHRM 
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gives better results in the upper layer (0-15m) with respect to LIM and MFS but a 

worsening of the results between 20 and 70m of depth. For salinity bias and RMS 

error the three models are equivalent (Figure 4.15B, D). 

In the second experiment, Exp2A (Figure 4.16), we note a slight improvement in 

the LHRM in the temperature RMS error compared to LIM behaviour. Figure 

4.17 shows the bias and RMS error of the third experiment (Exp3A). LHRM 

provides similar behaviour to the LIM simulation in salinity and temperature 

profiles. 

 

    
(A) (B) (C) (D) 

Figure 4.15 Averaged vertical profiles for the upper 100m for: (A) temperature bias, (B) 

salinity bias, (C) temperature RMS error, (D) salinity RMS error. Blue lines indicate MFS 

results, green lines LIM results and red lines LHRM results for Exp1A. 

The temperature and salinity horizontal fields obtained by applying the objective 

analysis to LHRM simulations (Figure 4.18) confirm the results shown by bias 

and RMS error profiles. The salinity and temperature fields for May and June are 

very similar to LIM maps; there is no clear improvement of the second nested 

model. This probably depends on the time of initialization: 3 days is too short a 

time to create the small scales not captured in the initial conditions. Another 

problem might be the small number of CTD data, which is not sufficient for a 

robust statistic. Furthermore, the LHRM results are affected by coarse horizontal 
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resolution of the atmospheric forcing and both relocatable models are driven by 

the same atmospheric dataset (ECMWF). 

 

    
(A) (B) (C) (D) 

Figure 4.16 Averaged vertical profiles for the upper 100m for: (A) temperature bias, (B) 

salinity bias, (C) temperature RMS error, (D) salinity RMS error. Blue lines indicate MFS 

results, green lines LIM results and red lines LHRM results for Exp2A. 

    
(A) (B) (C) (D) 

Figure 4.17 Averaged vertical profiles for the upper 100m for: (A) temperature bias, (B) 

salinity bias, (C) temperature RMS error, (D) salinity RMS error. Blue lines indicate MFS 

results, green lines LIM results and red lines LHRM results for Exp3A. 
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Figure 4.18 Horizontal maps at 4 m depth constructed with the Objective Analysis technique 

from LHRM simulation: (A) temperature map for 7-9 M ay, (B) salinity map for 7-9 May, 

(C) temperature map for 4-18 June, (D) salinity map for 4-18 June. The area enclosed by the 

solid line represents the LHRM domain. 

4.4.2 Eulerian current field 

In this section we show the near surface (1.5m depth) velocity fields for the MFS, 

LIM and LHRM experiments. 

Figure 4.19 depicts the current fields for MFS, LIM (Exp1) and LHRM (Exp1A) 

for 7 and 14 May. Significant differences can be noted between MFS and nested 

models. MFS is characterized by a reversal of the TC along the eastern side of 

Corsica (Figure 4.19A) and a strong weakness of the Ligurian-Provençal current 

along the Ligurian coast; the cyclonic gyre distinctive for the basin is located 

farther to the coast. The LIM current field for the same day (Figure 4.19C) shows 
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well-defined cyclonic circulation; the northward TC joins with the WCC north of 

Corsica and the Elba Island Current, a branch of TC, runs northward into the 

energetic LPC. The path of the Elba Island Current can be linked to the particular 

pattern of the salinity shown in the horizontal salinity maps for May (Figure 4.6B 

and Figure 4.14B). The corresponding LHRM field (Figure 4.19E) reproduces the 

LIM circulation dynamic with an intensification of the LPC that shifts closer to 

the Italian coast. The LIM and LHRM current fields for 14 May (Figure 4.19D, F) 

are characterized by more energetic circulation pattern with respect to MFS 

(Figure 4.19B). 

Similar considerations can be made for the experiments Exp2 and Exp2A: the 

near surface current field for MFS, LIM and LHRM for 4 June are shown in 

Figure 4.20A, C, E and for 11 June are represented in Figure 4.20B, D, F. The 

MFS field is characterized by a less energetic circulation pattern; the cyclonic 

gyre is located farther from the Ligurian coast and furthermore the TC presents 

another reversal period. The LIM displays a weakness of the LPC, the TC and the 

Elba Island Current. The LHRM shows a well-defined and energetic LPC which 

flows close to the Italian coast. For 11 June in the LIM field (Figure 4.20D) the 

LPC disappears and small eddies are visible around the cyclonic gyre located at 

the centre of the basin. However, for the same day in the LHRM simulation the 

LPC presents intensification (Figure 4.20F). 

The current fields for 13 June and 20 June obtained from the experiments Exp3 

and Exp3A are shown in Figure 4.21 (Panels A, B, C, D, E, F). The MFS model 

shows another reversal event in the Corsica Channel and the lack of LPC signal. 

LIM simulation presents the reversal of TC; the Elba Island Current disappears 

and develops small mesoscale eddies. However, the LHRM for both days (Figure 

4.21E, F) is able to capture the dynamics of the Ligurian circulation representing a 

well-defined LPC that flows toward the western Mediterranean Sea along the 

Italian coast. 
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7 May 2007 14 May 2007 
  

  
  

  
  

  
Figure 4.19 Exp1 and Exp1A. Near surface (1.5 m depth) velocity fields [m/s] from MFS (A)-

(B), from LIM (C)-(D) and from LHRM (E)-(F). Not al l the grid points have been plotted in 

the LIM and LHRM maps. 
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4 June 2007 11 June 2007 
  

  
  

  
  

  
Figure 4.20 Exp2 and Exp2A. Near surface (1.5 m depth) velocity fields [m/s] from MFS (A)-

(B), from LIM (C)-(D) and from LHRM (E)-(F). Not al l the grid points have been plotted in 

the LIM and LHRM maps. 
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13 June 2007 20 June 2007 
  

  
  

  
  

  
Figure 4.21 Exp3 and Exp3A. Near surface (1.5 m depth) velocity fields [m/s] from MFS (A)-

(B), from LIM (C)-(D) and from LHRM (E)-(F). Not al l the grid points have been plotted in 

the LIM and LHRM maps. 
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4.5 Summary and conclusions 

In this chapter we have shown the first results of a modelling effort performed 

during the MREA experiment in the Ligurian Sea during spring-summer 2007. 

The main purposes of this experiment were: 1) to collect hydrological data to 

support the REA methodology; 2) implement and validate a system of nested 

models embedded in existing operational forecasting systems. 

The goal of this work is to understand the improvements in simulating the ocean 

state deriving from a telescopic nesting modelling approach; the models are 

nested using a simple one-way offline nesting technique. The parent coarse ocean 

model with a horizontal resolution of about 6.5 km is part of the Mediterranean 

Forecasting System (MFS); the model has been downscaled with an intermediate 

model at horizontal resolution of the order of 3 km (LIM) and an additional 

submesoscale model of 1 km (LHRM). High-resolution velocity fields provided 

by nested models are required for application in environmental emergency 

management such as oil spills and contaminant spreading. The relocatable model 

can be rapidly implemented in any region of the word and can provide an accurate 

forecast in a very short time. 

The quality of the nested systems has been evaluated by mean of comparisons 

with observed data in order to have a first estimate of the nested model system 

capability in reproducing the dynamics of the Ligurian Sea. 

During MREA07 two oceanographic cruises were carried out by the Istituto 

Idrografico della Marina; 12 CTD profiles were collected during the first survey 

(from 7 to 9 May 2007) and with the second survey (4-6 June, 13-14 June, 18 

June) another 46 CTD profiles were obtained. This oceanographic dataset has 

been useful in investigating the hydrographic structure of the basin. 

The vertical profiles of temperature and salinity show the existence of two 

superimposed layer of marine water: the surface MAW and MLIW (200-800m). 

The horizontal distributions of temperature at a depth of 4 metres show a stable 

thermal front that divides the warmer coastal water from that of the central area of 

the basin. However, the salinity maps show a variable salinity gradient: in May 
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we find higher salinity close to the Italian coast, while in June the salinity 

increases in the centre of the basin. 

The comparison between observed and LIM-simulated salinity profiles shows a 

positive salinity bias in the surface. The model error is a direct consequence of the 

initialization from MFS: the salinity does not significantly change during the 

seven days of simulation and consequently remains close to the initialization 

fields. Due to the fact that all models are driven by the same atmospheric forcing 

and due to the relatively short integration time, the quality of the LIM relocatable 

model is primarily constrained by the quality of the MFS. 

The circulation features simulated with LIM are consistent with the known 

dynamics of the Ligurian Sea. The model is able to reproduce successfully the 

large-scale cyclonic gyre; the LPC and TC are well-represented. 

The second nesting model LHRM gives a similar behaviour to LIM in the 

temperature and salinity fields but the high resolution of the current field helps to 

ameliorate the representation of the LPC, which is well-defined in the velocity 

maps. LHRM is capable of capturing the dynamics in the shelf region which are 

not adequately resolved by the coarser model. 

We can conclude that the nested models are working properly even if we need to 

ameliorate the vertical model structure; in particular, the vertical mixing affecting 

the upper layer introducing atmospheric forcing at higher resolution. 
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5Chapter 5 

Maritime Rapid Environmental Assessment Experiment 

in the Ligurian Sea, Part 2: Drifter Trajectory Simulation 

Using a Relocatable Nested System 

5.1 Introduction 

The Maritime Rapid Environmental Assessment (MREA07) experiment carried 

out in the Ligurian Sea in spring-summer 2007 focused on: (1) collecting 

oceanographic data to calibrate and validate the MREA concept for environmental 

applications in open sea and coastal areas; (2) implementing and validating a 

relocatable model system nested in a basin scale operational ocean model and (3) 

demonstrating the utility of an MREA model system for contaminant dispersal 

forecasting. 

The first and second goals have been discussed and analyzed in Chapter 4, where 

we have demonstrated the implementation of a nested model system in the 

Ligurian Sea embedded in an operational existing general circulation model. The 

third objective will be discussed in this chapter. Contaminant dispersal will be 

mimicked by the movement of a cluster of drifters released close to each other and 

then freely drifting at the surface. 

The main purpose of this chapter is to evaluate the ability of the relocatable 

models to predict particle spreading in the ocean using the drifter dataset collected 
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during MREA07. The spatial resolution of the current field provided by the 

oceanographic model plays an important role in representing the important 

physical processes. Coarse resolution models are not usually capable of resolving 

the relevant scales of motion and may consequently be inadequate for describing 

the drift of floating objects. Our hypothesis is that higher resolution models could 

increase the predictability of particle trajectories. However, it is also true that 

increasing the resolution without an accurate knowledge of the initial condition 

could produce a loss of predictability. This is why observations have been 

collected to be assimilated in the large-scale model in order to increase the realism 

of the initial condition. 

The MREA07 experiment offered a unique opportunity to test the relocatable 

model as a tool in the Lagrangian prediction problem. The relocatable model can 

be rapidly deployed in emergency areas and it could produce high resolution 

forecasts starting from the forecast and analysis products provided by the basin 

scale operational forecasting system. 

This work is organized as follows: Section 2 provides information on the drifter 

dataset released during the MREA07 experiment and on the Eulerian current field 

used for Lagrangian simulations. A description of the Lagrangian model is given 

in Section 3. Section 4 shows the Lagrangian statistics. The experiments 

performed are presented in Section 5, while the results are shown in Section 6. 

Summary and conclusions follow in Section 7. 

5.2 Data sources 

5.2.1  Drifter data 

Surface drifters were deployed in the Ligurian Sea in May and June 2007 during 

the MREA07 and LASIE (Ligurian Air-Sea Interaction Experiment) experiments 

by the Italian Navy Vessel Galatea and R/V Urania. Three drifter clusters, each 

consisting of five drifters, were launched in three different periods in the vicinity 
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of the ODAS buoy (9.17° E 43.79° N). For simplicity, in the discussion we call 

the three clusters: clusterA, clusterB and clusterC. 

ClusterA was launched on 14 May; clusterB was deployed on 17 June; cluster C 

was released on 22 June. The deployment position and 12-day trajectories for 

each cluster are shown in Figure 5.1. 

The drifters employed were provided by NATO/SACLANT Undersea Research 

Centre (NURC) and by Istituto Nazionale di Oceanografia e di Geofisica 

sperimentale (OGS). The drifter design is similar to that used in the Coastal 

Dynamics Experiment (CODE) in the early 1980s (Davis, 1985); a detailed 

description can be found in Poulain (1999) and Ursella et al. (2006). Comparison 

with current meter measurement (Davis, 1985) showed that the drifters follow the 

current to within 3cm/s, even during strong wind conditions. 

These drifters have been localized by Global Positioning System (GPS) at hourly 

intervals and their data telemetered via the ARGOS system. Quality control of the 

drifter positions has been carried out with automatic statistical and manual 

procedures (Ursella et al., 2006) and surface velocities have been calculated as 

finite differences of the position data. 

In Figure 5.1 we notice that, while clusterA turns southward with intense inertial 

oscillation loops (the time scale of inertial oscillations is about 17 hours at these 

latitudes) the other two clusters take the north-westward path, similar to the 

direction of the flow field investigated in PartI (Chapter 4). In particular, clusterC 

seems to be trapped in a narrow intense jet very close to the coasts, which could 

be very hard to produce with the large-scale numerical models. ClusterA starts 

really to disperse after 7 days. The other two clusters, however, do not seem to 

evidence any dispersal, probably due to the coastal boundary jet intensification. 

5.2.2 Surface currents 

The surface current fields used for Lagrangian simulations have been provided by 

the MFS and nested models described in PartI (Chapter 4). For our Lagrangian 

experiments we will use the MFS analysis hourly snapshots. 
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The nested system is based on two relocatable models implemented in the 

Ligurian Sea with two successive zooms. The first system implemented is the 

Ligurian Intermediate Model (LIM) with 3 km horizontal resolution and the 

second system is the finer Ligurian High Resolution Model (LHRM) that reaches 

1 km of horizontal resolution. 

 

 

 

(A) (B) 
 

  
(C) (D) 

Figure 5.1 (A) 12-day trajectories of the 15 drifters released during the MREA07 and LASIE 

experiments in the Ligurian Sea and domains of the two nested models represented with 

solid and dashed lines. Zooms of trajectories of the three clusters: (B) clusterA, (C) clusterB, 

(D) clusterC. 

LIM and LHRM are based on the Harvard Ocean Prediction System (HOPS) 

model system. The core of HOPS is a free-surface primitive equation model with 

prognostic variables arranged on an Arakawa B grid and sigma-coordinates in the 
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vertical direction; a detailed description of HOPS can be found in Robinson 

(1996, 1999) and Lozano et al. (1996). 

Exhaustive information about LIM and LHRM implementation is given in 

Chapter 4. The three models are coupled by simple one-way, offline nesting 

technique; the finer grid model initial and boundary conditions are interpolated 

from the coarse grid model without any feedback from the fine to the coarse 

system. The coarse MFS model provides initial and boundary condition to LIM 

which in turn provides initial and boundary condition to LHRM. The three models 

are forced to the surface with the atmospheric forcing European Centre for 

Medium-Range Weather Forecasts (ECMWF) with a 0.5° horizontal resolution 

and temporal frequency of 6 hours provided by the Italian National 

Meteorological Office. 

5.3 Trajectory model 

The Lagrangian simulations have been performed with a Lagrangian dispersion 

model which describes the drifters spreading with a discrete number of mass-less 

particles released from a source point. The movement of individual particles is 

given by the summation of successive particle displacements; each of these 

displacements is described by a deterministic and a stochastic part. The first 

component represents the advection associated with the Eulerian current field 

while the second part describes the sub-grid scale diffusion due to unresolved 

scales in the Eulerian model. To simulate this particle turbulent motion, we use a 

stochastic process parameterization. In our trajectory model we then write: 

ξ
rrr

rdtKdtUxd v2+=     (5.1) 

where ),( dydxxd =r
 is the displacement in the horizontal plane, U

r
 is the Eulerian 

velocity field, dt  the Lagrangian timestep, vK r  is a turbulent diffusion coefficient 

and ξ
r

 is a randomly generated number with values between 0 and 1. The key 

issue is to estimate the proper vK r  for our model grids. 
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5.4 Estimating turbulent velocity statistics 

In this section Lagrangian velocity statistics are computed using oceanographic 

drifter data and Eulerian model velocities to estimate the turbulent diffusion 

coefficient used in equation (5.1). 

Taylor (1921) demonstrated that the turbulent dispersion of particles in 

homogeneous turbulent flows can be evaluated using the autocorrelation function 

of the Lagrangian velocity field. 

In order to quantify the diffusivity we will compute the difference between the 

model velocities and the drifter ones making the assumption that this difference is 

due to the stochastic part of the flow field not resolved by the model. 

The fluctuating velocity for the zonal component ('u ) and meridional component 

( 'v ) is then computed as the difference between drifter velocity (u , v ) and 

modelled velocity ( MU , MV ) as: 

(5.2)     MUuu −='  ; MVvv −=' . 

The modelled velocities are hourly snapshot values provided by three numerical 

models: MFS, LIM and LHRM; the bilinear interpolation of the Eulerian velocity 

from the grid model to the location of a drifter has been performed using the four 

grid points around the position. The average time series of 'u  and 'v  calculated for 

each drifter have been used to compute the autocovariance function and estimate 

the diffusivity coefficient. 

The relations used for the autocovariance (R ) and diffusivity (K ) are: 

(5.3)   )()()( '' ττ += tutuRu  ; )()()( '' ττ += tvtvRv  

(5.4)    ττ
τ

dRK uu ∫=
0

)(  ; ττ
τ

dRK vv ∫=
0

)(  

where τ  is the time lag. 

The autocovariance functions and the diffusivities obtained from clusterA using 

MFS, LIM and LHRM current fields are depicted in Figure 5.2 panels A,B,C 

respectively. The autocovariances and diffusivities show a slight anisotropy with 

the zonal component more energetic than the meridional component; the 
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autocovariances also present a rapid exponential decay at short timescales. For all 

three cases the diffusivity converges to asymptotic value. For the MFS model we 

obtain scmxK v /106.1 26≈r , for LIM scmxK v /101 26≈r  and for LHRM 

scmxK v /108.0 26≈r . The vK r  value is correlated with the horizontal grid 

resolution of the Eulerian model; increasing the resolution of the current field the 

diffusivity coefficient decreases. 

In the future we will calculate the diffusion coefficients for each model without 

doing trajectory differences in an attempt to estimate each model subgrid scale 

parameterization. 
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(A) (B) 

  

 
(C) 

Figure 5.2 Autocovariance functions [R] and diffusivities [K] resulting from clusterA using 

MFS (A), LIM (B) and LHRM (C) current fields. The c ontinuous line refers to the zonal 

component and dotted lines to the meridional component. 

5.5 Experiment design 

In this section we investigate the sensitivity of the Lagrangian trajectory model as 

a function of the horizontal resolution of the Eulerian velocity field. The goal is to 

evaluate the ability of the relocatable models to simulate the drifter movement. 

The LIM and LHRM have been integrated for three different periods for which 
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the drifter data are available. Initial and boundary conditions for LIM simulation 

have been given by MFS analysis and initial and boundary conditions for LHRM 

have been provided by LIM output. The hourly snapshot current fields provided 

by MFS, LIM and LHRM have been used to drive the Lagrangian trajectory 

model in order to reproduce the trajectories of clusterA, clusterB and clusterC 

(Figure 5.1). 

The impact of the Eulerian horizontal resolution field on particle trajectories has 

been quantified by means of comparisons of the observed drifters trajectories to 

those simulated. 

The Lagrangian experiments have been carried out by releasing a cluster of 

twenty-five particles evenly distributed in a square of 5 km each day along the 

trajectories of the drifters, integrated for 5-day periods. 

The results have been analyzed with qualitative and quantitative comparisons. The 

first test is a qualitative comparison between the drifters and simulated 

trajectories. The second test is a quantitative comparison in order to quantify the 

Lagrangian simulation accuracy. Accuracy has been evaluated considering the 

ensemble average distance error (Ed ) between the drifter position and the centre 

of mass of the simulated cluster with a temporal frequency of 1 hour: 

( )∑
=

∆−∆=∆
TN

i
MD

T
E tnxtnx

N
tnd

1

)()(
1

)(    (5.5) 

where TN  represents the total number of trajectories computed, Dx  and Mx  are 

the drifter position and the centre of mass position of the cluster respectively, n  is 

the total number of timestep with t∆  the timestep of the Lagrangian trajectory 

model. 

One additional experiment has been added to investigate the effect of the 

horizontal resolution of the atmospheric forcing on trajectory calculations. In this 

experiment the LIM has been forced to the surface with a high horizontal 

resolution atmospheric forcing. The atmospheric forcing is from the COSMO-ME 

model with a horizontal resolution of 7 km and 6hr temporal frequency provided 

by the Italian National Meteorological Office (Bonavita and Torrisi, 2005). The 
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LIM current field has been used to drive the Lagrangian simulations to reproduce 

the movement of the three clusters. 

5.6 Results 

The quality and the accuracy of the simulated trajectories have been explored with 

qualitative and quantitative comparisons. Analysis has been performed for 

clusterA, clusterB and clusterC, deployed during the MREA07 experiment. 

5.6.1 Qualitative comparison of trajectories 

As a first test, a qualitative comparison between the real and simulated trajectories 

is carried out. We report here only the qualitative results obtained with one drifter 

of clusterA deployed in May. Figure 5.3 shows the simulated trajectories 

computed using the MFS current field. We note that the numerical trajectories, 

integrated with the coarse resolution model, are not able to reproduce the 

displacement of the drifter. Initially, the drifter turns southward while the 

numerical trajectories take the north-westward direction with large velocities 

compared to those of the drifters. Furthermore, in the final path of the drifter the 

numerical trajectories move southward more quickly than the drifter. 

Figure 5.4 depicts the Lagrangian simulations driven by the LIM current field. We 

can note a slight improvement in the simulations. Initially the numerical 

trajectories turn southward following the direction of the drifter and they have 

velocity values comparable to those of the drifters. 

The numerical trajectories computed with the LHRM current field are shown in 

Figure 5.5; the results are very similar to those obtained with the LIM current 

field. The simulated trajectories capture the drifter movement in its initial path 

successfully, while there is some discrepancy in the final part of the drifter. 

The performance of these Lagrangian simulations has been quantified with 

statistical analysis shown in the next sections. 
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Figure 5.3 Five-day numerical trajectories (red line) of 25 particles released along one drifter 

trajectory of clusterA computed with MFS hourly snapshot fields. The blue line indicates the 

five-day drifter trajectory; the cyan line is the total drifter trajectory; the star marks the 

initial numerical trajectories and the cross marks the initial drifter total trajectory. 
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Figure 5.4 Five-day numerical trajectories (red line) of 25 particles released along one drifter 

trajectory of clusterA computed with LIM hourly sna pshot fields. The blue line indicates the 

five-day drifter trajectory; the cyan line is the total drifter trajectory; the star marks the 

initial numerical trajectories and the cross marks the initial drifter total trajectory. 
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Figure 5.5 Five-day numerical trajectories (red line) of 25 particles released along one drifter 

trajectory of clusterA computed with LHRM hourly sn apshot fields. The blue line indicates 

the five-day drifter trajectory; the cyan line is the total drifter trajectory; the star marks the 

initial numerical trajectories and the cross marks the initial drifter total trajectory. 
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5.6.2 Quantitative comparison of trajectories 

In this section we show the quantitative measure of the sensitivity of Lagrangian 

simulation as a function of the Eulerian field resolution. 

The ensemble average distance errors (Ed ) for each cluster are shown in Figure 

5.6A,B,C in function of the simulation time (days). For all clusters the distance 

error increases linearly with the integration time in agreement with our previous 

study (see Chapter 3). 

For clusterA (Figure 5.6A), the Lagrangian simulations carried out with the MFS 

current field provide high Ed , the distance error after the first day is 

kmd E 10≈ , after 3 days becomes kmd E 25≈  and reaches approximately 

km30  after 5 days. The LIM and LHRM experiments, however, give instead 

small Ed , after one day kmd E 5≈ , after 3 days kmd E 10≈  and after 5 days 

of integration kmd E 15≈ . We conclude that for clusterA the higher resolution 

current field improves the Lagrangian trajectory simulation, even though there are 

not evident improvements with the current field at 1km provided by LHRM. 

The statistical results for clusterB are shown in Figure 5.6B. We can note a slight 

improvement in the Lagrangian simulations driven by the LIM and LHRM current 

fields after the third day of integration. After 5 days of integration MFS provides a 

value of kmd E 100≈  while the simulations with LIM and LHRM give a 

kmd E 50≈ . 

The last analysis has been performed with clusterC (Figure 5.6C); in this case we 

obtain high Ed  values using the three Eulerian current fields; for this cluster an 

improvement of the prediction with a higher horizontal resolution model is not 

evident. This probably depends to the position of the drifters; most of the 

trajectories closely follow the coastline and the Eulerian models do not resolve the 

shelf dynamics accurately. 
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(C) 

Figure 5.6 Ensemble average of the distance errors between drifters and simulated 

trajectories in function of the simulation time for: (A) clusterA, (B) clusterB, (C) clusterC. 
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5.6.3 Sensitivity of trajectory model to atmospheric forcing 

In this section we show the qualitative and quantitative results obtained from 

Lagrangian trajectory simulations driven by LIM output with high-resolution 

atmospheric forcing. 

Figure 5.7 depicts the numerical trajectories for one drifter of clusterA. We can 

note that initially the numerical trajectories represent the drifter movement well 

and show intense inertial oscillation loops. The atmospheric forcing at high 

resolution seems to improve the Lagrangian simulation. This improvement is not 

so evident from the statistical analysis. The quantitative measure of Lagrangian 

simulation performance is shown in Figure 5.8; the distance error values obtained 

using LIM forced by ECMWF and COSMO-ME are compared. For this 

quantitative comparison a great improvement caused by changing the resolution 

of the atmospheric forcing it is not evident. 
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Figure 5.7 Five-day long numerical trajectories (red line) of 25 particles released along one 

drifter trajectory of clusterA computed by LIM hour ly snapshot fields forced by high-

resolution atmospheric forcing. The blue line indicates the five-day drifter trajectory; the 

cyan line is the total drifter trajectory; the star marks the initial numerical trajectories and 

the cross marks the initial drifter total trajector y. 



118 

 
Figure 5.8 Ensemble average of the distance errors between drifters and simulated particles 

in function of the simulation time for: (A) clusterA. 

5.7 Summary and Conclusions 

In this study our goal has been to evaluate the ability of the relocatable models to 

simulate particle spreading in the ocean using the drifter dataset available. The 

hypothesis formulated is that high-resolution models could increase the 

predictability of particle trajectories. 

This study has been performed in the framework of MREA07 experiment, which 

took place in the Ligurian Sea in spring-summer 2007. A nested model system has 

been implemented in the Ligurian Sea embedded in the operational MFS. The 

MFS system releases current field for the whole Mediterranean Sea with a 

resolution of approximately 6.5 km. This horizontal resolution could represent a 

limit for the Lagrangian trajectory simulation. The relocatable model represents a 

possible solution to this problem: it can be rapidly deployed in limited area and 

provide fine resolution forecasting at short notice starting from the MFS products. 

The first relocatable model implemented is LIM with 3km of horizontal resolution 

and the second model is LHRM, which reaches 1km of horizontal resolution; the 

models are nested using a simple one-way offline nesting technique. 
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The impact due to the horizontal resolution of the Eulerian field on the particle 

trajectory simulation has been investigated by means of comparisons between 

drifter and numerical trajectories. The drifter trajectories have been simulated with 

a Lagrangian trajectory model. 

During MREA07 three clusters each consisting of five drifters were launched in 

the Ligurian Sea in three different periods. The first cluster (clusterA) was 

launched on 14 May, the second cluster (clusterB) was deployed on 17 June and 

the third cluster (clusterC) was released on 22 June. The paths of the drifters are 

very different: clusterA moves southward with intense inertial oscillation loops 

while the other two clusters take the north-westward direction driven by a strong 

current. 

In the first part of the study this drifter dataset has been used to estimate the 

turbulent diffusion coefficient used by the Lagrangian trajectory model to describe 

the sub-grid scale diffusion. We found that the diffusivity values for clusterA are 

in the range 126106.18.0 −− scmx ; these value are too large to use in the 

Lagrangian trajectory model. We need in the future to apply different methods to 

estimate the diffusion coefficients from observed drifters. 

In the second part of the study, the predictability of the Lagrangian model has 

been analyzed as a function of the horizontal resolution of the Eulerian model. 

The trajectory model has been forced with MFS, LIM and LHRM hourly snapshot 

current fields in order to reproduce the observed drifters. The qualitative and 

quantitative comparisons between real drifters and simulated trajectories show 

that the current field at higher resolution does not always improve Lagrangian 

predictability. LIM and LHRM are able to improve the simulation of clusterA, 

while for clusterB and clustedC the improvement is not evident, probably due to 

drifter trajectories closely following the coastline. 

Lagrangian predictability can be increased using an atmospheric forcing at higher 

resolution that improves the simulation of the Eulerian field provided by the 

relocatable model. 
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Future work will include testing the relocatable models in other ocean regions 

using the drifter dataset available and with an atmospheric forcing at a higher 

resolution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

6Chapter 6 

Conclusions 

In this work we presented the development and the application to real case studies 

of a lagrangian trajectory model to simulate and forecast the passive tracers 

dispersion in the sea. We considered the tracers as mass-less water parcels, 

leaving for future studies the development of a trajectory model for active 

particles like oil or other chemical pollutants in the sea. Initially the effort has 

been devoted to the development of a validated numerical trajectory model that is 

at the basis of practical applications such as the management and prevention of 

environmental impacts from pollutant spreading and/or support for efficient 

search and rescue operations. Our main motivation has been to design a set of 

numerical tools to be coupled to marine hydrodynamics models simulating the 

eulerian currents in the ocean and marine areas. The dispersion of tracers is then 

reduced to the tracking of many particles in the sea, advected by currents and 

dispersed by turbulence. 

Two important aspects of the Lagrangian model have been dealt with this thesis: 

the implementation and validation of different particle trajectory numerical 

models, their coupling with eulerian models and the parameterization of turbulent 

diffusion. In a second part, the Maritime Rapid Environmental Assessment 

(MREA) concepts have been enlarged to relocatable models nested within 

operational oceanographic systems and coupled with particle-tracking algorithms 

in order to extend the limit of predictability of particle trajectories in the sea. 



122 

In the first part of this work (Chapter 2) four particle-tracking algorithms have 

been implemented and intercompared to estimate the numerical accuracy of the 

algorithms. The trajectory model describes the motion of a number of discrete 

particles which positions vary due to advection and a diffusive components, each 

of them is modeled separately. Two different numerical integration schemes have 

been developed to compute the particle advection motion. The first is an Eulerian 

forward and the second is the fourth-order Runge-Kutta method, both algorithms 

adopt a bilinear spatial interpolation and a linear temporal interpolation method to 

the eulerian advective field. The diffusive component represents the sub-grid 

turbulent diffusion due to the unresolved scales in the eulerian motion. A 

stochastic process parameterization is introduced to simulate the particle turbulent 

motion. Firstly, these particle-tracking algorithms have been validated with two 

analytical solutions and the numerical scheme accuracy has been evaluated by 

means of sensitivity experiments. The experiments have underlined the 

importance of the temporal resolution of the eulerian field and they show the 

advantage of both Runge-Kutta and Eurler forward methods for the accurate 

reproduction of the analytical solutions. 

One of the two accurate trajectory models has been then coupled with a realistic 

Eulerian flow field in order to estimate the generic predictability of particle 

trajectories in the Adriatic Sea using a large observational data set collected 

between 2002 and 2004 (Chapter 3). The lagrangian simulations have shown that 

the average predictability limit of trajectories is 20 km after 3 days of simulation. 

This value represents the current limit of single trajectories predictability given a 

resolution of approximately 2 km for the eulerian velocity field. This analysis is a 

first attempt to evaluate the uncertainty of trajectories forecasts and we believe 

that increasing the realism of the eulerian flow filed and its time resolution will 

allow a major improvement in the near future. 

The second part of this thesis is dedicated to the MREA concept and its extension 

to lagrangian predictions (Chapter 4). The MREA philosophy has been extended 

to the coupling of high resolution models nested in the operational Mediterranean 

Forecasting System (MFS). The study has concentrated in the design and 
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execution of a MREA experiment in the Ligurian Sea during May-June 2007. The 

advantages of the MREA approach for tracer dispersal forecasting can be 

summarized in the following three points: 1) the relocatable model can be rapidly 

applied in any region of the sea affected by environmental emergencies; 2) greater 

resolution and then accuracy in the eulerian field can determine an extended 

predictability of particle trajectories and 3) nowadays the nested models can be 

initialized and driven by coarse operational circulation models. The particle 

trajectories are extremely sensitive to the details of the Eulerian flow and to the 

small-scale processes that cannot be resolved by coarse resolution grid models. In 

the past, MREA concepts defined the system design, in terms of observations, 

climatology and numerical models, needed to increase processes and resolution in 

limited area of the open ocean and the coastal seas. In our MREA extension, the 

relocatable models have been successfully nested in operational forecasting 

models and they have shown to increase the realism of the current simulations. 

The relocatable models are shown to be capable to simulate quite accurately the 

major ocean dynamics of the Ligurian Sea and to ameliorate the mesoscale 

processes representation. The comparison with data collected in situ has shown 

that the nested model simulations are in agreement with observations better than 

the coarse model. The major model errors are a direct consequence of the 

initialization from coarser model fields: in the future the assimilation of the 

MREA data directly in the nested model should correct this error. 

In the last part of the thesis (Chapter 5) the hypothesis that higher resolution 

models could increase the predictability of particle trajectories has been verified. 

The products of relocatable models have been used to drive the trajectory model 

developed in this thesis and the results have been compared to the drifters released 

during MREA07. The drifters have been released close to each other to mimic the 

dispersion of contaminants from a point source. The lagrangian simulations have 

demonstrated an increase in the lagrangian predictability for one of the three 

clusters of drifters deployed. The higher resolution current field could improve the 

lagrangian predictions but further work is necessary to ameliorate the realism of 

the eulerian flow field in two of the three studied periods. 
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The next step of this study is the design and the implementation of an operational 

forecasting system based on the relocatable models (Appendix A). We have 

started this research during the framework of MREA08 experiment, carried out 

again in the Ligurian Sea in October 2008. Due to the short time, the results of 

this experiment are still work in progress. In the thesis we have included only the 

report of the oceanographic cruises and the description of the operational 

forecasting system developed. Even if the results are still under validation, it is 

clear that the nested forecasting system has worked properly. 

For the future there are several pending and new open questions to address. 

Firstly, the trajectory model must be improved in the particle spreading part of the 

algorithm, introducing a better parameterization of lagrangian turbulence 

processes depending on the eulerian model resolution. Secondly, the eulerian flow 

field representation should include the wave propagation and the induced Stokes 

drifts and probably the tidal currents. 

Finally, future research of lagrangian trajectories uncertainty should consider 

multi-model estimates also by means of nested relocatable models similar to the 

ones we have implemented in this thesis but not exclusively. 

 

 

 



 

AAppendice A 

Esperimento di Maritime Rapid Environmental 

Assessment (MREA08): Rapporto di Crociera 

In questa sezione è presentato il rapporto dell’esperimento di Maritime Rapid 

Environmental Assessment (chiamato MREA08) realizzato nel Mar Ligure dal 29 

settembre al 22 ottobre 2008. Il rapporto contiene la descrizione delle campagne 

oceanografiche effettuate dalla Marina Militare Italiana, l’elaborazione dei dati 

acquisiti e la presentazione dei risultati preliminari ottenuti dal sistema di 

previsione sviluppato per l’esperimento. Le previsioni giornaliere dei campi di 

temperatura, salinità, velocità e d’elevazione della superficie del mare sono state 

realizzate con un sistema di modelli rilocabili ad alta risoluzione annidati nel 

modello operativo a grande scala del Mediterraneo (MFS). Un’approfondita 

elaborazione scientifica dei risultati sarà sviluppata in futuro. 

A.1 Istituti partecipanti 

All’esperimento MREA08 hanno partecipato i seguenti Istituti ed Enti di Ricerca: 

� Istituto Idrografico della Marina (IIM): 

 C.C. Maurizio DeMarte 

 C.C. Piero Di Vasta 
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� Centro Nazionale di Meteorologia e Climatologia Aeronautica (CNMCA) - 

Ufficio Spazio Aereo e Meteorologia (USAM): 

 Ten. Col. Massimo Ferri 

 Cap. Lucio Torrisi 

 Brig. Gen. Massimo Capaldo 

 Dr. Francesca Marcucci 

 Col. Sergio Pasquini. 

� Università di Bologna (UNIBO): 

 Prof.ssa Nadia Pinardi 

 Dott. Nicoletta Fabbroni 

� Istituto Nazionale di Geofisica e Vulcanologia (INGV): 

 Dr. Paolo Oddo, 

 Ing. Massimiliano Drudi 

 Ing. Michela Dedominicis 

 Dott. Claudia Fratianni 

 Dr. Marina Tonani 

� Istituto Nazionale di Oceanografia e Geofisica Sperimentale (OGS): 

 Dr. Pierre-Marie Poulain 

 Dr. Elena Mauri 

 Dr. Riccardo Gerin. 

� CNR-ISMAR: 

 Dr. Annalisa Griffa 

� Ente per le nuove Tecnologie, l’Energia e l’Ambiente (ENEA): 

 Dr. Giuseppe Manzella 

 Dr. Franco Reseghetti 

� CNR-ISAC: 

 Dr. Rosalia Santoleri 

 

All’esperimento hanno partecipato anche i seguenti partner stranieri: 

� NURC: 

 Dr. Michel Rixen, 
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 Dr. Alberto Alvarez 

� MIT, Cambridge (USA): 

 Dr. Pierre Lermusiaux 

 Dr. Patrick Haley 

 Dr. Wayne Leslie. 

A.2 Introduzione 

L’esperimento di Maritime Rapid Environmental Assessment (MREA08) 

rappresenta la continuazione dell’esperienza REA in campo marino iniziata nel 

2007 con MREA07, descritto nel Capitolo 4 e Capitolo 5. 

MREA08 è stato realizzato nel Mar Ligure nel periodo 29 Settembre-22 Ottobre 

2008 per raggiungere i seguenti obiettivi scientifici: 

1. Collezionare dati oceanografici per calibrare e validare il sistema MREA 

finalizzato ad un’applicazione ambientale in mare aperto e costiero; 

2. Calibrare e validare il sistema di modelli rilocabili annidato nel modello 

oceanografico operativo di larga scala; 

3. Dimostrare la potenzialità della metodologia MREA nella previsione della 

dispersione di inquinanti in mare; 

4. Studiare i processi di mesoscala del Mar Ligure e il loro impatto sulla 

dispersione di inquinanti. 

La metodologia di REA è stata sviluppata nel campo marino dal gruppo di 

Harvard del Prof. Allan Robinson per fornire rapidamente un’accurata previsione 

e simulazione dello stato del mare in supporto alle attività operative. La tecnica 

REA si basa su un sistema osservativo che fornisce una descrizione dello stato del 

mare e di una componente modellistica capace di utilizzare le osservazioni 

collezionate per una rapida previsione dei campi marini. Nell’esperimento 

MREA08, la parte di modellistica è costituita da un sistema di modelli rilocabili in 

grado di produrre previsioni dei campi di corrente ad altissima risoluzione 

orizzontale partendo dai modelli operativi esistenti nell’area, che rilasciano analisi 

e previsioni in tempo reale. Questi campi di corrente ad alta risoluzione possono 
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essere utilizzati per simulare e prevedere la dispersione d’inquinanti sia in mare 

aperto che in prossimità della costa con l’ausilio di un modello di dispersione 

lagrangiano. 

Il sistema di previsioni marine per il Mar Mediterraneo è MFS (Mediterranean 

Forecasting System) sviluppato all’interno di progetti finanziati dalla Comunità 

Europea, dal Ministero dell’Ambiente e della Tutela del Territorio e del Mare e 

dal Ministero degli Affari Esteri ed attualmente mantenuto operativo dal Gruppo 

Nazionale di Oceanografia Operativa (GNOO) dell’Istituto Nazionale di Geofisica 

e Vulcanologia (INGV). MFS rilascia tutti i giorni previsioni oceanografiche a 

dieci giorni dei campi di temperatura, salinità, corrente ed elevazione della 

superficie del mare su tutta la colonna d’acqua con una risoluzione orizzontale di 

1/16°x1/16° (approssimativamente di 6.5 km) e 72 livelli verticali (Tonani et al., 

2008). La risoluzione orizzontale di circa 6.5 km rappresenta un fattore limitante 

per la capacità del modello lagrangiano di prevedere la dispersione di particelle e 

da qui nasce l’esigenza di usare un modello rilocabile, annidato in MFS, capace 

sia di usare le informazioni collezionate nell’area d’interesse che di crescere la 

risoluzione e quindi la dinamica risolta esplicitamente dal modello. La 

modellistica rilocabile per la sua rapidità d’implementazione e la sua applicabilità 

in qualsiasi regione di mare aperto e costiero è un efficace strumento per la tutela 

dell’ambiente marino e per l’adozione di strategie di riduzione e controllo delle 

emergenze ambientali. 

L’esperimento MREA08 rispetto alla precedente esperienza di MREA07 ha 

sperimentato: 

1. Un sistema di trasferimento in tempo quasi reale dei dati acquisiti durante le 

campagne oceanografiche, dalla nave al centro elaborazione dati; 

2. L’assimilazione dei dati oceanografici nel modello operativo MFS; 

3. Lo sviluppo di un sistema operativo di produzione delle previsioni 

giornaliere a tre giorni dei campi di temperatura, salinità e corrente, basato 

sulla modellistica rilocabile; 

4. La previsione giornaliera dello spostamento di drifters, rilasciati durante le 

campagne. 
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Il presente rapporto tecnico fornisce una descrizione generale del Mar Ligure 

(Sezione3), illustra l’attività operativa in mare e l’analisi dei dati oceanografici 

collezionati (Sezione 4). Nella Sezione 5 è introdotto il sistema di previsione 

sviluppato con una breve descrizione dei modelli numerici utilizzati e dei risultati 

preliminari. Le conclusioni sono presentate nella Sezione 6. 

A.3 Aspetti generali del Mar Ligure: morfologia e circolazione 

Il Mar Ligure è un sottobacino del Mar Mediterraneo centro-settentrionale, a sud è 

collegato al Mar Tirreno dal canale di Corsica, ad est e a nord bagna 

rispettivamente le coste della Toscana e della Liguria mentre ad ovest è aperto 

verso il Mediterraneo occidentale e il Golfo del Leone (Figura A.1). 

 

 

Figura A.1 Mappa del Mar Ligure con uno schema generale della circolazione. LPC 

(Ligurian-Provencal Current), WCC (West Corsica Current), TC (Tyrrhenian Current)  

Il bacino è caratterizzato da una topografia del fondo variabile; a nord le coste 

presentano una ripida batimetria con una pendenza della piattaforma continentale 

molto elevata rispetto alle coste italiane. La piattaforma continentale è quasi 

inesistente e il fondale a 15-30 km dalla costa precipita in una ripida scarpata 
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verso il fondo della piana abissale che raggiunge una profondità di 2000 metri. La 

scarpata è incisa da canyon sottomarini tra cui il canyon di Genova considerato il 

più grande del Mediterraneo; i cigli delle sue pareti distano 50 km l’uno dall’altro 

e la lunghezza complessiva del suo avallamento è di oltre 70 km lungo i quali il 

fondale precipita da 200 a 2400 m di profondità. 

La circolazione del Mar Ligure è caratterizzata da un permanente giro ciclonico 

più intenso in inverno che in estate. Il bacino è attraversato in superficie da una 

corrente settentrionale di Acque Atlantiche Modificate (MAW-Modified Atlantic 

Water) prodotte dal congiungimento a Nord di Capraria della corrente tirrenica 

(TC-Tyrrhenian Current) e della corrente occidentale corsa (WCC-West Corsica 

Current). La corrente settentrionale diventa corrente liguro-provenzale (LPC-

Ligurian Provençal Current) che scorre verso il Golfo del Leone completando il 

giro ciclonico. La circolazione ciclonica del bacino ligure si osserva sia negli strati 

superficiali che in quelli d’acqua profonda. La colonna d’acqua del bacino Ligure 

è caratterizzata dalle masse d’acqua della MAW e delle Acque Levantine 

Intermedie Modificate (MLIW-Modified Levantine Intermediate Water). La 

MAW rappresenta lo strato più superficiale (0-100m) sono acque atlantiche 

caratterizzate da bassi valori di salinità e temperature mentre la MLIW, che entra 

nel bacino ligure attraverso il Canale di Corsica, è localizzata ad una profondità di 

200-600 metri con alti valori di salinità. 

A.4 Attività operativa in mare 

L’attività operativa in mare ha interessato l’area geografica delimitata dalle 

seguenti coordinate: 8°24’E-10°E di longitudine e 43°18’N-44°26’24’’N di 

latitudine. La fase operativa ha previsto lo svolgimento delle seguenti attività: 

� Acquisizione di profili di temperatura e salinità tramite sonda CTD e lancio 

degli XBT durante i trasferimenti nave tra le zone in cui sono state eseguite 

misure CTD; 

� Rilascio di 10 drifters di tipo CODE con sistema di posizionamento ARGOS e 

GPS; i drifters sono stati forniti: 6 dall’INGV (ID: 85741, 85742, 85743, 
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85744, 85745, 85746), 2 dal CNR (ID: 85747, 85748) e 2 dall’OGS (ID: 

85193, 85194). Il piano originale prevedeva il lancio separato di due clusters 

da 5 drifters ciascuno, in seguito a causa del malfunzionamento di una boa è 

stato deciso di effettuare tre lanci separati di 3 clusters composti ciascuno da 3 

drifters. 

� Messa a mare del glider di proprietà dell’OGS, in grado di monitorare le 

variabili oceanografiche lungo un percorso prefissato. 

L’acquisizione dei dati oceanografici e la messa a mare dei drifters e del glider 

sono state eseguite con tre campagne oceanografiche condotte dalla nave 

Magnaghi dell’Istituto Idrografico della Marina Militare Italiana. Le tre crociere 

sono state identificate come FaseI, FaseII e FaseIII: 

1. FaseI: dal 29 Settembre al 1 Ottobre (3 giorni), 

2. FaseII: dal 9 al 11 Ottobre (3 giorni), 

3. FaseIII: dal 19 al 22 Ottobre (4 giorni). 

Nelle sezioni seguenti è fornita una descrizione di ciascuna fase operativa e 

un’analisi dei dati collezionati. 

A.4.1 FaseI 

L’attività operativa in mare effettuata nella prima fase ha portato all’esecuzione 

del campionamento raffigurato in Figura A.2 completato dal 29 Settembre al 1 

Ottobre. A causa delle cattive condizioni meteomarine il piano di campionamento 

originale è stato parzialmente ridimensionato e in totale sono state effettuate 7 

stazioni CTD e lanciati 10 XBT. Le coordinate, il tempo d’acquisizione e la 

massima profondità dei profili CTD e XBT sono riportate nella Tabella A.1 e 

Tabella A.2. 
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Figura A.2 Posizioni delle stazioni CTD (•) e XBT (*) collezionate nella FaseI (dal 29 

settembre al 1 ottobre) con la batimetria del Mar Ligure (in metri). 

N° stazione Data Ora Latitudine N 
(° ‘) 

Longitudine E 
(° ‘) 

Profondità 
(m) 

1 30.09.08 10.09 44 0.44 9 42.10 90 
4 30.09.08 12.09 43 52.56 9 42.24 327 
6 30.09.08 16.09 43 40.52 9 42.17 455 
8 30.09.08 18.09 43 27.56 9 42.09 443 
10 30.09.08 20.09 43 27.57 9 29.58 436 
12 30.09.08 22.09 43 27.63 9 15.14 604 
14 01.10.08 2.10 43 40.73 9 15.21 461 

Tabella A.1 Elenco delle stazioni CTD effettuate durante la FaseI. 

N° stazione Data Ora Latitudine N 
(° ‘) 

Longitudine E 
(° ‘) 

Profondità 
(m) 

2 30.09.08 10.10 44 0.26  9 42.33 114 
3 30.09.08 11.15 43 56.66 9 42.00 282 
5 30.09.08 15.04 43 46.66 9 42.09 393 
7 30.09.08 17.34 43 34.04 9 42.02 513 
9 30.09.08 19.55 43 27.56 9 36.76 426 
11 30.09.08 21.47 43 28.10 9 22.32 553 
13 01.10.08 0.59 43 34.15 9 14.95 925 
15 01.10.08 6.31 43 47.02 9 9.07 928 
16 01.10.08 7.19 43 50.55 9 16.4 909 
17 01.10.08 8.01 43 53.26 9 23.42 537 

Tabella A.2 Elenco delle stazioni XBT effettuate durante la FaseI. 
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I profili verticali di temperatura, salinità e il diagramma T/S delle CTD e XBT 

sono raffigurati in Figura A.3A,B,C. I profili di temperatura e salinità evidenziano 

uno strato superficiale (0-50metri) rimescolato e un marcato termoclino 

posizionato nei primi cento metri della colonna d’acqua. Lo strato delle acque 

atlantiche modificate si estende fino alla profondità di 200 metri alla quale 

troviamo un minimo di temperatura (T~13.5°C, S~38.4 PSU). I profili di salinità 

evidenziano la presenza delle MLIW (200-600 m) con il massimo 

sottosuperficiale di salinità (T~13.8°C, S~38.6 PSU) posizionato vicino ai 400 

metri. Il diagramma T/S (Figura A.3C) evidenzia le masse d’acqua caratteristiche 

del bacino: la MAW e la MLIW e le loro proprietà fisiche. 

Le distribuzioni orizzontali di temperatura e salinità a 4 metri di profondità 

(Figura A.4A,B), costruite con l’analisi oggettiva, mostrano campi omogenei. Nei 

campi di temperatura è presente un debole fronte termico che divide le acque 

calde costiere da quelle fredde del mare aperto mentre è assente un gradiente nella 

distribuzione della salinità, evidenziato nei dati oceanografici collezionati durante 

MREA07 per il periodo maggio-giugno (Capitolo 4). Durante la FaseI è stato 

lanciato il primo cluster di 5 drifters vicino alla boa ODAS (9°9’54’’E-

43°47’18’’N). La posizione di lancio dei drifters ha seguito lo schema di una 

croce, un drifter centrale vicino alla boa ODAS e i restanti 4 drifters ad una 

distanza di circa 500 metri dalla boa centrale in direzione nord, est, sud e ovest. In 

questo primo lancio si è verificato il malfunzionamento del drifter a85741 e lo 

spiaggiamento, dopo soli 3 giorni, della boa a85742 recuperata e riutilizzata nella 

FaseIII. Le coordinate e le date dei rilasci sono indicate nella Tabella A.3 mentre 

le traiettorie sono rappresentate in Figura A.5. 
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(A) (B) 

  

 
(C) 

Figura A.3 Profili verticali di (A) temperatura [°C ], (B) salinità [PSU] e (C) diagramma T/S 

per le stazioni CTD e XBT collezionate durante la FaseI. 
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Figura A.4 Mappe della temperatura [°C] e della salinità [PSU] a 4 metri di profondità. 

 

Figura A.5 Traiettorie dei drifters rilasciati dura nte la FaseI, in verde è indicata la posizione 

della boa ODAS, zona di lancio dei drifters. 

ID Drifter Data Rilascio 
(gg.mm.aa 
hh:mm:ss) 

Latitudine 
N 

(° ‘) 

Longitudine 
E 

(° ‘) 

Ultimo segnale 
(gg.mm.aa 
hh:mm:ss) 

a85193 01.10.08 06:35:00 43 47.34 9 9.90 08.12.08 22.00:00 
a85747 01.10.08 06:33:00 43 47.28 9 10.20 09.12.08 00:00:23 
a85741 01.10.08 06:28:00 43 47.04 9 10.02 01.10.08 06:00:00 
a85742 01.10.08 06:24:00 43 47.28 9 9.72 03.10.08 12:00:00 
a85743 01.10.08 06:19:00 43 47.58 9 9.90 08.12.08 23:00:00 

Tabella A.3 Coordinate e data del rilascio del primo cluster di 5 drifters. 
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A.4.2 Fase II 

La FaseII è stata condotta dal 9 al 11 Ottobre; il piano di campionamento mostrato 

in Figura A.6 è stato eseguito in 3 giorni durante i quali sono state misurate 23 

stazioni CTD e lanciati 23 XBT. Le posizioni, le date e la profondità massima dei 

profili verticali acquisiti sono riportate in Tabella A.4 e Tabella A.5. 

 

 

Figura A.6 Posizioni delle stazioni CTD (•) e XBT (*) collezionate nella FaseII (9-11 ottobre) 

con la batimetria del Mar Ligure (in metri). 

I profili verticali di temperatura e salinità e il diagramma T/S dei dati 

oceanografici sono rappresentati in Figura A.7A,B,C. I profili verticali mostrano 

una variabilità superficiale della temperatura tra i 18.5-21-5 °C, la presenza di uno 

strato rimescolato superficiale di profondità variabile e un termoclino ben definito 

collocato nei primi 100 metri della colonna d’acqua. I profili di salinità mostrano 

un andamento simile ai dati acquisiti nella FaseI; è sempre evidente il segnale 

delle acque MLIW con un massimo sottosuperficiale di salinità a 400 metri di 

profondità (T~13.5°C, S~38.6 PSU). Il diagramma T/S (Figura A.7C) mostra 

un’ampia variabilità delle temperature. Le distribuzioni orizzontali di temperatura 

a 4 metri (Figura A.8A) evidenziano la presenza di un fronte termico che separa le 

acque costiere calde da quelle fredde del mare aperto con direzione principale 
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Sud-Nord. I campi di salinità a 4m (Figura A.8B) presentano un forte gradiente, 

l’acqua a maggiore salinità si trova vicino alla costa italiana, da questa struttura 

procedendo verso est s’incontra una lingua d’acqua meno salata e subito dopo 

un’altra zona a maggior salinità. Durante questa campagna il secondo cluster di 3 

drifters è stato rilasciato in mare seguendo lo schema di lancio della FaseI. Le 

posizioni sono riportate in Tabella A.6 e le traiettorie raffigurate in Figura A.9. 

 

N° stazione Data Ora Latitudine N 
(° ‘) 

Longitudine E 
(° ‘) 

Profondità 
(m) 

1 09.10.08 16.10 44 0.53  9 41.88  101 
3 09.10.08 17.10 43 52.48 9 41.97 323 
5 09.10.08 19.10 43 40.53 9 41.81 453 
7 09.10.08 21.10 43 27.41 9 42.22 434 
9 09.10.08 23.10 43 27.62 9 29.15 456 
11 10.10.08 2.10 43 41.81 9 29.32 425 
14 10.10.08 6.10 43 53.51 9 29.47 421 
15 10.10.08 6.10 44 2.69 9 9 29.50  461 
17 10.10.08 9.10 44 6.45 9 15.06 549 
19 10.10.08 10.10 44 15.63 9 15.15 100 
21 10.10.08 11.10 43 53.59 9 14.94 430 
24 10.10.08 15.10 43 40.71 9 15.06 506 
26 10.10.08 17.10 43 27.77 9 14.90 463 
28 10.10.08 19.10 43 27.66 8 59.22 468 
30 10.10.08 21.10 43 40.53 8 58.95 514 
32 10.10.08 23.10 43 53.56 8 59.05 456 
34 11.10.08 1.10 44 6.58 8 58.93 508 
36 11.10.08 3.10 44 15.61 8 59.08 464 
38 11.10.08 5.10 44 15.56 8 39.01 465 
40 11.10.08 6.10 44 6.66 8 38.93 437 
42 11.10.08 9.10 43 53.48 8 38.61 455 
44 11.10.08 11.10 43 40.92 8 39.16 457 
46 11.10.08 13.10 43 27.61 8 39.11 929 

Tabella A.4 Elenco delle stazioni CTD effettuate durante la FaseII. 
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N° stazione Data Ora Latitudine N 
(° ‘) 

Longitudine E 
(° ‘) 

Profondità 
(m) 

2 09.10.08 16.36 43 56.59 9 41.82 225 
4 09.10.08 18.36 43 46.49 9 41.98 392 
6 09.10.08 20.59 43 34.10 9 42.01 517 
8 09.10.08 22.50 43 27.59 9 35.48 429 
10 10.10.08 1.00 43 35.17 9 29.51 259 
12 10.10.08 3.20 43 48.17 9 29.55 437 
13 10.10.08 5.21 43 58.03 9 29.59 460 
16 10.10.08 7.30 44 8.94 9 22.40 692 
18 10.10.08 9.16 44 11.02 9 15.00 908 
20 10.10.08 11.03 44 0.02 9 15.03 679 
22 10.10.08 13.29 43 47.27 9 9.86 912 
23 10.10.08 14.11 43 47.05 9 15.01 899 
25 10.10.08 16.31 43 34.07 9 15.02 890 
27 10.10.08 18.31 43 27.60 9 6.96 901 
29 10.10.08 20.32 43 37.13 8 58.99 912 
31 10.10.08 22.29 43 47.19 8 58.88 895 
33 11.10.08 0.43 44 0.45 8 59.03 908 
35 11.10.08 2.32 44 10.97 8 58.92 939 
37 11.10.08 4.21 44 15.57 8 48.97 920 
39 11.10.08 6.08 44 10.99 8 39.02 915 
41 11.10.08 7.57 43 59.85 8 39.04 76 
43 11.10.08 10.28 43 47.16 8 39.03 934 
45 11.10.08 12.33 43 35.0 8 39.05 944 

Tabella A.5 Elenco delle stazioni XBT effettuate durante la FaseII. 
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Figura A.7 Profili verticali di (A) temperatura [°C ], (B) salinità [PSU] e (C) diagramma T/S 

per le stazioni CTD e XBT collezionate durante la FaseII. 
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Figura A.8 Mappe della temperatura [°C] e della salinità [PSU] a 4 metri di profondità. 

 
Figura A.9 Traiettorie dei drifters rilasciati dura nte la FaseII, in verde è indicata la 

posizione della boa ODAS zona di lancio dei drifters. 

ID  
Drifter 

Data Rilascio 
(gg.mm.aa 
hh:mm:ss) 

Latitudine  
N 

(° ‘) 

Longitudine 
E 

(° ‘) 

Ultimo segnale 
(gg.mm.aa 
hh:mm:ss) 

a85194 11.10.08 15:20:00 43 47.28 9 10.20 08.12.08 22:01:11 
a85744 11.10.08 15:36:00 43 47.28 9 9.72 09.12.08 01:01:11 
a85745 11.10.08 15:41:00 43 47.58 9. 9.96 08.12.08 22:00:00 

Tabella A.6 Coordinate e data del rilascio del secondo cluster di 3 drifters. 
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A.4.3 Fase III 

La FaseIII di MREA08 condotta dal 19 al 22 ottobre ha portato all’esecuzione del 

piano di campionamento rappresentato in Figura A.10 che comprende un totale di 

23 stazioni CTD e 26 lanci XBT; informazioni sulle posizioni dei dati 

oceanografici sono date in Tabella A.7 e Tabella A.8. 

 

 

Figura A.10 Posizioni delle stazioni CTD (•) e XBT (*) collezionate nella FaseIII (19-22 

ottobre) con la batimetria del Mar Ligure (in metri ). 

I profili verticali di temperatura e salinità e il diagramma T/S sono rappresentati in 

Figura A.11A,B,C. I profili di temperatura evidenziano uno strato superficiale 

rimescolato e un forte termoclino come per i dati collezionati nella FaseI e FaseII. 

In superficie la temperatura varia nell’intervallo di 19°-22°C. Il segnale delle 

acque levantine è ben visibile sia nei profili di salinità che nel diagramma T/S. La 

distribuzione di temperatura a 4 m di profondità (Figura A.12A) evidenzia sempre 

l’esistenza di un fronte termico che divide le acque costiere calde da quelle fredde 

di mare aperto con direzione principale SE-NW. La mappa di salinità (Figura 

A.12B) presenta acque a minor salinità vicino alle zone costiere, una struttura a 

meandro di acque a maggior salinità e nella parte centrale del bacino un nucleo 

d’acqua meno salata. Durante la FaseIII è stato rilasciato il terzo e ultimo cluster 
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di tre drifters seguendo sempre lo schema di lancio ufficiale; le posizioni sono 

indicate in Tabella A.9 e le traiettorie sono rappresentate in Figura A.13. 

 

N° stazione Data Ora Latitudine N 
(° ‘) 

Longitudine E 
(° ‘) 

Profondità 
(m) 

1 19.10.08 22.10 43 53.38 9 15.03 416 
2 20.10.08 2.10 43 27.40 8 14.58 455 
3 20.10.08 4.10 43 27.37 8 58.58 453 
5 20.10.08 12.10 43 40.36 9 41.57 456 
7 20.10.08 15.10 43 52.30 9 41.57 88 
9 20.10.08 16.10 44 0.54 9 42.07 88 
11 20.10.08 21.10 43 27.55 9 41.49 423 
13 20.10.08 23.10 43 27.30 9 29.39 435 
17 21.10.08 6.10 43 27.39 8 39.08 504 
19 21.10.08 8.10 43 40.41 8 39.03 460 
22 21.10.08 10.10 43 53.33 8 39.02 506 
24 21.10.08 12.10 44 6.38 8 39.08 606 
25 21.10.08 14.10 44 15.33 8 39.07 454 
28 21.10.08 16.10 44 15.33 8 59.08 457 
29 21.10.08 18.10 44 15.36 9 15.13 101 
31 21.10.08 20.10 44 6.39 9 15.06 457 
34 22.10.08 0.10 43 40.39 9 14.60 417 
36 22.10.08 2.10 43 40.42 8 58.54 401 
39 22.10.08 4.10 43 53.39 8 58.59 405 
42 22.10.08 10.10 44 6.35 8 59.00 461 
44 22.10.08 17.10 43 41.33 9 29.28 404 
46 22.10.08 20.10 43 53.32 9 29.28 408 
48 22.10.08 23.10 44 2.38 9 29.33 425 

Tabella A.7 Elenco delle stazioni CTD effettuate durante la FaseIII. 
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N° stazione Data Ora Latitudine N 
(° ‘) 

Longitudine E 
(° ‘) 

Profondità 
(m) 

4 20.10.08 9.50 43 52.07 9 41.62 424 
6 20.10.08 13.55 43 46.63 9 41.92 392 
8 20.10.08 16.05 43 56.40 9 41.98 194 
10 20.10.08 21.07 43 34.17 9 41.97 546 
12 20.10.08 22.55 43 27.73 9 36.90 430 
14 21.10.08 0.36 43 27.57 9 41.82 570 
15 21.10.08 3.30 43 27.60 9 6.73  582 
16 21.10.08 5.50 43 27.58 8 48.60 590 
18 21.10.08 7.35 43 35.00 8 39.05 930 
20 21.10.08 9.25 43 46.50 8 39.04 925 
21 21.10.08 10.00 44 15.66 9 7.30 444 
23 21.10.08 11.16 43 59.90 8 39.04 941 
26 21.10.08 14.10 44 11.11 8 38.99 920 
27 21.10.08 16.07 44 15.58 8 48.83 916 
30 21.10.08 19.23 44 10.94 9 15.02 893 
32 21.10.08 21.19 44 0.33 9 15.02 702 
33 21.10.08 23.23 43 47.33 9 9.90 896 
35 22.10.08 1.06 43 37.16 9 14.88 892 
37 22.10.08 2.20 43 36.94 8 58.83 916 
38 22.10.08 3.55 43 47.58 8 59.03 890 
40 22.10.08 5.30 44 0.23 8 58.98 884 
41 22.10.08 10.02 44 11.16 8 58.01 792 
43 22.10.08 16.00 43 34.15 9 29.57 178 
45 22.10.08 19.10 43 47.60 9 29.46 427 
47 22.10.08 22.32 43 58.06 9 29.50 467 
49 23.10.08 1.20 43 56.59 9 41.82 496 

Tabella A.8 Elenco delle stazioni XBT effettuate durante la FaseIII. 
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Figura A.11  Profili verticali di (A) temperatura [ °C], (B) salinità [PSU] e (C) diagramma 

T/S per le stazioni CTD e XBT collezionate durante la FaseIII. 
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Figura A.12  Mappe della temperatura [°C] e della salinità [PSU] a 4 metri di profondità. 

 

Figura A.13 Traiettorie dei drifters rilasciati dur ante la FaseIII, in verde è indicata la 

posizione della boa ODAS zona di lancio dei drifters. 

ID Drifter Data Rilascio 
(gg.mm.aa 
hh:mm:ss) 

Latitudine  
N 

(° ‘) 

Longitudine 
E 

(° ‘) 

Ultimo segnale 
(gg.mm.aa 
hh:mm:ss) 

a85746 22.10.08 23:22:00 43 47.28 9 9.72 30.10.08 14:03:28 
a85748 22.10.08 23:29:00 43 47.28 9 10.20 08.12.08 23:00:00 
b85742 22.10.08 23:20:00 43 47.58 9 9.96 31.10.08 08:01:40 

Tabella A.9 Coordinate e data del rilascio del terzo cluster di 3 drifters. 
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A.5 Modellistica Numerica 

Al sistema osservativo, acquisito grazie ad un’intensa attività operativa, è stata 

affiancata la modellistica numerica per la previsione dei campi oceanografici. I 

modelli numerici di circolazione utilizzati in MREA08 sono: il Mediterranean 

Forecasting System (MFS) che fornisce le previsioni per tutto il Mediterraneo e i 

modelli rilocabili implementati nel bacino Ligure, il Ligurian Intermediate Model 

(LIM) e il Ligurian High Resolution Model (LHRM). Questi modelli euleriani 

sono stati accoppiati con il modello di traiettorie per la previsione della 

dispersione dei drifters. In particolare durante l’esperimento MREA08 sono state 

sviluppate le seguenti azioni: 

1. La creazione di un sito ftp dedicato all’esperimento per la trasmissione e la 

condivisione dei dati; 

2. L’assimilazione settimanale dei dati oceanografici di CTD e XBT in MFS; 

3. Lo sviluppo di un sistema operativo di previsioni marine basato sulla 

modellistica rilocabile. 

A.5.1 Sito ftp 

Durante l’esperimento MREA08 è stato utilizzato un sito ftp per la raccolta: 

1. dei dati oceanografici collezionati durante le tre campagne; 

2. delle previsioni marine prodotte dai modelli numerici di circolazione; 

3. dei campi atmosferici e di temperatura superficiale del mare da satellite. 

I vari partners del progetto avevano il compito di aggiornare i files presenti sul 

sito secondo le loro aree di competenza. 

La Figura A.14 mostra l’albero delle directory del sito ftp; la directory principale 

è MREA08_GNOO che contiene 6 sottodirectory dedicate agli istituti 

partecipanti: 

1. INGV : contiene i prodotti del sistema MFS; le analisi, le simulazioni e le 

previsioni a media giornaliera (MFS_Sys2b_daily) e oraria 

(MFS_Sys2b_hourly). 
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2. CNMCA_USAM : raccoglie un ampio dataset del forzante atmosferico a 

diversa risoluzione spaziale e temporale messo a disposizione 

dall’Aeronautica militare. Il dataset comprende le analisi e le previsioni 

degli ECMWF con risoluzione di 0.5° x 0.5° e di 0.25° x 0.25° a frequenza 

temporale di 6 hrs e le previsioni a 72 ore del modello COSMO-ME ad 

altissima risoluzione orizzontale (7km) e temporale (3hrs). 

3. UNIBO : contiene le previsioni a 3 giorni rilasciate dal sistema rilocabile 

annidato in MFS, HOPS1 rappresenta il modello intermedio a 3km mentre 

HOPS2 identifica il secondo sistema a maggiore risoluzione (1km). La 

sottodirectory LDM raccoglie i risultati delle previsioni dello spostamento 

dei drifters prodotti dal modello lagrangiano accoppiato al modello 

rilocabile. 

4. OGS: raccoglie sia i dati dei drifters lanciati durante le tre campagne che i 

dati del glider. 

5. CNR: fornisce i campi medi giornalieri di temperatura superficiale del mare 

(SST) rilevata da satellite. Si tratta di temperature interpolate con tecniche 

d’interpolazione ottimale sulla griglia del modello MFS. 

6. ENEA_IIM : raccoglie i profili verticali di temperatura e salinità acquisiti 

da CTD e XBT durante le tre campagne di MREA08. 

 

MREA08_GNOO

INGV CNCMA_USAM UNIBO OGS CNR ENEA_IIM

CTD

XBT

SSTGlider

Drifter

HOPS1

HOPS2

LDM

ECMWF_05

ECMWF_025

COSMO_ME

MFS_Sys2b_
daily

MFS_Sys2b_
hourly

Analyses

Simulation

Analyses

Forecast Forecast

Simulation

CHL

 

Figura A.14 Albero delle directory del sistema ftp attivato durante l’esperimento MREA08. 
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A.5.2 Assimilazione dati in MFS 

I profili verticali di temperatura e salinità, acquisiti con CTD e XBT nelle tre 

campagne oceanografiche (FaseI, FaseII e FaseIII), dopo aver superato un 

controllo di qualità effettuato nel centro di raccolta dell’ENEA di La Spezia, sono 

stati assimilati dal sistema previsionale MFS. MFS rilascia giornalmente le 

previsioni per il Mar Mediterraneo a dieci giorni dei campi di temperatura, 

salinità, corrente ed elevazione della superficie del mare con una risoluzione 

orizzontale di 1/16° x 1/16° (approx. 6.5 km), una descrizione dettagliata del 

modello operativo si trova in Tonani et al. (2008). Il sistema è costituito oltre che 

da un modello numerico anche da uno schema d’assimilazione che permette di 

correggere ed aggiornare le simulazioni del modello con i dati disponibili. La 

procedura d’assimilazione è eseguita settimanalmente, ogni martedì i dati da 

satellite (SLA) e in situ (XBT, ARGO, CTD) disponibili (Dobricic et al, 2007) 

vengono integrati con le simulazioni del modello tramite lo schema SOFA 

(Software for Ocean Forecast Assimilation), in modo da ottenere la condizione 

iniziale dal quale far partire la previsione forzando il modello numerico con i dati 

atmosferici di previsione. Seguendo questa procedura i dati di MREA08 sono stati 

assimilati con successo dal modello ogni martedì successivo a ciascuna 

campagna. 

A.5.3 Sistema rilocabile: LIM e LHRM 

Il sistema rilocabile è un’implementazione dell’Harvard Ocean Prediction System 

(HOPS). HOPS è un sistema integrato di software che permette un approccio 

multidisciplinare nel campo oceanografico, la previsione delle correnti e una 

realistica simulazione dell'oceano per studiare i processi di mesoscala. La parte 

principale è costituita da un modello idrodinamico alle equazioni primitive con 

l’approssimazione di superficie libera; le variabili prognostiche di temperatura, 

salinità e correnti sono calcolate su una griglia ArakawaB, una descrizione 

dettagliata del sistema è fornita da Robinson (1996,1999), Robinson et al. (1996) 

and Lozano et al. (1996). La versione di HOPS utilizzata in MREA08 calcola 
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interattivamente i flussi di calore e momento alla superficie del mare dai dati di 

forzante atmosferico prodotti dal modello ad alta risoluzione COSMO-ME. 

I domini dei due sistemi rilocabili sono rappresentati in Figura A.15. Il primo 

modello rilocabile LIM, annidato in MFS, è stato implementato nel Mar Ligure 

nell’area geografica delimitata dalle seguenti coordinate: 42.14° N - 44.49° N di 

latitudine e 6.9° E -11.8°E di longitudine con una risoluzione orizzontale di 3km e 

40 livelli “double-sigma” per il sistema verticale. 

Il secondo modello rilocabile LHRM comprende l’area tra i 43.26°N - 44.49°N di 

latitudine e tra i 8.34° E - 10.02°E di longitudine e presenta una risoluzione 

orizzontale di 1 km con 40 livelli verticali “double-sigma”. L’accoppiamento tra i 

modelli numerici è stato eseguito secondo la tecnica del “one-way nesting”; il 

modello a bassa risoluzione fornisce le condizioni iniziali e laterali al modello ad 

alta risoluzione. Nel nostro sistema il modello LIM è inizializzato e forzato dai 

campi di MFS e a sua volta fornisce le condizioni iniziali e al contorno per il 

modello LHRM. 

 

 

Figura A.15 Rappresentazione dei domini dei modelli numerici. Il Mar Mediterraneo è il 

dominio di MFS, l’area delimitata dalla linea tratteggiata è il dominio di LIM (3km) mentre 

l’area delimitata dalla linea continua è il dominio di LHRM (1km). 
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A.5.4 Sistema di produzione delle previsioni 

L’aspetto più innovativo dell’esperimento MREA08 è stato lo sviluppo di un 

sistema di previsione che ha fornito giornalmente le previsioni marine a tre giorni 

dei campi di temperatura, salinità, corrente ed elevazione della superficie del 

mare. Il sistema basato sui modelli rilocabili ad alta risoluzione, il LIM e il 

LHRM, è costituito da due catene operative sequenziali completamente 

automatiche rappresentate in Figura A.16 e Figura A.17. 

Per fare le previsioni il sistema ha utilizzato le analisi e il forecast del forzante 

atmosferico COSMO-ME, rilasciato giornalmente dall’Aeronautica Militare, e le 

analisie e le previsioni prodotte sempre giornalmente da MFS. 

La prima catena operativa interessava la produzione delle previsioni con il 

modello LIM seguita dalla seconda catena operativa dedicata al modello LHRM. 

Ogni giorno la produzione si attivava circa alle 5:00 UTC per finire 

approssimativamente alle 13:00 UTC. La partenza era vincolata dall’orario di 

rilascio dei dati atmosferici e dei prodotti MFS scaricati dal sito ftp di 

MREA_GNOO e sottoposti a pre-processing. Il modello LIM è stato inizializzato 

e forzato al contorno dai prodotti MFS, mentre il modello LHRM a 1km è stato 

inizializzato e forzato al contorno dalle previsioni del LIM. I prodotti dei modelli 

rilocabili erano caricati giornalmente sul sito ftp di MREA08 e pubblicati in una 

pagina dedicata sul sito web del Laboratorio di Simulazione Numeriche del Clima 

e degli Ecosistemi Marini (SINCEM) dell’Università di Bologna 

(http://www.sincem.unibo.it/index.php?option=com_content&view=article&id=1

1). A seguire, i prodotti dei modelli rilocabili forzavano il modello di traiettorie 

per la previsione dello spostamento dei drifters. 
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Figura A.16 Schema di produzione delle previsioni con il LIM. Le frecce indicano i dati 

esterni utilizzati per le previsioni. Il modello LIM è inizializzato tre giorni prima dalle analisi 

di MFS. LBC (Lateral Boundary Condition). 

 

 

Figura A.17 Schema di produzione delle previsioni con il LHRM. Le frecce indicano i dati 

esterni utilizzati per le previsioni. Il modello LHRM è inizializzato un giorno prima dal 

modello LIM. LBC (Lateral Boundary Condition). 

A.5.5 Risultati preliminari 

In questa sezione sono presentati i risultati preliminari ottenuti dal sistema di 

previsione. Un’approfondita elaborazione e una dettagliata analisi dei risultati 

saranno fornite in un rapporto tecnico futuro. 
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La Figura A.18 mostra le previsioni dei campi istantanei di velocità e temperatura 

prodotte dai modelli LIM e LHRM per i giorni 1, 2 e 3 ottobre 2008. Le 

distribuzioni di temperatura evidenziano la presenza di un fronte termico vicino 

alle zone costiere che separa le acque calde della costa da quelle fredde del mare 

aperto. Il campo di velocità, prodotto dal LIM, per il primo ottobre (Figura 

A.18A) mostra un’intensa corrente sul lato occidentale della Corsica che alimenta 

il giro ciclonico posizionato al centro del bacino Ligure, con una ben definita LPC 

che scorre vicino alla costa italiana e francese verso ovest. La TC sul lato orientale 

della Corsica invece presenta una forte attenuazione. Le previsioni ottenute con il 

LHRM (Figura A.18B,D,F) per gli stessi giorni riproducono le strutture presenti 

nel LIM, con una maggiore definizione della LPC. 

In Figura A.19 sono rappresentati i risultati delle previsioni a tre giorni dello 

spostamento dei tre clusters di drifters sviluppate con il modello di traiettoria 

accoppiato al modello rilocabile LIM. La Figura A.19A mostra lo spostamento 

per tre giorni del primo cluster, rilasciato il primo d’ottobre; la Figura A.19B 

riproduce le previsioni di traiettoria per il secondo cluster rilasciato durante la 

seconda campagna e la Figura A.19C rappresenta le traiettorie numeriche per il 

terzo cluster. 
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01-10-2008 12:00:00 AM 

 
 

02-10-2008 12:00:00 AM 

 
 

03-10-2008 12:00:00 AM 

 
 

Figura A.18 Campi superficiali (1.5 m) di velocità [m/s] e temperatura (°C) previsti dal 

modello rilocabile LIM (A),(C),(E) e LHRM (B),(D),( F). Non tutti i punti griglia dei modelli 

sono stati rappresentati. 
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Figura A.19 Confronto tra le traiettorie numeriche previste con il modello di traiettoria 

(linee rosse) e i drifters reali (linee blu) per il primo cluster (A), secondo cluster (B) e il terzo 

cluster (C). 

A.6 Conclusioni 

Questo rapporto tecnico ha presentato i primi risultati dell’esperimento MREA08 

condotto nel Mar Ligure dal 29 Settembre al 22 Ottobre 2008. Obiettivi principali 

dell’esperimento sono stati di sviluppare una metodologia MREA finalizzata ad 

un’applicazione in campo ambientale e validare un sistema di modelli rilocabili, 

annidati in un modello di circolazione di larga scala, utili nella previsione di 

dispersione d’inquinanti in mare. L’aspetto innovativo di questo esperimento è 

stato lo sviluppo di un sistema di previsione marine basato sulla modellistica 

rilocabile, capace di rilasciare giornalmente le previsioni a tre giorni dei campi di 

velocità, temperatura, salinità ed elevazione della superficie del mare. 
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Durante MREA08 sono state eseguite dall’Istituo Idrografico della Marina 

Militare Italiana tre campagne oceanografiche, la prima dal 29 settembre al primo 

ottobre, la seconda fase dal 9 al 11 ottobre e la terza dal 19 al 22 ottobre. Durante 

le crociere sono stati acquisti profili verticali di temperatura e salinità tramite 

sonda CTD e XBT e sono stati lanciati 10 drifters. 

L’attività operativa in mare è stata affiancata da un intenso impegno nel campo 

della modellistica numerica. 

I dati oceanografici sono stati assimilati settimanalmente con successo nel sistema 

operativo MFS dal Gruppo Nazionale di Oceanografia Operativa dell’INGV. 

Inoltre per MREA08 è stato sviluppato un efficiente sistema operativo di 

previsione basato sui modelli rilocabili ad alta risoluzione, implementati nel Mar 

Ligure. Il sistema, per tutta la durata dell’esperimento, ha rilasciato giornalmente 

le previsioni orarie a tre giorni dei campi di velocità, temperatura, salinità ed 

elevazione della superficie del mare. Le previsioni dei campi di corrente ad alta 

risoluzione sono state utilizzate nel modello lagrangiano di traiettorie per la 

previsione della dispersione dei drifters. 

I risultati dei modelli numerici sono ancora sotto analisi ma il sistema si è 

dimostrato stabile ed efficiente. 
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