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Abstract

As the dimensions of field-effect-transistors (FETs) scale down to the deca-nano-

metric range, semi-classical models start to fail in describing fundamental trans-

port properties. In addition, as new channel materials are introduced some in-

teresting quantum phenomena, usually neglected in the analysis of silicon-based

devices, grow in importance. A full quantum description is thus required to have

valuable predictions for innovative FETs.

In this framework, the Non Equilibrium Green’s Formalism has been success-

fully used for a full-quantum description of transport in nanostructures within

different approximations and models. Here, it is presented for the realization

of a numerical solver for self-consistent Poisson-Schrödinger simulations within

the effective-mass approximation. Both ballistic and dissipative transport are

considered. The inclusion of the electron-phonon interaction is presented in the

self-consistent Born approximation.

As a first alternative to standard silicon metal-oxide-semiconductor FETs

(MOSFETs), carbon nanotube based FETs are presented. Due to the interesting

electronic properties of this material and the valuable expectations raised from

the first experimental FETs realizations, carbon nanotubes as novel transistors

channel material have received large interest. In the used transport model, correc-

tions to the standard parabolic effective-mass approximation are presented for the

inclusion of the band-to-band tunneling and to account for the non-parabolicity

of the one-dimensional (1-D) energy dispersion relation. Two different device

architectures are presented showing a detailed analysis of the impact of electron-

phonon interaction and of the limiting transport factors as architectural and

geometrical characteristics of the device are changed.

Not only new channel materials but also new architectural concepts can be

exploited to extend the scaling process while keeping increasing devices perfor-

mance. For this reason, silicon-nanowire FETs are among the most promising

1-D structures to achieve the ballistic transport limit. Fabrication defects are in

any case important to be included. Here, the presence of rough silicon-silicon

oxide interfaces and of fixed charge centers in high-κ materials gate stacks is

ix
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considered as a scattering source additional to the electron-phonon interaction.

Surface-roughness and remote-Coulomb interaction are phase coherent scattering

and treated via a direct definition of the perturbations for every single device, ac-

cordingly to a given statistical distribution. The variability of performance is thus

studied on a set of sample devices mainly focusing on the extension of the low-field

mobility concept to short-channel silicon-nanowire FETs using a full-quantum de-

scription for all considered scattering mechanisms in a three-dimensional (3-D)

solver.



Sommario

Con la riduzione delle dimensioni dei transistori ad effetto di campo (fieled-

effect-transistor, FET) fino a scale decananometriche, modelli semi-classici per il

trasporto cominciano a fallire nel descrivere alcune proprietá fondamentali. In ag-

giunta, con l’introduzione di nuovi materiali di canale alcuni interessanti fenomeni

quantistici, usualmente non considerati per dispositivi in silicio, crescono in im-

portanza.

In questa ottica, il formalismo delle funzioni di Green di fuori equilibrio (Non

Equilibrium Green’s Function) stato utilizzato con successo per la descrizione

completamente quantistica del trasporto in nanostrutture secondo diverse ap-

prossimazioni e modelli. In questo lavoro, viene introdotto per la realizzazione

di un solutore numerico per simulazioni Schrödinger-Poisson autoconsistenti sec-

ondo l’approssimazione di massa efficace. Sia il trasporto di tipo balistico che

dissipativo sono considerati. L’inclusione dell’interazione elettrone-fonone pre-

sentata nella approssimazione di Born autoconsistente.

Una prima alternativa ai dispositivi MOSFET in silicio é rappresentata dai

transistor ad effetto di campo basati su Nanotubi di Carbonio (Carbon Nanotube).

Grazie alle interessanti proprietá elettroniche di questo materiale e alle validi as-

pettative derivanti dalle prime realizzazioni sperimentali di FET, l’impiego dei

nanotubi di carbonio come nuovo materiale di canale per transistori ha attratto

largo interesse. Per il modello di trasporto utilizzato, sono presentate correzioni

alla approssimazione di massa efficace parabolica al fine di includere la descrizione

del tunneling banda a banda (band-to-band tunneling) e per tenere in conto della

non parabolicit della relazione di dispersione mono-dimensionale. Sono quindi

presentate due differenti architetture del dispositivo, mostrando una analisi det-

tagliata dell’impatto dell’interazione elettrone-fonone e dei fattori limitanti per il

trasporto a fronte di variazioni architetturali e geometriche del dispositivo.

Non solo nuovi materiali di canale, ma anche nuove archietture possono es-

sere sfruttate per estendere il processo di scaling garantendo un aumento delle

prestazioni dei dispositivi. Per questo motivo, i transistor a nanofilo di silicio (sili-

con Nanowire) sono considerati tra le strutture mono-dimensionali pi promettenti

xi



xii SOMMARIO

al fine del raggiungimento di una condizione di trasporto balistico. La presenza di

difetti di fabbricazione deve essere per tenuta in conto. Nel presente lavoro, inter-

facce rugose tra silicio ed ossido di silicio sono prese in considerazione cośı come

la presenza di centri di cariche fisse quando ossidi di gate compositi con materali

ad elevata costante dielettrica (high-κ) sono introdotti. Entrambi i difetti costi-

tuiscono delle sorgenti di scattering addizionali alla interazione elettrone-fonone.

La rugositá d’interfaccia e l’interazione Coulombiana remota sono collisioni man-

tenti la coerenza di fase e sono trattati mediante una diretta definizione delle

perturbazioni per ogni singlo dispositivo considerato, in accordo ad una data dis-

tribuzione statistica. La variabilitá delle prestazioni studiata quindi su di un

insieme di dispositivi campione focalizzandosi primariamente sull’estensione del

concetto di mobilitá di bassi campi a FET di nanofilo di silicio a canale corto uti-

lizzando un descrizione completamente quantistica per i meccanismi di collisione

cosinderati in un solutore tri-dimensionale.



Introduction

The request for increasing performance and reduced area occupancy for both

active and passive electronic components pushes the scaling process every day

closer to the physical limits of the silicon-based MOS technology. Therefore,

new type of nanoscale devices are being widely investigated. The use of both

new architectures and new channel materials can overcome the limitations that

nowadays nanoscale MOSFETs experience, i.e. short channel effects and gate

leakage.

Since their discovery, carbon nanotubes (CNTs) have received large attention.

The possible application for nanoelectronic devices has been extensively explored

since the demonstration of the first carbon nanotube transistors and rapid ad-

vancements have been achieved in the understanding of the physical properties.

Nearly ballistic transport in low bias regime, compatibility with high-κ dielectrics

due the absence of superficial dangling bonds are promising features in electronic

applications. In addition, due to the direct bang gap band structure, enhanced

optical emission can lead to optoelectronic applications, while, for metallic nan-

otubes, the high resistance to electromigration is promising for the use in inter-

connections.

At the same time, semiconductor nanowires (NWs) are attractive building

blocks for the future electronic applications. Numerous examples of nanowire

fabrication and integration have been recently reported through the use of dif-

ferent channel materials (e.g. Si, Ge, GaAs) and lateral dimensions and shapes.

Among the various possibility, silicon is still reported as the leading investiga-

tion material, due to the compatibility with the standard electronic industry and

being silicon nanowires a natural extension of the scaling process of MOSFET

devices. In particular, the use of a top-down fabrication approach, combining

advanced chemical and lithographic process, has proved its technological com-

patibility with the standard complementary metal-oxide-semiconductor (CMOS)

process through the integration of both single devices and logic circuits. On the

other hand, the use of a bottom-up approach gives the possibility of synthesizing

nanowires in single-crystalline form with precisely controlled diameter, length and

xiii
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chemical composition. The composition of new exotic core/shell heterostructures

has also been reported. In addition, the bottom-up fabrication does not suffer for

high fab investments allowing academic structures to keep on contributing to the

growth of nanowire electronics.

In the process of development of novel technologies and designs, the use of

technology computer aided design is of fundamental importance for reducing time

and investments costs. Many are the possible levels of abstraction going down

from compact models for circuit simulations to more physics based models for

the analysis of transport in single devices. In the presented work, the aim has

been developing simulation tools for the design and study of post-CMOS devices,

focusing on carbon nanotube and silicon nanowire based field-effect-transistor,

relying on the state-of-the-art of semiconductor physics.

The necessity for a proper description of transport on nanometric scale has

pushed to abandon some classical concepts and look with greater interest to

quantum mechanical models. Quantum confinement with its effect on band struc-

ture and carrier distribution or tunneling effect are among the most important

quantum mechanical phenomena to be considered in order to achieve a valuable

prediction on device performance.

When developing a simulation tool, importance has to be given to the trade-off

between the accuracy in the physical description and the required computational

burden. The use of the Non Equilibrium Green’s function (NEGF) formalism

has been considered for the analysis of the transport problem, giving the tools

for a description of both ballistic and dissipative transport on different levels of

approximation for the electronic structure. In recent years, both semi empirical

tight-binding (TB) and effective-mass (EM) models have been used in simulations

of quantum transport in SiNW- and CNT-FETs.

The tight-binding model allows for the description and the inclusion of the

entire band structure of the material by means of a variable number of parameters,

i.e. the number of atomic orbitals considered. Satisfactory results can be obtain

with a single orbital for carbon based material, while requiring 10 or 20 different

orbitals for silicon. The computational cost is highly affected by the number of

orbitals as well as by the dimension of the device, i.e. by the total number of

atoms to be accounted for.

On the other side, at the price of an approximated band structure description,

the effective-mass approach aims at describing quantum transport by means of

two parameters, i.e. the band gap and the effective mass, allowing for a drastic

reduction of computational costs. Larger devices can thus be analyzed with less

dependence of the computational time on the device dimensions. Some of the

limitations of the EM approximation can be removed by the use of correction

for the inclusion of non-parabolicity or of the band-to-band tunneling (BTBT)

effect. In addition, although nanoscaled transistors operate closer and closer to



xv

the ballistic regime, the inclusion of the electron-phonon interaction is still a

fundamental aspect in the analysis of the device. Phonon-scattering can thus be

introduced in a full-quantum description with reasonable computational costs,

otherwise non affordable in a TB description.

The presence of other mechanisms limiting the transport properties has also

to be considered. Defects introduced in the fabrication process affecting the

device structure and inducing additional scattering process are not negligible, in

particular during the early stage of a device development. The process variability

has recently become an important field of research intimately connecting the

world of numerical simulations with that of device fabrication.

Therefore, the efforts have been focused on the realization of a full-quantum

simulator, based on the self-consistent solution of the Schrödinger and Poisson

equation within the NEGF formalism and the effective-mass approximation. The

inclusion of the electron-phonon interaction is considered as well as, in the anal-

ysis of SiNW-FETs, the effect of surface-roughness and remote-Coulomb scatter-

ing.

In Chapter 1 a brief overview of the NEGF formalism is given. The treatment

is focused on the application of the formalism to self-consistent device simula-

tions, describing the fundamental equations for the evaluation of the physical

observables of interest (i.e. carrier density and current density) in steady-state

condition. The Coupled Mode Space approach, for the simulation of transport on

the space of coordinates is presented in the EM approximation with the derivation

of proper boundary conditions and of the electron-phonon interactions.

Chapter 2 is focused on the application of the described formalism to the

simulation of CNT-based FETs. A description of the fundamental electronic

properties of CNTs is presented as obtained through a simple single-orbital TB

model. Corrections to the parabolic effective-mass approximation are included to

account for a better description of vanishing states and BTBT with a direct com-

parison with TB transport simulations. Two different device architectures have

been analyzed showing the fundamental transport mechanisms, the important

role played by the electron-phonon collisions and thus providing an investigation

of the ultimate scaling possibilities for CNT-FETs.

In Chapter 3 the analysis is dedicated to SiNW-FETs. A parabolic effective-

mass model is used focusing on wire with lateral dimensions superior to 3 nm

in a linear transport regime. The focus is more on the analysis methodology,

with an investigation of the impact of different scattering mechanisms on short-

channel devices effective-mobility through the use of a statistical approach. Sur-

face roughness, remote-Coulomb scattering and the electron-phonon interaction

are considered, giving a complete tool complementary to semi-classical models.
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QUANTUM TRANSPORT
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Chapter 

Quantum transport analysis:

the NEGF formalism

As the dimensions of electronic devices scales down to the deca-nanometric regime

and the choice for new channel materials and for new architectures is adopted,

a new puzzling task has raised: a multi-scale physics approach to the device

simulation. In this framework, methods moving from first-principle approaches

(DFT, Ab initio) to the effective-mass approximation should be considered fo-

cusing on different levels of abstraction. The latter is more suitable for studies

on the optimization of the device, the former are important for the calibration of

the parameters used in higher level approximations.

At the same time, the increasing importance of physical phenomena like quan-

tum tunneling, reflections through metallic/semiconducting barriers and through

channel potential barriers, strong quantum confinement and band-to-band tun-

neling (BTBT) have forced to look with much more interest at a full-quantum

description of carrier transport. Hence, device numerical simulations based on

the self-consistent solution of the Schrödinger and Poisson equations are envis-

aged in order to correctly model these physical effects and give a valuable analysis

and prediction of the device performance.

The Non Equilibrium Green’s function formalism is being more and more

used in the numerical simulation of transport for low-dimensional systems. A

rigorously quantum mechanical approach, independent of the chosen basis used

in the description, as well as the possibility of the treatment of the electron-

phonon interaction, have been soon highlighted as strong points of this theory.

This chapter is meant to give a general overview of the physical models and

numerical methods used in this work for the quantum transport analysis. The

fundamental equations and basic concept of self-consistent simulation are given

Sec. 1.1. A phenomenological introduction to the NEGF formalism is presented

3
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Figure 1.1: Schematic representation of a generic reference device. a) Three-
dimensional view; b) Cross-section on transverse plane (confinement direction);
c) Cross-section along the longitudinal axis (transport direction).

in Sec. 1.2, while two possible approaches for the solution of the fundamental

kinetic equation, namely the Coupled Mode Space and uncoupled mode space,

are derived in Sec. 1.3. Finally, the framework for the introduction of the electron-

phonon interaction is presented in Sec. 1.4.

1.1 Poisson-Schrödinger simulations

A sketch of the reference device structure for the numerical simulations is given

in Fig. 1.1, representing a 3-D view and both longitudinal and transverse two-

dimensional (2-D) sections. The complete domain is supposed to be formed by

a device region with a finite extension and two contact regions infinite along the

transport direction x ( section c) of Fig. 1.1). The domain has a finite width on

the transverse plane. Due to the double confinement on the yz-plane (section b) of

Fig. 1.1), only one direction of free propagation is left, identifying the device as a

quasi-1D system. Although no restrictions are present on the geometry definition,

in the following of the chapter, a rectangular shaped domain and a rectangular

discretization mesh will be supposed in deriving the equations, allowing for clearer

analytical formulations and considerations on the computational costs.

The calculation of the fundamental physical observables of the system (i.e.

charge and current distribution) is obtained, in steady-state conditions, by the

solution of the time-independent Schrödinger equation, that in the parabolic

effective-mass approximation for a single electron in a 3-D domain reads out
(

−~
2

2
∇ · 1

m⋆(x, y, z)
∇ + U(x, y, z)

)

ψ(x, y, z) = Eψ(x, y, z) , (1.1)
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where ψ is the electron wave function, m⋆ is the position-dependent effective

mass tensor, U the conduction band potential energy profile, and E the injection

energy of the carrier. The presence of an external or induced magnetic field

is neglected. Equation (1.1) has to be solved with proper boundary conditions

depending on the chosen geometry of the device and depending on the model

adopted for the source and drain contacts.

The electrostatic potential φ is computed through the solution of the Poisson

equation

−∇ · (ǫ(r)∇φ(r)) = ρ(r) (1.2)

where ǫ(r) is the position-dependent dielectric constant of the medium, ρ is the

charge density, and r = (x, y, z) is the 3-D position vector. The charge density is

given by the sum of the contributions due to free carriers, doping concentration

and other fixed charge centers, as for example charges trapped in the oxide. The

solution depends on the boundary condition (e.g. electrostatic potential at the

electrodes) and, if included, it accounts for the additional exchange-correlation

term (see Chapter 3).

The electrostatic potential enters in (1.1) through the determination of the

conduction band profile (U ↔ −qφ, where q is the elementary charge). On

the other hand, the electron density depends on the solution of the Schrödinger

equation through the square modulus of the electron wave function. Thus, a

coupling between (1.1) and (1.2) is determined and an iterative self-consistent

scheme has to be applied for the determination of the solution. As reported in the

diagram of Fig. 1.2, starting from an initial guess for the solution of the Poisson

equation, the two equations are iteratively solved till a convergence criteria is

verified. The calculation of all physical quantities of interest will be performed

on the last obtained solution. The specific methods used for the calculation of

the physical quantities of interest will be described in the following Sections with

the introduction of the solution of the transport problem with open boundary

condition in the space of transverse modes (or Mode Space approach).

1.2 The NEGF formalism: a phenomenological intro-

duction

The Non-equilibrium Green’s function formalism provides a microscopic theory

for quantum transport. If in the case of balistic transport the NEGF formalism is

equivalent to the Landauer-Büttiker description of mesoscopic phenomena [1, 2],

the real power of NEGF is to provide a general approach for describing dissipa-

tive transport, combining quantum dynamics and a statistical description of the

interactions [3].

A meaningful and complete treatment of the NEGF formalism requires to

refer to the quantum field theory and it is out of the aim of the thesis. Several
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ρk
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..

Figure 1.2: Diagram representing the iterative self-consistent solution of the
Schrödinger and Poisson equations. Convergence criteria can be set on the max-
imum variation of the potential between two subsequent iterations.

approaches are possible and various books have been devoted to the topic, e.g.

[4, 5]. In the following, a steady state analysis is considered. In this framework,

the Fourier transform of all the operators, and hence of all physical quantities, of

interest allows for a description in terms of space and energy coordinates instead

of space and time [3]. A matrix notation with respect to the discrete spatial

coordinates will be adopted.

The kinetic equations describing the non-equilibrium transport in the system,

as derived from Dayson’s equations [4], according to the previous assumptions,

can be expressed as [3]:

[(E + iη)I −Hd − Σr]Gr = I

G<,> = GrΣ<,>Gr† .
(1.3)

In the first equation of (1.3), Gr represents the retarded Green’s function, Hd

the effective-mass Hamiltonian of the isolated device (left hand side operator of

(1.1)), Σr, named retarded self-energy, represents the interactions of the device

with external systems, E is the energy of the particle, η is a positive infinitesimal

quantity, and † represents the Hermitian-transpose operator. In the second equa-

tion of (1.3) the less-than and greater-than functions, G< and G>, describe the

hole and electron density spectra, and the less-than and greater-than self-energy,

Σ< and Σ>, are related to the in-scattering and out-scattering probabilities to

the device from the interacting systems. This set of equations gives the informa-

tion about the dynamical and statistical properties of the system. In presence

of the electron-phonon interaction, the two equations are coupled through the

definition of the retarded self-energy (see Sec. 1.4).

The retarded self-energy results from the sum of three terms:

Σr = Σr
lc + Σr

rc + Σr
ph , (1.4)

representing the interaction with the left contact (Σr
lc), the right contact (Σr

rc),

and with the phonon bath (Σr
ph). The explicit dependence of each term on the
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energy has been omitted. In the following, the left and right contacts will be

modeled as two reservoirs at thermal equilibrium with the chemical potential µs

and µd, respectively, infinite along the transport direction, replicating uniformly

the same confining potential U(y, z), and reflectionless. This model is used to

mimic the inclusion of ideally ohmic contacts. From a general point of view, the

contact self-energy functions allow for the inclusion of the effect of inward and

outward waves propagating through the device from an infinitely extended region

maintaining a representation on a finite discrete space. Their definition requires

the evaluation of the retarded Green’s function associated to the semi-infinite

portion of contacts outside the device and can be done analytically or numerically

depending on the used Hamiltonian representation (details in Sec. 1.3).

The inclusion of the electron-phonon interaction and additional details for the

evaluation of the phonon self-energy will be presented in Sec. 1.4. The inclusion

of this collision mechanism will be approached within a low-order approxima-

tion (self-consistent Born approximation) [4], able, in any case, to capture all

the fundamental properties of the electron-phonon interaction in a full-quantum

description.

The electron density and the three components of the current density are

determined as the expectation value of the respective field operator and they can

be expressed, for a given energy E as:

n(r;E) = − i

2π
G<(r, r;E) , (1.5)

J(r;E) = ± q~2

2m⋆
lim
r ′→r

(∇ ′ −∇)G<(r, r ′;E) (1.6)

where (1.6) is valid for single-band or multi-band band-structure models [6] and it

will be specialized in the following section with explicit reference to the real-space

and mode-space representations.

The presented description can be repeated also for the transport treatment

in terms of holes. It can be demonstrated that the hole density at a given energy

reads out [3]

p(r;E) =
i

2π
G>(r, r;E) , (1.7)

where the less-than and the greater-than Green’s functions verify the relation

i
(

G> −G<
)

= i
(

Gr −Gr†
)

= Λ (1.8)

being Λ the density spectral function, describing the total available electronics

states, filled and not, at a given energy.

The imposition of an equilibrium condition for the carrier distribution in the

contacts is fulfilled through the definition of the less-than and greater-than self-

energy functions. They are expressed by the following relations [3]

− iΣ<
α (E) = Γα(E)f(E − µα) iΣ>

α (E) = Γα(E)(1 − f(E − µα)) (1.9)
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Figure 1.3: Schematic representation of the interaction model between the
device and the outer systems (contacts and phonon bath). The frequency of the
interactions is mathematically expressed by proper Γ functions.

for α = lc, rc, and where f(x) = 1/(1 + exp(x/kbT )) is the Fermi-Dirac distribu-

tion, kb is the Boltzmann constant, T is the temperature, and

Γα(E) = i
[

Σr
α(E) − Σr

α
†(E)

]

= i
[

Σ>
α (E) − Σ<

α (E)
]

. (1.10)

The physical meaning of the Γ functions defined by (1.10) allows for a bet-

ter understanding of the self-energy description of scattering mechanisms. The

quantity 1/τ = −iΓ/~ represents a scattering probability describing the decay-

rate of a carrier from an external system to the device and vice-versa. In the

case of an ideal ballistic conductor, the in- and out- scattering from the contacts

remains the only interaction mechanism affecting the propagation of the carrier

along the device. This physical description holds for both left and right contacts

and for self-energy functions representing the electron-phonon interaction. In the

latter case, as described in Fig. 1.3, the scattering rate gives the probability of

interaction of the electron in the device with the outer system of phonons, ap-

proximated as an unperturbed phonon bath. Interactions with the system are

possible at every point of the device along the transport direction. In this general

picture, 1/τ describes the total phase relaxation rate [7].

As a consequence of the presented relations, in the case of an ideal ballistic

conductor it is more evident the division between the dynamical and the statistical

description of the systems. Introducing the formulation of the contacts less-than

Green’s functions in (1.3) and making use of (1.8), the electron density at a fixed

energy and device position is given by

2πn(r;E) = Λs(r;E)fs + Λd(r;E)fd , (1.11)
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where Λs and Λd are the density spectral function due to the injection from

the source and drain, respectively. The contact equilibrium statistics fs and

fd give the appropriate filling of the density of states. The knowledge of the

retarded Green’s function is required in the calculation of Λ independently of the

knowledge of its occupancy, thus uncoupling the kinetic equations.

1.3 Resolution on a discrete domain

1.3.1 Real-Space approach

A description in the effective-mass approximation in the space of real coordinates

has been supposed so far. In this picture, the discrete Hamiltonian operator Hd

acting on the wave function component ψi,j,k = ψ(x = xi, y = yj, z = zk), as

derived from the box-integration-method, is expressed by

Hdψ|i,j,k = Ui,j,kΩi,j,k−

− ~
2

8

{

ψi+1,j,k − ψi,j,k

∆xi

[

∆yj−1
∆zk

m
(i,j−1,k)
x

+
∆yj∆zk

m
(i,j,k)
x

+
∆yj−1

∆zk−1

m
(i,j−1,k−1)
x

+
∆yj∆zk−1

m
(i,j,k−1)
x

]

+

+
ψi−1,j,k − ψi,j,k

∆xi−1

[

∆yj−1
∆zk

m
(i−1,j−1,k)
x

+
∆yj∆zk

m
(i−1,j,k)
x

+
∆yj−1

∆zk−1

m
(i−1,j−1,k−1)
x

+
∆yj∆zk−1

m
(i−1,j,k−1)
x

]

+

+
ψi,j+1,k − ψi,j,k

∆yj

[

∆xi∆zk

m
(i,j,k)
y

+
∆xi−1

∆zk

m
(i−1,j,k)
y

+
∆xi∆zk−1

m
(i,j,k−1)
y

+
∆xi−1

∆zk−1

m
(i−1,j,k−1)
y

]

+

+
ψi,j−1,k − ψi,j,k

∆yj−1

[

∆xi∆zk

m
(i,j−1,k)
y

+
∆xi−1

∆zk

m
(i−1,j−1,k)
y

+
∆xi∆zk−1

m
(i,j−1,k−1)
y

+
∆xi−1

∆zk−1

m
(i−1,j−1,k−1)
y

]

+

+
ψi,j,k+1 − ψi,j,k

∆zk

[

∆xi∆yj

m
(i,j,k)
z

+
∆xi−1

∆yj

m
(i−1,j,k)
z

+
∆xi∆yj−1

m
(i,j−1,k)
z

+
∆xi−1

∆yj−1

m
(i−1,j−1,k)
z

]

+

+
ψi,j,k−1 − ψi,j,k

∆zk−1

[

∆xi∆yj

m
(i,j,k−1)
z

+
∆xi−1

∆yj

m
(i−1,j,k−1)
z

+
∆xi∆yj−1

m
(i,j−1,k−1)
z

+
∆xi−1

∆yj−1

m
(i−1,j−1,k−1)
z

] }

where ∆αβ
= αβ+1 − αβ, for α = x, y, z and the respective β = i, j, k, and

Ωi,j,k =
∏

(αβ+1 − αβ−1)/2 is the box volume concerning the node (i, j, k).

A more compact matrix notation can be used for the whole device Hamil-

tonian, representing the system of NxNyNz equations, with Nα the number of

discretization nodes along the α direction:

Hd =















A1 B1,2 0 0 · · ·
B2,1 A2 B2,3 0 · · ·
0 B3,2 A3 B3,4 · · ·
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . BNx−1,Nx ANx















(1.12)
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where each of the Nx block matrix Ai represents the discrete Hamiltonian for

the i-th slice of the device along the transport direction including the additive

potential energy, each diagonal block matrix Bi,i+1 describes the transfer inte-

gral between two points of adjacent slices, and Bi+1,i = B†
i,i+1. Each of the block

matrices have dimension (NyNz × NyNz). The choice for the nearest neighbor

approximation in the discretization of the Laplacian operator assures the block

tridiagonal structure of global matrix Hd. The solution of the kinetic equations

(1.3) in this representation is referred to as real-space (RS) approach. The RS

approach is in general a heavy computational problem. Referring to the use of

recursive-algorithm [8] for the calculation of both the retarded and the less-than

Green’s functions the most executed operations will be the inversion and the

multiplication of matrices with the same leading dimension of the block matrices

A and B. Depending on the lateral dimension of the device and on the chosen

discretization step this operation can require large matrices storage and time-

consuming executions. On the other hand, the RS approach allows for the exact

inclusion of all the effects due to geometry variations (spatial fluctuations), cor-

rectly describing the inter-subband scattering for the entire set of 1-D subbands

along the transport direction.

Concerning the calculation of the contacts self-energy functions, an analytical

solution is not determined. A general expression can be derived from the trun-

cation of the discrete Dyson’s equations for a layered structure, and reads out

[3]:

Σr
lc = Hd,lcg

r
lcH

†
d,lc , (1.13)

Σr
rc = Hd,rcg

r
rcH

†
d,rc , (1.14)

where Hd,lc(Hd,rc) is the Hamiltonian describing the coupling between the semi-

infinite contact to the first(last) slice of the device, and gr
lc(g

r
rc) is the retarded

surface Green’s function, describing the correlation between two points inside

the lead when isolated from the device (Hd,lc = Hd,rc = 0). The surface Green’s

functions are expressed by a recursive relations and, independently of the basis

set used, they can be found numerically through an iterative algorithm [9]. Alter-

native solutions, allowing for reduced computational costs, rely on proper basis

set transformations [10], or, as for the case of the mode-space representation of

the effective-mass problem, analytical formulations are possible.

In the presented formalism, the total electron density, resulting from the

integration on a proper range of energies of the spectral density (1.5), reads out

n(xi, yj, zk) = −σs
i

∆x∆y∆z

∫

dE

2π
G<(i, i, j, j, k, k;E) , (1.15)

where σs accounts for the spin degeneracy. The three different components of the



1.3. RESOLUTION ON A DISCRETE DOMAIN 11

current density results

Jx(xi, yj , zk) = −σs
q

~∆y∆z

∫

dE

2π
(1.16)

2ℜ
[

Hd(i, i + 1, j, j, k, k)G<(i+ 1, i, j, j, k, k;E)
]

Jy(xi, yj , zk) = −σs
q

~∆x∆z

∫

dE

2π

2ℜ
[

Hd(i, i, j, j + 1, k, k)G<(i, i, j + 1, j, k, k;E)
]

Jz(xi, yj , zk) = −σs
q

~∆x∆y

∫

dE

2π

2ℜ
[

Hd(i, i, j, j, k, k + 1)G<(i, i, j, j, k + 1, k;E)
]

where Hd(i, i
′, j, j′, k, k′) represents the discrete device Hamiltonian connecting

the node (i, j, k) to (i′, j′, k′), and ℜ indicates the real-part of the resulting com-

plex product. In the above equation the normalization of less-than Green’s func-

tion for an uniform discretization step along each spatial direction is supposed,

hence dropping out the point dependence of the discretization steps ∆α for com-

pactness.

1.3.2 Mode-Space approach

While still keeping all the relevant physics of the RS approach, the mode-space

(MS) approach is introduced in order to reduce the computational costs for the

solution of the transport problem. It consists in finding the real-space solution

through its expansion on the basis set constituted by the wave functions solution

of the 2-D Schrödinger problem defined at each slice of the device along the

transport direction. As reported in [11], through simple arguments based on the

application of the Kadanoff-Baym formalism [12], the real-space Green’s function

can be expressed as

G<(i, i′, j, j′, k, k′;E) =
∑

n,m

G<
nm(i, i′;E)φi

n(yj , zk)φ
i′

m

⋆
(yj′, zk′) , (1.17)

where G<
nm(i, i′;E) is the mode-space counter part of the real-space Green’s func-

tion, n and m sweep on all the transverse mode, and φi
n(yj, zk) is the n-th eigen-

function of the i-th slice of the device, verifying the problem

Aiφ
i
n = (εin − 2tx)φi

n , (1.18)

where Ai is the block matrix defined by (1.12), 2tx is the on-site potential which,

in the hypothesis of an uniform discretization and in absence of mass variations

along the x axis, takes the usual form tx = ~
2/2mx∆2

x, and εin is the n-th eigen-

value of the 2-D Schrödinger equation for the i-th slice. The succession of εin
for i = 1, 2, ..., Nx and for every n defines the 1-D subbands in the transport

direction.
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The sets of eigenfunctions, verifying at each slice the properties of orthonor-

mality and completeness, can be grouped into the base change matrix

V =















v1 0 0 0 · · ·
0 v2 0 0 · · ·
0 0 v3 0 · · ·
. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . 0 vNx















, (1.19)

where vi = [(φi
1(1), . . . , φ

i
1(NyNz))

T
, . . . , (φi

NyNz
(1), . . . , φi

NyNz
(NyNz))

T
] repre-

sents the complete set of eigenfunctions for each slice, and the matrix is supposed

normalized V †V = I.

The advantages of the MS approach come from the use of a truncated ex-

pansion, retaining a subset of Nm ≪ NyNz modes, thus limiting the dimensions

of the transport problem to be solved. The truncated basis set and the related

matrix Vm is then used for the definition of the new mode-space Hamiltonian

Hms = V †
mHdVm , (1.20)

that will conserve the block three-diagonal structure but with each block ma-

trix having leading dimension Nm ×Nm. It can be easily found that each of the

block matrices lying on the principal diagonal is diagonal, representing the on-site

Hamiltonian for each of the Nm considered modes. The off-diagonal blocks, on

the other side, are in general full matrices, deriving from the product vi
†Bii±1vi±1,

and represent the coupling among the different transverse modes for every transi-

tion between two adjacent slices (correlation matrix). Using the previous assump-

tions, the discrete form of the device mode-space Hamiltonian operator associated

to mode-space Green’s function of the n-th mode on the i-th site is found to be:

− tx
∑

m

[

cn,m
i δi+1,j + cn,m

i−1 δi−1,j

]

+ [2tx + εni ] δi,j , (1.21)

where δi,j is the Kronecker delta, and

cn,m
i =

∫

dydz φn
i (y, z)φm

i+1
∗(y, z) (1.22)

is the correlation between the n-th and the m-th mode for the i-th and (i+1)-th

slices.

If the solution of the problem is carried out retaining all the informations

connected to the correlation matrix, the method is usually referred to as Coupled

Mode Space (CMS) approach, due to the fact that the solution is correctly de-

scribing the coupling effect between the considered transverse modes arising from

the potential variations. An additional approximation is possible, discarding the

correlation terms and forcing the correlation matrix to a diagonal matrix describ-

ing the propagation slice-by-slice of a single mode with no interactions with the
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others. This approach is referred to as Uncoupled Mode Space (UMS), and has

the computational advantage of diagonalizing the set of equations to be solved in

Nm uncoupled problems.

The transformation of the kinetic equations (1.3) is thus straightforward,

keeping the same structure but with an obvious redefinitions of symbols moving

from the real-space representation to its mode-space counterpart. Concerning

the contact self-energy an analytical formulation can be found in the mode-space

representation for the chosen contact model. It is worth noting that due the

infinite repetition of the same confining potential an unique basis set is present

in the contact and the correlations terms (1.22) are null, making no difference

between the UMS and CMS description. Using a scalar notation for the entries

of diagonal matrices, the left and right contact surface Green’s functions for a

propagating mode read out [13]

gr =

{

(tx)−1(χ+
√

χ2 − 1) when |W1| ≤ 1

(tx)−1(χ−
√

χ2 − 1) when |W2| ≤ 1 ,
(1.23)

where W1 = −χ+
√

χ2 − 1 and W2 = −χ−
√

χ2 − 1, and

χ =







[

E − Σr
ph(1;E) − 2tx − εn(1)

]

/2tx for lc
[

E − Σr
ph(Nx;E) − 2tx − εn(Nx)

]

/2tx for rc .
(1.24)

The effect of the electron-phonon interaction is, accordingly to the contact model,

periodically repeated throughout the contacts. In the ballistic case, the contact

self-energy for a single mode in a one-dimensional channel can be recast into a

more intuitive expression. Inserting in (1.24) the discrete formulation for the 1-D

effective-mass dispersion relation

E(kx) = ε+ 2tx (1 − cos (kx∆x)) , (1.25)

and expressing the solution as a function of the wave vector kx the resulting

self-energy reads out

Σr
lc/rc = −txe∓ik

lc/rc

x ∆x , (1.26)

where the phase factor recalls a plane wave propagating in the channel.

Finally, the electron and current densities are directly derived through the

substitution of (1.17) in the respective real-space formulations:

n(xi, yj , zk) = −σs
i

∆x∆y∆z

∑

n,m

∫

dE

2π
G<

nm(i, i;E)φi
n(yj , zk)φ

i
m

⋆
(yj, zk) , (1.27)

and from the first relation in (1.17)

Jx(xi, yj , zk) = −σs
q

~∆y∆z

∑

n,m

∫

dE

2π
2ℜ [Hd(i, i + 1, j, j, k, k)

× G<
nm(i+ 1, i;E)φi+1

n (yj , zk)φ
i
m

⋆
(yj, zk)

]

(1.28)
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for the x component of the current density. The reduction to the UMS case is

straightforward discarding all the off-diagonal terms of the mode-space Green’s

function. A relation analogous to (1.27) is found for the hole density, depending,

in this case, on the greater-than Green’s function, as discussed in further details

in Sec. 2.3.

The integration on the confining plane of (1.28) gives the current along the

transport direction, and in the case of purely ballistic transport, the Landauer-

Büttiker formula is obtained [3]:

I = σs
q

~

∫

dE

2π
T(E)(f(E − µs) − f(E − µd)) (1.29)

where T(E) = Tr
[

GrΓlcG
r†Γrc

]

is the transmission probability at the energy E,

and Tr is the trace operator. In the limit of a linear transport regime (low drain-

source biasing, VDS) the linear approximation of (1.29) I = GVDS holds, defining

the conductance

G = σs
q2

h

∫

dE T(E)

[

− ∂f

∂E
(E − µs)

]

. (1.30)

Finally, some conclusions about the use of the MS approach are addressed.

Several papers have been presented in literature treating the application of the

mode-space approach and its comparison to the real-space result for 2-D struc-

tures like DG-MOSFETs [10, 11, 14]. The capability of the CMS approach to

correctly reproduce the RS description of both current and charge density distri-

butions was proved also in presence of potential constrictions (e.g. the presence

of flared-out contacts in [11] or squeezed channels in [14]). The extension of the

method to 3-D structures has been successfully demonstrated for the analysis of

transport in SiNW-FETs in presence of potential deformations or fluctuations and

also in the case of dissipative transport [15, 16, 17]. Applications are reported

also in the case of CNT-FETs [18], where great advantage was demonstrated

using the UMS approach on atomistic basis set.

Clear are the advantages in terms of reduced computational costs. If in the

real-space approach the dependence on the number of discretization points can

be evaluated as O(Nx × (NyNz)
3), where the dependence on (NyNz)

3 arises from

the inversion of off-diagonal block matrices [8], it reduces to O(Nx × (Nm)3) in

the case of the mode-space approach. The total number of modes to be accounted

for depends on the analyzed geometry. If no potential fluctuations are present

and the UMS approximation holds, only few transverse modes can be considered

depending on the confinement condition. On the other side, if important corre-

lations are present, as in the case of rough channel/gate-oxide interfaces, a much

larger number of modes (tens of modes) as to be accounted for, independently of

their occupation, in order to have a good convergence to the real-space solution.
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Figure 1.4: Feymann diagram representation of the Dyson’s equation of the
electron-phonon interaction within the self-consistent Born approximation.

1.4 The electron-phonon interaction

The electron-phonon interaction is included within a perturbative model within

the self-consistent Born approximation. The calculation of the phonon self-energy

can be derived by a diagrammatic representation of the Dyson’s equation de-

scribing the second order contribution of the phonon interaction to the less-than

Green’s function [4], as depicted by the diagram of Fig. 1.4. Here, G represents

the final perturbed Green’s function (less-than Green’s function in the following),

being G0 the unperturbed one. The interaction between the electron and phonon

system is represented by a proper Σ function, confined between a starting and a

final state (the circular vertex of the diagram).

Accordingly to the model, the phonon system is considered unperturbed by

the interactions with the electron gas, hence the self-energy reported in Fig. 1.4

can be translated into

Σ<,>
ph = G<,>D<,> , (1.31)

where a real-space representation is supposed and the energy dependence has

been omitted. D<,> represent the less-than and greater-than Green’s functions

of the unperturbed phonon bath, respectively. Their analytical formulations are

calculated from the free-phonons Hamiltonian in the interaction picture, that in

the harmonic approximation for the lattice vibrations reads out

ϕI(r, t) =
1√
V

∑

q

Mq

(

aqe
−iωqt + a-q

†eiωqt
)

eiq·r , (1.32)

where V is the volume of the sample, q is the wave vector of the phonons, ωq is

the corresponding angular frequency, Mq is the electron-phonon matrix element,

and aq and a†q are the phonon creation and annihilation operators. Fourier-

transforming the time-dependent operators, the self-energy functions at a given

energy E are thus given by

Σ<
ph(r1, r2;E) =

∫

dq

(2π)3
eiq·(r1−r2)|Mq|2

(

Nq +
1

2
± 1

2

)

×G<(r1, r2;E ± ~ωq) (1.33)

Σ>
ph(r1, r2;E) =

∫

dq

(2π)3
eiq·(r1−r2)|Mq|2

(

Nq +
1

2
± 1

2

)

×G>(r1, r2;E ∓ ~ωq) , (1.34)
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where Nq is the average phonon density at the energy ~ωq

Nq =
1

e(~ωq/κBT ) − 1
. (1.35)

The solution of the kinetic equations requires also the knowledge of the retarded

self-energy, that can be calculated from the general relation [12]

Σr(E) = P

∫

dǫ

2π

Γ(ǫ)

E − ǫ
− i

Γ(E)

2
, (1.36)

where P is a principal value integral on the complex plane, and Γ, similarly to

relations (1.10), is defined as

Γ(E) = i
[

Σ>(E) − Σ<(E)
]

, (1.37)

for every point inside the device.

The real part of Σr, represented by the first term of the right side of (1.36),

is a non-hermitian energy contribution giving a shift of the particle energy levels.

The second term is associated to the the scattering rate due to the electron-

phonon interaction, as stated in the previous section. The evaluation of (1.36)

can be done analytically only for the case of elastic scattering while requiring

a numerical evaluation of the principal value integral in the case of inelastic

scattering process. This calculation can be computationally expensive due the

necessity of the simultaneous knowledge of the Green’s functions for every energy.

Its contribution is in general omitted. The impact of this assumption has been

investigated in [17], while, in [20] possible approximations for its inclusion in RTD

are presented. In the following only the information connected to the imaginary

part of the retarded self-energy will be retained within the approximation

Σr(E) ≈ −iΓ(E)

2
. (1.38)

It is worth highlighting that through (1.36) or, equivalently, (1.38), a depen-

dence of Σr on G< is introduced. This implies, that in presence of the electron-

phonon interaction the first and the second equation in (1.3) are coupled through

a non linear relation. As previously stated, in the ballistic case the two equations

separately describe the dynamics and the statistical properties of the system.

When the phonon scattering is included, hence, a self-consistent iterative solu-

tion of the two equations (1.3) with the phonon self-energy functions is required,

in addition to the self-consistent loop with the Poisson equation. It is impor-

tant to note that in the self-consistent Born approximation the conservation of

the current flux is guaranteed along the entire device, verifying the fundamental

fulfillment of the continuity equation.

The self-consistent Born approximation is surely the most widely used ap-

proach to include the electron-phonon interaction in the NEGF formalism. Ap-

proximations to the presented method or alternative approaches are in any case
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possible. Comparative studies between different approaches are present in litera-

ture. In [19] the common approximation of neglecting the coupling between the

scattering states and their occupancy is discussed. It is shown how, although

a clear computational advantage is obtained by artificially decoupling the ki-

netic equations, an unphysical result, neglecting the Pauli exclusion principle,

is obtained. In [20] the multiple sequential scattering approach is presented as

an alternative to the self-consistent Born approximation. The numerical advan-

tages and physical limitations derived from the use of this model are discussed

in relation to the analysis of a resonant-tunneling device.

In the following subsections the discrete form of (1.33) and (1.34) will be

presented in the inelastic and elastic case for both silicon nanowires and carbon

nanotubes, deriving the mode-space formulation from the real-space representa-

tion.

1.4.1 Phonon scattering in silicon nanowires

Transport of electrons in the conduction band of silicon is considered within the

effective-mass approximation. There exist six minima in the conduction band,

which can be grouped into three doubly degenerate valleys. Each valley will be

labeled with an index ν = 1, 2, 3. The case of both acoustic intra-valley and

optical inter-valley scattering mechanisms will be presented.

In the case of acoustic intra-valley, phonon scattering is treated in the elastic

approximation, considering E ± ~ωq ≈ E. Within the scalar assumption for the

deformation potential Ξ the electron-phonon matrix element reads out [21]

|Mq|2 =
~Ξ2q

2ρul
(1.39)

where q = |q|, ρ is the silicon density, ul is the sound velocity and a linear

dispersion relation is assumed for the longitudinal acoustic mode. Due to the

elastic approximation Nq ≈ Nq + 1 ≈ kBT/(~ulq) and the less-than Green’s

functions involved in the integral become independent of the phonon wave vector.

Consequently, the real-space self-energy functions for each valley ν are expressed

as

Σ<,>
ph,ν(r1, r2;E) =

kBTΞ2

2ρu2
l

G<,>
ν (r1, r2;E)δ(r1 − r2) , (1.40)

where the Dirac delta is derived from the remaining integrand

δ(r1 − r2) =

∫

dq

(2π)3
eiq·(r1−r2) . (1.41)

In the case of inter-valley transitions both acoustic and optical phonons can

be involved. Six different type of transitions can be identified divided into g-type

and f -type phonons, the former inducing transitions between the two degener-

ate valleys of same index ν, the latter transitions between valleys with different
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indexes. Approximating the momentum transfer for the j-th transition type as

the momentum difference between the minimum energy states of the two valleys,

Kj, with a fixed energy transfer ~ωj , a formulation of the deformation potential

independent of q is obtained

|Mq|2 =
~(DtKj)

2

2ρωj
. (1.42)

Inserting (1.42) in (1.33) or (1.34), the j-th phonon self-energy for the ν-th valley

is obtained

Σ<
ph,j,ν(r1, r2;E) =

~(DtKj)
2

2ρωj

(

Nj +
1

2
± 1

2

)

×
3
∑

ν′=1

gνν′

j G<
ν′(r1, r2;E ± ~ωj)δ(r1 − r2) (1.43)

Σ>
ph,j,ν(r1, r2;E) =

~(DtKj)
2

2ρωj

(

Nj +
1

2
± 1

2

)

×
3
∑

ν′=1

gνν′

j G>
ν′(r1, r2;E ∓ ~ωj)δ(r1 − r2) (1.44)

where gνν′

j represents the final subband degeneracy according to the selection

rules

gνν′

j =

{

δνν′ for g-type

2 (1 − δνν′) for f -type .
(1.45)

The presented scalar approximation for the deformation potentials is widely used

and is found to give results for mobility within 3% agreement with more detailed

Monte Carlo simulations [22].

Due to its repercussions on the simulation procedures and computational

costs, it is interesting to note that the inclusion of optical modes causes a coupling

between self-energies, and hence Green’s functions, at energies differing of integer

multiple of ~ωj. This implies the need of iteratively solving (1.3) simultaneously

for a set of multiple energies.

The above relations have to be transformed from real-space to mode-space

representation. The same procedure presented in the previous section with the

projection over the basis set of slice eigenfunctions is used. Dropping out the

superscripts and subscripts of the less-than and greater-than phonon self-energy,

the n,m entry for the ν-th valley reads out

Σn,m
ν (i, j;E) =

∫ ∫

dydzdy′dz′ (1.46)

φn
i,ν

⋆(y′, z′)Σν(xi, xi′ , y, y
′, z, z′;E)φm

i′,ν(y, z) .
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For the case of intra-valley acoustic phonons, inserting (1.40) in the above

equation and making use of the expansion (1.17)

Σn,n
ν (i, i;E) =

kBTΞ2

2ρu2
l

∑

m

Gm,m
ν (i, i;E)In,ν

m,ν (i, i) , (1.47)

is obtained. All the contributions arising from the cross terms (Σn,m for n 6= m)

are neglected, reducing the self-energy formulation a diagonal matrix. This as-

sumption has been validated numerically, noting that the overlap integral of mul-

tiple eigenfunctions associated to the off-diagonal terms of the Green’s function

in the evaluation of (1.47) give a negligible contribution compared with the terms

accounted for. Hence, In,ν′

m,ν represents the usual form factor

In,ν′

m,ν (i, i) =

∫

dydz
∣

∣φn
i,ν′(y, z)

∣

∣

2∣
∣φm

i,ν(y, z)
∣

∣

2
. (1.48)

The same formulation holds for both the less-than and greater-than function with

a proper redefinition of symbols.

In the case of inter-valley scattering a similar result is obtained:

Σn,n
j,ν (i, i;E) =

~(DtKj)
2

2ρωj

(

Nj +
1

2
± 1

2

)

×
∑

m,ν′

gνν′

j Gm,m
ν′ (i, i;E ± ~ωj)I

n,ν
m,ν(i, i) , (1.49)

for each of the six type of scattering and and where the less-than and greater-than

symbols have been dropped out.

It is important to recall that in the presented derivation of the phonon scatter-

ing self-energy functions a bulk model has been assumed for the phonon system.

Effects of quantization on the phonon dispersion relation due to the confinement

on the transverse plane are neglected. Simulation studies on the effect of con-

finement for phonon scattering in silicon nanowires have been recently presented

in [22, 23]. In [23] the role of acoustic confined phonons has been investigated,

additionally to surface-roughness scattering, through Monte Carlo simulations,

showing a maximum 10% mobility reduction with respect to a bulk model. A

TB model for electron and hole energy dispersion relation in small nanowires

(diameter less than 3 nm) is used in scattering rates and mobility calculations in

[22]. Intrasubband confined acoustic phonon and bulk optical phonon scattering

are considered. As the wire diameter increases the difference between mobility

due to confined and bulk acoustic phonons decreases, and bulk phonons is found

to be a relatively good approximation for some of the larger diameter freestand-

ing SiNWs. It is noted that, although the investigation of confinement effect in

SiNW electron-phonon interaction is a fundamental topic requiring further in-

vestigations, the bulk approximation is still widely used in both semi-classical

[24] and quantum models [16, 17], giving a valid description of all qualitative
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aspects of this scattering mechanisms. Additional details on the simulated scat-

tering mechanisms and the specific values for scattering parameters will be given

in Chapter 3.

1.4.2 Phonon scattering in carbon nanotubes

Carbon nanotubes are ideal 1-D systems where the charge is localized on the

tube surface. Transport occurs along the tube longitudinal direction on 1-D

subbands deriving from the quantization on the circumferential direction of the

graphene energy dispersion relation, as presented in Sec. 2.1. The general real-

space formulation of the problem is the same as presented for the silicon case.

The electron-phonon interaction is governed by energy and momentum con-

servation. In the case of CNTs the angular quantization affecting both electron

and phonon energy dispersion can not be neglected. Electrons scattered within

the same subband have no change in their angular momentum. Thus, such a

mechanism is assisted by a zone-center phonon with null angular momentum,

l = 0 [25]. In the case of subbands with different angular momentum m and m′,

the scattering has to be mediated by a zone-boundary phonon with angular mo-

mentum l = |m−m′| [25], as can be derived from simple momentum conservation

rules based on the zone-folding method [26]. An analysis of the selection rules

and scattering mechanisms for different CNTs is reported in [27]. Considering the

fulfillment of the required momentum conservation, the uncoupled mode space

representation of the scattering self-energy will be derived for the m-th subband.

It is worth noting that, in the case of CNT, the analysis proposed in Chapter 2

will be restricted to the case of devices with a Gate-All-Around architecture and

in absence of defects or deformation of the tube. Hence, the UMS approach will

be used, being capable of perfectly reproduce the real-space solution in terms of

few transverse modes [18].

For the case of elastic scattering, as approximation of the acoustic phonon

assisted transitions, a linear energy dispersion is assumed with appreciable occu-

pation only for phonons with momentum close to zero. Starting from a relation

similar to (1.40), the mode-space formulation of the less-than and greater-than

self-energy for the m-th subband reads out

Σ<,>
m (i, i;E) =

kBTK̃
2
a

ρ1Dv2
a

G<,>
m′ (i, i;E) , (1.50)

where K̃2
a is the electron-phonon matrix element, ρ1D the one-dimensional mass-

density, va the sound velocity, and m′ is the index of the subband verifying the

selection rules for the transverse momentum. Note that, in the notation, the

second subband index has been removed since, in UMS approach, the problem is

reduced to a set of independent equations. In addition, the form factor function

is identically unitary for every couple (m,m′) since, due to the Gate-All-Around
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architecture, the CNT eigenfunctions are circular harmonics exp(imϕ), with ϕ

the radial coordinate.

For the interaction with inelastic optical phonons, a isotropic scattering mech-

anism is supposed independent of the phonon wave vector q, leading to relations

analogous to (1.43) and (1.44). The mode-space formulations are thus given by:

Σ<
m(i, i;E) =

~|K0|2
2ρ1Dω0

(

N0 +
1

2
± 1

2

)

G<
m′(i, i;E ± ~ω0) (1.51)

Σ>
m(i, i;E) =

~|K0|2
2ρ1Dω0

(

N0 +
1

2
± 1

2

)

G>
m′(i, i;E ∓ ~ω0) (1.52)

where ~ω0 is the phonon energy with matrix element |K0|2. It is worth noting the

obtained self-energy functions, in both the silicon and CNT case, are expressed

in a local formulation, with a dependence of the phonon self-energy at the node

(i, j, k) on only the Green’s function at the same node. Observations on the

meaning and the implication of this constraint are presented in [25].

1.5 The Poisson equation

In the Hartree approximation for the electron-electron interaction, the electro-

static problem is completely solved by the Poisson equation, reported in (1.2) for

a 3-D domain with non uniform medium (position dependent dielectric constant).

Due to the coupling with the Schrödinger equation through the carrier density,

the total charge is non linearly dependent on the potential itself and an explicit

formulation of ρ as a function of φ is not possible. The system of NxNyNz equa-

tions representing the discretization of the Poisson equation can be thus generally

expressed in the form:

F [φ,ρ(φ)] = 0 , (1.53)

where φ = [φ1, . . . , φNxNyNz ] and ρ = [ρ1, . . . , ρNxNyNz ] are the vectors repre-

senting the discretized potential and charge, respectively. In order to have better

convergence properties for the self-consistent problem, a Newton-Raphson scheme

is adopted, solving (1.53) in terms of the correction vector δφ of a trial solution

φ0

F
[

φ0 + δφ
]

= F
[

φ0
]

+ Jδφ = 0 , (1.54)

where J represents the Jacobian matrix of the partial derivatives of F with respect

to the components of φ.

The definition of the Jacobian matrix J is a non trivial part of the problem due

to the complex dependence of the electron and hole density on the electrostatic
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potential in a quantum formulation of the problem. First of all, a local depen-

dence of the charge on the potential is assumed, expressing the response of the

charge to the potential correction through a point-by-point first-order expansion

ρi(φi) = ρi(φ
0
i ) +

∂ρ

∂φ

∣

∣

∣

∣

i

δφi , for i = 1, . . . , NxNyNz . (1.55)

Several solutions have been proposed to calculate the set of partial derivatives

∂ρ/∂φ, ensuring different convergence properties. One possibility is that of intro-

ducing an additional transformation for the unknown of the problem in order to

have a functional dependence of the charge on the potential giving both a physic

based relation and an explicit formulation of the partial derivatives. In the anal-

ysis of SiNW-FETs, the adopted choice has been that of expressing the relation

between electron density and potential exploiting the semi-classical relation:

ni(φi) = Nc F 1

2

(

q
φi − Φni

kBT

)

, for i = 1, . . . , NxNyNz (1.56)

being, Nc the effective density of states, Fη the η-order Fermi-Dirac integral,

and Φn = [Φn1
, . . . ,ΦnNxNyNz

] an auxiliary variable, physically related, at quasi-

equilibrium conditions, to the electron quasi-Fermi potential and without a clear

physical significance under off-equilibrium conditions [28]. For the solution of

Poisson equation in the analysis of CNT-FETs, an analogous procedure is intro-

duced but with the use of the relation for a 1-D system and doing a separate

transformation for the electron and hole density.

Through the transformation (1.56) a numerical evaluation of the Jacobian is

possible at every iteration step. The introduction of the new auxiliary variable

Φn, based on an arbitrary transformation, requires an additional iterative pro-

cedure where, at each step, the charge and its derivatives with respect to the

potential are consistently updated while Φn is kept fixed. The cost of this addi-

tional self-consistent loop is, any case, highly affordable due to the fast resolution

of the linear system associated to the Poisson equation and to the good conver-

gence of the additional iterative procedure. At each iteration step, the potential

is updated with the current correction vector as:

φk
i = φk−1

i + δφk
i , (1.57)

where k is the iteration counter, and i = 1, . . . , NxNyNz.

From the numerical point of view, as for the Schrödinger equation, the box-

integration method has been used for the discretization of the problem. Neumann

boundary conditions are applied in the contact area and in the oxide regions not

covered by the gate. This means that the solution in the contacts is a uniform

potential, whose position with respect to the Fermi level of the reservoir is fixed

by the charge neutrality constraint. Dirichlet boundary conditions are applied at

the gate electrode. Finally, a gradient-conjugate procedure has been used for the
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solution of the linear system obtained by the discretization, with a packed storing

of the system matrix, in order to exploit its sparsity proprieties to have a faster

solution and a less occupation of memory. In Chapter 3 the treatment of the

exchange-correlation correction to the electrostatic potential will be introduced

in an approximated formulation based on the Density-Functional-theory.

1.6 Summary

In this Chapter a review of the NEGF formalism was given. The fundamental

equations for the description of the transport properties of a MOSFET have been

presented in the steady-state condition. The mode-space approach has been

derived from the real-space representation within the coupled and uncoupled

modes approximation. The inclusion of the electron-phonon interaction has been

discussed with particular reference to its application to CNTs and SiNWs.
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Chapter 

Transport analysis in CNT

based FETs

Carbon-nanotube field-effect-transistors (CNT-FETs) have received considerable

attention in the past few years because of their excellent performance. Experi-

ments with quasi-planar gate geometries have demonstrated near-ballistic trans-

port in p-type CNT-FETs and on-currents that exceed those of silicon-based

transistors. An additional enhancement is expected from the Gate-All-Around

geometry, because it provides a better electrostatics control, thus pushing forward

the ultimate scaling limits.

Due to the novelty of some electronic properties of CNTs, numerical analyses

are still of basic importance to understand the limiting factors in the transport

performance of such new devices. As semiconducting CNTs have experimentally

demonstrated typical band gaps smaller than 1 eV, quantum effects like band-

to-band tunneling are rising as being of fundamental importance for a realistic

description of CNT-FETs. Theoretical studies have focused also on the evalua-

tion of the impact of the electron-phonon interaction, aiming at understanding if

CNTs can really behave as ballistic semiconductors.

In this framework, full-quantum models have rapidly emerged as favored can-

didates for the transport analysis of CNT-FETs. Due to the particular nature of

CNTs, tight-binding models have been demonstrated to accurately reproduce the

electronic properties of nanotubes even when a single-parameter model is used.

It is in any case of interest to search for less expensive computational models ca-

pable of maintaining a realistic description of transport, like, for instance, simple

extensions of the effective-mass approximation.

In addition, computational studies are still required in order to evaluate

the best architectural choices for CNT-FETs and alternatives to the standard

31
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MOSFET-like architecture. Exploiting the small band-gap energy and the low

effective masses in new device concepts like tunneling-FETs, can extend the usage

of CNT-based devices from high-performance to low-power applications.

This chapter reports on the application of a full-quantum transport model in

the analysis of CNT-based FETs and tunneling devices. In Sec. 2.1 a descrip-

tion of the fundamental electronic properties of carbon nanotubes is given. The

two device architectures that will be extensively studied in terms of fundamen-

tal transport properties and optimization of the geometrical and technological

features are presented in Sec. 2.2. An extension of the parabolic effective-mass

model, which gives a realistic description of transport in CNT-FETs in both

ballistic and dissipative conditions is presented in Sec. 2.3. A validation of the

adopted approach is presented with direct reference to tight-binding models. The

first device, a MOSFET-like FET, is analyzed in Sec. 2.4, focusing mainly of the

effect of the electron-phonon interaction in the scaling process. The second one,

a tunneling-FET, is finally presented in Sec. 2.5, where a computational study

of the ultimate scaling possibility of this device is presented focusing on low-

operating-power applications.

2.1 Electronic properties of carbon nanotubes

The nanotube can be conceptually viewed as a rolled-up graphene sheet. Thus

the electronic properties of a CNT can be directly derived from the ones of the

two-dimensional graphene. In particular, the aim of this section is to recall the

main characteristics of the nanotube 1-D energy dispersion relation which can

be derived as quantization of the 2-D E(k) of the graphene sheet along the

circumferential direction of the nanotube [1].

The 2-D graphene lattice in the real space is depicted in Fig. 2.1. It can be

obtained as the infinite repetition of the the unit cell constituted by the atoms

labeled A and B along the directions identified by the translation vector l =

na1+ma2, with n and m integers and a1 and a2 the lattice characteristic vectors.

The two characteristic vectors are expressed as

a1 = a(

√
3

2
,
1

2
)

a2 = a(

√
3

2
,−1

2
) , (2.1)

where a =
√

3acc and acc = 1.42 Å is the carbon-to-carbon bonding distance.

In a TB model, the single-electron Hamiltonian can be expressed as an ex-

pansion on a localized atomic orbitals set. Due to the sp2 hybridization of the

carbon molecular orbitals in a graphene lattice, and neglecting the spin-orbit

coupling, the electronic properties of this material are well reproduced, in partic-

ular around the Fermi energy, accounting only for the interactions of the nearest
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Figure 2.1: Representation of the graphene unit cell. The two carbon atoms of a
single cell are labeled as A and B. The lattice characteristic vectors are reported.

pz orbitals. Hence, the discrete component of the Hamiltonian describing the

interaction between two atoms, which reads

Hα,β(ln − lm) = 〈α, n |H| β,m〉 , (2.2)

where α and β identify the atoms in the unit cell n and m, will be characterized

by a single empirical parameter vppπ, representing the bonding energy for two

adjacent atoms.

Within the assumption of an orthogonal basis set, the generalized eigenvalue

problem or secular equation for the n-th branch of the dispersion relation, En(k),

can be written as

∑

β

{

∑

m

Hα,β(ln − lm)eik·(ln−lm)

}

cβ = En(k)cα , (2.3)

where cα is the corresponding wave function.

In the case of a graphene sheet, in the nearest-neighbor approximation, the

total Hamiltonian reads out

H = vppπ





0
(

1 + 2e−i
√

3

2
akx cos

(

a
2ky

)

)

(

1 + 2ei
√

3

2
akx cos

(

a
2ky

)

)

0



 , (2.4)

where a null value has been considered for the on-site energy of the single atom,

giving just a stiff shift of the band structure, and where k = (kx, ky) is the 2-D

wave vector.

In the case of the Hamiltonian (2.4) an analytical solution of (2.3) is found

E(kx, ky) = ±vppπ

√

1 + 4 cos(
a

2
ky) cos(

√
3a

2
kx) + 4cos2(

a

2
ky) , (2.5)

giving the two branches of the graphene energy dispersion relation corresponding

to the π-energy bonding band and the π⋆-energy anti-bonding band. The cor-

responding energy surface is presented in Fig. 2.2 where (left) the 3-D plot and
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Figure 2.2: (Left) Two-dimensional graphene dispersion relation and (right) its
contour plot. The plots are given in arbitrary units. Only the π and π⋆ branches
of the E(k) are reported, calculated in the nearest-neighbor TB approximation
neglecting the overlap between atomic orbitals. From the contour plot is evident
the hexagonally shaped Brillouin zone of graphene.

(right) the contour plot are reported. From the contour plot, the hexagonal shape

of the graphene Brillouin zone is clearly evidenced. Within the approximation of

an orthogonal set of atomic orbitals, a symmetric structure of the two branches

is found. On the other side, the inclusion of an overlap matrix will result in a

deformation of the bonding band [1]. Focusing only on the analysis of transport

properties, the symmetric treatment of carriers in conduction and valence band

has found to have just small quantitative effects on such quantities.

From the plot of the graphene 2-D E(k) it can be seen that energy valleys

with zero band gap are located at the corners of the Brillouin zone, referred to as

Fermi points. It can be shown that a first order expansion of the energy dispersion

relation around the Fermi points leads to a conical shape of the E(k) with carriers

acting similarly to massless relativistic particles [2]. Since the density of states at

the Fermi level is zero, the 2-D graphite sheet is a zero band gap semiconductor.

The usual way to approach the calculation of the band structure of a car-

bon nanotube is to describe the CNT as rolled-up graphene sheet applying the

zone-folding (ZF) technique to the tight-binding model. The periodic boundary

condition only allows for quantized wave vectors along the circumferential direc-

tion, which generates 1-D bands [3]. The circumferential section of the nanotube

is defined through a given translational vector, hereafter named chiral vector

Ch = na1 +ma2. Beside, the translational vector T, parallel to the axis of the

tube and orthogonal to the chiral vector in the unrolled graphene lattice, is de-

fined to be the unit vector of the 1D carbon nanotube. The rectangle enclosed

by Ch and the vector T thus identifies the unit cell of the carbon nanotube, as

reported in Fig. 2.3.

The imposition of the periodic boundary conditions implies that the reciprocal
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Figure 2.3: Representation of the unrolled CNT unit cell. The chiral (Ch) and
translational (T) vectors are reported.

lattice vector k1 corresponding to Ch is quantized

k1 ·Ch = 2πq , (2.6)

where q = 1, . . . , Ncell is an integer, with Ncell the number of primitive graphene

unit cells included in the CNT unit cell. The wave vector k2 reciprocal of T will

remain continuous identifying the 1-D nanotube Brillouin zone (a line parallel

to k2 itself). Hence, the energy dispersion relation for the CNT consists of

Ncell couples of one-dimensional energy bands within the Brillouin zone of length

2π/|T|, where each band is a cut of the graphene dispersion relation on the lines

(kk2/ |k2| + ik1), each cut being folded in the first Brillouin zone of the nanotube.

The geometrical and the electronic properties of the nanotube are directly

connected to the chosen orientation of the chiral and translational vectors, i.e.

by the choice of the couple of integers (n,m), defining the tube chirality. It is

important to note that proper combinations of n and m give cuts of the graphene

energy dispersion relation which pass through the Fermi points. In these cases,

the obtained 1-D subband will be characterized by a linear dispersion relation

and a zero band gap. The obtained tube will show metallic properties with a

1-D density of state constant around the crossing point. By means of geometri-

cal observations [1], it can be found that the (n,m) combinations verifying the

condition

[n−m]mod3
= 0 (2.7)

select metallic nanotubes. In particular nanotubes with n = m, identified as

armchair nanotubes, will be always metallic.

Connected to the interest of using nanotubes as channel material for FETs,

CNTs showing a semiconducting behavior will be addressed in the following.
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Figure 2.4: One-dimensional energy dispersion relation for (left) a metallic
(9, 0) and (right) a semiconducting (11, 0) zigzag CNT. The TB parameters are:
vppπ = 2.7 eV, acc = 1.42 Å.

In particular, the reference structure will be that of the family of achiral tubes

defined as zigzag, identified by the chiral indexes (n, 0), with [n]mod3
6= 0. It is also

important to remind that the presented result is based on an ideal model which

neglects any deformation effect induced by the graphene sheet carbon bondings

as it is “transformed” in a closed tube. In a real case, variation of the bonding

lengths can occur, in particular when the radius of the tube is reduced, due to a

curvature effect. It has been reported in [4] the result of a Density-Functional-

Theory (DFT) study for a vast class of carbon nanotubes, showing how, the

semiconducting zigzag tubes become all metallic for n < 11. On the contrary,

the smallest armchair tubes show the formation of a band gap. In any case, the

ZF model applied to a TB description is found to give appreciable results for

tube diameters larger than 1.0 nm.

Examples for the obtained 1-D energy dispersion relations are reported in

Fig. 2.4 for a metallic and a semiconducting zigzag CNT (details given in cap-

tion). In the case of the (n, 0) zigzag CNT, the unitary cell contains 2n primitive

graphene cells. Hence, 4n branches of the energy dispersion are present, with

2n valence bands and 2n conduction bands. Double degeneracy for the lowest

conduction (higher valence) bands occurs. The analytical expression (2.5) for of

the m-th subband reads out [1]:

Em(k) = ±vppπ

√

1 + 4 cos(

√
3ka

2
) cos(

mπ

n
) + 4 cos2(

mπ

n
) , (2.8)

where the first Brillouin zone extends in the interval −π/
√

3a < k < +π/
√

3a.

The minimum of each subband is located at k = 0, hence the dependence on n
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of the energy gap between each couple of conduction and valence band is

Egm =
√

3avppπ
2π

na

(

m− 2n

3

)

. (2.9)

Equation (2.9) clearly shows that a metallic zigzag CNT has a zero band gap

for the quantum number m = 2n/3. If n is not an integer multiple of 3, the

minimum gap value is obtained for m = ⌈2n/3⌉ and it reduces to

Eg =

√
3avppπ

3

2π

na
=

2accvppπ

dCNT
≈ 0.8

dCNT
eV · nm , (2.10)

where dCNT = n
√

3acc/π is the tube diameter, expressed in nanometers.

The dependence of the electronic properties of CNTs on the chirality and, for a

fixed chirality, on the diameter have been experimentally proved. Semiconducting

single walled nanotubes have been reported with diameters in the range of 1.0−1.4

nm with excellent properties in terms of band gap [5, 6, 7]. Although a clear

experimental control on tube chirality has not been reported, a fitting of the

experimental results is possible using the previous relation derived for zigzag

CNTs in a range of band gap values interesting for electronic applications [8]. For

this reason in the following, zigzag carbon nanotubes with a diameter dCNT ≈ 1.0

nm and Eg ≈ 0.8 eV will be used as reference devices.

2.2 Device architecture

A 3-D sketch of the CNT-FET architecture used as device model is reported in

Fig. 2.5. An ideal Gate-All-Around configuration is chosen with a cylindrical

oxide layer clothing the tube for its entire extension. This architectures ensure

the best electrostatic control achievable minimizing short channel effects and

optimizing the sub-threshold slope.

Various experimental realizations have been reported for CNT-FET with dif-

ferent contact typologies. Even if Schottky barrier transistors (SBCNT-FETs)

are presented as the simplest realization of functional FET devices [9, 10, 11],

doped contacts have been reported and studied. Both electrostatic [12] and chem-

ical doping [13, 14, 15] techniques have been reported as able to produce ohmic

contacts and to suppress the ambipolar behavior of SBCNT-FETs. In the follow-

ing, ideally ohmic doped source and drain contacts will be considered, according

to the model presented in Sec. 1.2. The doping distribution will be considered

uniform over the tube surface. The device channel is left intrinsic. The carrier

charge density will be modeled as localized on the tube surface, thus leading to

a volumetric charge

ρ(r, θ, x) = δ

(

r − dCNT

2

)

q [p(x) − n(x) +N(x)]

πdCNT
(2.11)
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where (r, θ, x) represents the set of cylindrical coordinates, N is the net linear

doping concentration in the source and drain regions, and p and n represent

the linear hole and electron charge density, respectively. Similarly, the nanotube

middle gap energy is calculated as the electrostatic potential at the tube shell

Ei(x) = −qφ
(

r =
dCNT

2
, x

)

(2.12)

for every angular coordinate θ. Also the current flux is purely one-dimensional,

flowing from source to drain, localized on the CNT surface and independent of

the angular coordinate.

Due to the cylindrical symmetry of the device model, the simulation domain

reduces to a 2-D region as reported in the right part of Fig. 2.5, where the different

regions of the device are highlighted. The chosen architecture thus enables for a

reduction of the complexity of the problem with a purely 2-D treatment of the

electrostatic problem, coupled with the 1-D transport equation solved within the

UMS approach.

As far as the electron-phonon interaction is concerned, phonon parameters are

taken from [16]. In the latter an analysis of the impact of different phonon modes

is reported. In our simulations, acoustic phonons and one longitudinal-optical

phonon mode are included. The effect of self-heating and hot phonon effects,

presented in [17] using a semi-classical model based on the Boltzmann trans-

port equation, are neglected. The model still accurately describes all the main

transport limiting mechanisms, being able to correctly predict the scaling trends

in terms of off-current and sub-threshold slope, and to predict the qualitative

behavior of the on-current ballisticity as well.

Depending on the doping configuration used for the source and drain contacts,

two main classes of devices are identified. If the same doping species are used

for both contacts, a device equivalent to standard silicon n- or p-MOSFETs is

obtained, referred to as n-i-n CNT-FET (dually p-i-p for a p-type FET). A

numerical characterization and analysis of performance of this device will be

carried out in Sec. 2.4.

In the case of opposite doping species at the contacts, an interesting novel

architecture of tunneling-FET is obtained. Following the same notation based on

the doping distribution, the device will be named as p-i-n or n-i-p. Experimental

evidence of tunneling devices has been reported in [18, 19]. The review of the

transport mechanisms of this device and an evaluation of its scaling limits will

be given in Sec. 2.5.

2.3 Non-parabolicity and band-to-band tunneling

The mathematical model presented in the previous Chapter has been formulated

within the parabolic effective-mass approximation. The effective-mass approx-
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Figure 2.5: (Left) Three-dimensional schematic representation of a GAA CNT-
FET and (right) its projection on a plane along the transport direction. Air
is supposed to fill the tube and the CNT surface is ideally treated as having
zero-thickness.

imation has been widely used in device simulation, in particular, in modeling

silicon FETs, from standard single gate to more complex architectures. In order

to have an accurate prediction of the effects of quantization on the silicon band

gap for strongly confined electron gases, variations of the valley effective masses

with respect to the bulk values have to be considered. At the same time, the low-

ering of the density of states associated to 2-D and 1-D systems have increased

the importance of the deviation from a parabolic dispersion relation for degen-

erate systems. Limits of the assumption of parabolicity have been shown and

model extensions with non-parabolic corrections have been proposed.

The same observations hold for the case of CNTs. Although in this work

the modeling of metallic nanotubes is not treated, due to the clear impossibility

of applying an effective-mass model, clear deviation from the parabolic approx-

imations are evident also in the case of semiconducting CNTs. In addition, the

band gap shown by technological feasible CNTs is narrower than the silicon one,

thus the importance of quantum effects is increased. As reported for example in

[18], CNT-FETs biased with small drain and gate voltages experience a drastic

enhancement of the drain current due to the effect of band-to-band tunneling,

further confirmed by simulation studies. An appropriate description of tunneling

phenomena depends no longer on the treatment of the energy dispersion relation

for traveling modes but on the accurate reproduction of the vanishing imaginary

branches of the E(k). The latter observation applies first of all to the description

of the two subbands with smallest energy gap, namely the lowest conduction band

and the highest valence one. An example of the complete band structure for a

zigzag CNT is reported in Fig. 2.6, as calculated with a home-made solver using

a nearest-neighbor TB model [20]. Due to the localization of the conduction and

valence bands relative minimum or maximum at k = 0, the imaginary part of

E(k) lays completely in the ℜ{k} = 0 plane.

In order to include the description of band-to-band tunneling phenomena in

the transport model, a coupled solution of the carrier transport equation in con-
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Figure 2.6: Complete representation of the energy dispersion relation for a
semiconducting CNT including both real and imaginary branches. The TB pa-
rameters are the same of the previous case.

duction and valence band has been determined. Although 1-D subbands having

different quantization indexes are treated separately, a unique equation is as-

sumed for each couple of valence and conduction bands having the same index.

A continuous transition is assumed for a carrier moving on a given subband couple

extending the effective-mass Hamiltonian for the imaginary value of k, describ-

ing the vanishing states in the band gap. Due to the symmetric band structure,

an effective mass and a density of states symmetric with respect to the midgap

energy are assumed and associated to the transport description of electrons in

conduction band or hole in valence band. As a self-consistent potential is im-

posed, the midgap or neutrality level Ei(x) will be position dependent. Hence,

the calculation of the total linear charge density in the device, according to the

relations presented in the Sec. 1.2, reads out

Q(xi) = q (p(xi) − n(xi))

=
2qi

∆x

∑

b

σb

(

∫ +∞

Ei(xi)

dE

2π
G<

b (i, i;E) −
∫ Ei(xi)

−∞

dE

2π
G>

b (i, i;E)

)

(2.13)

where b is the quantization number spanning over all the conduction and valence

band pairs, ∆x is the discretization step along the transport direction, and σb

accounts for the valley degeneracy. It is worth noting that the upper and lower

integration extremes for the first and second term in the right hand side of (2.13)

can be numerically reduced to a range of few tens of kbT due to the presence

of the Fermi functions causing the integrand to vanish. The calculation of the
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Figure 2.7: (Left) Turn-on characteristics obtained with the CEM and TB
model for VDS = 0.08 V and 0.8 V, in both logarithmic and linear scale. (Right)
Energy dispersion relationships for the lowest conduction/valence subband pair
of a (13, 0) CNT calculated with the (dashed line) TB and (continuous line) CEM
model, as a function of the normalized wavevector. The left part corresponds to
energies within the gap.

current, in the approximation of UMS, is

I =
2q

~

∑

b

σb

∫ +∞

−∞

dE

2π
2ℜ
{

Hb (i, i+ 1;E)G<
b (i+ 1, i;E)

}

, (2.14)

where Hb is the Hamiltonian for the b-th subband, and the other relations for the

calculation of self-energy functions are left unchanged.

A first validation of the model was carried out with a direct comparison with

the simulation results of an atomistic solver based on the single pz-orbital TB

model, as presented in [21]. The device is a (13,0) zigzag CNT with a diameter

dCNT = 1.0 nm. The band gap and effective mass used in the presented simulator

are taken from [22]. Like the band gap, the effective mass depends on the tube

chirality. The channel, source, and drain lengths are fixed at 10 nm. No scattering

mechanisms are included. Although small differences are present in the gate

architecture, the choice of a thin gate oxide, tox = 1.5 nm, ensures a similar

electrostatic control for the two devices.

The comparison of the output current for VDS = 0.08 V and VDS = 0.8

V is reported in Fig. 2.7 (left), where the results obtained with the effective-

mass approach are labeled as Constant Effective Mass (CEM). The two models

provide a similar overall behavior, but remarkable differences are quite evident.

The most striking one occurs in the sub-threshold region for low VDS, where the

CEM model underestimates the current at VGS = 0 V by up to almost two orders

of magnitude. Particular care is therefore necessary when drawing conclusions

about the sub-threshold behavior of the device in the frame of the CEM model.
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Figure 2.8: (Left) Conduction-band edges as a function of x computed with the
CEM and TB models for VDS = 0.08 V and VGS = 0 V. (Center) transmission
coefficient T (E) (horizontal axis). (Right) product of T (E) with the difference
of the source and drain Fermi functions fS − fD (horizontal axis).

The explanation for this large difference can be found in the different shapes of

the band models near the midgap. As reported in Fig. 2.7 (right), showing the

first complex subband calculated with the TB together with the one obtained by

the CEM model, the two curves are in good agreement over a limited range of

energies (about 100 meV) near the minimum of the conduction band (0.4 eV) and

the maximum of the valence band (−0.4 eV). In the imaginary part of the diagram

(band gap) a discrepancy is visible, with the largest difference at the midgap (0

eV), where the CEM model exhibits an unphysical discontinuous derivative. The

divergence at large imaginary wave vectors for energies in the gap is reflected by

an under-estimation of carrier tunneling probability and, consequently, of current.

The situation is further illustrated in Fig. 2.8, where the bottom-energy pro-

files as a function of x, the transmission probabilities T (E) and the spectral cur-

rent density, given by the product of T (E) with the difference of the source and

drain Fermi functions, fS and fD, are reported for the two models at VDS = 0.08

V and VGS = 0 V. The energy reference is the Fermi level in the source.

From the curves of the spectral density it appears that most of the current

is due to electrons tunneling through the barrier at energies close to the midgap,

where the two band models, and hence T (E), primarily differ. The difference of

two orders of magnitude in the current can then be explained by the difference

observed in correspondence of the largest peaks in the T (E)× (fS − fD) plot. It

is also to be noticed that the energy profiles are nearly identical in the channel,

while discrepancies occur in the reservoirs where the electron gas is in a degenerate

condition and the CEM approach forces a lower potential because of the lower

density-of-states [2].

In order to cover the difference between the two models a correction to the
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Figure 2.9: (Left) Energy dispersion relation for the lowest conduction/valence
subband pair of a (13, 0) CNT calculated with the TB, the CEM, and (red solid
line) the VEM model, as a function of the normalized wavevector. (Right) The
same as in Fig. 2.7 but with the inclusion of the results obtained with the VEM
model.

standard parabolic model has been introduced. Following the extension of the

effective-mass approach to a two-band scheme as proposed in [23], and subse-

quently applied to the analysis of FETs in [24], a non-parabolic energy dispersion

relation εb(k) is considered

(

εb −
Egb

2

)(

1

2
+

εb
Egb

)

=
~

2k2

2m⋆
b

, (2.15)

where m⋆
b is the effective mass for the b-th subband. From (2.15) a parabolic

Hamiltonian is derived with the introduction of a position-dependent effective

mass

mb(x;E) =







m⋆
b

[

1 +
E−Ecb

(x)

Egb

]

if E > Ei(x)

m⋆
b

[

1 +
Evb

(x)−E

Egb

]

if E < Ei(x)
(2.16)

where Ecb
and Evb

are the conduction and valence band-edges, respectively. As

reported in Fig. 2.9 (left) the new energy dispersion relation, named Variable

Effective Mass (VEM), is able to reproduce the results of the tight-binding model.

The two curves are in good agreement over an extended range of energies, and, in

the imaginary part of the diagram, the non-parabolic dispersion relation nicely

fits the TB one.

The use of the VEM model in the transport analysis is then capable of covering

the difference previously reported in the transfer characteristic for VDS = 0.08 V

and low gate voltages. The new comparison is shown in Fig. 2.9 (right). The

correction in the imaginary branch of the E(k) is able to give the right prediction

of the tunneling probability, with a correction of the current spectral density

directly reflected in the resulting total current.
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Figure 2.10: (Left) Bottom of the conduction band and top of the valence band
as a function of x computed at VGS = 0 V and different VDS within the CEM
model and the TB model (only VDS = 0.8 V). (Right) Comparison of the bottom
of the conduction band as a function of x computed at VGS = VDS = 0.8 V within
the three different models.

Differences between the two models are in any case still present. An important

feature of the turn-on characteristics is given by the device behavior for large

drain biases. High currents are indeed reported in the sub-threshold regime by

both models. The origin of this behavior can be investigated with the help

of Fig. 2.10. Here, the bottom energies of the conduction band and the top

energies of the valence band, computed from the CEM model for VGS = 0 V and

different values of VDS, are reported as a function of the coordinate along the

CNT axis (x direction). As VDS increases, a strong decrease of the source-to-

channel energy barrier is observed, similar to the drain-induced-barrier-lowering

(DIBL) in conventional MOS transistors, which is responsible of the large off-

current at large VDS. This effect was already noticed in [24], where it has been

attributed to positive (hole) charge accumulation in the channel, due to electrons

tunneling from the valence band in the channel region to the conduction band

in the drain region, and for this reason also referred to as hole-induced-barrier-

lowering (HIBL) [25]. In this condition, current mainly flows for thermionic

emission over the top of the conduction band barrier. The difference between the

TB and the VEM model, the latter lightly differing from the CEM one, can be

thus ascribed to a different height of the energy potential barriers. This is the

result of a self-consistent solution where differences in the electrostatic control

and also in the modeling of the density-of-states at large kinetic energies are still

present. The comparison of the energy profiles for the first subband as derived

from the TB, CEM, and VEM model, is reported on the right side of Fig. 2.10

for a large drain voltage in saturation condition (VDS = VDS = 0.8 V). It clearly

evidences the small differences in the band-edge in the channel, which directly

reflect on different current values, and how the VEM model partially covers the
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differences with the TB model in the source and drain regions as well by imposing

a larger density-of-states with respect to the CEM one. It is important in any

case to highlight once more that the primary aim of the model, the inclusion of

a qualitatively and quantitatively valid description of BTBT, is nicely fulfilled,

giving an optimal compromise between accuracy and computational costs when

compared with more complex models like the atomistic TB one.

The device output characteristics have been simulated as well. The simulation

results are reported in Fig. 2.11 where the three different models are compared

over a large range of gate and drain biases. An overall nice agreement of the

VEM approach with the TB results is reported, reducing the difference on the

on-current, previously justified as a result of a different density-of-states. For

the smallest VGS a sharp enhancement of the output current is predicted at large

drain biases due to the HIBL. Additional degradation is found for VDS larger

than the band gap energy, due to the onset of a BTBT current path flowing from

the valence band at the source side to the conduction band at the drain side,

nullifying the gate control on current [26]. These output characteristics show a

strong limitation on the maximum allowed supply voltage, that has to be kept

lower than Eg or even as low as Eg/2 to achieve the maximum performances in

terms of ION/IOFF current ratio.

Finally, the validation of the proposed model has been carried also in presence

of scattering mechanisms. In Fig. 2.11 the transfer characteristics of a n-i-n

device are reported compared with the TB results given by [28]. A very good

agreement is found in the whole range of gate biases, in both cases of ballistic and

dissipative transport. In particular, the onset of the ambipolar conduction for

VGS < 0 V is well captured by the VEM model. This unexpected enhancement
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of the drain current is explained by a double band-to-band tunneling process

between the conduction and valence band. In the ballistic case, the process

becomes possible when the gate voltage is low enough to create a direct facing

of the top of the valence band in the channel with the conduction band at the

source and drain side. A current path connecting the drain and source reservoirs

is thus created, avoiding the FET to be turned-off. It is interesting to note how

the current increase for negative gate biases shows a slope steeper than when

the device is turned-on. This is connected to the tunneling nature of the current

flow, having no thermal limitations as compared to the thermionic emission. The

sharp difference in the behavior between the ballistic and the dissipative case will

be further investigated in the next section.

2.4 Performance evaluation of CNT-FETs

In this section an analysis of n-i-n CNT-FETs is presented. The device architec-

ture is the same of that described in Sec. 2.2. The impact of acoustic and optical

phonon scattering on the performance of CNT-FETs is investigated, showing the

dependence on gate lengths, dielectric materials and chiralities. The analysis is

also extended to devices with source/drain underlap. The effects induced by the

electron-phonon scattering are addressed by comparing ballistic and dissipative

quantum transport results. It has been found that the use of a high-κ dielec-

tric improves the off-current limited by phonon-assisted band-to-band tunneling.

In addition, the device scalability has been analyzed showing that with an oxide

thickness of 1.5 nm, good performance metrics are obtained down to a gate length

of 15 nm with SiO2, and, on the other side, by the use of HfO2 as gate dielectric,

the gate length scaling can be extended down to 10 nm. The results confirm also

that the calculation of the off-currents and delay times are strongly influenced

by phonon scattering, whose inclusion in the transport model is fundamental for

having realistic performance predictions.

2.4.1 Fixed gate length

In order to examine the impact of the phonon scattering on the electrical charac-

teristics of scaled CNT-FETs, a first reference device is analyzed to understand

the transport properties at different biases. The simulated FET has a (13, 0)

CNT, undoped channel and n-doped contacts (ND = 1.5 × 107 cm−1). A cylin-

drical wrapped around SiO2 layer with tox = 1.5 nm is used, and the gate length

is fixed at LG = 20 nm, for a total device length of 40 nm. The other electrical

parameters are the same of the previous section. In Fig. 2.12 (left) the turn-on

characteristics comparing the ballistic and the dissipative case are reported in

logarithmic scale for VDS = 0.1, 0.45 and 0.8 V. It is clearly shown that the

effect of phonon scattering strongly depends on the applied drain voltage. The



2.4. PERFORMANCE EVALUATION OF CNT-FETS 47

−0.2 0 0.2 0.4 0.6 0.8
VGS (V)

10
−7

10
−4

10
−1

10
2

I D
S
 (

µA
)

VDS = 0.1 V
VDS = 0.45 V
VDS = 0.8 V

open symbols:
closed symbols:

ballistic

LG = 20 nm

SiO2

dissipative 

−0.2 0 0.2 0.4 0.6 0.8
VGS (V)

10
−6

10
−4

10
−2

10
0

10
2

I D
S
(u

Α
)

ballistic
dissipative
optical ph.

LG = 20 nm

SiO2

VDS = 0.45 V
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explanation of the different curves is derived by observing the contour plots of

the current density spectra in Fig. 2.13 at VGS = 0.1 V for the three different VDS

biases.

At low drain voltage, transport is mainly due to direct tunneling (DT) just

below the channel barrier, and therefore the current is not influenced by phonons.

At VDS = 0.45 V (Fig. 2.13, center) transport is dominated by optical-phonon-

assisted band-to-band tunneling. Due to the additional phonon-assisted current

fluxes within the channel band gap, the threshold of the ambipolar conduction

is shifted to higher gate voltages with respect to the ballistic case. In this case

a direct facing of the top of the valence band with the conduction band source

is no longer requested, due to the coupling by phonon emission of carriers at

energies with a relative difference of ~ωop. In addition, the broadening of the

density spectral function for the quasi-bond states in valence band, due to the

electron-phonon interaction, smoothens the resonant behavior of the ambipolar

conduction, as evidenced by the lower slope of the transfer characteristics (see

also Fig. 2.11, right). This fundamental role played by optical phonons is con-

firmed by simulations reported in Fig. 2.12 (right), where their contribution to

current has been isolated, showing no differences with the result obtained with

the additional contribution of acoustic phonons. At high VDS (Fig. 2.13, right),

the electrostatic effect of the positive charge accumulation in the valence band,

due to tunneling through the channel-to-drain interface, self-consistently lowers

the source-to-channel barrier, inducing a high over-the-barrier current. The in-

crease of the hole density produced by optical-phonon scattering is reflected on

a different height of the barrier if compared with the ballistic case, inducing a

lower IOFF current [31].
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(13, 0) CNT-FET at VGS = 0.1 V for VDS = 0.1 (left), 0.45 (center) and 0.8 V
(right).

2.4.2 Effect of gate length scaling

The impact of the gate length scaling has been investigated for three different val-

ues of LG = 10, 15, and 20 nm. The obtained turn-on characteristics are reported

Fig. 2.14, for a drain bias of VDS = 0.45 V. At LG = 10 nm, in the ballistic case,

the DT contribution becomes high enough to increase the inverse sub-threshold

slope (SS= ∂VGS/∂ log (IDS)), inducing a degradation from 68 mV/dec to 95

mV/dec at VGS = 0.25 V. When phonon scattering is turned on, the phonon-

assisted BTBT clearly prevails for VGS = 0, and it is independent of LG, being

controlled by the shape of the conduction and valence band-edges at the source-

to-channel junction rather than by the gate length. Due to the specification

on the off-current level [27], the CNT-FETs will reach a lower scaling limit for

LG = 15 nm. The inset in Fig. 2.14 (left) shows the ballisticity, defined as the

ratio between currents with and without scattering, Iscat/Ibal, as a function of

the gate voltage in the above-threshold regime at the same drain voltage. As

expected, the highest ballisticity is obtained with the smallest LG, due to the

reduced scattering effects.

2.4.3 Effect of changing gate dielectric

In Fig. 2.14 (right) the effects of phonon scattering when using HfO2 as opposed

to SiO2 as dielectric has been investigated. In the analysis, tox is still fixed at

1.5 nm, thus the device with high-κ dielectric shows higher on-current and bet-

ter sub-threshold slope due to the improved electrostatic control. The ballistic

curves indicate that using high-κ material strongly increases also the BTBT cur-

rent. This is a drawback of the higher gate capacitance. Due to the improved

electrostatic control, the device with HfO2 dielectric shows a higher barrier and

hence a larger energy interval where BTBT can occur. On the contrary, in the

dissipative case the phonon-assisted BTBT with HfO2 is slightly less than with

SiO2. This is explained by considering that the phonon-assisted BTBT is more
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Figure 2.14: (Left) Turn-on characteristic of a (13, 0) CNT-FET at VDS = 0.45
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sensitive to the tunneling distance the electrons have to travel in the gap rather

than to the extension of the energy interval for which the conduction and valence

bands face each other in the source-to-channel region. Indeed the larger capac-

itive fringing effect in the HfO2 case produces smoother barrier profiles at the

channel-to-contact interfaces with respect to the SiO2 case and larger BTBT dis-

tances as well. The higher off-current for SiO2, together with the considerations

for the on-currents, gives an overall better performance for the high-κ device.

It is also interesting to analyze the ballisticity in the case of standard and

high-κ dielectric. In Fig. 2.15 a), the ballisticity curves are calculated separating

the contributions of the different types of phonons. They indicate that the effect

of phonons is more pronounced in the device with HfO2 with respect to the one

with SiO2, in particular that of optical phonons at large VGS. This can be ascribed

to the more degenerate condition in the channel for a given gate voltage, that

lowers the bottom energy of the conduction band with respect to the Fermi level,

inducing a higher current, but, at the same time, a more favorable condition for

optical phonon emission (the optical phonon energy is 180 meV).

2.4.4 Effect of CNT chirality

The phonon scattering is strongly influenced by the material properties: in par-

ticular, the electron-phonon coupling strength for a (n, 0) CNT is found to be

inversely dependent on n [16]. Thus, a similar analysis has been carried out on

a CNT with chirality (16, 0). The diameter is 1.25 nm and the energy gap is

reduced to 0.65 eV. A high-κ gate dielectric is supposed. The (16, 0) CNT-FET

curves are compared with the (13, 0) ones in the b) panel of Fig. 2.15. The band

gap difference is directly reflected in a negative threshold voltage shift of about

150 meV. A small ION increase for a fixed gate overdrive is due to the different
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Figure 2.15: a) Ballisticity as a function of the gate voltage for (13, 0) CNT-
FETs with SiO2 and HfO2. The different phonon contributions are isolated. b)
Turn-on characteristics of the CNT-FETs with HfO2 for two different chiralities at
the same drain voltage. c) Ballisticity as a function of the gate voltage for (13, 0)
and (16, 0) CNT-FETs with HfO2. d) On-current as a function of the ION/IOFF

ratio for the different device configurations presented. A normalization of the
current value with respect to the nanotube diameter is supposed.

capacitive control as the tube diameter is increased. On the contrary, in the

sub-threshold regime, the off-current is higher for the (16, 0) CNT, as it is mainly

affected by the reduction of the gap (that enhances the BTBT), in spite of the de-

crease of the phonon coupling constants. Indeed, in the above-threshold regime,

the ballisticity shows a behavior in agreement with the relative strengths of the

electron-phonon coupling constants, as reported in the c) panel of the figure.

All the previous results are finally collected in an analysis of the ION vs.

ION/IOFF (Fig. 2.15, d)) for the different CNT-FETs presented so far, as a further

indication of the effect of phonon-scattering. The on-state of the device is defined
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Figure 2.16: (Left) Schematic view of the CNT-FET with underlapped source
and drain. (Right) Turn-on characteristics of the underlap CNT-FET for different
extensions LU of the underlap region with fixed gate length (LG = 10 nm) and
total length (L = 70 nm).

for a gate voltage of V ON
GS = V OFF

GS + VDS, where the drain voltage is fixed at

VDS = 0.45 V. Consequently, the off-current is given as IOFF = I(V OFF
GS ). The

plot is constructed as described in [32] by using a sliding
[

V OFF
GS , V ON

GS

]

window.

If ION/IOFF > 104 is accepted as a constraint, the (13, 0) CNT with HfO2 can be

scaled down to 10 nm, thus reducing the scaling limit of 5 nm with respect to the

same device with SiO2 dielectric. Beside, it appears that the ballistic calculation

(red solid curve) largely overestimates the performance, confirming the necessity

of a dissipative model for a realistic analysis.

2.4.5 CNT-FET with underlapped source/drain regions

In this section the importance of phonon scattering is examined for devices with

underlapped source and drain regions, schematically illustrated in Fig. 2.16 (left).

The intrinsic region extends for a length LU on both sides of the gate. The total

device and gate lengths are fixed at L = 70 nm and LG = 10 nm, respectively.

The dielectric material is HfO2 with tox = 1.5 nm, as above. The CNT chirality

is (13, 0). The effects of this architectural feature have been analyzed in [29, 30]

on the basis of experimental data on CNT-FETs. Here, it refers to an alteration

of the ideal device architecture (LU = 0) considered so far.

The essential effects of introducing the underlap regions are illustrated by

the turn-on characteristics of Fig. 2.16 (right). For increasing LU , the strong

beneficial reduction of the off-current is also accompanied by a detrimental re-

duction of the on-current. Once more, it is clearly seen that the behavior in the

off-state, where BTBT is important, is not correctly interpreted by the ballistic

model. In particular, for relatively small underlaps (LU = 2 nm) the ballistic

model largely overestimates the advantage of having the underlap, which instead

becomes quite sizable for larger LU . In the on-region the differences between the
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Figure 2.17: Conduction and valence band edge profiles of the underlap CNT-
FET for different extensions LU of the underlap region in the a) off-bias and b)
on-bias region. c) ION vs. ION/IOFF ratio and d) total delay vs. VGS for the
underlap CNT-FET for different LU values. A normalization of the current value
with respect to the nanotube diameter is supposed.

two models are not as evident as in the off-region, and can be easily explained in

terms of reduced ballisticity. To further illustrate the point, Fig. 2.17 a) reports

the band-edge profiles for VGS = 0 V in the dissipative case. The ballistic model

gives substantially identical profiles, which are therefore not reported in the fig-

ure. For larger LU the effective barrier width is increased, suppressing the DT

component of the current. Also the BTBT current is strongly affected, due to

the almost linear potential profiles in the underlap region.

Fig. 2.17 b) shows the band profiles in the on-bias condition (VGS = 0.5

V). The current is limited by the barrier at the doped/intrinsic source junction,

which prevents the device from being fully turned on. Besides, the barrier height

increases somewhat with LU , due to the decreasing electrostatic coupling with the

gate, thus explaining the reduction of ION. Results on different cases are collected

in the analysis of the ION/IOFF performance and reported in Fig. 2.17 c). It

appears that the 104 ratio can be easily exceeded with a convenient underlap,
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at the cost of a significant reduction of the on-current. Similar results on the

capability of improving the ION/IOFF ratio as a function of the gate/contact

spacing have been shown in other simulation studies also in the case of Schottky

barrier transistors [33].

The analysis of the CNT-FET performance is concluded with the calculation

of the device delay time, defined as

τ =
1

ION

∫

q [ρON(x) − ρOFF(x)] dx , (2.17)

where q [ρON(x) − ρOFF(x)] is the total charge variation between the on- and off-

states, and the integral is extended over the whole device. The parameter τ

gives information about the delay in switching-on a load-transistor by a driver

transistor of the same kind. The result is shown in the d) panel of Fig. 2.17

as a function of VGS in the on-state. A significant degradation of τ is observed

when a sizable underlap region is introduced, essentially due to the reduction of

the on-current. As expected, the dissipative model predicts larger delay times,

underlying the importance of taking into account the scattering mechanisms for

accurate estimates of the speed performance. It is interesting also to observe

that in the dissipative case with LU = 10, and 20 nm there is an optimum choice

of V ON
GS around 0.65 − 0.7 V, in spite of the fact that ION increases with VGS.

This means that for larger values of the gate voltage the charge in the device

increases faster than the on-current, which can be related with the importance of

enhancement of optical phonon scattering when the channel is driven into strong

degenerate conditions, as already observed in the previous section, due to the

altered potential profile.

2.5 Performance evaluation of CNT Tunneling-FETs

It has been shown how aggressively scaled CNT-FETs suffer from a large in-

crease of the sub-threshold current at large drain biases due to the charge pile-up

effect, limiting the range of applicable voltages. In order to overcome this limita-

tion, p-i-n CNT-FETs operating in the band-to-band tunneling regime have been

proposed [18]. This type of device is based on concepts already extensively ex-

plored for both silicon and III-V materials. Sub 60 mV/dec inverse sub-threshold

slopes have been reported by both experimental and theoretical analysis, with

the advantage of very promising on/off current ratios. Here, the interest is fo-

cused in performing a computational study of the p-i-n CNT-FETs to investigate

their properties when pushed to the extreme scaling limits. Taking as a refer-

ence the specifications for the double-gate (DG) MOSFET at the ITRS Low

Operational Power technology node LOP32 [27], a (13, 0) p-i-n CNT-FET has

been preliminary optimized choosing proper source and drain concentrations and

gate-to-channel overlap. Then the effects of changing the oxide thickness, power
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Figure 2.18: (Left) p-i-n CNT-FET with symmetrically doped source and drain
regions. Top panel: Lowest conduction (EC) and highest valence (EV ) band-
edges as a function of the longitudinal coordinate for the two bias conditions
corresponding to points A and B of the bottom. The source and drain Fermi
levels are also shown. Bottom panel: Drain current normalized to the CNT
diameter vs. gate voltage for VDS = 0.4 V. (Right) Transport in symmetrically
(label A) and asymmetrically (label B) devices at VDS = 0.4 V.NS andND are the
doping concentrations in the source and drain regions, respectively. Top panel:
Conduction (EC) and valence (EV ) band-edges as a function of the longitudinal
coordinate for VGS = 0.1 V. Bottom panel: Drain currents normalized to the
CNT diameter vs. gate voltage.

supply and gate length have been systematically analyzed with the aim of finding

the scaling limits and an optimal parameter set, using, as the key-reference, the

off-current specified for the LOP DG-MOSFETs. The physical model is the same

as described above, accounting for non-parabolicity through the use of an energy-

dependent effective mass. The analysis will be mainly carried out in dissipative

regime.

2.5.1 Fundamental transport properties

The reference architecture for the device is the same previously presented with a

GAA gate configuration, intrinsic channel, and doped source and drain contacts.

For the p-i-n device, the doping species are different for the two contacts, with

an acceptor-doped source and a donor-doped drain contact. If band-to-band tun-

neling is limiting the performance of conventional n-i-n CNT-FET, this feature

is turned into advantage in the p-i-n CNT-FETs, where the BTBT is the basic

injection mechanism.

Current is controlled by the gate through the modulation of the tunneling

barriers at both the source-to-channel and channel-to-drain junctions as illus-
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Figure 2.19: (Top) Effect of gate-to-channel misalignments. Case A: aligned
gate. Case B: 1-nm source underlap and 1-nm drain overlap condition. Case C:
1-nm source overlap and 1-nm drain underlap condition. (Center) Conduction
and valence band-edges as a function of the longitudinal coordinate for VDS = 0.4
V and VGS = 1.0 V. (Bottom) Drain currents normalized to the CNT diameter
vs. gate voltage for VDS = 0.4 V.

trated in the top-left panel of Fig. 2.18, where the subband profiles of the first

valence and conduction bands are reported for an off- and an on-biasing condi-

tion. In the bottom-left panel, an example of the turn-on characteristics is given

in the ballistic case. Due to the equivalent gate modulation of both the tunnel-

ing barriers, the device is intrinsically ambipolar and, if symmetric source and

drain doping concentrations are used, the turn-on characteristics are symmetric

with respect to the VGS = VDS = 2 bias condition [34], in which the tunneling

barrier at the source chemical potential energy level extends for the entire gate

length. The most attractive feature of this device is given by its sub-threshold

behavior. Since current is controlled by BTBT, the SS is not thermally limited

and values lower than 60 mV/dec can be easily reached at room temperature,

allowing for good ION/IOFF ratios and gate delays even at low supply voltages.

Therefore this type of devices is considered more suitable for LOP rather than



56 CHAPTER 2. TRANSPORT ANALYSIS IN CNT BASED FETS

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Gate voltage (V)

10
−6

10−4

10−2

100

102

104
C

ur
re

nt
 (

µA
/µ

m
)

3.2
4.0
4.8
5.6

3 4 5 6
tOX (nm)

10
−4

10
−3

10
−2

I m
in
 (

µA
/µ

m
)

tOX (nm)

0

2000

4000

6000

I O
N
 (

µA
/µ

m
) 3.2

4.0
4.8
5.6

10
−4

10
−3

10
−2

10
−1

10
0

IOFF (µA/µm)

200

600

1000

1400

1800

τ 
(f

s)

DG LOP32
DG HP40

tOX (nm)

Figure 2.20: (Left) Turn-on characteristics of a (13, 0) p-i-n CNT-FET with
LG = 16 nm and different oxide thickness at VDS = VDD = 0.6 V. Inset: Minimum
off-current Imin vs. tox. (Right) Device performance. Top panel: ION vs. IOFF.
Bottom: gate-delay τ vs. IOFF. The points correspond to the DG-MOSFET
performance of the LOP32 and HP40 ITRS technology nodes.

for high-performance (HP) applications.

The ambipolar behavior is surely the most limiting feature of the device,

naturally degrading the on- over off-current ratio. For this reason a preliminary

optimization has been performed to make the tunneling process in the source-

to-channel junction more favorable with respect to the drain-to-channel one, and

finally obtaining a n-channel behavior, with increasing current for positive gate

voltages. Asymmetric doping concentrations are used in the source and drain

regions, with the acceptor concentration NS in the source higher than that of the

donors ND in the drain. As seen in Fig. 2.18, top-right panel, the higher ND, the

steeper the potential profile at the drain-to-channel junction. A similar behavior

can be observed for NS . Hence, the condition NS > ND creates a BTBT barrier

at the drain junction wider than that at the source, causing asymmetric tunneling

processes. This implies a shift of the current minimum to VGS < VDS/2 (Fig. 2.18,

bottom-right). The choice of the optimal doping concentrations has been driven

by the following considerations. In order to reach the largest ION, NS = 1.5×107

cm−1 has been chosen, being a realistic concentration in terms of ratio between

dopant ions and carbon atoms per unit length. To reach the lowest IOFF, a low

ND needs to be used in the drain. In this case, the lower boundary is dictated by

the need of preserving a neutral contact region for a good electrostatic control.

ND = 0.25 × 107 cm−1 has been chosen.

An additional architectural choice useful to emphasize the n-type transport

is the use of a metal gate not aligned with respect to the intrinsic channel. A

thorough analysis led to the conclusion that an overlap condition for the gate

electrode at the source side would lead to a detrimental lowering of ION. On
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DG-MOSFET performance of the LOP32 and HP40 ITRS technology nodes.

the contrary, an underlap condition at the source side gives a steeper poten-

tial transition, rising ION and SS. An optimal underlap value exists which is a

function of the oxide thickness, tox. The same considerations apply to the gate

overlap/underlap at the drain side: a small amount of overlap is useful to smooth

out the potential transition, the upper limit being set by the necessity of avoiding

excessive parasitic capacitances. The effects on the potential energy profiles and

turn-on characteristics for both underlap and overlap conditions are shown in

Fig. 2.19, for the corresponding underlap/overlap conditions schematically pre-

sented in the top part of the figure. A 1−nm underlap at the source and a 1−nm

overlap at the drain have been chosen, since they are close to the optimum for

different values of tox.

2.5.2 Oxide thickness and voltage variations

Considering the optimized device presented above, with a gate length fixed at

16 nm and a high-κ oxide material, the effect of the oxide thickness scaling

had been first considered. In Fig. 2.20 the turn-on characteristics are shown for

different tox in the range 3.2 − 5.6 nm for VDS = VDD = 0.6 V, with the aim of

analyzing the trade-off between device performance and current leakage. Currents

are normalized with respect to the CNT diameter. The minimum achievable

current Imin versus tox is reported in the inset, highlighting a sharp dependence.

The current variations are directly connected to the change of potential profiles
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Figure 2.22: a) τ vs. IOFF performance of a (13, 0) p-i-n CNT-FET. Left panel:
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the right part of the figure. The points correspond to the projected performance
of the DG-MOSFETs of the ITRS LOP nodes. b) Scaling rules for (top panel)
the supply voltage and (bottom panel) EOT for the ITRS DG-MOSFET HP and
LOP technology nodes (solid lines). The scaling rules adopted in this work for
the LOP devices are also shown (dashed lines with circles).

of the tunneling junctions. For decreasing tox, thinner and sharper barriers are

created at the junctions due to the changes in the electrostatic coupling between

gate and doped regions, causing an increase of both IOFF and ION. The resulting

ION and gate-delay performance metrics are reported in the right of Fig. 2.20 as

a function of IOFF, together with the corresponding points for the DG-MOSFET

at the LOP32 technology nodes. The gate-delay plot is realized by following the

procedure already described above. A clear advantage in the ION/IOFF ratio

with respect to the DG-MOSFET LOP32 is found for all tox, which is due to

the low SS of the BTBT device (SS= 55 mV/dec, derived from the turn-on

characteristics presented in figure Fig. 2.20, left). The performance of the LOP32

can be thus reached with a relaxed oxide thickness, with advantage on gate

leakage currents (not estimated here). As far as τ versus IOFF is concerned, the

LOP32 requirements are satisfied for a range of tox between 3.2 and slightly less

than 4 nm. For instance, for tox = 3.2 nm the LOP32 off-current limit is reached

with an almost 50% gain in gate-delay. For completeness the points for the DG-

MOSFET HP40 node, characterized by the same LG = 16 nm and EOT= 0.8

nm, but with VDD = 1 V, are reported in Fig. 2.20 (right). By analyzing both

ION and τ , the p-i-n device clearly outperforms the HP40 DG-MOSFET as well.

To deeply understand the behavior of the p-i-n device, the dependence of τ

on tox has been further investigated by analyzing the device charge variation.

Fig. 2.21 (left) shows the total charge variation along the device for two different
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Figure 2.23: (Left) Turn-on characteristics with EOT= 0.8 nm and VDD = 0.6
V for different gate lengths LG. (Right) Spectral current density at VDS = VDD =
0.6 V and VGS = 0.9 V for two different gate lengths: (top panel) LG = 16 nm
and (bottom panel) LG = 11 nm.

values of the oxide thickness. It is clearly shown that the largest charge variation

occurs outside the channel region, due to the capacitive gate-to-source and gate-

to-drain fringing effects. This behavior is opposed to what is expected in a

conventional MOSFET, where the largest variation takes place in the channel. By

augmenting the oxide thickness, due to the increased relative importance of the

fringing effects, the charge variation in the source and drain regions is even more

pronounced. The overall effect is that the integrated charge variation increases

with tox, and explains why the gate delay exhibits such a sharp degradation with

increasing tox.

A similar analysis has been conducted considering the supply voltage scaling,

while the gate length and the oxide thickness are kept fixed at 16 and 3.2 nm,

respectively. Three values of drain voltage have been considered, VDS = VDD =

0.6, 0.5, and 0.4 V, focusing on the trade-off between device performance and

power saving. Accordingly to previous results [34], a decrease of the Imin is found

decreasing the power supply. At the same time, a similar degradation of the ION

current is experienced. In the right part of Fig. 2.21 the on-current and gate-delay

values are reported as a function of the off-current for the different VDD. It is

shown that there is a performance advantage with respect to the ITRS reference

device (DG LOP32) even when the supply voltage is somewhat reduced. When

comparing the p-i-n device with the HP40 DG-MOSFET, the advantage persists

also for VDD scaled down to 0.5 V.
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2.5.3 Scaling trends

The final aim of the proposed computational study is to investigate the scaling

trend of the p-i-n CNT-FETs focusing on LOP applications, for which, according

to the above considerations, the maximum advantage is expected. Since the p-i-n

CNT-FETs are non conventional devices, as the current injection mechanism is

due to BTBT, first of all it is necessary to understand the impact of scaling LG on

the device characteristics. To this purpose, τ versus IOFF is reported in left panel

of Fig. 2.22 a) for different gate lengths. The LG values are chosen in accordance

with the specifications for the ITRS nodes LOP32, LOP22 and LOP18, but the

same EOT= 0.8 nm and supply voltage VDD = 0.6 V of the DG-MOSFET LOP32

node are used. The projected performance of the DG-MOSFET for the different

nodes is also shown. It is seen that scaling LG down to 11 nm leads to a modest

reduction of τ for large IOFF, and it is even detrimental at the DG18 off-current

limit. At LG = 9 nm the degradation of the gate delay is quite large for any

acceptable value of IOFF. The explanation of such behavior is threefold. Scaling

LG leads to i) a sub-threshold current increase (see Fig. 2.23 (left), logarithmic

scale), due to the direct source-to-drain tunneling that considerably worsen SS

and is particularly severe in short channel CNTs; ii) only a modest reduction of

the total capacitance which is mainly due to the source/drain fringing contribu-

tions as explained above; iii) no increase in the on-current (see Fig. 2.23 (left),

linear scale) due to the BTBT nature of the transport and not affected by an

improved ballisticity. To better explain the latter aspect, the current spectral

densities in an on-state bias are reported in Fig. 2.23 for the CNT-FETs with

LG = 16, and 11 nm. The presence of phonon scattering in the channel is clearly

visible in both spectra. However, electrons injected from the source and scatter-
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Figure 2.25: (Left) Turn-on characteristics for the (13, 0) pi-n CNT-FETs scaled
according to the LOP32 and LOP22 rules of Fig. 2.22, computed with both
ballistic and dissipative models at VDS = VDD. (Right) Top panel: ION vs. IOFF

performance; bottom panel: τ vs. IOFF performance, both computed accordingly
the sane scaling rules in the ballistic and dissipative case.

ing in the channel have a low probability of being back-scattered into the source

due to the energy selectivity of the BTBT. Therefore the current is affected by

phonon scattering occurring mainly in the source region and source-to-channel

junction, and is therefore independent on gate length.

The above analysis has been repeated for the same gate lengths but applying

the scaling rules for EOT and VDD extracted from ITRS for the LOP nodes and

reported in Fig. 2.22 b). The τ versus IOFF performance are shown in Fig. 2.22

a), right panel. As expected, a slight performance improvement is obtained with

respect to the previous analysis (left panel of the same figure). Anyway, there is

no advantage in scaling to the LOP22 node and a strong disadvantage in moving

to the LOP18 node. From the above analysis it is therefore possible to conclude

that the optimum gate length is around 16 nm, and that with such LG the

performance of the LOP18 DG-MOSFET is met. In an attempt to define the

ultimate optimum device, the LG =16 nm CNT-FET has been simulated with

EOT and VDD scaled in accordance to a revised trend, labeled as “this work” in

Fig. 2.22 b). The result is shown in Fig. 2.24. It is seen that, for the specified

IOFF limit, changing EOT and the supply voltage does not lead to any sizable

advantage in τ , but the reduction of VDD allows for a proportional power saving.

As previously stated, all the presented results have been extracted through

an analysis in dissipative condition. It remains in any case interesting to present

some remarks on the importance of the electron-phonon scattering when dealing

with the scaling trend of p-i-n CNT-FETs. The question arises because the

neglect of phonon scattering would speed up the computation times considerably.

The turn-on characteristics for the CNT-FETs scaled according to the LOP32

and LOP22 ITRS rules have been simulated again turning phonon scattering
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off (ballistic transport). The results are compared with the dissipative case in

Fig. 2.25. In the longer channel device (LG = 16 nm) phonon scattering slightly

increases Imin due to its effect on BTBT (see [16], and results presented in the

previous section), and decreases ION by almost 10%. In the LOP22 device the

effect on ION is quantitatively similar, in spite of the shorter gate length (LG = 11

nm), for the reasons explained in the above result analysis. On the contrary,

Imin in the LOP22 is decreased by the phonon scattering: the sub-threshold

current is dominated by direct source-to-drain tunneling, which gets reduced

by the electron-phonon interactions breaking the electron phase-coherence. In

Fig. 2.25, right, the ION versus IOFF and τ versus IOFF performance are reported

for the same devices considered above. The purely ballistic analysis would lead to

the same conclusion reached in the previous section, namely the lack of advantages

in scaling down the gate length beyond LG = 16 nm. However, for a quantitative

current estimation, the inclusion of phonon scattering cannot be neglected even

at such short gate lengths.

2.6 Summary

In this Chapter a full quantum description of the transport problem has been

applied to the analysis and optimization of CNT-FETs. After a brief overview

on the electronic properties of CNTs, an extension of the parabolic effective-mass

approximation is presented which includes the effects of the non-parabolicity of

the energy dispersion relation and the band-to-band tunneling. A validation

of the model has been given in both ballistic and dissipative transport regime

through a comparison with a more physics-based model (tight-binding). The

presented model, extending similar proposals presented in the literature, is found

to be a valid alternative to the full tight-binding approach due to its remarkable

computational time advantage and constitutes one of the main results presented

in this work. Two different device architectures have been deeply investigated: a

MOSFET-like FET and a tunneling-FET. The limitations of the scaling process,

the dependence on the architectural choices, and the role played by the electron-

phonon interaction have been the subject of a thorough physical analysis. In

particular, the advantages of using the p-i-n tunnel-FET architecture for low

operational power applications has been discussed.
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Chapter 

Transport analysis in Si-NW

based FETs

By means of intrinsic advantages due to their 1-D geometry, silicon nanowire

structures are considered among the most interesting candidates to replace planar

MOSFET devices. Reliable fabrication of such devices has been demonstrated in

several experimental studies showing promising electrical performance [1, 2, 4, 3,

5, 6].

Even if theoretical studies have predicted improved electrical performance for

nanowire structures due to the reduced density-of-states [7, 8] and to the non

negligible contribution of ballistic electrons [9, 10, 11, 12], many other sources

of scattering like thickness fluctuations [13], surface roughness (SR) at the Si–

SiO2 interface [7, 14], doping pockets and random impurities are present [15]. It

has been shown that SR induces a reduction of the local density of states in the

channel [7, 8], as well as an increase of threshold voltage [7], which furthermore

spreads over a wide distribution for different random realizations of roughness

[14, 16]. Moreover, SR-limited mobility have been calculated for SiNW-FETs

using a Poisson-Schrödinger algorithm for electrostatics and then solving the

Boltzmann transport equation with the Monte Carlo method [17, 18].

In order to reduce current leakage due to the small thickness of oxide lay-

ers between active channel and gate, gate stacks based on high-κ materials like

HfO2/SiO2 or ZrO2/SiO2 are currently adopted for ultra-short transistors [19].

However, even if such materials provide very low gate leakage, they are probably

responsible of a significant reduction of the low-field mobility. This is due to the

generation of new important scattering mechanisms like remote soft phonons [20]

and Remote-Coulomb Scattering (RCS) arising from the presence of additional

dipoles and charged defects at the high-κ/SiO2 interface due to the different

chemical properties of two amorphous materials [21, 22, 23].
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Even in the case of ultra-short nanotransistors and SiNW-FETs, low–field

mobility is still considered a fundamental factor of merit. Several electrical char-

acterizations have been performed on nanometric devices and the low-field mo-

bility has been extracted by means of different techniques [24, 25, 26, 27, 28]. All

these measurements have reported a dramatic reduction of the mobility with the

channel length, whose origin is still debated. A possible explanation deals with

the effect of the ballistic (or apparent) component of the mobility [29], which be-

comes dominant with respect to the diffusive one for short channel lengths. Such

a ballistic mobility can be interpreted as generated by an ideal-contact resistance,

which remains the only source of scattering in a ballistic device as formulated by

the Landauer theory of transport [30, 31]. The role played by the ballistic or ap-

parent mobility in short-channels device has been also investigated in theoretical

studies [32, 33] and recently with experiments carried out on SiNW-FETs [5].

Due to the importance of tunneling current and ballistic transport in ultra-

short devices a full-quantum transport simulation is envisaged to correctly de-

scribe elastic scattering mechanisms like RCS or SR scattering which are ruled

by the quantum-phase coherence. In addition, another difficulty in predicting the

channel mobility of such devices is that the transport of a quasi-ballistic device

is strongly influenced by specific occurrences of few scattering events and hence

proper averages need to be considered. In the presented study, a direct approach

is used to evaluate the effect of both SR and remote-Coulomb interaction. The

effective mobility is computed as the ratio between conductivity and electron

density for several geometrical realizations of rough interfaces and fixed-charges

distributions, evaluating the averaged impact of SR and RCS over a statistical

ensemble of nanowires.

After a brief overview on the electronic properties of interest in transport sim-

ulation of silicon nanowires in Sec 3.1, the device model is presented in Sec. 3.2

with the description of the simulation parameters. The remaining sections are

devoted to computational studies focusing mainly on the impact on the effective

mobility of short-channel SiNW-FETs of the most relevant scattering mecha-

nisms. In Sec. 3.3 the dependence on the device lateral dimensions of SR–limited

mobility is presented. In Sec. 3.4 the impact of the remote-Coulomb scattering

is investigated for different geometrical and technological parameters. Finally, in

Sec. 3.5 electron-phonon interaction is considered in addition to surface-roughness

and remote-Coulomb scattering and its impact on the effective mobility of scaled

device is analyzed.

3.1 Electronic properties of SiNWs

Several simulation studies have been carried out on the electronic properties

of silicon nanowires. Band structure calculations and applications to transport
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analysis have been widely reported [34, 35, 36]. Molecular dynamics simulations

have been used for studies on thermal conductivity [37, 38]. Electro-mechanical

and optoelectronic properties of silicon nanowire are a field of experimental anal-

ysis revealing promising applications [39, 40, 41]. As already mentioned, the

effect of quantum confinement on the electron-phonon interaction as well as on

the phonon-phonon interaction have been investigated [17, 42, 43]. Here, a brief

overview of the major effects of quantum confinement on the electronic properties

and band structure of SiNWs is given. In addition, the focus will be mainly on

the effect on silicon conduction band, being the basis for the following analysis.

Bulk silicon is an indirect band gap material with a band gap of approx-

imately 1.12 eV, with the minimum of the conduction band located in the ∆

direction. Transport properties for the conduction band are mainly affected by

the properties of the six degenerate ∆ valleys and the information about the

minima occurring in the Λ direction will be discarded. The effective mass values

describing the ∆-valley ellipsoids are ml = 0.916m0 and mt = 0.191m0, where

m0 is the free electron mass.

In [35] the analysis of the major properties of the SiNWs band structure is re-

ported. A TB approach with parameters calibrated for an accurate reproduction

of both bulk silicon band gap end effective masses is used. The nanowire surface

is considered passivated with hydrogen atoms, avoiding the effect of surface states

associated with dangling bonds [34]. Effects of relaxation of the crystal structure

are neglected using a bulk lattice constant a0 = 5.43 Å [36]. The first effect

to note is that the quantum confinement causes a splitting of the six-degenerate

valleys of silicon. With direct reference to a square-shaped silicon nanowire with

infinite transport axis along the [100] direction, four valleys are projected to the

Γ point (kx=0) of the 1-D Brillouin zone of the wire. These valleys identify the

conduction band-edge and they are usually referred to as ∆4. The remaining

two valleys are zone-folded in a off-Γ position (approximately kx = ±0.37π/a0).

They present a higher minimum energy with respect to the ∆4 valley and are

usually referred to as ∆2 valleys or primed valleys. Concerning the valence band,

a significant mixing and splitting of the band is reported [35] and it will not be

considered in this discussion. In the case of an irregular cross-section, the degen-

eracy of the ∆4 is removed, identifying two distinct minima doubly degenerate.

This is the case in presence of surface roughness, of remote-Coulomb interaction

or of a channel region partially covered by the gate, implying a separate treatment

of the differently-oriented unprimed valleys.

Important consequence of the valley splitting is to transform the SiNW in a

direct band gap semiconductor, with a band gap depending on the confinement

itself. Both in [34] and [35] a lifting of ∆4 and ∆2 is reported as the size of the

wire is reduced, reflected on a larger band gap and on a variation of the effective

masses. The band gap is reported to be approximately 1.2 eV for a wire with a
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6-nm width, increasing fast to 2.5 eV for a 1.2-nm width one.

The trend for the band gap can be understood also in terms of a wire with

hard boundary conditions. Effective-mass calculations thus predict a band gap

increase proportional to ≈ 1/W 2, where W is the width of the wire. From tight-

binding calculations, a deviation from this simple analytical model is found. In

particular, the effective-mass prediction obtained with silicon bulk effective mass

values significantly overestimate the band gap value for lateral widths less than 5

nm, as a consequence of a non-negligible increase of the ∆4 quantization effective

mass.

The study of the impact of quantum confinement on transport has been pro-

posed in terms of transmission properties of infinite wires [35] and performance

evaluation of ballistic SiNW-FET [34, 36]. It is of interest to note that in these

studies there is a constant reference to both TB and EM models. In particular,

the validity of the simple parabolic effective-mass approximation when applied

to the analysis of SiNW-FET is investigated. Directly connected to the previous

observations on the dependence of the band gap on the wire width, it is clearly

found that the EM approach, calibrated with bulk parameters, gives an incorrect

transport description as the wire dimensions are scaled down to few nanometers

(below 5 nm). This implies a redefinition of the transverse and longitudinal mass

values in order to successfully extend the application of this method. With the

use of properly calibrated values the tight-binding I − V curves can be nicely

reproduced over a wide range of wire widths [36]. In the following, values for

the transverse and longitudinal effective mass different from the bulk ones will

be used for W < 5 nm. Other effects on the band structure can not be in any

case captured by the effective-mass approximation. In particular, the resolu-

tion of the valley degeneracy for both ∆4 and ∆2 valley as the wire dimensions

are shrunk down to 2 nm and below. Narrower nanowires show also a larger

dependence of the valley degeneracy on the gate voltage. In addition, channel

orientations different from the [100] analyzed so far, are less accurately described

by the effective-mass approach [44]. The presented results in any case confirmed

the validity of the parabolic effective-mass approach for the cases presented in

the following sections, as it captures all the essential transport features.

3.2 Device Model

Two two-dimensional sketches of the device are reported in Fig. 3.1: one (top)

representing a device cross-section along the transport direction; the other (bot-

tom) a cross-section on transverse yz-plane. The device is supposed to be infinite

along the transport direction, through the inclusion, with the model previously

described, of ideally ohmic contacts extending the doped source and drain regions

reported in figure. A uniform doping distribution with abrupt junction with the
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Figure 3.1: (Top) Cross-section of the device along the transport direction, x.
The subdivision of the device in three regions, source, drain, and channel, is high-
lighted. (Bottom) Cross-section on the transverse yz-plane. A GAA architecture
is supposed.

intrinsic channel is supposed at the contacts. Only the case of n-type devices

is considered due to known limitations of the effective-mass model in describ-

ing transport in silicon valence band. An oxide layer covers the entire nanowire

surface.

Several experimental realizations have been reported during the last years

for SiNW-FETs, showing different architectural choices for the gate electrode.

Solutions moving from partially covered channels, as π-gate or Ω-gate FETs, to

GAA devices, have been reported. Although the possibility of activating inde-

pendently the four gate electrodes have been considered in the numerical solver,

all simulations will refer to GAA devices, known to ensure the best electrostatic

control reducing short channel effects.

All the results that will be presented, in both ballistic and dissipative condi-

tion, have been obtained by solving the transport problem in the Coupled Mode

Space approach. The eigenfunctions to be used as basis set for the expansion of

the real-space Green’s functions are calculated for each slice of the device nor-

mal to the transport direction, by imposing vanishing boundary conditions in

the outer mesh nodes, including the wave function penetration in the oxide. In

presence of surface roughness or remote fixed charges, up to 50 transverse modes

have been considered to have a good convergence to the real-space solution. The

saving in computational time is still in any case high, allowing for the simulation
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of devices with a total cross-section extension (silicon+oxide) up to 11× 11 nm2

and total length up to 60 nm. In order to optimize the solution of the sparse

eigenvalue problem in the transverse plane, the routines of the ARPACK package

have been used [45].

The solution of the Schrödinger equation is performed within the parabolic

effective-mass approximation. Focusing on the linear regime analysis of trans-

port (low VDS biases) the parabolic effective-mass approximation is still expected

to give realistic results, although quantitative variations on the effective mobil-

ity value have been reported using a non parabolic model [46]. The channel

orientation is supposed along the [100] direction. Bulk silicon effective masses

(ml = 0.916 m0, mt = 0.191 m0) are used for wires with a lateral section wider

then 4 nm, while corrected masses (ml = 0.960 m0, mt = 0.230 m0) are adopted

for the smaller sections [34]. When describing penetration into the gate dielectric,

the oxide effective mass is fixed at one half of m0. The fundamental equations

to be solved in the transport analysis are the same presented in Sec. 1.3 for the

electron transport in conduction band within the CMS approach.

The electrostatic potential is calculated by solving the 3-D Poisson equation.

In accordance with the constraint imposed by the treatment of the surface rough-

ness (see Sec. 3.3), a uniform discretization step of 0.2 nm is used for the three

spatial directions. The total charge density used for the solution of the Pois-

son equation accounts for electrons, source and drain doping impurities, and for

the oxide fixed charges, when included. As the analyzed devices have an in-

trinsic channel and n-doped contacts, the hole contribution to the total charge

is discarded. The contribution of the exchange-correlation potential to the self-

consistent electrostatic potential is included as well. The additional exchange-

correlation potential, Vxc, due to the electron-electron interaction is considered

following [47] as:

Vxc(r) =
q

8πǫsia

2

παrs

[

1 + 0.7734x ln

(

1 +
1

x

)]

, (3.1)

where rs = a−1[4πn(r)/3]−1/3, x = rs/21, α = (4/9)1/3, a = 4πǫsi~
2/(m⋆q2) is

the effective Bohr radius, and n(r) is the local electron density. As proposed in

[47] and works cited therein, the aim of such potential correction is a qualitative

inclusion of this many-body effect.

The parameters for the calculation of the electron-phonon energy are pre-

sented in Table 3.1. In addition to acoustic phonons, a g-type and two f -type

optical modes are considered, as they are the most dominant contributions to

transport. Parameters are taken from [48], apart for a slight modification in

the phonon energy for the two f -type modes, as already described in [49]. The

modification is due to numerical considerations, allowing for a reduction of the

computational costs. The inclusion of the electron-optical phonon interaction, as

mentioned above, implies a coupling between the solution at energies at a distance
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Ξ DtKj (108 eV/cm) ~ωj (meV) selection rule

14.6 intravalley
11.0 63.2 g-type
2.0 47.4 f-type
2.0 63.2 f-type

Table 3.1: Parameters for the electron-phonon coupling.

∆E = ~ω0, where ω0 is the frequency associated to the specific optical mode. In

order to include every optical-phonon coupling, a sufficiently refined energy grid

is required, along with the simultaneous storage of the coupled Green’s func-

tions during the iterative solution of the kinetic equations in the self-consistent

Born approximation. For the chosen parameters, a fixed minimum energy step

of ∆Emin = 15.82 meV is identified, being the phonon energies of the considered

modes all multiple integers of ∆Emin. By this way, it is possible to describe the

coupled solution for energies ranging from a minimum value Emin to a maximum

value Emax = Emin +N×∆Emin, with N integer, accounting for the complete set

of relevant phonon modes. Additional refinements to the solution are obtained

by considering multiple nested energy grids having a lower energy value in the

range [Emin , Emin + ∆Emin [ . For the analyzed cases, reasonable values of N are

found in a range of maximum 40 giving accurate solutions and allowing for the

simulation of devices with large dimensions. An optimization of the number of

sub-grids to be considered is obtained through the use of Gaussian quadratures.

Typically, a set of 20 sub-grids is used.

3.3 Size dependence of SR–limited mobility

As previously remarked, surface roughness is often referred to be the most impor-

tant cause of mobility degradation in conventional MOSFETs at high transverse

fields. In SiNWs several competing mechanisms determine the impact of SR. As

reported in [7], a reduction of the density-of-states, in association with the effect

of volume inversion [17], will lead to a beneficial reduction of SR impact on mo-

bility. On the other side, as the dimension of the wires is reduced, in connection

to enhanced potential fluctuations, the SR scattering becomes stronger at low

transverse fields, causing a drastic mobility decrease [46].

In the following, surface roughness is not treated by using a perturbative

method, as widely described in the literature with reference to the solution of the

Boltzmann equation. A microscopic treatment of potential fluctuations will be

considered, assuming a specific realization of rough interfaces between the silicon

and silicon-oxide in accordance with a given statistical model. The model has

already been used in [7] and [14] for the case of full-quantum simulations within
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Figure 3.2: (Top) Conduction band profiles for two sections of the channel
(bottom) and the corresponding electron densities. The wire width is 5 nm. SR
parameters are: ∆m = 0.3 nm and Lm = 1.0 nm.

the parabolic effective-mass and tight-binding approximation, respectively. In

the presented work, the importance of a statistical approach in the evaluation of

device performance is emphasized, focusing on the effect of such fluctuations on

the effective mobility in devices with different lateral dimensions.

3.3.1 SR generation

An abrupt, randomly varying interface between Si and SiO2 is considered, using

a two-parameters autocorrelation model. According to [50] a quasi-continuous

function ∆(~r) representing the two-dimensional Si–SiO2 interface displacement

is assumed to be statistically characterized by an exponential autocovariance

function

C(~r) = ∆(~r ′)∆(~r ′ −~r) = ∆2
me

−
√

2r/Lm , (3.2)

where ∆m is the Root Mean Square (RMS) of the fluctuations and Lm the cor-

relation length. The accuracy of the above model has been validated in [50]

by means of an experimental characterization of planar Si(100)-SiO2 interfaces.

Each particular realization of SR was generated by starting from the Power Den-

sity Spectrum (PSD) obtained by transforming the correlation function (3.2) and

adding a random odd phase to the square root of the power spectrum in order to

create a statistics of local fluctuations in the momentum space. The real-space

realization of the rough surface is obtained by anti-transformation and then by

a uniform discretization with a 0.2 nm step. In order to ensure a better qual-

ity of the statistical properties of the interfaces, four surfaces bigger than the

ones needed for the definition of the channel of the device are generated and

subsequently cut to the actual device dimensions and merged.

An example of the interfaces resulting from this random generation is depicted

in Fig. 3.2. Contour plots (top) of the conduction band profile are reported for
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Figure 3.3: (Left) Effective mobility data correction for a device with ideal
Si–SiO2 interfaces. Raw data: whole gated region extension integration. DC:
differential charge evaluation. RC: reduced channel region integration. In the RC
approach 5 nm at the left and right contact-to-channel interfaces are removed in
the density evaluation. The wire section is 3 × 3 nm2 and LG = 20 nm. (Right)
Ballistic mobility for different wire sections and fixed channel length, LG = 20
nm (black lines, filled and open symbols) and for a 3 × 3 nm2 wire section with
LG = 25 nm (red line with symbols).

two different slices along the transport direction. The device section is of 5 × 5

nm2 and the roughness parameters are set to ∆m = 0.3 nm and Lm = 1.0

nm. Surface roughness affects differently the two slices by creating variations

in the confining potential well. Direct consequence is the change in shape of

the eigenfunctions given by the solution of the 2D Schrödinger equation on the

transverse plane. The change of the eigenfunctions causes the rise of the coupling

effect between transverse modes wich heavily impacts the electron properties of

the device. The resulting electron densities in the two slices are reported as well

(bottom), showing a different deformation of the charge distribution.

In order to focus on the impact of roughness on the mobility of SiNWs, rough

SiSiO2 interfaces are generated only in the gated region. Interfaces are kept

ideal in the source and drain regions. No coupling between different valleys has

been considered as the surface-roughness scattering is an intra-valley scattering

mechanism [46].

3.3.2 Effective mobility extraction

Effective mobility extraction has been performed in a linear transport regime.

Therefore the effective mobility reads:

µeff =
GLch

qN1D
, (3.3)
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where G is the conductance, Lch the channel length and N1D the channel electron

density per unit length.

A crucial theoretical point is the correct definition of the charge density in

(3.3), that is assumed to be uniform in the whole channel region. A calculation

of the density over the entire gated region gives rise to spurious effects due to

carrier penetration from the contact regions (gate-to-contact capacitances). This

is shown in Fig. 3.3 (left) as Raw Data in the case of an ideal ballistic device with

a cross section of 3 × 3 nm2 and gate length LG = 20 nm. For all the reported

simulations, a low drain bias of VDS = 5 mV is assumed and the temperature is

fixed at T = 300 K. Such a charge injection constitutes an offset overwhelming the

contribution of the inversion charge as VGS decreases, causing a drastic reduction

of the extracted mobility values. In order to eliminate the gate-to-contact charge

component two different methods have been proposed and compared.

First, the use of a differential charge calculation was considered [26]. Two

close gate lengths are considered (LG = 20 and LG = 25 in this study) and a

differential electron density as a function of the channel length is calculated as

N
(0)
1D (L) =

N1D(L ′)L ′ −N1D(L)L

L ′ − L
, (3.4)

where L ′, and L are the two channel lengths.

As long as shifts in the threshold voltage (VT) are negligible, the same electro-

static behavior and hence the same gate overdrive for a given gate bias, VGS, are

supposed for the two devices. Using the density given by (3.4) in the calculation

of (3.3) the corrected mobility curve labeled “differential charge” (DC) in Fig. 3.3

is obtained. In such a way the ballistic mobility curve recovers a monotonic de-

crease as a function of the gate bias as expected, which is due to the effect of the

Fermi statistics.

The second approach is based on the reduction of the integration region to

be considered for the calculation of the electron density. In this way, the density

evaluation is restricted over a section of the gated region characterized by an

almost uniform electron distribution not affected by the diffusion of carriers at the

contact-to-channel interfaces. The result obtained with this method is reported

in Fig. 3.3 labeled as “reduced channel” (RC). An overall good agreement with

the differential approach is found. Differences of small magnitude are present

only in the sub-threshold regime where the mobility is extremely sensitive to the

charge values. Anyway the results are unaltered from the qualitative point of

view.

The same analysis has been conducted taking into consideration devices with

rough Si–SiO2 interfaces. In this case a further difficulty comes from the threshold

voltage fluctuation for different surface roughness realizations [14]. This implies

that in the sub-threshold regime the charge does not always linearly depend on

the channel length, which makes the DC extraction impractical. This effect is
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Figure 3.4: (Left) Ballistic mobility (solid red line with symbols) and SR–limited
mobility (dashed black and blue lines with symbols) for a 3× 3 nm2 section wire.
Expectation value and sample standard deviation are reported (dispersion bars).
The evaluation has been conducted over 20 different geometrical realizations. SR
parameters are: ∆m = 0.2 nm and Lm = 1.0 nm. (Right) Potential energy profiles
for the first subband of an unprimed valley for two different bias conditions
(VGS − VT = 0.1 V and VGS − VT = 0.5 V) with ideal (dashed red line) and
rough (solid black line) interfaces. Device and SR parameters as above.

particular strong for smaller wire sections, while the expected behavior is re-

covered when moving to larger sections and higher gate voltages. Therefore, in

the following the SR–limited mobility data have been extracted with the RC

integration method.

3.3.3 Ballistic mobility analysis

Preliminary simulations have been performed to extract the ballistic or apparent

mobility in devices with different lateral sizes. The ballistic mobility has been

used both as a reference case and as a first validation of the used methodology.

Then, the effect of the SR on the effective mobility has been calculated and

analyzed by a comparison with the ideal ballistic case.

The analyzed devices have square sections with channel width ranging from

3 to 7 nm. The gate length is fixed at 20 nm. The silicon-oxide is 2 nm thick

with ideal Si–SiO2 interfaces. Source and drain contacts with a donor doping

concentration of 2 × 1020 cm−3 and a conduction band-edge gate work-function

are considered.

The obtained results are depicted in Fig. 3.3, where the mobilities of SiNWs

with four different sections are reported as a function of the gate overdrive,

VGS − VT . First, a monotonic decrease of mobility is noted as gate voltage in-

creases. This effect can be ascribed to the increasing importance of the electron
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Figure 3.5: (Top panel) Conductance spectral density and (bottom panel) chan-
nel charge density evaluated for the potential profiles reported in Fig. 3.4 in
both (red lines) ballistic and (black lines) SR case. The gate biases are (left)
VGS − VT = 0.1 V and (right) VGS − VT = 0.5 V. G0 is the quantum conduc-
tance, accounting for valley and spin degeneration. The wire section is 3×3 nm2.
The drain bias is fixed at VDS = 5 mV. SR parameters are: ∆m = 0.2 nm and
Lm = 1.0 nm.

gas degeneracy. In fact, as expected from an analytical flux theory for a single-

occupied 1-D subband [10],

µeff ∝ F−1(ηF )

F− 1

2

(ηF )
, (3.5)

where Fn(η) is the n-th order Fermi integral and ηF = (µs − E0)/(kT ), with E0

being the subband eigenvalue.

As the primed valley begins to be populated, a degradation of mobility is

also caused by its larger effective mass in the transport direction. This effect is

evident when comparing the mobility values of the 3× 3 with the 4× 4 nm2 wire

and of the 5× 5 with the 7× 7 nm2 wire for large gate voltages. The jump in the

values when passing from the 4× 4 nm2 to the 5× 5 nm2 wire is due the change

in the quantization condition (effective mass variation).

As the wire width is additionally increased, an almost equivalent contribu-

tion to mobility is obtained from the populations of the primed and unprimed

valleys and the mobility saturates to a section-independent value. In addition,

the ballistic mobility for a 3 × 3 nm2 section wire with LG = 25 nm is reported.

As expected, a perfect linear dependence on the gate length is found.
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3.3.4 Impact of surface roughness

The study of the impact of surface roughness on the device performance has

been carried out through a comparison of the SR–limited with the ideal ballistic

mobility. Three different cross-sections are deeply analyzed, with 3, 5 and 7 nm

lateral width. The gate length is fixed to LG = 20 nm, focusing, in this way, on

the quasi-ballistic transport regime. SR parameters are set to ∆m = 0.2 nm and

Lm = 1.0 nm, which are expected to be typical values for Si–SiO2 interfaces [50].

The other electrical and physical parameters are the same as above.

The analysis has been conducted following a statistical approach, taking into

consideration different surface realizations in order to estimate the expectation

values and their standard deviation. This has been necessary since the considered

gate length was not long enough to reach a complete diffusive transport regime.

In Fig. 3.4 (left) the results obtained for a 3 × 3 nm2 wire are reported. The

solid red line refers to the ideal ballistic case while the dashed are two different

SR–limited mobility curves reported as examples. The expectation value and

the sample standard deviation reported at low and high gate bias conditions

have been evaluated over 20 different geometrical realizations. The values are

reported as a function of VGS − VT , where VT is the ballistic threshold voltage,

not accounting for the possible shift in VT in each single realization.

For the 3 × 3 nm2 wire case, although a reduction of mobility is obtained

in presence of SR with respect to the ballistic case, a non-uniform trend of the

mobility curves as a function of the gate voltage is found, depending on the

specific surface realization. This non trivial dependence is exhibited by the two

examples in Fig. 3.4, one showing a slight mobility reduction, the other a mobility

increase from sub-threshold to high biases regime.

Such behaviors imply a larger mobility variation for low rather than for high

voltages, evidencing a reduction of the importance of SR with the increase of the

channel carrier density. This result is opposed to the classical interpretation of

the SR effect and can be ascribed to the effect of the quantum-phase coherence,

that plays an important role when energy independent scattering mechanisms are

considered.

Indeed, one of the two main effects of surface roughness is to create large

fluctuations of the effective potential profile experienced by the electrons, the

other being the enhanced coupling strength between transverse modes of adjacent

sections [7]. In Fig. 3.4 the potential profile of the first subband of an unprimed

valley is reported at low and high gate biases both for the SR and the ballistic

case, showing that the potential fluctuations are the predominant effect for the

3 × 3 nm2 section wire.

Several potential wells can be identified along the transport direction, sug-

gesting the occurrence of charge localization. In order to investigate the latter

phenomenon, the two physical quantities used in the calculation of µeff , that are
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Figure 3.6: Ballistic mobility (red line with symbols) and SR–limited mobility
(dashed black lines with symbols) for a (left) 5 × 5 nm2 and a (right) 7 × 7 nm2

section wire. Expectation value and sample standard deviation are reported (dis-
persion bars). The evaluation has been conducted over 20 different geometrical
realizations. SR parameters are: ∆m = 0.2 nm and Lm = 1.0 nm.

the conductance and the carrier spectral densities, have been analyzed. In the

top panel of Fig. 3.5 they are shown for VGS − VT = 0.1 V, comparing the ballis-

tic and the SR case. The same parameter set used in the calculation of Fig. 3.4

(right) was adopted. SR strongly modifies the shape of the two spectral densities

characterized by sharper peaks with respect to the ballistic case. At low gate

voltages, this gives rise to a detrimental reduction of the conductance, whereas

charge density can even be increased. Hence, the SR–limited mobility value is

found to be reduced down to the 50% of the ballistic value.

As the gate voltage is increased and further propagating states appear, local-

ization effects become less important and the fluctuations of the potential profile

are self-consistently smoothed, resulting in the widening of the wells. As shown

in the bottom panel Fig. 3.5 the differences between the spectral densities in the

ballistic and SR case become less important. Depending on the specific realiza-

tion of SR this can result in a possible increase of mobility with the gate voltage.

In any case, the trend at high gate voltages is characterized by mobility values

less spread than at low VGS, with a reduction of the standard deviation with

the increase of the gate voltage that is found to scale from 20% to 11.3% of the

expectation value.

A similar analysis has been carried out for wires with lateral widths of 5 and 7

nm. The results are shown in Fig. 3.6 where a specific SR–limited mobility curve

is reported compared to the ideal ballistic case for the two different geometries. In

contrast with the previous result for the 3× 3 nm2 section wire, a monotonically

decreasing mobility for increasing gate voltages is reported in both cases.

Due to the widening of the wire section for a fixed RMS value in the surface
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generation, the effect of the quantum confinement is reduced with respect to the

previous case and smoother subband profiles are obtained (not shown). Reduced

potential fluctuations cause a smaller degradation of the conductance reflected by

an overall higher ballisticity and by the suppression of the potential wells in the

channel. This means that transport properties of such devices are mainly affected

by the scattering mechanism through the transverse mode coupling. This effect

becomes more important as the gate overdrive increases and turns on additional

states which contribute to the channel density and to the mode coupling, leading

to the mobility degradation.

In Fig. 3.7, in order to estimate the impact of mode coupling, the mean value

along the channel of the autocorrelation of the first mode of an unprimed valley

(|c1,1|2) and of its correlation with the second mode (|c1,2|2), as defined by (1.22),

have been computed. As expected, the correlation coefficients |c1,1|2 and |c1,2|2
show a stronger dependence on VGS for SiNWs with larger sections.

A further contribution to this analysis is presented in Fig. 3.8, where the

charge densities for the three considered sections are displayed at the same large

gate overdrive. Here, a drastically different distribution of the charge is shown,

with the charge in the smallest section confined in the central region, whereas it

is pushed at the surface for the largest one. This is also consistent with the ex-

pected classical behavior predicting that the increasing importance of SR limited

mobility for large gate voltages is due to the charge squeezing toward the Si–SiO2
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Figure 3.8: Charge density computed for a given slice of the channel and dif-
ferent lateral widths (3, 5, 7 nm from left to right). The densities are evaluated
at the same VGS − VT ≈ 0.7 V condition. SR parameters are: ∆m = 0.2 nm and
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interface.

It is also of interest to note that, due to the increasing importance of the

coupling effect over that of the potential profile deformation, at larger sections a

reduced standard deviation of the mobility values is obtained (averaging effect).

At high gate bias it reduces from 11.3% of the mean value for the 3× 3 nm2 wire

to 4.6% and 3.3% for the 5 × 5 and 7 × 7 nm2 ones, respectively.

By comparing the two limiting scattering mechanisms, one finds out that

potential fluctuations are almost insensitive to the gate voltage, emerging in par-

ticular at low gate biases, whereas the mode-mixing strongly depends on the bias

voltage and becomes more and more important as the gate voltage is increased.

Finally, the previous data have been collected to carry out a statistical analysis

of the ratio between the SR–limited mobility and the ideal ballistic mobility at

low and high gate biases. In Fig. 3.9 the probability distribution of such mobility

ratio over 20 different geometrical realizations of the interfaces is reported. This

figure summarizes the main results of this analysis, showing the general reduction

of the mobility dispersion as gate voltage is increased and the larger influence of

SR for smaller wires.

It is important to notice that the presented results quantitatively depend on

the choice of the RMS of the surface roughness. If a larger value of RMS is

used, the impact of the potential-fluctuation mechanism would become more and

more predominant, especially at low gate biases. This is somehow confirmed by

the analogy with ultra-thin body SOI transistors, where such effect has been

experimentally observed [13].

3.4 Impact of remote-Coulomb scattering

The RCS–limited mobility has been theoretically investigated starting from scat-

tering rates modelled within the Born approximation in [51] and electron mobil-

ity degradation due to RCS has been calculated in ultra-thin oxide MOSFETs
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by Esseni and Abramo in [52] by using the relaxation-time approximation and

showing the important role of the electron screening. Saito et al. proposed an

analytical model reproducing the mobility reduction due to fixed trapped charges

at the Al2O3/SiO2 interface of metal-insulator-semiconductor field-effect transis-

tors (MISFETs) and the mobility increase with the interfacial layer thickness

tIL [1, 53]. Numerical calculations based on the Monte-Carlo method have been

carried out to compute the RCS–limited mobility and its reduction as measured

on high-κ/SiO2 gate stack MOSFETs [54, 55].

Due to the use of ideal metallic gates, the effect of the remote-Coulomb inter-

action will be considered only in presence of a high-κ/SiO2 gate oxide stack, with

fixed-charge centers localized at the interfacial plane between the two different di-

electrics. As for the case of surface roughness, the approach is non-perturbative,

considering different distributions of impurities and statistically evaluating the

impact on the effective mobility.

3.4.1 Fixed charges generation

In Fig. 3.10 a schematic section of the device in the gated region is reported.

An interfacial layer of silicon oxide with thickness tIL is placed between the sili-

con channel and the high-κ gate dielectric. Positive and negative impurities are

supposed to be randomly localized at the interface with a uniform probability

distribution over the 2-D interfacial plane with a given density NFix.
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Figure 3.10: Sketch of the transverse section of the device under the gate region.
A SiO2 interfacial layer, with thickness tIL, lays between the high-κ oxide and the
silicon channel. Randomly distributed positive and negative charges are present
over the interfacial plane.

The presence of fixed charges is considered only in the region covered by gate,

thus allowing to focus on channel transport properties and to study the impact

on effective mobility. No coupling between modes arising from different valleys

is considered, as the remote-Coulomb interaction is an intra-valley scattering

mechanism [52].

This model has been already proposed in [56] and applied to the study of

planar thin body transistors. In [56] the use of fixed charges of opposite sign is

at the basis of the observed mobility degradation connected to remote-Coulomb

scattering. A uniform charge distribution located at the gate/oxide interface

is indeed supposed to generate a simple shift of flat-band voltage with small

impact on the channel mobility due to the distant location. On the other side,

dipoles located at the interfacial layer are able to affect the carrier transport

through potential oscillations, while no significant shift of the flat-band voltage

is expected due to a quantitative balance between charges of opposite sign. The

magnitude and impact of the potential oscillations strongly depend on the choice

of the specific values of NFix and tIL, being the only two parameters introduced

in the model.

It is important to recall that in the presented model a statistically uniform but

discrete distribution of charges is introduced. Thus a dependence on the specific

realization of the charge distribution is expected on the transport properties of

the device. The evaluation of the RCS effect on the effective mobility will be

carried out by following a statistical approach and averaging the results obtained

on a set of realizations.

In the following, rectangular shaped Si-NWs with a fixed gate length of 40

nm and fixed lateral dimensions of 5×5 nm2 will be considered. Source and drain

regions are supposed 10 nm long and doped with a donor concentration of 2×1020
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Figure 3.11: Energy profiles along the transport direction for the first mode of
one of the unprimed valleys for different gate bias conditions. RCS parameters
are: NFix = 1× 1013 cm−2 and tIL = 1.0 nm. The source and drain Fermi levels,
EFS and EFD, are reported.

cm−3. A conduction band-edge gate work-function is used. As in the previous

analysis, the drain voltage is fixed at VDS = 5 mV and a gate voltage sweep from

the sub-threshold regime to the high overdrive state will be considered.

The high-κ oxide thickness tox is 2 nm, while tIL varies from 0.6 to 1.4 nm.

The dielectric constant of the external layer has been set to twice the value of

the silicon-oxide. The chosen value of tox allows for neglecting the effects of the

gate leakage current and ensures a good convergence of the deformed potential

profiles to the boundary conditions fixed by the ideal metallic gate. The density

of the fixed charge centers on each of the 2-D interfacial planes, NFix, is varied

in the range from 5 × 1012 cm−2 to 2 × 1013 cm−2. The ballistic device, used as

reference, is characterized by the absence of trapped impurities.

3.4.2 Screening effect

The main effect of the presence of fixed-charge centers on the transport properties

of the device is to induce spatial fluctuations of the potential profile and hence of

the 1-D subbands experienced by the electrons. The related variation of the con-

finement condition at each slice of the device along the transport direction causes

an additional enhancement of the coupling effect between transverse modes. The

two competing mechanisms affect the carrier transport with different strength at

different gate biases.

The inclusion of the impurities directly in the Poisson equation as additional

charge-density contribution gives a solution that self-consistently accounts for the

screening effect due to the channel carriers. This is clearly shown in Fig. 3.11

where the energy profiles of the first mode of one of the unprimed valleys are
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Figure 3.12: (Solid lines with symbols) Turn-on characteristics for devices with
different NFix values and a fixed value of tIL = 1.0 nm. (Black dashed line
with symbols) The reference ballistic case is reported for comparison. The drain
voltage is set to VDS = 5 mV.

reported for different gate bias conditions. As the gate voltage is increased and a

higher carrier density is present in the channel, the Coulomb potential generated

by the fixed charges is screened by the electrons at the surface, thus reducing the

perturbation effect. A progressive smoothing of the potential energy fluctuations

is shown, while the potential profile gets closer to the ballistic flat one.

As previously stated, at low gate voltages, the presence of marked and sharp

oscillations of the potential is the limiting scattering mechanism. At higher gate

overdrives the confinement of the carriers near the Si/SiO2 interfaces induces an

increased mode mixing, which prevents the transport solution to recover a purely

ballistic condition. This effect and its dependence on the chosen lateral size of the

wire has been already investigated in the previous section in presence of surface

roughness. It is important to note that in the case of rough Si/SiO2 interfaces no

significant role of the screening effect on the subband deformation was reported.

3.4.3 Transfer characteristics analysis

A preliminary analysis is focused on transfer the characteristics at low drain

bias and different values of the interface layer thickness and impurity density. A

qualitative description of the impact of the remote-Coulomb interaction on the

IOFF current and on the threshold voltage is also reported.

In Fig. 3.12, the output characteristics in both linear and logarithmic scale are

reported for devices with NFix= 5×1012, 1×1013, and 2×1013 cm−2, considering

a single realization of impurity charge distribution for each parameter value. The

interfacial layer thickness is kept at tIL = 1.0 nm. The proposed values for the

fixed charges density are chosen as typical values presented in the literature and
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Figure 3.13: (Left) Potential energy profiles of the lowest unprimed subband
for two different values of NFix, namely (red) 5× 1012 and (black) 2× 1013 cm−2,
at approximately the same gate overdrive VGS − VT ≈ −0.1 V. (Right) The
transmission probabilities are reported for this configuration (horizontal axis).

are consistent with flat-band shift measurements [1]. The curves are plotted as

a function of VGS − VT , where VT is the threshold voltage extracted from the

linearization of the output characteristic at high overdrive. First, a progressive

increase of VT with increasing defect densities is observed. As it is stated in

the description of the model for the inclusion of charged centers, the random

generation of discrete fixed charges deviates from the ideal condition of a uniform

distribution of dipoles causing a non-compensation of the impact on the potential

itself. This is especially observed at higher densities which lead to the formation,

with high probability, of positive/negative charge clusters. An example of such a

phenomenon is reported in the left panel of Fig. 3.13, where the subband profiles

at a sub-threshold bias for devices with NFix = 5×1012 cm−2 and NFix = 2×1013

cm−2 are shown. An increase of the threshold voltage of 60 mV is found for

the device with NFix = 5 × 1012, whereas ∆VT = 170 mV for the device with

NFix = 2 × 1013 cm−2. Such anomalous increase reflects the effects of a cluster

of positive charges in the device with NFix = 2 × 1013 cm−2.

Moreover, the presence of charge clusters has a direct effect on the current

characteristics. In fact, depending on the specific realization of fixed charges, fa-

vorable tunneling paths can be possible. The tunneling component of the current

has a detrimental impact on the performance of the device with a sharp increase

of the current levels in the off-condition and with a reduction on the gate control

capability, reflected by a progressive increase of the inverse sub-threshold slope.

By decreasing the gate voltage and depleting the channel, higher barriers are
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Figure 3.14: (Solid lines with symbols) Turn-on characteristics for devices with
different tIL values and a fixed value of NFix = 1 × 1013 cm−2. (Black dashed
lines with symbols) The reference ballistic cases are reported for comparison. The
drain voltage is set to VDS = 5 mV.

induced by the unscreened fixed charges as shown in the left panel of Fig. 3.13,

resulting in the VT shift and enhanced tunneling currents. The right panel of

Fig. 3.13 shows the corresponding transmission probabilities as a function of

energy. An increasing importance of the tunneling current can be observed for

the device with the higher value of NFix, reflected by a spreading of the current

values over almost one order of magnitude in the sub-threshold regime. It is

worth highlighting that the transmission probability largely depends on inter-

subband scattering due to higher subbands (not shown in the figure), and that

this effect is correctly accounted for by the CMS approach. As far as the inverse

sub-threshold slope is concerned, a progressive increase from 63 mV/dec to 78

mV/dec is reported, compared to the ideal condition of SS = 60 mV/dec of the

ballistic device.

RCS also influences the electrical performance at large gate overdrives, where

a finite current reduction with increasing NFix is reported. This is easily ex-

plained by the increasing importance of the coupling of transverse modes for

large electronic densities: although electronic screening gives rise to a drastic

reduction of the spatial fluctuations and carriers experience mostly a thermionic

transport, the increased number of conducting modes implies a non-negligible

RCS scattering directly proportional to NFix.

A similar analysis has been carried out for devices characterized by the same

NFix = 1 × 1013 cm−2 value and different thicknesses of the interfacial layer,

namely tIL = 0.6, 1.0, and 1.4 nm. As in the previous case, in the sub-threshold

regime, a reduction of performance is reported, namely an increasing IOFF with
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Figure 3.15: (Left) Effective mobility as a function of VGS − VTbal
for tIL = 1.0

nm and for different values of NFix, and (right) for different values of tIL and
NFix = 1 × 1013 cm−2. (Green dashed line with symbols) The ballistic mobility
curve is reported as reference for the device with tIL = 1.0 nm.

tIL due to tunneling currents. As far as tIL is varied, a change in the shape

of the potential fluctuations (i.e. frequency and height of the oscillations) is

observed, resulting in a higher tunneling probability for the device with a thicker

interfacial layer. On the other side, the enhancement of the gate capacitance and

the reduction of the distance between fixed charges and carriers in the channel are

reflected in a higher impact of RCS on transfer characteristics at large overdrive

for the devices with tIL = 0.6 and 1.0 nm. A much reduced spreading of threshold

voltage values is measured, ranging from ∆VT = 40 mV for tIL = 1.4 nm to

∆VT = 79 mV for tIL = 0.6 nm, with respect to the ideal devices with equal total

oxide thickness.

It is important to recall that the analysis was carried out on the transfer

characteristics of a single charge distribution for any set of parameters. In such a

way, a trend was qualitatively deduced for the comprehension of their impact on

transport. A more general result can be derived through the use of a statistical

approach, as shown in the following section, focusing on the analysis of the RCS–

limited mobility.

3.4.4 RCS–limited mobility

The influence of RCS on the low-field mobility is investigated by using a sample

of 10 different realizations of fixed charges due to impurities at the high-κ/SiO2

interface and by a comparison with a reference ballistic device (without fixed

charges). The effective mobility extraction method is the same as presented in

the previous section.

The mean effective mobilities and their standard deviations are reported in
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Figure 3.16: (Left) Mean value of the RCS-limited mobility as a function of
the channel electron density, N1D, evaluated over 10 device samples, for different
values of NFix and tIL = 1.0 nm, and (Right) for different values of tIL and
NFix = 1× 1013 cm−2. (Top, Dashed line) The asymptotic behavior µRCS ∼ N1D

is plotted.

Fig. 3.15 for different values of NFix and tIL. Effective mobilities are plotted as

a function of VGS − VTbal
, where VTbal

is the threshold voltage of the reference

ballistic device. Due to this choice, the variability of the threshold voltage in each

sample is reflected on the spreading of the mobility around the mean value. The

largest relative variations are observed in the small overdrive regime where RCS

is most effective and the channel electron density is exponentially dependent on

the surface potential. According to the discussion on the transfer characteristics,

a maximum of the relative spreading is found for the highest NFix value.

The comparison with the reference ballistic mobility clearly shows the sig-

nature of the physical role played by Coulomb interactions with an increase of

the effective mobility with the gate overdrive when RCS is suppressed by the

screening effect of the charge in the channel. Consequently, larger impact of the

RCS on µeff is found for the devices with higher density of scattering centers as

well as for thinner interface layer thicknesses.

Generally speaking, the effect of RCS on the effective mobility of such short-

channel devices strongly depends on NFix and can be eventually inhibited by

optimized technological processes with the production of high quality interfaces.

A non-negligible component of ballistic electrons is still present in the trans-

port regime of the chosen device with gate length of 40 nm, in particular at large

overdrive biases. Therefore, in order to analyzed the impact of mere RCS on

mobility, the apparent mobility component has been subtracted. Following [29],

the decomposition

1

µeff
=

1

µbal(Lch)
+

1

µRCS
, (3.6)
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Figure 3.17: (Left) Mean RCS-limited mobility plotted versus the fixed charges
density, NFix, for different conditions of the channel electron density. (Dashed
line) The asymptotic behavior µRCS ∼ 1/NFix is reported. (Right) Mean RCS-
limited mobility plotted versus the interfacial layer thickness, tIL, for different
conditions of the channel electron density. (Dashed line) The asymptotic behavior
µRCS ∼ exp(2κthtIL) with κth = 0.65 nm−1 is plotted.

is used, where µbal(Lch) is the ballistic component, which depends on channel

length, and µRCS is the RCS–limited mobility. The above factorization is physi-

cally justified since the two scattering mechanisms are independent.

Fig. 3.16 shows the average RCS limited mobility

〈

(

1
µeff

− 1
µbal

)−1
〉

as a

function of the linear electron density in the channel. The mean values are

extracted on a set of 10 different samples. In order to compare devices at the

same inversion charge N1D, an interpolation of the simulated data is performed

before averaging. The evaluated standard deviation is reported for the two limit

conditions of high and low electron densities.

Both for NFix and tIL variations a clear power-law dependence of µRCS ∼ Nα
1D

is found, where α is close to unity, with a slowly deviation only at high densities.

Such a result is coherent with the power law found in experiments on double-

gate and ultra-thin-body MOSFETs [22], where the exponent α was observed

to increase by reducing the body thickness. Physically, the power-law behavior

originates from the screening effects at room temperature as it is given by the

increase of the inversion screening length with the 1-D charge density [57].

Finally, in Fig. 3.17 the dependence of the RCS-limited mobility with respect

to the two main parameters of the model is analyzed for three different conditions

of channel electron density. On one hand, a clear dependence on the inverse of

the density of the scattering centers at the high-κ/SiO2 interface is found. The

µRCS ∼ 1/NFix behavior is reported as reference. This result is in agreement with

the scattering rate expression given in [57] and can be seen, for the considered

scattering parameters and dimensions of the devices, as a validation of the Born
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approximation used in perturbative models.

On the other hand, a monotonic increase of the RCS–limited mobility with

the increasing interfacial layer thickness is found, although a non trivial depen-

dence on tIL is observed. According to experimental results on HfO2/metal gate

MOSFETs [23], the empirical law µRCS ∼ exp (2κthtIL), where κth is an effec-

tive inverse screening length independent of the channel carrier density at room

temperature, has been proposed. This reference model is reported for a value

of κth = 0.65 nm−1, as proposed in [23]. For sub-nanometric interfacial layers

an enhancement of mobility degradation is observed, which is also reported in

experimental works (see [58] and works cited therein). The discrepancy with the

proposed model for tIL < 1.0 nm can be interpreted as an inefficiency of elec-

tron screening when fixed charges are localized at a distance shorter than the

effective screening length and by considering their proximity to non-vanishing

wave-functions into the oxide.

3.5 Dissipative transport: the impact on device scal-

ing

Although channel lengths in the order of few tens of nanometers are considered,

the impact of the electron-phonon interaction can not be totally neglected. As

previously observed for the case of CNT-FETs, the inclusion of the fundamental

electron-phonon (PH) collision mechanisms have to be considered for accurate

estimates of the device performance. For this reason, the analysis with SR and

RCS considered so far has been extended here by including the phonon scattering

as well. Like in the previous analyses, a linear transport regime is considered,

and the attention is focused on the impact of the different scattering mechanisms

on transfer characteristics and effective mobility by varying the channel length,

Lch. NEGF formalism applied to the electron-phonon interaction in SiNW-FET

has been already presented in [59, 60], where the fundamental aspects of a full-

quantum treatment of PH scattering were addressed. Here, the aim is to highlight

the impact of different scattering sources in short channel devices, showing the

important role played by both phase-coherent and phase-breaking mechanisms,

using the concepts of effective mobility and apparent mobility introduced in the

previous sections.

3.5.1 Transfer characteristic analysis

The turn-on characteristics of devices with different channel lengths are reported

in Fig. 3.18 at VDS = 5 mV in both linear and logarithmic scale. Simulations were

carried out in presence of only the electron-phonon interaction. Devices have a

square cross-section with a lateral width of 5 nm. A gate-all-around architecture
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Figure 3.18: (Left) Turn-on characteristics in presence of PH scattering for
different channel lengths. VDS is 5 mV. A ballistic reference curve is reported
for a device with Lch = 20 nm. (Right) Current contributions for the different
valleys as a function of position in presence of PH scattering. Lch = 40 nm and
VGS = 0.7 V. The vertical dashed lines indicate the channel-to-contact interface
coordinate.

is used, with a conduction band-edge work-function for the ideal metallic gate.

The source and drain contacts have a fixed length of 10 nm, while Lch ranges

from 10 to 40 nm. A ballistic reference curve is added, for a device with Lch = 20

nm. The maximum drain current clearly shows a dependence on Lch also for

the shorter channel lengths. It is important to note that phonon scattering is

considered also in the contact regions, giving an additional contribution to the

current reduction. For the shortest device, a non negligible direct source-to-drain

tunneling contribution is evident in the sub-threshold regime, which impacts the

SS. A shift of the threshold voltage of approximatively 27 mV with respect to

the ballistic case is noted for the devices with Lch ≥ 30 nm.

As an example, the current contributions of the different valleys, now coupled

by inter-valley scattering are reported in Fig. 3.18 (right), along with the total

current as a function of the position x, for the device with Lch = 40 nm at VGS =

0.7 V. The ∆4 and ∆2 valleys currents are reported separately. The currents

associated to each unprimed valley are perfectly equivalent and are represented

as a single component of the total current. A current redistribution between the

primed and unprimed valleys is observed along the device, while the total current

is constant as expected from the continuity equation.

The impact of the additional scattering mechanisms is analyzed. A single con-

figuration of charge distribution and rough interface has been considered for the

devices with different gate lengths. For the remote-Coulomb scattering, a defects

density of NFix = 1 × 1013 cm−2 and an interfacial layer of 1.0 nm are consid-

ered, while the SR parameters are set to ∆m = 0.2 nm and Lm = 1.0 nm. The
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Figure 3.19: (Left) Turn-on characteristics in presence of different scattering
mechanisms for a fixed channel length Lch = 30 nm. VDS is 5 mV. (Right)
Turn-on characteristics in presence of all scattering mechanisms considered and
different channel lengths.

transfer characteristics of a device with a channel length of 30 nm are reported in

Fig. 3.19. The possible configurations PH+SR, PH+RCS, PH+SR+RCS, have

been investigated, showing the different effects as the gate overdrive is varied. In

accordance to the previous results both SR and RCS induce a VT shift, at any

gate length.

As far as the remote-Coulomb interaction is concerned, the induced potential

fluctuations and the possibility of charge-clustering can causes a variation of the

sub-threshold slope. On the contrary, no impact of the surface roughness is

reported on SS, even when variations of the channel length are considered, in

accordance with the results presented in [14]. SR and RCS scattering have again

a complementary behavior as the gate voltage is increased. Due to the screening

effect, remote-Coulomb scattering is effective mainly in the sub-threshold region.

On the contrary, for the wire size considered in this study, SR has a major impact

at high gate overdrives, due to the enhancement of the mode coupling.

The analysis has been extended to the other channel lengths. In Fig. 3.19

(right), the turn-on characteristics of devices with different Lch are reported,

computed by incorporating all the scattering mechanisms. The largest impact

of RCS in the sub-threshold region is found for the device with Lch = 30 nm,

reporting a reduction of the current of almost 50% at VGS = 0 V with respect the

case with PH scattering only. On the contrary, an enhancement of the tunneling

current causes a reduction of sub-threshold slope for the device with a channel

length of 20 nm. For the devices with Lch = 10, and 40 nm a similar reduction

of the off-current of almost 15 − 20% is observed, despite the different impact

of the DT current. As the gate voltage is increased, a similar impact of SR is

found for the different gate lengths, showing a clear signature of an averaging of
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Figure 3.20: (Left) Effective and scattering–limited mobilities in presence of
different scattering mechanisms. The channel length is fixed at Lch = 30 nm.
(Right) Effective and scattering–limited mobilities in presence of all considered
scattering mechanisms for different channel lengths. Mobility curves are pre-
sented as a function of the channel electron density. A normalization with respect
to the wire perimeter is supposed.

the scattering events for Lch ≥ 20 nm. A maximum current reduction of 15%

with respect the case with PH scattering only is reported for Lch = 40 nm at

VGS = 0.7 V.

3.5.2 Short-channel effective mobility

In analogy with the analysis presented on the transfer characteristics, the ex-

traction of the effective mobility clearly shows the signatures of the different

scattering mechanisms. In Fig. 3.20 (left) the effective mobility, µeff , of a single

device with channel length Lch = 30 nm is reported as a function of the chan-

nel electron density, NInv. A normalization of the density with respect to the

wire perimeter is used. The mobility extractions with different combinations of

scattering mechanisms are separately reported. By considering as a reference

the mobility given by the electron-phonon interactions, the fundamental aspects

observed so far for the SR and RCS mechanisms on mobility are confirmed, and

their combination is clearly captured. The RCS affects the effective mobility in

the low electron channel density range, while PH scattering and SR are the lim-

iting mechanisms at medium and high channel electron densities, respectively.

By applying the mobility decomposition proposed by Shur and presented in the

previous section, µsc =
(

µeff
−1 − µbal

−1
)−1

, the mobility limited by the channel

scattering mechanisms after the factorization of the ballistic or apparent com-

ponent, is analyzed. A shift of the curves to higher mobility values is observed,

being the ballistic component, which depends on the channel length, a limit-

ing factor. No changes are instead observed in the dependence on NInv for the
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Figure 3.21: PH–limited (left panel) and SR–limited (right panel) mobility for
different values of Lch as a function of the channel electron density.

different scattering mechanisms.

The same analysis has been carried out on channel lengths. Fig. 3.20 (right)

shows both the effective mobility and the scattering-limited mobility for different

Lch values as a function of NInv. The effective mobility shows the clear signature

of the ballistic component with a progressive lowering of the mobility as the gate

length is progressively scaled down, especially at high inversion charges, while

the dependence of the curves for low NInv values is less trivial. Here, a decreased

efficiency of the RCS and SR mechanisms makes the mobility degradation of the

shortest devices (Lch = 10, and 20 nm) less effective at low channel densities.

As the ballistic component of the mobility is removed, a dependence of µsc

on the gate length is in any case observed. This dependence is clear in the low

NInv range. As previously mentioned, results have been collected on devices with

a single distribution of fixed charges and of surface roughness for each channel

length. Hence, a dependence on the specific occurrence of potential fluctuations

has to be taken into account. In any case, it remains clear that SR and RCS

show a reduced degradation effect on mobility as the channel length is scaled

down. It is more complex and interesting the different dependence on Lch at

large gate biases. Here, an inversion of the previous result is observed, with a

mobility decreasing with descreasing channel lengths, as shown by the crossing

of the different curves in Fig. 3.20. The reasons of the latter behavior are still

unclear. One possible explanation is given by the different dependence on NInv

for the different scattering mechanisms.
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Figure 3.22: Backscattering coefficient in linear transport regime for different
channel lengths. All the considered scattering mechanisms are included.

In particular, a distinction between phase-breaking and phase-coherent scat-

tering mechanisms needs to be made. To this purpose, the PH–limited mobility,

µph, and the SR–limited mobility, µSR, have been isolated, making use of the

Matthiessen rule for the mobility decomposition. The results are reported in

Fig. 3.21, for different gate lengths over the whole range of NInv. A reduced

variation of mobility for the µph for Lch ≥ 20 nm is observed if compared with

the SR–limited mobilities. In particular, the µSR mobility curves show a relevant

variation with Lch due to the minor impact of SR at low NInv for the shorter

channel lengths and converging to almost the same value at high channel elec-

tron densities.

In the case of PH–limited mobility, the faster degradation at high transverse

field for the shortest device can be ascribed to an increasing importance of scat-

tering events occurring in the contact regions. In fact, as the gate voltage is

increased and the channel potential barrier is lowered, a comparable effect on

mobility is expected for both scattering events in the channel and in the source

and drain regions. This degradation results obviously to be more evident as Lch

is reduced, being the source and drain lengths kept fixed. For the longest de-

vice µph shows values and a dependence on NInv similar to these expected for an

infinite homogeneous structure [49].

On the other side, a faster degradation of mobility is reported as the channel

length is reduced in presence of phase-coherent scattering mechanisms, like SR or

RCS. It is important to stress that, in this case, due to the choice of limiting the

presence of rough interfaces or charged impurities only in the gated region, no

effects on mobility are expected by the source and drain regions. It can be thus

concluded that the absence of phase-breaking scattering mechanisms drastically
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changes the relation between current and charge density in the channel. Fur-

thermore, an enhancement of the effect of carrier degeneracy is observed as we

approach the limit of a ballistic transport regime, causing an intrinsic mobility

degradation for the short-channel FETs.

As additional analysis of the mobility properties in a quasi-ballistic device has

been carried out, based on the determination of the backscattering coefficient in

linear transport regime [61], r. Following [62], the backscattering coefficient can

be expressed as a function of the effective and the ballistic mobility as

r = 1 − µeff

µbal
, (3.7)

where the relation is based on the use of the Matthiessen-like rule for the ballistic

component of mobility. The evaluation of the backscattering coefficient as a

metric for the impact of scattering on device performance is equivalent to the

analysis of the impact of surface roughness presented in Fig. 3.9. The values of

r as a function of NInv are reported in Fig. 3.22, for different gate lengths and

in presence of all considered scattering mechanisms. As expected, a progressive

decrease of the backscattering coefficient is observed when reducing Lch, which is

a clear indication of an increased ballisticity for the short-channel devices. At the

same time, a larger relative variation of r is reported at high NInv for Lch = 10,

and 20 nm, confirming the observations drawn on the scattering-limited mobility.

3.6 Summary

In this Chapter, the NEGF formalism within the parabolic effective-mass ap-

proximation and the coupled mode space approach has been applied to the anal-

ysis of SiNW-FETs. Different scattering mechanisms limiting the performance

of ultra-scaled devices have been analyzed, namely: the surface-roughness, the

remote-Coulomb, and phonon scattering. SR and RCS are investigated by using

a non-perturbative approach, considering devices with specific random realiza-

tions of rough Si/SiO2 interfaces and fixed-charge center distributions at the

high-κ/SiO2 interface. A general analysis is thus statistically carried out on a

set of device samples. The impact of the surface-roughness and remote-Coulomb

scattering on the transport properties of SiNW-FETs was analyzed with special

attention devoted to the effective mobility. Effective mobility is found to be an

important performance metric also in the quasi-ballistic regime, showing findings

in accordance with the main semi-classical models. Finally, a global analysis of

the interplay of the different scattering mechanisms has been performed showing

interesting results on the mobility trend for devices scaled down to 10 nm chan-

nel length. Although additional investigations are still envisaged, the realization

of a simulation tool capable of giving a full quantum description of transport
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and of the most relevant scattering mechanisms for post-CMOS Si-based FETs

constitutes one of the main results of the presented work.
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Conclusion

In this thesis, a full-quantum description of transport in the effective-mass ap-

proximation was used to simulate post-CMOS nanoscale devices. Both ballistic

and dissipative transport regimes have been considered in carbon-nanotube and

silicon-nanowire based FETs. Phase-breaking phonon scattering mechanisms and

phase-coherent surface-roughness and remote-Coulomb scatterings were consid-

ered. Through the use of a Coupled Mode Space approach, a complete tool for

the analysis of SiNW-FETs containing all the major limiting transport factors

for the latest generations of transistors has been realized.

In the analysis of CNT based devices, improvements to the standard parabolic

effective-mass approximation were introduced in order to include, in a compu-

tationally advantageous framework, both the non-parabolicity of the energy dis-

persion relation and the band-to-band tunneling, also in presence of the electron-

phonon interaction. The model has been successfully validated via a direct com-

parison with results obtained with a tight-binding transport model, and applied

to analyze the ultimate scaling projections for n-i-n and p-i-n CNT-FETs.

Although the used models are attractive for their low computational costs and

showed a wide range of valid applications, improvements or alternative methods

are compulsory when the investigation of the electronic properties of new materi-

als or aggressively scaled and confined channels are considered. The TB method

has shown a good trade-off between computational costs and accuracy when ap-

plied to carbon-based materials. Its application to really narrow silicon nanowires

has given accurate descriptions of the changes in the energy dispersion relation.

In both cases, major limitations arise when self-consistent transport analyses are

required, imposing constraints on the maximum dimensions of the considered

devices. The TB model has in any case to be considered as a reference one, for

example in the extraction and calibration of optimal parameters to be used in

higher level approximations.

Concerning the description of the electron-phonon interaction, as already

mentioned, the effect of confinement of the phonon dispersion relation should

be considered. Going beyond the bulk approximation is much more important
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as the lateral dimensions of silicon nanowire are shrunk. The presence of the

coating oxide and other surface alterations should be analyzed also in terms of

their effect on silicon and phonon band structure.

Finally, with the growing interest in alternative channel materials and the new

possibilities for the fabrication of nanowire heterostructures through the bottom-

up approach, such methods, mainly applied to the analysis of silicon-based de-

vices, could find new important applications. Si/Ge or InAs/InP core/shell sys-

tems are only two possible examples of heterostructures, attractive mainly for

the reported high mobilities. Remaining on the field of carbon-based devices,

graphene nanoribbons have recently attracted attention in theoretical and ex-

perimental studies. Performances as good as the ones reported for CNTs are

expected with the additional advantage of a better compatibility with the stan-

dard silicon fabrication process of intrinsically planar devices.
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