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Mitochondria: life and death of a cell 

In eukaryotes, many energetic functions, such as cellular respiration and energy 

production, take place in double membrane cytoplasmic organelles, containing their 

own genome, the mitochondria. These organelles are the main players in many cellular 

processes, not only the energy production, but also thermogenesis, apoptosis, reactive 

species of oxygen (ROS) production and calcium homeostasis. In the last 20 years 

several neurodegenerative diseases, aging and cancer have been associated with 

mitochondrial impairment and mitochondrial DNA (mtDNA) mutations.
1,2

 

The origin of mitochondria is explained by the endo-symbiont theory, which proposes 

that these organelles originated from aerobic bacteria, incorporated into an oxidative 

proto-eukaryote host cell and maintained during evolution.
3
 

 

Morphology and dynamics 

Mitochondria are delimited by two membranes, the outer mitochondrial membrane 

(OMM), very permeable, and the strictly selective inner mitochondrial membrane 

(IMM), characterized by the presence of cristae. These ‘mitochondrial units’ have a 

major axis of 2–5 µm, as observed in classical electron microscopy images of isolated 

mitochondria. In the cytosol of a living cell, these organelles display an elongated, 

tubular morphology.
4 

Mitochondria can be considered dynamic organelles in two ways: 

their shape is continuously remodelled by cycles of fission and fusion events and they 

must be strategically distributed to meet cellular needs and signals from outside.
5
 

The fission/fusion process is regulated to respond to specific cellular needs, such as the 

transport of mitochondria at specific subcellular sites or the equal mitochondrial 

distribution between the two daughter cells during mitosis.
6
 Moreover mitochondrial 

morphology changes drastically during the early steps of apoptosis (fragmentation of 

the reticulum and remodelling of the cristae) and this process is required to insure the 

release of apoptogenic factors and the progression of the apoptotic cascade.
7  
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Mitochondria are travelling powerhouses that need to be located within the cytoplasm 

according to the local metabolic needs of the cell. Mitochondrial movements within 

neuronal axons occur as a bi-directional, antero-retrograde flux, traveling with the so-

called “fast component” of axonal transport.
23,24

 The mitochondrial distribution within 

the cytoplasm depends on their interaction with the cytoskeleton, in particular with the 

microtubules (MT) and the motor proteins. Thus, MT-based motility is supported by 

kinesin for anterograde transport, and by dynein for retrograde transport. Mitochondria 

can also use actin microfilaments, most likely representing an auxiliary system involved 

in local transport.
25

 Both kinesin and dynein are associated with an ATPase activity that 

is activated by microtubule binding and so, mitochondrial axonal transport is an ATP-

dependent process. 
26,27 

 

The respiratory chain
 

Mitochondrial respiration is driven by a chain of sequentially organized redox reactions 

fed by reducing equivalents derived from the oxidative degradation of carbon substrates. 

Embedded in the lipid bilayer of the IMM, the oxidative phosphorylation (OXPHOS) 

system is the final biochemical pathway in energy production of the cell. The 

respiratory chain consists of five multimeric enzyme complexes (I-V) together with two 

mobile electron carriers, ubiquinone (CoQ) and cytochrome c (cyt c) (Fig. 2).  

Complex I (NADH:ubiquinone oxidoreductase), the first site of the respiratory chain, 

transfers electrons from nicotinamide adenine dinucleotide (NADH) to CoQ, generating 

ubiquinol (CoQH2), which then shuttles two electrons to complex III 

(ubiquinol:ferricytochrome c oxidoreductase, cytochrome bc1 complex).
28

  Complex I is 

composed approximately of 45 subunits, 7 mtDNA-encoded.
29

 Ubiquinol is also 

produced by complex II (succinate:ubiquinone oxidoreductase), which, in a pathway 

parallel to that of complex I, transfers electrons from flavin adenine dinucleotide 

(FADH2) to CoQ. Complex II is the only respiratory enzyme completely encoded by 

nDNA (4 subunits).
30

 A third, further source that transfers electrons to CoQ to generate 

ubiquinol is glycerol 3-phosphate dehydrogenase. 



Introduction 

 

5 

 

 Fig. 2 Mitochondrial respiratory chain. From Zeviani M, Di Donato S. Brain (2004) 127:2153-2171. 

 

Complex III has only one mtDNA-encoded subunit, cytochrome b; the other 10 

subunits are nDNA-encoded, and at least one nDNA-encoded protein has been reported 

to be essential for the enzyme assembly.
31,32

 Complex III, the middle segment of the 

respiratory chain, transfers two electrons from CoQH2 to cyt c, which in turn shuttles 

the electrons to complex IV (ferrycytochrome:oxygen oxidoreductase, cytochrome c 

oxidase). Complex IV, the terminal component of the respiratory chain, transfers 

electrons to molecular oxygen, the final acceptor, producing water. The three largest 

subunits out of the 13 that make up complex IV are encoded by mtDNA, but at least 

five nDNA-encoded genes have been identified as essential to the enzyme assembly.
32,33

  

All the respiratory complexes containing mtDNA-encoded subunits (complexes I, III, 

and IV) couple the electron transfer with the proton translocation across the inner 

mitochondrial membrane from the matrix side to the intermembrane space. According 

to the chemiosmotic theory, proposed by Mitchell,
34 

the electrochemical gradient (∆µH) 

drives the reverse flow of protons back to the matrix through the membrane portion of 

complex V (ATP synthase, F1Fo-ATPase), which then catalyzes the ATP synthesis, 

phosphorylating ADP to ATP. Complex V has two subunits encoded by mtDNA 

(ATPase6 and ATPase8), that take part to the membrane-bound portion (Fo) of the 

enzyme, and about 13 other subunits encoded by nDNA.
35

 The ATP synthesized in the 

mitochondrial matrix is transported across the inner mitochondrial membrane with an 
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exchange mechanism, importing cytosolic ADP by the adenine nucleotide translocator 

(ANT).  

 

Complex I structure, function and assembly 

Complex I, the largest of the five OXPHOS complexes, binds and oxidizes NADH to 

free electrons via a non-covalently bound flavine mononucleotide (FMN). Then the 

electrons are transferred via a cascade of up to nine iron–sulfur clusters to electron 

acceptor ubiquinone and then through the OXPHOS system to reduce molecular oxygen 

at complex IV. Enzymes from different organisms have different numbers of iron-

sulphur clusters, most of which share the same midpoint potential and are called 

“isopotential” clusters. The energy released during this process is used to drive proton 

translocation across the IMM. The redox reaction of complex I can be summarized in 

the following scheme:
36,37 

 

 

NADH + H
+
 + Q + 4H

+
matrix → NAD

+ 
+ QH2 + 4H

+
intermembrane space 

 

The way in which the electron transfer is coupled to proton translocation is still debated: 

it could be directly coupled via close proximity of the ubiquinone binding site to proton 

translocation, or indirectly via conformational changes of the enzyme. This latter 

hypothesis is supported by recent data obtained for bacterial and Y. lipolytica 

enzymes.
38

   

Complex I is L-shaped, consisting of two arms: a hydrophobic membrane region which 

resides in the IMM and a hydrophilic peripheral or matrix region which protrudes into 

the mitochondrial matrix (Fig. 3).
39-41 

Recently the crystal structure of the peripheral 

arm of T. thermophylus complex I elucidated the exact arrangement of the iron–sulfur 

clusters within the complex,
42,43

 but the structure of the transmembrane arm is still 

unknown. 

Three functional modules can be distinguished for human complex I: 

1. the dehydrogenase module, which is responsible for the oxidation of NADH and 

consists of at least the NDUFV2, NDUFV1 and NDUFS1 subunits  

2. the hydrogenase module, which guides the released electrons to ubiquinone and 

consists of at least the NDUFS2, NDUFS3, NDUFS7 and NDUFS8 subunits 
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3. the proton translocation or transporter module, which consists of at least the 

ND1, ND2, ND3, ND4, ND4L, ND5 and ND6 subunits.
 38

 

 

 

Fig. 3 Complex I structure and protein composition. From Vogel RO et al. Biochim Biophys Acta. (2007) 

1767:1215-1227. 

 

The “minimal” functioning structure is considered the bacterial complex I, composed by 

the 14 most conserved subunits, also known as core subunits. Several phylogenetic 

studies have revealed a high degree of conservation of certain modules in different 

organisms and have led to models describing the modular evolution of complex I.
38,44 

These models proposed that complex I is originated from an ancestral soluble nickel-

iron hydrogenase (sharing homology with the NDUFS2 and NDUFS7 subunits). This 

hydrogenase has gained a quinone binding site and has become membrane bound upon 

acquisition of a protein of unknown function (NDUFS3), a ferrodoxin-type (NDUFS8), 

ion translocating (ND5) and quinone-binding (ND1) subunits. This structure was 

subsequently expanded by triplication of ion translocating subunits (ND2 and ND4). 

Then the complex has lost its nickel-iron active site and its ability to react with 

molecular hydrogen, finally, membrane subunits (ND3, ND4L and ND6) and the 

NADH dehydrogenase module (NDUFS1, NDUFV1 and NDUFV2) are acquired.
38 

Several subunits
 
are necessary for a correct assembly of complex I: all the mitochondrial 

proteins, with the only exceptions of ND3 and ND4L, if mutated lead to many different 

species of subcomplexes. Moreover, mutations in many nuclear subunits, such as 
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NDUFA1, NDUFA6, NDUFA9, NDUFS1, NDUFS3, NDUFS4, NDUFS8 and 

NDUFV1, generate an incomplete assembly of complex I.
38 

 

 

Fig. 4 General model proposed for complex I assembly in human. From Vogel RO et al. Biochim 

Biophys Acta. (2007) 1767:1215-1227.  

 

Four different models were proposed for the assembly mechanism in human.
45-48 

These 

models agree in that 100/200kDa intermediate, containing at least NDUFS2 and 

NDU4S3, is anchored to the membrane by at least ND1 prior to addition of remaining 

membrane, hydrogenase and NADH dehydrogenase subunits (Fig. 4). This first stage is 

follow by the assembly of a 400/500 kDa membrane bound intermediate, probably 

containing NDUFS1, NDUFS7, NDUFS8, ND2, ND3 and ND6. Subsequently an 

800/850 kDa intermediate is generated, most likely due to the addition of NDUFB8, 

NDUFA9, NDUFV1, NDUFV3 and NDUFS6. Finally the addition of at least NDUFV2 

and NDUFS4 leads to a fully assembled complex I.
38

 This extremely complex process 

probably regulated and coordinated by different chaperone proteins; some of them are 

recently identified, such as B17.2L and AIF.
49-51 

 

Reactive Oxygen Species (ROS) production 

The mitochondrial respiratory chain is also the principal cellular source of ROS. ROS 

are generated by loose electrons spilling from complex I and III, and reacting with 

molecular oxygen to form the superoxide anion (O2
.-
). The O2

.-
 is rapidly converted into 

hydrogen peroxide (H2O2) by manganese superoxide dismutase (MnSOD, SOD2); H2O2 
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is further metabolized by glutathione peroxidase (GPx) into H2O. Alternatively, H2O2 

may also generate the hydroxyl radical (OH
.
) in the presence of transition metals 

through the Fenton reaction. Furthermore, O2
.-
 may react directly with nitric oxide (NO

.
) 

to produce peroxynitrite (ONOO
.
). Compared to O2

.-
, H2O2 is much more stable and can 

diffuse through biological membranes, giving it the potential to act as a long-range 

signaling molecule.
52-54

 A recent work has shown that ROS can be used by the cell as 

regulated and specific second messengers to propagate signals in multiple settings.
55

 

Being the major generator of ROS, mitochondria could also be the principal target of 

ROS damage, which could affect DNA, proteins and/or lipids. 

Oxidative damage to DNA causes modification of the bases, the deoxyribose backbone, 

single and double strand breaks, as well as cross-links to other molecules. DNA 

modifications are potentially mutagenic, contributing to cancer, premature ageing and 

neurodegenerative diseases.
56

 Moreover mtDNA is especially susceptible to attack by 

ROS due to the close proximity to the respiratory chain and the lack of protective 

histones; the level of modified bases in mtDNA is 10- to 20-fold higher than that in 

nuclear DNA. In this way, ROS induced oxidative damage is probably a major source 

of mitochondrial genomic instability leading to respiratory dysfunction and this 

instability is thought to be one of the most important factors in ageing.
57

  

Excessive ROS production may cause local damage to the Fe-S clusters of respiratory 

enzymes (complexes I, II and III), as well as to tricarboxylic acid cycle enzymes 

(aconitase).
58,59

 Moreover, peroxynitrite can nitrate tyrosine residues or thiolic groups of 

nearby proteins  and both complex I and MnSOD have been reported to be  damaged by 

this process.
60-63

 Oxidized proteins are recognized by proteases and degraded. 

Lastly, another important damaging process is lipid peroxidation; this affects vital 

mitochondrial functions, such as respiration and oxidative phosphorylation, inner 

membrane barrier properties, maintenance of mitochondrial membrane potential (∆ψm), 

and mitochondrial Ca
2+

 buffering capacity.
64-66

  

 

Apoptosis 

Apoptosis is a major pathway of programmed cell death (PCD) and is extremely 

important in several physiological conditions, such as embryonic development, tissue 

generation and the immune system development. This process is involved also in many 
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pathological events, included neurodegenerative, cardiovascular and immunological 

disorders.
67

 Apoptosis is characterized by a cascade of controlled events that leads to 

specific morphological changes in the cell: loss of adhesion, cell shrinkage, plasmatic 

membrane blebbing, chromatin condensation, DNA fragmentation, proteolytic cut of 

specific substrates and exposure of phosphatidylserine on the external surface of the 

cell.
68-70 

The final event of this cascade is the phagocytosis of the apoptotic cell, without 

any release of cytoplasmic content into the extracellular matrix or inflammatory 

response induction. 

Apart the granzyme B pathway, there are other two apoptotic cascades: the “extrinsic” 

or death receptor pathway, and the “intrinsic” or mitochondrial pathway (Fig. 5). The 

extrinsic pathway is activated by the binding of ligands to a specific death receptor, 

such as Fas, TNF or TRAIL receptors. This step is followed by the receptor 

oligomerization, which induce the recruitment of adaptor proteins and upstream 

procaspases. The proteolytic cut of inactive procaspases induce their direct activation 

and triggers the apoptotic cascade.
71

 The mitochondrial pathway is a complex signaling 

cascade, regulated by the Bcl-2 family proteins, that needs the release of apoptogenic 

factors from mitochondria for the caspase activation. The intrinsic pathway can be 

divided in three well defined phases: induction, mitochondrial and execution phases. 

During the induction phase external and internal stimuli activate different signaling 

pathways and this signal is transduced to mitochondria by Bcl-2 family proteins. This 

protein family includes several proteins sharing a common feature: the presence of one 

or more BH (Bcl-2 homology) domains. There are four different BH domains (BH1-

BH4), composed by α-helices, that allow the formation of homodimers and eterodimers 

between different members of the family.
72 

A subgroup of these proteins, including Bcl-

2, Bcl-XL, Bcl-w, Mcl-1, has an anti-apoptotic function is characterized by the BH1-2 or 

the BH1-4 domains and a transmembrane domain presence. Instead, there are two 

subgroups with pro-apoptotic functions: the Bax type proteins (Bax, Bak and Bok) with 

BH1-3 and transmembrane domains and the “BH-3 only” type (Bid, Bim and Bad). 

The second apoptotic step is the mitochondrial phase characterized by an alteration of 

the OMM and the release of apoptogenic factors to the cytosol. How this happens is still 

debated and actually there are at least two hypothesis to explain this phenomenon, 

involving two distinct channels. These channels are the permeability transition pore 
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PTP in the inner membrane and the mitochondrial apoptosis-induced channel MAC in 

the outer membrane. 

 

 

Fig. 5 Cellular signaling pathways involved in apoptosis. From Taylor RC, Cullen SP, Martin SJ. Nat 

Rev Mol Cell Biol. 2008; 9:231-241. 

 

The most probable model proposes that MAC is generated on the OMM thanks to the 

direct pore forming properties of some pro-apoptotic Bcl-2 proteins. Bax, a monomeric 

soluble cytosolic factor, oligomerizes, translocates, and inserts in the OMM upon 

induction of apoptosis.
73,74

 Together with Bak, Bax is supposed to form tetrameric 

channels regulated by BH3-only proteins, such as Bid. These proteins induce the 

conformational change of Bax and regulates the MAC formation, functioning as sensors 
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for cellular integrity and activity, cytoskeleton integrity, growth factor presence, and 

death domain receptor signaling.
75

 Anyway, the exact molecular composition of MAC 

and its regulation are still not completely explained. 

The second model propose the opening of the PTP, an unselective and high conductive 

channel, in the IMM in response to apoptotic stimuli. This event induces an alteration of 

the IMM permeability, causing a depolarization of the IMM, a matrix swelling and 

OMM break.
76  

Recent studies demonstrates that the first step of mitochondrial 

permeabilization could be the transient opening of MAC, and that PTP has a role in the 

amplification of the apoptotic signaling. Whatever is the mechanism of the 

mitochondrial permeabilization, the final result is the release of apoptogenic factors 

(cytochrome c, AIF, endonuclease G, Smac/DIABLO and Omi/HtrA2). (Fig. 6) 

 

 

Fig. 6 Apoptogenic factors released from mitochondria during apoptosis. From Vila M, Przedborski S. 

Nat Rev Neurosci. 2003; 4:365-375. 

 

The most important and well known apoptotic factor is cytochrome c (12.3 kDa) that is 

able to trigger the assembly of the apoptosome. The apoptosome is a complex 

composed of cyt c, Apaf-1, and dATP. Cyt c binds Apaf-1 at WD-40 repeats domain in 

the presence of ATP, and allows the conformational change of Apaf-1 from a closed 

monomeric configuration to a platform for procaspase-9 assembly (Fig. 7). Procaspase-
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9 binds Apaf-1 at a conserved amino acid sequence called the caspase recruitment 

domain or CARD, leading to the activation of procaspase-9.
77

 

 

 

Fig. 7 Apoptosome assembly and caspase-9 activation. From Reed JC. Trends Mol Med. 2001; 7:314-

319. 

 

AIF (Apoptosis Inducing Factor, 57 kDa) is a flavoprotein confined to the mitochondria 

in normal conditions but able to translocate to the nucleus in response to apoptogenic 

stimuli.
76

 The exact function of AIF under normal physiological conditions is still not 

clear, but it has been reported to be an important part of the antioxidant machinery. 

Overexpression of AIF induces chromatin condensation, dissipation of the 

mitochondrial transmembrane potential, exposure of phosphatidylserine on the plasma 

membrane, and high molecular weight (50 kbp) DNA fragmentation.
78

 The molecular 

mechanism of AIF functioning in apoptosis is also unknown. It has no intrinsic nuclease 

activity and its oxidoreductase activity is not required for its apoptogenic function. 

Probably AIF acts together with endonuclease G in a caspase-independent apoptotic 

mechanism.
79,80 

Endonuclease G (endoG, 30 kDa) is a non-specific nuclease released from mitochondria 

in apoptotic cells. Probably this endonuclease has a role in the normal mitochondrial 
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nucleic acid metabolism, but this role is still unclear. During apoptosis in mammalian 

cells, endoG translocates to the nucleus and digests nuclear DNA in the absence of 

caspase activity or the caspase-activated deoxyribonuclease CAD/DFF. Probably endoG 

acts in concert with both exonucleases and DNase I in the nucleus to generate DNA 

cleavage products.
76

  

Recently, a new protein, Smac/DIABLO (23 kDa) has been discovered.
81,82

 This protein 

is released from the mitochondria along with cyt c during apoptosis and promotes 

caspase activation by associating with the apoptosome and by inhibiting IAPs. 

Smac/DIABLO relieves the inhibition on caspases by binding to the BIR domains 

(Baculovirus IAP Repeats) of IAPs proteins (Inhibitors of Apoptosis Proteins) and by 

disrupting their association with caspase-9. In this way, Smac/DIABLO allows caspase-

9 to activate caspase-3, causing apoptosis.
83

  

Omi/HtrA2 (37kDa) is a serine protease identified because of its homology to the 

bacterial endoprotease HtrA (high-temperature requirement). Omi/HtrA2 seems to be 

upregulated in conditions of cellular stress.
83,84

 The proapoptotic feature of Omi/Htra2 

was first identified through its ability to bind and antagonize IAPs, similar to 

Smac/DIABLO.
85,86

 Omi/Htra2 is released from mitochondria during apoptosis and 

contributes to caspase-dependent and independent PCD.
76 

The last step in apoptosis is the executive phase and the major players are specific 

proteases called caspases (cysteine aspartyl-specific proteases) that cleaves their 

substrates at aspartic acid (Asp) residues.
87,88

 This family of intracellular proteases is 

composed in human at least of 12 members, even if not all directly involved in 

apoptosis, sharing an high sequence homology and substrates specificity. (Fig. 8)  

Caspases are produced as inactive zymogens with three domains: a regulatory N-term, 

and two highly conserved catalytic domains. They can be activated by proteolytic 

cleavage at conserved Asp residues and can collaborate in proteolytic cascades, where 

caspases activate themselves and each other, and finally cleave their substrates. 

Caspases are often divided in upstream ‘initiator’ caspases or downstream ‘effector’ 

caspases.
89

 The upstream pro-caspases have long N-terminal pro-domains that function 

as protein interaction modules, by associating with proteins that trigger caspase 

activation. By contrast, downstream effector caspases contain short N-terminal pro-

domains, and are largely dependent on upstream caspases for their proteolytic 
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processing and activation. Upstream pro-caspases are not completely inactive and, if 

brought into close apposition through protein interactions, they can trans-process each 

other, producing fully active proteases (induced proximity mechanism).
90 

Caspases have as substrates several proteins with structural and enzymatic functions 

(collected in caspase substrates database, http://www.casbah.ie) that have to be cleaved 

to  continue the apoptotic process.
91

 

1. the cell cytoskeleton is degraded causing rounding of cells and membrane 

blebbing; caspases’ substrates are proteins involved in microfilaments, 

microtubules and intermediates filaments formation, such as actin, myosin, 

spectrins, gelsolin, filamin, tubulin, vimentin, keratins. 

2. nuclear envelope and fragmentation is maily due to degradations of laminins. 

3. loss of adhesion is caused by dismantling of cell-matrix focal adhesion sites, 

cell-cell adhesion complexes and desmosomes (substrates are focal adhesion 

kinase FAK, p130
cas

, tensin, catenins and cadherins) 

4. mitochondrial, Golgi and endoplasmic reticulum fragmentation is actuated in 

order to block any cellular function and metabolism 

5. DNA condensation and fragmentation is necessary to prevent any replication or 

transcription, to block the immune response and any kind of possible rescue 

mediated by new protein synthesis. The fragmentation process is mainly due to 

activation of CAD endonuclease, through degradation of its inhibitor ICAD, 

while the condensation mechanism is mediated by degradation of MST1 kinase 

(mammalian sterile-20), that prevent the histon H2B phosphorylation.  
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Fig. 8 Mammalian caspases: function and structure. From Taylor RC, Cullen SP, Martin SJ. Nat Rev Mol 

Cell Biol. 2008; 9:231-241. 
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Mitochondrial genetics 

Human mtDNA is a double-stranded, circular molecule of 16569bp, completely 

decoded,
92

 containing 37 genes: 13 genes encoding for subunits of the respiratory chain  

and 22 tRNA and 2 rRNA necessary for translation of these proteins (Fig. 9). Based on 

their nucleotide composition, the two strands are distinct in heavy (H), rich in guanine, 

and light (L), rich in cytosine. 

The mammalian mtDNA shows a high level of economy, in terms of sequence 

organization. In fact, there are essentially no repetitive sequence families, introns or 

intergenic regions. Some respiratory protein genes overlap, and protein coding and 

rRNA genes are interspersed with tRNA genes, that represent the signal for cleavage 

sites of RNA processing. The major non-coding region is the D-loop (displacement 

loop), characterized by the presence of a triple strand structure due to the association of 

the new H-strand in this region. The D-loop contains the origin of H-strand DNA 

replication and is also the site of transcription from opposing heavy and light strand 

promoters.
93,94

 The second non-coding region is composed by 30 nucleotides and 

represent the replication origin for the L-strand. (Fig. 9) 

Mitochondrial genetics follows its specific rules and differs from mendelian genetics at 

least in three main aspects:
95

 

1. Heteroplasmy and threshold effect. A somatic mammalian cell contains 1000-

10000 mtDNA copies; if all mtDNA molecules are identical (wild type or 

mutant), this condition is called homoplasmy, whereas if different molecules 

coexist, this condition is known as heteroplasmy. In case of heteroplasmic 

pathogenic mutations, a minimal critical load of mtDNA molecules have to be 

mutated to exert the pathogenic effect of the mutation (threshold effect). This 

threshold is also dependent on the tissue energy requirement. Thus, the threshold 

is unsurprisingly lower in high energy demand tissues and they are more 

vulnerable to mtDNA mutations. 

2. Maternal inheritance. Every mitochondrion and so, every mtDNA molecule, in 

the zygote derives from the oocyte, because after the fecundation process all 

mitochondria from the spermatocytes are degraded in a ubiquitin-dependent 

fashion.
96,97

 Thus, mtDNA molecules and, if present, mtDNA mutations are 

transmitted in the progeny, along the maternal lineage. Anyway, a heteroplasmic 
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mutation can be transmitted with different mutation load, because during the 

oogenesis there is a preferential amplification of only few mtDNA molecules 

(bottleneck).
98

 The bottleneck phenomenon explain the rapid shift of some 

heteroplasmic mutation to homoplasmy, in few generations. 

3. Mitotic segregation. During the cellular division, the proportion of mutated 

mtDNA may vary with time, because the replication of mtDNA and nDNA are 

not coordinated and  the distribution of mitochondria during the mitotic process 

is casual. Segregation of heteroplasmic mutations may occur during the cell 

division or during the mtDNA content of a post mitotic cell is renewed. This 

phenomenon explains the mosaic distribution of mutated mtDNAs and the 

reaching of a certain mutation load in some tissues. 

  
These rules are complicated by the different tendency of certain mutations to be 

transmitted (heteroplasmic point mutation are frequently transmitted, whereas deletions 

are rare) and by the mutation levels in the maternal germ line.
99

 

The distribution of mtDNA molecules in the progeny depends on a bottleneck 

mechanism during oogenesis. A mammalian oocyte contains many copies of mtDNA, 

probably derived by just a few mtDNA molecules in a precursor cell. How this 

mechanism is actuated and regulated is still unexplained, but it seems like its purpose is 

to reset the mtDNA mutation rate between generations.
99 

Mitochondrial DNA molecules are organized, in association with several proteins, in 

distinct particles, called nucleoids. These particles are dynamic structures able to divide 

and redistribute in the mitochondrial network and may be single units of inheritance.
100

  

Their distribution could be important for the mitotic segregation of certain genomes in 

heteroplasmy condition and explain why the segregation of mtDNA mutants is faster 

than expected, with so many mtDNA genomes per cell. The major nucleoid component 

is Tfam, that acts probably as a key regulator of the mtDNA copy number, but many 

other proteins were identified, such as mtSSB, TWINKLE, ANT1 and prohibitin.
99
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Fig. 9 Map of human mtDNA. From Falkenberg M, Larsson NG, Gustafsson CM. Annu Rev Biochem. 

2007; 76:679-699.  

 

Mitochondrial DNA variability 

Due to its peculiar uniparental maternal inheritance, mtDNA has been extensively used 

to study population genetics by phylogenetic analysis. Moreover, mtDNA 

recombination in identical molecules does not influence the genetic assessment and is 

able to accumulate mutation at higher rate, compared to nuclear DNA.
101-103 

Thus, a 

great number of mtDNA variants have been fixed and accumulated characterizing 

different maternal lineages. These mtDNA lineages have diverged from the first ‘Eve’ 

and colonized different geographical regions. Based on different clusters of population-

specific polymorphisms, present both in coding and control regions, we can now define 

the mitochondrial haplogroups. Many phylogenetic studies defined the occurrence of 

specific haplogroups in the different continents. In Africa, haplogroup L is present in 

80-100% of mtDNAs; in Asia the most representative haplogroups are A, B, F and M, 

divided in sub-classes C, D, E and G.
102-104 

Asian haplogroups are also present in Native 
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Americans populations, whereas four European haplogroups (H, J, K and I) are the most 

representative in the general nothern american population.
105

  

Among Europeans, 95% of the population belongs to 1 of 10 haplogroups: H, I, J, K, M, 

T, U, V, W, and X.
106

 Given the central role of mitochondria in cellular metabolism, 

many studies have investigated the association between mtDNA haplogroups and sub-

haplogroups and multifactorial diseases and aging, based on the assumption that the 

many non-synonymous variants may have functional relevance. 

 

Mitochondrial replication, transcription and translation 

Mitochondrial DNA replication is independent from cell cycle (the so called relaxed 

replication) and some mtDNA molecules are preferentially replicated while others do 

not replicate at all.
107,108  

The enzyme responsible for mtDNA replication is polymerase γ (POLγ), an RNA 

dependent DNA polymerase, discovered in human HeLa cells.
109

 In human this enzyme 

is an heterotrimer composed by a catalytic subunit (POLγA, 140kDa), with polymerase, 

3’-5’ exonuclease, and 5’-deoxyribose phosphate lyase activities, and two smaller 

accessory subunits (POLγB, 55kDa), able to increase the catalytic activity of 

POLγA.
110-113

 Other two proteins are necessary for mtDNA replication: the helicase 

TWINKLE and the mitochondrial single-stranded DNA-binding protein (mtSSB). 

Together with POLγ, they form a processive replisome, able to replicate the entire 

mtDNA.
99

 

The mtDNA replication mechanism is still unclear and at least two models has been 

proposed and currently debated. The first model proposes a strand-asymmetric and 

asynchronous replication, in which the primers for the H-strand (leading strand) 

replication are provided by the transcription mechanism.
114 

When H-strand synthesis 

has reached 2/3 of the DNA molecule, it exposes the origin of L-strand DNA replication 

(OL), and lagging-strand DNA synthesis then initiates in the opposite direction. New 

complete mtDNA molecules are finally ligated.
99

 

Another model has been more recently proposed and suggests that mtDNA replicates 

symmetrically, with leading and lagging strands synthesis progressing from multiple, 

bidirectional replication forks, in a precise initiation zone that includes cyt b and ND5-6 

genes.
115-117
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Moreover, a novel major replication origin has been found at position 57 in the D-loop 

region, probably responsible for mtDNA maintenance under steady-state conditions. In 

this paper the autors suggested that the previously characterized origins may be more 

important for recovery after mtDNA depletion and to improve the DNA synthesis in 

response to certain stimuli.
118

  

Mitochondrial transcription starts from three different transcription origins, one for the 

L-strand and two for the H-strand (H1 and H2), producing three polycistronic 

molecules.
119 

 The H1 site (nt 561) is the most frequently used and is responsible for the 

synthesis of the two rRNAs, tRNA
Phe

 and tRNA
Val

. The second transcription unit is less 

frequently used than the previous one, starts at the initiation site H2 (position 646) and 

produces a polycistronic molecule, that is subsequently processed in 12 mRNAs and 14 

tRNA.
114

 The L-strand generates a single polycistron starting at position 407, from 

which 8 tRNAs and the ND6 mRNA are derived.
119

 

The primary transcripts are processed, according to the “tRNA punctuation” model, to 

generate the mature RNAs after an endonucleolytic cleavage, triggered by the 

maturation of tRNAs secondary structure.
120,121

 The 5′- cleavage occurs first, by a 

mitochondrial RNaseP, then the 3’- end is cleaved by a tRNAase Z.
 

The minimal machinery required for mtDNA transcription includes the RNA 

polymerase mtRPOL (similar to that from T7 and T3 bacteriophages), the initiations 

factors Tfam, TFB1M, and TFB2M and the termination factor mTERF (Fig. 10). The 

human mtRPOL gene encodes a protein of 1230 amino acid residues with a series of 

conserved motifs in the C-term (520-1230 aa).
122

  

Tfam (10q21, 202 aa) was the first mitochondrial transcription factor identified and 

contains two HMG-boxes (High Mobility Group) with DNA binding activity, separated 

by a linker region and a basic C-terminal tail required for promoter-specific 

transcription.
123

 Tfam is able to wrap, bend and unwind DNA in vitro with a low 

sequence specificity.
124,125

 Moreover, Tfam is also able to bind mtDNA in a nonspecific 

manner, and probably is responsible for its stabilization and maintenance.
125,126

 

Interestingly, Tfam levels correlate well with mtDNA copy number, suggesting that this 

protein can function as a limiting determinant of mtDNA abundance.
94

 

Two isoforms of human mt-TFB, named TFB1M and TFB2M, have been identified but 

the first one exhibits about 1/10 the transcriptional activity of TFB2M. Both factors 
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seem to interact directly with the RNA polymerase forming a heterodimer, and, in 

addition to TFAM, are required for the accurate initiation from H- and L-strand 

promoters in vitro.
119

  

Mitochondrial encoded mRNAs are translated in the matrix with a specific translational 

machinery, represented by the mitoribosomes. These ribosomes are particular being 

composed by two mitochondrial rRNAs (12s and 16s) and nuclear encoded proteins. 

The genetic code of mtDNA is also slightly different. Thus, UGA in mitochondrial 

translation does not specify for a tryptophan amino acid, but a stop codon; moreover 

AUA represent an isoleucine and not a methionine and AGA/AGG are not stop codons 

but specify for arginine. Moreover, mitochondrial translation has a more simplified 

codon-anticodon recognition mechanism (22 tRNAs are sufficient to specify for all the 

amino acid, a single tRNA specifies for both methionine and N-formyl methionine and 

AUA/AUU codons are often used as a start signal).
127

    

 

 

Fig. 10 Schematic representation of the mammalian D-loop and transcription termination regions, 

showing the main elements and factors involved in transcription and in replication initiation. From 

Fernandez-Silva P, Enriquez JA, Montoya J. Exp Physiol. 2003; 88:41-56. 

 

Mitochondrial-nucleus communications: mitochondrial biogenesis 

Mitochondrial biogenesis is a complex and regulated process that involves the 

coordinated expression of mitochondrial and nuclear genes. This process has been 

intensively studied in the last 20 years and it is now known that mitochondrial 

biogenesis is finely tuned by different signaling cascades that involve transcription 
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factors and coactivators that regulate the expression of genes coding for mitochondrial 

components.
128

 

These include nuclear encoded mitochondrial proteins participating in OXPHOS, heme 

biosynthesis, mitochondrial protein import, and mtDNA transcription and replication. 

The most important transcription factors activating promoters of mitochondrial genes 

are Tfam, NRF-1, NRF-2 and ERRα (estrogen related receptor), together with 

transcriptional coactivators belonging to the peroxisome proliferator-activated receptor 

γ-coactivator-1 (PGC-1) family (Fig. 11).
129-131

 

 

PGC-1 protein family 

This family is composed by at least three members sharing a sequence homology and 

regulating several metabolic pathways such as cellular respiration, adaptative 

thermogenesis and hepatic glucose metabolism. These coactivators stimulate the 

mitochondrial biogenesis in general, even if PGC-1α is mainly involved in the 

regulation of gluconeogenesis, PGC-1β in the regulation of fatty acid oxidation and 

PRC seems to be responsible for the coordination of nuclear and mitochondrial DNA 

replication during the cell cycle progression.
132,133

  

These proteins have conserved domains with well characterized features (Fig. 11):  

- the N-terminus contains a transcriptional activation domain, includes the major 

nuclear hormone receptor-interacting motif (LXXLL), and is important for 

interactions with proteins capable of remodeling chromatin.  

- the C-terminal contains an RNA-binding motif (RMM), that enhances the RNA 

splicing, and a serine-arginine-rich (RS) domain.  

These domains are extremely conserved from fish to mammals, suggesting that these 

coactivators play a major role by regulating some important functions in eukaryotes.
134

 

It is still unclear if the biological functions of PGC-1α are overlapped with the functions 

of the other two family members, and further studies are necessary.  

The first member of this family, PGC-1α (92 kDa), was discovered as an interacting 

partner of the adipogenic nuclear receptor PPARγ in brown adipose tissue (BAT) where 

is responsible for the regulation of adaptative thermogenesis and adipocyte 

differentiation.
135  
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The N-terminal 200 amino acids of PGC-1α contain a powerful transcriptional 

activation domain, rich in acidic amino acids (Fig. 11). Even if this protein lacks an 

intrinsic histone-modifying activity, this domain allows PGC-1α to recruits several 

cofactors with chromatin remodeling functions, such as p300/CBP (CREB Binding 

Protein) or SRC-1. 

 

 
 

Fig. 11 The PGC-1 protein family, conserved domains and protein homology. From Puigserver P and 

Spiegelman BM. Endocrinol Rev. 2003; 24:78-90. 

 

Moreover, in this region there is an LXXLL sequence (amino acids 142–146), 

responsible for ligand-dependent interaction of other coactivators with nuclear hormone 

receptors.
134,136

 The presence of this motif on PGC-1α is necessary for the ligand-

dependent interaction with ER, PPARα, RXRα, glucocorticoid receptor, and probably 

other nuclear hormone receptors.
134

 PGC-1α also uses different non-LXXLL domains to 

interact with certain other transcription factors: a domain between amino acids 200 and 

400 interacts with PPARα and NRF-1 and a region between amino acids 400 to 500 that 

interacts with MEF2.
136

 The binding of proteins with HAT (histone acetyl transferase) 

activity is driven by the presence of a specific association with a transcription factor (for 

example PPARγ or NRF-1).
137

 This event induces a conformational change in PGC-1α 

structure that recruits SRC-1 and CBP/p300 into the transcriptional complex. Moreover, 

the C-terminal domain is the docking site of a second activating complex formed by 

TRAP/DRIP.
138 

The C-terminal region contains also the RS domain (aa 565-631), that has been shown 

to interact with the C-terminal of RNA polymerase II,
139

 and the RMM domain (aa 677-
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709). This region is also involved in the recruitment and the docking of several splicing 

factors, such as SC35, SRp75, 55 and 40, suggesting that PGC-1α can participate in the 

RNA splicing process.
134

 

In general transcriptional coactivators are expressed in a stable manner and their 

activation depends on the associated transcription factor. Indeed, PGC-1α is strongly 

induced by cold exposure and prolonged exercise.
135,140,141

  

Ectopic overexpression of  PGC-1α causes the increase of mtDNA content at the steady 

state and transcriptional activation of several genes involved in respiration, ROS 

detoxification machinery, energy metabolism, fatty acid β-oxidation and glucose 

uptake.
 142,143

 During mitochondrial biogenesis the most important action of this protein 

probably is the transcriptional activation of NRF1 and 2 and its interaction with the 

same proteins that leads the transcription of many nuclear encoded mitochondrial genes, 

especially Tfam, TFB1M and TFB2M. PGC-1α is also able to interact with PPARα, 

causing the stimulation of fatty acid β-oxidation, with PPARγ, inducing UCP-1 and the 

adaptative thermogenesis, and many other nuclear transcription factors (HNF4, FOXO1, 

MEF2, SRBP1, SOX9).
135,144-149

 A list of transcription factors activated by this 

coactivator is provided in table 1. 

 PGC-1α gene expression can be modulated by several mechanisms in response to 

different stimuli and cell type (Fig. 12).  

1. In adipocyte, in response to cold exposure, β-adrenergic receptors are activated. 

This causes the signal transduction via protein Gs (a subtype of protein G) and 

adenylate cyclase, associated with an increase of cAMP concentration. The 

subsequently PKA (Protein Kinase A) activation induces the phosphorylation of 

CREB or ATF2 (Activating Transcription Factor 2), factors able to stimulate 

PGC-1α transcription. 

2. During fasting, the activation of CREB and the subsequent PGC-1α increase, 

can induce the gluconeogenetic pathway in mouse liver.
150

  

3. It also has been shown a strong activation of PGC-1α transcription after a 

prolonged exercise in vivo or an increase in Ca
2+

 levels in myotubules. In the 

first case, a chronic energy deficit is associated with an increase in AMP/ATP 

ratio and the activation of AMPK.
151

 The same kinase can be activated by CamK 

(Ca
2+

/calmodulin dependent protein kinase) as a consequence of the intracellular 
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Ca
2+

 levels increase. AMPK is involved in CREB phosphorylation and/or direct 

PGC-1α transcriptional activation. Lastly, MEF2 induction via calcineurin A is 

also involved in PGC-1α activation in skeletal muscle.
152

 

4. Another signaling pathway is mediated by NO generation and involves the 

cGMP signaling. The final event is the increase in coupled respiration mediated 

by PGC-1α transcription.
153,154

  

 

 

Tab. 1 Transcriptional partners of the PGC-1 coactivators. Modified from Lin J, Handschin C, 

Spiegelman BM. Cell Metab. 2005; 1:361-370. 

 

PGC-1α exhibits a very short half life (2-3 hours),
155 

but it can be increased by p38 

mediated phosphorylation in three sites (Thr262, Ser265, Thr298).
156 

This process 

causes also the dissociation of the transcriptional repressor p160 myb-binding 

protein.
157

 Lastly, PGC-1α presents also 13 Lys that can be deacetylated by Sirt1, in 

fasting conditions, in a NAD
+
 dependent reaction. In this pathway PGC-1α is able to 
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switch on the hepatic glucose production without affecting mitochondrial protein 

content.
158 

The second family member, PGC-1β, is larger but shares sequence similarity with PGC-

1α along its entire length. Like its homolog, the protein is particularly expressed in 

tissue with high energy demand, such as brown fat, heart and skeletal muscle, where is 

able to coordinate mitochondrial biogenesis, inducing NRF1-target genes.
131,159

 In 

contrast with PGC-1α, PGC-1β is not induced in BAT after cold exposure and is a poor 

inducer of gluconeogenesis in liver, due to the lack of interaction with HNF4 and 

FOXO1.
160 

 

 

Fig. 12 Integration of different signaling pathways in mitochondrial biogenesis regulated by PGC-1α. 

From Scarpulla RC. Physiol Rev. 2008; 88:611-38. 

 

Another homologue is PRC (PGC-1α Related Coactivator), identified through a 

database search for sequence similarities. PRC is significantly longer than PGC-1α, and 

the protein contains an LXXLL consensus, an acid N-terminal activation domain and a 

C-terminal RS domain.
161

 The main difference with the other two family members is the 

low expression of PRC in tissues with high energy demand.
94

 However, PRC is rapidly 
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induced after serum treatment of quiescent fibroblasts and is expressed more abundantly 

in proliferating cells compared with growth-arrested cells. The transcription pathway is 

similar to that previously described, involving the induction of NRF-1, NRF-2, Tfam, 

TFB1M and TFB2M, as well as genes encoding for nuclear and mitochondrial 

respiratory subunits.
94

  

 

Nuclear respiratory factors (NRF1 and NRF2) 

NRF1 is a transcription factor that recognizes directly a palindromic sequence           

(5’-YGCGCAYGCGCR-3’) in the promoter of several nuclear encoded mitochondrial 

genes.
162,163

 This transcription factor binds the recognition site as an homodimer and is a 

protein of 503 amino acids, with a N-terminal Ser-phosphorylation domain, a central 

DNA binding domain and a C-terminal transactivation domain.
94

 NRF-1 has been 

associated with the expression of many genes required for mitochondrial respiratory 

function, including the vast majority of nuclear genes that encode subunits of the five 

OXPHOS complexes.
94

 Moreover, there are several evidences supporting the idea that 

NRF1 could be an integrative factor that coordinates respiratory subunit expression with 

the mitochondrial transcriptional machinery.
94

 NRF-1 binds and activates not only the 

promoters of Tfam and TFB, but also genes of the respiratory chain complexes, heme-

biosynthesis, mitochondrial transmembrane transporters.
94

  

Human NRF2 is comprised of five subunits, a DNA-binding α subunit and four others 

accessory subunits (β1, β2, γ1 and γ2) that form a complex with α subunit do not bind 

DNA alone. All the accessory subunits contain a transcriptional activation domain. 

NRF2 binding sites contain the GGAA core motif, found in many mitochondrial genes 

promoters, such as all 10 nucleus encoded cytochrome oxidase subunits, Tfam, the two 

isoforms of TFB and three subunits of SDH.
94,164-166 

 

Nuclear receptors 

There are several nuclear receptors involved in mitochondrial biogenesis, such as 

PPARs (peroxisome proliferator associated receptors) and ERRs (estrogen related 

receptors). Nuclear hormone receptors generally function as ligand-activated 

transcription factors that regulate the expression of specific genes and they usually share 
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conserved functional domains (the DNA binding domain, the ligand binding domain 

and the N- and C-terminal transcriptional activation domains).
167

  

Many mitochondrial oxidative pathways converge into the respiratory chain, and one of 

the most important is the fatty acid oxidation pathway, which consists of a series of 

reactions that oxidize fatty acids to acetyl-CoA, due to mitochondrial enzymes. PPARs 

have been implicated as transcriptional regulators of this metabolic pathway. This 

family of adopted orphan receptors consists of three isoforms: PPARα, PPARβ/δ and 

PPARγ, sharing a highly conserved structure and mode of action. They act as 

transcriptional regulators through their direct binding to specific nucleotide sequences 

(PPREs, peroxisome proliferator response elements), present in the promoter or, 

sometimes, in an intron, of target genes.
168

  

Their transcriptional activity is expressed only after the binding of their ligands; some 

of them are shared by the three isoforms, such as polyunsaturated and oxidized fatty 

acids. Other ligands, specific for PPARα, are long-chain unsaturated, branched, 

conjugated and oxidized fatty acids (linoleic acid, phytanic acid, eicosanoids and 

leukotrienes), while some prostaglandins are specific ligands of PPARγ.
169

 Moreover 

PPARs are activated by two classes of agonists, the thiazolidinediones for PPARγ 

(TZDs) and the fibrates for PPARα. TZDs are mainly used in the treatment of diabetes 

mellitus type 2 and related diseases; activating PPARγ, they cause a decrease in insulin 

resistance and in VEGF induced angiogenesis and changes in adipocyte differentiations. 

Instead, fibrates are hypolipidemic agents, commonly used in the therapy of metabolic 

disorders coupled with hypercholesterolemia. Interestingly, one of those drugs, 

bezafibrate, is a well known PPARs pan-activator, and is also used as treatment against 

insulin resistance.
167

 PPARs bind the promoter only as an heterodimer with the receptor 

for 9-cis retinoic acid, RXR (retinoid X receptor).
170,171 

This heterodimer can be 

activated by the PPARs ligand alone, but the coordinated binding of both ligands is 

much more potent.
169

 

PPARα controls the expression of several genes involved in fatty acid metabolism. 

After fasting, when fatty acids are more used for energy production, PPARα expression 

and activity increase, inducing the β-oxidation. Furthermore, PPARα is induced, 

coordinating its target genes, in skeletal muscle after exercise
172

 and also in the heart, 
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where the main energy source derives from lipids, especially during the fetal-adult 

transition.
173 

Whereas PPARα is the main player in the catabolism of fatty acids in the liver, PPARγ 

influences their storage in adipose tissue and is essential for adipocyte survival. There 

are two isoforms of PPARγ: PPARγ1 mainly expressed in colon, spleen, blood cells, 

liver, skeletal muscle and retina, and PPARγ2 expressed in the adipose tissue. Both 

these isoforms respond to the same stimuli and activate the same target genes.
167 

Lastly, PPARβ/δ is linked to colon cancer and regulates the expression of acyl-CoA 

synthetase 2 in the brain, but this member received only little attention to date, probably 

because no diseases seem associated with this factor.
169 

Another family of nuclear receptor involved in the regulation of mitochondrial 

biogenesis and oxidative metabolism is the estrogen-related receptor family (ERRs). 

This is a family of orphan nuclear receptors resembling the estrogen receptor without 

binding estrogens or other ligands.
167

 The three family members (ERRα, β and γ) have 

the typical structure of nuclear receptors, as PPARs. The central zinc finger DNA-

binding domain recognizes the response element (ERREs) characterized by the 

nucleotide sequence 5’-TNAAGGTCA-3’.
174 

The conserved C-term domain should be 

the one responsible for interactions with corepressors and/or coactivators and for the 

ligand binding, but putative ligands are still unknown. These receptors are constitutively 

present in an active conformation, even in the absence of ligand.
175-177

  

ERRα, the most extensively studied, is ubiquitously expressed and is more abundant 

compared to the other two family members, reaching the highest levels in tissues with 

high metabolic needs (heart, skeletal muscle, kidney, BAT and central nervous system). 

Several studies have revealed the strict connection between ERRs and PGC-1α/β in the 

regulation of energy metabolism genes.
178-181

 These two proteins interact directly 

through their specific domains: in PGC-1α there are three nuclear hormone receptor-

interacting motifs and one of these (L3) is exclusively used for the interaction with 

ERRα ligand binding domain. This interaction improves dramatically the transcriptional 

activity of ERRα, suggesting that PGC-1α/β could be a “protein ligands” of ERRs.
174

 

Furthermore, PGC-1α regulates not only the activity, but also the expression of ERRα in 

an auto-regulatory loop, in which high levels of PGC-1α induce the increase of ERRα 

transcriptional activity at the level of its promoter.
182-184

 Taken together, the coactivator 
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and the nuclear receptor coordinate the expression of several genes involved in fatty 

acid oxidation, tricarboxylic acid cycle, oxidative stress defense, mitochondrial 

biogenesis and dynamics and oxidative phosphorylation.
174

 A list of genes probably 

regulated by the complex PGC-1/ERRs is reported in table 2. 

 

Other nuclear factors 

Many other nuclear factors have been implicated in the expression of respiratory genes 

and in the control of mitochondrial biogenesis. For example, the cytochrome c promoter 

contains cis-elements that recognize transcription factors ATF/CREB, c-Myc and Sp1, 

while muscle-specific complex IV subunits are regulated by MEF-2 and/or YY1 

(YingYang1).
167
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Tab. 2 Genes encoding mitochondrial proteins with ERREs in their promoter, probably regulated by 

ERRs. Modified from Giguere V. Endocr Rev. 2008; 29:677-696. 
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Mitochondrial disorders 

 
The term “mitochondial medicine” was introduced for the first time by Rolf Luft in 

1994 and now is commonly used to indicate that branch of medicine interested in 

studying mitochondrial dysfunctions.
185

 Historically, the first mitochondrial patient is 

considered to be a women described by Luft in 1962, suffering of severe 

hypermetabolism, heat intollerance, profuse perspiration, muscular wasting and 

weakness, polyphagia and resting tachycardia.
186

 This phenotype, now known as Luft’s 

syndrome, is caused by a deregulated mitochondrial respiration, consuming an excess of 

energy, possibly due to a profound uncoupling, even if the molecular cause is still 

unknown.
186

 In 1988, 25 years later, the first pathogenic mtDNA point mutations and 

deletions were reported in association with Leber’s hereditary optic neuropathy (LHON) 

and mitochondrial myopathies.
187,188

 After these seminal reports, a multitude of mtDNA 

mutations were discovered associated with several maternally inherited and sporadic 

disorders, most of them affecting the central and perypheral nervous system, as well as 

skeletal and cardiac muscle.  

Mitochondrial disorders can be divided in two classes: the first is due to mtDNA 

mutations or rearrangments, whereas the second comprise Mendelian diseases 

associated with nuclear DNA mutations or rearrangments in genes encoding 

mitochondrial proteins.
189 

Moreover, mitochondrial disorders can be also classified in 

those affecting the respiratory chain  function (directly, OXPHOS subunits, or 

indirectly, affecting ancillary proteins, lipid milieu, and mitochondial translation) and 

those affecting mitochondrial dynamics. Furthermore, a mitochondrial involvement has 

been proposed for several neurodegenerative diseases, such as Parkinson and Alzheimer 

disease.
189 

 

Disorders of the mitochondrial respiratory chain 

In figure 13 is shown the mitochondrial respiratory chain, depicted with the major 

mitochondrial disorders affecting directly the respiratory chain and the genes 

involved.
189

  

To date, about 200 mtDNA mutations and several single and multiple deletions have 

been associated with human diseases, and novel mutations are still being reported. Due 
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to the very peculiar chracteristics of mitochondrial genetics, these disorders show often 

a phenotypic heterogeneity. 

 

 

Fig. 13 The mitochondrial respiratory chain: diseases associated with respiratory chain defect and relative 

mutated genes. From DiMauro S and Schon EA. Annu Rev Neurosci. 2008;31:91-123. 

 

The same genetic defect may result in different phenotypes in different individual 

belonging to the same family, and/or in different families. On the other hand the same 

phenotype can be associated with several different mutations.
190

 Furthermore, the 

treshold effect is generally critic for the expression of the pathology, but in some cases, 

such as LHON, homoplasmic mutations may have variable penetrance and different 

clinical severity, often within the same family. A related question concerns the  

functional significance of mtDNA background. It has been shown that different 

haplogroups may modulate the oxidative phosphorylation and the complex I assembly, 

predisposing or protecting individuals to/from certain disorders.
191,192
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Major rearrangements of mtDNA usually comes as deletions or duplications, even if 

deletions are most common. Multiple deletions are caused by defects in nuclear genes 

encoding for enzymes involved in mtDNA maintainance and nucleotide metabolism, 

whereas single deletions are usually sporadic.
189

 The main syndromes associated with 

single sporadic deletions are Kearns-Sayre Syndrome (KSS), Pearson marrow-pancreas 

Syndrome (PS) and some forms of Chronic Progressive External Opthalmoplegia 

(CPEO).  

PS is a fatal sideroblastic anemia complicated by the involvement of exocrine pancreas. 

Usually the patients die aronund 4 years of age, but in case of survival deletions are 

associated with the development of KSS.
190 

 

KSS is charactherized by retinitis pigmentosa, external ophtalmoplegia and onset before 

age 20. Other symptoms are variously reported, such as cardiac conduction block, 

cerebella ataxia, short stature, cerebrospinal fluid proteins greater than 100mg/dL, 

hearing loss and muscle weakness.
190

   

CPEO (widely reviewed by Spinazzola and Zeviani)
193,194 

is clinically defined by 

palpebral ptosis, generalized weakness and progressive limitation of ocular movements. 

Additional symptoms can be ataxia, sensorineural hearing loss, cataracts, parkinsonism 

and peripheral polyneuropathy. Skeletal muscle histolological analysis, with modified 

Gomori trichromic stain, shows the presence of ragged-red fibers (RRFs) due to 

accumulation of aberrant mitochondrial. Biochemically, it has been shown a moderate 

reduction in the activity of respiratory chain complexes.
195,196

 Sporadic forms are 

reported but there are also inherited CPEO, that can be autosomal dominant (adCPEO), 

autosomal recessive (arCPEO) and maternally inherited.
189

 Maternally inherited forms 

are caused by point mutations in mitochondrial tRNA genes specifying for leucine, 

isoleucine and alanine, whereas autosomal forms are caused by mutations in POLG1, 

POLG2, Twinkle and ANT-1 (Fig. 14), all genes involved in mtDNA replication or 

nucleotide metabolism, and leading to multiple deletions.
197-200 

Recently a new syndrome, characterized by dominant optic atrophy, sensorineural 

deafness, ataxia, axonal sensory-motor polyneuropathy, CPEO and mitochondrial 

myopathy with cytochrome c oxidase negative and RRFs, has been described.
17,18,201

 

These patients harbour missense mutations in the OPA1 GTPase domain and multiple 

deletions of mitochondrial DNA (mtDNA) in skeletal muscle, revealing an 
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unrecognized role of the OPA1 protein, previously known only as a regulator of 

mitochondrial fusion, in mtDNA stability.
17,18,201

  

A more complex syndrome is MNGIE (Mitochondrial NeuroGastroIntestinal 

Encephalomyopathy), an autosomal recessive disorder affecting young adults. This 

syndrome is charachertized by CPEO, peripheral neuropathy, leukoencephalopathy and 

gastrointestinal dysmotility.
202

 The gastrointestinal symptoms include gastroparesis, 

frequent diarrhea and intestinal pseudo-obstruction, that lead to cachexia and early 

death.
18

 MNGIE is caused by different mutations in the gene TP, encoding the enzyme 

thymidine phosphorylase (Fig. 14).
203 

This enzyme is necessary in the thymine 

metabolism, acting in the thymine recycle pathway. Mutations in this gene cause the 

lack of enzyme activity, inducing an accumulation of thymidine, that is promptly 

transformed in deoxythymidine triphosphate, by the enzyme TK2 (Thymidine Kinase 

2). This process causes an unbalancing in the nucleotide pool which interfers with 

mtDNA replication, and consequently induces mtDNA depletion and accumulation of 

multiple deletions and point mutations.
202

 

Other recessive disorders leading to mtDNA depletion and multiple deletions are 

Sensory-Ataxia Neuropathy, Dysarthria and Opthalmoplegia (SANDO), spinocerebellar 

ataxia epilepsy syndrome and Alpers’ syndrome, all associated with recessive mutations 

in POLG1 gene.
194 

Mitochondrial DNA depletion syndromes are also recessive traits with various 

phenotypical expression, which are caused by mutations in several genes (Fig. 14). The 

degree of depletion may vary in different tissues.
189,194 

The two major syndromes are: 

- Hepatocerebral syndrome, caused by mutations in POLG1 (Alpers’ syndrome), 

DGUOK (deoxyguanosine kinase, involved in nucleotide metabolism) and 

MPV17 (an IMM protein with unknown function)
189,194,204

 

- Pure myopathic syndromes, due to mutations in TK2, SUCLA2 (encoding the β-

subunit of succinylCoA synthetase) and RRM2B (p53 inducible ribonucleotide 

reductase small subunit)
189,205,206

 

Mitochondrial DNA is also an hot spot for pathogenic point mutations 

accumulation, causing different pathologies. One of the most common disorder is 

MELAS (Mitochondrial Encephalomyopathy Lactic Acidosis and Stroke-like 
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episodes), a multisystem disorder carachterized by stroke-like episodes in young 

age, encephalopathy with seizures and/or dementia and mitochondrial myopathy 

with lactic acidosis and RRFs.
207

 Additional features are myoclonus, ataxia, basal 

ganglia calcifications, pigmentary retinopathy, optic nerve atrophy, short stature, 

hearing impairment and cardiomyopathy.
207

 At least 15 different mtDNA mutations 

have been associated with MELAS, but more that 80% of the patients harbour the 

common mutation A3243G in the tRNA
Leu 

gene. Other reported mutations affect 

other positions in the tRNA
Leu

 gene and other tRNA genes, but mutations in 

structural genes, such as COIII, ND1, ND5 and ND6, have been also reported.
208

 

The phenotype of these mutations is usually heterogeneous, and individuals 

belonging to the same family are often olygosymptomatics, and manifest only some 

features of MELAS.
209

 Mutations in tRNA cause an impaired protein synthesis and 

a generalized respiratory chain biochemical defect.
210 

 

Fig. 14 Nucleotide metabolism for mtDNA synthesis and replication: genes in bold have been associated 

with diseases, mtDNA multiple deletions and/or depletion syndromes. From DiMauro S and Schon EA. 

Annu Rev Neurosci. 2008;31:91-123. 

 

Mitochondrial DNA is also an hot spot for pathogenic point mutations accumulation, 

causing different pathologies. One of the most common disorder is MELAS 

(Mitochondrial Encephalomyopathy Lactic Acidosis and Stroke-like episodes), a 

multisystem disorder carachterized by stroke-like episodes in young age, 
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encephalopathy with seizures and/or dementia and mitochondrial myopathy with lactic 

acidosis and RRFs.
207

 Additional features are myoclonus, ataxia, basal ganglia 

calcifications, pigmentary retinopathy, optic nerve atrophy, short stature, hearing 

impairment and cardiomyopathy.
207

 At least 15 different mtDNA mutations have been 

associated with MELAS, but more that 80% of the patients harbour the common 

mutation A3243G in the tRNA
Leu 

gene. Other reported mutations affect other positions 

in the tRNA
Leu

 gene and other tRNA genes, but mutations in structural genes, such as 

COIII, ND1, ND5 and ND6, have been also reported.
208

 The phenotype of these 

mutations is usually heterogeneous, and individuals belonging to the same family are 

often olygosymptomatics, and manifest only some features of MELAS.
209

 Mutations in 

tRNA cause an impaired protein synthesis and a generalized respiratory chain 

biochemical defect.
210 

Another syndrome characterized by the presence of mitochondrial tRNAs point 

mutations is MERRF (Myoclonus, Epilepsy and Ragged-Red Fibers). The clinical 

manifestation of this disorder includes myoclonus, epilepsy, ataxia and RRFs in muscle 

biopsies.
207

 In many patients were also reported hearing loss, dementia, short stature, 

lactic acidosis, pheripheral neuropathy and exercise intollerance.
207

 In literature are 

described at least 6 different mutations in mitochondrial tRNAs genes, expecially in 

tRNA
Lys

 (the most common A8344G, 80% of cases, T8356C, G8363A, G8361A), a 

mutational hot spot for MERRF. Other genes involved are tRNA
Phe

, tRNA
Ser

 and 

tRNA
His

.
211 

Mutations can also occurr in structural mitochondrial genes and the major disorders 

associated with these mutations are LHON (Leber’s Hereditary Optic Neuropathy, that 

will be extensively described in the next section), NARP (Neuropathy, ataxia, retinitis 

pigmentosa) and MILS (Maternally Inherited Leigh Syndrome). 

NARP is a multisystem disorder affecting young adults. The main symptoms are 

sensory neuropathy, ataxia, dementia, seizures and retinitis pigmentosa.
207 

A sigle 

heteroplasmic point mutation in ATPase6 gene (T8993G/C) is the molecular cause of 

the pathology.
208,212 

The same mutations, at high levels of mutantional load may were 

associated with mild forms of MILS.
213

  

Lastly, Leigh syndrome is a complex, early-onset, disease with a heterogeous clinical 

manifestation, due to different mutations in several genes (nuclear and mitochondrial), 
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to difference in age of onset, progression and the frequency of epilepsy.
207

 The wide 

variety of symptoms includes developemental regression, hypotonia, CPEO, hearing 

loss, optic neuropathy or pigmentary retinopathy, nystagmus, ataxia, seizures. Other 

symptoms may involve respiratory and cardio circulatory apparatus.
207

 Mutations were 

discovered in several genes, both structural and assembly genes, essential for the 

respiratory chain function. The inheritance may be autosomal recessive, X-linked and 

maternal (MILS), with several mutations reported in the following genes:
213-216

 

- Complex I: mitochondrial structural genes ND1-ND6, with the only exception of 

ND4L 

- Complex II: nuclear structural gene SDHA 

- Complex III: BCS1L 

- Complex IV: mitochondrial structural gene COIII and nuclear assebly factors 

COX10, COX15, SCO2 and SURF1 

- Complex V: mitochondrial structural gene ATPase6. 

Moreover, LRPPRC mutations have been found in the French Canadian variant of 

Leigh syndrome.
207 

LS may be a feature of a deficiency of any of the mitochondrial 

respiratory chain complexes, but also of pyruvate dehydrogenase complex (PDCH), 

leading to an inappropriate ATP production and cellular energy impairment. 
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Leber’s hereditary optic neuropathy 

LHON is a maternally inherited form of acute or subacute loss of central vision 

affecting predominantly young males.
217

 This usually monosymptomatic disease was 

clinically defined by Leber and is now recognized as the most frequent mitochondrial 

disease.
218 

 

Clinical features 

Clinically, LHON is characterized by rapid loss of central vision in one eye, followed 

by similar involvement of the other eye, usually in a short time laps.
219,220

 This 

condition is usually painless and associated with dyschromatopsia. Visual acuity 

reaches stable residual values at or below 20/200 within a few months, and the visual 

field defect involves the central vision in the form of a large centro-cecal absolute 

scotoma. Fundus examination during the acute/subacute stage reveals circumpapillary 

telangiectatic microangiopathy, swelling of the nerve fiber layer around the disc 

(pseudoedema), absence of leakage on fluorescein angiography.
221,222 

The 

microangiopathy may be present in a number of asymptomatic at-risk family members 

along the maternal line, in whom it may remain stable over the years.
223 

In the acute 

phase, axonal loss in the papillomacular bundle leads to temporal atrophy of the optic 

nerve, and the endpoint of the disease is generally, a full optic atrophy with permanent 

severe loss of central vision but with relative preservation of pupillary light 

responses.
220

 However, spontaneous recovery of visual acuity has occasionally been 

reported even years after onset.
220, 224-226 

A young age of onset is a favorable prognostic 

factor, and the rate of visual recovery is more frequent in the patients bearing the 

14484/ND6 mutation.
220 

Visual function may improve progressively or suddenly, with 

contraction of the scotoma or reappearance of small islands of vision within it 

(fenestration).
220

 In long-lasting LHON, cupping of the optic disc has frequently been 

reported as a sign of the chronic stage of the pathological process.
227-229 

A recent study from our group has demonstrated that the optic disc area can be a 

prognostic marker for LHON patients, because LHON carriers (harboring the mutation, 

but unaffected) display a greater optic disc area and higher vertical disc diameter, 

compared to controls and affected LHON. Thus, the optic nerve head morphology may 
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have a protective role. Our hypothesis is reinforced by the observation that, among the 

LHON-affected, larger discs were correlated with visual recovery and better visual 

outcome.
230 

Even if LHON is usually a monosymptomatic disorder, a subset of patients has a 

syndromic form of optic atrophy frequently referred as “Leber’s plus”,
231,232

 which may 

include central nervous system involvement and movement disorders frequently 

associated with basal ganglia lesions, Leigh-like syndrome,
 

cerebellar atrophy, 

migraine, epilepsy and peripheral neuropathy, and also cardiac involvement with 

conduction abnormalities or skeletal deformities.
232,233-237

  

In some cases, the occurrence of “Leber’s plus” has been related to specific mtDNA 

mutations, different from the primary LHON mutations and expressing a syndromic 

form of LHON, such as 14459/ND6 which is associated with LHON and dystonia.
238 

Recently, several mutations have been described in the ND1, ND6, and ND5 genes of 

complex I associated with syndromic forms of LHON (from Leber’s like optic atrophy 

to MELAS or MILS).
239-241 

In other cases the “Leber’s plus” phenotype has been linked 

to a combination of different mtDNA mutations, including the association of one 

primary LHON mutation and other putative pathogenic changes, multiple putative 

pathogenic mutations, and the co-occurrence of two primary LHON mutations.
242-244 

 

 

Histopathology 

LHON is characterized by a very selective degeneration of a single cell type, the retinal 

ganglion cells (RGCs). Thus, RGCs are somehow particularly sensitive to the 

mitochondrial energy defect due to the presence of LHON pathogenic mutations. All 

1.2 million fibers of the optic nerve derive from the retinal ganglion cells (RGC) of the 

inner retina.
220,245,246 

These cells have to transmit under all optical conditions and ensure 

axoplasmic transport all the way to distant primary visual nuclei.
245,247

 Moreover, the 

retinal nerve fibers run a long course without the myelin sheet, so that there is not 

saltatory conduction of action potential until past lamina cribrosa. In order to maintain 

the optical transparency and the consequently good visual resolution, these axons 

become myelinated only after they have exited the eye and formed the optic nerve (Fig. 

15).
244 

Thus, the high dependence of these cells on mitochondrial oxidative 
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phosphorylation may explain the particular sensitivity of RGCs and the related visual 

loss due to mitochondrial dysfunction. In the perifoveal macula, the RGCs are 

concentrated, then from the fovea, the number of RGCs decreases, becoming relatively 

sparse in the periphery.
220,245,246

  In addition there are two different classes of RGCs: the 

magno (M)-cells and the parvo (P)-cells, probably belonging to different class of 

neurons.
248

 Recent studies of the intraretinal ganglion cell axons have shown that 

varicosities, very rich in mitochondria and in desmosome- and hemidesmosome-like 

junctions, are present in single axons.
248

 Probably, these are functional sites, with high 

energy demand, important  for signal transmission.
249

 Only a few LHON cases have 

been studied histopathologically, none during the acute stage of the disease and only 

three were molecularly defined and studied by both light and electron microscopy.
220

 A 

drastic loss of RGC and NFL was reported in all cases (one 11778/ND4, one 

14484/ND6 plus 4160/ND1, and one 3460/ND1, reviewed by Carelli et al., 2004).
220

 

The 11778/ND4 and 3460/ND1 cases displayed a complete loss of central fibers with 

various degrees of axonal sparing in the periphery and absence of inflammatory 

signs.
250-252

 A diffuse axons demyelination, accumulation of mitochondria, cellular 

debris and cytoskeleton rearrangements were found in both cases. Some evidence of 

remyelination was also observed, suggestive of a still ongoing low-grade degenerative 

process long after the clinical onset of LHON.
220

 The 14484/4160
 
case, a “LHON plus” 

patient, displayed some residual RGC with swollen mitochondria and double-membrane 

bodies with calcium inclusions.
253

 This case is peculiar because of the double mutation 

and the clinical phenotype, characterized by LHON and MELAS overlap 

syndrome.
242,254 
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Fig. 15 Mitochondria distribution within the optic nerve. From Carelli V, Ross-Cisneros FN, Sadun AA. 

Prog Retin Eye Res. 2004; 23:53-89. 

 

Genetics 

LHON is transmitted with a maternal pattern of inheritance, due to the presence of point 

mutations on mtDNA. The most common pathogenic mutations are 11778/ND4, 

3460/ND1, and 14484/ND6, characterizing about 90% of LHON cases. Several 

putatively pathogenic mutations have also been reported in single cases or families and 

still need a confirmation. In table 3 are reported all the LHON pathogenic, confirmed 

and putative, mutations. All LHON reported mutations have been identified in 

mitochondrial genes encoding complex I subunits. Other mitochondrial polymorphisms, 

either common or rare, have been associated with LHON and are defined as “secondary 

mutations” by some authors.
255

 Their role is still debated, but recent findings 

demonstrated definitively that both 11778/ND4 and 14484/ND6 mutations are 

associated respectively with mitochondrial subhaplogroup J2b and J1c, and that the 

3460/ND1 mutation is associated with haplogroup K.
191

 Probably, accumulation of non 
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synonymous polymorphisms in ND subunits and the cytb, most of them being the 

previously defined secondary mutations, gene can increase the penetrance of LHON.
191 

Other studies confirm that one particular sub-branch of haplogroup J is associated with 

a unique, very old founder event for the 14484/ND6 mutation.
256

 This founder is 

responsible for their tight association in some specific populations, such as the French-

Canadians and the Dutch.
220,256,257

 This combination seems to induce a very low 

penetrance in females (male-female ratio 8:1, compared to other mutations 4-6:1) and 

could be an explanation for the tendency of 14484/ND6 and 11778/ND4 mutations to 

persist longer within a population when associated with haplogroup J.
220 

Tab. 3 LHON pathogenic mutations, with corresponding genes, amino acidic change and 

heteroplasmy/homoplasmy detection. 

 

However, this aspect does not explain completely the variable penetrance and the male 

prevalence, two LHON features that remain still unclear. Even if the majority of LHON 

families carry the mtDNA pathogenic mutation in the homoplasmic condition, many 

individuals belonging to the maternal lineage are not clinically affected. Thus, the 

existence of other genetic determinants, such as nuclear modifying genes, has been 

suggested and widely debated.
258

  

Chromosome X has been extensively investigated, but to date no modifying gene has 

been identified yet.
258,259

 Several approaches have been tried unsuccessfully, in order to 

find a modifying gene, such as linkage analysis, X-inactivation pattern analysis, or by 

directly sequencing of candidate genes.
260-266

 Only recently, two different loci have been 

identified on chromosome X.
267,268 

 

Another factor that may influence LHON penetrance, triggering the pathological 
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features in previously unaffected mutation carriers, is the exposure to certain 

environmental factors. These includes not only tobacco smoking and alcohol 

consumption, but also exposure to n-hexane and other solvents, head trauma, non-

controlled diabetes, ethambutol, and antiretroviral therapy in HIV patients.
220,269

 

 

Biochemistry 

Primary LHON mutations generally induce moderate changes in the catalytic function of 

complex I, with the only exception of 3460/ND1 mutation, the most severe, which has 

been shown to decrease the electron transport activity of complex I.
270,271 

Different studies, 

based on the investigation of complex I specific activity on different tissue of LHON 

patients and cell lines, do not shown a visible reduction in complex I activity, at least with 

11778/ND4 and 14484/ND6 mutations.
270-273

  Interestingly, these mutations affect the 

overall mitochondrial respiration, driven by complex I substrates, and different percentages 

of reduction have been reported. Moreover, mitochondria carrying the three common 

LHON mutations show a decreased sensitivity to rotenone, a powerful complex I inhibitor, 

and the 14484/ND6 and 3460/ND1 mutations induce an increase sensitivity of complex I 

to myxothiazol and nonyl-benzoquinol.
274,275

 These results suggest that LHON mutations 

may influence the interaction between complex I and ubiquinone, and that the three 

subunits affected by LHON mutations may constitute part of the ubiquinone binding 

site.
273

  

Several biochemical analyses have been carried out on cellular model, mainly primary 

cultures of patients’ fibroblasts and transmitochondrial cytoplasmic hybrids (cybrids, Fig. 

16). Cybrids are generated from human immortalized cell lines, lacking their mtDNA (the 

so called Rho
0
), and repopulated with patients mitochondria, harboring mtDNA 

mutations.
276

 The result is a transmitochondrial cell line in which only the features 

dependent on the patient mtDNA are co-transferred, dissected from the original nuclear 

genome and placed in a “neutral” nuclear background. In this widely used cellular model 

the main biochemical features of LHON mutations have been reproduced.
272 

The impairment of complex I may induce a partial decrease of net energy production and a 

slight chronic increase of oxidative stress. Both hypotheses have been tested and many 

evidences have been found. Baracca and coll., 2005, showed that complex I-driven ATP 

synthesis is consistently reduced with all three common LHON mutations, even though 
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cells may compensate this energy impairment by alternative pathways, such as glycolysis 

and complex II/glycerol 3-phosphate dehydrogenase.
277

 These results fit with the 
31

P 

magnetic resonance spectroscopy (MRS) results in LHON patients, indicating a defective 

ATP synthesis in skeletal muscle and/or brain.
278,279 

 

 

Fig 16 Scheme of cybrids generation process. From Maechler P, de Andrade PB. Biochem Soc Trans. 

2006; 34:824-827. 

 

On the other hand, an increased ROS production and chronic oxidative stress may be 

relevant for LHON pathophysiology. A significant increase in ROS generation and 

glutathione depletion, have been indeed observed in NT2 neuronal differentiated LHON 

cybrids carrying the 11778/ND4 and 3460/ND1 mutations and in osteosarcoma 

cybrids.
280-282

 Drastic changes in the mitochondrial antioxidant enzymatic machinery 

were also observed culturing cells in glucose free/galactose medium, suggesting a 

possible burst of oxidative stress, which may be implicated in the apoptotic cell death 

observed in LHON cybrids under these conditions of forced oxidative metabolism.
283,284

 

Using a medium without glucose and containing only galactose, the slow metabolism of 
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galactose to glucose-1-phosphate is not sufficient for the cells to synthesize the ATP 

necessary by glycolysis, and cells are forced to rely on respiratory chain for ATP 

synthesis. Thus, cells with a respiratory chain defect are not able to grow in similar 

conditions. In fact, incubation of LHON cybrids in galactose medium cause cell death 

characterized by the typical apoptotic hallmarks, including changes in nuclear 

morphology, chromatin condensation and fragmentation of chromosomal DNA.
285

 The 

cell death characterization study revealed that, even if there was a significant release of 

cytochrome c from mitochondria, the galactose-induced death process was caspase-

independent, and involved AIF and EndoG.
286,287

 The early reduction of ATP levels 

observed under the galactose conditions possibly prevents the execution of apoptosis 

through the “classical” cytochrome c-mediated caspase-dependent pathway, whereas 

AIF and EndoG, once translocated to the nucleus, may account for the cell death 

process.
287

 Moreover, an increased sensitivity to cell death was also reported in LHON 

cybrid after treatment with Fas, a well-known activator of the extrinsic apoptotic 

pathway.
288

 Only recently it has been demonstrated that, even if the LHON mutations 

do not affect the steady state levels of respiratory chain complexes, an accumulation of 

low molecular weight subcomplexes is evident in LHON cybrids. Moreover, LHON 

mutants belonging to different haplogroups shows a differentially delayed assembly 

rates of complexes I, III and IV, revealing that specific mtDNA polymorphisms may 

modify the pathogenic potential of LHON mutations.
192 

 

Therapy and experimental treatments 

Currently, none of the proposed treatments, such as vitamins, cofactors, steroids and 

surgical treatment, is effective.
220,245

 The clinical trial of the neuroprotective agent 

brimonidine, during the acute phase of LHON, did not reveal any protective effect in the 

involvement of the second eye, during the disease progression.
289

  

A partial improvement of visual recovery and of neurological symptoms have been 

described with the treatment with idebenone, a coenzyme Q analogue.
290,291 

Another approach recently proposed is based on allotopic expression of corrected 

mitochondrial genes transferred to the nucleus and targeted to mitochondria. This 

approach has been used to rescue the biochemical defect, due to mutations 8993 in 

ATPase 6 gene (NARP/MILS) and 11778 in ND4 gene (LHON).
292,293  

However, the 
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use of this approach is still controversial, especially because of the lacking of complete 

and long-lasting rescue.
294,295

 Recently, an optimization of allotopic expression for 

mitochondrial genes ATPase6, ND1 and ND4 has been developed, obtaining a complete 

restoration of mitochondrial activity in mutated human fibroblasts.
296,297

 The same 

authors also demonstrated that the allotopic expression of the human mitochondrial 

ND4 prevents blindness in a LHON rat model. The LHON 11778/ND4 mutation was 

introduced in rat eyes in vivo by electroporation causing the RGCs degeneration. 

Subsequent electroporation with the wild-type ND4 gene prevented the degeneration 

and the impairment of visual function.
298

 Another similar approach, consists to 

complement the mitochondrial defect through the expression of a transgene with ND 

subunits from other species. This approach has been applied on human cybrids bearing 

the 11778/ND4 mutation, using the nuclear protein Ndi1, a rotenone sensitive NADH-

quinone oxidoreductase, from S.cerevisiae.
299

 Mutant cells expressing Ndi1 show a 

recovery in complex I specific activity and in complex I driven respiration, a partial 

increase in ATP synthesis, a decrease in ROS production and are able to grow in 

galactose medium.
299

  

The biochemical phenotype of LHON mutations includes an increase of cellular 

oxidative stress, due to the “electron leaking” of impaired complex I. Different 

strategies have been tested in order to reduce the chronic oxidative condition. Ghelli et 

al., 2008, demonstrated that exogenous glutathione is the only one, in an variety of 

antioxidant and antiapoptotic compounds, able to reduce the cell death induced by the 

exposure of LHON cybrids to oxidative stress.
300

 Moreover, the overexpression of 

human MnSOD is able to rescue the apoptotic cell death induced by galactose medium 

in mutant cells 11778/ND4.
301 
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Leber’s hereditary optic neuropathy (LHON) is one of the most common mitochondrial 

diseases, characterized by a very rapid loss of central vision and optic atrophy, due to 

the selective degeneration of retinal ganglion cells. The age of onset is around 20, and 

the degenerative process is fast and usually the second eye becomes affected in weeks 

or months.  Even if this pathology is well known and has been well characterized, there 

are still open questions on its pathophysiology, such as the male prevalence, the 

incomplete penetrance and the tissue selectivity.  

Most, but not all the patients clinically characterized as LHON have a molecular 

diagnosis. This is due to the fact that the 90% of LHON cases are caused by one of the 

three common mtDNA mutations (11778/ND4, 14484/ND6 and 3460/ND1), but the 

remaining 10% is caused by rare pathogenic mutations, reported in literature in one or 

few families. Moreover, there is also a small subset of patients reported with new 

putative pathogenic nucleotide changes, which awaits to be confirmed. 

The first aim of this research project was the identification of new pathogenic mutation 

or the validation of rare known mutations in families with a clear clinical diagnosis of 

LHON, but negative at the screening for the three classic mutations. The assessment of 

pathogenicity for a mitochondrial mutation is still debated. Mitchell and coll., 2006, 

proposed a new score system for the assignment of pathogenic value of mtDNA 

mutations.
302

 This score system considers as parameters the presence of a biochemical 

defect in affected and non affected tissues, functional studies, the independent 

identification of the same mutation in unrelated cases, the heteroplasmy and the 

conservation through different species. Thus, our purpose was the generation of a 

complete alignment of ND1-ND6 and ND4L subunits of complex I and, being the 

structure of the hydrophobic core of this enzyme still not known, the elaboration of new 

models for the secondary structure of these proteins. Both these in-silico analysis may 

help us to better understand the possible impact of a non-synonymous nucleotide 

change on protein structure and function. Furthermore, these models may suggest a 

recurrent pattern of pathogenic mutations and clarify their genotype-phenotype 

correlation. Furthermore, they may be useful for the identification of a functional role 

for polymorphic variants fixed during evolution in different mtDNA haplogroups. 

LHON is usually a monosymptomatic disorder, but there is a subset of patients with a 

syndromic form of optic atrophy referred as “Leber’s plus”, which may include central 
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nervous system involvement with frequent movement disorders.
231,232

 The occurrence of 

“Leber’s plus” in certain cases has been related to specific mtDNA mutations, different 

from the common LHON mutations or has been linked to a combination of different 

mtDNA mutations, including the association of one primary LHON mutation and other 

putative pathogenic changes or the co-occurrence of two primary LHON mutations.
 
The 

second aim of this research project was to understand if some particular polymorphisms 

of mtDNA may have a functional role in Leber’s plus cases, influencing the clinical 

expression of the primary mutations. In particular we analyzed the mtDNA sequence in 

two unrelated Italian families with LHON plus myoclonus, and evidence of maternal 

transmission.   

Probably, one of the most interesting and unclear aspect of LHON is the variable 

penetrance. This phenomenon is common in LHON families, most of them being 

homoplasmic mutant. Inter-family variability of penetrance may be caused by nuclear or 

mitochondrial ‘secondary’ genetic determinants or other predisposing factors. However, 

within-family variability of penetrance in pedigrees with homoplasmic mutation 

harbored by all maternal related individuals remains unexplained. Thus, our third aim 

was to identify some molecular markers that may clearly differentiate affected 

individuals from carriers. In several mitochondrial disorders, the respiratory chain 

impairment is followed by an increase in mitochondrial mass, a common cellular 

strategy to compensate the energy defect. The compensatory activation of mitochondrial 

biogenesis is particularly evident in MELAS and MERRF, in which there is a massive 

subsarcolemmal accumulation of aberrant mitochondrial (RRFs) in patients’ skeletal 

muscle fibers. In LHON this accumulation is less evident, but an increase in SDH 

staining in skeletal muscle has been shown. Thus, the focus of this part of the project 

was the investigation of mitochondrial biogenesis in LHON patients. This part of the 

project was carried out in collaboration with Dr. Carla Giordano and Prof. Giulia 

d’Amati, at the University La Sapienza, Roma.   

To date, there is no therapy for LHON and many approaches have been tried to rescue 

the energetic defect in LHON cell lines. The last aim of this project was to analyze the 

potential therapeutic role of molecules reported in literature able to induce 

mitochondrial biogenesis. To this end, we investigated in a cellular model the 
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biosynthetic pathway driving mitochondrial biogenesis, and how its activation may 

rescue the pathologic cellular phenotype of LHON. 
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Sequence alignment and conservation analysis 

The protein sequences of ND1-ND6, ND4L, ATPase6 and COII genes were obtained 

from the non-redundant SwissProt database (http://www.expasy.org/sprot). All the 

available complete mitochondrial sequences were downloaded and three sequence sets 

were created, corresponding to eukaryotes, vertebrates and mammals. These data sets 

were aligned with ClustalX ver. 2.1 maintaining the default parameters.
303

 The analysis 

of amino acid conservation of the aligned sequences was carried out by GeneDoc, a 

sequence editor able to calculate the percentage of amino acid conservation for each 

position in the query alignment.
304 

In this way we also identified the most representative 

amino acidic residues and calculates their prevalence at each position within the 

alignment, setting the value of 70% as conservation threshold. For cytochrome b protein 

we used the alignment from Degli Esposti M. available on-line in the “The bc1-

complex” home page (http://www.life.uiuc.edu/crofts/bc-complex_site/). 

 

Prediction analysis of pathogenicity of amino acid substitutions 

PolyPhen, SIFT and PMut (http://tux.embl-heidelberg.de/ramensky/polyphen.cgi, 

http://blocks.fhcrc.org/sift/SIFT.htmL, http://mmb2.pcb.ub.es:8080/PMut/) were used to 

predict the possible impact of amino acid substitutions on the protein.  

PolyPhen is a program based on sequence comparison with homologous proteins; 

profile scores (PSIC, Position-Specific Independent Counts) are generated for the allelic 

variants and represent the logarithmic ratio of the likelihood of a given amino acid 

occurring at a particular site relative to the likelihood of this amino acid occurring at 

any site. PSIC score differences above 2 indicate a damaging effect; scores between 1.5 

and 2 suggest that the variant is possibly damaging, whereas scores below 1.5 indicate 

that the variant is benign.
305

  

SIFT is a sequence homology-based tool that sorts intolerant from tolerant amino acid 

substitution, based on the premise that protein evolution is correlated with protein 

function. Positions important for function should be conserved in an alignment of the 

protein family, whereas unimportant positions should appear diverse in an alignment.
306

 

SIFT follows a multistep procedure that searches for similar sequences, chooses related 

sequences, obtains the alignment of these sequences, and calculates normalized 

probabilities for all possible substitutions from the alignment. Positions with normalized 
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probabilities less than 0.05 are predicted to be not tolerated, those greater than or equal 

to 0.05 are predicted to be tolerated. 

Also PMut is a tool for the prediction of disease-associated amino acid mutations, 

which uses only sequence-based information (amino acid properties, evolutionary 

information, secondary structure and accessibility predictions, and database annotations) 

but is based on neural networks.
307

 Mutations are predicted to be either pathological or 

neutral. The overall success rate is 83.5 %, with a 66.5 % improvement over random 

when only sequence-derived information is included, while when structure is available 

the success rate increases to 87.0 % and the improvement over random to 73.0%. Thus, 

this program has the best success rate compared to the other two (SIFT 70.3 % overall 

success rate and 37.0 % improvement over random, PolyPhen 73.5% success rate with 

41.4 % improvement over random). 

 

Generation of ND1-ND6 subunit structural models 

The alignments produced for ND1-ND6 subunits were used to generate a consensus 

sequence for each gene. The hydrophobicity profile of these sequences and the average 

hydrophobicity along each position in the alignments was generated using three 

different hydropathy scales: RAO-AR, based on membrane-buried-helix parameters, 

MPH, based on membrane propensity for haemoproteins, and AMP07, based on the 

average of seven different hydrophobicity scales, including RAO-AR and MPH. These 

scales have been widely described and validated by Degli Esposti and coll., 1989 and 

1990.
308,309

 The resulting hydrophobicity profiles define for each subunits the number of 

transmembrane helices (TMH). When helices were predicted at least 5/6 times they 

were considered reliable. The transmembrane models topology was assessed based on 

the net charge and positioning the positive side in the mitochondrial matrix and the 

negative side in the mitochondrial intermembrane space. 

 

Cell lines and cultures conditions 

Human transmitochondrial hybrids (cybrids) were grown in DMEM added with 10% 

fetal bovine serum (FBS), 2 mM L-glutamine, 100 units/mL penicillin, and 100 µg/mL 

streptomycin and 0.1 mg/mL bromodeoxyuridine (complete medium). Cell lines were 

grown in a humidified incubator at 37°C with 5% CO2. For incubations in galactose 
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medium it has been used DMEM glucose-free medium supplemented with 5mM 

galactose, 2 mM L-glutamine, 5 mM Na-pyruvate and 10% FBS (galactose medium). 

For incubations with bezafibrate (BF), complete medium was supplemented with BF 

100 µM (diluted in DMSO, stock 20 mM), or the corresponding volume of DMSO.  

 

Growth curve in galactose or bezafibrate medium 

Cells (3x10
4
) were seeded into 24-well plates and, after 24 hours, were washed twice 

with PBS and incubated with galactose medium, or in complete medium with 

bezafibrate or DMSO. At the end of incubation cells were harvested and counted using 

the Z1 COULTER COUNTER
®

 Cell and Particle Counter (Beckman Coulter).  

 

Cell viability measurements 

Cells (3x10
4
) were seeded into 24-well plates and, after 24 hours, were washed twice 

with PBS and preincubated 24 hour in complete medium with bezafibrate or DMSO, 

and then incubated in galactose medium supplemented with bezafibrate or DMSO. The 

sulforodhamine B (SRB) assay was performed following the manufacturer’s conditions. 

Briefly, at the end of incubation time, cells were fixed with 50% trichloroacetic acid 

(TCA) for 1 hour at 4°C, washed 5 times with H2O and finally dried for 1 hour at room 

temperature. Cells were then stained with SRB 0.4% diluted in 1% acetic acid for 1 

hour at room temperature, washed 4 times with 1% acetic acid, and disrupted with 10 

mM Tris-HCl pH 9.8. The absorbance of SRB was detected with Victor3 plate reader 

(Perkin Elmer) at the wavelength of 560 nm. 

 

Total cellular lysates preparation 

Cells were seed into 78 cm
2
 dishes in complete medium, after 24h, cells were washed in 

PBS and incubated for 72h in medium with bezafibrate 100 µM or DMSO. At the end 

of incubation time cells were scraped in 100 µL of RIPA lysis buffer [PBS, 1% Triton 

X-100, 0.5 mM EDTA, 0.6 mM PMSF and 100 µL/mL protease inhibitors]. The lysate 

was incubated in ice for 15’, frozen and thawed in liquid nitrogen twice, sonicated in 

waterbath for 2’ and centrifuged at 12000rpm for 10’ at 4°C. The supernatant was then 

collected and protein content was assessed according to Bradford.
310
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Western blotting of mitochondrial proteins 

Total cellular lysates were resuspended in Laemmli buffer (20% glycerol, 4% SDS, 125 

mM Tris-HCl pH 6.8, 10% β-mercaptoethanol, 0.004% bromophenol blue). Samples 

were denatured at 100°C for 5’ before loading on the polyacrilamide gel. Fifty 

micrograms of protein were separated by SDS-PAGE (10% acylamide/bis-acrylamide) 

electrophoresis and transferred onto nitrocellulose membrane (BioRad). Antibodies 

used were: mouse antibodies for complex I, IV and V subunits, purchased in cocktails 

from MitoSciences; goat polyclonal antibody for β-actin purchased from Santa Cruz 

Biotechnology. Mouse antibodies for complex I, IV and V subunits were used 

according to the manufacturer’s instructions. Goat polyclonal antibody for β-actin was 

used at 1:1000 dilution. Incubation with secondary antibodies (dilution 1:5000) and 

subsequent detection by chemiluminescence were done with SuperSignal West Pico 

Chemiluminescent Substrate (Thermo Scientific) according to the manufacturer’s 

instructions. 

 

Spectrophotometric assays for respiratory chain complexes and citrate synthase 

activity. 

Spectophotometric assays for OXPHOS complexes and citrate synthase activity were 

performed using a double wavelength spectrophotometer (Jasco V550), under stirring 

and controlled temperature. 

Respiratory chain complexes activity (I, II+III, III and IV) were evaluated in platelet 

homogenate freshly prepared from 100 mL of venous blood as described by Carelli et 

al., 1997, and Degli Esposti et al., 1994.
271,273

  

Specific NADH ubiquinone oxidoreductase and cytochrome c oxidase activities were 

determined in cells grown in complete medium according to Benit et al., 2006.
311

 with 

minor modifications. Briefly, small aliquots of cells were deep-frozen in 50 µL PBS and 

then thawed in 1 mL of ice-cold medium 1 [0.25 M sucrose, 20 mM Tris (pH 7.2), 40 

mM KCl, 2 mM EGTA, 1 mg/mL BSA, 0.01% digitonin (w/v), 10% Percoll (v/v)]. 

Cells were incubated 10 minutes in ice, centrifuged for 5 min at 5000rpm and the 

supernatant was discarded. The pellet was then washed with 1mL of medium 1 devoid 

of digitonin and Percoll and centrifuged for 5 min at 8000rpm. Finally, the pellet was 

resuspended in 30 µL of medium 1 devoid of digitonin and Percoll. Complex IV activity 
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was determined following the absorbance of reduced cytochrome c at wavelengths 550 

nm and 540 nm (ε= 19.1 mM
-1

 cm
-1

,
 
37°C). The assay was performed in 1 mL of 

medium A [10 mM KH2PO4 (pH 7.2), 1 mg/mL BSA] and the reaction was blocked by 

addition of 0.3 M KCN. Complex I specific activity was determined following the 

absorbance of NADH at wavelengths 340 nm and 380 nm (ε= 4.87 mM
-1

 cm
-1

,
 
37°C). 

The assay was performed in 1 mL of medium B [50 mM Tris (pH 8.0), 5 mg/mL BSA] 

and the reaction was blocked by addition of 8 µM rotenone. Citrate synthase activity 

was determined as described by Trounce et al., 1996.
312

 and protein content was 

assessed according to Bradford.
310

 

 

ATP synthesis assay 

The measurements of mitochondrial ATP synthesis were done in cells grown in 

DMEM-glucose according to Manfredi et al. 2002.
313

 with minor modifications. Briefly, 

after trypsinization, cells were resuspended (7x10
6
/mL) in buffer A [10 mM KCl, 25 

mM Tris-HCl, 2 mM EDTA, 0.1% bovine serum albumin, 10 mM potassium phosphate, 

0.1 mM MgCl2 (pH 7.4)], kept for 15 minutes at room temperature, and then incubated 

with 50 µg/mL digitonin for 1 minute. After centrifugation, the cells pellet was 

resuspended in buffer A and aliquots were taken to measure ATP synthesis, protein 

content, and citrate synthase activity. Aliquots of cells were incubated with 5 mM 

malate plus 5 mM pyruvate (complex I–driven substrates) in the presence or absence of 

10 µg/mL oligomycin, or with 10 mM succinate plus 2 µg/mL rotenone (complex II–

driven substrate), and 0.2 mM ADP for 1 and 3 minutes. The amount of ATP was 

measured as described.
287

 Adenosine 5′-triphosphate (ATP) Bioluminescent Assay Kit 

was from Sigma Aldrich. The rate of ATP synthesis was expressed as a ratio of citrate 

synthase activity.
312

 Protein concentration was determined according to Bradford.
310 

 

Nucleic acid extraction 

DNA samples were extracted from different tissues (whole blood, skeletal muscle, 

urinary epithelium, platelet fraction and hair) using the standard phenol-chloroform 

method, resuspended in MilliQ water and stored at -20°C. Cells from a confluent 75 

cm
2
 flask were pelleted and washed once in PBS. PBS was removed and DNA extracted 

with the standard phenol-chloroform method. 
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Total RNA was extracted from human skeletal muscle bioptic fragments and cultured 

cells (cybrids). Approximately, 50 sections of 20 µm were obtained from frozen tissue 

samples and total RNA was extracted using the RNeasy Micro Kit (Qiagen) following 

the manufacturer protocol. Briefly, sections were disrupted with 150µL RLT buffer plus 

143 mM β-mercaptoethanol and vortexed. The lysis buffer is then diluted with 290 µL 

RNase-free water and treated with 10 µL of Proteinase K (10 mg/mL) at 55°C for 10 

minutes. The homogenate was subsequently centrifuged for 3 minutes at 10000g at 

room temperature with the purpose to eliminate any eventually present tissue debris. 

The sample was transferred in a new tube and 0.5 volumes of ethanol 100% were added 

and loaded in a MinElute Spin Column (Qiagen). After a series of washes the total RNA 

is finally eluted with 14 µL of RNase-free water. 

Cybrids were grown in a 78 cm
2
 cell culture dish; when the cells were confluent, total 

RNA was extracted with TRIzol (Invitrogen) following the manufacturer suggested 

protocol. RNAs samples were precipitated with isopropanol followed by centrifugation 

for 10 minutes at 4°C at 12000g, and then the pellets were washed, dried and 

resuspended in RNase-free water. All the RNA samples were treated with DNase I 

(Promega), to avoid any contamination with genomic DNA, at 37°C for 30 minutes, 

followed by enzyme inactivation at 65°C for 10minutes. 

Nucleic acid concentration and purity was evaluated measuring 1 µL of sample with 

Nanodrop 1000 Spectrophotometer (Thermo Scientific), at the wavelengths 260 nm and 

280 nm. 

 

Identification of LHON common mutations 

The PCR mixture contained 2 ng of DNA, 0.2 U Taq DNA Polimerase (Eppendorf), 1x 

Buffer Advanced (Eppendorf), 200 µM PCR nucleotide Mix (Roche), 200 µM each 

primer (Invitrogen), in a final volume of 25 µL. 

For the PCR reaction we used a GeneAmp PCR System 2700 (Applied Biosystems) 

thermal cycler. Primers sequences and PCR conditions are reported in appendix B. The 

PCR reaction was checked with an electrophoresis on agarose gel and ethidium bromide 

staining. The PCR fragments were of 119 bp (11778/ND4), 75 bp (14484/ND6) and 398 

bp (3460/ND1). 
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The PCR products were subsequently digested with the following restriction enzymes 

LweI (Fermentas) for the G11778A mutation, Bsp143I (Fermentas) for the G14484A 

mutation and Hin1I (Fermentas) for the T3460A mutation. LweI recognize a restriction 

site in the wild type DNA and generates two fragments of 64 bp and 55 bp; Bsp143I 

recognize a restriction site in the wild type DNA and produce two fragments of 64 bp 

and 21 bp; Hin1I recognize a restriction site in the mutant DNA and produce two 

fragments of 298 bp and 91 bp. 

The digestion mixture was composed by 5 or 8 µL of PCR product, 1 U/µL of 

restriction enzyme, 1x suggested Buffer, in a final volume of 10 µL, and was incubated 

for 16 hours at 37°C. Subsequently the fragments were separated with electrophoresis 

on Metaphor (BioSpa) gel at 3% or 4% and displayed with ethidium bromide staining. 

 

Mitochondrial DNA complete sequencing 

The complete mtDNA sequencing was carried out on DNA samples extracted from 

venous blood, in the Laboratory of Genetics, Dipartimento di Genetica e Microbiologia, 

Università di Pavia (Prof. Antonio Torroni), as previously described.
314 

 

Restriction fragment length polymorphism (RFLP) assay for LHON rare 

mutations
 

The PCR mixture contained 2 ng of DNA, 0.2 U Taq DNA Polimerase (Eppendorf), 1x 

Buffer Advanced (Eppendorf), 200 µM PCR nucleotide Mix (Roche), 200 µM each 

primer (Invitrogen), in a final volume of 25µL. 

For the PCR reaction we used a GeneAmp PCR System 2700 (Applied Biosystems) 

thermal cycler. Primers sequences and PCR conditions are reported in appendix B. The 

PCR reaction was checked with an electrophoresis on agarose gel and ethidium bromide 

staining. 

The digestion mixture was composed by 5 or 8 µL of PCR product, 1 U/µL of 

restriction enzyme, 1x suggested Buffer, in a final volume of 10 µL, and was incubated 

at the suggested temperature. The enzyme list, digestion conditions and fragment length 

are shown in table 4. Subsequently the fragments were separated with electrophoresis 

on Metaphor (BioSpa) gel at 3% or 4% and displayed with ethidium bromide staining. 
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Mutation Enzyme Temperature/Time Mutant fragments 

size (bp) 

Wild type fragments 

size (bp) 

14258 BamHI 37°C / 16h 575 446, 129 

14495 NlaIII 37°C / 3h 102, 98 130 

14459 MaeIII 55°C / 16h 139, 25 164 

3700 HhaI 37°C / 16h 479 258, 221 

14568 AciI 37°C / 16h 298 160, 138 

14568 BcgI 37°C / 16h 160, 138 298 

4172 BseMI 55°C / 16h 130, 20 150 

 

Tab. 4 LHON candidate pathogenic mutation, digestion conditions, enzyme list (Fermentas) and 

digestion fragment length.  

 

RFLP assay for rare polymorphisms
 

The PCR mixture contained 2 ng of DNA, 0.2 U Taq DNA Polimerase (Eppendorf), 1x 

Buffer Advanced (Eppendorf), 200 µM PCR nucleotide Mix (Roche), 200 µM each 

primer (Invitrogen), in a final volume of 25 µL. 

For the PCR reaction we used a GeneAmp PCR System 2700 (Applied Biosystems) 

thermal cycler. Primers sequences and PCR conditions are reported in appendix B. The 

PCR reaction was checked with an electrophoresis on agarose gel and ethidium bromide 

staining. 

The digestion mixture was composed by 5 or 8 µL of PCR product, 1 U/µL of 

restriction enzyme, 1x suggested Buffer, in a final volume of 10µL, and was incubated 

at the suggested temperature. The enzyme list, digestion conditions and fragment length 

are shown in table 5. Subsequently the fragments were separated with electrophoresis 

on Metaphor (BioSpa) gel at 3% or 4% and displayed with ethidium bromide staining. 

Polymorphism Enzyme Temperature/

Time 

Mutant fragments 

size (bp) 

Wild type fragments 

size (bp) 

4136 NlaIII 37°C / 3h 74, 26 100 

9319 TaaI 65°C / 16h 380, 139 519 

15773 BsrI 65°C / 16h 1709 480, 1229 

 

Tab. 5 LHON candidate pathogenic mutation, digestion conditions, enzyme list (Fermentas) and 

digestion fragment length.  
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Analysis of the functional polymorphism G1444A in the PGC-1α gene 

The PCR mixture contained 2 ng of DNA, 0.2 U Taq DNA Polimerase (Eppendorf), 1x 

Buffer Advanced (Eppendorf), 200 µM PCR nucleotide Mix (Roche), 200 µM each 

primer (Invitrogen), in a final volume of 25 µL. 

For the PCR reaction we used a GeneAmp PCR System 2700 (Applied Biosystems) 

thermal cycler. Primers sequences and PCR conditions are reported in appendix B. The 

PCR reaction was checked with an electrophoresis on agarose gel and ethidium bromide 

staining. 

The PCR product (260 bp) was subsequently digested with the restriction enzyme HpaII 

(Fermentas). This enzyme recognize the palindromic sequence 5’-CCGG-3’, and is able 

to cut the allele G, producing two fragments of 111 and 149 bp, while the allele A 

remains uncut. The digestion mixture was composed by 5 or 8 µL of PCR product, 1 

U/µL of restriction enzyme, 1x suggested Buffer, in a final volume of 10 µL, and was 

incubated for 16 hours at 37°C. Subsequently the fragments were separated with 

electrophoresis on Metaphor (BioSpa) gel at 4% and displayed with ethidium bromide 

staining. 

 

Mitochondrial DNA copy number evaluation 

Absolute quantification of mtDNA relative to nuclear DNA (nDNA) was performed by 

a real-time PCR based method using the LightCycler480 (Roche). This method is a 

multiplex assay based on hydrolysis probe chemistry. A mtDNA fragment (ND2 gene) 

and a nDNA fragment (FasL gene) were co-amplified by multiplex polymerase chain 

reaction according to the primers, probes and conditions previously published.
315

 These 

two fragments were cloned tale to tale in a vector and serial dilutions were used to 

construct a standard curve, obtaining a ratio of 1:1 of the reference molecules. Primers 

and probes sequences and PCR conditions are available on request. 

 

Reverse transcription 

Reverse transcription was performed on extracted RNA, using Transcriptor First Strand 

cDNA Synthesis Kit (Roche) and following the manufacturer’s protocol. The cDNA 

was generated performing a reverse transcription of 2 µg of total RNA using random 

hexameric primers.  
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Relative quantitative PCR assays for mitochondrial biogenesis related genes 

Relative mRNA quantification was performed by a real-time PCR based method using 

the instrument LightCycler480 (Roche). This method is a singleplex assay based on 

SybrGreen I chemistry. The mRNAs amount relative to target genes (PGC-1α, PGC-1β, 

PRC and Tfam) was determined using the human β-actin as reference. Primer sequences 

and PCR conditions are reported in appendix B. 

 

Statistical analysis 

Statistical analysis was performed using the SigmaStat ver.3.5 software package, 

choosing the most appropriate test. For mtDNA copy number analysis within the 

Brazilian family, ANOVA Dunn’s test or Mann-Whitney test were performed, being the 

values from these samples not normally distributed. Linear regression analysis was 

performed to correlate mtDNA copy number and age.  For mtDNA copy number 

analysis in Italian families paired t-test was used for blood and ANOVA Holm-Sidak 

test for skeletal muscle. For analysis of PGC-1α genotypes, χ
2
 or Fisher’s exact tests 

were performed. For correlation of mtDNA copy number and PGC-1α genotypes, 

ANOVA was performed. For relative gene expression analyses paired t-test was used on 

raw ∆Ct data. For cellular analyses t-test or ANOVA were performed. Data were 

considered significantly different for p-values < 0.05. 
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Part 1 - Role of mtDNA variants in LHON: pathogenic mutations and 

synergistic polymorphisms 

 

Conservation analysis and structural models of complex I subunits 

In order to establish the pathogenic potential of mtDNA mutations and the possible 

functional role of some common polymorphic variants, a conservation analysis on ND1-

ND6 and ND4L protein sequences has been carried out. The number of complete 

sequences, for each protein, downloaded from the non-redundant SwissProt database is 

reported in table 6. Moreover, we have downloaded, aligned and analyzed complete 

protein sequences of COX2 and ATPase6 subunits (Tab. 6). These sequences have been 

divided in three subsets, corresponding to eukaryotes, vertebrates and mammals, and 

used to generate global alignments. 

 

Subunit Eukaryotes  Vertebrates Mammals 

ND1  140  106  81  

ND2  119  88  62  

ND3  137  89  67  

ND4  88  51  38  

ND4L  90  63  55  

ND5  96  51  38  

ND6  86  75  41  

ATP 6  97  58  38  

COX2 286 184 162 

 

Tab. 6 Number of complete mitochondrial protein sequences used for the generation of ND1-6, ND4L, 

COX2 and ATPase6 global alignments. 

 

For each position, the percentage of amino acid conservation has been calculated and a 

consensus sequence has been generated, identifying the most prevalent amino acid 

along each alignment. The average of protein conservation and the percentage of 

conserved amino acids have been calculated and reported in table 7. Considering both 

parameters, the most conserved ND subunit is invariably ND1 (average conservation 

from 70.95% in eukaryotes to 84.90% in mammals) , whereas the less conserved is ND6 

(average conservation from 55.89% in eukaryotes to 71.15% in mammals). The 

conservation among the other subunits varies in the three different data sets. As 
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expected, the average conservation and the percentage of conserved amino acid increase 

with the reduction of evolutionary distances, independently from the protein. However, 

considering each single amino acid position, this is not a general rule, being some 

amino acid position more conserved in eukaryotes and vertebrates than in mammals. 

 

Complex 

I 

subunit 

 

Eukaryotes Vertebrates Mammals 

Average 

conservation 

(%) 

Conserved 

amino acid 

(%) 

Average 

conservation 

(%) 

Conserved 

amino acid 

(%) 

Average 

conservation 

(%) 

Conserved 

amino acid 

(%) 

ND1  70.95  58.81  81.72  72.33  84.90  76.73  

ND2  57.55  33.43  67.27  45.82  75.01  59.65  

ND3  62.18  46.96  75.12  60.00  79.71  67.83  

ND4  60.30  34.86  76.83  63.18  82.68  74.73  

ND4L  60.03  38.78  72.33  55.10  80.24  66.33  

ND5  55.69  26.70  73.16  56.55  79.38  68.66  

ND6  55.89  28.16  60.05  29.31  71.15  54.02  

 

Tab. 7 Percentages of average conservation and conserved amino acids in the ND1-6 and ND4L 

alignments, for each data set. 

 

The analyses of consensus sequences hydrophobicity and average hydropathy along the 

alignments allow us to identify the putative transmembrane segments, characterized by 

α-helix secondary structure (TMH), and to generate a structural model for each ND 

subunit.  

The scales AMP07 and RAO-AR predict the same number of TMHs, for ND1, ND2, 

ND3, ND4L and ND6 subunits, considering the average or consensus sequences 

hydrophobicity. In the case of ND4 and ND5, the same TMHs are predicted for both 

scales, but this number varies if we consider average or consensus sequences 

hydropathy. 

MPH scale recognizes different TMHs using average or consensus sequences 

hydrophobicity and predicts an equal number or less α-helix compared to AMP07 and 

RAO-AR. This is due to the more restrictive assignment of hydrophobicity to each 

amino acid and to the higher MPH threshold of hydrophobicity (1.1 for MPH versus 1.0 

for AMP07 and RAO-AR). In order to consider the influence in the prediction analysis 

of each scale, each transmembrane domain has to be predicted at least by 5 analyses on 
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a total of 6 (considering the three scales for average and consensus sequences 

hydropathies).  

 

ND1 subunit 

In the ND1 subunit AMP07 and RAO-AR clearly predict 8 TMHs, whereas MPH 

predicts 7 α-helices using the average hydropathy and 6 α-helices using the consensus 

sequence. Figure 17A shows the hydropathy profile generated with MPH scale on the 

consensus sequence obtained from eukaryotes global alignment. Our model represents 

ND1 with 6 TMHs and 1 amphipathic helix (named helix E in figure 17) protruding in 

the mitochondrial intermembrane space. The boundaries of helix E are the amino acid 

positions 220-240 and this helix shows a peculiar double peak hydropathy plot, with a 

very profound decrease of hydrophobicity in the middle of the helix. The conservation 

analysis reveals that ND1 is extremely conserved in mammals (Tab. 7), presenting 115 

invariant residues (36% of the protein) and 8 invariant zones corresponding to extra-

membrane loops AB, CD, DE and FG. In vertebrates there are 77 invariant amino acids 

(24% of the protein) and 5 invariant regions in the previously cited loops. The 

alignment of eukaryotes sequences reveals the lack of invariant zones and only three 

invariant residues (Arg-134, Pro-197 and Phe-198), probably the most important for 

ND1 function.  

Mitomap reports 12 nucleotide changes associated with LHON or LHON plus other 

mitochondrial diseases in ND1 subunit (Fig. 17B). Only one of these is defined as 

confirmed (G3460A), whereas 2 are reported as unclear (G3316A and T3394C), 8 as 

reported (G3376A, G3496T, C3497T, G3635A, G3700A, G3733A, T4160C, C4171A) 

and one as possibly synergistic (A4136G). According to our model, ten of the reported 

variants are located in extra-membrane loops (AB, CD, and FG) on the membrane side 

facing the mitochondrial matrix. These loops are very conserved regions of ND1 

subunit and the presence of pathogenic mutations may underlie the importance of these 

regions for ND1 function. The nucleotide change G3316A, reported as unclear, is 

located in the N-terminal of the protein, whereas the possibly pathogenic mutation 

G3635A is located inside the TMH C. Common non-synonymous polymorphisms, 

associated with mtDNA haplogroups, are also present in ND1 gene (T3394C/J1c1, 
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A3505G/W, A3796G/H1b, C3992T/H4, A4024G/H4a and T4216C/R2-JT), affecting 

different positions of the polypeptide chain. 

 

ND2 subunit 

In the ND2 subunit AMP07 and RAO-AR predict 9 TMHs, whereas MPH predicts 8 α-

helices with average hydropathy and 7 α-helices with the consensus sequence. In figure 

18A is shown the hydropathy profile generated with MPH scale on the consensus 

sequence. In this model we propose 8 TMHs and a α-helix in the C-terminal of the 

polypeptide chain (helix I) that can be either amphipathic or embedded in the membrane 

(Fig. 18). ND2 is a moderately conserved protein. Along mammalian sequences 

alignment there are 73 invariant residues (21% of the protein) and two hyper-conserved 

regions (130-135 and 169-173). In vertebrates and eukaryotes there are no invariant 

regions and respectively 37 and 6 invariants amino acid positions (10% and 1% of the 

protein). Only one nucleotide change may have a pathogenic potential for LHON 

(G5244A), and affect an amino acid position located in the loop GH, facing the 

intermembrane space. Conversely, several haplogroups defining non-synonymous 

polymorphisms have been accumulated in the ND2 gene (T4561C/K2a, T4639C/V1, 

C4640A/U3b-K1a5, A4917G/R1-T, 4960/N1b, G5046A/N2, C5263T/V1a, G5460A/W-

J1b) affecting residues located both in extra-membrane loops and in membrane 

spanning regions. 

 

 ND3 subunit 

This very small protein is predicted to fold in 3 TMHs by all the scales used in this 

study, corresponding to three wide hydrophobic regions (Fig. 19). ND3 shows a high 

overall conservation along mammals (Tab. 7), with 37 absolutely conserved amino 

acids (32% of the protein) and two hyper-conserved regions in helix A (aa 22-25) and 

helix B (aa 54-57). In vertebrates the invariant residues represent the 20% of the entire 

protein (23 amino acids), but no invariant regions can be defined. The overall 

conservation decrease in eukaryotes and only two residues are absolutely conserved 

Gly-40 and Glu-68, both located in extra-membrane loops (respectively AB and BC). 

Even in the absence of invariant zones, a large region with high local conservation can 

be observed from amino acid 32 to 77, representing the subunit core and covering part 
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of loops AB and BC and the entire helix B. In this region resides the only one reported 

mutation associated with LHON (T10237, Ile60Thr), whereas the population non-

synonymous polymorphism A10398G, defining haplogroups L3, N1a, K1 and J, affects 

position 114 in the C-terminal of the protein. 

 

ND4L subunit 

Similar to ND3, ND4L is a very small protein in which three TMHs are recognized by 

every hydropathy scale. Moreover, this protein presents three wide hydrophobic regions 

and consequently the TMHs boundaries cannot be clearly defined (Fig. 20). In 

mammals 29% of the polypeptide chain is represented by absolutely conserved amino 

acids and there is an invariant region corresponding to helix B. In vertebrates this 

percentage decreases at 10% and there is only one invariant amino acid (Glu-34) in 

eukaryotes. Three LHON possibly pathogenic mutations are reported on Mitomap 

(A10543G, T10591G and T10663C), affecting helices B and C. A single non-

synonymous variant (A10506G) is associated with haplogroup U3a and hits Thr-13 in 

helix A.  

 

ND4 subunit 

The hydrophobicity analysis of ND4 consensus sequence using AMP07 and RAO-AR 

scales reveals the presence of 14 hydrophobic segments, whereas for analysis conducted 

on average hydropathy only 13 TMHs are recognized. The more restrictive MPH scale 

predicts only 9 and 8 α-helices, respectively for average and consensus hydropathy. We 

here propose a model of ND4 with 10 defined TMHs and 2 helices (named in figure 21 

A and J) with a controversial hydropathy plot that can be either membrane spanning or 

protrude in the intermembrane space. Moreover, the assignment of ND4 topology across 

the membrane is controversial, being both sides positively charged. In mammals 39% of 

amino acids results invariant and 8 hyper-conserved regions are present, including a 

very long stretch of 16 amino acids, from 214 to 229.  This stretch corresponds to the 

loop EF, facing the intermembrane space where mutations or polymorphisms have 

never been reported. Along vertebrates’ alignment, 106 amino acids (23% of the chain) 

and 3 extremely conserved regions can be identified. These regions include the 

previously reported long stretch divided in two zones (214-224 and 226-229). Finally, 
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in eukaryotes there are 13 invariant residues (3% of the protein), including 4 from the 

long hyper-conserved stretch (Trp-215, Leu-216, Hys-220 and Ser-228). At least 4 

nucleotide changes are reported in Mitomap to be associated with LHON, but only 

G11778A is confirmed. This mutation induces the amino acid substitution Arg340Hys, 

an extremely conserved position in the intermembrane space loop IJ. Another reported 

mutation, C11874A, affects the loop JK on the same membrane side, whereas mutations 

T11253C and G11696A affect respectively loop DE and helix I. Moreover, two 

polymorphic variants of haplogroup K2c (A11015G and A11172G) hit ND4 subunit, 

precisely in loops BC and CD. 

 

ND5 subunit 

The largest mitochondrial-encoded complex I subunit is ND5. This protein shows 13 

hydrophobic segments, considering the hydrophobicity of the consensus sequence, 

independently from the used hydropathy scale. If average hydrophobicity is considered, 

AMP07 and RAO-AR predict 15 TMHs, whereas MPH predicts only 13 TMHs. The 

proposed model represents ND5 with 13 membrane spanning segments (Fig. 22). 

Moreover, another hydrophobic region can assume a TMH structure or be an 

amphipathic helix outside the membrane on the matrix side (Fig. 22, helix I). The 

conservation analysis of ND5 reveals the existence of several conserved regions. In 

mammals 33% of the whole protein is represented by invariant amino acids and 9 

absolutely conserved regions, including a long stretch of 18 amino acids (236-253), can 

be identified. This stretch is also evident along vertebrates’ alignment and invariant 

amino acids cover the 18% of the polypeptide chain. In eukaryotes, 22 amino acids are 

absolutely conserved (3.6%) and there are two zones with high local conservation (143-

155 and 222-256), corresponding to helix I and extra-membrane loops DE and IJ (Fig. 

22).  

At least 7 non-synonymous variants in ND5 gene have been associated with LHON or 

LHON and other mitochondrial diseases, none of them reported on Mitomap as 

confirmed. All these variants hit extra-membrane loops on both sides of the membrane 

and define at least one region (loops DE and FG) with a possible functional role (Fig. 

22B). Several haplogroups defining variants induce changes in the ND5 polypeptide 

chain, most of them concentrated in loops LM and MN. 
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ND6 subunit 

Every hydropathy scale predicts clearly 5 TMHs for ND6 subunit with a clearly defined 

topology (Fig. 23). ND6 is the most divergent ND subunit but in mammals shows a 

hyper-conserved box (amino acids 59-70) in the helix C with 40 invariant residues (23% 

of the polypeptide chain). In vertebrates and eukaryotes this region is still highly 

conserved, with at least 4 absolutely conserved amino acids (Gly-61, Gly-62, Phe-67 

and Tyr-69). Mutations associated with LHON are concentrated in helix B, a moderate 

conserved region with high conserved amino acids, in helix C, especially in the 

invariant box, and in the loop DE (Fig. 23B). Some non-synonymous polymorphisms 

have been accumulated in ND6 in general population (T14307C/K2b, T14318C/C, 

C14365T/H4a and A14582G/H4a). These variants are located in helices B and D and in 

loop DE and they correspond to poorly conserved positions. 
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Fig. 17 Hydropathy plot, conservation analysis and protein model of ND1 subunit. A) Hydrophobicity 

profile of consensus sequence with MPH scale and percentage of conservation (blue bars) of each amino 

acid residue along the alignment of eukaryotic sequences. The conservation threshold of 70% is indicated 

with the light blue line. B) Structural model of ND1 subunit with corresponding nucleotide changes 

reported in Mitomap as associated with LHON. Possibly pathogenic mutations are in regular font, 

secondary and unclear variants are in italic, confirmed mutations are in the box and LHON plus or 

LHON/ other mitochondrial diseases overlap syndromes are underlined. 
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Fig. 18 Hydropathy plot, conservation analysis and protein model of ND2 subunit. A) Hydrophobicity 

profile of consensus sequence with MPH scale and percentage of conservation (blue bars) of each amino 

acid residue along the alignment of eukaryotic sequences. The conservation threshold of 70% is indicated 

with the light blue line. B) Structural model of ND2 subunit with corresponding nucleotide changes 

reported in Mitomap as associated with LHON. Possibly pathogenic mutations are in regular font, 

secondary and unclear variants are in italic, confirmed mutations are in the box and LHON plus or 

LHON/ other mitochondrial diseases overlap syndromes are underlined. 
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Fig. 19 Hydropathy plot, conservation analysis and protein model of ND3 subunit. A) Hydrophobicity 

profile of consensus sequence with MPH scale and percentage of conservation (blue bars) of each amino 

acid residue along the alignment of eukaryotic sequences. The conservation threshold of 70% is indicated 

with the light blue line. B) Structural model of ND3 subunit with corresponding nucleotide changes 

reported in Mitomap as associated with LHON. Possibly pathogenic mutations are in regular font, 

secondary and unclear variants are in italic, confirmed mutations are in the box and LHON plus or 

LHON/ other mitochondrial diseases overlap syndromes are underlined. 
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Fig. 20 Hydropathy plot, conservation analysis and protein model of ND4L subunit. A) Hydrophobicity 

profile of consensus sequence with MPH scale and percentage of conservation (blue bars) of each amino 

acid residue along the alignment of eukaryotic sequences. The conservation threshold of 70% is indicated 

with the light blue line. B) Structural model of ND4L subunit with corresponding nucleotide changes 

reported in Mitomap as associated with LHON. Possibly pathogenic mutations are in regular font, 

secondary and unclear variants are in italic, confirmed mutations are in the box and LHON plus or 

LHON/ other mitochondrial diseases overlap syndromes are underlined. 
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Fig. 21 Hydropathy plot, conservation analysis and protein model of ND4 subunit. A) Hydrophobicity 

profile of consensus sequence with MPH scale and percentage of conservation (blue bars) of each amino 

acid residue along the alignment of eukaryotic sequences. The conservation threshold of 70% is indicated 

with the light blue line. B) Structural model of ND4 subunit with corresponding nucleotide changes 

reported in Mitomap as associated with LHON. Possibly pathogenic mutations are in regular font, 

confirmed mutations are in the box and LHON plus or LHON/ other mitochondrial diseases overlap 

syndromes are underlined. 
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Fig. 22 Hydropathy plot, conservation analysis and protein model of ND5 subunit. A) Hydrophobicity 

profile of consensus sequence with MPH scale and percentage of conservation (blue bars) of each amino 

acid residue along the alignment of eukaryotic sequences. The conservation threshold of 70% is indicated 

with the light blue line. B) Structural model of ND5 subunit with corresponding nucleotide changes 

reported in Mitomap as associated with LHON. Possibly pathogenic mutations are in regular font, 

confirmed mutations are in the box and LHON plus or LHON/ other mitochondrial diseases overlap 

syndromes are underlined. 



Results 

78 

 

 

Fig. 23 Hydropathy plot, conservation analysis and protein model of ND6 subunit. A) Hydrophobicity 

profile of consensus sequence with MPH scale and percentage of conservation (blue bars) of each amino 

acid residue along the alignment of eukaryotic sequences. The conservation threshold of 70% is indicated 

with the light blue line. B) Structural model of ND6 subunit with corresponding nucleotide changes 

reported in Mitomap as associated with LHON. Possibly pathogenic mutations are in regular font, 

confirmed mutations are in the box and LHON plus or LHON/ other mitochondrial diseases overlap 

syndromes are underlined. 
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Prediction of pathogenic potential of amino acid substitutions 

In this section we have analyzed the pathogenic potential of amino acid substitutions, 

due to mutations reported on Mitomap associated with LHON and with haplogroup 

related mtDNA polymorphisms. Conservation along alignments and three prediction 

tools available on-line (PolyPhen, SIFT and PMut) were used to assess the 

pathogenicity of these variants. Different predictions for each variant were obtained, 

depending on the selected method. If a variant is predicted as pathogenic at least by 3/4 

methods, it is accepted as pathogenic, whereas if it is predicted by 2/4 methods it is 

considered uncertain. In tables 8 and 9 the analyzed variants with the corresponding 

pathogenicity prediction are reported. 

Concerning the conservation analysis, 29/39 variants with potential pathogenic effects 

involve highly conserved positions along mammals (17 of those are invariants) and 

27/39 along vertebrates (10 invariants).  In eukaryotes only 22 variants affect a 

conserved amino acid and none of them invariant positions, underlining the extremely 

important role of these amino acids. Comparing the on-line prediction tools, PolyPhen 

results the most restrictive and predicts as possibly or probably pathogenic only 19/39 

amino acid substitution with putative pathogenic role. SIFT predicts as non tolerated 

24/39 variants, whereas PMut predicts as pathogenic 31/39 variants. 

Every mutation cited on Mitomap as confirmed is predicted pathogenic by this 

integrated approach, with the only exception of C14568T/ND6 that has to be considered 

uncertain. The possibly synergistic variant A4136G/ND1 results pathogenic, whereas 

secondary mutations and unclear variants are predicted neutral or uncertain. Mitomap 

cites as ‘reported’ 28 variants; our analysis reveals that 19 may have a potential 

pathogenic role, 2 are uncertain and 7 are neutral. 

The same approach has been applied on common polymorphisms conserved in 

European mtDNA haplogroups. In this case all the polymorphisms were predicted as 

not pathogenic, in fact 83% are neutral and only 17% are uncertain, mainly due to the 

moderate conservation of the affected amino acids (Tab. 9). 
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Tab. 8 Prediction of functional role of amino acid substitution in ND1-ND6 and ND4L subunits. Variants 

list is downloaded from Mitomap and for each variant is reported the conservation analysis and the 

prediction of PolyPhen, SIFT and PMut. Confirmed mutations are in bold, variants predicted to be 

pathogenic are underlined and uncertain variants are in italic. (Abbreviations Cfrm: confirmed, Pos syn: 

possibly synergistic, Rep: reported, Sec: secondary) 
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Tab. 9 Prediction of functional role of amino acid substitution in ND1-ND6 and ND4L subunits. Variants 

are common polymorphisms retrived from the general population and associated with European mtDNA 

haplogroups. For each variant is reported the conservation analysis and the prediction of PolyPhen (PSIC 

score higher than 1.5 are considered possibly damaging), SIFT and PMut (scores higher than 0.5 are 

considered pathological). Variants predicted to be pathogenic are underlined and uncertain variants are in 

italic. 
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Identification of rare and putative new LHON pathogenic mutations 

In 90% of cases, LHON is caused by one of three mtDNA common mutations 

(11778/ND4, 3460/ND1, 14484/ND6 in complex I subunit genes). However, in many 

cases the molecular diagnosis results negative for these mutations, even if the patients 

show a full LHON clinical phenotype. In order to explain the molecular cause of some 

of these cases, we here investigate 6 LHON probands from 5 unrelated Italian families 

(for family trees see Appendix C). All these patients result negative at LHON common 

mutation screening. We completely sequenced the mtDNA from these patients and we 

found 4 rare LHON mutations, some of them reported only once, and 2 new nucleotide 

changes with pathogenic potential. The raw data of mtDNA sequencing are reported in 

Appendix D and the list of non-synonymous nucleotide changes is reported in table 10. 

Figure 24 shows the tree encompassing the complete mtDNA sequences observed in the 

investigated pedigrees. 

 

Family Locus Nucleotide 

change  

Amino acid 

position 

Amino acid 

change 

Homoplasmy/ 

Heteroplasmy 

mtDNA 

haplogroup 

Fam. 1 ND1 G3700A 132 Ala-Thr Homoplasmic H 

 ND5 G13759A 475 Ala-Thr -  

Fam. 2 ND1 T4172A 289 Leu-Gln Homoplasmic U6a 

 COII G7805A 74 Val-Ile -  

 ND6 C14568T 36 Gly-Ser Heteroplasmic  

 Cyt b G15221A 159 Asp-Asn -  

Fam. 3 ND1 T4216C 304 Tyr-His - J1c 

 ND3 A10398G 114 Thr-Ala -  

 ND5 G13708A 458 Ala-Thr -  

 ND5 C13934T 533 Thr-Met -  

 ND6 G14459A 72 Ala-Val Homoplasmic  

 Cyt b T14798C 18 Phe-Leu -  

 Cyt b C15452A 236 Leu-Ile   

Fam. 4 ND6 A14495G 60 Leu-Ser Heteroplasmic H 

Fam. 5 ATP6 A8944G 140 Met-Val - K1a 

 ATP6 G9055A 177 Ala-Thr -  

 ND3 A10398G 114 Thr-Ala -  

 ND6 G14258A 139 Pro-Leu Homoplasmic  

 ND6 A14582G 31 Val-Ala -  

 Cyt b T14798C 18 Phe-Leu -  

 

Tab. 10 Non-synonymous variants found in probands’ mtDNA from investigated families with relative 

amino acid substitutions. Rare or putative pathogenic mutations are reported in bold. 



Results 

83 

 

 

Fig. 24 Tree encompassing the complete mtDNA sequences observed in the investigated families. 

Nucleotide variants are shown on the branches; they are transitions unless the base change is explicitly 

indicated. Insertions are suffixed with a plus sign“+” and the inserted nucleotide; underlining indicates 

recurrent polymorphisms; “s” indicates synonymous mutations whereas “ns” indicates non-synonymous 

mutations, “h” indicates heteroplasmic mutations. Pathogenic LHON mutations are shown in red. 
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Family 1 

The mtDNA of II:1 from Family 1 has been completely sequenced and belongs to 

haplogroup H. Compared to revised Cambridge Reference Sequence (rCRS), only two 

non-synonymous nucleotide changes were found: G3700A/ND1 and G13759A/ND5. 

The ND1 variant cause the amino acid substitution Ala132Thr in ND1 protein sequence 

and has been previously reported as LHON pathogenic by Fauser and coll.
316

, whereas 

the ND5 nucleotide change is a common polymorphism reported in several haplogroups 

and diagnostic marker of haplogroup F1a1. The mutation load of G3700A/ND1 was 

assessed through a RFPL assay and the mutation resulted homoplasmic in DNA 

samples extracted from peripheral blood and urinary epithelium from II:1 (data not 

shown). 

 

Family 2 

The complete sequencing of mtDNA has been carried out on a DNA sample extracted 

from peripheral blood of IV:3 from Family 2. This mtDNA belongs to haplogroup U6a 

and harbors four non-synonymous nucleotide changes compared to rCRS.  We found 

the heteroplasmic mutation C14568T/ND6, that induces an amino acid substitution in 

ND6 at position 36 (Gly36Ser), previously reported in literature as LHON causative.
316-

319
 Moreover, this mtDNA lineage is characterized by the variants T4172A/ND1, 

G7805A/COII and G15221A/cytb. The nucleotide change in COII gene defines the 

clade a of haplogroup U6, whereas the variant in cytb gene has been reported in 

association with five different haplogroups. Finally, nucleotide variant T4172A/ND1 

has been reported only once in another mtDNA belonging to haplogroup U6a and 

probably is the marker of a specific subclade of this haplogroup. This polymorphism 

induces the amino acid substitution Leu289Gln in ND1 protein. Interestingly, the same 

amino acid is substituted (Leu289Met) in presence of the mutation C4171A/ND1, 

reported as LHON pathogenic.
320

 In order to assess the mutational load of 

C14568T/ND6 mutation and its distribution on the maternal lineage, we performed an 

RFLP assay on DNA samples extracted from whole blood of several maternal relatives 

(III:2, III:3, III:4, IV:2, IV:5, IV:6, IV:7). In the investigated relatives only IV:5 harbor 

the LHON pathogenic mutation in heteroplasmic condition (Fig. 25B and C). Moreover, 

an analysis of heteroplasmy in DNA samples extracted from different tissues (whole 
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Conservation analysis 

All the previously reported mtDNA nucleotide variants have been analyzed, in terms of 

amino acid position conservation in the three described data sets, and in terms of 

pathogenic potential, to establish whether they may have a functional effect. All the 

previously reported rare LHON mutations affect highly conserved amino acids, at least 

in mammals, being almost invariant. Furthermore, these amino acids are present in 

extremely conserved regions, suggesting a functional role for these domains (Fig. 28). 

In fact, G3700A/ND1 causes the substitution Ala-Thr in position 132 of ND1, very 

conserved from eukaryotes to mammals (from 80% to 93%), and is predicted to be 

pathogenic by SIFT and PMut (Tab. 10). This region in our ND1 model is located in the 

conserved loop CD, where another LHON putative mutation has been described in two 

unrelated pedigrees (G3733A/ND1).
324

 The mutations C14568T, G14459A and 

A14495G of ND6 gene affect invariant position in the two very conserved regions in 

ND6 subunit (helices B and C). The G14459A and A14495G mutations are predicted as 

pathogenic or probably damaging by all the used prediction tools (Tab. 11), whereas the 

C14568T mutation is predicted pathogenic only by PMut (Tab. 10).  

Interestingly, the polymorphism T4172A/ND1 of Family 2 affects the conserved amino 

acid Leu-289 (98.77% of conservation in mammals) in a very conserved region. The 

amino acid substitution induced by this variant (Leu289Glu) is predicted to be possibly 

pathogenic by the most restrictive prediction tool PolyPhen (PSIC score 1.899, Tab. 

11). Moreover, the same position is affected by the LHON reported pathogenic 

mutation C4171A, but this latter mutation induces a Leu289Met substitution, 

considered by PolyPhen benign (PSIC score 0.052).  

In the two branches of Family 5 we found two rare variants with a possible pathogenic 

potential (A8944G/ATPase6 and G14258A/ND6). The nucleotide change 

A8944G/ATPase6 affects amino acid Met-140, a position poorly conserved in 

vertebrates and eukaryotes, but invariant along mammals (Tab. 11). This amino acid 

resides in a very conserved region of ATPase a subunit, as shown in figure 28. 

Considering these features, this nucleotide change may have a functional role on ATP 

synthase activity and, consequently, a pathogenic potential in this family.  

The mtDNA variant G14258A/ND6 affects a poorly conserved amino acid in a poorly 

conserved region (amino acid Pro-139, see Tab. 11 and Fig. 28), even if is adjacent to a 
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invariant residue Gly-141. PolyPhen predicts both amino acid substitutions as benign, 

but we cannot exclude a functional role for both these mtDNA variants, especially for 

the nucleotide change in ATPase6 that may have a strong impact on protein function, 

affecting an invariant amino acid. 

 

Nucleotide change Amino acid 

change 

Conservation (%) PolyPhen  

(PSIC score) 

Family 

Mammals Vertebrates Eukaryotes 

G3700A/ND1  A132T 97.53  93.4  80  Benign (0.741) Fam. 1 

G13759A/ND5 A475T 52.63 41.18 21.74 Benign (0.816) Fam.1 

T4172A/ND1  L289Q 98.77  83.02  57.86  Possibly 

damaging  

(1.899)  

Fam. 2 

C4171A/ND1  L289M  98.77  83.02  57.86  Benign (0.052 )    

G7805A/COII V74I 84.57 83.15 64.69 Benign (0.479) Fam. 2 

C14568T/ND6  G36S  100  46.67  40.7  Benign (0.047) Fam. 2 

G15221A/cyt b  D159N  38.00 44.00 42.00 Benign (0.140)  Fam. 2  

T4216C/ND1  Y304H 61.73  68.87  48.2  Benign (0.825) Fam. 3  

A10398G/ND3  T114A 83.58  60.67  41.91  Benign (0.194) Fam. 3  

G13708A/ND5  A458T  44.74  52.94  34.38  Benign (0.610) Fam. 3  

C13934T/ND5  T533M 52.63  37.25  22.92  Benign (1.085) Fam. 3  

G14459A/ND6  A72V  100  69.33  67.44  Probably 

damaging  

(2.197)  

Fam. 3 

T14798C/cyt b  F18L  89.00 72.00 68.00 Benign (0.999) Fam. 3 

C15452A/cyt b  L236I 50.00 44.00 42.00 Benign (0.288) Fam. 3 

A14495G/ND6  L60S  100  100  95.35  Probably 

damaging  

(2.788)  

Fam. 4 

A8944G/ATP6 M140V 100 65.52 36.08 Benign (1.023) Fam. 5 

G9055A/ATP6  A177T  89.47  89.66  59.57  Benign (0.385) Fam. 5  

A10398G/ND3  T114A  83.58  60.67  41.91  Benign (0.194) Fam. 5  

G14258A/ND6  P139L  34.15  36  32.56  Benign (0.037) Fam. 5 

A14582G/ND6  V31A  46.34  74.67  69.77  Benign (0.195) Fam. 5 

T14798C/cyt b  F18L 89.00 72.00 68.00 Benign (0.999) Fam. 5 

 

Tab. 11 Sequence analysis of amino acid substitutions identified in LHON families 1-5. In table are 

reported the amino acid conservation along the three alignments (mammals, vertebrates and eukaryotes) 

and the pathogenicity prediction obtained using PolyPhen, PSIC score is indicated inside brackets.   
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Fig. 28 Global alignment of ND1, ND6 and ATPase6 protein sequences belonging to 11 different 

mammalian organisms. Amino acid residue with a percentage of conservation ranging between 70.0% 

and 79.9% are highlighted in light grey, those between 80.0% and 99.9% are highlighted in dark grey and 

those invariant (100%) are highlighted in black. Amino acid changes of interest are shown in bold. 

 

Determination of OXPHOS complexes activity 

To verify the impact of the reported mutations on the respiratory complexes function, 

we measured the specific activity of complex I, complexes II+III, complex III and 

complex IV, by using conventional spectrophotometric assays, in platelet fractions of 

available individuals and of a control group. We studied the probands from Family 2 

and Family 5a (respectively IV:3 and IV:1, see Appendix C) and two individuals from 

Family 3, III:1 (the LHON pure case) and III:5 (the LHON plus dystonia case).  

The prediction for these patients carrying ND6 gene mutations (C14568T/Family 2, 

G14459A/Family 3 and G14258A/Family 5) would be a defective complex I activity. 
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Role of mtDNA polymorphisms in LHON plus myoclonus 

In order to investigate the occurrence of myoclonus in two LHON families, we studied 

five patients and one unaffected carrier. All six individuals had myoclonus, elevated 

serum lactic acid and accumulation of lactic acid in ventricles. The RFLP survey in all 

maternal relatives investigated showed the 11778/ND4 mutation in Family A and the 

3460/ND1 mutation in Family B homoplasmic in blood, urinary epithelium, and skeletal 

muscle (data not shown). Based on the evidence of familial recurrence of myoclonus in 

these two families, which was strictly co-segregating with LHON on the maternal line 

in Family A, we sequenced the entire mtDNA extracted from skeletal muscle of 

individuals VI:15 from Family A and IV:2 from Family B (see Appendix C).  

 

Family A 

The mtDNA from Family A belongs to haplogroup T2 and, in addition to the 

11778/ND4 mutation, harbors five non-synonymous nucleotide changes commonly 

found in this haplogroup (Fig. 30). Three of the non-synonymous nucleotide changes 

(4136/ND1, 4216/ND1, and 4917/ND2) affect ND subunits of complex I, one 

(9139/ATPase6) the ATPase a subunit of complex V, and one (15452/cytb) the cyt b 

subunit of complex III. Those at nps 4216, 4917 and 15452 are ancient polymorphisms 

and characterize all haplogroup T mtDNAs. The two non-synonymous more recent 

variants of Family A (4136/ND1 and 9139/ATPase6) were surveyed by RFLP analysis 

in all available individuals and both were found homoplasmic in all tissues investigated. 

The rare 4136A>G/ND1 mutation has been previously found in three LHON families 

carrying an established primary mutation.
242,325

 A further case has been reported on a 

haplogroup A mtDNA in a study investigating a cohort of patients with Alzheimer’s 

disease of Japanese descent.
326 

The 9139G>A/ATPase6 transition is also rare and 

probably define a branch within T2 haplogroup. It was found also on L2d and L3f1 

haplogroups. 

 

Family B 

The mtDNA of Family B is a member of haplogroup U4a (Fig. 30). In this sequence 

only two non-synonymous changes are present, and both affect the cyt b subunit 

(15693/cytb, 15773/cytb). Of the two, only the change at nucleotide position 15693 is an 
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ancient polymorphism that characterizes all haplogroup U4 mtDNAs. The more recent 

variant of Family B (15773 G>A/cytb) has been rarely observed on different 

haplogroups (C1, T2b, H and V2).
 

 

 

Fig. 30 Tree encompassing the complete mtDNA sequences observed in the investigated families. 

Nucleotide variants are shown on the branches; they are transitions unless the base change is explicitly 

indicated. Insertions are suffixed with a plus sign“+” and the inserted nucleotide; underlining indicates 

recurrent polymorphisms; “s” indicates synonymous mutations whereas “ns” indicates non-synonymous 

mutations. Pathogenic LHON mutations are in italic and possibly synergistic polymorphisms are 

indicated by an arrow.  

 

Conservation analysis 

To verify the possible functional significance of the non-synonymous changes found in 

the ND1, ND2, ATPase6 and cyt b genes, we analyzed their conservation and the 

prediction obtained with PolyPhen. The mammals alignments of the investigated 
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regions are reported in figure 31 and the percentages of conservation for each amino 

acid change are listed in table 12. 

The two LHON pathogenic mutations at positions 3460/ND1 and 11778/ND4 show 

59.4% and 99.2% of amino acid conservation in the alignment of eukaryotes, 

respectively, which increase to 97.5% and 100% (invariant position) when only 

mammals are considered. The position 277 of ND1 is highly conserved in both 

eukaryotes (78.6%) and mammals (98.7%). This feature – shared with the 11778/ND4 

and 3460/ND1 mutations – neatly distinguishes the 4136/ND1 mutation from the 

ancient polymorphism 4216/ND1 whose amino acid conservation in the mammals is 

only 60.8%. The other ancient polymorphism 4917/ND2 shows, instead, a moderate-

high conservation, ranging from 74.5% in eukaryotes to 93.5% in mammals. However, 

this amino acid resides in a poorly conserved region, probably with no functional role.  

The ATPase6 amino acid change A205T of Family A, due to the mutation at np 9139, 

despite being moderately conserved (76.0%) in eukaryotes, shows a conservation of 

94.7% in mammals, but is located in a highly conserved region. 

For Family B, the cyt b amino acid change M316T (15693/cytb) affects a poorly 

conserved position in eukaryotes (55%), which increased to a moderate conservation in 

mammals (71.0%) within a poorly conserved region of the protein. In contrast, the cyt b 

amino acid change V343M (15773/cytb) is a highly conserved amino acid position 

within a relatively conserved domain (Fig. 31, in eukaryotes 96% of conservation and in 

mammals 99%). 

The PolyPhen predictive analysis of pathogenicity defines as “probably damaging” the 

11778/ND4 mutation and “possibly damaging” the 3460/ND1 mutation, both being well 

established as pathogenic for LHON. The only other amino acid change scored as 

“possibly damaging” is V343M (15773/cytb) with a PSIC score difference of 1,570. 
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Nucleotide 

change 

Amino acid 

change 

Conservation (%) PolyPhen 

prediction 

(PSIC score) 

Family 

Mammals Vertebrates Eukaryotes 

G11778A/ND4 R340H 100 100 99.2 Probably 

damaging 

(2.520) 

Fam. A 

A4136G/ND1 

(possibly 

synergistic) 

Y277C 98.7 99.1 78.6 Benign Fam. A 

T4216C/ND1 Y304H 60.8 68.9 48.2 Benign Fam. A 

A4917G/ND2 N150D 93.5 87.5 74.5 Benign Fam. A 

G9139A/ATP6 

(possibly 

synergistic) 

A205T 94.7 96.5 76.0 Benign Fam A 

C15452A/cytb L236I 50.0 44.0 42.0 Benign Fam. A 

G3460A/ND1 A52T 97.5 70.1 59.4 Possibly 

damaging  

(1.553) 

Fam. B 

T15693C/cytb M316T 71.0 59.0 55.0 Benign Fam. B 

G15773A/cytb 

(possibly 

synergistic) 

V343M 99.0 98.0 96.0 Possibly 

damaging 

(1.570) 

Fam. B 

 

Tab. 12 Sequence analysis of all amino acid substitutions identified in LHON plus families. In table are 

reported the amino acid conservation along the three alignments (mammals, vertebrates and eukaryotes) 

and the pathogenicity prediction obtained using PolyPhen, PSIC score is indicated inside brackets.   
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Part 2 - Modifying factors in LHON: the role of mitochondrial 

biogenesis in variable penetrance 

 
Molecular characterization of LHON mutations 

In this study we have analyzed 179 individuals belonging to 57 different LHON Italian 

families and 64 individuals belonging to a single large Brazilian family of Italian 

ancestry (conventionally named SOA-BR).
327

 The family tree of SOA-BR is shown in 

Appendix C. Each individual has been previously investigated by RFLP analysis and 

characterized for LHON common mutations (11778/ND4, 14484/ND6 and 3460/ND1). 

Based on the clinical phenotype all subjects have been categorized in affected and 

carriers. In SOA-BR family, carrying the 11778/ND4 homoplasmic mutation, 25 

individuals were considered affected and 39 carriers (Tab. 13). Moreover, molecular 

characterization of Italian families, summarized in table 13, reveals that 123 individuals 

harbored the 11778/ND4 LHON mutation (58 affected and 65 carriers), 20 individuals 

had the 14484/ND6 mutation (10 affected and 10 carriers) and 36 individuals had the 

3460/ND1 mutation (19 affected and 17 carriers).  

Family Mutation Affected Carriers Total 

Brazilian (SOA-BR) 11778/ND4 25 39 64 

Italian 11778/ND4 58 65 123 

14484/ND6 10 10 20 

3460/ND1 19 17 36 

 

Tab. 13 LHON individuals investigated in this study: total number an differentiation in affected and 

carriers. 

 

DNA samples extracted from peripheral blood of these individuals have been analyzed 

and mtDNA haplogroups have been previously characterized. SOA-BR family belongs 

to haplogroup J, whereas the haplogroup distribution of Italian families is reported in 

table 14. 

 

 

 



Results 

98 

 

 

Haplogroup 11778 (n=37) 14484 (n=7) 3460 (n=13) 

H 24.32 0.00 53.85 

HV 5.41 0.00 0.00 

V 2.70 14.29 0.00 

U 13.51 0.00 7.69 

K 8.11 0.00 7.69 

J 21.62 71.43 15.38 

T 13.51 0.00 0.00 

Other 10.81 14.29 15.38 

 

Tab. 14 Distribution of mtDNA haplogroup within LHON italian families expressed as percentages.  
 

 

Determination of mtDNA content in LHON individuals 

 

The mtDNA copy number evaluation has been carried out on DNA samples extracted 

from peripheral blood of SOA-BR family members and selected individuals from the 

Italian families. This analysis has been approached in two different ways. The SOA-BR 

is very large (see Appendix C) and allows investigations within the family. We 

analyzed 64 individuals, 25 LHON affected and 39 LHON carriers. The control group 

was composed of 70 unrelated Brazilian individuals. Considering the Italian families, 

we performed a correlation study in selected individuals with homoplasmic LHON 

mutations, choosing to compare one affected individual, usually the proband, and one 

asymptomatic carrier on the same maternal lineage. Thus, we analyze 39 affected 

individuals, and their corresponding 39 carriers, 21 harboring the 11778/ND4 mutation, 

5 harboring the 11484/ND6 mutation and 13 harboring the 3460/ND1 mutation. In the 

last step of this study we also determined the mtDNA copy number in DNA samples 

extracted from skeletal muscle biopsies of 13 control and 31 LHON individuals (25 

affected and 6 carriers).  

In figure 32 we show the average values of mtDNA copy number/cell in DNA samples 

of peripheral blood of control individuals, LHON affected and carriers belonging to the 

SOA-BR Family. In the control group the average value of mtDNA copy number/cell is 

190±8, whereas SOA-BR family individuals show higher mtDNA/copy number values 
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mtDNA copy number.
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 Thus, this polymorphic variant may play an important role in 

the modulation of mitochondrial biogenesis, triggered as a compensatory mechanism by 

the energetic dysfunction. We have therefore analyzed the distribution of the G1444A 

polymorphism in the previously described SOA-BR family (25 affected and 39 

carriers), in its control group and in all available individuals from Italian families (70 

affected and 92 carriers). The genotyping was carried out on DNA samples extracted 

from peripheral blood. Moreover, the possible correlation between PGC-1α genotype 

and mtDNA copy number has been tested. In table 15 the frequencies (expressed as 

percentages) of the three genotypes A/A, G/A and G/G are reported. Even if the “low 

copies” genotype G/G is under-represented in the carriers group, the three genotypes are 

not associated with the status of LHON affected or carrier, or to the status of LHON or 

control. 

 

 Brazil Italy 

 Affected Carriers Controls Affected Carriers Controls (HapMap) 

A/A 17% 23% 12% 15% 14% 20% 

G/A 50% 66% 46% 37% 48% 33% 

G/G 33% 11% 42% 48% 38% 47% 

Tab. 15 Distribution of genotypes of G1444A in PGC-1α gene in the Brazilian and Italian groups. 
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Figure 38 shows the relative gene expression of the same target genes in LHON affected 

and carriers individuals, obtained with the qRT

reference. No differences were detected in the selected genes between the two groups. 

These results may explain the findings reported in Fig. 34, where no statistically 

significant difference in mtDNA copy number was apparent in skeletal muscle of 

affected and carriers individuals.
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Part 3 – Activation of mitochondrial biogenesis as a therapeutic 

strategy for LHON 

 
According to the results reported above, induction of mitochondrial biogenesis might 

represent a compensatory mechanism activated in response to cellular energetic 

impairment caused by LHON mutations. A similar behavior has been previously 

reported for other mtDNA pathogenic mutations associated with more complex 

mitochondrial diseases (encephalomyopathies). To verify our hypothesis, we took 

advance of cellular models of LHON (cybrids), to analyze the effect of the PPARs pan-

activator bezafibrate, previously reported to induce mitochondrial biogenesis and to 

rescue mild and severe defects of the respiratory chain.
329,330

 We have investigated six 

different cybrids cell lines, two wild type, two 11778/ND4, two 14484/ND6 and two 

3460/ND1. Cybrid cell lines have the same nuclear background of osteosarcoma cell 

line 143B TK
-
 and allow to test the effect of different mtDNA mutations. However, it 

has to be considered that these cell lines are immortalized and this may influence the 

cellular response to certain stimuli. We first assessed the biochemical defect 

discriminating LHON and wild type cybrids, as a baseline reference for the following 

experiments. 

 

Cell viability and energetic competence of LHON cybrids  

Determination of cell viability in a medium devoid of glucose and supplemented with 

galactose (galactose medium) was carried out. This assay allows evaluation of the 

mitochondrial energetic efficiency, since galactose slows down the glycolytic rate and 

cells are forced to rely on the ATP produced almost exclusively through oxidative 

phosphorylation. Accordingly, cells with defective respiratory chain cannot survive 

under these growth conditions. As reported in figure 39, all LHON cell lines failed to 

survive after 72h incubation in galactose medium, whereas control cell lines were still 

growing.  

These results are in agreement with previous reports, confirming the occurrence of a 

severe oxidative phosphorylation dysfunction in LHON cybrids.
285-287  
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Moreover, the specific activity of NADH ubiquinone oxidoreductase (complex I) was 

measured by means of a spectrophotometric assay. Figure 40 shows that the 3460/ND1 

mutation only caused a significant reduction (-40%) in complex I specific activity 

compared to controls, whereas no difference was detected in the 11778/ND4 and 

14484/ND6 cell lines. This result is in agreeement with previous data reporting that the 

effect of LHON mutations on complex I activity is undetectable, except for the 

3460/ND1 mutation.
273 

We also performed a polarographic analysis on digitonin-permeabilized cells. In this 

assay respiration driven by complex I substrates (pyruvate and glutammate) of LHON 

cells results invariably lower than controls, without reaching statistical significance 

(data not shown). Conversely, complex II driven respiration in LHON cells resulted 

comparable to controls.  

However, the rate of ATP synthesis, determined in digitonin-permeabilized cells and 

normalized for the citrate synthase activity, a marker of mitochondrial mass, was  

strongly reduced in LHON cybrids, when driven by the complex I substrates, malate 

and pyruvate. This reduction was 39% in 3460/ND1 cells, 51% in 11778/ND4 cells and 

71% in 14484/ND6 cells, respectively (Fig. 41). Conversely, we did not observe 

differences in ATP synthesis rate between LHON and wild type cybrids using the 

complex II substrate succinate plus rotenone (Fig. 41). These results clearly indicate a 

selective impairment in complex I in LHON cybrids. In conclusion, the assays of 

mitochondrial ATP synthesis and viabilty in galactose medium represent the most 

reliable outcome measures to evaluate the energetic deficit of LHON cybrids. 
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Fig. 39 Effect of incubation in galactose medium on cell viability of LHON and control cybrids. Data are 

reported as average±SEM. Asterisks indicate statistical significance (p<0.005).
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Effect of incubation in galactose medium on cell viability of LHON and control cybrids. Data are 

reported as average±SEM. Asterisks indicate statistical significance (p<0.005).
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average±SEM. Asterisks indicate statistical significance (p<0.005).
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Fig. 46

substrates, in permeabilized LHON cybrids treated with bezafibrate 100 

DMSO for 72 hours. Data are are reported as average±SEM.
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Fig. 47 Effect of incubation in galactose medium, plus bezefibrate 100 µM or equal volume of DMSO, on 

cell viability of control (panel A) and LHON cybrids (panels B, C and D). Data are reported as 

average±standard deviation. 
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Leber’s hereditary optic neuropathy (LHON) is a usually monosymptomatic disease 

characterized by a bilateral acute or sub-acute loss of central vision, caused by the 

selective degeneration of RGCs, leading to optic atrophy. It is now clear that LHON is 

one of the most common mitochondrial diseases. However, many aspects of this 

pathology are still unclear, such as the male prevalence, the incomplete penetrance and 

the selective involvement of a single cell type. Moreover, several new pathogenic 

mutations have been reported in the last years increasing the range of mutations that 

have to be screened in the diagnostic protocols. Finally, the pathogenic mechanism is 

still debated and no effective therapies are available for LHON patients. 

In this study we analyzed three aspects still unclear in LHON. At first, we investigated 

the role of rare mtDNA variants, mutations or polymorphisms, as causative or modifiers 

of LHON clinical phenotype. Second, we searched for a molecular feature able to 

distinguish affected and carrier subjects, within the same family or in different families, 

shedding light on the possible mechanism of variable penetrance. Lastly, we explored 

by a preliminary study, using the cellular model of LHON cybrids, the possibility of a 

pharmacologic therapeutic approach.  

 

LHON pathogenic mutations are located in defined and conserved domains of 

mtDNA encoded complex I subunits    

Complex I is the first enzyme of the respiratory chain and catalyzes the transfer of two 

electrons from NADH to ubiquinone, coupled to pumping of 4 protons across the 

membrane. This protein complex presents an L-shaped global structure, with a 

hydrophobic arm embedded in the membrane and a hydrophilic peripheral arm 

protruding in the mitochondrial matrix.
331,332

 Recently, the crystal structure of the 

hydrophilic arm has been solved, but currently there are only few data concerning the 

structural details of  hydrophobic arm subunits.
43

 We here propose new structural 

models for ND1-ND4 and ND4L complex I subunits, based on the analysis of 

hydropathy profiles generated starting from a wide global alignments of virtually all the 

available complete protein sequences. 

To date, the only exhaustive work predicting a structural model for each mitochondrial 

encoded complex I subunits has been published in 1992 by Fearnley and Walker.
333

  

Other structural models have been proposed for ND1, ND6 and ND4, in order to define 
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the possible role of newly identified pathogenic mutations or to explain the biochemical 

characterization of the common LHON pathogenic mutations.
239,271,274,321,324

 However, 

none of those is based on the great number of sequences currently available on generic 

and specialized data banks. Moreover, we analyzed three different data sets, 

corresponding to eukaryotes, vertebrates and mammals, to define either the most 

conserved regions, but also those regions particularly conserved in mammals that may 

be crucial for protein function. All the sequences are characterized by long hydrophobic 

segments, generally of 20 or more amino acids, probably folded in membrane spanning 

regions. These TMHs are connected by short hydrophilic loops, although some of them 

may be organized in extra-membrane domains.   

Our analysis on average conservation and fraction of conserved amino acids, confirms 

that ND1 is invariably the most conserved subunit and that ND6 is the most divergent, 

as previously reported by Fearnley and Walker.
333

 However, the other ND subunits have 

a different overall conservation within the three data sets. Considering the single ND 

subunits, our analysis on ND3 and ND4L reveals that these very short proteins are 

extremely hydrophobic and are folded in three TMHs, as previously reported.
333

 
 
In 

previous works, ND6 subunit was predicted to have 5 or 6 α-helices.
333,274,321

 We here 

propose for ND6 subunit a structural model with 5 TMHs, similar to Fearnley and 

Walker and to Carelli et al, 1999.
333,274

 In fact, we do not predict as membrane 

embedded the short region from amino acid 116 to 120, being too short to be considered 

a transmembrane helix. For ND1at least two different models have been proposed. The 

first one represents ND1 with 8 membrane spanning domains
239,333

, whereas Carelli et 

al., 1997, and Valentino et al., 2004, proposed a structural model characterized by only 

5 transmembrane segments and an extra-membrane domain with an hydrophobic region 

(helix E).
271,324

 The model here proposed for ND1 is very similar to that one, with the 

only exception of the C-terminal, where we recognized another transmembrane domain. 

In fact, our model maintains 5 TMHs and one hydrophobic extra-membrane domain, 

probably an amphipatic helix on the positive side of the membrane, but presents another 

TMH (helix G in our model) in the C-terminal of the polypeptide chain. The structure of 

the ND4 subunit has been also predicted with 11 or 12 TMHs.
333,271

 Our new model 

predicts 10 clearly defined TMHs and 2 additional helices that can be either 

transmembrane or located in extra-membrane domains. Furthermore, the topology of 
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ND4 across the membrane cannot be clearly defined, being the net charge on the two 

sides of the protein positive and very similar. Finally we proposed for ND2 a structural 

model with 8 TMHs and one uncertain helix and for ND5 a model with 13 TMHs and 

one unclear helix, whereas Fearnley and Walker predicted 10 and 15 α-helices for ND2 

and ND5, respectively.
333

 

The differences between the proposed models may be due to different approach or 

hydropathy scales. In fact, models can be derived from a sequence from a single 

organism or from alignments of several sequences from different organisms. Moreover, 

the number of sequences and their divergence may influence the overall hydropathy, if 

the model is generated on the average hydrophobicity along the alignment, or the 

generation of a consensus sequence (see results). The choice of the hydropathy scale 

and the hydrophobicity threshold may also influence the structural models, when the 

template structure is unknown. As suggested by Degli Esposti el al., in several integral 

proteins the hydrophobicity scales based on statistical analysis correlate better that those 

based on transmembrane distribution of the residues, in several integral proteins.
309,334

 

Thus, commonly used hydropathy scales, such as that of Kyte and Doolittle, may lead to 

wrong predictions for the folding of transmembrane proteins folding, even if their 

performance on globular protein are optimal.
334,335

 Furthermore, an integration of 

different and appropriate predictive methods is recommended, since every single 

method is prone to errors.
309

  

Prediction methods based exclusively on hydropathy scales can be now combined with 

up to date methods based on different parameters, such as sequence profile analysis 

using amino acid properties, neural network (NN) and Hidden Markov Models (HMM) 

trained on transmembrane proteins with known structure (for reviews see Punta et al., 

2007, and Simon et al., 2001).
336,337

 Thus, in a future step we will use different 

prediction tools to ND1-ND6 and ND4L protein sequences, to generate an “ensemble” 

prediction of the protein structures. This approach, recently applied in different papers, 

for example Martelli et al., 2003, combining a NN and two different HMM predictors, 

is probably the best approach to ab-initio structure predictions.
338,339

 

We used these models and some tools available on line for the prediction of 

pathogenicity to analyze the possible impact of mitochondrial mutations on the protein 
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function and to identify structural regions with a functional role and specific patterns for 

LHON pathogenic mutations. 

Establishment of the pathogenic potential for an mtDNA mutation is still controversial. 

The classical criteria proposed by DiMauro and Schon are currently used to determine 

the pathogenic potential of a novel mtDNA nucleotide variant.
340

 However, in 2006 a 

new score system has been introduced by Mitchell and coll.
304

 This score system is 

based on a weighted analysis of the canonical criteria, the functional evidence of 

pathogenicity and the multiple and independent reports of pathogenicity of a 

mitochondrial mutation. Instead, our predictions represent an in-silico approach based 

exclusively on conservation analysis. Although our approach takes into account less 

parameters, it can be a “cheap and easy” tool for the initial screening of mitochondrial 

sequence variations, together with a careful search for the putative mutation in 

specialized data banks of mtDNA variation, such as HmtDB or Mitomap 

(www.hmtdb.uniba.it, www.mitomap.org). 

Our analysis reveals that 25/39 nucleotide variants, reported on Mitomap as pathogenic 

for LHON, are predicted as probably damaging at least by 3/4 methods. All the 

mutations reported as “confirmed” on Mitomap are predicted as pathogenic by every 

used method, with the only exception of 14568/ND6 mutation that is predicted as 

unclear. Similar results were obtained applying the score system that predicts as 

probably or possibly pathogenic all these mutations, whereas 14568/ND6 was still 

considered neutral. Other 19 nucleotide variants, cited on Mitomap as “reported”, are 

predicted as pathogenic, whereas 2 are uncertain, being predicted as pathogenic by 2/4 

methods. Instead, the score system recognizes as probably or possibly pathogenic 12 of 

the reported mutations. Thus, our approach probably is more prone to recognize some 

unclear variant as probably pathogenic, but none of the common non-synonymous 

polymorphisms, associated in the general population with mtDNA haplogroups, is 

predicted as pathogenic.  

We also analyzed the position of the reported “primary” mutations and of some 

polymorphisms on the previously generated structural model of ND1-ND6 and ND4L 

subunits. This approach allows us to define some protein regions, usually characterized 

by local high conservation, with probable functional roles for these proteins. ND1 is a 

mutational hot spot of LHON and all the pathogenic (predicted or confirmed) mutations 
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are located in extra-membrane loops protruding in the mitochondrial matrix. 

Interestingly, these loops are the most conserved zones of the ND1 polypeptide and 

probably define a functional domain, as previously suggested by our group.
271,324

 In 

ND4 only two mutations are considered pathogenic (G11778A and C11874A) and both 

are located in the loops facing the positive side of the membrane in the boundaries of 

the helix J, predicted as amphipatic. Concerning ND5, two regions particularly affected 

by pathogenic mutations can be defined. Similar to ND1 and ND4, extra-membrane 

loops are affected; the first region is defined by the loops DE and FG on the matrix side 

of the membrane, whereas the second is located on the positive side of the membrane 

(intermembrane space) and involves the loops JK and LM. The other hot spot for 

LHON pathogenic mutations is ND6 and the structural model here proposed clearly 

defines that only the helices B and C are affected by pathogenic LHON mutations.   

 

Confirmation of pathogenic LHON rare mutations 

Five unrelated Italian families have been investigated. All of them fulfilled the clinical 

criteria to be diagnosed as LHON, but they were negative at the screening for the three 

LHON common mutations. Thus, complete sequencing of mtDNA has been carried out 

in DNA samples from the probands and we found four rare LHON mutations, 

previously reported, and two rare mtDNA variants with pathogenic potential (for 

discussion of these see next paragraph). We found one mutation in ND1 gene (G3700A) 

and three mutations in ND6 gene (C14568T, G14459A and A14495G), all of them 

previously reported at least once.  

The mutation G3700A/ND1 was reported in a single case of LHON in 2002 by Fauser 

and coll., in a screening of 14 LHON patients negative for common mutations.
316

 In that 

case the authors suggested that this mutation may have a pathogenic role for LHON 

within the family, but could not confirm this hypothesis because the mutation was found 

only in a single family. Our findings support that initial results, confirming that G3700A 

change is a rare primary LHON mutation, now identified in two LHON unrelated 

families and not present in over 3400 control sequences of HmtDB data bank. Our 

conservation analysis reveals that the amino acid substitution Ala132Thr affects a very 

conserved residue within a conserved extra-membrane loop of ND1, with possibly 

implicated in the quinone binding. Furthermore, the Ala to Thr change is non-
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conservative, with a switch from a neutral and hydrophobic to polar and hydrophilic 

amino acid and an increase in steric volume. The pathogenicity of G3700A/ND1 

mutation is also supported by the identification of another pathogenic mutation located 

in the same loop (G3733A, Glu143Lys) in two unrelated families by Valentino et al., 

2004.
324 

In Family 2 we identified the heteroplasmic rare transition C14568T/ND6. This 

mutation induces the amino acid substitution Gly36Ser in the ND6 subunit and was 

previously found in two unrelated families in homoplasmic condition.
316-319

 In our 

family the mutation was heteroplasmic, at different loads, in all the investigated tissues 

from two siblings (IV:3 and IV:5). Another sibling (IV:2) and the mother (III:2) were 

virtually wild type; however, in particular for the mother, it is possible that the 

percentage of mutant mtDNA was under the detection threshold for a standard RFLP 

analysis. Thus, a more sensitive approach, such as hot last cycle PCR or cloning and 

sequencing of the PCR fragment, have to be applied in these cases. The conservation 

analysis shows that Gly-36 is a divergent amino acid in eukaryotes and vertebrates, but 

reaches an absolute conservation within mammals. The Gly-Ser substitution is a non-

conservative change in terms of hydrophobicity but does not affect the steric volume, 

being both amino acids are very small. Notwithstanding, glycine is hydrophobic and 

neutral, whereas serine is hydrophilic and polar. This amino acid resides in helix B of 

ND6, one of the best conserved regions of the protein probably involved in the quinone 

binding site. Furthermore, this mtDNA lineage harbors also the homoplasmic nucleotide 

variant T4172A/ND1. This nucleotide substitution has been reported once and probably 

is the marker of a specific subclade of haplogroup U6a. This polymorphism induces the 

amino acid substitution Leu289Gln in the ND1 protein. Interestingly, the same amino 

acid is substituted (Leu289Met) in presence of the mutation C4171A/ND1, reported as 

pathogenic for LHON.
320

 In fact, Kim et al., 2002, reported this mutation in two 

unrelated LHON families belonging to haplogroup A (Korean ancestry), with a good 

visual prognosis and a high frequency of visual recovery. The amino acid position 289 

in the ND1 subunit is well conserved in vertebrates and mammals and affects a 

conserved extra-membrane loop protruding on the matrix side. Surprisingly, the 

pathogenic change Leu289Met is predicted benign by all the used tools (PolyPhen, 

SIFT and PMut), whereas the polymorphic change Leu289Gln is predicted as 
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pathogenic. This may be explained by the substitution type. In fact, the substitution 

Leu289Met is conservative, being both leucine and methionine large, hydrophobic and 

neutral amino acids, whereas the Leu289Gln is non-conservative, being glutamine 

smaller and polar. Thus, the latter may have a stronger impact on ND1 function. 

Moreover, the biochemical effect of both variants on complex I activity is not evident in 

respiratory chain complexes activity assays. This could be explained by the high 

percentage of wild type mtDNA in the platelet fraction or by a mild effect on complex I 

activity, similar to the 14484/ND6 mutation.
273 

Taken singularly, the homoplasmic 14568/ND6 and 4171/ND1 mutations are usually 

associated with LHON phenotypes with good visual prognosis. Our family also shows a 

partial recovery of visual acuity, but it is characterized by a heteroplasmic mutation. 

However, the presence of the 4172/ND1 variant may modulate the pathogenicity of the 

14568/ND6 mutation.  

The 14459/ND6 mutation, found in Family 3, has been frequently reported in literature 

often associated with a variable clinical phenotype ranging from LHON, to LHON plus 

spastic dystonia, to Leigh syndrome.
234,238,341-346

 This variability is also evident in our 

family, where the mutation was homoplasmic at least in three of the investigated 

subjects, being one unaffected carrier (III:2), one LHON affected (III:1) and one 

affected with spastic dystonia only (III:5). The fact that these three individuals were all 

homoplasmic, but discordant for their clinical expression, strongly suggests the 

influence of nuclear/environmental factors as modifiers. This nucleotide change induces 

the Ala72Val substitution. Along eukaryotes and vertebrates alignments, this position is 

very divergent, whereas in mammals is invariant and is located in the extremely 

conserved helix C of the ND6 subunit. This amino acid change is conservative, being 

alanine and valine very similar. Biochemical evaluations confirm a severe impairment 

of complex I. Interestingly, the subject with the most severe phenotype (III:5) shows an 

increase in complex II, complex III and complex IV activities, probably due to a 

compensatory mitochondrial proliferation. Even if this mutation is often associated to 

LHON plus spastic dystonia, our cases demonstrate that the mutational screening has to 

be carried out also in patients with pure LHON phenotype, negative for the common 

mutations. 
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We also identified the third LHON case associated with the heteroplasmic 

A14495G/ND6 mutation. The analysis of the complete mtDNA sequence revealed that 

this family is unrelated to the families reported by Chinnery et al., 2001, even if they all 

belong to haplogroup H.
321

 We found this mutation with a heteroplasmic load of about 

50% in peripheral blood. The same heteroplasmic load was found in one affected 

individual in the British family previously reported.
321

 The authors proposed that 

mutational load may be higher in other tissues, or that some environmental factors may 

enhance the pathogenicity of the mutation or that the threshold level for this particular 

mutation may be lower than for the others. The A14495G mutation induces the amino 

acid change Leu60Ser. This amino acid position is extremely conserved and is part of 

the hyper-conserved helix C of ND6. Moreover, the amino acid substitution is non-

conservative; in fact, leucine is a hydrophobic large amino acid, whereas serine is small, 

polar and usually exposed on the protein surface. 

In conclusion, we here confirm the pathogenicity of four rare LHON mutations 

(G3700A/ND1, C14568T/ND6, G14459A/ND6 and A14495G/ND6) and suggest their 

inclusion in the diagnostic protocols. Furthermore, we also confirm that ND1 and ND6, 

in particular some hyper-conserved regions, are common hot spots for LHON 

mutations.   

 

Novel putative pathogenic LHON mutations 

We here report two branches of a single family independently investigated and then 

reconnected through their mtDNA lineage. The two probands showed a typical LHON 

clinical phenotype but RFLP survey for LHON common mutations resulted negative. 

Thus, we sequenced the entire mtDNA molecule and we found two rare variants with 

pathogenic potential. This mtDNA lineage belongs to haplogroup K1a and harbors, in 

addition to haplogroup specific polymorphisms, the nucleotide variants 

A8944G/ATPase6 and G14258A/ND6.  

All the confirmed LHON mutations affect mitochondrial encoded complex I subunit 

genes (see Mitomap), thus at our first analysis the variant 14258/ND6 seemed to be the 

most probable pathogenic mutation. However, conservation analysis, pathogenicity 

prediction and localization of the affected amino acid all suggest that this variant should 

not interfere with complex I function or assembly. In fact, the amino acid substitution 
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Pro139Leu affects a very divergent residue in a poorly conserved ND6 region (the 

extra-membrane loop DE). Two other putative mutations have been previously reported 

in the same loop.
256,347

 The mutation T14325C was found in a Dutch pedigree, negative 

for LHON common mutations, with a single affected individual and hits the amino acid 

position Asn-117 (change to Asp). The authors proposed this variant as a candidate 

mutation but suggested further studies to prove its real pathogenicity. In the same loop 

is also located the mutation G14279A that induces the amino acid substitution 

Ser132Leu. Both these changes affect poorly conserved residues of ND6 and are 

predicted as neutral at least by PolyPhen and SIFT. Moreover, no biochemical 

assessments of complex I function have been carried out on patients or cell models 

harboring these mutations. Similarly, the 14258/ND6 variant is predicted as neutral by 

PolyPhen and SIFT and pathogenic by PMut, but with a low score and a low reliability. 

The measurement of complex I activity on platelet fraction shows a specific activity 

comparable to controls. This result may suggest that this variant is a polymorphism that 

does not influence complex I activity or it may be explained by considering that mild 

mutations often do not cause a detectable complex I impairment.
273 

We also analyzed 

the presence of this variant in the general population. In HmtDB this variant is present 

only once in one mtDNA sequence belonging to haplogroup H and it was also reported 

in five individuals, from India and Nepal, by Semino et al., 1991.
323,348

 Moreover, we 

also found this nucleotide variant in heteroplasmic condition in an LHON patient 

harboring the 14484/ND6 mutation on haplogroup L2.
349

 However, it is still reasonable 

that 14258/ND6 change is a mild pathogenic mutation; in fact, no clinical details were 

provided on the individuals identified by the population studies of Herrnstadt et al., 

2002, and Semino et al., 1991, and a mild mutation might have only subclinical 

effects.
323,348

 

The other nucleotide change with a pathogenic potential is A8944G/ATPase6 and 

induce the amino acid substitution Met140Val. Our analysis reveals that the affected 

position is invariant in mammals and is predicted as pathogenic with high score by 

PMut. The affected region is extremely conserved in mammals and may play a role in 

ATP synthase function. Moreover, the A8944G variant has been reported only once on 

a L3 haplogroup background.
322 

ATPase6 gene is usually a hot spot for Leigh 

syndrome, but some mutations have been reported in this gene in LHON pedigrees. 
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Abu-Amero and Bosley reported the nucleotide changes G8950A in a LHON plus 

dystonia patient, with a decrease in mitochondrial respiratory activity. However, no 

other details about that patient were provided.
350

 The same authors identified the 

A8836G mutation, predicted as pathogenic by PolyPhen, but assessment of 

mitochondrial respiratory activity for this case was not available.
351

 Moreover, in this 

study the increase of mtDNA content is suggested as a marker of pathogenicity, but in 

the sample characterized by A8836G mutation the relative mtDNA content was lower 

than the proposed threshold (1.27 versus 1.76 of threshold).
351

 The heteroplasmic 

mutation A9016G was found in a LHON pedigree harboring the primary 14484/ND6 

mutation. The authors defined the A9016G a secondary mutation able to induce a 

complete penetrance of the primary mutation in males.
352

 However, the sequences 

reported in this study contain many errors as shown by successive analysis.
353

 Quoting 

Bandelt et al., 2007, “it is still an open question whether the heteroplasmic mutation 

A9016G is real and (...) could be blamed for the high penetrance of LHON in that 

family”.
353

 Another variant reported in ATPase6 gene is T9101C and causes a reduction 

in ATP synthase activity, even if the affected amino acid is poorly conserved.
354

 Thus, 

the role of these mutations is still unclear and debated. We also found in an LHON 

pedigree, negative for common mutation and belonging to haplogroup C, the rare 

variant T8555C/ATPase6 (data not shown, analysis still in progress). This mutation may 

affect an important functional domain of ATPase a subunit, being predicted by 

PolyPhen as possibly damaging (classified as “improper substitution in the 

transmembrane region”), and also by PMut, despite it affects a poorly conserved amino 

acid. 

In conclusion, we here propose for Family 5 two candidate pathogenic mutations 

(A8944G/ATPase6 and G14258A/ND6), but further studies are necessary, in particular 

biochemical investigations aimed to determine their real role on complex I and ATP 

synthase function. 

 

Rare mtDNA variants are associated to LHON plus myoclonus 

We here report the recurrence of myoclonus in two Italian LHON families as a feature 

of central nervous system involvement besides the optic nerve.
 
Since myoclonus was 

strictly maternally inherited in Family A, we sequenced the entire mtDNA and found 
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that there was an accumulation of non-synonymous variants in both families, similar to 

what was recently reported for the modifying effect of haplogroup J on LHON 

penetrance.
327 

Occurrence of myoclonus in association with LHON has been previously 

reported in a few cases.
355-357 

In our families, myoclonus seemed to be a feature 

independent from optic neuropathy, being present also in one individual not visually 

affected. The complete mtDNA sequencing, in conjunction with the conservation 

analysis of the observed variants, provided new clues to explain myoclonus in these two 

LHON families. The 4136/ND1 mutation in Family A is of particular interest because it 

was previously reported only four times, of which three were LHON families carrying 

one of the primary mutations (the QLD1 family from Australia and two Italian 

families).
242,325

 The QLD1 family showed the co-occurrence, within the same maternal 

genealogy, of classical cases with LHON, cases of infantile encephalopathy with early 

deaths and features resembling Leigh syndrome, and cases of LHON and late onset of 

“spastic dystonia”.
358

 This mtDNA was a member of haplogroup U4 and carried the 

14484/ND6 LHON mutation, in conjunction with the 4160/ND1 mutation, which 

affects a very conserved amino acid position, the latter being implicated as responsible 

for the “plus” clinical features.
242

 In the QLD1 family the 4136/ND1 mutation 

characterized only a branch of the maternal lineage and was thus considered a de novo 

event. In contrast, the two 4136/ND1 LHON families from Italy harbored the 

11778/ND4 LHON mutation.
325

 Similar to our Family A, their mtDNAs were members 

of haplogroup T2. Furthermore, they were characterized by a control-region motif 

(16126-16153-16293-16294-16296-16519-73-150) identical to that seen in our Family 

A.
327

 The shared regional origin (Apulia) of the three Italian LHON families, and the 

fact that they also share a rare control-region motif (seen in only 1 out of 3087 Italian 

controls) indicate that the three T2 families are indeed related and share both the 

11778/ND4 and the 4136/ND1 mutations by descent from a common maternal ancestor. 

This scenario is further supported by the finding that the single mtDNA with an 

identical control-region motif found in the control subjects is also a member of 

haplogroup T2, but does not harbor either the 4136/ND1 or the 11778/ND4 mutations. 

The fact that the 11778/ND4 mutation in one of the three LHON families was still 

heteroplasmic, while all samples investigated from Family 1 (10 individuals), as well as 

the other two haplogroup T2 LHON probands were homoplasmic mutant for the 
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4136/ND1 mutation, reveals that the 4136/ND1 mutational event predated the 

11778/ND4 mutation.  

Thus, the 4136/ND1 mutation has the potential for a functional relevance and a 

deleterious effect on complex I activity. Its conservation and recurrent association with 

LHON pedigrees strongly indicate that its co-occurrence with the canonical 11778/ND4 

mutation may act synergistically to further impair complex I function, leading to a 

LHON “plus” phenotype. Furthermore, the same scenario applies to the 9139/ATPase6 

variant in Family A, which also shows similar features of conservation and could 

synergistically affect mitochondrial function. 

Sequence analysis in Family B revealed a novel combination of known non-

synonymous cytb amino acid changes. In particular, the 15773/cytb variant showed a 

remarkable conservation in mammals, and was predicted as “possibly damaging” by 

PolyPhen. Thus, it can be envisioned that in the presence of the 3460/ND1 mutation, the 

15773/cytb variant alone or the combination 15693/cytb+15773/cytb contribute to the 

clinical expression of the LHON “plus” phenotype – an effect analogous to that played 

by the cytb amino acid changes of haplogroup J in LHON patients in combination with 

the 11778/ND4 and 14484/ND6 mutations.
327

 The rationale for this functional effect is 

that complex I co-assembles with complex III to form a supercomplex, and 

accumulation of amino acid changes induced by non-synonymous polymorphisms may 

affect this process. Obviously, we cannot exclude at this time that further genetic 

variability in the nuclear genome may contribute to the “plus” phenotype in these 

patients. However, the co-segregation of myoclonus and other adjunctive features in 

Family A along the maternal line more consistently suggests a major role for mtDNA. 

 

Increased mtDNA content as a compensatory mechanism in LHON 

The increase of mtDNA content has been considered a compensatory response to the 

impaired function of the respiratory chain in aging and in some mitochondrial diseases. 

Several authors hypothesized that a reduced activity of the respiratory chain and the 

consequent ATP deficit, due to aging or mtDNA mutations, can induce a retrograde 

signaling pathway that results in increased mtDNA content to compensate the decreased 

cellular ATP levels. This hypothesis is supported by the increase of mtDNA copy 

number reported in different tissues of aged individuals, such as brain, skeletal muscle 
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or lung.
359-361

 Moreover, it has been shown that NRF-1 and Tfam, two major players in 

mtDNA transcription, are up-regulated at least in skeletal muscle of aged subjects.
362

 In 

MELAS and MERRF affected individuals it has been shown that the mtDNA copy 

number is significantly increased in leukocytes of young subjects compared to controls, 

whereas it is lower in old affected individuals.
363

 The compensatory mechanism in these 

diseases is also evident by the presence of RRFs in the skeletal muscle, generated by the 

subsarcolemmal accumulation of aberrant mitochondria. 

Conversely, skeletal muscle biopsies from LHON affected patients failed to reveal the 

presence of RRFs, even if in LHON/MELAS overlap syndromes they may be 

present.
364

  However, some signs of mitochondrial proliferation are apparent in skeletal 

muscle biopsies from LHON patients, for example the increased subsarcolemmal SDH 

activity.
324,365

 In LHON patients with the 11778/ND4 mutation, an increased succinate-

cytochrome c reductase activity, with normal complex III activity, has been reported in 

blood cells mitochondria, suggesting the occurrence of a nuclear compensatory effect 

for defective respiratory chain.
366 

Moreover, an increased mtDNA copy number in blood 

cells of LHON affected and asymptomatic carrier individuals harboring the 11778/ND4 

and 14484/ND6 mutations, has also been reported.
367,368

  

We analyzed the mtDNA content in peripheral blood cells and skeletal muscles of 

LHON affected and asymptomatic carriers belonging to the large 11778/ND4 Brazilian 

pedigree and to 39 Italian families harboring homoplasmic 11778/ND4, 14484/ND6 and 

3460/ND1 mutations. In the SOA-BR family we found a significant increase of blood 

cells mtDNA copy number in LHON individuals, both affected and carriers. 

Interestingly, asymptomatic carriers showed a significantly higher mtDNA copy 

number also compared to the affected. This result has also been confirmed by analysis 

of mtDNA content in Italian LHON blood samples, comparing affected to carrier 

individuals. In skeletal muscle we found an increase of mtDNA in both LHON affected 

and carriers compared to controls, but no differences were found between the two 

LHON groups. In fact, LHON carriers presented a higher mtDNA copy number 

compared to controls, but this difference was not statistically significant.  We believe 

that the increased mtDNA copy number may vary in different LHON individuals, being 

influenced by genetic and/or environmental unknown factors. The subjects with an 

efficient compensatory response have a high mtDNA copy number and may not develop 



Discussion 

130 

 

the disease (asymptomatic carriers), whereas those characterized by a lower mtDNA 

copy number cannot completely compensate for the energy defect and will be more 

prone to develop LHON (affected). We can neatly differentiate the LHON affected from 

asymptomatic carriers, setting a threshold for mtDNA copy number, and this parameter 

may now be considered a prognostic factor for developing LHON.   

We did not find any correlation between mtDNA content and age or sex. However, 

within the carrier group we found a different distribution of mtDNA copy number 

between males and females. In fact, female asymptomatic carriers show a lower mtDNA 

copy number compared to males. This effect can be explained if the compensatory 

response is assumed as a multifactorial mechanism, in which mtDNA copy number 

operates in conjunction with other factors. In this model, the mtDNA content threshold 

could be lower in females, but the compensatory mechanism could still remain efficient 

due to the involvement of other stimuli or factors, for example estrogens. 

Mitochondrial biogenesis is a complex and finely tuned process characterized by the 

coordinated expression of mitochondrial and nuclear genes. Several transcription factors 

are involved in this process, such as Tfam, NRF-1, NRF-2 and ERRα and the master 

regulators PGC-1α/β and PRC.
129-131

 In particular PGC-1α is the most studied and the 

best known transcriptional coactivator of this pathway. The polymorphism Gly482Ser 

has been associated to a variety of pathologies, such as hypertension, diabetes mellitus 

and insulin resistance. A recent study demonstrates that PGC-1α variant with Gly/Gly at 

482
nd

 amino acid impairs Tfam transcription, thus lowering mtDNA replication.
328

 In 

particular, Choi et al., 2006, analyzed the mtDNA copy number of leukocytes from 

patients affected by diabetes mellitus and control individuals, reporting a 20% decrease 

of mtDNA in the homozygous variant G (Gly/Gly) of this polymorphism compared to 

the Ser/Ser variant.
328

 Thus, this polymorphic variant may influence mitochondrial 

biogenesis triggered as a compensatory mechanism by the energetic dysfunction in 

LHON. We performed a genotyping analysis on DNA samples from blood cells of all 

the available individuals (LHON and controls) and we evaluated the distribution of the 

G1444A (Gly482Ser) polymorphism and its possible correlation with mtDNA copy 

number. The Gly482Ser polymorphism was equally distributed in the different groups 

(LHON affected, LHON carriers and controls) and was not associated to differences in 

mtDNA copy number. Therefore, in our hands this variant does not influence the 
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mtDNA content in the analyzed populations and is not involved in the variable 

penetrance in LHON. 

The relative mRNA levels of PGC-1α/β, PRC and Tfam in skeletal muscle were also 

investigated. All these genes were upregulated in LHON skeletal muscle compared to 

controls, suggesting their involvement in the mitochondrial biogenesis induction in 

LHON subjects. Conversely, no differences in mRNA levels were found between 

LHON affected individuals and asymptomatic carriers. These results may simply reflect 

the lack of significant difference in mtDNA content between affected and carriers in 

skeletal muscle. They may also suggest an alternative mechanism in the increase of 

mtDNA content in asymptomatic carriers, for example an increase in Tfam or POLγ 

activity that may induce mtDNA replication also without the complex activation of 

PGC-1 dependent mitochondrial biogenesis. Thus, further investigations are necessary 

to understand the molecular mechanism that underlies the activation of mitochondrial 

biogenesis. In particular, a systematic analysis of mitochondrial proteome, 

transcriptome and functional studies in affected and carrier LHON subjects, may reveal 

new clues on LHON pathogenesis. 

 

Bezafibrate does not improve the energetic function of LHON cybrids 

Recently, several studies demonstrate that PGC-1 coactivators have a major role in 

mitochondrial biogenesis regulation, both in physiological and pathological conditions. 

Srivastava et al., 2007, demonstrated that PGC-1α/β overexpression can induce 

mitochondrial biogenesis, stimulates OXPHOS activity and mitochondrial respiration in 

cells harboring ND5 and COI nonsense mutations, suggesting a possible role of this 

pathway for an alternative therapeutic approach in respiratory chain deficiencies.
369

 

Moreover, PGC-1α overexpression in cell lines stimulates mitochondrial respiration, 

ATP production and mitochondrial mass, and, after the exposure to oxidant injury, 

accelerates the recovery of mitochondrial function.
370

 The overexpression of PGC-1α, 

induced by transgenic expression in skeletal muscle, stimulates the mitochondrial 

proliferation and prevents the energetic failure in a mouse model of myopathy.
329 

The 

authors demonstrate that induction of mitochondrial biogenesis successfully stimulates 

the respiratory chain function and ATP production, improving the mitochondrial 

myopathy phenotype, in terms of delayed onset and prolonged lifespan.
329

 Interestingly, 
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similar results have been obtained by oral administration of bezafibrate, a commercially 

available drug currently used in the pharmacological treatment of metabolic 

disorders.
329

 Bezafibrate is a PPARs pan-activator shown to induce PGC-1α expression, 

via PPARδ, at least in skeletal muscle (in cell lines and mice).
371

 Furthermore, 

bezafibrate-induced mitochondrial biogenesis compensates moderate respiratory chain 

defects in fibroblasts and myoblasts derived from patients with different respiratory 

chain dysfunction caused by mutations in nuclear genes (enzyme subunits or assembly 

factors).
330 

 

However, bezafibrate effects on the respiratory chain are still debated; in a cell model 

and at high concentration (1 mM), this drug exhibits cytotoxic effects, induces lactate 

and acetate production and inhibits in vitro complex I activity.
372

 This latter result has 

also been confirmed at lower concentration of bezafibrate, but in this case the drug does 

not influence cellular oxygen consumption and has milder effects on respiratory chain, 

compared to other fibrates or thiazolidinediones.
373

 Conversely, Brunmair et al., 2004, 

showed that bezafibrate did not reduce complex I activity in skeletal muscle and liver 

homogenates.
374

 
 

We here characterized the bioenergetic function of LHON mutant cybrids and their 

response to bezafibrate treatment. In our model, bezafibrate was not able to induce 

mitochondrial biogenesis, in terms of mtDNA replication or steady-state respiratory 

chain protein levels, and did not influence the ATP synthesis rate or protect LHON 

cybrids from galactose induced apoptosis. This result may be due to the tumoral nature 

of cybrid cell lines, which are derived from the 143B TK- osteosarcoma parental cell 

line, and, furthermore, to the continous passages and selection in culture of these cells. 

Parental osteosarcoma or cybrid cell lines may accumulate chromosomal rearrangments 

(deletions, duplications or inversions) and consequently some assets in gene expression 

(for example genes belonging to the PGC-1 pathway) may be modified. Moreover, it 

has been demonstrated that multidrug resistance, mediated by ABC transporters, is 

present in several osteosarcoma cell lines, including 143B.
375

 This phenomenon may 

cause a lower uptake of bezafibrate or the efflux of the drug from the treated cells. 

Primary cell lines from LHON patients, such as fibroblasts or myoblasts, may therefore 

represent a better model for these studies. 
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Since 1988, when the first mtDNA mutation has been demonstrated to be the cause of 

Leber’s hereditary optic neuropathy, this pathology has been intensively studied, even 

though to date many questions are still open. In fact, main features of LHON, such as 

male prevalence, variable penetrance and tissue selectivity, are still under investigation 

and the underlying pathogenic mechanisms are still unknown. 

The results here reported contributed to the definition of new pathogenic LHON 

mutations and tried to clarify some aspects of the still unknown question of variable 

penetrance. The main concluding remarks of this thesis can be summarized as follows: 

- Novel structural models for ND1-ND4 and ND4L complex I subunits have been 

generated and conservation analysis and pathogenicity prediction have been 

carried out for all LHON reported mutations (confirmed and candidates). This 

in-silico approach allowed us to locate LHON pathogenic mutations in defined 

and conserved protein domains, in particular for ND1, ND4, ND5 and ND6. 

Moreover, this approach can be a useful tool in the analysis of novel mtDNA 

variants with unclear pathogenic/functional role. 

- Four rare LHON pathogenic mutations, two reported only once, have been 

identified. This study confirms that the ND1 and ND6 genes are mutational hot 

spots for LHON. All mutations were previously described at least once and we 

validated their pathogenic role, suggesting the need for their screening in LHON 

cases negative for the common mutations. Moreover, two novel mtDNA variants 

with a possible pathogenic role have been identified in two independent 

branches of a large pedigree. Functional studies are necessary to define their 

contribution to LHON in this family. 

- The combination of mtDNA rare polymorphic variants in complex I, ATP 

synthase or cytochrome b genes, has been shown to be relevant in determining 

the maternal recurrence of myoclonus in unrelated LHON pedigrees. Thus, we 

suggest that particular mtDNA backgrounds and /or the presence of specific rare 

mutations may increase the pathogenic potential of the primary LHON 

mutations, thereby giving rise to the extraocular clinical features characteristic 

of the LHON “plus” phenotype. 
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- We identify the first molecular parameter that clearly discriminates LHON 

affected individuals from LHON asymptomatic carriers, the mtDNA copy 

number. This provides a valuable mechanism for future investigations on 

variable penetrance in LHON. However, the increased mtDNA content in 

LHON individuals was not correlated to the functional polymorphism G1444A 

of PGC-1α, the master regulator of mitochondrial biogenesis, but may be due to 

gene expression of genes involved in this signaling pathway, such as PGC-1α/β 

and Tfam. 

Future studies will be necessary to identify the biochemical effects of rare 

pathogenic mutations and to validate the novel candidate mutations here described, 

in terms of cellular bioenergetic characterization of these variants. Moreover, we 

were not able to induce mitochondrial biogenesis in cybrids cell lines using 

bezafibrate. However, other cell line models are available, such as fibroblasts 

harboring LHON mutations, or other approaches can be used to trigger the 

mitochondrial biogenesis. For example, we showed that virus-mediated PGC-1α/β 

overexpression, can improve OXPHOS defects caused by mutations in nuclear 

genes or mtDNA (Srivastava S et al., Hum Mol Genet, in press).  
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Appendix A – Abbreviations (in alphabetical order) 

 

ADP: adenosine diphosphate 

AIF: apoptosis inducing factor 

AMP: adenosine monophosphate 

AMP07: average membrane preference 

AMPK: AMP activated protein kinase 

ANT: adenosine nucleotide translocator 

Apaf1: apoptotic protease activating factor 1 

ATF2: activating transcription factor 2 

ATP: adenosine triphosphate 

B17.2L: NDUFA assembly factor 2 

BAT: brown adipose tissue 

Bcl-2: B cell lymphoma 2 

BF: bezafibrate 

BH: Bcl-2 homology 

BIR: baculovirus inhibitor repeats 

BSA: bovine serum albumin 

CAD/DFF: caspase activated DNase/DNA 

fragmentation factor 

CamK: Ca
2+

/calmodulin dependent protein 

kinase 

CARD: caspase recruitment domains 

CBP: CREB binding protein 

cGMP: cyclic guanosine monophosphate 

CMT2A: Charcot-Marie-Tooth type 2A 

CoQ: coenzyme Q 

CoQH2: reduced coenzyme Q 

CPEO: Chronic Progressive External 

Opthalmoplegia 

CREB: cAMP response element binding 

protein 

Cyt b: cytochrome b 

Cyt c: cytochrome c 

DGUOK: deoxyguanosine kinase 

DMEM: Dulbecco’s modified Eagle medium 

DMSO: dimethyl sulfoxide 

DOA: Dominant Optic Atrophy 

DRIP: vitamin D receptor interacting proteins 

Drp1: Dynamin-related protein 

EDTA: ethylenediaminetetraacetic acid 

EGTA: ethylene glycol tetraacetic acid 

ER: estrogen receptor 

ERR: estrogen related receptor 

ERRE: Estrogen related response element 

FADH2: reduced flavin adenine dinucleotide 

FAK: focal adhesion kinase 

FBS: Fetal bovine serum 

FMN: flavin mononucleotide 

FoxO: forkhead box O 

Fzo1p: fuzzy onion 1 

GPx: gluthatione peroxidase 

HAT: histone acetyl transferase 

hFis1: human Fis 

HMG: high mobility group 

HMM: Hidden Markov Models 

HNF4: hepatocyte nuclear factor 4 

IAP: inhibitors of apoptosis protein 

ICAD: inhibitor of caspase activated DNase 

IMM: inner mitochondrial membrane 

KSS: Kearn Sayre Syndrome 

LHON: Leber’s hereditary optic neuropathy 

LRPPRC: Leucine-rich PPR-motif containing 

protein 
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MAC: mitochondrial apoptosis induced 

channel 

MEF2: myocite enhancer factor 2 

MELAS: Mitochondrial Encephalomyopathy 

Lactic Acidosis and Stroke-like episodes 

MERRF: Myoclonus, Epilepsy and Ragged-

Red Fibers 

Mfn1: mitofusin 1 

Mfn2: mitofusin 2 

Mgm1p: mitochondrial genome maintenance 

MILS: Maternally Inherited Leigh Syndrome 

MNGIE: Mitochondrial 

NeuroGastroIntestinal Encephalomyopathy 

MnSOD: Mn superoxide dismutase 

MPH: membrane propensity for 

haemoproteins 

MRI: Magnetic Resonance imaging 

MRS: Magnetic Resonance Spectroscopy 

MST1: mammalian sterile-20 

MT: microtubules 

mtDNA: mitochondrial DNA 

mTERF: mitochondrial termination factor 

mtRPOL: mitochondrial RNA polymerase 

mtSSB: mitochondrial single-stranded DNA 

binding protein 

Myb: v-myb myeloblastosis viral oncogene 

homolog 

NAD
+
: nicotinamide adenyndinucleotide 

NADH: reduced nicotinamide 

adenyndinucleotide 

NARP: Neuropathy, ataxia, retinitis 

pigmentosa 

nDNA: nuclear DNA 

NDUFA: NADH dehydrogenase (ubiquinone) 

1α subcomplex 

NDUFB: NADH dehydrogenase (ubiquinone) 

1β subcomplex 

NDUFS: NADH dehydrogenase (ubiquinone) 

Fe-S protein 

NDUFV: NADH dehydrogenase (ubiquinone) 

flavoprotein 

NFL: Nerve Fiber Layer 

NN: neural network 

NRF: nuclear respiratory factor 

Omi/HtrA2: HtrA serine peptidase 2 

OMM: outer mitochondrial membrane 

Opa1: optic atrophy 1 

OXPHOS: Oxidative Phosphorylation 

PBS: Phosphate buffered saline 

PCD: programmed cell death 

PDCH: pyruvate dehydrogenase complex 

PGC-1: peroxisome proliferator associated 

receptor γ coactivator 1 

PKA: protein kinase A 

PMSF: phenyl methyl sulphonyl fluoride 

Polγ: polymerase γ 

PPAR: peroxisome proliferator associated 

receptor 

PPRE: peroxisome proliferator associated 

receptor response element 

PRC: PGC-1 related coactivator 

PS: Pearson Syndrome 

PSIC: Position specific independent counts 

PTP: Permeability Transition Pore 

RAO-AR: Rao Argos 

rCRS: revised Cambridge reference sequence 
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RFLP: Restriction fragment length 

polymorphism 

RGCs: Retinal Ganglion Cells 

RMM: RNA recognition domain 

ROS: reactive oxygen species 

RRF: Ragged Red Fiber 

RRM2B: ribonucleotide reductase M2 B 

(TP53 inducible) 

RS: serine-arginine-rich domain 

RXR: retinoid acid X receptor 

SANDO: Sensory-Ataxia Neuropathy, 

Dysarthria and Opthalmoplegia 

SC35: splicing component 35kDa 

SDH: succinyl dehydrogenase 

SDS: sodium dodecyl sulphate 

SOX9: sex determining region Y box 9 

SRB: sulforodhamine B 

SRBP1: sterol regulatory element binding 

protein 

SRC-1: steroid receptor coactivator 1 

SRp:Ser/Arg protein 

SUCLA2: succinylCoA synthetase 

TCA: trichloroacetic acid 

Tfam: mitochondrial transcription factor A 

TFB1M: mitochondrial transcription factor 

B1 

TFB2M: mitochondrial transcription factor 

B2 

TK2: Thymidine Kinase 2 

TMH: transmembrane helix 

TNF: tumor necrosis factor 

TP: thymidine phosphorylase 

TRAIL: TNF related apoptosis inducing 

ligand 

TRAP: TR-associated proteins 

TZD: thiazolidinedione 

UCP: uncoupling protein 

VEGF: vascular endothelial growth factor 

YY1: YingYang1 
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Appendix B – Primers sequences and PCR conditions 

 

LHON 11778 

Fw: 

5’-GAATGTAGGAGTAATGATAAG-3’ 

Rv: 

5’-ATTATCGAAAAACTACTGAAC-3’ 

1 cycle 25 cycles 1 cycle 

94°C x 5’ 94°C x 30’’ 

55°C x 60’’ 

72°C x 2’30’’ 

72°C x 7’ 

 
LHON 14484 

Fw: 

5’-ATCATATAGGTTTCTGTTGGT-3’ 

Rv: 

5’-GGGACTGGGGGTACGGAGTC-3’ 

1 cycle 25 cycles 1 cycle 

94°C x 5’ 94°C x 30’’ 

49°C x 60’’ 

72°C x 2’30’’ 

72°C x 7’ 

 
LHON 3460 

Fw: 

5’-AAGTGTTTCGCGGAAGGGGG-3’ 

Rv: 

5’-GAGTAACATGGGTAAGATTA-3’ 

1 cycle 30 cycles 1 cycle 

94°C x 5’ 94°C x 30’’ 

55°C x 30’’ 

72°C x 2’30’’ 

72°C x 7’ 

 
LHON 14495 

Fw: 

5’-AGTATATCCAAAGACAACCATCATTCCCCAT-3’ 

Rv: 

5’-ATGGGGGTTTAGTATTGATTGTTAGCGGTG-3’ 

1 cycle 25 cycles 1 cycle 

94°C x 5’ 94°C x 30’’ 

56°C x 30’’ 

72°C x 30’’ 

72°C x 7’ 

 
LHON 14459 

Fw: 

5’-ATGCCTCAGGATACTCCTCAATAGCCGTC-3’ 

Rv: 

5’-ATGGGGGTTTAGTATTGATTGTTAGCGGTG -3’ 

1 cycle 25 cycles 1 cycle 

94°C x 5’ 94°C x 30’’ 

56°C x 30’’ 

72°C x 30’’ 

72°C x 7’ 

 
LHON 3700 

Fw: 

5’-TGAAGCCTGAGACTAGTTCGG-3’ 

Rv: 

5’-ACTACAACCCTTCGCTGACG-3’ 

1 cycle 32 cycles 1 cycle 

96°C x 1’ 94°C x 15’’ 

56°C x 30’’ 

72°C x 15’’ 

72°C x 7’ 

 

 



Appendix B – Primer sequences and PCR conditions 

 

164 

 

LHON 14568 

Fw: 

5’- CAAGACCTCAACCCCTGA-3’ 

Rv: 

5’-CATTGGTCGTGGTTGTAGTCCGTGC-3’ 

1 cycle 25 cycles 1 cycle 

94°C x 5’ 94°C x 30’’ 

55°C x 60’’ 

72°C x 2’30’’ 

72°C x 7’ 

 
Candidate pathogenic mutation 14528 

Fw: 

5’-CCTACTCCTAATCACATAACCTA-3’ 

Rv: 

5’-CATTGGTCGTGGTTGTAGTCCGTGC-3’ 

1 cycle 25 cycles 1 cycle 

95°C x 5’ 94°C x 30’’ 

59°C x 60’’ 

72°C x 2’30’’ 

72°C x 7’ 

 
Candidate pathogenic mutation 4172 

Fw: 

5’-ACGACCAACTCATACACCTG-3’ 

Rv: 

5’-TTACTCTATCAAAGTAACTCT -3’ 

1 cycle 25 cycles 1 cycle 

94°C x 5’ 94°C x 30’’ 

56°C x 60’’ 

72°C x 2’30’’ 

72°C x 7’ 

 
mtDNA polymorphism 4136 

Fw: 

5’-CCTGAACTCTACACAACA-3’ 

Rv: 

5’-TTACTCTATCAAAGTAACTCT-3’ 

1 cycle 25 cycles 1 cycle 

94°C x 5’ 94°C x 30’’ 

56°C x 60’’ 

72°C x 2’30’’ 

72°C x 7’ 

 
mtDNA polymorphism 9319 

Fw: 

5’-GCCTAACCGCTAACATTACT-3’ 

Rv: 

5’-CTGGAGTGGTAAAAGGCTCA-3’ 

1 cycle 25 cycles 1 cycle 

94°C x 5’ 94°C x 30’’ 

56°C x 60’’ 

72°C x 2’30’’ 

72°C x 7’ 

 
mtDNA polymorphism 15773 

Fw: 

5’-CAGAATAATAACACACCCGA-3’ 

Rv: 

5’-GGAGTTGCAGTTGATGTGTG-3’ 

1 cycle 25 cycles 1 cycle 

94°C x 5’ 94°C x 30’’ 

56°C x 60’’ 

72°C x 2’30’’ 

72°C x 7’ 
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PGC-1α polymorphism 1444 

Fw: 

5’-TGCTACCTGAGAGAGACTTTG-3’ 

Rv: 

5’- CTTTCATCTTCGCTGTCATC-3’ 

1 cycle 30 cycles 1 cycle 

94°C x 5’ 94°C x 60’’ 

60°C x 60’’ 

72°C x 60’’ 

72°C x 10’ 

 

 
Real Time PCR assays 

PGC-1α Fw: 

5’-ACACAGTCGCAGTCACAACAC-3’ 

Rv: 

5’-GGAGTGGTGGGTGGAGTTAGG-3’ 

PGC-1β Fw: 

5’-CAGACAGAACGCCAAGCATC-3’ 

Rv: 

5’-TCGCACTCCTCAATCTCACC-3’ 

PRC Fw: 

5’-CAAGCAGAAACAGAAGAGAGAAG-3’ 

Rv: 

5’-GGTGGGATGACAAGACAAGG-3’ 

Tfam Fw: 

5’-AACAACGAAAATATGGTGCTGAGG-3’ 

Rv: 

5’-CAAGTATTATGCTGGCAGAAGTCC-3’ 

Actin B Fw: 

5’-ACTATGACTTAGTTGCGTTACCA -3’ 

Rv: 

5’-GCCATGCCAATCTCATCTTG -3’ 

PREINCUBATION AMPLIFICATION MELTING CURVE 

1 cycle 45 cycles 1 cycle 

95°C x 10’ 95°C x 30’’ 

56°C x 20’’ 

72°C x 25’’ 

Acquisition of fluorescence signal 

95°C x 5’ 

65°C x 1’ 

65°C - 97°C (ramp rate 0.11°C/s) 

Acquisition of fluorescence in continous  
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Appendix D – Raw data from complete mtDNA sequencing 

 

Family 1  - Haplogroup H 

Position Map Locus Nucleotide change relative to rCRS  Amino acid change Notes 

150 D-loop C to T -  

263 D-loop A to G -  

315+C D-loop Insertion C -  

750 12S rRNA A to G -  

1438 12S rRNA A to G -  

3107d 16S rRNA Deletion C -  

3700 ND1 G to A Ala to Thr  

4769 ND2 A to G Synonym  

8856 ATPase6 G to A Synonym  

8860 ATPase6 A to G Thr to Ala +8858HhaI 

13759 ND5 G to A Ala to Thr  

15326 Cyt b A to G Thr to Ala  

16192 D-loop C to T -  

16261 D-loop C to T -  

16289 D-loop A to G -  

16519 D-loop T to C -  

 

Family 2  - Haplogroup U6a 

Position  Locus Nucleotide change relative to rCRS  Amino acid change Notes 

73 D-loop A to G -  

263 D-loop A to G -  

309+C D-loop Insertion C -  

315+C D-loop Insertion C -  

523+CA D-loop Insertion CA -  

750 12S rRNA A to G -  

1438 12S rRNA A to G -  

2706 16S rRNA A to G -  

3107d 16S rRNA Deletion C -  

3348 ND1 A to G Synonym  

3369 ND1 G to A Synonym  

4172A ND1 T to A Transversion Leu to Gln  

4769 ND2 A to G Synonym  

7028 COI C to T Synonym  

7805 COII G to A Val to Ile  

8860 ATPase6 A to G Thr to Ala +8858HhaI 

11467 ND4 A to G Synonym -11465MseI  

11719 ND4 G to A Synonym -11718HaeIII 

11722 ND4 T to C Synonym  

11938 ND4 C to T Synonym  

12308 tRNA Leu2 A to G -  

12372 ND5 G to A Synonym  

14179 ND6 A to G Synonym  

14568 ND6 C to T Gly to Ser heteroplasmic 

14766 Cyt b C to T Thr to Ile +14766MseI 

14926 Cytb A to G Synonym  

15221 Cytb G to A Asp to Asn  

15326 Cyt b A to G Thr to Ala  

16172 D-loop C to T -  

16183C D-loop A to C Transversion -  

16189 D-loop T to C -  

16219 D-loop A to G -  
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Family 2  - Haplogroup U6a                                                                                                                     (continue) 

Position  Locus Nucleotide change relative to rCRS  Amino acid change Notes 

16239 D-loop C to T -  

16278 D-loop C to T -  
 

 

Family 3 – Haplogroup J1c 

Position Map Locus Nucleotide change relative to rCRS  Amino acid change Notes 

73 D-loop A to G -  

185 D-loop G to A -  

189 D-loop A to G -  

228 D-loop G to A -  

263 D-loop A to G -  

295 D-loop C to T   

315+C D-loop Insertion C -  

462 D-loop C to T   

489 D-loop T to C   

750 12S rRNA A to G -  

1438 12S rRNA A to G -  

2706 16S rRNA A to G -  

3010 16S rRNA G to A   

3107d 16S rRNA Deletion C -  

4216 ND1 T to C Tyr to His +4216NlaIII 

4769 ND2 A to G Synonym  

7028 COI C to T Synonym  

8860 ATPase6 A to G Thr to Ala  

10398 ND3 A to G Thr to Ala +10394DdeI 

11251 ND4 A to G Synonym -11251Tsp509I 

11719 ND4 G to A Synonym  

12612 ND5 A to G Synonym  

13708 ND5 G to A Ala to Thr -13704BstOI 

13934 ND5 C to T Thr to Met  

14459 ND6 G to A Ala to Thr  

14766 Cyt b C to T Ile to Thr  

14798 Cyt b T to C Phe to Leu  

15326 Cyt b A to G Thr to Ala  

15452A Cyt b C to A Transversion Leu to Ile  

16069 D-loop C to T -  

16114 D-loop C to T -  

16126 D-loop T to C -  
 

Family 4  - Haplogroup H 

Position Map Locus Nucleotide change relative to rCRS  Amino acid change Notes 

195 D-loop T to C -  

263 D-loop A to G -  

315+C D-loop Insertion C -  

750 12S rRNA A to G -  

1438 12S rRNA A to G -  

2060 16S rRNA A to G -  

3107d 16S rRNA Deletion C -  

4769 ND2 A to G Synonym  

7337 COI G to A Synonym  

8860 ATPase6 A to G Thr to Ala  

14495 ND6 A to G Leu to Ser  

15326 Cyt b A to G Thr to Ala  

16129 D-loop G to A -  

16248 D-loop C to T -  
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Family 5 – Haplogroup K1a                                                                                                                         

Position Map Locus Nucleotide change relative to rCRS  Amino acid change Notes 

73 D-loop A to G -  

263 D-loop A to G -  

315+C D-loop Insertion C -  

497 D-loop C to T -  

750 12S rRNA A to G -  

1189 12S rRNA T to C   

1438 12S rRNA A to G -  

1811 16S rRNA A to G -  

2281 16S rRNA A to G -  

2706 16S rRNA A to G -  

3107d 16S rRNA Deletion C -  

3480 ND1 A to G Synonym  

4769 ND2 A to G Synonym  

6137 COI T to C Synonym  

6329 COI C to T Synonym  

7028 COI C to T Synonym +7025AluI 

8860 ATPase6 A to G Thr to Ala +8858HhaI 

8944 ATPase6 A to G Met to Val  

9055 ATPase6 G to A Ala to Thr  

9698 COIII T to C Synonym  

10398 ND3 A to G Thr to Ala  

10550 ND4L A to G Synonym  

11038 ND4 A to G Synonym  

11299 ND4 T to C Synonym  

11467  ND4 A to G Synonym -11465MseI 

11719 ND4 G to A Synonym -11718HaeIII 

12308 tRNA Leu2 A to G - +12308HinfI 

12372 ND5 G to A Synonym  

14167 ND6 C to T Synonym   

14258 ND6 G to A Pro to Leu  

14582 ND6 A to G Val to Ala  

14766 Cyt b C to T Thr to Ile +14766MseI 

14798 Cyt b T to C Phe to Leu  

15253 Cyt b A to G Synonym  

15326 Cyt b A to G Thr to Ala  

16129 D-loop G to A -  

16224 D-loop T to C -  

16311 D-loop T to C -  

16519 D-loop T to C -  

 

Family A – Haplogroup T2 

Position Map Locus Nucleotide change relative to rCRS  Amino acid change Notes 

73 D-loop A to G -  

150 D-loop C to T -  

263 D-loop A to G -  

309+C D-loop Insertion C -  

315+C D-loop Insertion C -  

523+CA D-loop Insertion CA -  

709 12S rRNA G to A -  

750 12S rRNA A to G -  

1438 12S rRNA A to G -  

1888 16S rRNA G to A -  
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Family A – Haplogroup T2                                                                                                                       (continue) 

Position Map Locus Nucleotide change relative to rCRS  Amino acid change Notes 

2706 16S rRNA A to G -  

3107d 16S rRNA Deletion C -  

4136 ND1 A to G Tyr to Cys  

4216 ND1 T to C Tyr to His +4216NlaIII 

4769 ND2 A to G Synonym  

4917 ND2 A to G Asn to Asp +4917BfaI 

6026 COI G to A Synonym  

7028 COI C to T Synonym +7025AluI 

8222 COII T to C Synonym  

8697 ATPase6 G to A Synonym  

8860 ATPase6 A to G Thr to Ala +8858HhaI 

9139 ATPase6 G to A Ala to Thr  

10463 tRNA Arg T to C -  

11251 ND4 A to G Synonym -11251Tsp509I 

11719 ND4 G to A Synonym -11718HaeIII 

11778 ND4 G to A Arg to His  

11812 ND4 A to G Synonym  

13368 ND5 G to A Synonym -11718HaeIII 

14233 ND6 T to C Synonym -11718HaeIII 

14766 Cyt b C to T Thr to Ile +14766MseI 

14905 Cyt b G to A Synonym  

15326 Cyt b A to G Thr to Ala  

15452A Cyt b C to A Transversion Leu to Ile  

15607 Cyt b A to G Synonym +15606AluI 

15928 tRNA Thr G to A - -15925MspI 

16126 D-loop T to C -  

16153 D-loop G to A -  

16293 D-loop A to G -  

16294 D-loop C to T -  

16296 D-loop C to T -  

 

Family B – Haplogroup U4a                                                                                                                       
Position Map Locus Nucleotide change relative to rCRS  Amino acid change Notes 

73 D-loop A to G -  

195 D-loop T to C -  

247 D-loop G to A -  

263 D-loop A to G -  

309+C D-loop Insertion C -  

315+C D-loop Insertion C -  

499 D-loop G to A -  

523+4CA D-loop insertion CACACACA -  

750 12S rRNA A to G -  

801 12S rRNA A to G   

1438 12S rRNA A to G -  

1811 16S rRNA A to G -  

2706 16S rRNA A to G -  

2792 16S rRNA A to G -  

3107d 16S rRNA Deletion C -  

3460 ND1 G to A Ala to Thr  

4646 ND2 T to C Synonym  

4769 ND2 A to G Synonym  

5999 COI T to C Synonym  

6047 COI A to G Synonym  

6665 COI C to T Synonym  

6929 COI A to G Synonym  

7028 COI C to T Synonym +7025AluI 

8065 COII G to A Synonym  
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Family B – Haplogroup U4a                                                                                                                      (continue)                                                                                                     
Position Map Locus Nucleotide change relative to rCRS  Amino acid change Notes 

8818 ATPase6 C to T Synonym  

8860 ATPase6 A to G Thr to Ala +8858HhaI 

11332 ND4 C to T Synonym  

11467  ND4 A to G Synonym -11465MseI  

11719 ND4 G to A Synonym -11718HaeIII 

12308 tRNA Leu2 A to G - +12308HinfI 

12372 ND5 G to A Synonym  

14620 ND6 C to T Synonym  

14766 Cyt b C to T Thr to Ile +14766MseI 

15326 Cyt b A to G Thr to Ala  

15693 Cyt b T to C Met to Thr  

15773 Cytb G to A Val to Ala  

16356 D-loop T to C -  

16362 D-loop T to C -  

16519 D-loop T to C -  
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