Giorgi, Filippo Maria
(2009)
Applications of High Speed Configurable
Logic Devices in Modern Particle Physics
Experiments, [Dissertation thesis], Alma Mater Studiorum Università di Bologna.
Dottorato di ricerca in
Fisica, 21 Ciclo. DOI 10.6092/unibo/amsdottorato/1731.
Documenti full-text disponibili:
Abstract
Several activities were conducted during my PhD activity. For the NEMO experiment a collaboration between the INFN/University groups of Catania and Bologna led to the development and production of a mixed signal acquisition board for the Nemo Km3 telescope. The research concerned the feasibility study for a different acquisition
technique quite far from that adopted in the NEMO Phase 1 telescope.
The DAQ board that we realized exploits the LIRA06 front-end chip for the analog acquisition of anodic an dynodic sources of a PMT (Photo-Multiplier Tube). The low-power analog acquisition allows to sample contemporaneously multiple channels of the PMT at different
gain factors in order to increase the signal response linearity over a wider dynamic range. Also the auto triggering and self-event-classification features help to improve the acquisition performance and the knowledge on the neutrino event. A fully functional interface towards the first level data concentrator, the Floor Control Module, has been integrated as well on the board, and
a specific firmware has been realized to comply with the present communication protocols. This stage of the project foresees the use of an FPGA, a high speed configurable device, to provide the board with a flexible digital logic control core. After the validation of the whole front-end architecture this feature would be probably integrated in a common mixed-signal ASIC (Application Specific
Integrated Circuit). The volatile nature of the configuration memory of the FPGA implied the integration of a flash ISP (In System Programming) memory and a smart architecture for a safe remote reconfiguration of it. All the integrated features of the board have been tested. At the Catania laboratory the behavior of the LIRA chip has been investigated in the digital environment of the DAQ board and we succeeded in driving the acquisition with the FPGA. The PMT pulses generated with an arbitrary waveform generator were correctly triggered and acquired by the analog chip, and successively they were digitized by the on board ADC under the supervision of the FPGA. For the communication towards the data concentrator a test
bench has been realized in Bologna where, thanks to a lending of the Roma University and INFN, a full readout chain equivalent to that present in the NEMO phase-1 was installed. These tests showed a good behavior of the digital electronic that was able to receive and to
execute command imparted by the PC console and to answer back with a reply. The remotely configurable logic behaved well too and demonstrated, at least in principle, the validity of this technique.
A new prototype board is now under development at the Catania laboratory as an evolution of the one described above. This board is going to be deployed within the NEMO Phase-2 tower in one of its floors dedicated to new front-end proposals. This board will integrate a new analog acquisition chip called SAS (Smart Auto-triggering Sampler) introducing thus a new analog front-end but
inheriting most of the digital logic present in the current DAQ board discussed in this thesis.
For what concern the activity on high-resolution vertex detectors, I worked within the SLIM5 collaboration for the characterization of a MAPS (Monolithic Active Pixel Sensor) device called APSEL-4D. The mentioned chip is a matrix
of 4096 active pixel sensors with deep N-well implantations meant for charge collection and to shield the analog electronics from digital noise. The chip integrates the full-custom sensors matrix and the sparsifification/readout logic realized with standard-cells in STM CMOS technology 130 nm. For the chip characterization a test-beam has been set up on the 12 GeV PS (Proton Synchrotron) line facility at CERN of Geneva (CH). The collaboration prepared a
silicon strip telescope and a DAQ system (hardware and software) for data acquisition and control of the telescope that allowed to store about 90 million events in 7 equivalent days of live-time of the beam. My activities concerned basically the realization of a firmware interface towards and from the MAPS chip in order to integrate it on the general DAQ system. Thereafter I worked on the
DAQ software to implement on it a proper Slow Control interface of the APSEL4D. Several APSEL4D chips with different thinning have been tested during the test beam. Those with 100 and 300 um presented an
overall efficiency of about 90% imparting a threshold of 450 electrons. The test-beam allowed to estimate also the resolution of the pixel sensor providing good results
consistent with the pitch/sqrt(12) formula. The MAPS intrinsic resolution has been extracted from the width of the residual plot taking into account the multiple scattering effect.
Abstract
Several activities were conducted during my PhD activity. For the NEMO experiment a collaboration between the INFN/University groups of Catania and Bologna led to the development and production of a mixed signal acquisition board for the Nemo Km3 telescope. The research concerned the feasibility study for a different acquisition
technique quite far from that adopted in the NEMO Phase 1 telescope.
The DAQ board that we realized exploits the LIRA06 front-end chip for the analog acquisition of anodic an dynodic sources of a PMT (Photo-Multiplier Tube). The low-power analog acquisition allows to sample contemporaneously multiple channels of the PMT at different
gain factors in order to increase the signal response linearity over a wider dynamic range. Also the auto triggering and self-event-classification features help to improve the acquisition performance and the knowledge on the neutrino event. A fully functional interface towards the first level data concentrator, the Floor Control Module, has been integrated as well on the board, and
a specific firmware has been realized to comply with the present communication protocols. This stage of the project foresees the use of an FPGA, a high speed configurable device, to provide the board with a flexible digital logic control core. After the validation of the whole front-end architecture this feature would be probably integrated in a common mixed-signal ASIC (Application Specific
Integrated Circuit). The volatile nature of the configuration memory of the FPGA implied the integration of a flash ISP (In System Programming) memory and a smart architecture for a safe remote reconfiguration of it. All the integrated features of the board have been tested. At the Catania laboratory the behavior of the LIRA chip has been investigated in the digital environment of the DAQ board and we succeeded in driving the acquisition with the FPGA. The PMT pulses generated with an arbitrary waveform generator were correctly triggered and acquired by the analog chip, and successively they were digitized by the on board ADC under the supervision of the FPGA. For the communication towards the data concentrator a test
bench has been realized in Bologna where, thanks to a lending of the Roma University and INFN, a full readout chain equivalent to that present in the NEMO phase-1 was installed. These tests showed a good behavior of the digital electronic that was able to receive and to
execute command imparted by the PC console and to answer back with a reply. The remotely configurable logic behaved well too and demonstrated, at least in principle, the validity of this technique.
A new prototype board is now under development at the Catania laboratory as an evolution of the one described above. This board is going to be deployed within the NEMO Phase-2 tower in one of its floors dedicated to new front-end proposals. This board will integrate a new analog acquisition chip called SAS (Smart Auto-triggering Sampler) introducing thus a new analog front-end but
inheriting most of the digital logic present in the current DAQ board discussed in this thesis.
For what concern the activity on high-resolution vertex detectors, I worked within the SLIM5 collaboration for the characterization of a MAPS (Monolithic Active Pixel Sensor) device called APSEL-4D. The mentioned chip is a matrix
of 4096 active pixel sensors with deep N-well implantations meant for charge collection and to shield the analog electronics from digital noise. The chip integrates the full-custom sensors matrix and the sparsifification/readout logic realized with standard-cells in STM CMOS technology 130 nm. For the chip characterization a test-beam has been set up on the 12 GeV PS (Proton Synchrotron) line facility at CERN of Geneva (CH). The collaboration prepared a
silicon strip telescope and a DAQ system (hardware and software) for data acquisition and control of the telescope that allowed to store about 90 million events in 7 equivalent days of live-time of the beam. My activities concerned basically the realization of a firmware interface towards and from the MAPS chip in order to integrate it on the general DAQ system. Thereafter I worked on the
DAQ software to implement on it a proper Slow Control interface of the APSEL4D. Several APSEL4D chips with different thinning have been tested during the test beam. Those with 100 and 300 um presented an
overall efficiency of about 90% imparting a threshold of 450 electrons. The test-beam allowed to estimate also the resolution of the pixel sensor providing good results
consistent with the pitch/sqrt(12) formula. The MAPS intrinsic resolution has been extracted from the width of the residual plot taking into account the multiple scattering effect.
Tipologia del documento
Tesi di dottorato
Autore
Giorgi, Filippo Maria
Supervisore
Co-supervisore
Dottorato di ricerca
Scuola di dottorato
Scienze matematiche, fisiche ed astronomiche
Ciclo
21
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
NEMO, FPGA, neutrino, telescope, km3net, DAQ, front-end, MAPS, pixel sensors, APSEL, SLIM5, VIPIX, silicon, readout
URN:NBN
DOI
10.6092/unibo/amsdottorato/1731
Data di discussione
21 Maggio 2009
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Giorgi, Filippo Maria
Supervisore
Co-supervisore
Dottorato di ricerca
Scuola di dottorato
Scienze matematiche, fisiche ed astronomiche
Ciclo
21
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
NEMO, FPGA, neutrino, telescope, km3net, DAQ, front-end, MAPS, pixel sensors, APSEL, SLIM5, VIPIX, silicon, readout
URN:NBN
DOI
10.6092/unibo/amsdottorato/1731
Data di discussione
21 Maggio 2009
URI
Statistica sui download
Gestione del documento: