Alma Mater Studiorum — Universita di Bologna

DOTTORATO DI RICERCA IN FISICA

Ciclo XXI

Settore/i scientifico disciplinari di afferenza: FIS/01

Hardware and software development of a
multichannel readout board named CARLOSTrx for the
ALICE experiment

Presentata da: Filippo Costa

Coordinatore Dottorato Relatore
Prof. Fabio Ortolani Prof. Enzo Gandolfi
Correlatore:

Dott. Davide Falchieri

Esame finale anno 2009

this page intentionally left blank

Alma Mater Studiorum — Universita di Bologna

DOTTORATO DI RICERCA IN FISICA

Ciclo XXI

Settore/i scientifico disciplinari di afferenza: FIS/01

Hardware and software development of a
multichannel readout board named CARLOSTrx for the
ALICE experiment

Presentata da: Filippo Costa

Coordinatore Dottorato Relatore
Prof. Fabio Ortolani Prof. Enzo Gandolfi
Correlatore:

Dott. Davide Falchieri

Esame finale anno 2009

this page intentionally left blank

Table of Contents

INETOAUCTION. ...ttt ettt et e et e e s taeesabaaeeeeennnsbaaeeeesennnnees 7
1. The ALICE EXPETIIMENL.......eeiiiiiiiiiiieriiieieeeiee ettt ettt et ee s e e e e e 9
0 1 TSRO PPTUURORUPPPPRIUPPPO 15
1.2 SDD A@LECIOT....cciutiieeiiiieiiieeeite ettt ettt e ettt e et e et e e st e e sabaeesabaeesennbaaeeeeeans 19
L.2.1 SDD JAYOUL.....eiiitieiiiieeiiie ettt ettt ettt e e et e e e e s s saebeeeeee s 20

1.2.2 SDD QYT ...ceiieiiiiieeeiieee ettt e et e e e rbtee e e e e e e e e e e e e e e ennas 22

1.3 ReadOout ChaiN.......ccuviiiiiieciieccece ettt e e e e ae e e b e e eaaee e e enens 24
1.3.1 Front End module (Pascal-Ambra)............ccccevvveeeieeieiiiiiiiieeieee e 25

L322 CARLOS ...ttt ettt ettt et e et e e e nbtee e e e 28

1.4 DAQ SYSTEIM..etiiiiiiiiieeiiiiiee et ee e ettt e e ettt e e s ettt e e e sttt ee e sttt eeeeeeeeeeeeeseessssnsnnnnnnnes 30

2. CARLOSTX ittt e e e st e e et e e st eesabee e sbeeensaeeensseeennssaeaeeeeannnns 33
2.1 CARLOSTrx data processing board............cccoeveeuienieriieenieniieneenieeieesee e 34
2.1.1 The 12 OPTICAL TRANSCEIVERS.......ccccooiiiiiieeeeeeeeee 35

2.1.2 IDT FIFO 4 X 9 MDILS ..ceoiuiiiiiiieiiiie ettt ettt ettt s 38

2.1.3 The TTC SYSEIM..cceuriiiiiieiiiieiiieeeiiee ettt e ite e et e e st e e e e eeeesennnraeeeeeas 39

2.1.4 The BUSY S1@NAL....ciiiiiiiiiiiiiiiiiiieeteeteete ettt s 42

2.1.5 ALICE DAQ INterfaceccoeiuiiiiiiiiiiieeeiiiie et e e 44

216 VME BUS ...ttt ettt e e et ee s 46

2.2 CARLOSTrx clock distribution board............c.ceevveeriieiniiiieniiieeniiieeeeeeriieeeee e 47

3. CARLOSIX fIFMWATE.......eeiitiiiiiiiieiieeieeeiie ettt ettt et s es 51
3.1 Input FPGA firMWATE........cccveiiiiiieiiie ettt ettt e e saeeesaeeeeaee e s 52
3.1.1 The al@Orithm.....ccc.eiiiiiiiiiiee e 52

3.1.2 Data PaCKiNg......ccocviiiiiiiiiiiieeieeeeee e 53

3.1.2 The scheduler BIOCK..........c.uoiriiiiiiiieiie et 55

3. 1.2 INPUTS SEIECHION. .. .vveeiiiieeiieeeiieeeieeeeteeeetee ettt e etteeetae e s e esaaee e s eeaneeeeeens 57

313 RESET SIZNAL..uiiiiiiiiiiiiiieieeeeee et 58

3.2 Main FPGA fIrMWAaTE.........cceeviiuiiiiieiiiieeeeitee et e eeitee e et eeeeseeseesaaaeeeeeeeees 59
32,1 JTAG INEETTACE.....eieeuiieeiiieeeiieeeite ettt ettt e te e et esbte e st eesabaeennes 60

3.2.2 Optical transceivers interface (serial back-link block).........cccccccevviiiiennnnnn. 62

3.2.3 FIFO interface (scheduler DIOCK).........ooovvuveiieiiiiiiiiiiieieeeeeeeeeeeeeeeeeee 64

3.2.4 DAQ interface (SIU interface block)...........cccouiiieiiiiiiiiiiiiececiee e, 66

3.2.5 TTCrq INtETfaCe. ...cccouveiiiiiiiiieeeiie ettt s e e 67

3.2.6 The BUSY DIOCK......ciiiiiiiiiiiiiiiie e 71

3.2.7 The RESET BIOCK......cccciiiiiiieeiiiecie ettt et 71

3.2.8 The UART BLOCK......ccciiiieiiiieiiieeiieeeee ettt e e e e e 72

3.2.9 The VME INEETTACE.cccuviieeeeiiiee ettt ree e et 73

4. The software developed for CARLOSTX.....c.c.coviiriiiniinieiieeteeeneceeee e 75
4.1 The RS232 PrOQram.....cccuvieiiiieiiieeiieeriteeeitee ettt et steeesibeeesitee e e s e sanaeeeeeeas 76
4.2 The configuration PrOZTAIMccevuueeeruieeerireeriireenireenieeesiseeesseeesreesssnseeeeesssnnns 79
4.3 The MONILOT PIOZTAIMNL ¢ ..veiiuireeeiieeaiteeaiteeetteeniteeeetteeseieeesbeeesbeeesabeeesaneeeeessannneee 84
4.4 DecOdING PrOZIAMcooiuiiiiiiiiiiieeeiiee ettt ettt et e ettt e sbte e st e e s ettt eeeeseaaeeeee 86
4.5 The VME PrOZIaAM.....cc.uviiiiiiiiiiiieeiieesite ettt et e eitee st e site e st e e sabeeesnaeeeeenes 87

5. CARLOSIX at CERNooiiiiiiiitiieieeeteeee ettt sttt e e e et e e e e e e 89

5.1 Commissioning of the SDD barrel..........coccvieriiiiiiiiiiiieeieececce e, 89

5.1.1 DAQ/ECS INEZIAtION.eeriiiiiieiieieenieeiee et et st et sre e e enneee s 91

S.1.2 TIIZEET TESE. ettt ettt ettt 92

5.2 Integrations of the SDD barrel in the ITS.........cccooiiiiiiiieniieee e 92
5.3 CARLOSIX 1N POSIION. ...cerutiieriiieeniieeniieenieeesiteeesiteeesteeeseaeessreesssnsssseeeessssssssees 92
CONCIUSIONS. ...ttt ettt ettt et e e bt e e bt e e e bt e e e bt e e e e e eaabbbeeeeeeannnnee 94
APPENAIX Aot sttt e e 99
AT STU SIZNALS.c...eiiiiiieieiie ettt e e e et e e sabee e e s s iibaeeeeeeennnnes 99
A.2 CDH fields eXplanation............ccueeeiiieriiieniiieeiiie ettt e e e siieeee e 101
APPENAIX Bt et e et e b e e e snaeeeeeeennes 103
B.1 Erroneous trig@er SEQUEINCES.ccvuvirriertieriieniieeieeniteeteesiteeieesitesbeesieeesseeeeeneee 103
APPENAIX Coiieee ettt s e e 109
C.1 2D al@OTItRIM. ... e 109
C.2 Serial back-IINK......cc.cooruiiiiiiiiiii e 110
ACRONYMS . ettt ettt e b et e e st e e s sbeee e eanee 113
BIBLIOGRAPHY ...ttt st e e e e 115

Introduction

This thesis describes the readout electronics developed for the SDD (Silicon Drift
Detector), one of the ALICE (A Large Ion Collider Experiment)" sub-detectors.

ALICE, that is an experiment held at CERN (European Organization for Nuclear
Research) using the LHC (Large Hadron Collider), is specialized in analyzing lead-ion
collisions. ALICE will study the properties of quark-gluon plasma, a state of matter
where quarks and gluons, under conditions of very high temperatures and densities, are
no longer confined inside hadrons. Such a state of matter probably existed just after the
Big Bang, before particles such as protons and neutrons were formed.

The SDD detector is part of the ITS (Inner Tracking System), that is composed by 6
cylindrical layers with the innermost one attached to the beam pipe. The ITS tracks and
identifies particles near the interaction point, it also aligns the tracks of the particles
detected by more external detectors. The two ITS middle layers contain the whole 260
SDD detectors.

A multichannel readout board, called CARLOSTrX, receives at the same time the data
coming from 12 SDD detectors. In total there are 24 CARLOSrx boards needed to read
data coming from all the SDD modules (detector plus front end electronics).

CARLOSrx packs data coming from the front end electronics through optical link
connections, it stores them in a large data FIFO (First In First Out) and then it sends
them to the DAQ (Data Acquisition) system.

Each CARLOSrx is composed by two 9U x 400mm VME64 boards:

CARLOSTrx data, that reads data coming from the SDD detectors and configures
the FEE (Front End Electronics).

CARLOSTrx clock, that sends the clock signal to all the FEE.

All the 24 CARLOSrx boards have been installed in 3 VME crates and from the
backplane of these crates they get power supply and firmware informations to re-
configure the FPGASs (Field Programmable Gate Array) installed on them.

This thesis contains a description of the hardware design and firmware features of
both CARLOSrx data and CARLOSrx clock boards, which deal with all the SDD
readout chain.

All the work done during my PhD studies has been concentrated in 2 main areas:
firmware development, writing the code for CARLOSrx firmware;

software development, writing software tools necessary to test and configure the
front end electronics.

The thesis is organized as follows.

The first chapter contains a description of the ALICE experiment, especially for

what concerns the SDD detector. A description of the FEE and of the DAQ system will
be presented at the end of this section.

The second chapter describes in details all the major hardware components installed
on CARLOSTrx boards and it reviews their working mechanism.

The third chapter presents the code of the CARLOSrx firmware, focusing on the
algorithms used and on the logical blocks to implement them.

The fourth chapter contains the description of the software developed in order to test
the firmware code, the FEE and to configure all the SDD readout chain.

Finally the last chapter describes the tests performed at CERN before and after the
installation of the SDD modules and the readout electronics in the ALICE experiment.
This chapter presents also the first physics results obtained during the cosmic rays tests
performed in the 2008.

Chapter 1

1. The ALICE experiment
The main experiments held at CERN using the LHC™ are:
ALICE
ATLAS (A Toroidal LHC ApparatuS)
CMS (Compact Muon Solenoid)
LHCDb (Large Hadron Collider beauty experiment)
TOTEM (Total Cross Section Elastic Scattering and Diffraction Dissociation)
LHCT (Large Hadron Collider forward)

Fig. 1.1: the experiments at the LHC.

Four of them, ALICE, ATLAS, CMS, LHCb, are extremely big detectors and they
are installed in four huge caverns situated in different points in the LHC ring (fig. 1.1),
the other two are smaller in size and they are attached to CMS (TOTEM), and ATLAS
(LHCY).

One of the main goals addressed by the LHC"!' experiments is the connection
between phase transitions involving elementary quantum fields, fundamental
symmetries of nature and the origin of mass. Theory draws a clear distinction between
symmetries of the dynamical laws of nature (i.e. symmetries and particle content of the

Lagrangian) and symmetries of the physical state with respect to which these dynamical
laws are evaluated (i.e. symmetries of the vacuum or of an excited thermal state). The
experimental programme at the LHC addresses both aspects of the symmetry-breaking
mechanism through complementary experimental approaches.

ATLAS and CMS will search for the Higgs particle, which is supposed to generate
the mass of the electroweak gauge bosons and the bare mass of elementary fermions
through spontaneous breaking of the electroweak gauge symmetry. They will also search
for supersymmetric particles which are manifestations of a broken intrinsic symmetry
between fermions and bosons in extensions of the Standard Model.

LHCb, focusing on precision measurements with heavy b quarks, will study CP-
symmetry violating processes, that measure the misalignment between gauge and mass
eigenstates which is a natural consequence of electroweak symmetry breaking via the
Higgs mechanism.

ALICE will study the role of chiral symmetry in the generation of mass in
composite particles (hadrons) using heavy-ion collisions to attain high-energy densities
over large volumes and long timescales. ALICE will investigate equilibrium as well as
non-equilibrium physics of strongly interacting matter in the energy density regime € ~
1-1000 GeV fm™ . In addition, the aim is to gain insight into the physics of parton
densities close to phase-space saturation, and their collective dynamical evolution
towards hadronization (confinement) in a dense nuclear environment. In this way, one
also expects to gain further insight into the structure of the QCD phase diagram and the
properties of the QGP phase. The focus of heavy-ion physics is to study nuclear
matter under conditions of extreme density and temperature trying to understand
how collective phenomena and macroscopic properties emerge from the microscopic
laws of elementary-particle physics.

ALICE will operate in several different running modes with significantly different
characteristics. The experiment has been primarily designed to run with heavy ions
beams, which are characterized by:

- relatively low rates (interaction rates <= 10 kHz for Pb-Pb beams at design
luminosity of L=1027 cm™s™),

« relatively short running time (order of few weeks per year),
- very high multiplicity and correspondingly large event size.
When it is in pp running mode:
- the interactions rates are much higher than in heavy-ion runs (up to 200 kHz),
- the event size is small,

- the running time is typically of several months per year in pp mode.

10

In general, to establish experimentally the collective properties of the hot and dense
matter created in nucleus—nucleus collisions, both systematics and luminosity-
dominated questions have to be answered at LHC. ALICE aims firstly at accumulating
sufficient integrated luminosity in Pb—Pb collisions at Vs = 5. 5 TeV per nucleon pair,
to measure rare processes such as jet transverse-energy spectra up to Et ~ 200 GeV and
the pattern of medium induced modifications of bottomium bound states. However, the
interpretation of these experimental data relies considerably on a systematic comparison
with the same observables measured in proton—proton and proton—nucleus collisions as
well as in collisions of lighter ions. In this way, the phenomena truly indicative of the
hot equilibrating matter can be separated from other contributions. The successful
completion of the heavy-ion programme thus requires the study of pp, pA and lighter
A-A collisions in order to establish the benchmark processes under the same
experimental conditions. In addition, these measurements are interesting in themselves.
For example, the study of lighter systems opens up possibilities to study fundamental
aspects of the interaction of colour-neutral objects related to non-perturbative strong
phenomena, like confinement and hadronic structure. Also, due to its excellent tracking
and particle identification capabilities, the ALICE pp and pA programmes complement
those of the dedicated pp experiments.

The layout of the ALICE set-up is shown in figure 1.2.

11

s

ACORDE

AB5ORBER

TRACKING CHAMBERS

MUON FILTER

TRIGGER CHAMBERS

Fig. 1.2: Longitudinal section of the ALICE detector

12

In figure 1.3 the layout of Point 2 is shown :

« CRI1 (Counting Room) DAQ: in this room all the DAQ PCs and disks array have
been installed. They are needed to acquire data from the readout electronics of
different detectors and to store the informations waiting to be moved in CASTOR
(Cern Advanced STORage manager).

- CR2HLT (High Level Trigger): a farm of PCs decides on-line which events must
be recorded.

« CR3 DCS (Detector Control System): a software framework controls the status of
the complete experiment, rising alarms in case of problems.

« CR4 detector electronics: all the CARLOSrx boards have been installed in 3
VME crates situated in this room. The boards are connected with optical fibers
to the SDD detectors and to the DAQ.

- ALICE cavern: where the experiment takes place. Here all the SDD modules
have been installed in the ALICE detector.

Fig. 1.3: Point 2 where the ALICE experiment takes place

13

POSITICN ;
R
o

i

e .-r.' e e e A

LR

T
L

e

AL lIII%EIIIIIIIIIJ,

R e

i
[1:.
)

==
=
ARINN

R R R R R S PR R AR AR,

P y
- S . B
|]l
b s Y
S Pl
? | - _ri. y | — L
| 4 - |]J | ok
ﬁ : e sl b
R 0 . / 7
3 i 7
FHR ffﬁf/’/ﬁ}f%ﬁ}%ﬁ//// e i fff)/fz:'/

Fig. 1.4: frontal and lateral section of the Point 2 ALICE cavern.

1.1ITS

Tracking and particle identification relies on different high-granularity detectors
(Fig. 1.5):

ITS (Inner Tracking System) :
SPD (Silicon Pixel Detector).
SDD (Drift Detector).
SSD (Strip Detector).
TPC (Time-Projection Chamber).
TRD (High-granularity Transition-Radiation Detector).
TOF (High resolution array Time Of Flight).
HMPID (High-Momentum Particle ldentification Detector).
PHOS (PHOton Spectrometer).
FMD (Forward Multiplicity Detector).
V0.
10.
PMD (Photon Multiplicity Detector).
ZDC (Zero-Degree Calorimeters).
EMCAL (ElectroMagnetic CALorimeter).
CPV (Charged Particle Veto).
Muon Trigger, Tracking.
ACORDE (ALICE Cosmic Ray DEtector).

15

b. ITS SDD Crift

‘ a. ITS SPD Pixel

c. ITS S50 Strip
d. V0 and TO

e. FMD
s

FMD , TO, VO
TPC

TRD

TOF

HMPID
EMCAL
PHOS CPV @
MAGMET -
ACORDE

. ABSORBER

12. MUON TRACKING
13. MUON WALL
14, MUON TRIGGER
15. DIPOLE
16. PMD
17. ZDC

Do lA R W

e
= o

Fig. 1.5: ALICE sub-detectors

The Inner Tracking System" consists of six cylindrical layers of silicon detectors
(Fig. 1.6).

S50

s5DD

SPDy

R, =43.6cm

Fig. 1.6: ITS layout

It covers the rapidity range of Inl < 0.9 for all vertices located within the length of
the interaction diamond (+ 10), i.e. 10.6 cm along the beam direction. The outer radius
is determined to match tracks with those from the TPC, and the inner radius is the
minimum allowed by the radius of the beam pipe (3 cm). The first layer has a more
extended coverage (INl < 1.98) to provide, together with the Forward Multiplicity
Detectors, a continuous coverage in rapidity for the measurement of charged-particles
multiplicity.

16

The basic functions of the ITS are:

to localize the primary vertex with a resolution better than 100 pm;

to reconstruct the secondary vertices from decays of hyperons and D and B
mesons;

to track and identify particles with momentum below 100 MeV;

to improve the momentum and angle resolution for the high-pt particles which
also traverse the TPC;

to reconstruct particles traversing dead regions of the TPC.

Starting from the innermost 2 layers the detectors of the ITS are (Fig. 1.6):

Silicon Pixel Detector: particle density, up to 80 particles cm™,
Silicon Drift Detector: particle density, up to 7 particles cm™,

Silicon Strip Detector: particle densities, below 1 particle cm™.

With the exception of the two innermost pixel planes, all layers are equipped with
analogue readout for particle identification via dE/dx measurements in the non-
relativistic region. This will give the ITS a stand-alone capability as a low-pT particle
spectrometer.

Layer Type |r (cm) +z (cm) | Area (m?) | Ladders | Lad./stave | Det./ladder | Channels
1 Pixel 39 14.1 0.07 80 4 1| 3276800
2 Pixel 7.6 14.1 0.14 160 4 1| 6553600
3 Drift 15.0 222 0.42 14 - 6 43008
4 Drift 23.9 29.7 0.89 22 - 8 90112
5 Strip | 37.8/38.4 431 2.09 34 - 22| 1148928
6 Strip | 42.8/43.4 48.9 2.68 38 - 25| 1459200
Total area 6.28

Tab. 1.1: Dimensions of the ITS detectors (active areas).

17

Parameter Silicon PIXEL | Silicon DRIFT | Silicon STRIP
Spatial precision r¢p (um) 12 38 20
Spatial precision z (um) 100 28 830
Two track resolution r¢p (um) 100 200 300
Two track resolution z (um) 850 600 2400
Cell size (um?) 50x425 150x300 95x40000
Active area per module (mm?) 12.8x69.6 75.5x75.3 73x40
Readout channels per module 40960 2x256 2x768
Total number of modules 240 260 1698
Total number of readout channels (k) 9835 133 2608
Total number of cells (IM) 9.84 23 2.6
Average occupancy (inner layer) (%) 2.1 2.5 4
Average occupancy (outer layer) (%) 0.6 1.0 33
Power dissipation in barrel (W) 1500 1060 1100
Power dissipation end-cap (W) 500 1750 1500

Tab. 1.2: Parameters of the various detector types. A module represents a single sensor element.

18

1.2 SDD detector

The middle two layers of the ITS are equipped with SDD™ (Fig. 1.7), because they
couple a very good multi track capability with dE/dx information. SDDs, like gaseous
drift detectors, exploit the measurement of the transport time of the charge deposited by
a transversing particle to localize the impact point in two dimensions, thus enhancing
resolution and multi-track capability at the expense of speed. A linear SDD has a series
of parallel implanted p* field strips, connected to a voltage divider on both surfaces of
the high-resistivity n-type silicon wafer. The voltage divider is integrated on the detector
substrate itself. The field strips provide the bias voltage to fully deplete the volume of
the detector and they generate an electrostatic field parallel to the wafer surface, thus
creating a drift region (figure 1.7). Electron-hole pairs are created by the charged
particles crossing the detector. The holes are collected by the nearest p* electrode, while
the electrons are focused into the middle plane of the detector and driven by the drift
field towards the edge of the detector where they are collected by an array of anodes
composed of n* pads. So far an electronic charge cloud drifts from the impact point to
the anode region: the cloud shows a bell-shaped Gaussian distribution that, owing to the
diffusion and mutual repulsion, during the drift becomes smaller and larger. In this way
a charge cloud can be collected by one or more anodes depending on the charge released
by the ionizing particle and on the impact position with respect to the anode region. The
small size of the anodes, and hence their small capacitance (50 {F), implies low noise
and good energy resolution.

Fig. 1.7: SDD detectors (1 sensible area — 2 guard area)

19

1.2.1 SDD layout

The ALICE SDDs have been produced from very homogeneous high-resistivity 300
um thick Neutron Transmutation Doped (NTD)™ silicon. They have a sensitive area of
70.17 x 75.26 mm* (point 1 in figure 1.7) and a total area of 72.50 x 87.59 mm? (point
1+2 in figure 1.7). The sensitive area is split into two drift regions by the central cathode
strip to which a nominal bias of -2.4 kV is applied. In each drift region, and on both
detector surfaces, 291 p* cathode strips, with 120 um pitch, fully deplete the detector
volume and generate a drift field parallel to the wafer surface (Fig. 1.8). To keep the
biasing of the collection region independent on the drift voltage, a second bias supply of
-40V is added (Fig. 1.8). The degrading of the high voltage to the zero potential of the
detector boundary is implemented by two insensitive guard regions biased by 145
cathode strips with 32 pm pitch. To improve the detector reliability, all the drift and
guard regions have their own built-in voltage dividers. Their total power dissipation is
I'W per detector and it is removed by an appropriate air circulation system.

Fig. 1.8: working principle of a SDD detector

Each drift region has 256 collection anodes with 294 um pitch and three rows of 33
point-like (20x100 um?* MOS charge injectors to monitor the drift velocity which
depends on temperature: vdrift « T-**.

87.6 mm
| i olhicid , | collaction anodes MOS injestors
— == SN N
mopfioo
[O0O0AC0000
------------------------------ — = :
=z X
ele E| Highest voltage cathode = —m|
E|E 2 ! —1
w | ey o 15
HlE £ N
S| MoSsinectors 1
iR e kR pesn B
\
\ =
0
- A s=nsitive region; diiftcathodes’, guard megion),

Fig. 1.9: layout of SDD (MOS charge injector are showed)

20

These devices inject charge in the silicon sensor when they are triggered externally.
By measuring the time between injection of this charge and its arrival at the anodes the
drift-speed can be calibrated. Applying this procedure at regular intervals during the gap
between the LHC orbits ensures a proper calibration at all times. At the nominal bias
voltage of -2.4 kV the drift velocity is 8.1 um ns™. Since the front-end electronics
samples the signal of each anode at a frequency of 40.08 MHz, the size of the sensitive
element (cell) is 294 x 202 um*, corresponding to 89.1x10° cells per detector,which are
readout by 512 channels. The space precision along the drift direction is better than 38
um over the whole detector surface. The precision along the anode axis (z) is better than
30 um over 94% of the detector surface and reaches 60 um close to the anodes where a
smaller fraction of clusters affect more than one anode. The detection efficiency is
larger than 99.5% for amplitude thresholds as high as 10 times the electronic noise. The
relative distance at which two clusters are disentangled with a 70% efficiency grows
almost linearly from 600 um near the anodes to 800 um at the maximum drift distance.

The main parameters of the ALICE SDD are summarized in table 1.3.

Sensitive area 70.17 x 75.26mm?
Collection anodes (readout channels) 2 x 256
Total area 72.50 x 87.59mm?
Anode pitch 294 ym
Nominal operating voltage -24kV
Nominal bias of the collection region -40V
Nominal drift velocity 8.1 um ns™'
Nominal maximum drift time 4.3 us
Cell size at nominal drift velocity 294x202 pm?
Cells per detector at nominal drift velocity 2x256x174
Total number of cells (260 SDDs) 23.16x10°
Average resolution along the drift (rp) 35 um
Average resolution along the anode (z) 25 um
Detection efficiency 99.5%
Average double-track resolution at 70% efficiency 700 um

Tab. 1.3: SDD detector

Silicon drift sensors provide true two-dimensional position information (Fig. 1.10).
Along one side of the sensor 256 anodes, collect the charge drifting perpendicularly to
the beam direction. So far each SDD detector contains 2 x 256 readout channels: taking
into account that the layer 3 and 4 contain 260 SDD modules, the total number of SDD
readout channels is around 133k.

21

Time axis

| Diift

Anode :L;is

Fig. 1.10: Charge distribution evolution scheme

1.2.2 SDD layer

The SDDs and the front-end electronics are mounted on linear structures called
ladders (Fig. 1.11). There are 36 ladders in total:

14 ladders with 6 detectors each on layer 3.
22 ladders with 8 detectors each on layer 4.

LAYER 4
22 LADDERS x 8 DETECTORS

VAN = A

| T T

End Ladder

=] P
= Suppart .l
/ P — Support Pin

$ / \ 9 a
YA N -""

Fig. 1.11 : Ladders for layer 3 - 4

The layers sit at the average radius of 14.9 and 23.8 cm from the beam pipe. The
main geometrical parameters of the SDD layers and ladders are summarized in table 1.4.
The ladder space frame is a lightweight triangular truss made of Carbon-Fibre
Reinforced Plastic (CFRP) and has a protective coating against humidity absorption.
The ladders are assembled on a CFRP structure made of a cylinder, two cones and four
support rings (figure 1.12).

22

Layer 3 | Layer 4
Detectors per ladder 6 8
Ladders per layer 14 22
Detectors per layer 84 176
Ladder sensitive half-length (cm) 22.16| 29.64
Ladder length (cm) 4556 60.52
Average layer radius (cm) 15.03 23.91
Ladder space-frame weight (g) 11 15
Weight of ladder components (g) 87 121

Tab. 1.4: SDD layer 3 and layer 4 geometrical parameters

Fig. 1.12: SDD barrel

1.3 Readout chain

—_
[&~

A mrm

For each SDD detector the readout electronics is composed by (figure 1.13):

8 PASCAL-AMBRA chip pairs connected directly to the silicon detector (a
module is composed by the SDD detector and the 8 P-A chip pairs).

1 CARLOS board, to receive data coming from 1 module and to apply on them a
compression algorithm to reduce the data volume.

1 multichannel readout board CARLOSrx that stores all the informations
coming from 12 CARLOS and sends them to a PC for future elaboration.

LDC (Local Data Concentrator)/lGDC (Global Data Collector), these are
component of the DAQ infrastructure. They are standard PCs that receive the data

coming from the readout electronics and save them on the disk or different
storage media, like CASTOR.

CARLOS fin * LTy
end ladder ﬂgﬂ‘ g Trigger

CARLOSrx
dara
concentrator
cards:
two 9U boards

cARLOS [%= g

end ladder| vt

= CASTOR

Fig. 1.13: SDD readout chain

24

The full SDD readout chain is made by:
260 SDD detectors distributed in two layers.
2080 P-A chip pairs.
260 CARLOS boards.
24 CARLOSTrx board pairs (data/clock).
4 LDCs (6 CARLOSTrx for each one).
1 GDC.

1.3.1 Front End module (Pascal-Ambra)

The SDD front-end electronics is based on three ASICs (Application Specific
Integrated Circuit):

PASCAL,
AMBRA,
CARLOS.

The first one, PASCAL"' (Fig. 1.14) assembled on the front-end hybrid, contains
three functional blocks:

preamplifier,
analogue storage,
Analogue-to-Digital Converter (ADC).

The second integrated circuit, AMBRA (Fig. 1.14), also on the hybrid, is a digital
four-event buffer which performs:

data derandomization,
baseline equalization on an anode-by-anode basis,
10 to 8-bit non linear data compression,

sends the data to the third ASIC, CARLOS, which it is a zero-suppressor and
data compressor mounted in one of the end-ladder boards (will be described in
the next section).

The connections between the detectors and the front-end electronics have been assured
with flexible micro cables, TAB bonded, which carry both data and power supply lines
(Fig. 1.15). Each detector is assembled together with its front-end electronics and high-
voltage connections as a unit, hereafter called a module, which has been fully tested
before it has been mounted on the ladder.

25

Fig. 1.14.: 4 PASCAL-AMBRA chip pairs installed on front end hybrid

Control & deta lines v
half-mndule
e Tadder

| I module
HV microcable end-ladder
: cnd
{exrarmal HV
divider)

w
helf-medule
end-ladder

card

Power lines

Control & duta nes

Fig. 1.15 : SDD module (SDD detector with front end electronics)

26

The three ASICs have been designed using a radiation-tolerant layout technique
(enclosed gate geometry) based on a commercial deep sub-micron process (0.25 pm).
The PASCAL prototype designed with this technology has proved to be insensitive to
total ionization dose up to 300 kGy. The average power dissipation of each PASCAL-
AMBRA front-end channel is estimated to be about 6mW. The signal generated by an
SDD anode feeds the PASCAL trans-impedance amplifier-shaper which has a peaking
time of about 40 ns and a dynamic range of 32 fC (the charge released by an 8-MIP
particle hitting near the anode). The amplifier output is sampled at 40.08 MHz by a ring
analogue memory with 256 cells per anode. This is the mode of operation in the idle
state of the front-end. On a run-by-run basis, PASCAL can be programmed (during the
JTAG configuration) to use half of this nominal frequency for the sampling, thus
reducing the amount of data and, therefore, the sub-system dead-time. Analysis of beam
test data and simulation have shown that the cost in terms of both spatial resolution and
double track-resolution is negligible. The advantages of a front-end A/D conversion are
the noise immunity during signal transmission, and the possibility of inserting a
multiple-event buffer to reduce the busy time of acquisition, to derandomize the data
and, therefore, to slow down the transfer rate to the DAQ system. This greatly reduces
the material budget of the cabling. The digitization lasts for about 230 ps (120 us when
the half frequency mode is programmed) and can be aborted by the absence of the L1
trigger or by the arrival of an L2-reject signal; in both cases, the front-end electronics
reset the SDD BUSY and returns to the idle state within 100 ns. On the successful
completion of the analogue-to-digital conversion the SDD BUSY is reset if at least one
buffer is still available in the AMBRASs. As soon as the conversion is completed, all the
AMBRAS transmit the data reading one buffer at the time to the CARLOS chips on the
end-ladders, an operation which takes 1.64 ms (0.82 ms when the half frequency mode
is programmed).

27

1.3.2 CARLOS

The end-ladder modules, called CARLOS!" . are located at the ends of each ladder.
They receive data coming from the modules and perform data compression by means of
a two-dimensional two-thresholds algorithm and with no additional dead time, the
CARLOS chips reduce the SDD event size from the raw 22.1 MB by more than one
order of magnitude and they send these informations to the CARLOSrx board.

Major operations of this ASIC are:

+ to compress data coming from one Silicon Drift Detector using a double
threshold compression algorithm (for details on the compression algorithm refer
to Appendix C.1),

- to send data to the concentrator board CARLOSrx via a 800Mb/s optical link,
« to receive through optical link:

« clock,

- reset,

« JTAG informations.
All these signals and data are propagated to the FEE.

CARLOS has to face several constraints due to the position where the board has been
installed:

+ size (54x49 mm) and a maximum thickness of 16 mm,

- radiation tolerance.

Fig. 1.16: CARLOS board

The board has been built in Bologna using several CERN developed ASICs.

CARLOS" receives 2x8-bit bus in input, one for the half module-left and the other
one for the right, and generates a 16-bit output bus using 8B/10B Ethernet protocol
encoded by the GOL (Gigabit Optical Link). Data are sent to a single mode optical fiber
using /310nm optical laser with a a total data throughput of 800 Mb/s.

28

=)
ms)

Fig. 1.17: CARLOS data flow

Figure 1.17 shows the layout of the CARLOS board: it is possible to see the
components that handle data and clock. Looking at the left of figure 1.17 it is possible to
see:

« the 1310 nm edge-emitting laser diode that sends data to CARLOSrx,
- apin diode that receives the clock,
+ apin diode that:

+ receives system configuration at startup phase,

- receives trigger signals,

- stops the acquisition in case of event congestion.

As already mentioned all the components embedded into the CARLOS end ladder
boards are ASICs designed to be radiation-tolerant to the total ionizing dose that has

been estimated for 10-years of data taking in the ALICE-ITS environment, nearly 30
krads.

29

1.4 DAQ system

In this section a general description of the DAQ system® and its components will be
presented. The hardware part of the data acquisition infrastructure of ALICE is
composed by:

. LDC,
. GDC,
. CASTOR.

The software components that control the data acquisition are:
« DATE (ALICE Data Acquisition and Test Environment),
« ECS (Experiment Control System).

A view of the ALICE data-acquisition architecture is illustrated in Fig. 1.18.

Rare/All N

"

L0, L1a, L2

L0, L1a, L2

123 DDLs 262 DDLs 10 DDLs
329 D-RORC 10 D-RORC
175 Detector LDC 10 HLT LDC
Sub-event
EDM [Event Building Network J

ven } } | |
g) () R () s

[o JL étorIage I'Nlitwork :

Fig. 1.18 : ALICE DAQ.

The detectors receive the trigger signals and the associated informations from the
Central Trigger Processor (CTP)"™ through a dedicated Local Trigger Unit (LTU)!"
interfaced to the Timing, Trigger and Control (TTC) system. The readout electronics of
all the detectors is interfaced to the ALICE standard Detector Data Links (DDL). The
data produced by the detectors (event fragments) are injected on the DDLs. At the

30

receiving side of the DDLs there are PCI boards, called DAQ Read-Out Receiver Cards
(D-RORC). The D-RORC:s are hosted by PCs, named LDCs. Each LDC can handle one
or more D-RORCs. In the LDCs, the event fragments originated by the various D-
RORC:s are logically assembled into sub-events. The role of the LDCs is to ship the sub-
events to a farm of PCs called GDCs, where the whole events are built (from all the sub-
events pertaining to the same trigger). Besides having a DDL common to all the sub-
detectors, the other major architectural feature of the ALICE data acquisition is the
event builder, which is based upon an event building network. The sub-event distribution
is performed by the LDCs, which decide the destination of each sub-event. This
decision is taken by each LDC independently from the others (no communication
between the LDCs is necessary); the synchronization is obtained using a data-driven
algorithm. The algorithm is designed to fairly share the load on the GDCs. The event-
building network does not take part in the decision about the destination; it is a standard
communication network supporting the TCP/IP protocol. The role of the GDCs is to
collect sub-events and to assemble them into whole events. The GDCs also feed the
Transient Data Storage (TDS) located at the experimental area with the events that,
eventually, will be migrated onto Permanent Data Storage (PDS), CASTOR, in the
computing center. All these “players” are controlled by software tools that coordinate
each single operations. In particular there are DATE and ECS that have been developed
to start and to stop the acquisition. DATE is the official acquisition software used by
ALICE to acquire data from all the detectors. The general idea is to have a distributed
program running into all the LDCs that reads the data coming from the D-RORCs
installed in each LDC. The DATE software can be used in a little test setup to simulate a
run like the real one in the experiment, in this way all the detector teams can use the
latest software release in their test setup to acquire data. With DATE it is possible to
control only the acquisition part, but for the other components of the system, like the
trigger or the DCS (Detector Control System), other programs are requested to start and
to stop the run. For this reason the DAQ team has provided the ECS. The main feature
of this program is to have the control of all the players during the acquisition, so it takes
care to start the trigger and the data acquisition and check if the system is working
properly only clicking one button; it also stops the run if one of the parameters being
checked goes below a certain threshold.

31

ECS

Fig. 1.19 : ECS architecture

32

Chapter 2

2. CARLOSrx

The data produced by the detectors have to be saved in order to be studied, for this
reason a card to send these informations to the DAQ system has been developed.
CARLOSrx? is the SDD readout board and its main tasks are:

to receive data from 12 SDD detectors at the same time,

to tag and merge the 12 data streams in input into one sub-event,

to send the informations towards the ALICE data acquisition system,
to configure the front end electronics,

to propagate the clock, reset and trigger signals to the FEE.

CARLOSrx is placed in the counting room CR4 and it receives data coming from
12 CARLOS boards, installed in the ALICE cavern. It also provides the clock and
configuration signals to all the end ladder boards and front-end electronics through
optical fiber connections. Each CARLOSrx board has to deal with 36 optical fibers,
plus several other interfaces like trigger system and VME bus. The first prototype of this
board was based on a single board; we were planning to use parallel optical transceivers,
since it was not conceivable to have 24 single optical transceivers on the same PCB
(Printed Circuit Board). During the hardware development of the board no commercial
parallel optical transceivers for single mode 1310 nm OT (Optical Transceiver) were
available on the market, so we decided to break the design of CARLOSTrx in two cards
(Fig. 2.1):

a data processing board, called CARLOSrx'' data, that contains:

12 single optical transceivers from Optoway™ for receiving data from 12
detectors and for sending configuration informations to 12 CARLOS at the
same time.

4 FPGA to handle:
data,
clock,
reset signal,
busy signal,
trigger signals,
VME BUS interface.

a clock distribution board, called CARLOSrx clock!™!, that receives the clock
from the CARLOSTrx data board and distributes it through 12 optical fibers to the
FEE.

33

In order to read the data produced by the full SDD barrel, in total 260 SDD
detectors, twenty-four CARLOSrx boards are needed: they are hosted in 3x21 slots
VMEG64 crates installed in CR 4.

CARLOSrx CLOCK CARLOSTrx

L. Wi A
i - H
R N i
- e i
s BT T By 5
i

.-1.-! - l'J-"i'-

LLERLERY RN A

-|¢"-|¢;--'»-

Fig. 2.1: CARLOSTrx clock and data layout

2.1 CARLOSTrx data processing board

This board is a 10-layers 9U VME printed circuit board with the main task to
control and receive data from 12 CARLOS chips, to tag and merge these informations to
create a sub-event to be sent towards the data acquisition system (ALICE DAQ). It has
several device interfaces:

3 XILINX VIRTEX II PRO FPGA (XC2VP20)"": they process data coming
from the detectors and handle the communications with the DAQ and the trigger
system.

1 XILINX SPARTAN II FPGA!™: it handles the communication with VME bus.

12 optical transceivers: to receive data from the SDD detectors and to
communicate with CARLOS boards. CARLOSrx hosts 12 x 1.25 GB/s single
mode optical transceivers from Optoway'™. They are used as 800 Mb/s link for
data transmission and as 40Mb/s for serial control.

12 de-serializers TLK1501 from Texas Instruments™, to de-serialize the serial

34

input data into 16-bit words.

4 x 9-Mbits IDT FIFO"": they store temporarily the data in order to reduce the
busy time and to prevent the informations loss during the data processing.

TTC system'": the TTCrx chip, installed on the TTCrq mezzanine card (66 x
66 mm) that is plugged on the CARLOSrx board, provides the 40.08MHz LHC
system clock plus the trigger signals (L0 — L1 - L2).

BUSY signal™: CARLOSrx communicates with the LTU using a busy signal to
stop the generation of triggers. After it has received a LO trigger CARLOSrx
asserts the busy until SDD front end electronics is ready to accept a new one.

ALICE DAQ"": the DAQ system is connected with the detectors through the
DIU - DDL - SIU connection. The SIU (Source Interface Unit) connects
CARLOSrx with the DAQ system through a DDL link (200 MB/s optical link).
The DAQ infrastructure receives data using a PCI based card, D-RORC'*,
installed in several PCs, named LDCs. The D-RORC is connected to the DDL
through the DIU (Destination Interface Unit) embedded in the RORC.

VME bus: CARLOSrx is connected to the VME bus on the backplane of each
VME crate, from which it gets the power supply (+5 V and +3.3 V) and the
informations to re-configure the firmware of the XC2VP20 FPGAs installed on
the board.

RS232 port'™': this port has been used for test/debug purposes only.

2.1.1 The 12 OPTICAL TRANSCEIVERS

CARLOSrx implements a bi-directional communication with the FEE:
receiving data from the detectors,
sending instructions/command to the FEE.

Each readout board has 12 single mode optical transceiver SPS 7110 1.25Gbit/s from

Optoway for single mode 1310 nm optical fibers'®!.

35

Units in mm
Top View

L
T
%
13.70
14.80

Front View g
£
T
8 3
| Ue i
2 T 6.25 RX
s
1.65
AL Side View

L 45.0

Bottom View

Fig. 2.2: optical transceivers installed on CARLOSrx

Each optical transceiver is hot pluggable, providing an easy way to substitute
possible broken parts of CARLOSrx without switching off the full crate where the
board is installed. Other components of the board can be replaced but in order to do that
it is necessary to switch off the CARLOSrx and extract it from the VME crate where it
is plugged in. The hot pluggable feature is extremely useful reducing the time needed to
replace components of the board.

The data flow can be described as follow (Fig. 2.3):

1.

each CARLOSrx optical transceiver receives the data coming from one SDD
module;

CARLOSTrx receives 12 data-streams and de-serializes these informations at
the same time;

12 data streams consisting of a 40 MHz x 16-bit buses are received from the
two FPGAs connected to the transceivers;

after data packing from two 16-bit words to one 32-bit word the data streams
are stored into one of 4 IDT FIFOs;

one FPGA reads data stored in these FIFOs, builds the sub-event and
transmits the informations to the DAQ system through the DDL using the SIU
board.

36

XC2VP20 XC2VP20

T ‘ 16
—0 | TRANSC [DESER FIFO :>\ : T ,
—0y| TRANSC || DESER 1m0 B3 1m0 1=
: -
—L»| TRANSC [-»] DESER FIFO [/
Ncniichdlly : =
—0 3| TRANSC [DESER | FIFO 1’_ AN .,
6| 132 3
—L»/ TRANSC |- DESER [FIFO - [FIFO
D
FIFO
—L | TRANSC [-» DESER 4 "
ANSC , 16 < 3SIU
—L | TRANSC [DESER LGN %
—L | TRANSC | DESER p— e | T MHz
—Lp| TRANSC |-»{ DESER — /
03| TRANSC [| DESER 6 prro PN
' 16, |[32 32
—0 5| TRANSC |- DESER FIFO FIFO [)
16
—0 | TRANSC | DESER FI¥o =)/

Fig. 2.3: CARLOSTrx 5 working steps

The data is de-serialized by a commercial de-serializer TLK1501 from Texas
Instruments'.. It supports serial interface speed of 0.6Gbps to 1.5 Gbps providing up
to 1.2 Gbps of data bandwidth. The frequency range at which the de-serializer can work
is 30MHz up to 75 MHz. The serial to parallel conversion is done by a shift register,
that is clocked on both the rising and falling edge of the internal generated bit clock
which is 10 times faster than the clock in input.

37

block diagram

LOOPEN [>
PRESEN [- PRESEN
T _EN[C>——
TX_ER [>—ry
PRES 10 == DOUTTEP
Generator
> DOUTTEN
Parallal to
10> Serial
ry
|—<_] RREF
10
To(-15) A o
Clock
Multiplying
GTH_CLK[>—s : ; » Clock
Synthesizer
TESTEN [+ controls: =
PLL,Bias,Rx, i
ENABLE [>—# Tx Clock —:
hd
PRESEN
Interpolator and 21
Clock Recovery MU
RX_ER
PRBS_PASS
DRRS i
PRESEN — . 8
Verification
s Recoverad
RX_DVILOS < +—— Clock
Comma
Detect ¥
and 8B/108 [10 y
- Decodi .)
<RDy-15) £z — 1:2 |/ Serial to Data
25‘ Comma Mux Parallel I —
a8 L <_] DINRXN
and EBM0B
Decoding
*— Signal Detect |
LOS) "
+

Fig. 2.4: de-serializer block diagram
The optical transceivers are used also to send command/instructions to the FEE like:
- RESET signal,
- trigger signals
- JTAG instruction,

in this case the serial control is 40 Mb/s (Fig. 2.4).

2.1.2 IDT FIFO 4 x 9 Mbits

Each CARLOSrx receives in input 12 x (16-bit x 40 MHz) data streams and provides
in output only one 32-bit x 40 MHz stream that is sent towards the DAQ (Fig. 2.4) In
order to keep the acquisition as fast as possible and to prevent the data losses, a system
with huge buffers has been implemented on the board. Four large hardware FIFO s

temporarily store the incoming data before they are read from the main FPGA and sent
to the SIU.

38

Each buffer is an extremely high speed CMOS FIFO"" memory with clock read
and write controls; it is 9 MBits large and it provides five flag pins:

- empty flag or output ready,

« full flag or input ready,

half full flag,

- programmable almost empty flag (set during the initialization phase),

- programmable almost full flag (set during the initialization phase).

PARTIAL RESET (PRS) MASTER RESET (MRS)

WRITE CLOCK (WCLK/WR) READ CLOCK (RCLK/RD)
WRITE ENABLE (WEN) READ ENABLE (REN)
WRITE CHIP SELECT (WCS) OUTPUT ENABLE (OE)

— DT —
LOAD ([D) ,| 757345 |. READ CHIP SELECT (RGS)

7273655
T oeen |36, x18. x9) DATA OUT (Q0- Qn)

SERIAL CLOCK (SCLK) ggg;g RCLK ECHO, ERCLK
RENECHO. EREN

SERIAL ENABLE(SEN) | 72T3695
FIRST WORD FALL THROUGH/ | 72736105 [, MARK —
SERIAL INPUT (FWFT/Sl) | 72736115 | RETRANSMIT (RT)

7atse1zs EMPTY FLAG/OUTPUT READY (EF/OR!
FULL FLAG/INPUT READY (FFAR) E (’7)
PROGRAMMABLE ALMOST-EMPTY (PAE)

PROGRAMMABLE ALMOST-FULL (PAF) HALF-FULL FLAG (F)

BIG-ENDIAN/LITTLE-ENDIAN (BE)

INTERSPERSED/
NON-INTERSPERSED PARITY (IP)

5907 drw03

(x36, x18, x9) DATA IN (Do - Dn)

»

INPUT WIDTH (IW) g, OUTPUT WIDTH (OW)

MATCHING
(BM)

Fig. 2.5: IDT FIFO

The FIFOs receive in input the data coming from 12 CARLOS board and they
contain all the informations needed to build the complete sub-event. The information
stored in the FIFOs are read by one FPGA that tags and merges all the words and sends
them to the DAQ system.

2.1.3 The TTC system

The TTCrx"" is a custom IC designed by the CERN Microelectronics Group. It
acts as an interface between the TTC for LHC experiment and its receiving electronics,
in this case CARLOSrx. It has been installed on a mezzanine board TTCrq that can be
mounted on a standard VME unit without imposing restriction on the spacing between

two modules, this is very important for CARLOSrx because all the board are installed in
a VME crate.

39

&3 mm
> -
< 66 mm >
< 48.2 mm »
15.24 mm 3048 mm 1524 mm}
v J1 J3 h J2
2.5 mm A '1.2 2 1
" T E YRR REEREE] ‘2I
A “E' Tssssessssssns ESI‘. A 234 ety
LR] -e
-w > < (]
-w -e
-e 254 mm LR
-e -e
LR] LN
-w L]
-e LR
-e LR
66 mm a Tega wiew) i 60.85 mm
- -
e X
LR .e
LR] L
w270 BEAD MM me
- G4 mm .40 mm -
= > < >
LR L
- TrsLigh .
- e TRF- | DA -
-e .s
e o ew ¥ 2.54 mm
¥
> <
254 mm
15mm
31.75 mm 29.21 mm
-« P > JH and J2: Presi-dip, 450-90-250-00-008
55 88 mm J Precidip, £50-90-226-00-008
< >
J1 and J2: E4es, DIS-250-5079401
< B 06 ey > 1 B, DIS-226-5079-01

Fig. 2.6: TTCrq board

This ASIC provides the clock and control/synchronization information, such as (Fig.
2.7):

+ the 40.08 MHz LHC clock signal,
- the trigger signals (L0 L1 L2),

- its associated bunch and event numbers.

40

1
Clock Programmable %I»
"| Extraction "| Fine Deskews ———»
Inputfrom | | jqear 441/ £
PINFET Receiver f
Data Decoder/
Demultiplexer
Full Custom A B
Standard Calls I I i
Local A-B Channels |41 | Control & Data [LAFcept
Address Internal |dentification Interface BunCh Mo
Registers Evert o
4 Error Bunch/Event |pcast cMos)
an Manitoring Counters Sub-adress
. Data
JTAG Control Serial/Parallel Coarse Deskew [
— Converter [Functions

Fig. 2.7 : TTCrx architecture

The clock signal produced by TTCrq board is a LVDS (Low Voltage Differential
Signaling) signal and it is converted by CARLOSrx into a LVPECL (Low Voltage
Positive Emitter Coupled Logic) signal. The new converted clock enters a fan-out chip
that distributes the clock to all the component installed on the board (Fig. 2.8). In the

following picture we can see the top and the bottom of the TTCrq board (on the right
side of the picture, the TTCrx chip).

i
EDA-00111
TicRo. TRR-1B43 =iy g

Truelight

Fig. 2.8: TTCrq board (the right side of the picture shows the TTCrx chip installed on TTCrq board)

All the relevant informations about trigger and clock signals are provided by the
LTU through an optical fiber directly connected to the TTCrq optical receiver (Fig. 2.8).

41

=

S
L e
B TeraEr 3
" I s
Hk=—0

r a:0c: | nzao Worpiic 02067 | zacs | oncin
2 S =

0r20C ff oz f caoa: | nzo0 fozoic { oo

I.N.F.N,
SEZ, BOLOSHA - LF,
CARLOSru Rove2

1<

LE]

Fig. 2.9: clock distribution in CARLOSrx

The VME client does not need to be synchronized with the LHC clock and there
were not any available fanout outputs for sending the TTC clock to the SPARTAN
FPGA. So far we installed a quartz that provides a clock of 11 MHz to this FPGA. It is
the only component installed on the CARLOSrx board that does not receive the clock of
LHC.

2.1.4 The BUSY signal

During the acquisition there are several situations in which it is necessary to stop the
generation of trigger sequences, as will be described later in Chapter 3. The readout
board communicates with the LTU through the busy, an LVDS signal. When
CARLOSrx asserts this signal the LTU stops sending trigger sequences to the readout
electronics. Since the SDD readout chain is composed by 24 CARLOSrx boards, 24
cables have to be connected to the LTU. There is one LTU for the SDD and it has only
two inputs for the busy. To connect all the signals provided by all CARLOSrx boards we
use a Faninout™ board developed by the trigger team. It is a 6U VME64x board,
electrically connected to the LTU, TTCvi and to the FEE electronics of each sub-
detector; for SDD the situation is rather different, since the Faninout, or busy, board has
been installed in one of the 3 crates and all the CARLOSrx boards are connected to the
busy board by mean of 24 bipolar LEMO cables. In this way there is only one cable
connected to the LTU of the SDD.

42

The Faninout makes fan-in or fan-out of LVDS signals depending on the
configuration of the board. It has been designed for :

- distribution of ALICE L0 trigger signals as fan-out: The LO input trigger signal
is coming from ALICE LTU module and the fan-out LO signals continues to FEE
electronics,

- merging together ALICE BUSY signals as fan-in (OR function): BUSY signals

are coming from FEE electronics and the single OR function output continues to
the ALICE LTU module.

Dpizal iransmiess +HE beoa 3ddrecs omich

Fig. 2.10 : Faninout board for the busy signal

The Faninout board must be configured every time after a power up because in the
default configuration all the inputs are disabled and it is necessary to enable them before
starting a run, otherwise the busy will not work properly. In order to do that a software
loaded in a CPU VME installed in the same crate of the busy card (Fig. 2.11) configures
one register of this board.

> VME UTILITY CRATE el |
CARLOSRX PROGRAM FILE ” BUSY BOARD | HELP | EXIT | ‘

TOP: 41 42 43 44 45 46 47 48
MED: 41 42 43 44 45 46 47 448 BUSY VALUE -- D

BOT: (1 42 43 44 45 16 47 18 PROGRAM BUSY !

Fig. 2.11: program interface developed to configure the busy board

43

2.1.5 ALICE DAQ interface

The DDL™" (Fig. 2.11) is a part of the DAQ of ALICE experiment. The DDL
interfaces all the readout electronics of the detectors to the readout receiver card
(RORC, a PCI card plugged inside the LDC) of the DAQ. The SIUs are connected to the
FEE, the DIUs are connected to the RORCs, located in the counting room about 200
meters from the detector. The two DDL interface units are connected through two
multi-mode optical fibers.

Physical Layer

FEE-DDL Interface (alternatives) RORC-DDL Interface
(standard + detector specific) : L (standard)
4 7 \
» 7 Forward Channel ™ 14
0
FEE & DIU RORC

'/ Backward Channel
»

‘Physical Link

N
DDL

Fig. 2.12: SIU - DDL - DIU link

Each DDL is able to transmit data at a rate of 200 MB/s with a detected bit error

rate of less than 101,

The FEE and the SIU are remotely controlled by the RORC through the DDL, since
their placement inside the detector does not allow using any other cabling apart from the
DDL medium. Therefore, commands and status information shall also be transmitted
between the FEE and the RORC. So the DDL system provides a bidirectional
communication:

- data blocks and commands from the FEE to the RORC:
- sub event;
- flow control;
« status of the SIU board and of the FEE;
« data blocks and status information from the RORC to the FEE:
- RESET and initialization instructions;
« commands to the FEE (JTAG instructions - RESET command);

To keep the acquisition as fast as possible the RORC transfer data into the memory
of the LDC using DMA (Direct Memory Access) providing a bandwidth larger than 400
MB/s. The DMA transfer reduces the need of on-board memory and the software
overhead. As soon as the data is provided by the detector readout electronics, the RORC
card starts to write data in the PC memory. Every time the RORC is not able to write

44

data, it asserts a back-pressure signal through the DDL.

il |IIIII|w~nz|IIIl|cw

¥

;

b
a%E
g g

5z
(st 3
Joi
284

36,5 <mm.

107 ¢mm! -!

te
11 (mm}

49 Cmm

L [1 [1

10 ¢mm)

Fig. 2.14: SIU drawing

Fig. 2.15: SIU board
A 32-bit bus wise connects the main FPGA with the SIU (Fig. 2.16).

45

‘gta bus [31:0] (fbD[31..0])}

bus control (IbCTRL N)
transfer enable (f(bTEN N)
bus direction (fiDIR)
bus enable (iBEN N)
link full (fiLF_N)
FEE busy (foBSY N)

FEE system clock (foCLK) _

-

= - (_T—T\ITIFI'TJJJ

Front-end
Electronics

Hmf‘t

Test Clock (TCK)
Test Mode Select (TMS)

Test Data Input (TDI)
Test Data Output (TDO)_

<« Test Reset (TRST)

o -

(

Fig. 2.16: SIU hardware interface

For a detailed description of these signals read Appendix A.1.

2.1.6 VME BUS

As mentioned before, all the CARLOSrx boards are installed in a 9U VME crate.
From this bus they get power supply and firmware information.

The VME backplane provides:

. +5V,

- +33V.

CARLOSTrx receives the input voltage and provides stabilized voltage values of:
- 2.5V,

- 18V,

- 15V,

to all the other components of the board.

For what concerns the instructions sent through this bus the SPARTAN FPGA (Fig.
2.17) is connected to the VME bus and acts as VME client receiving the new firmware
code.

46

Fig. 2.17: SPARTAN and the VME bus connections

The SPARTAN uses these informations to re-configure the 3 FPGAs (XC2VP20). It
is not possible to re-program the SPARTAN firmware using the VME bus so the code of
this FPGA has been loaded using a standard JTAG programmer before the board has
been installed in the crate and its firmware is fixed.

2.2 CARLOSTrx clock distribution board

CARLOSrx clock!™ receives the 40.08MHz clock signal from the data processing
board by means of bipolar LEMO cable. Once the clock signal is received it is
distributed over the board using a low jitter LVPECL clock distribution chip™' and
sent outside towards 12 Optoway optical transceivers to (Fig. 2.18):

- all the CARLOS,

- all the front-end electronics.

47

w
i
& o
LIR]
H " Ill
oL L
- i
LAl]
- -
.
1] -,
o ! 1
il I P |
b= =
:L it
il n
v

Fig. 2.18: CARLOSrx clock working principle

Fig.2.19: CARLOSrx clock board

48

B
,..%.145.»1.5'1 [

e g s " —

. '
MRS LT T L Gy R

P T e e
‘

| Tt ot el
sk ol el l\'

=
- L B B e S

-

e

: J*ys'.s!
-1 TP..!- (i L

A et

. 3 nmn.»L\.J.‘ >

Fig. 2.20: 8 CARLOSrx data and 8 CARLOSTx clock, installed in one of the three crates situated in CR4

at Point 2

49

50

Chapter 3

3. CARLOSTrx firmware

In this chapter the algorithms and the different features of the CARLOSrx data
processing board firmware will be presented . From now on the name CARLOSrx will
be used to refer to CARLOSrx data processing board, because it does not make sense to
speak of firmware for the CARLOSTrx clock board, since there is not any FPGA installed
on this board and its behavior is fixed.

In order to distinguish among the 3 identical FPGAs, XILINX XC2VP20, they will
be referred to with the following terms:

- input FPGA, the one connected to the optical transceivers and receiving data
from the modules (there are 2 devices of this type),

- main FPGA, the one that takes the data stored in the 4 IDT FIFOs and sends
these informations to the DAQ system. This FPGA is the one that builds the sub-
event merging 4 data streams coming from the FIFOs in a single one.

The other FPGA, a XILINX SPARTAN I1I, interfaces CARLOSrx with the VME
bus to retrieve the firmware information and to re-program the other XILINX
XC2VP20 FPGAs.

In the next section the algorithm and the logical blocks implemented will be
presented.

= &
ﬂm-ga!smu__g__

L im}ml u

—%ﬁnlﬁ |?
%E:’u - 22

ﬁ:&.%g‘m l%

b =
#i o010
CHE

— = — =

|_‘ ’Ummim:nﬂHnmﬂHnumb‘mm‘du{.mui

i ﬂL]“]h toEtn d oot i 10200 H 1300t H nm]l ‘l

—, . —

CARLOSMx Rev.2

Fig. 3.1: 4 FPGAs installed on CARLOSrx

51

3.1 Input FPGA firmware

The two input FPGAs, figure 3.2, are connected directly to 6 optical transceivers

each one and their main tasks are:

to concentrate the 16-bit data streams, coming from one CARLOS chip, into one
32-bit data stream,

to store temporarily these informations into 4 external big FIFOs; each FPGA is
connected to two of them,

to include one or more transceivers in the acquisition, in this way CARLOSrx
board can decide to exclude one or more modules from the run.

:

; .| IDT FIFO
XC2VP20

e

- ||/ IDT FIFO
b

Fig. 3.2: CARLOSrx input FPGA

3.1.1 The algorithm

The task of this FPGA is to receive 6 data streams, 16-bit each one, of data coming

from the detectors and merge them into two data streams of 32-bit each one, figure 3.3.
After tagging and merging operations data is stored into 2 external FIFOs waiting to be
read in order to create the sub-event , this operation is described in the section related to
the main FPGA.

Each FPGA operates in this way (Fig. 3.3):

the data coming from the optical transceiver is de-serialized and stored in a dual
clock input FIFO, for synchronizing de-serialized data with the system clock,

a DP (Data Packing) block encodes the 16-bit input data into words of 32-bit,

a 4Kwords 32-bit FIFO stores these informations while other channels are being
written,

a scheduler block acts as queue manager between 3 inputs and 1 output avoiding
FIFO overflow, rising the back-pressure signal to stop the flow of data coming
from the SDD modules, in case it is necessary.

52

ranscl=| FIFO | = [oA = | FIFO | =
[canse|==> [FFO = [OA = [TFiFO | =
(B [FES]~> B => [RFiECH =»
transc = FIFO|=p DA => | pIF0 | =
[ieansc/==> [FIFO]=> B = [k |=>
[eanse| == [FFO]=> [BF => [TFiFo | =

16 bits 16 bits 32 bits 32 bits 32 bits

Fig. 3.3: input FPGA algorithm

3.1.2 Data Packing

All the streams coming from SDD detectors must be converted from 16-bit to 32-bit,

because the DAQ system expects words of 32-bit wide words. There is a data-packing
block (Fig. 3.5) for each optical transceiver that fills an internal FIFOs waiting to be
read from the scheduler block. It works in this way:

it receives the 16-bit data stream from the CARLOS board, in which different

types of information like data, header, footer and error flag words are encoded
(Fig. 3.4),

it takes 2 x 16-bit words of the same type to build a 32-bit word, for example it

puts together two words of channel(or two words of channell.

i
=
T
g 518 = = E|lEB| B
SAEEHE = E S B E B R EE B EEE
mlT|m|[ElElzldlE19|8]|2|8]8]8 16 bi
L=} 1ts
LB IR *
-
oo i T 113
Tl 0 AERE
ololollafalalelalaliloliltli]|ofo]o
15 12 3210 15 12 0
Header |010]| Eventd |,]| Footer [011[1111111111111
N
%

CARLOSID O

Fig. 3.4: CARLOS output data format

53

Looddid

§

data packing

8888

32 bits

Fig. 3.5: data packing

The 32-bit data stream resulting from this operation has the format shown in Tab.

3.1.

bit 31 | bit 30 bit 29 bit 28 bit 27-0 word type
0 0 1 0 header [13-0] header [13-0] header
0 0 1 1 footer [13-0] footer [13-0] footer
0 1 0 & JTAG word [14-0] JTAG word
0 0 0 0 & error flag [13-0] error flag word
1 0 II output data [14-0] & I output data [14-0] data from chO
1 1 II output data [14-0] & I output data [14-0] data from chl

Tab. 3.1: data packing format.

When a 32-bit word is ready it is stored into a 4K words 32-bit FIFO, then the
scheduler block decides to read the words from these FIFOs.

54

3.1.2 The scheduler block

This block is particularly important, since it tries to keep the number of words stored
in the FIFOs at the same level avoiding that one of them becomes almost full and an
other one empty. It also unifies 3 inputs data streams into a single one, tagging and
merging all the informations.

It implements a Round Robin (RR) queue management algorithm (it is one of the
simplest scheduler algorithms, which assigns time slices to each FIFO in equal portions
and in order, handling them without priority):

« if the FIFO IDT is not FULL, the scheduler block writes the 32-bit words read
out from the first internal FIFO that is not empty.

« It starts to read out the words from the first FIFO with some data inside (Fig.
3.6).

- After it has read out 256 words, it jumps to an other FIFO only if it is not empty
and starts to read words from this one. If the FIFO is empty it waits for the next
not empty one.

« When it jumps from a FIFO to an another before starting to send data out the
scheduler block puts a CARLOS header word to tag all the data coming from
the corresponding module, in this way it is possible to recognize the different
words coming from different detectors when they are mixed in the full sub-event.

M' _
Mp 32 bits .-
sz [T}

i) [T T[>
M- 32 bits -
azbis) [l [}

szbie) [
M» 32 bits -
wzsie [T

Fig. 3.6: scheduler block in operation, as showed in the figure it tries to keep all the FIFO at the same
level (the green arrow indicates the FIFO reads).

55

When all the words of this event are stored in the external FIFOs the complete sub-
event is ready to be built and sent out to the DAQ. The stream in output from the
scheduler block contains informations from one to a maximum of three detectors. All
the words coming from the same input stream are tagged with a header word, otherwise
it would be impossible to reconstruct the informations coming from the same detector
when all the words are mixed in the sub-event. The data stored in the IDT FIFO have
this format (Fig. 3.7):

CARLOSO header word,

data produced by CARLOSO
CARLOS]1 header word

data produced by CARLOSI, and so on.

DATA CARLOS 0 H DATA CARLOS 1 DATA CARLCS 2

H
e
a
d
e
r
C
A
R
L
0O
]
2

CHOrITPFPO-OAL O T
—OmQOrInIrO"®omo

Fig. 3.7: data format

20000005 24513286 24319286 24513286
H200439 20000004 24513286 24513286
24219286 20000005 7200433 58023c85
20000003 24132868 24513286 24513286
7200457 7200439 30000004 572004359
/200439 20000005 24240604 92941583

CARLOS HEADER WORDS
Fig. 3.8: data format stored in the IDT FIFO.

56

This algorithm provides a unique way to reconstruct all the informations. In order to
prevent FIFOs from getting full the scheduler block asserts the back-pressure signal
that stops CARLOS sending data to the readout board. When the data in the FIFO reach

a threshold the back-pressure is asserted.
Back-pressure is very important:

- when transmitting large events,

« when no compression is operated by CARLOS,

« when the trigger rate is high.

3.1.2 INPUTS selection

The input FPGA can decide to exclude one or more modules from the acquisition.
This is very useful feature in case some detectors or the front end electronics connected
to them show problems that would affect in some way the data acquisition. So by

excluding only the faulty module the run can continues without problems

During the JTAG configuration the input FPGA receives the list of inputs to be read

during the acquisition:

« adirect bus connects the main FPGA with the two inputs FPGAs, the main one

activates the lines of this bus accordingly to the inputs that must be read,

- the input FPGA discards the control signals and the data coming from the
modules that must be excluded from the acquisition, in this way the excluded
modules will never assert the busy and its data will never appear in the sub-event.

2 transc

X
transc
transc

franse TfTi

INPUT FPGA

it

MAIN FPGA

(11T

INPUT FPGA

> XX

- |_transc

transc
: transc

A

JTAG
instructions

Fig. 3.9: inputs selection

57

3.1.3 RESET signal

The input FPGAs receive the reset signal just before the JTAG configuration. After
receiving the RESET command, the main FPGA forwards this command to the input
FPGAs through a direct connection. As soon as this signal is acknowledged they
perform the following operations:

- to send the reset to the internal FIFOs,
« to send the RESET to the IDT FIFOs.

o TRt Ieh [
to02: [oemn § zes | egmm Y 26221 f apour

LI

G FRE

['
v 1] BT

[
=20 | oot

o
Vapmir § 3
'

[Fe:

= e
3

T.N.FM.
SEL, EOLUBNG — DF,
CAfd_05ru How.2

= = =

Fig. 3.10: reset distribution, in blue the reset sent to the 2 input FPGAs, in red the reset propagated to the
other components from the input FPGAs

After the RESET signal has been sent, the input FPGAs wait for the JTAG
instructions and then from data coming from the detectors.

58

3.2 Main FPGA firmware
This FPGA is the core of CARLOSrx board, whose main tasks are:
to concentrate all the data stored into the 4 IDT FIFOs,
to build the sub-event,
to send it towards the DAQ system through the DDL link.

It has also several interfaces to communicate with the other external components of
the experiment:

JTAG interface: the main XC2VP20 is connected to the other 2 FPGAs through
a bus and to the the FEE through the serial link. It uses these 2 interfaces to send
JTAG instructions and to send the reset signal. This is the only way to configure
and initialize the front end electronics of the SDD readout chain.

FIFO interface: it is connected to the 4 IDT FIFOs, that contain all the
informations needed to build the sub-event.

Optical Transceivers interface: they receive data coming from the detectors and
they also send instructions to the CARLOS boards and the FEE through the serial
back link.

DAQ interface: it is connected via a 32-bit bus with the SIU board sending data
through the DDL link and receiving from it:

the back-pressure signal (when the DAQ system is not able to process data
anymore),

commands like JTAG instructions or the RESET.

TTCrq interface: this FPGA is directly connected to the TTCrq board, it
interfaces the readout board with the trigger system. Through this board
CARLOSrx receives the trigger signals plus the 40.08 MHz clock signal.

busy signal: it asserts this signal when the FEE is not able to process data
anymore. When the trigger system detects a busy, it stops sending triggers until
the busy signal is put to 0 again.

RS232 interface: this port has been used for test purposes. The main FPGA
connected to this port is able to interpret commands sent by a PC directly
connected to the serial port of the board. Using this system we were able to
communicate with CARLOSrx during the acquisition and to change some
parameters on the fly or to view the status of the board.

59

3.2.1 JTAG interface

As described before the DDL link provides a bidirectional communication between
the DAQ and the electronics of the SDD readout chain. This features has been
developed with the purpose of re-programming the FEE internal registers and the
CARLOSrx board. The block of the firmware that handles the JTAG configuration is
called FE2C block and it works in this way:

« CARLOSTrx receives the JTAG words from the SIU,

« it stores them in different buffers (one for each module),

« as soon as it has received all the JTAG words, it starts to encode them using the

JTAG protocol,

- it sends to CARLOS chip the instructions serialized through the OTs, to
configure the FEE.

Table 3.2 shows the format of the JTAG words sent to CARLOSTIX.

number of words to be read from the RAM

CARLOSIx 1 Oxxexxxx FF anode length load trigger
1 Ixxxexxx address address address
CARLOS TH chl TH cho TL chl TL cho
stop if error enable 2D anode length chl | anode length chO
FF FF FF read back
AMBRA ch0 0000xx10 address address address
x4 tx address read counter write counter SOP delay
FF FF baseline present read back
baseline 3 baseline 2 baseline 1 baseline ()
baseline 63 baseline 62 baseline 61 baseline 60
PASCAL chO 0000xx00 address address address
x4 calibration DAC VREF control DAC
ADC full AM full gain control sel cal channels
FF FF FF read back
AMBRA chl 0010xx10 address address address
x4 tx address read counter write counter SOP delay
FF EF baseline present read back

baseline 3

baseline 2

baseline 1

baseline 0

baseline 63

baseline 62

baseline 61

baseline 60

PASCAL chl
x4

0010xx00 address address address
calibration DAC VREF control DAC
ADC full AM full gain control sel cal channels
FF FF FF read back

Tab. 3.2: JTAG word format.

60

CARLOSrx receives the JTAG words through the SIU and sends the JTAG
informations using the serial back-link, towards CARLOS.

P - ' I
serial link B cero | JTAG distr. TEE%

& (i X mEa
L o L
=g OB .
S CORELF
«— 1. L
=) T %
= Jli?ﬂ CH
i e
miz: B
busy. [T, 'i;m N
— 1] =1 =
=h Sk =—
T ML woo
o H nin 35
& B
ii FF

Fig. 3.11: JTAG instructions sent through the SIU to CARLOSrx

Each time we want to configure the front end electronics, the JTAG words are sent
to CARLOSTrx:

after decoding the instruction “Put CARLOS in JTAG mode”, CARLOSrx sends
to CARLOS the instruction “Enter JTAG mode”. CARLOS enters in this mode
also after it has received a RESET signal,

now CARLOSrx can program all the module and front-end electronics,

when all the JTAG words have been sent through the serial back-link the
instruction “Put CARLOS in run mode” is sent and from now on the chain is
ready to acquire data.

61

3.2.2 Optical transceivers interface (serial back-link block)

The optical transceivers also send data as 40 Mb/s link for serial control, this is the
only way that CARLOSrx has to communicate with CARLOS and the FEE.

transc Serial link
transc

transc

transc instructions

transc FPGA -
C2VP20 _ SlU

o

‘\

transc
transc
transc
transc

transc
transc

Fig. 3.12: serial link

The serial back-link block is the part of the firmware that handles this
communication. This is the set of commands that is possible to send to CARLOS:

« enter JTAG mode;
- enter RUN mode;
. trigger signal,
« prepulse25 50 75 10 125 150 175 200;
« test-pulse;
« LI reject;
« L2 reject,;
- JTAG information;
+ stop acquisition;
 restart acquisition.

These commands are sent on a 8-bit packets synchronous serial link, so there is a
variable jitter of a few clock periods, starting from when a signal is received to the
moment the related command is sent to CARLOS. A 3-bit counter continuously runs
from O to 7, every time the counter value is equal to 7 a command is sent.

62

11 1
0 0 0
_ 11 1
11001011, g |SeHAl |/ i
block 1 0 1
0 0 0
. 0 0 0
T 1 1 1
clock

Fig. 3.13: serial link block

This block is extremely important not only for the configuration of the chain, but
also for the trigger signals, since each time CARLOSrx receives a trigger signal, it
propagates this information back towards the FEE using the serial link (for more details
on the serial back-link code used by CARLOS see Appendix C.2).

63

3.2.3 FIFO interface (scheduler block)

It works in the same way like the one installed in the input FPGAs.

NC2VP20 XC2VP20
—0 3 TRANSC | DESER s ﬂ o mr
—0,] TRANSC |+ DESER s (e — |52
—L3 TRANSC [-»{ DESER TIro [
— | TRANSC |-» DESER 2o [)
—Ly TRANSC |-» DESER B EIEC 12 |3:_(>
—Ly TRANSC |- DESER 1S
—0 5 TRANSC |- DESER || —IL I
—0 | TRANSC |-+ DESER e 16 éﬂmﬂ MHz
—0 4 TRANSC |- DESER Nt |
—0 | TRANSC [DESER W FrFo [
— | TRANSC [» DESER \ FrFo %} E}Iﬂlﬁ:‘}
—0 | TRANSC |- DESER | FIFO '%>
T configuration link | TLO(L1,L2

clock TTCrq

Fig. 3.14: scheduler block in the main FPGA

It reads the informations stored in the 4 IDT FIFOs building the complete
sub-events. The working principle is the same used for the scheduler block in the input
FPGA, that is a Round Robin queue manager:

- the first FIFO that is not empty is a good candidate to be read,

- when 256 words have been read or the FIFO is empty, it jumps to another FIFO,
« before starting to read data from one FIFO it writes an header FIFO word,

- this loop goes on until the data belonging to each sub-event are completely read.

« Once all the informations are sent to the SIU CARLOSrx writes 3
MACROFOOTER words indicating the end of the sub-event.

The format of the sub-event is the following:
- FIFO1 HEADER,
« words coming from that FIFOI,
- FIFO2 HEADER,
+ words coming from that FIFO2

The FIFO header words, like the CARLOS header words, are important to identify
words coming from the same FIFO when the complete sub-event has been built.

64

HH para HH pata H opata H patTA H DATA
ee ee e e e
aa aa a a a
dd dd d d d
ee ee e e e
rr rr r r r
C C
FC FA F A F
1 A I R | R I
FR FL F L F
ol 00 o] o) o]
00 18 0 S 1
S

DATA

wWormr»0"~o0ooavo []

Fig. 3.15: final data format

000101d4 00000011 00000100 00000000 |
00000000 00000000 00000004 FEFFFFFF |
0207023F 00030F7F FFR00000 00000240 |
00000000 00008000 00000000 FFFFFFFF |
30000010 20000013 3000000a 24219286 | ,,.0 ,,,0 ,,,0 ,,.%
I
I
I
I
I

24219286 24218286 c70a5010 dB042108

21084210 c250b01T~dR010894 8421094

2940254 2148425 c0alZai0 cad2ldab
29421094 cBdaldad fc0all84 ecdlalla B —
d9214a10 d8109421 cbSc085a d285bc04
e8085cal e810842e c791085g 30000011

82000439 30000004 24213285 24al3286
24219286 20000005 c72004f3 88023c88
756 24213286

VU4

e

|

|

|

s |

| |

24419286 87200433 720043 I vadl |
24419286 2421928 I 9 .1
c7200473 30006 I . 9% .|
30000013 I 4.0 eeed L8
24219286 30000009 4219286 24219286 | .,.% ...0 ...% ...% |
24219286 8720043%£7200433 3000000a | ,,.$ 9, , 9, , ...0 |
87200439 d2c0B0B1RE000000b 87200439 | 9, , .0y 0.0 9, L |
c7200433 300000107 30000000 24219286 | 9, , ,..0 ,..0 ,..% |

FIFO HEADER

Fig. 3.16: data format in the event.

65

When the scheduler block has read all the words for a specific sub-event coming
from one FIFO it writes 3 MACROFOOTER words. When the decoding program reads
these words it knows that it has reached the end of the sub-event and it can starts the
initialization procedures to decode a new one. All the words of several events are stored
one after another, so header and footer words are very useful to highlight the beginning
and the end of a specific event.

3.2.4 DAQ interface (SIU interface block)
This block communicates directly with the SIU board (Fig. 3.19).

Fig. 3.17: SIU board installed on CARLOSrx

This board provides a bidirectional communication bus with the DAQ framework:

INPUT mode: the SIU acts as master, while CARLOSrx as a slave. In this
configuration the SIU board sends commands to CARLOSrx that will decode
them and sends the corresponding instructions to the FEE.

OUTPUT mode: CARLOSTrx acts as master and the SIU as a slave, in this case
CARLOSrx takes the control of the bus and sends the data coming from the
detector over the DDL using the SIU board as interface.

When the SIU is in MASTER mode, it sends instructions or RESET command to
CARLOSTrx. In this configuration if CARLOSrx detects the reset command, this signal
will be sent to all the rest of the electronics. This provides an easy way to reset all the
electronics in an automated way, for instance this reset command can be sent at the
beginning of each run from the DAQ system. When in INPUT mode CARLOSrx
receives the JTAG instructions to reprogram the front end electronics. In this case a
software installed on the LDC sends through the SIU all the JTAG words. When the
JTAG words are received from CARLOSrx they are stored in internal RAMs (one for
each CARLOS). Once it has received all the words it starts to program the FEE sending
them all the JTAG instructions towards the serial link connected to each CARLOS.

After sending each event CARLOSrx waits for a decision from the SIU in order to
decide if to release the control over the bidirectional bus or to send a new event when
available, in this case:

CARLOSrx waits for the SIU to be ready. When it is possible to send data
CARLOSTrx recognizes the command RDYRX (Ready To Receive).

Each data packet begins with the DDL header and ends with a front end status

66

word, which confirms that all the sub-event has been sent.

« After this words CARLOSrx waits for a new decision from the SIU, that it can
take back the control or leave the situation like it is.

3.2.5 TTCrq interface

The main FPGA is directly connected with the mezzanine board TTCrq and this
block has the important job to decode all the information provided by the trigger system.
This board is connected with the SDD LTU through an optical fiber.

The main tasks of this block are the following:

+ to fill the CDH (Common Data Header),

+ to decode the LO L1 L2 trigger signals,

« to provide the related informations in case of erroneous trigger sequences.

The CDH" is really important for the DAQ system to be able to identify all the data
blocks transferred by every detector over the DDL. All the events associated to the same
trigger are sent over the DDL within the same block and preceded by one header with
the same trigger identification informations.

word 0 word 1 word2 word3 word4 word5 wordé word7

(AT YR (SR (O ERNOe [CHeer SO Ehmme

-] f—— \
o = Q o o - =" w o ﬂ o ; ia O = vy i
e g2t 2 3 € 5 9 5|2 g 2% o 2 4 bits
= (R] g o E %] ° o =, = w z 0 = =
ks Q| D = 3 2 o] < o | o @ D = (] =
=) 28| e B =) w 2|2 29 g
= = S c = u.\ (I 7] ——1 =
@ G E|S E = a o g <|2 o OE & 35
~ Ela | C . = O B | £ D o © 8
[} =S| o> | € o [} = v | = o 2
o ol &»| 3 ~ 73] =) =
m L= o [} = =2} 2
+ o k7 g’ (=]
T om = .
= = = optional ($)
trigger error bit (#)
error bit (+)
[23[22]21]20| [19]18[17]16] [15[14[13]12] [15]14[13[12) [11[10]9]8] [7]6]5]4] [3[2]1]0)]
et ae || e e
°° 55 TENZ FQ°° EEEE TEER FTETE TTEEN
o il S s =cc2 2= o oD a 1 bit
o ggee "2 $8592 9558% 338 ££23
25,0 02> cvo S STPE
Crals v ooy FEw S Z =
2= 8 oS3 Jomwz gRED
$S9% 3000 ITpop & =T 5 5
OxOE4 = SOD > == 2c 5 P9z
*9 IXOF4 - EOD HE" gs= g © 2§
X = = E - =
S E 0 ofm % =k
=27 =

Fig. 3.18: Common DATA header explanation

67

31 24 16 8 0

0 Block length ’
[0-31]
1 Format version> | MBZ L1 trigger MBZ Event ID 1
[24-31] [22-23]| message ' [14-21] |[12-13]| (bunch crossing) > [0-11]
4 MBZ Event ID 2 (orbit number) *
B [24-31] [0-23]
. Block attributes Participating sub-detectors
¥ [24-31] [0-23]
A MBZ Status & error bits ° Mini-event ID
[28-31] [12-27] (bunch crossing) * [0-11]
: Trigger classes low *
- [0-31]
ROI low * MBZ Trigger classes high *
6 [28-31] [18-27] [0-17]
. ROI high*
[0-31]

Tab. 3.3: Common Data Header structure

All the fields of the CDH must be filled by the readout electronics of the detector
using informations either fixed in the firmware (like CDH version) or provided by the
Trigger system during the run (if the ALICE Trigger system is not available, like in the
standalone runs done in our lab setup, these informations were handled directly by the
electronics, for more details on the CDH fields refer to Appendix A.2).

The CDH has not only been developed to recognize different data blocks, but it is
also used to perform preliminary checks of the data. In fact during the run the readout
software of the DAQ controls if specific rules are respected, and in case of errors, it
stops the run reporting the cause of the problem. CARLOSTx fills the fields of the CDH
once it has decoded the trigger informations received by the TTCrq board and, in case of
erroneous trigger sequences, it provides a CDH with the related trigger error bits
asserted.

68

CARLOSTx is able to identify the following list of erroneous trigger sequences:
Spurious LO Error.
Spurious L1 Error.
L1 Message Data Error.
Incomplete L1 Message Error.
Spurious L1 Message Error.
Missing L1 Message Error.
L2a Message Data Error.
Incomplete L2a Message Error.
Spurious L2aMessage/L.2r Word Error.
Missing L.2a Message /L2r Word Error.
BC Identifier Error.
Prepulse Error.
Calibration Trigger Error.
L1 Message Content Error.
L2a Message Content Error.

For a detailed description of these erroneous trigger sequences refer to the
Appendix B.1.

69

serial link

trigger distr.

vnﬁumn.:

s 0 000)

iiRipiRig]

[
[
[
[
[
[

|_| ngar | ngona i epooo f sgooo ff aseto § asoro

Ve

o 2 o

S0V

NN

. . e e e

oot || ooato § ooato Y oooo | coota | eooto |_|

ipiRipiRiy)]

T

“TL - ¥N9OT08 “Z35

VITI0T X¥

e
[aldanpe0fd
| aldagpc003

Fig. 3.19: CARLOSrx trigger handling

|Headwi has rel:enrw START OF DATﬁ ﬂﬂer 0 seconds, eventld: Period counter = 0, Orbit counter= 2557396, Bunch crossing = 1750
Waiting 10 seconds for START_OF_DATA

| aldagpe097
|aldanpc097
| aldanpe97
|aldanpen97
altanpe097
| akdanpe0a7
aldanpcoay
| aldagpe97
|aldagpc0az
aldanpc097
|aldagpea7
aldagpe09?
|aldanpe007

|
! AsynchReadRorcData eqlii=1334 has seen SOD
|ReadEvent RorcDala: eqld=1335, (ERROR 357) CDH trigger error bil(s) present in CDH, statusferror bits=0x1400= + CDH_TRIGGER_L2_ TIME_VIOLATION_ERROR_
i‘- dump COH -~ # 1 - eqld 1334 --- 0000001 3¢ 002024606 0x002705d4 0x36010271 0x00000736 071000000 DX00000102 0x00000000
|

=== dump COH --- # 2 - eqld 1335 --- 0x000001 2c 0x02000000 0x00000000 0x37000000 0x0140011 c 0x00000000 0x00000000 Dx00000000
Error 357 from above is TOLERATED: this equipment has seen so far 1 *trigger® ervors, maxErrors=10

|ReadEvent RorcData: eqld-1335, (ERROR 359) COH mismatch with the L1 trigger message, current=0x0, former-0x39

-—- dump COH --- # 1 — eqld 1334 — 0000001 3¢ 0x020e46d6 0x00270504 0x36010271 0x00000736 0x7 000000 0000001 02 0x00000000
-== dump CDH --- # Z --- eqld 1335 --- 0x000001 Zc 0x02000000 0x00D00000 0x37000000 Dx0140011 ¢ 0x00000000 0x00000000 000000000
Error 359 from above is TOLERATED: this equipment has seen so far 1 erors, maxErvors=10

ReadEvent RorcDala: eqld=1335, (ERROR 364) CDH event idenlification cannot be zero

== dump COH === # 1 === eqld 1334 === (x000001 3¢ 0x020e4606 Ox00270504 0x36010271 0x00000736 0x7 1000000 Dx000001 02 0x00000000
- dump COH - # 2 — eqld 1335 — 0000001 2¢ 0202000000 0x00000000 0x37000000 0x01 40011 ¢ 0x00000000 000000000 0x00000000
|Readout asks to stop the run: Error 354 in routine ReadEvent active equipment 3

.‘Hﬂtmg 10 seconds for START_OF_DATA

Fig. 3.20: sample of CDH errors recognized by the DAQ system, generated by readout electronics

70

3.2.6 The BUSY block

The main FPGA has the important task to assert the busy signal when the FEE is no
longer able to receive triggers. When a LO trigger is received, the SDD busy signal is
immediately set and, after a programmable delay which accounts for the LO latency (1.2
ps) and the maximum detector drift time (~5 ps), the analogue memories are frozen. The
busy signal being still set, their contents are then digitized by a set of 10-bit linear
successive-approximation ADCs which write the data into one of the free AMBRA
buffers. The digitization takes about 230 us (120 us when the half frequency mode is
programmed) and can be aborted by the absence of the L1 trigger or by the arrival of an
L2-reject signal; in both cases, the front-end electronics reset the SDD busy signal and
returns to the idle state within 100 ns. On the successful completion of the analogue-to-
digital conversion the SDD BUSY is reset if at least one buffer is still available in the
AMBRAs. The busy asserted by the FEE is always present after each trigger, but there
are situations that can increase the busy time of the detector: for example when the
trigger rate is too high or the event size is too big. In these cases the DAQ or
CARLOSrx can take too long to handle all the informations by asserting the back-
pressure signal. If this situation goes on for a long time, AMBRA buffers will all get full
and the busy will be asserted.

3.2.7 The RESET block

CARLOSrx receives 3 RESET signals, making it possible to initialize different
components of the board one at a time. These signals are sent to the board using the
DDL link. Once the SIU has received the RESET command this informations are put on
the 32-bit bus and they are decoded by a logic whose task is to identify one of the
RESET commands:

XXXXAAAA: after receiving this command this block generates the internal
reset signal of CARLOSTx, that is also sent to all the logic on CARLOSrx. The reset
is also sent to the CARLOS boards using the serial link.

XXXXBBBB: after receiving this command, the reset block initializes all the
internal DLLs (Digital Locked Loop)

XXXXDDDD: this command is used to reset the TTCrx chips, which need to be
initialized in order to provide correct informations for each event to be stored in the
CDH.

71

3.2.8 The UART block

This block, whose task is to interface CARLOSrx to the RS232 port of a PC, is no
longer part of the final release of the firmware because it has been used only during the
test phase of the board.

It reads the data coming from the serial port and interprets the instructions executing
different commands like:

 to generate RESET signal,

to start the internal data generator,
« to stop the internal data generator,
 to change the trigger rate,

« to change the event size,

« to print the FIFOs and register status.

XC2VP20 XC2VP20
>
Int datagen
-
- main FPGA | EE-
-
Int data gen Y
_|RS2332
- oo
i
A
;RS232
CARLOSrx board &=

_.JLEP

Fig. 3.21: RS232 block

The only possible way to communicate with CARLOSrx is using the DDL link, so
the RS232 block has been removed as soon as the CARLOSrx board have been installed
in CR4; besides it is better to avoid using a cable longer than 5 meters to prevent errors
in the signal transmission.

72

3.2.9 The VME interface

The VME bus is interfaced by the SPARTAN FPGA that is connected to this bus
through the two VME connectors installed on CARLOSrx. We have implemented a
SERVER-CLIENT strategy to communicate with all the boards installed in the crate.
The VME CPU (server) sends the firmware information through the VME bus, that is
read by the SPARTAN FPGA acting as VME client and used for configuring the 3
XILINX XC2VP20 FPGAs. In each crate the following boards have been installed:

1 CPU VME,
8 CARLOSTrx boards.

Fig. 3.22: JTAG configuration with the CPU VME
The VME bus adopts a SERVER CLIENT strategy:
SERVER: the CPU VME sends all the informations in broadcast mode,

CLIENTS: all the SPARTAN FPGAs see the firmware code that is passing in the
bus, but only the one addressed reads these instructions.

1
CLIENT [¢

8
CLIENT

Fig. 3.23: broadcast communication

The operating system installed in the VME CPU is a version of GNU/LINUX, SLC 4
and it provides standard communication protocol like ssh; in this way it is possible to
control the VME bus and to send the new firmware code remotely.

73

Lo

RTAN

el
“SPA

= s
Ei;ssi«_

SEZ. BOLOGNA = D.F.
CARLDSrx Rew.2

Fig. 3.24:SPARTAN interfacing the VME bus

74

Chapter 4

4. The software developed for CARLOSrx

The development of software tools is an important part of my research work.
Sometimes it is easier and faster to build proper debugging tools instead of using the
standard ones available on the market. During the development of the electronics in our
lab in Bologna we had several debugging instruments to test electronics, like:

oscilloscope,
pattern generator,
logic analyzer.

We discovered in short time that the available instrumentations were not the best
choice to debug the electronics of our readout chain. In fact not all the boards had the
necessary test pins to connect the probes of these instruments, and the number of signals
provided were not enough to give a complete picture of the system. Since buying new
and powerful instruments would require money and the time needed to learn how to use
them, we decided to build software tools for the debugging of our readout chain. So far
the developed programs were specifically optimized for our electronics; we had all the
hardware needed to develop them, we spent only time for the development.

In order to test, configure and control the FEE and readout electronics several
programs have been developed:

RS232 program: it allows to read the status of the board and to send commands
from a standard PC.

CONFIG. program: it configures all the registers of the readout chain chips,
monitor program: it monitors the events being acquired,
decoding program: it verifies and checks the data stored,

VME program: it is used to upload the new firmware of CARLOSrx using the
VME bus.

All the programs have been written using C/C++, bash scripting and TCL/TK for
the GUI, they have been compiled and developed in this environment:

SLC 4 (Scientific Linux CERN the LINUX distribution developed by CERN
team, installed on all the machine used at Point 2)

kernel 2.6.9-55.0.2.EL.cernsmp
gcc version 3.4.6 20060404 (Red Hat 3.4.6-8)

75

4.1 The RS232 program

This program has been developed in order to manage the communication between a
PC and CARLOSrx board using the RS232 port.

It is not an easy job to debug a readout chain of this complexity. Trying to find the
source of possible problems can be a difficult task because a lot of chips are playing a
role during the data acquisition. Not all of the boards provide test pins to connect an
external analyzer instrument to study their status or, when the pins are available, it is not
obvious how to connect the instrument due to the limitation of the space. CARLOSTrx is
the most accessible board in the chain and it has several “windows” where it is possible
to monitor the status of the system. We used the following instruments as logic
analyzers:

- CHIPSCOPE software from XILINX,
« RS232 program developed by us.

CHIPSCOPE uses the JTAG programmer provided by XILINX to interface itself
with the FPGA. If the firmware installed on the FPGA does not use all the available
resources, it is possible to store the history of some signals and to check them during the
run using CHIPSCOPE program. Since the firmware being debugged was already
using most of the available resources of the FPGA, only a few were available for
debugging giving the possibility to monitor only a few signals, not enough to have a
complete picture of the situation. Moreover since the FPGA programmer can be used
with one FPGA at the a time, we decided to build an other tool using the RS232 port
installed on the CARLOSrx. The RS232 program made it possible to query CARLOSrx
and receive in the PC monitor the status of the FIFOs and to check the values of some
other registers; obviously the firmware and the program needed to be prepared
accordingly in order to provide the correct instructions/values.

Select one of the available options:
- change trigger rate

-change event size

- start/stop acquisition

- send RESET

- read FIFO status or other registers

g

‘ Send the instruction to the board ‘

g

‘ Wait for the reply of the board ‘

Repeat the loop

Fig. 4.1: state machine of the RS232 program.

76

All the instructions sent by this program were analyzed and executed by the RS232
block in the firmware of CARLOSTrx.

-l
ie Cugmuiaben Cgainm QeeSotal Muniges Due mndss B

sl #jz| v m[n] pje]o] & o] |=]

Fig. 4.2: CHIPSCOPE and RS232 connected to the board

An intensive use of this program has been carried out during the development of the
internal data generator installed on CARLOSrx with the purpose of emulating the SDD
modules and FEE. In fact in order to test the hardware components of the CARLOSrx
board and the firmware behavior without the full readout chain, we decided to install an
internal data generator per each SDD module on the CARLOSrx FPGA.

71

Intemal
=] data
generator

-
H

=

e e

Internal
data
generator

[T o T o o

Fig. 4.3: internal data generator concept

We designed a special block in the two input FPGAs to use known data as input to
the firmware under test. In this way we were able to test different features of the
firmware without having the other components of the chain.

Using the RS232 program we were able to send configuration parameters to
CARLOSTrx during the acquisition:

- to change the event size produced by the internal data generator,
- to change the trigger rate,
« to stop and start the trigger.

The same program has been upgraded adding several instructions in order to be used
during the commissioning of the board. We added the possibility of sending the RESET
signal and reading the status of different buffers installed on CARLOSrx or the value of
the registers during the run.

78

4.2 The configuration program

The time needed to configure the electronics is a challenge that is important to not
underestimate, especially for a project like this one where the readout chain is composed
by a lot of registers that must be configured in a fast way before the start of each run.
The configuration of the different chips is done via JTAG: CARLOSrx receives all the

necessary informations and sends them to the CARLOS board that configures through a
JTAG chain the FEE.

The simplest configuration is:
1 SDD module, 8 pairs of P-A chip,
1 CARLOS,
1 CARLOSTx.

-
CARLOS oty :
end ladder clock

o]

serial link

CARLOSrx

DAQ:
SIU, DIU
DRORC

Fig. 4.4: 1 SDD module, 1 CARLOS chip, 1 CARLOSrx board

79

Each chip has several registers that must be configured.

AMERA. config: PASCAL.config:

READ_REG Y | READ_REG Y

VALUE S0P DELAY 160| YALUE YREF CONTROL DAC T

VALUE WCNT STOR 255 VALUE CALIBR DAC &1

VALUE RCNT STOP 55| VALUE SELECT CALIBRATION 21

WRITE BASELIMNE M | VALUE GAIN CONTROL 3
SETAM FULL Y
SETAM HALF M
SETADC FULL Y
SETADC HALF M
READ AMADC FREQ ¥

CARLOS, config: CARLOSRX.conlig:

AL RIGHT 255 | VALUE AL CARLOSRX 255

AL LEFT 255| VALUE TRIGGER 209

TL RIGHT]

TL LEFT 0

TH RIGHT 0

TH LEFT 0

ENABLE 2D ¥

READ REG Y

STOP IF ERROR 1]

Fig. 4.5: registers for each chip to be configured

The complete readout chain is composed by:

« 2080 pairs of P-A chips,
« 260 CARLOS,
+ 24 CARLOSTrx.

This means more than 30'000 registers to be configured: it is clear that it is
impossible to do this operation by hand. An other issue is that all the configuration files
containing the values for several registers are written in hexadecimal format, that is not
the most readable format for a human being.

80

00000000 JTAG inst. words
000000CD

BocEFFEF -———(CARLOSIX
COC6AG93
10101919
oo7r7r7e|~—CARLOS
FFFFFFFF
G2CARAG3
007F7F6E| < AMBRA
00000000
00000000
FFFFFFFF
10141016
18141815
1B19161A
1518121A
171C1318
121C1717
1419161E
16171312
11101819
10181018
13181318
0C18171E
12141619
14141018
17151417
13160F15
06CAADS3
01 7F7F6E
00000000
00100000
FFFFFFFF

Fig. 4.6: example of file used by the program to configure the electronics

From the time of the first prototype of the readout board, the development of a
configuration with the following features has been addressed:

- to provide a graphic interface to read easily the configuration values,
 to generate all the necessary files;

- to start the configuration;

+ to complete all these steps in a short time;

We developed a program to provide configuration files for different types of runs
(pedestal, injectors, testpulse, physics) and to use them to configure the electronics.
When possible the configuration of the front end electronics is performed in parallel to
reduce the time needed for this operation: in this way several boards can be configured
at the same time. Since the software is installed in 4 different LDCs connected to the
CARLOSTrx boards, it is possible to configure more than one board at the same time.

81

These are the main operations for the user:
1. to decide which board configure,
2. to select the registers and the value,
3. to generate the configuration files,
4

. to start the configuration process.

LDC CARLOSrx

JT T

3]

Each LDC starts the configuration at the same time

Fig. 4.7: JTAG configuration

82

The configuration of all the front end electronics takes a few seconds and, at the end
of the process, a report is printed on the screen to show if each card has been correctly
configured.

During the GLOBAL run, when the SDD readout chain is included in the final
DAQ infrastructure, the configuration of the electronics is done automatically at each
start of run by the ECS, using the files provided by our program. In he following picture
it is possible to note the report regarding different boards being configured at the same

time; the labels “OK TOP2”, “OK MEDS” ...

refer to the name of the CARLOSrx

boards configured (the name contains a clear indication of its position in the 3 different
VME crates). The time stamp on the left it is the same for all the boards, showing that
different boards can be configured at the same time.

19:30:29
19:30:29
19:30:29
19:30:29
19:30:29
19:30:29
19:30:29
19:30:29
19:30:29
19:30:29

\pc0s3 Shell
aldagpc099 ReadoutShell
IF ReadoutShell
ReadoutShell

Shell

3 Shell

3 Shell

i] us

4 ReadoutShell
ReadoutShell

Starting fdatefrorc/Linux/FeCZ_0 -m0 -c0 -T 200000 - focalhome/sdd/JTAGres txt -v

FeCZ ended. Processing time

= 0.002061 seconds. Exit code = 0

Arming RorcData: eqld=1313, source = detector electronics, revision number=4, serial number=3019, channel number=1

HUMBER WORDS:\t 137720

wwwwwwwwwwwwwwww OK MED1

Fig. 4.8: JTAG configuration of different boards.

A GUI has been added to facilitate the configuration operations, in the following
pictures some screen shot of the GUI are shown.

X 5DD [TAG GUI Bth AUGUST 2008 _LDC aidagpc0s3 e ToPL ox
NUM CARLOSR | cONFIG FILE | cLoN | GENERATEJTAG | BusY | [sor | ner | eur |
TOP: 8123
R
oL 123
X SDD JTAG GUI 8th AUGUST 2008 LDC aldaqpc083 **** TOPL **** ax
WM caRLoSRX | conFiG FLE | cLowe | GeneRaTeTAG | musv | | son | wee | e |
X SDD JTAG GUI Bth AUGUST 2008 LDC aldaqpc083 Sws TOP) wome ax 2% SDD JTAG GUI 8th AUGUST 2008 LDC aldagpcos3 *exs TOP] wwer ox
WUM cARLOSRX | CONFIG FLE | cLoNE | GenERATETAG | Busv | | son | wewe | ear | wum canosrx | conria i | cuone | cenenaTe ara | ous | [so | ner | e |
Com P LR
4 MODO . MODT . MODZ . MODI _ MODA . MODS . MODE . MOD7 L MODO . MODS . MODIO . MODII
o mcH
© PARO L PAR1 L PARZ . PARY
o e wew
propuse _ testpusa_pascar | awana | cantos | |_camosnx | counrr | nemesn | nowa
L MOD4 . Mol Mo M M . MOl M Y = = - = - = =
a O e0 so s
. oo
[—
 —
propusa s wstpase._pascat | amana | cnsnos cantosx counrr | nermesn | v o
4 v oen
@) (629 615) ©7)
MasK . o
(36-63) (46-55) (H-47) (32-39)
MASKan. o ! .

Fig. 4.9: image of the GUI program to configure the electronics

83

X SDD JTAG GUI Bth AUGUST 2008 _LDC aldagpeo83 #eer TOPL wvee —ax X SDD JTAG GUI 8th AUGUST 2008 _LDC aldaqp<083 701 TOPL rrer ==

oM CARLOSRX | CONFIG FLE | clonE | GENERATEJTAG | Busv | [sor | wewe | e | WUM CARLOSRX | cONFIG FLE | clowe | GENERATE JTAG | BusY | | sor | nee | ar |

TOP: 1 42 43 44 45 16 7 4B AMBRAD | AMBRAD CLOHING
MED: 1 42 13 44 5 4% 17 48 AMERAl AMBRAT CLOMING

BOT: 1 42 43 44 1§ 16 17 18 AMDRAZ | AMORA2 CLOWING 1t

AMBRAD | AMBRAD CLOWING ¥ | AMBRA CLONING
MASK MASK CLONING

1 B MODULES: RERDY
PASCAL PASCAL CLONING 1t

CARLOS | CARLOS CLOMING !

i1 42 43 44 45 48 47 48
CARLOSRX | CARLOSRX CLOWING 11 mvsies | peoesta | puisen | wecron

CLOMING ALY
woo:
+ Hom
v PED
P
g
> SDD JTAG GUI 8th AUGUST 2008 _LDC aldagpc083 e TOPL et —Ox| [SDDITAG GUI 8th AUGUST 2008 _LDC aldagpco83 e TOPL reee s
wom canLosmx | conia AE | cuowe | cenertEdTas | susy | [son | wer | e | UM cARLOSRX | conFiGRILE | clone | ceweRaTEaTAG | BUSY | [son | wee | e |
TOP: 1 42 43 44 45 46 17 18 SOR m s0R

TOP: L1 42 43 44 16 48 47 18 MED: 1 42 13 44 15 46 17 ;o PEDSOR | mPED SOR

MED: 1 42 43 34 16 46 47 46[f BOT: 0 42 43 U4 45 46 7 46 PULSOR | mm PULSOR

BOT: 11 42 43 44 46 48 17 18 WISOR | N SOR

wasene |

Fig. 4.10: image of the GUI program to configure the electronics

4.3 The monitor program

Normally in experiment like ALICE there are several programs/systems to control in
real time the status of different parts of the electronics or mechanics. The same principle
holds also for the data acquisition: there is a program that constantly checks the quality
of the data.

Once the run is started it is important to have a way to understand if the electronics
have kept the right configuration, or if the configuration is the one we think we have
loaded. It is not sufficient to look only at the trigger rate and at the event size, so a tool
is needed to control the data during the run. A decoding program is useful to analyze the
data stored in the disk, but this kind of approach can be time and space consuming.
There is the risk of storing GBytes of wrong informations if we do not check the data
quality during the run. A monitoring on-line program gives the user the opportunity to
control the quality of the data during the acquisition, in this way the user can constantly
check the status of the readout chain without waiting until the end of the run

The working principle is rather simple:
1. the acquisition is started,
2. the monitor program takes one event and gives a graphic representation of it,
3. it waits a timeout and then it takes an other event, until the program is stopped.

We developed a program that uses ROOT framework for the graphic part. It works
following the just described steps.

84

Fig. 4.11 : on-line monitor program

cartosn| cHo or1 |cnn;1|mu~sms|

GARLOS6 chi=] Update

histo C6 ch1 h 61
Entries 65536
Mean x 126.4 kn
250 . Meany 128.7 &
] RMSx 73.13
1 RMS y 74.1
200 ! —|200
i
i
150 ! 15(
100 100
50
0

Fig. 4.12: example of bad module configuration discovered after few events with the monitor program. It
is possible to see in this picture that one P-A chips pair does not display the testpulse signal, and another

pair has lost the synchronization with the other two pairs.

85

During the first scan phase of the SDD barrel this software has been very useful
searching for bad modules. Indeed we discovered that some of the chip pairs P-A were
not able to keep the JTAG configuration. We discovered this problem in short time
sending testpulse and prepulse signals to all the chips and using the monitor program to
see if these signals were correctly generated.

4.4 Decoding program

The decoding program played an important role during the entire development of
the firmware, starting from the first release of the readout board.

This software decodes the words coming from CARLOSrx in order to reconstruct
the event and operates several checks on the data:

- it controls the number of header and the footer words in each event,

it controls the number of end of row summaries (256 per event), special words
stored at he end of each anode row containing summary informations of the data,

« it checks the words of the CDH,
- it checks the status words,

+ obviously, it decodes the data.

TOT k events stored on disk

4

Decoding program

Start a new run

Fig. 4.13: decoding program working principle

86

4.5 The VME program
This program has been developed in C using the CCT VME driver for the VME
part.

A 6U VME CPU is installed in each VME crate acting as a server and controlling
the VME bus. The software to upload the firmware has been installed on each CPU. Its
working principle is rather simple:

- it takes as input the address of the CARLOSrx board and the file with the
firmware,

+ it starts to upload the information on the VME bus, then the board with the
selected address starts to read the data.

> WVME UTILITY CRATE g g 0

CARLOSHX PROGRAM FILE | BUSY BOARD | HELP I EXIT |

> VME UTILITY CRATE g (2]

CARLOSRX | PROGRAM FILE | BUSY BOARD | HELPI EXIT |

CARILOSHEX: 11 12 13 14 13 (& 1 F 18§ PROGRAM BOARDs !!! I
STOFPFED

Fig. 4.14: program developed to load the different firmware in the FPGAs

For the time being we are able to program only the FPGAs, not the PROMs: this
means that each time the crate is powered off the FPGAs lose their configuration and
need to be re-programmed at the next power on. For this reason a script has been
developed to program all the boards inside the crate.

87

88

Chapter 5

5. CARLOSrx at CERN

At the beginning of 2007 the entire SDD barrel has been installed at CERN to start
the integration of the complete readout chain in the ALICE experiment. In order to do
that we prepared a test setup at CERN installing all the necessary electronics to read out
the complete SDD barrel. This was the first time we tested all the 260 SDD detectors
assembled together.

During this period we worked in contact with the DAQ and TRIGGER teams. After
almost 2 years of work we have integrated successfully, the electronics and the detectors
in the experiment, as described in the following sections.

5.1 Commissioning of the SDD barrel

The SDD barrel has been transported from Torino, where it has been assembled, to
CERN site, Point 2 (see Fig. 5.1), where the ALICE cavern is placed.

T ATLAS ALICE
;. Polnt =g Point 2

Fig. 5.1: Point 2 ALICE.

First of all, before starting the integration of the SDD in the ALICE detector, we
needed to be sure of the good status of the barrel after this long trip, so we prepared a
test setup composed by:

SDD barrel: 260 SDD detectors.
2 CARLOSTrx board pairs.

Trigger system: 1 LTU installed in a standalone VME crate, to generate trigger
sequences in order to debug the electronics in different situations.

DAQ framework: 2 LDCs, one for each CARLOSTrx.
We decided to start using only two CARLOSrx boards to readout the full SDD

89

barrel instead installing the complete read out chain, in this way it has been easier to
identify possible problems and to study each single module. We acquired one ladder at a
time checking the behavior of all the detectors and the related electronics attached to it.

In order to scan the full barrel we followed this scheme:
1. to connect one ladder to the low voltage and to one CARLOSrx board,
2. to start the acquisition of 100 Kevents,

3. to check the data with the monitoring program to control the behavior of the
modules,

4. to complete the scan of the full barrel, repeating point 1, 2 and 3.

LDC

100 Kevents

CARLOSrx

0 SRR

Fig. 5.2: test setup

We scanned all the modules of the SDD barrel. The first scan gave us good results:
all the modules were working properly. The second step of the test was to connect the
high voltage and to control the modules using the testpulse signals. We used the same
scheme as before, but this time we discovered some problems. We noticed that the
testpulse was not correctly generated in some detectors and we also noticed that some
modules were not able to keep the JTAG configuration when running at high
frequencies. After completing the test we had the 97.6% of the full SDD barrel working
correctly. For the rest of the modules we are still trying to find a solution to solve this
loss of parameters configuration.

The next step was to start the acquisition of more than one ladder at the same time in
order to check if there was any interference between adjacent ladders. To do so we had
to upgrade the first hardware setup adding another CARLOSrx board and to configure

90

the DAQ system to receive data from two DDLs connected to a LDC each one, the
configuration of this setup is described in the following paragraph. At the end of this
test we concluded that there were no interferences between close ladders.

5.1.1 DAQ/ECS integration

Once we finished the scan test on the SDD barrel and we reached a stable
configuration we started to integrate the SDD system with the different infrastructure of
ALICE. We started integrating the readout electronics of SDD with the DAQ system.
The first step was to acquire data coming from two ladders using 2 LDCs at the same
time, when the acquisition is controlled by the ECS. The test setup was composed by:

- 2 SDD ladders,

« 2 CARLOSTrx,

« 2LDCs,

« ECS, installed in another PC.

L
A LDC

D

D :> CARLOSIX

E B
i]

.

L

A

> m—p o

D CARLOSIx

E

i SiU

2

ECS

TCP/IP

Fig. 5.3: test setup built to acquire data from two LDCs, controlled by ECS.

At CERN the SDD was the first detector to use two LDCs at the same time to
acquire data, so it was a good test session also for the DAQ team. After configuring the
DAQ software and the front end electronics the acquisition ran smoothly and we
acquired million of events in a stable configuration. The next step was to use the ECS.

91

We had to provide scripts to configure the electronics from the ECS: in fact, as
described in Chapter 1, the ECS has to automatize all the commands at start and during
the run in order to avoid any user operation. Once we have provided all the programs
and the scripts requested by ECS to work properly and populated the DAQ database,
where all the SDD informations are stored, we started the run without problems.

5.1.2 Trigger test

The SDD system has to behave correctly also when receiving erroneous trigger
sequences (for more details on the different errors look at the AppendixB.1). To verify
its behavior in this situation, the trigger team tested the readout electronics with
different trigger sequences. As you can see at http://epweb2.ph.bham.ac.uk/user/krivda/
ALICE/ we positively replied to all the questions. Indeed CARLOSrx behaves correctly
when receiving bad trigger sequences, providing the required operation (for example
discarding the event and filling properly the fields in the CDH to notify to the DAQ and
to the OFFLINE team the type of error occurred).

5.2 Integrations of the SDD barrel in the ITS

After completing all these tests, the barrel has been integrated into SSD barrel (a
video of this can be found at http://www.youtube.com/watch?v=NHOvDs70Yiw), this
operation took more than 4 hours.

5.3 CARLOSTrx in position

During the installation of the complete ITS in the ALICE detector, we started the
installation of the readout electronics in CR4 where one rack was reserved for our
electronics. This rack has been installed with:

2 patch panels for TRIGGER and DAQ optical fibers,

3 VME crates to install all the CARLOSrx boards, the CPU VME and the busy
board.

From this room CARLOSrx communicates with the FEE installed in the ALICE
cavern through 780 optical fibers (data, instructions clock) and it sends the
information towards the DAQ system using 24 DDL links.

92

http://epweb2.ph.bham.ac.uk/user/krivda/alice/
http://epweb2.ph.bham.ac.uk/user/krivda/alice/
http://www.youtube.com/watch?v=NHOvDs70Yiw

Fig. 5.4: a) patch panel DAQ and trigger optical fibers, b) CARLOSrx data and clock installed in the
VME crate, c) back of CARLOSrx data, DDL link optical fibers.

93

Conclusions

The SDD barrel and its electronics have been successfully installed allowing us to
participate in the data acquisition during the ALICE cosmic rays tests performed at
CERN in the last year 2008.

The goals of this PhD work were:

to develop a stable version of the CARLOSrx firmware in order to read data
coming from 12 SDD detectors at the same time,

to install all the components of the SDD readout chain at CERN to start the
commissioning of ALICE,

to develop software tools to configure the front end electronics and to monitor the
system.

After several tests performed in our laboratory at Bologna and later at CERN a
stable version of the CARLOSrx firmware has been delivered in time with the schedule
assigned to the SDD detector.

In order to obtain such a result we followed several steps:

First of all we developed a data emulator in order to test all the hardware
components and several features of the firmware in absence of the SDD detectors.

Once we produced a first release of the code we tested it using the real readout
chain electronics (SDD modules plus CARLOSrx).

We brought the SDD barrel at CERN and we built a test setup to verify its good
status, discovering problems in some modules.

Subsequently we developed new features of the firmware to satisfy the requests of
the DAQ and TRIGGER teams to integrate our readout chain with the several
infrastructures of the experiment.

At the same time the changes in the software followed step by step the firmware
upgrades, in order to constantly monitor the system and providing fast alert in
case of errors.

Almost all the SDD barrel works as expected, indeed we had 97,6% of all the
detectors in acquisition at the end of 2008.

Starting from middle of October 2007 up to now the SDD detectors have been
performed more than 10 Kruns, running in total for 2178 hours in STANDALONE and
GLOBAL runs, (more details in table 5.1).

In STANDALONE the detector can acquire data with software triggers and test
readout without interfering with the other detectors. So if for example one detector
becomes busy, the other runs will be unaffected. On the contrary when one or more
detectors enter the GLOBAL run, the situation is completely different. In this case they
share all the run conditions and if one or more detectors get busy the run is no longer
able to accumulate events. When in GLOBAL runs all the sub-events produced by all

94

the participating detectors are used to reconstruct the complete event.

Using ACORDE trigger (cosmic rays), ALICE stored PETAbytes of data used by
different teams to study the performance of their detectors. During these runs all the
different SDD detectors calibration parameters were stable and stored automatically
after each calibration run in ALICE database:

« noise,
+ gain,
« drift speed.

Analyzing all the data fine tuning of the charge conversion factor has been applied
and the charge dependence on the drift length has been corrected and the complete ITS
and TPC have been correctly aligned.

165— .
; '35
160 -
G -

- = s b —
155— @ -“- @ 5
5 g

g © -
150
2 5
= g B
145— @
0= drift position (x) [time bins]
= | fesl| L i L | ESE |

' L i (e
204 208 208 210 212 214 26 218 220 222

Fig. 5.5: detail of a particle detected by the ITS

In the night between 11/12 September 2008 one of the two beam was circulating in
the LHC, and the ITS detected the interaction.

The tracks detected by the ITS are displayed in the figure 5.6.

95

Fig. 5.6: ITS tracks, generated by particle interaction

Runs |Duration |SubEvents Bytes Bytes (recorded)
10938 2178 h| 1226305082| 763.1 TB 97.6 TB
Tab. 5.1: SDD run statistics.
Partition Runs | Duration | SubEvents | Bytes Bytes (recorded)
Standalone 8712 931 h| 909875157 | 619.7 TB 32TB
ALICE 1453 561 h| 53300682| 83.1 TB 65.1 TB
ALICE_TEST | 103 131 h| 13211095| 15.7 TB 152 TB
PHYSICS 5445 482 h| 67756722 27.5TB 13.6 TB
TEST_1 57 41 h| 28935076| 14.6 TB 161.2 GB
TEST_2 65 33 h| 153226350, 2.5TB 443.0 GB
Tab. 5.2: STANDALONE and GLOBAL run statistics.
Number of Runs
200
8 150
E 100
#*
50
: ; .
p\ \:0\' ‘1':5'\‘ ‘1':5’\
o i) o ~
'196\ ’190% ’Lé)a 'Lé)q

Fig. 5.7: number of run performed by SDD

96

Duration
~ 0
£
E 30
S 20
g
2
G L L .
»Q'N x‘@ '1:'5 > '1:‘?
~ ~
$° o S S
" > I+ "

Fig. 5.8: hours of run performed by SDD

Currently we are working on new features of CARLOSrx firmware in order to
recover the 2.4% remaining modules that are excluded from the acquisition. An upgrade
of the configuration software is work in progress because we are expecting an upgrade
of the DAQ infrastructure and the SDD readout chain will have 2 more LDCs, so in total
6, to distribute the total bandwidth.

For the time being we can conclude that SDD is ready for the first p-p beam
collisions.

97

98

Appendix A

A.1 SIU signals
All of the signals of the FEE-SIU interface are synchronized to the foCLK signal.

FbD([31..0] DATA/[31..0] bi-directional: the fbD[31..0] is a 32-bit wide, tri-state
data bus. If the level of the fiDIR line is high, the data on these bus lines are
transferred from the FEE to the SIU on a low-to-high transition of the foCLK
when the fbTEN_N is active. The tbD[31..0] contains status words when the
fbCTRL_N is active, otherwise it contains normal data words. If the level of the
fiDIR line is low, the data on these bus lines are transferred from the SIU to the
FEE on a low-to-high transition of the foCLK, when the fbTEN_N is active. The
fbD[31..0] contains commands, when the fbCTRL_N is active, otherwise it
contains normal data words.

JOCTRL_N CONTROL bi-directional active low: the fbCTRL_N is a tri-state
management line for the data bus. The active level of this line indicates that the
data word to be transferred between the FEE and the SIU is a command or a
status word, depending on the direction of the information transfer. It is a status
word, when the information is transferred from the FEE to the SIU, otherwise it
is a command.

JOTEN_N TRANSFER ENABLE bi-directional active low: the fbTEN_N is a
tri-state management line for the data bus. The active level of this line enables
data to be transferred between the FEE and the SIU on the low-to-high transition

of the foCLK. The direction of the information transfer depends on the level of
the fiDIR line.

FiDIR DIRECTION input high: FEE to SIU transfer: the fiDIR is a
management line for the data bus. The high level of this line indicates that the
information is transferred from the FEE to the SIU on the fbD[31..0] lines, while
the low level indicates the opposite direction of the information transfer. When
the level of this line is high, all of the bi-directional lines are driven by the FEE,
otherwise they are driven by the SIU.

JiBEN_N BUS ENABLE input active low: the fiBEN is a management line for
the data bus. The inactive level of this line will put in high-impedance state the
tri-state drivers of all the bi-directional lines of the FEE-SIU interface in the SIU
and in the FEE.

JiLF_N LINK FULL input active low: the fiLF_N is a flow control line. The
active level of this line indicates that the FEE shall stop the data block transfer
and the FESTW(EOB=1) status word transfer to the SIU, because the SIU and/or
the DIU and/or the RORC are busy. After this line becomes active, only one more
data word or status word may be transferred from the FEE to the SIU.

JoBSY_N BUSY output active low: the foBSY_N is a flow control line. The

99

active level of this line indicates that the FEE is not able to receive data block
from the DDL. After this line become active, only one more data word may be
transferred from the SIU to the FEE.

FoCLK FEE CLOCK output: the foCLK is a clock line. This free running clock
is generated by the FEE for the synchronization of the information transfer
between the FEE and the SIU. Please note, that for improved signal quality, the
foCLK signal is terminated by a resistive load on the SIU card.

100

A.2 CDH fields explanation

Block length: the block length is an optional field. It can be filled in by the
detector readout electronics to indicate the total length of the data block including
header and payload(s). The length must be expressed in bytes being transferred
over the DDL. If not handled, the field must be loaded with hexadecimal
FFFFFFFF to distinguish it from an erroneous zero value.

Format version: the format version indicates which version of the present data
format is used. The presence of this field provides the backward compatibility in
case of change or upgrades. The content of the field must be compared with the
current format version number (zero-extended to 8 bits).

Trigger message: the L1 Trigger message consists of selected parts of the trigger
L1 Message. This information is distributed over the TTC to the detector readout.
When the ALICE Trigger system is not available, this field can contain any value.

Event ID (1 & 2): the LHC clock will supply the event identification in ALICE.
This clock is distributed to all the detectors readout units by the TTC system used
as trigger distribution network. The current LHC design foresees 3564 bunches in
one orbit. The LHC clock identifies each bunch crossing within an orbit and
signals the beginning of a new orbit. Currently the TTC foresees 12 bits for the
bunch crossing number. The Trigger system shall include a cyclic counter of 24
bits to count the orbit. This scheme uniquely identifies every bunch crossing in a
period of more than 20 minutes (224 x 88 us = 1476 s = 24 minutes), which is
sufficient for this purpose. Further identification will be added by the DAQ to
uniquely identify one event in a run. The information stored in the Event ID fields
(1 & 2) is transmitted by the CTP. It is distributed over the TTC in a dedicated
part of the L2a Message and received via the TTCrx chips. When running
without the ALICE Trigger system, the Event ID 1 field must be set to zero and
the Event ID 2 must contain an incremental, unsigned binary number, to be reset
at FEE reset.

Block Attributes: the block attributes is an optional field that can be used freely
by the detector groups to encode specific information such as the event type. If
unused, this field should be set to zero.

Participating Sub-Detectors: the mask of participating detectors is a mandatory
field. Its information is produced by the CTP only while handling software
triggers (Test Classes). It is distributed over the TTC in a dedicated part of the
L2a Message and received via the TTCrx chips. The received value must be
copied as-is in the “Participating Sub-Detectors” field. When running without the
ALICE Trigger system, the “Participating Sub-Detectors” field can be loaded
with any value.

Status and error bits: this is a mandatory field, to be loaded by the readout
electronics under all running conditions. An error or status condition that
occurred before, during or right after FEE readout must be signaled by setting to

101

one the corresponding bit(s) of this field.

Mini-Event ID: local event identification must also be included in the common
data format for cross-verification with the global event identification. This local
event identification is the value of the local BC counter at the time the detector
has received the trigger L1 signal. The counter is a part of the TTCrx chip. The
local bunch-crossing counters of all the TTCrx chips of the experiment must be
synchronous. A key issue is to resynchronize them at regular intervals to ensure
that this synchronism is maintained. The solution chosen is to use the mechanism
foreseen by the TTC system. The local bunch-crossing counter in the TTCrx chip
is automatically reset by a fast signal synchronous with the LHC orbit. The LHC
orbit signal is delivered by the TTCmi module. This signal is then sent over the
TTC as a short-format broadcast signal. Proper usage and setting of the TTCvi
module will guarantee that the TTC Rx chip receives this reset command by the
end of the LHC extractor gap. The TTCvi provides four priority levels for data
transmission. The bunch counter reset command uses the highest priority (level
0). The Mini-Event ID is a mandatory field. When running without the ALICE
Trigger system, the Mini-Event ID field must be set to zero.

Trigger classes (Low & High): for physics triggers, the bits encoded in the
Trigger Classes Low and Trigger Classes High fields are taken as-is from the
trigger L2a Message. When running without the ALICE Trigger system, these
two fields can contain any value.

Region Of Interest (ROI) (Low & High): the ROI data is distributed over the
TTC system. The value - if available - should be stored in the ROI Low and ROI
High fields. When running without the ALICE Trigger system, the ROI Low and
ROI High fields can contain any value.

102

Appendix B

B.1 Erroneous trigger sequences

1. Spurious LO Error: a spurious LO trigger received during the L1 Decision Time -
the interval that follows a correctly received LO. The state diagram of the state
machine is shown in Figure B.1; the LO BUSY Timer defines the L1 Decision Time;
each received LO input, correct or spurious, triggers the L1 Window Timer that
defines the arrival time of the corresponding L1 signal.

achine inputs and outputs
0
10_busy

start 11_w

0 LO Trigger
10_busy: LOBUSYTimer
setl0_es: Set Spurious L0 Error
start 10_busy: Start LO BUSY Timer
start 1l_w: Start 7 Window Timer

start 10_busy

Wait for end of
Lo BUSY

110 & !10busy

Fig. B.1

2. Spurious L1 Error: a spurious L1 trigger received outside of the L1 Time interval -
the interval that follows a correctly received LO signal. The state diagram of the state
machine is shown in Figure B.2; the L1 Window Timer is triggered by the previous
LO input (see B.1); each received L1 input, correct or spurious, triggers the L1
Message Window Timer and the L2 Message Window Timer that define,
respectively, the arrival time of the corresponding L1 Message and the L2a Message/

L2r Word.

103

State machine inputs and outputs

11 setll_es
1_w start 11m_w
start 12m_w

: L1 Trigger

1_w: Li Window Timer

set11_es: Set Spurious L1 Error

start Ilm_w: Start LI Message Window Timer
start 12m_w: Start L2 Message Window Timer

11 & 11_w

set 11_es
start 11m_w
start 12m_w,

Fig. B.2

3. L1 Message Data Error: an L1 Message data word not preceded by the L1 Message
header (word 1). The state diagram of the state machine is shown in Figure B.3; the
logic generates the L1 Message Strobe signal - required by other error-detecting
circuits - whenever the L1 Message Header (word 1) is received.

4. Incomplete .1 Message Error: less than 4 L1 Message data words received
following the L1 Message header (word 1). The state diagram of the state machine is
shown in Figure B.3. Note 2: Just a reminder that the format of sub-detector L1
Message is a programmable option: the message could be completely suspended;
only the first word could be transmitted; or the transmission of the full message - all
five words - could be enabled.

5. Spurious L1 Message Error: the L1 Message Strobe signal (see B.3) received
outside of the L1 Message Window interval (see B.2). The state diagram of the state
machine is shown in Figure B.5; the identical logic circuit is used for both the L1 and
the L2 Messages.

104

S7

set 11_ed

1h: Li Message Header
1d Li Message Data Word

Hm LI Message Stobe

set11_ei: Set Incomplete L1 Message Error
set 11_ed: Set | Message Data Error

Wait for L1 Word 5 11d

Fig. B.3

6. Missing L1 Message Error: the L1 Message Strobe signal (see B.3) has not been
received during the current L1 Message Window interval (see B.2). The state
diagram of the state machine is shown in Figure B.5.

7. L2a Message Data Error: an L2a Message data word not preceded by the L2a
Message header (word 1). The state diagram of the state machine is shown in Figure
B.4; the logic generates the L2 Message Strobe signal - required by other error-
detecting circuits - whenever the LL.2a Message Header (word 1) or the L2r Word is
received.

105

Else

Wait for L2a/L2r header

‘Wait for 1.2a Word 2

Else

‘Wait for L2a Word 3

Else

‘Wait for 1.2a Word 4

Else

12ah #12r

‘Wait for L2a Word 5

Else

‘Wait for L2a Word 6

Else

‘Wait for L.2a Word 7
State machine inputs and outputs

12 2m
12ah set 12_em
12d set 12_ed

12r: L2r Word Header

12ah: [I.2a Message Header

12d: 123 Message Data Word

12m: L2r Word/.2a Message Strobe
set12_ei: Set fncampleie .21 Message Error
set 12_ed: Set L2a Message Data Error

Else

‘Wait for L2a Word §

Fig. B.4

106

8.

10.

11.

12.

set Im_es
set Im_em

State machine inputs and outputs

Im set Im_es
w set Im_em

m Ly Message Strobe
W Lx Message Window
setlm_es: Set Spusious Ly Message Emor

set Im_em: Set Missing Lx Message Error
x=12) \ AW

Fig. B.5

Incomplete L.2a Message Error: less than 7 L.2a Message data words received
following the L.2a Message header (word 1). The state diagram of the state machine
is shown in Figure B.4.

Spurious L2a Message/L2r Word Error: the L2 Message Strobe signal received
outside of the L2 Message Window interval (see B.2). The state diagram of the state
machine is shown in Figure B.5; the identical logic circuit is used for both the L1 and
the L2 Messages.

Missing L.2a Message/L2r Word Error: the L2 Message Strobe signal has not been
received during the current L2 Message Window interval (see B.2). The state
diagram of the state machine is shown in Figure B.5.

BC Identifier: error The BC Identifier in the L2a Message/L2r Word different from
the content of the TTCrx BC Counter at the time of transmission of the
corresponding L1 signal.

Prepulse Error: reception of the PREPULSE signal in a bunch-crossing interval
different from the Pre-pulse BC Interval; the interval is predefined and fixed for each

107

13.

14.

15.

sub-detector. Note 3: Another reminder: the BC Counter in the TTCrx chip counts
"shifted" time, set to give a correct bunch-crossing number at the arrival of the L1
signal; at the arrival of the PREPULSE signal, the counter shall read, approximately,
(Pre-pulse BC Interval - L1 Time).

Calibration Trigger Error: reception of the Calibration Trigger signal in a bunch-
crossing interval different from the Calibration Trigger BC Interval; the interval is
predefined, fixed and the same for all sub-detector.

L1 Message Content Error: a number of possible inconsistencies/contradicting bit
settings in the current L1 Message, most likely caused by the hardware or
transmission errors. Examples: inconsistent/unexpected setting of the RoC[4..1] bits;
the inconsistent setting of the CIT and the L1SwC bits; somewhat more ambitious
checks could include data comparisons between the contents of the L1 Message and
the corresponding L2a Message. Note 4: A reminder and a warning: the final
formats of the L1 Message and the L.2a Message are presented in [3]; some not fully
up-to-date versions exist in earlier documents.

L2a Message Content Error: a number of possible inconsistencies/contradicting bit
settings in the current L2a Message, most likely caused by the hardware or
transmission errors. Examples: all the examples given in 14.; the inconsistent setting
of the LISwC and the L2Cluster[6..1] bits; inconsistent/unexpected setting of the
Detector[24..1] bits; the BCID[12..1] content out of range - larger than 3563;
irregular counting of the OrbitID[24..1]; etc. .

108

Appendix C

C.1 2D algorithm

The 2D algorithm makes use of two threshold values:
a high threshold Ty for cluster selection;

a low threshold T;. so to collect information around the selected cluster.

27 26 37 17 42 30
38 40(51 65|39 36
451421 86 95| 54| 28| high threshold: 70

low threshold: 40
36 36 35|43|35 45
78 39 37 25 36 44

Fig. C.1

The algorithm retains data belonging to a cluster and around a cluster in the
following way :

the pixel matrix is scanned searching for values higher than the Tn value (70 in
Fig. C.1);

the pixels positioned around the previously selected ones are accepted if higher
than the low threshold value Ty (40 in Fig. C.1), otherwise they are rejected;

thus a cluster is defined and cluster values are saved exactly as they are: other
pixels, not belonging to clusters, are discarded;

if a pixel value higher than the TH value is found but it has not pixel values higher
than Tr around its value is rejected. This is the case of the 78 value on the
bottom-left corner in Fig. C.1 which is discarded, even it its value is greater than
the high threshold value.

pixel values belonging to a cluster are encoded using a simple lookup table
method, assigning long codes to non-frequent values and short codes to frequent
symbols.

So far in Fig. C.1, after applying the 2D compression algorithm, only the shadowed
values are stored, while the other value ares erased. The 2D algorithm is conceptually
very simple to understand, but it is quite more complex than the 1D for what concerns
hardware implementation. In fact having to perform a bi-dimensional analysis of the
pixel array implies the need of storing all the information on a digital buffer on
CARLOS, thus requiring a larger silicon surface and a higher cost.

109

C.2 Serial back-link

CARLOS is remotely controlled using a serial back-link coming from CARLOSrx
board. Data transferred on the serial link are synchronous to the incoming 40 MHz
master clock. CARLOS has a synchronization state machine which is responsible for
handling link initialization and synchronization. Upon power up or external reset via the
serial back-link, the state machine enters the acquisition state (ACQ) and searches for
the IDLE pattern. Upon receiving three consecutive IDLE patterns after the first one,
the state machine enters the synchronization state (SYNC). If an invalid code is
received, the state machine transitions to the CHECK state. If, in the CHECK state,
CARLOS sees 4 consecutive valid codes, the state machine acknowledges that the links
is good and transitions back to the SYNC state for normal operation. If, in the CHECK
state, CARLOS sees 3 invalid cods (not required to be consecutive), the state machine
determines a loss of the link has occurred and transitions the synchronization state
machine back to the ACQ mode. Table C.1 shows the list of command that CARLOS
can receive through the serial back-link from CARLOSrx: they are all DC-balanced
(same number of 1s and 0s).

invalid code received

power-up/reset

3 congecutive valid IDLE codes

3 invalid codes + the first one

received

CHECK)« 1 invalid code received

valid code
received

instruction
decoding

4 congecutive valid codes received

Fig. C.2: synchronous serial back-link state machine decoding

Command Code Consequence

Reset carlos 110011100 | A reset is distributed to all CARLOS internal blocks,
except for the serial receiver state machine (8 clock
cycles long, active low)

Reset left hybrid | 110010011 | A reset is sent to the left hybrid (8 clock cycles long,

active high)

Reset right hybrid | 110011010 | A reset is sent to the right hybrid (8 clock cycles long,
active high)

Reset GOL 110010101 | A reset is sent to the GOL chip (8 clock cycles long,

110

active low)

LO 101011100 | Triggerl and triggerO signals are activated
Llreject 101010011 | Aftl and aftO are asserted for 1 clock cycle
L2 reject 101011010 | Aftl and aftO are asserted for 1 clock cycle
Test pulse 101011001 | Aftl and aftO are asserted for 3 clock cycles
Prepulse25 100110011 | Prepulse output is asserted for 1 clock cycle towards
he charge injectors
Prepulse50 100110101 | Prepulse output is asserted for 2 clock cycle towards
he charge injectors
Prepulse75 100110110 | Prepulse output is asserted for 3 clock cycle towards
he charge injectors
Prepulse100 100111001 | Prepulse output is asserted for 4 clock cycle towards
he charge injectors
Prepulse125 100111010 | Prepulse output is asserted for 5 clock cycle towards
he charge injectors
Prepulse150 100111100 | Prepulse output is asserted for 6 clock cycle towards
he charge injectors
Prepulsel75 111010001 | Prepulse output is asserted for 7 clock cycle towards
he charge injectors
Prepulse200 111011000 | Prepulse output is asserted for 8 clock cycle towards
he charge injectors
Idle 001111001 |Used for link synchronization only and when there is
no command to send
Enter JTAG mode | 110110010 |CARLOS enters JTAG mode
Enter RUN mode |110111000 |CARLOS enters RUN mode
Stop acquisition | 1000l10111 |CARLOS stops data transmission by asserting
data_stop0 and data_stop1
Restart acquisition | 100011110 |CARLOS restarts data transmission by putting
data_stop0O and data_stop 1 to 0
JTAG Olltrstl JTAG values for one tck period
not(trst)ltmsl
not(tms)|tdil
not(tdi)

Tab. C.1

111

112

ACRONYMS

ACORDE - ALICE Cosmic Ray Detector.

ADC - Analogue-to-Digital Converter

ALICE - A Large lon Collider Experiment

ASIC - Application Specific Integrated Circuit
ATLAS - A Toroidal LHC ApparatuS

CDH - Common Data Header

CERN - European Organization for Nuclear Research
CFRP - Carbon-Fibre Reinforced Plastic

CMS - Compact Muon Solenoid

CTP - Central Trigger Processor

DAQ - Data Acquisition

DATE - ALICE Data Acquisition and Test Environment
DCS - Detector Control System

DDL - Detector Data Link

DIU - Destination Interface Unit

DLL - Digital Locked Loop

DMA - Direct Memory Access

DP - Data Packing

D-RORC - DAQ Read-Out Receiver Cards

ECS - Experiment Control System

EMCAL - ElectroMagnetic CALorimeter

FPGA - Field Programmable Gate Array

FMD - Forward Multiplicity Detector

GDC - Global Data Collectors

GOL - Gigabit Optical Link

HLT - High Level Trigger

HMPID - High-Momentum Particle ldentification Detector
ITS - Inner Tracking System

LDC - Local Data Concentrator

113

LHC - Large Hadron Collider

LHCDb - Large Hadron Collider beauty experiment
LHCY - Large Hadron Collider forward

LTU - Local Trigger Unit

LVDS - Low Voltage Differential Signaling
LVPECL - Low Voltage Positive Emitter Coupled Logic
NTD - Neutron Transmutation Doped

OT - OpticalTransceiver

PCB - Printed Circuit Board

PDS - Permanent Data Storage

PHOS - PHOton Spectrometer

PMD - Photon Multiplicity Detector

RR - Round Robin

SDD - Silicon Drift Detector

SIU - Source Interface Unit

SPD - Silicon Pixel Detector

SSD - Silicon Strip Detector

TDS - Transient Data Storage

TOF - High resolution array Time Of Flight

TOTEM - Total Cross Section Elastic Scattering and Diffraction Dissociation

TPC - Time-Projection Chamber

TRD - High-granularity Transition-Radiation Detector
TTC - Timing, Trigger and Control

ZDC - Zero-Degree Calorimeters

114

BIBLIOGRAPHY
[1] http://public.web.cern.ch/public/en/LHC/ALICE-en.html

[2] http://public.web.cern.ch/public/en/LHC/LHCExperimets-en.html

[3] ALICE Collaboration: F Carminati , P Foka , P Giubellino , A Morsch , G Paic , J-P

Revol K “Safarik , Y Schutz and U Awiedemann

ALICE: Physics Performance Report, Volume I
Published 19 October 2004

Online at stacks.iop.org/JPhysG/30/1517

[4] Davide Falchieri

Hardware implementation of data compression algorithms in the ALICE experiment.

PhD thesis 2000/20001
available: http://www.bo.infn.it/~falchier/phd.html

[5] ALICE data acquisition
http://ph-dep-aid.web.cern.ch/ph-dep-aid/

[6] Xilinx, Inc. Xilinx Virtex II PRO FPGA,
datasheet [online] available: http://www.xilinx.com, 2006.

[7] Xilinx, Inc. Xilinx Spartan II FPGA,
datasheet [online] available: http://www.xilinx.com, 2006.

[8] Optoway SPS7110,1.25 Gbit/s SFP transceiver,
datasheet [online]available: http://www.optoway.com, 2006.

[9] Texas Instruments TLK1501, 0.6 to 1.5 Gbps Transceiver,
datasheet [online] available: http://www.ti.com, 2006.

[10] IDT 72T361251.44BBG 2.5 V TeraSync high speed FIFO,
datasheet [online] available: http://www.idt.com, 2006.

[11] CERN Microelectronics Group TTCrq mezzanine,
datasheet [online] available: http:// ttc.web.cern.ch/TTC.

[12] LTU Local Trigger Unit,

datasheet [online] available: http://www.ep.ph.bham.ac.uk/user/pedja/ALICE, 2006.

[13] RS232 protocol spec.
http://en.wikipedia.org/wiki/RS-232

115

http://public.web.cern.ch/public/en/LHC/LHCExperimets-en.html
http://public.web.cern.ch/public/en/LHC/LHCExperiments-en.html

[14] ON Semiconductor NB100LVEP221, 2.5V/3.3V 1:20 Differential
HSTL/ECL/PECL Clock Driver, datasheet [online] available: http://www.onsemi.com,
2006.

[15] S. Antinori, F. Costa, D. Falchieri, A. Gabrielli, E. Gandolfi, M. Masetti

Design and Test of the ALICE SDD Data Concentrator Card CARLOSrx

2006 IEEE Nuclear Science Symposium and Medical Imaging Conference , 29 October
- 4 November, 2006, San Diego, CA USA.

[16] S. Antinori, Filippo Costa, D. Falchieri, E. Gandolfi, M. Masetti
CARLOSrx: an online Data Acquisition system for ALICE ITS SDD
(TWEPP2007) 12th Workshop on Electronics for LHC and future Experiments
3 - 7 September 2007, Prague, CZ

[17] Dr. Antinori Samuele, Dr. BRUNO Alessandro, Dr. BEOLg Stefania, Dr. COLI
Silvia, Dr. COSTA FILIPPO, Dr. DE REMIGIS Paolo, Dr. FALCHIERI Davide, Prof.
GANDOLFI Enzo, Dr. GIRAUDO Giuseppe, Dr. GIUBELLINO Paolo, Mr. KRaL Jiri,
Prof. MASETTI Massimo, Dr. MAZZA Gianni, Dr. RASHEVSKY Alexandre, Dr.
RICCATI Lodovico, Dr. RIVETTI Angelo, Dr. SENYUKOV Serhiy, Dr. TOSCANO
Luca, Dr. TOSELLO Flavio, Dr. WHEADON Richard.

Test and commissioning of the CARLOS control boards for the ALICE Silicon Drift
Detector

(TWEPP2007) 12th Workshop on Electronics for LHC and future Experiments

3 - 7 September 2007, Prague, CZ

[18] ALICE DAQ project
ALICE DAQ and ECS User's Guide
January 2006

[19] carlos v5 datashhet
http://www.bo.infn.it/~falchier/carlosvS_datasheet.pdf

[20] carlosrx datasheet
http://www.bo.infn.it/~falchier/carlosrx_v4_rell.2_datasheet.pdf

[21] http://ALICE-proj-ddl.web.cern.ch/ALICE-proj-ddl/ddl_intro.html
[22] http://ALICE-proj-ddl.web.cern.ch/ALICE-proj-ddl/rorc_intro.html

[23] Trigger infos
http://epweb2.ph.bham.ac.uk/user/krivda/ALICE/

[24] Faninout board user manual
http://mKkrivda.web.cern.ch/mkrivda/faninout.htm

116

http://mkrivda.web.cern.ch/mkrivda/faninout.htm
http://epweb2.ph.bham.ac.uk/user/krivda/alice/
http://alice-proj-ddl.web.cern.ch/alice-proj-ddl/rorc_intro.html
http://alice-proj-ddl.web.cern.ch/alice-proj-ddl/rorc_intro.html
http://alice-proj-ddl.web.cern.ch/alice-proj-ddl/ddl_intro.html
http://alice-proj-ddl.web.cern.ch/alice-proj-ddl/ddl_intro.html
http://www.bo.infn.it/~falchier/carlosrx_v4_rel1.2_datasheet.pdf
http://www.bo.infn.it/~falchier/carlosv5_datasheet.pdf

	Introduction
	1. The ALICE experiment
	1.1 ITS
	1.2 SDD detector
	1.2.1 SDD layout
	1.2.2 SDD layer

	1.3 Readout chain
	1.3.1 Front End module (Pascal-Ambra)
	1.3.2 CARLOS

	1.4 DAQ system

	2. CARLOSrx
	2.1 CARLOSrx data processing board
	2.1.1 The 12 OPTICAL TRANSCEIVERS
	2.1.2 IDT FIFO 4 x 9 Mbits
	2.1.3 The TTC system
	2.1.4 The BUSY signal
	2.1.5 ALICE DAQ interface
	2.1.6 VME BUS

	2.2 CARLOSrx clock distribution board

	3. CARLOSrx firmware
	3.1 Input FPGA firmware
	3.1.1 The algorithm
	3.1.2 Data Packing
	3.1.2 The scheduler block
	3.1.2 INPUTS selection
	3.1.3 RESET signal

	3.2 Main FPGA firmware
	3.2.1 JTAG interface
	3.2.2 Optical transceivers interface (serial back-link block)
	3.2.3 FIFO interface (scheduler block)
	3.2.4 DAQ interface (SIU interface block)
	3.2.5 TTCrq interface
	3.2.6 The BUSY block
	3.2.7 The RESET block
	3.2.8 The UART block
	3.2.9 The VME interface

	4. The software developed for CARLOSrx
	4.1 The RS232 program
	4.2 The configuration program
	4.3 The monitor program
	4.4 Decoding program
	4.5 The VME program

	5. CARLOSrx at CERN
	5.1 Commissioning of the SDD barrel
	5.1.1 DAQ/ECS integration
	5.1.2 Trigger test

	5.2 Integrations of the SDD barrel in the ITS
	5.3 CARLOSrx in position

	Conclusions
	Appendix A
	A.1 SIU signals
	A.2 CDH fields explanation

	Appendix B
	B.1 Erroneous trigger sequences

	Appendix C
	C.1 2D algorithm
	C.2 Serial back-link

	ACRONYMS
	BIBLIOGRAPHY

