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Introduction

In this work we propose a new approach for preliminary epidemiological studies on Standardized

Mortality Ratios (SMR) collected in many spatial regions. A preliminary (also called descriptive)

analysis in this field aims to formulate hypotheses to be investigated via individual epidemiological

studies that avoid bias introduced by aggregated analyses.

Starting from collecting disease counts yi, calculating expected disease counts ei by means of

reference population disease rates, and assuming each area i count is distributed as a Poisson with

mean (ei · ri), an SMRi = yi
ei

is derived as the ML estimate of the parameter ri, that is the relative

risk for the disease under examination in area i. Such estimators have high standard errors when

referred to small areas, i.e. areas where the expected count ei is low either because of the small

number of people living in the area or the rarity of the disease under study. Therefore, the presence

of small areas yields maps of ML relative risk point estimates that are discontinuous; when the

expected count is very low (even lower than 1) a huge SMR value may be caused by the occurrence

of few disease cases. As a result a map of SMRs will tend to only highlight risk in poorly populated

areas. If we undertake a hypothesis testing inferential approach, so evaluating the null hypothesis

of absence of risk (H0i : ri = 1) against the alternative of a higher risk (H1i : ri > 1) in each area

i by means of p-values computed with Poisson c.d.f., we meet the opposite problem: the test is

more likely to be significant (more powerful) in non-small areas than in small areas, hence a map

of p-values will tend to only highlight risk in high population areas.

Disease mapping models providing maps of smoothed relative risk estimates and other tech-

niques for screening disease rates on the map, that aim to detect possible high-risk areas, have been

proposed in the literature according to the classical and the Bayesian paradigm. Our proposal ap-

proaches this issue through a decision-oriented method: we want to evaluate many null hypotheses

focusing on multiple testing control, without however leaving the “preliminary study” perspective.

More precisely, we implement a multiple testing procedure that controls the False Discovery Rate

(FDR), i.e. the number of falsely rejected null hypotheses (false discoveries) divided by the number

of rejected null hypotheses (discoveries). This quantity is largely used to address multiple com-

parisons problems in the field of microarray data analysis but it is not usually employed either in

5



6

testing many hypotheses on a large SMRs dataset or in disease mapping applications, that are

not concerned with testing hypotheses but only with point estimation of true relative risk values.

Controlling the FDR means providing an estimate of the proportion of false discoveries for a set

of discoveries, where a discovery is a declared high-risk area.

The presence of small areas and of positive spatial correlation between risks, that are frequently

encountered in practice, create difficulties in applying p-value based traditional methods for FDR

control/estimation (Benjamini and Hochberg, 1995; Storey, 2003) because the necessary distribu-

tional assumptions on the p-values do not generally hold. More precisely, the p-values cannot be

assumed as independent when spatial correlation between risks is expected; furthermore they are

not identically distributed under the null hypothesis as U(0, 1) when the population underlying the

map is non-homogeneous, counts are sparse, and hence over-dispersion is expected.

The Bayesian paradigm offers a way to overcome the inappropriateness of p-value based meth-

ods. In the present work we propose a hierarchical full Bayesian model for FDR estimation in a

testing framework where many null hypotheses of absence of risk are evaluated on the observed

SMRs. We want to focus on cases where SMRs are collected in small areas and risks are spatially

correlated, i.e. in cases where there is a lack of fit of the usually assumed Poisson model for indepen-

dent counts. We will use concepts of Bayesian modeling for disease mapping, referring in particular

to the Besag York and Mollié model (Besag York and Mollié, 1991) often used in practice for its

prior assumptions flexibility w.r.t the distribution of risk parameters r = (r1, ..., rN ) in the whole

map. The borrowing of strength between prior and likelihood typical of a hierarchical Bayesian

model takes advantage of evaluating the test in a given area i by means of all observations in the

map under study (y = (y1, ..., yN )) rather than just by means of the observation in the given area

(yi). This can improve the power of the test in small areas and addresses more appropriately the

spatial correlation issue that suggests that relative risks are closer in spatially contiguous regions.

In practice, the proposed model aims primarily to make the practitioner able to declare a number

of areas as high-risk areas (i.e. to reject a number of null hypotheses) controlling a desired level

of FDR fixed a priori. Another peculiarity is its capability to still provide posterior estimates of

relative risk values, that are the inferential target of the Besag York and Mollié model. As regards

the primary aim, we can obtain an estimate of the False Discovery Rate through MCMC estimation

of each area specific posterior probability that the null hypothesis is true, denoted as πi = P (H0i|y).

To be precise, we will focus on controlling the expected FDR conditional on data (Broet et al.,

2004), denoted as F̂DR. This quantity can be worked out given any set of π̂i’s by computing the

empirical mean over them; the key point is that each π̂i is an estimate of the type I error probability

relative to the rejecting H0i. Thus, we can consider this set of posterior probabilities as relative
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to the areas declared at high-risk, and F̂DR as an estimate of the proportion of false discoveries

which can occur in making such declarations.

The most interesting aspect of the work is the capability of the model to provide a non-arbitrary

decision rule for rejecting null hypotheses that is based on the knowledge of F̂DR; we call such

rules “F̂DR based decision (or selection) rules”. In a formal sense, a decision rule is defined as a

function of the π̂i’s and a threshold tπ, such that if π̂i ≤ tπ, then H0i (i.e. ri = 1) is rejected in

favor of the alternative H1i (i.e. ri > 1). By applying for instance an F̂DR = c based rule, where

c is the pre-fixed FDR level, the practitioner can select as many as possible areas such that the

F̂DR ≥ c. The sensitivity and specificity of such rules depend on the goodness of estimation of

the FDR. On this note, what is required in order to achieve a control is a “conservative” FDR

estimation (Storey, 2002), that is F̂DR ≥ true FDR.

A simulation study to evaluate the model performance in FDR estimation in terms of accuracy,

sensitivity and specificity of the decision rule, and not least the performance in goodness of esti-

mation of relative risks, was set up. We chose a real map from which we generated several spatial

scenarios whose simulated disease counts vary according to the spatial correlation degree, the size

of the areas, the number of areas where the alternative hypothesis is true (HR areas) and the risk

level in the HR areas. For each dataset (in total 100) of each scenario (in total 54) the model

was ran using BRugs package (version 0.4 - 1) that implements OpenBUGS version 3.0.2. The

main aim of the simulation is evaluating which FDR levels are conservatively estimated (i.e. not

under-estimated) by the model in each scenarios, focusing the interest in small areas and spatially

correlated risks scenarios.

An application to real data is finally presented to show the two kinds of maps that the method

can produce: a map of posterior relative risk estimates and a map of highlighted high-risk areas

given a pre-chosen value of F̂DR.

The plan of the work is as follows. In chapter 1 the basic concepts of FDR and multiple

testing are illustrated. Chapter 2 introduces the spatial epidemiological case study, the motivation

of the work and the multiple hypothesis setting based on SMRs. In chapter 3 we discuss the

characteristics of the proposed model to estimate the expect FDR conditional on data. Chapter 4

describes features and results of the simulation study and gives application to a real dataset.
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Chapter 1

Basic concepts on Multiple Testing

In evaluating a null hypothesis H0 we need a decision rule d(z(y), ty), function of a summary

statistics of data z(y) and a threshold tz, to decide whether or not H0 can be rejected. In Neyman-

Pearson theory, for instance, this function is ruled out such that the type I error probability

(probability of rejecting the null hypothesis when it is true) cannot be greater than a pre-chosen

level α. Traditionally, the most typical case is when the null hypothesis is evaluated by means of

a p-value dependent on a chosen summary statistics of data z(y) and on distributional assump-

tion for z(y); a p-value is calculated as the probability of randomly occurring values at least as

unlikely as the observed z(y). Rejecting the null hypothesis when the calculated p-value is less

than the threshold tp−value = α guarantee the control of the typeI error probability in doing a

test for evaluating a single null hypothesis. When tests are performed on many, say m, null hy-

pothesis {H01, ...,H0m}, and a set of m p-values {p1, ..., pm} are available, it is very likely that

at least one of them is lower than α even if all null hypothesis are true. Precisely, if tests are

independent, P (at least one of {p1, ..., pm} < α|H01, ...,H0m) = 1− (1− α)m that for m = 10 tests

becomes around 0.4. Thus, if in a multiple testing set up one employs the same decision function

d(z(y), tp−value) used for evaluating a single test, the probability of at least one typeI error is greater

than the pre-chosen level α.

Therefore, every time we make evaluations about a multiplicity of null hypotheses we need

to control a global error related in some sense to the typeI errors that can occur. Table 1.1

shows all possible outcomes from a multiple testing procedure and suggests a variety of global

error measures which could be controlled in practice. Most traditional methods aim to control the

quantity P (V ≥ 1), that is a multiple testing global error measure correspondent to the type I error

rate in the single hypothesis testing set up. It is called Family Wise Error Rate (FWER), and it

is the probability of obtaining at least on false positive.

In general, several techniques and different approaches have been proposed regarding the kind

9



Chapter 1. Basic concepts on Multiple Testing 10

Accept null Reject null Total

Null true U V m0

Null false T S m1

m−R R m

Table 1.1: Possible outcomes from testing m null hypothesis

of error measure considered, the inferential approach to estimate or control it (see section 1.2), the

interpretation of probability on which inference is based (see section 1.1), the particular context

the multiple tests are conducted under. In this chapter we do not discuss multiple testing methods

in general, but just focus on methods for controlling the False Discovery Rate (FDR), a particular

global error measure that we believe fruitful in the case of study of spatial epidemiology under

examination. Motivations for this choice are explained in chapter 2.

1.1 False Discovery Rate

In this work we shall focus on the False Discovery Rate, that is the proportion of false discoveries

(or false positives, or number of null hypotheses wrongly rejected) among all the discoveries (or

positives, or number of null hypotheses rejected):

FDR =
V

R
(1.1)

Note it is a random quantity (neither bayesian nor frequentist) where both numerator and denom-

inator are unknown short of having determined a decision rule for rejecting null hypotheses. It is

worth noting that the authors who introduced the False Discovery Rate (Benjamini and Hochberg,

1995) called FDR the quantity E
[
V
R

]
. We will instead denote FDR as simply the fraction between

false discoveries and discoveries, following the terminology of Genovese and Wassermann (2003).

The FDR as a global error measure is frequently employed in the field of microarray data analysis

where multiple comparison problems arises in the identification of differentially expressed genes

among a large number of observed gene expressions.

Several authors introduced p-value based methods that ”adjust” the procedure for rejecting

hypotheses such that in average the expected FDR is lower than a pre-specified error (Benjamini

and Hochberg, 1995; Storey, 2002). We refer to such methods as “frequentists” since they control

the expected value of such a global error, taking the expectation over repeated experiments. Other

proposals follow a Bayesian perspective and consider the null hypotheses as random variables,

taking the expectation over them conditionally on the observed data. We will not review the several
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methods proposed in literature but focus primarily on the methods based on posterior probabilities

of the null hypothesis (see section 1.3) rather than p-values (see section 1.2). For a methodological

review of Bayesian proposals see Berry and Hochberg (1999); for a decisional theoretical approach

see Muller et al. (2006), while for an application of the FDR estimation through a hierarchical

Bayesian modeling framework in microarray data see Newton et al. (2004) and Broet et al. (2004).

1.2 Frequentist methods

Traditional methods for addressing FDR control are based on the knowledge of p-values and make

use of frequentist arguments to demonstrate the control. Benjamini and Hochberg (1995) achieve

the control of the expectation of the FDR as defined in (1.1), i.e. E(FDR) = E
(
V
R

)
. In Benjamini

and Hochberg (BH) procedure a control of E(FDR) is obtained by rejecting as many hypotheses

as possible such that E(FDR) is lower than a pre-specified value α. Such p-value based procedure

allows for rejecting all null hypotheses for which pi ≤ tp−value ≡ p(j) where:

j = max

{
0 ≤ i ≤ m : p(i) ≤ α

i

m

}
, (1.2)

and 0 ≡ p(0) < p(1) < ... < p(m) denote the ordered p-values. BH demonstrated that E(FDR) ≤ α

regardless of how many null hypotheses are true and regardless of the distribution of the p-values

under the alternative hypothesis.

Storey (2002) focus on a “conservative” estimation of the expected positive False Discovery

Rate (pFDR) given a threshold tp−value:

pFDR = E

(
V

R
|R > 0

)
(1.3)

A conservative estimation as intended by the author is such that:

E(p̂FDR(tp−value)) ≥ E(pFDR(tp−value)). (1.4)

There is here a change of perspective in that the control is achieved by estimation of the pFDR

for fixed monotonic rejection regions (or monotonic sets of p-values) rather than by prefixing the

level of FDR and work out the rejection region as in BH procedure. Storey (2003) uses a Bayesian

argument for ruling out a non-parametric estimator for the pFDR conditional on tp−value. He

provides estimators of a quantity called q-value that can be work out for each observed p-value.

Briefly, the q-value* relative to a given p-value* corresponds to the pFDR estimates conditional

on the rejection of all p-values lower than p-value*; for details see Storey (2003). Thus, building

a set of crescent-ordered p-values we can get an estimate of the pFDR by calculating the q-value
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relative to the highest observed p-value. Storey also shows a connection between his method and

BH procedure, demonstrating that for the same level of FDR a higher number of null hypotheses

can be rejected, gaining hence more sensitivity. The method makes however stronger assumption

than BH, the most relevant being assumptions which yields the “Bayesian interpretation” of the

pFDR (Storey, 2003). Suppose m identical hypothesis tests aiming to evaluate null hypotheses

{H0i, ...,H0m} are performed considering the summary statistics {z(y1), ..., z(ym)} and the rejection

region Γ. Let us assume that (z(yi), H0i), for i = 1, ...,m, are i.i.d. random variables with marginal

distribution:

[z(yi)|H0i] = H0i · F0 + (1−H0i) · F1 (1.5)

where F0 and F1 are the distributions of z(yi) respectively under the null and alternative hypothesis,

and H0i ∼ Bernoulli(prH0). Then it follows that:

pFDR(Γ) = P (H0i = 1|z(yi) ∈ Γ) (1.6)

(the notation [a|b] to mean the distribution of the random variable a conditional on b will be used

in the following mostly when analytic expressions are introduced; when a more compact notation

helps the comprehension we will use the classic ∼).

The result holds for all i = 1, ...,m and regardless of m. Moreover it is valid even if we consider

p-values instead of summary statistics. Storey proposed non-parametric estimators of pFDR(Γ)

by stressing the reasonable assumption that p-values distribution under H0 is Uniform(0, 1) so

achieving an estimator for the overall probability of the null hypothesis (calculated over the whole

set of tests). The attempt to estimate such an overall probability is what allows the gain in power

with respect to the BH procedure. In fact, considering a generalization of the BH result (Genovese

and Wasserman, 2003) we see that the BH procedure assures that E(FDR) ≤ a · α ≤ α, where a

is the overall probability of the null hypothesis, that is implicitly equal to 1 in the BH procedure.

Indeed, in the case where the pFDR estimator is obtained by using the most conservative estimation

of the overall probability of the null hypothesis (i.e. a = 1), BH procedure and Storey’s method

are equivalent.

1.3 Bayesian methods

The FDR is a ratio where both the numerator and the denominator depend on a decision about

the set of null hypotheses. We can generally define such a decision rule for H0i with the indicator

function di(·) = I(H0i is rejected ).
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Suppose H0i = 1 indicates the unknown null hypothesis is true and H0i = 0 that the alternative

is true, hence the true FDR can be formally expressed by:

FDR =
∑

iH0i · di
D

(1.7)

where D =
∑

i di and di = 1 if the decision rule is such that H0i is rejected. Frequentist methods

use decision rule of the form di = I(z(yi) ≤ tz), hence based on a summary statistics z(yi) of data

and a critical value tz. Decision rules of this form (or equivalently based on p-values) are intuitive

but not necessarily optimal as observed by Muller et al. (2006).

The Bayesian methods we will focus on consider H0i a binary random variable (equal to 1

when it is true) and allow us to determine the decision on the ith null hypothesis by the posterior

probability that the null hypothesis itself is true, that is:

πi = P (H0i = 1|data) = E(H0i|data). (1.8)

note this quantity is conditional on the observed data. Muller et al. (2006) discusses decision rules

of the form di(πi, tπ).

Considering frequentist expectation of the FDR, i.e. expectation over hypothetically repeated

experiments, we need to consider expectation over a ratio of random variables since the decision

di(z(yi)) is a function of the data and appears in both numerator and denominator of the ratio.

Under a Bayesian perspective the discussion simplifies because, looking at (1.7), the only unknown

quantity is the unknown H0i in the numerator, D being determined by a decision rule di(πi, tπ)

that is conditional on data. The FDR here is a function of the πi’s (and of a threshold tπ for

the πi’s) which are posterior probabilities conditional on the observed data. Thus, considering

each conditional expected value of H0i, i.e the πi’s defined in (1.8), we derive the expected FDR

conditional on data by:

E(FDR|data) =
∑

i πid(πi < tπ)
D

(1.9)

where the expectation is relative to H0i. This quantity is often used for addressing multiple compar-

isons problems in microarray data analysis. Following the mixture assumption of Storey (1.5) and

introducing exchangeability (instead of i.i.d.) assumption on summary statistics, authors (Newton

et al., 2004; Broet et al., 2004) proposed fully hierarchical Bayesian models for estimating the

expected FDR conditional on data. Such models can provide an estimate of each πi via MCMC

computation as a Monte Carlo mean over a sample of realizations from the respective posterior

distribution [H0i|data]. Given the estimates π̂i’s, an estimate of the expected FDR conditional on

data is provided for any set of discoveries of cardinality D by:

̂E(FDR|data) =
∑

i π̂id(πi < tπ)
D

(1.10)
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As suggested in Newton et al. (2004), an estimate of the expected FDR conditional on data

can be a suitable way to determine a decision function. Indeed, one can declare a null hypoth-

esis as rejected if πi < tπ∗, where tπ∗ is fixed to achieve a certain pre-set estimated FDR, say

̂E(FDR|data) ≥ c. Moreover, the authors observed the dual role of π̂i in decision rules like

di(π̂i, tπ). It not only determines the decision on H0i but also reports both the probability of a

false discovery as π̂i, if di = 1, and the probability a false non-discovery as 1− π̂i, if di = 0.

We will talk in more detail of these concepts in sections 3.2 and 3.2.1 when introducing and

discussing the model proposed to address the case of study under exam.

1.3.1 Posterior probability adjustment for multiple testing

Estimating the posterior probability that the null hypothesis is true underlies considering the

null hypothesis H0i as a random variable rather than an unknown fixed parameter. Berry and

Hochberg (1999) observed “Posterior inference adjusts for multiplicities, and no further adjustment

is required”. The statement is true provided the assuming a probabilistic model for the null

hypotheses. First, the probability model needs to include a positive prior probability for the event

“null hypothesis is true”. Second, the model needs to include a hyperparameter that defines the

prior probability mass for all null hypotheses themselves. Moreover they comment that “finding

posterior distribution of parameters is only part of the Bayesian solution. The reminder involves

decision analysis”. Paper of Muller et al. (2006) discusses such a decision theoretical perspective

and derive optimal decision rules based on the πi’s under several loss functions dependent on FDR

and FNR (the False Non Discovery Rate). The optimal rule, determined by minimizing expected

FDR conditional on data, is of the form di = I(πi < tπ), where tπ can be analytically determined

under several loss functions.

To sum up, a full Bayesian hierarchical modeling is required to achieve what Berry and Hochberg

called a posterior probabilities adjustment. The underlying idea of a fully Bayesian approach is

evaluating the ith test by means of πi, i.e. the ith posterior probability, but exploiting a Bayesian

shrinkage estimation such that all observations (not only ith observation) contribute to estimate

πi. Thus, the posterior distribution of πi will depend on all the observed data, not only on the ith

observed summary statistics.



Chapter 2

Multiple testing on large datasets of

Standardized Mortality Ratios

Multiple testing in epidemiological applications is not always considered a primary issue. Some

authors deny the adoption of procedures to account for FWER (Rothman and Greenland, 1998),

others advocate the control of it in epidemiological surveillance applications (Frisén, 2003; Kulldorff,

2001; Elliott et al., 2000), though it has been noticed the cost in sensitivity of adopting the control

of FWER in on-line monitoring (Rolka et al., 2007). It seems clear that multiple testing issues have

to be considered in relation to a particular application. An important issue to carefully evaluate

is the choice of the particular global error measure (see table 1.1 in chapter 1) to control/estimate

in each particular case study. In this work we do not want to discuss multiple testing control

from a theoretical point of view and claim it is necessary in the example we will introduce in this

chapter, but we want to show that it can be viewed as a possible way to conduct a descriptive

analysis of geographical epidemiology starting from the collection of many disease indicators. We

shall describe a common spatial epidemiological example, its main features, its objectives and the

statistical issues which arise. Then, in chapter 3, we shall attempt to build a multiple testing

procedure for it by means of a Bayesian hierarchical model that allows for estimating the FDR.

We will give reasons why this can be thought of as an interesting alternative to address a descriptive

geographical epidemiological analysis, mostly in cases where data are over-dispersed and spatially

correlated.

Firstly we introduce the epidemiological case under study and give some examples of its possible

objectives in practice. Briefly, a descriptive analysis of Standardized Mortality or Morbidity Ratios

(SMR), collected in many areas, is undertaken to identify unusually high risks. The aim is to screen

the health status of area-specific populations, to identify priority for public health interventions

or to suggest further analytical studies. For instance, an epidemiologist could be asked to look

15
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at the difference in rates among the areas and attempt a ranking of higher-risk areas in order

to allocate resources for public health administrative objectives (Greenland and Robins, 1991).

Another example is the mapping of risk indicators relative to some disease of interest; here the scope

is to describe the spatial distribution of the disease and to get clues about a possible association

between the disease itself and the exposure to environmental risk factors. Moreover, a preliminary

analysis can be done to detect clusters of one or more diseases under evaluation. For instance, one

could test for the randomness of any pattern that can be found across areas, or screen for evidence

of an individual disease hot spot (without any preconception about its likely location); the former

are called tests for clustering and the latter tests for the detection of clusters (Besag and Newell,

1991). Thus, we see the range of preliminary statistical tools can be large and cannot be discussed

here, just consider that, in general, methods use many different statistical inferential approaches

according to their specific objectives and data features; see (Lawson et al., 1999) for a review

of statistical methodologies available for addressing geographical analysis and some interesting

remarks about their appropriateness in guiding public health policy decisions.

Among the examples above mentioned we will only discuss Bayesian disease mapping models,

i.e. methods that give smoothed point estimates of risks in each area of the map considered. We

would like to point out that both disease mapping models and the methodology proposed here to

perform a multiple testing procedure controlling the FDR are only suitable for an analysis that may

form the basis for subsequent epidemiologic investigations but will rarely be an end in themselves.

In this work, the kind of preliminary analysis we will pursue is about testing each area-specific risk

for a disease of interest (or more diseases that have the effect of augmenting the number of tests)

being aware of the proportion of unusual high risks that more likely may have originated by chance.

As regards the importance of the scale to which the events disease can be recorded, we can

distinguish data collected at count (areal data) or point (case-event data) level, the former being

our focus. For areal data analysis what is very relevant is the level of aggregation, i.e. if we

have small or big spatial regions in the map under study. Often counts aggregated in small areas

produces a zero count, a situation denoting data sparseness. An area is called small when a small

count of disease events is expected inside it (sometimes the expected count is even lower than 1);

this can either be due to the rarity of the disease under examination or because of the small number

of people living there. The presence of small areas is one of the two main challenging issues we

want to focus on, the second being the presence of spatial correlation between the risks.

In section 2.1 we give reasons for addressing an epidemiological descriptive analysis by means

of a a multiple testing procedure on Standardized Mortality Ratios collected in many regions. We

do not loose generality if we have many disease indicators collected in many areas. In section 2.3
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we introduce the multiple hypothesis testing framework

To sum up, in this chapter we pose the ground for introducing a method to estimate the

False Discovery Rate and controlling the multiple testing error, arguments discussed in chapter

3. We also consider p-value based control methods and claim their inappropriateness for several

reasons. Hence, we propose to estimate the FDR by using a methodology developed through a

well known disease mapping model (Besag et al., 1991) that is flexible as regards problems due to

small areas and spatial correlation. We will also note that, in principle, the proposed model is able

to address both the FDR estimation relative to any possible set of rejected hypotheses and the

point estimation of true relative risk values.

2.1 The rationale of the work

Epidemiological studies aiming to identify unusually higher risks for one or more diseases over a map

of geographic areas are denoted as descriptive studies even if the methods involved in such analysis

often stress complex modelling assumptions. The general aim is to screen the health status of each

area population by means of suitable disease indicators to identify risk increments for the examined

diseases. Analyses are usually carried out on a predefined number of areas at a national, regional,

or municipality level. The case we are focusing on is when a number of indicators are available

collected in many regions, producing a large dataset. We also consider the presence of small areas

over the map. Starting with the knowledge of such large datasets we want to highlight as many

anomalies as possible, controlling some sort of measure which inform us about the anomalies that

are imputable to only random error. Moreover, we would like to be able to evaluate the magnitude

of risks in the areas declared as possibly at high-risk.

A well suited motivating example can be found in Catelan and Biggeri (2008), where authors

pursue a statistical approach to rank multiple priorities in a case of study of environmental epi-

demiology. They mention the control of the positive-False Discovery Rate like in Storey (2003)

as a possible approach to such a case study. Our work is in the same direction as regards the

epidemiological rationale, that is finding discoveries, or in other words, providing clues of which

indicators are susceptible to represent high-risk situations, these being the priorities of investigation

in a perspective of a preliminary and explorative statistical tool for epidemiologists. On this note

someone may argue that controlling the False Discovery Rate determines a decision-oriented ap-

proach which, traditionally, is not at all representative of a standard descriptive analysis. However,

we think in such a case study a testing framework can still be though of as only addressing a pre-

liminary statistical analysis since “descriptive” in this epidemiologic field does not strictly mean an

analysis carried out by only summarizing empiric observations. Furthermore, the “ecology fallacy”
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that typically affects such kind of aggregate indicators, limits conclusions that can be worked out by

them, and makes such analyses advisable just at a preliminary stage (Lawson et al., 1999). Indeed,

the further investigations aiming to confirm hypotheses generated by a descriptive analysis are,

in the field of epidemiology, expensive observational studies (cohort studies, case control studies)

conducted at an individual level. Thus, a decision based approach based on testing and control

the FDR on observed areal disease indicators cannot be considered a statistical tool finalized to

confirm the presence of environmental risk factors in those areas highlighted as at high-risk. It can,

at most, generate hypothesis to further investigate through observational individual level studies.

2.1.1 The small areas issue

The recent availability of geographical indexed health and population data, together with advances

in geographic information systems, has encouraged the epidemiological analysis on a small geo-

graphic scale. A lot of issues arise with data collected in small areas in epidemiological applications

of spatial statistics (Elliott et al., 2000). Some motivations are built around the increasing inter-

pretability of small-scale studies, as they are less affected, in principle, by the ecology bias due

to aggregating counts in areas that are heterogenous about the exposure to environmental factors

(within area clusters presence is less probable if counts are aggregated at a small-scale). Conversely,

small-scale studies require more sophisticated statistical techniques because the data are usually

sparse with low (even zero) counts of events in most of the regions; a situation of data sparseness

may still arise in large-scale studies when the disease is very rare. Furthermore, there is often

evidence of over-dispersion of the counts with respect to the typically assumed Poisson model (see

section 2.3.3) as well as spatial patterns indicating dependence between area-specific risks, both

reasons making it suitable to approach the analysis by following the Bayesian hierarchical model

paradigm. More details about the implications of the over-dispersion in the case under study can

be found in section 2.3.3

2.1.2 The inferential approach

There are two main reasons why we undertake a Bayesian paradigm. First, data frequently encoun-

tered in practice are in the form of large datasets of disease indicators collected at a small-scale,

with underlying disease relative risks being spatially correlated across areas, both issues represent-

ing statistical challenge well addressed by means of full Bayesian hierarchical models. The second

reason arises from the inferential approach we want to undertake for addressing an analysis of

such a large dataset, that is a multiple testing procedure controlling a particular multiple testing

error, i.e. the FDR (1.1). To this end Bayesian solutions have been suggested by some authors
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in microarray data analysis for the selection of differentially expressed genes (Newton et al., 2004;

Broet et al., 2004). Common features between the microarray context and our case study lies in the

fact that a strict control is not recommended, the identification of as many as possible anomalies

being the main interest. The main change of perspective lies in considering the null hypothesis as a

random variable rather than a fixed unknown parameter. As a result, for the Bayesian statistician,

the inferential target will be the posterior probability πi of each area-specific null hypothesis (1.8)

rather than p-values.

As said, our approach is decision-oriented, that is we want to make inference on a lot of null

hypotheses since we are mostly interested in a method to actually provide rules for deciding which

areas can be claimed high-risk areas, i.e. finding a rule for rejecting the null hypothesis, or for

selecting discoveries in Benjamini Hochberg terminology. The reason why we propose a model for

estimating the FDR is that controlling the FDR in our case would mean measuring the error we

incur in selecting high-risk areas, so that, for any given set of rejected hypotheses we obtain an

inferential tool to estimate the FDR. However, to be able to determine a selection rule we still need

to change perspective: we need a method which, fixing a desired FDR level, makes us able to select

as many high-risk areas as possible, or discoveries, being sure that the expected FDR would not

be greater than what is a priori pre-specified. We saw in chapter 1 that the Benjamini-Hochberg

procedure assures this under independence of p-values, whereas Storey builds a more powerful

method by means of more complex assumptions. We can say in advance that such methods are

inappropriate when data show spatial correlation and over-dispersion (see section 2.3).

In chapter 3 we will discuss a model for estimating FDR overcoming in part the mentioned

difficulties. We will also discuss a way to determine selection rules based on the knowledge of the

estimated FDR for any set of areas declared at high-risk. As long as the model is good at estimating

the FDR, we can be reasonably certain in claiming a given number of discoveries at the pre-chosen

level of FDR. We can think of such a pre-chosen FDR level as a nominal value that the model

aims to predict. Thus, the reliability of such a kind of rule will be dependent on the ability of the

model to accurately estimate the FDR, especially avoiding under-estimation in order to achieve a

conservative control (similarly to the Storey’s perspective (1.4)). In chapter 4 we will discuss about

the spatial contexts, frequently met in practice, where the model can achieve conservative FDR

estimation. Moreover in chapter 4 we shall regard the FDR estimation capability as an interesting

way to determine a “non-arbitrary” rule for selecting high-risk areas. However, it is worth being

aware of the lack of sensitivity or specificity that such rules may yield for some FDR (nominal)

values; see section 4.4.

We think that the method we will later introduce offers a first attempt to measure the error in
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making statements about many hypotheses of absence of risk evaluated in small areas. We recall

that the idea of selecting possible high-risk areas is of some sort of interest in epidemiology and some

authors have suggested rules focused to this aim. For instance, Richardson et al. (2004) proposed

to base a rule on the posterior probability that the relative risk is greater than 1. After a large

simulation study a value of 0.8 came out as more appropriate in most spatial scenarios evaluated.

Evaluating the posterior density placed in the right tail beyond 1 can be useful information, even if

the goodness of such a rule is conditional on what value is chosen for the threshold (0.8 or another

value?). Thus, unfortunately such a rule needs an arbitrary choice by the practitioner; a choice

whose effect in terms of error produced in declaring high-risk areas cannot be known (because the

object which the rule is based on, i.e. the posterior density, is an estimate of the true relative risk

value and there is no point in controlling a measure connected to the number of Type I errors).

With the rules suggested in chapter 3 a threshold for the FDR needs to be chosen, hence making

the practitioner aware of the number of errors he could at most incur. So, the only arbitrariness

introduced is the choice of the FDR level, analogous in some sense to choose the size α for a test

built with the Neyman-Pearson lemma. However, the goodness of the rule suggested still depends

on the accuracy of the FDR estimation which the model proposed is demanded.

2.2 Standardized Mortality or Morbidity Ratios

It is usual to assess the disease risk in a map of contiguous regions by collecting the observed

counts and calculating the expected counts. The ratio of observed to expected counts within

tracts is called Standardized Mortality/Morbidity Ratios (SMR) and this ratio is an estimate of

“relative risk” within each tract (i.e. the ratio describes the relative risk of being in the disease

group rather than the background group). Such indicators are easy to compute and often used in

geographical epidemiology studies and also in contexts not involving spatial issues like occupational

epidemiology (Tsai et al., 1986). Part of the section 2.3 focuses on the issues which arise employing

such indicators for testing null hypotheses in such a case study. We shall discuss characteristics of

a multiple testing setting based on such indicators, then we will recognize the inappropriateness

of frequentist p-value based methods for several reasons and claim the usefulness of a Bayesian

hierarchical approach.

We now define the likelihood model from which SMRs can be worked out as maximum like-

lihood estimators. We assume the disease occurrence is available in the form of count of cases

over a map of spatial regions. Small areas are those where we expect a small number of cases

because of the size of the area itself or the rarity of the disease. Within a map of N areas (census

tracts, postal districts, municipalities), let yi, ei and ri denote respectively the observed count, the
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expected count and the unknown relative risk in area i. It is usual to stress an i.i.d. Poisson model

for observed counts:

Yi ∼ Poisson(ei · ri) (2.1)

Thus, the likelihood of the relative risks ri is:

[yi|ei] = exp(−ei · ri) ·
(ei · ri)yi

yi!
(2.2)

Here and in the following, the notation [a|b] generically denotes the conditional distribution of

a given b. Similarly [a] will denote the marginal distribution of a.

The maximum likelihood estimator for ri is actually the Standardized Mortality Ratio observed

in area i:

r̂i = SMRi =
yi
ei

(2.3)

The term ei, that informs us about the area size, is assumed as known although it cannot actually be

observed, but it depends on some underlying assumptions about the population at risk underlying

the map. Operatively, it can be worked out after having stratified the population at risk by age

groups (or age-sex groups) and assuming a multiplicative model for such age group risks. Stratifying

is useful to make allowance for possible confounders. Since we want the SMRi to be an indicator

of the association between the disease in question and the environmental exposure in area i, we

would like to get rid of all other possible variables that could modify (“confound”) the actual

environmental exposure of people in area i. For instance, older people may be thought to be more

exposed than younger people to a given disease, or, some disease may be more dangerous for males

than for females. We want the latter variables, age and sex, not to affect the SMRi as we need

such indicators to inform us on only the risk associated with living in area i, regardless of if the

residents in area i are exposed to any other risk factors (age and sex in this case) not under study.

In other words we might know that age and sex are important etiological factors for the disease of

interest but in such an analysis we only want to focus on environmental factors. With this aim we

can proceed by applying two indirect standardization methods: 1) a standardization using internal

reference rates; 2) a standardization using reference rates of a standard external population. In the

latter case we have:

ei =
∑
j

Pij · qj

where qj is the disease rate in age group j for the reference population and Pij are the observed

person-years at risk in area i for age group j (the number of persons in age group j who live in area

i times the number of years over which we collect the count of disease yi). Here, it is implicitly
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assumed that the risk associated in living in area i (ri) acts proportionally on the baseline risk for

each strata (qj), hence:

qij = ri · qj (2.4)

Without introducing the latter assumption we propose propose a model for each age group observed

count (Pascutto et al., 2000):

Yij ∼ Poisson(Pij · qij)

However, the summation over the jth age groups in the (2.4) plus the assumption (2.4) lead

directly to model 2.1 where the count in area i is distributed as Poisson with mean (ei · ri). The

multiplicative model 2.4 is suitable as it allows for easily computing each area i expected count (ei)

that is the count of disease events we would expect if the disease rate in area i were equal to that

of the standard population. Underlying ei there is already an idea of null hypothesis; see section

2.3. Model with a combination of an additive and a multiplicative effect has also been proposed in

literature (Best et al., 2000).

In the internal standardization case we use as reference rates those of the population of the

whole map, hence:

qj =
∑
i

yij
Pij

Thus, this method centers the data as
∑

i ei =
∑

i yi and the overall mean disease rate is equal

to 1. It is the most used standardization method because it requires only the observed data. The

external standardization, instead, builds expected counts consistent with the mean disease rate of

another population assumed as a reference; i.e. a population supposed not to be exposed to the

same environmental risk factors under study. Using one instead of the other standardization makes

a difference in the following sense: with internal standardization we will obtain SMRs greater than

1 (constant mean rate), but also lower than 1, so adopting it we can describe the internal variability

of disease rates. With external standardization, data are not constrained to the observed/expected

equivalence over summation (
∑

i ei =
∑

i yi) hence we can still obtain all disease rates greater or

lower than 1, because 1 in this case is not the constant mean rate.

There are two other assumptions underlying model 2.1. The first concerns the Poisson proba-

bility distribution: in each area i, individual risk levels are independent of each other, that is the

susceptibility to the disease is the same for all people living in that area. The second regards the

independence and identity assumption (i.i.d.): counts of disease have no spatial correlation. In

general, deviations from such assumptions yield counts more variable than what is expected under

the Poisson model. This situation is commonly referred as over-dispersion, that is when the em-

pirical variance of the data is larger than the variance specified by the model assumed to describe
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the data. Typically it is assumed that the Poisson model is appropriate for rare and non infectious

disease, though care should still be take about the level of aggregation of the disease events in

counts, and the differences yielded by considering a regular grid or a real map with diverse area

shapes; see further considerations on Poisson lack of fitting in section 2.3.3.

2.3 The multiple testing framework

Since we want to highlight unusually high relative risks we need many one tailed tests of hypothesis

where the alternative hypothesis is that of higher relative risk value. Hence the two competing

hypotheses are of the form:

H0i : ri = 1 (2.5)

H1i : ri > 1 (2.6)

As we shall see in section 2.3.1 a p-value can be computed under the model where Yi is distributed

as the Poisson of mean ei by calculating the c.d.f. of such Poisson distribution.

It is worth mentioning now that when we set up the model for estimating the FDR (see chapter

3) we will consider the simple null hypothesis r = 1 which makes the model specification easier.

Anyway, we want to say in advance that a complication will be met: a small posterior probability

πi can arise either in case where area i risk is lower or greater than 1. Hence, the practitioner, after

having computed posterior probabilities for all areas, will have to work out the FDR estimation

by only considering the set of the πi’s relative to areas eligible as possible discoveries (or possible

high-risk areas). We will consider as eligible for becoming discoveries the areas where the observed

is greater than the expected count.

If the inferential aim is to conduct an hypothesis test in each of the N areas the multiple testing

problem ought to be addressed. In fact, doing a lot of tests we could incur wrong rejections making

necessary control of a global error measure. We have decided to control the FDR aiming to provide

information about how many False Discoveries we can expect, where a set of discoveries is defined

as the set of areas that, by means of the decision rule, we can declare as being at high-risk.

As regards the choice of which multiple testing error control in such case we agree with authors

that advocate the False Discovery Rate as a more appropriate measure than the FWER in all cases

where we need to find as many effects as possible (clues, anomalies etc.) in the dataset. As already

mentioned in this chapter, this is consistent with a descriptive analysis aimed at screening disease

indicators in an exploratory fashion rather than in a confirmatory study perspective, exactly like our

case. In fact, the probability of making at least one false discovery (FWER) is not appealing here,
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since we could reasonably let ourselves make even more than one error in declaring rejections; in

other words, the decision to conduct more epidemiological investigations (on the whole map under

study) need not be erroneous even if more than one null hypothesis is falsely rejected. Indeed, the

control of FWER by a Bonferroni adjustment would yield a lot of false non-discoveries as it is very

conservative with respect to the null hypothesis. Moreover, the decision to keep on investigating

with further high-cost epidemiological studies can not only be connected to this kind of geographical

analysis because they are not free of troubles. Such SMRs analyses stand at the lowest level of

proof about confirming etiological effects due to exposure to environmental risk factors because of

the “ecology fallacy” and many other possible confounders unobserved at area level. The analysis

is only required to throw light on possible anomalies. On this note, providing a method to estimate

the FDR given a number of discoveries is a possible way to proceed. If, moreover, the method can

estimate both false discoveries and relative risk values (i.e. the magnitude of the discoveries) it may

probably be viewed as a more informative way than merely plotting relative risk values on a map

or ranking high-risk areas. The model proposed in chapter 3 is indeed aimed at both estimating

FDR and relative risks.

As an example, Biggeri et al. (2007) applied Storey pFDR estimators to achieve q-values

relative to disease indicators tested in some areas of Sardinia and observed the usefulness of the

False Discovery Rate to asses the global degree of risk of a given area where more than one indicator

was available (several causes of disease under examination). For each area they were able to select

some discoveries at the level of FDR (indeed the pFDR) indicated by the q-value correspondent

to each p-value. The limitation here is that a q-value (i.e. an estimation of the proportion of false

discoveries) can be computed for only ordered sets of p-values (also denoted as p-value monotonic

sets). We believe the FDR is a useful measure also for our case study, that is slightly different as

we aim to make test on SMRs collected in small and contiguous areas and also addressing case

where risks show positive spatial correlation. As we will see in section 2.3.2 in our mind a small

area is when the expected count ei is lower than 5.

In the following we shall approach the methodology applied for estimating the FDR gradually.

Firstly we will mention related arguments like the mapping issue, the interpretation of the over-

dispersion as regards the null and alternative hypothesis and ways for computing a p-value for

testing an SMR.

2.3.1 Mapping significance or mapping Relative risks

Producing maps of indicators telling us about the disease under examination is a primary aim of

any descriptive analysis based on disease counts collected in many areas. A lot of authors have
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noted the difficulty in interpreting maps of SMRs (Cressie, 1993; Banerjee et al., 2004; Gelman

and Price, 1999; Mollié, 1996; Elliott et al., 2000; Pascutto et al., 2000; Schlattmann et al., 1993)

when the population underlying the areas is heterogeneous and mostly when some counts arise by

counting events in poorly sampled areas. Poorly sampled areas are actually the small areas, those

where the expected count is very small (even lower than 1) hence yielding a large SMR. Because

of small areas the map will show a discontinuity in estimated rates since low expected count areas

could yield a huge SMR for the occurrence of only a few cases of disease. On the other hand

such estimates will be very inaccurate since the standard error of SRMi depends on the population

living in area i, precisely:

ŝd(SMRi) =
√
yi

ei
(2.7)

where ei, as known, gives a clue about the area size. To sum up, mapping the SMRs (sometimes

called crude rates) will actually highlight high risks only in small areas. Disease mapping models

address such problems allowing us to work out adjusted estimates of the true relative risk values,

smoothed with respect to the SMRs.

We want to attempt to set a hypothesis test for each area (region) of the map. In literature we

can find a few examples that underly the idea of testing hypotheses on the collected SMRs rather

than pursuing the inferential goal of estimating the relative risk values. As an example, Cressie

(1993), quoting an earlier work of Choynowski (1959), considers a map of p-values of the form:

pi =


1− P (Yi ≤ yi | H0i : Yi ∼ Poisson(ei)) ei ≤ yi

P (Yi < yi | H0i : Yi ∼ Poisson(ei)) ei ≥ yi

where recall yi and ei are both known values; the former being empirically observed and the latter

being computed by introducing assumptions discussed in section 2.3. By Analyzing the North

Carolina Sudden Infant Death Syndrome (SIDS) dataset, where for 100 counties counts of numbers

of live births and numbers of sudden infant deaths are available, Cressie, as regards the p-values

computed as above, observed as “an extreme value . . . may be more due to its lack of fitting to

Poisson model than to its deviation from the constant rate assumption”. Recall that the constant

rate assumption in our setting corresponds to the null hypothesis (2.5).

In Shlattmann (1993) there is the idea of assigning area to high risk groups. The method aims

to estimate the heterogeneity in relative risks, another issue that is typically pursued preliminarily

to the construction of maps of disease. This is when we can reject the hypothesis that yi ∼

Poisson(ei · r) in favor of the alternative yi ∼ Poisson(ei · ri), i.e. that relative risks are not

all constant in the map. Shlattmann moreover discusses the multiple testing issue recognizing
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its importance and noting that a Bonferroni adjustment on Poisson p-values, besides leading to

a dramatic loss of power, is unable to provide a consistent estimate of the proportion of true

null hypothesis either. However, the mixture modeling approach for disease mapping proposed by

Schlattmann may potentially represent a useful ground for inclusion of FDR estimation.

2.3.2 P-values computation in small areas

Frequentist methods to control/estimate the FDR are based on the knowledge of only p-values. In

order to assess the possibility to apply such methods we try to find a suitable p-value for evaluating

the null hypothesis of absence of risk. Following the hypothesis testing setting in section 2.3 we

could consider each ith area-specific p-value of the form:

pi = 1− P (Yi ≤ yi | H0i : ri = 1) (2.8)

Recall our interest is in an unilateral alternative hypothesis: a risk higher than what is expected.

Thus, in principle, extremely small p-values should occur in areas where the observed count is

unusually higher than the expected one. However, as Cressie (1993) noted evaluating the null

hypothesis with such kinds of p-value can lead to troubles when the disease outcome is rare or

areas are small. Moreover Mollié (1996) have correctly noted that, while mapping SMRs highlights

higher risk just in low-populated areas, significance maps can highlight unusual risks just in high-

populated areas, i. e. where the standard error of the SMR is small.

There are two main problems: first, a p-value calculated in a small expected count area, cannot

guarantee the same empiric evidence of a p-value computed in a bigger expected count area; second,

it can be shown via simulation that, for the same level of risk greater than 1 (as ex. r = 1.5, i.

e. a 50 % of risk increment compared with that expected), a p-value calculated in small expected

count areas is less extreme (i.e. more conservative) than one calculated in bigger expected count

areas; see Figure 2.2. To sum up, we cannot trust each p-value to the same degree (first point),

and, even worse, tests evaluated with such p-value are powerless in poorly sampled areas (second

point). See Figure 2.1 which shows a plot of the power against the expected count level concerning

several values of the alternative hypothesis.

Moreover, note the p-value computation involves the cumulative distribution function of the

Poisson random variable Yi evaluated in the right tail beyond the observed count yi. Consider the



Chapter 2. Multiple testing on large datasets of Standardized Mortality Ratios 27

following two ways to obtain a p-value:

pi = 1− P (Yi ≤ yi | ei) = 1−
yi∑
k=0

exp(−ei) · eki
k!

(2.9)

pi = 1− P (Yi < yi | ei) = 1−
yi−1∑
k=0

exp(−ei) · eki
k!

(2.10)

It is clear that whether or not including the observed value yi in the summation makes a difference,

but such a difference is more emphasized in case where ei (the mean parameter of the Poisson

variable Yi) is a small value, i.e. in small areas. The small area p-values conservativeness is due

to the discrete distribution of the test statistics yi, that is indeed a count. Generally, with a

discrete distribution it is not possible to construct confidence intervals with specified coverage (the

probability that the confidence interval contains the parameter of interest). Thus, one typically

uses confidence intervals with the nominal coverage as the lower bound for the actual coverage.

This will result in conservative p-values and conservative confidence intervals, that is to say that

the significance level of the test is less and the coverage probability of the confidence interval is

greater than nominal. This conservativeness is stronger in small areas, where the expected value

of the Poisson distribution is small; see results obtained via simulation by Kulkami (1998).

The above described is just one of the possible ways to obtain a p-value for testing a count

having available an expected count as the true value under the null model. Some proposals of

p-value computation for testing an SMR have involved normal approximation for the log(SMR)

(Armitage, 1971; Banerjee et al., 2004) that, however, improves as long as the number of observed

deaths gets larger. Other authors have suggested methods exploiting the relation between χ2 and

Poisson distribution (Ulm, 1990) to calculate an exact confidence interval and find a p-value by

means of only a table of the χ2 distribution. Also non computer intensive algorithms that refine

the coverage, so achieving less conservative p-values, are available (Kulkami et al., 1998).

2.3.3 The Over-dispersion issue

Let us suppose to set up a multiple testing procedure by evaluating each area-specific test with

a p-value expressed as (2.8). In the next section we will focus on problems relative to applying

frequentist p-value based methods. Here we consider the over-dispersion case in relation to p-values.

In previous sections we said that it is likely to find extreme p-values in areas with a large

population, conversely to mapping the SMRs that would highlight just small areas because of small

denominators. We also pointed out, quoting Cressie (1993), that extreme p-values may be more

due to a lack of fitting of the Poisson model than to an actual deviation from the null hypothesis

that the mean of the Poisson is ei. Lack of fit of the Poisson model can be equivalently denoted as

presence of an “extra-Poisson variability” or in general as “over-dispersion”. Such phenomena can
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Figure 2.1: Power against size area. For each value of expected count (size area) in the horizontal

axis, we see plotted the sensitivity of the test that reject the null hypothesis (2.5) when the p-

value calculated with formula (2.8) is lower than 0.05. We also see that the sensitivity is generally

lower in small areas case. Each line corresponds to several values (coloured blue) of the alternative

hypothesis (r > 1) under which the power is calculated as the proportion of the times that the null

hypothesis is correctly rejected. The green line is in correspondence with an expected count of 5,

a limit under which we arbitrarily consider an area to be small.
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Figure 2.2: Histograms showing p-values obtained with formula (2.8) in four possible areas differing

for their expected count. The expected counts are 2, 10, 20, 40 and the observed counts (red line)

are respectively 3.5, 15, 30, 60 consistent with a relative risk constantly equal to 1.5. Thus, given

the same value for the relative risk, bigger areas show more extreme p-values, hence yielding a more

sensitive test.
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be frequently encountered in the case of counts collected in small areas (Mollié, 1996; Haining et al.,

2008). Generally, for rare disease and for small areas, variation in the observed number of events

exceeds that expected from Poisson inference. In a given area, variation in the number of events

is due partly to Poisson sampling, but also due to extra-Poisson variation arising from variability

in the disease rate within the area, which result from heterogeneity in individual risk levels within

the area.

Heterogeneity of the individual risks can be due to spatial interaction effects at area level.

Consider the case of infectious disease modelling where one individual having the disease raises the

risk of infection for individuals in the same spatial unit. The consequence is a tendency for cases

to cluster so that some areas have large counts (where the disease has started and spread) and

some others have small, possibly zero, counts (where the infection has not yet arrived). The same

effect can be created by unobserved environmental factors that operate at area level, determining

non independent risk levels within the area. The presence of a pollution source, for instance, my

have a non homogeneous effect for the whole inner-area population determining non independent

individual risk levels. Moreover, though the classic standardization operation aims to eliminate the

effect of confounding factors like age and sex, a variety of other unmeasured factors can influence

the individual response. Thus, the inner-area heterogeneity can be due to a number of unobserved

variables, such as lifestyle and genetic inheritance. To sum up, individual risk heterogeneity is to

be expected when dealing with aggregates, especially of non-experimental subjects (like our case

where we simply collect death events), and is a source of over-dispersion. Finally, if the scale of the

spatial unit used to record the data is such that one of the above factors (environmental, social,

or genetic), or simply the contagiousness of the disease, could also operate between the spatial

units, it may induce positive spatial correlation in the counts too. The term positive (negative)

spatial correlation refers to the property of attribute measured at nearby or adjacent geographical

locations having similar (dissimilar) values. Thus, we can see as the invalidity of assumptions in

the model (2.1), i.e. the i.i.d assumption and the mean-variance equality, is actually due to the

lack of independence between individual underlying risks of people that can operate within areas

or between areas.

To understand whether or not testing SMRs for screening health population status with p-

values (2.8) is appropriate we should ask ourselves two things: if SMRs can be appropriate for

evaluating the health status of a region, and if an extreme p-value signals unusual risks. The former

question could be answered, as already discussed, saying that, though we can standardize for some

measurable confounders, we could never assume an SMR > 1 due to exposure to environment

risk factors alone (any standardization carries the risk of over-simplification); thus, SMRs are
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appropriate in preliminary studies where the generation of hypotheses is the prime interest, whereas

to confirm them more investigation is necessary. About the second point we believe a small p-value

actually signals unusual risks even if we have to admit the loss in sensitivity caused by p-values

(2.8) in small areas.

Indeed, though we cannot say whether an extreme p-value for area i is due to ri > 1 (higher

risk in area i) instead of V [Yi] > E[Yi] (dependent individual risks for people living in area i)

we above argued that both situations are unusual from an epidemiological point of view and the

practitioner would probably be interested in highlighting both. As an example, if a small p-value

was due to the lack of fit of the Poisson model, i.e. was due to over-dispersion and not to a relative

risk greater than one, it could even mean there is a within area cluster in area i, hence identifying

a case that deserve attention by epidemiologists. Therefore, the difficulty in disentangling what

can be the true alternative model if a deviation from the null model has been observed is not a

big problem. However, in the next section we will argue that applying a control/estimation of the

FDR with p-values based methods is not appropriate in small areas and spatial correlation cases

and in section 2.4.1 claim a Bayesian paradigm is helpful.

2.4 Traditional p-value based procedures for SMR multiple test-

ing

In the first chapter we briefly introduced p-value based control methods. We considered the Storey

method to estimate pFDR and the sequential procedure for p-value selection by Benjamini and

Hochberg. We can meet three main problems in considering a p-value based method as appropriate,

all of them being connected to the over-dispersion issue.

First, a test evaluated by calculating a p-value is powerless in small areas: consider for example

the p-value (2.8), then given the same true relative risk value, say 1.5, p-values calculated in poorly

populated areas will be less extreme than p-values calculated in large areas. Thus, p-values in

small areas will be conservative w.r.t. the null hypothesis. This also raises the second point, that

is whether or not to assume all p-values as identically distributed under the null hypothesis. Recall

that Storey (2003) (see section 1.2) correctly assumes that under H0 p-values ought to be uniformly

distributed between 0 and 1. Since each p-value of the form (2.8) depends on the expected count ei,

in principle, the uniform distribution would be verified if all expected counts were equal. Changing

perspective, we could realize that this is not strictly necessary, but what is required is for the Poisson

model to be the true model under H0. As we saw in section 2.3.3 this is achieved when there is no

over-dispersion, and this could probably be the case when there are no small areas. Putting this
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in another way, Storey’s assumption of p-values uniformly distributed under H0 may probably be

tenable if all of them were computed in areas with a large population; i.e. where the sampling error

variability is small for each SMR and p-values are equally informative. The latter was also checked

from an empirical point of view, by a small simulation study here not reported. We noticed a bigger

mass of probability around 1 (i.e. far from values representing extreme p-values) in the histogram

of some p-values (computed by formula (2.8)) generated by having simulated counts under the

null hypothesis (Yi ∼ Poisson(ei)) using an heterogeneous expected count pattern e = (e1, ..., eN )

containing even small values. Also Gòmez-Rubio et al. (2005) noticed the same phenomena in the

empirical p-values distribution relative to data collected in small areas.

The third and final consideration is that p-values cannot be assumed as independent, an as-

sumption on which most Frequentist methods rely on. The non independent tests issue is related

to the lack of fit of the i.i.d. Poisson model assumption that occurs (as argued in section 2.3.3)

when both environmental and non environmental factors determine a positive spatial correlation

between area-specific risks.

Therefore, all reasons that lead to over-dispersion in counts are what does not allow for a

multiple testing procedure based only on p-value knowledge. Note that the lack of fit of the

i.i.d. Poisson model was what inspired many authors to develop disease mapping models mostly

following the Bayesian paradigm. We hence decided to exploit the same methodology implemented

in disease mapping methods so attempting to include the estimation of FDR in a classical fully

Bayesian disease mapping model, namely the Besag York Molliè model (Besag et al., 1991).

2.4.1 Additional remarks on multiple testing issue and over-dispersion

As regards the relation between the need for a multiple testing control and the lack of reliability

of p-values it is worth recalling that some authors deny, in principle, the adoption of any mul-

tiple testing control (Rothman, 1990), while others consider the Bayesian hierarchical modelling

paradigm fruitful in cases when over-dispersion arises and more flexible ways to allow for random

effects capturing the unobserved variability are needed (Greenland and Robins, 1991). In fact, as

noticed in our case study, in some context traditional frequentist methods are inappropriate since

the set of estimates (or p-values) under the null model are affected by heterogenous standard errors

(i.e p-values cannot be assumed as i.i.d. from a Uniform(0, 1) distribution).

As a further reflection we would like to mention the work by Greenland and Robins (1991) who

discussed the usefulness of an empirical Bayes adjustment in some application involving SMRs for

administrative resource allocation. Here the objective was basically to allocate resource propor-

tionally to a set of risk estimates relative to different spatial regions. We have to say that authors
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do not treat the problem of doing tests on observed SMRs as we want to do but the work is

interesting for us because, as we have already claimed, problems affecting small area SMRs are

the same that cause troubles on evaluating the null hypothesis (2.5) in small areas themselves.

Authors explicitly examine the small areas issue, hence the sampling error variability over the map

that generates non identically distributed SMRs. He mentions two motivations for pursuing an

adjustment for the ML estimates (the SMRs). First, when “chance (sampling error) not only can

cause the unusual findings in principle, but it does cause many or most such findings”. This is

exactly our case; let us analyze this point both regarding the goal of estimating the true relative

risks or testing a multiplicity of null hypotheses. In the former case, some small area SMRs could

be identified as high-risk areas only because of the small sample size. In the latter, p-values can

detect extremes only when the sample size is enough for the observed statistics (SMR or observed

count) to reject the null hypothesis. In both cases the sampling variability is mainly responsible

for unusual findings. Note that what we denote as sampling variability is actually the variability

of the population underlying the map, hence what causes unusual findings is actually the extra-

Poisson variability and not the variability of the true SMRs. Therefore, authors deny the adoption

of multiple comparison adjustments when unusual findings are those caused by variability of the

true SMRs, instead they advocate an adjustment when such unusual findings are “caused” by an

extra-variability that the model describing true SMRs variation cannot account for.

A second motivation mentioned by the authors for making it necessary to control the multiple

comparisons issue was, when “no one would want to earmark for further investigation something

caused by chance”. This is our case as well: we want to pursue the control/estimation of the

FDR determined by Poisson variability as long as we want to control/estimate the FDR caused

by the extra-Poisson variability. Authors do not mention any frequentist procedures for adjusting

the SMR estimates just because such cases are only “adjustable” with the help of the Bayesian

paradigm. Frequentist p-value based procedures fail because:

• p-values do not have the same empirical strength;

• p-values are conservative w.r.t. the null hypothesis in small areas;

• p-values can be spatially correlated.

The author looks at the empirical Bayes estimation as a direct way to adjust the error due to

sampling variability, for both the Poisson and the extra-Poisson sources. A shrinkage estimation

partially overcomes the problem of testing many observed SMRs which are not identically dis-

tributed under the null hypothesis. Empirical Bayes estimators result from a compromise between

what is empirically observed and what is subjectively assumed a priori about the true SMRs
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distribution. The simplest case is the one of exchangeable assumed relative risks ri given some

hyper-parameters; for instance a poisson gamma model where each area-specific relative risk is

gamma distributed with fixed hyper-parameters estimated directly by the data (assuming counts

distributed as a negative binomial). Since relative risk values over the map have, a priori, a common

distribution, the shrinkage effect leads to posterior estimates of the relative risks that are smoothed

towards a global mean.

The argument the author uses to justify the appropriateness of the shrinkage estimation is

simple. The distribution of the observed SMRs in a typical case of data sparseness (small area

case) is the sum of two distributions: the distribution of the true SMRs (assumed a priori both by

Frequentists and Bayesians even if for frequentist it is a degenerate distribution because each SMR

is unknown but fixed), and the distribution of sampling errors. This framework raises a two stage

sampling model since, firstly, nature “samples” the true SMRs from a true-SMRs distribution;

secondly, the statistician takes a sample to estimate these true SMRs. This is also a model for the

over-dispersion since we are assuming the variance of the observed distribution is the sum of the

variance of the true distribution (the model) and the average variance of the sampling error. Under

such assumptions if the statistician observes extreme values he will be more inclined to think this is

due to the sampling error rather than due to an extreme value under the true SMRs distribution.

Note, this is exactly the same point argued by Cressie and others authors in interpreting maps of

SMRs. Authors discuss this by making an interesting analogy with the well known “regression

to the mean” phenomenon occurring in taking measures on people whose true values have a bell-

shaped distribution. When subjects are sampled from a population in which true values have

such a symmetric distribution, but the values are measured with error, extreme measured values

are likely to be the product of extreme errors. So, if a subject has an extreme value on the first

measurement, it will probably regress toward the population mean upon the following observations.

We can view the true and the observed SMRs distribution as representing a distribution before

and after misclassification due to sampling error.

Moreover, shrinkage estimation can produces estimates (the posterior means of the relative risk,

that is the adjusted SMR) that are optimal under a squared error loss function (Carlin and Louis,

2000). The above considerations are the reasons why the authors mention a multiple comparisons

problem as an opportunity, rather than a problem, for the practitioner close to the Bayesian

perspective, because he can improve estimates through “judicious use of any prior information (in

the form of model assumptions) about the ensemble of parameters being estimated”. In some sense

shrinkage estimation allows an adjustment for multiple inference in cases where the null model does

not fit the data properly, when data are over-dispersed. From the multiple testing setting point of
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view established in section 2.3 we need the shrinkage estimation to control false discoveries caused

by extra-Poisson variability other than Poisson variability. This is another way to understand

the main reasons why we need the Bayesian paradigm. The model we shall propose in chapter

3 will attempt to achieve shrinkage estimation of the posterior probability of the null hypothesis

smoothing such values toward both a global and a local (neighborhood) mean. A Bernoullian

random variable indicating the the null hypothesis is true has to be introduced in the hierarchical

model and its posterior mean (i. e. the posterior probability of the null hypothesis (1.8)) will

became the target of inference for making decisions.

Moreover, in principle, making a decision should consider more than the likelihood model as-

sumed for describing the data. Decisions should be based not only on observed test statistics, or on

point estimates, but weighted in terms of pre-defined loss functions. Examples of such a decision

theoretical approach are rare in spatial epidemiological applications. An alternative idea regarding

the issue of determining decision rules for selecting high-risk areas connected to FDR estimation

will be discussed in section 3.3.
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Chapter 3

A Bayesian Hierarchical model for

False Discovery Rate estimation

3.1 Bayesian disease mapping

The methodology proposed in this chapter and illustrated in section 3.2.1 to overcome the inappro-

priateness of p-value based methods has the same foundation used in Bayesian hierarchical disease

mapping models. For this reason we give a brief review of such methods.

Extra-Poisson variation is due to heterogeneity of individual risks within each area hence it can

be accommodated by allowing each relative risk ri to vary within the area i itself. Bayesian methods

can be used for this, giving smoothed posterior estimates of relative risks. Moreover they allow

for the introduction of spatial random effects, making it possible to address cases where positive

spatial correlation is expected.

Bayesian models in this context combine two types of information: the information provided

for each area by the observed counts which are usually assumed as independent and identically

distributed as the Poisson (2.2) so to working out the SMRs as ML estimates, and prior information

on the relative risks r specifying their variability in the map by means of the prior distribution [r].

Here, the term r in bold means it is a parameter vector with N components each one indicating

the relative risk in each single area, r = (r1, ..., rN ), whereas the notation [·] as usual indicates a

distribution function.

The prior distribution [r] reflects prior belief about variation in relative risks over the whole

map and is often parameterized by hyperparameter γ. Introducing a prior distribution for r means

moving from an i.i.d assumption on counts (like in model 2.1) to an exchangeability assumption

on counts, that is to say the yi are conditionally independent given r, and yi depends only on ri.

Nevertheless, in both i.i.d and exchangeable case, the likelihood function of the relative risks r

37
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conditional on the data y, it is given by the product of N independent Poisson distributions:

[y|r] =
N∏
i=1

[yi|ri]

However, what can change is the way to make inference on the unknown relative risks r. Frequentist

inference on r is based on the likelihood function [y|r] where r is seen as an unknown fixed

parameter. It is found through the maximization of the likelihood function, yielding, in such

particular example, SMRi as the ML estimates of the ith area specific relative risk. Statistical

properties of such an estimator are worked out by considering its distribution over the sample space,

hence considering hypothetical repeated experiments. Bayesian inference, instead, is based on the

posterior distribution of r given the data y:

[r|y] ∝ [y|r][r]

where r is treated as a random variable. The term r is often parameterized by an hyperparameter

γ in turn distributed with [γ], yielding the following conjoint posterior

[r, γ|y] ∝ [y|r][r|γ][γ].

Thus, the marginal posterior distribution for r given the data y is generically expressed as:

[r|y] =
∫

[r, γ|y] dγ. (3.1)

In principle, if [r|y] is known, one can compute each moment of the distribution of the risks by

integral calculation (in case where it is tractable); for instance, a point estimate of the set of relative

risks can be provided by computing the posterior mean

E[r|y] =
∫
r · [r|y] dr

Unfortunately, in many non trivial cases posterior distributions are not analytically tractable;

moments of the distribution are not available in closed form.

To sum up, considering r a multivariate random variable (and specifying its probability distri-

bution as dependent on the hyper-parameter γ) rather than a fixed unknown vectorial parameter

distinguishes the Bayesian from the Frequentist paradigm. Moreover, the way in which prior be-

liefs on hyperparameter γ are specified denotes different approaches developed in the framework

of Bayesian statistics. An important distinction is between the empirical Bayes (EB) and the fully

Bayesian approaches. The EB approach assumes the hyperparameter γ as known and drawn from

an unspecified distribution. The EB idea consists in approximating (3.1) by:

[r|y, γ̂] ∝ [y|r] · [r|γ̂]
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where the unknown hyperparameter γ is replaced by an estimate γ̂ often worked out as ML estimate

from the marginal likelihood of γ:

[y|γ] =
∫

[y|r] · [r|γ] dr

A point estimate of the relative risk parameter r can be provided by the posterior mean E[r|y, γ̂].

As a result of the plug-in estimation of γ the variability in r is under-estimated because no allowance

is made for uncertainty in γ.

The fully Bayesian approach can give a suitable solution to incorporate variability in the hyper-

parameter γ. A three-stage hierarchical model can be introduced where the hyperprior distribution

[γ] is also specified. In such complex models, moments from the posterior distribution can be esti-

mated with Markov Chain Monte Carlo (MCMC) algorithms. They allow to draw non-independent

samples of each parameter as result of a realization of a Markov chain whose equilibrium distribu-

tion is the posterior distribution of interest (Mollié, 1996). The model proposed in section 3.2.1

will be estimated by means of MCMC algorithms available in OpenBugs free software.

Much work has been done about the prior model choice of the second level hierarchy, that is the

prior specification of risks r, while maintaining the parametrization (2.1) for counts y. A Bayesian

approach, as many authors observed (Lawson et al., 1999), is appealing because it is more flexible

addressing spatial dependence and small area issues. However, other non-Bayesian ways to develop

disease mapping models have been explored; for a review see Lawson et al. (2000), Best et al.

(2005).

3.1.1 Independent prior

When there is no prior information to assume positive spatially correlated risks we can specify a

prior for r which assumes a spatial unstructured heterogeneity by considering exchangeable risks

given γ:

[r|γ] =
N∏
i=1

[ri|γ].

In this case the prior distribution [ri|γ] is the same for each area i. A suitable specification for

such prior is given by the Gamma distribution of parameters α and ν, that is the natural conjugate

distribution for the Poisson; i.e. [ri|γ] = Ga(α, ν) = αν · rν−1
i exp(−α · ri) of mean ν

α and variance
ν
α2 . Therefore:

[r|γ] = [r|α, ν] =
N∏
i=1

[ri|α, ν] (3.2)

With such a conjugate Gamma prior for relative risks r, the marginal posterior distribution

[r|y, γ] is the product of N marginal posterior Gamma distributions, Ga(yi + ν, ei + α), each one
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having mean:

E[ri|, yi, α, ν] =
yi + ν

ei + α
= κi · SMRi + (1− κi) ·

ν

α
(3.3)

where κi = ei
ei+α

. Thus, we can estimate the posterior relative risk in area i as a weighted average

of the SMRi and the prior mean of the relative risks in the whole map, the weight being inversely

related to the variance of the SMRi. We can see that if an SMR is calculated in a very small

area, hence having a big standard error (2.7), this will give a weak contribute to the estimator

(3.3). Prior specification of unknown parameters α and ν can be done following the EB or the

fully Bayes approach. The former proceeds by working out the ML estimates, α̂ and ν̂, from

the marginal likelihood [y|α, ν], which is a product of N negative binomial distributions [yi|α, ν].

Then, an estimate of the ith posterior relative risk, r̂i, can be provided by calculating E[ri|yi, α̂, ν̂],

plugging in the ML estimates α̂ and ν̂. Alternatively we can draw a sample from the posterior

distribution Ga(yi + ν̂, ei + α̂) applying sampling routines available in statistical software packages

and computing any Monte Carlo summary statistics of interest in the drawn sample. Differently

from the EB approach, the fully Bayes approach proceeds by specifying an hyperprior distribution

(even a degenerate distribution, i.e. a scalar value) for hyperparameter γ then working out posterior

estimates for risks by sampling from the joint posterior distribution [r, γ|y]. For complex models,

implementing Gibbs sampling algorithms is needed to obtain samples from the posterior distribution

of the parameters of interest.

An alternative independent prior specification for relative risks consists in assuming a normal

distribution N(µ, σ2) with mean µ and variance σ2 on the logarithmic transformation of the relative

risks, say x = log r. Analogously to the prior specification (3.2) we have:

[x|γ] = [x|µ, σ2] =
N∏
i=1

[xi|µ, σ2] (3.4)

To allow for area specific covariates such an independent normal prior can be generalized by setting

µ = Zβ, where Z is a matrix of p known covariates and β = (β1, ..., βp) is a vector of covariate

effects. As a result of this parametrization, the prior mean of the log relative risks x is not constant

across areas, the posterior distribution being the product of N independent but not identical normal

distributions:

[x|γ] = [x|µ, σ2] =
N∏
i=1

[xi|µi, σ2]

where µi = (Zβ)i. Normal priors allow more easily than the conjugate gamma prior for dependence

between components of vector r. This is useful when positive spatial correlation between risk is a

priori expected.
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3.1.2 Spatially structured prior

Assuming a spatially structured prior distribution for r means to take into account that geograph-

ically closed areas tend to have similar relative risks. To express in mathematical terms a local

spatial variation of risks, nearest neighbour Markov Random Fields (MRF) can be useful:

[xi|xj , j 6= i] = [xi|xj , j ∈ δi] (3.5)

Assuming the conditionally specification (3.5) for parameters x = log r means assuming that the

conditional distribution of the log relative risk in area i, given values for the log relative risks in all

other areas j 6= i, depends only on the log relative risks in the neighbouring areas (denoted as δi)

of area i. The joint distribution of the log relative risks can be determined, up to a normalizing

constant, from the knowledge of each conditional distribution (3.5) by applying Brook’s Lemma

(Besag, 1974). Moreover, the Hammersley-Clifford Theorem shows that if we have a MRF, i.e.

if a set of full conditionals defines a unique joint distribution, then this joint distribution is a

Gibbs distribution. Informally, [x1, ..., xN ], is a Gibbs distribution if it is a function of the xi

only through a function of those xj which belong to the set of the neighbouring areas of area i

(j ∈ δi). Specifying the prior model for r by a set of full conditional distributions such that the

joint distribution is uniquely determined as a Gibbs distribution allows to make posterior inference

by implementing Gibbs sampler algorithm. It is thus possible to simulate realizations from the joint

posterior distribution of the log relative risks by simulating from each full conditional separately,

still being sure that there is a unique equilibrium distribution for this sampler; see Banerjee et al.

(2004) and references therein for more theoretical details.

A very useful prior specification for x = log(r) is the intrinsic Autoregressive model (IAR or

intrinsic CAR).

[xi|x−i, σ2] = Normal(x̄i,
σ2

wi+
) (3.6)

where x̄i =
∑

j∈δi
xi
wi+

denotes the mean of the xj in areas adjacent to area i, and x−i denotes the

log relative risks in all the areas j 6= i.

Therefore, the conditional prior distribution of xi, given all the other log relative risks in the

map, is assumed normal with mean the average of the xj in the neighbouring areas and variance

inversely proportional to the number of neighbouring areas (denoted as wi+). This model differs

from the proper conditional autoregressive model (CAR) where the conditional variance for xi given

all the other log relative risks is constant. CAR is suitable for regular maps, whereas IAR is more

appropriate for irregular maps, i.e. where the number of neighbors varies. Model (3.6) identify

the following joint prior distribution for x given the hyperparameter γ (here γ = σ2 since it is the
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variance of a normal distribution):

[x|γ] = [x|σ2] ∝ 1
σn

exp{− 1
2σ2

n∑
i=1

∑
j<i

wij(xi − xj)2} (3.7)

This is a Gaussian MRF where the mean is zero and its precision matrix has diagonal elements wi+
σ2

and off-diagonal elements −wij
σ2 , wij are pre-chosen non-negative weights, with (in the simplest case)

wij = 1 if i and j are neighbouring areas, wij = 0 for the remaining areas and wi+ =
∑N

j=1wij .

A prior of the form (3.7) is a pairwise difference distribution and it is not proper, i.e. its integral

is not finite, hence the mean and other moments of such a distribution cannot be determined.

The impropriety is also evident since we can add any constant to all of the log relative risks xi

and (3.7) is unaffected. Constraining the set of the xi’s to sum to zero can solve the problem.

Thus, such a model can never be taken as a model for describing data, since data could not

arise under an improper density function and yet we could not impose a centering constraint

on random realizations. Model (3.7) can however be assumed as a prior for parameters in the

model that play the role of random effects. In our case, we chose this model for specifying the

distribution of area-specific log relative risks x = (x1, ..., xN ). This choice is appropriate and

yields a posterior distribution [x|y] that is proper (Mollié, 1996). However, for the identification

of posterior log relative risks the impropriety of (3.7) cause troubles; such parameters can be

identified only up to an additive constant. Thus, it is convenient to introduce an intercept α such

that x = α+u can be identified by imposing the constraint
∑N

i=1 ui = 0. Indeed, constraining the

random effects to sum to zero and specifying a separate intercept term with a uniform prior on the

whole real line is equivalent to the unconstrained parameterisation with no separate intercept (Besag

and Kooperberg, 1995). Note, in implementing Gibbs sampler this constraint can be imposed

numerically by recentring each sampled u vector around its own mean in each MCMC iteration.

OpenBugs free software can automatically impose such a sum-to-zero constraint. To sum up, a

specification of the spatially structured prior above as a CAR (or IAR) is usually proposed and

it is fruitful since model (3.7) is also a Gibbs distribution, precisely a distribution for xi which

depends only on neighbouring areas log relative risks. Working with the N full conditionals (3.6) is

better than seeking to write down the joint distribution for several reasons. First, the possibly large

number of areal units, second, and most important in practice, it has the advantage of developing

MCMC computation by implementing Gibbs sampler algorithm to sample realizations of each

separate log-relative risk from its full conditional distribution. Furthermore, a local specification

where the risk of area i is dependent on risk of its neighbors is a natural prior belief in many

applications.
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3.1.3 The Besag York Molliè (BYM ) model

Besag et al. (1991) proposed a prior distribution for the log relative risks that ranges from prior

independence to prior local dependence, called a convolution Gaussian prior. In this model log

relative risks are the sum of two independent components:

x = u+ v

where v = (v1, ..., vN ) is an independent normal variable with zero mean vector and variance

λv
2 as in prior specification (3.4), whereas u = (u1, ..., uN ) is assumed to be a IAR model as in

specification (3.7) with each conditional variance equal to λ2
u

wi+
. Thus, random effects v capture

extra-Poisson variability in the log relative risks that vary globally (heterogeneity), i.e. over the

entire study region, while random effects u model extra-Poisson heterogeneity in the log relative

risks that varies locally (clustering), so that nearby regions will have more similar rates. Each

xi conditional variance is the sum of the conditional variance of the term ui and of the marginal

variance of the term vi:

V [xi|x−i, γ] = V [xi|xj , j ∈ δi, λ2
u, λ

2
v] =

λ2
u

wi+
+ λ2

v

Prior choice for variance terms λ2
u and λ2

v, or alternatively for precisions τu = 1
λ2
u

and τv =
1
λ2
v

is a critical point discussed by many authors; see Banerjee et al. (2004), Mollié (1996) and

references therein. The value of prior precisions τu and τv will control the amount of extra-Poisson

variability allocated to the two components of the log relative risk, the “clustering” term ui and the

“heterogeneity” term vi. Usually a non informative prior is desired, but for computation reasons

(for example if OpenBugs is used for drawing posterior inference) it still need to be a proper

distribution. Moreover, if the prior beliefs are expressed as fixed values, they obviously cannot

be chosen as arbitrarily small, as xi = ui + vi would be unidentifiable: a small prior precision,

i.e. large prior variance, will cause small convergence of MCMC algorithms. On this note, see

Eberley and Carlin (2000) where an investigation of the convergence for posteriors [xi|y], [ui|y]

and [vi|y] in the Besag York Mollié model is performed by using fixed τu and τv values. In the

case we decide to specify third-stage prior distributions on τu and τv, instead of fixed values,

such prior cannot be arbitrarily vague for the same identifiability problem. A typical choice in

this case is the conjugate Gamma family distribution; Kelsall and Wakefield (1999), for instance,

suggested a Gamma(0.5, 0.0005) for the precision parameter τu of the spatial random effects (recall

u ∼ CAR(τu)). Gelman (2005) noted the strong sensitivity of inferences to the low values of the

Gamma parameters when the standard deviation is estimated near zero; in our case study it would

occur when log relative risks are quite homogeneous. For a non informative specification Gelman



Chapter 3. A Bayesian Hierarchical model for False Discovery Rate estimation 44

recommends a uniform distribution with finite range (for example the interval (0,100)) on the prior

standard deviation of the random effects, 1√
τu

and 1√
τv

.

However, it has to be recognized the difficulty of finding a way to specify a “fair” prior for

such two precisions, i.e. equal prior emphasis on clustering and heterogeneity terms. To this aim,

specifying prior Gamma distributions with equal parameters for both τu and τv is not correct since,

in the former case, the precision is specified conditionally (before playing the role of the conditional

prior precision τu has to be multiplied by the number of neighbour ωi+ that varies among the

regions), whereas in the latter τv is specified marginally (see Banerjee et al, 2004). To address

this critical issue a proposal was advanced in a work by Bernardinelli et al. (1995); the authors

noted that the prior marginal standard deviation of vi is approximately proportional to the prior

conditional standard deviation of ui:

sd(vi) =
1
τv
≈ 1

0.7 ·
√
m̄ · τu

≈ sd(ui) (3.8)

In conclusion, if a non informative prior is sought, checking sensitivity for different prior specifica-

tions of parameters τu and τv in any real case study is always recommended.

As regards inference for such a model, posterior log relative risks can be estimated using MCMC

computation by sampling at each iteration (of the Gibbs sampler algorithm) a realization from the

posterior distribution of both u and v and then sum them to obtain a realization from the log

relative risk posterior distribution [x|y]. As said in the previous section, since the ui’s are specified

conditionally, a sum-to-zero constraint is needed for their identifiability, hence an intercept α with

a diffuse prior on the real line is usually introduced. In practice Openbugs free software is an useful

tool since it implements the required algorithms for the BYM model parameters to be estimated,

especially the algorithms for sampling from the full conditionals relative to parameters a priori

specified as an intrinsic CAR model.

Besag York and Mollié model (hereafter BYM ) has been implemented in many practical small

areas disease mapping exercises for its flexibility to capture variability caused by many possible

unobserved factors through the heterogeneity and the clustering terms. Some authors have studied

sensitivity of the model to several hyperprior specifications; useful comments and further biblio-

graphic references on this issue can be found in Banerjee et al. (2004) and in Molliè (1996). Others

compared BYM with a range of spatial models for relative risks estimation with respect to good-

ness of fit to simulated data derived by a range of models (Lawson et al., 2000), or with respect to

the amount of smoothing of the risk actually performed (Richardson et al., 2004). As regards the

goodness of fit issue, the BYM model was found by Lawson as being the most robust model (as

well as the Gamma-Poisson exchangeable model here described in (3.2)) across a range of diverse

models; instead, for instance, mixture models as in Schlattmann et al. (1993) and non-parametric
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smoothing methods (not described in this work) performed poorly in this sense.

As regards the degree of smoothing of Bayesian models it is worth noting that in general

Bayes procedures offer a tradeoff between bias and variance reduction of the relative risk estimates.

Particularly in maps where the sample size is small (expected counts are small), they provide a

set of point estimates with good properties in terms of minimizing squared error loss (Carlin et

al., 2000). This variance reduction is attained through borrowing information due to the adopted

hierarchical structure, leading to estimates shrunk towards a global mean, or in general towards a

value related to the distribution of all the units included in the hierarchical structure. Thus, the

effect of shrinkage depends on the prior distribution chosen for r and it is conditional on such a

prior belief being close to the unknown true model for r. If we have appropriate prior information

and we can express it in parametric form in the hierarchical prior structure, we are able to depict

at best the true pattern of relative risk values.

3.2 FDR estimation through posterior probabilities

Storey’s result (1.6), exposed in chapter 1 can be synthesized as:

pFDR = P (H0 is true| reject H0),

where pFDR is in principle equivalent to FDR; see Storey (2003) for a full discussion of their

differences. The above result derives from assuming counts y, or a function of counts, or even p-

values, distributed as a two components mixture of the null and alternative hypothesis distributions.

Starting from such an assumption, authors in the field of microarray analysis (Newton et al., 2004;

Broet et al., 2004) proposed Bayesian methods where an estimate for FDR is provided by means

of a posterior probability conditional on the data:

FDRBayes = P (H0 is true| reject H0, data). (3.9)

We can use the above posterior probability to make inference about FDR since the posterior

probability of the null hypothesis given the observed data provides a posterior estimate of the type

I error probability, that is the FDR in the trivial case where we test only one null hypothesis.

More interestingly, in a set ofN tested null hypotheses, we compute an estimate of each posterior

probabilities πi of the form (1.8) where as usual i = 1, ..., N indexes the regions in the map under

study. Then, an estimate of the FDR, which we incur rejecting a given set of null hypotheses,

is provided by the average of all the estimated posterior probabilities referred to the areas where

we reject the null hypothesis. In other words, given any set of areas declared at high-risk (areas

where H0 is rejected) we can estimate the proportion of “false alarms” by averaging all declared
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high-risk areas π̂i (i.e. the estimated posterior probability that the area i is at null-risk). To decide

which areas should be considered at high-risk we need to fix a decision rule; in our case we want

to focus on rules that are a function of posterior probabilities π = (π1, ..., πN ) and a threshold

tπ (a value between 0 and 1) that serves as a cut-off for the πi’s. This proposal differs from the

traditional frequentist methods for controlling/estimating FDR, that determines rule for rejecting

null hypotheses finding a cut-off value for p-values.

We will talk formally of FDR estimation and decision rules for selecting high-risk areas after

discussing the proposed model for estimating the πi’s. It is worth, however, clarifying in advance

the relation between posterior probabilities πi’s and FDR. Posterior probabilities that H0i is true

will be calculated for each area i, and according to the Bayesian perspective they are conditional

on the observed data, H0 playing the role of a Bernoulli random variable. The FDR is conditional

on a set of posterior probabilities πi’s since what requires for being calculated is just a set of

individual area-specific πi. More precisely, it can be calculated for any set of πi’s, this posing a

strong difference from Storey’s pFDR estimation method that can be calculated for only ordered

sets of p-values. Thus, the FDR estimator does not strictly need to depend on pre-determined

decision rules for selecting a set of high-risk areas with their corresponding πi’s (note as formula

(3.9) may be misleading in this sense since it is conditional on having rejected H0). However, as we

will see in section 3.3 determining selection rules that directly depend on FDR estimation can be

interesting for epidemiologists: choosing the threshold tπ by predicting the FDR that would arise

from this choice is a useful and non-arbitrary way to proceed in the selection of high-risk areas. It,

in fact, allows for being aware of the error made when rejecting, that is the idea underlying any

multiple testing control method.

3.2.1 Our model proposal: BYM mix

As said in chapter 1, Storey’s method changes perspective in controlling the proportion of false

discoveries. It pursues the estimation of FDR given a threshold for the set of p-value (i.e. given a

rejection region), whereas the Benjamini-Hochberg sequential procedure seek to find the thresholds

for the p-values in order to control a pre-specified value for the expected FDR. The Storey’s

method improvement results in gaining more power with respect to Benjamini-Hochberg, due to

the attempt to estimate the overall probability of the null hypothesis which all test statistics (or

all p-values) contribute to (see section 1.2).

The model proposed seeks the estimation of the expected FDR conditional on data. However,

when dealing with small areas, a complication arises since Storey’s assumption is not tenable: p-

values are conservative in small areas and do not guarantee the same power all over the map as
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they are not identically distributed; moreover they are not even independent if spatially correlated

risks are likely to occur (see section 2.4).

The model we propose and describe below has a probability assumption on null hypotheses

{H01, ...,H0N} and introduces random effects such that the posterior distribution of each H0i

depends not only on the observed yi but on all observed counts, especially on those in its contiguous

areas δi. In other words, by estimating the probability that the null hypothesis is true in area i,

we have a tool for performing a Bayesian test procedure that evaluates the test in area i by means

of all the summary statistics in the map.

More formally we assume each null hypothesis H0i in area i a Bernoulli prior distribution whose

hyperparameter is distributed with the uninformative Uniform(0, 1). Posterior distribution of H0i

will directly depend on data yi and also, through spatial prior random effects, on data in the neigh-

bouring areas (δi). We need to assume a two components mixture on each area observed count

distribution, where the distribution under the alternative is a Poisson with mean equal to the

sum of random effects capturing spatially structured and unstructured extra-Poisson variability.

In this way we want to substitute the untenable assumption of an i.i.d. mixture on counts with

the assumption of exchangeable counts, i.e. counts independent conditionally on the value of given

random effects. To this aim we exploit the hierarchical structure of the BYM model described in

section 3.1.3, together with the introduction of the parameters needed to specify the two compo-

nents mixture on each log relative risk xi. The first level of the hierarchy specifies the likelihood

for counts y:

[yi|ri] = Poisson(ei · ri),

the second level specifies the prior distribution for xi = log ri,

xi = H0i · µ0i + (1−H0i) · (α+ vi + ui)

µ0i = 0

[H0i|φi] = Bernoulli(φi)

[α] = Uniform(−∞,+∞)

[vi|λ2
v] = Normal(0, λ2

v)

[ui|λ2
u] = Normal

(
ui,

λ2
u

ωi+

)

where µ0i is a constant equal to 0 to meaning that if the null hypothesis is true (H0i = 1) the

relative risk ri is equal to one. This is consistent with the null hypothesis of absence of risk defined
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in formula (2.5). Instead, when the alternative hypothesis is true (H0i = 0) the log relative risk

is assumed as the sum of α (a baseline risk mean), ui (a spatially structured random effect) and

vi (a spatially unstructured random effect). Note this is not consistent with the definition of the

alternative hypothesis (2.6) because it identifies a bilateral alternative. Since under the alternative

hypothesis the BYM mix model can describe both relative risks greater and lower than 1, we obtain

that a small value for πi can denote either i as an higher-risk area or i as a lower-risk area. For

this reason, a partition of the posterior probabilities πi’s between eligible and non-eligible areas to

be potentially declared at high-risk is needed. A way to proceed might be selecting as eligible to

be potentially declared at high-risk those areas that present an observed count greater than the

expected. Therefore, for a practitioner that aims to test the alternative hypothesis of a relative

risk greater than 1, as stated in (2.6), the set of πi’s to consider is that which realizes yi ≥ ei.

About the hyperprior specification we pursue a fully Bayesian approach specifying an hyper-

prior distribution for λu, λv and φ = (φ1, ..., φN ):

[φi|0, 1] = Unif(0, 1)

[λ2
v|av, bv] = InvGamma(av, bv)

[λ2
u|au, bu] = InvGamma(au, bu)

For each hyperparameter φi, that is the prior mean for the null hypothesis H0i in area i, we

assume an uninformative Uniform prior on interval (0, 1) is an appropriate choice since it describes

a vague prior belief. As regards the choice for the prior distribution of variance parameters of v

and u random effects we follow usual specification adopted for the BYM model (see discussion in

section 3.1.3). Usually it is specified the conjugate Inverse Gamma, even if Gelman (2005) sug-

gested the use of a uniform prior for the standard deviation
√
λ2
v and

√
λ2
u. Checking sensitivity of

posterior estimates for different choices of the hyperprior is advisable in any real datasets. When

applying the BYM mix model to simulated datasets (see chapter 4) we always used a uniform prior

on the range (0,100) on the standard deviation, thinking of this range as a conservative choice

after checking it did not cause troubles of low convergence of the Gibbs sampler. If the Gamma

family is chosen, Molliè (1996) comments about how to get a prior guess of the parameters of

the InverseGamma, av, bv, bu and bu, by considering the empirical variance of log(SMR)’s of the

observed data.

Our target is calculating an estimate of each posterior probability πi = P (H0i = 1|data) =

E(H0i|data) for each area i log relative risk. The πi’s are estimated within the MCMC algorithm

by the number of times when H0i = 1 divided by the length of the simulation run; such estimator
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is called π̂i. Below we report the Bugs code for estimating πi = P (H0i = 1|data) for each area i

via MCMC simulation.

model {

for (i in 1:N){

y[i] ~ dpois(mu[i])

mu[i] <- e[i] * r[i]

log(r[i]) <- x[i]

x[i] <-H0[i] * mu.0[i] + (1 - H0[i]) * (alpha +u[i] + v[i])

mu.0[i] <- 0

H0[i] ~ dbern(phi[i])

phi[i] ~ dunif(0,1)

v[i] ~ dnorm(0, tau.v)

SMR.adj[i] <- exp((1 - H0[i]) * (alpha + u[i]+ v[i]))

}

u[1:N] ~ car.normal(adj[], weights[], num[], tau.u)

alpha ~ dflat()

for (k in 1:sumNumNeigh) { weights[k] <- 1 }

tau.v <- 1 / (sd.v * sd.v)

sd.v ~ dunif(0, 100)

tau.u <- 1 /(sd.u * sd.u)

sd.u ~ dunif(0,100)

}

“Flat” (in line 14) is the name Bugs uses for an improper prior on the real line. Posterior

probability of H0i, πi is calculated as a Monte Carlo mean of node the H0[i] by sampling values at

each MCMC iteration from its posterior and finally calculating the empirical mean. Note that, a

Monte Carlo mean also for SMR.adj[i] (line 11) provides an estimate of the relative risk in area i,

i.e. a smoothed relative risk analogous to the one provided by the classic BYM model.

3.2.2 Full conditional distributions

The parameters of interest of the BYM mix model can be suitably estimated by OpenBugs free

software. However we derived the full conditional distributions of BYM mix model for better un-

derstanding the relationships between parameters. As we said, we assume the ith log relative risk as

xi = log ri = H0iµ0i + (1−H0i)(α+ vi + ui)
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Given such assumption, the marginal likelihood of parameters (α,H0i, ui, vi) is:

[yi|α, ui, vi, H0i] =
1
yi!

exp{−ei exp[(1−H0i)(α+ ui + vi)]}{ei exp[(1−H0i)(α+ ui + vi)]}yi

=
1
yi!

exp{−ei exp[(1−H0i)(α+ ui + vi)] + yi log(ei) + yi(1−H0i)(α+ ui + vi)}

and recall the prior distributions are:

H0i ∼ Ber(φi)

[H0i|φi] = φH0i
i (1− φi)1−H0i ;

α ∼ Unif(−∞,+∞)

[α] = const;

vi ∼ Normal(0, λ2
v)

[vi|λ2
v] ∝ 1√

λ2
v

exp
(
− v2i

2λ2
v

)
;

ui ∼ Normal
(
ui,

λ2
u

ωi+

)
[ui|u−i, λ2

u] ∝
√

ωi+
λ2
u

exp
(
−ωi+(ui+−ui)2

2λ2
u

)
where ui = 1

ωi+

∑
j 6=iwijuj

φi ∼ Unif(0, 1)

[φi|0, 1] = 1

λ2
v ∼ InvGamma(av, bv)

[λ2
v|av, bv] ∝ λ

−2(av+1)
v exp

(
− bv
λ2
v

)

λ2
u ∼ InvGamma(au, bu)

[λ2
u|au, bu] ∝ λ−2(au+1)

u exp
(
− bu
λ2
u

)

Looking at the joint posterior distribution, we need to consider parameter vectors of N elements,

one for each area. The term α could be not considered here since its constant density does not

influence the likelihood. The joint posterior distribution is:



Chapter 3. A Bayesian Hierarchical model for False Discovery Rate estimation 51

[α,u,v, r, λ2
u, λ

2
v,φ|y] ∝

n∏
i=1

[yi|α, ui, vi, H0i][u|λ2
u][v|λ2

v][H0|φ][α][λ2
u][λ2

v][φ], (3.10)

where, the joint likelihood is:

[y|α,u,v, r] ∝

∝
∏n
i=1

1
yi!

exp{−ei exp[(1−H0i)(α+ ui + vi)] + yi log(ei) + yi[(1−H0i)(α+ ui + vi)]}

We derive full conditionals distribution for each of the N elements of vectors u, v, r, φ and

α. Full conditionals of λ2
u and λ2

v are the same as the Besag York Mollié model; see Mollié (1996).

To derive the full conditional of a parameter, for example u1, we need to pick out the terms in the

joint posterior distribution (3.10) which involve u1 alone. For other parameters the procedure is

the same.

[ui|all...] ∝

∝ [ui|α, u−i, vi, H0i, λ
2
u, yi] ∝ exp

{
yi(1−H0i)ui − ei exp[(1−H0i)(α+ ui + vi)]− ωi+(ui−u)2

2λ2
u

}

[vi|α, ui, H0i, λ
2
v, yi] ∝ exp{yi(1−H0i)vi − ei exp[(1−H0i)(α+ ui + vi)]−

v2i
2λ2
v
}

[α|u,v,H0,y] ∝
∏n
i=1 exp{−ei exp[(1−H0i)(α+ ui + vi)] + yi(1−H0i)α}

[H0i|ui, vi, φi, yi] ∝ exp{yi(1 − H0i)(α + ui + vi) − ei exp[(1 − H0i)(α + ui + vi)] + H0i log φi +

(1−H0i) log(1− φi)}

[φi|, H0i, yi] ∝ φH0i
i (1− φi)1−H0i

Note that u,v,r,α were all a priori independent but at posterior (see full conditional expressions)

they are dependent through the likelihood [yi|α, ui, vi, H0i] that involves all such parameters. For

instance, the full conditional expression of H0i depends on α, ui and vi values.

An interesting point is to look at the “Bayesian adjustment” for multiple testing as intended

by Berry and Hochberg (1999). To show how it works in this model it is sufficient noting that the

full conditional of each null hypothesis H0i depends on α, i.e. the overall mean of log relative risks,

that is a value which all counts y contribute to. The full conditional of each H0i moreover depends
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on all counts through dependence on terms λ2
v and λ2

u which all observations contribute to. But,

and most important, we have the H0i full conditional dependence on counts in neighboring areas

through ui dependence on ū (that is the mean of random terms uj where j ∈ δi, the neighborhood

of area i). Therefore, counts all together give information about each H0i, the neighbouring counts

giving a greater contribution.

3.3 F̂DR based decision rules

An estimate of the posterior probability πi = E(H0i|data) is worked out as a Monte Carlo mean,

that is an empirical mean on a sample of realizations from the posterior distribution of H0i:

π̂i =

∑M
j H0ij

M
(3.11)

where H0i is equal to one if the null hypothesis is true and to zero when the alternative is true,

while M is the number of MCMC iteration.

Given π̂i, estimated as the number of times when H0i = 1 divided by the length of the simulation

run, and given a pre-specified set of rejected null hypotheses, S, we can estimate the expected

proportion of false discoveries as the empirical mean of the estimated posterior probabilities π̂i’s

belonging to S:

F̂DR =
∑

i∈S π̂i

DS
(3.12)

where DS is the number of discoveries, i.e. the cardinality of S. F̂DR is an estimate of the expected

FDR conditional on data; recall expression (1.10) in chapter 1.

To make clear the terminology used we say in advance that in the sequel of the work we will

not use the term “expected” every time we we want to refer to an estimate of the expected FDR

conditional on data. To simplify we will refer to both the estimate and the estimator of FDR as

F̂DR. Moreover, in discussing simulation results we will sometimes denote F̂DR as the “estimated

FDR”.

After obtained the F̂DR we can use it for two purposes. First, for merely predicting the

proportion of false discoveries among a pre-specified set of areas declared at high-risk; for instance,

in cases when for a particular areas is required a risk evaluation as regards several cause disease

SMRs collected there. Then we can calculate the F̂DR on the set of all cause disease SMR by

averaging their respective π̂i values, that are all relative to that area (considering all those π̂i’s

as signaling a discovery). The second purpose may be more interesting: determining a rule of

selection of high risk areas (for rejecting null hypotheses) based on the knowledge of the estimated

proportion of false discoveries we will achieve in doing such rejections. The interesting aspect of
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such rules is that they are not arbitrary thank you of the possibility to control the multiple testing

error. Indeed, since the F̂DR is a prediction of the expected proportion of errors, it allows us

to control the maximum accepted proportion of false discoveries, that is, roughly speaking, the

number of false positives we can at most live with. This is useful for instance when an overall

conclusion about the risk level of all regions of the map is needed, and when the overall conclusion

that the map contains high-risk areas need not be erroneous even if some of the null hypotheses

are falsely rejected.

For decision (or selection) rule we mean a tool for calling areas either at high-risk or at null-risk.

An easy way we suggest to determine such a kind of rule is pre-fixing a desired False Discovery

Rate value, say FDR = c, (this means that we do not want to obtain an error greater than c in

doing rejection) and operate in order to select as many as areas such that the F̂DR (calculated

on their respective π̂i) is non-lower than c. We call an F̂DR based selection (or decision) rule, a

function of the π̂i’s, the estimated posterior probabilities that the null hypothesis is true, and of

tπ, a cut-off value for such posterior probabilities. The tπ value is actually a threshold: if π̂i ≤ tπ

an area i is declared a high-risk area and assigned to a set of discoveries, say S.

tπ = inf{π̂k :

∑k
j=1 π̂j

k
≥ c} (3.13)

1 ≤ k ≤
∑
i

I(yi ≥ ei)

The threshold tπ corresponding to an F̂DR = c based selection rule is the smallest π̂k that

yields F̂DR =
∑k
j=1 π̂j
k ≥ c. Such rule will identify k high-risk areas (discoveries) at the level of

FDR = c, hence we can expect in average k · c false discoveries.

The strategy of building the rule following the idea of constraining the F̂DR to be non-lower

than c (the desired FDR level) is aimed to assure the “conservative” estimation of the FDR in the

sense explained by Storey (2002) and showed in expression (1.4). However, the procedure (3.13) is

not enough to assure the conservative estimation as it involves an estimated value of the expected

FDR. Since F̂DR is obtained through the estimated posterior probabilities π̂i’s worked out by

the proposed model, we need to assure that BYM mix can accurately estimate the required level

of FDR = c, without incurring in under-estimation. If for instance the true unknown FDR is

greater than c (i.e. the model under-estimate the value FDR = c), it will result in the practitioner

declaring an estimate of false discoveries lower than it actually is, so do not achieving the required

multiple testing control. Thus, one of the aim of the simulation study introduced in next chapter

is to identify which levels of FDR are accurately estimated by the proposed model in several
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simulated spatial scenarios that are frequent in practice, in order to suggest which levels of F̂DR

can be appropriate to build a conservative F̂DR based decision rule.



Chapter 4

Simulation study

We saw that the BYM mix model proposed in chapter 3 can allow for an epidemiologist to estimate

the False Discovery Rate in making decisions about a large set of null hypotheses (where the generic

is H0i : ri = 1) evaluated in N spatial regions of a map under study. BYM mix model makes

the same assumptions of the classic Besag York and Molliè model (BYM ) largely implemented

for relative risks point estimation, but in addition can achieve the control of the expected FDR

conditional on data through the assumption of a mixture for each log relative risk distribution.

By applying the BYM mix model we aim to move from a point estimation inferential context to a

multiple hypothesis testing set up, where we are mainly interested in evaluating two competitive

hypotheses in each area, absence of risk vs possible presence of a higher risk. As said, there is

however a point of contact between BYM and BYM mix, i.e. the capability of both models to

provide point estimates of the true relative risk vector r.

The main motivation of the simulation study is the evaluation of the BYM mix performance in

diverse spatial contexts that can frequently occur in practice. There are not similar proposals in

spatial epidemiologic literature, so we cannot make performance comparisons with other models,

except for what concerns the relative risk estimation issue. Comparing true relative risk estimates

by BYM mix and by BYM can be useful to understand if the proposed model can actually be of

interest in practical applications, in the sense that can provide more information w.r.t. to disease

mapping models usually employed.

We now give a short preview of the simulation study set up, a more detailed description being

in the next sections. What we are mainly interested in, is checking the BYM mix model in several

scenarios differing for the following factors: relative risks spatial correlation degree, relative risk

level, size of areas, number of true alternative hypotheses. So, we firstly choose a map of N spatially

contiguous regions in which we create each scenarios by simulating counts from a given set of known

expected counts e = (e1, ..., eN ). To create scenarios which differs for the spatial correlation degree

55
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between risks r = (r1, ..., rN ), we need to know the adjacency matrix of the chosen map, i.e. a

symmetric N ×N matrix where the generic element wij is 1 if i and j are neighbouring areas and

zero if they are not (details about the way to build differently spatially correlated scenarios are in

section 4.1.2). Hence for each area of the map we know the expected count and its neighbours.

Then, for each scenario we build what we will call an “auxiliary” set of expected counts according

to the required mentioned factors levels that we control in the simulation study (formally described

in section 4.1.1). Finally, given a scenario specific auxiliary set of expected counts we can simulate

as many as we need datasets of counts by independently sampling from the Poisson distribution in

each area, the mean of the Poisson being the area specific auxiliary expected count.

As an example we describe how, starting from a basic set of known expected counts e =

(e1, ..., e341) collected in 341 areas, we obtained a dataset relative to a scenario with the following

characteristics: the number of true null hypotheses were 19 out of the 341; the relative risk in areas

where the alternative is true was 1.5, i.e. a 50% increment with respect to the null hypothesis risk;

the risks were spatially uncorrelated. We generated the counts dataset by a two stage procedure.

First, we create the auxiliary expected counts by choosing the 19 alternative hypotheses and multi-

plying their expected count by 1.5. To choose such an areas with a 1.5 risk level in order to generate

a spatially uncorrelated risk pattern we exploit the idea of raising the risk in non contiguous areas

(Richardson et al., 1995); see details in section 4.1.2. The second stage consists in simulating the

actual dataset of 341 counts by sampling in each area i from the Poisson distribution with either

mean (ei · 1.5) (if i is one of those 19 areas where the null hypothesis is false) or mean (ei) (if i is

an area where the null hypothesis is true).

4.1 Objectives of the simulation study

The simulation study aims to evaluate the three targets that the BYM mix model can achieve:

a. estimation of FDR for a given set of areas declared as high-risk areas;

b. selection of high-risk areas by means of FDR based decision rules;

c. estimation of the true relative risk value in each area.

We now comment each above point both anticipating concepts related to the simulation study and

recalling issues discussed in earlier chapters.

Point a refers to the ability of the proposed model to estimate the FDR. We will primarily

check how close F̂DR is to the true FDR that we known by simulation. Note point a and point

b are related: as long as we can accurately estimate the FDR, we are able to determine F̂DR
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based selection rules without incurring wrong declarations about the number of discoveries and

the proportion of false discoveries among the discoveries themselves. On this note, one interesting

question to investigate by simulation is whether or not there are FDR levels that are well esti-

mated by the model, particularly in the small areas and spatially correlated scenarios which we are

mostly interested to. Finding such FDR level as accurately estimated, that is to say conservatively

estimated (without incurring in under-estimation), would make us able to suggest reliable F̂DR

based selection rules in many frequent small areas applications.

As regards point b it is worth recalling that an area is declared as a high-risk area when

π̂i ≤ tπ, where tπ is an arbitrary chosen cut-off probability (or threshold) for the π̂i’s. In section

3.3 we proposed an empirical but non arbitrary decision rule for determining such threshold and

we called it F̂DR based decision (or selection) rule. Precisely, the practitioner can fix a priori the

desired FDR level (actually the error he decides he can live with) and then finding the cut-off value

that realizes an estimate of the expected FDR conditional on data that is not lower than what

was pre-fixed. The point b raises, indeed, another issue: the sensitivity and specificity of FDR

based selection rules. This is a rather important point concerning the evaluation of the BYM mix

performance since what we eventually need is a method to both adequately control the FDR and

obtain the highest possible power in detecting true high-risk areas providing an acceptable level of

specificity. Thus, we shall also quantify the sensitivity, and the correspondent level of specificity,

for each possible FDR based selection rule in the diverse simulation contexts.

As regards the sensitivity/specificity issue, we have the chance to recall some basic concepts

on multiple testing and explain how the FDR control differs from an unadjusted multiple testing

procedure. Sensitivity (hereafter sn) is defined as the probability that an area is declared at

high-risk given that it is such (probability of correctly rejecting a hypotheses), whereas specificity

(hereafter sp) is the probability that a null-risk area is correctly declared as such (probability of

correctly not rejecting a hypotheses). We can denote 1− sp as the False Positive Rate (FPR): it

corresponds to what is called in literature the Per Comparisons Error Rate (PCER) (see Benjamini

and Hochberg, 1995). Controlling this quantity means non considering the multiple testing issue at

all since it is actually the multiple testing analogous of the ’size’ (α) fixed ex ante in the Neyman-

Pearson single hypothesis test setting (i.e. the probability of rejecting a null hypothesis when it is

true). Indeed, in a multiple testing setting FPR is the proportion of false positives among the set

of true null hypotheses. The quantity we aim to control, the FDR, is instead the proportion of

false positives among all positives. As an example to understand how the last two error measures

yield different information, let us assume we have defined a rule (a test statistics and a critical

value) to make inference on a number of null hypotheses. Suppose to reject hypotheses controlling
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that in average FPR ≤ 0.05, then it means that 5% of the times we will wrongly consider a true

null hypothesis as rejected; testing 1000 null hypotheses we can expect up to 50 false discoveries. In

many practical contexts this information (which actually correspond to an unadjusted procedure)

is too poor. If, instead, we are willing to control the FDR at the 0.05 level, and, for instance, 100

null hypotheses out of the 1000 tested are rejected then this will results in about 5 false positives

(if 500 are called significant it will results in 25 errors, etc). As claimed in chapter 2, in our case of

study controlling the FDR gives useful information.

Point c) recalls us that BYM mix can also estimate relative risk values. They are obtained via

MCMC estimation and appear as smoothed values compared to the maximum likelihood estimates,

the smoothing being due to the Bayesian borrowing of strength between prior information and em-

pirical data. Mostly in small areas cases the borrowing of strength can sometimes hide high relative

risks because of the over-smoothing phenomena; i.e. the variance of the set of posterior relative risk

values is underestimated. The point c is a suitable ground to make a comparison between BYM

and BYM mix about the degree over-smoothing of the posterior relative risk estimates.

4.1.1 Factors controlled by simulation

We aim to evaluate the above mentioned three targets of the BYM mix model with respect to

factors that typically play a big role in a spatial analysis based on SMRs. Such factors are the

spatial correlation degree, the size areas (hence whether or not the expected counts are small values)

and the true relative risk value in areas where the null hypothesis is false. Moreover, we expect

that also the number of the true alternative hypotheses plays a role in estimating the FDR, hence

controlling it as well. However, the factors which we will focus on with a special interest are the

spatial correlation, the size areas and the true relative risk level in areas where the alternative is

true.

Since the proposed model is originally constructed to address the lack of fitting of the Poisson

model for the presence of positive spatial correlation between relative risks, we expect it works better

when spatial correlation is strong than it is weak. We believe the model is less appropriate in case

where risks are spatially uncorrelated because we introduce a non needed theoretical complexity.

We will dedicate section 4.1.2 to describe in details the way we control the spatial correlation

degree. In this section we introduce the other factors controlled in the simulation study, that are:

• n = (N5 ,
N
20), the number of areas where we incremented the relative risk value;

• θ = (1.5, 2, [1.2÷ 2]): the relative risk value in areas where we incremented it;

• SF = (0.5, 1, 5): a scale factor multiplying each area expected count (ei) in order to vary
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areas size.

The factor n corresponds to the number of true alternative hypotheses generated by simulation

all over the map. If N is the total number of areas, we will achieve N − n areas where the null

hypothesis is true and n where it is not. In the latter areas, the relative risk is forced to be greater

than 1; we recall in fact that the alternative hypothesis we are interested in is H1i : r > 1. Varying

the number of true alternative hypothesis we want to check if it can influence the FDR goodness

of estimation, or the power of F̂DR based decision (or selection) rules in identifying such true

alternative hypotheses, or again the over-smoothing degree of relative risks estimates. Since in

practical cases it is more frequent to find a small number of true alternative hypotheses, we decided

to fix for the factor n values corresponding to a 20% (N5 ) and a 5% (N20) of true high-risk areas

among the N total areas of the map. Thus we will generate exactly n = 69 true high-risk areas in

the former case n = 19 true high-risk areas in the latter.

We want moreover to check the BYM mix model performance with respect to the true relative

risk value θ arisen in area where the alternative hypothesis is forced to be true; in this simulation

study context we will denote the relative risk as θ, instead of r, to stress the fact that θ is always

greater than 1, denoting the relative risk in true high-risk areas. As regards the choice of the

θ level, we follow some simulation studies present in literature and conducted for examining the

characteristics of several disease mapping models (Richardson et al., 2004; Lawson et al., 2000). In

those works even large values for the relative risks were checked for exploring model behavior in a

wide range of cases. For our study, we generate scenarios with three levels of θ: θ = 1.5, θ = 2 and

θ = (1.2÷ 2), where the latter means that θ will vary between a risk of 1.2 to a risk of 2 across the

n areas. To not affect results interpretation, we however guaranteed that the average relative risk

of scenarios where θ = (1.2÷ 2) is kept constant between scenarios differing for spatial correlation

degree; i.e in all scenarios with θ = (1.2 ÷ 2) we operated the simulation of differently spatially

correlated scenarios in order to obtain in average the same θ value (around 1.6).

Finally, as regards the factor size areas (SF ), we expect the model behaves in a different way

according to the magnitude of the expected count values on which observed (i.e. simulated) counts

are generated by simulating. We believe that making inference on the true alternative hypothesis

may be more difficult if the area i is small rather than big; the BYM mix model may over-estimate

the πi’s. If the expected count ei is small we have weak empirical evidence in favor of the alternative

hypothesis even if it is actually true. We chose to make the scenarios varying for areas size by

multiplying the set of basic expected counts for a scale factor SF taking respectively 1, 0.5 and

5. SF = 1 allow us to maintain the originally chosen map of expected count, SF = 0.5 build a

map with twice smaller areas and SF = 5 identify scenarios where the areas are much bigger than
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previous cases. Below we give a summary of the set of expected counts for each SF level:

> SF = 0.5

> summary(e.original*0.5)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.5496 5.5280 8.9970 20.7400 15.1700 749.7000

> SF = 1

> summary(e.original)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.099 11.060 17.990 41.470 30.340 1499.000

> SF = 5

> summary(e.original*5)

Min. 1st Qu. Median Mean 3rd Qu. Max.

5.496 55.280 89.970 207.400 151.700 7497.000

We consider the SF = 0.5 and SF = 1 cases as representative of small areas scenarios. Note as in

SF = 0.5 (SF=1) half the number of areas have an expected counts lower than 9 (lower than 18).

SF = 5 in our mind refers scenario where the small areas issue is no longer a problem. In such

case the model could be considered no more necessary, since for SMRs collected at a big scale a

traditional p-value may be good at evaluating the null hypothesis. We believe the model is useful

for addressing small areas case, being the borrowing of strength between area-specific posterior

probabilities (or in the case of the BYM model between area specific relative risks) fruitful when

empirical information is not uniform across areas. We will still simulate counts from the scenarios

where SF = 5, being however aware that our main target is the BYM mix model performance

evaluation in small areas and spatially correlated scenarios.

4.1.2 Spatially correlated scenarios

To simulate scenarios with different degree of spatial correlation between risks we need to simulate

a number n of areas where the alternative hypothesis is true, such that these n high-risk areas

are positively spatially correlated. First step is the choice of the basic map on which simulating

datasets. We need a map containing many areas, since we want to focus on applications where

many tests are performed, one for each area. Moreover the BYM mix model is aimed to address

small areas case study, hence we feel it is important to use a real map containing small areas (we

consider a small area an area where ei < 5), instead of using a regular grid. Following Lawson et

al. (2000) we think important two recommendations:
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1. the small areas have to have similar size and shape;

2. the small areas have not to show a clear spatial structure over the map (the tendency to be

close each other).

If not so, artifacts may arise; as Gelman and Price (1999) argued, Bayesian inference on disease

rates may lead to spatially correlated relative risk estimates for the only effect of spatially correlated

expected counts. This could also be the case for the posterior probabilities estimates π̂i’s computed

by the BYM mix model, since it exploits the empirical information in the neighbouring areas

through spatially autocorrelated random effects u = (u1, ..., uN ).

We want to spend more comments on these two recommendations, these being valid also for

the proposed model which focuses on both relative risk estimates (r̂) and posterior probabilities

estimates (π̂). As regards point 2., the Bayesian shrinkage operated by disease mapping models

in general, yields in each area a posterior disease rate that is a compromise between the observed

region disease rate and both the mean disease rate for the entire map (global mean) and the

neighborhood mean (local mean), with the relative weighting of observed and mean rates being

dependent on the expected count ei (that is low for small areas). Hence, if a lot of small areas

are contiguous, i.e if small areas have a spatial structure, we would obtain a smoothing effect that

will result in too uniform disease rates even if the true underlying rates are not uniform. In other

words, posterior estimates of relative risks will be spatially correlated even if the true risks actually

are not. Point 2. ought to be at most as possible achieved for an appropriate interpretation of

the simulation results. As regards point 1., the small areas are those where the shrinkage effect is

more emphasized because, where the empiric information is poor, the relative risk is more shrunk

towards local (the neighborhood) and global (the whole map) means. The idea that small areas

ought to have approximately the same number of neighbours is again aimed to avoid the artifacts

above mentioned: small areas with many neighbours would receive more prior information than

small areas isolated. As a brief digression, we think interesting being able to consider all the small

areas having the same chance to receive the prior information and avoid any artifacts; indeed,

measuring the sensitivity as a function of the size of the areas would be an interesting point to

investigate in future.

However, starting from a real map consisting of areas with irregular shape it is difficult follow

the above recommendations at all. We believe, however, the choice to simulate from a real map of

N = 341 known expected counts relative to lung cancer death all over five years in Emilia-Romagna

municipalities can be appropriate. As regards point 1. see figure 4.1 where an histogram is shown

of the number of neighbours in small areas (we just considered areas where ei < 5) for Emilia

Romagna map. As regards point 2. see instead figure 4.2 which highlights blue-tone colored small
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Figure 4.1: Histogram of the number of neighbors for areas where ei < 5. The majority of small

areas have a number of neighbors between 3 and 6.

areas; they seem to not show extreme tendency to aggregate each other.

For each level of the three factors n, θ and SF , we generated three different spatial scenarios,

moving from a situation where spatial correlation is weak to one where it is strong. We choose

some areas in the basic map, and in those areas we increment the relative risk value by setting

r = θ. For generating different spatial correlated scenarios we follow a simple principle used in

Richardson et al. (2004): incrementing relative risks in contiguous areas make us able to create

spatial correlated risks, whereas incrementing risks in not contiguous areas can yield a lower degree

of spatial correlation. The idea of creating spatial correlation pattern by arbitrarily choosing high-

risk areas is necessary for being able to compute the true value of FDR, since to work it out we need

to know whether or not an area, where the null hypothesis has been rejected by a given decision

rule, is one of the n true high-risk area. To creating scenarios following the above idea we need

to know the adjacency matrix of the Emilia Romagna map. We shall see in the next section an
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Figure 4.2: Map highlighting areas where ei < 5. Small expected counts show a non strong degree

of spatial correlation.
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S1 − Independent risk S2 − Strongly spatially correlated risks

S3 − Spatially correlated risks

high risk areas
null risk areas

Figure 4.3: The three spatial scenarios (S1, S2 and S3) for n = 69

example of how generating such risks by sampling counts from a Multinomial distribution model.

The simulation of spatial count patterns with several degrees of spatial correlation raises the

following difficulty: we need to generate spatial correlated counts and force either r = θ > 1, in

areas where we simulated the alternative hypotheses (2.6), or r = 1 in areas where we simulated the

null hypothesis (2.5). Hereafter, we will denote true high-risk areas as HR areas and true null-risk

areas (also background areas) as NR areas. To compact notation, we will call θHR (> 1) the relative

risk in HR areas, while θNR (= 1) the relative risk in background areas. We will call S1, S2 and

S3 the three scenarios generated. In S1 the n HR areas are chosen controlling that they are not

contiguous, in S2 all the n HR areas are chosen as contiguous, whereas S3 reflects an intermediate

situation where the n HR areas are aggregated in a few number of clusters. Illustration of the

three spatial scenarios in the case of n = N
5 (n = 69 out of the 341) and n = N

20 (n = 19 out of the

341) are shown in figures 4.3 and 4.4 respectively.
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S1 − Independent risk S2 − Strongly spatially correlated risks

S3 − Spatially correlated risks

high risk areas
null risk areas

Figure 4.4: The three spatial scenarios (S1, S2 and S3) for n = 19
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The main difficulty is building such three spatial scenarios without changing other factors levels,

i.e. n, θ and SF . This is fundamental to appropriately interpret results relative to scenarios that

differs for the only spatial correlation degree. This issue is made even more difficult by the fact that

we want some of the HR areas generated in S1, S2 and S3 to be small areas; this, obviously, for

evaluating the performance of the BYM mix model in small areas case studies that are frequent in

practice. To properly make comparisons between S1, S2 and S3, keeping fixed each other factors

we need to make two important constraints in choosing the HR areas in the map. Firstly, the sum

of the HR areas expected counts has to be maintained approximately constant between S1, S2 and

S3 so that we will introduce the same amount of risk in each of them. Secondly, the proportion of

small areas (recall we want to introduce small areas among the set of generated HR areas) has to be

approximately the same between the scenarios, the latter to avoid misinterpretation of simulation

results. Indeed, introducing more small areas in S2 than in S3, for instance, could confound the

simulation summary results that we want only being due to the different spatial correlation degree

between S2 and S3 themselves. In figure 4.5 are shown histograms of expected counts relative to

the areas where we generated the alternative hypothesis. We see that the proportion of areas where

ei is lower than 10 or 20 is approximately the same. Only in S2 scenario for n = 19 we have a

slight lower proportion of areas with expected count lower than 10, but we believe it cannot affect

the sensitivity results so much, especially if we think that it is the case where the number of true

high-risk areas is small (n = 19). The total number of scenarios we generated is 3 x 3 x 2 = 54,

that are 3 spatial correlated scenarios (S1, S2, S3), 3 levels of size of areas (SF = 1, SF = 5,

SF = 0.5), 3 levels of relative risk values increment in HR areas (θ = 1.5, θ = 2 θ = [1.2 ÷ 2]), 2

levels of the number of true null hypotheses (N5 ' 69, N
20 ' 19). Depending on what we want to

focus on we can show results fixing the factor under examination and varying all the others.

4.1.3 Multinomial sampling vs Poisson sampling

Counts were drawn from a Multinomial distribution in order to make the constraint
∑

i ei =
∑

i yi.

More precisely, the constraint we actually impose is
∑

i ei × SF =
∑

i yi, since we want SF to be

a scale factor allowing for producing different size of areas.

(Yi, ..., YN ) ∼Multinomial

(∑
i

ei × SF × θi, τ

)
(4.1)

In the above notation τ is a N component vector, in our case the generic element being τi =
ei×SF×θi∑
i ei×SF×θi

. Marginally each Yi is a Binomial random variable with parameters (
∑

i ei × SF × θi)

and τi. The term (ei×SF × θi) is what we above denoted as the auxiliary expected count, since it

is the expected count by which we can generate the area i count, relative to the scenarios having
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Figure 4.5: Histograms relative to the expected counts (of areas where the alternative hypothesis

is true) for all spatial scenarios (S1, S2 and S3) and all n scenarios (n=19, n=69)
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pre-chosen SF and θ levels; an example follows. Let us suppose we want to generate 100 datasets,

relative to the Emilia-Romagna map, for a given level of SF and θ factors. To this aim we need to

divide the sum of the known expected counts relative to the Emilia Romagna map (
∑

i ei × SF )

across the N = 341 areas where each probability τi depends on (ei × SF ) and on θi. The latter

is equal to either θHR or θNR, depending on if area i is an HR or a NR area. For each HR area

we sampled 100 values by using θHR > 1, while for every background area we drew 100 values

with θRN = 1. For instance, in the scenario where n = N
5 (69 true alternative hypotheses out

of 341 hypotheses), SF = 0.5 (very small areas) and θ = 1.5 we will sample 100 values from a

Multinomial sampling distribution. The generic simulated count is a fraction of the total
∑

i ei×SF

proportional to a probability of τi = ei×0.5×1.5∑
ei×0.5×θi , if i is an HR area, or to τi = ei×0.5×1∑

ei×0.5×θi if i is

instead a background area (NR).

Sampling the counts from a Poisson distribution is an alternative way, even though it cannot

maintain the constraint between summation over expected and observed (here simulated) counts.

The Poisson sampler reproduces the case where the reference rates for the disease under study are

taken from an external standard population; as a result we will obtain HR areas with relative risk

values around θHR, and background areas with risks leveling out at the constant risk of 1. With

the model (4.1), instead, the total amount of simulated counts is constrained to be equal to the

total amount of expected counts. The probability of drawing counts for area i depends on ei×θi∑
i ei×θi

.

Hence, in the HR areas we will not generate relative risks around θHR, but in average around the

ratio θHR
θNR

that will be a bit lower than θHR. In other words, in scenarios where θ = 1.5 we will

have as number of observed disease cases as we were in scenarios where θ = 2 because the total

generated counts is the same, just the relative risk of HR areas relatively to background areas will

differ. As a result, we will obtain areas with relative risks either greater or lower than 1 according

wether they are HR or NR areas as if we had SMRs computed by means of internal reference

rates.

We believe that BYM mix model performance cannot be affected by considering internal or

external standardization, however simulating from the sampling model (4.1) can be useful for

building scenarios with different n factor levels without changing the θ factor levels, hence avoiding

misinterpretation of the results. In fact, sampling from a Poisson model would augment the risk in

HR areas (θHR > 1) and would leave unchanged the risk in NR areas (θNR = 1). So, in scenarios

where n = N
5 , the total amount of risk in the map will be larger than in scenarios where n = N

20

because of the bigger number of HR areas. By sampling from (4.1) the total observed counts

must always be equal to the total expected counts, hence simulation results about scenarios having

different values for n, and the same values for each other factors, will only depend on the varying
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number of true alternative hypotheses as desired.

4.1.4 MCMC based inference

For each of the 54 scenarios (populations) we generated 100 datasets (elements) to make allowance

for sampling variability. For each dataset, i.e. for each set containing 341 observed counts (sam-

pled by model (4.1) concerning the particular scenario) and 341 expected counts (the auxiliary

expected counts concerning the particular scenario), the model was implemented in OpenBugs to

get estimates of the 341 components vector of π and r. We have denoted the estimates of the

posterior probability of H0i as π̂i since it is worked out as the mean of a sample of 0 and 1 values

from the posterior distribution [H0i |y]. We used BRugs package of R (version 0.4 - 1) for running

OpenBUGS version 3.0.2.

As regards the choice of burn in period and number of sampled values to consider for calculating

the estimates, we checked the convergence in the described below way. Indeed, we cannot analyze

all 54 scenarios so we checked one dataset belonging to each critical scenario, i.e. where the

convergence may be thought of being slower because of the weak empirical information. So, for all

levels of n and all spatial scenarios (S1 S2 S3), we considered as critical scenarios those with small

areas (SF=0.5) and small risk levels θ = 1.5. Once evaluated the number of iterations necessary for

the convergence in datasets coming from the mentioned scenarios, we decided to fix a conservative

value and implement it automatically in all simulations. The burn in period was fixed at 4000,

after having checked autocorrelation plots of nodes H0i, visual investigation of the trace plots, and

calculation of the Gelman-Rubin convergence statistics; the latter two was computed after having

run three chains with different starting values for each parameter with a prior distribution (H0, u,

v, α, τu, τv, φ). The number of iterations for calculating estimates was fixed at 8000, obtaining an

effective sample size around 2000 for almost all H0i parameters of interest.

4.2 Evaluating model performance

In this section we introduce measures and tools for analyzing simulation results about the BYM

mix model performance concerning the three targets discussed in section 4.1. One of them is

the goodness of estimation of the FDR. We want firstly give two important points on the FDR

computation. As already said we are interested in testing two competing hypotheses in each area,

the null being the relative risk is 1 and the alternative being the area relative risk is greater than

1. Our alternative is not a bilateral hypothesis, i.e either lower or greater than 1. As discussed in

chapter 3, we aim to evaluate such test for each area i by working out by the BYM mix model

an estimate of the probability that the null hypothesis is true (π̂i). We also noted that, for the
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way the model has been formulated, a small π̂i value denotes a deviation from the null hypothesis,

but such deviation can be in the direction of a relative risk both greater and lower than 1 (i.e. a

bilateral alternative). Since our definition of the alternative hypothesis, we cannot consider a small

π̂i as a possible discovery if it comes from a lower-risk areas. Hence, we need to restrict the set of

potentially rejectable hypotheses to the set of areas where yi ≥ ei. If not so, the denominator of

the False Discovery Rate (i.e. the number of discoveries) would become greater than due, and we

would achieve an under-estimation of it. Note that we do not make the same restriction when we

estimate the πi’s by the model since all observation are needed for that. Therefore, the practitioner

willing to use the proposed model should do such operation after having estimated the model, and

before determining an F̂DR based decision rule for selecting high-risk areas. Doing so, the set of

discoveries achieved at the prefixed FDR level will contain high-risk areas.

The other point is on the computation of the FDR via simulation. In the following in this section

we will denote a quantity as “realized” if it is worked out by simulation, and with “estimated” when

it is obtained by the BYM mix model. Working out the FDR realized by simulation is possible

since the simulation study allows us to create the population from which we can calculate the

“true” FDR. We want however to clarify that FDR is not a measurable quantity, so we could not

conduct an experiment to infer its value. FDR is a quantity that contains a random variable both

in numerator and in denominator, but such random variable depends on a decision about the null

hypothesis. Therefore, in our setting, the FDR can be calculated after having chosen a threshold

tπ for the posterior probabilities, even though it is in principle computable for any given set of π̂i’s

as argued in section 3.2, without concerning any selection rules that tells us how to build such set

of π̂’s. However we say in advance that in the presentation of the results we will show graphs where

the FDR is plotted against a threshold tπ (also denoted as cut-off probability) and is relative to the

set of discoveries found out selecting an area i if π̂i ≤ tπ. We will compare the estimated FDR (i.e.

F̂DR), calculated averaging all the π̂i’s lower than tπ, with the realized (or true) FDR computed

as the proportion of the number of discoveries (i.e. the number of areas where π̂i < tπ) that are

actually HR areas among the discoveries themselves. In order to calculate the denominator of the

realized FDR we need to know the spatial scenarios S1, S2, S3, that is we need to know whether

or not each area is a HR (see the maps illustrating HR and NR areas in figures 4.3 and 4.4).We

will formally write this down in the next section.

To sum up the concepts above, we say that though the FDR can be in principle (and in practice)

computed for any given set of selected π̂i’s, regardless of the rule used to select them, we will focus

attention on F̂DR achieved in πi’s monotonic sets. We define a π̂i’s monotonic set to be a set of

ordered π̂i’s, i.e. π̂1 ≤ π̂2 ≤ ... ≤ π̂m where m is the number of areas such that yi ≥ ei (number of
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possible discoveries). For instance, in the FDR vs tπ graph, for all tπ values in the horizontal axis

we will plot the FDR calculated on the set composed by all π̂i’s non-greater than tπ. We will focus

on such π̂i’s monotonic sets because of the practical examples we think the epidemiologist can be

interested in. For instance, the need to select high-risk areas having collected SMR’s relative to

a particular disease in many spatial regions; according to the threshold tπ at which the π̂i’s are

selected, we achieve different sets of discoveries, each one with its F̂DR. Thus the practitioner

can declare a set of discoveries (a set of high-risk areas) for any given F̂DR level. Aim of the

simulation is to investigate in different scenarios the F̂DR levels that are close to the true FDR

level, in order to know which F̂DR based decision rules can be recommended as they do not yield

loss of sensitivity or loss of specificity.

If more than one disease cause SMR are collected in each area, the idea of measuring the FDR

in π̂i’s monotonic sets can be less interesting as in such as case the practitioner might prefer to

work out the F̂DR in each area to evaluate its generale risk state; note we can in principle average

the π̂i’s belonging to different diseases since the F̂DR can be computed in any set of discoveries.

4.2.1 Measures introduced for evaluating model performance

We describe the measures useful for evaluating performance about the three targets of the proposed

model. All the formulas above introduced are not averaged over the 100 simulated datasets, except

the sensitivity and specificity formulas.

Relative Risk estimate, (r̂i). The proposed model can estimate ri as well as the Besag York

Molliè model. For each area i, it is a Monte-Carlo mean:

r̂i =

∑M
j=1 (exp(1−H0ij)(αj + uij + vij))

M
(4.2)

where M is the number of MCMC iterations.

Estimated posterior probability that the null hypothesis is true, π̂i. Such a value is

computable for each area i as a Monte-Carlo mean:

π̂i =

∑M
j=1 I(H0ij = 1)

M
(4.3)

where M is the number of MCMC iterations.

Number of Discovery, (D). We compute D as the number of selected areas, i.e. the number

of areas declared at high-risk by a given selection. Determining a selection rule means choosing

a threshold for the π̂i’s; a possible way is through (3.13). Thus, the number of discoveries D
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conditional to a tπ value is:

D =
∑
i

I(π̂i ≤ tπ) (4.4)

The indicator function is equal to 1 when π̂i ≤ tπ.

Estimated False Discovery Rate, (F̂DR). This value is a prediction of the proportion of

false discoveries among the discoveries. We recall the formula (3.12), where given a set S of selected

areas posterior probability estimates, π̂i’s, of cardinality DS we have:

F̂DR =
∑

i∈S π̂i

DS
(4.5)

Realized (or true) False Discovery Rate, (FDR). FDR is the number of discoveries that

actually do not belong to the set of HR areas, divided by the number of discoveries. Given a set

S of selected areas posterior probability estimates, π̂i’s, of cardinality DS we have:

FDR =
∑

i∈S I(π̂i ≤ tπ, θi = 1)
DS

(4.6)

The indicator function takes 1 when both π̂i ≤ tπ and area i is a background area (θi = θNR = 1).

In discussing results it will be denoted as true FDR.

Cut-off value for the π̂i’s given F̂DR, (tπ). As already mentioned a possible way to

determine a cut-off (or a threshold) tπ is pre-fixing a value for the FDR, say FDR = c, and selecting

as many discoveries as possible such that F̂DR ≥ c. We recall the selection rule formulation (3.13):

tπ = inf{π̂k :

∑k
j=1 π̂j

k
≥ c}

1 ≤ k ≤
∑
i

I(yi ≥ ei)

the cut-off value, tπ, is the smallest π̂k that yields F̂DR ≥ c.

We explain how tπ can easily be calculated in practice. We select all areas where yi ≥ ei. Then

we make an ordered list of their corresponding posterior probabilities π̂i’s; such a list will actually

contain a number of increasing π̂i’s values. From such a list, we can build each π̂i’s monotonic set

by fixing tπ equal to each π̂i in turn, and counting discoveries by formula (4.4); we thus obtain a

number of π̂i’s monotonic sets equal to the number of π̂i’s in the list. Then, we calculate F̂DR on

each πi’s monotonic set, hence obtaining a list of increasing F̂DR that actually matches the list

of the increasing π̂i’s. By simply observing the increasing F̂DR values we can find an F̂DR = c

based decision rule. It will be a function of the vector π and of tπ as in the usual form introduced

in chapter 1, where the threshold tπ is equal to the π̂i corresponding to a F̂DR value greater or

equal than c, c being the pre-specified FDR level which we want to control. If F̂DR is close to the
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true FDR we can be confident in declaring that the set of discoveries found by the rule is affected

by a percentage of false discoveries equal to c. We will show the extent of degree we can trust the

FDR estimation for all possible choice of tπ in discussing results of the simulation; see section 4.3.

False Positive Rate, FPR. It is the probability that a null-risk area (NR area) is wrongly

declared as a high-risk area:

FPRi = P (πi ≤ tπ|θi = 1) =
∑100

k=1 I(πik ≤ tπ, θi = 1)
100

(4.7)

FPR =

∑
i:θi=1

∑100
k=1 I(πik≤tπ ,θi=1)

100∑
i I(θi = 1)

(4.8)

We recall that θ = 1 means that the null hypothesis i is true, and that when πi is lower than

a cut-off tπ we are rejecting the null hypothesis. It is the probability of a false positive computed

as an average over all 100 datasets. We can compute (4.7) for each background area, and (4.8)

averaging over all background areas.

Note that spi = 1− FPRi is the specificity of the test evaluated in area i, i.e. the probability

of declaring i as a null-risk area when θi = 1. The specificity can be computed as:

spi = P (πi > tπ|θi = 1) =
∑100

k=1 I(πik > tπ, θi = 1)
100

(4.9)

sp =

∑
i:θi=1

∑100
k=1 I(πik>tπ ,θi=1)

100∑
i I(θi = 1)

(4.10)

Sensitivity, (sn). It is the probability that an HR area is correctly declared as high-risk areas,

i.e. the probability of a true positive:

sni = P (πi ≤ tπ|θi > 1) =
∑100

k=1 I(πik ≤ tπ, θi > 1)
100

(4.11)

sn =

∑
i:θi>1

∑100
k=1 I(πik≤tπ ,θi>1)

100∑
i I(θi > 1)

(4.12)

In showing results we will take in account sensitivity averaged over all HR areas, and specificity

averaged over all NR areas. Measuring sensitivity and specificity for each area i may be an

interesting future development, mainly to observe the power achieved by FDR based selection

rules in areas of different size.
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4.2.2 Summary graphs

In what follows we describe graphs used to evaluate the performance of the BYM mix model for

the usual three targets that the model can potentially achieve. Every measure plotted in graphs

introduced below are averages over the 100 simulated datasets. A graph can be drawn for each of

the 54 simulated scenario. However we shall show all 54 scenarios for only the FDR estimation

issue, while we will plot graphs by grouping the three spatial correlation scenarios (S1, S2 and S3)

in the same figure for summarizing simulation results relative to sensitivity of the F̂DR based rules

and goodness of relative risk estimation.

1. For investigating the ability to estimate FDR (point a)

• plot the F̂DR and the true FDR vs a cutoff value tπ.

From this plot we can appreciate the goodness of estimation for the proposed model by

examining the closeness of the estimated FDR (F̂DR) to the realized FDR (or true FDR).

For each tπ threshold at which the posterior probabilities π̂i’s can be cut, we obtain the

respective F̂DR by computing 4.5 conditionally to a discoveries set worked out given tπ

itself. At the simulation stage we also obtain the true FDR by formula 4.6.

2. For investigating the ability to select high-risk areas (point b))

• plot sn, sp, vs F̂DR

Such a plot shows us the averaged values of sensitivity and specificity (averaged respectively

on HR and NR areas, besides averaged over the 100 datasets) for any given F̂DR based

selection rule. As an example to show how such values can be plotted, let us suppose an

F̂DR = 0.10 selection rule is wanted. Then, by the mechanism used for building a rule of the

form (3.13) we can work out the threshold tπ that yields the biggest number of discoveries

provided that F̂DR ≥ 0.10. Such a threshold is then used for computing formula 4.12 and

4.10 and results of sensitivity and specificity plotted in correspondence to the value of 0.10.

An interesting issue to consider is what level of sensitivity would be achieved if the BYM

mix model could yield an estimate of FDR equal to the realized (or true) FDR. To this aim

we shall show a slight different version of such a graph plotting both the sensitivity and the

“potential sensitivity” in order to have an insight, for all scenarios, about which level of F̂DR

can be suitably used to determine F̂DR based decision rules that gain the maximum powerful

control of the multiple testing error. For this graph we will show all 54 scenarios results by

aggregating all three spatial cases (S1, S2 and S3) in the same plot. (see figures A.7 and A.8



Chapter 4. Simulation study 75

in Appendix). The main interest lies in checking if the BYM mix model allows for determining

whether F̂DR based selection rules are more sensitive in spatially correlated scenarios (S2

and S3), i.e. the cases where the model is thought of working well since it includes random

effects spatially autocorrelated (u). To the other side, we expect that sensitivity is lower in

small areas (SF = 0.5 and SF = 1) and small θ values.

3. For investigating the ability to estimate the log relative risk (point c))

• plot box-plots of log relative risks estimated by BYM and BYM mix.

We will show such box-plots of the r̂i relative to HR areas grouping the three spatial scenarios

in the same window to compare smoothing degree produced by both the BYM mix and BYM

models: see figures A.9 and A.10 in 4.4.1.

4.3 Results

In this section we will respectively focus on goodness of estimation of FDR, sensitivity/specificity

of F̂DR based rules and goodness of estimation of the relative risk estimates.

4.3.1 The BYM mix performance on FDR estimation

Before commenting on the graphs, we attempt to interpret the over-estimation and the under-

estimation of the False Discovery Rate. We try to figure out the reasons and consequences of both

over-estimation and under-estimation. First of all, we expect the over-estimation of the FDR to

be due to the presence of small areas. In HR small areas, though the true hypothesis is θ > 1, we

can have weak empirical evidence in favor of H10, hence posterior probability of the null hypothesis

may be over-estimated. Then, since the F̂DR is computed by averaging π̂i values, the FDR will

result be over-estimated as well. If for some FDR values we observe that F̂DR ≥ true FDR it

always results in some kind of loss of sensitivity for such F̂DR based rules; the practitioner, for

a fixed number of discoveries, will declare a larger F̂DR than actually it is, or analogously, for a

fixed F̂DR, he will declare a lower number of discoveries. A loss of sensitivity is also likely to be

caused by small θ values since in such scenarios the empirical evidence against the null hypothesis

is weaker than in large θ scenarios.

Following such idea, the FDR estimation may be improved as the empirical evidence against

H0 of each area become stronger, i.e. as long as the factors θ and SF gets bigger. On the other

hand, in the case where areas are very large and relative risk values in HR areas are high, we

also may expect the Bayesian borrowing of strength to become too strong hence affecting the

conclusions of the practitioner. This would result in the opposite problem: the under-estimation
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of the πi values, the consequent under-estimation of some FDR levels, hence a loss of specificity,

i.e. rejecting the null hypothesis in areas where H0 is actually true. For FDR values for which

F̂DR ≤ true FDR, the F̂DR selection rules will make the practitioner wrongly declare some areas

as discoveries, because the true FDR value, i.e. the value that the practitioner cannot know, will

actually be greater than that estimated by the BYM mix model.

As a final remark on over/under estimation of FDR it is worth noticing that since we want

to achieve the control of a desired pre-specified FDR level, over-estimating is by far better than

under-estimating the FDR. In the latter case the practitioner would declare less errors than he

actually made, whereas with the former he would declare more errors than due that actually means

not achieving the multiple testing control. As we said in section 3.3 what we need is a conservative

estimation. On this note, an over-estimation at worst causes the F̂DR selection rule adopted to

not be as powerful as could be, that, in some sense, corresponds to pursue a conservative control

of the FDR as is required. We will recall this in section 4.3.2.

We now discuss what is observed through simulation about the FDR estimation in the three

different spatial scenarios by exploiting plots of the true FDR and F̂DR vs tπ. We will look in this

section at only two examples of both over-estimation and under-estimation, presenting all scenarios

results in Appendix. In graphs here presented, we also draw two vertical line on the tπ values

corresponding to F̂DR equal to 0.05 and 0.10, to put in light the goodness of estimation of the FDR

for such “traditional” values (figuring out that a practitioners could want to determine an F̂DR

based decision rule given such FDR values). We will compare averaged values of FDR (where the

mean is calculated over the 100 simulated datasets as usual) and also point out some considerations

about the true FDR and the F̂DR distribution over the population of the 100 datasets by showing

box-plots (containing the 100 FDR values for each threshold tπ in the horizontal line). Recall, in

fact, that we have no unique FDR for a singular dataset, but we have an F̂DR and a “realized”

FDR for each fixed threshold tπ for the π̂i’s.

In Figures 4.6 and 4.7 we investigate the combinations of factors {n = 69, θ = 1.5, SF = 1}

and {n = 19, θ = 1.5, SF = 1}. The horizontal axis reports all possible cut-off tπ, conditionally on

which, in the vertical axis are calculated both the F̂DR and the “realized” FDR. We also calculated

95% level confidence limits for F̂DR assuming the 100 values to be normally distributed.

Such pictures show the tendency of the BYM mix model to over-estimate FDR in larger n

scenario. In the smaller n scenario, instead, we achieve an accurate estimation for correlated cases

S2 and S3 until some point (between 0.10 and 0.15) beyond which FDR becomes under-estimated.

To investigate the effect of having taken averaged values over the 100 datasets for summarizing

results, figures 4.8 and 4.9 show the same plot as in Figure 4.7 but add underlying box-plots
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of respectively the 100 “realized” and the 100 estimated FDR. By only looking at confidence

bounds we realize green dashed lines are more spread out in n smaller scenarios as they yield more

uncertainty about FDR estimation. Box-plots pictures show instead the empirical distribution

of the true FDR and the F̂DR according to each cut-off probability tπ in the horizontal axis.

First, we note that true FDR (and F̂DR as well) are not identically distributed regardless of

the tπ values in the horizontal axis. The 100 “realized” FDR of figure 4.8 show strong right

skewness for small cut-off values, almost all the mass of probability is around 0. They become

nearly symmetric for tπ values greater than approximately 0.10 though still more spread out than

a normal distribution. Instead, the 100 F̂DR of figure 4.9 follow a quite symmetric distribution,

probably more concentrated around the median than the normal distribution, and except in S1

scenario, they are almost identical distributed. An interesting note is that for small cut-off tπ, the

empirical distribution of F̂DR is more spread out in the independent risk case (S1) than in the

dependent risk cases (S2 or S3): this signals that the FDR estimators is generally more precise in

scenarios more favorable to the model itself, i.e. the spatially correlated risks scenarios.

By looking at figures from A.1 to A.6 in section 4.4.1 we can get a global insight about FDR

estimation in all 54 scenarios. We give a brief a description of what can be found in one of the six

figures. We have nine graphs of F̂DR and true FDR vs tπ representative of 3 spatial scenarios (S1,

S2, S3) times 3 θ scenarios; keeping fixed the factors n and SF . Figure A.1 for example focuses on

nine scenarios with n = 69 (around a 20% of true high-risk areas) and SF = 0.5 (small areas). Each

row, containing three figures, corresponds to a different θ value, the first on the top being θ = 1.5,

the second θ = [1.2 ÷ 2] and the third θ = 2. Each column, containing three figures, corresponds

to a different spatial scenario, the first column on the left being S1 (independent risks), the second

S2 (strongly spatially correlated risks) and the third on the right S3 (spatially correlated risks).

We comment on the results of figures (A.4, A.5 and A.6) which are relative to n = 19 scenarios.

We see as the model tends to under-estimated the FDR for some non-small values, but mostly for

independent risks cases (S1), high θ values (for ex. θ = 2), high SF levels (big areas scenarios like

SF = 5). Instead, in correlated scenarios, small θ values and small areas case we often achieve

an accurate estimation, except a small over-estimation for some tπ values corresponding to high

F̂DR values. In latter scenarios an F̂DR = 0.10 based selection rule can be suggested. Instead, in

SF = 5 scenarios (non small areas) we get strong under-estimation, even for small F̂DR. In such

scenarios we can determine selection rule based on just very small F̂DR in order to avoid a huge

loss of specificity; for instance, an F̂DR = 0.10 based selection rule cannot be suggested.

We focus now on the first three figures (A.1, A.2 and A.3) that are relative to n = 69 scenarios.

The over-estimation is more frequent in n = 69 scenarios, see also figure 4.6 that corresponds to the



Chapter 4. Simulation study 78

first row of figure A.2. The most over-estimated FDR lies in the strongly spatially correlated case

S2. Over-estimation is less in the intermediate correlated case S3 and is even lower in independent

risk case S1. Note that the “realized” FDR is by far the lower in S2 case, but more interestingly

note that in n = 69 scenarios the true (or realized) FDR is in general lower than in n = 19 scenarios;

see Figure 4.10 for a comparison of FDR goodness of estimation grouping the two n level in the

same window. Thus, it seems that, moving from scenarios where the true alternative hypothesis

is n = 19 to scenarios where n = 69 (out of the total N = 341 areas) would potentially allow for

achieving less errors in selecting high-risk areas given a threshold for the π̂i’s. But unfortunately

the BYM mix model cannot take advantage of that, in fact, for a decrement of the “realized” FDR

values we do not meet the same decrement for F̂DR values estimated by the π̂i’s worked out by

BYM mix. Note that the spread between true and estimated FDR is stronger in risk correlated

scenarios (S2 and S3) than in S1; we will see in next section as this bigger spread does not mean

that F̂DR based rules of spatially correlated scenarios are the less sensitive. By looking at figures

(A.1, A.2 and A.3) we see over-estimation is made less evident for θ and SF high levels scenarios

(where we have non small areas and high θ value in HR areas). Since the over-estimation, in

such n = 69 scenarios we achieve a conservative control, we do not necessarily need to determine

rules that control only very small FDR values in order to avoid a loss of specificity (as in n = 19

scenarios). We can fix F̂DR = 0.10 or F̂DR = 0.15 based selection rules being however aware that

we cannot avoid to incur a loss of sensitivity, unless for high θ and high SF levels. Finally, also for

the n = 69 case, we report in Figure 4.11 box-plot underlying picture of the F̂DR and “realized”

FDR. Also in this case the “realized” FDR is clearly right asymmetric, but oppositely to the

n = 19 case such FDR (given tπ) empirical distributions are more concentrated. Indeed, this is

due to the fact that we have a larger number of true alternative hypotheses and we will generally

reject more null hypotheses, so making both numerators and denominators of FDR values higher

and eventually obtaining less variability among the 100 datasets than in the n = 19 scenarios; see

Figure 4.12.

4.3.2 The BYM mix power in identifying at risk-areas by F̂DR based selection

rules

We show results of sensitivity/specificity of FDR based selection rules by plotting the sn (4.12)

and sp (4.10) against each possible FDR based selection rules in the horizontal axis. In appendix

are shown results about all 18 scenarios grouping S1, S2 and S3 in the same window plot, see

Figure A.7 and A.8. Here we focus the discussion on figure 4.13 that plots all spatial scenarios

sensitivity and specificity results in the same window, for one of the cases analyzed in this section
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Figure 4.6: BYM mix model, n = 69, θ = 1.5, SF = 1. FDR, F̂DR vs tπ for S1, S2, S3 spatial scenarios.

The dark dashed vertical lines signal the cut-off value corresponding to having determined a selection rule

based on F̂DR equal to 0.05 and 0.10 respectively. We could suggest to use both selection rules, even if they

are affected by a lack of sensitivity since the very conservative FDR estimation.
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Figure 4.7: BYM mix model, n = 19, θ = 1.5, SF = 1. FDR, F̂DR vs tπ for S1, S2, S3 spatial scenarios.

The dark dashed vertical lines signal the cut-off value corresponding to having determined a selection rule

based on F̂DR equal to 0.05 and 0.10 respectively. We can suggest to use both selection rules in spatially

correlated cases. Moreover an F̂DR = 0.15 based rule could be used as well without incurring in loss of

specificity since the accurate FDR estimation (non-under estimation).
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Figure 4.8: BYM mix model, n = 19, θ = 1.5, SF = 1. FDR, F̂DR vs tπ for S1, S2, S3 spatial scenarios.

Box-plots are relative to “realized” FDR empirical distributions conditional on each tπ.
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Figure 4.9: BYM mix model, n = 19, θ = 1.5, SF = 1. FDR, F̂DR vs tπ for S1, S2, S3 spatial scenarios.

Box-plots are relative to F̂DR empirical distributions conditional on each tπ.
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Figure 4.10: BYM mix model, both n = 69 and n = 19, θ = 1.5, SF = 1. FDR, F̂DR vs tπ for S1, S2,

S3 spatial scenarios. Moving from n = 19 to n = 69 we see a decrement of the true FDR values (red lines),

whereas the F̂DR values (green lines) are almost unaffected.
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Figure 4.11: BYM mix model, n = 69, θ = 1.5, SF = 1. FDR, F̂DR vs tπ for S1, S2, S3 spatial scenarios.

Box-plots are relative to “realized” FDR empirical distributions conditional on each tπ.
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Figure 4.12: BYM mix model, n = 69, θ = 1.5, SF = 1. FDR, F̂DR vs tπ for S1, S2, S3 spatial scenarios.

Box-plots are relative to F̂DR empirical distributions conditional on each tπ.
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(n = 19, SF = 1 and θ = 1.5). Moreover, we plot the “potential sensitivity” (potential sp) and the

“potential specificity” (potential sp). As an example to understand this concept, let us suppose

to fix an F̂DR = 0.05 based selection rule. The practitioner, after having obtained the π̂i by the

BYM mix model, can choose the threshold tπ by selecting as many areas as possible such that

F̂DR ≥ 0.05; see (3.13). The sn and sp values that correspond to the 0.05 value in the horizontal

axis has been calculated conditional on tπ. The potential sn an potential sp are instead calculated

conditional to a different threshold, i.e. the threshold found out with the same mechanism as in

(3.13) but considering the FDR realized by simulation instead of the F̂DR. If the model under-

estimate the FDR the potential sn will be lower than the actually achieved sn (we will obtain a

loss of specificity), whereas if the model over-estimate the FDR the potential sn will be greater

than the actually achieved sn (loss in sensitivity). Thus, we can know the sensitivity potentially

achievable if the BYM mix model had have carry out an unbiased estimated FDR. For instance,

in figure 4.13 for scenarios S3 the potential and achieved sensitivity values are approximately equal

since the FDR is accurately estimated, whereas for scenarios S2, F̂DR > 0.15 based rules decrease

their specificity since the model under-estimates FDR levels greater than 0.15; recall figure 4.7 to

check the under-estimation beyond 0.15 FDR levels.

An interesting point is that we reach more sensitivity in correlated spatial scenarios; for instance,

in S2 and S3 scenarios, given a F̂DR = 0.1 based selection rule we obtain a sensitivity between

40% and 60% maintaining yet high levels of specificity. This is due to the flexible 2nd stage prior

introduced in the BYM mix model that allows to take advantage of cases where a positive spatial

correlation between risks is present.

Look at all results in Appendix (figures A.7 and A.8) for a global view on the sensitivity issue

in all scenarios. We give a brief a description of what can be found in one of the two figures.

We have nine sensitivity/specificity graphs representative of 3 SF scenarios (SF = 0.5, SF = 1,

SF = 5) times 3 θ scenarios; keeping fixed the factor n. Figure A.8 for example focuses on nine

scenarios with n = 19 (around a 5% of the true high-risk areas). Each row, containing three figures,

corresponds to a different θ value, the first on the top being θ = 1.5, the second θ = [1.2÷ 2] and

the third θ = 2. Each column, containing three figures, corresponds to a different SF value, the

first column on the left being SF = 0.5 (very small areas), the second SF = 1 (small areas) and the

third on the right SF = 5 (non-small areas). In each of the nine graphs the three spatial scenarios

(S1, S2, S3) are grouped to emphasize the different degrees of sensitivity that they can achieve.
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Figure 4.13: BYM mix model, n = 19, θ = 1.5, SF = 1, all spatial scenarios. sn, sp, potential sn, potential

sp, vs F̂DR. Looking at the dashed lines we see that an F̂DR = 0.10 based rule yields a sensitivity from

0.4 to 0.6 in spatially correlated risks scenarios (S2 and S3) with high level of specificity; independent

risk scenarios achieve small power. Note that when the potential sn is bigger than sn (the achieved or

actual sensitivity) we are over-estimating FDR; in the opposite case we are under-estimating FDR (see the

corresponding loss of specificity). F̂DR > 0.15 based rules lose specificity.
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4.3.3 The BYM mix performance on relative risk estimation

The idea of making inference on all area-specific null hypotheses and at the same time on all

area-specific relative risk values is appealing. We saw there are contexts, not far from practical ap-

plications, where F̂DR based selection rules are good, in the sense that they allow for a conservative

control.

Besides controlling the FDR, or equivalently selecting high-risk areas such that the FDR is

non-greater than a prefixed level, the practitioner may be interested into the evaluation of relative

risk values too. Thus, we pursue a comparison between the classic BYM and BYM mix models

in terms of closeness between posterior estimates r̂i’s and true relative risk values (in the n areas

where the alternative hypothesis is true). As it is well know, Bayesian estimation often leads to

posterior estimates that are over-shrunk towards a global mean, in this particular models both

towards a global and a local (the neighborhood) mean. By looking at box-plots in Figure 4.14 we

can see that, in the usual three spatial scenarios S1, S2 and S3, the posterior relative risks of the

HR areas are less smoothed when they are calculated by BYM mix ; see the BYM mix box-plot

(mix) is closer to the nominal true risk (red line) than the classic BYM box-plot (cl). This fact is

almost spread in all scenarios unless the strongly spatial correlated cases (S2) for n = 69 where the

classic BYM model works slightly better. In general, we can say that by applying the proposed

model we do not produce a stronger degree of over-smoothing with respect to the Besag York and

Mollié model. Figure A.9 and A.10 in Appendix, give all scenarios results. As usual, we give a brief

description of what can be found in one of the two figures. We have nine windows representative

of 3 SF scenarios (SF = 0.5, SF = 1, SF = 5) × 3 θ scenarios, keeping fixed the factor n. Figure

A.9 for example focuses on nine scenarios with n = 19, (around a 5% of the true high-risk areas).

Each row, containing three figures, corresponds to a different θ value, the first on the top being

θ = 1.5, the second θ = [1.2 ÷ 2] and the third θ = 2. Each column, containing three figures,

corresponds to a different SF value, the first column on the left being SF = 0.5 (very small areas),

the second SF = 1 (small areas) and the third on the right SF = 5 (non-small areas). In each of

the nine windows the three spatial scenarios (S1, S2, S3) are grouped to emphasize the different

over-smoothing degrees that they yield.

4.4 Conclusive remarks on the simulation study results

What we are interested to highlight in summarizing the simulation results is firstly the scenarios

where we can trust the FDR estimation in order to trust the conclusion we make by means of a

F̂DR based rule. Secondly, we are also interested to know what we may expect if the scenarios
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Figure 4.14: BYM mix model, n = 19, θ = 1.5, SF = 1, all spatial scenarios. Box-plots of relative risk

values in true high-risk areas. The red line is the true nominal value θ = 1.5 in such scenarios. More precisely

the true value is a bit lower since the multinomial model generates counts yielding in HR areas a risk value

around θHR

θNR
. The degree of over-smoothing is weaker for the BYM mix posterior relative risk estimates

(mix) than the classic BYM posterior relative risk estimates (cl).
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where we obtain an accurate FDR estimation change with respect to the factors we control by

simulation. On this note we say in advance that we will mostly focus on interpretation of results

according to changes in areas size factor (three levels: SF = 0.5, SF = 1 and SF = 5) and spatial

correlation factor (three levels: S1, S2 and S3), that are the two sources of variability which the

BYM mix model aims to capture.

As regards the first point, we saw the small areas, small θ, small n and strong spatially correlated

scenarios (both SF = 0.5 and SF = 1, θ = 1.5, n = 19, both S2 and S3) yield the most

accurate FDR estimation. To the other hand, they are not the scenarios where we achieve the

most power in detecting the true alternative hypotheses. Power increases as long as risks (θ > 1.5)

and size areas (SF = 5) get larger, but as a result of this we have two drawbacks: first, we loose

specificity even though not dramatically; second, we can trust the estimation of only low values of

FDR, even much lower than 0.05 because of the borrowing of strength between contiguous areas

posterior probabilities. Borrowing of strength in scenarios where risks are spatially uncorrelated

(S1), expected counts are not small (SF = 5) and risks are high (θ > 1.5) is not necessary and

actually produces artifacts because we have enough information by only the empiric observation of

crude SMRs.

Therefore, it seems there is a tradeoff between power achievable and goodness of the FDR

estimation (more precisely, in goodness of estimation for a wide range of FDR values). We now

explain this issue. In practice, the practitioner who chooses, say a F̂DR = c selection rule, has two

targets:

1 selecting areas providing that the true unknown FDR will not be greater than c;

2 the selection rule chosen is powerful maintaining an acceptable level of specificity.

Target 1 corresponds to look for a conservative FDR estimation; in fact, the practitioner, after

selecting discoveries, would not want to declare an estimate of the FDR lower than the true FDR

(he does not want F̂DR < true FDR), because if so he will declare a number of errors that is

lower than due, hence not achieving the FDR control. This is the reason why over-estimating the

FDR is not as bad as under-estimating it, because in the former case we at worst will achieve a

too much conservative FDR control (F̂DR ≥ true FDR as in expression (1.4)). The result of

over-estimating FDR is indeed the loss of sensitivity, while the result of an under-estimation is

the loss in specificity. The latter two points are connected with the target 2: the practitioner that

chooses the F̂DR = c rule needs such rule to be sensitive for an acceptable level of specificity.

This seems a reasonable conservative strategy, since, as long as we know the decision about keeping

on investigating by means of individual epidemiological studies is not generally addressed with
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the introduction of loss functions which quantify the cost for a false discoveries and a false non-

discoveries.

One of the main achievement of the simulation study is that it puts in light that in small areas

scenarios (SF = 0.5, and SF = 1) and in non-high θ values scenarios (θ = 1.5 or θ = [1.2 ÷ 2]) a

specificity around 0.95 is always achieved for selection rules based on F̂DR values around 0.10 or

0.15 (in n = 19 scenarios) and 0.05 (in n = 69 scenarios). See figures A.7 A.8 in Appendix 4.4.1

which plot sensitivity and specificity vs the F̂DR. Moreover, as long as risks are spatially correlated

both point 1 and 2 are easier achieved by the BYM mix model, that is in S2 and S3 spatial scenarios

we observed more accurate FDR estimates and more powerful F̂DR based selection rules than in

independence risks scenarios S1. Such results suggest that applying the proposed model to control

the FDR at 0.05 level may be recommended in many small areas application, and F̂DR = 0.05

based selection rules though poorly sensitive can be a non-arbitrary way to proceed with selecting

high-risk areas and simultaneously achieving the FDR control. To argue the usefulness of this

approach, it is worth noticing that scenarios where we may advise the practitioner to proceed

in high-risk areas selection by means of a F̂DR = 0.05 (or even F̂DR = 0.10) based rule (at

worst achieving a conservative FDR estimation) are frequent in practice; they are indeed the cases

where there is the presence of small areas, spatial correlation between risks and low relative risk

values. Another point in favor of the BYM mix model is its ability to estimate the relative risk

as well, being hence able to provide two different kind of information to the practitioner. Besides

the relative risk values (that we checked are well estimated in almost all scenarios comparing to

those obtained by the classic BYM model) we can also make inference on many null hypotheses

of absence of risk controlling the proportion of false discoveries among the declared discoveries.

Therefore, in many frequent practical cases, the proposed model allows us to address, at the same

time, a point estimation inference on relative risk values and a multiple testing procedure on many

null hypothesis.

4.4.1 An application to a real dataset

We show an application to real data where the aim is to find possible high-risk areas. Observed

and expected counts are relative to liver cancer morbidity cases recorded over five years in Emilia-

Romagna municipalities. The below summary statistics on the expected counts tells us that small

areas are present; around a half of areas have an expected count lower than 5.

> summary(e)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.3793 3.4860 5.6040 13.1300 9.4040 491.5000
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note we are in a case similar to the SF = 0.5 scenarios.

In general, we saw via simulation that for small areas scenarios, FDR = 0.05 levels are conser-

vatively estimated, hence FDR is not under-estimated. For instance, in n = 19 scenarios, for FDR

values lower than 0.10 we observed a weak over-estimation, while in n = 69 scenarios we achieve a

strong over-estimation unless for very small FDR levels. Thus, we believe a control of the FDR

at a level 0.05 can be suggested, the level of specificity for F̂DR = 0.05 being generally high.

The OpenBugs code to estimate the model is the same as presented in section 3.2.1. Before

drawing samples for inferences, we checked that posterior probability estimates and consequent

FDR estimation did not change for different prior specifications of precision parameters τu and τv of

the clustering and heterogeneity terms. We tried the Gamma(0.5, 0.0005) and the Uniform(0, 100)

on the standard deviations. We used equal prior specification for both τu and τv not considering

here the fair prior specification (3.8). Below we show the maps relative to the observed SMR’s

(figure 4.15), the posterior r̂i’s estimates by BYM model (figure 4.16), the posterior r̂i’s estimated

by the proposed BYM mix model (figure 4.17), the discoveries at F̂DR = 0.05 level (figure 4.18).

Note that the map of posterior relative risk estimates by BYM and by BYM mix are very close;

it seems that BYM mix and BYM models are able to depict the same risk pattern. In addition,

BYM mix model can provide the information about the number of discoveries at a pre-specified

FDR level. In figure 4.18 different red colors identify the posterior probability (that the area is at

null risk) estimates by the model. We find out 20 possibly high-risk areas by an F̂DR = 0.05 based

selection rule, i.e. 20 high-risk areas being aware that one of them (the 5% percent) will probably

be a false discovery.
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SMR − ML estimates

> 0.5 > 0.8 > 1.2 > 1.5 > 2

Figure 4.15: Map of SMRs.
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Relative risks − Besag York Molliè estimates

> 0.5 > 0.8 > 1.2 > 1.5 > 2

Figure 4.16: Map of posterior relative risk estimates by Besag York Molliè (BYM ) model.
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Relative risks − BYM mix estimates

> 0.5 > 0.8 > 1.2 > 1.5 > 2

Figure 4.17: Map of posterior relative risk estimates by our proposal (BYM mix ) model.
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Discoveries at 5% FDR level

<0.2 <0.1 <0.05 <0.001

D =  20

Figure 4.18: Map of discoveries (high-risk areas) selected by an F̂DR = 0.05 based decision rule. Legend

is relative to the posterior probability estimated values.



Conclusions and perspectives

The idea of the work is to propose a new methodology for conducting a descriptive analysis in

spatial epidemiology which is based on the control of the False Discovery. Since methodology

developed can estimate both relative risks and FDR, this approach gives potentially more infor-

mation than a disease mapping analysis which allows only visual inspection of risks on the map.

Indeed, performing a multiple testing procedure on the multiplicity of risk indicators gives a more

decision-oriented approach which yields two interesting features. Firstly, it means that inferences

on many null hypotheses can be made controlling a global error that occurs in making rejections.

On this note, the choice of the FDR as a global error measure is strategic as it allows a less

conservative control than, for instance, controlling the FWER, that is the probability of at least

a false discovery. In many multiple testing case studies where strict control is not of interest the

FDR is fruitful; indeed, in the case under examination, the decision to conduct more investigations

(on the whole map under study) need not be erroneous even if more than one null hypothesis is

falsely rejected. Secondly, such an approach allows the selection of high-risk areas by means of

non-arbitrary rules. By a non-arbitrary rule, we mean a rule that can achieve control of the FDR,

such that the practitioner is aware of the proportion of false discoveries. To this purpose, a model

which produces an estimate of the FDR allows the practitioner to reject null hypotheses by fixing

a priori a desired FDR level. This can provide a valid alternative to the practice of selecting high

risk areas from knowledge only of the posterior relative risk estimates without any concern about

the multiple testing issue. Therefore, the main contribution of the work is the proposal of a model

for simultaneously estimating posterior relative risks and controlling the FDR so being able to

determine a desired F̂DR based selection rule for detecting possibly high-risk areas while being

aware of the errors we incur.

The proposed model is thought to address cases where a large datasets of SMRs is collected over

many spatial contiguous regions, particularly when small areas are present and risks are spatially

correlated. The model specifies each area-specific log relative risk distribution as a mixture of

two components. Under the null hypothesis (of a relative risk equal to 1) the observed count is

assumed as a realization from a Poisson with mean the expected count. Under the alternative

97
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hypothesis (of a relative risk greater than 1) the Besag York Mollié model is assumed as true. The

latter is usually employed in disease mapping applications since it has enough flexibility to capture

the over-dispersion in the data. Then, through hierarchical modelling we can specify prior random

effects that can capture the spatially structured and unstructured extra-Poisson heterogeneity. The

Bayesian borrowing of strength between prior and empirical information allows us to evaluate any

area-specific null hypothesis by means of all observations in the map, incrementing the power,

especially in small areas. Posterior probability (that the null hypothesis is true) estimates are

worked out by MCMC computation and form the basis for the estimation of the expected FDR

conditional on data. Indeed, the posterior probability that the null hypothesis is true in area i is an

estimate of the typeI error probability in declaring the area i as a high-risk area (or as a discovery).

To evaluate the alternative hypothesis of an incremented risk we need to take in account only the

posterior probabilities relative to areas where the observed count is non lower than the expected.

Finally, an estimate of the expected FDR conditional on data can be obtained given any set of

discoveries by averaging their respective posterior probabilities. Estimates of the relative risk values

can be provided through MCMC computation as well.

The simulation study

For an F̂DR based selection rule to be useful for the practitioner we need a model which yields a

conservative estimate of the FDR. The simulation study was set up to answer the question whether

the model can conservatively estimate the FDR in cases that are frequent in practice, that is small

areas and spatially correlated risks cases. Results show that FDR is well estimated (at worst we

get an over-estimation, hence a too conservative FDR control) in small areas, low risk levels and

spatially correlated risks scenarios. In such scenarios we have good estimates of the FDR for all

values less or equal than 0.10. The sensitivity of F̂DR based decision rules is generally low but

specificity is high. Thus, in such a scenario the use of F̂DR = 0.05 or F̂DR = 0.10 based selection

rules can be suggested. In cases where the number of true alternative hypotheses (number of HR

areas) is small, also FDR = 0.15 values are well estimated, and F̂DR = 0.15 based decision rules

gain power maintaining high specificity. On the other hand, in non-small areas and non-small risk

level scenarios the FDR is under-estimated unless for very small values (i.e. for F̂DR much lower

than 0.05); this results in a loss of specificity of a F̂DR = 0.05 based decision rule. In such scenarios

F̂DR = 0.05 or, even worse, F̂DR = 0.1 cannot be recommended because the true proportion of

false discoveries is actually much higher than that predicted by the model. As regards relative risk

estimation, our model achieves almost the same results as the classic Besag York Molliè model,

yielding in most cases a weaker degree of over-smoothing of the posterior estimates.
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As regards the simulation study undertaken a number of different approaches could have been

considered. The way we chose was aimed to strictly control the factors of interest: the number of

true null hypotheses, the risk level, the size of areas. In particular simulating from a multinomial

after generating the three spatial scenarios (with different degrees of spatial correlation), allows

us to control a precise value of the risk level in areas where the alternative is constrained to be

true. Moreover, to avoid misinterpretation of results we needed to make some constraints, such as

keeping fixed the proportion of small areas (areas where ei < 5), and that the sum of expected

count between the three spatial scenarios was equal.

Future developments

A different simulation set up could be interesting under a different point of view even although it

could not straightforwardly achieve the above objectives. For instance, simulating from the model

itself or from the Besag York Mollié model would have been useful for generating datasets relative

to a wider range of spatially correlated scenarios. This can be accomplished by manipulating the

precision parameters of the prior random effects introduced at the third stage of the model. Indeed,

the relative magnitude of these parameters can guide the spatially and non-spatially structured

amount of extra-Poisson variability. Moreover, the magnitude of such parameters in themselves

can guide the relative risk level in areas where by simulation it is greater than 1. On the other hand,

as said, we cannot strictly control the factors of interest. Thus, we believe the choice undertaken

allows us to create a wide range of scenarios, controlling precise factors of interest, for checking

the model performance both in cases often encountered in practice (small areas scenarios) and less

frequent (high risk values and non-small areas).

As regards FDR estimation in such epidemiological case studies, the model proposed does

not have a model with which it is being compared. It will be interesting to extend other disease

mapping models to the FDR estimation and compare their performance via simulation. A natural

extension of the model proposed is the introduction of covariates for instance.

For the Besag York Mollié model, several works have been published in literature about the

sensitivity to the choice of random effects precision parameters. On this note, for working out

simulation results we chose Gelman’s proposal of a uniform on the standard deviation instead of

the usual conjugate Gamma distribution on the precision. As regards real data applications we

checked the choice of the above two specifications did not change results for the number of high-risk

areas discovered with an F̂DR = 0.05 based rule.

However, our model presents slightly different features w.r.t. the Besag York Mollié model since

it introduces a mixture where only if the alternative hypothesis is true there is the Bayesian learning
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on the clustering and heterogeneity terms. Indeed, we noticed by a simulation (whose results we

did not show here) that our model under-estimates the precision of random effect terms if compared

with the Besag York Mollié model posterior estimates. Thus a simulation study aiming to check

the sensitivity of posterior probability estimates to different prior specifications is an interesting

future project line, and may be pursued considering a number of datasets simulated with different

precision parameters values.
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All results
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Figure A.1: BYM mix model, n = 69, SF = 0.5. In each of the nine figures is plotted FDR (FDR true)

and F̂DR (FDR est) vs tπ. The three rows from the top to the bottom corresponds to θ = 1.5, θ = [1.2÷2],

θ = 2 values; the three columns from left to right corresponds to S1 S2 S3 scenarios. Here and in the

following figure (A.2), we see that the most FDR over-estimation (conservative FDR estimation) is for

spatially autocorrelated cases (S2 and S3). By looking at figure A.7 we however realize that sensitivity is

greater for S2 and S3; hence the over-estimation degree informs us on the loss of sensitivity (in S2 and S3)

with respect to what could be potentially achieved if F̂DR ≡ true FDR.
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Figure A.2: BYM mix model, n = 69, SF = 1. In each of the nine figures is plotted FDR (FDR true) and

F̂DR (FDR est) vs tπ. The three rows from the top to the bottom corresponds to θ = 1.5, θ = [1.2 ÷ 2],

θ = 2 values; the three columns from left to right corresponds to S1 S2 S3 scenarios. Look at comments for

figure A.1.
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Figure A.3: BYM mix model, n = 69, SF = 5. In each of the nine figures is plotted FDR (FDR true) and

F̂DR (FDR est) vs tπ. The three rows from the top to the bottom corresponds to θ = 1.5, θ = [1.2 ÷ 2],

θ = 2 values; the three columns from left to right corresponds to S1 S2 S3 scenarios. With such non-small

areas scenarios we obtain a good FDR estimation but only for very small FDR values.
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Figure A.4: BYM mix model, n = 19, SF = 0.5. In each of the nine figures is plotted FDR (FDR true)

and F̂DR (FDR est) vs tπ. The three rows from the top to the bottom corresponds to θ = 1.5, θ = [1.2÷2],

θ = 2 values; the three columns from left to right corresponds to S1 S2 S3 scenarios. In spatially correlated

risks (S2 and S3) and non-high θ scenarios (first two rows) we can suggest the use of F̂DR = 0.10 based

selection rules. Higher FDR levels could probably yield a loss of specificity since the FDR under-estimation.

These scenarios occur frequently in practice.
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Figure A.5: BYM mix model, n = 19, SF = 1. In each of the nine figures is plotted FDR (FDR true) and

F̂DR (FDR est) vs tπ. The three rows from the top to the bottom corresponds to θ = 1.5, θ = [1.2 ÷ 2],

θ = 2 values; the three columns from left to right corresponds to S1 S2 S3 scenarios. In spatially correlated

risks (S2 and S3) and non-high θ scenarios (first two rows) we can suggest the use of F̂DR = 0.05 based

selection rules. Higher FDR levels could probably yield a loss of specificity since the FDR under-estimation.

These scenarios occur frequently in practice.



Chapter A. All results 107

0.0 0.1 0.2 0.3 0.4 0.5

0.
00

0.
10

0.
20

0.
30

FDR prefixed

●

●

FDR true (S1)
FDR est (S1)

0.0 0.1 0.2 0.3 0.4 0.5

0.
00

0.
10

0.
20

0.
30

cutoff

●

●

FDR true (S2)
FDR est (S2)

0.0 0.1 0.2 0.3 0.4 0.5

0.
00

0.
10

0.
20

0.
30

FDR prefixed

●

●

FDR true (S3)
FDR est (S3)

0.0 0.1 0.2 0.3 0.4 0.5

0.
00

0.
10

0.
20

0.
30

FDR prefixed

●

●

FDR true (S1)
FDR est (S1)

0.0 0.1 0.2 0.3 0.4 0.5

0.
00

0.
10

0.
20

0.
30

FDR prefixed

●

●

FDR true (S2)
FDR est (S2)

0.0 0.1 0.2 0.3 0.4 0.5

0.
00

0.
10

0.
20

0.
30

FDR prefixed

●

●

FDR true (S3)
FDR est (S3)

0.0 0.1 0.2 0.3 0.4 0.5

0.
00

0.
10

0.
20

0.
30

●

●

FDR true (S1)
FDR est (S1)

0.0 0.1 0.2 0.3 0.4 0.5

0.
00

0.
10

0.
20

0.
30

●

●

FDR true (S2)
FDR est (S2)

0.0 0.1 0.2 0.3 0.4 0.5

0.
00

0.
10

0.
20

0.
30

●

●

FDR true (S3)
FDR est (S3)

Figure A.6: BYM mix model, n = 19, SF = 5. In each of the nine figures is plotted FDR (FDR true) and

F̂DR (FDR est) vs tπ. The three rows from the top to the bottom corresponds to θ = 1.5, θ = [1.2 ÷ 2],

θ = 2 values; the three columns from left to right corresponds to S1 S2 S3 scenarios. In such scenarios FDR

tends to be under-estimated except for very small values.
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Figure A.7: BYM mix model, n = 69. In each of the nine figures it is plotted sn, sp, potential sn, potential

sp vs F̂DR for S1 (light-blue), S2 (dark-blue) and S3 (blue), see legend of figure 4.13. The three rows from

the top to the bottom corresponds to θ = 1.5, θ = [1.2÷2], θ = 2 values; the three columns from left to right

corresponds to SF = 0.5, SF = 1, SF = 5 scenarios. In such n = 69 scenarios the F̂DR based selection

rules are more sensitive in spatially correlated scenarios but they could potentially achieve more sensitivity

(because of over-estimation of FDR). Non-small areas scenarios (third column) lose a lot of specificity for

high FDR values; just very small FDR level are well estimated, the others being under-estimated for the

“non-necessary” borrowing of strength (empirical information is not poor in big areas).
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Figure A.8: BYM mix model, n = 19. In each of the nine figures it is plotted sn, sp, potential sn, potential

sp vs F̂DR for S1 (light-blue), S2 (dark-blue) and S3 (blue), see legend of figure 4.13. The three rows from

the top to the bottom corresponds to θ = 1.5, θ = [1.2÷2], θ = 2 values; the three columns from left to right

corresponds to SF = 0.5, SF = 1, SF = 5 scenarios. In such n = 19 scenarios the F̂DR based rules tend to

be more specific and apparently non less sensitive than in n = 69 case. More sensitivity can be achieved in

spatially correlated scenarios. Sensitivity and potential sensitivity are almost equal, since the FDR is more

accurately estimated in such cases (especially in S2 and S3).
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Figure A.9: BYM mix model, n = 19, all θ, all SF , all three spatial scenarios in each window. Box-plots

of relative risk values in true high-risk areas (belonging to the 100 datasets) both for BYM mix (mix) and

BYM (cl) models. The three rows from the top to the bottom corresponds to θ = 1.5, θ = [1.2÷ 2], θ = 2

values; the three columns from left to right corresponds to SF = 0.5, SF = 1, SF = 5 scenarios. The red

line is the true risk value in such scenarios. BYM mix (mix) model yields a degree of over-smoothing lower

than BYM (cl) in all scenarios.
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Figure A.10: BYM mix model, n = 69, all θ, all SF , all three spatial scenarios in each window. Box-plots

of relative risk values in true high-risk areas (belonging to the 100 datasets) both for BYM mix (mix) and

BYM (cl) models. The three rows from the top to the bottom corresponds to θ = 1.5, θ = [1.2÷ 2], θ = 2

values; the three columns from left to right corresponds to SF = 0.5, SF = 1, SF = 5 scenarios. The red

line is the true risk value in such scenarios. BYM mix (mix) model yields a degree of over-smoothing lower

than BYM (cl) in all scenarios except in the strongly spatially correlated risks case S2. Note in such n = 69

scenarios we reach less uncertainty in posterior relative risk estimates comparing to the n = 19 scenarios.
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