
UNIVERSITÀ DEGLI STUDI DI BOLOGNA

Dottorato di Ricerca in

Automatica e Ricerca Operativa

MAT/09

XXI Ciclo

Application-oriented Mixed Integer
Non-Linear Programming

Claudia D’Ambrosio

Il Coordinatore Il Tutor
Prof. Claudio Melchiorri Prof. Andrea Lodi

AA. AA. 2006–2009

Contents

Acknowledgments v

Keywords vii

List of figures x

List of tables xi

Preface xiii

I Introduction 1

1 Introduction to MINLP Problems and Methods 3
1.1 Mixed Integer Linear Programming . 4

1.2 Non-Linear Programming . 6
1.3 Convex Mixed Integer Non-Linear Programming 8
1.4 Non-convex Mixed Integer Non-Linear Programming 10

1.5 General considerations on MINLPs . 13

II Modeling and Solving Non-Convexities 15

2 A Feasibility Pump Heuristic for Non-Convex MINLPs 17
2.1 Introduction . 17

2.2 The algorithm . 18
2.2.1 Subproblem (P1) . 19
2.2.2 Subproblem (P2) . 20
2.2.3 The resulting algorithm . 25

2.3 Software structure . 25
2.4 Computational results . 27
2.5 Conclusions . 29

3 A GO Method for a class of MINLP Problems 31
3.1 Introduction . 31
3.2 Our algorithmic framework . 32

3.2.1 The lower-bounding convex MINLP relaxation Q 33
3.2.2 The upper-bounding non-convex NLP restriction R 37

i

ii CONTENTS

3.2.3 The refinement technique . 38

3.2.4 The algorithmic framework . 38

3.3 Computational results . 40

3.3.1 Uncapacitated Facility Location (UFL) problem 40

3.3.2 Hydro Unit Commitment and Scheduling problem 41

3.3.3 GLOBALLib and MINLPLib instances 43

3.4 Conclusions . 43

4 Approximating Non-Linear Functions of 2 Variables 45

4.1 Introduction . 45

4.2 The methods . 47

4.2.1 One-dimensional method . 47

4.2.2 Triangle method . 48

4.2.3 Rectangle method . 49

4.3 Comparison . 51

4.3.1 Dominance and approximation quality 51

4.3.2 Computational experiments . 52

5 NLP-Based Heuristics for MILP problems 57

5.1 The NLP problem and the Frank-Wolfe Method 59

5.2 Solving NLPf directly by using different NLP solvers 62

5.3 The importance of randomness/diversification 63

5.4 Apply some MILP techniques . 64

5.5 Final considerations and future work . 65

III Applications 67

6 Hydro Scheduling and Unit Commitment 69

6.1 Introduction . 70

6.2 Mathematical model . 71

6.2.1 Linear constraints . 72

6.2.2 Linearizing the power production function 73

6.3 Enhancing the linearization . 76

6.4 Computational Results . 78

6.5 Conclusions . 83

6.6 Acknowledgments . 86

7 Water Network Design Problem 87

7.1 Notation . 88

7.2 A preliminary continuous model . 89

7.3 Objective function . 90

7.3.1 Smoothing the nondifferentiability . 92

7.4 Models and algorithms . 93

7.4.1 Literature review . 93

7.4.2 Discretizing the diameters . 94

7.4.3 Parameterizing by area rather than diameter 95

CONTENTS iii

7.5 Computational experience . 96
7.5.1 Instances . 96
7.5.2 MINLP results . 99

7.6 Conclusions . 108

IV Tools for MINLP 111

8 Tools for Mixed Integer Non-Linear Programming 113
8.1 Mixed Integer Linear Programming solvers 113
8.2 Non-Linear Programming solvers . 114
8.3 Mixed Integer Non-Linear Programming solvers 114

8.3.1 Alpha-Ecp . 117
8.3.2 BARON . 118
8.3.3 BONMIN . 119
8.3.4 Couenne . 120
8.3.5 DICOPT . 121
8.3.6 FilMINT . 122
8.3.7 LaGO . 123
8.3.8 LINDOGlobal . 124
8.3.9 MINLPBB . 125
8.3.10 MINOPT . 126
8.3.11 SBB . 127

8.4 NEOS, a Server for Optimization . 128
8.5 Modeling languages . 128
8.6 MINLP libraries of instances . 129

8.6.1 CMU/IBM Library . 129
8.6.2 MacMINLP Library . 129
8.6.3 MINLPlib . 129

Bibliography 131

iv CONTENTS

Acknowledgments

I should thank lots of people for the last three years. I apologize in case I forgot to mention
someone.

First of all I thank my advisor, Andrea Lodi, who challenged me with this Ph.D. research
topic. His contagious enthusiasm, brilliant ideas and helpfulness played a fundamental role in
renovating my motivation and interest in research. A special thank goes to Paolo Toth and
Silvano Martello. Their suggestions and constant kindness helped to make my Ph.D. a very
nice experience. Thanks also to the rest of the group, in particular Daniele Vigo, Alberto
Caprara, Michele Monaci, Manuel Iori, Valentina Cacchiani, who always helps me and is also
a good friend, Enrico Malaguti, Laura Galli, Andrea Tramontani, Emiliano Traversi.

I thank all the co-authors of the works presented in this thesis, Alberto Borghetti, Cristiana
Bragalli, Matteo Fischetti, Antonio Frangioni, Leo Liberti, Jon Lee and Andreas Wächter. I
had the chance to work with Jon since 2005, before starting my Ph.D., and I am very grateful
to him. I want to thank Jon and Andreas also for the great experience at IBM T.J. Watson
Research Center. I learnt a lot from them and working with them is a pleasure. I thank
Andreas, together with Pierre Bonami and Alejandro Veen, for the rides and their kindness
during my stay in NY.

Un ringraziamento immenso va alla mia famiglia: grazie per avermi appoggiato, support-
ato, sopportato, condiviso con me tutti i momenti di questo percorso. Ringrazio tutti i miei
cari amici, in particolare Claudia e Marco, Giulia, Novi. Infine, mille grazie a Roberto.

Bologna, 12 March 2009 Claudia D’Ambrosio

v

vi ACKNOWLEDGMENTS

Keywords

Mixed integer non-linear programming

Non-convex problems

Piecewise linear approximation

Real-world applications

Modeling

vii

viii Keywords

List of Figures

1.1 Example of “unsafe” linearization cut generated from a non-convex constraint 11
1.2 Linear underestimators before and after branching on continuous variables . . 12

2.1 Outer Approximation constraint cutting off part of the non-convex feasible
region. 21

2.2 The convex constraint γ does not cut off x̂, so nor does any OA linearization
at x̄. 22

3.1 A piecewise-defined univariate function . 34
3.2 A piecewise-convex lower approximation . 34
3.3 An improved piecewise-convex lower approximation 35
3.4 The convex relaxation . 37
3.5 The algorithmic framework . 39
3.6 UFL: how −gkt(wkt) looks like in the three instances. 41

3.7 Hydro UC: how −ϕ(qjt) looks like in the three instances 42

4.1 Piecewise linear approximation of a univariate function, and its adaptation to
a function of two variables. 46

4.2 Geometric representation of the triangle method. 49
4.3 Geometric representation of the triangle method. 50
4.4 Five functions used to evaluate the approximation quality. 52

5.1 Examples of f(x) for (a) binary and (b) general integer variables. 58
5.2 sp 6-sp 9 are the combination of solutions (1.4, 1.2) and (3.2, 3.7) represented

by one point of the line linking the two points. 63
5.3 An ideal cut should make the range [0.5, 0.8] infeasible. 65
5.4 NLPf can have lots of local minima. 66

6.1 The simple approximation . 74
6.2 The enhanced approximation . 77
6.3 Piecewise approximation of the relationship (6.19) for three volume values . . 79
6.4 Water volumes . 83
6.5 Inflow and flows . 85
6.6 Price and powers . 85
6.7 Profit . 86

7.1 Three polynomials of different degree approximating the cost function for in-
stance foss poly 0, see Section 7.5.1. 91

ix

x LIST OF FIGURES

7.2 Smoothing f near x = 0. 93
7.3 Solution for Fossolo network, version foss iron. 104

List of Tables

2.1 Instances for which a feasible solution was found within the time limit 28
2.2 Instances for which the feasible solution found is also the best-know solution 29
2.3 Instances for which no feasible solution was found within the time limit . . . 29
2.4 Instances with problems during the execution 29

3.1 Results for Uncapacitated Facility Location problem 41
3.2 Results for Hydro Unit Commitment and Scheduling problem 42
3.3 Results for GLOBALLib and MINLPLib . 44

4.1 Average approximation quality for different values of n, m, x and y. 52
4.2 Comparison with respect to the size of the MILP. 55
4.3 MILP results with different time limits expressed in CPU seconds. 55

5.1 Comparison among different NLP solvers used for solving problem NLPf . . . 62
5.2 Results using different starting points. 64
5.3 Instance gesa2-o . 65
5.4 Instance vpm2 . 65

6.1 Results for a turbine with the ϕ1 characteristic of Figure 6.3 80
6.2 Results for a turbine with the ϕ2 characteristic of Figure 6.3 80
6.3 Number of variables and constraints for the three models considering 8 config-

urations of (t; r; z) . 82
6.4 Results with more volume intervals for April T168 and a turbine with the

characteristic of Figure 6.3 . 82
6.5 Results for BDLM+ with and without the BDLM solution enforced 83
6.6 Results for the MILP model with 7 volume intervals and 5 breakpoints 84

7.1 Water Networks. 97
7.2 Characteristics of the 50 continuous solutions at the root node. 101
7.3 Computational results for the MINLP model (part 1). Time limit 7200 seconds.102
7.4 Computational results for the MINLP model (part 2). Time limit 7200 seconds. 102
7.5 Computational results for the MINLP model comparing the fitted and the

discrete objective functions. Time limit 7200 seconds. 103
7.6 MINLP results compared with literature results. 106

8.1 Convex instances of MINLPlib (info heuristically computed with LaGO). . . 130
8.2 Non-convex instances of MINLPlib (info heuristically computed with LaGO). 130

xi

xii LIST OF TABLES

Preface

In the most recent years there is a renovate interest for Mixed Integer Non-Linear Program-
ming (MINLP) problems. This can be explained for different reasons: (i) the performance of
solvers handling non-linear constraints was largely improved; (ii) the awareness that most of
the applications from the real-world can be modeled as an MINLP problem; (iii) the challeng-
ing nature of this very general class of problems. It is well-known that MINLP problems are
NP-hard because they are the generalization of MILP problems, which are NP-hard them-
selves. This means that it is very unlikely that a polynomial-time algorithm exists for these
problems (unless P = NP). However, MINLPs are, in general, also hard to solve in prac-
tice. We address to non-convex MINLPs, i.e. having non-convex continuous relaxations: the
presence of non-convexities in the model makes these problems usually even harder to solve.

Until recent years, the standard approach for handling MINLP problems has basically
been solving an MILP approximation of it. In particular, linearization of the non-linear
constraints can be applied. The optimal solution of the MILP might be neither optimal nor
feasible for the original problem, if no assumptions are done on the MINLPs. Another possible
approach, if one does not need a proven global optimum, is applying the algorithms tailored
for convex MINLPs which can be heuristically used for solving non-convex MINLPs. The
third approach to handle non-convexities is, if possible, to reformulate the problem in order
to obtain a special case of MINLP problems. The exact reformulation can be applied only
for limited cases of non-convex MINLPs and allows to obtain an equivalent linear/convex
formulation of the non-convex MINLP. The last approach, involving a larger subset of non-
convex MINLPs, is based on the use of convex envelopes or underestimators of the non-convex
feasible region. This allows to have a lower bound on the non-convex MINLP optimum that
can be used within an algorithm like the widely used Branch-and-Bound specialized versions
for Global Optimization. It is clear that, due to the intrinsic complexity from both practical
and theoretical viewpoint, these algorithms are usually suitable at solving small to medium
size problems.

The aim of this Ph.D. thesis is to give a flavor of different possible approaches that one can
study to attack MINLP problems with non-convexities, with a special attention to real-world
problems. In Part I of the thesis we introduce the problem and present three special cases of
general MINLPs and the most common methods used to solve them. These techniques play a
fundamental role in the resolution of general MINLP problems. Then we describe algorithms
addressing general MINLPs. Parts II and III contain the main contributions of the Ph.D.
thesis. In particular, in Part II four different methods aimed at solving different classes of
MINLP problems are presented. More precisely:

In Chapter 2 we present a Feasibility Pump (FP) algorithm tailored for non-convex
Mixed Integer Non-Linear Programming problems. Differences with the previously pro-

xiii

xiv PREFACE

posed FP algorithms and difficulties arising from non-convexities in the models are
extensively discussed. We show that the algorithm behaves very well with general prob-
lems presenting computational results on instances taken from MINLPLib.

In Chapter 3 we focus on separable non-convex MINLPs, that is where the objective
and constraint functions are sums of univariate functions. There are many problems
that are already in such a form, or can be brought into such a form via some simple
substitutions. We have developed a simple algorithm, implemented at the level of a
modeling language (in our case AMPL), to attack such separable problems. First,
we identify subintervals of convexity and concavity for the univariate functions using
external calls to MATLAB. With such an identification at hand, we develop a convex
MINLP relaxation of the problem. We work on each subinterval of convexity and
concavity separately, using linear relaxation on only the “concave side” of each function
on the subintervals. The subintervals are glued together using binary variables. Next,
we repeatedly refine our convex MINLP relaxation by modifying it at the modeling
level. Next, by fixing the integer variables in the original non-convex MINLP, and then
locally solving the associated non-convex NLP relaxation, we get an upper bound on
the global minimum. We present preliminary computational experiments on different
instances.

In Chapter 4 we consider three methods for the piecewise linear approximation of
functions of two variables for inclusion within MILP models. The simplest one applies
the classical one-variable technique over a discretized set of values of the second inde-
pendent variable. A more complex approach is based on the definition of triangles in the
three-dimensional space. The third method we describe can be seen as an intermediate
approach, recently used within an applied context, which appears particularly suitable
for MILP modeling. We show that the three approaches do not dominate each other,
and give a detailed description of how they can be embedded in a MILP model. Advan-
tages and drawbacks of the three methods are discussed on the basis of some numerical
examples.

In Chapter 5 we present preliminary computational results on heuristics for Mixed
Integer Linear Programming. A heuristic for hard MILP problems based on NLP tech-
niques is presented: the peculiarity of our approach to MILP problems is that we re-
formulate integrality requirements treating them in the non-convex objective function,
ending up with a mapping from the MILP feasibility problem to NLP problem(s). For
each of these methods, the basic idea and computational results are presented.

Part III of the thesis is devoted to real-world applications: two different problems and ap-
proaches to MINLPs are presented, namely Scheduling and Unit Commitment for Hydro-
Plants and Water Network Design problems. The results show that each of these different
methods has advantages and disadvantages. Thus, typically the method to be adopted to
solve a real-world problem should be tailored on the characteristics, structure and size of the
problem. In particular:

Chapter 6 deals with a unit commitment problem of a generation company whose aim
is to find the optimal scheduling of a multi-unit pump-storage hydro power station, for
a short term period in which the electricity prices are forecasted. The problem has a
mixed-integer non-linear structure, that makes very hard to handle the corresponding

xv

mathematical models. However, modern MILP software tools have reached a high ef-
ficiency, both in terms of solution accuracy and computing time. Hence we introduce
MILP models of increasing complexity, that allow to accurately represent most of the
hydro-electric system characteristics, and turn out to be computationally solvable. In
particular, we present a model that takes into account the head effects on power pro-
duction through an enhanced linearization technique, and turns out to be more general
and efficient than those available in the literature. The practical behavior of the models
is analyzed through computational experiments on real-world data.

In Chapter 7 we present a solution method for a water-network optimization problem
using a non-convex continuous NLP relaxation and a MINLP search. Our approach
employs a relatively simple and accurate model that pays some attention to the re-
quirements of the solvers that we employ. Our view is that in doing so, with the goal
of calculating only good feasible solutions, complicated algorithmics can be confined
to the MINLP solver. We report successful computational experience using available
open-source MINLP software on problems from the literature and on difficult real-world
instances.

Part IV of the thesis consists of a brief review on tools commonly used for general MINLP
problems. We present the main characteristics of solvers for each special case of MINLP.
Then we present solvers for general MINLPs: for each solver a brief description, taken from
the manuals, is given together with a schematic table containing the most importart pieces
of information, for example, the class of problems they address, the algorithms implemented,
the dependencies with external software.

Tools for MINLP, especially open-source software, constituted an integral part of the
development of this Ph.D. thesis. Also for this reason Part IV is devoted to this topic.
Methods presented in Chapters 4, 5 and 7 were completely developed using open-source solvers
(and partially Chapter 3). A notable example of the importance of open-source solvers is given
in Chapter 7: we present an algorithm for solving a non-convex MINLP problem, namely the
Water Network Design problem, using the open-source software Bonmin. The solver was
originally tailored for convex MINLPs. However, some accommodations were made to handle
non-convex problems and they were developed and tested in the context of the work presented
in Chapter 7, where details on these features can be found.

xvi PREFACE

Part I

Introduction

1

Chapter 1

Introduction to Mixed Integer
Non-Linear Programming Problems
and Methods

The (general) Mixed Integer Non-Linear Programming (MINLP) problem which we are in-
terested in has the following form:

MINLP

min f(x, y) (1.1)

g(x, y) ≤ 0 (1.2)

x ∈ X ∩ Z
n (1.3)

y ∈ Y , (1.4)

where f : R
n×p → R, g : R

n×p → R
m, X and Y are two polyhedra of appropriate dimension

(including bounds on the variables). We assume that f and g are twice continuously differ-
entiable, but we do not make any other assumption on the characteristics of these functions
or their convexity/concavity. In the following, we will call problems of this type non-convex
Mixed Integer Non-Linear Programming problems.

Non-convex MINLP problems are NP-hard because they generalize MILP problems which
are NP-hard themselves (for a detailed discussion on the complexity of MILPs we refer the
reader to Garey and Johnson [61]).

The most complex aspect we need to have in mind when we work with non-convex MINLPs
is that its continuous relaxation, i.e. the problem obtained by relaxing the integrality require-
ment on the x variables, might have (and usually it has) local optima, i.e. solutions which
are optimal within a restricted part of the feasible region (neighborhood), but not considering
the entire feasible region. This does not happen when f and g are convex (or linear): in these
cases the local optima are also global optima, i.e. solutions which are optimal considering the
entire feasible region.

To understand more in detail the issue, let us consider the continuous relaxation of the
MINLP problem. The first order optimality conditions are necessary, but, only when f and
g are convex, they are also sufficient for the stationary point (x, y) which satisfies them to be

3

4 CHAPTER 1. INTRODUCTION TO MINLP PROBLEMS AND METHODS

the global optimum:

g(x, y) ≤ 0 (1.5)

x ∈ X (1.6)

y ∈ Y (1.7)

λ ≥ 0 (1.8)

∇f(x, y) +

m∑

i=1

λi∇gi(x, y) = 0 (1.9)

λT g(x, y) = 0, (1.10)

where ∇ is the Jacobian of the function and λ are the dual variables, i.e. the variables of the
Dual problem of the continuous relaxation of MINLP which is called Primal problem. The
Dual problem is formalized as follows:

max
λ≥0

[infx∈X,y∈Y f(x, y) + λT g(x, y)], (1.11)

see [17, 97] for details on Duality Theory in NLP. Equations (1.5)-(1.7) are the primal feasibil-
ity conditions, equation (1.8) is the dual feasibility condition, equation (1.9) is the stationarity
condition and equation (1.10) is the complementarity condition.

These conditions, called also Karush-Kuhn-Tucker (KKT) conditions, assume an impor-
tant role in algorithms we will present and use in this Ph.D. thesis. For details the reader is
referred to Karush [74], Kuhn and Tucker [77].

The aim of this Ph.D. thesis is presenting methods for solving non-convex MINLPs and
models for real-world applications of this type. However, in the remaining part of this sec-
tion, we will present special cases of general MINLP problems because they play an important
role in the resolution of the more general problem. Though, this introduction will not cover
exhaustively topics concerning Mixed Integer Linear Programming (MILP), Non-Linear Pro-
gramming (NLP) and Mixed Integer Non-Linear Programming in general, but only give a
flavor of the ingredients necessary to fully understand the methods and algorithms which are
the contribution of the thesis. For each problem, references will be provided to the interested
reader.

1.1 Mixed Integer Linear Programming

A Mixed Integer Linear Programming problem is the special case of the MINLP problem in
which functions f and g assume a linear form. It is usually written in the form:

MILP
min cT x + dT y

Ax + By ≤ b

x ∈ X ∩ Z
n

y ∈ Y,

where A and B are, respectively, the m × n and the m × p matrices of coefficients, b is the
m-dimensional vector, called right-hand side, c and d are, respectively, the n-dimensional and

1.1. MIXED INTEGER LINEAR PROGRAMMING 5

the p-dimensional vectors of costs. Even if these problems are a special and, in general, easier
case with respect to MINLPs, they are NP-hard (see Garey and Johnson [61]). This means
that a polynomial algorithm to solve MILP is unlikely to exists, unless P = NP.

Different possible approaches to this problem have been proposed. The most effective ones
and extensively used in the modern solvers are Branch-and-Bound (see Land and Doig [78]),
cutting planes (see Gomory [64]) and Branch-and-Cut (see Padberg and Rinaldi [102]). These
are exact methods: this means that, if an optimal solution for the MILP problem exists, they
find it. Otherwise, they prove that such a solution does not exist. In the following we give a
brief description of the main ideas of these methods, which, as we will see, are the basis for
the algorithms proposed for general MINLPs.

Branch-and-Bound (BB): the first step is solving the continuous relaxation of MILP
(i.e. the problem obtained relaxing the integrality constraints on the x variables, LP =
{min cT x+ dT y | Ax+By ≤ b, x ∈ X, y ∈ Y }). Then, given a fractional value x∗

j from
the solution of LP (x∗, y∗), the problem is divided into two subproblems, the first where
the constraint xj ≤ ⌊x∗

j⌋ is added and the second where the constraint xj ≥ ⌊x∗
j⌋ + 1

is added. Each of these new constraints represents a “branching decision” because the
partition of the problem in subproblems is represented with a tree structure, the BB
tree. Each subproblem is represented as a node of the BB tree and, from a mathematical
viewpoint, has the form:

LP min cT x + dT y

Ax + By ≤ b

x ∈ X

y ∈ Y

x ≤ lk

x ≥ uk,

where lk and uk are vectors defined so as to mathematically represent the branching
decisions taken so far in the previous levels of the BB tree. The process is iterated for
each node until the solution of the continuous relaxation of the subproblem is integer
feasible or the continuous relaxation is infeasible or the lower bound value of subprob-
lem is not smaller than the current incumbent solution, i.e. the best feasible solution
encountered so far. In these three cases, the node is fathomed. The algorithm stops
when no node to explore is left, returning the best solution found so far which is proven
to be optimal.

Cutting Plane (CP): as in the Branch-and-Bound method, the LP relaxation is solved.
Given the fractional LP solution (x∗, y∗), a separation problem is solved, i.e. a problem
whose aim is finding a valid linear inequality that cuts off (x∗, y∗), i.e. it is not satisfied
by (x∗, y∗). An inequality is valid for the MILP problem if it is satisfied by any integer
feasible solution of the problem. Once a valid inequality (cut) is found, it is added to the
problem: it makes the LP relaxation tighter and the iterative addition of cuts might lead
to an integer solution. Different types of cuts have been studied, for example, Gomory
mixed integer cuts, Chvátal-Gomory cuts, mixed integer rounding cuts, rounding cuts,
lift-and-project cuts, split cuts, clique cuts (see [40]). Their effectiveness depends on
the MILP problem and usually different types of cuts are combined.

6 CHAPTER 1. INTRODUCTION TO MINLP PROBLEMS AND METHODS

Branch-and-Cut (BC): the idea is integrating the two methods described above, merg-
ing the advantages of both techniques. Like in BB, at the root node the LP relaxation
is solved. If the solution is not integer feasible, a separation problem is solved and, in
the case cuts are fonud, they are added to the problem, otherwise a branching decision
is performed. This happens also to non-leaf nodes, the LP relaxation correspondent to
the node is solved, a separation problem is computed and cuts are added or branch is
performed. This method is very effective and, like in CP, different types of cuts can be
used.

An important part of the modern solvers, usually integrated with the exact methods, are
heuristic methods: their aim is finding rapidly a “good” feasible solution or improving the
best solution found so far. No guarantee on the optimality of the solution found is given.
Examples of the first class of heuristics are: simple rounding heuristics, Feasibility Pump
(see Fischetti et al. [50], Bertacco et al. [16], Achterberg and Berthold [3]). Examples of
the second class of heuristics are metaheuristics (see, for example, Glover and Kochenberger
[63]), Relaxation Induced Neighborhoods Search (see Danna et al. [43]) and Local Branching
(see Fischetti and Lodi [51]).

For a survey of the methods and the development of the software addressed at solving
MILPs the reader is referred to the recent paper by Lodi [87], and for a detailed discussion
see [2, 18, 19, 66, 95, 104].

1.2 Non-Linear Programming

Another special case of MINLP problems is Non-Linear Programming: the functions f and g
are non-linear but n = 0, i.e. no variable is required to be integer. The classical NLP problem
can be written in the following form:

NLP
min f(y) (1.12)

g(y) ≤ 0 (1.13)

y ∈ Y. (1.14)

Different issues arise when one tries to solve this kind of problems. Some heuristic and
exact methods are tailored for a widely studied subclass of these problems: convex NLPs.
In this case, the additional assumption is that f and g are convex functions. Some of these
methods can be used for more general non-convex NLPs, but no guarantee on the global
optimality of the solution is given. In particular, when no assumption on convexity is done,
the problem usually has local optimal solutions. In the non-convex case, exact algorithms, i.e.
those methods that are guaranteed to find the global solution, are called Global Optimization
methods.

In the following we sketch some of the most effective algorithms studied and actually
implemented within available NLP solvers (see Section 8):

Line Search: introduced for unconstrained optimization problems with non-linear ob-
jective function, it is an iterative method used also as part of methods for constrained
NLPs. At each iteration an approximation of the non-linear function is considered and
(i) a search direction is decided; (ii) the step length to take along that direction is

1.2. NON-LINEAR PROGRAMMING 7

computed and (iii) the step is taken. Different approaches to decide the direction and
the step length are possible (e.g., Steepest descent, Newton, Quasi-Newton, Conjugate
Direction methods).

Trust Region: it is a method introduced as an alternative to Line Search. At each
iteration, the search of the best point using the approximation is limited into a “trust
region”, defined with a maximum step length. This approach is motivated by the fact
that the approximation of the non-linear function at a given point can be not good far
away from that point, then the “trust region” represents the region in which we suppose
the approximation is good. Then the direction and the step length which allow the best
improvement of the objective function value within the trust region is taken. (The size
of the trust region can vary depending on the improvements obtained at the previous
iteration.) Also in this case different possible strategies to choose the direction and the
step length can be adopted.

Active Set: it is an iterative method for solving NLPs with inequalities. The first step
of each iteration is the definition of the active set of constraints, i.e. the inequalities
which are strictly satisfied. Considering the surface defined by the constraints within
the active set, a move on the surface is decided, identifying the new point for the next
iteration. The Simplex algorithm by Dantzig [44] is an Active Set method for solving
Linear Programming problems. An effective and widely used special case of Active
Set method for NLPs is the Sequential Quadratic Programming (SQP) method. It
solves a sequence of Quadratic Programming (QP) problems which approximate the
NLP problem at the current point. An example of such an approximation is using the
Newton’s method to the KKT conditions of the NLP problem. The QP problems are
solved using specialized QP solvers.

Interior Point: in contrast to the Active Set methods which at each iteration stay on
a surface of the feasible region, the Interior Point methods stay in the strict interior of
it. From a mathematical viewpoint, at each iteration, conditions of primal and dual
feasibility (1.5)-(1.8) are satisfied and complementarity conditions (1.10) are relaxed.
The algorithm aims at reducing the infeasibility of the complementarity constraints.

Penalty and Augmented Lagrangian: it is a method in which the objective function
of NLP is redefined in order to take into account both the optimality and the feasibility
of a solution adding a term which penalizes infeasible solutions. An example of a Penalty
method is the Barrier algorithm which uses an interior type penalty function. When a
penalty function is minimized at the solution of the original NLP, it is called exact, i.e.
the minimization of the penalty function leads to the optimal solution of the original
NLP problem. An example of exact Penalty method is the Augmented Lagrangian
method, which makes explicit use of the Lagrange multiplier estimates.

Filter: it is a method in which the two goals (usually competing) which in Penalty
methods are casted within the same objective function, i.e. optimality and feasibility,
are treated separately. So, a point can become the new iterate point only if it is not
dominated by a previous point in terms of optimality and feasibility (concept closely
related to Pareto optimality).

8 CHAPTER 1. INTRODUCTION TO MINLP PROBLEMS AND METHODS

For details on the algorithms mentioned above and their convergence, the reader is referred
to, for example, [12, 17, 29, 54, 97, 105]. In the context of the contribution of this Ph.D. thesis,
the NLP methods and solvers are used as black boxed, i.e. selecting them according to their
characteristics and efficiency with respect to the problem, but without changing them.

1.3 Convex Mixed Integer Non-Linear Programming

The third interesting subclass of general MINLP is the convex MINLP. The form of these
problems is the same as MINLP, but f and g are convex functions. The immediate and most
important consideration derived by this assumption is that each local minimum of the problem
is guaranteed to be also a global minimum of the continuous relaxation. This property is
exploited in methods studied specifically for this class of problems. In the following we briefly
present the most used approaches to solve convex MINLPs, in order to have an idea of the
state of the art regarding solution methods of MINLP with convexity properties. Because
the general idea of these methods is solving “easier” subproblems of convex MINLPs, we first
define three different important subproblems which play a fundamental role in the algorithms
we are going to describe.

MILP k

min z

f(xk, yk) + ∇f(xk, yk)T
[

x − xk

y − yk

]
≤ z

g(xk, yk) + ∇g(xk, yk)T
[

x − xk

y − yk

]
≤ 0

k = 1, . . . ,K

x ∈ X ∩ Z
n

y ∈ Y,

where z is an auxiliary variable added in order to have a linear objective function,
(xk, yk) refers to a specific value of x and y. The original constraint are substituted by
their linearization constraints called Outer Approximation cuts.

NLP k

min f(x, y)

g(x, y) ≤ 0

x ∈ X

y ∈ Y

x ≤ lk

x ≥ uk,

where lk and uk are, respectively, the lower and upper bound on the integer variables
specific of subproblem NLP k. This is the continuous subproblem corresponding to
a specific node of the Branch-and-Bound tree, i.e. the NLP version of LP k. If no
branching decision has been taken on a specific variable, say xj , lj is equal to −∞
and uj is equal to +∞ (i.e. the original bounds, included in x ∈ X, are preserved).
Otherwise, lkj and uk

j reflect the branching decisions taken so far for variable xj .

1.3. CONVEX MIXED INTEGER NON-LINEAR PROGRAMMING 9

NLP k
x

min f(xk, y)

g(xk, y) ≤ 0

y ∈ Y,

where the integer part of the problem is fixed according to the integer vector xk.

Algorithms studied for convex MINLPs differ basically on how the subproblems involved
are defined and used. We present briefly some of the most used algorithms and refer the
reader to the exhaustive paper by Grossmann [65].

Branch-and-Bound (BB): the method, originally proposed for MILP problems (see
Section 1.1), was adapted for general convex MINLPs by Gupta and Ravindran [70].
The basic difference is that, at each node, an LP subproblem is solved in the first case,
an NLP subproblem in the second. We do not discuss specific approaches for branching
variable selection, tree exploration strategy, etc. For details the reader is referred to
[1, 20, 70, 82].

Outer-Approximation (OA): proposed by Duran and Grossman [45], it exploits the
Outer Approximation linearization technique which is “safe” for convex functions, i.e.
it does not cut off any solution of the MINLP. It is an iterative method in which, at
each iteration k, a NLP k

x and a MILP k subproblem are solved (the vector xk used in
NLP k

x is taken from the solution of MILP k). The first subproblem, if feasible, gives
an upper bound on the solution of the MINLP and the second subproblem always gives
a lower bound. At each iteration the lower and the upper bounds might be improved,
in particular the definition of MILP k changes because, at each iteration, OA cuts are
added which cut off the solution of the previous iteration. The algorithm ends when
the two bounds assume the same value (within a fixed tolerance).

Generalized Benders Decomposition (GBD): like BB, it was first introduced for
MILPs (see Benders [15]). Geoffrion [62] adapted the method to convex MINLP prob-
lems. It is strongly related to the OA method, the unique difference being the form of
the MILP k subproblem. The MILP k of the GBD method is a surrogate relaxation of
the one of the OA method and the lower bound given by the OA MILP k is stronger
than (i.e. greater or equal to) the one given by the GBD MILP k (for details, see Duran
and Grossmann [45]). More precisely, the GBD MILP k constraints are derived from
the OA constraints generated only for the active inequalities ({i | gi(x

k, yk) = 0}) plus
the use of KKT conditions and projection in the x-space:

f(xk, yk) + ∇xf(xk, yk)T (x − xk) + (µk)[g(xk, yk) + ∇xg(xk, yk)T (x − xk)] ≤ z

where µk is the vector of dual variables corresponding to original constraints (1.2) (see
[65] for details this relationship). These Lagrangian cuts projected in the x-space are
weaker, but the GBD MILP k is easier to solve with respect to the OA MILP k. Even
if, on average, the number of iterations necessary for the GBD method is bigger than
the one for the OA method, the tradeoff among number of iterations and computational
effort of each iteration makes sometimes convenient using one or the other approach.

10 CHAPTER 1. INTRODUCTION TO MINLP PROBLEMS AND METHODS

Extended Cutting Plane (ECP): introduced by Westerlund and Pettersson [126],
the method is based on the iterative resolution of a MILP k subproblem and, given the
optimal solution of MILP k which can be infeasible for MINLP , the determination of
the most violated constraint (or more), whose linearization is added at the next MILP k.
The given lower bound is decreased at each iteration, but generally a large number of
iterations is needed to reach the optimal solution.

LP/NLP based Branch-and-Bound (QG): the method can be seen as the extention
of the Branch-and-Cut to convex MINLPs (see Quesada and Grossmann [108]). The
idea is solving with BB the MILP k 1 subproblem not multiple times but only once.
This is possible if, at each node at which an integer feasible solution is found, the NLP k

x

subproblem is solved, OA cuts are then generated and added to the MILP k of the open
nodes of the Branch-and-Bound tree.

Hybrid algorithm (Hyb): an enhanced version of QG algorithm was recently devel-
oped by Bonami et al. [20]. It is called Hybrid algorithm because it combines BB and
OA methods. In particular, the differences with respect to the QG algorithm are that
at “some” nodes (not only when an integer solution is found) the NLP k

x subproblem is
solved to generate new cuts (like in BB) and local enumerations at some nodes of the
tree are performed (it can be seen as performing some iterations of the OA algorithm at
some nodes). When the local enumeration is not limited, the Hyb algorithm reconduces
to OA, when the NLP k

x is solved at each node, it reconduces to BB.

As for MILP solvers, heuristic algorithms also play an important role within MINLP
solvers. Part of the heuristic algorithms studied for MILPs have been adapted for convex
MINLP problems. For details about primal heuristics the reader is referred to, for example,
[1, 21, 23].

Specific algorithms have been also studied for special cases of convex MINLPs (see, e.g.,
[56, 69, 109]). Methods which exploit the special structure of the problem are usually much
more efficient than general approaches.

1.4 Non-convex Mixed Integer Non-Linear Programming

Coming back to the first model seen in this chapter, MINLP, we do not have any convexity
assumption on the objective function and the constraints. As discussed, one of the main issues
regarding non-convex MINLP problems is that there are, in general, local minima which are
not global minima. This issue implies, for example, that, if the NLP solver used to solve
NLP k and NLP k

x subproblems does not guarantee that the solution provided is a global
optimum (and this is usually the case for the most common NLP solvers, see Chapter 8),
feasible and even optimal solutions might be cut off if methods like BB, QG and Hyb of
Section 1.4 are used. This happens, for example, when a node is fathomed because of the
lower bound (the value of a local minimum can be much worse than the one of the global
minimum). This makes these methods, that are exact for convex MINLPs, heuristics for non-
convex MINLPs. A second issue involves methods OA, GBD, ECP, QG and Hyb of Section
1.4: the linearization cuts used in these methods are in general not valid for non-convex

1The MILP k definition is obtained using the solution (x0, y0) of NLP k solved just once for the initialization
of the algorithm.

1.4. NON-CONVEX MIXED INTEGER NON-LINEAR PROGRAMMING 11

constraints. It means that the linearization cuts might cut off not only infeasible points, but
also parts of the feasible region (see Figure 1.1). For this reason, when non-convex constraints
are involved, one has to carefully use linearization cuts.

0 1 2 3 4 5 6
−20

−15

−10

−5

0

5

10

15

20

Figure 1.1: Example of “unsafe” linearization cut generated from a non-convex constraint

The first approach to handle non-convexities is, if possible, to reformulate the problem.
The exact reformulation can be applied only for limited cases of non-convex MINLPs and
allows to obtain an equivalent convex formulation of the non-convex MINLP. All the tech-
niques described in Section 1.3 can then be applied to the reformulated MINLP. For a detailed
description of exact reformulations to standard forms, see, for example, Liberti’s Ph.D. thesis
[83].

The second approach, involving a larger subset of non-convex MINLPs, is based on the use
of convex envelopes or underestimators of the non-convex feasible region. This allows to have
a lower bound on the non-convex MINLP optimum that can be used within an algorithm like
the widely used Branch-and-Bound specialized versions for Global Optimization, e.g., spatial
Branch-and-Bound (see [118, 81, 83, 14]), Branch-and-Reduce (see [110, 111, 119]), α-BB (see
[6, 5]), Branch-and-Cut (see [76, 100]). The relaxation of the original problem, obtained using
convex envelopes or underestimators of the non-convex functions, rMINLP has the form:

min z (1.15)

f(x, y) ≤ z (1.16)

g(x, y) ≤ 0 (1.17)

x ∈ X ∩ Z
n (1.18)

y ∈ Y, (1.19)

where z is an auxiliary variable added in order to have a linear objective function, f : R
n×p →

12 CHAPTER 1. INTRODUCTION TO MINLP PROBLEMS AND METHODS

R and g : R
n×p → R

m are convex (in some cases, linear) functions and f(x, y) ≤ f(x, y) and
g(x, y) ≤ g(x, y) within the (x, y) domain.

Explanations on different ways to define functions f(x, y) and g(x, y) for non-convex func-
tions f and g with specific structure can be found, for example, in [83, 92, 98]. Note anyway
that, in general, these techniques apply only for factorable functions, i.e. function which can
be expressed as summations and products of univariate functions, which can be reduced and
reformulated as predetermined operators for which convex underestimators are known, such
as, for example, bilinear, trilinear, fractional terms (see [84, 92, 118]).

The use of underestimators makes the feasible region larger; if the optimal solution of
rMINLP is feasible for the non-convex MINLP, then it is also its global optimum. Otherwise,
i.e. if the solution of rMINLP is infeasible for MINLP, a refining on the underestimation
of the non-convex functions is needed. This is done by branching, not restricted to integer
variables but also on continuous ones (see Figure 1.2).

0 1 2 3 4 5 6
−20

−15

−10

−5

0

5

10

15

20

0 1 2 3 4 5 6
−20

−15

−10

−5

0

5

10

15

20

Figure 1.2: Linear underestimators before and after branching on continuous variables

The specialized Branch-and-Bound methods for Global Optimization we mentioned before
mainly differ on the branching scheme adopted: (i) branch both on continuous and discrete
variables without a prefixed priority; (ii) branch on continuous variables and apply standard
techniques for convex MINLPs at each node; (ii) branch on discrete variables until an integer
feasible solution is found, then branch on continuous variables.

It is clear that an algorithm of this type is very time-expensive in general. This is the
price one has to pay for the guarantee of the global optimality of the solution provided (within
a fixed tolerance). Moreover, from an implementation viewpoint, some complex structures
are needed. For example, it is necessary to describe the model with symbolic mathematical
expressions which is important if the methods rely on tools for the symbolic and/or automatic
differentiation. Moreover, in this way it is possible to recognize factors, structures and refor-
mulate the components of the model so as one needs to deal only with standard operators
which can be underestimated with well-known techniques. These and other complications
arising in the non-convex MINLP software will be discussed more in detail in Chapter 8.

If one does not need a proven global optimum, the algorithms presented in Section 1.3
can be (heuristically) used for solving non-convex MINLPs, i.e. by ignoring the problems
explained at the beginning of this section. One example of application of convex methods to
non-convex MINLP problems will be presented in Chapter 7. The BB algorithm of the convex

1.5. GENERAL CONSIDERATIONS ON MINLPS 13

MINLP solver Bonmin [26], modified to limit the effects of non-convexities, was used. Some
of these modifications were implemented in Bonmin while studying the application described
in Chapter 7 and are now part of the current release.

Also in this case, heuristics studied originally for MILPs have been adapted for non-convex
MINLPs. An example is given by a recent work of Liberti et al. [86]. In Chapter 2 we will
present a new heuristic algorithm extending to non-convex MINLPs the Feasibility Pump
(FP) heuristic ideas for MILPs and convex MINLPs. Using some of the basic ideas of the
original FP for solving non-convex MINLPs is not possible for the same reasons we explained
before. Also in this case algorithms studied for convex MINLPs encounter problems when
applied to non-convex MINLPs. In Chapter 2 we will explain in detail how we can limit these
difficulties.

Specific algorithms have been also studied for special cases of non-convex MINLPs (see,
e.g., [73, 107, 113]). As for convex MINLPs, methods which exploit the special structure of
the problem are usually much more efficient than general approaches. Examples are given in
Chapters 3.

1.5 General considerations on MINLPs

Until recent years, the standard approach for handling MINLP problems has basically been
solving an MILP approximation of it. In particular, linearization of the non-linear constraints
can be applied. Note, however, that this approach differs from, e.g., OA, GBD and ECP
presented in Section 1.3 because the linearization is decided before the optimization starts,
the definition of the MILP problem is never modified and no NLP (sub)problem resolution is
performed. This allows using all the techniques described in Section 1.1, which are in general
much more efficient than the methods studied for MINLPs. The optimal solution of the MILP
might be neither optimal nor feasible for the original problem, if no assumptions are done
of the MINLPs. If, for example, f(x, y) is approximated with a linear objective function,
say f(x, y), and g(x, y) with linear functions, say g(x, y), such that f(x, y) ≥ f(x, y) and
g(x, y) ≥ g(x, y), the MILP approximation provide a lower bound on the original problem.
Note that, also in this case, the optimum of the MILP problem is not guaranteed to be
feasible for the original MINLP, but, in case it is feasible for the MINLP problem, we have
the guarantee that it is also the global optimum.

In Chapter 4, a method for approximating non-linear functions of two variables is pre-
sented: comparisons to the more classical methods like piecewise linear approximation and
triangulation are reported. In Chapter 6 we show an example of application in which applying
these techniques is successful. We will show when it is convenient applying MINLP techniques
in Chapter 7.

Finally, note that the integrality constraint present in Mixed Integer Programming prob-
lems can be seen as a source of non-convexity for the problem: it is possible to map the
feasibility problem of an MILP problem into an NLP problem. Due to this consideration, we
studied NLP-based heuristics for MILP problems: these ideas are presented in Chapter 5.

14 CHAPTER 1. INTRODUCTION TO MINLP PROBLEMS AND METHODS

Part II

Modeling and Solving
Non-Convexities

15

Chapter 2

A Feasibility Pump Heuristic for
Non-Convex MINLPs

1

2.1 Introduction

Heuristic algorithms have always played a fundamental role in optimization, both as inde-
pendent tools and as part of general-purpose solvers. Starting from Mixed Integer Linear
Programming (MILP), different kinds of heuristics have been proposed: their aim is finding
a good feasible solution rapidly or improving the best solution found so far. Within a MILP
solver context, both types of heuristics are used. Examples of heuristic algorithms are round-
ing heuristics, metaheuristics (see, e.g., [63]), Feasibility Pump [50, 16, 3], Local Branching
[51] and Relaxation Induced Neighborhoods Search [43]. Even if the heuristic algorithms
might find the optimal solution, no guarantee on the optimality is given.

In the most recent years Mixed Integer Non-Linear Programming (MINLP) has become a
topic capable of attracting the interest of the research community. This is due from the one
side to the continuous improvements of Non-Linear Programming (NLP) solvers and on the
other hand to the wide range of real-world applications involving these problems. A special
focus has been devoted to convex MINLPs, a class of MINLP problems whose nice properties
can be exploited. In particular, under the convexity assumption, any local optimum is also a
global optimum of the continuous relaxation and the use of standard linearization cuts like
Outer Approximation (OA) cuts [45] is possible, i.e. the generated cuts are valid. Heuristics
have been proposed recently also for this class of problems. Basically the ideas originally
tailored on MILP problems have been extended to convex MINLPs, for example, Feasibility
Pump [21, 1, 23] and diving heuristics [23].

The focus of this chapter is proposing a heuristic algorithm for non-convex MINLPs. These
problems are in general very difficult to solve to optimality and, usually, like sometimes also
happens for MILP problems, finding any feasible solution is also a very difficult task in
practice (besides being NP-hard in theory). For this reason, heuristic algorithms assume a
fundamental part of the solving phase. Heuristic algorithms proposed so far for non-convex
MINLPs are, for example, Variable Neighborhood Search [86] and Local Branching [93], but

1This is a working paper with Antonio Frangioni (DI, University of Pisa), Leo Liberti (LIX, Ecole Poly-
technique) and Andrea Lodi (DEIS, University of Bologna).

17

18 CHAPTER 2. A FEASIBILITY PUMP HEURISTIC FOR NON-CONVEX MINLPS

this field is still highly unexplored. This is mainly due to the difficulties arising from the lack
of structures and properties to be exploited for such a general class of problems.

We already mentioned the innovative approach to the feasibility problem for MILPs, called
Feasibility Pump, which was introduced by Fischetti et al. [50] for problems with integer vari-
ables restricted to be binary and lately extended to general integer by Bertacco et al. [16].
The idea is to iteratively solve subproblems of the original difficult problem with the aim of
“pumping” the feasibility in the solution. More precisely, Feasibility Pump solves the conti-
nous relaxation of the problem trying to minimize the distance to an integer solution, then
rounding the fractional solution obtained. Few years later a similar technique applied to con-
vex MINLPs was proposed by Bonami et al. [21]. In this case, at each iteration, an NLP and
an MILP subproblems are solved. The authors also prove the convergence of the algorithm
and extend the same result to MINLP problems with non-convex constraints, defining, how-
ever, a convex feasible region. More recently Bonami and Goncalves [23] proposed a less time
consuming version in which the MILP resolution is substituted by a rounding phase similar
to that originally proposed by Fischetti et al. [50] for MILPs.

In this chapter, we propose a Feasibility Pump algorithm for general non-convex MINLPs
using ingredients of the previous versions of the algorithm and adapting them in order to
remove assumptions about any special structure of the problem. The remainder of the chapter
is organized as follows. In Section 2.2 we present the structure of the algorithm, then we
describe in detail each part of it. Details on algorithm (implementation) issues are given in
Section 2.3. In Section 2.4 we present computational results on MINLPLib instances. Finally,
in Section 2.5, we draw conclusions and discuss future work directions.

2.2 The algorithm

The problem which we address is the non-convex MINLP problem of the form:

(P) min f(x, y) (2.1)

g(x, y) ≤ 0 (2.2)

x ∈ X ∩ Z
n (2.3)

y ∈ Y, (2.4)

where X and Y are two polyhedra of appropriate dimension (including bounds on the vari-
ables), f : R

n+p → R is convex, but g : R
n+p → R

m is non-convex. We will denote by
P = { (x, y) | g(x, y) ≤ 0 } ⊆ R

n+p the (non-convex) feasible region of the continuous
relaxation of the problem, by X the set {1, . . . , n} and by Y the set {1, . . . , p}. We will
also denote by NC ⊆ {1, . . . ,m} the subset of (indices of) non-convex constraints, so that
C = {1, . . . ,m} \ NC is the set of (indices of) “ordinary” convex constraints. Note that the
convexity assumption on the objective function f can be taken without loss of generality; one
can always introduce a further variable v, to be put alone in the objective function, and add
the (m + 1)th constraint f(x, y) − v ≤ 0 to deal with the case where f is non-convex.

The problem (P) presents two sources of non-convexities:

1. integrality requirements on x variables;

2. constraints gj(x, y) ≤ 0 with j ∈ NC, defining a non-convex feasible region, even if we
do not consider the integrality requirements on x variables.

2.2. THE ALGORITHM 19

The basic idea of Feasibility Pump is decomposing the original problem in two easier
subproblems, one obtained relaxing integrality constraints, the other relaxing “complicated”
constraints. At each iteration a pair of solutions (x̄, ȳ) and (x̂, ŷ) is computed, the solution
of the first subproblem and the second one, respectively. The aim of the algorithm is making
the trajectories of the two solutions converge to a unique point, satisfying all the constraints
and the integrality requirements (see Algorithm 1).

Algorithm 1 The general scheme of Feasibility Pump

1: i=0;
2: while (((x̂i, ŷi) 6= (x̄i, ȳi)) ∧ time limit) do
3: Solve the problem (P1) obtained relaxing integrality requirements (using all other con-

straints) and minimizing a “distance” with respect to (x̂i, ŷi);
4: Solve the problem (P2) obtained relaxing “complicated” constraints (using the inte-

grality requirements) minimizing a “distance” with respect to (x̄i, ȳi);
5: i++;
6: end while

When the original problem (P) is a MILP, (P1) is simply the LP relaxation of the prob-
lem and solving (P2) corresponds to a rounding of the fractional solution of (P1) (all the
constraints are relaxed, see Fischetti et al. [50]). When the original problem (P) is a MINLP,
(P1) is the NLP relaxation of the problem and (P2) a MILP relaxation of (P). If MINLP is
convex, i.e. NC = ∅, we know that (P1) is convex too and it can ideally be solved to global
optimality and that (P2) can be “safely” defined as the Outer Approximation of (P) (see,
e.g., Bonami et al. [21]) or a rounding phase (see Bonami and Goncalves [23]).

When NC 6= ∅, things get more complicated:

the solution provided by the NLP solver for problem (P1) might be only a local minimum
instead of a global one. Suppose that the global solution of problem (P1) value is 0
(i.e. it is an integer feasible solution), but the solver computes a local solution of value
greater than 0. The OA cut generated from the local solution might mistakenly cut the
integer feasible solution.

Outer Approximation cuts can cut off feasible solutions of (P), so these cuts can be
added to problem (P2) only if generated from constraints with “special characteristics”
(which will be presented in detail in Section 2.2.2). This difficulty has implications also
on the possibility of cycling of the algorithm.

We will discuss these two issues and how we limit their impact in the next two sections.

2.2.1 Subproblem (P1)

At iteration i subproblem (P1), denoted as (P1)i, has the form:

min ||x − x̂i|| (2.5)

g(x, y) ≤ 0 (2.6)

where (x̂i, ŷi) is the solution of subproblem (P2)i (see Section 2.2.2). The motivation for
solving problem (P1)i is twofold: (i) testing the compatibility of values x̂i with a feasible
solution of problem (P) (such a solution exists if the solution value of (P1)i is 0); (ii) if no

20 CHAPTER 2. A FEASIBILITY PUMP HEURISTIC FOR NON-CONVEX MINLPS

feasible solution with x variables assuming values x̂i, a feasible solution for P is computed
minimizing the distance ||x − x̂i||. As anticipated in the previous section, when g(x, y) are
non-convex functions (P1)i, has, in general, local optima, i.e. solutions which are optimal
considering a restricted part of feasible region (neighborhood). Available NLP solvers usually
do not guarantee to provide the global optimum, i.e. an optimal solution with respect to the
whole feasible region. Moreover, solving a non-convex NLP to global optimality is in general
very time consuming. Then, the first choice was to give up trying to solve (P1)i to global
optimality. The consequences of this choice are that, when a local optimum is provided as
solution of (P1)i and its value is greater than 0, there might be a solution of (P) with values
x̂i, i.e. the globally optimal solution might have value 0. In this case we would, mistakenly,
cut off a feasible solution of (P). To limit this possibility we decided to divide step 3 of
Algorithm 1 in two parts:

1. Solve (P1)i to local optimality, but multiple times, i.e. using randomly generated start-
ing points;

2. If no solution was found, then solve (P1fix)i:

min f(x̂i, y) (2.7)

g(x̂i, y) ≤ 0 (2.8)

Note that objective function (2.5) is useless when variables x are fixed to x̂i, so we can
use the original objective function or, alternatively, a null function or a function which
helps the NLP solver to reach feasibility.

The solution proposed does not give any guarantee that the global optimum will be found
and, consequentely, that no feasible solution of (P) will be ignored, but, since we propose
a heuristic algorithm, we consider this simplification as a good compromise. Note, however,
that for some classes of non-convex MINLP the solution does the job. Consider, for example, a
problem (P) that, once variables x are fixed, is convex: in this case solving problem (P1fix)i

would provide the global optimum. In Section 2.4 we will provide details on the computational
behavior of the proposed solution.

2.2.2 Subproblem (P2)

At iteration i subproblem (P2), denoted as (P2)i, has the form:

min ||x − x̄i−1|| (2.9)

gj(x̄
k, ȳk) + ∇gj(x̄

k, ȳk)T
[

x − x̄k

y − ȳk

]
≤ 0 k = 1, . . . , i − 1; j ∈ Mk (2.10)

x ∈ Z
n (2.11)

y ∈ R
p, (2.12)

where (x̄i−1, ȳi−1) is the solution of subproblem (P1)i−1 and Mk ⊆ {1, . . . ,m} is the set
of (indices of) constraints from which OA cuts are generated from point (x̄k, ȳk). We limit
the OA cuts added to (P2) because, when non-convex constraints are involved, not all the
possible OA cuts generated are “safe”, i.e. do not cut off feasible solutions of (P) (see Figure
6.1).

2.2. THE ALGORITHM 21

(x0,y0)

Figure 2.1: Outer Approximation constraint cutting off part of the non-convex feasible region.

When the OA cut is generated from a convex and tight constraint gm(x, y) it is valid.
Indeed, let z∗ be the feasible solution of step 2.A and let gj(z) ≤ 0 be the convex constraint
that is tight to z∗. The OA constraint would be: ∇gj(z

∗)T (z − z∗) ≤ 0. Note that since
gj is convex, this property holds gj(x) + ∇gj(x)T (y − x) ≤ gj(y) for each x,y in the domain
where gj is convex. Then, ∀z ∈ P, gj(z

∗) + ∇gj(z
∗)T (z − z∗) ≤ gj(z). Since gj(z) ≤ 0 is

tight to z∗, we have gj(z
∗) = 0 and ∇gj(z

∗)T (z − z∗) ≤ gj(z). ∀z ∈ P, gj(z) ≤ 0, then
∇gj(z

∗)T (z − z∗) ≤ 0 is a valid cut for the original problem.
The problem with this involves basically two issues, one from a practical, the other from the

theoretical viewpoint. The first issue is that discriminating convex and non-convex constraints
is a hard task in practice. We will describe in Section 2.4 how we simplified this on the
implementation side. The second issue is that Outer Approximation cuts play a fundamental
role on convergence of the algorithm, i.e. if at one iteration no OA cut can be added, the
algorithm may cycle. However, even if an OA cut is added, there is no guarantee that it
would cut off the solution of the previous iteration, see, for example, Figure 2.2. In the
figure, the non-linear feasible region and its current linear approximation. The solution of
subproblem (P1) is x̄ and, in this case, only one Outer Approximation can be generated, the
one corresponding to the tight and convex constraint. However, this OA cut does not cut off
solution x̂, but, in the example, the FP would not cycle, as the MILP at the next iteration
would not pick out x̂. This shows that there is a distinction between cutting off and cycling.
However

We propose two solutions to this theoretical issue which will be described in the next two
sections.

“No-good” cuts

One idea could be adding a constraint of the form:

‖x − x̂‖ ≥ ε , (2.13)

being valid for all feasible solutions of (P1), if valid for all integer feasible solutions, too. So it
can be added to (P2) and it cuts off x̂ (of the previous iteration). The problem with constraint

22 CHAPTER 2. A FEASIBILITY PUMP HEURISTIC FOR NON-CONVEX MINLPS

x̂

x̄
x1

x2

γ

Figure 2.2: The convex constraint γ does not cut off x̂, so nor does any OA linearization at
x̄.

(2.13) is that it is non-convex. However, there are different ways to transform constraint (2.13)
in a linear constraint. In general they are quite inefficient, but for some special cases, like the
(important) case in which x ∈ {0, 1}n, constraint (2.13) can be transformed in:

∑

j:x̂i
j=0

xj +
∑

j:x̂i
j=1

(1 − xj) ≥ 1 (2.14)

without requiring any additional variable or constraint. Defining the norm of constraint
(2.13) as ‖‖1 and because x̂j can be only 0 or 1, in the first case ‖xj − x̂j‖ = xj , in the
latter ‖xj − x̂j‖ = 1 − xj, and we have, for ε = 1, equation (2.14). Exploiting this idea one
can generalize the “no-good” cut valid for the binary case to the general integer case. The
“no-good” cut for general integer variables reads as follows:

∑

j∈X :x̂j=lj

(xj − lj) +
∑

j∈X :x̂j=uj

(uj − xj) +
∑

j∈X :lj<x̂j<uj

(x+
j + x−

j) ≥ 1, (2.15)

where, for all j ∈ X , we need the following additional constraints and variables:

xj = x̂ + x+
j − x−

j (2.16)

x+
j ≥ zj(uj − lj) (2.17)

x−
j ≥ (1 − zj)(uj − lj) (2.18)

zj ∈ {0, 1}. (2.19)

This leads to an inefficient way to handle the “no-good” cut, because 2n additional continuous
variables, n additional binary variables and 3n + 1 additional equations are needed.

2.2. THE ALGORITHM 23

This MILP formulation of the “no-good” cut for general integer can be seen as the interval-
gradient cut of constraint (2.13) using ‖‖1 and ε = 1.

In the following we present some considerations about the relationship between the interval-
gradient cut (see [98]) and the “no-good” cut proposed (2.15)-(2.19). Suppose we have a
non-convex constraint g(x) ≤ 0 with x ∈ [x, x] and that [d, d] is the interval-gradient of g
over [x, x], i.e. ∇g(x) ∈ [d, d] for x ∈ [x, x]. The interval-gradient cut generated from this
constraint with respect to a point x̂ is:

g(x) = g(x̂) + min
d∈[d,d]

dT (x − x̂) ≤ 0. (2.20)

(Here we are exploiting the following property: g(x) ≤ g(x) ≤ 0, then we know the cut is
valid.) Equation (2.20) can be reformulated with the following MILP model:

g(x̂) +
∑

j∈X

(dx+ − dx−) ≤ 0 (2.21)

x − x̂ = x+ − x− (2.22)

x+
j ≤ zj(xj − xj) j ∈ X (2.23)

x−
j ≤ (1 − zj)(xj − xj) j ∈ X (2.24)

x+ ≥ 0, x− ≥ 0 (2.25)

z ∈ {0, 1}n (2.26)

with the cost of 2n additional continuous variables, n additional binary variables and 3n + 1
additional constraints. Now, consider equation (2.13). It is non-convex and we try to generate
an interval-gradient cut with respect to point x̂. We first transform equation (2.13) in this
way (using ‖‖1 and ε = 1):

g(x) ≤ g(x) = −
∑

j∈X

|xj − x̂j | ≤ −1 . (2.27)

First consideration: g(x̂) = 0. Now let analyze a particular index j ∈ X . Three cases are
possible:

1. x̂j = xj: this implies that −|xj − x̂j| = x̂j −xj and d = d = −1. The term (dx+
j − dx−

j)

become −x+
j + x−

j = −xj + x̂j = xj − xj.

2. x̂j = xj: this implies that −|xj − x̂j| = xj − x̂j and d = d = 1. The term (dx+
j − dx−

j)

become x+
j − x−

j = xj − +x̂j = xj − xj.

3. xj ≤ x̂j ≤ xj: this implies that d = −1 and d = 1. The term (dx+
j − dx−

j) become

−(x+
j + x−

j).

We can then simplify equation (2.21) in this way:

∑

j∈X :x̂j=xj

(xj − xj) +
∑

j∈X :x̂j=xj

(xj − x) +
∑

j∈X :xj<x̂j<xj

(−x+
j − x−

j) ≤ −1 (2.28)

24 CHAPTER 2. A FEASIBILITY PUMP HEURISTIC FOR NON-CONVEX MINLPS

changing the sign and completing the MILP model:
∑

j∈X :x̂j=xj

(xj − xj) +
∑

j∈X :x̂j=xj

(x − xj) +
∑

j∈X :xj<x̂j<xj

(x+
j + x−

j) ≥ 1 (2.29)

x+
j ≤ zj(xj − xj) j ∈ X (2.30)

x−
j ≤ (1 − zj)(xj − xj) j ∈ X (2.31)

x+ ≥ 0, x− ≥ 0 (2.32)

z ∈ {0, 1}n (2.33)

which is exactly the “no-good” cut for general integer.
In the following we present the details of how to linearize the “no-good” cut (2.13) in the
general integer case. In particular we considered two cases:

1. Using ‖ · ‖∞ for problem (P1);

2. Using ‖ · ‖1 for problem (P1).

We explicitly define the NLP problems for the two cases:

(NLP) (x̄, ȳ) = argmin{ ‖x − x̂‖∞ : g(x, y) ≤ 0 } =

argmin{ ε : −ε ≤ xi − x̂i ≤ ε ∀i, ε ≥ 0, g(x, y) ≤ 0 }

(NLP) (x̄, ȳ) = argmin{ ‖x − x̂‖1 : g(x, y) ≤ 0 } =

argmin{ ε =
∑

i

vi : −vi ≤ xi − x̂i ≤ vi ∀i, v ≥ 0, g(x, y) ≤ 0 }.

In both the cases, if the objective function value of the optimal solution of NLP is equal to 0,
we have an integer and feasible solution that is x̂. If this is not the case, we have to solve the
MILP problem, but we want to add something that avoid the possible cycling. If there are
some convex constraints that are tight for (x̄, ȳ), we can generate the OA constraints that is
added to the MILP problem of the previous iteration and we will get a new (x̂k, ŷk). If there
is no convex constraint that is tight, we will solve one of these two problems (resp, for the
‖ · ‖∞ and ‖ · ‖1 cases):

(MILP k) (x̂k, ŷk) = argmin{ ‖x − x̄‖ : gj(x̄
k, ȳk) + ∇gj(x̄

k, ȳk)T
[

x − x̄k

y − ȳk

]
≤ 0

k = 1, . . . , i − 1; j ∈ Mk, ⌈ε⌉ ≤ xi − x̂k−1
i + M(1 − zi) ∀i,

⌈ε⌉ ≤ x̂k−1
i − xi + M(1 − z′i) ∀i,

∑

i

zi +
∑

i

z′i ≥ 1, z ∈ {0, 1}p, z′ ∈ {0, 1}p }

(Intuitively, if zi (or z′i) is equal to 1, the correspondent constraint is active and we impose
that the component i is changed wrt x̂k−1)

(MILP k) (x̂k, ŷk) = argmin{ ‖x − x̄‖ : gj(x̄
k, ȳk) + ∇gj(x̄

k, ȳk)T
[

x − x̄k

y − ȳk

]
≤ 0

k = 1, . . . , i − 1; j ∈ Mk, vi ≤ xi − x̂k−1
i + Mzi ∀i,

vi ≤ x̂k−1
i − xi + M(1 − zi) ∀i,

∑

i

vi ≥ ⌈ε⌉, z ∈ {0, 1}p }

2.3. SOFTWARE STRUCTURE 25

(Intuitively, if vi is greater than 0, one of the 2 correspondent constraints is active and we
impose that the component i is changed wrt x̂k−1. The minimum total change is ⌈ε⌉).
where ε is the objective function value of the optimal solution of NLP, x̂k−1 is the optimal
solution of MILP at the previous iteration, M is the big M coefficient that has to be defined
in a clever way.

Tabu list

An alternative way, which do not involve modifications of the model such as introducing
additional variables and complicated constraints, is using a tabu list of the last solutions
computed by (P2). From a practical viewpoint this is possible using a feature available
within the MILP solver Ilog Cplex [71] called “callback”. The one we are interested in is the
“incumbent callback”, a tool which allows the user to define a function which is called during
the execution of the Branch-and-Bound whenever Cplex finds a new integer feasible solution.
Within the callback function the integer feasible solution computed by the solver is available.
The integer part of the solution is compared with the one of the solutions in the tabu list
and, only if the solution has a tollerable diversity with respect to the forbidden solutions, it
is accepted. Otherwise it is discarted and the Branch-and-Bound execution continues. In this
way, even if the same solution can be obtained in two consequent iteration, the algorithm
discarts it, then it does not cycle. It is a simple idea which works both with binary and with
general integer variables. The diversity of two solutions, say, x̂1 and x̂2, is computed in the
following way: ∑

j∈X

|x̂1
j − x̂2

j |,

and two solutions are different if the above sum is not 0. Note that the continuous part of
the solution does not influence the diversity measure.

2.2.3 The resulting algorithm

The general scheme of the algorithm proposed is described by Algorithm 2. The resolution of
problem (P1) is represented by steps 10-27 and the resolution of problem (P2) is represented
by steps 28-40. At step 23, a restriction of problem (P) is solved. This restriction is “generally”
a non-convex NLP we solve to local optimality, if we have no assumption on the structure of
the problem. The objective function problem of step 34 is ‖x − x̄i‖1. Finally note that, if
use tabu list is 0, TL is ∅ and no integer solution will be rejected (the “no-good” cuts do the
job).

In the next section we present details on the implementation of the algorithm.

2.3 Software structure

The algorithm was implemented within the AMPL environment [55]. We choose to use this
framework to be flexible with respect to the solver we want to use in the different phases of
the proposed algorithm. In practice, the user can select the preferred solver to solve NLPs or
MILPs, exploiting advantages of the chosen solver.

The input is composed of two files: (i) the mod file where the model of the instance
is implemented, called “fpminlp.mod”; (ii) the file “parameter.txt”, in which one can de-

26 CHAPTER 2. A FEASIBILITY PUMP HEURISTIC FOR NON-CONVEX MINLPS

Algorithm 2 The general scheme of the proposed algorithm

Require: time limit; use tabu list; use no good cuts; use fix int vars; perc time NLP;
1: Getting information about the model;
2: Init solution (x̂0, ŷ0) and the parameters;
3: i = 0; start time = time();
4: if use tabu list == 1 then
5: TL = {(x̂0, ŷ0)};
6: else
7: TL = ∅;
8: end if
9: while start time+time limit>time() do

10: count NLP = 0; start time NLP = time();
11: while start time NLP+(time limit perc time NLP)>time() do
12: Select randomly the starting point for the NLP solver (within the variables bound

ranges);
13: Solve the (P1)i (x̄i, ȳi) = argmin{ ‖x − x̂i‖2 : g(x, y) ≤ 0 };
14: count NLP++;
15: if ‖x̄i − x̂i‖2 == 0 then
16: return (x̄i, ȳi);
17: end if
18: if (a feasible solution for (P1)i was found) then
19: break;
20: end if
21: end while
22: if (a feasible solution for (P1)i was not found)&&(use fix int vars == 1) then
23: Solve (P1fix)i (x̄i, ȳi) = argmin{ f(x̂i, y) : g(x̂i, y) ≤ 0};
24: if ‖x̄i − x̂i‖2 == 0 then
25: return (x̂i, ŷi);
26: end if
27: end if
28: if (at least one OA constraint can be generated) && (the corresponding OA constraint

cuts off (x̂i, ŷi)) then
29: Amend problem (P2) with an OA linear constraint;
30: end if
31: if use no good cuts == 1 then
32: Add an appropriate “no-good” cut to (P2);
33: end if
34: Solve (P2)i without accepting solutions ∈ TL and get the new solution (x̂i+1, ŷi+1);
35: if (x̂i+1, ŷi+1) is feasible for (P) then
36: return (x̂i+1, ŷi+1);
37: end if
38: if use tabu list == 1 then
39: Update TL;
40: end if
41: i++;
42: end while;
43: if time() > time limit then
44: return false;
45: end if

2.4. COMPUTATIONAL RESULTS 27

fine parameters of step 2, the NLP solver (NLP solver), the precision (FP epsilon and
FP perc infeas allowed), the level of verbosity (VERBOSE).

To solve problem (P1) and the restriction of step 23, we use the NLP solver as a black-box.
We use solvers directly providing an AMPL interface, which is anyway usually the case for
the most common and efficient NLP solvers.

To solve problem (P2), if use tabu list is 0, we use an MILP solver as a black-box. The
interaction with the MILP solver is done in the same way of NLP solver for (P1). When
use tabu list is 1, we use an executable called “tabucplex” to solve problem (P2). As antic-
ipated in Section 2.2.2, we implemented this modification to a standard Branch-and-Bound
method within the Ilog Cplex environment, exploiting the so-called callbacks. This file reads
and stores data of an input file produced within the AMPL framework which contains the
tabu list, i.e. the list of the “forbidden” solutions. Then the Branch-and-Bound starts: its
execution is standard until an integer feasible solution is found. Every time an integer feasible
solution is found, the specialized incumbent callback is called. The aim of this function is
to check if the solution found is within those solutions in the tabu list, i.e. it was provided
as problem (P2) solution in one of the previous iterations. If this is the case, the solution is
rejected, otherwise the solution is accepted. In any case, the execution of the Branch-and-
Bound continues until the optimal solution, excluding the forbidden ones, is found or a time
limit is reached.

Another tool we extensively used is a new solver/reformulator called Rose (Reformula-
tion/Optimization Software Engine, see [85]), of which we exploited the following nice features:

1. Analyzing the model, i.e. getting information about non-linearity and convexity of the
constraints and integrality requirements of the variables: necessary at step 1. These
parameters are provided by Rose as AMPL suffixes.

2. Analyzing feasibility of the solution: necessary after steps 13, 23 and for step 35 to
verify feasibility of the provided solutions. Also in this case parameters are provided by
Rose as AMPL suffixes.

3. Generating the Outer Approximation cuts: necessary at step 29. Cuts are written in a
file which is then included within the AMPL framework.

Actually some of these features were implemented within the context of this work. Note
that information about the convexity of the constraints are hard to compute: in particular,
Rose gives information about the “evidently convex”/“evidently concave” constraints using
the expression tree, properties of convex/concave functions and basic expressions (see [85] for
details). In practice, a non-convex constraint is always identified, a convex constraint can be
treated as non-convex constraint, but the information provided is in any case “safe” for our
purposes, i.e. we generate OA cuts only from constraints which are “certified” to be convex.

An obvious modification of the algorithm proposed is considering the original objective
function to improve the provided solution quality as done, for example, in [50] and [21].

2.4 Computational results

In this section preliminary computational results are presented on an Intel Xeon 2.4 GHz with
8 GB RAM running Linux. We stop the algorithm after the first MINLP feasible solution
was found (or the time limit is reached). The parameters were set in the following way:

28 CHAPTER 2. A FEASIBILITY PUMP HEURISTIC FOR NON-CONVEX MINLPS

time limit = 2 hours;

use tabu list = 1;

use no good cuts = 0;

use fix int vars = 1;

perc time NLP = 0.05;

FP epsilon = 1e-6;

FP perc infeas allowed = 0.001;

The NLP solver used is Ipopt 3.5 trunk [123] and the problems solved are 243 instances taken
from MINLPLib [32] (the ones used in [86] minus oil and oil2 because function log10 is not
supported by Rose). Tabucplex uses the Callable library of Ilog Cplex 11.0.

We found an MINLP feasible solution for 200 instances (see Table 2.1). The average CPU
time is 174.45 seconds. For 28 of these instances the solution found is also the best known

Table 2.1: Instances for which a feasible solution was found within the time limit
alan ex1223a fo7 ar2 1 m7 ar2 1 nuclearvb nvs22 sep1 st test6
batchdes ex1223b fo7 ar25 1 m7 ar25 1 nuclearvc nvs23 space25a st test8
batch ex1223 fo7 ar3 1 m7 ar3 1 nuclearvd nvs24 space25 st testgr1
contvar ex1224 fo7 ar4 1 m7 ar4 1 nuclearve o7 2 spectra2 st testgr3
csched1a ex1225 fo7 ar5 1 m7 ar5 1 nuclearvf o7 ar2 1 spring st testph4
csched1 ex1226 fo7 m7 nvs01 o7 ar25 1 st e13 synheat
csched2a ex1233 fo8 ar2 1 mbtd nvs02 o7 ar3 1 st e14 synthes1
csched2 ex1243 fo8 ar4 1 meanvarx nvs03 o7 ar4 1 st e15 synthes2
deb6 ex1244 fo8 ar5 1 minlphix nvs04 o7 ar5 1 st e27 synthes3
deb7 ex1263a fo8 no7 ar2 1 nvs05 o7 st e29 tln2
deb8 ex1263 fo9 ar3 1 no7 ar25 1 nvs06 o8 ar4 1 st e31 tln4
deb9 ex1264a fo9 ar4 1 no7 ar3 1 nvs07 o9 ar4 1 st e32 tln5
detf1 ex1264 fo9 ar5 1 no7 ar4 1 nvs08 oaer st e35 tln6
du-opt5 ex1265a fo9 no7 ar5 1 nvs09 ortez st e36 tln7
du-opt ex1265 fuel nous1 nvs10 parallel st e38 tloss
eg all s ex1266a gastrans nous2 nvs11 prob02 st miqp1 tls2
eg disc2 s ex1266 gbd nuclear14a nvs12 prob03 st miqp2 tls4
eg disc s ex3 gear2 nuclear14b nvs13 prob10 st miqp3 tls5
elf ex3pb gear3 nuclear14 nvs14 procsel st miqp4 tltr
eniplac ex4 gear4 nuclear24a nvs15 product st miqp5 uselinear
enpro48 fac1 gear nuclear24b nvs16 qap stockcycle util
enpro48pb fac2 gkocis nuclear24 nvs17 qapw st test1 var con10
enpro56 fac3 hmittelman nuclear25a nvs18 ravem st test2 var con5
enpro56pb feedtray2 johnall nuclear25b nvs19 ravempb st test3 water4
ex1221 feedtray m3 nuclear25 nvs20 risk2bpb st test4 waterx
ex1222 fo7 2 m6 nuclearva nvs21 saa 2 st test5 waterz

solution (see Table 2.2). The instances for which the time limit is reached without finding

2.5. CONCLUSIONS 29

Table 2.2: Instances for which the feasible solution found is also the best-know solution
ex1222 nuclear24b nuclearvd st e27
ex1266a nuclear24 nuclearve st e32
feedtray2 nuclear25a nuclearvf st miqp1
nuclear14a nuclear25 nvs03 st test1
nuclear14b nuclearva nvs15 st test5
nuclear14 nuclearvb prob02 tln2
nuclear24a nuclearvc prob03 tltr

Table 2.3: Instances for which no feasible solution was found within the time limit
deb10 fo9 ar25 1 nuclear49a tln12
ex1252 gasnet nuclear49b tls12
fo8 ar25 1 lop97ic nuclear49 tls6
fo8 ar3 1 lop97icx product2 tls7
fo9 ar2 1 nuclear10a space960

any MINLP feasible solution are 19, see Table 2.3. The remaining 16 instances encounter
some problems during the execution (see Table 2.4).

Table 2.4: Instances with problems during the execution
4stufen ex1252a risk2b super3
beuster nuclear104 st e40 super3t
cecil 13 nuclear10b super1 waste
eg int s pump super2 windfac

2.5 Conclusions

In this chapter we presented a Feasibility Pump (FP) algorithm aimed at solving non-convex
Mixed Integer Non-Linear Programming problems. The proposed algorithm is tailored to
limit the impact of the non-convexities in the MINLPs. These difficulties aare extensively
discussed. In preliminary results we show the algorithm behaves well with general problems
presenting computational results on instances taken from MINLPLib.

30 CHAPTER 2. A FEASIBILITY PUMP HEURISTIC FOR NON-CONVEX MINLPS

Chapter 3

A Global Optimization Method for
a Class of Non-Convex MINLP
Problems

1

3.1 Introduction

The global solution of practical instances of Mixed Integer Non-Linear Programming (MINLP)
problems has been considered for some decades. Over a considerable period of time, tech-
nology for the global optimization of convex MINLP (i.e. the continuous relaxation of the
problem is a convex program) had matured (see, for example, [45, 108, 20]), and rather re-
cently there has been considerable success in the realm of global optimization of non-convex
MINLP (see, for example, [111, 99, 84, 14]).

Global optimization algorithms, e.g., spatial Branch-and-Bound approaches like those
implemented in codes like BARON [111] and Couenne [14], have had substantial success in
tackling complicated, but generally small scale, non-convex MINLPs (i.e., mixed-integer non-
linear programs having non-convex continuous relaxations). Because they are aimed at a
rather general class of problems, the possibility remains that larger instances from a simpler
class may be amenable to a simpler approach.

We focus on separable MINLPs, that is where the objective and constraint functions are
sums of univariate functions. There are many problems that are already in such a form, or
can be brought into such a form via some simple substitutions. In fact, the first step in spatial
Branch-and-Bound is to bring problems into nearly such a form. For our purposes, we shift
that burden back to the modeler. We have developed a simple algorithm, implemented at
the level of a modeling language (in our case AMPL, see [55]), to attack such separable prob-
lems. First, we identify subintervals of convexity and concavity for the univariate functions
using external calls to MATLAB [91]. With such an identification at hand, we develop a
convex MINLP relaxation of the problem (i.e., as a mixed-integer non-linear programs having
a convex continuous relaxations). Our convex MINLP relaxation differs from those typically

1This is a working paper with Jon Lee and Andreas Wächter (Department of Mathematical Sciences, IBM
T.J. Watson Research Center, Yorktown Heights, NY). This work was partially developed when the author of
the thesis was visiting the IBM T.J. Watson Research Center and their support is gratefully acknowledged.

31

32 CHAPTER 3. A GO METHOD FOR A CLASS OF MINLP PROBLEMS

employed in spatial Branch-and-Bound; rather than relaxing the graph of a univariate func-
tion on an interval to an enclosing polygon, we work on each subinterval of convexity and
concavity separately, using linear relaxation on only the “concave side” of each function on
the subintervals. The subintervals are glued together using binary variables. Next, we employ
ideas of spatial Branch-and-Bound, but rather than branching, we repeatedly refine our con-
vex MINLP relaxation by modifying it at the modeling level. We attack our convex MINLP
relaxation, to get lower bounds on the global minimum, using the code Bonmin [20, 26] as
a black-box convex MINLP solver. Next, by fixing the integer variables in the original non-
convex MINLP, and then locally solving the associated non-convex NLP relaxation, we get
an upper bound on the global minimum, using the code Ipopt [123]. We use the solutions
found by Bonmin and Ipopt to guide our choice of further refinements.

We implemented our framework using the modeling language AMPL. In order to obtain all
of the information necessary for the execution of the algorithm, external software, specifically
the tool for high-level computational analysis MATLAB, the convex MINLP solver Bonmin
and the NLP solver Ipopt, are called directly from the AMPL environment. A detailed
description of each part and of the entire algorithmic framework is provided in S3.2.

We present computational results in S3.3. Some of the instances used arise from specific
applications; in particular, Uncapacitated Facility Location and also Hydro Unit Commitment
and Scheduling. We also present computational results on selected instances of GLOBALLib
and MINLPLib. We have had modest success in our preliminary computational experiments.
In particular, we see very few major iterations occurring, with most of the time is spent in the
solution of a small number of convex MINLPs. An advantage of our approach is that further
advances in technology for convex MINLP will immediately give us a proportional benefit.

3.2 Our algorithmic framework

We focus now on separable non-convex MINLP problems. Without loss of generality, we take
them to be of the form

min
∑

j∈N Cjxj

subject to
f(x) ≤ 0 ;
ri(x) + gi(xh(i)) ≤ 0 , ∀i ∈ M ;

Lj ≤ xj ≤ Uj , ∀j ∈ N ;
xj integer, ∀j ∈ I ,

(P)

where N := {1, 2, . . . , n} , f : R
n → R

p and ri : R
n → R , ∀i ∈ M , are convex functions,

h : M → N , the gi(xh(i)) : R → R are non-convex univariate function ∀i ∈ M , H :=
{h(i) : i ∈ M} ⊆ N and I ⊆ N . We can take each Lj and Uj to be finite or infinite for
j ∈ N \ H , but for j ∈ H we assume that these are finite bounds.

Note that gi(xh(i)) can also be a piecewise-defined function, but each piece should be
a continuous univariate function. Without loss of generality, we have taken the objective
function as linear and all of the constraints to be inequalities, and further of the less-then-or-
equal variety.

Our approach is an iterative technique based on three fundamental ingredients:

A reformulation method with which we obtain a convex MINLP relaxation Q of the
original problem P. Solving the convex MINLP relaxation Q, we obtain a lower bound
of our original problem P ;

3.2. OUR ALGORITHMIC FRAMEWORK 33

A non-convex NLP restriction R of the original MINLP problem P obtained by fixing
the variables within the set {xj : j ∈ I}. Locally solving the non-convex NLP
restriction R, we obtain an upper bound of our original problem P ;

A refinement technique aimed at improving, at each iteration, the quality of the lower
bound obtained by solving the convex MINLP relaxation Q.

The main idea of our algorithmic framework is to iteratively solve a lower-bounding re-
laxation Q and an upper-bounding restriction R so that, in case the value of the UB and the
LB are the same, the global optimality of the solution found is proven; otherwise we make a
refinement to the lower-bounding relaxation Q. At each iteration, we seek to decrease the gap
between the lower and the upper bound, and hopefully, before too long, the gap will be within
a tolerance value. In this case, or in the case a time/iteration limit is reached, the algorithm
stops. If the gap is closed, we have found a global optimum, otherwise we have a heuristic
solution (provided that the upper bound is not +∞). The lower-bounding relaxation Q is
a convex relaxation of the original non-convex MINLP problem, obtained by approximating
the concave part of the non-convex univariate functions using piecewise linear approxima-
tion. The novelty in this part of the algorithmic framework is the new formulation of the
convex relaxation: The function is approximated only where it is concave, and the convex
parts of the functions are not approximated, but taken as they are. The convex relaxation
proposed is described in details in Section 3.2.1. The upper-bounding restriction R, described
in Section 3.2.2, is obtained simply by fixing the variables with integrality constraints. The
refinement technique consists of adding one or more breakpoints where needed, i.e. where
the approximation of the non-convex function is bad and the solution of the lower-bounding
problem lies. Different refinement strategies are described in Section 3.2.3, and in Section 3.3
computational experiments with the strategy that gives the best results are presented. Once
the ingredients of the algorithmic framework are described in detail, we give a pseudo-code
description of our algorithmic framework (see Section 3.2.4). We also discuss some consider-
ations about the general framework and the similarities and differences with popular global
optimization methods.

3.2.1 The lower-bounding convex MINLP relaxation Q

To obtain our convex MINLP relaxation Q of the MINLP problem P, we need to locate the
subintervals of the domain of each univariate function gi for which the function is uniformly
convex or concave. For simplicity of notation, rather than refer to the constraint ri(x) +
gi(xh(i)) ≤ 0, we consider a single constraint to have the form r(x) + g(xk) ≤ 0, where
r : R

n → R is convex and g : R → R is a univariate non-convex function of xk , for some k
(1 ≤ k ≤ n). We want to explicitly view each such g as a piecewise-defined function, where on
each piece the function is either convex or concave. In practice, for each non-convex function
g , we compute the points at which the convexity/concavity may change, i.e. the zeros of the
second derivative of g , using MATLAB. In case a function g is naturally piecewise defined, we
are essentially refining the piecewise definition of it in such a way that the convexity/concavity
is uniform on each piece.

Consider the piecewise-defined univariate function

g(xk) :=

{
1 + (xk − 1)3 , for 0 ≤ xk ≤ 2 ;
1 + (xk − 3)2 , for 2 ≤ xk ≤ 4 ,

34 CHAPTER 3. A GO METHOD FOR A CLASS OF MINLP PROBLEMS

depicted in Fig. 3.1. In addition to the breakpoints xk = 0, 2, 4 of the definition of g, the
convexity/concavity changes at xk = 1, so by utilizing an additional breakpoint at xk = 1 the
convexity/concavity is now uniform on each piece.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

Figure 3.1: A piecewise-defined univariate function

Now, on each concave piece we can use a secant approximation to give now a piecewise-
convex lower approximation of g .

Example 1, continued. Relative to g(xk) of Example 1, we have the piecewise-convex
lower approximation

g(xk) :=

xk , for 0 ≤ xk ≤ 1 ;
1 + (xk − 1)3 , for 1 ≤ xk ≤ 2 ;
1 + (xk − 3)2 , for 2 ≤ xk ≤ 4 ,

depicted in Fig. 3.2.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

Figure 3.2: A piecewise-convex lower approximation

We can obtain a better lower bound by refining the piecewise-linear lower approximation

3.2. OUR ALGORITHMIC FRAMEWORK 35

on the concave pieces. We let

Lk =: P0 < P1 < · · · < Pp := Uk

be the ordered breakpoints at which the convexity/concavity of g changes, including, in the
case of piecewise definition of g, the points at which the definition g changes. We define:

[Pp−1, Pp] := the p-th subinterval of the domain of g (p ∈ {1 . . . p});

Ȟ := the set of indices of subintervals on which g is convex;

Ĥ := the set of indices of subintervals on which g is concave;

On the concave intervals, we will allow further breakpoints. We let Bp be the ordered set
of breakpoints for the concave interval indexed by p ∈ Ĥ. We denote these breakpoints as

Pp−1 =: Xp,1 < Xp,2 < · · · < Xp,|Bp| := Pp ,

and in our relaxation we will view g as lower bounded by the piecewise-linear function that
has value g(Xp,j) at the breakpoints Xp,j , and is otherwise linear between these breakpoints.

Example 1, continued again. Utilizing further breakpoints, for example at xk = 1/3 and
xk = 2/3, we can improve the piecewise-convex lower approximation to instead

g(xk) :=

19
9 xk , for 0 ≤ xk ≤ 1

3 ;
19
27 + 7

9

(
xk − 1

3

)
, for 1

3 ≤ xk ≤ 2
3 ;

26
27 + 1

9

(
xk − 2

3

)
, for 2

3 ≤ xk ≤ 1 ;

1 + (xk − 1)3 , for 1 ≤ xk ≤ 2 ;
1 + (xk − 3)2 , for 2 ≤ xk ≤ 4 ,

depicted in Fig. 3.3.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

Figure 3.3: An improved piecewise-convex lower approximation

Next, we define further variables to manage our convexification of g on its domain.

36 CHAPTER 3. A GO METHOD FOR A CLASS OF MINLP PROBLEMS

zp := a binary variable indicating if xk ≥ Pp (p = 1, . . . , p − 1);

δp := a continuous variable assuming a positive value iff xk ≥ Pp−1 (p = 1, . . . , p);

αp,b := weight of breakpoint b in the piecewise-linear approximation

of the interval indexed by p (p ∈ Ĥ, b ∈ Bp).

In the convex relaxation of the original MINLP P, we substitute a constraint of the form
r(x) + g(xk) ≤ 0 with the following set of new constraints:

P0 +

p∑

p=1

δp − xk = 0 ; (3.1)

δp − (Pp − Pp−1)zp ≥ 0 , ∀p ∈ Ȟ ∪ Ĥ ; (3.2)

δp − (Pp − Pp−1)zp−1 ≤ 0 , ∀p ∈ Ȟ ∪ Ĥ ; (3.3)

Pp−1 + δp −
∑

b∈Bp

Xp,b αp,b = 0 , ∀p ∈ Ĥ ; (3.4)

∑

b∈Bp

αp,b = 1 , ∀p ∈ Ĥ ; (3.5)

{αp,b : b ∈ Bp} := SOS2 , ∀p ∈ Ĥ ; (3.6)

r(x) +
∑

p∈Ȟ

g(Pp−1 + δp) +
∑

p∈Ĥ

∑

b∈Bp

g(Xp,b) αp,b −

p−1∑

p=1

g(Pp) ≤ 0 , (3.7)

with two dummy variables z0 := 1 and zp := 0.
Constraints (3.1–3.3) together with the definition of the z variables ensure that, given an

xk value, say x∗
k ∈ [Pp∗−1, Pp∗]:

δp =

Pp − Pp−1 , if 1 ≤ p ≤ p∗ − 1 ;

x∗
k − Pp−1 , if p = p∗ ;

0 , otherwise.

Constraints (3.4–3.6) ensure that, for each concave interval, the convex combination of the
breakpoints is correctly computed. Finally, constraint (3.7) approximates the original non-
convex constraint. Each single term of the first and the second summations, using the defini-
tion of δp , reduces, respectively, to

g(Pp−1 + δp) =

g(Pp) , if p ∈ {1, . . . , p∗ − 1} ;

g(x∗
k) , if p = p∗ ;

g(Pp−1) , if p ∈ {p∗ + 1, . . . , p} ,

and

∑

b∈Bp

g(Xp,b) αp,b =

g(Pp) , if p ∈ {1, . . . , p∗ − 1} ;
∑

b∈Bp∗
g(Xp∗,b) αp∗,b , if p = p∗ ;

g(Pp−1) , if p ∈ {p∗ + 1, . . . , p} ,

3.2. OUR ALGORITHMIC FRAMEWORK 37

reducing constraint (3.7) to

r(x) +

p∗−1∑

p=1

g(Pp) + γ +

p∑

p=p∗+1

g(Pp−1) −

p−1∑

p=1

g(Pp) = r(x) + γ ≤ 0 ,

with

γ =

{
g(Pp − x∗

h) , if p∗ ∈ Ȟ ;
∑

b∈Bp∗
g(Xp∗,b) αp∗b , if p∗ ∈ Ĥ .

P0 = X11 P1 = X12 P2 = X31 X32 P3 = X33

Figure 3.4: The convex relaxation

It is important to note that if we utilized a very large number of breakpoints at the start,
solving the resulting convex MINLP Q would mean essentially solving globally the original
MINLP P . But of course such a convex MINLP Q would be too hard to be solved in
practice. With our algorithmic framework, we dynamically seek a smaller convex MINLP
Q , thus generally more easily solvable, which we can use to guide the non-convex NLP
restriction R to a good local solution, eventually settling on and proving global optimality of
such a solution to the original MINLP P .

3.2.2 The upper-bounding non-convex NLP restriction R

Given a solution, typically an optimum x of the convex MINLP relaxation Q , the upper-
bounding restriction R is defined as the non-convex NLP:

min
∑

j∈N Cjxj

subject to
f(x) ≤ 0 ;
ri(x) + gi(xh(i)) ≤ 0 , ∀i ∈ M ;

Lj ≤ xj ≤ Uj , ∀j ∈ N ;
xj = xj, ∀j ∈ I .

(R)

A solution of this non-convex NLP R is a heuristic solution of the non-convex MINLP
problem P for two reasons: (i) the integer variables xj , j ∈ I , might not be fixed to

38 CHAPTER 3. A GO METHOD FOR A CLASS OF MINLP PROBLEMS

globally optimal values; (ii) the NLP R is non-convex, and so even if the integer variables
xj , j ∈ I , are fixed to globally optimal values, the NLP solver may well only find a local
optimum of the non-convex NLP R. This consideration emphasizes the importance of the
lower-bounding relaxation Q for the guarantee of the global optimality. The upper-bounding
problem resolution could be seen as a “verification phase” in which a solution of the convex
MINLP relaxation Q is tested to be really feasible for the non-convex MINLP P .

3.2.3 The refinement technique

At the end of each iteration, we have two solutions: x , the solution of the lower-bounding
convex MINLP relaxation Q , and x , the solution of the upper-bounding non-convex NLP
restriction R . If

∑
j∈N Cjxj <

∑
j∈N Cjxj within a certain tolerance, the solution x is

not feasible for the original MINLP problem P . In order to be able to continue, we want
to refine the approximation of the lower-bounding convex MINLP relaxation Q by adding
further breakpoints. There are different points at which we can add further breakpoints, and
we tried several strategies including:

For each i ∈ M , add a breakpoint to gi where the lower-bounding solution is: If xh(i)

lies on a concave interval of gi , and it is not (very) close to any breakpoint already
defined for gi ;

For each i ∈ M , add a breakpoint to gi where the upper-bounding solution is: If xh(i)

lies on a concave interval of gi , and it is not (very) close to any breakpoint already
defined for gi ;

Use both the strategies above;

For each i ∈ M , add a breakpoint to gi where a combination of the two solutions lies:
Add a breakpoint at λ x + (1 − λ)x, for some 0 ≤ λ ≤ 1 , chosen so that the new
breakpoint is not to close to any breakpoint already defined for gi ;

It is also possible to add several breakpoints instead of just one, using strategies like those
above. The strategy that we settled upon for our computational results is the third: Namely,
we add a breakpoint where x lies in order to converge and one where x lies to speed up the
convergence.

3.2.4 The algorithmic framework

Algorithm 3 details our algorithmic framework, while Figure 3.5 depicts it at a high level.

At each iteration, the lower-bounding MINLP relaxation Q and the upper-bounding NLP
restriction R are redefined: What changes in Q are the sets of breakpoints that approximate
the concave intervals of the non-convex functions. At each iteration, the number of breakpoint
used increases, and so does the accuracy of the approximation. What may change in R are
the values of the fixed integer variables xj , j ∈ I . Moreover, what changes is the starting
point given to the NLP solver, derived from an optimal solution of the lower-bounding MINLP
relaxation Q.

Our algorithmic framework bears comparison with spatial Branch-and-Bound, a successful
technique in global optimization. In particular:

3.2. OUR ALGORITHMIC FRAMEWORK 39

Algorithm 3 The algorithmic framework

LB := −∞; UB := +∞;
Find P i

p , Ĥ i, Ȟ i, Xi
pb (∀i ∈ M,p ∈ {1 . . . pi}, b ∈ Bi

p).
repeat

Solve the convex MINLP relaxation Q of the original problem P ;
if (val(Q) > LB) then

LB := val(Q);
end if
Solve the non-convex NLP restriction R of the original problem P ;
if (val(R) < UB) then

UB := val(R);
end if
if (UB − LB ≥ ∆) then

Update Bi
p , Xi

pb ;
end if

until ((UB − LB ≤ ∆) or (alternative termination criterion))
return the solution x of the non-convex NLP restriction R ;

Figure 3.5: The algorithmic framework

40 CHAPTER 3. A GO METHOD FOR A CLASS OF MINLP PROBLEMS

during the refining phase, the parts in which the approximation is bad are discovered and
the approximation is improved there, but we do it by adding one or more breakpoints
instead of branching on a continuous variable as in spatial Branch-and-Bound;

unlike spatial Branch-and-Bound, our approach does not utilize an expression tree; it
works directly on the broad class of separable non-convex MINLPs of the form P, and
of course problems that can be put in such a form;

unlike spatial Branch-and-Bound, our method can be effectively implemented at the
modeling-language level.

3.3 Computational results

We implemented our algorithmic framework as an AMPL script, and we used MATLAB as
a tool for numerical analysis, Bonmin as our convex MINLP solver, and Ipopt as our NLP
solver. In this section we present computational results for three problem categories. The
tests were executed by sequentially running the code on a single processor of an Intel Core2
CPU 6600, 2.40 GHz, 1.94 GB of RAM using a time limit of 2 hours.

For each set of problems, the non-convex MINLP model P is presented, and a reference to
a paper in which the problem is described in more detail is given. A table with computational
results exhibits the behavior of our algorithm on some instances of each problem. Each table
presents ten columns:

the instance name;

the number of iteration the data are referred to;

the value of the lower bound;

the value of the upper bound;

if the integer variables are different with respect to ones used in the previous iteration
(the values fixed in the UB problem, if applicable);

the CPU time needed to solve the convex relaxation to optimality (in seconds);

the number of breakpoints added at the previous iteration;

the number of variables/integers/constraints;

the lower and the upper bound computed by Couenne. If the gap is closed within the
time limit, the LB column reports the CPU running time and the UB column reports
the value of the global solution found.

3.3.1 Uncapacitated Facility Location (UFL) problem

The UFL application is presented in [68]. (Note that here the set of customers is denoted
with T and the set of facilities is denoted with K (wkt is the fraction of demand of customer

3.3. COMPUTATIONAL RESULTS 41

t satisfied by facility k for each t ∈ T, k ∈ K).) We report the mathematical model used for
the computational results of Table 3.1:

min
∑

k∈K Ckyk +
∑

t∈T vt

subject to
vt ≥ −

∑
k∈K Sktskt , ∀ t ∈ T ;

skt ≤ gkt(wkt) , ∀ t ∈ T ;
wkt ≤ yk , ∀ t ∈ T, k ∈ K ;∑

k∈K wkt = 1 , ∀ t ∈ T ;
wkt ≥ 0 , ∀ t ∈ T, k ∈ K ;
yk ∈ {0, 1} , ∀ k ∈ K .

Figure 3.6 depicts the three different non-linear function gkt(wkt) were used for computational
results presented in Table 3.1. The piecewise linear functions are the segments linking the
lower and the upper bound and the point were the curvature changes. Table 3.1 shows good

Figure 3.6: UFL: how −gkt(wkt) looks like in the three instances.

Table 3.1: Results for Uncapacitated Facility Location problem
inst cycle LB UB int change t MINLP br added (var;int;constr) Couenne LB Couenne UB
ufl 1 1 4,122.00 4,330.40 - 1.41 - (153;39;228) 2,315.08” 4,330.40

2 4,324.78 4,330.40 no 12.34 11
3 4,327.72 4,330.40 no 23.20 5
4 4,328.99 4,330.40 no 38.36 5
5 4,330.04 4,330.40 no 61.03 5
6 4,330.24 4,330.40 no 94.95 5
7 4,330.36 4,330.40 no 131.59 5
8 4,330.38 4,330.40 no 181.14 5
9 4,330.39 4,330.40 no 249.04 5

ufl 2 1 27,516.60 27,516.60 - 3.93 - (189;57;264) 410.47” 27,516.60
ufl 3 1 1,947.88 2,756.89 - 3.88 - (79;21;101) 0.76” 2,292.78

2 2,064.26 2,756.89 no 3.90 2
3 2,292.74 2,292.78 no 4.17 2

performance of the proposed algorithm. In particular, instance ufl 1 is solved in less than
800 seconds with respect to 2,315.08 seconds needed by Couenne, instance ufl 2 in less than
4 seconds with respect to 410.47 seconds. In instance ufl 3 Couenne performs better than
the proposed algorithm, 0.76 with respect to 13.

3.3.2 Hydro Unit Commitment and Scheduling problem

The Hydro Unit Commitment and Scheduling problem is described in see Chapter 6. (Note
that in this case the index j has a different meaning with respect to the model presented in

42 CHAPTER 3. A GO METHOD FOR A CLASS OF MINLP PROBLEMS

Section 3.1: here it represents the turbine/pump unit.) In the following the model used for
the computational results of Table 3.2:

min −
∑

j∈J

∑
t∈T

(
∆t Πt pjt − Cj w̃jt − (Dj + ΠtEj)ỹjt

)

subject to
vt − Vt = 0 ;
vt − vt−1 − 3600∆t (It −

∑
j∈J qjt − st) = 0 , ∀t ∈ T ;

qjt − (Q−
j ujt + Q

j
gjt) ≥ 0 , ∀j ∈ J, t ∈ T ;

qjt − (Q−
j ujt + Qj gjt) ≤ 0 , ∀j ∈ J, t ∈ T ;∑

j∈J(qjt − qj(t−1)) + ∆q− ≥ 0 , ∀t ∈ T ;∑
j∈J(qjt − qj(t−1)) − ∆q+ ≤ 0 , ∀t ∈ T ;

st −
∑

j∈J (Wj w̃jt + Yj ỹjt) ≥ 0 , ∀t ∈ T ;∑
j∈J qjt + st − Θ ≥ 0 , ∀t ∈ T ;

gjt − gj(t−1) − (w̃jt − wjt) = 0 , ∀j ∈ J, t ∈ T ;

w̃jt + wjt ≤ 1 , ∀j ∈ J, t ∈ T ;
ujt − uj(t−1) − (ỹjt − yjt) = 0 , ∀j ∈ J, t ∈ T ;

ỹjt + yjt ≤ 1 , ∀j ∈ J, t ∈ T ;
gjt + ukt ≤ 1 , ∀j, k ∈ J, t ∈ T ;∑

j∈J ujt ≤ n − 1 , ∀t ∈ T ;

pjt − ϕ(qjt) = 0 , ∀j ∈ J, t ∈ T.

In Figure 3.7, the plot of three different non-linear functions ϕ(qjt) which were used is depicted.
The piecewise linear functions are the segments linking the lower and the upper bound and
the point were the curvature changes. Also Table 3.2 shows a good performance of the

Figure 3.7: Hydro UC: how −ϕ(qjt) looks like in the three instances

Table 3.2: Results for Hydro Unit Commitment and Scheduling problem
inst cycle LB UB int change t MINLP br added (var;int;constr) Couenne LB Couenne UB

hydro 1 1 -10,231.00 -10,140.80 - 16.37 - (324;142;445) -11,229.80 -10,140.80
2 -10,140.80 -10,140.80 no 22.99 4

hydro 2 1 -3,950.70 -3,891.22 - 31.30 - (324;142;445) -12,104.40 -2,910.91
2 -3,950.58 -3,891.22 no 34.51 2
3 -3,950.58 -3,891.22 no 38.54 2
4 -3,932.18 -3,932.18 no 54.89 2

hydro 3 1 -4,753.85 -4,634.40 - 147.37 - (324;142;445) -12,104.40 -3,703.07
2 -4,719.93 -4,660.19 no 264.22 4
3 -4,710.74 -4,710.73 yes 339.49 2

proposed algorithm. It is able to find the global optimum of the three instances within the
time limit, but Couenne does not solve to global optimality any of the instances.

3.4. CONCLUSIONS 43

3.3.3 GLOBALLib and MINLPLib instances

We selected 13 instances from GLOBALLib http://www.gamsworld.org/global/globallib

.htm and 9 from MINLPLib http://www.gamsworld.org/minlp/minlplib.htm to test our
algorithm. Because our algorithm is suitable only for instances with univariate non-linear
functions, we reformulated them in order to be able to apply our technique to the reformulated
problem. Of course, this is not possible for every instance of the libraries mentioned, so we
selected only some instances. In fact, we also had to exclude other instances for another issue:
we need the independent variables xh(i) involved in the univariate non-linear constraints to be
bounded ∀i ∈ N . We need the upper and the lower bound for these variables because we use
them to compute the curvature changes within the MATLAB environment (see Section 3.2.1).
We report in the first part of the table the GLOBALLib results. We ran the instances until
the global optimum is found and proved. The second part of the table reports the MINLPLib
results. The instances were selected among the ones reported in the computational results
of a recent paper [14]. The tests are performed in the same machine. In Table 3.3 the
third last reports the number of variables, integer variables and constraints of the original
problem and the reformulated one. Table 3.3 shows that Couenne performs much better on
GlobalLib instances. This can be probably explained by the fact that for small instances
Couenne behaves very well in general. Moreover, the reformulation needed by the proposed
algorithm to make these problems separable partially influence the performance making the
model larger. Concerning the MinlpLib instances, 4 over 9 instances are solved to global
optimality by both our algorithm and Couenne and Couenne performs better in 2 of these
4 instances. In the other 5 instances, the lower bound given by the proposed algorithm is
always better (higher) than the one provided by Couenne. This result emphasizes the quality
of the lower bound computed by the solution of the convex MINLP relaxation Q. However,
the upper bound computed by Couenne is better in 3 instances over 5.

3.4 Conclusions

In this Chapter, we proposed an algorithms for solving to global optimality separable MINLPs.
Our simple algorithm, implemented within the AMPL modeling language, consists of a lower-
bounding and an upper-bounding problem. For the definition of the lower-bounding problem,
we identify subintervals of convexity and concavity for the univariate functions using external
calls to MATLAB then we develop a convex MINLP relaxation of the problem approximating
the concave intervals of each non-convex function with linear relaxation. The subintervals are
glued together using binary variables. We iteratively refine our convex MINLP relaxation by
modifying it at the modeling level. The upper-bounding problem is obtained by fixing the
integer variables in the original non-convex MINLP, then locally solving the associated non-
convex NLP relaxation. We presented preliminary computational experiments on real-world
applications like Uncapacitated Facility Location and Hydro Plants Unit Commitment and
Scheduling problems and instances of GlobalLib and MinlpLib. We compared our algorithm
with the open-source solver Couenne obtaining a modest success.

An advantage of our approach is that further advances in technology for convex MINLP
will immediately give us a benefit.

44 CHAPTER 3. A GO METHOD FOR A CLASS OF MINLP PROBLEMS

Table 3.3: Results for GLOBALLib and MINLPLib
inst cycle LB UB int change t MINLP br added (var;int;constr) Couenne LB Couenne UB

ex14 2 1 1 0 0 9.96 - (5;0;7) (122;0;6) 0” 0
ex14 2 2 1 0 0 5.61 - (4;0;5) (56;0;4) 0.01” 0
ex14 2 6 1 0 0 13.41 - (5;0;7) (164;0;6) 0.01” 0
ex14 2 7 1 0 0 12.03 - (6;0;9) (277;0;8) 0” 0

1 -18.3182 -16.5 - 0.00 - (5;0;1) (12;0;1) 0.05” -17
2 -18.2143 -16.5 - 0.06 1

ex2 1 1 3 -18 -16.5 - 0.12 1
4 -17.625 -17 - 0.20 1
5 -17 -17 - 0.32 2

ex2 1 2 1 -213 -213 - 0.00 - (6;0;2) (14;0;2) 0” -213
ex2 1 3 1 -15 -15 - 0.00 - (13;0;6) (24;0;6) 0” -15
ex2 1 4 1 -11 -11 - 0.00 - (6;0;4) (12;0;4) 0” -11
ex2 1 5 1 -269.45 -268.015 - 0.00 - (10;0;11) (29;0;11) 0.21” -268.015

2 -268.015 -268.015 - 0.22 2
1 -44.40 -29.40 - 0.01 - (10;0;5) (26;0;5) 0.04” -39

ex2 1 6 2 -40.50 -39.00 - 0.16 2
3 -40.16 -39.00 - 0.25 1
4 -39.00 -39.00 - 0.52 2
1 55.56 100.00 - 0.00 - (10;0;9) (38;0;5) 0.11” 100
2 92.01 100.00 - 1.54 19

ex9 2 2 3 97.94 100.00 - 4.32 10
4 99.48 100.00 - 19.29 11
5 99.86 100.00 - 60.80 10
6 99.96 100.00 - 231.79 10
1 -30.00 0.00 - 0.00 - (16;0;15) (54;0;7) 0.08” 0
2 -30.00 0.00 - 9.76 22
3 -27.16 0.00 - 17.27 10
4 -23.08 0.00 - 12.98 11
5 -20.56 0.00 - 34.75 9

ex9 2 3 6 -18.12 0.00 - 91.05 8
7 -12.05 0.00 - 297.97 14
8 -4.43 0.00 - 1,088.67 13
9 -4.21 0.00 - 3,102.74 6
10 -0.72 0.00 - 7,158.79 6
11 0.00 0.00 – 2,885.65 12
1 -1.50 -1.00 - 0.01 - (16;0;12) (57;0;6) 0.15” -1
2 -1.50 -1.00 - 7.88 29
3 -1.50 -1.00 - 7.90 25
4 -1.50 -1.00 - 28.47 19
5 -1.50 -1.00 - 34.63 15
6 -1.50 -1.00 - 127.61 18

ex9 2 6 7 -1.50 -1.00 - 356.12 17
8 -1.50 -1.00 - 354.22 13
9 -1.39 -1.00 - 411.72 12
10 -1.50 -1.00 - 682.30 19
11 -1.50 -1.00 - 444.82 14
12 -1.38 -1.00 - 981.41 13
13 -1.00 -1.00 - 1,311.27 21

du-opt 1 3.556 3.556 - 4.10 - (20;13;8) (242;18;230) 51.98” 3.556
du-opt5 1 8.073 8.073 - 7.13 - (18;11;6) (239;15;227) 29.83” 8.073

fo7 1 (8.759) 22.518 - 7,200.00 - (112;42;211) (338;42;437) 1.885 23.218
m6 1 82.256 82.256 - 175.07 - (84;30;157) (254;30;327) 91.73” 82.256

no7 ar2 1 1 (90.583) 127.774 - 7,200.00 - (112;42;269) (394;41;551) 74.63 111.145
no7 ar3 1 1 (81.5393) 107.869 - 7,200.00 - (112;42;269) (394;41;551) 47.45 112.032
no7 ar4 1 1 (76.402) 104.534 - 7,200.00 - (112;42;269) (394;41;551) 43.23 98.884

o7 2 1 (79.365) 124.324 - 7,200.00 - (112;42;211) (338;42;437) 7.654 128.085
stockcycle 1 119,949 119,949 - 188.26 - (480;432;97)(578;480;195) 63.93” 119,949

Chapter 4

A Method for Approximating
Non-Linear Functions of Two
Variables

1

4.1 Introduction

In recent years, the increased efficiency of Mixed Integer Linear Programming (MILP) software
tools has encouraged their use also in the solution of non-linear problems, bringing to the need
for efficient techniques to linearize non-linear functions of one or more variables. The standard
methodologies consist in the piecewise linear approximation of such functions.

For functions of a single variable, say, f(x), the classical approach consists in introducing a
number n of sampling coordinates x1, . . . , xn on the x axis (breakpoints) on which the function
is evaluated, with x1 and xn coinciding with the left and right extremes of the domain of x
(see Figure 4.1(a)). For any given x value, say, x, with xi ≤ x ≤ xi+1, the function value is
approximated by convex combination of f(xi) and f(xi+1). Let λ be the (unique) value in
[0, 1] such that:

x = λxi + (1 − λ)xi+1. (4.1)

Then the approximated value is:

fa(x) = λf(xi) + (1 − λ)f(xi+1). (4.2)

This methodology can alternatively be described through the slope (f(xi+1)− f(xi))/(xi+1 −
xi) of the interpolating function, namely:

fa(x) = f(xi) + (x − xi)
f(xi+1) − f(xi)

xi+1 − xi

(4.3)

(from which one has λ = (xi+1 − x)/(xi+1 − xi)).

1The results of this chapter appears in: C. D’Ambrosio, A. Lodi, S. Martello, Piecewise linear approximation
of functions of two variables in MILP models, Technical Report OR-09-3, University of Bologna.

45

46 CHAPTER 4. APPROXIMATING NON-LINEAR FUNCTIONS OF 2 VARIABLES

In order to use the above technique in a MILP solver it is necessary to include in the
model variables and constraints that force any x value to be associated with the proper pair
of consecutive breakpoints (or with a single one, in case x ∈ {x1, . . . , xn}). Let us introduce
a continuous variable αi for each breakpoint i, such that αi ∈ [0, 1] (i = 1, . . . , n). Let hi be
a binary variable associated with the ith interval [xi, xi+1] (i = 1, . . . , n − 1), with dummy
values h0 = hn = 0. The approximate value fa can be then obtained by imposing the following
constraints:

f(x)

x

(a)

f(x, y)

x

y
(b)

Figure 4.1: Piecewise linear approximation of a univariate function, and its adaptation to a
function of two variables.

n−1∑

i=1

hi = 1 (4.4)

αi ≤ hi−1 + hi (i = 1, . . . , n) (4.5)
n∑

i=1

αi = 1 (4.6)

x =

n∑

i=1

αixi (4.7)

fa =
n∑

i=1

αif(xi). (4.8)

Constraint (4.4) imposes that only one hi, say, hı, takes the value 1. Hence constraints (4.5)
impose that the only αi values different from 0 can be αı and αı+1. It follows from (4.6)
and (4.7) that αı = λ and αı+1 = 1 − λ (see (4.1)). Constraint (4.8) ensure then the correct
computation of the approximate value according to (4.2).

In contexts of this type, the MILP constraints can be simplified by the so-called special
ordered sets, introduced by Beale and Tomlin [13], and extensively studied by Lee and Wilson
[80], Keha, de Farias and Nemhauser [75] and Martin, Moller and Moritz [89]. By defining a
set of variables to be a Special Ordered Set of type k (SOSk), one imposes that at most k such
variables can take a non-zero value, and that they must be consecutive. Most modern MILP

4.2. THE METHODS 47

solvers are capable of automatically handling special ordered sets of type 1 and 2. In our case,
by defining the α variables to be a SOS2, one does not need to explicitly state h variables,
so constraints (4.6)-(4.8) produce the correct computation. The additional advantage of this
technique is that the enumerative phase may be enhanced by the internal use of special
purpose branching rules.

The remainder of this chapter concentrates on the piecewise linear approximation of func-
tions f(x, y) of two variables. In Section 4.2 we present three approaches, and give a detailed
description of how they can be embedded in a MILP model. The simplest method (Section
4.2.1) consists of using the one-variable technique above for a discretized set of y values. A
more complex approach (Section 4.2.2) is based on the definition of triangles in the three-
dimensional space, and can be seen as the extension of the one-variable technique (see Tomlin
[120], Babayev [10], Lee and Wilson [80], Martin, Moller and Moritz [89] and Vielma and
Nemhauser [122]). In Section 4.2.3 we give a full description of a third approach, recently
used within an applied context (see Borghetti, D’Ambrosio, Lodi and Martello [28]), which
appears particularly suitable for MILP modeling. In Section 4.3 we show that the three ap-
proaches do not dominate each other, and discuss advantages and drawbacks on the basis
of some numerical examples. A detailed comparison within a MILP approach is reported in
Section 4.3.2 with respect to an application in electric power generation.

4.2 The methods

In this section we describe three techniques for the piecewise linear approximation of functions
of two variables.

4.2.1 One-dimensional method

An immediate adaptation of the one-variable technique to the case of functions of two variables
is as follows. Let us introduce a number m of coordinates on the y axis, y1, . . . , ym (y1 and ym

being the left and right extremes of the domain of y). For the jth interval [yj , yj+1), let ỹj be
the associated sampling coordinate (often the central point of the interval), leading to m − 1
univariate functions f(x, ỹj) (j = 1, . . . ,m− 1). For any given y value, say, y ∈ [yj, yj+1), the
approximated function values fa(x, y) are then given by the piecewise linear approximation
of f(x, ỹj) with breakpoints x1, . . . , xn (see Figure 4.1(b)).

Let β1, . . . , βm−1 be binary variables, defined as an SOS1, with βj taking the value 1 if
and only if the given value y belongs to [yj, yj+1). The approximate value fa is then obtained
through (4.6)-(4.7) and:

48 CHAPTER 4. APPROXIMATING NON-LINEAR FUNCTIONS OF 2 VARIABLES

y ≤
m−1∑

j=1

βjyj+1 (4.9)

y ≥
m−1∑

j=1

βjyj (4.10)

m−1∑

j=1

βj = 1 (4.11)

fa ≤
n∑

i=1

αif(xi, ỹj) + M(1 − βj) (j = 1, . . . ,m − 1) (4.12)

fa ≥
n∑

i=1

αif(xi, ỹj) − M(1 − βj) (j = 1, . . . ,m − 1), (4.13)

where α is the SOS2 introduced in the previous section and M is a very large value (“big-M”).
Constraints (4.9)-(4.11) impose β = 1 and βj = 0 for j 6= , being the interval which contains
y. Constraints (4.12)-(4.13) are inactive if βj = 0, hence providing fa =

∑n
i=1 αif(xi, ỹ) for

the correct interval .

4.2.2 Triangle method

A more complex method can be obtained by extending the one-variable technique to the
two-variable case. Consider again n sampling coordinates x1, . . . , xn on the x axis and m
sampling coordinates y1, . . . , ym on the y axis, with x1 and xn (resp. y1 and ym) coinciding
with the left and right extremes of the x (resp. y) domain. The function f(x, y) is evaluated
for each breakpoint (xi, yj) (i = 1, . . . , n; j = 1, . . . ,m).

For any given (x, y) point, say, (x, y), with xi ≤ x ≤ xi+1 and yj ≤ y ≤ yj+1, let us consider
the rectangle (see Figure 4.2(a)) of vertices (xi, yj), (xi+1, yj), (xi+1, yj+1), (xi, yj+1), and the
two triangles produced by its diagonal [(xi, yj)(xi+1, yj+1)]. (The triangles produced by the
other diagonal could equivalently be used.) The function value is approximated by convex
combination of the function values evaluated at the vertices of the triangle containing (x, y).
Namely (see Figure 4.2(b)),

fa(x, y) = λf(xi, yj) + µf(xi+1, yj+1) + (1 − λ − µ)f, (4.14)

where

f =

{
f(xi+1, yj) if y ≤ yj + (x − xi)(yj+1 − yj)/(xi+1 − xi)

f(xi, yj+1) otherwise
(4.15)

and λ ∈ [0, 1], µ ∈ [0, 1] and (1−λ−µ) ∈ [0, 1] are the weights of the convex combination of the
vertices of the appropriate triangle which contains (x, y). In a MILP model this is obtained
by introducing n m continuous variables αij ∈ [0, 1] (one per breakpoint) and computing the

4.2. THE METHODS 49

xi xi+1

yj

yj+1

(a)

x

y

f(x,y)

(b)

Figure 4.2: Geometric representation of the triangle method.

convex combinations by extending (4.6)-(4.8) to the three-dimensional space as follows:

n∑

i=1

m∑

j=1

αij = 1 (4.16)

x =
n∑

i=1

m∑

j=1

αijxi (4.17)

y =

n∑

i=1

m∑

j=1

αijyj (4.18)

fa =

n∑

i=1

m∑

j=1

αijf(xi, yj). (4.19)

Variables λij should be defined as a specific SOS3. However, differently from what happens
for SOS1 and SOS2, current MILP solvers do not have an automatic syntax to impose an
SOS3, so, for the sake of completeness, we give here the analogue of constraints (4.4)-(4.5),
to be added to the above model. Consider the rectangle corresponding to intervals [xi, xi+1)
and [yj, yj+1): we associate binary variables hu

ij and hl
ij respectively to the upper and lower

triangle in the rectangle (see Figure 4.2(a)), with dummy values h∗
0∗ = h∗

∗0 = h∗
n∗ = h∗

∗m = 0
at the extremes. The additional constraints are then:

n−1∑

i=1

m−1∑

j=1

(hu
ij + hl

ij) = 1 (4.20)

αij ≤ hu
ij + hl

ij + hu
i,j−1 + hl

i−1,j−1 + hu
i−1,j−1 + hl

i−1,j (i = 1, . . . , n; j = 1, . . . ,m).(4.21)

Constraint (4.20) imposes that, among all triangles, only one is used for the convex combina-
tion. Then, constraints (4.21) impose that the only αij values different from 0 can be those
associated with the three vertices of such triangle.

4.2.3 Rectangle method

In this section we give a generalized description of a third method that was recently used
by Borghetti, D’Ambrosio, Lodi and Martello [28] in the context of an application arising

50 CHAPTER 4. APPROXIMATING NON-LINEAR FUNCTIONS OF 2 VARIABLES

in electricity production. The idea is to improve the one-dimensional method through a
correction term given by a better approximation on the y axis.

In this case too, let us introduce n coordinates x1, . . . , xn on the x axis and m sampling
coordinates y1, . . . , ym on the y axis, with x1 and xn (resp. y1 and ym) coinciding with the
left and right extremes of the x (resp. y) domain. For any given y value, say, y ∈ [yj , yj+1),
instead of associating a prefixed ỹj to interval [yj , yj+1) (as in the one-dimensional method),
we use the piecewise linear approximation of f(x, yj) with a linear correction depending on
y. More precisely, for a given point (x, y), with x ∈ [xi, xi+1), the approximate value fa(x, y)
is given by:

fa(x, y) = λf(xi, yj) + (1 − λ)f(xi+1, yj) + δ min{∆(i, j),∆(i + 1, j)} (4.22)

with ∆(l, j) = f(xl, y(j+1))−f(xl, yj), and δ = (y−yj)/(yj+1−yj). The first two terms of the
right-hand side are the extension of (4.2) and the third term is the correction. The meaning of
the correction is better understood by relating the approach to the triangle method. Assume
that the minimum in (4.22) occurs for ∆(i, j). By substituting we get:

fa(x, y) = (λ − δ)f(xi, yj) + (1 − λ)f(xi+1, yj) + δf(xi, y(j+1)).

In other words, given the rectangle of vertices (xi, yj), (xi+1, yj), (xi+1, yj+1), (xi, yj+1) (see
Figure 4.3), instead of approximating the function with the two induced triangles abd and
bcd, as in Section 4.2.2, the function is evaluated using the rectangle abcr that lies on the
plane passing through vertices f(xi, yj), f(xi+1, yj) and f(xi, y(j+1)) (b, c and a in Figure
4.3). If instead the minimum in (4.22) occurs for ∆(i + 1, j), rectangle sbcd is used for the
approximation.

We finally observe that equation (4.22) produces an underestimate with respect to the
triangle approach, due to the “min” operator in the third term. If, according to the specific
application, overestimate is desired, it is enough to substitute it with the “max” operator.

Let us now consider how the method can be modeled within a MILP. As in (4.9)-(4.13),
let β1, . . . , βm−1 be a SOS1 with βj taking the value 1 if y belongs to [yj, yj+1), and the value
0 otherwise. In addition let γ1, . . . , γm−1 be continuous variables, taking values in the interval
[0, 1]. If y ∈ [yj, yj+1) then γj = (y − yj)/(yj+1 − yj), and γk = 0 for all k 6= j. In other

f(x, y)

xiyj xi+1
yj+1

a

b

c

d

r

s

Figure 4.3: Geometric representation of the triangle method.

4.3. COMPARISON 51

words, when y lies on the jth interval, γj represents the relative position of y within the jth
interval. The approximate value fa is then given by

(4.4), (4.5), (4.6), (4.7), (4.11)

y =
m−1∑

j=1

(βjyj + γj(yj+1 − yj)) (4.23)

γj ≤ βj (j = 1, . . . ,m − 1) (4.24)

fa ≤
n∑

k=1

αkf(xk, yj) + γjKij + M(2 − βj − hi) (j = 1, . . . ,m − 1; (4.25)

i = 1, . . . , n − 1)

fa ≥
n∑

k=1

αkf(xk, yj) + γjKij − M(2 − βj − hi) (j = 1, . . . ,m − 1; (4.26)

i = 1, . . . , n − 1),

where Kij = min{∆(i, j),∆(i + 1, j)} (see (4.22)). Due to the above definition of the βj and
γj variables, equations (4.23) and (4.24) impose that y is given by the unique non-zero term
of the summation. Equations (4.25) and (4.26) are inactive when βj = 0 or hi = 0, hence
providing fa =

∑n
k=1 αkf(xk, yj) + γjKij for the correct interval.

Note that, in order to keep the constraint matrix smaller in terms of non-zeros, one can
efficiently reformulate constraints (4.25)–(4.26) by replacing the first term of the right-hand-
side with a corresponding variable, say, ϕj , at the price of the addition of m − 1 constraints.
Namely, the final formulation is:

(4.4), (4.5), (4.6), (4.7), (4.11), (4.23), (4.24)

ϕj =

n∑

k=1

αkf(xk, yj) (j = 1, . . . ,m − 1) (4.27)

fa ≤ ϕj + γjKij + M(2 − βj − hi) (j = 1, . . . ,m − 1; i = 1, . . . , n − 1) (4.28)

fa ≥ ϕj + γjKij − M(2 − βj − hi) (j = 1, . . . ,m − 1; i = 1, . . . , n − 1). (4.29)

4.3 Comparison

In this section we discuss computational issues associated with the three approaches for
the piecewise approximation of a function of two variables. In particular, in Section 4.3.1
we show that none of the three techniques dominates any other in terms of quality of the
given approximation. In Section 4.3.2 we discuss the embedding of the three techniques
within a MILP model, thus taking into account other indicators besides the quality of the
approximation, such as for example the size of the corresponding models.

4.3.1 Dominance and approximation quality

We first show that the three methods do not dominate each other. Consider function
f1(x, y) = y(sin(π(x − 3)/4))) (Figure 4.4(a)), and its approximation in the range x ∈ [1, 5],
y ∈ [1, 5] with n = m = 5. For (x, y) = (3.5, 1.5), the actual value is 0.57: the approxi-
mate value computed by both the one-dimensional and the rectangle method is 0.35, while

52 CHAPTER 4. APPROXIMATING NON-LINEAR FUNCTIONS OF 2 VARIABLES

(a) f1(x, y) (b) f2(x, y) (c) f3(x, y) (d) f4(x, y) (e) f5(x, y)

Figure 4.4: Five functions used to evaluate the approximation quality.

the triangle method provides the best approximation 0.71. For (x, y) = (1.51, 4.65), the ac-
tual value is −4.29: the best approximation, −4.06, is provided by the rectangle method,
while the one-dimensional and the triangle method give −3.40 and −3.91, respectively. Con-
sider now function f2 = (10 − y)3(sin(π(x − 1)/4))) (Figure 4.4(b)) in the same range. For
(x, y) = (1.5, 1.5), the actual value is 235.02: the approximate value computed by the one-
dimensional method is 257.74, which is better than the value 181.02 produced by the other
two methods.

Let us now consider the average quality of the approximation provided by the three
methods. We used the two functions above and three additional functions (all shown in Figure
4.4). The results are reported in Table 4.1. Each entry gives an average value computed over
40 tests obtained by varying the values of n, m, x and y. (Functions definitions and experiment
settings are available on demand from the authors.) For each function and for each method
the table gives the average percentage approximation error (computed as 100 · |fa(x, y) −
f(x, y)|/f(x, y)) and the percentage of times the method gave the best approximation.

The triangle method provides on average a tighter approximation with respect to the
other techniques (without, however, dominating them, see, e.g., function f1(x, y)), as it could
be expected in view of its higher complexity. Such a complexity also implies drawbacks
concerning its tractability when embedded in MILP models, as shown in the next section on
the basis of computational experiments on a real-world application.

Table 4.1: Average approximation quality for different values of n, m, x and y.

% error % best
function one-dimensional triangle rectangle one-dimensional triangle rectangle

f1(x, y) 20.38 9.27 9.92 4.88 53.66 56.10
f2(x, y) 20.15 9.27 27.38 29.27 90.24 39.02
f3(x, y) 18.44 3.87 3.87 9.76 100.00 100.00
f4(x, y) 20.45 8.76 15.09 19.51 100.00 31.71
f5(x, y) 20.38 9.27 9.77 24.39 87.80 82.93

4.3.2 Computational experiments

In order to experimentally evaluate the three approaches on instances of realistic size, we
considered the following real-world problem. The Short-Term Hydro Scheduling is the problem
of finding the optimal scheduling of a multi-unit hydro power station. In a short-term time
horizon one wants to maximize the revenue given by power selling. We suppose that the
generation company acts as a price-taker, and that the electricity prices and the inflows are

4.3. COMPARISON 53

forecasted. The non-linear part of this problem is the power function which depends on the
water flow and the basin volume. We approximated this function of two variables using the
methods presented in the previous sections. (For a more detailed discussion on this application
the reader is referred to [28].)

We considered a simplified version of a specific instance of the problem discussed in [28]
with 168 time periods to be planned. The simplification consists in not considering the
possibility to pump water in the basin and has the goal to allow a fair comparison of the
three methods, purged by the influence of big-M type constraints that is needed if the pump-
storage is considered.

Table 4.2 reports, for each model and for each pair (n,m), the size of the corresponding
MILP models, namely, the number of variables (overall and binaries), constraints and non-
zeros.

It is easy to see that one-dimensional and rectangle methods give rise to models which are
comparable in terms of number of variables and constraints, although the latter has slightly
more of both. The rectangle method has the smallest number of non-zero entries, much
smaller than that of the one-dimensional method and about half that of the triangle method
which, in addition, has by far the largest number of variables (both continuous and binary).
However, these numbers do not necessarily give a full picture of the impact of the three
methods on the solution of the associated MILPs.

Table 4.3 reports the results obtained by running ILOG-Cplex 10.2 on the resulting MILPs.
The table gives, for each pair (n,m) and for different time limits depending on the size of
the corresponding problems: (i) the solution value obtained at the time limit (or earlier, if
the MILP solver could prove optimality), recomputed using the original non-linear function;
(ii) the percentage error of such a value with respect to the one computed by the solver; (iii)
the initial and final percentage gaps; (iv) the CPU time in seconds (or “T.L.” when the time
limit occurred); (v) the number of Branch-and-Bound nodes. The initial percentage gap was
computed using the initial value of the linear programming relaxation, say, UBi, and the final
value of the best feasible solution, say, LB. The final percentage gap was computed using
the final upper bound, say, UBf , and again the best feasible solution value. Both gaps were
computed as 100 · (UB −LB)/LB. When no feasible solution was found by the MILP solver
within the time limit, the table reports “n/a” (“not available”).

The results show a number of interesting facts:

Despite the huge number of non-zero entries, the one-dimensional method is very fast in
closing the initial (rather large) gap both in terms of CPU time and number of nodes.
This is partially due to the fact that the preprocessing phase of ILOG-Cplex 10.2 is
very effective in significantly reducing the size of the model.

On the contrary, the MILPs associated with the triangle method are hard to solve al-
though the initial percentage gap is fairly small. (Only one instance solved to optimality
in the time limit.)

The difficulty with the triangle method is really the size of the corresponding MILPs.
Indeed, in the cases in which both the triangle and the rectangle method are unable to
close the gap within the time limit, one can observe that the latter explores many more
nodes than the former (up to one order of magnitude more for the (50, 50) case).

The rectangle method is unable to fully close the initial (fairly large) percentage gap in
only one instance if the 1 hour time limit is allowed.

54 CHAPTER 4. APPROXIMATING NON-LINEAR FUNCTIONS OF 2 VARIABLES

The quality of the solutions returned by the one-dimensional method is generally not
good. The percentage error of the computed solution value with respect to the real
value is significantly higher than that produced by the other methods.

The rectangle method takes advantage of the increase of both n and m by returning
strictly better solutions. This is not always the case for the one-dimensional method for
which the same optimal solution is returned for both cases (30, 30) and (40, 40).

As somehow expected by the analysis of Section 4.3.1, the percentage error of the
triangle method is generally the smallest one.

The numbers and the analysis are confirmed by different instances with slight variations.
There are of course instances in which the triangle method not only gives a better approxi-
mation, but is also fast enough. This is probably the case when the optimal solution is very
tightly approximated by the triangles and a small set of alternative quasi-optima is present.
However, the trend previously discussed does not change significantly.

Overall, the three methods all present advantages and drawbacks and a careful analysis
of the specific application should be used to decide which method is particularly suited for
it. This also strategically depends on the tradeoff between the quality of the approximation
(although as discussed no dominance can be proven in general) and the computational effort
one is ready to spend. It seems that the rectangle method offers a rather good compromise
for such a tradeoff and a quite stable computational behavior.

Acknowledgments

This work was supported by Università di Bologna, Project DecisOpElet 2006.

4.3.
C

O
M

P
A

R
IS

O
N

55

Table 4.2: Comparison with respect to the size of the MILP.

one-dimensional method triangle method rectangle method

variables # variables # variables

n m all binary # constraints # non-zeros all binary # constraints # non-zeros all binary # constraints # non-zeros

10 10 6,161 3,810 22,008 219,295 51,575 34,104 18,816 229,483 9,467 3,810 25,482 121,365
20 20 11,138 7,107 75,768 1,509,316 202,775 134,904 69,216 925,003 17,741 7,107 82,539 438,384
30 30 16,115 10,404 163,128 4,881,277 454,775 302,904 153,216 2,090,923 26,015 10,404 173,196 954,483
40 40 21,101 13,710 284,088 11,343,565 807,575 538,104 270,816 3,727,243 34,307 13,710 297,462 1,670,445
50 50 26,078 17,007 438,648 21,903,496 1,261,175 840,504 422,016 5,833,963 42,581 17,007 455,319 2,584,884

Table 4.3: MILP results with different time limits expressed in CPU seconds.

one-dimensional method triangle method rectangle method

Time solution % initial final CPU # solution % initial final CPU # solution % initial final CPU #
n m Limit value error %gap %gap time nodes value var %gap %gap time nodes value var %gap %gap time nodes

10 10 300 31,576.30 -3.80 12.25 — 2.00 158 31,576.30 -2.55 1.49 0.22 T.L. 7,684 31,576.30 -2.30 11.25 — 21.61 30,850
600 31,576.30 -3.80 12.25 — 2.00 158 31,576.30 -2.55 1.49 — 304.69 13,542 31,576.30 -2.30 11.25 — 21.61 30,850

20 20 300 31,611.60 -2.78 8.82 — 4.89 108 n/a n/a n/a n/a T.L. 1,121 31,613.80 -2.36 8.80 0.02 T.L. 13,557
600 31,611.60 -2.78 8.82 — 4.89 108 31,555.10 -2.33 1.40 0.60 T.L. 3,699 31,613.80 -2.36 8.80 0.01 T.L. 29,978

3,600 31,611.60 -2.78 8.82 — 4.89 108 31,582.00 -2.30 1.29 0.41 T.L. 35,382 31,613.80 -2.36 8.80 — 801.99 33,833
30 30 300 31,629.30 -2.69 10.62 — 12.59 441 n/a n/a n/a n/a T.L. 411 31,629.20 -2.34 10.53 0.05 T.L. 1,330

600 31,629.30 -2.69 10.62 — 12.59 441 n/a n/a n/a n/a T.L. 1,285 31,630.50 -2.34 10.52 0.01 T.L. 5,472
3,600 31,629.30 -2.69 10.62 — 12.59 441 31,475.10 -2.34 1.79 0.84 T.L. 4,310 31,630.50 -2.34 10.52 — 780.84 6,017

40 40 3,600 31,629.30 -2.61 13.10 — 37.56 1,080 n/a n/a n/a n/a T.L. 3,787 31,636.60 -2.33 12.88 — 1,534.82 6,370
50 50 3,600 31,636.80 -2.51 11.57 — 218.12 10,533 n/a n/a n/a n/a T.L. 1,697 31,639.50 -2.34 11.47 0.50 T.L. 11,354

56 CHAPTER 4. APPROXIMATING NON-LINEAR FUNCTIONS OF 2 VARIABLES

Chapter 5

NLP-Based Heuristics for MILP
problems

1

This chapter is dedicated to the description of ideas and preliminary computational results
on heuristics for Mixed Integer Linear Programming. The relationship between this topic and
this Ph.D. thesis will be clear soon.

Let us consider a standard MILP problem (see Section 1.1):

min cT x + dT y

Ax + By ≤ b

x ∈ X ∩ Z
n

y ∈ Y.

The feasible region of the continuous relaxation of this MILP is a convex set, more precisely a
polyhedron. However, the MILP problem presents a source of discontinuity and non-convexity,
represented by the integrality requirements. The feasibility problem, i.e. the problem aimed at
finding a feasible solution for MILP, is NP-hard (see [61]) and, sometimes, also a hard task in
practice. The feasibility problem can be mapped into the following Non-Linear Programming
(NLPf) problem:

min f(x) (5.1)

Ax + By ≤ b (5.2)

x ∈ X (5.3)

y ∈ Y, (5.4)

with f : R
n → R being a function such that:

f(x) =

{
0 if x ∈ Z

n

> 0 otherwise.

1This chapter summarizes ideas and discussions arising for an ongoing project involving Matteo Fischetti
(DEI, University of Padova), Antonio Frangioni (DI, University of Pisa), Andrea Lodi (DEIS, University of
Bologna) and Andreas Wächter (Department of Mathematical Sciences, IBM T.J. Watson Research Center,
Yorktown Heights, NY).

57

58 CHAPTER 5. NLP-BASED HEURISTICS FOR MILP PROBLEMS

In the case x ∈ {0, 1}n, i.e. all the integer variables are binary, an example of f(x) can be:

f(x) =

n∑

j=1

(xj(1 − xj)).

The plot of a single term of the summation is depicted in Figure 5.1 (a). It is a non-linear
concave function. In the general integer case, i.e. some of the integer variables are not binary,
it is possible to use, for example, the non-linear and non-convex function of Figure 5.1 (b):

f(x) =

n∑

j=1

(1 − cos(2πxj)).

The resulting problem NLPf is a non-convex NLP. In the context of this Ph.D. thesis, we

Figure 5.1: Examples of f(x) for (a) binary and (b) general integer variables.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.2 0.4 0.6 0.8 1

x(1 − x)

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 0 1 2 3 4 5

1 − cos(2πx)

(b)

tried to apply Non-Linear Programming techniques to MILP feasibility problem. It is well-
known that solving NLPs is a complicated issue, but the large improvements which involved
NLP solvers in the latest years might be exploited, together with MILP techniques, to solve
the MILP feasibility problem. However, as it is clear from Figure 5.1, this non-convex NLP
problem could be very nasty to deal with, expecially because of the presence of local minima.
For the moment we consider all the global minima of the function f(x) good, i.e. the minima
for which f(x) is 0, because we are looking for any feasible solution. The chapter is organized
as follows: in Section 5.1 we describe the Frank-Wolfe method [57], aimed at finding the
solution of an NLP problem with linear constraints and a quadratic objective function. We
show the relationship between this algorithm and the Feasibility Pump method [50], aimed
at finding heuristic solutions for MILP problems. In Section 5.2 we present computational
results on using NLP solvers to solve the problem NLPf and in Section 5.3 we show the
importance of diversification and randomness techniques. We apply standard MILP methods
in this context, such as cuts, to improve results (Section 5.4). Finally, in Section 5.5, we draw
conclusions and discuss future work directions.

5.1. THE NLP PROBLEM AND THE FRANK-WOLFE METHOD 59

5.1 The NLP problem and the Frank-Wolfe Method

The problem NLPf has a special structure. In particular, all the constraints are linear,
leading to a feasible region equivalent to a polyhedron. The only non-linearity present in the
model is the objective function. Special-purpose algorithms for this kind of NLP problems
were studied for more than fifty years. An example of such algorithms is the Frank-Wolfe
(FW) method, introduced in 1956 [57], which was originally proposed for problems with a
non-linear quadratic objective function (as in the binary special case above).

Let us consider the problem NLPf in the simplified form:

min f(x, y)

(x, y) ∈ S,

where S is a polyhedron (in our case, S = {(x, y) | Ax + By ≤ b, x ∈ X, y ∈ Y } and
f(x, y) = f(x)). The Frank-Wolfe algorithm solves this kind of problems (see Algorithm 4).
At step 2, an MILP problem is solved: z represents a vector of n× m variables and zk is the

Algorithm 4 The Frank-Wolfe algorithm.

1: Initial solution, (x0, y0) ∈ S. Set k := 0.
2: At each iteration k, determine a search direction, say, pk, solving an approximation of the

original problem obtained by replacing the function f with its first-order Taylor expansion
around (xk, yk):

min f(xk, yk) + ∇f(xk, yk)T (z −

[
xk

yk

]
)

z ∈ S,

set pk := zk −

[
xk

yk

]
.

3: Determine a step length αk, solving

min
α∈[0,1]

f(

[
xk

yk

]
+ αpk).

4: New iteration point:

(xk+1, yk+1) =

[
xk

yk

]
+ αkpk.

5: if terminating condition then
6: Stop!
7: ((xk+1, yk+1) is an approximation of (xopt, yopt).)
8: else
9: Set k := k + 1 and iterate 2.

10: end if

solution of the MILP problem at iteration k. At step 3, an unconstrained NLP problem is
solved: α is the unique variable, which is only bounded in the range [0, 1].

Let us consider the binary case, say, NLPf01, for which we use f(x) =
∑n

j=1(xj(1− xj)).
The Frank-Wolfe algorithm seems to be suitable for NLPf01 and a modified version of it is

60 CHAPTER 5. NLP-BASED HEURISTICS FOR MILP PROBLEMS

given by Algorithm 5. Note that, even if yk is not present in the objective function of the

Algorithm 5 The Frank-Wolfe algorithm for NLPf01.

1: Initial solution, (x0, y0) ∈ S. Set k := 0.
2: At each iteration k, determine a search direction, say, pk, solving an approximation of the

original problem obtained by replacing the function f with its first-order Taylor expansion
around (xk, yk):

min
n∑

j=1

(xk
j (1 − xk

j)) +
n∑

j=1

(1 − 2xk
j)(zj − xk

j)

z ∈ S,

set pk := zk −

[
xk

yk

]
.

3: Determine a step length αk, solving

min
α∈[0,1]

n∑

j=1

(xk
j + αpk

j)(1 − (xk
j + αpk

j)).

4: New iteration point:

(xk+1, yk+1) =

[
xk

yk

]
+ αkpk.

5: if terminating condition then
6: Stop!
7: ((xk+1, yk+1) is an approximation of (xopt, yopt).)
8: else
9: Set k := k + 1 and iterate 2.

10: end if

problem of step 2, the direction is taken also for the m components of z which are involved
in the constraints. Observe that the problem of step 2, in the case that xk is binary, can be
rewritten in the following way:

min
∑

j∈{1,...,n}:xk
j =0

zj +
∑

j∈{1,...,n}:xk
j =1

(1 − zj)

z ∈ S.

The objective function resembles the one used for the Feasibility Pump (FP) algorithm, see
[50]. This algorithm has similarities with the FW algorithm. In Algorithm 6 we present the
FP algorithm in order to compare it with the particular FW method given in Algorithm 5
(see also Eckstein and Nediak [46] for further considerations about the relationship between
these two algorithms). Note that the terminating condition include both iterations/time limit
and the feasibility test, i.e. if the solution is feasible for the MILP problem, the algorithm
stops.

The main difference between the two methods is that the FW algorithm generates a
sequence of points (xk, yk) which stays inside the set S and the FP algorithm generates two

5.1. THE NLP PROBLEM AND THE FRANK-WOLFE METHOD 61

Algorithm 6 The Feasibility Pump (heuristic) algorithm for MILP problems with binary
variables.
1: Initial solution, (x0, y0) ∈ S. Set k := 0.
2: Solve

min
∑

j∈{1,...,n}:xk
j =0

zj +
∑

j∈{1,...,n}:xk
j =1

(1 − zj)

z ∈ S

obtaining zk.
3: New iteration point:

xk+1
j = [zk

j] ∀j ∈ {1, . . . , n},

and
yk+1

j = zk
j+n ∀j ∈ {1, . . . ,m},

where [zk
j] is the rounding to the nearest integer of the j-th component of solution zk of

the previous step.
4: if xk+1 = xk then
5: Flip the rand(T/2, 3T/2) entries xj (j = 1, . . . , n) with highest |zk

j − xk+1
j |.

6: end if
7: if terminating condition then
8: Stop!
9: (If no iterations/time limit was reached, (xk+1, yk+1) is a feasible solution for MILP.)

10: else
11: Set k := k + 1 and iterate 2.
12: end if

sequences of points zk and (xk, yk). The first sequence stays inside the set S and can be
viewed as the sequence generated by FW always taking the maximum step length possible,
i.e. α = 1. The second sequence always stays outside the set S until a MILP feasible solution
is found, but always satisfies the integrality requirement. We can imagine this second sequence
as generated by a FW method applied to a relaxation of the MILP problem:

min
∑

j∈{1,...,n}:xk
j =0

zj +
∑

j∈{1,...,n}:xk
j =1

(1 − zj)

z ∈ {0, 1}n+p.

This is a sort of diversification step with respect to the FW method. Also step 5 is a diversi-
fication phase: when the algorithm cycles (xk+1 = xk), the solution is modified randomly. It
is a random restart to go far away from a cycling situation.

Now we want to understand if these considerations can be extended to the general integer
case. Let us consider the function:

f(x) =
n∑

j=1

(1 − cos(2πxj)).

62 CHAPTER 5. NLP-BASED HEURISTICS FOR MILP PROBLEMS

Table 5.1: Comparison among different NLP solvers used for solving problem NLPf .
Solver # solutions found # not terminated # non integer
filter 13 13 34
ipopt 13 7 40
knitro 14 6 40
lancelot 6 28 26
loqo 6 34 20
minos 12 13 35
pennon 15 13 32
snopt 12 13 35

The objective function of step 2 of Algorithm 4 would be:

min
n∑

j=1

(1 − cos(2πxk
j)) +

n∑

j=1

(2π sin(2πxk
j)(zj − xk

j)) = 0

for xk integer, so the straightforward extension to the general integer case seems not to be
interesting.

The FP algorithm was extended to the general integer case by Bertacco et al. [16]. In
that case the relationship between FP and FW is by far less clear and the FP algorithm needs
more involved (and sometimes time consuming) mechanism than in the binary case.

5.2 Solving NLPf directly by using different NLP solvers

The first tests were performed using NLP solvers to solve the NLPf problem. Different
types of NLP solvers are available (see Chapters 1 and 8 for details) and can be used. We
decided to try to compare the performance of the different NLP solvers implementing the
model under AMPL environment (see Chapter 8) and using the 60 instances of the standard
Miplib2003 library (see [4]) as testbed. We used AMPL in order to have the same interface
for different NLP solvers which can be accessed through the Kestrel feature of NEOS, the
server for Optimization from which the user can access to different kind of solvers for different
classes of optimization problems (see [96] and Chapter 8 for details).

In Table 5.1 we reported the results for 8 different NLP solvers using their default options.
We reported the name of the solver (Solver), the number of instances for which a MILP feasible
solution was found, over 60 instances (# solutions found), the number of instances for which
the solver encountered numerical or memory difficulties (# not terminated) and the number
of instances for which no MILP feasible solution was found within the time limit (# non
integer). From the results it is clear that the solvers which performs better are knitro [33]
and ipopt [123] because they provide a good compromise between number of MILP feasible
solution found and reliability from a memory/numerical viewpoint. On the other hand, also
pennon is able to find a high member of feasibility solutions but has a less stable behavior, i.e.
almost double number of instances in which encountered numerical or memory difficulties. In
the next section we will use the trunk version of ipopt to perform our tests because we prefer
to use an open-source software in order to be able to control and modify it for our special
class of problems.

5.3. THE IMPORTANCE OF RANDOMNESS/DIVERSIFICATION 63

5.3 The importance of randomness/diversification

In Feasibility Pump the randomness plays a fundamental role: step 5 of Algorithm 6 is
performed for the 66% of the instances. In order to fairly compare our results with the
FP ones, we decided to add the randomness/diversification ingredient in our method using
different starting points. They, in general, depends on the value of the continuous (LP)
relaxation of the MILP problem:

sp 1: The optimal solution of the continuous relaxation of the MILP obtained using the
baropt algorithm.

sp 2: Like sp 1, but with other options.

sp 3: Like sp 1, but using the dualopt algorithm.

sp 4: Like sp 1, but using the lpopt algorithm.

sp 5: Like sp 1, but using the primopt algorithm.

sp 6: The combination of the optimal solution of the continuous relaxation of the MILP
and the optimal solution of the continuous relaxation of the MILP in which the objective
function has been inverted, using a 0.5 weight for the solutions (see Figure 5.2). The
algorithm used is baropt.

sp 7: Like sp 6, but with other options.

sp 8: Like sp 6, but using a randomly defined weight.

sp 9: Like sp 8, but using a randomly defined weight for each element of the solution.

sp 10: A randomly generated solution.

Figure 5.2: sp 6-sp 9 are the combination of solutions (1.4, 1.2) and (3.2, 3.7) represented by
one point of the line linking the two points.

Figure 5.2 depicts the feasible region of a simple problem, i.e. the light blue area. Assume
that points (1.4, 1.2) and (3.2, 3.7) are the optimal solutions of the continuous relaxation

64 CHAPTER 5. NLP-BASED HEURISTICS FOR MILP PROBLEMS

of the MILP problem and of the continuous relaxation in which the objective function has
been inverted, respectively. The point of the black segment linking the two points are the
possible starting points, obtained using different weights for the combination. In Table 5.2
we report, in the first part of the table, the results at iteration 1, i.e. just solving one NLPf

problem, using one of the starting points presented. The second part of the table (the last
five rows) shows the results for sp 10 at different iterations, from 1 to 8. At each iteration
a different (randomly generated) starting point is given to the NLP solver. The first column
is the starting point type used, the second the number of iterations which the results are
referred to, then the number of instances for which a MILP feasible solution was found (#
solutions found), for which the NLP solver encountered numerical/memory problems (# not
terminated) and for which no MILP feasible solution was found within the time limit (# non
integer). The results show that changing the starting point can make a relevant difference.

Table 5.2: Results using different starting points.
Starting Point iter # # solutions found # not terminated # non integer
sp 1 1 5 3 52
sp 2 1 9 3 48
sp 3 1 8 3 49
sp 4 1 8 4 48
sp 5 1 6 3 51
sp 6 1 23 4 33
sp 7 1 21 11 28
sp 8 1 21 4 45
sp 9 1 17 5 38

1 14 - -
3 16 - -

sp 10 5 18 - -
6 19 - -
8 21 3 37

In particular, very good results are obtained using the combination of the optimal solution of
the LP relaxation and of the “inverted-direction” objective function LP relaxation. This can
be explained in the following way: the combination of these two solutions has a high chance
to be in the interior of the polyhedron. This means that the local solution obtained by the
NLP solver has a higher chance to be a MILP feasible point or close to it, because the starting
point is not necessary in the boundary like in cases sp 1-sp 5. Of course, the solution found
in this way might be not very close to the optimal solution of the MILP problem, but this is
not what we are concerned at the moment.

5.4 Apply some MILP techniques

If no problems are encountered during the NLP execution, the provided solution satisfies all
the constraints, but the integer requirements. In the previous section we proposed to give to
the NLP solver, at each iteration, a different starting point in order to end up with a different
solution. Another possibility, taken from MILP methods, to obtain a different solution in the
next iteration is adding a valid cut. In particular, we generate a Chvátal-Gomory cut (see
[52]) cutting off the fractional solution obtained at iteration k by the solver. Cutting that
solution would lead us, in the next iteration, to a solution which is different from the previous
one. Figure 5.3 shows the plot of xj(1 − xj) for a single term xj supposed to be binary. We
suppose also that, considering the constraints of our MILP problem, the feasible range of xj

is [0, 0.8]. If the starting point given to the NLP solver is, for example, 0.6, the NLP solver

5.5. FINAL CONSIDERATIONS AND FUTURE WORK 65

might end up with a solution with xj = 0.8. At this point we would like to find a valid cut
which excludes for xj the range [0.5, 0.8] so as the NLP solver would naturally go to the local
minimum to xj = 0 in the next iteration. Of course, this would be the ideal case and the
Chvátal-Gomory cut is in general not doing the job in just one shot.

Figure 5.3: An ideal cut should make the range [0.5, 0.8] infeasible.

In Tables 5.3 and 5.4 we show the behavior of our experiments for instances gesa2-o

and vpm2, respectively: at each iteration a Chvátal-Gomory cut is added when a fractional
solution is provided by the NLP solver. In the first table the impact obtained by adding a
cut on the value of f(x) is evident. Function f(x) gives a measure of the integer infeasibility
of the solution provided by the NLP solver and, as shown in Table 5.3, at each iteration it
decreases and at iteration 3 a MILP feasible solution is found. Table 5.4 shows that adding a
cut can also bring to an increase of the infeasibility of the solution provided by the NLP, but
also in this case a MILP solution is found in few iterations. Of course, this technique is not

Table 5.3: Instance gesa2-o
Iteration # f(x)

1 0.818001
2 0.091539
3 0.000001

Table 5.4: Instance vpm2
Iteration # f(x)

1 0.064632
2 0.166161
3 0.145310
4 0.000000

always as effective as in these two cases, however we think that combining NLP and MILP
techniques can lead to a good exploitation of the advantages of both the methods.

5.5 Final considerations and future work

In the previous sections we experimented on how to integrate NLP and MILP techniques
to solve the MILP feasibility problem. We proposed to treat the intrinsic non-convexity of
MILP problems as a non-linear objective function, obtaining a non-convex NLP problem, and
observed similarities among the Feasibility Pump algorithm, addressed to MILP problems,
and the Frank-Wolfe algorithm, addressed to NLP problems with linear constraints. We
experimented different solvers to obtain a solution of the non-convex NLP. Using an NLP

66 CHAPTER 5. NLP-BASED HEURISTICS FOR MILP PROBLEMS

solver with different starting points (see Section 5.3) we obtained a MILP feasible solution
for 29 over the 60 instances of the Miplib2003 (5 over 15 considering only the general integer
instances). For 24 over the 45 binary instances we were able to find a MILP feasible solution
at the first iteration. This happens for Feasibility Pump heuristic only 8 times. Of course, an
iteration of our algorithm is much more expensive than an FP iteration, but improvements
on this side are possible. Another potential issue is that our problem NLPf can have lots
of local minima (see, for example, Figure 5.4) which are not global optima, i.e. they do not
have value 0. When the NLP solver ends up with a fractional solution, one possibility is to
rerun the NLP solver with a different starting point. Another possibility to escape from local
minima is applying MILP techniques to cut them in the next iterations, as shown in Section
5.4.

Figure 5.4: NLPf can have lots of local minima.

0

1

2

3

0

1

2

3

0

20

40

We presented preliminary results, with the main goal of understanding the relationship
among the MILP and NLP building blocks and their intrinsic difficulties. First of all we
want to focus on the general integer instances, because, for the binary case, very effective
heuristics have already been proposed. We plan to try to identify specialized cuts, linear or
non-linear because we solve an NLP problem without exploiting, for the moment, the fact
that the constraints of the NLP are all linear. As seen from the computational results, the
randomness/diversification step plays a fundamental role. For this reason, it would be inter-
esting to study different and more specific techniques to systematically exploit randomness
and diversification. The results presented in Section 5.3 using different starting points were
useful also to observe that using starting points which stay in the interior of the feasible region
helps the solver. Considering this, it would be useful helping the solver to go away from the
barrier of the feasible region penalizing in some way the points lying in it. In a second phase,
as we already mentioned, we want to diversify the different global optima, i.e. do not treat in
the same way all the MILP feasible solutions, but penalize the solutions which have a large
value of the original objective function.

Part III

Applications

67

Chapter 6

Hydro Scheduling and Unit
Commitment

1

Nomenclature

Sets

T = {1, . . . , t} = set of time periods considered;
J = {1, . . . , n} = set of turbine-pump units.

Parameters

It = predicted water inflow in period t (t ∈ T) [m3/s];
Πt = unit price of the power generated/consumed in period t (t ∈ T) [e /MWh];
∆t = period duration [hours];
Cj = startup cost of unit j as a turbine (j ∈ J) [e];
Dj = startup cost of unit j as a pump (j ∈ J) [e];
Q

j
, Qj = min and max flow value in turbine j (j ∈ J) (when the turbine is on) [m3/s];

P j = max power produced by turbine j (j ∈ J) [MW];
∆q−,∆q+ = max ramp down and ramp up [m3/s];
V , V = min and max water volume in the basin [m3];
V0 = water volume in the basin in period 0 [m3];
Vt = target (final) water volume in the basin [m3];
S = max water spillage [m3/s];
Wj = water needed to start up turbine j (j ∈ J) [m3/s];
Yj = water needed to start up pump j (j ∈ J) [m3/s];
Ej = energy needed to start up pump j (j ∈ J) [MWh];
Qj0 = flow in turbine j in period 0 (j ∈ J) [m3/s];
Gj0 = status of turbine j in period 0 (j ∈ J) [1 on, 0 off];

1The results of this chapter appears in: A. Borghetti, C. D’Ambrosio, A. Lodi, S. Martello, An MILP
Approach for Short-Term Hydro Scheduling and Unit Commitment with Head-Dependent Reservoir, IEEE

Transactions on Power Systems, 23(3), 1115–1124, 2008 [28].

69

70 CHAPTER 6. HYDRO SCHEDULING AND UNIT COMMITMENT

Uj0 = status of pump j in period 0 (j ∈ J) [1 on, 0 off];
Q−

j = flow pumped by pump j (j ∈ J ;Q−
j < 0) [m3/s];

P−
j = power consumed during pumping by pump j (j ∈ J ;P−

j < 0) [MW];

Θ = min released water in each period [m3/s].

Variables

qjt = water flow in unit j in period t (j ∈ J, t ∈ T), with qj0 = Qj0 [m3/s];
vt = water volume in the basin in period t (t ∈ T), with v0 = V0 [m3];
pjt = power generated or consumed by unit j in period t (j ∈ J, t ∈ T) [MW];
st = spillage in period t (t ∈ T) [m3/s];
wjt = shutdown phase of turbine j in period t (j ∈ J, t ∈ T) [1 if it is shutdown, 0 otherwise];
w̃jt = startup phase of turbine j in period t (j ∈ J, t ∈ T) [1 if it is started up, 0 otherwise];
gjt = status of turbine j in period t (j ∈ J, t ∈ T), with gj0 = Gj0 [1 on, 0 off];
yjt = shutdown phase of pump j in period t (j ∈ J, t ∈ T) [1 if it is shutdown, 0 otherwise];
ỹjt = startup phase of pump j in period t (j ∈ J, t ∈ T) [1 if it is started up, 0 otherwise];
ujt = status of pump j in period t (j ∈ J, t ∈ T), with uj0 = Uj0 [1 on, 0 off].

Some additional parameters and variables, introduced to linearize the model, are defined in
Section 7.2.

6.1 Introduction

We consider a price-taker generating company that wants to optimize the operation of a
pump-storage multi-unit hydro power station for a given time horizon, typically one day or
one week. The problem is to determine the commitment and the power generation of the
plant so as to maximize the revenue given by power selling. All the units of the plant are
assumed to be fed by the same reservoir. We assume that inflows and prices are known as
previously forecasted.

Several approaches have been proposed for the solution of this problem. For an exhaustive
overview we refer the reader to the recent survey [103]. In [106] the problem was formulated
as a simple Linear Programming (LP) model by neglecting costs and constraints relevant
to start-ups and shutdowns. In [35] a Non-Linear Programming (NLP) model with some
simplified assumption was introduced. Ad-hoc heuristics were proposed by several authors,
such as [117] and [101]. In [88] a multistage looping optimization algorithm was proposed
for the development of the optimal bidding strategies of an individual pumped-storage unit
owner in a competitive electricity market. In [49] the large-scale mixed-integer NLP problem
of determining the optimal scheduling of hydropower plants in a hydrothermal interconnected
system is considered: the authors use Lagrangian relaxation decomposition strategies, and a
sequential quadratic programming algorithm to solve non-linear subproblems. Various Mixed
Integer Linear Programming (MILP) approaches have been presented in the literature: for
example, [37] and [38] used the Interior Point method within a Branch-and-Bound algorithm,
while [11], [59], [60] and [39] used the Ilog-Cplex [71] MILP solver under GAMS.

Although we limit the analysis to the case of a single reservoir, the problem is especially
interesting because both of its practical relevance and of the difficulties induced by its non-
linear aspects, namely the relationship between the unit electrical power output and the

6.2. MATHEMATICAL MODEL 71

corresponding water flow derived from the reservoir, particularly if the so called head effect,
i.e., the influence on power production of the water level in the reservoir, has to be taken into
account. We focus on the modeling of this non-linear characteristic, and show how it can be
efficiently and accurately dealt with by using MILP techniques. Indeed, the high efficiency
of modern MILP software tools, both in terms of solution accuracy and computing time,
encourage their use also in the solution of non-linear problems.

The proposed MILP model allows one to accurately represent the main technical and
operating characteristics of a pump-storage multi-unit hydro power plant, and turns out to
be computationally solvable for a planning horizon of one week. For the general structure
of the MILP model, we follow the one proposed in [39]. The differences mainly refer to the
following aspects: (i) the proposed model takes into account some additional characteristics
of the hydro units, such as ramp transition constraints and pump-storage operating mode;
(ii) we introduce a more sophisticated modeling of the head effect through a specialized
approximation methodology (based on two dimensional considerations) for the relationship
among power, volume and flow.

The chapter is organized as follows. In Sections 6.2.1 and 6.2.2 we give the main com-
ponents of the proposed model, with special emphasis on costs and constraints related to
turbine and pump startups and to the linearization of the relationship between power and
water flow. The most sophisticated version of the model, which allows a tight representation
of the head effect, is presented in Section 6.3. The model is then computationally evaluated
in Section 6.4 through experiments on real-world data. Instances where the pumps have pro-
hibited zones are also evaluated. Conclusions and directions for future researches are finally
given in Section 6.5.

6.2 Mathematical model

In our nomenclature all parameters are represented by upper capitals and all variables by
lower capitals.

Preliminary observe that the parameters allow one to handle the pump start up in the two
typical ways. If unit j is started up as a pump by using another turbine of the power plant,
then there is no energy consumption, but the relevant water spillage is taken into account.
The opposite holds if pump j is started up by using the energy provided by the external
power network. In other words, the input has either Ej = 0 (in the former case) or Yj = 0
(in the latter).

Note in addition that the first four variables are subject to the following obvious bounding
constraints, for all t ∈ T and j ∈ J :

Q−
j ≤ qjt ≤ Qj;

V ≤ vt ≤ V ;

P−
j ≤ pjt ≤ P j;

0 ≤ st ≤ S,

and that, for any period t, the values of qjt and pjt depend on the three possible cases that
can occur relative to turbine-pump unit j:

TP10: if unit j is generating power (i.e., gjt = 1 and ujt = 0) then both values are positive;

72 CHAPTER 6. HYDRO SCHEDULING AND UNIT COMMITMENT

TP01: if unit j is pumping water (i.e., gjt = 0 and ujt = 1) then both values are negative;

TP00: if unit j is not operating (i.e., gjt = ujt = 0) then both values are zero.

The model we propose aims at maximizing the sum, over all periods, of the profit given
by power selling, minus the start-up cost of each turbine-pump unit (if it occurs). Formally,
this is represented by the linear objective function:

max
∑

j∈J

∑

t∈T

(
∆t Πt pjt − Cj w̃jt − (Dj + ΠtEj)ỹjt

)
. (6.1)

Note that the first term can take a negative value when the unit works as a pump.

The model can be logically subdivided into a set of “naturally” linear constraints and a
set of non-linear constraints, that are linearized in order to handle the model through MILP
techniques.

Section 6.2.1 reports the set of “naturally“ linear constraints. Sections 6.2.2 and 6.3 are
devoted to the treatment of the non-linear relationship between power production and water
flow. In particular, we report in Section 6.2.2 an extension of the model of [39] and in Section
6.3 an enhanced version to better take into account the head effect.

6.2.1 Linear constraints

The relationships among flow, volume and pumps/turbines status can be modeled through
the following linear constraints:

vt − Vt = 0 (6.2)

vt − vt−1 − 3600∆t (It −
∑

j∈J

qjt − st) = 0 ∀t ∈ T (6.3)

qjt − (Q−
j ujt + Q

j
gjt) ≥ 0 ∀j ∈ J, t ∈ T (6.4)

qjt − (Q−
j ujt + Qj gjt) ≤ 0 ∀j ∈ J, t ∈ T (6.5)

∑

j∈J

(qjt − qj(t−1)) + ∆q− ≥ 0 ∀t ∈ T (6.6)

∑

j∈J

(qjt − qj(t−1)) − ∆q+ ≤ 0 ∀t ∈ T (6.7)

st −
∑

j∈J

(Wj w̃jt + Yj ỹjt) ≥ 0 ∀t ∈ T (6.8)

∑

j∈J

qjt + st − Θ ≥ 0 ∀t ∈ T (6.9)

gjt − gj(t−1) − (w̃jt − wjt) = 0 ∀j ∈ J, t ∈ T (6.10)

w̃jt + wjt ≤ 1 ∀j ∈ J, t ∈ T (6.11)

ujt − uj(t−1) − (ỹjt − yjt) = 0 ∀j ∈ J, t ∈ T (6.12)

ỹjt + yjt ≤ 1 ∀j ∈ J, t ∈ T (6.13)

gjt + ukt ≤ 1 ∀j, k ∈ J, t ∈ T (6.14)
∑

j∈J

ujt ≤ n − 1 ∀t ∈ T. (6.15)

6.2. MATHEMATICAL MODEL 73

Constraint (6.2) sets the final water volume to the desired target value at the end of
the considered time horizon t. Constraints (6.3) impose the water conservation within two
consecutive time periods. Constraints (6.4) and (6.5) establish lower and upper bounds on
the flows in the turbines according to the three cases discussed above. Constraints (6.6) and
(6.7) limit the flow variation within two consecutive periods. Constraints (6.8) impose the
water spillage needed to startup a pump or a turbine. Constraints (6.9) establish a lower
bound on the amount of water released in each period. Constraints (6.10) and (6.11) (resp.
(6.12) and (6.13)) define the switch-on/switch-off rules of the turbines (resp. of the pumps).
Constraints (6.14) impose that, if a turbine is on, no pump can be on and vice versa. Finally,
constraints (6.15) are only introduced if the pumps startup method is to use the turbines: at
least one pump is off because there are no turbines available to startup the last pump.

Note that an equivalent model could be obtained (see [34]) by eliminating the shutdown
variables wjt and yjt, and replacing constraints (6.10)–(6.13) with:

gjt − gj(t−1) − w̃jt ≤ 0 ∀j ∈ J, t ∈ T (6.16)

ujt − uj(t−1) − ỹjt ≤ 0 ∀j ∈ J, t ∈ T . (6.17)

Indeed, the objective function (6.1) ensures that in any optimal solution the startup variables
w̃jt (resp. ỹjt) take the value 1 only if gjt − gj(t−1) = 1 (resp. ujt − uj(t−1) = 1). The
resulting model is smaller, but this does not guarantee a better performance. Indeed, the
two LP relaxations are identical, and the behavior of the MILP solver is unpredictable. As
a matter of fact, for the benchmarks used in our experiments, the smaller model turned out
to be equivalent to the larger one for the easy instances, but definitely worse for the difficult
ones.

6.2.2 Linearizing the power production function

The performance of a hydro turbine depends on the rate of water discharge and on the net
hydraulic head. The value of the net head depends on the water level in the reservoir, the
tail-race level and the penstock losses (that are a function of the water flow). It follows
that the power generated from a hydro unit is related to the water flow and the reservoir
characteristics. For a generic hydro generator unit, the power output p can be expressed as a
non-linear function ϕ of the water flow q and the water volume v in the reservoir, by including
the non-linear relationship that links the net head value to the water volume and the water
flow, as well as to the electric loss of the generator, i.e.,

p = ϕ(q, v). (6.18)

(Note however that each unit will be characterized by a specific ϕ function.)
Even for a prefixed volume ṽ, the power production, as a function of the water flow, is non-

linear and non-concave. Net head variation can only be ignored for relatively large reservoirs,
in which case power generation is solely dependent on the water flow. (An example of (6.18)
is provided in [101].)

An accurate approximation of ϕ is crucial for modeling the head effect. In [39] the function
was approximated by considering a fixed number (three) of water volumes, say ṽ1, ṽ2, ṽ3 and
interpolating, for each ṽr, the resulting function

p = ϕ|
evr (q) (6.19)

74 CHAPTER 6. HYDRO SCHEDULING AND UNIT COMMITMENT

by piecewise linear approximation. To our knowledge, this has been the first successful mod-
eling of the head effect. Indeed, a more accurate approximation of (6.18) through meshing
and triangulation, proposed in [59], proved to be only suitable for small systems (see [60]).

We describe the improvement we propose for approximating (6.18) in two steps. In the
present section we show how to (i) slightly generalize the approach in [39] to a parametric
number of water volumes through a classical use of binary variables, and (ii) tighten the linear
programming relaxation of the model through a more precise estimation of the upper bound
on the power production. The second step, undertaken in the next section, introduces an
accurate evaluation of the power production corresponding to intermediate water volumes.

While in [39] the piecewise linear approximation was formulated through the incremental
method, we adopted the convex combination method which is mathematically equivalent (see,
e.g., [75]) but allows a more intuitive explanation of the enhanced linearization that will be
introduced in Section 6.3. We consider r volume intervals and z coordinates (breakpoints)
along the flow axis. Let R = {1, . . . , r} and Z = {1, . . . , z}. Let us introduce the following
additional parameters:

[Hr−1,Hr) = extreme water volumes for interval r (r ∈ R) [m3];

Qji = flow in turbine j at breakpoint i (j ∈ J, i ∈ Z) [m3/s];

Pjir = power from turbine j at breakpoint i for interval r (j ∈ J, i ∈ Z, r ∈ R) [MW];

∆Pjr = maxi∈Z{Pjir − Pjir} (j ∈ J, r ∈ R) [MW],

where the last value, introduced for ease of notation, represents the maximum power difference
between intervals r and r. Figure 6.1 depicts, for a given water volume, a classical power-flow
characteristic of a turbine (dotted line) and its piecewise-linear approximation obtained with
four breakpoints (solid line).

p

q

Piecewise-linear approximation
Turbine p − q characteristic

Figure 6.1: The simple approximation

Our linearization technique makes use of the following variables:

dtr = membership status of volume vt wrt interval r [1 if Hr−1 ≤ vt < Hr, 0 otherwise]
(t ∈ T, r ∈ R);

6.2. MATHEMATICAL MODEL 75

zjti = contiguity status of qjt wrt to discretized flow Qji [1 if Qj(i−1) < qjt ≤ Qji or
Qji ≤ qjt < Qj(i+1), 0 otherwise] (j ∈ J, t ∈ T, i ∈ Z);

λjti = weight of breakpoint i for turbine j in period t (j ∈ J, t ∈ T, i ∈ Z),

where the last variable must obey

0 ≤ λjti ≤ 1.

The following constraints complete model (6.1)–(6.15) by approximating the power pro-
duction function (6.18) with a parametric number of water volumes:

qjt −
∑

i∈Z

Qjiλjti − Q−
j ujt = 0 ∀j ∈ J, t ∈ T (6.20)

∑

i∈Z

λjti − gjt = 0 ∀j ∈ J, t ∈ T (6.21)

λjti − zjti ≤ 0 ∀j ∈ J, t ∈ T, i ∈ Z (6.22)

zjti + zjtk ≤ 1 ∀j ∈ J, t ∈ T,

∀i, k ∈ Z : i < k − 1 (6.23)∑

r∈R

dtr = 1 ∀t ∈ T (6.24)

pjt −
∑

i∈Z

Pjirλjti − P−
j ujt − ∆Pjr(1 − dtr) ≤ 0 ∀j ∈ J, t ∈ T, r ∈ R (6.25)

vt −
∑

r∈R

Hr−1dtr ≥ 0 ∀t ∈ T (6.26)

vt −
∑

r∈R

Hrdtr ≤ 0 ∀t ∈ T . (6.27)

Equations (6.20)–(6.23) express the water flow qjt of turbine/pump j in period t in the
three possible cases seen in Section 7.2. If ujt = 0, the pump is off and the flow is either
zero (if the turbine is off as well, case TP00) or a convex combination of breakpoint flows
(case TP10); otherwise the pump is on (so gjt = 0 from (6.14)) and there is a constant
negative flow Q−

j (case TP01). Observe indeed that constraints (6.22)–(6.23) are inactive
when gjt = 0 (due to (6.21)), so the first and third case are directly modeled by (6.20). If
instead gjt = 1 constraints (6.21) impose that the breakpoint weights sum up to one. Due
to constraints (6.22), any λjti can only be non-zero if the corresponding binary variable zjti

is one. It follows that constraints (6.22) and (6.23) together ensure that: (i) at most two
weights can take a positive value, and (ii) if this occurs for exactly two weights then they
must be contiguous. In summary, the overall effect of constraints (6.20)–(6.23) is that qjt is
either a constant negative value Q−

j (case TP01), or null (case TP00), or a piecewise linear
approximation (case TP10).

Similarly, equations (6.24)–(6.25) express the power pjt of turbine/pump j in period t for
volume interval r, in the same three cases. Due to (6.24), all dtr’s are zero but one. Hence, in
the unique volume interval, say r̃, for which dter = 1, the last term of (6.25) takes the value 0
and (6.25) itself assumes the same form as (6.20), but with powers instead of flows. It follows

76 CHAPTER 6. HYDRO SCHEDULING AND UNIT COMMITMENT

that the same considerations used above ensure that equation (6.25) model the three possible
cases. The only difference is in the ‘≤’ sign, which is adopted here, instead of ‘=’. However:
(i) this has no effect on the power production, since the objective function (6.1) ensures the
constraint tightness; (ii) for all the other volume intervals r 6= r̃, for which dtr = 0, the
last term of (6.25) takes the value ∆Pjr, thus deactivating the constraint. Finally, equations
(6.26)–(6.27) define, for each time period t, the two extreme water volumes of the interval
where the computed volume vt lies.

Constraints (6.25) are the crucial difference with respect to the way (6.18) is approximated
in [39]:

(i) it is obvious that increasing the number of volume intervals improves the approximation.
However, as shown in Section 6.4, this number cannot be increased too much in practice
without making the model too big to be handled within reasonable CPU times;

(ii) constraints (6.25) could be de-activated (as in [39]) by using the overestimated constant
value P j instead of ∆Pjr. It is known however that adopting tighter values highly
strengthens the linear programming relaxation (as confirmed by the computational ex-
periments of Section 6.4).

6.3 Enhancing the linearization

In the model of the previous section, for any volume vt belonging, say, to the r-th inter-
val [Hr−1,Hr), the power production is approximated through a prefixed (static) value Pjir

depending on the turbine and the breakpoint (see (6.25)). The accuracy obtainable in this
way heavily depends on the number r + 1 of water volumes Hr (corresponding to r volume
intervals). Such a number, however, cannot be too high without substantially affecting the
computational effort. We next show how a good approximation can be obtained by keeping r
at an effective low value by introducing an enhanced linearization that corrects the estimated
power production through two dimensional considerations.

In the enhanced model, for a volume vt, belonging, say, to interval [Hr−1,Hr), instead of
approximating the power production by selecting a point on a single piecewise linear function,
we approximate it through a weighted combination of values computed for the two extremes
Hr−1 and Hr. Let us introduce the power excursion, for turbine j and breakpoint i, between
intervals r and r + 1,

∆Pjir = Pji(r+1) − Pjir (j ∈ J, i ∈ Z, r ∈ R) [MW],

and the quantity

∆P jir = maxk∈Z{Pjk(r+1) − Pjkr} − ∆Pjir (j ∈ J, i ∈ Z, r ∈ R) [MW]

(with Pji(r+1) = Pjir), which is used to de-activate constraints, as will be shown below.
Moreover, the enhanced model requires the additional variables

d′tr = dtr(vt − Hr−1)/(Hr − Hr−1) (t ∈ T, r ∈ R)

to represent the weight used for combining the values computed for the two extremes of
volume interval r.

6.3. ENHANCING THE LINEARIZATION 77

Hr

Hr−1

vt

pjt

Qjk

Qj(k+1)qjt

P 1

P 2

a

c

b

d

Piecewise-linear approximation
Turbine p − q characteristic

Correction

Figure 6.2: The enhanced approximation

The enhanced linearized power production function is then computed by equations (6.20)–
(6.24), and:

d′tr − dtr ≤ 0 ∀t ∈ T, r ∈ R (6.28)

pjt − P−
j ujt − P jgjt ≤ 0 ∀j ∈ J, t ∈ T (6.29)

pjt −

(
∑

k∈Z

Pjkrλjtk + ∆Pjird
′
tr

)
−

(
∆Pjr(1 − dtr)+

∆P jir(1 − zjti)

)
≤ 0∀j ∈ J, t ∈ T, r ∈ R, i ∈ Z (6.30)

vt −
∑

r∈R

(
Hr−1dtr + (Hr − Hr−1)d

′
tr

)
= 0∀t ∈ T, (6.31)

which replace (6.25)–(6.27).

Equations (6.28) ensure that, for any time period t, the only non-zero weight d′tr can occur
for the unique interval r for which dtr = 1 (see (6.24)). As a consequence, in the summation
of equations (6.31) the only non-zero term must be equal to the value of vt (given by (6.3)),
thus uniquely determining the corresponding value d′tr = (vt − Hr−1)/(Hr − Hr−1).

Equations (6.29) are only active when turbine j is off in period t. They thus define the
(negative) power consumption due to pump j (case TP01 of Section 7.2), possibly equal to
zero if pump j is off as well (case TP00).

Similarly, equations (6.30) are only active when turbine j is on in period t (case TP10),
since otherwise equations (6.29) impose a negative upper bound P−

j on pjt, hence dominating

78 CHAPTER 6. HYDRO SCHEDULING AND UNIT COMMITMENT

any non-negative upper bound produced by (6.30). When active, they determine the (positive)
upper bound on the power production, tighter than the one imposed by (6.29), which is just
the variable upper bound P j . As previously observed, pjt will exactly match such a bound,
since the objective function (6.1) maximizes the power production. Note that in case TP10 the
two terms within brackets of (6.30) play the same role as the second and fourth term of (6.25),
respectively. More precisely, ∆Pjird

′
tr imposes a correction to the regular term

∑
k∈Z Pjkrλjtk

while ∆P jir(1 − zjti) is used to deactivate those constraints (6.30) whose breakpoint i is not
used (i.e., those for which zjti = 0).

The correction ∆Pjird
′
tr is depicted in Figure 6.2. Since vt ∈ [Hr−1,Hr), the power ap-

proximation obtained by the model of the previous section would be Pjkrλjtk+Pj(k+1)rλjt(k+1)

(with λjt(k+1) = 1 − λjtk), i.e., the value P 1 in the figure. The enhancement given by equa-
tions (6.28)–(6.31) produces a better approximation, namely value P 2 in the figure. Indeed
the correction parameter d′tr is computed by considering the relative position of vt within the
volume interval [Hr−1,Hr) (see equation (6.31)). Note that two constraints (6.30) are active
at the same time: the one for k and the one for k + 1. However, to avoid an overestimation
of the correction, the tighter constraint is the one with the smallest ∆Pjir value. In Figure
6.2 such value is ∆Pjkr , since the slope of segment ab is smaller than that of segment cd.

We illustrate the enhanced linearization technique through a numerical example. Con-
sider Figure 6.2, and assume that the (q, v, p) coordinates of the interested points are: a =
(18, 1, 22), b = (18, 5, 34), c = (28, 1, 58) and d = (28, 5, 98). Let us compute the power
production corresponding to qjt = 20 and vt = 2.5. The linearization of Section 6.2.2 would
give P 1 = 22λjtk + 58λjt(k+1) = 29.2 (by equation (6.25) with λjtk = 0.8). The enhanced
linearization gives P 2 = P 1 + (34 − 22)d′tr = 33.7 (by equation (6.30) with d′tr = 0.375).

6.4 Computational Results

The models presented in the previous sections were tested by running the MILP solver
Ilog-Cplex 10.0 [71] under mathematical programming modeling language AMPL Version
20061102. The tests were executed by sequentially running the code on a single processor of
an Intel Core2 CPU 6600, 2.40 GHz, 1.94 GB of RAM. For each instance, a time limit of
7,200 seconds was imposed.

Three real-word instances were considered referring to a hydro power plant with one
Francis turbine fed by a reservoir of capacity 33·106 m3, with a maximum level of 85.25 m. We
considered the water inflows and electricity market prices of a week of three different months
(namely, April, June and December), selected so as to have considerably different scenarios,
with hourly time periods (168 periods per instance). The complete instances are available on
line at http://www.or.deis.unibo.it/research pages/ORinstances/ORinstances.htm.

We give the results obtained for these instances by three models:

(i) a basic model, without the improvements introduced in Section 6.2.2(‘BDLM-’ in the
tables), mimicking the model in [39];

(ii) the improved model of Section 6.2.2 (‘BDLM’ in the tables);

(iii) the final enhanced model of Section 6.3 (‘BDLM+’ in the tables). The models were
tested with two different ϕ functions, called ϕ1 and ϕ2, for the turbine (see (6.18)). Each
power production function is approximated by considering three fixed values Hi of the water
volume. For each water volume, the p − q relationship (6.19) is represented by a piecewise

6.4. COMPUTATIONAL RESULTS 79

linear approximation with five breakpoints, as shown in Figure 6.3. As already mentioned,
in pumping operating mode we assume a constant water flow value (of 0.64 pu) as well as a
constant power consumption (of 0.85 pu).

Figure 6.3: Piecewise approximation of the relationship (6.19) for three volume values

The results for ϕ1 and ϕ2 are given in Tables 6.1 and 6.2, respectively. For each instance
and model the entries give:

(a) the total number of variables, the number of binary variables, and the number of con-
straints after Ilog-Cplex preprocessing;

(b) the value of the initial LP relaxation, obtained by replacing each binary constraint of type
xi ∈ {0, 1} with 0 ≤ xi ≤ 1;

(c) the value of the improved LP relaxation computed by Ilog-Cplex at the root node through
its default cutting plane separation;

(d) the value of the best solution computed by Ilog-Cplex within the time limit;

(e) the final percentage gap, computed as

100 ·
Best upper bound− Best solution value

Best solution value
;

(f) the number of Branch-and-Bound nodes;

(g) the number of unsolved nodes when the time limit is reached;

(h) the total CPU time spent.

The first two lines of each instance refer to two models (BDLM- and BDLM) that provide
the same level of approximation of the system (note indeed that the best solution values are
identical). By comparing them we can observe that both the initial and the improved LP
relaxation of BDLM are much tighter than those of BDLM-. Numbers of nodes and CPU
times are generally competitive or much lower for BDLM. Both models produced the optimal
solution for all instances within very short CPU times. The difference in the behavior of the
two models is mainly due to the use of the tighter ∆Pjr values in (6.25).

The third line of each instance refer to our most sophisticated model (BDLM+), which
provides a more accurate approximation of the real system. This is confirmed by the com-
putational results, which show a considerably better solution value. The higher complexity
of this model is also reflected by the larger computing times. In spite of this, five instances
out of six were solved to optimality. Moreover, for the two ‘hard’ instances of Table 6.1,

80
C

H
A

P
T

E
R

6.
H

Y
D

R
O

S
C

H
E

D
U

L
IN

G
A

N
D

U
N

IT
C

O
M

M
IT

M
E

N
T

Table 6.1: Results for a turbine with the ϕ1 characteristic of Figure 6.3
of # of # of Initial LP Improved LP Best solution Final Number of Number of CPU

Instance Model vars bin vars const relaxation value relaxation value value % gap nodes unsolved nodes time

BDLM- 3,677 2,166 6,020 158,802.93 47,870.30 30,371.44 0.00 489 0 4.25
April T168 BDLM 3,836 2,325 5,517 37,725.41 33,651.66 30,371.44 0.00 400 0 3.57

BDLM+ 4,325 2,327 8,191 95,603.39 46,597.83 42,298.27 0.00 3,688 0 24.16

BDLM- 3,668 2,157 5,995 344,944.69 180,672.99 125,858.46 0.00 21,007 0 91.53
June T168 BDLM 3,856 2,345 5,541 135,425.69 127,511.18 125,858.46 0.00 10,551 0 29.10

BDLM+ 4,325 2,347 8,227 175,210.15 147,520.10 143,688.22 0.00 572,824 0 2,555.67

BDLM- 3,693 2,182 6,045 392,563.70 196,000.43 154,702.66 0.00 2,336 0 14.42
December T168 BDLM 3,852 2,341 5,541 167,127.86 158,217.74 154,702.66 0.00 2,834 0 10.47

BDLM+ 4,349 2,343 8,223 222,895.80 185,008.07 176,519.74 0.69 1,521,821 816,717 7,492.94

Table 6.2: Results for a turbine with the ϕ2 characteristic of Figure 6.3
of # of # of Initial LP Improved LP Best solution Final Number of Number of CPU

Instance Model vars bin vars const relaxation value relaxation value value % gap nodes unsolved nodes time

BDLM- 3,677 2,166 6,020 160,254.15 48,111.81 31,098.94 0.00 784 0 6.86
April T168 BDLM 3,836 2,325 5,517 38,342.76 35,779.80 31,098.94 0.00 687 0 4.03

BDLM+ 4,325 2,327 8,191 87,151.83 40,533.52 38,347.13 0.00 3,890 0 23.77

BDLM- 3,668 2,157 5,995 347,101.06 180,389.17 132,930.96 0.00 5,814 0 32.34
June T168 BDLM 3,856 2,345 5,541 136,061.14 133,282.18 132,930.96 0.00 2,472 0 13.02

BDLM+ 4,325 2,347 8,227 162,377.67 136,725.37 135,030.48 0.00 11,507 0 62.88

BDLM- 3,693 2,182 6,045 394,369.19 202,374.20 161,954.09 0.00 1,634 0 9.40
December T168 BDLM 3,852 2,341 5,541 170,012.29 165,791.65 161,954.09 0.00 2,001 0 8.03

BDLM+ 4,349 2,343 8,223 208,740.36 172,898.97 169,283.99 0.00 20,549 0 99.19

6.4. COMPUTATIONAL RESULTS 81

June T168 and December T168, the incumbent solution values after 300 CPU seconds were
already 143,619.22 and 176,508.30, respectively, i.e., very close to the best solution values.

In Table 6.3 we examine the size of the three models by giving the number of variables
and constraints in terms of the main parameters, namely (t, r and z). The percentage of
binary variables was, for all cases, between 50 and 60 % of the total.

Table 6.4 shows, for instance April T168 of Table 6.1, how the level of approximation of
BDLM improves with the number r of volume intervals. The best solution value considerably
improves when r is increased to 4 and 5, by still requiring acceptable CPU times. Going to
higher values (7 and 10) the improvement is marginal, while the increased number of variables
and constraints makes the computational effort very heavy, and the model is not solved to
optimality within the time limit. In any case, the best solution value remains far from the
one produced by BDLM+ with r = 3 (shown in the last line of the table).

In order to further compare the solutions achieved by models BDLM and BDLM+ we
computed the value of the objective function obtained in model BDLM+ when the solution
attained by the BDLM model is enforced. We considered a turbine with function ϕ1 (see
Figure 6.3). The three columns of Table 7.6 give the value of the solution produced by
BDLM, the value produced by BDLM+ if the values of all variables in the BDLM solution
(except pjt) are enforced, and the value produced by BDLM+ from scratch. The results show
that the enhanced linearization of BDLM+ allows the MILP solver to find truly improved
solutions wrt BDLM, i.e., the different values in the tables do not merely correspond to
different measures.

Other authors considered real cases in which the turbines have forbidden operating zones.
For example, [117] considers one multi-plant daily instance (24 time periods) in which each
plant has a single forbidden flow interval. In order to test our model on such situations, we
extracted from such instance three single plant instances (named S1, S2 and S3), and added
to the BDLM+ model specific constraints to forbid a flow interval, namely:

qjt − F j − Qj(1 − xjt) ≤ 0 ∀j ∈ J, t ∈ T (6.32)

qjt − F j(1 − xjt) − Q−
j xjt ≥ 0 ∀j ∈ J, t ∈ T , (6.33)

where [F j , F j] is the prohibited operating zone for turbine j, and xjt is a binary variable that

takes the value 1 when Q−
j ≤ qjt ≤ F j or the value 0 when F j ≤ qjt ≤ Qj . Note that (6.32)

(resp. (6.33)) is not active when xjt = 0 (resp. xjt = 1). The outcome of the experiments
is reported in Table 6.4, where the second column tells whether constraints (6.32)-(6.33) are
added to BDLM+. The first two lines of each instance give the results obtained by solving
such instances with BDLM+, with and without the new constraints. The optimal solutions
only slightly differ on instance S1, thus showing that (6.32)-(6.33) were (almost) not active.
In order to better test the model, we artificially moved the forbidden intervals to optimal
regions, thus creating more challenging instances S1A, S2A and S3A. The behavior of BDLM+
with (6.32)-(6.33), given in the third line of each instance, results to be still satisfactory.

In order to illustrate the differences between the two proposed models, BDLM and BDLM+,
Figures 6.4, 6.5, 6.6 and 6.7 show the scheduling results they produce for instance June T168

with power production function ϕ1.
Figure 6.4 shows the water volume values in the basin, taking into account the minor

amount of natural inflow (just fractions of m3/s) and the different volume values at the
beginning and at the end of the week, imposed by the considered instance (namely 32.5 · 106

m3 and 26.5 · 106 m3, respectively). The horizontal lines show the three volume intervals

82
C

H
A

P
T

E
R

6.
H

Y
D

R
O

S
C

H
E

D
U

L
IN

G
A

N
D

U
N

IT
C

O
M

M
IT

M
E

N
T

Table 6.3: Number of variables and constraints for the three models considering 8 configurations of (t; r; z)
Model (24;3;5) (24;3;8) (24;5;5) (24;5;8) (168;3;5) (168;3;8) (168;5;5) (168;5;8)

BDLM- 528; 937 672; 18,217 528; 937 672; 18,217 3,696; 6,553 4,704; 127,513 3,696; 6,553 4,704; 127,513
BDLM 552; 745 696; 18,025 600; 793 744; 18,073 3,864; 5,209 4,872; 126,169 4,200; 5,545 5,208; 126,505
BDLM+ 648; 1,105 792; 18,529 744; 1,393 888; 18,961 4,536; 7,729 5,544; 129,697 5,208; 9,745 6,216; 132,721

Table 6.4: Results with more volume intervals for April T168 and a turbine with the characteristic of Figure 6.3
Numer of # of # of # of Best solution Final Number of Number of CPU

Model volume intervals vars bin vars const value %gap nodes unsolved nodes time

3 3,836 2,325 5,517 30,371.44 0.00 400 0 3.57
4 4,011 2,500 5,709 32,985.90 0.00 21,411 0 65.14

BDLM 5 4,170 2,659 5,877 34,299.61 0.00 30,537 0 88.63
7 4,499 2,988 6,216 34,721.34 4.11 2,316,701 1,458,840 7,554.98

10 4,986 3,475 6,720 35,577.54 8.11 1,589,801 996,593 7,525.20

BDLM+ - 4,325 2,327 8,191 42,298.27 0.00 3,688 0 24.16

6.5. CONCLUSIONS 83

adopted for linearizing the power production function. As already mentioned, the inflow and
the initial and the final values were taken from the real world data of a power plant. Figure
6.5 compares the calculated profiles of the water flows discharged or pumped by the hydro
unit during the considered week.

Figure 6.6 compares the power production levels, also giving the considered market price
profile during the week, while Figure 6.7 compares the curves of the accumulated profits in the
two models. Figure 6.6 shows that the maximum output of the unit calculated by BDLM+ is
larger than that obtained by BDLM, due to the more refined representation of the head effect
in function ϕ, that results in a higher profile of the calculated water volumes in the basin.

Table 6.5: Results for BDLM+ with and without the BDLM solution enforced
BDLM+ with

Instance BDLM BDLM enforced BDLM+

April T168 30,371.44 41,651.54 42,298.27

June T168 125,858.46 143,384.79 143,688.22

December T168 154,702.66 175,339.08 176,519.74

Figure 6.4: Water volumes

This explains (i) the larger profit levels estimated by BDLM+, as shown in Figure 6.7, and
(ii) the different scheduling, mainly for the second last day (Sunday), characterized by lower
market prices. (The considered week starts on Monday midnight and runs through the next
Monday midnight.) For Sunday morning, BDLM suggests not to produce, due to the low
value of the water volume stored in the basin (which should be saved in order to be available
at the more profitable market price levels of the following day), whilst BDLM+ recommends
to produce, allowing therefore a superior exploitation of the natural resource.

6.5 Conclusions

We have considered the problem of determining the commitment and the power generation of
a single reservoir pump-storage hydro power plant. Starting from the MILP model proposed
in [39], we have obtained an enhanced model that takes into account relevant technological
aspects, such as ramp transitions, pump-storage and head effect. In particular, we have pro-
posed a sophisticated approximation of the head effect in which the linearization is enhanced
through two dimensional considerations. The proposed MILP model allows to accurately

84
C

H
A

P
T

E
R

6.
H

Y
D

R
O

S
C

H
E

D
U

L
IN

G
A

N
D

U
N

IT
C

O
M

M
IT

M
E

N
T

Table 6.6: Results for the MILP model with 7 volume intervals and 5 breakpoints
(6.32)-(6.33) Initial LP Improved LP Best solution # CPU

Instance imposed relaxation value relaxation value value nodes Time

S1 no 146,621.07 141,115.26 138,147.38 13,940 14.12
S1 yes 146,621.07 141,097.97 138,144.67 13,403 14.99
S1A yes 146,621.07 141,002.27 137,540.30 2,535,628 2,507.13

S2 no 158,510.03 152,301.95 134,148.57 64,798 76.07
S2 yes 158,510.03 151,532.19 134,148.57 66,553 74.85
S2A yes 158,510.03 152,117.09 134,141.57 57,645 72.10

S3 no 251,528.59 229,658.19 199,610.76 4,428 8.76
S3 yes 251,528.59 230,124.38 199,610.76 6,381 13.73
S3A yes 251,528.59 229,359.16 199,277.13 3,456 8.58

6.5. CONCLUSIONS 85

Figure 6.5: Inflow and flows

Figure 6.6: Price and powers

86 CHAPTER 6. HYDRO SCHEDULING AND UNIT COMMITMENT

Figure 6.7: Profit

represent most of the hydro-electric system characteristics, and turns out to be computation-
ally solvable for a planning horizon of one week, proving the high efficiency of modern MILP
software tools, both in terms of solution accuracy and computing time.

Future developments could involve the extension of the model to represent hydrological
interdependent plants in cascade hydro systems. This task is far from being trivial for various
reasons. It is clear that the model would require the continuity equations of the hydro
reservoirs, taking into account the relevant constraints such as branch flow limits and water
travel time (see, e.g., [37, 38, 59, 39, 49]). The main drawback, however, could be that
a cascade hydro system model for, say, k power plants would multiply by k the number
of variables and constraints of BDLM+, and the computational experiments of Section 6.4
have shown that the performance of the model is heavily affected by its size. In addition,
the sophisticated linear approximations introduced to model the non-linear aspects could
deteriorate the accuracy of a much larger model. In our opinion the extension to the modeling
of schemes with a combination of multiple reservoirs, rivers, weirs and hydro-electric plants
in series and parallel combinations could require a different use of the MILP solver, which
should not be run as a black box, but embedded in a more involved algorithmic framework.

6.6 Acknowledgments

The authors thank Professor Carlo Alberto Nucci for his helpful comments. We also thank
anonymous referees for useful comments that improved the presentation.

Chapter 7

Water Network Design Problem

1

Introduction

The optimal design of a WDN (Water Distribution Network) consists, in its classical formu-
lation, of the choice of a diameter for each pipe, while other design properties are considered
to be fixed (e.g., the topology and pipe lengths). From a mathematical viewpoint, we can
cast the optimal design problem of a WDN as an MINLP (Mixed Integer Non-Linear Pro-
gramming) problem in which the discrete variables select from a set of commercially-available
diameters, water flows and pressures must respect the hydraulic constraints, and we seek to
minimize the cost function which only depends on the selected diameters.

Recently there has been renewed interest in optimal WDN design, due to emerging issues
related to water distribution systems; in particular, the gradual deterioration of network
pipes and the need for a more rational use of water resources has led to very costly renovation
activities.

Approaches in the literature use various combinations of linearization and relaxation,
which lead to MILP (Mixed Integer Linear Programming), NLP (Non-Linear Programming)
and meta-heuristic algorithms. We survey these approaches in Section 7.4. In this chapter
we are interested in approaches exploiting mathematical-programming formulations, and we
consider two cases.

The MILP approach to our problem relies on using piecewise-linear approximations. If
tractable, a solution of such a model would provide a global optimum of an approximation
to the real system. If accurate models are desired for a large network, we are led to using a
large number of binary variables (to manage the linear pieces). This tends to lead to a very
poor relaxation and ultimately an intractable model.

With an MINLP approach, we are led to a more natural model. Our view is that by
accurately modeling the non-linear phenomena, we will have a model that will provide an
MINLP search with a good NLP relaxation. While foregoing any hope of practically verifying

1The results of this chapter appears in: C. Bragalli, C. D’Ambrosio, J. Lee, A. Lodi, P. Toth, Water Network
Design by MINLP, IBM Research Report RC24495, 02/2008 (under revision).

87

88 CHAPTER 7. WATER NETWORK DESIGN PROBLEM

MINLP global optimality of the best solution obtained, we are able to find very good solutions
to large real-world instances.

Our experiments were carried out using AMPL ([55]) as an interface to MINLP codes. In
a preliminary version of this work [30], we used Sven Leyffer’s code MINLP BB ([82], available
from the University of Dundee) as well as the — at that time new — CMU/IBM open-source
MINLP code Bonmin v. 0.1 ([20, 24]), available from COIN-OR. In fact, it was in the context
of our investigations that Bonmin was adapted for use on non-convex MINLP problems.

Our modeling and solution methods are worked out with the target software in mind
(in particular, the Branch-and-Bound implementation in Bonmin v. 0.1), and the improved
results on this full version of the chapter are all obtained by using Bonmin v. trunk (the
development version), i.e., by implementing our special features in the development version
of the code. We note that the open-source nature of Bonmin enabled us to rapidly test our
ideas and then make them available to the developers and the users of Bonmin under the same
open-source license used by Bonmin (Common Public License Version 1.0 (CPL)).

In Section 7.1, we formally set notation for specifying instances of the problem. In Section
7.2, we describe the problem more fully, through a preliminary continuous model and we
discuss the two main modeling contributions of the chapter, namely a continuous objective
function (see, Section 7.3) and a smooth (approximate) relaxation of the pressure loss in water
pipes (see, Section 7.3.1). In Section 7.4.1, we survey earlier approaches, while in Section 7.4.2
we describe how we incorporate binary variables for the purposes of then applying MINLP
codes. In Section 7.4.3, so as to decrease the non-linearity and non-convexity, we describe
a reparameterization of pipes dimension by (cross-sectional) area, rather than diameter. In
Section 7.5, we describe the results of computational experiments. Finally, in Section 7.6 we
draw some conclusions.

7.1 Notation

The network is oriented for the sake of making a careful formulation, but flow on each pipe
is not constrained in sign (i.e., it can be in either direction). The network consists of pipes
(arcs) and junctions (nodes). In the optimization, the pipes are to have their diameters sized
at minimum cost.

Sets:

E = set of pipes.

N = set of junctions.

S = set of source junctions (also called reservoirs, S ⊂ N).

δ+(i) = set of pipes with tail at junction i (i ∈ N).

δ−(i) = set of pipes with head at junction i (i ∈ N).

Parameters:

len(e) = length of pipe e (e ∈ E).

k(e) = physical constant depending on the roughness of pipe e (e ∈ E).

7.2. A PRELIMINARY CONTINUOUS MODEL 89

dmin(e) = minimum diameter of pipe e (e ∈ E).

dmax(e) = maximum diameter of pipe e (e ∈ E).

vmax(e) = maximum speed of water in pipe e (e ∈ E).

dem(i) = demand at junction i (i ∈ N \ S).

elev(i) = physical elevation of junction i (i ∈ N \ S).

phmin(i) = minimum pressure head at junction i (i ∈ N \ S).

phmax(i) = maximum pressure head at junction i (i ∈ N \ S).

hs(i) = fixed hydraulic head of source junction i (i ∈ S).

For each pipe e, the available diameters belong to a discrete set of re elements. For e ∈ E :

dmin(e) := D(e, 1) < D(e, 2) < · · · < D(e, re) =: dmax(e) .

For each pipe e ∈ E, there is a cost function Ce() having a discrete specification as
a (typically rapidly) increasing function of diameter. That is, C(e, r) := Ce(D(e, r)), r =
1, . . . , re , where:

C(e, 1) < C(e, 2) < · · · < C(e, re) .

7.2 A preliminary continuous model

In this section, we describe the problem, and at the same time we develop a preliminary NLP
relaxation. Our goal is to develop a smooth NLP formulation that accurately models the
problem.

Variables:

Q(e) = flow in pipe e (∀ e ∈ E).

D(e) = diameter of pipe e (∀ e ∈ E).

H(i) = hydraulic head of junction i (∀ i ∈ N).

Simple bounds [Linear]:

dmin(e) ≤ D(e) ≤ dmax(e) (∀ e ∈ E).

phmin(i) + elev(i) ≤ H(i) ≤ phmax(i) + elev(i) (∀ i ∈ N \ S).

H(i) = hs(i) (∀ i ∈ S).

The hydraulic head is the total energy per unit of weight of the water, and it is expressed
in terms of a height. Furthermore, the hydraulic head is the sum of pressure head (ph),

elevation head (elev) and velocity head (v2

2g
), all of which are measured in units of length.

Velocity head (kinetic energy) is usually ignored because is much smaller than the elevation
and pressure head (see [125]).

Flow bounds (dependent on cross-sectional area of pipe) [Smooth but non-convex]:

90 CHAPTER 7. WATER NETWORK DESIGN PROBLEM

−π
4 vmax(e)D2(e) ≤ Q(e) ≤ π

4 vmax(e)D2(e) (∀ e ∈ E).

Flow conservation [Linear]:

∑
e∈δ−(i) Q(e) −

∑
e∈δ+(i) Q(e) = dem(i) (∀ i ∈ N \ S).

Head loss across links [Nonsmooth and non-convex]:

H(i)−H(j) = sgn(Q(e))|Q(e)|1.852 ·10.7·len(e)·k(e)−1.852/D(e)4.87 (∀ e = (i, j) ∈ E).

This last constraint models pressure loss in water pipes due to friction using the empirical
Hazen-Williams equation. This is an accepted model for fully turbulent flow in water networks
(see [124]). Diameter is bounded away from 0, so the only nondifferentiability is when the
flow is 0.

Such a nondifferentiability is discussed in details in Section 7.3.1.

Objective to be minimized [Discrete]:

∑
e∈E Ce(D(e)) len(e) .

Because we only have discretized cost data, within AMPL we are fitting a polynomial to
the input discrete cost data to make a smooth working continuous cost function Ce().

Our motivation for that is to use a smooth function to closely fit the discrete cost data
and the details of such a choice together with the relationship between continuous and dis-
crete objective functions are discussed in the following section. In addition, computational
experiments comparing the two options are reported at the end of Section 7.5.2.

7.3 Objective function

We have experimented with different fits: l1, l2 and l∞; with and without requiring that the
fit under or over approximates the discrete points. Requiring an under approximation makes
our formulation a true relaxation — in the sense that the global minimum of our relaxation
is a lower bound on the discrete optimum. We use and advocate weighted fits to minimize
relative error. For example, our least-squares fit for pipe e minimizes

re∑

r=1

[
C(e, r) −

(∑te
j=0 β(j, e)

(
π
4D(e, r)2

)j)]2

C(e, r)2
=

re∑

r=1

[
1 −

(∑te
j=0 β(j, e)

(
π
4D(e, r)2

)j

C(e, r)

)]2

,

where te is the desired degree and β(j, e) are the coefficients of the polynomial2 approximating
Ce.

We have experimented with several low-degree polynomials in order to find a satisfactory
approximation and three values of t, namely t = 3, 5, 7, are depicted in Figure 7.1. In
particular, the figure compares the polynomials with the discrete cost values, depicted as
“+”, for the instance foss poly 0 (see Section 7.5.1) and by taking into account the three

2Note that the least-square minimization is by itself a non-convex NLP that we solve to a local optimum by
the open-source NLP solver Ipopt ([123]), in turn used as NLP solver all over the chapter (see Section 7.5.2).

7.3. OBJECTIVE FUNCTION 91

smallest discrete diameter sizes, i.e., the ones that are mostly used in high quality solutions.
Note that for each pipe of this instance, the set of diameters is the same, thus we used the
same continuous cost function for each pipe. The polynomial that best fits our purposes
especially for these important diameters is the one of degree 5. Note that, we do not insure
that the polynomial is increasing nor convex, and actually we do not even assume this for the
data, though for the data sets that we experimented with the discrete data are increasing.

Figure 7.1: Three polynomials of different degree approximating the cost function for instance
foss poly 0, see Section 7.5.1.

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 0.002 0.004 0.006 0.008 0.01 0.012

C
os

t [
eu

ro
/m

]

Area [m]

t = 3

t = 5

t = 7

2

We will come back to the choice of discrete vs continuous objective function in Section
7.4.2 and we will report some computational experiments in Section 7.5.2.

Before ending the section we note that one drawback to using a low-degree polynomial (for
each pipe) to fit the discrete costs is that this would attain the correct value of the objective
function for each integer solution only if there is a low-degree polynomial that has a relative
error equal to 0. As this is unlikely, we may have to make a compromise, in modeling the
objective function, between modeling accuracy and numerical behavior.

This difficulty can be overcome in an alternative manner. We can instead define a con-
tinuous objective function so as to fit the discrete values C(e, r) using a cubic spline for each
pipe e. Each piece of a cubic spline is a degree-three polynomial that passes between a pair of
consecutive discrete points (D(e, r−1),C(e, r−1)) and (D(e, r), C(e, r)) (e ∈ E, r = 2, . . . , re).
The use of cubic splines guarantees that, once an integer solution is found, its objective value
is correct.

This piecewise definition of the function can be easily accommodated using a modeling
language like AMPL (which has a natural syntax for defining piecewise functions). However,
the NLP solvers, and in particular Ipopt (see Section 7.5.2), seem to more easily manage a

92 CHAPTER 7. WATER NETWORK DESIGN PROBLEM

polynomial with high degree, as compared to re − 1 different polynomials pieces of degree
3, thus the experiments in Section 7.5 use the single polynomial objective function with an
algorithmic correction for taking into account the original discrete one (see Section 7.5.2). We
do note, however, that we believe that the spline approach has considerable potential, but
more work would be needed on the side of NLP solvers to realize a computational benefit.

7.3.1 Smoothing the nondifferentiability

The main remaining modeling difficulty is to deal algorithmically with the absolute value
term in the head loss constraints. This term is nondifferentiable (at 0) but not badly so. One
possibility is to ignore the nondifferentiability issue, and just use a solver that will handle
it in its own way. This has the advantage of straightforward implementation from AMPL
and access to many NLP solvers (e.g., via NEOS ([96])). Because our ultimately goal is,
however, to employ available MINLP solvers, we tested such a straightforward approach by
using the MINLP solver Bonmin and its default NLP solver Ipopt (see Section 7.5.2). The
result is rather disappointing: Ipopt is unable to deal with such nondifferentiable function
and it aborts the run immediately.

Thus, to accommodate the NLP solver, we had to smooth the nondifferentiability, and in
order to do that effectively, our main goal is not to provide a fully accurate approximation near
0 because it is well known that Hazen-Williams equation is in itself a poor approximation
of the real pressure loss for small values of the flow. Instead, we smooth away the mild
nondifferentiability by defining the head loss equation in a piecewise manner, in such a manner
as to have accurate evaluations of the function. We insure the smoothness by matching
function values as well as first and second derivative at the breakpoints.

More precisely, let f(x) = xp (p = 1.852) when x is nonnegative, and f(x) = −f(−x)
when x is negative (x is standing in for Q(e)). This function misbehaves at 0 (the second
derivative does not exist there). Choose a small positive δ, and replace f with a function g
on [−δ,+δ]. Outside of the interval, we leave f alone. We will choose g to be of the following
form: g(x) = ax+bx3+cx5. In this way, we can choose a, b, c (uniquely) so that f and g agree
in value, derivative and second derivative, at x = |δ|. So we end up with a smooth-enough
anti-symmetric function. It agrees in value with f at 0 and outside [−δ,+δ]. It agrees with
f in the first two derivatives outside of [−δ,+δ].

Formally, it is easy to prove that:

Proposition 7.1.. The unique polynomial g(x) = ax+bx3 +cx5 having f(x) = g(x), f ′(x) =
g′(x) and f ′′(x) = g′′(x) at x = |δ| is:

g(x) =

(
3δp−5

8
+

1

8
(p − 1)pδp−5 −

3

8
pδp−5

)
x5

+

(
−

5δp−3

4
−

1

4
(p − 1)pδp−3 +

5

4
pδp−3

)
x3

+

(
15δp−1

8
+

1

8
(p − 1)pδp−1 −

7

8
pδp−1

)
x .

Proof. Via simple calculation one simply has to equate: (i) g(δ) = aδ + bδ3 + cδ5 = δp = f(δ),
(ii) g′(δ) = a + 3bδ2 + 5cδ4 = pδp−1 = f ′(δ), and (iii) g′′(δ) = 6bδ + 20cδ3 = p(p − 1)δp−2 =
f ′′(δ). This is now a square linear system in the a, b, c variables. We solve it (symbolically),
using Mathematica (see [90]).

7.4. MODELS AND ALGORITHMS 93

Finally, we just observe that f and g are anti-symmetric, so we have the same a, b, c for
x = −δ.

Figure 7.2, drawn for δ = 0.1, shows that g provides a good approximation of f . Indeed
the quintic curve fits very well on (−δ,+δ), and of course it matches up to second order with
the true function f at ±δ. This is all no surprise because we are operating in a small interval
of 0, and the function that we approximate is not pathological. The NLP solvers that we have
tested appear to respond well to this technique, as does our MINLP solver itself, Bonmin.

Figure 7.2: Smoothing f near x = 0.

Piecewise constraints can be modeled in AMPL (see Section 18.3 of [55]), so we have the
advantage of being able to use a variety of NLP solvers, as well as a path to using Bonmin and
MINLP BB, both of which are interfaced with AMPL. Our experience is that the inaccuracy in
using this smoothed function is minimal compared to the other inaccuracies (e.g., numerical
and modeling inaccuracies).

7.4 Models and algorithms

In this section we discuss how to turn our preliminary continuous NLP model into a MINLP
that behaves well computationally. For this purpose, we analyze some relevant literature and
we then discuss the discrete component of the problem.

7.4.1 Literature review

Optimal design of a WDN has already received considerable attention. [9] linearize and use
an MILP approach. [112] and [41] work within an accurate mathematical model, but they
use meta-heuristic approaches for the optimization, and they work with the constraints by

94 CHAPTER 7. WATER NETWORK DESIGN PROBLEM

numerical simulation. [58] employ a so called “split-pipe model” in which each pipe e is split
into re stretches of unknown length, where re is the number of possible choices of the diameter
of pipe e, and variables model the lengths of the stretches. It is not difficult to see that models
of this type have the disadvantage of allowing solutions with many changes in the diameter
along the length of a pipe. Furthermore, there can be additional pressure loss at junctions
of the stretches (so called “minor head losses”) which could become significant if there are
many different stretches along a pipe; such losses are ignored by all optimization models that
we know of. Using this type of split-pipe model, [58] employ a meta-heuristic approach for
the optimization, working with the constraints by numerical simulation. [47] also work with a
split-pipe model, but they use NLP methods for calculating a solution. [116] also work with a
split-pipe model, and they successfully employ global optimization methods. Of course, global
optimization methods may become impractical for very large scale instances. [79] and [131]
also employ an NLP approach, but they use an approximation of the split-pipe methodology
(using just two pipe sections). Because the split-pipe model is a relaxation of ours (we only
allow a single choice of diameter along the length of a pipe), results using such a model are
not directly comparable to ours.

In the rest of the chapter, we develop an MINLP approach and compare it to the MILP
approach of [9]. The MILP approach has the advantage of correctly modeling the choices
of discrete diameters with binary indicator variables X(e, r) representing the assignment of
diameter D(e, r) to arc e. In this way we can also easily incorporate costs for the chosen
diameters. There is still the non-linearity of the flow terms in the head loss constraints.
Piecewise-linear approximation of these non-linear constraints is the standard MILP approach
here. Unfortunately, the resulting MILPs are typically very difficult to solve. The difficulty of
the MILP models is related to the fact that once the diameters have been fixed, the objective
function is set, and a feasibility problem associated with the piecewise-linear approximation
must be solved, without any guidance from the objective function. It turns out that linear-
programming tools in such a context are not effective at all. Good feasible solutions to the
models are not always obtainable for even networks of moderate size. Often one is lead to using
very coarse piecewise-linear approximations to get some sort of solution, but these tend to not
be accurate enough to be considered truly feasible. Indeed, especially with few linearization
points, the MILP may (i) generate flows that are not compatible with the selected diameters
because the relation between these variables is only approximated (so the flows computed
with the real functions may well be infeasible), and (ii) cut off some feasible (and potentially
optimal) solutions. Section 7.5 includes some of these rather negative computational results
obtained with the MILP approach.

7.4.2 Discretizing the diameters

We need an effective method for imposing the restriction that the diameter of each pipe e ∈ E
belongs to the discrete set of elements:

dmin(e) := D(e, 1) < D(e, 2) < · · · < D(e, re) =: dmax(e) .

It would be natural and simple to handle this mostly at the level of the MINLP solver, just
pass these discrete values to the MINLP solver Bonmin via the modeling language (AMPL),
and let the MINLP solver construct a two-way branch for a continuous diameter that is
strictly between an adjacent pair of discrete choices. Though we could make the necessary

7.4. MODELS AND ALGORITHMS 95

changes to the solver Bonmin, there does not appear to be a clean way for AMPL to pass
such information to the solver. Of course this could be handled in an ad hoc manner, via an
auxiliary file, but we prefer to do things in a manner that can be easily and naturally applied
to other MINLP solver.

So, for the present, we simply define additional binary variables X(e, i), where X(e, i) = 1
indicates that diameter D(e, r) is selected for pipe e (r = 1, . . . , re , e ∈ E). Then, we use
the “SOS type-1” branching (see, [13]) that is available in Bonmin v. trunk. As is standard,
we use AMPL suffixes to pass along the SOS information needed by the solver: .sosno (“SOS
number”) is used to group variables into separate SOS constraints and .ref (“reference value”)
is used to indicate the value symbolized by a variable. In this way, for e ∈ E, in AMPL we
naturally set:

X(e, r).sosno := e , for r = 1, . . . , re ,

and
X(e, r).ref := D(e, r) , for r = 1, . . . , re .

We note that with the introduction of these binary variables, we could use them in the
objective function and eliminate the need for the fitted objective function introduced in
Section 7.2. However, to do so would implicitly define a piecewise-linear cost function for
each pipe, and because of our reliance on NLP solvers that prefer smooth functions, we stay
with our method of handling the objective. Also, eventually we hope to eliminate the need
to introduce these binary variables, in which case our approach for the objective function
would still be required. In any case, a detailed computational comparison between the fitted
objective function and the discrete one is given at the end of Section 7.5.2.

Finally, we remark that in the preliminary report on our work ([30]), we described a
different method for handling the discrete nature of the diameters. At that time, Bonmin was
not yet able to handle SOS constraints, so we attempted to approximate the behavior of SOS
branching via a different definition of binary variables and a judicious setting of branching
priorities.

7.4.3 Parameterizing by area rather than diameter

We can use variables:

A(e) = cross-sectional area of pipe e (∀ e ∈ E),

rather than the diameter variables D(e) (e ∈ E). This allows us to eliminate the non-linearities
and non-convexities of the flow bounds which then become:

−vmax(e)A(e) ≤ Q(e) ≤ vmax(e)A(e) (∀ e ∈ E).

The other constraints remain substantially similar. The simple bounds become:

π
4 d2

min(e) ≤ A(e) ≤ π
4 d2

max(e) (∀ e ∈ E),

and the head loss across links constraints are:

H(i) − H(j) = sgn(Q(e))|Q(e)|1.852 · 10.7 · len(e) · k(e)−1.852
(

π
4

)2.435
/A(e)2.435

(∀ e = (i, j) ∈ E).

96 CHAPTER 7. WATER NETWORK DESIGN PROBLEM

Although the head loss equations remain non-linear, note that the effect of the use of
areas instead of diameters is a perceptible reduction of the exponent of the design variables.
Namely, we have A(e)2.435 versus D(e)4.87. Ultimately, however, the decision between the
area and the diameter parametrization is, as usual, computational. We compared the two
approaches with computational experiments and the diameter approach returned the same
solution as the area one for 3 instances over 9, a worse solution in other 3 instances and a
better one in the remaining 3 instances. Overall, the average of the percentage deviation3 of
the best MINLP solutions computed for the diameter approach with respect to those obtained
with using the area is 3.91. In addition, the average computing time to find the best solution
for the 3 instances reporting the same solution (namely hanoi, blacksburg and foss poly 0,
described in Section 7.5.1) is 1,132 seconds for the area formulation, and 2,242 seconds for
the diameter one. Although these results do not show a strict domination, we do prefer the
area parametrization that appears ultimately more stable and better from a mathematical
point of view. Thus, in Section 7.5.2 we report the results using the area parametrization.

7.5 Computational experience

In this section we give detailed computational results on instances from both the literature
and real-world applications. These results are compared to previously reported solutions
(by sometimes discussing their accuracy). We also discuss in detail the use of an open-source
MINLP software, namely Bonmin. Finally, we also report some (unsatisfactory) computational
results on the MILP models obtained with the technique of [9], and we highlight why an
MINLP approach is in this case far superior to the MILP counterpart.

7.5.1 Instances

Our data comprises 9 instances that capture different aspects of real-world networks. In
particular, these instances vary in size, type, number and diameter of the pipes that can be
installed. Moreover, some special requirements to be discussed below are sometimes present.

The main characteristics of the instances are reported in Table 7.1.

For each instance, Table 7.1 reports the name and the numbers of junctions (including the
reservoirs), reservoirs, pipes and diameter choices. Moreover, the column labeled “duplicates”
indicates the number of pipes whose diameter is fixed but which can possibly be duplicated
by installing a new pipe (whose diameter must be determined) in parallel. Finally, the last
column indicates which currency is used to express the unit cost of the pipes, namely, US
Dollar ($), Italian Lira (�) and Euro (e).

Instances shamir, hanoi, blacksburg and New York are taken from the literature, while
the others are real-world instances of Italian water networks4.

For the instances from the literature, the only one that requires some preprocessing of the
data in order to fit into our definitions is New York which will be separately discussed below.
However, the data for instance blacksburg available from [116] was incomplete, and the final
version of the instance that we used and make available is certainly (slightly) different from
the original one.

3The percentage deviation of algorithm A with respect to algorithm B is computed as 100 × (value[A] −
value[B])/value[B].

4All instances are available at www.or.deis.unibo.it/research pages/ORinstances/ORinstances.htm.

7.5. COMPUTATIONAL EXPERIENCE 97

Table 7.1: Water Networks.

number of . . . unit
name junctions reservoirs pipes duplicates diameters cost

shamir 7 1 8 – 14 �
hanoi 32 1 34 – 6 �
blacksburg 31 1 35 – 11 �
New York 20 1 21 21 12 �
foss poly 0 37 1 58 – 7 �
foss iron 37 1 58 – 13 e

foss poly 1 37 1 58 – 22 e

pescara 71 3 99 – 13 e

modena 272 4 317 – 13 e

For the real-world instances, the three instances “foss X” refer to a single neighborhood
of Bologna, called Fossolo. Instance foss poly 0 consists of the original data provided to us
and the pipe material for that instance is polyethylene. Instance foss iron is for the same
network, but with almost twice as many choices of pipe diameters and with the material being
cast iron. For instance foss poly 1 the material for the pipes is again polyethylene but there
are more choices than foss poly 0 for the pipe diameters.

The cost data for foss poly 0 is out of date, and so the solution values cannot be di-
rectly compared to those of foss poly 1 and foss iron, which, in turn, can be reasonably
compared. The value of the solution reported in Section 7.5.2 for foss poly 1 is much lower
than for foss iron. At first this seems surprising, but it is because polyethylene is much
cheaper than cast-iron.

Finally, pescara and modena are reduced versions of the water distribution networks of
two medium-size Italian cities. The pipe material is cast iron and both costs and diameters
are up-to-date values in the Italian market.

The famous New York instance

The New York instance was first introduced by [114]. The problem we need to solve for this
instance is quite different from the original one. Given an existing network, the objective is to
“renovate” it by considering the increase of the water demand due to the population growth.
The existing network is no longer adequate for the increased demand, resulting in pressure
violations at several junctions. Thus, the network must be modified by duplicating some of
the pipes, i.e., putting new pipes in parallel with the existing ones, at a minimum cost.

The decisions one has to take are:

1. select the pipes that need to be duplicated;

2. for each of these pipes, choose a diameter within the available diameter set.

In other words, with respect to our model, one has to add the null value to the diameter set: if
such a null value is selected, it corresponds to the reverse of the decision 1 above, i.e., the pipe
is not duplicated. However, such an explicit addition of the null diameter requires relevant
modifications (consider the head loss equations), and an overall deterioration of our model.

98 CHAPTER 7. WATER NETWORK DESIGN PROBLEM

Thus, we decided to handle such a case by an alternative method, along a line proposed by
[114]. Note that this approach was not presented and formally stated in [114], but it can
be read from the code reported in that paper. For the sake of clarity and completeness, we
report it explicitly here.

The idea is to transform the problem, that includes the two decisions above, into our orig-
inal problem, thus avoiding the first decision. We can easily do it introducing the equivalent
pipe concept: We treat implicitly the two parallel pipes by means of a unique equivalent pipe
that reproduces the same behavior at the extreme junctions of the pipe within the network.
For each diameter of the duplicated pipe (including the null one) there is a discrete equivalent
diameter associated with the pair existing/duplicated pipes.

We can prove the following simple result:

Theorem 7.2.. For each pipe e ∈ E the new diameters and costs are, respectively:

Dnew(e, r) =
(
Dfix(e)

4.87
1.852 + D(e, r)

4.87
1.852

) 1.852
4.87

Cnew(e, r) = C(e, r) ,

with r = 0, 1, . . . , re and where Dfix(e) is the diameter of the existing pipe and D(e, 0) =
C(e, 0) = 0 .

Proof. Formally, for each existing pipe e ∈ E, we add two pipes e′ and e′′ corresponding to the
duplicated and equivalent pipes, respectively. First, note that the flow through the existing
and duplicated pipes must follow the same direction because they have the same start and end
junctions and, consequently, the same hydraulic head which determines the flow direction.
Thus, Q(e), Q(e′) and Q(e′′) agree in sign and denote the flows over the corresponding pipes.
In order to impose the above described equivalence we must solve the following system of
equations:

Q(e) + Q(e′) = Q(e′′)

H(i) − 10.7 · Q(e)1.852 · k(e)−1.852 · D(e)−4.87 · len(e) − H(j) = 0

H(i) − 10.7 · Q(e′)1.852 · k(e′)−1.852 · D(e′)−4.87 · len(e′) − H(j) = 0

H(i) − 10.7 · Q(e′′)1.852 · k(e′′)−1.852 · D(e′′)−4.87 · len(e′′) − H(j) = 0 .

As required, these equations guarantee that, substituting the two parallel pipes with the
equivalent one, we obtain the same flow and the same head loss at the start and end junctions.

The system above can be easily simplified by substituting out the flows:

(
H(i) − H(j)

10.7 · len(e)

) 1
1.852

· k(e) · D(e)
4.87
1.852 +

(
H(i) − H(j)

10.7 · len(e′)

) 1
1.852

· k(e′) · D(e′)
4.87
1.852

=

(
H(i) − H(j)

10.7 · len(e′′)

) 1
1.852

· k(e′′) · D(e′′)
4.87
1.852 .

Because len(e) = len(e′) = len(e′′) and, in this instance, k(e) = k(e′) = k(e′′), it is easy
to see that:

D(e′′) =
(
D(e)

4.87
1.852 + D(e′)

4.87
1.852

) 1.852
4.87

,

which proves the result.

7.5. COMPUTATIONAL EXPERIENCE 99

7.5.2 MINLP results

We have tested our approach using the open-source MINLP solver Bonmin (see [20, 24]) which
is distributed on COIN-OR. In the following we describe the basic features of the solver and
we report the computational results on the instances described in Section 7.5.1.

Bonmin B&B algorithm description

Bonmin (Basic Open-source Non-linear Mixed INteger programming) is an open-source code
for solving MINLP problems of the form:

min f(x)

gL ≤ g(x) ≤ gU

xL ≤ x ≤ xU

x ∈ R
n

xi ∈ Z , ∀ i ∈ I ,

where the functions f : {x ∈ R
n : xL ≤ x ≤ xU} → R and g : {x ∈ R

n : xL ≤ x ≤ xU} → R
m

are assumed to be twice continuously differentiable, and I ⊆ {1, . . . , n}.
There are several algorithms implemented within Bonmin:

B-BB, a simple Branch-and-Bound algorithm based on solving a continuous non-linear
program at each node of the search tree and branching on variables;

B-OA, an outer-approximation based decomposition algorithm;

B-QG, an outer-approximation based Branch-and-Bound algorithm;

B-Hyb, a hybrid outer-approximation/non-linear programming based Branch-and-Cut
algorithm.

The different methods that Bonmin implements are exact algorithms when the functions
f and g are convex but are only heuristics when this is not the case. For an MINLP having a
non-convex relaxation (like the WDN problem), the B-BB algorithm should be used because
the outer-approximation constraints are not necessarily valid inequalities for the problem.
Although even B-BB is only a heuristic for such a non-convex problem (the NLP problems
at each node are not solved to global optimality), Bonmin includes several options tailored to
improve the quality of the solutions it provides. First, in the context of non-convex problems,
Ipopt (the Bonmin default NLP solver) may end up in different local optima when started from
different starting points. The two options num resolve at root and num resolve at node

allow for solving the root node or each node of the tree, respectively, with a user-specified
number of different randomly-chosen starting points, saving the best solution found. Note
that the function to generate a random starting point is very näıve: it chooses a random point
(uniformly) between the bounds provided for the variable.

Secondly, because the solution given by Ipopt does not truly give a lower bound, the user
can adjust the fathoming rule to continue branching even if the solution value to the current
node is worse than the best-known solution. This is achieved by setting allowable gap,
allowable fraction gap and cutoff decr to negative values.

In the next section, we will describe how we used the options of Bonmin designed for
non-convex problems and some modifications we implemented in Bonmin specifically tailored
for our WDN problem.

100 CHAPTER 7. WATER NETWORK DESIGN PROBLEM

Improving Bonmin for WDN problems

As discussed in the previous section, Bonmin was originally developed for finding globally-
optimal solutions to MINLPs having convex relaxations. However, some accommodations
were made to handle non-convex instances as well, already in the released version Bonmin

v. 0.1. In fact, these accommodations were developed and tested in the context of the
present study. Additionally, we made and tested further modifications, to better handle non-
convexities. We implemented these modifications starting from a copy of Bonmin v. trunk.
The first modification proposed is available in the most recent stable versions of Bonmin.
Eventually, the second modification may be adopted in a future release.

In particular, two main issues came up:

I.1 Properly evaluating the objective value of integer feasible solutions.
In Section 7.2 we have introduced a new objective function so as to approximate the
correct (discrete) one. During preliminary computational experiments, we noted that
such an approximation sometimes has the effect of rejecting integer feasible solutions
having the approximated objective value worse than the incumbent but with a better
value with respect to the correct objective function. Such a behavior has been corrected
by allowing Bonmin v. trunk to work with two objective functions: the first one vfit

(i.e., the smooth continuous approximation) is used to guide the search, while the second
one vdisc (i.e., the correct discrete objective) is used to evaluate integer feasible solutions,
so as to avoid fathoming improving leaves. So, each time a new integer feasible solution,
say xnew, is found, the value of the discrete objective function is computed. In this way,
we work with two incumbent solutions, say xinc and xinc for vfit and vdisc, respectively.
For every feasible solution, we do update separately each of the incumbents, if needed.
More precisely, if vfit(x

new) ≥ vfit(x
inc) using a single objective function would have led

us to discard the solution xnew. In fact, we do test vdisc(x
new) with respect to vdisc(x

inc)
and in case vdisc(x

new) < vdisc(x
inc) we do update the discrete incumbent. In any case,

vfit is used as primary objective function for pruning fractional solutions at the nodes
(see point I.2 below).

I.2 Heuristically reducing the size of the search space. The released version Bonmin v. 0.1

statically defines two parameters: The parameter cutoff is the value of a known feasible
solution (i.e., the incumbent), while cutoff decr is the value by which every new
feasible solution should be improved with respect to the current incumbent (i.e., the
cutoff above). On non-convex problems, cutoff decr is selected to be negative so
as to act in a conservative manner with nodes whose continuous solution is not-too-
much-worse than the current incumbent. However, we found out that such a static
definition of cutoff decr does not fit our purposes because it is hard to define a unique
value for all instances. After preliminary computational testing, we implemented in
Bonmin v. trunk the following policy: the root node continuous value is computed for
50 different starting points and cutoff decr is set as:

cutoff decr := −V · f(σ) , (7.1)

where V is the average of the 50 root node continuous values, σ ∈ [0, 1] is the coefficient
of variation (standard deviation divided by the mean) of those values, and

f(σ) :=

{
.02 , if σ < .1 ;
.05 , if σ ≥ .1 .

7.5. COMPUTATIONAL EXPERIENCE 101

In other words, the parameter is set taking into account how much different the solutions
at the root node are, so as to be more careful in fathoming a node when such a difference
is large. The characteristics of the instances with respect to the 50 continuous solutions
computed at the root node using different random starting points are given in Table
7.2. More precisely, Table 7.2 reports for each instance the mean (mean), percentage
deviation of the first solution found (% dev first), percentage deviation of the minimum
(% dev min) and the percentage deviation of the maximum (% dev max) value of
the continuous solution at the root note over the 50 samples. The table then reports
the standard deviation (std dev), the coefficient of variation (coeff var) and finally the
number of failures of Ipopt (# fail) and the number of times the continuous problems
turned out to be infeasible (# inf). Table 7.2 demonstrates that the way we have

Table 7.2: Characteristics of the 50 continuous solutions at the root node.

% dev. % dev. % dev.
mean first min max std dev coeff var # fail # inf

shamir 413,507.00 -1.502 -2.922 62.827 37,735.10 0.0912563 0 0
hanoi 6,112,600.00 -0.681 -2.271 2.114 88,473.50 0.0144740 0 0

blacksburg 114,534.00 -0.975 -0.975 7.084 1,659.97 0.0144932 0 0
New York 83,480,900.00 -53.278 -53.278 34.331 12,024,900.00 0.1440440 0 0

foss poly 0 78,080,900.00 1.279 -12.094 51.136 11,096,800.00 0.1421190 0 0
foss iron 181,977.00 -0.284 -0.757 4.207 9,081.52 0.0169336 0 0

foss poly 1 33,076.40 -19.091 -19.459 55.683 5,470.00 0.1653750 0 0
pescara 1,846,930.00 -1.338 -1.338 16.622 66,672.00 0.0360989 0 0
modena 2,567,680.00 0.008 -0.103 0.421 1,920.57 0.0007480 0 0

modeled the problem has a stable behavior, in the sense that the continuous solutions
never have numerical difficulties nor turn out to be infeasible. On the other hand, the
solution value depends a lot on the starting point, and the most unstable instances are
New York, foss poly 0 and foss poly 1.

MINLP solutions

The results obtained using Bonmin v. trunk are reported in Tables 7.3 and 7.4, running the
code with a time limit of 7,200 CPU seconds on a single processor of an Intel Core2 CPU
6600, 2.40 GHz, 1.94 GB of RAM under Linux. In particular, Table 7.3 reports the best
solution values computed for the instances in the testbed. The value of the best solution
with the fitted objective function (denoted as vfit(x

best)) is compared with the value of the
best solution found with respect to the true objective function (denoted as vdisc(x

best)). In
addition, we report the percentage deviation of the value of the solution xbest once mapped on
the fitted objective function (denoted as % dev vfit(x

best)). In particular, we marked (with
a “X”) in the last column the three instances for which values vfit(x

best) and vfit(x
best) are

different, i.e., the instances in which the use of both objective functions simultaneously had
a very positive effect. Note that a positive value for the percentage deviation indicates an
improvement: the (true) best solution would not have been found without modification I.1
because its fitted value was in fact worse than the fitted value of the incumbent used by the
algorithm.

Table 7.4 reports additional results on the same instances and with the same tuning of the
code. In particular, besides the best MINLP solution value with respect to the true objective
function (vdisc(x

best)) (same column of Table 7.3), we report the CPU time in seconds to

102 CHAPTER 7. WATER NETWORK DESIGN PROBLEM

Table 7.3: Computational results for the MINLP model (part 1). Time limit 7200 seconds.

% dev.
vfit(x

best) vdisc(x
best) vfit(x

best)
shamir 423,696.31 419,000.00 0.000
hanoi 6,109,620.78 6,109,620.90 0.000

blacksburg 118,251.06 118,251.09 0.000
New York 39,570,174.42 39,307,799.72 0.541 X

foss poly 0 70,842,869.58 70,680,507.90 0.000
foss iron 181,865.00 178,494.14 0.024 X

foss poly 1 29,062.82 29,202.99 0.000
pescara 1,883,480.00 1,837,440.40 0.187 X

modena 2,620,189.45 2,580,379.53 0.000

find such a solution (time) and percentage deviation of the best MINLP solution value after
1,200 CPU seconds (denoted as % dev vdisc(x

first), recall that the overall time limit is 7,200
CPU seconds). Finally, the last two columns report the number of updates of the incumbent
solution value for the fitted (# fit) and true (# true) objective function, respectively. When
such numbers are different for the same instance, it means that using simultaneously two
objective functions had an effect, i.e., it changed the explored tree. Such instances are a
superset of the three marked in Table 7.3 with a “X” in the last column. Precisely, the

Table 7.4: Computational results for the MINLP model (part 2). Time limit 7200 seconds.

% dev.
vdisc(x

best) time vdisc(x
first) # fit # true

shamir 419,000.00 1 0.000 2 2
hanoi 6,109,620.90 357 0.000 8 8

blacksburg 118,251.09 1,540 0.178 6 6
New York 39,307,799.72 3 0.000 5 6

foss poly 0 70,680,507.90 1,500 0.058 6 8
foss iron 178,494.14 3,070 0.350 4 5

foss poly 1 29,202.99 6,772 0.274 6 5
pescara 1,837,440.40 6,701 0.447 7 21
modena 2,580,379.53 964 0.000 2 2

effect of modification I.1 above is crucial for the three instances New York, foss iron and
pescara in which the final solution of the fitted objective function is not the best one with
respect to the discrete objective function. Moreover, Table 7.4 demonstrates that besides the
three above instances, the use of the two objective functions is also effective in the two other
fossolo instances where during the search some solutions with good value of the discrete
objective function are kept. These solutions are not the best ones at the end of the 2 hours
time limit, but clearly they could have been with a different time limit.

The effect of modification I.2, instead, is an improvement on instances foss poly 0 and
foss poly 1: specifically, the solution of the former strongly improves from 71,595,394.14 to
70,680,507.90 while the improvement of the latter is smaller (from 29,226.71 to 29,202.99).

Note that the solutions obtained within 20 minutes of CPU time (see Table 7.4) are also
very good and show how the MINLP search is quite effective also for short computing times.

The overall behavior of the code is dependent on the search options that can be selected
among the Bonmin v. trunk arsenal. In particular, the reported results are all obtained with
tree search strategy = dive and node comparison = best-bound which turned out to
give the most stable and effective version. On the other hand, slightly better results on single

7.5. COMPUTATIONAL EXPERIENCE 103

instances can be obtained with different parameters and in particular using node comparison

= dynamic.

A natural computational question is the impact of using the fitted objective function as
compared to using only the discrete one. We performed an additional set of experiments
with the original discrete function and the results are reported in Table 7.5. For the discrete

Table 7.5: Computational results for the MINLP model comparing the fitted and the discrete
objective functions. Time limit 7200 seconds.

% dev.
vdisc(x

best) time “discrete” time
shamir 419,000.00 1 0.00 3
hanoi 6,109,620.90 357 0.00 1,059

blacksburg 118,251.09 1,540 0.00 1,384
New York 39,307,799.72 3 0.00 217

foss poly 0 70,680,507.90 1,500 0.00 2,502
foss iron 178,494.14 3,070 0.00 5,584

foss poly 1 29,202.99 6,772 -0.35 681
pescara 1,837,440.40 6,701 1.17 576
modena 2,580,379.53 964 1.69 106

case, we report in Table 7.5 the percentage deviation of the best solution (denoted as % dev
“discrete”) with respect to our best results vdisc(x

best) and the corresponding computing time
to achieve the best solution. The table shows that on 6 of the 9 instances the final solution
using the discrete diameters is the same, but the average computing time is 1,033.0 seconds
instead of 680.2, i.e., it requires a bit more time on average. For 2 of the 3 remaining cases,
a worse solution value is found. Notably, these worse solutions are for our largest instances.
Finally, a slightly better solution is instead obtained in a shorter computing time for only
one instance: foss poly 1. In summary, the algorithm using the discrete objective function
performs somewhat worse than the one with the fitted one and in particular this happens for
the largest instances. This behavior is no surprise: in the discrete case the continuous solution
obtained by relaxing integrality is always much smaller than the one for the fitted objective
function because the piecewise-linear function can use non-consecutive discrete values in the
convex combination. This results in a much larger search space to be explored because bad
nodes might not be fathomed.

Finally, concerning the time limit of 7,200 CPU seconds, we note that it is reached in
all reported tests with different settings and options, the only exception being the instance
shamir. In such a case, once the solution of value 419,000 is found all active nodes have a
continuous value larger by at least 2%, thus they are all fathomed.

Practical use of the MINLP solutions

The analysis of the best MINLP solutions for the considered instances shows configurations
in which the size of the selected diameters decreases from the reservoir toward the parts
of the network farther away from the inlet point. This characteristic of the allocation of
diameters to pipes plays in favor of a correct hydraulic operation of the network and has
a beneficial effect on water quality, see, e.g., the discussion in [121]. This is depicted in
Figure 7.3 where the size of each diameter is proportional to the thickness of the arc5. It is

5In Figure 7.3 diameters are expressed in meters, and the diameter is equal to 0.06 for the pipes without
explicit number, i.e., the minimum diameter permissible for this data set.

104 CHAPTER 7. WATER NETWORK DESIGN PROBLEM

easy to see that there are no pipes having large diameters isolated in the network. Such a
characteristic, very appreciated by practitioners, does not normally occur when the design is
done by a sort of “generate and test” approach in which configurations are produced within
a näıve genetic-algorithms framework and then simulated for feasibility by using EPANET
([48])6. However, that is the approach commonly used in practice, and it requires considerable
postprocessing for correcting configurations that are trivially non-optimal with pipes having
diameter significantly different from the surrounding ones. In such a postprocessing, the arcs
might be analyzed one-by-one in the attempt of reducing the size of their assigned diameters.
We denote as 1-optimal a solution in which the size of the diameter D(e, i) of a single pipe e
cannot be reduced to the value D(e, i − 1). Instead, the structure of the solutions obtained

Figure 7.3: Solution for Fossolo network, version foss iron.

0.25
0.2

0.15

0.125

0.125
0.1

0.1

0.1

0.08

0.08

0.08

0.08

0.08

EPANET 2 Page 1

by our algorithm reflects such a general design criterion widely used by practitioners and
represents an interesting indicator of the strength of the proposed approach. The solution
depicted in Figure 7.3 is ready to be used in practice without any postprocessing, i.e., it is
1-optimal. In practice, it never happened in our large set of experiments that the algorithm
returned as a best incumbent a non 1-optimal solution.

Literature comparison

The comparison with “existing numbers”, i.e., with previous known solutions for the bench-
mark instances, is in general very difficult because of different parameter sets and coefficients
used for the Hazen-Williams formula (see, e.g., the discussion in [112]). Despite such a diffi-
culty, we report the following results.

6EPANET is free software distributed by the US Environmental Protection Agency.

7.5. COMPUTATIONAL EXPERIENCE 105

1. For the small instance shamir, we find the previously best known (and probably optimal)
solution.

2. On instance blacksburg we are not able to compare our results because: (i) the only
results are those reported in [116] which are obtained with the split-pipe approach and
(ii) part of the data was missing and, as mentioned in Section 7.5.1, the instance we use
is different from the one used in that paper.

3. As stated in Section 7.2, the set of coefficients we decided to use for the Hazen-Williams
equation is the one of [124]. In order to provide an informative comparison with other
authors on the remaining instances, namely hanoi and New York, we ran our code by
using each time the coefficient set proposed in the paper to be compared. In particular,
in Table 7.6 we compare our MINLP approach with the approaches in the following
papers:

• [112]. In such a paper the authors analyze the results previously reported in the
literature for the problem and define two different sets of coefficients corresponding
essentially to the most “relaxed” version of the empirical formula for the Hazen-
Williams equation and to the most “restrictive” one. We consider in Table 7.6
both versions, denoted as “SW99 rel.” and “SW99 res.”, respectively.

• [42], denoted as “DSM96”.

• [41], denoted as “CS99”.

The MINLP solution obtained by our model using the above sets of coefficients is as
usual denoted as vdisc(x

best) in Table 7.6. An entry “—” in the table denotes that a
particular instance has not been considered in a specific paper.

Table 7.6 shows that our MINLP approach is able to find a solution at least as good as
the other approaches in all but one of the cases. More precisely, it improves three times,
it matches the same result twice and it is slightly worse compared to “SW99 res.” on
instance New York. This is a very satisfactory behavior which proves that the approach
is not affected by the coefficient sets used for the Hazen-Williams equation.

Concerning the running times, in [112], the reported results are obtained by several runs
of 3 hours for each instance on a PC 486/DX2 50 computer. In [42], each run is of 50
minutes on a Sun Sparc 1 + Station with the operating system SunOS 4.1. Finally, in
[41], the runs are of 2 hours on a Pentium PC at 166 MHz.
It is hard to compare these results because of the different computing platforms but our
algorithm is able to find the solutions for all sets of coefficients of hanoi and New York

within 1 minute of CPU time, thus showing a very competitive behavior.

MILP results

The only details that are needed to implement the [9] MILP approach for our problem concern
the piecewise-linear approximation of the Hazen-Williams equations7. First, note that for
every e = (i, j) ∈ E, we have to separately consider the case in which the flow goes from i
to j or vice versa. In other words, for approximating the two parts of the curve described by

7The first implementation of this method was presented in [8].

10
6

C
H

A
P

T
E

R
7.

W
A
T

E
R

N
E

T
W

O
R

K
D

E
S
IG

N
P

R
O

B
L
E

M

Table 7.6: MINLP results compared with literature results.

[112] [112] [42] [41]
SW99 rel. vdisc(x

best) SW99 res. vdisc(x
best) DSM96 vdisc(x

best) CS99 vdisc(x
best)

hanoi 6.073 e+06 6.052 e+06 6.195 e+06 6.183 e+06 — — 6.056 e+06 6.056 e+06
New York 37.13 e+06 36.68 e+06 40.42 e+06 40.47 e+06 38.8 e+06 38.8 e+06 — —

7.5. COMPUTATIONAL EXPERIENCE 107

the Hazen-Williams equation, we need two separate sets of weights which are then combined
by writing a unique SOS constraint of type 2.

Second, for each of the two parts above, say from i to j, we have to decide how to sample
the curve so as to approximate it. In particular, for a fixed diameter value, we plot the flow
on the y-axis as a function of the head loss H(i) − H(j), on the x-axis. Then, we compute
an upper bound on the head loss value as:

∆Hij(e) = min
{
max

{
(phmax(i) + elev(i)) − (phmin(j) + elev(j)) , 0

}
,

max
r=1,...,re

{
10.7 · len(e)

k(e)1.852 · D(e, r)4.87

(π

4
D(e, r)2vmax(e)

)1.852
}}

.

The second term of the above equation can be simplified by recalling that D(e, 1) < D(e, 2) <
· · · < D(e, re), and the bound can be rewritten as:

∆Hij(e) = min
{
max

{
(Hmax(i) − Hmin(j)), 0

}
,

10.7 · len(e)

k(e)1.852 · dmin(e)4.87

(π

4
dmin(e)2vmax(e)

)1.852
}

,

where Hmax(i) := phmax(i) + elev(i) and Hmin(j) := phmin(j) + elev(j) .
The obtained interval [0,∆Hij(e)] is then split in two parts [0, 1

3∆Hij(e)] and [13∆Hij(e),
∆Hij(e)] . Within such intervals we perform uniform sampling by using the same number of
linearization points. This means, of course, that we have a better approximation in the first
part of the interval which is sensible because in the second part the curve is more flat, thus
easy to approximate well with few points.

Note that, the analogous upper bound computed in the reverse direction from j to i,
∆Hji(e), only differs in the first term above. Moreover, both bounds ∆Hij(e) and ∆Hji(e)
are constant with respect to the diameter, i.e., the maximum value of the head loss on the
x-axis is the same for every curve obtained by fixing the diameter value. In other words, the
x-axis values of the linearization points are common to each diameter, while the corresponding
y-axis value changes.

The computational results, obtained by using such an MILP model and [71] as MILP
solver, are disappointing — in fact, this was our motivation for trying an MINLP approach.
The MILP problems are difficult to solve mainly because once the diameters have been settled,
the objective function is constant, and the model reduces to a feasibility problem which
approximates a pure NLP. It is not surprising, then, that finding a feasible solution of a
system of non-linear equalities with a standard MILP technique is not a good idea. Note
that, when the diameters/areas are fixed, the feasibility problem reduces to a system of
|E| + |N\S| equations in |E| + |N\S| variables, plus, in our model, there are inequalities
corresponding to the bounds on the variables which have to be satisfied.

Moreover, the MILP approach is heavily dependent on the accuracy of the approximation
of the non-linear component. If such an approximation is highly accurate, i.e., the number
of linearization points is large, no MILP feasible solution – a solution which satisfies the
constraints of the MILP model – can be found by [71] within reasonable CPU times: from a
few hours for the small networks up to days for the larger ones. In other words, the models
are not useful because they cannot find even feasible solutions in reasonable computing time.

Otherwise, with a rough approximation, the situation becomes even more complicated.
Let us consider for example instance hanoi. The MILP model obtained with 14 linearization

108 CHAPTER 7. WATER NETWORK DESIGN PROBLEM

points (7 for each direction i to j and j to i) is solved to optimality by [71] in around 40
CPU minutes, and the solution has value 6,170,269. Such a solution is worse than the one
obtained with the MINLP approach (6,109,620.90), and it is slightly NLP infeasible once the
corresponding set of diameters is given to the NLP solver Ipopt. In addition, we fixed the
diameters corresponding to the MINLP solution into the MILP model and realized that the
solution is indeed infeasible for such a rough approximation. In fact, this set of diameters
becomes feasible only using at least 170 (!!) linearization points. However, as mentioned
above, solving the complete MILP model obtained using 170 points is out of the question
even for a small-/medium-size instance as hanoi.

The trend outlined above is confirmed on the other 8 instances in our data set. Going
from the smallest to the biggest, the only instance for which the MILP approach is effective
is shamir which is small and easy enough to be solved with good accuracy and quality by
using 14 linearization points; the value of 419,000 is proven to be optimal in a few seconds.
For blacksburg, which is still pretty small, we used 30 linearization points, and the first
feasible solution (with the discussed approximation) is obtained after 2 hours of CPU time.
The best solution found within a time limit of 48 CPU hours has value 129,280.60 , which
is larger than the best MINLP solution of value 118,251.09 . Approximating this instance
seems to be rather hard; the MINLP diameter set is not feasible for the MILP model even
allowing 4,000 linearization points. For New York, we used 30 linearization points, and the
first feasible solution is obtained after 3 minutes, but its value is quite bad (61,382,605.6).
After 2 CPU hours, the best solution value is 43,317,003.3 which becomes 40,474,098.3 after
2 days. Anyway the optimal solution found with the MINLP approach is not feasible for the
MILP approximation considering less than 90 linearization points. If we run the MILP model
with 90 linearization points, we are able to find the first feasible solution after more than
20 minutes (1,479 seconds, value 65,819,089.9), but after 3 hours we have still a quite bad
solution (value 46,045,781.3).

For the fossolo set, even with very few linearization points, the MILP approach is unable
to find feasible solutions within 2 days. A very inaccurate solution of bad quality has been
found for foss poly 0 with only 6 linearization points (see [30]). Unfortunately, even pro-
viding the MILP model with the set of diameters found by the MINLP approach, no feasible
solution can be obtained even allowing 1,000 linearization points.

Finally, for instances pescara and modena, which are the largest ones, no feasible solutions
were obtained, independent of the number of linearization points.

7.6 Conclusions

In this chapter we have been able to get effective solutions, both in terms of quality and
accuracy, to practical instances of water-network optimization problems. Although Mixed
Integer Linear Programming models were known since the 80’s for the problem, those models
are very difficult to solve by sophisticated MILP solvers because they are somehow unnatural.
A much more natural Mixed Integer Non Linear Programming formulation allowed us to find
the above mentioned good solutions in very reasonable computing times. This success was
achieved in two stages:

1. In a first phase, we could obtain from reasonable to good results with very low devel-
opment time mainly because of the availability of software for finding good solutions

7.6. CONCLUSIONS 109

to MINLP problems and the easy interface to such software via the modeling language
AMPL.

2. In a second phase, we moved to a more sophisticated analysis of both the model and
the algorithm, and we have been able to improve over the initial results significantly by
using special-purpose modeling tricks and by contributing to the open-source platform
provided by the software Bonmin with effective adaptations to deal with non-convex
MINLPs and multiple objective functions. The code developed in this context is com-
mitted to the Bonmin v. trunk repository for further use in different applications.

Our belief is that such a success can be obtained within the same framework for other
instances of optimization problems having significant discrete and non-linear aspects.

Acknowledgments

We thank Pierre Bonami and Andreas Wächter for helping us to use Bonmin in the best
possible way. The last two authors are partially supported by “Ministero dell’Università e
della Ricerca” (MIUR), Italy. We thank two anonymous referees for a careful reading and
very useful remarks. Finally, we thank Stefan Vigerske for interesting discussions on the
subject.

110 CHAPTER 7. WATER NETWORK DESIGN PROBLEM

Part IV

Tools for MINLP

111

Chapter 8

Tools for Mixed Integer Non-Linear
Programming

This chapter is devoted to a brief review of available tools useful to solve Mixed Integer
Non-Linear Programming. Following Chapter 1, we start reviewing the solvers addressed
to special classes of MINLP: Mixed Integer Linear Programming problems in Section 8.1
and solvers for Non-Linear Programming problems in Section 8.2. In these two cases, only
aspects closely related to MINLP problems are presented. On the other hand, the main
focus is on MINLPs (Section 8.3). We devote Section 8.4 to the description of NEOS, a
Server for Optimization [96]. In Section 8.5 we point out some difficulties arising from han-
dling non-linear functions within an optimization model and how modeling languages help
to overcome some of them. Finally, in Section 8.6 the most used libraries of MINLP prob-
lems are presented. Benchmark results on optimization solvers can be found at the web
sites: http://plato.asu.edu/bench.html and http://www.gamsworld.org. They are not
reported in this chapter, because they do not represent the focus of this Ph.D. thesis.

8.1 Mixed Integer Linear Programming solvers

In this section, few considerations, always limited to the topic of the thesis, about MILP
solvers are presented. In Chapters 1 and 4 we described the standard techniques to approx-
imate special classes of MINLP problems with an MILP model. As discussed in Chapter 4,
piecewise linear approximation is used when non-linear functions are univariate and, in this
case, Special Ordered Sets (SOS) can be defined. In some of the available MILP solvers, the
definition of Special Ordered Sets is recognized and these sets of variables are treated in an
ad-hoc way, defining special branching rules that usually positively influence the performance
of the solver. Examples of these MILP solvers are the commercial solvers Cplex [71], Xpress
[130] and the open-source solver Cbc [36]. However, it is possible to use any kind of MILP
solver and define a piecewise linear function adding binary variables as explained in Chapter
4. In this case no special branching rule is used within the MILP solvers. Another important
role that MILP solvers play in the solution of MINLP problems is that some MINLP solvers
use substructures and algorithms from MILP. In addition, MILP solvers are also employed
for solving MILP subproblems, when needed. These dependencies are described in Sections
8.3. We end the section with a consideration about the files which represent a MILP model.
There are few standard file formats widely used by the most common MILP solvers. These

113

114 CHAPTER 8. TOOLS FOR MIXED INTEGER NON-LINEAR PROGRAMMING

are, for example, mps and lp files. No standard file format is available for models in which
non-linear functions are involved. We discuss this issue in Sections 8.3 and 8.5.

8.2 Non-Linear Programming solvers

As extensively discussed in Section 1.3 and 1.4, also Non-Linear Programming subproblems
play a fundamental role in the solution of Mixed Integer Non-Linear Programming problems.
For this reason, this section is devoted to considerations and comments concerning NLP
solvers. As explained in Section 1.2, different approaches are possible to the solution of
NLPs. Thus, different types of solvers are available, commercial or open-source. Examples
of the most widely used solvers are filterSQP, Ipopt, Knitro, Lancelot, Loqo, Minos, Pennon,
Snopt. For a (not very recent, actually) survey on Non-Linear Programming software, we
refer the reader to Nash [94]. Moreover, in [97] it is possible to find, at the end of each
chapter describing an NLP method, some considerations about the software in which those
techniques are implemented.

Usually NLP solvers have in common the following issue: they need the (first and usually
second) derivatives of the non-linear functions involved in the model. Thus, the non-linear
functions are assumed to be smooth. The necessity of derivatives is also the cause of the
lack of a standard file format to express NLP/MINLP problems. The user needs to provide
the NLP solver procedures which calculate the value of the non-linear function, the first and,
possibly, the second derivative at a given point. This process is not straightforward for not
expert users and could easily be source of errors. The introduction of modeling languages
(see Section 8.5) helped to partially overcome such difficulties. In particular, they provide a
unique, intuitive and flexible environment to express both linear and non-linear models. These
frameworks are interfaced to most of the modern solvers and provide a tool for computing the
approximation of the derivatives required in the NLP/MINLP case. For an introduction on
Derivative Free Optimization, the discipline aimed at studing ad-hoc methods for problems
for which the information about derivatives of the functions involved cannot be computed,
the redear is referred to the book by Conn, Scheinberg and Vicente [7].

The last consideration concerns the role of NLP solvers within a MINLP method. The
global optimality guarantee of some of the algorithms proposed for MINLPs depends also
on the global optimality guarantee of the solution provided by the NLP solver. For exam-
ple, consider the Branch-and-Bound (see Section 1.3). If, at each node, the corresponding
NLP relaxation is solved to global optimality, then the method is exact not only for convex
MINLPs, but also for non-convex MINLPs. However, as mentioned in Chapter 1, solving
a non-convex NLP to global optimality is a hard task, thus usually NLP solvers guarantee
only local optimality, if the NLP problem is non-convex. For this reason, specific techniques
to solve non-convex MINLPs are proposed (see Section 1.4), as well as specific non-convex
MINLP solvers (see the next section).

8.3 Mixed Integer Non-Linear Programming solvers

This section is devoted to software for Mixed Integer Non-Linear Programming. After some
considerations about the solvers in general, we report information about the most widely
used general-purpose MINLP solvers. One page is devoted to each solver. We do not describe
special-purpose solvers, such as, for example, solvers for Semi-Definite Programming, Mixed

8.3. MIXED INTEGER NON-LINEAR PROGRAMMING SOLVERS 115

Integer Quadratic Programming, but only general-purpose MINLP solvers. For each solver,
we give a brief summary of its characteristics (taken from manuals or web pages of the solvers)
and a schematic table containing the following fields:

Algorithm implemented: the algorithm implemented within the solver. A description
of the main algorithms used in MINLP can be found in Sections 1.3 and 1.4. The most
common algorithms are Branch-and-Bound (standard or spatial), Outer Approxima-
tion, Branch-and-Cut. If present, special tools, aimed at speeding-up the solver, are
mentioned, for example bound reduction techniques.

Type of algorithm: the algorithm implemented is exact/heuristic and under which as-
sumptions (for example, convexity of the MINLP).

Available Interface: how the user can interface to the solver. The most common possi-
bilities are: (i) the solver is available as stand-alone executable, which is provided with
the description of the model into a file; (ii) the user can provide information about the
MINLP problem to be solved implementing some routines linked to the solver libraries;
(iii) the user can write the model under a modeling language environment which is di-
rectly linked to the solver and call the solver from the environment (see Section 8.5 for
details on modeling languages).

Open-source software: only if the software is open-source, the source code is available
and can be modified by the user.

Programming Language: the programming language used to implement the software.
This information is given only if the solver is open-source.

Author: the authors of the software.

Web site: the web site of the solver, where information and the user manual can be
found.

Dependencies: the external software which the solver depends on, i.e. if the solver
uses (parts of) other software to exploit capabilities of, for example, interfacing to
specific environments, solve special classes of MINLP, like NLP/MILP subproblems, or
generating cuts. Often, as described in Chapter 1, algorithms for MINLP combines
MILP and NLP techniques, for this reason solvers for these subproblems can be useful
within a MINLP solver framework.

The reported data are useful also to understand the characteristics of the MINLP solvers in
general.

The first consideration is that, as mentioned for NLPs, at the moment there is no standard
file format for describing MINLP models. The reasons are the same explained in Section 8.2,
because, also in the MINLP case, there are difficulties in expressing non-linear functions (as in
NLP), and MINLP techniques often rely on NLP methods. Also in this case, these issues are
partially overcome by modeling languages, see Section 8.5. A useful tool for the convertion
of files within the most common files format can be found at the address (provided by Gams
World) http://www.gamsworld.org/performance/paver/convert submit.htm.

The second consideration concerns the type of algorithm: in particular, sometimes as-
sumptions on the characteristics of the MINLP problems are provided to the solver. Some of

116 CHAPTER 8. TOOLS FOR MIXED INTEGER NON-LINEAR PROGRAMMING

the algorithms implemented are studied for convex MINLP and do not work with non-convex
MINLPs. In other cases, methods studied for convex MINLPs can be used for non-convex
MINLPs as heuristic algorithms, i.e. the solution provided by the solver is not guaranteed
to be the global optimum. The last case is that the algorithm implemented is exact for non-
convex MINLPs, so the software is a Global Optimization solver. In this case, the solution
provided is guaranteed to be a global optimum. Clearly, methods of this type are much more
complicated and their performance is, in general, worse than methods for convex MINLP.
Thus, Global Optimization solvers are suitable for medium size problems. An example of
the complexity of the Global Optimization methods is given by the large employment of
complicated structures like symbolic expression trees, introduced in [118]. Methods such as
spatial BB rely on the automatic definition of a convex relaxation of the MINLP problem.
This can be defined in different ways, but the needing of reformulating the problem into a
“standard form” is common to almost all these techniques. So, the first step preformed by
these methods is reformulating the MINLP problem into a form which is “tractable”, i.e.
convex relaxations of each part of the reformulated model are well-known. This is obtained
by adding “auxiliary variables” which “absorb” the non-linearities of the original constraints.
In this way, complex non-linearities are subdivided into simpler non-linearities, at the cost of
additional variables and constraints. The basic non-linearities are then relaxed using common
envelopes/underestimators in a standard way. For a detailed description of the issues arising
in developing and implementing a Global Optimization algorithm of such a type the reader
is refereed to Liberti [84] or to the documentation of each specific solver.

The last consideration is about dependencies: as explained in Chapter 1, methods for
MINLP are usually based on decomposition/relaxation of the problem into simpler subprob-
lems which are typically NLP and MILP problems. For this reason, often fundamental ingre-
dients of MINLP solver are reliable and fast NLP and MILP solvers. The large improvements
on both NLP and MILP software sides highly influence general-purpose software for MINLPs
and the recent success MINLP solvers in solving real-world applications is also due to them.
Also for this reason, the kind of problems which the MINLP solvers are suitable to depends on
the NLP and MILP solver integrated as part of the solving phase. From a research viewpoint,
the extension and combination of efficient methods for NLP and MILP to MINLP is usually
successfull. From a development viewpoint, the use of available NLP and MILP solvers makes
the work of the developer easier and allows to concentrate on aspects and issues typical of
MINLP problems, exploiting more stable techniques for NLP and MILP problems (see, e.g.,
[22]).

8.3. MIXED INTEGER NON-LINEAR PROGRAMMING SOLVERS 117

8.3.1 Alpha-Ecp

Alpha-ECP is an MINLP solver based on the extended cutting plane method (ECP). The
ECP method is an extension of Kelley’s cutting plane (CP) algorithm which was originally
given for convex NLP problems [72]. In Westerlund and Pettersson [126] the method was
extended to convex MINLP problems and in Westerlund et al. [128] further extended to
MINLP problems with pseudo-convex constraints. The method was further extended in Pörn
and Westerlund [107] and Westerlund and Pörn [127] and the current version of the method
converges to the global optimal solution for non-convex MINLP problems having a pseudo-
convex objective function and pseudo-convex inequality constraints. The method requires
the solution of a MILP subproblem in each iteration. The MILP subproblems may be solved
to optimality, but can also be solved to feasibility or only to an integer relaxed solution in
intermediate iterations. This makes the ECP algorithm efficient and easy to implement. In
the present implementation, a commercial MILP solver, Cplex, is used to solve the MILP
subproblems. The problems to be solved can be supplied as text files in an extended lp

format or if the constraints cannot be given in explicit form, then they can be given as user
supplied sub-programs.

Algorithm implemented: Extended Cutting Plane method.

Type of algorithm: exact for MINLPs with a pseudo-convex objective function and
pseudo-convex inequality constraints.

Available Interface: graphic interface, definition of the problem using ecp files (an
extended lp format where non-linear constraints can be written using FORTRAN-90
syntax).

Open-source software: no.

Author: T. Westerlund and K. Lundqvist.

Web site: www.abo.fi/∼twesterl/A-ECPManual.pdf.

Dependencies: Cplex.

118 CHAPTER 8. TOOLS FOR MIXED INTEGER NON-LINEAR PROGRAMMING

8.3.2 BARON

BARON is a computational system for facilitating the solution of non-convex optimization
problems to global optimality. The Branch-and-Reduce Optimization Navigator derives its
name from its combining interval analysis and duality in its reduce arsenal with enhanced
Branch-and-Bound concepts as it winds its way through the hills and valleys of complex op-
timization problems in search of global solutions.

Algorithm implemented: Branch-and-Reduce.

Type of algorithm: exact.

Available Interface: AIMMS and GAMS.

Open-source software: no.

Author: M. Tawarmalani and N.V. Sahinidis.

Web site: http://www.andrew.cmu.edu/user/ns1b/baron/baron.html.

Dependencies: Osl/Cplex, Minos/Snopt.

8.3. MIXED INTEGER NON-LINEAR PROGRAMMING SOLVERS 119

8.3.3 BONMIN

BONMIN (Basic Open-source Non-linear Mixed INteger programming) is an open-source code
for solving general MINLP problems. It is distributed on COIN-OR (www.coin-or.org) under
the CPL (Common Public License). BONMIN is OSI Certified Open Source Software. There
are several algorithmic choices that can be selected with BONMIN. B-BB is a NLP-based
Branch-and-Bound algorithm, B-OA is an outer-approximation decomposition algorithm, B-
QG is an implementation of Quesada and Grossmann’s Branch-and-Cut algorithm, and B-Hyb
is a hybrid outer-approximation based Branch-and-Cut algorithm. Some of the algorithmic
choices require the ability to solve MILP problems and NLP problems. The default solvers
for these are, respectively, the COIN-OR codes Cbc and Ipopt. To solve (heuristically) a
problem with non-convex constraints, one should only use the Branch-and-Bound algorithm
B-BB. A few options have been designed in BONMIN specifically to treat problems that do
not have a convex continuous relaxation. First, in the context of non-convex problems, the
NLP solver may find different local optima when started from different starting points. Two
options allow for solving the root node or each node of the tree with a user-specified number
of different randomly-chosen starting points, saving the best solution found. The function to
generate a random starting point chooses a random point (uniformly) between the bounds
provided for the variable. In particular, if there are some functions that cannot be evaluated
at some points of the domain, it may pick such points, and so it is not robust in that respect.
Second, since the solution given by the NLP solver does not truly give a lower bound, BON-
MIN allows for changing the fathoming rule to continue branching even if the solution value
to the current node is worse than the best-known solution.

Algorithm implemented: Branch-and-Bound, Outer-Approximation, LP/NLP based
Branch-and-Bound QG, Hybrid, heuristics.

Type of algorithm: exact for convex MINLPs.

Available Interface: AMPL, GAMS, stand-alone executable (reading nl files), invo-
cation through C/C++ program.

Open-source software: yes.

Programming Language: C++.

Author: P. Bonami et al. (see the web page).

Web site: https://projects.coin-or.org/Bonmin.

Dependencies: Cbc/Cplex, Ipopt/filterSQP.

120 CHAPTER 8. TOOLS FOR MIXED INTEGER NON-LINEAR PROGRAMMING

8.3.4 Couenne

Couenne (Convex Over and Under ENvelopes for Non-linear Estimation) is a Branch-and-
Bound algorithm to solve MINLP problems. Couenne aims at finding global optima of non-
convex MINLPs. It implements linearization, bound reduction, and branching methods within
a Branch-and-Bound framework. Its main components are: (i) an expression library; (ii)
separation of linearization cuts; (iii) branching rules; (iv) bound tightening methods. It is
distributed on COIN-OR under the Common Public License (CPL). Couenne is OSI Certified
Open Source Software.

Algorithm implemented: spatial Branch-and-Bound, bound reduction.

Type of algorithm: exact.

Available Interface: AMPL, stand-alone executable (reading nl files), invocation
through C/C++ program.

Open-source software: yes.

Programming Language: C++.

Author: P. Belotti et al. (see the web page).

Web site: https://projects.coin-or.org/Couenne.

Dependencies: Cbc, Ipopt.

8.3. MIXED INTEGER NON-LINEAR PROGRAMMING SOLVERS 121

8.3.5 DICOPT

DICOPT is a program for solving MINLP problems that involve linear binary or integer
variables and linear and non-linear continuous variables. DICOPT (DIscrete and Continuous
OPTimizer) was developed by J. Viswanathan and Ignacio E. Grossmann at the Engineering
Design Research Center (EDRC) at Carnegie Mellon University. The program is based on
the extensions of the outer-approximation algorithm for the equality relaxation strategy. The
MINLP algorithm inside DICOPT solves a series of NLP and MILP subproblems. These
subproblems can be solved using any NLP or MILP solver that runs under GAMS. The
solver can handle non-convexities, but it does not necessarily obtain the global optimum.
The GAMS/DICOPT system has been designed with two main goals in mind: (i) to build on
existing modeling concepts and to introduce a minimum of extensions to the existing modeling
language and provide upward compatibility to ensure easy transition from existing modeling
applications to non-linear mixed-integer formulations; (ii) to use existing optimizers to solve
the DICOPT subproblems. This allows one to match the best algorithms to the problem at
hand and guarantees that any new development and enhancements in the NLP and MILP
solvers become automatically and immediate available to DICOPT.

Algorithm implemented: Outer Approximation, Equality Relaxation, Augmented
Penalty.

Type of algorithm: exact for convex MINLPs.

Available Interface: GAMS.

Open-source software: no.

Author: J. Viswanathan and I.E. Grossmann.

Web site: www.gams.com/dd/docs/solvers/dicopt.pdf.

Dependencies: GAMS environment, MILP and NLP solver under GAMS.

122 CHAPTER 8. TOOLS FOR MIXED INTEGER NON-LINEAR PROGRAMMING

8.3.6 FilMINT

FilMINT is a solver for convex MINLPs. The solver is based on the LP/NLP algorithm of
Quesada and Grossmann [108]. FilMINT combines the MINTO Branch-and-Cut framework
for MILP with filterSQP used to solve the non-linear programs that arise as subproblems in
the algorithm. The MINTO framework allows to easily employ cutting planes, primal heuris-
tics, and other well-known MILP enhancements for MINLPs. FilMINT offers new techniques
for generating and managing linearizations that are shown to be efficient on a wide range of
MINLPs.

Algorithm implemented: LP/NLP based Branch-and-Bound QG.

Type of algorithm: exact for convex MINLPs.

Available Interface: AMPL.

Open-source software: no.

Programming Language: C, C++, FORTRAN.

Author: K. Abhishek, S. Leyffer and J. Linderoth.

Web site: www.mcs.anl.gov/∼leyffer/papers/fm.pdf.

Dependencies: MINTO, filterSQP.

8.3. MIXED INTEGER NON-LINEAR PROGRAMMING SOLVERS 123

8.3.7 LaGO

LaGO (Lagrangian Global Optimizer) is a Branch-and-Cut algorithm to solve MINLPs. A
linear outer approximation is constructed from a convex relaxation of the problem. Since it
does not require an algebraic representation of the problem, reformulation techniques for the
construction of the convex relaxation cannot be applied, and sampling techniques are used
in case of non-quadratic non-convex functions. The linear relaxation is further improved by
mixed-integer-rounding cuts. Also box reduction techniques are applied to improve efficiency.
It is assumed to have procedures for evaluating function values, gradients, and Hessians of the
functions. The restriction to black-box functions has the advantage that LaGO can handle
very general functions, but has the disadvantage that advanced reformulation and box reduc-
tion techniques cannot be used. Hence, when sampling methods are applied no deterministic
global optimization is guaranteed.

Algorithm implemented: Branch-and-Cut (reformulation, relaxation, linear cut gen-
erator).

Type of algorithm: exact for MIQQPs and convex MINLPs.

Available Interface: AMPL, GAMS, stand-alone executable (reading nl files), invo-
cation through C/C++ program.

Open-source software: yes.

Programming Language: C++.

Author: I. Nowak and S. Vigerske.

Web site: https://projects.coin-or.org/LaGO.

Dependencies: Ipopt, Cgl, Clp.

124 CHAPTER 8. TOOLS FOR MIXED INTEGER NON-LINEAR PROGRAMMING

8.3.8 LINDOGlobal

GAMS/LINDOGlobal finds guaranteed globally optimal solutions to general non-linear prob-
lems with continuous and/or discrete variables. GAMS/LINDOGlobal supports most math-
ematical functions, including functions that are non-smooth, such as abs(x) and/or even
discontinuous, such as oor(x). The LINDO global optimization procedure (GOP) employs
Branch-and-Cut methods to break an NLP model down into a list of subproblems. Given ap-
propriate tolerances, after a finite, though possibly large number of steps a solution provably
global optimal to tolerances is returned. GAMS/LINDOGlobal can automatically linearize
a number of non-linear relationships, such as max(x,y), through the addition of constraints
and integer variables, so the transformed linearized model is mathematically equivalent to the
original non-linear model. Keep in mind, however, that each of these strategies will require
additional computation time. Thus, formulating models, so they are convex and contain a sin-
gle extremum, is desirable. In order to decrease required computing power and time it is also
possible to disable the global solver and use GAMS/LINDOGlobal like a regular non-linear
solver. GAMS/LINDOGlobal has a multistart feature that restarts the standard (non-global)
non-linear solver from a number of intelligently generated points. This allows the solver to
find a number of locally optimal points and report the best one found. This alternative can
be used when global optimization is costly.

Algorithm implemented: Branch-and-Cut.

Type of algorithm: exact and heuristic methods available.

Available Interface: GAMS.

Open-source software: no.

Author: LINDO Systems.

Web site: http://www.gams.com/solvers/solvers.htm#LINDOGLOBAL.

Dependencies: GAMS, Conopt.

8.3. MIXED INTEGER NON-LINEAR PROGRAMMING SOLVERS 125

8.3.9 MINLPBB

MINLPBB is a package of FORTRAN 77 subroutines for finding solutions to MINLP prob-
lems. The package implements the Branch-and-Bound method in a non-linear setting. The
package must be used in conjunction with both filterSQP and bqpd. Problems are specified
in the same way as for filterSQP (i.e. either via subroutines or CUTE or AMPL). The addi-
tional integer structure is specified using a vector to identify the indices of integer variables.
The user can influence the choice of branching variable by providing priorities for the integer
variables.

Algorithm implemented: Branch-and-Bound.

Type of algorithm: exact for convex MINLPs.

Available Interface: CUTE, AMPL.

Open-source software: no.

Author: S. Leyffer.

Web site: www-unix.mcs.anl.gov/∼leyffer/solvers.html.

Dependencies: filterSQP, bqpd.

126 CHAPTER 8. TOOLS FOR MIXED INTEGER NON-LINEAR PROGRAMMING

8.3.10 MINOPT

MINOPT is a comprehensive and flexible package for the solution of various types of opti-
mization problems. It features both an advanced modeling language for the clear and concise
representation of complex mathematical models as well as a robust algorithmic framework for
the efficient solution of wide variety of mathematical programming problems. MINOPT is
capable of handling the following model types: Linear Programs, Non-linear Programs, Mixed
Integer Linear Programs, Mixed Integer Non-linear Programs, Non-linear Programs with Dif-
ferential and Algebraic Constraints (NLP/DAE), Mixed Integer Non-linear Programs with
Differential and Algebraic Constraints (MINLP/DAE), Optimal Control Problems (OCP),
Mixed Integer Optimal Control Problems (MIOCP). The MINOPT algorithmic framework
also has the following additional features: efficient integration and sensitivity analysis, ability
to switch easily among various solvers, ability to fine tune the solution algorithms with an ex-
tensive list of options. MINOPT has connections to a number of solvers and is able to exploit
the features, options and efficiency of the solvers. MINOPT provides the following algorithms
for the solution of MINLPs: Generalized Benders Decomposition, Outer Approximation and
variants (OA, OA/ER, OA/ER/AP), Generalized Cross Decomposition (GCD).

Algorithm implemented: Generalized Benders Decomposition, Outer Approximation,
Generalized Cross Decomposition.

Type of algorithm: exact for convex MINLPs.

Available Interface: stand-alone executable, Minopt modeling language.

Open-source software: no.

Author: C.A. Schweiger and C.A. Floudas.

Web site: http://titan.princeton.edu/MINOPT/.

Dependencies: Cplex/LPsolve, Minos/NPsol/Snopt.

8.3. MIXED INTEGER NON-LINEAR PROGRAMMING SOLVERS 127

8.3.11 SBB

SBB is a GAMS solver for MINLP models. It is based on a combination of the standard
Branch-and-Bound method known from Mixed Integer Linear Programming and some of the
standard NLP solvers already supported by GAMS. Currently, SBB can use CONOPT, MI-
NOS and SNOPT as solvers for subproblems. SBB supports all types of discrete variables
supported by GAMS, including: Binary, Integer, Semicontinuous, Semiinteger, SOS1, SOS2.
The Relaxed Mixed Integer Non-linear Programming (RMINLP) model is initially solved us-
ing the starting point provided by the modeler. SBB will stop immediately if the RMINLP
model is unbounded or infeasible, or if it fails. If all discrete variables in the RMINLP model
are integer, SBB will return this solution as the optimal integer solution. Otherwise, the cur-
rent solution is stored and the Branch-and-Bound procedure will start. During the Branch-
and-Bound process, the feasible region for the discrete variables is subdivided, and bounds
on discrete variables are tightened to new integer values to cut off the current non-integer
solutions. Each time a bound is tightened, a new, tighter NLP subproblem is solved starting
from the optimal solution to the previous looser subproblem. The objective function values
from the NLP subproblem is assumed to be lower bounds on the objective in the restricted
feasible space (assuming minimization), even though the local optimum found by the NLP
solver may not be a global optimum. If the NLP solver returns a Locally Infeasible status
for a subproblem, it is usually assumed that there is no feasible solution to the subproblem,
even though the infeasibility only has been determined locally. If the model is convex, these
assumptions will be satisfied and SBB will provide correct bounds. If the model is not convex,
the objective bounds may not be correct and better solutions may exist in other, unexplored
parts of the search space.

Algorithm implemented: Branch-and-Bound.

Type of algorithm: exact for convex MINLPs.

Available Interface: GAMS.

Open-source software: no.

Author: ARKI Consulting and Development.

Web site: http://www.gams.com/solvers/solvers.htm#SBB.

Dependencies: GAMS, Conopt/Minos/Snopt under GAMS.

128 CHAPTER 8. TOOLS FOR MIXED INTEGER NON-LINEAR PROGRAMMING

8.4 NEOS, a Server for Optimization

Most of the solvers described in the previous sections can be freely accessed on the Inter-
net through NEOS (Network-Enabled Optimization System), Server for Optimization [96],
maintained by the Optimization Technology Center of Northwestern University, the Argonne
National Laboratory and University of Wisconsin. A user can submit an optimization prob-
lem to the server and obtain the solution and running time statistics using the preferred solver
through different interfaces. In particular, three ways to interact with the server are available:

1. Web Interface: from the web site the user can submit a problem, typically written
with the AMPL or GAMS modeling languages (see Section 8.5), and obtain results and
statistics via email.

2. Client Interface: the user can communicate with the server using a client implementation
with different programming languages such as Python, Perl, PHP, C, C++, Java, Ruby
(see [96] and [129] for details).

3. Kestrel Interface: the user can submit a problem to the server and use the results within
a modeling environment. In the client machine, an executable file is called in order to
directly communicate with the server within the AMPL or GAMS environment (see
http://www-neos.mcs.anl.gov/neos/kestrel.html for details).

The chance to access to different solvers is a great opportunity for the optimization community,
both because a user can test the performance of different solvers and decide which one is most
suitable for the specific problem and because some of the solvers available are commercial
solvers that cannot be used in other ways by users who do not own a license. The uniformity
of the interfaces available for the different solvers makes easy to switch from one solver to
another without any additional work. Another advantage is that it is very easy to use, so it
is suitable for users not expert in optimization.

8.5 Modeling languages

Modeling languages are specifically studied to express optimization models (LP, NLP, MILP,
MINLP) with an intuitive syntax avoiding the user to implement software using programming
languages. They translate a model from a form easy to read for the user to a form readable by
the solvers. The most common and intuitive modeling languages are the algebraic modeling
languages (AML), widely used in (Mixed Integer) Non-Linear Programming. Their syntax
is similar to the mathematical notation and this makes the syntax particularly intuitive and
easy to read for the user. It is also flexible, allowing the user to implement within the
modeling language framework also complicated algorithms, and compact, thanks to the use
of abstract entities like sets and indices, making also large instances easy to write. The
basic steps the AMLs perform are: (i) read the model provided by the user; (ii) translate
the model into the appropriate form understandable to the solver; (iii) call the solver; (iv)
read the solution provided by the solver. Note that AMLs do not own solver capabilities
and use external solvers as black-boxes, but provide standard interfaces to the most common
solvers. Another important tool of AMLs is the non-linear interpreter: using symbolic and/or
automatic differentiation, it provides the NLP solver the information about the evaluation of
functions, first and second derivatives at a given point. This makes AMLs a fundamental tool

8.6. MINLP LIBRARIES OF INSTANCES 129

for (Mixed Integer) Non-Linear Programming. Moreover, being able to handle a wide range
of mathematical operators, AMLs limit the consequences of the lack of a standard format for
optimization models containing non-linearities. The two most widely used algebraic modeling
languages in MINLP are AMPL [55] and GAMS [31]. Both are commercial products, but
an evaluation limited version for students is available. The topic of modeling languages in
general has other very important and interesting aspects which are not presented here because
they do not represent the focus of this Ph.D. thesis.

8.6 MINLP libraries of instances

Mixed Integer Non-Linear Programming is a relatively recent topic. In the most recent years
libraries of instances to use for benchmark were developed. In the following sections some of
these libraries are described.

8.6.1 CMU/IBM Library

This library of convex MINLP instances was developed by people from Carnegie Mellon
University and IBM within the open-source MINLP Project. The instances are 41, all of
them are available in AMPL nl format and all but 3 of them also in GAMS format. The
instances can be found at the web site http://egon.cheme.cmu.edu/ibm/page.htm. Useful
information about the instances can be found in Bonami et al. [20].

8.6.2 MacMINLP Library

The MacMINLP library is maintained by Sven Leyffer and it is available at the web site
http://www.mcs.anl.gov/∼leyffer/macminlp/index.html. The library consists of 51 in-
stances, 15 of which are convex (the information about the convexity of the instance is explic-
itally provided on the web site). The web site provides also the number of integer variables,
the objective value of NLP relaxation and the optimal objective value or best solution found.
The format of the instances is the nl file or the files mod, dat and int of the AMPL modeling
language. Other available pieces of information are the ones provided by the so-called CUTE
classification
(http://www.rl.ac.uk/departments/ccd/numerical/cute/classification.html),
such as the type of the objective function and the constraints, the smoothness of the prob-
lem, the origin and/or interest of the problem, the number of variables and constraints of the
problem.

8.6.3 MINLPlib

The library, available at the web site http://www.gamsworld.org/minlp/minlplib.htm,
consists of 266 instances. Provided information about the problems are the number of equa-
tions, variables, discrete variables, number of non-zeros, number of non-linear non-zeros, the
best solution value and the reference to the origin of the instance. No information about
the convexity of the instances is provided. Instances are available in GAMS format, but the
web site provides also a Translation Service into other formats such as, for example, AMPL,
BARON, GAMS, LINGO, MINOPT. More information about the instances can be found in
Bussieck et al. [32]; the first author is also the coordinator of the library. In the following we

130 CHAPTER 8. TOOLS FOR MIXED INTEGER NON-LINEAR PROGRAMMING

report a (non complete) list of instances from MINLPlib which are convex (Table 8.1) and
non-convex (Table 8.2). The collected pieces of information are taken from Nowak [98] and

Table 8.1: Convex instances of MINLPlib (info heuristically computed with LaGO).
alan fo7 ar2 1 fo8 m7 ar25 1 nvs03 o7 ar5 1 st miqp5 st testph4
batch fo7 ar25 1 fo9 ar2 1 m7 ar3 1 nvs10 o7 stockcycle synthes1
csched2 fo7 ar3 1 fo9 ar25 1 m7 ar4 1 nvs11 o8 ar4 1 st test1 synthes2
du-opt5 fo7 ar4 1 fo9 ar3 1 m7 ar5 1 nvs12 o9 ar4 1 st test2 synthes3
du-opt fo7 ar5 1 fo9 ar4 1 m7 nvs15 ravem st test3 tls12
ex1223a fo7 fo9 ar5 1 meanvarx nvs20 risk2bpb st test4 tls2
ex1223b fo8 ar2 1 fo9 no7 ar2 1 o7 2 st e14 st test5 tls4
ex1223 fo8 ar25 1 gbd no7 ar25 1 o7 ar2 1 st miqp1 st test6 tls5
fac1 fo8 ar3 1 m3 no7 ar3 1 o7 ar25 1 st miqp2 st test8 tls6
fac3 fo8 ar4 1 m6 no7 ar4 1 o7 ar3 1 st miqp3 st testgr1 tls7
fo7 2 fo8 ar5 1 m7 ar2 1 no7 ar5 1 o7 ar4 1 st miqp4 st testgr3

Table 8.2: Non-convex instances of MINLPlib (info heuristically computed with LaGO).

batchdes ex1222 feedtray2 nuclear14 nvs09 pump super3
cecil 13 ex1224 feedtray nuclear24a nvs13 qap super3t
chp partload ex1225 fuel nuclear24b nvs14 qapw synheat
csched1 ex1226 fuzzy nuclear24 nvs16 ravempb tln12
deb10 ex1233 gasnet nuclear25a nvs17 saa 2 tln2
deb6 ex1243 gastrans nuclear25b nvs18 sep1 tln4
deb7 ex1244 gear2 nuclear25 nvs19 space25a tln5
deb8 ex1252a gear3 nuclear49a nvs21 space25 tln6
deb9 ex1252 gear4 nuclear49 nvs23 space960 tln7
detf1 ex1263a gear nuclearva nvs24 spectra2 tloss
eg all s ex1263 gkocis nuclearvb oaer spring tltr
eg disc2 s ex1264a hmittelman nuclearvc oil2 st e13 uselinear
eg disc s ex1264 johnall nuclearvd oil st e15 util
eg int s ex1265a lop97ic nuclearve ortez st e27 var con10
elf ex1265 lop97icx nuclearvf parallel st e29 var con5
eniplac ex1266a mbtd nvs01 prob02 st e31 waste
enpro48 ex1266 nous1 nvs02 prob03 st e36 water4
enpro48pb ex3 nous2 nvs04 prob10 st e38 waterx
enpro56 ex3pb nuclear10a nvs06 procsel st e40 waterz
enpro56pb ex4 nuclear14a nvs07 product2 super1 windfac
ex1221 fac2 nuclear14b nvs08 product super2

integrated with the use of a feature of LaGO which heuristically tries to assert the convexity
of the instance. LaGO does it by sampling the Hessian and computing eigenvalues of the
MINLP problem. Note that the tool does not provide an exact information, i.e. in few cases
it can be not correct. Moreover, LaGO checks only if every constraint function is convex,
concave, or neither of both. If functions are non-convex, but the feasible region is convex, the
model is considered non-convex. Thus, the information collected in Tables 8.1) and 8.2 are

8.6. MINLP LIBRARIES OF INSTANCES 131

not to be considered exact. 1

1Thanks to Stefan Vigerske for useful comments and discussions about LaGO.

132 CHAPTER 8. TOOLS FOR MIXED INTEGER NON-LINEAR PROGRAMMING

Bibliography

[1] K. Abhishek. Topics in Mixed Integer Nonlinear Programming. PhD thesis, Lehigh
University, 2008.

[2] T. Achterberg. Constraint Integer Programming. PhD thesis, Technische Universitt
Berlin, 2007.

[3] T. Achterberg and T. Berthold. Improving the feasibility pump. Discrete Optimization,
4:77–86, 2007.

[4] T. Achterberg, T. Koch, and A. Martin. MIPLIB 2003. Operations Research Letters,
34:1–12, 2006. See http://miplib.zib.de.

[5] C.S. Adjiman, I.P. Androulakis, and C.A. Floudas. Global optimization of minlp prob-
lems in process synthesis and design. Computers and Chemical Engineering, 21:445–450,
1997.

[6] I.P. Androulakis, C.D. Maranas, and C.A. Floudas. αbb: A global optimization method
for general constrained nonconvex problems. Journal of Global Optimization, 7:337–363,
1995.

[7] L.N. Vicente A.R. Conn, K. Scheinberg. Introduction to derivative free Optimization.
MPS/SIAM Book Series on Optimization, SIAM, Philadelphia, 2008.

[8] S. Artina, C. Bragalli, A. Lodi, and P. Toth. Approccio MILP al problema di optimal
design di reti di distribuzione idrica. In Atti del 28◦ Congresso Nazionale di Idraulica e
Costruzioni Idrauliche (in Italian), volume 1, pages 67–70, 2002.

[9] S. Artina and J. Walker. Sull’uso della programmazione a valori misti nel dimen-
sionamento di costo minimo di reti in pressione. In Atti dell’Accademia delle Scienze
dell’Istituto di Bologna (in Italian), Anno 271, Serie III, Tomo X, 1983.

[10] D. A. Babayev. Piece-wise linear approximation of functions of two variables. Journal
of Heuristics, 2:313–320, 1997.

[11] A. Baillo, M. Ventosa, A. Ramos, M. Rivier, and A. Canseco. Strategic unit commitment
for generation companies in deregulated electricity markets. In Proceedings of the 1999
DIMACS/EPRI Workshop, 1999.

[12] M.S. Bazaraa and C.M. Shetty. Nonlinear Programming. Theory and algorithms. John
Wiley and Sons, New York, 1979.

133

134 BIBLIOGRAPHY

[13] E.M.L. Beale and J.A. Tomlin. Special facilities in a general mathematical programming
system for non-convex problems using ordered sets of variables. In J. Lawrence, editor,
OR 69. Proceedings of the Fifth International Conference on Operational Research,
pages 447–454. Tavistock Publications, 1970.

[14] P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wächter. Branching and bounds
tightening techniques for non-convex minlp. Technical report, IBM Research Report
RC24620, 2008.

[15] J. Benders. Partitioning procedures for solving mixed-variables programming problems.
Numerische Mathematik, 4:267–299, 1962.

[16] L. Bertacco, M. Fischetti, and A. Lodi. A feasibility pump heuristic for general mixed-
integer problems. Discrete Optimization, 4:63–76, 2007.

[17] D.P. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.

[18] D. Bertsimas and J.N. Tsitsiklis. Introduction to Linear Optimization. Dynamic Ideas
and Athena Scientific, Belmont, Massachusetts, March, 2008.

[19] D. Bertsimas and R. Weismantel. Optimization over Integers. Dynamic Ideas, Belmont,
Massachusetts, January, 2005.

[20] P. Bonami, L.T. Biegler, A.R. Conn, G. Cornuéjols, I.E. Grossmann, C.D. Laird, J. Lee,
A. Lodi, F. Margot, N. Sawaya, and A. Wächter. An algorithmic framework for convex
mixed integer nonlinear programs. Discrete Optimization, 5:186–204, 2008.

[21] P. Bonami, G. Cornuéjols, A. Lodi, and F. Margot. A feasibility pump for mixed integer
nonlinear programs. Mathematical Programming, 119:331–352, 2009.

[22] P. Bonami, J. Forrest, J. Lee, and A. Wäcther. Rapid development of an minlp solver
with coin-or. Optima, 75:1–5, December, 2007.

[23] P. Bonami and J.P.M. Goncalves. Primal heuristics for mixed integer nonlinear pro-
grams. Technical report, IBM Research Report RC24639, 2008.

[24] P. Bonami and J. Lee. Bonmin users’ manual. Technical report, June 2006.

[25] P. Bonami and M. Lejeune. An exact solution approach for portfolio optimization
problems under stochastic and integer constraints. Operations Research, To appear.

[26] Bonmin. projects.coin-or.org/Bonmin, v. 1.0.1.

[27] Bonmin. projects.coin-or.org/Bonmin, v. trunk.

[28] A. Borghetti, C. D’Ambrosio, A. Lodi, and S. Martello. An milp approach for short-
term hydro scheduling and unit commitment with head-dependent reservoir. IEEE
Transactions on Power Systems, 23:1115–1124, 2008.

[29] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

BIBLIOGRAPHY 135

[30] C. Bragalli, C. D’Ambrosio, J. Lee, A. Lodi, and P. Toth. An MINLP solution method
for a water network problem. In Y. Azar and T. Erlebach, editors, Algorithms – ESA
2006, volume 4168 of Lecture Notes in Computer Science, pages 696–707. Springer–
Verlag, Berlin Heidelberg, 2006.

[31] A. Brooke, D. Kendrick, and A. Meeraus. Gams: A user’s guide, 1992.

[32] M.R. Bussieck, A.S. Drud, and A. Meeraus. Minlplib - a collection of test models for
mixed-integer nonlinear programming. INFORMS Journal on Computing, 15:114–119,
2003.

[33] R. Byrd, J. Nocedal, and R. Waltz. Knitro: An integrated package for nonlinear op-
timization. In G. Di Pillo and M. Roma, editors, Large-Scale Nonlinear Optimization,
pages 35–60. Springer, 2006.

[34] M. Carrión and J. M. Arroyo. A computationally efficient mixed-integer linear formula-
tion for the thermal unit commitment problem. IEEE Transactions on Power Systems,
21:1371–1378, 2006.

[35] J.P.S. Catalão, S.J.P.S. Mariano, V.M.F. Mendes, and L.A.F.M. Ferreira. Parameteri-
sation effect on the behaviour of a head-dependent hydro chain using a nonlinear model.
Electric Power System Research, 76:404–412, 2006.

[36] Cbc. https://projects.coin-or.org/Cbc.

[37] C.W. Chang and J.G. Waight. A mixed integer linear programming based hydro unit
commitment. In Power Engineering Society Summer Meeting, 1999.

[38] G.W. Chang, M. Aganagic, J.G. Waight, J. Medina, T. Burton, S. Reeves, and
M. Christoforidis. Experiences with mixed integer linear programming based approaches
on short-term hydro scheduling. IEEE Transactions on Power Systems, 16(4):743–749,
2001.

[39] A.J. Conejo, J.M. Arroyo, J. Contreras, and F.A. Villamor. Self-scheduling of a hydro
producer in a pool-based electricity market. IEEE Transactions on Power Systems,
17(2):1265–1272, 2002.

[40] G. Cornuéjols. Valid inequalities for mixed integer linear programs. Mathematical
Programming B, 112:3–44, 2008.

[41] M. Cunha and J. Sousa. Water distribution network design optimization: Simulated
annealing approach. Journal of Water Resources Planning and Management, ASCE,
125:215–221, 1999.

[42] G.C. Dandy, A.R. Simpson, and L.J. Murphy. An improved genetic algorithm for pipe
network optimization. Water Resources Research, 32:449–458, 1996.

[43] E. Danna, E. Rothberg, and C. Le Pape. Exploiting relaxation induced neighborhoods
to improve mip solutions. Mathematical Programming, 102:71–90, 2005.

[44] G.B. Dantzig. Linear Programming and Extensions. Princeton University Press, 1963.

136 BIBLIOGRAPHY

[45] M. Duran and I.E. Grossmann. An outer-approximation algorithm for a class of mixed-
integer nonlinear programs. Mathematical Programming, 36:307–339, 1986.

[46] J. Eckstein and M. Nediak. Pivot, cut, and dive: a heuristic for 0-1 mixed integer
programming. Journal of Heuristics, 13:471–503, 2007.

[47] G. Eiger, U. Shamir, and A. Ben-Tal. Optimal design of water distribution networks.
Water Resources Research, 30:2637–2646, 1994.

[48] EPANET. www.epa.gov/ORD/NRMRL/wswrd/epanet.html, v. 2.0.

[49] E.O. Finardi, E.L. Da Silva, and C. Sagastizabal. Solving the unit commitment problem
of hydropower plants via lagrangian relaxation and sequential quadratic programming.
Computational and Applied Mathematics, 24(3):317–341, 2005.

[50] M. Fischetti, F. Glover, and A. Lodi. The feasibility pump. Mathematical Programming,
104:91–104, 2004.

[51] M. Fischetti and A. Lodi. Local branching. Mathematical Programming, 98:23–47, 2002.

[52] M. Fischetti and A. Lodi. Optimizing over the rst chvátal closure. Mathematical Pro-
gramming, 110:3–20, 2007.

[53] M. Fischetti and D. Salvagnin. Feasibility pump 2.0. Technical report, ARRIVAL
project, October 2008.

[54] R. Fletcher. Practical Method of Optimization. John Wiley and Son, 2000.

[55] R. Fourer, D.M. Gay, and B.W. Kernighan. AMPL: A Modeling Language for Math-
ematical Programming. Duxbury Press/Brooks/Cole Publishing Co., second edition,
2003.

[56] A. Frangioni and C. Gentile. Perspective cuts for a class of convex 0-1 mixed integer
programs. Mathematical Programming, 106:225–236, 2006.

[57] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research
Logistics Quarterly, 3:95–110, 1956.

[58] O. Fujiwara and D.B. Khang. A two-phase decomposition method for optimal design
of looped water distribution networks. Water Resources Research, 26:539–549, 1990.

[59] J. Garćıa-González and G.A. Castro. Short-term hydro scheduling with cascaded and
head-dependent reservoirs based on mixed-integer linear programming. In Power Tech
Proceedings, 2001 IEEE Porto, 2001.

[60] J. Garćıa-González, E. Parrilla, and A. Mateo. Risk-averse profit-based optimal schedul-
ing of a hydro-chain in the day-ahead electricity market. European Journal of Opera-
tional Research, 181(3):1354–1369, 2007.

[61] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, New York, 1979.

BIBLIOGRAPHY 137

[62] A.M. Geoffrion. Generalized benders decomposition. Journal of Optimization Theory
and Applications, 10:237–260, 1972.

[63] F.W. Glover and G.A. Kochenberger, editors. Handbook of Metaheuristics. Kluwer
Academic Publishers, Dordrecht, The Netherlands, 2003.

[64] R.E. Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin
of the American Mathematical Society, 64:275–278, 1958.

[65] I.E. Grossmann. Review of nonlinear mixed-integer and disjunctive programming tech-
niques. Optimization and Engineering, 3:227–252, September, 2002.

[66] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial
Optimization. Springer-Verlag, Berlin Heidelberg, 1988.

[67] W. Grubauer, R. Unverwood, M. Telgenhoff, and R. Frowd. Optimal hydro generation
and interchange scheduling with flow-dependent channel constraints. In Proceeding of
Energy Management and Power Delivery (EMPD ’95), 1995.

[68] O. Günlük, J. Lee, and R. Weismantel. Minlp strengthening for separable convex
quadratic transportation-cost ufl. Technical report, IBM Research Report RC24213,
2007.

[69] O. Günlük and J. Linderoth. Perspective relaxation of mixed integer nonlinear programs
with indicator variables. In A. Panconesi A. Lodi and G. Rinaldi, editors, IPCO, Lecture
Notes in Computer Science, pages 1–16. Springer, 2008.

[70] O.K. Gupta and V. Ravindran. Branch and bound experiments in convex nonlinear
integer programming. Management Science, 31:1533–1546, 1985.

[71] Ilog-Cplex. www.ilog.com/products/cplex, v. 10.1.

[72] J.E. Kelley Jr. The cutting-plane method for solving convex programs. Journal of
SIAM, 8:703–712, 1960.

[73] R. Karuppiah and I.E. Grossmann. A lagrangean based branch-and-cut algorithm for
global optimization of nonconvex mixed-integer nonlinear programs with decomposable
structures. Journal of Global Optimization, 41:163–186, 2008.

[74] W. Karush. Minima of functions of several variables with inequalities as side constraints.
PhD thesis, Master’s thesis, 1939.

[75] A.B. Keha, I.R. de Farias, and G.L. Nemhauser. Models for representing piecewise
linear cost functions. Operations Research Letters, 32:44–48, 2004.

[76] P. Kesavan and P.I. Barto. Generalized branch-and-cut framework for mixed-integer
nonlinear optimization problems. Computers and Chemical Engineering, 24:1361–1366,
2000.

[77] H.W. Kuhn and A.W. Tucker. Nonlinear programming. In J. Neyman, editor, Proceed-
ings of the 2nd Berkley Symposium on Mathematical Statistics and Probability, pages
481–493. University Press, Berkley, California, 1951.

138 BIBLIOGRAPHY

[78] A.H. Land and A.G. Doig. An automatic method of solving discrete programming
problems. Econometrica, 28:497–530, 1960.

[79] K.E. Lansey and L.W. Mays. Optimization model for water distribution system design.
Journal of Hydraulic Engineering, 115:1401–1418, 1989.

[80] J. Lee and D. Wilson. Polyhedral methods for piecewise-linear functions i: the lambda
method. Discrete Applied Mathematics, 108:269–285, 2001.

[81] S. Leyffer. Integrating sqp and branch-and-bound for mixed integer nonlinear program-
ming. Computational Optimization and Applications, 18:295–309, 2001.

[82] S. Leyffer. User manual for MINLP BB. Technical report, University of Dundee, April
1998; revised March 1999.

[83] L. Liberti. Reformulation and Convex Relaxation Techniques for Global Optimization.
PhD thesis, Imperial College London, UK, 2004.

[84] L. Liberti. Writing global optimization software. In L. Liberti and N. Maculan, editors,
Global Optimization: from Theory to Implementation, pages 211–262. Springer, Berlin,
2006.

[85] L. Liberti, S. Cafieri, and F. Tarissan. Reformulations in mathematical programming:
A computational approach. In A.E. Hassanien, A. Abraham, F. Herrera, W. Pedrycz,
P. Siarry A. Carvalho, and A. Engelbrecht, editors, Foundations on Computational
Intelligence, Studies in Computational Intelligence. Springer, Berlin, to appear.

[86] L. Liberti, G. Nannicini, and N. Mladenovic. A good recipe for solving minlps. In
Matheuristics08 Proceedings. 2008.

[87] A. Lodi. Mip computation and beyond. In M. Junger, T. Liebling, D. Naddef, W. Pulley-
blank, G. Reinelt, G. Rinaldi, and L. Wolsey, editors, 50 Years of Integer Programming
1958-2008. Springer Verlag, 2008.

[88] N. Lu, J.H. Chow, and A.A. Desrochers. Pumped-storage hydro-turbine bidding
strategies in a competitive electricity market. IEEE Transactions on Power Systems,
19(2):834–841, 2004.

[89] A. Martin, M. Moller, and S. Moritz. Mixed integer models for the stationary case of
gas network optimization. Mathematical Programming, 105:563–582, 2006.

[90] Mathematica. www.wolfram.com/products/mathematica/index.html, v. 7.0.

[91] Matlab. http://www.mathworks.com/products/matlab/, R2007a.

[92] G.P. McCormick. Computability of global solutions to factorable nonconvex programs:
Part i - convex underestimating problems. Mathematical Programming, 10:147–175,
1976.

[93] G. Nannicini, P. Belotti, and L. Liberti. A local branching heuristic for minlps. ArXiv,
paper 0812.2188, 2009.

BIBLIOGRAPHY 139

[94] S.G. Nash. Software survey: Nonlinear programming. OR/MS Today, 25:36–38, June,
1998.

[95] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. John Wiley
and Sons, New York, 1988.

[96] NEOS. www-neos.mcs.anl.gov/neos, v. 5.0.

[97] J. Nocedal and S.J. Wright. Numerical Optimization. Springer Series in Operations
Research, 2006.

[98] I. Nowak. Relaxation and Decomposition Methods for Mixed Integer Nonlinear Pro-
gramming. International Series of Numerical Mathematics, Birkhäuser Verlag, 2005.

[99] I. Nowak, H. Alperin, and S. Vigerske. Lago – an object oriented library for solving
minlps. In Global Optimization and Constraint Sarisfaction, volume 2861 of Lecture
Notes in Computer Science, pages 32–42. Springer, Berlin Heidelberg, 2003.

[100] I. Nowak and S. Vigerske. Lago - a (heuristic) branch and cut algorithm for nonconvex
minlps. Central European Journal of Operations Research, 16:127–138, 2008.

[101] S.O. Orero and M.R. Irving. A genetic algorithm modelling framework and solution
technique fo short term optimal hydrothermal scheduling. IEEE Transactions on Power
Systems, 13(2):501–518, 1998.

[102] M.W. Padberg and G. Rinaldi. Optimization of a 532-city symmetric traveling salesman
problem by branch and cut. Operations Research Letters, 6:1–7, 1987.

[103] N.P. Padhy. Unit commitment - a bibliographical survey. IEEE Transactions on Power
Systems, 19(2):1196–1205, 2004.

[104] C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and
Complexity. Prentice Hall, Englewood Cliffs, N.J., 1988.

[105] P.M. Pardalos and H.E. Romeijn. Handbook of Global Optimization Volume 2. Kluwer
Academic Publishers, Netherlands, 2002.

[106] M.R. Piekutowki, T. Litwinowcz, and R.J. Frowd. Optimal short-term scheduling for a
large-scale cascaded hydro system. IEEE Transactions on Power Systems, 9(2):805–811,
1994.

[107] R. Pörn and T. Westerlund. A cutting plane method for minimizing pseudo-convex
functions in the mixed-integer case. Computers and Chemical Engineering, 24:2655–
2665, 2000.

[108] I. Quesada and I.E. Grossmann. An lp/nlp based branch and bound algorithm for
convex minlp optimization problems. Computer and Chemical Engineering, 16:937–
947, 1992.

[109] F. Rendl, G. Rinaldi, and A. Wiegele. Solving max-cut to optimality by intersect-
ing semidefinite and polyhedral relaxations. Technical report, Alpen-Adria-Universitt
Klagenfurt, Inst. f. Mathematik, 2008.

140 BIBLIOGRAPHY

[110] H. Ryoo and N. Sahinidis. A branch-and-reduce approach to global optimization. Jour-
nal of Global Optimization, 8:107–138, 1996.

[111] N.V. Sahinidis. Baron: a general purpose global optimization software package. Journal
of Global Optimization, 8:201–205, 1996.

[112] D. A. Savic and G. A. Walters. Genetic algorithms for the least-cost design of water
distribution networks. ASCE Journal of Water Resources Planning and Management,
123:67–77, 1997.

[113] A. Saxena, P. Bonami, and J. Lee. Disjunctive cuts for non-convex mixed integer
quadratically constrained programs. In A. Panconesi A. Lodi and G. Rinaldi, editors,
IPCO, Lecture Notes in Computer Science, pages 17–33. Springer, 2008.

[114] J. C. Jr. Schaake and D. Lai. Liner programming and dynamic programming applica-
tion to water distribution network design. Report, Hydrodynamics Laboratory, Depart-
ment of Civil Engineering, School of Enrineering, Massachusetts Institute of Technology,
Cambridge, Massachussets, 1969.

[115] T.J. Scott and E.G. Read. Modelling hydro reservoir operation in a deregulated elec-
tricity market. International Transactions in Operational Research, 3(3/4):243–253,
1996.

[116] H. D. Sherali, S. Subramanian, and G. V. Loganathan. Effective relaxation and parti-
tioning schemes for solving water distribution network design problems to global opti-
mality. Journal of Global Optimization, 19:1–26, 2001.

[117] N.S. Sinha, R. Chakrabarti, and P.K. Chattopadhyay. Fast evolutionary programming
techniques for short-term hydrothermal scheduling. IEEE Transactions on Power Sys-
tems, 18(1):214–220, 2003.

[118] E.M.B. Smith and C.C. Pantelides. A symbolic reformulation/spatial branch and bound
algorithm for the global optimization of nonconvex minlps. Computers and Chemical
Engineering, 23:457–478, 1999.

[119] M. Tawarmalani and N. V. Sahinidis. Global optimization of mixed-integer nonlinear
programs: A theoretical and computational study. Mathematical Programming, 99:563–
591, 2004.

[120] J.A. Tomlin. A suggested extension of special ordered sets to non-separable non-convex
programming problems. In P. Hansen, editor, Studies on Graphs and Discrete Program-
ming, pages 359–370. North-Holland Publishing Company, 1981.

[121] M. Van Den Boomen, A. Van Mazijk, and R.H.S. Beuken. First evaluation of new design
concepts for self-cleaning distribution networks. Journal of Water Supply: Research and
Technology AQUA, 53:43–50, 2004.

[122] J.P. Vielma and G.L. Nemhauser. Modeling disjunctive constraints with logaritmic –
number of binary variables and constraints. In A. Lodi, A. Panconesi, and G. Rinaldi,
editors, IPCO, Lecture Notes in Computer Science, pages 199–213. Springer, 2008.

BIBLIOGRAPHY 141

[123] A. Wächter and L. T. Biegler. On the implementation of a primal-dual interior point
filter line search algorithm for large-scale nonlinear programming. Mathematical Pro-
gramming, 106:25–57, 2006.

[124] T.M. Walski. Analysis of Water Distribution Systems. Van Nostrand Reinhold Com-
pany, New York, N.Y., 1984.

[125] T.M. Walski, D.V. Chase, and D.A. Savic. Water Distribution Modeling. Haestad
Methods, Inc., Waterbury, CT, U.S.A., 2001.

[126] T. Westerlund and F. Pettersson. A cutting plane method for solving convex minlp
problems. Computers and Chemical Engineering, 19:S131–S136, 1995.

[127] T. Westerlund and R. Pörn. Solving pseudo-convex mixed integer problems by cutting
plane techniques. Optimization and Engineering, 3:253–280, 2002.

[128] T. Westerlund, H. Skrifvars, I. Harjunkoski, and R. Pörn. An extended cutting plane
method for solving a class of non-convex minlp problems. Computers and Chemical
Engineering, 22:357–365, 1998.

[129] XML-RPC. http://www.xmlrpc.com.

[130] Xpress. http://www.dashoptimization.com.

[131] C. Xu and I.C. Goulter. Reliability-based optimal design of water distribution networks.
Journal of Water Resources Planning and Management, 125:352–362, 1999.

142 BIBLIOGRAPHY

