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1 

SUMMARY 
This PhD thesis describes the application of some instrumental analytical techniques 

suitable to the study of fundamental food products for the human diet, such as: extra 

virgin olive oil and dairy products. These products, widely spread in the market and 

with high nutritional values, are increasingly recognized healthy properties although 

their lipid fraction might contain some unfavorable components to the human health.  

The research activity has been structured in the following investigations: 

 “Comparison of different techniques for trans fatty acids analysis”  

 “Fatty acids analysis of outcrop milk cream samples, with particular emphasis on 

the content of Conjugated Linoleic Acid (CLA) and trans Fatty Acids (TFA), by 

using 100m high-polarity capillary column”  

 “Evaluation of the oxidited fatty acids (OFA) content during the Parmigiano-

Reggiano cheese seasoning”   

 “Direct analysis of 4-desmethyl sterols and two dihydroxy triterpenes in saponified 

vegetal oils (olive oil and others) using liquid chromatography-mass spectrometry”  

 “Quantitation of long chain poly-unsatured fatty acids (LC-PUFA) in base infant 

formulas by Gas Chromatography, and evaluation of the blending phases accuracy 

during their preparation”  

 “Fatty acids composition of Parmigiano Reggiano cheese samples, with emphasis on 

trans isomers (TFA)” 

 
 
Keywords: dairy fats, vegetable oils, separation techniques, fatty acids, TFA, CLA, 

OFA.
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2 

INTRODUCTION 

The increasing interest regarding the relation between nutrition and wellness, has led the 

scientific research to study the importance of nutrients contained in both the raw 

material and their derived food products. Extra virgin olive oil and dairy products, 

considered as fundamental food products for the diet of million of people, are source of 

liposoluble vitamins (A, D, E), anti-oxidant compounds and mineral salt, although are 

simply deemed by consumers as “food dressing” and high energetic foods (since they 

are predominantly constituted of fat).  

Healthy properties are widely recognized to these food products by the scientific panel. 

To the extra virgin olive oil, for example, are attributed several beneficial effects: the 

high content in mono-unsatured fatty acids, with the oleic acid as the principal 

constituent, shows to have gastro-protective properties, inhibits biliary lithiasis and 

improves the intestinal transit regulating it, reduces the LDL cholesterol levels (Low 

Density Lipoprotein, the potentially harmful cholesterol with atherogenic effects) 

leaving unaltered the HDL levels (High Density Lipoprotein, prevent the oxidized 

cholesterol sticks to artery walls), it has antioxidant effect on the LDL (1), enforces the 

immune system reducing the risk of autoimmune diseases/ breast cancer/colon-recto 

cancer ( 2). Extra virgin olive oil contains antioxidant compounds with proved anti-

inflammatory and anti-carcinogenic actions (3, 4). Moreover, since it does not subjected 

to the refinetion process (on the contrary of what happens for all the others edible oils), 

it does not meet to the formation of trans fatty acids. 
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Several investigations about milk fat and, as a consequence, butter and cheese fat, 

confirmed the high potential in human nutrition of  CLA (Conjugated Linoleic Acid), in 

particular, of  rumenic acid (C18:2 cis-9, trans-11), and consequently, of its forerunner 

vaccenic acid (C18:1 trans-11) that represent the principal isomer of the fatty acids 

group called TFA (trans Fatty Acid). 

At the present, CLA have attracted considerable attention because of their attitude to 

contrast the risk of some lifestyle-related diseases, such as: tumors, atherosclerosis, 

diabetes, obesity, and hypercholesterolemia. Moreover, they enhance the immune 

system modulation (5, 6, 7). These properties have been verified in animal models and 

human cellular lines (8, 9). 

 Unlike the olive oil, dairy products naturally contain significant levels of fatty acids in 

trans configuration. Several studies have reported the negative effects of these isomers 

to human health. In 2004, the European Food Safety Authority (EFSA) affirmed that the 

negative effects of TFA on human health might be worst than those of saturated fatty 

acids. The origin of TFA is due to the rotation of the molecule around a “double 

bound”, leading the natural configuration cis-cis to cis-trans. This configurational 

overthrow has noteworthy negative effects on human health: TFA, besides increasing 

LDL levels, make the cell membrane more permeable allowing molecules, even toxics, 

to filter inside the cell. They can weaken the immune system and worsen the deficiency 

of essential fatty acids, thwarting the production of the prostaglandins, which regulate 

the vascular smooth mussels in blood vessels, kidneys functions, and the inflammatory 

responses (10). Although trans fats are naturally present in the ruminant fat as the result 

of an enzymatic production (formation of specific isomers), they should be 
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distinguished from the “artificial” trans fat industrially produced under catalytic 

conditions (more random distribution of isomers) such as Partially Hydrogenated 

Vegetable Oils (PHVO).  Since the TFA isomers responsible for the negative effects 

have not yet been identified, it makes it difficult to asses whether the TFA from PHVO 

and ruminant fats present similar risk factor (11). Moreover, according to the results of a 

Danish study, not only the intake of TFA from ruminant fats affect the risk of coronary 

health disease, but even more,  they do not show any correlation (12). 

Another concern, relative to the group which CLA belong to, the Poli-unsatured Fatty 

Acids (PUFA), is their susceptibility to the oxidation process, especially whether they 

are in the free form (13). Nutritionally, such oxidation can be translated as a negative 

health effect because of the inclination to increase the LDL levels, meaning a higher 

risk of pathologies related to the atherosclerosis disease (14). 

Therefore, it raise spontaneous the need to elaborate scientific methods of analysis that 

both permit to value, identify, and eventually improve the fatty acid composition of 

olive oils and butters (protecting consumers from sophistications and frauds), and to 

point out the tight correlation between natural/ anthropic factors correlated to the 

production and the chemical-physical-organoleptic properties, that is “the typicality”. 

 

2.1. LIPIDS 

Despite the existence of several definition of lipids, due to their complexity and 

heterogeneity, they are generally reported as a broad group of compounds that are 

soluble in organic solvents (diethyl ether, hexane, benzene, chloroform or methanol) but 

only sparingly soluble in water. They are major components of adipose tissue and, 

together with proteins and carbohydrates, they constitute the principal structural 
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components of all living cells. The terms fats and oils refer traditionally to glycerol 

esters of fatty acids, which make up to 99% of the lipid of plant and animal origin. The 

two terms are used interchangeably and the choice of terms is usually based on the 

physical state of the material at ambient temperature and tradition. Generally, fats 

appear solid at ambient temperatures and oils appear liquid. 

Lipids are important components that contribute very significantly to the nutritional and 

sensory value of almost all kinds of foods, except for most fruits, sweets and beverages. 

Food lipids are either consumed in the form of “visible” fats, such as butter, lard and 

shortening or as constituents of basic foods, such as milk, cheese and meat.  

The effect on food quality is mainly related to the contents, distribution in the food 

matrix, chemical composition and reactivity of the lipids, as well as to their physical 

properties (crystalline structure, melting properties) and changes due to processing and 

the interactions with other components. Indeed, during the processing, storage and 

handling of foods, lipids undergo complex chemical changes (i.e.: lipolysis, oxidation) 

and react with other food constituents, producing several compounds both desirable and 

deleterious to food quality. 

 

2.2. CLASSIFICATION 

Lipid structures can be classified depending on: 

• The physical properties at room temperature. For instance, oils appear liquid and fats 

appear solid; 

• The polarity. Neutral lipids include fatty acids, alcohols, glycerides and sterols, while 

polar lipids, glycerophospholipids and glyceroglycolipids; 

• Their essentiality for humans (essential and nonessential fatty acids);  
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• The structure, which can be respectively simple or complex.  

Based on structure, lipids can be classified as derived, simple or complex. The derived 

lipids include fatty acids and alcohols, which are the building blocks for the simple and 

complex lipids. Simple lipids, made up of fatty acids and alcohol components, include 

acylglycerols, ether acylglycerols, sterols and their esters and wax esters. In general 

terms, simple lipids can be hydrolyzed to two different components, usually an alcohol 

and an acid. Complex lipids include glycerophospholipids (phospholipids), 

glyceroglycolipids (glycolipids), and sphingolipids. These structures yield three or more 

different compounds on hydrolysis. 

A general classification of lipids based on their structure is proposed in table 2.1. even 

though it should be taken as a guide since other classifications may be more useful. The 

most abundant class of food lipids is the acylglycerol, which dominate the composition 

of depot fats in animals and plants. The polar lipids are found almost entirely in the 

cellular membranes (phospholipids being the main components of the bilayer) with only 

very small amounts in depot fats. In some plants, glycolipid constitute the major polar 

lipids in cell membranes. Waxes are found as protective coating on skin, leaves and 

fruits. Edible fats are traditionally classified in different subgroups illustrated in table 

2.2. 



 

 

 

Table 2.1. – Classification of lipids 
Major classes Subclasses Descriptions 
Simple lipids Acylglycerols Glycerol + fatty acids 
 Waxes Long-chain alcohol + long-chain fatty acid 
   

Compound lipids Phosphoacylglycerols (or glycerophospholipids) Glycerol + fatty acids + phosphate + another group usually containing nitrogen 

 Sphingomyelins Spingosine + fatty acid + phosphate + choline 
 Cerebrosides Spingosine + fatty acid + simple sugar 
 Gangliosides Spingosine + fatty acid + complex carbohydrate moiety (including salicilic acid) 
   
Derived lipids Lipid materials not simple or compound Carotenoids, steroids, fat-soluble vitamins 
 

Table 2.2. – Lipid subgroups 
Lipid subgroups Decription of the kind of fat Main fatty acids 
Milk fats Fats from the milk of ruminants (dairy cows) 
  
  

Palmitic, oleic, stearic and appreciable amounts of short chain fatty 
acids (C4:0 to C12:0), small amounts of branched, odd-numbered and 
trans 

Lauric acids Fats from certain species of palm (coconut, babasu) 
  

Lauric acid (40-50%), moderate amounts of C6:0, C8:0 and C10:0, 
low in unsaturated acids 

Vegetable buters Saturated fatty acids 
 

Fats from the seed of various tropical trees: vegetable butters (cocoa 
butter) used in the manufacture of confections  

Oleic-linoleic acids Oleic and linoleic acid, less than 20% saturated fatty acids 
 

Oils of vegetable origin: cottonseed, corn, peanut, sunflower, saflower, 
olive, palm and sesame oils  

Linolenic acids Soybean, rapeseed, flaxsed, wheat germ, hempseed and perilla oils Substantial amount of linolenic acid 
Animal fats Fats from domestic land animals (lard and tallow), egg lipids 

    

Large amount of C16 and C18 fatty acids, medium amount of 
unsaturated acids (oleic, linoleic) and small amount of odd-numbered 
acids 
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2.3. NOMENCLATURE OF FATTY ACIDS 

The term fatty acid (FA) refers to any aliphatic monocarboxylic acid that can be 

liberated by hydrolysis from naturally occurring fats. Most of FA were originally 

described under “trivial” or common name and even after adopting the Internation 

Union of Pure and Applied Chemistry (IUPAC) system for nomenclature, the habit of 

assigning trivial names to FA acids continues. 

In standard IUPAC terminology, the fatty acid is named after the parent hydrocarbon 

with the same name of carbon atoms. The terminal letter e in the name of the parent 

hydrocarbon is replaced with oic. For example, an 18-carbon carboxylic acid is called 

octadecanoic acid, from octadecane, the 18-carbon aliphatic hydrocarbon.  

Unsaturated FA can be named after the parent unsaturated hydrocarbon and replacement 

of the terminal anoic by enoic indicates unsaturation and di, tri and so on represent the 

number of double bonds (i.e.: hexadecenoic acid for 16:1, octadecatrienoic acid for 

18:3). 

The simplest way to specify the location of double bonds is to put, before the name of 

the acid, one number for each unsaturated linkage (∆ configuration) representing the 

distance from the carboxyl carbon. Oleic acid is, for example, named ∆9-octadecenoic 

acid or simply 9-octadecenoic, with one double bond between carbons 9 and 10 

(carboxyl group is regarded as carbon 1). Nevertheless, unsaturated FA are often 

distinguished by the location of the first double bond from the methyl end of the 

molecule, that is, the omega (ω) carbon (shorthand identification). The methyl group is 

number 1 (the last character in the Greek alphabet is ω, hence the end): linoleic acid 

(cis-9,12-octadecadienoic acid) is therefore 18:2ω6 (or n-6) acid. Fig. 2.1. illustrates the 

difference between IUPAC ∆ and shorthand numbering systems. 
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Outside of molecule ∆ numbering
Inside of molecule ω numbering

18:3cis-6,cis-9,cis-12
18:3ω6  

 Figure 2.1. – IUPAC ∆ and common ω numbering system. 

 

The geometric configuration of double bonds is usually designated by the use of terms 

cis (Latin, on this side) and trans (Latin, across), indicating whether the alkyl group are 

on the same or opposite sides of the molecule (Figure 2.2.). The prefixes cis and trans 

can be abbreviated as c and t in structural formulas. In shorthand notation, the 

unsaturated fatty acids are assumed to have cis bonding and, if the fatty acid is 

polyunsaturated, double bonds are in the methylene interrupted positions. 

 

R2R1

HH

HR1

R2H

cis- trans-  

Figure 2.2. – Example of cis/trans nomenclature. 

 

In the following page a list of some of the most common FA found in natural fats is 

reported (Table 2.3.), indicating both systematic and common name for each FA. 
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Table 2.3. – Nomenclature of some common fatty acids. 
 
Abbreviation Systematic name Common or trivial name 
4:0 Butanoic Butyric 
6:0 Hexanoic Caproic 
8:0 Octanoic Caprylic 
10:0 Decanoic Capric 
12:0 Dodecanoic Lauric 
14:0 Teradecanoic Myristic 
16:0 Hexadecanoic Palmitic 
16:1 n-7 cis-9-Hexadecenoic Palmitoleic 
18:0 Octadecanoic Stearic 
18:1 n-9 cis-9-Octadecenoic Oleic 
18:1 n-7 cis-11-Octadecenoic Vaccenic 
18:2 n-6 cis-9,12-Octadecadienoic Linoleic 
18:3 n-3 cis-9,12,15-Octadecatrienoic α-Linolenic 
20:0 Eicosanoic Arachidic 
20:4 n-6 cis-5,8,11,14-Eicosatetraenoic Arachidonic 
20:5 n-3 cis-5,8,11,14,17-Eicosapeantaenic EPA 
22:1 n-9 cis-13-Docosenoic Erucic 
22:5 n-3 cis-7,10,13,16,19-Docosapentaenoic DPA 
22:6 n-3 cis-4,7,10,13,16,19-Docosahexaenoic DHA 
 

 

2.4 VEGETABLE OILS AND FATS  

Reference for this section: 15, 16 

Most fats and oils consist of triacylglycerides which differ in fatty acid composition to a 

certain extent. Other constituents which make up less than 3% of fats and oils, are the 

unsaponifiable fraction (phospholipids, tocopherols, sterols, resins, carbohidrates, 

pesticides, proteins trace metals, and pigments) and a number of acyl lipids (traces of 

free fatty acids, mono and diacylglycerols). Their composition in fatty acids can differ 

greatly, and depends for several factors: plant fat is affected by the cultivar and growth 

environment, such as climate and location of the plant; animal fat depends by the kind 

and breed of animal and by the feed.  
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Oils and fats naturally occur in a wide range of sources, each one providing a separate 

and distinctive material. Hundreds of seeds and fruits bear oil, all animal produce fat, 

and marine sources also provide oils; however, only a few of these sources are of 

economic importance. The factors that have always influenced their distribution and 

eating habit of our ancestors result to be, unequivocally, climate and availability. For 

instance, in northern European countries, consumers generally obtain their edible fats 

from animals, whereas people in southern Europe, Asia, and Africa acquire their edible 

oils from vegetable sources. The food products developed in these different regions use 

the available fats and oils products, and consequently, the cuisine of central and 

northern European countries developed around the use of solid fats such as butter and 

lard, while the diets of inhabitants from warmer climates around the use of liquid oils 

for their food products. Since the second half of last century, food products from the 

Mediterranean countries have definitely increased of importance in food science due to 

their beneficial effects on human health, especially for their principal source of fat: olive 

oil and dairy fat. 

 

2.4.1. OLIVE OIL 

Reference for this section: 15, 16 

Between the vegetable oils, olive oil is the one that unequivocally have ever played an 

important role in the word market of oils. As reported in figure 2.3 and 2.4, more than 

90% of the world’s olive harvest takes place in the Mediterranean region, due to the 

unique agronomic and climatic factors of this area. Olive oil consumption has been for 

centuries restricted to the Mediterranean people. For the rest of the word olive oil was 

an unfamiliar oil, much more expensive than other vegetables (seed) oils. Due to 
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nutritional and economical factors, this tendency begun to change since the second half 

of last century, where non-producing countries (U.S.A., Australia, Canada, Brazil, 

Japan, France) increased olive oil consumption, and nowadays, this trend is still 

growing. 
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Rest of the world, 
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Figure. 2.3. – The world olive oil production (quantities in tons %) 
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Figure. 2.3. – The olive oil production in the Mediterranean area (quantities in tons %) 
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2.4.1.1. Fatty Acids 

Olive oil fatty acid composition may differ from sample to sample, depending on the 

area of production, the latitude, the climate, the variety, and the fruit maturity. 

As reported in table 2.4, the main fatty acids are:  palmitic (C16:0), palmitoleic 

(C16:1), stearic (C18:0), oleic (C18:1), linoleic (C18:2), and linolenic (C18:3). Others 

fatty acids are present in trace amount. 

 
Table. 2.3. – Olive Oil Fatty Acid Composition (%) 
 

Oleic C18:1 n-9 55 to 83 
Palmitic C16:0 7.5 to 20 
Linoleic 18:2 n-6 3.5 to 21 
Stearic C18:0 0.5 to 5 
Linolenic 18:3 n-3 <0.9 
Palmitoleic 16:1 n-7 0.3 to 3.5 
Arachidic C20:0 <0.6 
Margaric C17:0 <0.3 
Margaroleic C17:1 n-8 <0.3 
Lignoceric C24:0 <0.3 
Gadoleic C20:1 n-11 0.1 to 0.4 
Behenic C22:0 <0.2 
Myristic C14:0 <0.1 

  

Greek, Italian, and Spanish olive oils are low in linoleic and palmitic acids and they 

have a high percentage of oleic acid. Tunisian olive oils are high in linoleic and palmitic 

acids and lower in oleic acid. On the basis of the analysis of samples from various 

countries olive oils are classified in two types, one with a low linoleic-palmitic acid and 

high oleic acid content, and the other with a high linoleic-palmitic acid and low oleic 

acid content. This effect has been associated with the stage of maturity of the fruit, and 

an antagonistic relationship between oleic and palmitic, palmitoleic and linoleic acids 

have been observed. 
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2.4.1.2. Triacylglycerols, and Partial Glycerides 

The triacylglycerols found in significant proportions in olive oil are OOO (40-59%), 

POO (12-20%), OOL (12.5-20%), POL (5.5-7%) and SOO (3-7%). Smaller amounts of 

POP, POS, OLnL, LOL, OLnO, PLL, PLnO and LLL are also encountered. Fully 

saturated moieties have not been reported and the same applies for the tri-unsaturated 

ones containing linolenic acid. Stearic and palmitic acids are absent from the 2-position 

of unsaturated species (tri- and tetraunsaturated) or from the molecule when there are 

more than five double bonds. Trilinolein or ECN 42 triacylglycerol content (as 

corrected recently), which is used as an authenticity marker by the EU, is the sum of the 

amounts of LLL, PoPoPo, SLnLn, PoPoL, PPoLn, OLLn, PLLn and PoOLn (positional 

isomers included). 

The presence of partial glycerides in olive oil is due either to incomplete triacylglycerol 

biosynthesis or hydrolytic reactions. In virgin olive oil, concentration of diacylglycerols 

(DG) range from 1 to 2.8%. In the diacylglycerol fraction C-34 and C-36 compounds 

prevail. Monoacylglycerols are present in much smaller quantities (less than 0.25%) 

whereas 1-species are considerably higher than the respective 2-monoglycerides. Their 

ratio depends on oil acidity, and the storage conditions affect the distribution of fatty 

acids. 1.2-Diacylglycerols present in fresh oil tend to isomerize to the more stable 1.3-

diacylglycerols. This rearrangement gives information about the age of the oil and 

storage conditions. The ratio of 1.3-/1.2-DG is considered as a useful ratio to monitor 

quality. 
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2.4.1.3. Hydrocarbons 

Two hydrocarbons are present in considerable amounts in olive oil, squalene and β-

carotene that will be discussed in the pigments section. Squalene, or 2,6,10,15,19,23-

hexamethyl-2,6,10,14,18,22-tetracosahexaene, is the last metabolite preceding sterol 

ring formation. Its presence is regarded as partially responsible for the beneficial health 

effects of olive oil and its chemo-preventive action against certain cancers. It is the 

major constituent of the unsaponifiable matter (referring to the whole quantity of 

substances present in the oil or fat which after saponification by an alkaline solution 

extraction by a specific solvent, are not soluble in aqueous alkali and non-volatile under 

the condition of test) and makes up more than 90% of the hydrocarbon fraction. It 

ranges from 200 to 7500 mg/kg of oil, even though higher levels up to 12,000 mg/kg 

have been also reported in literature. Squalene content depends on olive cultivar, oil 

extraction technology, and it is dramatically reduced during the process of refining. 

Except for squalene, the hydrocarbon fraction of virgin olive oil is composed of 

diterpene and triterpene hydrocarbons, isoprenoidal polyolefins, and n-paraffins. 

 

2.4.1.4. Tocopherols 

These compounds are present in olive oil in concentrations of about 150 – 250mg/Kg, 

Normally present are the α, β, γ and δ forms of which α (vitamin E) is the most 

abundant (90 – 95% of the total tocopherol content). Low amounts of the homologues 

β-tocopherol (~10 mg/kg), δ-tocopherol (~10 mg/kg) and γ-tocopherol (~20 mg/kg) are 

usually reported. The level of α-tocopherol may be related to the high levels of 

chlorophyll pigments and the concomitant requirement for singlet oxygen deactivation, 
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while it seem to reduce with the fruit ripeness. Tocopherols carry out an anti-oxydant 

action in oils exposed to “light”(ultaviolet radiation). 

 

2.4.1.5. Pigments 

Olive oil color is the result of green and yellow hues due to the presence of chlorophylls 

and carotenoids. It is influenced by olive cultivar, maturation index production zone, 

extraction system, and storage conditions. Therefore it is considered as a quality index 

though no standardized method exists for its measurement. Chlorophylls are 

encountered as pheophytins. Among the latter pheophytin α (Pheo α) is predominant, 

while  pheophytin β is also present though in minute amounts. The presence of Pheo α 

is related to processing conditions and enzymatic or enzymatic-like activity. Handling 

and duration of storage cause further changes in pheophytin α content. It has been 

reported that the presence of pheophytin degradation products (such as: epimers, pyro-

forms and allomers) can be related with the storage condition. These products, on the 

basis of previously reported findings, were identified as pyropheophytin α, 151-OH 

lactone pheophytin α and 132-OH-pheophytin α. Under light exposure green pigments 

degrade causing oil bleaching.  

The main carotenoids present in olive oil are lutein and β-carotene 

The presence of carotenoids in olive oil is closely related to that of green pigments and 

is influenced by the same factors. The carotenoid fraction may also include several 

xanthophylls (violaxanthin, neoxanthin, luteoxanthin, antheraxanthin, mutatoxanthin, 

and β-cryptoxanthin). The ratio between the two major carotenoids seems to 

be cultivar dependent. 
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2.4.1.6. Aliphatic and aromatic alcohols 

Aliphatic and aromatic alcohols present in olive oil are found in free and esterified 

form. The most important are fatty alcohols and diterpene alcohols. Alkanols and 

alkenols with less than ten carbon atoms in their molecule, which are present in free and 

esterified form, and some aromatic alcohols (benzyl alcohol and 2-phenylethanol) are 

constituents of the olive oil volatile fraction. Benzyl esters of hexacosanoic and 

octacosanoic acid have been also reported in olive oil. 

Fatty Alcohols are a class of minor constituents consisting of linear saturated alcohols 

with more than 16 carbon atoms which are present in the free and esterified form. The 

main fatty alcohols present in olive oil are docosanol, tetracosanol, hexacosanol, and 

octacosanol. Others fatty alcohols with odd carbon atoms (tricosanol, pentacosanol, and 

heptacosanol) may be found in trace amounts. Virgin olive oil total fatty alcohols level 

is affected by cultivar, crop year, fruit ripeness, and processing, even though is not 

usually higher than 250 mg/kg. The most abboundand fatty alcohols were found to 

be tetracosanol and hexacosanol. Esters of fatty alcohols with fatty acids (waxes) are 

also classified as minor olive oil constituents, and they can be used as a criterion to 

differentiate various olive oil types (EC Regulation 2568, 1991). The main waxes 

detected in olive oil are esters of oleic or palmitic acid with 36, 38, 40, 42, 44, and 46 

carbon atoms. Virgin olive oils contain waxes at levels lower than 150 mg/kg and their 

content and composition is also affected by cultivar, crop year, and processing. 

Phytol and geranylgeraniol are two acyclic diterpenoids present in the aliphatic alcohol 

fraction of olive oil in the free and esterified form. Phytol, which probably originates 

from chlorophyll, has been found in monovarietal virgin olive oils at levels ranging 

from 25 to 595 mg/kg. Geranylgeraniol is reported to be present in virgin olive oil from 
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a new olive cultivar (I-77) at levels lower than 50 mg/kg. Its levels are used in the 

calculation of the alcoholic index, a useful parameter for detecting solvent extracted 

olive oil in virgin olive oil. Esters identified in the wax fraction of extra virgin olive oil 

are oleate, eicosanoate, eicosenoate, docosanoate, and tetracosanoate, mainly as phytyl 

derivatives.  

 

2.4.1.7. Sterols 

Sterols are important lipids related to the quality of the oil and broadly used for 

checking its genuineness. Four classes of sterols occur in olive oil: common sterols (4-

desmethylsterols), 4α-methylsterols, triterpene alcohols (4, 4-dimethylsterols), and 

triterpene dialcohols.  

Common Sterols (4α-desmethylsterols) contained in Olive oil are mainly in free and 

esterified form, although they have also been found as sterylglucosides and lipoproteins. 

The main components of this sterol fraction are β-sitosterol, ∆5-avenasterol, and 

campesterol. Other sterols present in smaller quantities or in trace amounts are 

stigmasterol, cholesterol, brassicasterol, chlerosterol, ergosterol, sitostanol, 

campestanol, ∆7-avenasterol, ∆7-cholestenol,∆7-campestenol, ∆7-stigmastenol, ∆5,23-

stigmastadienol, ∆5,24-stigmastadienol, ∆7,22-ergostadienol, ∆7,24-ergostadienol, 24-

methylene-cholesterol, and 22,23- dihydrobrassicasterol. Total sterol content of virgin 

olive oils varies mainly between 1000 mg/kg, which is the lower limit set by the 

European Union Commission (EC Regulation 2568, 1991), and 2000 mg/kg. Lampante 

olive oils contain higher amounts of total sterols, while refined olive oils contain lower 

levels because the refining process gives rise to significant losses of sterols, which may 

be as high as 25%. Total sterol content of solvent extracted olive oils is up to three 
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times higher than that of virgin olive oils. Studies on olive oil sterol composition show 

that β-sitosterol makes up 75 to 90% of the total sterol fraction, ∆5-avenasterol usually 

ranges between 5% and 20%, campesterol and stigmasterol make up 4% and 2% 

respectively (campesterol levels are always higher than those of stigmasterol). The rest 

of the sterols occur in minute quantities. The levels of ∆5- and ∆7-avenasterol, ∆7-

stigmastenol, stigmasterol, and chlerosterol are used to determine whether virgin, 

refined, and solvent extracted olive oils. Sterol composition and total sterol content are 

affected by cultivar, crop year, degree of fruit ripeness, storage time of fruits prior to oil 

extraction, processing, and also by geographic factors. 

4-Methylsterols are intermediates in sterol biosynthesis, and they are present in olive oil 

in small quantities in free and esterified form. The predominating components are 

obtusifoliol, gramisterol, cycloeucalenol, and citrostadienol. They are ∆7- or ∆8-sterols 

except cycloeucalenol which has a 9,19-cyclopropane ring in the steroid skeleton. The 

levels of total 4α-methylsterols are lower than that of common sterols and triterpene 

alcohols and vary between 50 and 360 mg/kg.  

 

2.4.1.8. Triterpene acids 

Hydroxy pentacyclic triterpene acids are important olive fruit constituents. They are 

biologically active compounds and are present at trace amounts in olive oil.  

The main triterpene acids present in virgin olive are Oleanolic (3β-hydroxyolean-12-en-

28-oic acid) and maslinic acid (2α, 3β-dihydroxyolean-12-en-28-oic acid) are the main 

triterpene acids present in virgin olive. Both compounds and traces of ursolic acid 

(3β-hydroxyurs-12-en-28-oic acid) are located in the reticular lipid layer of olive skin. 
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Total triterpene acid content of extra virgin olive oils obtained from fruits of different 

olive cultivars was found to range between 40 and 185 mg/kg. Recently, the main factor 

influencing the level of hydroxy pentacyclic triterpene acids in olive oil was studied. 

Olive oil acidity resulted to be the principal contributor while olive cultivar, olive 

ripeness, and oil extraction system have less influence on the levels of these acids. 

 

2.4.1.9. Volatile and aroma compounds 

Approximately two hundred and eighty compounds have been identified in the volatile 

fraction of virgin olive oils. They are hydrocarbons (more than 80 compounds), alcohols 

(45 compounds), aldehydes (44 compounds), ketones (26 compounds), acids (13 

compounds), esters (55 compounds), ethers (5 compounds), furan derivatives (5 

compounds), thiophene derivatives (5 compounds), pyranones (1 compound), thiols 

(1 compound), and pyrazines (1 compound). From this large number of compounds, 

only 67 were found to be present at levels higher than their odor threshold contribute to 

the flavor of virgin olive oils with sensory defects. The potent odorants of olive oil have 

been evaluated by applying aroma extract dilution analysis (AEDA) and gas 

chromatography-olfactometry analysis of headspace. 

 

2.4.1.10. Other minor constituents 

Some classes of minor constituents are present only in the crude oil. Filtration reduces 

the initial levels to a great extent whereas refining process leads to their removal. 

Olive oil contains a small amount of phospholipids and, even if experimental work for 

their identification is rather limited, phosphatidylcholine, phospatidylethanolamine, 

phosphatitylinositol, were reported to be the main constituent of this fraction. 
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2.4.2. DAIRY PRODUCTS  

Reference for this section: 15, 17, 18, 19. 

Milk and dairy products are major components of the human diet in Western countries, 

providing about 30% of dietary proteins and lipids and about 80% of dietary calcium. 

Current annual production of milk is about 600 x 106 tons, of which about 85% are 

bovine (Figure 2.4).  

Buffalo
11% Caprine

2%
Ovine
2%

Bovine
85%

Annual milk production (tons %)

 

Figure. 2.4. – Current annual milk production. 

 

Although some raw milk is still consumed, the vast majority of milk is processed to at 

least some extent. Liquid (beverage) milk is a major food item in all developed dairying 

countries, representing about 40% of total milk production, while the remainder is 

processed into one of several thousand products (Figure 2.5). For this reason the dairy 

industry is probably the most diverse and flexible sector of the food industry. The 

flexibility of milk as a raw material resides in the chemical and physical-chemical 
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properties of its constituents, many of which are unique. The principal constituents of 

milk can be modified by enzymatic, chemical and/or physical methods, permitting the 

production of new products. The natural function of milk is to supply the neonatal 

mammal, of which there are about 4500 species, with its complete nutritional and some 

of its physiological requirements. Because the nutritional requirements are species-

specific and change as the neonate matures, the composition of milk shows very large 

interspecies differences. Inter-species differences in the concentrations of many of the 

minor constituents are even greater than those of the macro-constituents. Milk from 

domesticated animals has been used by humans since at least 8000 BC. Although sheep 

and goats were the first domesticated dairy animals, because they are more easily 

managed than cattle, the latter, especially certain breeds of Bos taurus, are now the 

dominant dairy animals. 

 

Figure 2.5. – Schematic presentation of milk processing. 

 

Therefore, to avoid misunderstanding, this section will concentrate on the properties of 

bovine milk or simply “milk”, as term used today as synonymous.  Milk is a very 
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flexible raw material from which several thousand types of dairy products are produced 

around the world in a great diversity of flavors and forms, including thousand varieties 

of cheese. The total world milk yield is used for the production of the principal dairy 

products, that are in order: liquid (beverage) milk, cheese, butter, whole milk powder, 

skimmed milk powder, concentrated milk products, fermented milk products, casein and 

infant formulae. This flexibility and diversity are a result of the properties, many of 

them unique, of the constituents of milk, the principal of which are easily isolated from 

milk, permitting the production of valuable food ingredients. Moreover the 

processability and functionality of milk and milk products are determined by the 

properties and concentrations of its principal constituents: proteins, lipids, lactose and 

salts. The lipids occur as globules, 0.1–20 µm in diameter, surrounded by the milk fat 

globule membrane (MFGM), which serves as an emulsifier. Their concentration varies 

with species, breed, individual animal, stage of lactation, mastitis infection, plane of 

nutrition, interval between milkings, and point during milking when the sample is take. 

 

2.4.2.1. Fatty acids  

Ruminant milk fat contains a wider range of fatty acids than any other lipid system, up 

to 400 fatty acids have been reported in bovine milk fat; the principal fatty acids are the 

homologous series of saturated fatty acids, C4:0, C18:0 and C18:1. The outstanding 

features of the fatty acids in milk fat are a high concentration of short and medium chain 

acids (ruminant milk fats are the only natural lipids that contain butanoic acid) and a 

low concentration of polyunsaturated fatty acids (PUFA). In ruminants, the fatty acids 

for the synthesis of milk lipids are obtained from triglycerides in chylomicrons in the 

blood or synthesized de novo in the mammary gland from acetate or β–hydroxybutyrate 
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produced by microorganisms in the rumen. The triglycerides in chylomicrons are 

derived from the animal’s feed or synthesized in the liver. Butanoic acid (C4:0) is 

produced by the reduction of β-hydroxybutyrate which is synthesized from dietary 

roughage by bacteria in the rumen and therefore varies substantially with the animal’s 

diet. All C6:0– C14:0 and 50% of C16:0 are synthesized in the mammary gland via the 

malonyl-CoA pathway from acetyl-CoA produced from acetate synthesized in the 

rumen. Essentially 100% of C18:0, C18:1, C18:2 and C18:3 and 50% of C16:0 are 

derived from blood lipids (chylomicrons) and represent about the 50% of total fatty 

acids in ruminant milk fat. Unsaturated fatty acids in the animal’s diet are hydrogenated 

by bacteria in the rumen unless they are protected (encapsulation). Seasonal variation 

can cause very significant changes in the fatty acid profile of milk fat. A grass-based 

diet is rich in PUFA (see Figure 2.6), and these are subjected to the bio-hydrogenation 

process by bacteria in the rumen (e.g.: Butyrivibrio fibrisolvens) and then converted to 

mono-unsatured fatty acids in cis and trans configurations, that they will be found 

consequently in milk fat and the relative dairy products obtained.  

PUFA are considered to be nutritionally desirable and, consequently, there has been 

interest in increasing their concentration in bovine milk fat, e.g. linoleic acid, that is an 

essential fatty acid and must be supplied in the diet since it cannot be synthesized by 

mammals. This can be done by feeding encapsulated PUFA-rich lipids or crushed 

PUFA-rich oil seeds to the animal. 
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Figure. 2.6. – Biohydrogenation of Dietary Poliunsatured Fatty acids in the rumen 

 

Unsaturated fatty acids may occur as cis or trans isomers (Figure 2.7); trans isomers, 

which have higher melting points than the corresponding cis isomers, are considered to 

be nutritionally undesirable. Bovine milk fat contains a low level (5%) of trans fatty 

acids in comparison with chemically hydrogenated (hardened) vegetable oils, in which 

the value may be 50% due to non-stereospecific hydrogenation. 

 

 

Figure. 2.7. – Fatty acids in cis and trans configuration. 

 

Another group of fatty acids that have attracted very considerable attention recently, is 

the CLA (Figure 2.8). It is a mixture of eight positional and geometric isomers of 
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linoleic acid which have a number of health-promoting properties. Of the eight isomers 

of CLA, only the C18:2 cis 9, trans 11 isomer is biologically active.  

 

 

 
Figure. 2.8. – Conjugated and non-conjugated fatty acids. 

 

This compound is effective at very low concentrations, 0.1 g per 100 g diet. Fat-

containing foods of ruminant origin, especially milk and dairy products, are the 

principal sources of dietary CLA which is produced as an intermediate during the 

biohydrogenation of linoleic acid by the rumen bacterium, Butyrivibrio fibrisolvens, and 

isomerized by delta-9 desaturase in the mammary gland from vaccenic acid (trans-11 

C18:1), that is an intermediate of polyunsaturated fatty acid biohydrogenation in the 

rumen (Figure 2.9). Since CLA is formed from linoleic acid, it is not surprising that the 

CLA content of milk is affected by diet and season, being highest in summer when 

cows are on fresh pasture rich in PUFA and higher in the fat of milk from cows on 

mountain than on lowland pasture. The concentration of CLA in milk fat can be 

increased 5–7 fold by increasing the level of dietary linoleic acid, e.g., by duodenal 

infusion or by feeding a linoleic acid-rich oil, e.g., sunflower oil. 
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Figure. 2.9. – Pathways of rumenic acid in rumen and mammary gland 

 

2.4.2.2. Glycerides 

Triacylglycerols, called triglycerides for short, make up the bulk (generally more than 

98%) of the lipids and accordingly, largely determine the properties of milk fat (Table 

2.4). These properties vary with the fatty acid composition. Because the number of 

different fatty acid residues is great, the number of different triglycerides is much 

greater. The distribution of fatty acid residues over the position in the triglyceride 

molecule is far from random: Butanoic and hexanoic acids are esterified almost entirely, 

and octanoic and decanoic acids predominantly, at the sn-3 position; as the chain length 

increases up to C16:0 an increasing proportion is esterified at the sn-2 position (more 

marked for human than for bovine milk fat, especially in the case of palmitic acid); 

stearic acid (C18:0) is esterified mainly at sn-1; unsaturated fatty acids are esterified 

mainly at the sn-1 and sn-3 positions, in roughly equal proportions. The position of the 

fatty acid residues in the triglyceride molecules considerably affects the crystallization 

behavior of milk fat.  
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Some of di- and monoglycerides occur in fresh milk fat. Lipolysis increases their 

quantities. Diglycerides are predominantly apolar and do not differ much from 

triglycerides in properties. Monoglycerides, present in far smaller quantities, are 

somewhat polar; they are surface active and thus accumulate at an oil–water interface. 

Most lipolytic enzymes, including that of milk, especially attack the 1- and the 3-

position of the triglyceride molecule. This means that most monoglycerides have a fatty 

acid residue at the 2-position, and that most of the free fatty 

acids formed originate from the other positions, including the short-chain types that are 

predominantly in the 3-position.  

 
Table. 2.4. – Percentage of glycerides in milk fat. 
 

  % in milk fat 
Neutral glycerides 98.7 

Tryglycerides 98.3 

Diglycerides 0.3 

Monoglycerides 0.003 
 

2.4.2.3. Hydrocarbons 

Several hydrocarbons occur in milk in trace amounts. Of these, carotenoids are the most 

significant. In quantitative terms, carotenes occur at only trace levels in milk but they 

contribute 10-50% of the vitamin A activity in milk and are responsible for the yellow 

colour of milk fat. The carotenoid content of milk varies with breed and very markedly 

with season. The latter reflects differences in the carotenoid content of the diet (since 

they are totally derived from the diet); fresh pasture, is much richer in carotenoids than 

hay or silage (due to oxidation on conservation) or cereal-based concentrates. The 

higher the carotenoid content of the diet, the more yellow will be the colour of milk and 

milk fat.  
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2.4.2.4. Tocopherols 

Vitamin E is a generic term used to indicate tocopherols and tocotrienol, and α-

tocopherol has the greatest activity for humans. Vitamin E is a very effective 

antioxidant, protects the lipids (particularly polyunsaturated fatty acids) and membranes 

in the body against damage caused by free radicals. The role of vitamin E is of 

particular importance in the lungs where exposure of cells to oxygen is greatest. 

Vitamin E also exerts a protective effect on red and white blood cells. It has been 

suggested that the body has a system to regenerate active vitamin E (perhaps involving 

vitamin C) once it has acted as an antioxidant. The concentration of vitamin E in cows' 

milk is quite low (0.09mg per l00g) and is higher in summer than in winter milks. 

 

2.4.2.5. Sterols 

These compounds are found in the unsaponifiable fraction of milk lipids and consist 

mostly of cholesterol with some ∆7-cholesterol and β-Sitosterol. 

They are polycyclic alcohols having a secondary –OH group at position 3, and the 

presence of this group makes sterols more polar than triglycerides. Moreover, in milk 

fat globules, cholesterol, both free (90%) and esterified, is one of the constituents of 

the globule membrane. The occurrence of sterols in milk fat is about  0.3%. 

 

2.4.2.6. Phospholipids 

The phospholipids comprise approximately 1 % of the total lipid in bovine milk. While 

quantitatively minor, the ability of the phospholipids to form stable colloidal 

suspensions or emulsions in aqueous solution cause them to be important in the 
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formation and secretion of milk fat. They consist of a glycerol backbone on which one 

or two fatty acids and a phosphate residue with different organic groups may be linked 

Their physical properties as bipolar molecules and their relatively high concentration of 

unsaturated fatty acids also make them an important factor to consider during the 

storage and processing of milk. They are relatively susceptible to oxidation because of 

their polyunsaturated fatty acid content. As the total milk lipid increases in a milk 

product, so does the phospholipid concentration. However, the ratio of phospholipid to 

total lipid varies greatly. Skim milk contains the smallest concentration of phospholipid 

but the highest ratio of phospholipid to total lipid. The opposite relationship is seen in 

cream and butter. Most milk lipid exists as fat globules suspended in the aqueous phase 

of milk. The size of the milk fat globules varies from 0.1 to 2 p in diameter. The core of 

the globule is primarily TG, which is surrounded by the milk fat globule membrane 

(MFGM), as reported in figure 2.10. This membrane contains protein, glycoproteins, 

enzymes, phospholipids, and other polar materials. It is a major source of cholesterol 

and phospholipid in milk. The major glycerophospholipids are phosphatidylcholine, 

phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol. Sphingolipids 

are a group of phosholipids that consist of an a-polar sphingosine backbone on which a 

fatty acid is bound to form a ceramide, and it can contain a similar organophosphate 

group like choline (sphingomyelin) or a mono- or disaccharide (glycosphingolipids). 

Important dairy sphingolipids are sphingomyelin, glucosylceramide and 

lactosylceramide. 
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Figure. 2.10. – Schematic representation of a milk fat globule. 
 

Sphingolipids are known to exhibit various biological properties and are therefore 

important in human nutrition, such as, the capability to reduce the cholesterol uptake, 

and their inhibitory effect on colon 

cancer.  

 

Table. 2.5. – Percentage of Phospholipids, Cerebrosides, Gangliosides in milk fat 

  Alcohol Residue + Other Costituent % in milk fat 
Phospholipids Phospho group 0.8 

Ph. Choline Glycerol + Choline 0.27 

Ph. Ethanolammine Glycerol + Ethanolammine 0.26 

Ph. Serine Glycerol + Serine 0.03 

Ph. Inositide Glycerol + Inositol 0.04 

Sphingomyelin Sphingosine +  Choline 0.2 

Cerebrosides Sphingosine + Hexose 0.1 

Gangliosides Sphingosine + Hexose 0.01 
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2.4.2.7. Free fatty acids 

They occurrence of free fatty acids in milk fat is about 0.1% and lipolysis increases their 

amount. Especially the shorter acids are somewhat soluble in water. In water, the acids 

can, of course, dissociate into ions; their pK is about 4.8. In milk plasma, they are thus 

predominantly in the ionized form (i.e., as soaps), and these are much more soluble in 

pure water than the pure fatty acids. Fatty acids dissolve well in oil, though only in the 

nonionized form. Moreover, they tend to associate into dimers, by forming hydrogen 

bonds. The partition of the acids over the oil and water phases is rather intricate. All in 

all, the shorter acids (C4:0 and C6:0) are predominantly in the plasma, the longer ones 

(from C14:0 on) in the fat. The other acids are distributed between both fractions, 

though more go into the fat with decreasing pH. This is even more complicated because 

the fatty acids, especially the long-chain ones, are surface active and tend to accumulate 

in the oil–water interface. The distribution over the phases is of much importance 

because acids dissolved in the aqueous phase (in the form of soaps) — hence, the 

shorter acids — are responsible for the soapy-rancid flavor perceived after lipolysis. 

 

2.4.2.8 Lipo-soluble vitamins 

The fat-soluble vitamins are retinol (vitamin A), tocopherols (and related compounds, 

vitamin E), calciferols (vitamin D),  and phylloquinone (and related compounds, 

vitamin K). Since vitamin A and E were previously treated (see Hydrocarbon and 

Tocopherols), this part will concern on vitamin D and K.  

Unlike other vitamins, cholecalciferol (vitamin D,) can be formed from a steroid 

precursor, 7 dehydrocholesterol, by the skin when exposed to sunlight; with sufficient 

exposure to the sun, no preformed vitamin D is required from the diet.UV light (280-
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320 nm) causes the photoconversion of 7-dehydrocholesterol to pre-vitamin D3. This 

pre-vitamin can undergo further photoconversion to tachysterol and lumisterol or can 

undergo a temperature-dependent isomerization to cholecalciferol. At body temperature, 

this conversion requires about 28 h to convert 50% of previtamin D3, to vitamin D3. 

Thus, production of vitamin D, in the skin can take a number of days. Preformed 

vitamin D, is obtained from the diet. This latter, must undergo two hydroxylations to 

become fully active in liver and kidneys respectively. However, at least 37 metabolites 

of vitamin D, have been identified, but only 1,25-dihydroxycholecalciferol  

1,25(OH) 2D3 is the most biologically active metabolite of vitamin D,. The major form 

of vitamin D in both cows’ and human milk is 25-hydroxycholecalciferol 25(OH) 2D3. 

Whole cows’ milk contains only about 0.03 µg vitamin D per 100g. The principal 

physiological role of vitamin D in the body is to maintain plasma calcium by 

stimulating its absorption from the gastrointestinal tract, its retention by the kidney and 

by promoting its transfer from bone to the blood. Vitamin D acts in association with 

other vitamins, hormones and nutrients in the bone mineralization process. In addition, 

vitamin D has a wider physiological role in other tissues in the body, including the brain 

and nervous system, muscles and cartilage, pancreas, skin, reproductive organs and 

immune cells. 

The structure of vitamin K is characterized by methylnaphthoquinone rings with a side 

chain at position 3.Menaquinones are synthesized only by bacteria (which inhabit the 

human gastrointestinal tract and thus provide some of the vitamin K required by the 

body).Whole cows’ milk contains 0.4-1.8 µg vitamin K per 100g. The physiological 

role of vitamin K is in blood clotting and is essential for the synthesis of at least four of 

the proteins (including prothrombin) involved in this process. Vitamin K also plays a 
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role in the synthesis of a protein (osteocalcin) in bone. Vitamin K deficiency is rare but 

can result from impaired absorption of fat. Vitamin K levels in the body are also 

reduced if the intestinal flora is killed (e.g. by antibiotics). 

 

2.4.2.9 The fat in milk products 

Because the various lipids are unevenly distributed among the physical fractions of milk 

(Table 2.8), the fat composition of different milk products varies. The largest 

differences originate from variations in the amount of material from the fat globule 

membranes. Examples are given in table 2.6. Anhydrous milk fat is prepared from 

butter by melting it, and by separating and drying the oil layer obtained; its composition 

is virtually equal to the fat in the core of the milk fat globules. 

 

Table. 2.6. – Approximate content of lipids in some milk products 
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2.5. CHEMICAL ASPECTS 

Reference for this section:  20, 21. 

 

2.5.1. LIPOLYSIS 

Hydrolysis of ester bonds in lipids may occur by enzyme action or by heat and 

moisture, resulting in the liberation of free fatty acids from glycerides. Since edible 

animal fats are not usually refined, prompt rendering is of particular importance. The 

temperatures commonly used in the rendering process are capable of inactivating the 

enzymes responsible for hydrolysis. 

The release of short-chain fatty acids by hydrolysis is responsible for the development 

of an undesirable rancid flavour (hydrolytic rancidity) in raw milk. On the other hand, 

certain typical cheese flavors are produced by deliberate addition of microbial and milk 

lipases (endogenous). In contrast to animal fats, olive oils may have undergone 

substantial hydrolysis by the time the fruits are harvested, giving rise to significant 

amounts of free fatty acids; so, it may start while the fruit is still on the tree. The 

endogenous lipase does not manifest its activity until the fruit starts turning purple. 

Bacteria, yeasts and molds (that may grow on the fruit) elaborate their own lipases. If 

the fruit is stored before processing and especially if the storage results unsatisfactory, 

then the combined effect of the endogenous and microbial lipases may result in 

considerable rise of the acidity of the oil to the detriment of its quality. 

 

2.5.2. AUTOXIDATION 

Lipid oxidation in food systems is a detrimental process and is one of the major causes 

of food spoilage. It deteriorates the sensory quality and nutritive value of a product, 
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poses a health hazard and presents a number of analytical problems. It leads to the 

development, in edible oils and fat-containing foods, of various off flavours and off 

odours generally called rancid (oxidative rancidity, which render these foods less 

acceptable. In addiction, oxidative reaction can decrease the nutritional quality of food, 

and certain oxidation products are potentially toxic. On the other hand, a limited degree 

of lipid oxidation is sometimes desirable, as in aged cheeses. 

The term autoxidation is referred to the reaction with molecular oxygen via a self-

catalytic mechanism, which is the main reaction involved in oxidative deterioration of 

lipids. Although photochemical reactions have been known for a long time, only 

recently the role of photosensitized oxidation and its interaction with autoxidation 

emerged. In food systems lipids can be oxidized both by enzymic and non enzymic 

mechanisms. 

 

2.6. PROCESSING OF FATS AND OILS 

Reference for this section:  20, 21. 

 

2.6.1. PROCESSING OF FAT AND OIL 

Apart from some oils obtained by cold pressing, most of the oils obtained using 

expeller, screw or hydraulic presses, solvent extraction or by melting at elevated 

temperatures are not suitable for immediate consumption. Depending on the raw 

material and the oil recovery process, the oil contains polar lipids especially 

phospholipids, free fatty acids, some odor- and taste-imparting substances, waxes, 

pigments (chlorophyll, carotenoids and their degradation products), phenolic 

compounds, trace metal ions, contaminants and autoxidation products.  
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A refining process may comprise the following steps: vegetable lecithin removal, 

degumming, free fatty acid removal, bleaching and deodorization. All the undesired 

compounds and contaminants are removed. In practice, the refining steps used, depend 

on the quality of the crude oil and its special constituents. Moreover, the absence of 

oxygen, the avoidance of heavy metal contamination and the maintaining of processing 

temperatures as low and duration as short as possible, are precautionary misures that 

must be taken during the refining in order to avoid undesirable autoxidation and 

polymerization reaction. 

 

2.6.2. HYDROGENATION 

Liquid oils are supplied mostly from natural sources. However a great demand exists for 

fats which are solid or semi-solid at room temperature (such as shortenings and 

margarine). The process that convert liquid oil into solid fat is called “fat hardening” 

and consists in the addiction of hydrogen to double bonds in the fatty acid chains. In 

practice, the oil is first mixed with a suitable catalyst (e.g. nickel), heated to the desired 

temperature (140°-225°), then exposed, while stirred, to hydrogen at pressure up to 60 

psig. The course of the hydrogenation reaction is usually monitored by determining the 

change in the refractive index, strictly related to the degree of saturation of the oil. 

When the desired end point is reached, the hydrogenated oil is cooled and the catalyst is 

removed by filtration. During hydrogenation, not only some of the double bonds are 

saturated, but some may also be relocated and/or transformed from the usual cis to the 

trans configuration. Partial hydrogenation thus may result in the formation of a 

relatively complex mixture of reaction products, depending on which of the double 
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bonds are hydrogenated, the type and degree of isomerization, and the relative rates of 

these various reaction. 

 

2.6.3. INTERESTERIFICATION 

It has been mentioned that natural fats do not contain a random distribution of fatty 

acids among the glyceride molecules. The tendency of certain acids to be more 

concentrated at specific sn position varies from one species to another an is influenced  

by factors such as environment and location in the plant or animal. The physical 

characteristic of a fat are greatly affected not only by the nature of constituent fatty 

acids but also by their distribution in the triacilglycerol molecules. Indeed, unique fatty 

acid distribution patterns of some natural fats may limit their industrial application. 

Interesterification is one of the processes that can be applied to improve the consistency 

of such fats and to improve their usefulness, involving a fatty acids rearrangement  so 

they become distributed randomly among the triacylglycerol molecules of the fat.
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3.1. SUMMARY AND KEYWORDS 

FDA's final rule on trans fat labeling requires that amounts of trans fat per serving be 

listed on the nutrition facts panel. AOCS Official Method of Analysis Ce 1h-05 can be 

used for analysis of trans fatty acids (TFA) in vegetable or non-ruminant animal oils 

and fats. Difficulties in quantitating low amounts of TFA and partial co-elution of cis- 

and trans- 18:1 fatty acids suggest the need for fractionating TFA before gas 

chromatographic (GC) analysis. Silver ion-HPLC (Ag+-HPLC) and silver ion solid 

phase extraction (Ag+-SPE) have been used for separating the trans-18:1 fatty acid 

methyl esters (FAME). Representative samples of fats and oils were studied. Trans 11-

18:1 fatty acid n-butyl ester (FABE) was included as an internal standard. The TFA 

content was also measured by direct Ag+-HPLC analysis, using 3 ChromSpher 5 Lipids 

silver ion loaded columns in series with 0.1 % MeCN in hexane mobile phase at 1.0 

mL/min. and 196 nm UV detection. Ag+-HPLC fractionation was carried out using the 

same mobile phase at 3 mL/min and a ChromSpher 5 Lipids semipreparative column. 

Fractionation of TFA prior to GC analysis simplified the interpretation of 

chromatograms, but provides quantitation only of trans-18:1 FAME. Results of the 

analysis of 10 samples of different oils and fats obtained by the different techniques will 

be described. 

 
Keywords: trans-fatty acids, gas chromatography, Ag+-HPLC, Ag+-SPE, ATR-FT-IR 
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3.2. INTRODUCTION 

Interest in quantitation trans fat has increased following addition of the trans fat content 

to the Nutrition Facts panel on food labels. Trans fat is calculated by adding the content 

of all the fatty acids with at least one trans double bond (TFA), excluding fatty acids 

with conjugated double bonds as conjugated linoleic acid (CLA). After extracting the 

lipid fraction from food, TFA are derivatized into fatty acid methyl esters (FAME) and 

quantitated by gas chromatography (GC) using long polar capillary columns (1). The 

interpretation of the FAME separation is often particularly complex, because TFA are 

not completely separated from other fatty acids present in oil and fats. An alternative 

approach is the application of silver ion high performance liquid chromatography (Ag+-

HPLC). The TFA as FAME can either be directly quantitated by Ag+-HPLC or 

fractionated prior to GC analysis (2, and 3). This technique is currently limited to the 

quantitation or fractionation of the trans-18:1 fatty acids that generally constitute more 

than 95% of the trans fat in fats and oils (3). Attenuated total reflection FT-IR (ATR-

FT-IR), measuring the specific IR absorption of trans double bonds at 966 cm-1, 

provides quantitation of total trans fat without giving any information on the content of 

individual fatty acids (4). An advantage ATR-FT-IR is that it can be applied to the 

direct quantitation of TFA in neat fats and oils, thus eliminating the derivatization step. 

In this study, we compared the analysis of 10 different fats and oils using different 

techniques of analysis. 
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3.3. MATERIALS AND METHODS 

3.3.1. SAMPLES PREPARATION 

Ten samples of common fats and oils were obtained from the American Oil Chemist 

Society. The samples were methylated according to Official Method AOCS Ce 2-66. 

For Ag+-HPLC analysis and Ag+-HPLC fractionation, 1 mg of t11-18:1 FABE as 

internal standard was added to c.a. 20-30 mg neat FAME of each sample. t11-18:1 

FABE was purchased from Nu Chek Prep, as a special preparation. 

 

3.3.2. ANALYSIS BY GAS CHROMATOGRAPHY 

Samples (Figure 3.1.) were analyzed with an Agilent 6890N gas chromatograph 

equipped with an FID detector and a Varian CP-Sil 88 capillary column (Varian, 100 m 

x 0.25 mm i.d., 0.2 µm thickness). The oven was maintained at 180°C, the detector at 

300°C, and the injection port at 250°C. Hydrogen as carrier gas was eluted at 1.0 

ml/min and the split ratio was  maintained at 1:200. 

 

3.3.3. ANALYSIS BY AG+-HPLC 

Analysis were performed with a Waters 2695 separations module equipped with a  

Waters 2996 PDA detector and a Waters 2420 ELSD detector. Three silver ion HPLC 

columns (ChromSpher 5 Lipids,  4.6 x 250 mm, 5 µm particle size, Varian) were used in 

series and maintained at 20°C in a water circulating bath. The mobile phase was 0.15% 

MeCN in hexane at 1.0 ml/min., and the injection volume was 5 µl. The UV signal was 

acquired between 190 and 300 nm. Chromatograms for purpose were extracted at 203 

nm (Figure 3.2.). 
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3.3.4. AG+-HPLC FRACTIONATION FOLLOWED BY GC ANALYSIS 

Fractionation was achieved using a Waters Delta Prep 4000 preparative HPLC equipped 

with a Waters 717 Plus autosampler and a Waters 2996 PDA detector. 

 A semi-preparative ChromSpher 5 Lipids column (10 x 250 mm, 5 µm particle size, 

Varian) was maintained at room temperature. The mobile phase was 0.1% MeCN in 

hexane at 3.0 ml/min. Fractions were collected manually. Collection times were 

adjusted to compensate for the drift in the TFA retention times (Figure 3.3.). 

 

3.3.5. ATTENUATED TOTAL REFLECTION FT-IR 

Samples as pure fat or oil were analyzed with a Varian (Randolph, MA) FTS 7000e IR 

spectrometer controlled by Resolution Pro software (Figure 3.4.). Fourier transform 

(FT) IR spectra  were collected between 4000 to 600 cm-1 at a resolution of 4 cm-1.  

256 scans were acquired for each sample (approximately 4 min), and the signal 

averaged. A reference background spectrum was measured for air. A PIKE (Madison, 

WI) heated single reflection diamond ATR cell was used, maintained at 65°C. The 

height of the negative second derivative of the 966 cm-1 band was measured. The 

instrument was calibrated in the interval 0-100% TFA using mixtures of neat tri-elaidin 

(TE) in tri-palmitin (TP). TE and TP were supplied by Nu Check Prep, Inc. (Elysian, 

MN). 

 

3.4. RESULTS AND DISCUSSION 

Table 3.1. shows the comparison of the quantitation of TFA in 10 samples 

representative of the lipid fraction of foods, fats and oils available in North American 
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markets.  ATR-FT-IR over-estimated trans fat content, compared with GC, in samples 

with less than 1% trans fat. Direct analysis by Ag+HPLC can quantify only trans-18:1 

FAME, and is not suitable for determining the total trans fat content according to 

current food labeling regulations. The Ag+HPLC fractionation followed by GC is also 

limited to the quantitation of  trans-18:1 FAME and showed higher limits of detection 

compared to direct GC analysis.  At this time, for samples containing 1% or less trans 

fat, GC appears to be the most suitable technique. 
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Table 3.1 - Comparison of the Trans fat contentas % of total fat in ten samples determined by four teqniques. 
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Figure 3.1. -  Partial gas chromatogram of a partially idrogenated oil sample.
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 Figure 3.2. – Ag+-HPLC  analysis of a partially hydrogenated oil sample. 
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Figure 3.3. - Ag+-HPLC fractionation of a partially hydrogenated oil sample, followed by GC analysis. 
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Figure 3.4. - Attenuated Total Reflection FT-IR spectra of the calibration solution in the interval 1-5% trans fat. The height of the negative 

second derivatative of the 966 cm¯¹ band was measure
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4.1. SUMMARY AND KEYWORDS 

The experiment was conducted on Reggiana cattle over an eight months period in 2005.  

By integrating extruded whole linseed flour (300 g/d) to the basal ration (fresh or 

preserved forage) which changes according to the season, the possibility to modify both 

the milk fatty acid composition in general, and the CLA content (Conjugated Linoleic 

Acids) in particular, has been confirmed. The principal and statistically significant 

results find that Rumenic Acid (C18:2  c9-t11) and Vaccenic Acid (C18:1 trans-11) 

have risen up to 45% and 47% respectively on the milk fat content, subsequent to the 

extruded whole linseed flour administration. Moreover the results confirm the 

correlation between these two fatty acids in milk. However, saturated and 

monounsaturated fatty acids (SFA, MUFA) are not suitable to be modified, with the 

exception of the monounsaturated Oleic Acid that increases during the extruded whole 

linseed flour integration and decreases when it is suspended. In conclusion, it is possible 

to increase the CLA content in milk and dairy products and to improve their nutritional 

values in human nutrition through an appropriate and targeted cattle’s ration integration. 

 
Keywords: cow’s milk, Conjugated Linoleic Acid (CLA), rumenic acid (C18:2  c9t11), 

vaccenic acid (C18:1 trans-11). 
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4.2. INTRODUCTION 

It is well known how many efforts have been made so far to improve the fatty acids 

composition in vegetable oils. However, not enough research concerning animal fat and 

dairy products has been conducted, despite the concern of consumers. Only in the last 

few years a serious investigation to enhance the fatty acid profile in milk and dairy fat) 

has been started even in our country, achieving interesting results that lead the research 

to a prosecution of this route.  In fact, an increasing number of studies and researches 

aimed to the beneficial effects played from some of the Essential Fatty Acids have been 

risen. One of the most important in this group is represented by Linoleic Acid (C18:2 

cis-9, cis 12); such fatty acid has to be introduced through a proper diet cause of human 

incapacity for an endogenous production. Linoleic Acid is considered the forerunner of 

all the CLA (Conjugated Linoleic Acids), a generic term used to describe positional and 

geometric isomers of octadecadienoic fatty acids containing conjugated double bonds 

(1). The cis-9, trans-11 CLA (rumenic acid) is “the one that unequivocally shows 

anticarcinogenic activity with animal models” (1-7) as well as positive biological effects 

against others pathologies (6-17). Furthermore, unlike other isomers that have 

exogenous origin because formed by Butyrivibrio Fibrisolvens, which is widely 

presents in ruminant diet, rumenic acid shows to have an endogenous source (in the 

mammary gland and adipose tissue) from the conversion of vaccenic acid t-11 C, 18:1 

as a consequence of  Delta-9 desaturase enzyme (3-6, 12, 15, 18-22). CLA content in 

ruminant milk and dairy products appears to be higher than in beef, and the cis-9, cis 12 

configuration represents the main isomer from 80% to 90% (3, 6, 7, 14, 15, 18, 21, 23-

26). The natural variation of CLA content depends on several factors including the 

seasonal trend (1, 7, 27-30) the diet, lactation phase, and the breed (4, 6, 15, 22, 31, 32). 
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Thus, animal scientists have set up diets and food strategies for ruminants oriented to 

increase the content of these fatty acids in milk and, thereby, in dairy products (4, 6, 10, 

15, 19-2131, 33-36), most likely modifying the food composition (14,15, 18, 22, 25, 26, 

28, 31, 35, 37-42). Then The purpose of the present work has been to verify the 

possibility to modify both the milk fatty acid composition and the CLA content, by 

changing the diet as the basal ration (fresh or preserved forage), by integrating extruded 

whole linseed flour, and by comparing results we achieved with analogous experiments. 

 

4.3. MATERIALS AND METHODS 

4.3.1. SAMPLES COLLECTION 

The present work was conducted on a  Reggiana cattle farm, located in the district of 

Reggio Emilia, in the Parmigiano Reggiano yield area. The normal and usual cows 

rationing has been modified by integrating extruded whole linseed flour (300 g/die) to 

both the constant concentrated fodder (1kg/3L  milk yield) and to the basal ration (fresh 

or preserved forage) which changes according to the season, and achieved with the 

collaboration of the farm personnel. In table 4.1. the experimental scheme reports what 

is explained above  

According to the different diets we adopted in the respective experimental periods, from 

the milk yield obtained and delivered to the cheese factory later, 150 mL of outcrop 

cream has been collected in a specific container after has being mixed for 15 minutes. 

Moreover, Parmigiano Reggiano cheese was produced in a dairy factory from the 

massal milk yield following the production's technical policy. The sampling were 

carried out following the specific policy FIL-IDF (44), and at 6,12, and 24 month of 

seasoning 
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4.3.2. SAMPLES PREPARATION 

Milk cream samples were collected and stored at -20°C until analysis. About 0.5 g of 

cream was placed in a 1000 ml separatory funnel and 50 ml diethyl ether (DE) was 

added. The solution was mixed one minute, 50 ml of 50:50 petroleum ether (PE) /DE 

(% by volume) was added, was mixed for one minute, then 50 ml of PE was added 

before one minute of energetic mixing. Two hundred ml of saturated sodium chloride 

solution was added and the separator funnel was gently mixed for one minute. The 

organic phase (upper) was recovered and filtered over anhydrous sodium sulphate. The 

extraction was repeated, and the extracts were combined. The organic solvent was 

removed in a stream of nitrogen, and the extract was stored at -20°C under nitrogen. 

The preparation of the methyl esters was performed following the modified procedure 

of Cruz-Hernandez et al. About 20 mg of dry fat was put in a test tube and 2 ml of 

hexane was added, followed by 40 µl of methyl acetate and 300 µl of 0.5N sodium 

methoxyde in methanol ( #33080, Supelco Inc., Bellefonte, PA). The tube was purged 

with nitrogen, mixed, heated 10 minutes at 50C in a silicon oil bath, and then frozen.  

180 µl oxalic acid (0.5 g in 15 mL di ethyl ether) was added and thoroughly mixed, then 

the sodium-oxalate precipitate was separate by centrifugation and the hexane fraction 

was filtered through anhydrous sodium sulphate. 

The cheese samples obtained from cows fed with two sperimental diet (Fresh 

Forage/Fresh Forage and extruded whole linseed flour), were sampled and stored at  

-40˚C until analysis. Fat was extracted following the Rose-Gottlieb method modified by 

Secchiari (45). According to Rovellini and Cortesi (46) fat samples were transesterified 

with 1.0 M sodium benzyloxyde in benzyl alcohol before the analysis by HPLC-DAD. 
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4.3.3. GAS CHROMATOGRAPHIC QUANTITATION 

FAME were analyzed with an Agilent 6890  gas chromatograph (Hewlett Packard, 

Wilmington, DE) equipped with a CP Sil 88 fused silica capillary column (100 m x0.25 

mm (i.d.), 0.2-µm film thickness; Varian, Inc.), a FID detector, and a split injector.  

Hydrogen was used as carrier at the constant flow rate of 1.0 min/min. The FID detector 

was maintained at 300°C with air flow rate of 400 ml/min, hydrogen flow rate of 30 

ml/min, and helium (make up gas) flow rate of 30 ml/min. The split injector was 

maintained at 250°C with the split ratio of 1:100. The temperature program was as 

follow: 4 minutes at 80°C, ramp 7°C/min to 180°C maintained 30 minutes, ramp 4°C 

/min to 225°C maintained 20 minutes. The quantitation was based on FID theoretic 

response factors, from AOCS Ce-1h05 Official Method, and the fatty acids percent 

composition was calculated considering 100% the sum of the corrected areas. 

 

4.3.4. HPLC ANALYSIS 

Cheese samples were analyzed by HPLC-DAD equipped with a Spherisorb ODS-2 

column (5 µm, 4,6 mm x 25 cm, 100 Å), 1 ml/min flow rate. Chromatograms were 

recorded at 255nm. 

 

4.3.5. STATISTYCAL ANALISYS 

Calculation and statistics were performed with the Tukey test (version 6.0) to evaluate 

the different levels of fatty acids in cream samples, according to the diet we adopted. 
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4.3.6. CHEESE SENSORY ANALISYS  

After 24 month of seasoning, a trained panel examinated cheese samples by sensory 

analisys. The panel was composed of  7 persons, members of TINVAL society, spin-off 

Alma Mater Studiorum University of Bologna. Cheese samples were tested by judges at 

16°C following a random order, and served in a parallelepiped (L:50/80 mm; h:15mm; 

w:15mm) (47). Each judge evaluated either the samples structural parameters and the 

sense of smell/taste. Mineral water and crackers were used as means of counteraction 

between each test. The sensory profile was defined applying the Etana model (48), and 

processing the data with Microsoft Excell 2003, ANOVA, and SPSS for Windows 

(vers. 13.0, SPSS Inc., Chicago, Illinois, USA). 

 

4.4. RESULTS AND DISCUSSION 

Tables 4.1.-4.4. show the results obtained from the samples analysis carried out in 

duplicate. Sixty seven fatty acid have been separated, identified and quantified; nineteen 

are saturated, 17 monounsaturated, 19 poliunsaturated  and 12 are mono and 

diiunsaturated trans. From table 4.2. rise that 17 of the 19 fatty acids identified and 

quantified as saturated do not change their content, while the C4 and the C6 

significantly decrease their percentage parameters (P<0,05) when the linseed flour is 

introduced. As reported in table 4.3. most of the 17 monounsaturated fatty acids do not 

undergo a change with the linseed flour integration while the only exception is 

represented by the linoleic acid which increases considerably. Table 4.4. shows the 

variation of the 19 poliunsaturated fatty acids.  By administering a linseed flour 

enriched diet, a percentage gain of rumenic acid (C18:2  c9-t11) and a downward trend 

of arachidonic acid (C20:4) can be observed, while normalize their self when the linseed 
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flour integration is suspended. The variation of rumenic acid appears to be statistically 

significant (P<0,05). Relatively to the unsaturated fatty acids with a trans configuration, 

as reported in table 4.5., the results point out another relevant matter:  an increase of 

vaccenic acid (C18:1 trans-11) level when preserved forage is administered instead of 

fresh forage, and even when the extruded whole linseed flour is integrated to the fresh 

forage ration; the trans vaccenic level normalizes itself when the linseed integration is 

suspended. The latter observation is also valid for the elaidinic acid (C18:1  trans-9).  

Figure 4.1. shows the full chromatogram with the overall fatty acids separation and 

identification, while figure 4.2. and 4.3. report the chromatograms with the cis/trans 

C18:1 fatty acids elution area (i.e. CLA), which is our principal purpose in this 

investigation. On figure 4.4. the course of the content of rumenic and vaccenic acid 

during the test period can be noticed. Moreover, figure 4.5. reports the principal 

variations of the 4 fatty acid groups observed. Thus, this investigation demonstrates the 

possibility to increase noticeably the CLA content in milk fat, by integrating extruded 

whole linseed flour (300 g/die) to the basal ration of the cows. Higher levels of CLA in 

milk fat have been found by M. Monici et al (14), who carried out an experimental 

dietary study over 2000 cows to increase the ω3 (EPA and DHA) levels in milk fat. 

They were able to achieve 1,308 g of CLA/100 g of fat, versus 1,160 g of CLA/100 g of 

fat obtained in our research. We have to point out 2 investigations of Strocchi et al. (28, 

29) from 1967 (40 years ago), where  200 butter samples from Emilia has been studied;  

they firstly separated and identified more than 30 fatty acids, and afterwards they 

established a positive correlation between the content in trans-monounsaturated 

(vaccenic acid) and conjugated-diens (i.e. CLA). In these studies, the authors noticed 

how the suchlike fatty acids composition of butters from the Parmigiano Reggiano yield 
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area differs from the fatty acid profile of butters collected in others district of Emilia 

Romagna, even though it does not coincide with the most recent study from Chiavari et 

al. (49). Lastly, Capella et al. (50) in 1974 reported the most important acquisition 

about 71 fatty acids identified with different analytical techniques. 

Moreover, a preliminary study on the content of the OFA in Parmigiano Reggiano 

cheese sample collected at 6, 12, 24 month of seasoning was conducted. In this case 

cheese samples from two experimental diets were analyzed: 1) Fresh Forage 2) Fresh 

Forage with extruded whole linseed flour integration . 

Since the CLA diary fat enrichment of the cows under study, during the processing was 

equally distributed between butter and cheese, we analyzed the OFA in the Parmigiano 

Reggiano cheese during the ripening. The data obtained are reported in figure3. More 

precisely, the purpose of this investigation was to verify whether the extruded whole 

linseed flour might be involved in the increase of the OFA content, because it could 

modify the lipid class in general and, more precisely the MONO- and POLI- unsatured 

fraction, which is strongly sensible to the oxidation (51). The lipid oxidation products 

are involved on the development of atherosclerosis process even though not much is 

known for the human health about their assimilation through the diet (52, 53). The 

results obtained are reported in table 4.6. and figure 4.6. 

Furthermore, a sensory evaluation of the same Parmigiano Reggiano cheese samples 

from the two experimental diets (with and without integration) was conducted. The 

results did not show so relevant differences between samples. Although, between the 

sensory descriptor considerated in the Etana model (figure 4.7.), two of them showed 

significant differences (P>0,001) relatively to the sour and to the friability. Their values 
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resulted to be lower in cheese samples from the experimental diet with extruded whole 

linseed flour integration. 

 

4.5. CONCLUSIONS 

Over the last eight years, more than 2,600 scientific articles about CLA in dairy 

products have been published. The increasing interest in CLA arise from the remarkable 

health and dietary effects in human nutrition. 

In this work, conducted over an 8 months period on a Reggiana cow farm (located in the 

district of Reggio Emilia in the Parmigiano Reggiano yield area), important 

considerations can be made by examining the statistical results.  

First of all, according to the literature (25, 26, 40) by administering linseed flour 

enriched diet to dairy cows, the possibility to increase the rumenic acid content in milk 

has been confirmed. In order to point out the tight correlation between rumenic acid and 

trans-vaccenic acid when linseed flour is integrated to the cows ration, an increment of 

47% and 49% respectively has been seen in milk fat (3, 6, 15, 18-20, 22, 36, 40). This 

first result is particularly interesting especially for the entity of rumenic acid 

quantitative variation. On the other hand, the increment in trans-vaccenic acid has to be 

seen negatively since both USA and EU health care are debating on low total trans fatty 

acid (TFA) intake, even though we believe that is an important value to be pointed out. 

TFA are generally present in food products containing hydrogenated fat and, as a 

consequence, they influence both the low and high density lipoprotein levels (LDL, 

HDL), increasing the risk coronary heart disease  (54-56).The second result, closely 

related with the first, concern an increment of 36% of the total TFA in milk by 
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introducing linseed flour in cow’s diet, while it undergoes a decrease of 22% when the 

linseed integration has been suspended. 

Lastly, the investigation about the OFA content in the Parmigiano Reggiano cheese 

samples, shows an interesting result: as it might be thought, instead of being constant or 

increasing in the amount, the OFA content decreased during the ripening, and it reduced 

further in cheese samples where cows were fed with extruded whole linseed flour 

integration. These results can be explained considering that the state of ripening induce 

to create such a strong reducing system inside the cheese, preventing the formation of 

the oxidized fatty acids. 
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TABLES 

 

Table 4.1. – Experimental scheme 

Period Food ration Observations 

25 March - 29 April Preserved forage (hay + MCI*) 4 

30 April - 31 May Fresh forage + MCI 4 

15 August - 30 September Fresh forage + MCI + extruded whole linseed 
flour (300 g/d) 7 

12 October - 9 November Fresh forage + MCI after suspension of 
extruded whole linseed flour integration 3 

 
 
 
 Table 4.2. – Percentage composition  of saturated fatty acids and branched chain by 

administering different diets. 

Unsatured Preserved forage Fresh forage Linseed flour 
integration Fresh forage 

C4:0 3,55 b ± 0,10 3,52 b ± 0,04 3,20 a ± 0,08 3,26 a ± 0,05 
C5:0 0,02 a ± 0,01 0,02 a ± 0,00 0,02 a ± 0,00 0,02 a ± 0,00 
C6:0 2,12 b ± 0,03 2,08 b ± 0,07 1,90 a ± 0,02 1,97 a ± 0,03 
C7:0 0,02 a ± 0,00 0,02 a  ± 0,00 0,02 a ± 0,00 0,02 a ± 0,00 
C8:0 1,25 b± 0,02 1,22 b ± 0,05 1,11a ± 0,03 1,19 b ± 0,03 
C9:0 0,02 a ± 0,00 0,02 a ± 0,00 0,02 a ± 0,00 0,02 a ± 0,00 
C10:0 2,73 b ± 0,05 2,67 b ± 0,13 2,38 a ± 0,07 2,64 b ± 0,05 

C11:0 0,31b ± 0,01 0,30 a,b ± 0,01 0,28 a ± 0,01 0,31 a,b ± 0,00 

C12:0 +11:1 3,21b ± 0,06 3,13 b ± 0,16 2,79 a ± 0,09 3,12 b ± 0,05 

C13:0 +12:1 0,17 b ± 0,01 0,17 b ± 0,01 0,15 a ± 0,01 0,17 b ± 0,00 

C14:0 11,15 b ± 0,08 10,96 b ± 0,49 10,20 a ± 0,22 10,94 b ± 0,11 
C15:0 1,26 a  ± 0,02 1,27 a ± 0,04 1,20 a ± 0,05 1,26 a  ± 0,03 
C16:0 29,07 b ± 0,66 28,64 b ± 1,08 25,74 a  ± 0,85 27,76 b ± 0,07 

C17:0 0,76 a,b ± 0,02 0,79 b ± 0,02 0,73 a  ± 0,02 0,77 a,b ± 0,01 
C18:0 10,54 a ± 0,22 11,52 b ± 0,31 12,56 c ± 0,33 11,17 a,b ± 0,19 
C19:0 0,03 a ± 0,05 0,11 a ± 0,00 0,15 a ± 0,18 0,08 a ± 0,03 

C20:0 0,20 a,b ± 0,01 0,21 b,c ± 0,01 0,22 c ± 0,01 0,18 a ± 0,01 

C22:0 0,08 a ± 0,01 0,10 a ± 0,01 0,09 a ± 0,01 0,08 a ± 0,01 

C24:0 0,07 a ± 0,00 0,07 a ± 0,00 0,07 a ± 0,01 0,07 a ± 0,00 

Different letters indicate significant differences (Tukey test with p<0,05). 



 

71 

Table 4.3. – Percentage composition  of mono-unsaturated fatty acids (cis + trans) by 
administering different diets. 

Mono-unsatured Preserved forage Fresh forage Linseed flour 
integration Fresh forage 

C13:1 0,00 ± 0,00 0,00 ± 0,00 0,00 ± 0,00 0,00 ± 0,00 
C14:1 0,90 a,b ± 0,03 0,87 a,b ± 0,03 0,83 a ± 0,05 0,93 b ± 0,03 
C15:1 0,01 a  ± 0,01 0,01 a ± 0,01 0,01 a ± 0,00 0,01 a ± 0,00 

C16:1 c9 1,31 b ± 0,02 1,26 a,b ± 0,03 1,17 a ± 0,06 1,32 b ± 0,04 
C17:1 c 0,27 a,b ± 0,01 0,27 a,b ± 0,01 0,25 a ± 0,01 0,28 b ± 0,01 

C18:1 c9 +t15 20,91 a ± 0,34 21,44 a ± 0,54 22,62 b ± 0,50 21,85 a,b ± 0,57 

C18:1  c11 0,55 a ± 0,01 0,56 a ± 0,03 0,55 a ± 0,02 0,45 a ± 0,20 

C18:1  c12 0,26 a ± 0,01 0,27 a ± 0,01 0,31 a ± 0,02 0,32 a ± 0,16 

C18:1  c13 0,07 a ± 0,01 0,08 a ± 0,00 0,09 a ± 0,01 0,05 a ± 0,04 

C18:1  c15 0,11 a ± 0,01 0,12 a ± 0,00 0,14 a ± 0,06 0,07 a ± 0,05 

C19:1 c7 0,11 b ± 0,00 0,11 b ± 0,00 0,06 a ± 0,12 0,03 a,b ± 0,06 

C20:1 c5 0,01 a ± 0,01 0,01 a ± 0,01 0,01 a ± 0,02 0,02 a ± 0,00 

C20:1 c8 0,14 a ± 0,01 0,15 a ± 0,01 0,12 a ± 0,05 0,14 a ± 0,01 

C20:1 c11 0,05 a ± 0,01 0,05 a ± 0,00 0,06 a ± 0,03 0,05 a ± 0,00 

C22:1 0,01 a ± 0,00 0,01 a ± 0,01 0,02 a ± 0,00 0,02 a ± 0,01 

C24:1 0,01 a ± 0,00 0,02 a ± 0,01 0,01 a ± 0,01 0,01 a ± 0,00 

Different letters indicate significant differences (Tukey test with p<0,05). 

 
Table 4.4. – Percentage composition  of poly-unsaturated fatty acids by administering 

different diets. 

Poly-unsaturated Preserved forage Fresh forage Linseed flour 
integration Fresh forage 

18:2 c9-c12 2,15 a ± 0,18 2,13 a ± 0,05 2,14 a ± 0,08 2,19 a ± 0,02 

C18:2 c9-t11 0,80 a ± 0,08 0,80 a ± 0,02 1,16 b ± 0,07 0,94 a ± 0,06 

C18:2 t9-c11 0,04 a ± 0,01 0,05 a ± 0,03 0,04 a ± 0,02 0,04 a ± 0,01 

C18:2 t11-c13 0,01 a ± 0,01 0,02 a ± 0,01 0,06 b ± 0,03 0,03 a ± 0,00 

C18:2 t11,t13 0,00 a ± 0,01 0,01 a ± 0,02 0,00 a ± 0,01 0,00 a ± 0,00 
C18:2 t9,t11,t10,t12 0,02 a ± 0,01 0,01 a ± 0,01 0,03 a ± 0,02 0,01 a ± 0,01 

C18:2 c9-t13 0,18 a ± 0,02 0,19 a ± 0,01 0,26 b ± 0,02 0,21 a ± 0,01 

C18:3 c-c-c  n-3 0,75 a ± 0,07 0,72 a ± 0,05 0,96 b ± 0,10 0,78 a ± 0,05 

C18:3 c-c-c  n-6 0,05 b ± 0,00 0,04 b ± 0,00 0,03 a ± 0,01 0,04 a,b ± 0,00 

C20:2 0,03 a ± 0,00 0,03 a ± 0,00 0,03 a ± 0,01 0,03 a ± 0,00 

C20:3 n-3 0,02 a ± 0,00 0,02 a ± 0,00 0,01 a ± 0,01 0,02 a ± 0,00 

C20:3 n-6 0,11 a ± 0,01 0,11 a ± 0,01 0,10 a ± 0,01 0,11 a ± 0,01 

C20:4 0,15 b ± 0,00 0,15 b ± 0,01 0,11 a ± 0,04 0,14 a,b ± 0,01 

C20:5 0,06 a,b ± 0,00 0,07 b ± 0,00 0,05 a ± 0,02 0,06 a,b ± 0,00 

C22:2 0,03 a,b ± 0,00 0,04 b ± 0,01 0,03 a ± 0,02 0,04 b ± 0,01 

C22:3 0,00 a ± 0,01 0,00 a ± 0,00 0,00 a ± 0,00 0,00 a ± 0,00 

C22:4 0,02 a ± 0,00 0,03 a ± 0,00 0,02 a ± 0,01 0,02 a ± 0,00 

C22:5 0,12 a ± 0,00 0,12 a ± 0,00 0,11 a ± 0,01 0,12 a ± 0,01 

C22:6 0,00 a ± 0,00 0,01 a ± 0,01 0,01 a ± 0,02 0,01 a ± 0,00 

Different letters indicate significant differences (Tukey test with p<0,05). 
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Table 4.5. – Percentage composition  of mono and di-unsaturated trans fatty acids by 
administering different diets. 

Unsatured trans Preserved forage Fresh forage Linseed flour 
integration Fresh forage

C16:1 t 0,08 a  ± 0,01 0,08 a  ± 0,00 0,11 a ± 0,04 0,10 a ± 0,00 
C18:1 t4 0,02 a  ± 0,00 0,02 a  ± 0,00 0,03 b  ± 0,00 0,02 a  ± 0,00 
C18:1 t5 0,02 a  ± 0,01 0,02 a  ± 0,00 0,02 a  ± 0,01 0,01 a  ± 0,01 

C18:1 t6-8 0,21 a ± 0,01 0,22 a ± 0,00 0,28 b  ± 0,01 0,23 a  ± 0,02 
C18:1 t9 0,30 a ± 0,01 0,32 a,b ± 0,00 0,35 b  ± 0,03 0,31 a ± 0,01 

C18:1 t10 0,32 a  ± 0,03 0,34 a ± 0,03 0,31 a  ± 0,03 0,32 a ± 0,01 
C18:1 t11 1,68 a ± 0,06 1,80 a,b ± 0,03 2,65 c  ± 0,18 2,06 b ± 0,02 
C18:1 t12 0,26 a  ± 0,02 0,27 a  ± 0,00 0,36 b ± 0,03 0,26 a  ± 0,01 
C18:1 t16 0,30 a ± 0,14 0,32 a,b ± 0,01 0,51 b ± 0,06 0,30 a,b ± 0,16 

C18:2 t9,t12 0,00 a ± 0,00 0,00 a ± 0,00 0,02 a ± 0,02 0,00 a ± 0,00 

C18:1 t13+t14 (+c6-8) 0,62 a ± 0,02 0,68 a ± 0,01 0,89 b ± 0,06 0,66 a ± 0,03 
C18:2 c9-t12 0,24 a ± 0,10 0,10 a ± 0,01 0,19 a ± 0,14 0,16 a ± 0,13 
C18:2 t9-c12 0,10 a ± 0,01 0,12 a ± 0,01 0,28 b ± 0,13 0,20 a ± 0,04 

Different letters indicate significant differences (Tukey test with p<0,05). 
 

 

Table 4.6. – Trend of oxidized fatty acids (OFA) in 4 moulds of Parmigiano Reggiano 
cheese at 6,12 and 24 months of ripening in relation to food ration (mg OFA /100 
mg of lipids). 

Months Food ration 
6        12 24 

Diet with  fresh forage  4,15 ± 1,15      0,81 ± 0,04 1,39 ± 0,24 

Diet with  fresh forage 4,44 ± 1,26 0,93 ± 0,01 0,92 ± 0,06 

Extruded whole linseed flour integration 3,23 ± 0,92 0,64 ± 0,60 0,49 ± 0,38 

Extruded whole linseed flour integration 3,38 ± 0,91 0,75 ± 0,88 0,59 ± 0,22 
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Figure 4.1. - Chromatogram of fatty acid
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Figure 4.2. – Partial chromatogram of cis/trans-18:1 acids. 
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Figure 4.3. - Partial chromatogram of CLA. 
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Figure 4.4. - Effect of linseed flour integration: vaccenic acid and rumenic acid variations by varying cow’s diet (■ trans vaccenic acid 

percentage; ♦ rumenic acid percentage). 
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Figure 4.5. - Effect of linseed flour integration: variation of acidic composition: ( a: preserved forage; b): fresh forage; c) enriched 
extruded whole linseed flour; d) fresh forage, non enriched fresh forage).
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Figure 4.6. - Intake trend of  oxidized fatty acids (mg OFA /100 mg of lipids) in Parmigiano Reggiano cheese samples collected at different 
ripening times referred to two experimental batches (two samples for batches: ■ - ♦ diet with  fresh forage; ○ -▲ extruded whole 
linseed flour integration).
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Figure 4.7. - Etana profiles of two experimental batches (—— extruded whole linseed 

flour integration; ------ control). 
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5.1. SUMMARY AND KEYWORDS 

A liquid-chromatographic method using atmospheric pressure chemical ionization 

(APCI)-mass spectrometry (MS) detection in positive mode has been developed. This 

method was used to separate and identify 15 sterols and 2 dihydroxy triterpenes in 

saponified oils, enabling the analysis of these compounds directly from saponified 

samples without recourse to thin-layer chromatography; this fact thus significantly 

simplifies the process. The analyses were made using a Waters Atlantis 5 mm dC18 

15062.1 mm column with a gradient of acetonitrile/water (0.01% acetic acid) at a flow 

rate of 0.5 ml/min and a column temperature of 30°C. The quantification of several of 

these compounds in soybean oil, palm oil, seed oil, sunflower oil, olive-pomace oil and 

virgin olive oil was carried out using their commercial standards, and the results were 

compared satisfactorily with the official method. 

 
Keywords: High-performance liquid chromatography, Mass spectrometry, Oils, Olive 

oil, Sterols. 
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5.2. INTRODUCTION 

Sterols are widely occurring natural substances and make up the greatest proportion of 

the unsaponifiable fraction of lipids (1, 2). Plant fats and oils contain phytosterols as 

naturally occurring constituents (3). The most important natural sources of plant sterols 

in the human diet are oils and margarines, although they are also found in a range of 

seeds, legumes, vegetables and unrefined vegetable oils (4–6). Their composition 

depends on the plant species (7) and, in oils, it may vary according to agronomic and 

climatic conditions, the quality of the fruits or seeds, extraction and refining procedures 

and storage conditions. Phytosterols can be classified on a structural or biosynthetic 

basis as 4-desmethyl sterols, 4α-monomethyl sterols and 4,4-dimethyl sterols. In 

addition, the 4-desmethyl sterols may be subdivided into ∆5-sterols, ∆7-sterols and 

∆5,7-sterols, depending on the position of the double bonds in the B ring (8). The 

predominant phytosterol is β-sitosterol; minor components are campesterol, 

stigmasterol, ∆5-avenasterol, ∆7-avenasterol and brassicasterol. These compounds are 

biogenetic precursors of numerous metabolites, including plant steroid hormones, and 

have anti-inflammatory, antibacterial, antifungal, antiulcerogenic and antitumoral 

 activity (9).  

The characterization and quantification of phytosterols can be carried out by a wide 

variety of chromatographic techniques including column chromatography, thin-layer 

chromatography (TLC), gas chromatography (GC), normal phase high-performance 

liquid chromatography (HPLC), reverse-phase HPLC, capillary electrochromatography 

(10) and also online-coupled HPLC-GC. These compounds can be detected with flame 

ionization detection (FID), UV detection (UV), evaporative light scattering detection, 

infrared detection, nuclear magnetic resonance detection, and mass spectrometry (MS). 
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GC using FID or MS (11–21) and HPLC with different detection systems are the more 

widely used techniques (22–25), although the most accurate identifications have been 

performed by MS. Recently, some papers on the determination of sterols with HPLC-

MS (26–29) have been published; in the article of Cañabate et al. (29), a liquid 

chromatographic method for the identification and quantification of seven phytosterols 

in olive oil and the sterols was developed and the compounds were quantified by liquid 

chromatography with MS detection in positive atmospheric pressure chemical 

ionization (APCI) mode. This is due to the fact that, in HPLC-MS analysis, baseline 

separation of peaks is not always necessary because of the high specificity and 

selectivity of the detection system. Because sterols are highly lipophilic and have few 

polar functional groups, they are difficult to ionize by conventional electrospray 

methods (30); APCI is the most widely used ionization technique for sterol analysis. 

HPLC-MS with APCI has been found to be suitable for sterol analyses in different 

sample matrices. It has been used to identify sterols in soybean oil (26), to characterize 

phytosterols in spelt (30), to determine ergosterol levels in bulrush (31) and to measure 

cholesterol oxides in various foods (32). 

The official method (33–35) for the analysis of total sterols from oils involves the 

saponification of the lipids, extraction of the unsaponifiable matter with diethyl ether 

and washing the extract with water (liquid-liquid extraction), followed by separation by 

TLC on silica gel plates, derivatization of the sterols with trimethylsilyl derivatives and 

subsequent GC analysis. Therefore, sample preparation is laborious, the technique is 

highly wasteful in terms of reagents, and the separation of sterols by TLC is deceptive. 

Herein is described a simple HPLC-APCI-MS method to analyze 4-desmethyl sterols 

and two dihydroxy triterpenes in oil samples after saponification and a simple liquid-
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liquid extraction. This proposed method is useful as it permits to identify 17 compounds 

(4-desmethyl sterols and two dihydroxy triterpenes) and quantify seven of them (vs. 

their commercial standards) which are relevant in olive oils and other oils that are 

recognized by the International Olive Oil Council and included in European legislation. 

The use of MS as detection system provides an accurate identification of the compounds 

under study. 

 

5.3. MATERIALS AND METHODS 

5.3.1. CHEMICALS 

Cholesterol came from Riedel-de Haën (Seelze, Germany). β-Sitosterol (90%), 

erythrodiol (97%) and stigmasterol (95%) were from Fluka (Buchs, Switzerland). 

Sitostanol (95%), uvaol (95%), ∆5-avenasterol (95%), 2,7-dichlorofluorescein, 

anhydrous pyridine, hexamethyl disilazone and trimethylchlorosilane were from Sigma-

Aldrich (St. Louis, MO, USA). Stocks solutions containing 50 mg/mL of sterols were 

prepared in HPLC-grade methanol and stored in the dark at 4°C. The concentration of 

the final stock solution was calculated taking into account the purity of commercial 

standards. Working standard solutions were prepared from these solutions and diluted 

with methanol prior to analysis. HPLC-grade solvents (ethanol, methanol, hexane, 

diethyl ether, 2-propanol, toluene, acetone, hexane, ethyl ether and chloroform) were 

from Panreac (Barcelona, Spain). Potassium hydroxide and anhydrous sodium sulfate 

were from Sigma, and Silicagel 60 TLC plates (20x20 cm) from Merck (Barcelona, 

Spain). Water was deionized with a Milli-Q system (Millipore, Bedford, USA). 

 



 

90 

5.3.2. INSTRUMENTATION 

GC analyses were done with a Fison GC 8000 series (Fison Instrument, France) using 

for the separation a WCOT-fused silica 30 m x 0.25 mm i.d. coating CP FIL 8CB, DF = 

0.25 µm column (J&W Scientific Inc. Agilent, Spain), and a flame ionization detector 

(Fison Instrument, France). The carrier gas was helium. A 10 µl GC microsyringe with 

a hardened needle was used.  

HPLC analyses were carried out using an HPLC system from Thermo Separation 

Products (UK) equipped with an autosampler, a degasser and a heated column. 

Separation was done on an Atlantis dC18 150 column (2.1 mm i.d., 5 mm; Waters) under 

gradient conditions at an injection volume of 10 µL at 30°C. The mass spectrometer 

system was a Finnigan AQA (ThermoQuest, USA) with an APCI interface. Data were 

collected by Xcalibur data system software on a personal computer. 

 

5.3.3 ANALYTICAL METHOD 

5.3.3.1. Official Method 

To assure that our results are reliable, the samples were analyzed with the official 

method. The operating conditions of this method are as follows: column temperature, 

260 ± 5°C; injector temperature, 280°C; detector temperature, 290°C; linear velocity of 

the carrier gas: helium 20 cm/s, hydrogen 30 cm/s; splitting ratio of 1 : 75; amount of 

substance injected, 1 µl of trimethylsilyl (TMSE). 

 

5.3.3.2. Proposed Method 

The analyses were made using a Waters Atlantis 5mm dC18 150 x 2.1 mm column with 

a gradient of acetonitrile/water (0.01% acetic acid) at a flow rate of 0.5 mL/min and a 
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column temperature of 30°C. The MS conditions were: a nebulizer temperature of 

450°C, source temperature of 120°C; corona discharge of 10 µA; accelerating voltage of 

25 V; cone gas flow rate of 50 L/h; and a desolvation gas flow rate of 350 L/h. 

 

5.3.4. SAMPLES 

Different vegetable oils (soybean, palm, seed, sunflower, olive-pomace and virgin olive 

oil) were acquired on a local market and used as received. 

 

5.3.5. SAMPLE PREPARATION FOR STEROLS AND DIHYDROXY 

TRITERPENES 

5.3.5.1. Official Method 

In the official method (33–35), the isolation of the sterol fractions in olive oils involves: 

(1) Saponification with KOH in ethanol solution: Usually, 5 g of oil is saponified by 

refluxing with 50 ml of an ethanolic solution of 2 M KOH for 1 h.  

(2) Extraction of the unsaponifiable fraction with diethyl ether: 100 ml water is added 

after cooling to room temperature and, subsequently, after phase separation in a 

separatory funnel, the aqueous phase is washed three times with diethyl ether.  

(3) Washing with water: The diethyl ether fractions are collected, washed with water 

and dried with anhydrous sodium sulfate.  

(4) Separation by TLC on silica gel plates, derivatization of the sterols and subsequent 

chromatographic analysis: 100 ml of a 5% solution of the unsaponifiable fraction in 

chloroform is streaked on a chromatographic plate as thinly and uniformly as possible 

and then allowed to elute until the solvent front is approximately 1 cm from the upper 
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edge of the plate. The plate is removed from the developing chamber and the solvent 

evaporated either in a flow of hot air or by being left for a short while under a hood.  

5) Recovery of the sterols by means of scratching and their extraction with chloroform: 

The plate is sprayed lightly and uniformly with the 2,7-dichlorofluorescein solution and 

the silica gel in the marked area is scraped off with a metal spatula.  

6) Derivatization of sterols: The silylation reagent is added to the test tube, which is 

then stopped. It is shaken carefully until the sterols are completely dissolved and then 

centrifuged for a few minutes. The clear solution is then ready for GC analysis.  

7) Analysis by GC-FID. 

 

5.3.5.2. Proposed Method 

We describe here a simplified way of pre-treating the sample, which is complete after 

the third step. The diethyl ether fractions are collected, washed with water and dried 

with anhydrous sodium sulfate. They are then filtered and evaporated to dryness using a 

rotary evaporator at reduced pressure. The residue is dissolved in methanol. Sample 

extracts are filtered through a membrane filter (0.45 µm) before being analyzed by 

HPLC-APCI-MS. 

 

5.4. RESULTS AND DISCUSSION 

5.4.1. ISOLATION OF STEROLS AND DIHYDROXY TRITERPENES FROM 

THE UNSAPONIFIABLE FRACTION USING THE REDUCED METHOD 

The sterol fractions in virgin olive oil and other oils were tested by HPLC-APCI-MS 

with and without using TLC as described by the official method. We succeeded in 
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reducing the time needed to isolate these compounds in comparison to the official 

method. The official method was simplified prior to separation by TLC. At this point, 

the solvent was evaporated and the extract re-dessolved in methanol. Figure 5.1. shows 

the differences found between the two extracts of virgin olive oil with and without the 

use of TLC. As it can be seen, the simplified extraction method (without the use of 

TLC) gave a similar profile to that obtained by the official extraction protocol with 

TLC. 

 

5.4.2. HPLC-MS CONDITIONS 

The composition of the mobile phase, the solvent ratio and the flow rate was studied. 

After preliminary studies, it was decided that the optimum flow rate should be 0.5 

ml/min. Different gradients using water (0.01% acetic acid), acetonitrile and methanol, 

and different isocratic compositions at a constant flow of 0.5 ml/min were assayed to 

obtain the best resolution of the chromatographic peaks. In mixtures containing 

methanol, the resolution and intensity of the peaks was worse. After realizing that water 

(with 0.01% acetic acid) (as phase A) and acetonitrile (as phase B) were the most 

appropriate mobile phases to achieve our aim, we checked a wide number of gradients, 

taking into account the resolution among peaks, the intensity in the mass spectrometer 

and the analysis time as analytical parameters.  

In general, we observed that an increase in the percentage of phase A at the beginning 

of the analysis slowed down the analysis time. Using the following gradient, from 0 to 

40 min, from 90% B/10% A to 100% B, we obtained a clear resolution between peaks, 

so we focused our experimental work upon the study of linear gradients, i.e. 85 to 

100%, 90 to 100% and 95 to 100% of phase B, all over a period of 40 min. In this study, 
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we observed that the resolution between peaks decreased concomitantly with an 

increase in the initial percentage of acetonitrile. When using an initial percentage of 

acetonitrile of 85%, the resolution improved, but the peaks were retarded considerably. 

Therefore, we studied in detail the variation of the initial acetonitrile concentration from 

90 to 95% over 60 min in order to obtain clear resolution between peaks. We finally 

found that with a C18 stationary phase and a gradient between 90% acetonitrile/10% 

water + 0.01% acetic acid and 92% acetonitrile/8% water + 0.01% acetic acid, from 0 to 

60 min at a flow rate of 0.5 ml/min and a column temperature of 30 °C, we achieved the 

best separation.  

Optimum MS conditions were: a nebulizer temperature of 450 °C, a source temperature 

of 120 °C; corona discharge of 10 µA; accelerating voltage of 25 V; cone gas flow of 50 

L/h; and a desolvation gas flow of 350 L/h. HPLC-MS determinations were obtained by 

operating the mass spectrometer in the positive ion mode. Full-scan mass spectra were 

acquired within the 300–450 m/z range.  

The identification of each compound was carried out using the migration time and the 

fragmentation, and for the quantification the area of each ion extracted was used. 

Figure 5.2. shows a chromatogram of a standard solution of five sterols and two 

dihydroxy triterpenes under the optimum conditions chosen. 

 

5.4.3. IDENTIFICATION OF STEROLS AND DIHYDROXY TRITERPENES IN 

DIFFERENT SAMPLES 

Samples obtained by using the new simple extraction procedure were used for the 

quantification of sterols and dihydroxy triterpenes by HPLC-APCI-MS and samples 

obtained by the official procedure extraction for the quantification by GC-FID. The 
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presence of erythrodiol, uvaol, cholesterol, ∆5-avenasterol, stigmasterol, β-sitosterol 

and sitostanol was confirmed by comparing their mass spectra and retention times with 

the data obtained from the standard compounds. Peak identification was also performed 

with spiked real samples at different concentration levels. For the identification of the 

other sterols, the analyses carried out by GC-FID on each of the oil samples in question 

were took into account. The different oils studied contained specific quantities of some 

of the sterols, as they were determined previously by GC-FID. Although the migration 

time of sterol by GC-FID is different than by HPLC-APCI-MS, the elution order is 

known; such results were helpful to identify them in the samples analyzed by HPLC. In 

other words, when the official method (GC-FID) is used, the sterols elution order result 

to be as follow: cholesterol, brassicasterol, 24-methylene cholesterol, campesterol, 

campestanol, stigmasterol, ∆7-campesterol, ∆5,23-stigmastadienol, chlerosterol, β-

sistosterol, sitostanol, ∆5-avenasterol, ∆5,24-stigmastadienol, ∆7-stigmasterol, ∆7- 

avenasterol. This means all the mentioned compounds can be identified and quantified 

by GC-FID, using the integrated area and the external standards. Thus, these results and 

the relative concentrations of the different compounds can be used to identify those 

analytes in the HPLC profiles.  

β-Sitosterol was the principal component in all the oils studied. Cholesterol was more 

abundant in palm and seed oils, while brassicasterol only appeared in seeds and olive-

pomace oils (in minor quantities in the latter); campesterol, campestanol, stigmasterol 

and sitostanol were predominant in soy oil, and erythrodyol and uvaol were very 

abundant in olive pomace oil. The percentage of each component was determined in 

each sample of oil analyzed, in order to assign the corresponding component to each 

peak in the chromatogram obtained by using HPLC-APCI-MS.  
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The spectra were characterized by the protonated molecules of the analytes and an 

abundant signal corresponding to fragment ions due to the loss of a water molecule (see 

Table 5.1.). 

 

5.4.4. ANALYTICAL PARAMETERS 

The detection limits (DL = 3S0/b) and quantification limits (QL = 10S0/b) of the method 

were tested against erythrodiol, uvaol, cholesterol, ∆5-avenasterol, stigmasterol, β-

sitosterol and sitostanol using the IUPAC method (36), where S0 is the standard 

deviation of the blank using as the blank the signal to- noise (S/N) ratio and b is the 

slope of the calibration plot.  

All the calibration curves showed good linearity: Cholesterol, stigmasterol and 

sitostanol were linear from QL (0.25) to 20 mg/L, β-sitosterol from QL (0.15) to 200 

mg/L, ∆5-avenasterol from QL (0.25) to 50 mg/L, and erythrodiol and uvaol from QL 

(0.50) to 200 mg/L. Each point of the calibration plot was repeated three times in an 

independent solution prepared in the same way. The calibration plots indicate good 

correlation between peak areas and analyte concentrations. The regression coefficients 

(r2) were 0.999 for all the compounds quantified.  

The repeatability of the method was checked by analyzing the same sample seven times 

in one day and five times on different days. The intraday relative standard deviation 

(RSD) of the retention times for uvaol, erythrodiol, stigmasterol and β-sitosterol was 

around 1% and the RSD of the areas for the same compounds was around 2%. The 

interday RSD of the retention times and areas was around 1.5 and 4.0%, respectively, 

for the same compounds. 
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5.4.5. APPLICATION AND QUANTIFICATION TO REAL SAMPLES 

Using the described extraction protocol and the HPLC-APCI-MS method, six different 

oil samples (soybean oil, palm oil, seed oil, sunflower oil, olive-pomace oil and virgin 

olive oil) were analyzed. All samples were injected into the HPLC instrument five times 

(n = 5).  

Sample preparations of all oils were made as described in Section 5.4.. The analyses 

were carried out under the optimum conditions described in Section 5.4.2.,  and 

quantification was carried out using the extracted ion chromatogram at 369, 395, 397, 

399 and 425 m/z. Erythrodiol, uvaol, cholesterol, ∆5-avenasterol, stigmasterol, β-

sitosterol and sitostanol were quantified individually in mg/kg (Table 5.2.), while 

erythrodiol and uvaol were quantified together because they eluted at the same time and 

provided the same m/z in MS.  

The chromatograms of six samples of different oils are shown in figure 5.3.. The main 

peaks in the chromatograms can be observed within the retention time range between 20 

and 35 min and belong to ∆7-avenasterol, cholesterol, ∆5-avenasterol, ∆7-campesterol, 

campestanol, clerosterol, stigmasterol, ∆7-stigmastenol, ∆5,24-stigmastadienol and β-

sitosterol.  

β-Sitosterol was the most abundant sterol in all the oils. 24-Methylene cholesterol was 

only present in soybean and palm oil. Brassicasterol was only present in seed and olive 

pomace oil. High quantities of erythrodiol and uvaol were also found in olive pomace 

oil. This kind of oil is frequently mixed with virgin olive oil and marketed and sold as 

olive oil. 

Regarding this last point, it is possible to say that our method could be capable of 

detecting fraudulent mixtures of virgin olive oils and olive pomace oils, both 
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quantitatively and qualitatively, analyzing the data of dihydroxy triterpenes in a few 

minutes, while the official method of the International Olive Oil Council takes more 

than 20 min to achieve the same purpose. 

 

5.4.6. COMPARATIVE STUDY 

To assure our results are reliable, all the samples were also analyzed with the official 

method. The operating conditions were as follows: column temperature, 260 ±5°C; 

injector temperature, 280°C; detector temperature, 290°C; linear velocity of the carrier 

gas: helium 20 cm/s, hydrogen 30 cm/s; splitting ratio of 1 : 75; amount of substance 

injected, 1 ml of TMSE solution.  

The results are shown in Table 5.2. as individual sterol concentrations in mg/kg of fatty 

material. A comparison of such a data, reveals that the results obtained with the 

proposed method are in good agreement with those obtained with the official method.  

Erythrodiol and uvaol can be quantified in all oils except in palm oil with the proposed 

method, while they can only be quantified in olive pomace and virgin olive oils with the 

official method. However, sitostanol can be quantified in all the oils analyzed with the 

official method, but only in soybean, olive pomace and virgin olive oils with the 

proposed new method. 

 

5.5. CONCLUSIONS 

This study describes the use of HPLC-APCI-MS to identify efficiently 17 compounds 

and to quantify seven of them that are legislated upon by several regulations and 
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trademarks laid down by the International Olive Oil Council and the European Union. 

The advantages of the proposed method are:  

1) simplicity in the preparation of sample, 2) robustness: good repeatability taking into 

account retention time and areas, and 3) cheaper process of the samples compared to the 

official method. The results found with the proposed method for the analytes studied are 

in good agreement with the obtained data using the official method. 
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TABLES 

 

Table 5.1. – Ions observed in the APCI mass spectra of sterols in positive mode and 
their retention times. 

 

  



 

 

 
 
Table 5.2. – Concentrations of sterols, expressed as mg/kg of the different vegetable oils quantified by HPLC-APCI-MS and the official 

GCFID method; (¤Value = \bar X¤ ± SD) 
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FIGURES 

 

 

 

 

 

 
 
Figure 5.1. -  Chromatogram of two extracts of virgin olive oil using isolation of total 

sterols both with and without TLC. 
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Figure 5.2. – HPLC-APCI-MS chromatogram of a standard solution of five sterols and 

two triterpenic alcohols. Gradient from 90% acetonitrile/10% water + 0.01% 
AcOH to 92% acetonitrile/8% water + 0.01% AcOH from 0 to 60 min. Peaks: 
(1+2) erythrodiol and uvaol, (3+4) cholesterol and ∆5-avenasterol, (5) 
stigmasterol, (6) β-sitosterol, (7) sitostanol. 

 



 

 

 
 

 
 
Figure 5.3. - Chromatograms of six different vegetable oils. (1) Erythrodiol, (2) uvaol, (3) ∆5,23-stigmastadienol, (4) 24-methylene 

cholesterol, (5) brassicasterol, (6) ∆7-avenasterol, (7) cholesterol, (8) ∆5-avenasterol, (9) ∆7-campesterol, (10) clerosterol, (11) 
campesterol, (12) campestanol, (13) stigmasterol, (14) ∆7-stigmastenol, (15) ∆5,24-stigmastadienol, (16) β-sitosterol and (17) 
sitostanol. 
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6.1. SUMMARY AND KEYWORDS 

The purpose of this investigation has been the quantitation of Long Chain Poly-

unsatured Fatty Acids (LC-PUFA), such as arachidonic acid (ARA , C20:4 n-6) and 

docosahexaenoic acid (DHA , C22:6 n3), and the evaluation of their stability during the 

blending phases for the preparation of base infant formula added with ARA and DHA 

less than 0,5%. The investigation has been also oriented to set up a method that can 

permit to reduce the uncertainty values associated with the mesurement of ARA and 

DHA, to a compatible level with the their certain determination in the samples 

examinated. 

 
Keywords: Infant Formula, LC-PUFA, ARA, DHA. 
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6.2. INTRODUCTION 

Infant milk formulae are designed to provide infants with the required nutrients for 

optimal growth and development. They are formulated to mimic breast milk 

composition in order to obtain an ‘‘ideal’’ substitute (infant formula) for babies. Human 

breast milk contains a full complement of all polyunsaturated fatty acids (PUFA), 

including the two essential PUFA, linoleic acid (LA,18:2 n-6) and α-linolenic acid, 

(ALA, 18:3 n-3) and also a range of LC-PUFA that have been shown to have benefits 

for both preterm and term infants, such as promoting sensory and neuronal maturation. 

LC-PUFA are present mainly in highly specialized membranes, e.g., retina and 

synapses, and in membranes of excitable cells. Moreover, like DHA, ARA is an 

essential fatty acid for adequate function of the central nervous system (1).  

New research has shown that both preterm and term infants can actively convert the 

essential fatty acids LA and ALA, to LC-PUFA (2, 3, 4). However, the amount of LC-

PUFA being produced, particularly of DHA, may not be sufficient to meet the 

developmental requirement of the infant. An important question that is still challenging 

investigators is whether formula fed term infants can make enough LCPUFA from the 

essential fatty acids that are provided in formula or whether they require added 

LC-PUFA. Research is ongoing and there is no final answer to this question, although 

there is some evidence that a supply of LC-PUFA to the infant may be beneficial. 

Most national and international authorities have based their recommendations for the 

manufacturing of infant formulae on mature human milk fatty acids composition as the 

gold standard. The Commission of the European Union issued regulations on infant 

formula composition, including permission for addition of LCPUFA up to 1 and 2%, 

respectively, of total fat content as n-3 and n-6 LC-PUFA (5). 
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Infant formulae are usually marketed as spray-dried powders to be reconstituted with 

water, or ready-to-feed infant infant formulae. Their manufacture may differ from 

producers, but it generally consists in a dry blending process. It begins with the receipt 

of the ingredients, and stored until they are tested for conformance to specifications. 

Then, dry ingredients are blended in large batches in a ribbon blender or other large 

scale blending equipment. The ingredients are blended until the are uniformly 

distributed throughout the batch. Later the product is passed through a sifter, and then 

transferred to bags for storage, or directly to the packaging line.  

Therefore, manufacturers consider of extremely importance to verify the proper 

distribution and the stability of some ingredients in the infant formula during the 

blending, since may be present in low numbers and may be non-randomly distributed 

within the lot. In this particular case, the object of the investigation is a base infant 

formula added with ARA and DHA less than 0,5% of total fat, with the purpose to set 

up a method of analysis that permits to reduce the uncertainty values associated with the 

measurement of these fatty acids, to a compatible level with the certain determination of 

such LC-PUFA in the samples examined. Such a requirement rises from the limits in the 

application of the methods of analysis UNI EN ISO 5508 (1998) and UNI EN ISO 5509 

(2000), which do not allow to fully verify the effective content of ARA and DHA in the 

product, because they determine high uncertainty values for the typology of the samples 

under investigation, and because ARA and DHA are present in low concentration in the 

formulation. 
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6.3. MATERIALS AND METHODS 

6.3.1. SAMPLES COLLECTION 

In order to carry out the investigation, the following samples of base infant formulae 

were collected. Each sample was stored at -20°C until analysis: 

 10 powder samples (450 g each one) corresponding to the “inter-blend phase”, and 

collected at the end of each blend phase (Table 6.1.). 

 3 powder samples (450 g each one) corresponding to the “intra-blend phase”, and 

collected at the beginning/half/end of  5° blend phase (Table 6.2.). 

 11 powder samples (900 g each one) collected at the end of each blend and then 

packaged. They correspond to the commercial products (Table 6.3.).  

 2 powder samples containing the raw material employed for the addiction of ARA 

and DHA. 

 

6.3.2. SAMPLES PREPARATION 

Before the extraction, base infant formulae were reconstituted following the 

specifications reported in the label. In this case, 4,3 g of  powder were weighted and 

dissolved in 30 ml of water, obtaining a concentration of 0,14 mg/ml. Later, the fat was 

extracted in double following the Rose-Gottlieb official method (6), and then, the 

preparation of the methyl esters was carried out applying the method of  Christopherson 

and Glass (7): about 20 mg of dry fat was put in a test tube, 50 µl of KOH MeOH 2N 

and 500 µl of hexane were added respectively, and then the tube was mixed for 30 

seconds; 0,5 mg of C13:0 (Sigma-Aldrich, St. Louis, MO, USA) were used for the fatty 

acids quantitation as internal standard, while the 53 FAME GLC-reference standard 

mix-463 (NU-CHEK-PREP, Elysian, MN) for the fatty acids identification.  After the 
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phase separation has been acted, 300 µl of surnatant was collected and put in a vial. 

Analysis by gas chromatography has been followed.   

 

6.3.2. GAS CHROMATOGRAPHIC QUANTITATION 

FAME were analyzed with a Perkin Elmer Clarus 500  gas chromatograph  equipped 

with a RTX 2330 (Restek, Bellefonte, PA, USA) fused silica capillary column (30 m 

x0.25 mm i.d., 0.2-µm film thickness), a FID detector, and a split injector.  Helium was 

used as carrier at the constant flow rate of 0.75 min/min. The FID detector was 

maintained at 240°C with air flow rate of 400 ml/min, hydrogen flow rate of 40 ml/min, 

and helium (make up gas) flow rate of  30 ml/min. The split injector was maintained at 

240°C with the split ratio of 1:50. The temperature program was as follow: 1 minute at 

60°C, ramp 7°C/min to 240°C and maintained 10 minutes. 

 

6.3.3. STATISTYCAL ANALYSIS 

Calculation and statistics were performed with Statistica for windows (1998), and 

Microsoft excel for windows (2003). 

 

6.4. RESULTS AND DISCUSSION 

The investigation has been focalized on the deepening of the following steps: 

a. Characterization of the raw materials. 

b. Set up of the method. 

c. Fatty acid analysis of the intra-blend samples. 

d. Fatty acid analysis of the inter-blend samples. 

e. Fatty acid analysis of the commercial products. 
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a. The characterization of the raw materials has permitted to optimize the condition for 

the fatty acids separation by gas chromatography, necessary to their identification 

and quantification in the complex mixture. 

b. A deep verification of the method of analysis has been carried out in order to verify 

the steps and the manipulations requested, starting from the matrix under study. In 

this case, the matrix was base infant formula, and the lipidic fraction has been 

extracted with solvent following the Rose-Gottlieb official method. This method, 

which can be also used on liquid milk, takes place in basic condition with the 

purpose to break the milk fat globule membrane. In milk powder the fat is not 

completely structured such as in non-modified milk, even though it must be stable in 

the liquid product when reconstituted. However, the extraction must be conducted 

considering the residual globules with membrane, which are more problematic to 

break with solvent due to the smaller size and the higher ratio area/volume of the 

globules. Therefore, the repetibily of the method has been verified by identifying 

and quantifying the fatty acids in one of the commercial samples for five times, and 

the results are reported on table 6.4.. The quantification has been carried out on the 

principal fatty acids, besides the fatty acids added to the powder for the formulation. 

Other minor fatty acids have been grouped under “others”. On figure 6.1. are 

reported the chromatograms relative to the samples of raw materials employed for 

the addiction of ARA and DHA, and a sample from the inter-blend. The verification 

of the method have permitted to calculate the limit of detection (LOD) and the limit 

of quantitation (LOQ), that are respectively of 20 and 60 ppm. The error, relatives to 

the fatty acids under investigation, have been calculated on the commercial samples 
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according with the equation of William Horwitz (8, 9) that estimate the uncertainty 

of measure (Table 6.5.). The equation is: 

%RSDR=2(1-0.5logC) 

where %RSDR is the inter-laboratory Coefficient of Variation, and C is the 

concentration of analyte in the sample as a decimal fraction. 

c. 3 powder samples corresponding to the “intra-blend phase” and collected at the 

beginning/half/end of  5° blend phase, were analyzed in double by gas 

chromatography. In table 6.6. are reported the mean, the standard deviation, and the 

variance of the fatty acids identified and quantified in the samples. The fatty acids of 

interest are underlined in grey, while fatty acids quantified as less than 0,1g/100g 

are classified as “others” at the bottom of the table. The variance analysis of the 

fatty acids of interest is reproduced on figure 6.2.. 

d. Table 6.7. shows the results of the analysis by gas chromatography of the inter-blend 

samples carried out in double. The mean, the standard deviation, and the variance of 

the fatty acids identified and quantified in the samples have been calculated. The 

fatty acids of interest are underlined in grey. Moreover, in figure 6.3. is reported the 

variance analysis of the fatty acids under investigation. Fatty acids quantified as less 

than 0,1g/100g are classified as “others” at the bottom of the table. 

e. The fatty acid analysis of the 11 commercial samples carried out in double, is 

showed in table 6.8.. Fatty acids of interest are underlined in grey, while those 

quantified as less than 0,1g/100g are classified as “others” at the bottom of the table. 

The results include the mean, the standard deviation, and the variance of the fatty 

acids identified and quantified in the samples, while in figure 6.4. is reported the 

variance analysis of the fatty acids under investigation. 
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6.5. CONCLUSIONS 

The investigation, oriented to set up a method that can permit to reduce the uncertainty 

values associated with the measurement of ARA and DHA and to verify the effective 

content of these fatty acids in base infant formulae, have permitted to achieve the 

following goals: 

First of all, the elaboration of the uncertainty values associated with the measurement of 

ARA and DHA and the other fatty acids under study (Table 6.5.) has been obtained 

from the analysis by gas chromatography of a commercial sample. The estimation of the 

reproducibility calculated with the equation of William Horwitz can provide the 

assessment of the uncertainty value, which can be verified through the comparison with 

the single measurement of the fatty acids.  

Moreover, as reported in table 6.4., the method of analysis shows a good repeatability 

when considering the mean, the standard deviation and the variance of the fatty acids.  

Intra-blend samples, collected at the beginning/half/end of 5° blend phase (Table 6.6., 

Figure 6.2.), present values absolutely satisfactory; the variance and the standard 

deviation appear low, and the mean values are by far less than the error of the method 

(Table 6.5.). 

Same consideration can be made for the samples corresponding to the inter-blend 

(Table 6.7., Figure 6.3.), even though the standard deviation and the variance result to 

be higher, that is may due to the different lot of production.  

On table 6.8. and figure 6.4. are reported the results about the commercial samples. 

They show to be more homogeneous than the inter-blend samples, probably because the 

latter represent an intermediate step in the production; as it can see in table 6.9., the 

percent standard deviation results to be less than 10% for all the fatty acids considered.  
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A statistical comparison between intra-blend samples and commercial samples is 

reported in table 6.10., where their principal parameters are compared, in particular the 

student’s t-test that permits to describe the estimation of the data’s similarity. It rise that 

with a level of test significative of 95%, the differences between the mean values 

observed are not statistically significatives with p<0.05, indicating how the two groups 

are non-different. Figure 6.5. (a to i) graphically shows the comparison of the 

considered parameters in table 6.10., about the total lipids extracted and mono-, di-, 

poli-unsatured fatty acids. The same figure report the mean, the standard error, and a 

95% confidence interval.  
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TABLES 

 

Table 6.1. – Powder samples corresponding to the inter-blend phase. 

Number of 
blends 

Name on the can streaker Meaning 

1 EB1, BB2 End of  1° Blend  
2 EB2 BB4 End of  2° Blend 
3 EB3, BB6 End of  3° Blend  
4 EB4, BB8 End of  4° Blend 
5 EB5, BB10 End of  5° Blend  
6 EB6, BB12 End of  6° Blend 
7 EB7, BB14 End of  7° Blend 
8 EB8, BB16 End of  8° Blend 
9 EB9, BB18 End of  9° Blend 

10 EB10, BB20 End of 10° Blend 
 

Table 6.2. – Powder samples corresponding to the intra-blend phase (5° Blend). 

Number of 
blends 

Name on the can streaker Meaning 

5 BB5, BB9 Beginning  
5 MB5, BB9 Half 
5 EB5,  BB10 End 

 

Table 6.3. – Powder samples corresponding to the commercial products. 

Number of blends Name on the can streaker Meaning 
2 FP-BB3 / FP-BB4 Obtained from 2° Blend 
3 FP-BB6 Obtained from 3° Blend  
4 FP-BB8 Obtained from 4° Blend 
5 FP-BB10 / FP-BB9 Obtained from 5° Blend  
6 FP-BB12 Obtained from 6° Blend 
7 FP-BB14 Obtained from 7° Blend 
8 FP-BB16 Obtained from 8° Blend 
9 FP-BB18 Obtained from 9° Blend 

10 FP-BB20 Obtained from 10° Blend 
 



 

120 

Table 6.4. – Repeatability of the method of analysis. 

(g/100g of powder) AG19_2-1 AG19_2-2 AG19_2-3 AG19_2-4 AG19_2-5 mean  SD VAR
FAT 22.81 25.00 24.91 25.64 22.86 24.24 ± 1.32 1.73 

Satured 7.93 8.43 8.26 8.72 7.76 8.22 ± 0.38 0.15 
C4:0 0.27 0.32 0.30 0.32 0.28 0.30 ± 0.02 0.00 
C6:0 0.20 0.23 0.21 0.23 0.20 0.21 ± 0.01 0.00 
C8:0 0.14 0.00 0.14 0.15 0.13 0.11 ± 0.06 0.00 

C10:0 0.30 0.31 0.29 0.31 0.27 0.30 ± 0.02 0.00 
C11:0 0.01 0.01 0.01 0.01 0.01 0.01 ± 0.00 0.00 
C12:0 0.36 0.36 0.34 0.36 0.32 0.34 ± 0.02 0.00 
C14:0 1.07 1.10 1.06 1.12 1.00 1.07 ± 0.05 0.00 
C15:0 0.10 0.11 0.11 0.11 0.10 0.11 ± 0.00 0.00 
C16:0 3.86 4.22 4.08 4.29 3.83 4.06 ± 0.21 0.04 
C17:0 0.07 0.08 0.08 0.07 0.07 0.08 ± 0.00 0.00 
C18:0 1.30 1.44 1.42 1.49 1.32 1.39 ± 0.08 0.01 
C20:0 0.09 0.10 0.10 0.10 0.09 0.10 ± 0.01 0.00 
C22:0 0.08 0.08 0.08 0.09 0.08 0.08 ± 0.00 0.00 
C23:0 0.01 0.01 0.01 0.01 0.01 0.01 ± 0.00 0.00 
C24:0 0.06 0.05 0.05 0.06 0.05 0.06 ± 0.00 0.00 

Mono-unsatured 9.93 11.08 11.28 11.30 10.09 10.74 ± 0.67 0.45 
C14:1 0.15 0.15 0.14 0.15 0.14 0.15 ± 0.01 0.00 
C16:1c 0.24 0.26 0.25 0.27 0.24 0.25 ± 0.01 0.00 
C17:1 0.05 0.05 0.05 0.04 0.05 0.05 ± 0.01 0.00 

C18:1 c 9 9.00 10.08 9.86 10.31 9.18 9.68 ± 0.57 0.32 
C18:1 c 11 0.28 0.30 0.30 0.32 0.28 0.30 ± 0.02 0.00 
C18:1 c 12 0.02 0.02 0.02 0.03 0.02 0.02 ± 0.00 0.00 

C18:1 t16-c14 0.05 0.05 0.50 0.03 0.05 0.13 ± 0.20 0.04 
C20:1 n9 0.10 0.10 0.10 0.11 0.10 0.10 ± 0.01 0.00 

C22:1 0.03 0.04 0.04 0.04 0.03 0.03 ± 0.00 0.00 
C24:1 0.02 0.02 0.02 0.02 0.02 0.02 ± 0.00 0.00 

Poli-unsatured 4.94 5.50 5.37 5.62 5.01 5.29 ± 0.30 0.09 
C18:2 9t 12t 0.05 0.06 0.04 0.04 0.04 0.05 ± 0.01 0.00 

C18:2 C/t 0.03 0.03 0.03 0.03 0.02 0.03 ± 0.00 0.00 
C18:2 n6 4.18 4.66 4.57 4.78 4.25 4.49 ± 0.26 0.07 
C18:3 n6 0.01 0.01 0.01 0.01 0.01 0.01 ± 0.00 0.00 
C18:3 n3 0.45 0.49 0.49 0.51 0.45 0.48 ± 0.03 0.00 

C20:2 0.01 0.01 0.01 0.01 0.01 0.01 ± 0.00 0.00 
C20:3 n6 0.02 0.02 0.02 0.02 0.02 0.02 ± 0.00 0.00 

C20:4 n6 (ARA) 0.10 0.11 0.12 0.12 0.11 0.11 ± 0.01 0.00 
C20:5 n3 (EPA) 0.02 0.03 0.02 0.03 0.02 0.02 ± 0.00 0.00 
C22:6 n3 (DHA) 0.08 0.08 0.08 0.08 0.08 0.08 ± 0.00 0.00 
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Table 6.5. – Error of the method, relatives to the fatty acids under investigation, and 
estimated on the commercial samples. 

 
 

Fatty acids 

Error of the method 

(g/100g of powder) 

C18:1 c9 4.04 

C18:2 n6 1.88 

C18:3 n3 0.20 

C20:4 n6 (ARA) 0.04 

C22:6 n3 (DHA) 0.03 

 

Table 6.6. – Fatty acids composition (g/100 g of powder) of the 3 intra-blend samples. 
 

(g/100g of powder) BB5 BB9 MB5 BB9 EB5 BB10 mean  SD VAR 
FAT 22.17 23.20 22.52 22.63 ± 0.52 0.27 

Satured 7.35 7.96 7.71 7.68 ± 0.30 0.09 
C4:0 0.28 0.31 0.29 0.29 ± 0.01 0.00 
C6:0 0.21 0.23 0.22 0.22 ± 0.01 0.00 
C8:0 0.13 0.15 0.15 0.14 ± 0.01 0.00 

C10:0 0.26 0.31 0.29 0.29 ± 0.02 0.00 
C12:0 0.30 0.33 0.32 0.32 ± 0.02 0.00 
C14:0 0.94 1.00 0.98 0.97 ± 0.04 0.00 
C15:0 0.09 0.10 0.10 0.10 ± 0.00 0.00 
C16:0 3.74 3.85 3.76 3.78 ± 0.06 0.00 
C18:0 1.12 1.35 1.31 1.26 ± 0.12 0.02 

Mono-unsatured 9.82 10.07 9.79 9.89 ± 0.15 0.02 
C14:1 0.13 0.14 0.14 0.13 ± 0.00 0.00 
C16:1c 0.23 0.24 0.24 0.24 ± 0.00 0.00 

C18:1 c 9 9.11 9.25 9.00 9.12 ± 0.12 0.02 
C18:1 c 11 0.14 0.23 0.22 0.20 ± 0.05 0.00 
C20:1 n9 0.10 0.10 0.10 0.10 ± 0.00 0.00 

Poli-unsatured 5.00 5.17 5.01 5.06 ± 0.10 0.01 
C18:2 n6 4.20 4.33 4.21 4.24 ± 0.07 0.00 
C18:3 n3 0.46 0.47 0.45 0.46 ± 0.01 0.00 

C20:4 n6 (ARA) 0.11 0.12 0.10 0.11 ± 0.01 0.00 
C22:6 n3 (DHA) 0.06 0.07 0.06 0.07 ± 0.00 0.00 

Others*    0.58    
 
 
 
 
 
 

Others* < 0.1 g/100g (C11:0; C17:0; C17:1 c; C18:1 c 12; C18:1 t16-c14; C18:2 c/t; C18:2 9t12t; C18:2 
c9, t11 (CLA) C18:3 n6; C18:3t; C20:0; C20:2; C20:3 n6; C20:5 n3 (EPA); C21:0; C22:0; C22:1; C24:1; 
C23:0; C24:0) 



 

 

Table 6.7. – Fatty acids composition (g/100 g of powder) of the 10 inter-blend samples. 
 

(g/100g of 
powder) EB1 BB2 EB2 BB4 EB3 BB6 EB4 BB8 EB5 

BB10 
EB6 

BB12 
EB7 

BB14 
EB8 

BB16 
EB9 

BB18 
EB10 
BB20 mean  SD VAR 

FAT 23.89 24.91 21.46 23.2 22.52 23.56 25.62 27.71 24.92 24.92 22.06 ± 1.76 3.08 
Satured 7.88 8.40 7.48 8.13 7.71 8.02 8.62 9.39 8.40 8.40 7.49 ± 0.54 0.29 

C4:0 0.29 0.31 0.31 0.35 0.29 0.31 0.32 0.31 0.30 0.30 0.28 ± 0.02 0.00 
C6:0 0.23 0.24 0.23 0.26 0.22 0.23 0.25 0.26 0.24 0.24 0.22 ± 0.01 0.00 
C8:0 0.15 0.16 0.15 0.17 0.15 0.15 0.16 0.18 0.16 0.16 0.14 ± 0.01 0.00 

C10:0 0.30 0.32 0.31 0.36 0.29 0.31 0.32 0.35 0.32 0.32 0.29 ± 0.02 0.00 
C12:0 0.31 0.35 0.34 0.38 0.32 0.33 0.36 0.39 0.35 0.35 0.32 ± 0.02 0.00 
C14:0 0.97 1.05 0.97 1.07 0.98 1.00 1.08 1.18 1.06 1.06 0.95 ± 0.07 0.00 
C16:0 3.68 4.05 3.52 3.79 3.76 3.87 4.25 4.60 4.10 4.10 3.61 ± 0.31 0.10 
C18:0 1.53 1.45 1.22 1.30 1.31 1.37 1.50 1.63 1.45 1.45 1.29 ± 0.12 0.01 

Mono-unsatured 10.45 10.92 9.28 10.01 9.79 10.29 11.24 12.12 10.96 10.96 9.64 ± 0.81 0.66 
C14:1 0.13 0.14 0.13 0.15 0.14 0.14 0.15 0.16 0.15 0.15 0.13 ± 0.01 0.00 
C16:1c 0.21 0.25 0.22 0.24 0.24 0.24 0.25 0.29 0.26 0.26 0.22 ± 0.02 0.00 

C18:1 c 9 9.69 10.06 8.43 9.02 9.00 9.46 10.36 11.16 10.05 10.05 8.84 ± 0.79 0.62 
C18:1 c 11 0.20 0.23 0.28 0.32 0.22 0.23 0.24 0.25 0.26 0.26 0.23 ± 0.03 0.00 

Poli-unsatured 5.56 5.58 4.70 5.05 5.01 5.25 5.76 6.20 5.57 5.57 4.93 ± 0.43 0.19 
C18:2 n6 4.72 4.70 3.94 4.24 4.21 4.39 4.84 5.19 4.66 4.66 4.14 ± 0.36 0.13 
C18:3 n3 0.47 0.50 0.42 0.46 0.45 0.47 0.52 0.56 0.50 0.50 0.44 ± 0.04 0.00 

C20:4 n6 (ARA) 0.11 0.11 0.10 0.11 0.10 0.12 0.12 0.13 0.12 0.12 0.10 ± 0.01 0.00 
C22:6 n3 (DHA) 0.05 0.07 0.07 0.07 0.06 0.07 0.07 0.08 0.07 0.07 0.06 ± 0.01 0.00 

Others*           0.79    
Others* < 0.1 g/100g (C11:0; C15:0; C17:0; C17:1 c; C18:1 c 12; C18:1 t16-c14; C18:2 c/t; C18:2 9t12t; C18:2 c9, t11 (CLA) C18:3 n6; C18:3t; C20:0; C20:1 n9; 

C20:2; C20:3 n6; C20:5 n3 (EPA); C21:0; C22:0; C22:1; C24:1; C23:0; C24:0) 
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Table 6.8. – Fatty acids composition (g/100 g of powder) of the 11 commercial samples. 
 
(g/100g of powder) FP BB3 FP BB4 FPBB6 FP BB8 FP BB9 FP BB10 FP BB12 FP BB14 FP BB16 FP BB18 FP BB20 mean  SD VAR 

FAT 23.16 23.88 21.80 24.19 25.26 22.15 24.60 22.15 26.33 25.28 25.28 24.00 ± 1.52 2.31 
Satured 7.74 8.01 7.48 8.41 8.56 7.51 8.47 7.52 8.94 8.55 8.55 8.16 ± 0.52 0.27 

C4:0 0.29 0.27 0.30 0.34 0.31 0.28 0.33 0.28 0.32 0.31 0.31 0.31 ± 0.02 0.00 
C6:0 0.22 0.20 0.23 0.26 0.23 0.21 0.25 0.21 0.25 0.24 0.24 0.23 ± 0.02 0.00 
C8:0 0.14 0.13 0.15 0.17 0.15 0.14 0.17 0.14 0.16 0.16 0.16 0.15 ± 0.01 0.00 

C10:0 0.28 0.27 0.30 0.35 0.31 0.28 0.34 0.27 0.33 0.32 0.32 0.31 ± 0.03 0.00 
C12:0 0.31 0.31 0.33 0.39 0.35 0.31 0.37 0.30 0.37 0.35 0.35 0.34 ± 0.03 0.00 
C14:0 0.97 1.00 0.95 1.09 1.08 0.94 1.08 0.94 1.12 1.07 1.07 1.03 ± 0.07 0.00 
C15:0 0.10 0.10 0.09 0.10 0.11 0.09 0.11 0.09 0.11 0.11 0.11 0.10 ± 0.01 0.00 
C16:0 3.84 4.00 3.56 3.96 4.21 3.68 4.04 3.70 4.37 4.20 4.20 3.98 ± 0.26 0.07 
C18:0 1.30 1.41 1.26 1.38 1.49 1.31 1.42 1.29 1.55 1.49 1.49 1.40 ± 0.10 0.01 

Mono-unsatured 10.21 10.52 9.50 10.49 11.07 9.72 10.71 9.72 11.53 11.10 11.10 10.52 ± 0.67 0.44 
C14:1 0.13 0.14 0.13 0.15 0.15 0.13 0.15 0.13 0.15 0.15 0.15 0.14 ± 0.01 0.00 
C16:1c 0.23 0.24 0.22 0.25 0.25 0.23 0.25 0.23 0.27 0.25 0.25 0.24 ± 0.01 0.00 

C18:1 c 9 9.46 9.75 8.67 9.53 10.20 8.91 9.76 8.98 10.60 10.21 10.21 9.66 ± 0.62 0.39 
C18:1 c 11 0.18 0.18 0.28 0.32 0.23 0.24 0.30 0.17 0.26 0.26 0.26 0.24 ± 0.05 0.00 
C20:1 n9 0.10 0.10 0.10 0.11 0.11 0.09 0.11 0.09 0.12 0.11 0.11 0.10 ± 0.01 0.00 

Poli-unsatured 5.21 5.35 4.81 5.30 5.63 4.92 5.41 4.91 5.86 5.63 5.63 5.33 ± 0.34 0.12 
C18:2 n6 4.40 4.51 4.05 4.45 4.73 4.13 4.54 4.15 4.92 4.76 4.76 4.49 ± 0.29 0.08 
C18:3 n3 0.47 0.48 0.43 0.48 0.51 0.45 0.49 0.45 0.53 0.51 0.51 0.48 ± 0.03 0.00 

C20:4 n6 (ARA) 0.10 0.11 0.10 0.11 0.12 0.10 0.12 0.09 0.12 0.12 0.12 0.11 ± 0.01 0.00 
C22:6 n3 (DHA) 0.06 0.06 0.06 0.07 0.07 0.06 0.07 0.05 0.08 0.07 0.07 0.07 ± 0.01 0.00 

Others*            0.62    
Others* < 0.1 g/100g (C11:0; C17:0; C17:1 c; C18:1 c 12; C18:1 t16-c14; C18:2 c/t; C18:2 9t12t; C18:2 c9, t11 (CLA) C18:3 n6; C18:3t; C20:0; C20:2; C20:3 n6; 
C20:5 n3 (EPA); C21:0; C22:0; C22:1; C24:1; C23:0; C24:0) 
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Table 6.9. – Comparison of the mean values of  inter-blend and commercial samples 
 

mean (g/100g) inter-blend Commercial 
sample SD (%) 

FAT 22.06 24.00 8.09 
Satured 7.49 8.16 8.15 

C4:0 0.28 0.31 7.85 
C6:0 0.22 0.23 5.10 
C8:0 0.14 0.15 4.93 

C10:0 0.29 0.31 5.06 
C12:0 0.32 0.34 6.39 
C14:0 0.95 1.03 7.94 
C15:0 0.09 0.10 8.63 
C16:0 3.61 3.98 9.16 
C18:0 1.29 1.40 7.71 

Mono-unsatured 9.64 10.52 8.33 
C14:1 0.13 0.14 8.12 
C16:1c 0.22 0.24 7.63 

C18:1 c 9 8.84 9.66 8.48 
C18:1 c 11 0.23 0.24 6.89 
C20:1 n9 0.09 0.10 8.32 

Poli-unsatured 4.93 5.33 7.53 
C18:2 n6 4.14 4.49 7.76 
C18:3 n3 0.44 0.48 8.19 

C20:4 n6 (ARA) 0.10 0.11 4.71 
C22:6 n3 (DHA) 0.06 0.07 6.24 



 

 

 
 

Table 6.10. – statistical comparison between intra blend and commercial sample 
 

 Intra 
blend 

Commercial 
samples 

t student 
value df p value N Intrablend 

samples 
N commercial 

samples 
SD 

Intrablend 

SD 
commercial 

samples 

Variance 
ratio F 

p 
Variances 

FAT 24.27100 24.00727 0.369294 19 0.715992 10 11 1.753178 1.519665 1.330933 0.659612 
Satured 8.24300 8.15818 0.366968 19 0.717698 10 11 0.536678 0.521974 1.057136 0.924410 

Mono-unsatured 10.60200 10.51545 0.267785 19 0.791750 10 11 0.812866 0.666984 1.485277 0.545361 
C18:1 c 9 9.72800 9.66182 0.215151 19 0.831942 10 11 0.785774 0.621302 1.599518 0.474376 

Poli-unsatured 5.42500 5.33273 0.544885 19 0.592172 10 11 0.430278 0.344647 1.558647 0.498559 
C18:2 n6 4.55500 4.49091 0.450074 19 0.657750 10 11 0.361855 0.289774 1.559370 0.498120 
C18:3 n3 0.48500 0.48273 0.147377 19 0.884387 10 11 0.039511 0.031013 1.623083 0.461012 

C20:4 n6 (ARA) 0.11400 0.11000 0.883504 19 0.388007 10 11 0.009661 0.010954 1.285714 0.715949 
C22:6 n3 (DHA) 0.06800 0.06545 0.723261 19 0.478329 10 11 0.007888 0.008202 1.081169 0.916107 
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FIGURES 

 
Figure 6.1. - Chromatograms relative to the samples of raw materials employed for the addiction of ARA and DHA, and a sample from the 

inter-blend. 
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Figure 6.2. -  Variance of the fatty acids under investigation, and relatives to the intra-

blend samples. 
 
 
 
 

 
Figure 6.3. -  Variance of the fatty acids under investigation, and relatives to the inter-

blend samples. 
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Figure 6.4. -  Variance of the fatty acids under investigation, and relatives to the 

commercial samples. 
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Figure 6.5a,b. – Lipids and Satured: comparison of the mean, standard error, and a 95% confidence interval. 
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Figure 6.5c,d. – Mono-unsatured and Oleic acid: comparison of the mean, standard error, and a 95% confidence interval. 
 
 
 
 

Box & Whisker: Oleic (C18:1 n-9)
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Figure 6.5e,f. – Poli-unsatured and Linoleic acid: comparison of the mean, standard error, and a 95% confidence interval. 
 
 
 

Box & Whisker: Linolenic (C18:2 n-6)

 Mean 
 ±SE 
±1.96*SE  

Intrablend Prodotto finito
4.2

4.3

4.4

4.5

4.6

4.7

4.8
Box & Whisker: Poli-unsatured

 Mean 
 ±SE 
±1.96*SE  

Intrablend Prodotto finito
5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

Intra blend            Commercial sample Intra blend            Commercial sample 

13
1 



 

 

 
 
 
 
 
 

 
 
Figure 6.5g,h. – Linolenic and Arachidonic acid: comparison of the mean, standard error, and a 95% confidence interval. 
 

Box & Whisker: Linolenic (C18:3 n-3)
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Figure 6.5i. – Docosahexaenoic acid: comparison of the mean, standard error, and a 
95% confidence interval. 
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7.1. SUMMARY AND KEYWORDS 

A wide debate in the scientific panel regarding the human consumption of food products 

containing fatty acids in trans configuration (TFA) have been raised, influencing either 

the nutritional recommendations proposed by national health cares, and food laws for 

nutritional labeling purpose. Despite the low levels of TFA in foods products from 

animal origin, and their particular composition in these products, even dairy products 

have been involved in the diatribe. Therefore, due to the lack of specific information 

about the TFA content in the Parmigiano Reggiano cheese, in this work the study of the 

fatty acid profile with particular emphasis to the TFA in Parmigiano Reggiano cheese 

samples has been proposed. 

 
Keywords: trans fatty acids, Parmigiano Reggiano, food labels. 
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7.2. INTRODUCTION 

The current investigation, dedicated to describe the fatty acid profile (with particular 

interest on trans fatty acids) of 13 samples of Parmigiano Reggiano cheese, collected in 

the 4 districts of the yield area (Bologna, Mantova, Parma, Reggio Emilia), and at 

different time of seasoning, is related to the increasing concern regarding unfavorable 

roles on human health of TFA in coronary heart diseases (CHD) and, lately, in prostate 

cancer risk (1). The discovery of their negative health effects concurrently to the 

advances in medicine and food science research, sparked a great interest in the scientific 

panel, inducing many governments to implement legislation to reduce the total TFA 

content of food products by introducing mandatory labeling of total TFA or restricting 

the sale of industrially produced fats and oils with more than a certain amount. 

Unfortunately, the debate, is still today an object of simplifications and mistakes that 

origin perplexity (2). 

The predominant dietary sources of TFA in the western diet are: vegetable-oil-based 

margarines, shortenings, and cooking oils that have been subjected to the industrial 

process called hydrogenation; ruminat fats (dairy products and beef), where TFA are 

naturally produced by the process called biohydrogenation and present in a considerable 

lower amount. Recently, new studies found an inverse association between ruminant 

TFA and risk of CHD, implying that ruminant TFA intake might be innocuous or even 

protective against CHD (3, 4). Moreover, the TFA isomers from ruminant and industrial 

fat may differ in their relative abundance; the TFA isomers in industrial fats are 

produced under catalytic conditions that results in a more random distribution of isomer, 

while the isomers in ruminant fats are enzymatically produced resulting in the formation 

of specific TFA isomers. Therefore, the new investigations on total TFA negative health 
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effects should consider the differences between TFA isomers from ruminant and 

industrial fat, as well as the nutritional information to consumers and the definition of 

nutritional profiles that determine the food quality in dairy products should be seen 

under a different point of view. 

 

7.3. MATERIALS AND METHODS 

7.3.1 SAMPLES COLLECTION 

13 samples of Parmigiano Reggiano cheese were collected in different dairy factory 

with the collaboration of the farm personnel. 

 

7.3.2. PRELIMINARY ANALYSIS OF THE ORGANIC AND INORGANIC 

FRACTION 

Each sample was analyzed in its organic and inorganic fraction composition by Food 

Scan (Foss)-NIT (Table 7.1.) at the Parmigiano Reggiano cheese Consortium, and then 

stored at - 40°C until analysis. 

 

7.3.3. SAMPLE PREPARATION 

The fat was extracted in double following the method of Blight and Dyer (5), and then, 

the preparation of the methyl esters was carried out applying the method of  

Christopherson and Glass (6): about 20 mg of dry fat was put in a test tube, 50 µl of 

KOH MeOH 2N and 500 µl of hexane were added respectively, and then the tube was 

mixed for 30 seconds; 0,5 mg of C13:0 (Sigma-Aldrich, St. Louis, MO, USA) were 

used for the fatty acids quantitation as internal standard.  After the phase separation was 
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acted, 300 µl of surnatant was collected and put in a vial. It followed the analysis by gas 

chromatography. 

 

7.3.4. GAS CHROMATOGRAPHIC QUANTITATION 

FAME were analyzed with a  Perkin Elmer Clarus 500  gas chromatograph  equipped 

with a Supelco 2560 (Supelco Inc., Bellefonte, PA) fused silica capillary column (100 

m x0.25 mm i.d., 0.2-µm film thickness), a FID detector, and a split injector.  Helium 

was used as carrier at the constant flow rate of 0,75 min/min. The FID detector was 

maintained at 250°C with air flow rate of 400 ml/min, hydrogen flow rate of 40 ml/min, 

and helium (make up gas) flow rate of 30 ml/min. The split injector was maintained at 

250°C with the split ratio of 1:67. The temperature program was as follow: ramp 1) 

3°C/min from 100°C to 180°C and maintained 10 minutes, then ramp 2) 3°C/min from 

180°C to 240°C and maintained 30 minutes. For the fatty acids identification was used 

the 53 FAME GLC-reference standard mix-463 (NU-CHEK-PREP, Elysian, MN).  

 

7.4. RESULTS AND DISCUSSION 

The fatty acid profile of the Parmigiano Reggiano cheese samples has been determined 

(Table 7.2.). Likewise the milk fatty acid distribution, the major fatty acids have 

resulted to be the palmitic acid (30,13 %), oleic acid (19,28 %), stearic acid (10,40 %), 

and miristic acid (10,39 %). The analysis of TFA content has followed: for definition, 

trans fats, are defined as all the unsaturated fatty acids that contain one or more isolated, 

non-conjugated, double bonds in a trans geometric configuration. Conjugated fatty acids 

with a trans double bond, including CLA isomers, are excluded from the definition of 

trans fats. By observing table 7.3. and figure 7.1. the dominant trans isomer in the 
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samples analyzed result to be the vaccenic acid (C18:1 t11), that represent the 74 % of 

the overall TFA content, while their total content fluctuates between the minimum of 

2,5 % and a maximum of 5.4 % of total fatty acids composition, turning out to be in 

accordance with the literature (7). Several studies have observed variation of TFA 

among same dairy samples; seasonal variation is probably the most important cause of 

differing their fatty acid composition (8). Specifically, during the outdoors feeding 

period the intake of polyunsaturated and monounsaturated fatty acids increases and this 

leads to an increase in the proportions of oleic acid and trans fatty acids and a 

corresponding decrease in saturated fatty acids of milk (9). This trend has also been 

observed in the samples examined (Figure 7.2.), even though the cattle diet was 

unknown; this is difficult to determine in retrospect but since the samples were collected 

during different times, and seasoned differently, seasonal variation probably accounted 

for much of the differences found between the 13 samples in the present study. 

 

7.5. CONCLUSIONS 

The TFA composition found in the 13 Parmigiano Reggiano cheese samples results to 

be in accordance with the literature for dairy products and reflects, logically, the TFA 

content of milk. Nevertheless, it has been necessary to obtain such information from 

analysis about this unique cheese, in order to support with objective data the food 

labeling regulation, whereas Parmigiano Reggiano cheese is exported in countries 

where is mandatory the TFA declaration on the food label. 

Moreover, from a nutritional point of view, the data have confirmed the specificity of 

TFA composition in dairy products, especially, if compared with food products 

containing hydrogenated fat. The vaccenic acid (C18:1 t11), the most abundant isomer, 
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is also the forerunner of rumenic acid (C18:2 c9 t11), the principal isomer of the group 

of CLA, and the presence of conjugated poli-unsatured fatty acids is very significative, 

since nutritional and healthy properties have been attributed. 
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TABLES 

 

Table 7.1. – Organic and inorganic fraction composition of Parmigiano Reggiano 
cheese samples. 

 
  Umidity Fat Protein Salt 

35 31.26 31.39 31.82 1.6 
40 30.13 32.58 32.87 1.45 
41 31.12 30.61 32.33 1.69 
43 30.04 33.62 31.29 1.88 
45 31.52 31.64 31.91 1.34 
47 31.76 31.29 31.39 1.4 
49 32.35 31.75 30.92 1.87 
52 31.56 29.43 34.1 1.51 
53 31.92 30.99 32.81 1.51 
D5 30.62 33.03 31.07 1.43 
5 35.02 28.83 30.65 1.36 
6 35.1 25.07 33 1.63 
7 31.12 30.59 33.77 1.61 

 



 

 

Table 7.2. – The fatty acid profile of the Parmigiano Reggiano cheese samples. 

Sample # 35 40 41 43 45 47 49 52 53 5 6 7 D5 
                            

Satured (100g of fat)                         
c4:0 1.81 2.39 1.34 1.75 1.62 1.47 1.56 1.32 1.15 1.84 1.64 1.56 1.65 
c6:0 0.87 1.79 1.17 1.23 1.31 1.25 1.23 1.18 1.06 1.42 1.27 1.19 1.29 
c8:0 0.55 1.10 0.93 2.90 0.87 0.85 0.79 0.84 0.73 0.92 0.89 0.84 0.91 
c10:0 1.42 2.95 2.47 1.97 2.27 2.27 2.03 2.46 1.94 2.40 2.36 2.27 2.58 
c11:0 0.22 0.22 0.28 0.22 0.23 0.26 0.14 0.09 0.19 0.24 0.16 0.20 0.23 
c12:0 2.80 4.00 2.74 2.60 2.98 3.07 2.64 3.45 2.58 3.07 3.01 2.94 3.59 
c14:0 10.90 13.58 11.72 10.80 11.44 11.64 9.81 11.57 10.06 11.29 10.24 10.41 12.03 
c15:0 1.10 1.52 1.40 1.36 1.24 1.44 1.06 1.52 1.17 1.23 1.10 1.09 1.39 
c16:0 31.47 39.22 32.64 34.11 32.84 35.60 30.90 32.18 30.47 31.48 26.03 28.41 36.47 
c17:0 0.76 0.95 0.80 0.84 0.80 0.91 0.66 0.80 0.77 0.84 0.64 0.67 0.81 
c18:0 11.76 12.55 10.38 10.39 12.14 10.75 11.62 9.65 11.35 11.42 13.22 11.48 8.87 
c20:0 0.16 0.12 0.17 0.16 0.19 0.16 0.13 0.14 0.16 0.17 0.16 0.13 0.15 
c21:0 0.01 0.01 0.04 0.03 0.02 0.03 0.01 0.02 0.03 0.03 0.02 0.02 0.02 
c22:0 0.07 0.06 0.09 0.00 0.08 0.08 0.05 0.12 0.07 0.08 0.07 0.08 0.07 
c23:0 0.02 0.00 0.05 0.04 0.03 0.03 0.01 0.00 0.01 0.04 0.02 0.02 0.03 
c24:0 0.03 0.10 0.07 0.03 0.04 0.05 0.02 0.03 0.04 0.05 0.02 0.03 0.02 
Total 64.01 80.57 66.36 68.53 68.11 69.85 62.67 65.37 61.78 66.52 60.85 61.34 70.10 

g/100g of cheese 20.09 26.24 20.31 23.03 21.54 21.85 19.89 19.23 19.14 19.17 15.25 18.76 23.15 
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Sample # 35 40 41 43 45 47 49 52 53 5 6 7 D5 

              
Mono-ins.cis (100g of fat)                     

c14:1 0.80 0.50 1.02 0.84 0.81 0.87 0.83 1.05 0.88 0.84 0.73 3.16 1.00 
c16:1c 1.86 1.33 1.86 1.82 1.68 1.93 1.88 2.01 1.98 1.72 1.40 1.62 1.94 
c17:1 0.22 0.11 0.24 0.22 0.18 0.23 0.19 0.23 0.15 0.21 0.15 0.18 0.20 

c18:1 c 9 23.34 12.07 20.97 19.73 19.51 18.73 23.58 22.29 23.52 21.27 23.71 22.25 18.94 
c18:1 c 11 0.72 0.38 0.48 0.53 0.56 0.54 0.67 0.95 0.72 0.58 0.58 0.68 0.64 
c18:1 c 12 0.30 0.18 0.24 0.21 1.06 0.20 0.36 0.33 0.36 0.35 0.73 0.52 0.21 
c18:1 c 13 0.06 0.01 0.04 0.03 0.01 0.03 0.05 0.06 0.06 0.04 0.07 0.07 0.03 
c18:1 c15 0.12 0.10 0.16 0.13 0.11 0.12 0.13 0.10 0.14 0.13 0.18 0.18 0.14 
c20:1 n9 0.06 0.00 0.04 0.02 0.04 0.04 0.05 0.02 0.06 0.05 0.02 0.04 0.02 

Total 27.48 14.69 25.06 23.54 23.95 22.69 27.75 27.03 27.86 25.19 27.55 28.70 23.12 
 g/100g 8.62 4.78 7.67 7.91 7.57 7.10 8.81 7.95 8.63 7.26 6.90 8.77 7.63 

              
Poli-uns. cis (100g of fat)           

c18:2 n6 2.60 1.68 2.08 2.17 2.31 1.97 3.22 2.82 3.59 2.36 4.17 3.60 2.59 
c18:3 n6 0.02 0.00 0.01 0.01 0.02 0.01 0.02 0.02 0.03 0.02 0.02 0.02 0.04 
c18:3 n3 0.52 0.31 0.75 0.76 0.47 0.54 0.59 0.58 0.58 0.81 0.97 0.97 0.65 

c20:2 0.02 0.00 0.01 0.02 0.01 0.00 0.02 0.02 0.02 0.02 0.01 0.02 0.00 
c20:3 n6 0.11 0.06 0.10 0.10 0.10 0.08 0.12 0.15 0.14 0.13 0.15 0.12 0.12 
c:20:4 n6 0.14 0.07 0.13 0.12 0.12 0.11 0.15 0.11 0.16 0.16 0.17 0.13 0.16 

c22:2 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
c20:5 n3 0.03 0.01 0.06 0.03 0.03 0.04 0.03 0.03 0.04 0.06 0.02 0.04 0.02 
c22:6 n3 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

Total 3.44 2.12 3.15 3.20 3.06 2.77 4.18 3.73 4.56 3.56 5.51 4.91 3.61 
g/100g of cheese 1.07 0.69 0.96 1.07 0.96 0.86 1.32 1.09 1.41 1.02 1.38 1.50 1.19 
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Sample # 35 40 41 43 45 47 49 52 53 5 6 7 D5 
                            

CLA (100g of fat)            
c18:2 c9, t11 0.77 0.2 0.9 0.75 0.64 0.58 0.69 0.4 0.72 0.57 0.69 0.59 0.39

g/100g 0.24 0.06 0.27 0.25 0.2 0.18 0.21 0.11 0.22 0.16 0.17 0.18 0.12
              

TFA (100g of fat)                       
Total 4.31 2.42 4.54 3.98 4.23 4.11 4.71 3.45 5.08 4.16 5.39 4.46 2.79

g/100g of cheese 1.35 0.78 1.38 1.33 1.33 1.28 1.49 1.01 g 1.57 1.19 1.35 1.36 0.92
 
 
Table 7.3.  – TFA compositionof the Parmigiano Reggiano cheese samples. 

    TFA (% FAME)   

AGE SAMPLE C13:1 C16:1 C18:1 t11 C18:2 C18:3 
TOTAL 

TFA 
g/100g of 

cheese 
24 #40 0.08 0.36 1.74 0.20 0.03 2.42 0.79 
23 #D5 0.09 0.30 1.85 0.44 0.11 2.79 0.92 
6 #5 0.12 0.37 3.06 0.47 0.14 4.16 1.20 

24 #47 0.11 0.40 3.06 0.43 0.11 4.11 1.28 
24 #45 0.09 0.39 3.23 0.40 0.12 4.23 1.34 
26 #43 0.13 0.40 2.88 0.44 0.13 3.98 1.34 
12 #6 0.07 0.28 4.17 0.77 0.10 5.39 1.35 
26 #52 0.04 0.28 2.47 0.55 0.11 3.45 1.35 
26 #35 0.08 0.36 3.34 0.39 0.13 4.31 1.35 
36 #7 0.06 0.29 3.35 0.65 0.11 4.46 1.37 
24 #41 0.16 0.45 3.24 0.54 0.15 4.54 1.39 
25 #49 0.06 0.33 3.61 0.59 0.12 4.71 1.49 
24 #53 0.08 0.41 3.83 0.63 0.13 5.08 1.57 
            MEAN 4.12 1.29 
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FIGURES 

 

 
 
Figure 7.1.  – Partial chromatogram of the TFA elution area. 
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Figure 7.2. – Percentual variation of satured FA, oleic acid, and TFA in each sample. 
 
.
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