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Preface

The subject of this thesis is the determination of the isospin dependence of the

Ar+Ni fusion-evaporation cross section.

One of the main goals of the current research in nuclear physics in the low and in-

termediate energy domain is to improve our knowledge about the properties of the

occurring reaction mechanisms and their dependence on the characteristics of the

entrance channel. By using secondary beams, as the ones produced by the SPIRAL

facility, new nuclei are accessible by the fusion reaction channel, both on the side of

proton-rich nuclei, in particular close to the N = Z line, and of neutron-rich nuclei,

generally not accessible by stable beams due to high neutron evaporation rate at the

beginning of the evaporation cascade. The advent of radioactive beams, coupled to

judiciously chosen targets, allows for the very first time to explore the properties

of a large number of isotopes of compound nuclei of a given Z and, consequently,

to test the influence of the mass asymmetry of the entrance channel on the fusion

cross section. The fundamental goal of this experiment is to explore the variation

of deexcitation properties and thus level density parameters with the N/Z ratio of

the compound nucleus when going from the proton drip line to stable nuclei. Nu-

clear level densities are fundamental quantities which govern the statistical decay

of excited nuclei and determine the properties of hot nuclei. Knowledge of the level

density is thus highly needed at low and high excitation energies and for the largest

possible range of N and Z, from β stability to the drip-lines.

In particular, in this work, fusion cross sections of different Ar isotopes on Ni targets

have been analysed.

The measurements had been performed at the GANIL SPIRAL facility, with the

high performance 4π detector INDRA, in conjunctionwith themagnetic spectrometer

VAMOS, realizing a very efficient tool for attributing a reaction product to a reaction

mechanism.
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Three Ar isotope beams, with energies of about 13 AMeV, have been accelerated

and impinged onto isotopically enriched Ni targets in order to produce Pd nuclei,

with mass number varyiing from 92 to 104.

The first step in the analysis has been the reconstruction of raw data, in order to

extract the information on the detectors working status, as well as on their stability

and performances during the measurements.

Being the compound nucleus deexcitation process axially symmetric in the lab-

oratory reference system, the computation of fusion-evaporation events can be per-

formed in a restricted ∆φ region. This procedure is based on the assumption of a

correct beam alignment; beam mis-alignment with respect to the symmetry axis of

the apparatus has been estimated and used to correct the data.

A fundamental part of the thesis work has been the discrimination between

fusion-evaporation and deep-inelastic events, which present similar features. It has

been possible by analysing the ∆E − E spectra and taking advantage of a dedicated

GEMINI simulation, using an ”INDRA experimental filter” especially developed for

this work and a code evaluating the deep inelastic reaction kinematics. Being per-

formed up to now neither energy and time of flight calibrations, nor Z and A identi-

fications, the performed fusion evaporation events selection is inclusive.

In the present thesis the results for the Ar+Ni cross-sections are shown, as well

as the comparison between the obtained cross section values and some theoretical

models. Data have been normalized to the elastic cross section and are limited to

the angular range covered by the INDRA apparatus. Data acquired by VAMOS have

not yet been analysed. Some discrepancies between data and theoretical result have

been pointed out, however the observed trend of the different fusion-evaporation

cross sections suggests a possible dependence on the reaction entrance channel and,

in particular, on the reaction isospin. To obtain a more detailed analysis, energy cal-

ibration, particle identification and VAMOS trajectory reconstruction are required.

The thesis is organized as follows: Chapter 1 contains a short review of the

physics issues treated in this thesis work, in particular those relevant to inelastic

and fusion reactions at low energy.

Chapter 2 contains a detailed description of the experimental apparatuses used for

the measurements. A description of electronic and mechanical coupling of the two

apparatuses is also presented, with particular focus on the trigger system.



3

In Chapter 3 the experimental setup is widely described, with special focus on the

available trigger configurations and on the on-line checks performed during the

measurements.

Chapter 4 is devoted to the preliminary data analysis: the raw data reconstruction

is described and a detailed analysis of the available correlations allows to verify the

detector stability and performances.

Chapter 5 is dedicated to the INDRA data analysis. In this chapter the beam align-

ment and the estimation of the mis-alignment with respect to the apparatus symme-

try axis is described. Moreover the procedure to discriminate fusion-evaporation

events from deep inelastic events is presented. The computation of the fusion-

evaporation statistic and its normalization to elastic cross section are described. The

obtained results are very preliminary, but the observed trend, compared with the

theoretical predicted ones, gives a hint at the possible isospin dependence of the

fusion-evaporation cross sections. More quantitative results will require a signifi-

cant effort to calibrate all the INDRA and VAMOS detectors.
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Chapter 1

Physics

1.1 Heavy ion collisions

Heavy ions reactions are one of the most powerful way to study nuclear matter

behaviour in extreme conditions of temperature and density.

The heavy ions peculiarity is due to the fact that these reactions are the best way

to produce nuclei with high excitation energy and angular momentum. One of the

reasons for this property can be found by comparing the mean nucleon-nucleon

distance in a nucleus (d ∼ 1.8 fm) and the reduced wavelength associated with

nucleon-nucleon collisions (ŻDeBroglie). If ŻDeBroglie ≪ d the most important effects

arise from nucleon-nucleon collisions (2-body effects), which can lead to particle

emission from the system (pre-equilibrium emissions). Otherwise, if ŻDeBroglie & d,

the collective behaviour of nucleons is important, mean field effects (1-body effects)

are present and the interaction leads to an energy sharing in the system, which can

reach high excitation energies. Some values of ŻDeBroglie are given in Table 1.1 for

different energies per nucleon and are calculated from the following relation [1]:

Ż �

√

40MeV · fm2

(E(CM) − VCB)
(1.1)

where E(CM) denotes the incident center-of-mass energy and VCB the Coulomb bar-

rier of two touching nucleons. Both E(CM) and VCB are expressed in MeV. As the

bombarding energy increases, the two aforementioned regimes are explored.

A first and schematic classification of heavy ions reactions is based then on the pro-

jectile kinetic incident energy (in the laboratory reference system) and in particular

on the comparison between the relative initial velocity of the two colliding nuclei

and the mean relative velocity of the nucleons inside a nucleus.

5



6 Chapter 1. Physics

Energy (AMeV) 1 10 20 30 40 50
ŻDeBroglie(fm) 6.5 2.1 1.5 1.2 1.1 0.9

Table 1.1 – Reduced wavelength ŻDeBroglie as a function of incident beam energy per nucleon
E/A from eq.1.1

Describing a nucleus in its ground state as a non-interacting fermionic degenerate

gas at T = 0, the energy of the highest energy level occupied by nucleons is the Fermi

energy. The correspondingmomentum, the Fermi momentum pF = ~kF , depends only

on nuclear density ρ. kF is given by [2]:

kF =

(

2π2ρ

3

)
1
3

≃ 1.36 fm−1 (1.2)

where ρ has the experimental value of ρ ≃ 0.17 nucleons/fm3. The Fermi energy is

then given by:

ǫF =
(ℏkF)2

2m
≃ 38MeV (1.3)

where m is the nucleon mass.

We can refer to low energy regime if the projectile incident energy is Elab <

10 AMeV, high energy if Elab > 100 AMeV and intermediate energy in the

region 10 AMeV< Elab < 100 AMeV.

Once the bombarding energy is fixed, a more detailed classification can be based

on the centrality of the collision, described by the impact parameter. Referring

to Fig.1.1(a), with impact parameter b [1] it is generally meant the perpendicular

distance from the projectile asymptotic trajectory (during its approach to the target

nucleus) to its parallel line passing through the target nucleus center.

The overall features of heavy ion interactions can be described referring to Fig.1.1(b).

If b is big enough that there is not overlapping between the two colliding nuclei, the

ions do not touch and can interact only through the Coulomb field, resulting in

Rutherford scattering (see Fig.1.1(b), trajectory labelled as elastic diffusion) and pos-

sibly Coulomb excitation.

When the impact parameter is reduced, the nuclear interaction becomes more and

more important and the projectile trajectory is determined by the competition be-

tween nuclear attraction and Coulomb repulsion. As a first approximation we can

assume that the distance at which the nuclear interaction becomes significant, Rgr,
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Figure 1.1 – Sketch of two nuclei collision.

is the sum of the radii of the ions. Experimentally [3], due to surface effects, Rgr is

found to be greater than this latter quantity:

Rgr = 0.5 fm + r0gr

(

A
1
3
1 + A

1
3
2

)

(1.4)

where A1 and A2 are the masses of the two colliding ions and r0gr = 1.36 f m.

We define grazing impact parameter bgr the impact parameter for which the distance

of minimum approach r0 (see Fig.1.1(a)) between the two nuclei is equal to Rgr. From

the motion equation:

bgr = Rgr

√

1 − VCB

E(CM)
(1.5)

where VCB is the Coulomb barrier between the two colliding nuclei and E(CM) the

kinetic energy in the center of mass reference system (CM system). The projectile

trajectory of a nucleus colliding on a target with impact parameter bgr is called graz-

ing trajectory and the diffusion angle is referred to as grazing angle θgr.

If b is comparable to bgr a grazing collision take place and the ions can be elasti-

cally or inelastically scattered or few nucleons can be transferred from one to the

other. When the impact parameter is further reduced the ions begin to interact very

strongly, providing the incident energy is high enough to overcome the Coulomb

potential. This transition is quite sharply because the nuclear densities rise very

rapidly in the surface region, causing a suddenly mutation in the interaction charac-

teristics.

Since nuclear reactions properties depend strictly on the impact parameter, typ-
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ically the two extreme case are distinguished, referring to collision with b ≃ 0 as

central collision and as peripheral collision to collision with b ≃ bgr.

The reaction mechanism depends then on the impact parameter, varying signif-

icantly moving from central to peripheral collisions. With reaction mechanism it

is generally meant the assembly of microscopic processes that lead to transfer part

of the initial kinetic energy, stored in the collective translational motion of the two

nuclei, to the internal degrees of freedom of the system, ranging from the collective

excitation of the projectile and target remnants to fragment or particle emission.

The impact parameter is the order parameter of any theoretical description of nu-

clear collisions, but it is not experimentally accessible. Estimations of b are typically

obtained by measurable variables monotonically correlated with b. Experimental

evidences [4] suggest that the Total Kinetic Energy Loss (TKEL) during the collision

is a good estimation of b: increasing the collision centrality, indeed, the kinetic en-

ergy that can be dissipated in internal degrees of freedom of the system increases.

From an experimental point of view the TKEL can be obtained from the difference

in the CM system between the initial kinetic energy ECM and the kinetic energy of

the reaction exit channel, i.e. the total kinetic energy of fragments produced in the

reaction, before any decay (TKE Total Kinetic Energy):

T KEL = ECM − T KE (1.6)

Experimental results have shown that the TKEL is well correlated to the impact pa-

rameter, both at low incident energy [4], where pre-equilibrium processes are nearly

absent, and at intermediate incident energy [5] .

1.2 Low energy nuclear reactions

At low bombarding energies the wavelength ŻDeBroglie associated to the relative

motion of the interacting nucleons is comparable or greater than the mean distance

between nucleons: the excitation energy, dependent on the impact parameter, is

then ”shared” between all nucleons in the system and the energy transferred to a

single nucleon is then not sufficient to bring it in a ”free particle state”. Moreover,

the Pauli Principle reduces the probability of nucleon-nucleon collision (Pauli block-

ing), the most part of the available phase space being occupied. Therefore the energy

dissipation can proceed only through the 1-body mechanism, i.e. some nucleons are

interchanged between projectile and target and retained by the respective attractive

mean fields. This is the energy range dominated by the mean field [6], so that the
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main components of the reaction mechanism can be understood in terms of the ef-

fective interaction potential between the two heavy ions. Its general form is of the

type

Ve f f
l (r) = VCB(r) + VN(r) +

~2l(l + 1)
2µr2

(1.7)

where l and µ are the relative angular momentum and the reduced mass in the input

channel, respectively. Ve f f
l has three terms:

the repulsive electrostatic or Coulomb potential VCB(r), equal to Z1Z2e2

r outside the

ions and rather less inside

the strongly attractive nuclear potential VN(r), which essentially acts only within

the volume occupied by the ions and falls off exponentially outside. This con-

tribution becomes repulsive when the densities of the two nuclei significantly

overlap. This is due to the incompressibility of the nuclear matter and to the

fact that nuclear shapes cannot evolve rapidly enough during the first stage of

the collision.

the repulsive centrifugal potential ~
2l(l+1)
2µr2 that accounts for the increasing difficulty

for the ions with higher relative angular momentum to approach each other.

This potential describes the forces acting on one ion due to the other, and clas-

sically speaking determines their orbits during the interaction. As soon as the ions

touch each other additional particle-absorbing processes come into play, and these

are usually represented as an absorbing potential. A typical behaviour of Ve f f is

shown in Fig.1.2.

It should be recalled that, because of angular momentum conservation

L = p∞b = ~l,

once the energy is fixed, the impact parameter or angular momentum scales are

equivalent. We can then classify reaction mechanisms in the energy range between

Coulomb barrier region and ∼ 10AMeV according to the impact parameter b or to

the orbital angular momentum l.

In the most central collisions for l < lcrit (lcrit ⋍ 100 in Fig.1.2), and for not too

heavy ions, the attractive force is strong enough to form a pocket in the Ve f f poten-

tial. The system is trapped and can fuse to form a Compound Nucleus (CN): a single

nuclear system kept together by its mean field. A very important aspect of fusion

at such moderate incident energies is that the reaction process may be divided into

two steps, well separated in time. The first step of the collision itself, which leads to
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Figure 1.2 – Evolution of interaction potential as a function of the relative distance r for vari-
ous value of relative angularmomentum l, in 40Ar+109Ag reaction. Picture taken
from [1].

a fully equilibrated excited nucleus on a timescale shorter than the decay time. De-

pending on the achievement of the equilibrium during the first step of the reaction

and on the result of the competition between fission and nucleons evaporation, a

single heavy residue may survive up to the end.

Increasing l, when some critical value lcrit, governed by the interaction potential be-

tween the interaction nuclei, is reached, the minimum in the potential Ve f f vanishes,

due the effect of centrifugal barrier. The critical angular momentum separates the

fusion and the so-called deep inelastic collision regions.

As the pocket in the potential disappears, for l ≥ lcrit, the system is never trapped

and the two reaction partners experience a more or less prolonged contact, during

which they are strongly slowed down by nuclear matter friction and, for a short

time, they form a ”quasi-molecular” states; at the end they reseparate again. Dur-

ing this step nuclei can exchange nucleons. Depending on the contact time, which

is directly linked to the observed rotation angle of the di-nuclear system before its

decay, a full equilibrium may be or not be achieved during this first step. As in

the case of fusion the produced excited system decay characteristics depend on the

achievement of the equilibrium during the first step of the reaction.

These dissipative collisions, where lcrit < l < lDIC, are the so-called Deep Inelastic

Collisions (DIC). The exact placing of the border lDIC is ambiguous. The usual ter-

minology of Projectile Like Fragment (PLF) and Target Like Fragment (TLF) indicates

the nuclei that retained the majority of the original projectile and target nucleons,
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respectively.

Slightly below lgr (lgr ∼ 190~ in Fig.1.2 for E/A ≃ 10AMeV), but for l > lDIC, quasi-

elastic and transfer reactions are observed. If both dissipative and fusion reactions

are clear signatures of mean-field effects leading to a collective behaviour of the

involved nuclei, in quasi elastic and transfer reactions only the nucleons occupying

the most external nuclear orbitals are involved and the projectile and the target kine-

matical properties are only slightly perturbed.

Rutherford elastic scattering is observed for angular momenta l ≥ lgr, which corre-

sponds to grazing collisions: the two ions do not feel the mutual nuclear interaction

and the nuclear reaction cross section is zero.

Reaction cross section Total reaction cross section σR for complex projectiles at

energies above the interaction barrier can be described adequately in completely

classical terms [1, 7]. This is a consequence of summing over all angles and exit

channels, which eliminates quantal interference effects.

In a sharp cut off model, where all trajectories with angular momentum up to lgr

lead to absorption, we can write [1]:

dσR(E(CM))
dl

= 2πŻ2l (1.8)

σR =

∫ lgr

0
2πŻ2ldl = πŻ2l2

gr (1.9)

where lgr is related to the distance Rgr where the nuclear interaction becomes signifi-

cant (eq.1.4).

From a quantistical point of view, since not all real value of l are allowed, l has

to be replaced with (l + 1/2) and the integral with a sum over l integer:

σR(E(CM)) = πŻ2
lgr
∑

l=0

(2l + 1) (1.10)

To take into account a smooth transition of σR(E(CM)) across lgr, transmission coeffi-

cients Tl(E(CM)) [8], slowly varying with energy, can be introduced, giving:

σR(E(CM)) = πŻ2
lgr
∑

l=0

(2l + 1)Tl(E
(CM)) (1.11)

In a simple geometrical sharp cut-off model the contribution to the nuclear re-
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Figure 1.3 – Total reaction cross section dependence on the relative input channel angular
momentum l in the sharp cut-off approximation [9].

action cross section can be depicted like in Fig.1.3. Three components are evident:

the quasi-elastic σqe (lDIC < l ≤ lgr), the deep inelastic σDIC(lcrit < l < lDIC), and the

compound nucleus σCN(l < lcrit). The importance of the three contributions to the

reaction cross section depends on the relative strength of the nuclear and Coulomb

interaction: in particular, with the increasing of the latter, the fusion component first,

and the deep inelastic after, tend to disappear.

1.2.1 Rutherford collisions

At energy below the Coulomb barrier, and for impact parameter b > bgr, the two

colliding ions do not touch and can interact only through the Coulomb field: the

interaction potential in eq.(1.7) keeps only the first term.

Assuming that there is practically no nuclear interaction at distances larger than

Rgr, corresponding to angular momentum l > lgr, from classical considerations it’s

possible to find simple relationships for elastic scattering. If a particle of energy E,

velocity v, and charge Z1e is scattered by the Coulomb field of the target of charge

Z2e, then the impact parameter b, the distance of closest approach r0 and the center-

of-mass scattering angle Θ (see Fig.1.1) are related by [10]:

b = ac cot
Θ

2
(1.12)
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and

r0 = ac













1 +
1

sin Θ2













(1.13)

where

ac ≡
Z1Z2e2

2E(CM)

The differential cross section for scattering at an angle Θ is [10]:

dσ
dΩ
=

b
sinΘ

db
dΘ

(1.14)

and, using eq.1.12, this gives the well known Rutherford scattering formula:

dσ
dΩ

∣

∣

∣

∣

∣

∣

Ruther f ord

=
a2

c

4
1

sin4 Θ
2

(1.15)

The electrostatic potential between two ions is usually assumed to be described [11]

with sufficient accuracy, in the physically important surface region, by the potential

between a point charge and a uniform spherical charge distribution of radius R,

which has the simple form

VCB(r) =











































1
4πε0

Z1Z2e2

2Rgr

(

3 − r2

R2
gr

)

r ≤ Rgr

1
4πε0

Z1Z2e2

r
r > Rgr

(1.16)

Calculating the kinetic energy E(CM) at the distance of closest approach r0, and im-

posing the energy conservation, the impact parameter b and the distance of closest

approach r0 are related by:

b = r0

√

1 −
V(r0)
E(CM)

. (1.17)

Eq.1.7 and 1.17 allow to extract the grazing impact parameter bgr and the grazing

deflection angle Θgr:

bgr = Rgr

√

1 −
VCB(Rgr)

E(CM)

Θgr = 2 arctan
VCB(Rgr)

2
√

E(CM)(E(CM) − VCB(Rgr))

(1.18)

There are two effects which limit the classical description of elastic scattering.

These are quantal effects and absorption. In a quantum-mechanical description the
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classic approximation is found to be much better as the Sommerfield parameter, de-

fined as:

η =
Z1Z2e2

~v
=

a0

Ż
(1.19)

is greater than 1.

The elastic nuclear scattering becomes significant as the energy of incident particles

increases and the distance of closest approach decreases to the nuclear radii, and

thus the projectile and the target feel the nuclear force.

The nucleus acts as an absorbing disk and diffraction patterns, due to interferences

effects from different trajectories, can be observed.

A reaction such as Ar+Ni (at ∼ 13AMeV beam energy) is characterized by a large

η parameter (η ∼ 23) and is Coulomb dominated. Rutherford scattering is then

predominant down to l ≃ lgr

1.2.2 Inelastic collision

In HI collision the elastic scattering is limited essentially to impact parameters

which do no lead to a considerable overlap of projectile and target. For smaller im-

pact parameters inelastic processes (excitation and transfer of nucleons) occur.

We refer as inelastic collisions to all the collisions where a certain amount of the ini-

tial kinetic energy is dissipated in internal degree of freedoms of the system, ranging

from those in which a few nucleons are transferred from one ion to the other, with

little loss of energy, to the so-called ”strongly damped” or ”deep inelastic” collisions

in which the ions lose a substantial fraction of their kinetic energy.

When two nuclei collide, they interact through their Coulomb field leading eventu-

ally to an excitation of one or both the colliding nuclei or to a transfer of nucleons.

During the collision a composite system is formed, which preserves a di-nuclear fea-

ture: in the contact region a ”window” is formed between the two colliding nuclei.

Through this window, more or less stretched, the energy dissipations take place by

nucleons exchange and angular momentum transfer.

The composite system does not reach complete statistical equilibrium, because there

are a few distinguished degrees of freedom (”collective variables”) which relax very

slowly, over times larger than or comparable with the contact time of the two frag-

ments. These relaxation phenomena are connectedwithmass transfer, kinetic-energy

loss and angular momentum dissipation. Afterward the system splits into two pri-

mary fragments, called Projectile and Target Like Fragments (PLF and TLF), or Quasi

Projectile (QP) and Quasi Target (QT), which preserve memory of the entrance chan-

nel. The PLF and the TLF velocities −−−→vPLF and −−−→vT LF are quite similar to the projectile

and the target nuclei velocities (−→vp and
−→vt ), respectively.
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Figure 1.4 – Experimental Wilczyński plot for 40Ar+232Th at 379MeV total beam energy. The
picture is taken from [9]. In such a plot, the center-of-mass energy of a given
product of the reaction (here K nuclei, AK ∼ AAr) is plotted as a function of
its center-of-mass emission angle ΘCM . A large bump is observed at E(CM) ≈
280MeV and ΘCM ≈ 40◦: this correspond to quasi-elastic collisions (l ∼ lgr).
Inelastic collisions, lcrit < l < lgr, where a large decrease in the energy occurs,
are associated with large deflection angle. The broken line (and the similar full
line) correspond tomodel calculations based on trajectory calculations with two
different interaction potentials such as the one depicted in Fig.1.2.

Primary fragments deexcite essentially by light particles emission or sequential fis-

sion (followed by evaporation), giving rise to 3 or 4 fragments in the exit channel.

Typical usefull correlations between physical variables to study inelastic colli-

sions are:

• the T KE − ΘPLF
CM correlation, known as Wilczyński Plot, where ΘPLF

CM is the PLF

polar deflection angle in the CM system and TKE the Total Kinetic Energy of

the fragment

• the T KE − A correlation, known as Diffusion Plot, where A is the PLF atomic

mass

In the Wilczyński Plot (Fig.1.4 and 1.6(a)) the differential cross section d2σ
dΘdT KE is

shown in the plane T KE − ΘPLF
CM . Both the quantities Θ and T KE are referred to the

primary fragment, i.e. to the fragment before its evaporative deexcitation.

From a classical point of view, the loss of the kinetic energy is due to friction forces

[1] (both radial and tangential) that act during the collision and decelerate the frag-

ments on their classical orbits: the longer the two body stay in contact, the larger is

the energy dissipated.
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Figure 1.5 – Schematic picture of the trajectories deflection in an inelastic collision. The
lower part shows the classical trajectories, while the upper one shows the ex-

pected d2σ

dT KEdΘPLF
CM

behaviour. The picture is taken from [1].

Starting from the grazing angle (ΘCM ≈ 40◦ in Fig.1.4), which corresponds to a T KE

value equal to the available kinetic energy in CM system (E(CM) ≈ 280MeV in Fig.1.4),

and moving towards more dissipative collisions (i.e. the interaction time increases),

the PLF polar diffusion angle moves backward towards the beam (ΘCM < Θ
gr
CM), due

to the nuclear interaction, and then the ΘCM distribution becomes isotropic when

T KE ∼ VCB.

This behaviour is clear if we look at Fig.1.5 and we keep in mind the relation be-

tween the TKEL (T KEL = E(CM) − T KE) and the impact parameter b. As b decreases,

Θ
PLF
CM decreases, because of Coulombian repulsion and nuclear attraction competi-

tion acting between the two nuclei, and reaches negative values. If one considers

that the sign of the ΘCM angle cannot be experimentally discriminated, Fig.1.4 is

composed by two branches: the branch with the higher kinetic energy corresponds

to a process leading to a ΘPLF
CM > 0 trajectory, the other one to process leading to a

Θ
PLF
CM < 0 trajectory.

Kinetic energy relaxation is associated with a rotation of the di-nuclear system to-

wards lower values of ΘCM.

In the Diffusion Plot (Fig.1.6(b)) the differential cross section d2σ
dAdT KE is shown in

the plane T KE − A. Both the quantities A and T KE are referred to the primary frag-

ment. The mean mass of the primary fragment is the initial one, but the mass distri-

bution increases its width moving from peripheral collisions (high T KE) to central
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Figure 1.6 – Example of experimental Wilczyński and Diffusion Plots for 93Nb+116Sn at
25 AMeV beam energy [12].

(and the more dissipative) collisions.

Both inWilczyński andDiffusion Plot there is aminimum T KE value permitted (∼ 150

MeV in Fig.1.6), for which both the differential cross sections cover all the available

ΘCM and A, respectively. The minimum mean kinetic energy of the outgoing ions is

very similar to the electrostatic repulsion energy of two just-touching nuclei. This

agreement between the mean energy of the deep inelastically scattered ions and the

simple electrostatic value confirms the two-body nature of the interaction. It also

shows that the transfer of initial kinetic energy to excitation energy is essentially

complete, and for this reason the reactions are sometimes referred to as strongly

damped, thermalized or relaxed collisions.

Friction forces, which cause the loss of the initial kinetic energy of the two re-

action partners, can be decomposed into two components: a radial and a tangent

components. Including in the collective potential of eq.1.7 a tangential component

the relative angular momentum of the two bodies, l, cannot remain constant and

decreases from the initial value to a lower one; in the meanwhile the potential shape

also changes during rotation. The shape of the potential determines the evolution

of the reaction. The final decision in favour of trapping to form a compound ob-

ject or of reseparating then depends critically on the ratio between tangential and

radial friction and this complicates the scenario quite a lot [1]. Here we avoid the

discussion of all such details and remark that such friction is the result of 1-body

mechanism: there are no nucleon-nucleon collisions but rather a stochastic migra-

tion from PLF to TLF and vice versa through the potential window that forms when

the two nuclei get in contact. The longer the time such window remains open, the

bigger the number of exchanged nucleons and hence the larger dissipated energy.

Due to the non deterministic nature of such a transfer of matter from the two nu-

clei, for a selected incident energy and impact parameter, the TKEL is fixed only

on average and fluctuations are expected: the correlation, then, has an intrinsic
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width. Moreover there are also perturbations originated during the deexcitation

phase. These two contributions give rise to a correlation with a certain width. The

qualitative picture in Fig.1.4 is rendered quantitative in microscopic models like the

Nucleon Exchange Model [13–18]. The advantage over a classical trajectory calcula-

tions including friction forces is clear, as this approach allows the calculation of the

intrinsic contribution to the second momentum of the distribution.

An order of magnitude estimate is now discussed for typical relaxation time of

inelastic collision in the low energy domain.

For the mean field the period of a typical Giant resonance oscillation in monopole

mode can be considered τmonopole ≈ 70 fm/c [9]. For the single particle interaction

with the mean field an estimation is given by [7, 9]

τ1−body ≈
R
vF
≈ 20 ÷ 30fm/c (1.20)

where R is of the order of the sum of the radii of the two nuclei and vF is the Fermi

velocity. The transit time of a nucleon with Fermi momentum through the nuclear

diameter is a measure of the response time of the intrinsic nucleonic structure to

external disturbance and, in this energy domain (Einc ≪ ǫF), it is a good estimation

of the thermalization time (τtherm), i.e. the time required by an incident nucleon to

dissipate all its energy, exciting the intrinsic degrees of freedom (related to thermal

excitation) of the target nuclei.

These values have to be compared with typical traversal times, defined as

τinter ≈
R

vAA
(1.21)

that are of the order of ≈ 85 fm/c for 15AMeV beam energy (vAA is the initial relative

velocity of the two colliding nuclei).

For collision between complex nuclei, where two fragments are re-emitted with-

out the formation of a single system, two more characteristic times can be defined: a

rotational period, which corresponds to the time required for a (hypothetical) com-

plete revolution of the two touching fragments (τrot ≈ 900 fm/c [9]), and a interaction

time (or contact time) duringwhich the fragments interact strongly by nuclear forces

(τinterac ≈ 300 and 50 fm/c in central and peripheral collisions [9], respectively). For

a given initial system, both times will in general depend on bombarding energy, rel-

ative angular momentum and Q value. If the interaction time is much shorter than

the rotational period, then we expect asymmetric angular distribution peaked in the
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vicinity of the grazing angle. Otherwise, if the interaction time is long compared to

the rotational time, it will result symmetric with respect to 90◦. The latter situation,

which implies the existence of an orbiting quasi-molecular system, correspond to

the Wilckyǹsky plot region where the angular distribution is isotropic.

1.2.3 Complete and incomplete fusion

Central collisions are the key reactions which really probe matter in its extreme

state since they correspond to the largest dissipated energies. In these conditions one

has the largest compression because close collisions lead to a considerable overlap

of the density distribution of the colliding nuclei. In these processes the interacting

composite system may break apart again preserving its di-nuclear feature, as we

have seen in dissipative collisions, or form a fused system. This latter phenomenon

can be described as the result of a strong friction between the two participating nu-

clei which leads to a merging of all their nucleons. If the interaction time is long

enough with respect to the thermalization time, i.e. when the impact parameter ap-

proaches zero, this dissipative process may eventually establish complete thermody-

namical equilibrium between the two ions. The reaction proceeds then, according to

Bohr’s hypothesis [19], through the intermediate stage of a completely equilibrated

system, known as compound nucleus (CN) which is formed by the absorption of

the projectile by the target nucleus.

At low incident energies many nuclear reactions proceed through the capture of

the incident particle by the target nucleus to form a CN, but CN reactions between

heavy ions are of particular interest because they provide the most efficient way

of forming highly excited systems in high-spin states. Since many nucleons are in-

volved, the energy may be high but it is shared by all nucleons. Therefore nucleon

velocities are not so high to lead to direct reactions without CN formation.

In addition the high orbital angular momenta make it possible to form com-

pound states of high spin.

The CN is formed in an excited state and it decays, after a time long compared

with the transit time, by a statistical process, such as γ rays and/or particles emis-

sion (or eventually fission), that may be treated by the methods of nuclear thermo-

dynamics, such as the statistical model, which is essentially based on Bohr’s CN

picture. Once a nucleon enters a nucleus, it interacts very strongly with the other

nucleons, thus significantly reducing its mean free path, and the carried energy is

quickly shared and re-shared among the constituent nucleons, until all memory of
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the system’s mode of formation is lost, except that required by the conservation

of energy, angular momentum and parity. The particles emitted (”evaporated”) by

this heated, equilibrated system will accordingly have a distribution in energy that

is typically of the order of the total energy of the system and independent of its

mode of formation and an isotropic angular distribution in the CN reference system.

The CN mass before any decay is the total initial mass of the system: this process is

called complete fusion and dominates central collisions between heavy ions for

projectile energies E . 10AMeV [20].

When the incident energy increases (E & 10 AMeV), the projectile and/or the tar-

get may lose, in the early stage of the collision, cluster of nucleons, emitted as light

fragments, which remove an appreciable part of the kinetic energy initially carried

by the entire projectile. It has been shown that nucleons may escape if the velocity

in the center-of-mass framework of the nucleus they belong to is larger than a given

threshold (∼ 0.06c) [21]. These fragments have either a velocity close to the beam

velocity or a small velocity depending on whether they have been emitted by the

projectile or the target respectively. On a longer time scale the remnants of the two

colliding nuclei fuse. Again a complete statistical equilibrium of the merging nucle-

ons is achieved. In this process, commonly called incomplete fusion [20,22,23],

as a result, the mass of the ”reduced” CN formed is less than the total mass of the

system, the velocities of the evaporation residues and of the fission fragments are

different from those of the fragments emitted subsequent to complete fusion. More-

over the ”reduced” CN obviously does not absorb the full linear momentum of pro-

jectile and target. Hence, the measurement of the linear momentum transferred to

the CN gives an insight into the reaction mechanism.

Later on we refer as compound nucleus to the compound system produced both in

complete and incomplete fusion reactions.

With increasing projectile energy (E ⋍ 20 ÷ 40 AMeV), incomplete fusion be-

comes preponderant with respect to complete fusion; the global fusion cross section

diminishes progressively and, for Ar-induced reaction , vanishes around 35 AMeV

incident energy [24–27], but persist to much higher energies for very asymmetric

collisions, for example C or N impinging on heavy targets [28].

The way in which a CN is formed is a dynamical problem and it is connected

with the problem of friction or viscosity, i.e. the transfer of energy from one degree

of freedom (the relative motion) to the many degrees of freedom describing the com-

pound nucleus.
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We now consider the energy balance in nuclear fusion. The excitation energy of the

CN, U, at a given center-of-mass bombarding energy E(CM), can be written as:

U = E(CM)
+ Q f u = E(CM)

+ (M1 + M2 − M1+2)c2 (1.22)

where Q f u is the Q-value associated with the formation of the CN in its ground state

and M1, M2 and M1+2 the mass of the projectile, target and CN respectively, at their

ground state. This shows that CN formation represents the limit of a completely

inelastic process, where all of the relative kinetic energy in the incident channel is

absorbed.

Compound nucleus lifetimes can be deduced by statistical model calculations,

which relate the lifetime of the CN to its level density and to the effective number of

open decay channels. Typical lifetimes are of the order of 300 ÷ 3000 fm/c for exci-

tation energy around U ∼ 100MeV and are longwith respect to thermalization times.

Limitation on compound nucleus formation are due to:

• the existence of the Yrast line

• prompt fission

• entrance channel effects

Yrast level and CN formation The formation of a CN with a given excitation

energy (U), angular momentum (J) and parity (π) is limited by the existence of the

Yrast line [29] that marks the limit of nuclear stability (available levels) with respect

to angular momentum at a given excitation energy.

Referring to Fig.1.7, the Yrast line is indicated by the solid curve. To the left

of this line, nuclear levels are available. The second line, indicated as population

line, is the boundary, in U vs J plane, given by the angular momentum of incoming

ions [1]: level must exist in the CN at appropriate U and Jπ. Only the area to the left

of the Yrast line and above the population line is available in the heavy ion fusion

reactions.

Critical angular momentum and instability against fission The total angular

momentum in heavy ion reactions is usually very large. The high angular momen-

tum barrier may lead to instantaneous instability of the compound system against

fission. The smallest angular momentum for which this happens is the critical an-

gular momentum lcrit and it corresponds to the maximum l value for which it is
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Figure 1.7 – Limitations in compound nucleus formation due to the Yrast line. The crossing
point between the Yrast line and the population line is labelled with (UD, JD).
Being usually JD > lcrit, the limitation of compound nucleus formation is due to
fission and not to the absence of compound levels according to the Yrast line.

possible to observe a pocket in the nuclear potential (Fig.1.2). When l = lcrit the fis-

sion barrier B f between the two colliding nuclei vanishes: the compound system is

unstable against prompt fission and CN formation is impossible. The phenomenon

can be understood in terms of competition between the Coulomb repulsive interac-

tion and the surface potential in a deformed nucleus, within the liquid drop model.

We introduce the fissility parameter x:

x =
Ecoul

Esup
(1.23)

and the rotation parameter y

y =
Erot

Esup
(1.24)

where Erot is the rotational energy associated with the angular momentum l. For

x = 1 and zero angular momentum (y = 0) the system becomes unstable against

prompt fission, i.e. the fission barrier vanishes. Qualitatively speaking the addition

of angular momentum enhances the nucleus ability to undergo fission, since Erot(l)

decreases with increasing deformation. For x < 1, the fission barrier decreases with

increasing angular momentum l and vanishes at a finite value of l. Since in absence

of fission barrier the lifetime of the composite system is of the order of the vibra-

tional period (classical nucleonic period), a CN in classical sense should not exist.

The effect of the existence of a critical angular momentum lcrit on CN formation

in HI reactions can be seen in Fig.1.8(a), which classifies nuclear reactions as func-

tions of the impact parameter b and the center-of-mass energy E(CM). The figure
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(a) Light nuclei (b) Heavy nuclei

Figure 1.8 – A classification of nuclear collisions in b2 vs. E(CM) plane, and limitation arising
from lcrit. The picture is taken from [1].

shows three areas, denoted by distant collision, grazing collision and close collisions,

respectively. The critical angular momentum lcrit, defined by the condition B f = 0,

corresponds to the dashed line. To the right and above the dashed line, CN forma-

tion is impossible. The dot-and-dash line correspond to the condition where B f = Bn,

the separation energy for the last neutron. To the left and below this line we have

B f > Bn, so that the phase space available for neutron emission exceeds the den-

sity of state at the fission barrier. In this region we expect the CN, once formed, to

decay by emission of light particles and, therefore, to survive (fusion-evaporation).

Between the two curves the CN should decay preferentially through fission (fusion-

fission).

Entrance channel effects For fusion to occur, the system must penetrate to dis-

tance where strong dissipative forces remove energy from the relative motion and

hence cause trapping in an attractive region of the effective 2-body potential. Then

fusion, in this classical scatteringmodel [3,30–33], is possible only for systemswhere

the effective 2-body potential for zero angular momentum has a maximum (B f > 0),

i.e. the potential must have a pocket in which the system can be trapped. As con-

sequence, fusion is forbidden for very heavy systems, like 238U+238U at all energies,

the fission barrier being null for the composite system. Therefore the reaction mech-

anism depends from the entrance channel. The effect of the entrance channel can be

depicted as in Fig.1.8(b), where the area where CN formation is possible is strongly

reduced by the increasing of the surface collisions area.



24 Chapter 1. Physics

Figure 1.9 – Sketch of the competition between fission and evaporation in the decay of an
hot compound nucleus. Taken from [9].

Experimentally speaking, it is mainly in terms of their deexcitation that the prop-

erties of excited nuclei may be accessed.

Decay modes By nature, hot nuclei, once formed, are metastable objects, the major

tendency of which are precisely to decay, in one way or another.

A primary decaymode for an equilibrated compound nucleus, in low energy regime,

involves light charged particles evaporation, which takes place until the CN excita-

tion energy becomes smaller than the particle separation energy. In the final state

evaporated particles and an evaporation CN residue in its ground state are present.

Later on we refer as residue to the big fragment remaining after the evaporation

of the CN.

Light charged particles evaporation is a thermal process which does not imply a gen-

eral motion of the nucleons inside the nucleus and does not exhaust all the possible

decay channels for hot nuclei. Due to the competition between Coulomb forces,

repulsive between protons and inducing strong deformations, and surface effects

which tend to restore the spherical shape of the nucleus, heavy mass systems can

experience fission. The balance between these two latter effects sets limits on the

border of the nuclear chart.

Generally the fusion cross section can be written as

σ f us = σER + σFF (1.25)
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Figure 1.10 – Example of fusion cross section, taken from [36]. The fusion cross section
measured for 40Ar+68Zn (squares) and 32S+76Ge (circles) is plotted against
ZpZt/E(CM). The open symbols correspond to fusion evaporation cross sections
σER, and the filled one to fusion cross sections σ f us.

where σER is the fusion-evaporation cross section and σFF is associated to the fusion-

fission process. At low temperature as 1 or 2MeV unexpected large values of σER

suggest that fission is a slow process, during which cooling, particularly via evap-

oration, may occur: evaporation and fission compete as dominant decay mode in

the deexcitation of hot equilibrated systems. The competition between fission and

evaporation is schematically depicted in Fig.1.9.

In inclusive measurement the fusion cross section is obtained by counting evapora-

tion residues, fission products and sometimes by means of the study of light particle

decay [34, 35].

It is well established experimentally and theoretically [37–41] that for ACN ⋍ 100,

σ f us is restricted to σER at lower bombarding energies and increases according to

the energy above the interaction barrier (see Fig.1.10). A change in the slope of σ f us

as a function of projectile energy is observed for still increasing projectile energies.

Depending on the models, this is interpreted in terms of sufficient level density for

the CN to decay statistically [39], or alternatively as being due to the persistence of

a pocket in the potential curves resulting from increasing friction [40]. Somewhere

along these two regimes, fusion-fission appears when the energetic conditions lead

to partial waves such that l & lB f=S n (B f and S n correspond to the fission barrier and
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the separation energy of the last neutron, respectively) and σ f us becomes the sum of

σER and σFF .

Increasing the projectile energy a second change in the slope of σ f us occur: the

residue cross sections are no longer rising rapidly, but decrease slowly with increas-

ing bombarding energy. This behaviour is expected when the partial waves associ-

ated with evaporation residues are limited by competition with equilibrium fission

or non-equilibrium exit channels such as fast fission or deep inelastic scattering, and

described in §1.2.3 .

At projectile energies close to 35 AMeV, the fusion-evaporation cross section

vanishes. There are two possible explanation to this phenomenon: since fusion is

increasingly more incomplete with projectile energy, one reach a stage where the

remnant of projectile becomes very small, or the CN formed cannot retain the exci-

tation energy U brought by the incomplete fusion reaction and can no longer exist.

The fragment emission or fission requires a description based not only on phase

space considerations (as in evaporation theory) but also on the fact that such large

amplitude motion may be strongly dissipative, as numerous experiments clearly in-

dicate. The reason is that such processes lead to a large deformation of the system

during which friction has time to act. Description using diffusion equations, such as

Langevin [42] or Fokker-Planck formalisms [43–45], are typically well appropriated.

The study of the decay properties of hot nuclei produced in heavy-ion collisions

has to face high excitation energies (up to several hundred MeV) and large angu-

lar momenta (up to about 100~). Clearly under these circumstances one does not

deal with individual quantum state (at least not in the primary CN) but with sta-

tistical distribution of overlapping levels. For reactions which are associated with

compound nucleus excitation energies of less than 300 MeV, data are routinely com-

pared to predictions of statistical model calculations. The successful description of

light particle emission remains essentially for evaluation the validity of the model

and the parameters choices within it. Studies of evaporated particle energy spectra

yield direct information about the main SM ingredients, the nuclear level density

and barrier penetration probabilities.

Without entering in the detail of the statistical model, we just give an overview

of the main concept, remarking that the decay probability in a certain exit channel

depends, according to the statistical model, only on the width of the decaying reso-

nance in a given exit channel [1, 7].



1.2. Low energy nuclear reactions 27

Statistical model The statistical model was originally introduced by N. Bohr [19],

Bethe [46] andWeisskopf [47]. Wolfenstein [48] and Hauser and Feshbach [49] intro-

duced the conservation of total angular momentum and afterwards the model was

extended and generalized by many authors. Actually it has a widespread use in

nuclear physics and applied research.

The statistical model is essentially based on Bohr’s compound nucleus picture intro-

duced in §1.2.3. The leak of entrance channel memory of the system implies that,

once a compound nucleus has been formed with a given excitation energy, angu-

lar momentum and parity, its decay is completely determinated by the statistical

weights of the various possible final states.

Let us consider an excited nucleus of mass A, excitation energy U, charge Z and

angular momentum J. The goal is to evaluate towards which states the system

preferentially decays. The transition probability from an initial state i to a final state

f is given by the Fermi Golden Rule [9]:

dNi→ f

dt
∝ |Mi→ f |2ρ f (1.26)

where Mi→ f is the transition matrix and ρ f is the final density of states. The basic as-

sumption of the statistical model is to consider that all transition matrices are equal,

so that the probability of observing a given state is governed only by its density of

states.

If the nucleus can be considered as an isolated system, it can be properly described

in a microcanonical approach. Considering a nucleus i that emits a particle b, of

spin s with a kinetic energy ε and reaches a final status f , the corresponding emis-

sion (evaporation) probability per unit of time for the process i→ b+ f can bewritten

as:

Pb(ε)dε = C0ρ f (E
⋆
f )dE⋆f (2s + 1)

4πp2dpV
h3

(1.27)

where C0 is a coefficient and can be obtained from the detailed balance principle [9].

The term ρ f (E⋆f )dE⋆f gives the number of states available for the excited E⋆f daughter

nucleus and it is obtained by the product of the density of states ρ f (E⋆f ) and the

energy interval dE⋆f . The last term, (2s + 1)4πp2dpV
h3 , indicates the number of states of

the emitted particle with a linear momentum between p and p+ dp; V is the volume

of an imaginary box where the decay takes place. Evaluating eq.1.27 one finally

obtains:

Pb(ε)dε =
ρ f (E⋆f )

ρCN
i (U)

(2s + 1)
4πp2

h3
σc(ε)dε (1.28)

where σc(ε) is the capture (fusion) cross-section of the particle b by the final nucleus
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f . A deexcitation channel will thus be the most favoured if the number of accessible

states (∝ ρ f ) is large.

To evaluate the probability of a deexcitation channel it is necessary to evaluate the

fusion cross section and the density of states.

Fusion cross section It is usual in HI reactions to call the cross section for the

formation of the CN fusion cross section. The fusion cross section depends in a sys-

tematic way on the energies and the masses of interacting ions.

Starting from eq.1.11 and denoting by s1 and s2 the intrinsic spins of target and pro-

jectile (assumed non-identical), the cross section for formation of a CN with total

angular momentum J, from an entrance channel p α > (α specifies all the quantum

numbers of the channel), can be written as:

σCN
α (J, E(CM)) = πŻ2 (2J + 1)

(2s1 + 1)(2s2 + 1)

∑

lS

TlS J(E(CM)) (1.29)

where S and l are the channel spin and angular momentum which result from the

coupling of the intrinsic spins and of the angular momenta of target and projectile,

respectively. Summing over the CN angular momentum J we obtain:

σCN
α (E(CM)) =

∑

J

σCN
α (J, E(CM)) = πŻ2

∞
∑

l=0

(2l + 1)Tl(E
(CM)) (1.30)

Within the hypothesis that the decay probability of CN in an exit channel p β > is

independent from the entrance channel (statistical hypothesis), the cross section for

a transition from the entrance channel p α > (projectile and target in their ground

state) via the corresponding CN to a specific exit channel p β > is:

σα,β(E
(CM)) = σCN

α (E(CM))Pβ(E
(CM)), (1.31)

where Pβ(E(CM)) is the decay probability of the process p CN〉 →p β〉.
Pβ(E(CM)) can be calculated by the detailed balance principle

Pβ(E
(CM)) =

TJ(β, E(CM))
∑

λ TJ(λ, E(CM))
(1.32)

The index λ runs over all possible two-body exit channels (defined by discrete quan-

tum states of fragments), and TJ(λ) denotes a generalized transmission coefficient
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related to the transmission coefficient TlS J(λ) introduced in eq.1.29

TJ(λ, E(CM)) =
∑

lS

TlS J(λ, E(CM))

Evaluating eq.1.31 one obtains:

σαβ(E
(CM)) =

∑

J

σJ(α)
ΓJ(β)
ΓJ
=

πŻ2
α

(2s1 + 1)(2s2 + 1)

∑

J

(2J + 1)
TJ(α)TJ(β)
∑

λ TJ(λ)
(1.33)

The transmission coefficient TJ(λ, E(CM)) is related to the partial width for decay, into

channel λ, of CN with excitation energy U and angular momentum J by

ΓJ(λ) =
TJ(λ)

2πρ(U, J)
(1.34)

where ρ(E, J) is the spin-dependent level density of the CN. We can write then:

σαβ(E
(CM)) =

∑

J

σα(J, E(CM))
ΓJ(β)
ΓJ

(1.35)

ΓJ(β) is the decay width of CN into channel p β > and ΓJ its total decay width (at

angular momentum J). We remark that this equation derives from the assumption

of equilibrated CN, which implies independence of CN formation and decay from

the entrance channel.

The theoretical derivation of the function ρ(U, J) is described extensively in liter-

ature [50] and will not be described here. Many efforts have been done to determine

the level density dependence from statistical model parameters such as the CN ex-

citation energy and the isospin.
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Nuclear level density and its N/Z dependence In the low energy region, the N/Z

dependence of fusion and deep inelastic reaction mechanisms, of the transition be-

tween these two processes and of the possible pre-equilibrium emissions can be

analysed.

In particular fusion reactions, where the composite system deexcitesmainly by evap-

oration, allow to experimentally access the nuclear level density ρ(E) and the limit-

ing temperature1 Tlim in order to study their N/Z dependence.

The nuclear level density is an important quantity for the study of both ther-

mal and decay properties of excited nuclei, for the determination of cross sections

used in nuclear astrophysics calculations, like in neutron and proton capture pro-

cesses, and in supernova dynamics [62, 63]. Moreover ρ is an essential ingredient

in calculating the statistical decay of a compound nucleus (CN) by particle evapo-

ration, gamma-ray emission, or fission in statistical models. The knowledge of the

level density is thus highly needed in all regimes of excitation energies, compound

nucleus spins, and for the full range of Z and N from the β line of stability to the

drip lines. It is also important to know its dependence on the excitation energy, p-n

asymmetry, and deformation over most regions of the chart of nuclides.

The most extensive informations come from slow neutron resonance data, at en-

ergies just above the neutron binding energy [64,65]. Experimental data far from the

valley of stability are very scarce, so that the level density parameter for the nuclei

of interest is usually estimated based on information near the bottom of the valley

of stability.

In statistical model calculations level density formulas are usually based on the

work of Bethe [66], with the assumption that an energy independent density of sin-

gle particle states g is present. Fermi-gas model approximation provides a useful

reference to start with, even if other effects have to be included to get more realistic

expression of the level density.

In the independent particle model [66] the nucleus ground state is given by filling

the lowest single particle states, according to the Pauli principle, up to the Fermi en-

ergy ǫF . Therefore, for a compound nucleus with excitation energy U (U = E − Egs),

angular momentum J and parity π, the nuclear level density ρ(U, Jπ) depends only

upon the density of single particle states g near the Fermi energy ǫF , and, for mod-

erate excitation energies (T ≤ 4 ÷ 5MeV), can be related to the excitation energy U

1The limiting temperature is defined as the highest compound system temperature at which the
thermodynamically equilibrated system decays by light particle evaporation. Beyond this tempera-
ture multifragmentation takes place. The existence of Tlim has been predicted by models [51–60] and
experimentally verified [61].
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by [66]:

ρ(U) =

√
π

12
e2
√

aU

a1/4U5/4
(1.36)

where

a =
π2

6
g(ǫF)

is the so-called level density parameter and is proportional to the nucleon

number A [66].

The zero-temperature single particle level density g(ǫ), that counts the number of

single particle levels per unit energy, is

g(ǫ) =
∑

k

δ(ǫ − ǫk) (1.37)

At the same level of approximation (i.e. Fermi gas approximation), the excitation

energy is linked to the temperature (T ) by

U ⋍ aT 2 (1.38)

Starting from the Bethe work [66] various refinements to the model have been

added since its introduction: angular momentum, pairing and shell effects [67–69],

as well as collective effects (many body and effective mass) have been included to

get more realistic expressions [70]. Calculations of the nuclear shape and size depen-

dence of the level density parameter are also available [71].

Theoretical and experimental studies suggest the level-density parameter to de-

pend on the excitation energy: at low excitation energy, a has a value of approxi-

mately A/8 MeV−1 [72], in contrast, the Fermi-gas model gives a ∼ A/15 MeV−1. The

level density parameter excitation energy dependence has not already been deter-

mined, even if experimental studies has been devoted to it.

Recent experimental studies indicate also a possible isospin dependence of the

level density parameter.

In statistical calculations the parameter g is expected to be proportional to A, leading

to the result that a is also proportional to the number of the nucleons. Only an

A dependence of the level density parameter is generally assumed in calculations,

however, some dependence on N and Z should be expected. For instance, in a two-
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component Fermi-gas model, the level-density parameter is given by:

a =
π2

6
(gn(ǫF) + gp(ǫF)) (1.39)

where gn(ǫF) and gp(ǫF) are the neutron and proton single-particle level densities at

their respective Fermi energies. In Thomas-Fermi calculations of N fermions of mass

m in a box of volume V , the zero temperature single particle level density is

g ∝ V2/3N1/3m (1.40)

and thus for a nucleus of N neutrons and Z protons one gets

a ∝ A2/3(N1/3mn + Z1/3mp) (1.41)

Assuming mn = mp and expanding about N − Z = 0, one obtains

a ∝ A

[

1 − 1
9

(N − Z
A

)2]

(1.42)

which suggests a dependence of a on isospin projection t3 =
Z−N

2 .

At sufficiently large excitation energies, independently on the assumed Z and

A of the primary fragments, evaporation models predict that the process of light-

particle evaporation moves the position of an excited fragment in the chart of nu-

clides towards a particular line called evaporation attractor line (EAL)

[73, 74].

The location of this line is mainly determined by competition between proton and

neutron evaporation. For compound nuclei on the neutron-rich or on the neutron

poor side of the line, neutron or proton emission is the most important evaporation

mode, respectively, and this drives the system towards the line. This line thus acts

as if it is attracting the decaying systems and it justifies its name.

For light systems, the attractor line is coincident with the line of β stability, while for

heavier systems, the larger Coulomb barrier for proton emission pushes this line to

the neutron-deficient side of the valley of stability.

A general definition of the attractor can be obtained from the condition [73]:

dN
dZ
= 〈ΓN

ΓZ
〉, (1.43)

where ΓN and ΓZ are partial decay widths for neutron and proton removal including

both the contribution from nucleon and cluster evaporation.
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At the attractor, the neutron and proton driving forces are about equal. The path

by which a decaying fragment approaches the EAL depends on its initial proton-

neutron asymmetry and the excitation energy, but the average position of secondary

fragments can only approach the attractor, and not cross it [73].

At present, the level density has only been studied in nuclei close to the valley of

stability and mainly on the neutron-deficient side. In all these studies isospin effects

have been usually neglected, as they are expected to be relatively small for nuclei

close to the stability valley, as those produced by stable beams.

The predicted isospin dependence of level density parameter in Fermi gas model in-

deed (eq.1.42) is small, and, when implemented in statistical-model simulations, the

effect could not be observed within the statistical uncertainties of the Monte Carlo

simulations [75].

A significantly larger dependence would have important implications.

Recent experiments [75–77] suggest the need for an isospin dependence already at

excitation energies below 8MeV and for masses 20 ≤ A ≤ 70. In this temperature

regime ρ(E) cannot be predicted by microscopic theories, and a complete realistic

ρ(E) parametrisation is not jet available [78, 79].

In studies on 26 MeV≤ E/A ≤ 50 MeV Xe+Be, C, and Al reactions [73, 77] it was

pointed out that the mean locations of the evaporation residues and the compound

systems lie on opposite sides of the evaporation attractor line. An explanation could

be given by a level density parameter n-p asymmetry dependence that allows the

decaying system to cross the attractor line if the initial excitation energy is high

enough.

Moreover, the inclusion of isospin dependence in the level density expression could

account for the failure of the statistical model in reproducing experimental evapora-

tive particle multiplicity in some reactions [80].

An asymmetry dependence can also have important consequences on the n−p asym-

metry of the evaporation residues [75].

The typically used level density parameter parametrisation, which grows out of

the independent particle model,

a = αA (1.44)

can be replaced by an empirical parametrisations of the form:

a =
αA

eβ(N−Z)2 (1.45)

extrapolated starting from stable nuclei.
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Figure 1.11 – Evolution of the level density parameter according to two different parametri-
sations (eq.1.45: case A, eq.1.46: case B) for different Pd isotopes (see Ref. [76]).
Experimental values A/8 and A/12 obtained for low and high excitation ener-
gies respectively [72] are also reported. The picture is taken from [86]

The analysis described in Refs. [81–85] suggests a different N and Z dependence,

which takes into account the distance from the drip lines:

a =
αA

eγ(Z−Z0)2 (1.46)

where Z0 is the charge of the β-stable isotope of mass A.

Within the N/Z range produced by stable beams, contradictory results have been

found.

The analysis performed by Al-Quraishi [76] suggests (Z − Z0) as the appropriate pa-

rameter, rather than (N − Z), to reproduce experimental data. Its analysis is based

on nuclear levels listed in the ENSDF data file [87] for nuclei with 20 ≤ A ≤ 70 and

on 100Mo, 100Ru, 100Pd, 140Ba and 140Ce (133 nuclei at all) nuclear levels. The nuclear

levels of 133 nuclei have been fitted with the two possible n-p dependence (eq.1.45

and 1.46)

More recently Gelli et al. [88] have measured and compared with theoretical calcu-

lations evaporative proton and α particle energy spectra and angular distributions

emitted in the decay on the compound nucleus 139Eu produced at an excitation en-

ergy of 90MeV in 32S+107Ag reaction. It had been pointed out that the prediction by
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the (Z − Z0) prescription (eq.1.46) fails to reproduce data, while the isospin indepen-

dent eq.1.44 and (N − Z) (eq.1.45) dependences well reproduce the data. The latter

one does not produce a significant difference with respect to the first one, leading

to the conclusion that in the analysed system the isospin effect is not present or is

negligible.

In Charity et al. [75] work, no evidence for n-p asymmetry dependence of the level

density parameter was found in the measured data (60Ni+92,100Mo at E/A = 5 ÷
9AMeV).

It is therefore of primary importance to test the effect of the isospin in level density

in the evaporative charged particle emission on systems involving more exotic nu-

clei as those produced by radioactive beams available today and in future facilities.

The advent of radioactive beams, coupled to suited targets, indeed allows to explore

the properties of a large number of isotopes of compound nuclei of a given Z from

the β stability to the p drip line, and, in correlation, to test the influence of the mass

asymmetry of the entrance channel on the fusion cross section.

Experimental measure of a Statistical model has been used for many decades

to analyse a variety of observables related to compound nucleus decay, but the suc-

cessful description of light particle emission2 is essential for evaluating the validity

of the model and the choice of the parameters. Studies of evaporated particle energy

spectra yield direct information about the main statistical model ingredients, the nu-

clear level density and barrier penetration probabilities. From an experimental point

of view, while a cannot be directly measured at high energy, the temperature T and
1
T =

dlnρ
dE∗ can be extracted from the exponential slope of kinetic energy spectra of

evaporated particles.

Comparisons with calculations [89] constrain the dependence of a with E∗ and T

and a further comparison between experimental data and GEMINI simulation (see

§5.2.2) permits, by iteration, to find level densities and level density parameters con-

sistent with data.

Experiments performed up to now on this subject consisted in inclusivemeasure-

ments, while the data obtained in this experiment are highly exclusive data. The use

of a 4π detector like INDRA, coupled to VAMOS, allows to detect, event by event,

the residue and the associated charged particles, measuring their characteristic: iso-

2Charged particles in coincidence with evaporation residues are well suited for a detailed anal-
ysis in the context of the statistical model because the spectra are kinematically associated with a
single source, in contrasts with the situation for fission coincidence data, for example, which usually
require deconvolution of components from several sources.
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topic composition, multiplicity and kinetic energies of all the reaction products. All

decay chains can be measured, obtaining the percentage with which different chains

lead to the same residue. The correct weighting of the different exit channels, which

was never measured up to now, allows to put constraints on the values of a for nu-

clei along the deexcitation chain. Moreover INDRA, able to measure variation on

the slope of the kinetic energy spectra for all reaction products, provides informa-

tion on temperature for all decay chains.

The high angular coverage, which maximises the detection efficiency, allows the use

of low intensity beams, such as SPIRAL radioactive beams, allowing to explore a

wide range of N/Z.

The fundamental goal is to explore the variation of deexcitation properties and

thus level density parameters with the N/Z of the compound nucleus when going

from stable nuclei to the proton drip line. The fusion cross section as a function

of the entrance channel isospin can be investigated by detecting the evaporation

residues around the beam direction, studying complete deexcitation properties of

several isotopes formed in the same conditions.
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The INDRA+VAMOS experimental

setup

The main goal of the experiment is the study of the dependence on N
Z of the

level density parameter a by the analysis of the deexcitation properties of hot nuclei,

produced in fusion reactions bombarding 58Ni, 60Ni and 64Ni target by 34Ar to 40Ar

beams at energy ∼ 13 AMeV. As result of complete fusion, the mass number of fused

Pd nuclei varies from 92 to 104, including 96Pd, which has a 50 neutrons closed shell

(see chap.3).

As previously mentioned, a compound nucleus can deexcite by the emission of a

large number of particles. The evaporated particles are emitted isotropically in the

compound nucleus system of reference, with a wide kinetic energy range, while

the fusion-evaporation residue, with a low kinetic energy of ∼ 1.8 ÷ 2 AMeV (see

Tab.3.3), is emitted around the beam direction (in the laboratory system of refer-

ence) in the same angular region where a high flux of elastically scattered particles

is produced. To measure, disentangle and weight all decay channels of an excited

CN it is necessary to detect and identify all the reaction products. Thus the use of

VAMOS spectrometer, coupled with the multidetector INDRA, is very well suited

for such measurements.

The coupling of these two detectors (INDRA+VAMOS apparatuses) allows to have

an event by event complete information on the evaporation residue, on light charged

particles (LCP), and at last, but not the least for importance, on the neutron multi-

plicity by means of mass conservation. Moreover, since INDRA covers ∼ 4π of the

total solid angle and has a high granularity, low energy thresholds, large dynamic

ranges in energies and identification capabilities on an event by event basis, it al-

lows a complete reconstruction of the kinematics for each event.

37
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Figure 2.1 – Split view of INDRA. The six carriages which support detectors are separated.
The two ionization chamber arrays (ring 8 to 12 and rings 13 to 17) are presented
out of their support. The first two carriages (ring 1 and ring 2 − 3) have been
removed, in the present experiment, to allow the INDRA-VAMOS coupling.

2.1 INDRA

The multidetector INDRA is 200 cm long with a maximum outside diameter of

80 cm. It is housed in a dedicated vacuum chamber, with a removable cover, that

allows an easy access to all detector elements and connections. The different parts

of the detector are supported by six carriages which can slide independently on two

rails (Fig.2.1).

The target holder (Fig.2.2(a)) is inserted between the two last carriages and it is

housed in an apposite vacuum vessel (shown in Fig.2.2(b)), in order to allow the

access to the target without breaking the vacuum in the main vacuum chamber.

The INDRA (Identification de Noyaux et Détection avec Résolution Accrues) multide-

tector has been designed to study the deexcitation properties of hot nuclei produced

during a heavy ions collision. To this aim the detector is able to detect both light

charged, and energetic, particles and heavier fragments (Z > 2). INDRA has been

built following the main criterion of keeping the multi-hit probability below 5% [90]

for both fragments and light charged particles; therefore the first detection layer, the

purpose of which is to detect and identify slow fragments, has been divided into

96 cells, while the number of elementary cells, which allow the detection of light

charged particles, is 336. Moreover, the detector granularity, as well as the solid an-

gle subtended by each detector cell, varies with the angle (see Fig.2.3), to take into

account the effect of the center of mass velocity, which tends to focus the particles in

the forward direction. A good granularity is important in both kinematic multipar-
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Figure 2.2 – Target holder (a) in its final position and target dedicated vacuum chamber (b).

ticle event reconstruction and elastic diffusion angular distributions accuracy.

The loss of solid angle is 0.2% for the beam entrance and exit holes (which have

a diameter of ∅1.5 cm and cover 0◦ < θ < 2◦ and 176◦ < θ < 180◦), 3.5% for the target

holder region (88◦ < θ < 92◦) and 6.3% for the ionization chamber walls. Moreover,

in order to allow detection of the evaporation residues in VAMOS, rings 1 to 3 of

INDRA, covering the angular range from 2◦ to 7◦ have been removed (see §2.4.1).

This represents a loss of solid angle of ∼ 0.3% and INDRA still cover ∼ 90% of the

4π solid angle.

INDRA has a structure in rings centered on the beam axis. The total number of

rings is 17, and each ring is divided into 8, 12, 16 or 24 cells. The distance of each

Figure 2.3 – Geometrical outline of the INDRA detector [90], cut along the beam axis. 17
coaxial rings are present, each covering a solid angle dependent on the ring
polar angle (see Tab.2.1 for details). Beam entrance and exit holes, such as the
target holder region are shown in the picture.
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CsI(Tl) Si Ionization chamber
Ring θmin θmax N ∆φ dx ∆Ω dx ∆φ N n d ∆Ω

[

deg
] [

deg
] [

deg
]

[mm] [msr]
[

µm
] [

deg
]

CsI(Tl) [cm] [msr]
4 7 10 24 15 138 1.70 300 30 12 4 38.4 10.3
5 10 14 24 15 138 3.21 300
6 14 20 24 15 97 7.01 300 30 12 4 25 37.7
7 20 27 24 15 97 11.2 300
8 27 35 24 15 90 15.8 300 30 12 4 12 86.0
9 35 45 24 15 90 26.4 300
10 45 57 24 15 76 39.6 30 12 4 12 183
11 57 70 24 15 76 50.3
12 70 88 24 15 48 81.0 30 12 2 12 155
13 92 110 24 15 60 82.3 45 8 3 12 240
14 110 126 16 22.5 50 93.5 45 8 4 12 338
15 126 142 16 22.5 50 73.1
16 142 157 8 45 50 91.2 45 8 2 12 144
17 157 176 8 45 50 50.9

Table 2.1 – Geometrical arrangement of the INDRA detectors. N: number of detectors per
ring, dx: thickness of the detector, ∆Ω: solid angle of detector, n: number of
CsI(Tl) behind each ionization chamber, d: distance of the ionization chamber
entrance window from target, θ: polar angle, φ: azimuthal angle of the detector.

ring from the target depends on its polar angle (see Tab.2.1).

Different detectors are required to detect and identify all the reaction products,

due to their wide energy dynamic range (∼ 1MeV÷4GeV). The charge identification

of the fragments is usually obtained by the ∆E − E method, therefore the INDRA

detectors are telescopes. The first detection layer, composed of gaseous detectors

(Ionization Chamber), gives the required low energy thresholds, necessary to

detect low energetic heavy fragments, which easily stop in materials. The last detec-

tion layer, composed of a scintillator detectors (Cesium Iodide scintillator

CsI(Tl)), gives the required thickness necessary to stop the most energetic light par-

ticles, which deposit low energy in materials. High energy resolution detectors

(silicon detector) give the necessary energy resolution, where it is required.

The two or three layer telescopes used in INDRA have thus the intrinsic possibility

of satisfying nucleus identification and energy resolution requirements. The tele-

scopes composition depends on the angular position with respect to the target.

Rings 3 to 9 (7◦ ≤ θ ≤ 45◦) In this region the energy range of the incident fragments

is wide, thus the telescopes are composed of three successive detection layers:

ionization chambers, filled with low pressure C3F8, 300 µm thick silicon detec-

tors and CsI(Tl) scintillators, with variable length with respect to the angular

position (see Tab.2.1).
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(a) INDRA detection telescope in
7◦ < θ < 45◦ region.

(b) Detector assembly for rings 4 (7◦ < θ < 10◦) and 5
(10◦ < θ < 14◦) [90].

Figure 2.4 – The ionization chamber is a 12 cell array. Each ionization chamber is fol-
lowed by 4 silicon detectors and 4 CsI(Tl) scintillator. The silicon detec-
tors have a geometry identical to the one of the scintillators: 4 pads are
designed on the samewafer. The preamplifiers are located on the external
wall of the CsI(Tl) support.

The ionization chamber is a 12 cells array. Each ionization chamber cell is fol-

lowed by a silicon wafer, where 4 independent pads are designed, and by a

group of 4 CsI(T1) crystals, each matching in size the corresponding silicon

detector (see Fig.2.4). This configuration minimizes dead areas between de-

tectors [90].

For each cell, the preamplifiers (1 for the ionization chamber and 4 for the sili-

con detectors) are mounted on a single multilayer printed circuit board located

on the external wall of the CsI(Tl) scintillator support.

Rings 10 to 17 (45◦ ≤ θ ≤ 176◦) In this region the fragments number and energy range

are expected to be reduced, thus the telescopes are composed of two detection

layers: ionization chamber and CsI(Tl) scintillator, which surround the target

at a fixed distance of 12 cm. Each ionization chamber cell is followed by 2, 3

or 4 CsI(Tl) scintillators, depending on the ring number: their arrangement is

presented in Tab.2.1.

Each ring is equipped with a calibration telescope composed of a 80 µm thick

silicon detector and a 2mm thick lithium drifted silicon detector, in order to

allow an energy calibration of the CsI(Tl).

The 144 photomultiplier bases are placed as close as possible to the photo-

multipliers, whereas the ionization chamber preamplifiers and the calibration

telescope preamplifiers of rings 10 to 12 are located at θ = 90◦. Care has been

take in order to avoid cross-talk between the photomultiplier bases and the

preamplifiers and to remove the excess heat generated by the preamplifiers.
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Figure 2.5 – Mechanical structure of the gas ionization chamber for rings 4 and 5. The struc-
ture is divided in 12 identical cells with a shape of truncated pyramid. A part
of the anode foil is removed to show the grid and the field shaping rings inside
the cells. Picture is taken from [90].

2.1.1 The ionization chambers

The first INDRA detection layer (7◦ < θ < 176◦) is composed of 84 gas ionization

chambers. These detectors have been designed to be used as transmission detectors

(∆E detectors), so that they operated at 30÷50mbar of high purity perfluoropropane

(C3F8), which, thanks to its high molecular weight (∼ 188gr/mol), delivers pulses

twice as large as CF4, with a collection time for the electrons being about twice as

long [91], under the same operating conditions. In order to maintain its properties,

the gas circulates continuously in all the ionization chambers and it is entirely re-

newed every 20 minutes.

The entrance foils of each ionization chamber are 2.5 µm thick mylar, for a total

length of 5 cm. The entrance window is the cathode of the cell.

11 rings are glued on the 4 side-walls of each cell for field shaping (see Fig.2.5). In

order to avoid non-uniform or distorted electric field in the vicinity of the anode

and to render the response trajectory-independent (within 1% over the whole cell),

it has been introduced a grid. Each grid, made of 50 µm Cu-Be wires, is placed 5mm

far from the anode and it is connected to the last field shaping ring.

Each cell required an anode electrically insulated from its neighbours. The anodes

are then connected cell by cell, using conducting glue, to a microconnector in order

to easily couple them to the preamplifiers printed circuit board.
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Rings A n
4 ÷ 5 19.8 cm2 4
6 ÷ 7 34.5 cm2 4
8 ÷ 9 26.8 cm2 4

Table 2.2 – Active areas and numbers of pads (n) designed on each trapezoidal silicon wafer.
The external dimension of each wafer corresponds the ionization chamber size.

2.1.2 The silicon detectors

144 silicon detectors, 300 µm thick, are placed on rings 4th to 9th (7◦ < θ < 45◦) (see

Tab.2.1) and form the second detection layer in the forward rings, where low energy

particles and fragments issued from the target coexist with beam velocity particles

and fragments from the projectile. Silicon detectors provide the required resolu-

tion and dynamical energy range to identify both low energy fragments, which stop

in silicon, together with the ionization chamber signals, and high energy particles,

which deposit a very small amount of energy in the gaseous detectors, together with

the CsI(Tl) scintillator signals.

The high counting rates expected at the forward angles require a high granularity,

therefore 4 pads are designed on the same wafer, in order to allow to minimize the

dead zones (up to 0.7mm 1) resulting from the mechanical supports. However, in

this configuration, cross talk effects and ionization chamber multi-hit events could

occur; so that in the analysis it will be necessary to take them into account (see §A.1).

Each wafer has a trapezoidal shape and covers a gas ionization cell. The silicon de-

tectors are made by Intertechnique using the planar process, that permits to keep a

check on the homogeneity and the impurity concentration (B and As) of the detector

surface.

The active areas of the detectors are reported in Tab.2.2. In order to avoid cross-

talk effects due to the capacitive coupling between the ionization chamber anode

and the silicon detectors placed just behind, silicon detectors are reverse-mounted

and, consequently, the particles enter the detectors by the low electric-field side.

Possible problems in charge collection are then limited to low energy heavy ions

which stop in the silicon detector. The detectors are fully depleted and overbiased

to 2 or 3 times the depletion voltage, to obtain a rapid and uniform charge collections

on the detector volume. The use of high resistivity (ρ ∼ 10kΩ cm) silicon provides

low value for the depletion voltage (V0 ∝ 1
ρ
∼ 40V), moreover a high resistivity gives

a smooth variation of the electric field strength across the detector.

1A border of 0.7mmhas been preserved on the outside of the pads in order to avoid large current
flow and breakdown effects when the detectors are biased [90].
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Rings Thickness (mm)
4 ÷ 5 138
6 ÷ 7 97
8 ÷ 9 90

10 ÷ 11 76
12 48
13 60

14 ÷ 17 50

Table 2.3 – CsI(Tl) scintillator thickness. The maximum energy of light particle stopped in
the CsI(Tl) detectors varies from 126MeV (protons in 48mm) to 948MeV (α in
138mm) [90].

The preamplifiers are located as close as possible to the detectors: a few centimetres

on rings 3th to 7th and 20 cm on the rings 8th and 9th. The main characteristics of the

charge preamplifiers are described in §2.2.1.

All the electronics have a low ballistic deficit in order to obtain energy measure-

ments nearly independent of the large rise-time variations in the detector signals,

due to the large energy dynamic range of the incident particles.

2.1.3 The Cesium Iodide detectors

The CsI(Tl) crystal are the last layer of the INDRA telescopes. The advantage of

using CsI(Tl) scintillator arises from their high stopping power, that allows, with a

careful choice of the crystal thickness (see Tab.2.3), to stop all the incident charged

particles, including high energy protons, which have the longest ranges in the mat-

ter. The CsI(Tl) thickness have been chosen as a function of the angular energy

distribution expected for protons produced in 100 A/MeV nuclear reactions.

The CsI(TI) crystals of the INDRA apparatus have been realized in 30 different

shapes and are wrapped to avoid light leakage [90, 92]. The back face of each

scintillator is coupled, with optical glue, to the front window of a photomultiplier

tube2 (PMT), which is isolated from the photocathode and grounded to avoid cross-

talk with the neighbouring ionization chamber preamplifiers.

The main characteristic of INDRA’s crystal are:

• very low phosphorescence after exposition to normal daylight.

2The use of photomultiplier tubes provides lower energy thresholds for mass identification as
compared to those obtained with photodiodes [93].
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Figure 2.6 – Geometrical arrangement of calibration telescopes. The eight calibration tele-
scopes are distributed in the angular range from 45◦ to 180◦, one module per
ring. The calibration of the first 80µm silicon detector can be obtained with α
particles source, while the calibration of the following Si and CsI(Tl) detectors
can be derived from the measured ∆E − E maps by adjusting to the prediction
of energy loss and range table.

• scintillation efficiency constant within 5% along the whole length.

• average light outputs within a 15% tolerance for all the crystals of the same

ring.

The light output consists in two components, with two different time constant (0.5 µs

and 7 µs). We refer to the first one as ”fast component” and to the second one as ”slow

component” of the light output. The signal at the output of the photomultiplier is

sent to a dual integrator (there are two integration gates), which provides a fast and

a slow signal, allowing the mass and charge identification.

One drawback of these detectors is the non-linear dependence of the light output

on the energy of the incident particles [94–97]. In addition, for a given energy, the

light output depends on the nature of the particle: a careful energy calibration is

then necessary to check the crystal stability and to control possible derives, crystal

are regularly enlightened by a laser.

2.1.4 Calibration telescopes

The calibration telescopes are put in rings from 10th to 17th between the ionization

chamber and the scintillator and allow to calibrate CsI(Tl) scintillators (see Fig.2.6).

Due to the azimuthal symmetry of INDRA, one telescope per ring is sufficient to

obtain reference spectra.
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Each calibration telescope is constituted by a 80µm silicon detector and a 2mm Si(Li)

detector (lithium ion-drift silicon detector), 1in. of diameter, which partially covers

the associated CsI(Tl). The 80µm detectors are of the surface barrier type and their

active area is 380mm2. The Si(Li) detectors thickness, 2mm, do not stop the most

energetic protons and α particles which impinge into the CsI(Tl) scintillator.

2.2 INDRA electronics

INDRA electronics have been developed to satisfy the required specifications

concerning fragment identifications, dealing with the difficulties associated with the

large number of channels (tuning, control and overall management).

• First of all, the signals correspond to a large dynamic range both in energy

and in masses. For instance, the signals span 1MeV to 5GeV in silicon detec-

tors, with an energy resolution of 100keV [90], and masses vary from one for

protons to the one for heaviest fragments.

• All electronics have been located in the beam cave with full remote control.

Due to the high number of detectors (416), a standard, which allows to reduce

the number of modules, by regrouping many functions in the same module,

had to be used. The VXIbus (Vme eXtension for Instrumentation) standard

[98] is an extension for analog processing of the VME bus, routinely used for

data acquisition at GANIL.

• The noise reduction implies that the front-end electronics (preamplifiers and

photomultiplier bases) must be located inside the reaction chamber, as close

as possible to the detectors. Special care have been paid to the ground refer-

ence in order to avoid cross talk and ground loop effects. The 288 photomul-

tiplier bases associated with the scintillators and the 244 charge preamplifiers

coupled to the ionization chambers (84 channels), to the 300 µm thick silicon

detectors (144 channels) and to the calibration telescopes (16 channels) must

work under vacuum.

As far as signal processing and encoding is concerned, INDRA is composed of two

kinds of detectors: ionization chamber and silicon detectors, for which energy mea-

surements have to be done on a large dynamic range, and cesium iodide scintillators

which need a double signal integration in a ”fast gate” and a ”slow gate”. Fig.2.7
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Figure 2.7 – Schematic representation of the main INDRA electronics functions [90]. Signals
coming from the detectors are processed by 2 different electronic systems: one
dedicated to the ionization chamber and silicon detectors, the other to scintilla-
tors.

presents a general view of the electronic layout.

2.2.1 Ionization chambers and silicons electronic chain

The detectors signals are treated by charge preamplifiers which present differ-

ent characteristics depending on the detector types. Due to the low energy deposit

and low current conversion in the ionization chamber, the preamplifier must have a

low noise and a very high sensitivity, obtained by a low feedback capacitor of about

0.22pF. Conversely, the required high dynamic range capability of the silicon detec-

Ionization chamber Silicon detector
preamplifier (300µm) preamplifier

Energy sensitivity 10mV/MeV 1mV/MeV
on the 50Ω impedance of the amplifier input (for C3F8 gas)

Maximum output amplitude (linear response) ±2.5V −5V
on the 50Ω impedance of the amplifier input

Decay time constant 220µ s 220µ s
Rise time 15ns (without detector) 25ns (with 200pF detector)

Table 2.4 – Main characteristics of the charge preamplifiers associated with the ionization
chambers and the silicon detectors [99]
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Figure 2.8 – General view of the electronics associated with the ionization chambers and
silicons detectors. The slow and fast outputs of the amplifier provide the energy
and the time marker signals generation, respectively [99].

tor preamplifier leads to a low sensitivity. The main features of the preamplifiers are

summarized in Tab.2.4.

The 16 silicon detectors which compose the 8 calibration telescopes are equipped

with similar charge preamplifiers which provide positive output signals with maxi-

mum amplitudes of +5V on 100Ω.

The preamplifiers are located as close as possible to the detectors and are mounted

in groups of 4 to 6 devices on multilayer printed circuit boards.

In Fig.2.8 is shown a sketch of the electronic chain. The preamplifier signal is

sent to slow and fast amplifiers.

The slow amplifier, which shapes the signal, consists of 1.5µs CR-RLC filters fol-

lowed by a clamp circuit and gives a negative unipolar signal with a 3.5µs width

nearly independent on amplitude. Its output provides the energy measurement: the

large dynamic range required for the silicon detectors is reached by double charge

encoding in QDCs on two dynamic ranges: the pulse from the amplifier is split into

two equal currents which are integrated over capacities of 8700 pF (”low gain”) and

540 pF (”high gain”), i.e. gains are in the ratio 1 : 16. The ”low gain” data are

obtained on the full dynamic range and the ”high gain” ones are provided for low

energies only (1/16 of the dynamic range).

The fast preamplifier consists of CR-RC filter (50ns integration and 300ns dif-

ferentiation times), has a fixed voltage gain of 8 and a maximum output voltage of
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Figure 2.9 – Block diagram of 4 daughter boards which compose the analog circuitry of one
channel of CsI VXIbus module [99].

5V. It has been developed as a specific timing preamplifier, in order to cover a wide

dynamic range.

The fast output of the amplifier is sent to a constant fraction discriminator which

delivers a signal to the ”Trigger and Time-marker” system. The CFD shaping delay

is 55ns.

The ”Trigger and Time-marker” system provides the ”validation point” of the chan-

nel triggering logic.

The ionization chamber and silicon detector chains are equipped with pulse gen-

erators, which send signal into the preamplifier, to check the stability of the elec-

tronic chain.

The electronic chains used for the calibration detectors are identical to those of the

other silicon detectors.

2.2.2 CsI(Tl) scintillator signal processing

The 288 CsI(Tl) detectors form the outer layer of the INDRA detector: the ana-

log circuitry for each channel is implemented on 4 daughter boards, as presented in

Fig.2.9.

The CsI(TI) signal processing consists on two integrations, one in a fast gate (400ns)

and the other in a delayed slow gate (1.5 µs width and 1.6 µs delay), and on the gen-

eration of a fast time reference which is sent to the trigger.

The photomultiplier signal is split into two parts. On one way the signal is delayed

and sent to the two integrators, while on the other one, it is amplified by a factor 3
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Figure 2.10 – Principle of the ionization chamber’s QDC gate generation. Very low energy
threshold is assured for particles punching through the ionization chamber.

and sent to the discriminator. The discriminator logic output fires the ”gate and de-

lay generators” and the ”Trigger and Time-Marker” system which provide the fast

and slow gates as well as the validation point of the channel triggering logic.

A test pulse generator, which delivers particle-like signals to the input of the cir-

cuit, is used to check the stability of the electronic chain.

2.2.3 Time marker and trigger system

The trigger system relies on a working mode called ”asynchronous mode” and

performs event selections based on multiplicity functions.

On forward angles (3◦ ≤ θ ≤ 45◦), the 300 µm thick silicon detectors are followed

by CsI(T1) scintillators and a low energy loss in the first one generally corresponds

to a high energy loss in the second one. The charge integration gate of the silicon

QDC starts on a logical OR built between the two time reference signals of the corre-

sponding silicon and CsI(Tl) detectors. This method is also applied to the ionization

chamber electronics for which the OR circuit is built between the time reference sig-

nals provided by the ionization chamber discriminator and the four discriminators

corresponding to the four pads of the associated silicon detector (see Fig.2.10). In

such a way a very low energy threshold for the particles which cross the first detec-

tion layer is obtained.
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Figure 2.11 – Principles of ”asynchronous mode” of triggering [99]. No logic condition com-
ing from trigger is required to open the integration gate. The presence of a
”validation point” in each fired channel assures the encoding of only tagged
channel in case of accepted trigger configuration.

At backwards angles (45◦ ≤ θ ≤ 176◦), where there is no silicon detector, the OR

circuit is built between the ionization chamber and the corresponding CsI(TI) dis-

criminators, instead of those of the silicon detectors.

The charge integration gates of the CsI’s ADC start on the time reference signal of

the corresponding CsI(Tl).

The integration gate opens without any logic condition coming from the trigger,

when the corresponding discriminator fires, and each tagged channel stores its own

analog signal in the integrators: such kind of logic is called asynchronous mode. Af-

ter ∼ 1µs of delay, a ”validation point” is generated (Fig.2.11). The introduction of

such a delay allows to perform complex triggering functions and to wait for slow

detectors. If the event configuration is accepted by the trigger, it sends a ”FAST

TRIGGER” to all the encoding modules, enabling to convert only those channels

which have their ”validation point” in coincidence with the trigger gate (Fig.2.11b).

A ”start coding” (ODC) signal generated by the trigger starts the digital conversion.

During this operation, and until a reset is emitted at the end of data acquisition, all

the channels are disabled by a general ”QDC and ADC inhibit” signal.

Conversely, if a configuration is rejected by the trigger (Fig.2.11a) each channel is
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reset.

The trigger system has the role of selecting the events, delivering the logic signals

to the QDC and ADC modules and talking with the data acquisition system.

It is constituted by four modules:

• the Regroupeur, which generates the multiplicity signal and the gates for

QDCs

• the Selector, which performs the event selection

• the Correlator, which provides the conversation between the trigger and

the data acquisition system

• the Time Marker System, which provides the time marker for each signal

in an event

In the forward rings (3 to 9), when a particle hits one or two detectors of the

same Silicon-CsI(Tl) telescope, the logic signals produced by the CFDs are sent to an

OR circuit allowing the creation of only one individual multiplicity current per tele-

scope. In the backward rings (10 to 17), only the CsI(T1) detectors are considered,

except for the cells (one per ring) which include the calibration telescopes for which

OR circuits are also needed (see Fig.2.12(a)).

The Regroupeur adds all the individual multiplicity currents of one (or two)

rings to form 6 independent signals, corresponding to rings 4 and 5, 6 and 7, 8 and 9,

10 and 11, 12 and 13 and finally 14 to 17 (see Fig.2.12(a)), and sent to the Selector

module.

The event selection is performed in a VXIbus module called Selector (see

Fig.2.12(b)), in which two modes can be selected: the ”physics mode” when the sys-

tem is triggered by physics events and the ”test mode”which ensures the generation

of the synchronization signals for the laser system associated with the scintillator de-

tectors and the pulse generators used for stability controls.

Thanks to the axial symmetry of INDRA the physics event selections (”physics

mode”) is based on ring dependentmultiplicity levels, as provided by the Regroupeur.

The triggering configuration is selected by software controlled switches on the

6 multiplicity signals coming from the Regroupeur. The multiplicity signals are
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Figure 2.12 – (a) Principles of the multiplicity current generation in the Regroupeur. (b)
Schematic diagram of the triggering principles in the Selectormodule.

added and sent to a discriminator (Fig.2.13). A coincidence window (Fenetre de co-

incidence) is opened by the Selector and the configuration is memorised. The dis-

criminator threshold, with the required final total multiplicity, can be adjusted from

1 to > 15. If the required multiplicity is reached, a logic signal is created (Trigger

rapide o Fast Trigger) and an INHIBIT signal is sent to the QDC and ADC otherwise

they reset by themselves.

At this level a slow and external decision can take place: the Selector accepts as

input an external logic signal (L2). An Acceptation des voies lentes (AVL) window is

opened; if the logic signal L2 is not within the AVL window, the event is rejected

and the system is reset. Otherwise, if the event is accepted the Selector sends an

Ordre de codage (ODG) signal: the QDCs and ADCs encode their signal and, at the

end, produce a signal of End of encoding.

The Correlator, which has the aim of talking with the acquisition, enables the ac-

quisition to acquire the data. Once the acquisition system completes the acquisition,

it sends to the Correlator an End of acquisition signal. The Correlator sends a

Reset signal and disables the INHIBIT signal.
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Figure 2.13 – Principles of trigger analysis.
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2.3 VAMOS

In heavy ion reactions a huge amount of reaction residues are produced. The

study of deexcitation properties of fusion nuclei, which are concentrated around

the beam direction, requires a very efficient method, based on the selection and

isotope identification (Z, A and E) of the product of interest, in order to assign a reac-

tion product to a nucleus. Moreover radioactive ion beams supplied by the SPIRAL

(Système de Production d’Ions Radioactifs et d’Acceleration en Ligne) facility have intensi-

ties several orders of magnitude below those of stable beams, thus requiring a good

background separation. A magnetic spectrometer allows to select, from a large flux

of contaminants (beams and elastically scattered particles), heavy reaction-products

thanks to its filtering action: the physical separation of one particular kind of parti-

cles from other ones provides a background reduction by several orders of magni-

tude in the particle-detection area (focal plane). Observation of light charged parti-

cles or heavier fragments associated to the reaction residue allows, without ambigu-

ity and low statistics, to assign these reaction products to a given system. Moreover,

when the projectile mass is lighter than the target one (direct kinematic) the velocity

of the composite system is low (see Tab.3.3), and this system exits in a rather large

angular cone after the subsequent evaporation process (θresidue up to ∼ 27◦ in labora-

tory reference system, see §5.2.2). The low energy of the reaction products implies

that very wide angles have to be covered by the detector.

VAMOS (VAriableMOde Spectrometer) is a large acceptancemass spectrometer [100–

102] operational, since 2002, at GANIL (Grand Accélérateur National d’Ions Lourds),

where it has been widely used in many experiments for identifying the products in

nuclear reactions using both radioactive and stable ions beams from the SPIRAL fa-

cility. Coupledwith the high efficiency ∼ 4π detector array INDRA, the spectrometer

provides a sensitive and high performance tool for detecting and studying fusion-

evaporation reactions products, which can be characterized according to the disper-

sion parameters (momentum, mass, velocity, etc.) and by the ∆E − E method of

VAMOS.

VAMOSmain characteristics are:

1. A very large geometrical angular acceptance, of the order of 85msr, which is

equivalent to an angular acceptance of ±135mrad in both plans [103].

2. A nominal momentum dispersion 3 of about 2.4cm/% at the focal plane, corre-

3The dispersion can be defined as the transversal distance between a reference trajectory and the

trajectory of a particle with δ(Bρ) = ∆(Bρ)
Bρ = 1%. In the most general case (real magnet, not focussing,
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Figure 2.14 – The two sliding and rotating platforms which support VAMOS assure flexibil-
ity to the apparatus.

sponding to a nominal momentum acceptance4 of about 12% [103].

3. A momentum acceptance of the order of ±10%.

4. A velocity filter function which allows the use of the spectrometer as a recoil

separator for zero degree operations.

Furthermore, the spectrometer has the flexibility to be horizontally rotated with re-

spect to the beam direction around the target point in the angular range ∼ −5◦ ÷ 90◦

[101]. The spectrometer is supported on a platform which can be moved outward

to change the distance from the target. The platform rests on another one on rails,

allowing rotation around the target point (see Fig.2.14).

The distance between the target and the first quadrupole can be varied from 0.4m

to 1.4m [104], in order to accept high magnetic rigidities. The minimum distance

of 40 cm between the first Q-pole and the target gives the maximum solid angle of

the device, about 100msr, and a maximum rigidity of Bρnom = 1.6Tm. At a distance

with border effects, etc) the position where an ion lands depends on many factors (i.e. the angle,
the path through the magnetic field); it’s more correct then to define the dispersion as the partial
derivative with respect to the variation of the momentum of the ion:

D(θ, ρ, B...) =
∂x
∂p/p

(2.1)

4A real ion-optical apparatus in general does not transmit all (for example, it cuts in angle or in
momentum) and the volume in phase space which can pass (which is independent of the particle,
but it is a property of the apparatus) is called acceptance.
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Figure 2.15 – Schematic of VAMOS spectrometer [105]. The quadrupole-quadrupole-wien
filter-dipole configuration is outlined. The wien filter was not active during
the experiment. The detection system is located on the focal plane of the appa-
ratus.

of 100 cm the solid angle decreases to ∼ 40msr, while the maximum rigidity reaches

2.3Tm.

The VAMOS solid-angle acceptances of the order of 100msr is obtained using

very large optical elements, whose high optical aberrations, only partially corrected

in the hardware, require the reconstruction of the ion trajectories throughout the

spectrometer (ray-tracing) to obtain a good resolution.

The ions trajectory in a magnetic field is indeed determined by ion velocity v and

A/Q ratio (where Q is the ion charge state). The VAMOS focal plane detectors (an

ionization chamber and a silicons wall) allow the identification of the evaporation

residues in charge Z andmass A and the measure of their kinetic energy Ekin, by mea-

suring their time of flight, their energy loss ∆E in the ionization chamber and their

residual energy E. Two position sensitive detectors (SED) allow the reconstruction

of the ions trajectories.

2.3.1 ION-OPTICAL COMPONENTS

The ion optical elements of VAMOS consist of a pair of quadrupoles (Q), a ve-

locity filter (F) followed by a magnetic dipole (D) in the configuration Q1-Q2-F-D.

Figure 2.15 represents an overview of the spectrometer where the different elements

are identified. In this experiment VAMOS is used in dispersive mode, without the

Wien filter.
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(a) Before correction. (b) After correction.

Figure 2.16 – Image aberrations in the focal plane x − θ for the full momentum acceptance
(±5%). Without the pole shape correction, there would be a crossing of particle
trajectories in the focal plane that would not allow the reconstruction.

The focalizing lens are realized with two quadrupoles, rotated of 90◦ and sepa-

rated by a distance of 0.3m. The first quadrupole focuses the beam in y-direction, i.e.

perpendicular to the plane of dispersion, whereas the second quadrupole focuses it

in x-direction, i.e. in the dispersion plane.

Both quadrupoles have a large aperture for obtaining the high angular acceptance

of the spectrometer. The diameter of the first quadrupole is 30cm while the aper-

ture of the second is elliptical, with its major axis around 100cm. The very large

acceptance induces large image aberrations5 of acceptance at the focal plane which

degrade the resolution. For VAMOS aberrations are non negligible and the focal

plane spectra are strongly influenced by them. To minimize this effect, the second

quadrupole has been shaped in the dispersive plane to introduce octupole and do-

decapole components in the field. Fig.2.16 shows, in the focal plane x − θ, the effect
of such correction.

None of the less geometrical 3rdorder image aberrations (x/θ3) are of high impor-

tance and affect the resolution, therefore the reconstruction of trajectories of the reac-

tion products is required in order to calculate their momentum and scattering angle.

The magnetic length of Q1 is 60cm then a rather strong gradient for the magnetic

field is required (6.7T/m). Themagnetic length of Q2 is 90cm with a gradient of 2T/m.

5Aberration is a function of solid angle [106].
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Magnetic lens Q1 Q2
Magnetic length 0.6m 0.9m
−→
B gradient 6.7T/m 2T/m

Aperture diameter 300mm elliptic:
horizontal ±500mm
useful height ±50mm

Dipole
Deflection angle θVAMOS 0◦ − 60◦

Radius of deflection ρnom 1.5m
Maximum field 1.1T

Nominal maximum rigidity Bρmax 1.6Tm
Magnetic length 1.57m

System characteristic:
Flight path length 7.6m

Maximum solid angle 100msr
Momentum acceptance ±10%

Magnetic drift target-Q1= 0.4 ÷ 1.4m
Q1-Q2= 0.3m

Q2-dipole entrance= 1m
dipole exit-first order focus= 1.5m

Table 2.5 – Main characteristics of VAMOS apparatus [101, 103, 107].

The dipole magnet has a nominal radius of deflection of ρnom = 1.5m, which re-

quires, for the nominal maximum magnetic rigidity of 1.6Tm, a Bmax = 1.1T. The

field boundaries of the dipole magnet are shaped in order to reduce second order

image aberrations.

The dispersion at the focal plane can be varied by changing the bending angle of

the dipole with three options of 0◦, 45◦ and 60◦ bending. During the experiment the

bending angle was set to 45◦. The gap of the dipole magnet is of 20 cm.

The ion-optical configuration of this arrangement is listed in Table2.5.

The QQFD structure has a great flexibility: depending on the elements which

are ON or OFF, three distinct functioning modes (giving the name to VAMOS for

VAriable MOde Spectrometer) can be obtained. With only the quadrupole ON the

device has a very large non-dispersive acceptance; in the QQD setup VAMOS is a

dispersive facility giving an additional mass and charge identification; finally, when

the Wien Filter is switched ON, the beam rejection is active if the voltage is applied

along the vertical direction. A very selective M/Q selection is obtained applying

voltage along the horizontal direction.
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Figure 2.17 – The charge distribution of nuclei exiting a target medium is related to the po-
sition where the reaction takes place, therefore the resulting distribution is
spread. The suitable thickness of the carbon foil allows to reach an equilib-
rium between different charge states.

2.3.2 Charge state equilibration

The ion trajectory in an electromagnetic field is determined by its momentum

and its charge state (see §3.3). Generally, the change of the ion charge state in a

target medium is the consequence of a multiple combination of two fundamental

charge exchange processes [108]: the electron capture and the electron loss, whose

cross sections, σ(q, q
′
, v,Z,ZT ), are related to the initial and final charge state (q and

q
′
), to the ion velocity (v) and to the ion and target atomic number (Z and ZT , re-

Z A Eres θres v10%
res (cm/ns) v90%

res (cm/ns) ∆v/v(%)
33 72 126 0◦ 1.78 1.83 3%
33 72 126 7◦ 1.78 1.83 3%
33 72 168 0◦ 2.07 2.12 2%
33 72 168 7◦ 2.06 2.12 3%
36 78 143 0◦ 1.82 1.87 3%
36 78 143 7◦ 1.81 1.87 3%
36 78 176 0◦ 2.03 2.08 2%
36 78 176 7◦ 2.02 2.08 3%
40 84 172 0◦ 1.93 1.98 3%
40 84 172 7◦ 1.92 1.98 3%

Table 2.6 – Recoil nucleus velocities at the exit of the target for reactions taking place at 10%
(v10%

res ) and 90% (v90%
res ) of the target thickness. θres is the residue emission angle in

laboratory. The chosen recoil nucleus charge values, Z = 33, 36 and 40 are the
mean value and the extremes of the charge distribution, obtained with GEMINI
simulation (see §5.2.2), respectively. The masses, A, associated with each Z are
the mean values of the mass distribution for each Z. The recoil energies Eres are
the mean values of the energy distribution (for each Z) fitted with two gaussian
(2 kinematic solutions are present).
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Figure 2.18 – Photo of the carbon foil located in INDRA chamber, in order to equilibrate the
ions charge state distribution.

spectively). As the ion pass through a material a certain distribution, related to the

ions velocity, of charge state will result. When the beam hits the target, the reaction

can take place everywhere inside the target, thus the remaining thickness that the

recoil nucleus has to cross, and then its velocity, is related to the reaction position

(see Fig.2.17 and Tab.2.6). Therefore the charge state distribution of recoil nuclei at

the exit of the target is spread and depends on the crossed material thickness.

To equilibrate the charge state distribution before the ions entering VAMOS, a thin

carbon foil (70 µg/cm2) (see Fig.2.18) have been placed in INDRA chamber, on 4th−5th

rings mechanical support, 50 cm far from the target. As an ion penetrate the carbon

foil it undergoes a large series of ion-electron collisions. The charge distribution

changes with depth until, at a certain depth, equilibrium between different charge

states is reached. This equilibrium distribution [109] is, to a first approximation, a

function of the nuclear charge and the velocity of the ions [110]. The ions cross-

ing the carbon foil reach the equilibrium charge state distribution, whose width is

smaller than the initial one [111].

2.3.3 Focal plane detection setting

The real focal plane of VAMOS is highly deformed, due to the magnetic aberra-

tions. Its projection orthogonally to the beam, which represents the detectors active

zone, is 40 cm wide and 10 cm high.
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Figure 2.19 – (a) Schematic of VAMOS focal plane detection system showing the focal plane
and the coordinate system. Secondary electron detectors are represented by
their emissive foils. (b) Photo of the focal plane detection system: the second
SeD (SeD2) and the ionization chamber HARPEE are visible. The silicon wall,
located behind HARPEE, was not already set.

Direct focal planemeasurements alone do not give the required high resolution iden-

tification: particle identification is indeed based on the reconstruction of the event.

The scattering angle at the target (θ) and Bρ parameters of each particle must be re-

constructed by software.

Since the reconstruction of trajectories is required, two-dimensional position mea-

surements are needed at the focal plane of the spectrometer. Moreover, the identi-

fication in atomic number (Z) and mass (A) of the reaction products requires total

energy and energy loss, as well as time of flight measurements.

The detection system at the focal plane of VAMOS (Fig.2.19) consists of two emis-

sive foils coupled with an ionization chamber and a silicon wall detectors.

The emissive foils, coupled to secondary electrons detectors, are used for x,y-position

and time measurements at the focal plane. The time resolution is of the order of

250ps (FWHM) [103], while the position resolution of about 1mm (FWHM) [103].

An ionization chamber (HARPEE: Haute Résolution en A par Perte d’Energie et Energie),

located 380mm far from the second emissive foil and operating in transmission

mode, provides the ∆E measurements, while the E measurement is given by the

array of silicon detectors placed 11.225 cm6 behind the HARPEE’s entrance window.

An ∆E resolution of 3% [103] have been obtained.

Timemeasurements are obtained also by silicon detector signals, coupled to the high

6Value taken from HARPEE design.
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Focal plane detectors resolution

XFWHM ∼ 1mm [103]
SeD YFWHM ∼ 2mm [103]

tFWHM ∼ 250ps [103]
HARPEE ∆E 3% [103]

E 8

Si wall t 2ns [100]

A/Q 2 · 10−3 [100]
A 8

Z 8

Table 2.7 – Focal plane detectors resolutions.

frequency signal of the cyclotron. Time resolution is limited to about 2ns [100], due

to the width of the beam pulse (∼ 2 ÷ 3ns).

The combination of the Bρmeasurement and the time of flight 7 provide the A/Q

ratio with a resolution of around 2·10−3 [100]Themass can be obtained by combining

the velocity and energy measurements.Reusing the mass value in the Bρ expression,

it is possible to evaluate the charge state Q. Determination of the atomic number, Z,

is done by ∆E − E method.

A summary of focal plane detectors resolutions is reported in Tab.2.7.

2.3.3.1 Secondary Electrons Detectors

Position and time of flight of the incident ions are measured by Secondary Elec-

tron gas Detectors (SED), used in conjunction with an emissive foil, to detect low

energy heavy ions (see Fig.2.20 ). The main advantage of such detector is that only

the thin emissive foil lies on the ion trajectories inducing minimal energy and angu-

lar straggling.

The emissive foil is a thin 45◦ tilted mylar foil (1.5 µm) located on the trajectory of

the ions (see Fig.2.21). Its effective size (40×10 cm2) covers all the focal plane. Under

the impact of the ions, the foil emits secondary electrons (Se−) [113], whose number

is proportional to Z2/(E/M), where Z, E and M are the ion charge state, energy and

7

Bρ =
A
Q

v =
A
Q

d
to f

(2.2)

where d and to f are the flight path and the time of flight of the particle, respectively.
8Calibrations are still in progress and no values are available from previous campaigns.
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Figure 2.20 – Photo ( [112]) of secondary electron detector installed on the VAMOS spectrom-
eter. The different elements are identified. Only the emissive foil lies on the
ion trajectories.

mass, respectively.

These electrons are electromagnetically accelerated and guided toward a low-pressure

thin gas chamber. Se− are focused towards the detector by two longitudinal electric

and magnetic fields. The first is primarily used to accelerate them, as quickly as pos-

sible, in order to minimize their dispersion, and to allow them to cross the entrance

foil of the detector, a 0.9 µm aluminized Mylar foil8 (the minimum required energy

is 7 keV [112]).

Secondary electrons drift for collection over a ∼ 10 cm distance through a 10kV high

voltage, realized by two electrostatic grid of gold-coated tungsten wires (with 1mm

spacing) placed 9mm apart the foil. The grid is grounded while the emissive foil is

at −10kV (V0).

In addition to the electric field, a parallel and appropriate field is necessary to fo-

cus the Se− and have good position resolution: from an initial point like source, the

Se− arrive at the detector with a large distribution, shifted from the original position.

For a well-chosen value of B (B0), the trajectories of the electrons are helicoidal with

8With an incident energy of 10keV, each Se− loses, in average, 3.1keV in the entrance window.
After one Se− crosses the foil, it will lose 290 eV in the isobutane thus creating around 12 electron−ion
pairs/electron along the 3.2mm of the active zone between the cathodes (see text and Fig.2.22). This
is sufficient for a single Se− to be detected [112].
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Figure 2.21 – Sketch of SED coupled with an emissive foil. Secondary electrons emitted in
the impact of the ions on the foil are guided toward the low pressure gas cham-
ber where they are detected.

an integer number of turns at the cyclotron frequency between the foil and the detec-

tor. In this configuration their arrival point is independent of their initial transverse

velocity. It has been shown [114] that a ”perfect” (”point to point”) image of the

foil is obtained when the secondary electrons have made an integer even number of

turns at their cyclotron frequency between the emissive foil and the SED entrance

window.

A nominal field of 110G has been set, reached for a current of 70A in the magnets.

Since the magnetic field is not uniform the electrons in the outer parts of the

field are deviated (side effect). These deviations (∼ 1 cm) imply that a calibration of

the detector is necessary to have precise measurements. For this purpose, a 0.5mm

thick aluminium mask with calibrated holes of 5mm diameter is put in front of the

emissive foil. The calibration is valid for a given (V0, B0) couple. The calibration

procedure will be described in §3.5.1.

The secondary electron detector (SeD) is a low-pressure position sensitive gaseous

detector [115], largely based on the CATS, a gaseous tracking detector for heavy

ions [116].

This detector, located on the side of the ions trajectories, amplifies the number of

electrons, which ionize the isobutane, and provides the position and the time sig-
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Figure 2.22 – Basic geometry of the low-pressure secondary electron detector. Localization
wires and the stripped cathode allow the ion impact position reconstruction.

nals. The SeD detects the cloud of secondary electrons emitted from the emissive

foil. Therefore, the ions do not traverse the full detector but only a minimal thick-

ness of matter. The secondary electron detector (SeD) gives the time and position of

the Se shower and thus those of the ion traversing the detector.

Fig.2.22 presents its basic geometry. It consists of two elementary cells with a

common anode, a wire plane, equidistant (1.6mm) from the two grounded cath-

odes. The gas (isobutane CH4) is enclosed between the entrance foil and the second

cathodes, at the operating pressure (p) of ∼ 500mbar. The entrance foil, a 0.9µm My-

lar film, is supported by a metal mesh to limit bulging under the gas pressure.

The amplification of the signal, due to high E/P (electric field over pressure)

occurs in two different regimes: the parallel plate region in the constant field zone

between the cathode and the wire plane, which is predominant at such low pressure,

and a multiwire-like multiplication region in the vicinity of the wires [115].

These properties are advantageous for secondary beam tracking:

• there is an important gain in the detector and a significant signal can be ob-

tained with a small thickness of gas, without disturbing incident particles tra-

jectories;

• the fast component of the signal generated by electrons produced in the con-

stant field region assures a good timing resolution;

• the fast positive ions collection, due to a small anode cathode gap, gives high

counting rate capabilities.

The first cathode is made of 150 wires of 50 µm diameter, with a spacing of 1mm,

and connected 3 by 3 for the charge measurement, so that 48 channels are available
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SEDs set up
V0 −10kV
B0 100G
p ∼ 7mbar

VS eD 475 ÷ 510V

Table 2.8 – SEDs set up. V0: electric potential applied to the extraction grid, B0: magnetic
field intensity, p: gas pressure in the gas chamber, VS eD: anode voltage

for the measurement of the charge distribution and hence the position (at each end,

the last 3 wires are grounded). It provides the y-position measurement.

The anode is made of 402 10 µm wires (1mm spaced), stretched perpendicular

to those of the cathode. The wires, grouped in 3 independent parts and raised to a

common positive high voltage VS eD ∼ 500V, are read separately to provide timing

signals.

The second cathode is a gold-coated stripped printed circuit. All 128 strips (3mm

wide and 0.125mm spaced) are independently read for the charge measurement,

providing the x-position measurement. The cathodes are grounded.

The anode and the extraction grid voltages, the focusing magnetic field intensity

and the gas pressure values set during the experiment are summarized in Tab.2.8.

The anode wires deliver a time signal allowing a time of flight measurement.

The cathode strips are individually read out and the position of incoming particles

is reconstructed using a charge centroid finding algorithm and allowing the mea-

surement of the incident particles trajectories, event by event.

All the 48 + 128 charge signals are pre-amplified and shaped and sent to ADCs. The

fast anodic signals are processed by a fast amplifier and sent to a constant fraction

discriminator.

2.3.3.2 The ionization chamber HARPEE

The ionization chamber HARPEE provides the energy loss (∆E) information of

the incident ions, allowing the charge identification by the ∆E − E method and the

mass identification by measuring the time of flight of the particle.

The chamber, filled with isobutane (C4H10), normally operates at a gas pressure of

about 15÷25mbar in transmission mode, giving the ∆E measurement. The pressure
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(a) HARPEE crate. (b) HARPEE ”drawer”.

Figure 2.23 – Photos of the ionization chamber HARPEE. HARPEE is constituted by three
”drawers”, arranged along the ions flight path. Each ”drawer” has a seg-
mented anode and a Frish grid located between the anode and the cathode.

value has been chosen in order to get a good ∆E−E resolution (see §4.2.1 and Fig.4.8).

A view of HARPEE is shown in Fig.2.23(a).

The anode is segmented in 7 parts across the focal plane (see Fig.2.23(b)) in order to

get a raw position information and to accept a high counting rate. The anode and

the cathode are made of copper.

Between the anode and the cathode a Frish grid is present, which is kept at an inter-

mediate potential between the two electrodes. All the ion interactions are confined

into the volume between the grid and the cathode of the chamber. The electrons pro-

duced in the gas ionization are driven initially from the interaction volume to the

grid, without producing any measured signal voltage. However, once the electrons

pass through the grid on their way to anode, the grid-anode voltage begins to drop

and a signal voltage begins to develop. The use of Frish grid allows to remove the

dependence of the pulse amplitude on position of interaction.

The chamber entrance window is made of 0.9µm of mylar and is supported by a grid

(Fig.2.24). The field lines close to the entrance window are kept vertical by the appli-

cation of graded voltages to the horizontal support wires. To ensure the uniformity

of the electric field in the detector, and in particular near to its edge, a series of strip

electrodes are placed around the sides of the chamber at 5 mm intervals.

The anode is divided into three sections along the flight path of the recoils, respec-

tively 2 cm, 8 cm and 1.225 cm length. Due to the non uniformity of the field near the

entrance windows, the first section of the anode is not connected to the electronic

chain. It has been observed that, taking into account the region close to the entrance
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Figure 2.24 – Photo of the field shaping wires on HARPEE entrance window. The grid for
support of the mylar is also visible.

windows, the energy resolution gets worse. The second section of the anode covers

8 cm of the chamber length: this is the region where the energy lost in the gas (∆E)

by the ions is measured. Neither the last section of the anode is connected to the

electronic chain. The energy lost in this region can be reconstructed from the mea-

sured ∆E and the silicon signal.

The HARPEE electronic chain is shown in Fig.2.25. Each signal coming from an an-

ode segment is treated by a charge preamplifier, located as close as possible to the

detector. The signals are sent to amplifiers, which shape them. Its outputs provide

the energy measurement. The ADCs are acquired when the trigger is fired .
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Si1
Si2

Si18
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Figure 2.25 – Sketch of electronic associated to HARPEE and to the silicon detectors. HARPEE
provides the ion energy loss (∆E) measurements, while the silicon array pro-
vides the residual energy (E) measurements, the Start signal for time of flight
measurements and the trigger signal generation.
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Figure 2.26 – Photo of silicon array. 18 silicon detectors are placed on two rows, covering all
the focal plane. The use of a conducting grid for electrical contact reduces the
dead thickness, lowering the detection threshold.

2.3.3.3 Silicon detectors array

The silicon detectors have the double task of measuring the energy deposited in

the silicon and of providing the trigger signal, as well as giving time signal for time

of flight measurements.

The silicon array is constituted by 18 silicon detectors, arranged on two rows and

covering all the VAMOS focal plane. The silicon wall is placed 11.225 cm far from

the HARPEE entrance window.

To ensure a fast charge collection and to reduce the dead thickness, each silicon is

not aluminized, but on its surface is placed a grid (see Fig.2.26). The dead region of

each silicon is 2mm, due to 1mm of dead edge region and 1mm of contact.

The silicon presents an high capacitance of ∼ 1000 pF.

The silicon wall electronic chain is sketched in Fig.2.25. The detectors signal are

treated by charge preamplifiers and sent to slow and fast amplifiers. The output

of the slow amplifier, which shapes the signal, provides the energy measurement.

The fast amplifier’s output is sent to a constant fraction and converted into a logical

signal. The trigger is fired by the logic OR built on the logic signal of all 18 silicon

detectors. The OR output also gives the ”Start” to the TAC, to provide a time of

flight measurement (”Stop” is given by the RF signal).
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Figure 2.27 – Sketch (a) and photo (b) of the INDRA-VAMOS coupling window. Thanks
to it, VAMOS can be rotated with respect to the target without breaking the
vacuum in the vacuum chambers.

2.4 INDRA - VAMOS coupling

2.4.1 Mechanical coupling

To allow the INDRA - VAMOS coupling, INDRA has been turned of 180◦ and

mechanical problems have required the removal of the first three rings, which cover

the angles between 2◦ and 7◦. Moreover, to allow the VAMOS rotation (with respect

to the beam axis) up to 8◦, the gas and the entrance window of one ionization cham-

ber cell, located on the horizontal plane of ring 4 and 5, have been removed.

The mechanical coupling has been realized by a sliding window9, which permits the

VAMOS rotation without breaking the vacuum in the INDRA scattering chamber.

The sliding window is shown in Figs.2.27 and 2.28. The VAMOS entrance is 200mm

of diameter but the real entrance is limited by two slits, resulting in a 100× 100mm2

entrance window.

2.4.2 Electronic and acquisition coupling

To efficiently coupling INDRA and VAMOS it is necessary to couple their acqui-

sition, i.e. it is necessary:

• an event number distribution to both acquisitions, provided by the CENTRUM

module

• a parallel readout of each sub-event by its own data acquisition system

9The sliding window has been specially designed to couple the two apparatuses, thank to the
efforts of J.L. Charvet (supervisor- CEA, Saclay) and Hugnet (mechanical engineer - GANIL, Caen).
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Figure 2.28 – Photos of the INDRA-VAMOS coupling system. The VAMOS entrance is visi-
ble.

• a global event reconstruction, provided by a MERGEmodule

The CENTRUM (Clock & Event Number Transmitter Receiver Universal Module) module

generates and distributes the current event number to both INDRA and VAMOS ac-

quisition.

The aim of the experiment being the analysis of deexcitation properties of hot fu-

sion nuclei, the trigger configuration must assure the acquisition of an event only if

a residue has been detected in VAMOS. In the measurement, therefore, VAMOS act

as the master trigger, while INDRA as the slave one. When the VAMOS multiplicity

is, at least, 1, it means when the VAMOS trigger is fired, the event is validated. The

event validation signal is split and sent to the event number generator and to the

INDRA’s trigger, and the VAMOS sub-event is readout by its own acquisition (see

Fig.2.29). The event number generator supplies the information to both the acquisi-

tion systems.

INDRA trigger receives the event validation signal in the Acceptation des voies lentes

(AVL) input on the Selectormodule.

As we have seen in §2.2.3, if the event validation signal (L2 signal in Fig.2.13) is

within the AVL window, the Selector delivers an Ordre de codage and IN-

DRA parameters are acquired by its own acquisition. During INDRA acquisition

data, the system is inhibited.

The Mergemodule provides the global event reconstruction, combining the INDRA

and VAMOS sub-event with the same event number.
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Figure 2.29 – INDRA-VAMOS acquisition coupling system. VAMOS acts as master trigger,
validating or not the INDRA subevent. The EVENT BUILDER (MERGE mod-
ule), basing on the event number, reconstructs the global event.

To get a well working acquisition coupling, it had been necessary to carefully

set up the delays on the various signals (well synchronized INDRA and VAMOS

acquisitions). The correlation between the two signals have been checked during all

the measurement.
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Chapter 3

The experiment

The goal of the experiment analyzed in this thesis is the study of the deexcita-

tion properties of Pd nuclei formed in collisions between different Ar isotopes and

three different stable Ni isotopes at incident energies around 13AMeV. Within this

framework the aim of the present study is to have quantitative information on the

N/Z dependence of the Ar+Ni fusion cross section.

The experiment is part of a wider study on dynamical and thermodynamical prop-

erties of the nuclear matter, undertaken by the NUCL-EX group [117–122] and the

INDRA collaboration [123–129].

3.1 Reactions

By using radioactive beams, new nuclei are accessible by the fusion reaction

channel, both on the side of proton-rich nuclei, in particular close to the N = Z

line, and neutron-rich nuclei, generally not accessible by means of stable beams due

to high neutron evaporation at the beginning of the evaporation cascade.

The experiment has been performed at GANIL, where the cyclotron CIME (Cy-

clotron pour Ions de Moyenne Energie), the INDRAvacuum chamber and

the VAMOS spectrometer are located.

CIME is a compact, medium energy cyclotron devoted to the acceleration of radioac-

tive ions for the SPIRAL project [131]. The SPIRAL facility, based on the ISOL

method, provides for production and separation of radioactive ion beams, with

subsequent acceleration by a cyclotron, opening up the study of nuclear reactions

around the Coulomb barrier to radioactive nuclei. The cyclotron accelerates ions

from 1.7AMeV to 25AMeV depending on the mass of the ion. Its main characteris-

tics are listed in Tab.3.1.

75
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Beam characteristics

Energy spread ±0.5%
Emittance 15 ÷ 20πmm.mrad

Time structure ±10/360 ∗ TRF

Table 3.1 – CIME beams characteristics [130]. TRF is the period of the cyclotron radiofre-
quency, which accelerates the ions.

The CIME beams cover a wide range of N/Z values, allowing to explore a wide

range of fused nuclei.

To span the widest range of N/Z values, both radioactive and stable beams have

been used. The beam intensity is strongly reduced by the required high charge state,

necessary to reach the required beam energy and to reduce the amount of contam-

inants. Radioactive beam intensity is ∼ 2 order of magnitude below that of stable

beams.

The ion beam time structure is pulsed. Each ion burst has, as a first approximation,

a gaussian distribution with a Full Width Half Maximum (FWHM) of ∼ 3ns.

The beam arriving on the target is synchronized with the ions accelerating electric

field radiofrequency (RF). The RF signal can be therefore used as reference for time

measurement.

The main beam characteristics are reported in Tab.3.2.

The analyzed reactions and their characteristic are reported in Tab.3.3.
34Ar, 36Ar and 40Ar ion beams with energies ranging from 12.7 to 13.5AMeV have

1Beam intensity in ”VAMOS master” trigger configuration (§3.2.1).

Beam I (pps)1 Ebeam AMeV νRF (MHz)
34Ar+8 ≤ 106 13.5 10.6076
36Ar+8 5 · 107 13.3 10.5230
40Ar+9 5 · 107 12.7 10.2880
40Ar+18 calibration beam 35.0315 8.5500
40Ar+9 reference beam 12.7 10.2880

Table 3.2 – Ar beams intensity (I), energy (Ebeam) and RF frequency (νRF). The necessity of an
high beam charge state drastically affects the intensity (12% for 40Ar charge state
8+ against 6% for 9+ [132]). The last two beams have been used for calibration
purpose and to the set up of the apparatus for the 34Ar beam measurements,
respectively.
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Beam Ebeam Target dx CN Eexc Erec vrec N/Z
(AMeV) (µg/cm2) (AMeV) (AMeV) (cm/ns)

34Ar 13.5 58Ni 2500 92Pd 2.889 1.844 1.888 1.00
36Ar 13.3 58Ni 300 and 2500 94Pd 2.882 1.951 1.942 1.04
36Ar 13.3 60Ni 330 96Pd 2.919 1.870 1.901 1.09
40Ar 12.7 60Ni 330 100Pd 2.900 2.032 1.982 1.17
40Ar 12.7 64Ni 320 104Pd 2.879 1.878 1.905 1.26

Table 3.3 – Analyzed reactions characteristics. Ebeam: beam energy, dx: target thickness, CN:
compound nucleus obtained by complete fusion of projectile and target nuclei,
Eexc: CN excitation energy, Erec, vrec: CN recoil energy and velocity in laboratory
reference system, respectively, N/Z: compound nucleus N/Z ratio.

been accelerated and impinged onto a 300 ÷ 2500 µg/cm2 thick, self-supporting, iso-

topically enrichedNi targets (58Ni,60Ni and 64Ni) in order to produce fused Pd nuclei,

withmass number varying from 92 to 104. The N/Z of the compound systems ranges

from 1.00 (92Pd) to 1.26 (104Pd).

The 34Ar radioactive beam allows to get very close to the p-drip line in forming 92Pd.

Depending on model, indeed, the drip line is predicted to be between masses 84

and 89 [133]. In this case the deexcitation properties could show special behaviour.

The stable 36Ar beam, coupled to the 60Ni target, allows to make the semi-magic nu-

cleus 96Pd, which has a 50 neutron closed shell. Intermediate Pd isotopes, 94Pd and
100Pd, are provided by 36Ar and 40Ar isotopes coupled with 58Ni and 60Ni targets,

respectively.

The beam energy (∼ 13AMeV) is chosen following the criteria of reducing the

preequilibrium effects and having sufficient recoil energy for nuclear charge identi-

fication of residues [86].

At this incident energy complete and incomplete fusion reaction mechanisms are

both present. Recoil energy criteria should allow to determine whether the observed

reactions are mostly complete or incomplete fusion ones [134,135].

The incident energies for each projectile have been precisely chosen to get the same

excitation energy per nucleon of compound nuclei (∼ 2.9AMeV): in this way the

experiment allows to study the thermodynamical properties of different isotopes

produced in quite the same conditions of formation and detection.

The target thickness of 300 µg/cm2, leading to a mean energy loss of about ∼
0.08AMeV for the considered residue, had been chosen as compromise between

a relatively large number of events and a still sufficient residue velocity for identifi-

cation.

Due to low intensity of the 34Ar radioactive beam, a 58Ni target thickness of 2500 µg/cm2
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has been used in order to increase the number of events. For comparison, some runs

with 36Ar beam on 2500 µg/cm2 58Ni target have been performed.

The expected fusion-evaporation cross sections with 58Ni, 60Ni and 64Ni target

are of the order of ∼ 0.8 ÷ 1.0 barn, similar to experimental results for 40Ar+Ni [136]

and 32S+59Co [137]. Since for a good study of the different deexcitation channels a

statistics of ∼ 103 events per isotope is required, checks on the number of detected

residues have been performed during the experiment.

According to statistical GEMINI simulations the entrance window opening be-

tween INDRA and VAMOS (∆θ = ±4◦) limits the detection to ∼ 1/3 ÷ 1/4 of the

produced residues. Therefore three angular positions of the VAMOS spectrometer

have been explored (θVAMOS = 0◦, 4◦, 8◦). We remark that the 8◦ angular position re-

quires the removal of two INDRA’s telescopes, located on φ = 0 plane (Ring 4 and

5, Module 17 and 18), in order not to reduce the VAMOS entrance window. This po-

sition is mandatory since it allows to normalize the VAMOS data with the INDRA

ones.

3.2 Trigger configurations

The trigger setting is an important issue in performing an experiment, since it

allows to perform a first selection on the overall events. Two trigger configurations

can be selected on the apparatus: the ”physics mode” configuration, in which the

system is triggered by physics events, and the ”test mode” configuration, in which

laser and pulser signals used for stability controls are generated.

During the measurement the beam can be masked before its entrance in the ex-

perimental cave, in order to allow stability controls. Typically the beam reaches the

INDRA cave during ∼ 98% of a time cycle, delivering a Beam in cave signal to INDRA

Selector, which enables the ”physics mode” trigger. For the remaining ∼ 2% of

a time cycle it is possible to select, on the INDRA trigger, the sequence of test func-

tions to enable, choosing between the laser and the electric pulser.

The selected sequence is 590 s with beam in cave and 10 s without.
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Elastic diffusion Fusion reaction
θlab

pr Elab
pr Bρpr Bρres

34Ar+58Ni 1◦ 458.9 1.01 0.25 ÷ 0.86
4◦ 457.7 1.28

36Ar+58Ni 1◦ 478.7 1.11 0.31 ÷ 0.85
4◦ 477.4 1.09

36Ar+60Ni 1◦ 478.7 1.07 0.29 ÷ 0.85
4◦ 477.4 1.14

40Ar+60Ni 1◦ 507.9 1.14 0.26 ÷ 0.92
4◦ 506.4 1.28

40Ar+64Ni 1◦ 507.9 1.18 0.31 ÷ 0.87
4◦ 506.4 1.22

Table 3.4 – Magnetic rigidity (Bρ) values for elastically scattered projectile nuclei and
fusion-evaporation residues. Kinematical relations give the projectile ki-
netic energy (Elab

pr ) for each diffusion angle (θlab
pr ). The charge state has been

obtained according to [111]. Bρ values for fusion evaporation residues
emitted between 0◦ and 4◦ are given by GEMINI simulation (see §5.2.2).
The obtained Bρ values differ more than 10% (VAMOS momentum accep-
tance).

3.2.1 Physics mode

The ”physics mode” allows to acquire physical events if they satisfy some re-

quirements. In particular, constraints can be set on the event multiplicity detected

in one or in both detection apparatuses.

During the experiment three different physics triggers have been selected:

VAMOS master & INDRA slave This trigger configuration enables the event ac-

quisition only if at least one particle has been detected in VAMOS. The choice

is due to the necessity of selecting fusion events, in which ”big” residues are

emitted close to the beam direction (GEMINI simulations suggest an evapo-

ration residue angular distribution peaked in the forward direction and up to

30◦ wide, see §5.2.2).

The VAMOS magnetic rigidity has been selected in order to detect, on the fo-

cal plane, evaporation residues, while particles or fragments with a different

magnetic rigidity do not reach the focal plane.

This configuration therefore performs a first event selection, removing all the

events in which none of the forward emitted fragments or particles (within

VAMOS coverage) has the selected magnetic rigidity 2. In such a way the dead

time (see §3.4.3) due to the high INDRA counting rate is reduced: the appro-

priate choice of magnetic rigidity allows to reject the high flux of elastically

2We remark that the VAMOS momentum acceptance is ∆Bρ
Bρ = 10%.
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Figure 3.1 – Correlation between an INDRA silicon detector signal treated by VAMOS
(on x axis) and INDRA (on y axis) electronic chains. A linear correlation
gives confidence on a good synchronization between the two electronic
chains.

scattered projectile nuclei (see Tab.3.4).

From an electronic point of view, when the VAMOS trigger is present, the

event validation signal (L2 in Fig.2.13) is sent to the Acceptation des voies

lentes (AVL) input on INDRA Selector (see §2.4.2). If the L2 signal is within

the AVL window, INDRA parameters (if present) are also acquired. On the

contrary only VAMOS parameters are acquired.

The rate of event validation signals and of VAMOS-INDRA coincidences

has been monitored during all the experiment.

Special care has been paid to synchronize the AVL window and the L2 signal,

by putting appropriate delays on the VAMOS electronic chain. In order to syn-

chronize the two electronic chains, one of the INDRA silicon detector signal is

sent and processed by both INDRA and VAMOS electronic chains. The corre-

lation between this two signals assures a good synchronization (see Fig.3.1) of

the two electronic chains. This synchronization has been monitored during all

the experiment.

INDRA SOLO In this trigger configuration INDRA is master in the acquisition and

no conditions are set on the VAMOS signal presence, so that tape recording is
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enabled when the selected INDRA multiplicity is reached, independently of

VAMOS signals.

Multiplicity M ≥ 1 This configuration allows to acquire all events where the

INDRAmultiplicity is, at least, 1. It allows to detect, among others events,

elastic events, which will be used in the following analysis to check the

beam centering (see §5.1) and to find the mbarn/counts conversion factor

(see §5.2.3).

Since in the apparatus there is not a Faraday cup, for each reaction INDRA

SOLO runs provide a beam intensity estimation, necessary for normaliza-

tion.

Multiplicity M ≥ 2 Themain difference between this trigger configuration and

the previous one is that it forbids the elastic events acquisition, being the

target kinetic energy too small to allow the elastically diffused target de-

tection.

Runs realized with this configuration are very useful to determine the de-

tectors Z resolution, being the ∆E − E spectra cleaner (see §4.2.1) than the

one obtained in the M ≥ 1 configuration.

3.2.2 Test mode

The ”test mode” allows to check the stability of the electronics, during the exper-

iment, with a selected number of events and without beam on the target.

During each run laser and electronic pulser generators are regularly enabled by

the INDRA trigger, following the required time sequence of the beams delivered

by GANIL. Under software command, one can choose different test configurations,

which are automatically and successively selected at each beam cycle.

Two test configurations have been used during the experiment: when the beam

was masked, the Selector enabled, in turns, the laser system and the pulse gener-

ators.

We would like to remark that a test event is always accepted and it does not

care about the fast and slow INDRA trigger analysis. Physical event acquisition is

inhibited.

3.2.2.1 Pulse generators

When the Selector enables the pulse generators, a pulse is generated on the

8 output channels of each generator. The pulse amplitude can be adjusted between
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Figure 3.2 – Schematic layout of the laser distribution system. Two PIN diode monitor the
laser light amplitude and the CsI wavelength shifter. Their functioning is mon-
itored by pulse generators.

−10V and +10V with steps of 0.3mV, while the duration is fixed at 6 µs [99]. The

maximum frequency is 100Hz. There is one generator line for each preamplifier

of the ionization chamber, calibration telescope and PIN diodes (see below), while

each 300 µm silicon wafer shares the same generator signal, thus leading to 120 + 48

generator channels. VAMOS silicon detector andHARPEE preamplifiers are fired by

an INDRA pulser signal during dedicated pulser runs. This control on the electronic

stability is performed during all the experiment.

3.2.2.2 Laser system

A simplified description of the light distribution system is presented in Fig.3.2.

For a more detailed description refer to [90].

The laser system is equipped with a nitrogen laser, delivering up to 20 pulses

per second at a wavelength of 337nm. The UV laser-light is focused and it enters

nine UV-quartz fibres. An attenuator (1 to 1/20) allows variations of pulse intensi-

ties. One of the nine fibres illuminates a photodiode (PIN diode) whichmonitors the

laser light amplitude. The eight other fibres illuminate a wavelength shifter: a CsI

crystal, which shifts the light wavelength to ∼ 550nm. Quartz fibres are mounted

on each opposite face of the crystal. One of them illuminates a PIN diode, which

monitors the CsI wavelength shifter. The signals of the PIN diode preamplifiers are

processed by the same electronics as the one used for silicon detectors, including

electronic stability control by pulse generators.

The other optical fibres are coupled perpendicularly to the back face of the scintil-
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lators and they illuminate it from a distance of 5mm, in order to avoid differences

due to the surfaces of the crystal. The enlightened surface has a diameter of 2.5mm.

The largest amplitude and the smallest fluctuations of the laser pulse amplitude are

obtained at 10Hz [90].

3.3 VAMOS set up

The low radioactive ion beams intensities, the low CN evaporation residues ki-

netic energies and the large angular cone in forward direction in which CN evapo-

ration residues are emitted imply the need to physically separate reaction products

from beam background.

A magnetic spectrometer, such as VAMOS, thanks to the magnetic field charac-

teristics, deflects, on trajectories depending on particle velocity v and mass/charge

ratio (m/Q), charged particles, which have to be detected.

In general, the motion of a charged particle in an electromagnetic field is de-

scribed by the Lorentz force:

d−→p
dt
= q(
−→
E + −→v ∧ −→B) (3.1)

where q, −→p and −→v are the charge, the momentum and the velocity of the particle,

respectively,
−→
E and

−→
B are the electric and the magnetic field, respectively. The elec-

tric component gives the acceleration of the particle, while the magnetic component

corresponds to the bending. The beam optics is determined by the magnetic field,

so that we can assume
−→
E = 0 and consider the bending term only:

d−→p
dt
= q−→v ∧ −→B (3.2)

The ”equilibrium trajectory” (or central ray) s0, with a curvature radius ρ(s0), de-

scribed by a particle ”p0” with a momentum −→p0 under the effect of a magnetic field
−→
B(s0), is defined by the equal competition between the Lorentz force and the cen-

tripetal force, and can be expressed by the relation:

B(s0)ρ(s0) =
p0

q
. (3.3)

Every trajectory s travelled by a particle ”p” with momentum −→p , velocity −→v , and
position −→r in the laboratory frame, can be described with reference to s0. Six param-
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Figure 3.3 – Definition of parameters, relative to the central trajectory (s0), usefull to describe
a generic trajectory s.

eters, all relative to central ray parameters, are used to describe s (see Fig.3.3):

x, y: transverse distances of particle from s0

θ, φ: horizontal and vertical inclination angles

l: path length difference

δ: momentum deviationwith respect to the reference particle of momentum p0 = qBρ0,

defined by the relation

δ =
p − p0

p0
=

Bρ − Bρ0

Bρ0
(3.4)

Each reaction product, before its entrance in the spectrometer, can be character-

ized by its own Bρ value

Bρ =
p
q
=

mv
q
∝

A
q

v (3.5)

where A is the particle atomic number. Since the magnetic fields are set so that the

particle trajectories split apart according to the different momenta, not only evapo-

ration residues reach the spectrometer focal plane, but all particles whose Bρ value

is within the selected Bρ window. For all the particles reaching the focal plane, the

position along the focal plane itself, measured by VAMOS, is a measure their A/Q.

At the beginning of the experiment the central trajectory, which intersects the

focal plane in the centre, has been identified by selecting a Bρ value corresponding
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Figure 3.4 – The evaporation residues Bρ distribution has been obtained by a GEMINI sim-
ulation. The six selected Bρ windows (∆(Bρ)) for the 40Ar+60Ni reaction cover
the main part of the expected evaporation residues Bρ distribution, overlapping
themselves. The momentum acceptance is ∆(Bρ)

Bρ = 10%.

to the 40Ar18+ beam (Bρ = 1.1434Tm, Ebeam = 12.7AMeV). The primary beam was

directed through the spectrometer with the target off-beam. This optical setting de-

fined the reference trajectory s0 and the curvature radius ρ0.

The aim of the experiment was the VAMOS detection of the evaporation residues

produced in fusion reactions. GEMINI calculations suggest (see §5.2.2) a Bρ distribu-

tion of the evaporation residue ranging from ∼ 0.3Tm to ∼ 0.85Tm. Being the mo-

mentum acceptance in the focal plane ∆Bρ
Bρ = ±10% one single optical setting of the

spectrometer allows for a partial transmission of the p/q distribution of produced

fragments. Thus, a limited A/q range of fragments can pass through the spectrome-

ter. It imposed to scale the set of magnetic fields several times in order to scan all the

magnetic rigidities (and therefore the momenta) of the reaction products of interest.

Six Bρwindows, slightly overlapping, have been selected fromGEMINI simulations

and on the event counting rate during the experiment (see Fig.3.4).

Once selected the first Bρ window, the others have been set varying of ∼ 8.7% the

previous value. The Bρ values are set by setting the magnetic field of the two

quadrupole and of the dipole. The magnetic field values set have been verified

by means of a nuclear magnetic resonance measure. For each Bρ value a VAMOS

background measurement has been performed.

In addition, to avoid a bias of the different deexcitation channels, it had been

necessary to put the spectrometer into, at least, two different angular positions, to
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cover the residues angular distribution. Thanks to the possibility to rotate the spec-

trometer around the target point, three angular positions have been explored for the

reactions with stable beams: 0◦, 4◦ and 8◦. For the 34Ar+58Ni reaction, only 0◦ and 2◦

have been explored, due to the low statistics.

3.4 Online checks

3.4.1 Silicon detector reverse current

Monitoring the leakage current is a fairly common practice which has been per-

formed during the measurement.

When voltage is applied to a junction detector (reverse biased junction), a current of

the order of a microampere [138] is normally observed. The origins of this leakage

current are related both to the bulk volume and surface of detector. The leakage

current fluctuations affect the energy resolution, introducing a source of noise.

Moreover, the bias voltage to the detector is supplied through a series of resistors,

therefore the true bias voltage applied to the junction is reduced from that of the

voltage source by the product of the leakage current and the series resistance. If the

leakage current is large enough, the drop across the resistor can appreciably dimin-

ish the voltage applied to the detector, reducing the depletion voltage. Sometimes it

is therefore necessary to raise the voltage, to compensate the leak.

Monitoring the leakage current one can also detect the onset of an abnormal de-

tector behaviour. During steady operation, the leakage should normally maintain a

steady value, and any abrupt changing or increasing can indicate a change in detec-

tor performance, which may degrade the energy resolution.

Finally, the long-term behaviour of the leakage current is often a useful monitor of

the degree of the radiation damage suffered by a given detector. The proper opera-

tion of any semiconductor detector depends on the near perfection of the crystalline

lattice to prevent defects that can trap charge carriers and lead to incomplete charge

collection. The form of the most common irradiation-induced defect is produced by

the displacement of an atom of the semiconductor material from its normal lattice

site. The vacancy left behind, together with the original atom now at an intersti-

tial position, constitutes a trapping site for charge carriers. When enough of these

defects have been formed, carriers lifetime is reduced and the energy resolution of

detector is degraded due to fluctuations in the amount of charge lost.

The observed leakage current value during the experiment is ∼ 1µA with an

applied voltage of ∼ 70V, for each detector.
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3.4.2 Spectra control

Experiments in nuclear reactions typically acquire large amounts of data. Dur-

ing the experiment one and two dimensional spectra of the raw as well as derived

parameters could be displayed in the on-line acquisition system VISUGAN. Since

the data collected were available on disk, it was possible to begin the off-line analy-

sis even while the experiment was still in progress, helping to notice problems and

improving the experimental conditions.

An on-line spectra analysis has allowed to control the INDRA and VAMOS elec-

tronic chains synchronization and the detectors behaviour, as well as to monitor the

acquired statistics.

3.4.2.1 Control on VAMOS-INDRA electronic chains synchronization

The synchronization is monitored by analyzing the correlation between an IN-

DRA silicon detector signal processed by the two electronic chains, as described in

§3.2.1 (see Fig.3.1)

Referring to Fig.2.13 we can note that the time distance (tS I−INDRA) between the IN-

DRA FAST TRIGGER generation and the VAMOS trigger signal (L2) is indicative of

the electronic chains synchronization. Fig.3.5 shows a tS I−INDRA spectrum, realized

in ”VAMOS master” trigger configuration. The Start signal is given by the trigger

signal (which is fired by VAMOS), while the Stop is given by INDRA fast trigger

signal. The presence of a single peak gives confidence on the correct synchroniza-

tion between the two electronic chains. The integral of the spectrum is the number

of events in which INDRA detects at least one particle in coincidence with a residue

detected in VAMOS.

Fig.3.7 shows the same spectrum for a pulser run. Pulser signal are sent to both VA-

MOS and INDRA detectors. In this case the Stop signal, given by an INDRA pulser

trigger signal, is delayed with respect to the FAST TRIGGER signal generated in

physics events, obtaining a spectrum concentrated in the highest TDC channels.

3.4.2.2 Controls on statistic

During the experiment controls on the acquired statistic have been performed.

In particular the number of residues detected in VAMOS for each run (i.e a given

Bρ value and a given ΘVAMOS ) has been monitored and recorded on the logbook, as

well as the number of coincidences between INDRA and VAMOS. Since the com-

pound system is created in an excited state, it evaporates particles, therefore the ra-

tio between the number of INDRA-VAMOS coincidence and the number of detected
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Figure 3.5 – Time distance between the VAMOS trigger signal, obtained by the logic OR
of VAMOS silicon detectors signals, and the INDRA FAST TRIGGER signal,
obtained by the INDRA signals multiplicity analysis. The number of INDRA-
VAMOS trigger signal coincidences is given by the integral of the peak. A peak
at ch∼ 6700 is present. The contribution comes from two silicons at the border
of the VAMOS silicon wall. Actually we are not able to clearly identify this con-
tribution, but, as can be seen from Fig.3.6, it does not affect the residue region.
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Figure 3.6 – Time distance between the VAMOS trigger signal and the INDRA FAST TRIG-
GER signal (tS II NDRA). It is displayed, in black, the total tS II NDRA spectrum, in red
the residue tS II NDRA spectrum and in blue the elastic and light particles tS II NDRA

spectrum. The three different regions are shown in the left panel. The right
panel shows, in red, the events where tS II NDRA is ∼ 6700 ch.
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Figure 3.7 – Time distance between the VAMOS and the INDRA trigger signals in case of
pulser run.

residues indicates the percentage of events in which at least one of the evaporated

particles is detected. This percentage is found to be dependent, as well as on the

reaction, on the Bρ and ΘVAMOS values set, as expected.

3.4.2.3 Controls on detectors behaviour

Controls on both VAMOS and INDRA detectors behaviour have been performed.

The resolution has been monitored during all the experiment, periodically check-

ing the available spectra (∆EChIo − ES i, ∆EChIo − ECsI and fast-slow in INDRA and

∆EHARPEE − ES i in VAMOS) for all detectors.

In Fig.3.8 typical VAMOS ∆EHARPEE − ES i spectrum is displayed. The Bragg peak

is clearly identifiable at high ∆E values. Each pad is related to a segment of the ion-

ization chamber HARPEE, that means to different impact point distance from the

reference trajectory. Depending on the Bρ value different segments of HARPEE are

the most enlightened.

A projection on the ∆E axis allow to have a rough estimation of the evaporation

residues statistics.

Time signals of both the apparatus have been checked.
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Figure 3.8 – Online spectra obtained for 40Ar+64Ni reaction. The selected Bρ is 0.753Tm and
the VAMOS angular position is ΘVAMOS = 0◦. On left side: typical VAMOS
∆EHARPEE − ES i spectra (in channels) obtained by online analysis. ∆E and E
signals are given by a segment of HARPEE and its corresponding silicon de-
tector respectively. On right: ∆EHARPEE projection. The integral of the peak
corresponds, in a first approximation, to the number of detected residues.

Figure 3.9 – Online controls on VAMOS time signals for the 40Ar+64Ni reaction in
ΘVAMOS = 0◦, Bρ = 0.693Tm configuration.
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Figure 3.10 – Secondary electron detectors signals for the 40Ar+64Ni reaction inΘVAMOS = 0◦,
Bρ = 0.693Tm configuration. a) and b): measured charge on a strip (”PARAY”),
expressed in channels, versus the strip number (”PARAX”) in the x and y wire
plane, respectively. c): measured charge on strip y (”SED2Y”) versus strip x
(”SED2X”). d): time distance between the second SED signal and the RF signal.

Panel a in Fig.3.9 is an example of the correlation between INDRA and VAMOS

electronic chain and it is obtained as previously described. In the remaining panels

VAMOS time signals, related to particles time of flight, are shown. In panel b the

Start and Stop signals are given by the first and the second SEDs respectively. In

panels c and d the Start is given by the VAMOS trigger while the Stop by the first

SED (opportunely delayed) and the RF signal respectively. In the three last panels a

peak related to physical events is present. The monitor of the position of the peaks

during the measurement checks the electronic stability.

In Fig.3.10 raw SED’s signals are shown. In the upper part the measured charge on a

strip versus the strip number in the x and y wire plane are plotted. Since secondary

electrons produce a charge distribution on the strip a further processing is necessary

to identify the impact position of the incident ion. For this reason each point in the

measured charge on strip y versus the measured charge on strip x plot (panel c) does

not represent a particle impact point position. The time distance between the second

SED signal and the RF signal is shown in panel d).

INDRA ∆ES i − ECsI spectra (Fig.3.11) are useful to monitor the detectors status

and resolution. The spectrum, obtained in INDRA SOLO M ≥ 1 trigger config-
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Figure 3.11 – Online INDRA ∆ES i − ECsI spectra obtained for the 34Ar+58Ni reaction in
INDRA SOLO M ≥ 1 trigger configuration. The detectors are located at
14◦ ≤ θ ≤ 20◦ (ring 6) and cover ∆φ = 15◦ in the 15◦ ≤ φ ≤ 75◦ region.

uration, shows a good Z resolution even if the online presentation is compressed.

Energetic fragments with a charge up to Z ∼ 7 are detected in 34Ar+58Ni reaction.

Figure 3.12 – ∆EHARPEEvsQ spectrum. The ∆E values have been roughly calibrated in MeV.
Different residues charge state are well separated and they can be identified in
the descending part of the Bragg peak. The Bragg peak presence depends on
the HARPEE pressure, that is 25mbar and 15mbar in first and second panel re-
spectively. The charge state value has been obtained plotting the particle total
energy E and the particle time of flight (t) product (Et), which is proportional
to BρdQ, where d is the flight path. Being Bρ and d almost constant, Et ∝ Q.
The data are relative to 36Ar+58Ni reaction (ΘVAMOS = 0◦, Bρ = 0.693Tm)
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Figure 3.13 – A vs. A/Q correlation of fusion evaporation residue detected around 0◦

(∆θVAMOS = ±4◦).

An off-line analysis, performed during the experiment, has allowed to sum dif-

ferent runs and to perform a rough calibration. A typical (∆EHARPEE − Q) VAMOS

spectrum is displayed in Fig.3.12: the different residues charge states are well sepa-

rated and a good charge resolution, up to Z close to the residue charge, is evident.

Amass versus mass/charge state (A vs A/Q) spectrum has been obtained plotting

the ratio between the total energy and the square of the fragment residue velocity

versus the ratio between the Bρ value and the fragment velocity, such as in Fig.3.13.

Different A/Q ratio are separated from each other, allowing, once known the mass

number of a particle, to determine its charge state.

Off-line INDRA ∆ES i − ECsI spectra, shown in Figs.3.14(a) and (b), have been

obtained in ”VAMOS master” trigger configuration: fragments with Z up to ∼ 7

are detected in coincidence with evaporation residues and a good isotopic separa-

tion is obtained for Z = 1 and Z = 2. The INDRA CsI(Tl) crystal multiplicity is

shown in Fig.3.14(c). The mean detected multiplicity is 6 for 40Ar+60Ni reaction and

ΘVAMOS = 4◦, but the distribution extends from 1 to ∼ 12 particle per event in coinci-

dence with an evaporation residue.

A CsI(Tl) scintillator spectrum is shown in Fig.3.15: a good isotopic resolution for

Z = 1 and Z = 2 is obtained, allowing a light charged particles mass identification.
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Figure 3.14 – INDRA ∆ES i − ECsI spectra (in channels) and INDRA CsI(Tl)s multiplicity ob-
tained for the 40Ar+64Ni reaction in VAMOS master trigger configuration (i.e.
particles detected in INDRA are in coincidence with at least one fragment de-
tected in VAMOS). The VAMOS angles are ΘVAMOS = 0◦ and 4◦ in panels (a)
and (b-c), respectively.

Figure 3.15 – INDRA CsI(Tl) fast-slow correlation obtained in 40Ar+60Ni reaction. The de-
tector lies in the 10th ring, covering 45◦ ≤ θ ≤ 57◦. ΘVAMOS is 4◦.
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3.4.3 Dead time check

The dead time is the time interval during which the acquisition system acquires

the measured parameters. During this time window the system is inhibited and all

new events are lost.

The dead time is an important parameter to check during the experiment because it

limits the counting rate.

In the ”VAMOS master” trigger configuration the dead time is mainly due to the

INDRA acquisition, which inhibits any further VAMOS trigger (see Fig.2.29) during

its encoding.

Obviously in ”INDRA SOLO” trigger configuration the dead time is due to the IN-

DRA encoding and acquisition time.

INDRA electronic system is provided by some internal electronics (pulse generators

and a series of scalers) to monitor the dead time.

gene−direct: it is an internal clock with a period of ∼ 1/185 s. The scaler counts the

number of pulse delivered during a run: such value gives the run period.

dead time generator: it generates the internal clock output if the INDRA trigger

is inhibited (during the encoding). The Selector is in ”physics mode”. The

total number of pulses generated during a run is proportional to the dead time

of the encoding procedure.

gene−marque: it generates the internal clock output if the Selector is in ”test

mode”. The total number of pulses during a run is related to the time inter-

val devoted to stability controls.

The dead time percentage can be obtained by combining these values:

tdead−time(%) =
dead time generator

gene−direct − gene−marque
(3.6)

The dead time percentage has been monitored during the experiment and kept

around 20% (never greater than ∼ 40%.) by adjusting the beam intensity.
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p

Ring 4 − 5 30(3) mbar
Ring 6 − 7 50mbar

INDRA Ring 8 − 12 30mbar runs up to 292
20(4) mbar runs from 298

Ring 13 − 17 30mbar

HARPEE 25mbar runs up to 281
15mbar runs from 282

SED1 SED2
p (mbar) V (V) p (mbar) V (V)
7.0 ÷ 7.1 470 ÷ 510 7.0 ÷ 7.2 470

Table 3.5 – Gas pressure values set in INDRA ionization chambers, HARPEE and SEDs. For
the two SEDs also the voltage values have been reported.

3.4.4 Pressure controls

During all the measurements the gas pressure stability in the ionization cham-

bers has been monitored, since a pressure variation requires a new energy calibra-

tion of the ionization chambers.

The gas pressure in INDRA ionization chambers has been set in order to obtain a

good charge resolution in ∆EChIo − E spectra. Increasing the gas pressure, the res-

olution gets better, but simultaneously the energy threshold for particle punching

through the ionization chamber increases. The gas pressure values, listed in Tab.3.5,

are a good compromise between these two effects.

HARPEE gas pressure has been set in order to be able to identify the Bragg peak

region and to have, in this region, the best Z resolution.

The SEDs operating pressure is ∼ 7mbar.

3.5 Calibration runs

During the experiment several calibration runs have been performed:

Pedestal runs: The QDC measured values are acquired without any particle firing

the detectors. These runs permit to identify the pedestal postion on each QDC

and on CsI ADCs and thus to determine the 0MeV position on the energy

scale.

3The gas pressure has not been set to the nominal value (50mbar) due to gas regulator problems.
4Gas leakage problems have required to decrease the gas pressure.
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Figure 3.16 – VAMOS silicon detectors energy spectra in pulser runs. A pulser signal is sent
to each silicon detector preamplifier, varying the amplitude pulse signal in
order to span all the QDCs range.

α source and 40Ar+Au runs: They allow to obtain at least two energy calibration

points, one from the known α energy and one from the known elastic scattered

projectile energy in INDRA detectors.

Ar beams without target runs: The Ar beam is directly sent into the spectrometer,

on which the beam Bρ value had been set, to obtain an energy calibration point

for HARPEE detector.

Pulser runs: a pulser signal is sent to HARPEE and silicon detector preamplifiers in

order to get the mV/ch calibration factor (Fig.3.16). The INDRA detectors are

fired by the INDRA pulser, when the trigger is set in ”test mode”, thus they do

not require dedicated pulser runs.

Time calibrator runs: Time calibrator signals, with a known period, are sent to all

the TDC used in the electronic chains. It allows to determine the ch/ns calibra-

tion factor for each TDC.

HARPEEpulser: Pulser signals, with known and variable amplitude, are sent to

each HARPEE preamplifiers, in order to verify the response linearity.
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Figure 3.17 – Geometric configuration of two aluminium masks. The calibrated holes allow
to select given trajectories, mapping the SED surface.

3.5.1 SEDs position calibration (SED cartographie)

Unlike conventional gas detectors, the ionization in SEDs is not produced by the

incident ion but by secondary electrons. Due to their low mass and energy, they

undergo a very strong straggling in crossing the entrance foil5. As a consequence

a charge distribution is obtained on the strips, from which the position has to be

extracted.

Position tests were made at the beginning and at the end of the measurement. Fis-

sion fragments coming from a Cf source had been used, being the collected charge

with α particles to low for an accurate position measurement [139]. Position cal-

ibration was performed using an aluminium mask (Fig.3.17) located just behind

(2 ÷ 3 cm) the emissive foil. The calibrated holes were placed to select a given and

known trajectory in order to map all SED’s surface. The position of the image of

each hole on the SED was extracted by a charge-weighted center of gravity calcula-

tions [112]. The image of this mask can be seen in Fig.3.18(c).

Localization tests have been made also removing the magnet which ensures the fo-

cusing of the electrons moving towards the low pressure gas chamber. The resolu-

5For 10keV electrons going through 0.9mmMylar, the angular straggling and the energy loss are
around 15◦ and 3.1keV, respectively [139].
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tion on impact position gets worse as can be seen comparing Fig.3.18 and Fig.3.19.

Each calibration is valid only for a given voltage applied to the carbon foil and a

given magnetic field set (V0,B0).

Figure 3.18 – SED position calibration. a,b) measured charge on a strip versus the strip num-
ber in x and y wires plane, respectively. c) Image of the mask. d) Measured
particle time of flight between the two SEDs.

Figure 3.19 – SED position calibration performed without the electron focusing magnetic
field. With respect to Fig.3.18 the measured charge distribution is more spread:
the obtained mask image has no resolution.



100 Chapter 3. The experiment



Chapter 4

Preliminary data analysis

4.1 Raw data reconstruction

A raw event is a list of acquisition data parameters characterized by the same

event number. The events reconstruction consists in the analysis of the acquired pa-

rameters in order to reconstruct physical particles, transforming list of hit detectors

into list of particles. A reconstructed event is characterized by the event number and

the particles multiplicity, while each particle is characterized by the identification

number of the hit telescope and by the energy and time marker signals of each fired

detector.

In previous INDRA campaigns [140–143], the event reconstruction have been per-

formed by KaliVeda [144]. Kaliveda is an object oriented data analysis frame-

work based on ROOT, whose main purpose is to provide simulation and analysis

tools for the INDRA charged particle multidetector .

On the occasion of the present experiment, where INDRA is coupled with VAMOS,

KaliVeda has been implemented in order to reconstruct also the VAMOS data.

While the INDRA analysis tools are well tested, checks on the VAMOS recon-

structed data have been performed to verify the events reconstructions accuracy.

Some VAMOS spectra have been generated and compared with the ones realized,

with raw data, during the measurement (see §3.4.2). Moreover a comparison be-

tween the residues statistics deduced from the reconstructed VAMOS spectra and

the one estimated during the measurement has been performed.

The obtained VAMOS spectra and the residues statistics are in agreement with the

ones obtained during the acquisition (see, as example, Figs.4.1 and 4.2), giving con-

fidence in INDRA and VAMOS events reconstruction procedure.

The following data analysis will be focused on INDRA data, while the VAMOS

101
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Figure 4.1 – Comparison between online spectra (upper part) and spectra obtained by ”re-
constructed events” for 40Ar+64Ni reaction (Bρ = 0.587Tm, θVAMOS = 0◦). a) VA-
MOS ∆EHARPEE − ES i spectrum; b) Time distance between VAMOS and INDRA
trigger signals (TS I INDRA). In the online spectrum a peak around ch ∼ 14000
related to pulser events is present. The offline spectrum is, instead, concerned
only to physics events. c) ∆EHARPEE −ES i spectrumwith the condition of a short
time distance between the two apparatuses trigger signals; d) ∆EHARPEE projec-
tion of the ∆EHARPEE − ES i spectra in a) (red) and c) (black). The constraint on
TS I INDRA allows to reject the elastic contribution.
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Figure 4.2 – Online and offline ∆EHARPEE vs. A correlation for 40Ar+60Ni reaction (Bρ =
0.693Tm, θVAMOS = 0◦). The ∆E value has been roughly calibrated in MeV. The
A value is obtained by plotting the total energy (E) and the square of time of
flight (t2) product (Et2): being the flight distance constant for a given HARPEE
segment, Et2 ∝ A.

data analysis will not be performed in this work.

4.2 INDRA ∆E − E and ”fast-slow” correlations

The study of the N/Z level density parameter dependence requires fragments

and light particles mass and charge identifications over a wide energy range. IN-

DRA multidetector, thanks to its structure constituted by telescopes, i.e. different

detection layers, allows to perform the identification in mass A and charge Z of the

detected particles through ∆E − E technique, or through the two components of the

scintillator light (”fast-slow”).

The CsI(Tl) scintillator output has, indeed, two light components (see §2.1.3) which,

integrated in two different gates, acquired separately and plotted one versus the

other, give rise to a ”fast-slow” correlation.

The ∆E − E method requires that the incident particle punches through at least

the first detection layer, while the ”fast-slow” method requires the particle to be de-

tected in the CsI(Tl) scintillator. The latter method can be therefore applied only to

the most energetic light particles.

The ∆E − E correlations are built between the ionization chamber and the silicon

detectors signals (∆EChIo − ES i) and between the silicon detector and the fast 1 com-

ponent of the CsI signals (∆ES i − E f ast) depending on the polar detector angle.

1The fast component is directly related to the energy deposited in the crystal.
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The specific energy loss (− dE
dx ) for charged particles in a given absorber, with

density ρ and charge and mass respectively ZT and AT , is described by the Bethe

formula [138]:

−dE
dx
= 4πNAr2

eρmec
2 ZT

AT

(

Z
β

)2 [

ln

(

2mec2β2

I(1 − β2)

)

− β2

]

(4.1)

where re =
e2

4πǫ0mec2 is the classical electron radii and me the electron rest mass. The pa-

rameter I represents the average excitation and ionization potential of the absorber.

Z and β are the charge state and velocity of the incident ion, respectively.

Eq.4.1 takes into account interactions between the incident ion and the electrons of

the absorber, neglecting the interactions with the absorber nuclei, which are signif-

icant just at the end of the particle track. It is generally valid for different types of

charged particles provided their velocity remains large compared with the velocity

of the orbital electrons in the absorbing atoms.

In non-relativistic limit (β→ 0), eq.4.1 becomes:

−dE
dx
= C1

meZ2

β2
ln(C2

β2

me
) (4.2)

and, neglecting the logarithmic β dependence,

−
dE
dx
≈

Z2

β2
∝

Z2A
E

(4.3)

where E is the incident particle kinetic energy and A its mass.

The specific energy loss, for a given incident energy E, presents a relevant depen-

dence from the incident particle charge Z and a lesser one from its mass A. Therefore

a ∆E − E correlation presents the typical Z edges as shown in Fig.4.11(a), and, if the

∆E energy resolution is sufficiently good, also the A dependence can be pointed out.

The response of CsI(Tl) scintillators has a non-linear dependence on the energy

of the incident particle, and, for a given energy, the light output depends on the type

of the particle [94–97].

The differential light output per unit path length expression is given by [94, 95]:

dL
dx
= S

dE
dx

(1 + KBdE
dx )

(4.4)

where S and KB are the scintillation efficiency and the quenching factor, respectively.
dL
dx is then related to the specific energy loss and therefore it depends on Z and A of

incident particle, allowing a particle charge and mass identification by specific pro-



4.2. INDRA ∆E − E and ”fast-slow” correlations 105

 (ch)        SiE0 500 1000 1500 2000 2500 3000
 (

ch
)

C
hI

o
E∆

0

200

400

600

800

1000

1200

1400

1600

Ni60Ar+40

 (ch)        SiE0 500 1000 1500 2000 2500 3000

 (
ch

)
C

hI
o

E∆

0

200

400

600

800

1000

1200

1400

1600

Ni58Ar+34

Ni60Ar+36

Ni64Ar+40

Figure 4.3 – ∆EChIo − ES i spectra obtained in INDRA SOLO M ≥ 1 trigger configuration.
For a fixed incident energy the elastic peak positions are related to the silicon
depletion voltage: in 40Ar+60Ni reaction the diffused projectile energy (Eel

pro j)

is ∼ 500MeV, corresponding to channel ∼ 700. In 34Ar+58Ni, 36Ar+60Ni and
40Ar+64Ni reactions Eel

pro j ∼ 450, ∼ 470, ∼ 500MeV, respectively, corresponding
to channels between 2500 and 3000. This shift can be attributed to a silicon
depletion voltage shift.

cedures.

The ∆E − E and ”fast-slow” spectra analysis allow to check the detector perfor-

mances and, as a first approximation, the preamplifier (where present) and amplifier

gains stability. ∆E−E correlations have been realized for both ”high gain” and ”low

gain” signals.

4.2.1 Detectors stability and performances

To have good ∆E − E and ”fast-slow” correlations it is necessary to check the de-

tectors status and, qualitatively, their stability during the measurement. Moreover

it permits to have a first estimation of Z and A resolutions.

Forward detectors, located at polar angles smaller than the grazing angle of the ana-

lyzed reaction (see Tab.5.2), are fired by intense elastically scattered projectile nuclei

(Rutherford scattering) and thus are more subject to radiation damage. Radiation

damage could modify their response, so that they have been monitored during the

measurement. Runs acquired for time to time during the measurement campaign

provide a time evolution information on the detectors status.
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Figure 4.4 – The silicon polarization is responsible of the quick migration of the carriers pro-
duced by the passage of a particle in the n-p junction. A decreasing in the ap-
plied bias degrades the detector resolution.

First of all a correlation analysis allows to point out problems on silicon deple-

tion voltage, as shown in Figs.4.3 and 4.4. The shift of the elastic peak (whose energy

is fixed and known) in the first case and the absence of Z resolution in the second

one suggest a shift of the silicons depletion voltage, which have to be corrected dur-

ing the energy calibration procedure. Fig.4.5 highlights a problem on an electric

contact between the silicon wafer and the HV supply.

Some abnormal functioning of the detectors have been pointed out, such as in Fig.4.6,

where no low energetic fragments are present in the detector spectra contrary to

what is observed in the adjacent detectors, probably due to high silicons thresholds.

The loss of such particles must be taken into account in further analysis.

A monitor of the electronic chains stability of silicons and ionization chambers, in

particular of preamplifier and amplifier gains, can also be performed by the analy-

sis of ∆EChIo − ES i matrices. Comparing, for each detector, the Z edge positions on

the ∆E − E spectrum obtained for different runs a rough idea of the detector and its

electronic stability can be obtained. Fig. 4.7 shows a Z lines shift, which could be

due to a CsI(Tl) drift2. It can be verified and, eventually, taken into account by the

analysis of the laser position in the CsI spectra.

2A similar CsI drift has been observed in INDRA campaign 2003.
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Figure 4.5 – Problems on silicon depletion voltage supply during the measurement cause a
shift in the silicon response.

Eventual abnormal functioning should be corrected by a detailed analysis of pulser

runs.

Moreover a ∆EChIo − ES i (θ < 45◦) or ∆EChIo − ECsI (θ > 45◦) spectrum analysis permit

to verify qualitatively the gas pressure chamber stability: Z and A resolutions are,

infact, mainly set by the ionization chamber resolution, which is strictly connected

with the gas pressure3. A resolution worsening corresponds to a gas pressure re-

duction, as shown in Fig.4.8, where the ionization chamber gas pressure varies from

30mbar to 20mbar.

”Fast-slow” correlations permit to point out possible abnormal functioning on the

CsI(Tl) electronic chain or high threshold (see Fig.4.9) on the CsI(Tl) CFDs, which

cause a loss of very low ionizing particles.

Detectors performances The ∆E − E method, requiring the punch-through of the

first detector, introduces a threshold in the identified particles.

For a forward telescope we can specify three thresholds level with respect to the Z

3As suggested by Bohr [145], the energy straggling caused to an incident particle by the presence
of a material on its flight path is proportional to the square root of the material thickness. Therefore
the relative energy loss fluctuations increase decreasing the material thickness, i.e. the gas pressure
in the ionization chamber.
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Figure 4.6 – ∆EChIo−ES i spectra of three different telescopes in ring 4 (7◦ ≤ θ ≤ 10◦). The first
one has been chosen as reference. The absence of the highest part of the spectra,
which has to be taken into account in further analysis, suggests probable high
silicon detectors thresholds, which prevent the silicons triggering.
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Figure 4.7 – ∆ES i − E f ast spectrum. A CsI drift causes a shift in the Z edges positions. Black
and red markers are relative to data acquired in different moments of the mea-
surement campaign.
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Figure 4.8 – A gas pressure reduction corresponds to a resolution degrading. The pressure
varies from 30 (left) to 20mbar (right). Ionization chamber high gain (upper)
and low gain (lower) signals are shown.
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Figure 4.9 – Fast-slow spectra in different modules. Abnormal functioning of CsI(Tl) and
incorrect CsI(Tl) energy threshold position cause the loss of the most energetic
particles.
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Figure 4.10 – INDRA detection thresholds for a forward telescope including the silicon layer
[146]. The red lines corresponds to a particle energy loss in the ionization
chamber of ∼ 5MeV, the green line corresponds to the detection of the particle
in the silicon detector (1.5MeV released in 30mbar C3F8 gas). The blue line
indicates the energy required to detect the particle by cesium iodide detector.

and E of the incident particle (see Fig.4.10):

• Detection threshold: particles are detected in the ionization chamber, i.e. they

have released at least ∼ 5MeV in the detector. It corresponds to ∼ 0.8AMeV

for particles with charge Z . 10 and decreases to ∼ 0.1 ÷ 0.2AMeV for heavier

fragments (Z ∼ 30).

• Z identification threshold: the silicon detector detects the incident particle. The

upper limit on the Z identification is due to the ionization chamber energy

resolution. It corresponds to ∼ 0.8AMeV for all incident particles.

• Isotopic identification threshold: the CsI detector detects the incident particle.

For ionization chamber-CsI telescopes, the thresholds are similar and the isotopic

separation threshold corresponds to the CsI identification threshold.

As an example of Z and A resolutions of the INDRA detector some experimental

spectra are presented. In order to obtain a good estimation of the Z resolution, the

analysis has been performed on events obtained in INDRA SOLO M ≥ 2 trigger

configuration (see §3.2.1). In such a way, since the energy of the elastically recoiled
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Figure 4.11 – ∆EChIo −ES i and ∆EChio −E f ast spectra obtained in INDRA SOLO M ≥ 2 trigger
configuration. Different Z edges can be identified thanks to the relatively high
carbon yields compared with its neighbours and to the absence of the 9Be edge.
Detectors are located at φ = 210◦ ÷ 225◦ and θ = 7◦ ÷ 10◦ and θ = 45◦ ÷ 57◦,
respectively.

target nuclei is well below4 0.8AMeV (see Tab.5.2), their contribution has been re-

moved, obtaining more ”clean” spectra.

An example of the detectors response is reported in Fig.4.11(a), which shows

the ∆EChIo − ES i matrix obtained for the reaction 40Ar+64Ni. The telescope covers

θ = 7◦ ÷ 10◦ and φ = 210◦ ÷ 225◦. Identification up to Z = 26 is observed.

Results at backward angles (∆EChIo − ECsI) are shown in Fig.4.11(b), where Z up to

18 are clearly separated form each other. Mass separation can not be observed.

∆ES i − E f ast matrix ,obtained for a module of ring 4, is shown in Fig.4.12. Nuclei

up to Z = 7 are detected. A clear separation is observed both in charge, between

Z = 1 and Z = 2, an in mass, up to Z = 2.

Fig 4.13(a) shows the fast-slow rappresentation of the two CsI(Tl) components

for a forward ring where mass and charge identification up to Z = 3 is observed.

Similar result for ring 10 are shown in fig 4.13(b).

4We remark that ionization chamber signals do not contribute to the multiplicity signal genera-
tion, which is obtained by the silicon and the CsI(Tl) signals analysis (see §2.2.3). Thus the reference
threshold is the energy necessary to punch through the ionization chamber.
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Chapter 5

INDRA data analysis

The essential information for themeasurement of the differential cross section for

the Ar+Ni fusion-evaporation reaction consists in the determination of the amount

of the total collected fusion-evaporation events at each polar angular range, i.e. in

each ring, where the evaporation residue can be detected.

Fusion evaporation residues must be discriminated from fragments produced in

other reaction mechanisms. Being the transition from one reaction mechanism to

another a smooth process, it is not easy in all cases to determine whether a given

final product can be characterized as an evaporation residue. This is especially true

at intermediate and higher bombarding energy when an overlap in energy andmass

range exists for different processes, e.g. between deep inelastic collisions and fusion

evaporation.

The following analysis thus requires a selection of fragments on the basis of the re-

action mechanism in which they have been produced. Being performed up to now

neither energy and time of flight calibrations, nor Z and A identifications, the frag-

ment selection that can be performed is inclusive. Later on more exclusive fragment

selection could be done, by multidimensional analysis methods and this is a long

and time-expensive procedure. The fragment selection performed in this work is

therefore preliminary and the elastically scattered nuclei, the fragments resulting

from deep inelastic collisions and the fusion-evaporation residues can be selected

only in first approximation, on the basis of general considerations.

A first selection of fragments produced in different reaction mechanisms can be

based on the analysis of ∆E − E spectra (Fig.5.1).

For central collisions the reaction mechanism is dominated (at this incident energy)

by fusion reactions, which can evolve by evaporation toward fusion-evaporation

residues. The evaporation residues are massive and have a small kinetic energy af-

ter the evaporation process (see Tab.5.1), thus they lose the main part of their kinetic

energy in the ionization chamber and a small residual energy in the silicon detector,

113



114 Chapter 5. INDRA data analysis

 (ch)SiE
0 500 1000 1500 2000 2500 3000 3500 4000

 (
ch

)
C

hI
o

E∆

0

200

400

600

800

1000

1200

1400

1600 Fusion evaporation residues

Fragments produced in

inelastic collisions

Elastically

scattered
projectiles

Ni60Ar+40

(a) ∆EChIo − ES i spectrum (detector located at 7◦ ≤ θ ≤ 10◦ and 75◦ ≤ φ ≤ 90◦).

 (ch)SiE
0 500 1000 1500 2000 2500 3000 3500

c
o

u
n

ts

1

10

210

310

Fusion evaporation
residues

Inelastic reactions products

Elastically scattered
projectile nuclei

(b) Projection on the ES i axis of ∆EChIo − ES i

spectrum.

 (ch)SiE
3000 3050 3100 3150 3200 3250 3300 3350

c
o

u
n

ts

0

200

400

600

800

1000

1200

1400

Quasi-elastically 
scattered projectile nuclei

Elastically scattered
projectile nuclei

(c) Zoom of the E projection. The asymme-
try of the elastic peak is due to quasi-elastic
events.
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configuration.
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Reaction Ares Eres(MeV)
34Ar+58Ni 71 131
36Ar+58Ni 73 142
36Ar+60Ni 74 139
40Ar+60Ni 78 158
40Ar+64Ni 81 162

Table 5.1 – Mean mass (Ares) and kinetic energy (Eres) of fusion-evaporation residues ob-
tained by GEMINI simulation.

placing themselves in the Bragg peak region. We refer to the ∆E−E region of fusion-

evaporation residues as residue region.

Increasing the impact parameter, inelastic reactions cover the region between cen-

tral (b . bgr/2) and peripheral collisions (b ≈ bgr). With the increase of b, less and

less kinetic energy is dissipated in internal degrees of freedom of the system, up to

quasi-elastic collisions. In elastic collisions the initial kinetic energy of the system is

shared (according to the reaction kinematics) between the two partners without any

loss. Therefore the kinetic energy associated to the elastically scattered projectile

nuclei is the highest kinetic energy which can be carried out by a projectile nucleus

in a reaction and the highest energy which can be deposited in silicon detectors. It

allows to individuate an elastic region.

5.1 Beam alignment

Compound nucleus deexcitation process (particles evaporation and residue re-

coil) is axial symmetric in LAB reference system, so that computation of fusion-

evaporation events can be performed in a restricted ∆φ region, not including tele-

scopes not properly working. In this way uncertainties due to detectors not prop-

erly working are strongly reduced. This procedure is based on the assumption of a

correct beam alignment. It is therefore necessary to verify the accurate beam align-

ment with respect to the symmetry axis of the apparatus and eventually to take it

into account during the following analysis. Elastic fragments, diffused in the first

INDRA ring (see Tab.5.2), provide an effective tool to this goal.

In the following we refer to Rutherford scattering as elastic scattering, being the

Rutherford scattering predominant with respect to the nuclear one (see §1.2.1) in

these reactions for angles smaller than the grazing ones.

As discussed in §1, elastically scattered projectile nuclei1 are diffused within the

1Here we refer to the elastically scattered projectile nuclei and not to the target ones because
the latter have lower kinetic energy with respect to the former (see Tab.5.2). The elastically diffused
target nuclei have not enough energy to punch through the ionization chamber, since their kinetic
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Reaction Ebeam (AMeV) θlab
gr θel

pro j Eel
pro j (MeV) θel

targ Eel
targ (MeV) Ring

7.0◦ 455.00 84.5◦ 4.00 4
34Ar+58Ni 13.5 10.2◦ 10.0◦ 450.88 82.1◦ 8.12

10.0◦ 450.88 82.1◦ 8.12 5
10.2◦ 450.55 81.9◦ 8.45

36Ar+58Ni 13.3 9.7◦ 7.0◦ 474.38 84.3◦ 4.42 4
9.7◦ 470.37 82.1◦ 8.71

36Ar+60Ni 13.3 9.6◦ 7.0◦ 474.53 84.4◦ 4.27 4
9.6◦ 470.81 82.4◦ 7.99

40Ar+60Ni 12.7 8.8◦ 7.0◦ 502.97 84.2◦ 5.03 4
8.8◦ 500.07 82.7◦ 7.93

40Ar+64Ni 12.7 8.7◦ 7.0◦ 503.28 84.3◦ 4.72 4
8.7◦ 500.73 82.9◦ 7.28

Table 5.2 – Kinematic characteristics of Rutherford scattering reactions. For each reaction
the beam energy (Ebeam) and the corresponding grazing angle (θlab

gr [1]) are listed.

The minimum and the maximum projectile diffusion angle (θel
pro j) for each ring,

the corresponding target diffusion angle (θel
targ) and the kinetic energies of both

projectile (Eel
pro j) and target (Eel

targ) nuclei are reported. The angular aperture (∆θ =
3◦ in ring 4) of detectors introduces a spread in energy that is, in the worst case,
of ∼ 4MeV (34Ar+58Ni reaction).

grazing angle, which corresponds, in most cases, just to ring 4. Rutherford scatter-

ing differential cross section (eq.1.15) is isotropic in φ and very much dependent on

polar angle θ, so that elastic scattering reactions can be exploited to check a mis-

alignment of the beam.

For each reaction, if the beam is accurately aligned with the apparatus symmetry

axis, the statistics of the elastically scattered projectiles in each detector of the same

ring (θring ≤ θgr) must be constant, within statistical uncertainties.

The elastically diffused projectile nuclei correspond to the highest energy loss in

silicon detectors and the elastic cross section is 6 order of magnitude greater than the

reaction cross section, so that projectile fragments produced in elastic scattering re-

actions can be easily identified in the ∆E−E spectrum (see Fig.5.1). By projecting on

the E axis the ∆E − E spectrum shown in Fig.5.1(a), the residual energy plots shown

in Fig.5.1(b,c) were produced. The asymmetry of the elastic peak (see Fig.5.1(c)) can

be ascribed to the quasi-elastic contribution: the transition from a reaction mecha-

nism to another is not sharp and implies a mixing between the two kinds of events.

The width of the ”elastic peak” is mainly due to the angular aperture (∆θ ≃ 3◦) of

energy is lower than 0.5AMeV
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each silicon detector, being the detector intrinsic resolution negligible ( [90]) with re-

spect to the energy spread introduced by the finite angular aperture of the detector

(see Tab.5.2).

The statistics of elastically scattered projectiles in each detector i has been evalu-

ated by fitting, with the gaussian function

hi(E) = Ai · e

(E − E)2

2σ2
i , (5.1)

the higher energy region of the elastic peak. With the intent of minimizing the quasi-

elastic contribution, the total collected elastic events (Ni) are evaluated by the Ai

values, resulting from the fit procedure. Ai is related to the area of the gaussian

function Ni by

Ai =
Ni

σi

√
2π

(5.2)

where σi is the standard deviation of hi(E).

The uncertainty on Ni can be expressed as:

∆Ni

Ni
=
∆Ai

Ai
+
∆σi

σi
(5.3)

where ∆Ai and ∆σi are given by the fit procedure.

Each fit has been repeated varying the marker position on the elastic peak, to

estimate the uncertainty due to the arbitrary position of the markers. The number

of elastic events for each detector (Ni) is the weighted mean of the obtained values:

Ni =

∑

j
N j

σ2
j

∑

j
1
σ2

j

. (5.4)

To take into account the marker position dependence of Ni, the uncertainty has been

chosen larger than the one obtained by eq.5.3.

To verify the beam alignment, the Ni values obtained for each detector of ring 4

have been normalized to an arbitrary value and plotted (see Fig.5.2). All four reac-

tions present similar periodic behaviour instead of the expected flat one, suggesting

possible beam mis-alignments.

For further analysis the beam mis-alignment in each reaction must be estimated.

The beam mis-alignment can be described by the beam polar coordinates in the

apparatus polar reference system, θb and φb. θb takes into account the polar angle
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Figure 5.2 – Total collected elastic events Ni in the detector i versus the detector mean az-
imuthal angle φri . In all reactions N shows a periodic behaviour as function of φ.
The full line is the fitting function f (φri ,C, θb, φb). The θb and φb values obtained
in fit procedure are reported in each panel.
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between the apparatus axis and the beam direction and φb takes into account the

relative beam position with respect to a chosen detector.

The number of elastic events hitting each detector is related to its effective position

with respect to the beam position. In the center of mass (CM) reference system Ni is

proportional to the integral of the Rutherford differential cross section

Ni ∝ f =
∫

Θgr

ΘVi

1

sin4 θ
2

dθ = −2 ·C
[

cotg
Θgr

2
− cotg

ΘVi

2
+

1
3

cotg3Θgr

2
− 1

3
cotg3ΘVi

2

]

(5.5)

where Θgr is the grazing angle and ΘV is the effective minimum polar angle covered

by the detector i, in the CM reference system, taking into account the beam mis-

alignment.

Later on quantities expressed in CM reference system will be written in capital let-

ters, while small letters will be used for quantities in laboratory (LAB) reference

system.

The effective polar angle ΘV of each detector can be expressed in LAB reference sys-

tem by means of kinematic considerations (CM momentum conservation law):2

cosΘVi = −
mp

mt
sin2 θVi + cos θVi

√

1 −
(

mp

mt
sin θVi

)2

. (5.6)

Geometrical considerations allow to relate θVi to known quantities. Referring to

Fig.5.3, known the distance between the target (T ) and the center of the ionization

chamber entrance window (TC), the target distance from the ”ring 4 plane” (π) can

be expressed as:

OT = TC cos θ ChIo
Ring4−5

(5.7)

where θ ChIo
Ring4−5

is the mean polar angle where the ionization chamber3 of ring 4 and 5

is positioned. Being R the lower detector border of a silicon detector (characterized

by its azimuthal angle φri and by minimum and maximum ring polar angle, θMIN
r

and θMAX
r ), the detector distances from target (TR) and from the target projection on

π (O) are respectively

TR =
OT

cos θMIN
r

OR = OT tan θMIN
r .

(5.8)

2The negative solution has been discarded being θVi in the first quadrant.
3We remember that each INDRA ionization chamber covers two rings.
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(a)

Figure 5.4 – Example of grid in φb vs θb plane to determine the minimum of eq.5.11.

Indicating with N the beam impact point on π plane:

ON = OT tan θb

T N =
OT

cos θb
.

(5.9)

cos θVi can be expressed as:

cos θVi =
T N

2
+ TR

2 − NR
2

2 · TR · T N
, (5.10)

where NR is given by the Carnot theorem

Using eq.5.6 and eq.5.7÷5.10, eq.5.5 ( f (φr,C, θb, φb)) describes the dependence of

the number of elastic events (Ni) as function of the detector azimuthal angle (φri), tak-

ing into account the beam mis-alignment. f (φri ,C, θb, φb) depends, for each reaction,

on each detector azimuthal angle φri , on a normalization factor C and on the beam

angles θb and φb. As a first approximation the mean value of φ of each detector has

been used as φri . It means that the dependence of θV on φ in each detector has been

neglected.

A fitting procedure, with the function f (φr,C, θb, φb), of the number of elastic events

detected in each detector vs. the detector φr allows to estimate the parameters C, θb

and φb (see Fig.5.2). Being f (φri ,C, θb, φb) non-linear in θb and φb, to obtain parame-

ters and parameter errors estimations, the fit has been performed minimizing the χ2

quantity within a grid of values of unknown quantities, as shown in Fig.5.4. χ2 is
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defined as:

χ2
=

detector
number
∑

i=1

( f (φri ,C, θb, φb)thi − Ni)2

σ2
i

(5.11)

where f (φr,C, θb, φb)thi is the expected number of elastic event statistics in the detector

i,

σ2
i = σ

2
Ni
+ (
∂ f
∂φr

)2
∆φ2

r , (5.12)

and ∆φr is the azimuthal angular aperture of the detector (∆φr = 15◦).

The uncertainties on parameters have been calculated according to [147], choos-

ing a confidence level of 90%. The obtained values are listed in Tab.5.3.

5.2 Fusion-evaporation residues

Considerations on fusion-evaporation reaction mechanism allow to perform a

more restrictive fusion-evaporation residue selection, taking into account that the

transition from one reaction mechanism to the other is smooth and fragments pro-

duced in different reactions often present intermediate characteristics, requiring

some criteria to identify them. In particular some constrains will be set to separate,

in a first approximation, fusion-evaporation events from deep inelastic collisions.

A fusion reaction is characterized by the formation of an hot composite system,

or compound nucleus (CN). The excitation energies of CN produced in the analyzed

reactions are listed in tab 3.3. The highly excited CN deexcites, besides γ emission,

by two competing mechanisms: evaporation and fission. If the deexcitation mode

is dominated by fission, at least two heavy fragments with masses close to half of

the total system mass, in case of symmetric fission4, are present in the exit channel

of the reaction. Otherwise, if the evaporation is the preferential deexcitation mode,

the compound nucleus evaporates light particles, and therefore only one heavy frag-

ment, called residue, with mass close to the total systemmass, and a certain number

of light particles are present in the exit channels. We refer to the heavy fragment

as fusion-evaporation residue (FE residue) or simply residue and to the light parti-

cles as evaporated particles. The angular distribution of the evaporated particles is

isotropic in the CN reference system, if the CN angular momentum
−→
J = 0, other-

wise evaporated particles are emitted preferentially in the reaction plane.

We identify an event as fusion-evaporation event if

4According to Refs. [148–150] at least for the heaviest system we are close to the critical point at
which fission can be asymmetric.
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ROOT FIT χ2 MINIMIZATION by grid
range of the minimum of χ2 grid step

40Ar+64Ni
c (3.41 ± 0.04)10−3

φb 151 ± 5 154 ± 16 0.25
θb 0.154 ± 0.024 0.105 ± 0.047 0.002
χ2

norm 2.7 4.5
40Ar+60Ni

c (2.244 ± 0.021)10−3

φb 162.8 ± 1.4 162.6 ± 2.9 0.25
θb 0.417 ± 0.015 0.421 ± 0.030 0.001
χ2

norm 13.1 11.2
36Ar+60Ni

c (1.914 ± 0.015)10−3

φb 186.0 ± 2.0 188 ± 4 0.25
θb 0.477 ± 0.017 0.462 ± 0.033 0.001
χ2

norm 8.1 8.2
36Ar+58Ni

c (2.241 ± 0.021)10−3

φb 163.0 ± 3.1 162 ± 7 0.25
θb 0.336 ± 0.026 0.354 ± 0.054 0.001
χ2

norm 5.4 4.9
34Ar+58Ni

c (2.235 ± 0.021)10−3

φb 81 ± 9 99+14
−16 0.25

θb 0.148 ± 0.018 0.18 ± 0.04 0.001
χ2

norm 5.8 7.5

Table 5.3 – Fit procedure results. For each reaction the fit has been performed both by ROOT
and minimizing the χ2 quantity, defined in eq.5.11, thanks to a grid, whose steps
in φb and θb are reported. The reported uncertainties have been determined by
ROOT procedure and according to [147], respectively. The obtained values are
consistent.
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• the heaviest fragment’s mass and charge are greater than half of the total sys-

tem mass and charge

• the second heaviest fragment charge is smaller than Z = 12. This constraint

allows to separate evaporated particles from fragments produced in DI colli-

sions, as will be shown later.

As previously mentioned, the fusion-evaporation differential cross section dσFE

can be estimated by counting the total collected fusion-evaporation events in each

ring. Since each event is characterized by the detection of a residue, dσFE can be

expressed as
dσFE

dθ
∝ ∆R
∆θ

(5.13)

where ∆R is the number of total collected residues in each angular range and ∆θ

is the detector angular coverage. The aim of the following analysis is thus the com-

putation of the detected residues number. The procedure consists in the following

steps:

• identification, in ∆E − E correlation, of a residue region

• estimation of a possible contribution to residues from non fusion-evaporation

events.

Residue characteristics Residues are characterized by high mass and charge and

low kinetic energy, so that we expect the residue region is approximately limited to

the Bragg peak region in the ∆E − E spectrum.

Being Ares and Aevap the evaporation residue and the evaporated particles masses

(Ares + Aevap = ACN), the residue kinetic energy Eres(Θ) can be evaluated from the

relation:

Eres(Θ) = ECN
Ares

ACN













1 + 2
Vres

vCN
rec

cosΘ +

(

Vres

vCN
rec

)2










(5.14)

where the residue velocity in CM, Vres, is given by:

Vres = Vrel
Aevap

Aevap + Ares
(5.15)

The kinetic energy of a compound nucleus (ECN) can be calculated as:

ECN =
1
2

ACNv2
CM =

1
2

ACNvCN 2
rec

where the CN recoil velocity (vCN
rec ) is related to the beam incident energy (Ei), ex-
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Figure 5.5 – Kinetic energy distribution of fusion-evaporation residues emitted in all the
solid angle (upper panel) and at a polar angle θ ≥ 7◦ (angular region covered
by INDRA apparatus). Spectra, predicted by GEMINI, have been obtained for
40Ar+60Ni reaction.

pressed in MeV, and to the projectile (Ap) and CN (ACN) masses, by

vCN
rec = 1.39

√

EiAp

A2
CN

cm/ns.

The kinetic energy distribution for the 40Ar+60Ni reaction is shown in Fig.5.5. It

presents a broad peak, related to the kinematic allowed angles. Limiting the diffu-

sion angles to θ ≥ 7◦ (the angular region covered by INDRA) the distribution is less

spread and single peaked. Both kinetic energy distributions have been obtained by

GEMINI calculation: the evaporation code, developed by Charity [151–153], based

on the Statistical Evaporation Model, which assumes the statistical equilibrium of

the hot nucleus. GEMINI code follows the decay channel of a compound nucleus

via sequential binary decay.

Residue charge and mass distributions, obtained by GEMINI calculation, are

shown in Fig.5.6. GEMINI predictions indicate residue distributions peaked respec-

tively at A ∼ 78 and Z ∼ 36, for the 40Ar+60Ni reaction, and spanning respectively

from 60 to 86 and from 28 to 40. Similar behaviours have been obtained for the other

analyzed reactions.
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Figure 5.6 – Charge (left side) and mass (right side) distributions predicted by GEMINI sim-
ulation, for 40Ar+60Ni reaction. Fusion-evaporation residues are emitted in all
the solid angle (upper panels) and in θ ≥ 7◦ region (lower panels).

5.2.1 Deep inelastic contribution

The transition between the three classes of phenomena (Compound Nucleus,

Deep Inelastic Collision and Quasi Elastic processes) occurring in heavy ion reac-

tions at low energy is smooth [154]. Deep inelastic collisions (DIC) appear to occur

for incident angular momenta (or b) larger than those leading to the compound nu-

cleus (CN) formation but smaller than those corresponding to the soft grazing col-

lisions (quasi-elastic process, QE). Corresponding QE processes and CN formations

to very different impact parameters, the reaction products kinetic energies are very

different from each other, allowing an easy separation, in ∆E − E spectra, of fusion

from quasi-elastic products. This is not true for DIC and CN processes, where the

involved b are only slightly different, so that it is not trivial to separate their reaction

products in ∆E − E spectra.

Deep inelastic collision are characterized by following features:

1. they represent a binary process which nearly preserves the identity of the col-

liding ions: the charge and mass distributions of the two outgoing fragments

spread over the whole available Z and A ranges, but are centered in the vicinity

of the charges and masses of the projectile and the target

2. the initial kinetic energy of relative motion is almost entirely converted into

intrinsic excitation of the outgoing fragments, i.e. the CM kinetic energy of the

outgoing fragments is equal to the Coulomb repulsion of two highly deformed

nuclei in a scission configuration, independently of the incident kinetic energy.



5.2. Fusion-evaporation residues 127

Figure 5.7 – Evolution of the deep inelastic collision differential cross sections as a function
of the PL charge number at various CM angles in 280 MeV 40Ar+58Ni reaction.
The differential cross section has been obtained in the range θlab = 8◦÷90◦, where
the individual fragments have been identified in Z and A. Strong even-odd
fluctuations can be seen, especially for the smallest charges, resulting possibly
from a sequential decay process [154].

The relative motion is strongly damped.

3. a large variety of emitted products

4. a wide forward peaked angular distribution of the deep inelastic component.

These reactions have been described by several authors in terms of friction pro-

cess [155–157] or diffusion process [158].

As discussed in §1.2.2, the charge and mass distributions of the primary frag-

ments produced in a deep inelastic collision extend to the whole available Z and A

range (see Fig.1.6(b)) and are centered on the initial Z and A value of the incoming

reaction partners. This behaviour can be easily understood in terms of friction forces

acting during the collision. As the reaction becomes more and more dissipative, i.e.

the impact parameter decreases, the interaction time increases and friction forces

acting between the two partners can cause nucleons transfer. More dissipative is the

collision, broader is the primary fragments mass distribution.

Fig.5.7 shows the evolution of the DIC cross sections as a function of the projectile-

like charge number Z at various CM angles in 280 MeV 40Ar+58Ni reaction [154].
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Cross sections are increasing with increasing Z, remaining, however more or less

constant for Z ≥ 12.

Decreasing Z, the cross section decreases, suggesting that the most significant

contribution to the deep inelastic cross section is given by fragments with Z within

±6 unit from the initial value.

In Ar+Ni reactions it means that the projectile-like and target-like charge distribu-

tions cover respectively:

Zp = 18 (±6)⇒ 12 ÷ 24 = ZPL (5.16)

Zt = 28 (±6)⇒ 22 ÷ 34 = ZT L (5.17)

We remark that the target-like and the fusion-evaporation residue charge distribu-

tions (the latter one obtained by GEMINI calculation),

Zres = 30 ÷ 40 , (5.18)

overlap, avoiding a residue identification based on the fragment charge.

The angular distribution of PL fragments is peaked in forward direction in CM.

Fully relaxed deep inelastic collisions represent the border of DIC: they corre-

spond to the tail of the charge distribution, Z < 12 and Z > 34, and show a flat CM

angular distribution. Z > 34 reaction products clearly overlap the FE residue charge

distribution and, their cross section being ∼ 1/4 of the Z > 12 DIC cross section, they

must be taken into account in the fusion-evaporation residue computation.

Moreover for the 280 MeV 40Ar+58Ni reaction aDIC cross section of about 700mb

(±100mb) has been found [154], which is comparable with the evaporation residue

cross section of 900±120mb [136]. An estimation of the total cross section of 1850mb,

as suggested in [154], demonstrates clearly the large importance of DIC in such re-

actions.

A discrimination of fully relaxed DI products from fusion-evaporation residues

should require an energy and charge calibration, actually not available. So that their

contribution will be taken into account in the computation of the detected residue

number uncertainty.

To continue the analysis it is necessary to verify if quasi-target nuclei produced in

DIC lie in the residue region, and, eventually, to evaluate their contribution to the

statistics in the residue region.
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In order to evaluate the presence and eventually the magnitude of this effect, a

code (DIFFIL) computing the kinematics for elastic diffusion, fission and deep in-

elastic fully relaxed reactions have been used. A detailed description of the code is

reported in app.B.

Fully relaxed deep inelastic collisions are characterized by the complete dissipa-

tion of initial CM kinetic energy in internal degrees of freedom of the system: the

two primary fragments move away thanks only to their Coulomb repulsion. Elastic

collisions, instead, are characterized by the conservation, in relative motion, of the

initial kinetic energy of the system. Therefore these two processes set up the lower

and upper limits respectively of the kinetic energy of the products.

Contrary to fusion reactions, elastic and deep inelastic collisions are both binary pro-

cesses, thus the presence of a target or quasi-target fragment (QT) is associated with

the presence of a projectile or quasi-projectile nucleus (QP). While quasi-projectile

can be discriminated from residues by their charge, the discrimination of QT from

residues requires a heavy fragments multiplicity analysis. Binary processes kine-

matics (relative emission angles of the two partners) is univocally determined by

two-body kinematics, so that DIFFIL permits, once set a quasi-target angular range

(typically the angular aperture of a detector ∆θ), to estimate the respective quasi-

projectile angular range, ranging from elastic collisions to fully relaxed deep inelas-

tic collisions. Deep inelastic fully relaxed events set the QP diffusion angle lower

limit for a fixed QT emission angle: QP is diffused at a larger angle in all less dissi-

pative collisions, up to elastic collisions, which set the upper limit.

The angle and the kinetic energy of projectile and target fragments elastically dif-

fused, and the corresponding value in case of deep inelastic fully relaxed collision

are then evaluated, requiring as products charge ratio both the initial charge ratio

(ZQP = 18, ZQT = 28, elastic events) and a charge ratio such as the target fragment

has a charge equal to 33 (DI fully relaxed events, see eq.5.17). The obtained value

are listed in Tab.5.4 for the different reactions.

The analysis of the angular correlations between the ”residue” (i.e. a heavy frag-

ment lying in the residue region) and coincident heavy particles (Z ≥ 12, see eq.5.16)

detected within the expected quasi-projectile angular range suggests the kind of the

occurred reaction mechanism.

The inelastic collisions being binary processes, the reaction takes place on a plane

(known as reaction plane), so that the azimuthal angular distance between the two

reactions products is φ ≃ π.
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40Ar+60Ni APL = 39.1
RT L θT L θDI

PL EDI
PL MeV EDI

PL AMeV θinel
(MAX)PL Einel

(MAX)PL MeV Einel
(MAX)PL AMeV RPL

7◦ 39.2◦ 14.8 0.4 141.5◦ 26.7 0.7
4 9 ÷ 15

10◦ 44.4◦ 23.7 0.6 128.6◦ 35.0 0.9
5 10 ÷ 15

14◦ 46.0◦ 40.5 1.0 114.7◦ 48.9 1.2
6 9 ÷ 14

20◦ 42.5◦ 77.2 2.0 98.8◦ 77.4 1.9
7 8 ÷ 13

27◦ 30.0◦ 152.0 3.9 84.4◦ 120.8 3.0
8 8 ÷ 12

35◦ � � � 70.9◦ 180.8 4.5
40Ar+64Ni APL = 40.7

RT L θT L θDI
PL EDI

PL MeV EDI
PL AMeV θinel

(MAX)PL Einel
(MAX)PL MeV Einel

(MAX)PL AMeV RPL

7◦ 40.4◦ 13.7 0.3 145.0◦ 34.2 1.0
4 9 ÷ 16

10◦ 45.4◦ 22.2 0.5 132.6◦ 41.6 1.0
5 10 ÷ 15

14◦ 46.9◦ 38.3 0.9 118.8◦ 55.2 1.4
6 9 ÷ 14

20◦ 43.3◦ 73.1 1.8 102.4◦ 83.3 2.1
7 8 ÷ 13

27◦ 31.8◦ 140.7 3.5 87.4◦ 126.2 3.2
8 8 ÷ 12

35◦ � � � 73.2◦ 185.3 4.6
36Ar+58Ni APL = 36.8

RT L θT L θDI
PL EDI

PL MeV EDI
PL AMeV θinel

(MAX)PL Einel
(MAX)PL MeV Einel

(MAX)PL AMeV RPL

7◦ 43.9◦ 11.6 0.3 145.3◦ 32.9 0.9
4 9 ÷ 16

10◦ 48.6◦ 19.4 0.5 133.0◦ 39.9 1.0
5 10 ÷ 15

14◦ 49.6◦ 34.2 0.9 119.2◦ 52.7 1.3
6 10 ÷ 14

20◦ 45.8◦ 65.9 1.8 102.7◦ 79.2 2.0
7 9 ÷ 13

27◦ 35.6◦ 122.6 3.5 87.7◦ 119.5 3.0
8 9 ÷ 12

35◦ � � � 73.5◦ 175.1 4.4
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36Ar+60Ni APL = 37.6
RT L θT L θDI

PL EDI
PL MeV EDI

PL AMeV θinel
(MAX)PL Einel

(MAX)PL MeV Einel
(MAX)PL AMeV RPL

7◦ 44.6◦ 11.1 0.3 146.8◦ 36.6 1.0
4 9 ÷ 16

10◦ 49.2◦ 18.8 0.5 134.8◦ 43.5 1.1
5 10 ÷ 15

14◦ 50.2◦ 33.2 0.9 121.1◦ 56.2 1.4
6 10 ÷ 14

20◦ 46.3◦ 64.0 1.7 104.5◦ 82.4 2.1
7 9 ÷ 13

27◦ 36.2◦ 118.7 3.2 89.1◦ 122.4 3.1
8 9 ÷ 12

35◦ � � � 74.6◦ 177.6 4.4
34Ar+58Ni APL = 36

RT L θT L θDI
PL EDI

PL MeV EDI
PL AMeV θinel

(MAX)PL Einel
(MAX)PL MeV Einel

(MAX)PL AMeV RPL

7◦ 47.7◦ 9.7 0.3 147.8◦ 37.6 1.0
4 10 ÷ 16

10◦ 51.9◦ 16.8 0.5 135.9◦ 44.1 1.1
5 10 ÷ 15

14◦ 52.4◦ 30.2 0.8 122.3◦ 56.3 1.4
6 10 ÷ 14

20◦ 48.3◦ 58.8 1.6 105.6◦ 81.3 2.0
7 9 ÷ 13

27◦ 38.6◦ 107.7 3.0 90.1◦ 119.4 3.0
8 8 ÷ 12

35◦ � � � 75.4◦ 172.0 4.3

Table 5.4 – For each ring (RT L) the lower and the upper polar angle are chosen as TL emis-
sion angles (θT L). The corresponding projectile diffusion angles (θDI

PL, θ
inel
(MAX)PL)

and kinetic energies (EDI
PL, Einel

(MAX)PL) for DI fully relaxed process and for processes
corresponding to the minimum energy dissipation, respectively, are reported.
The last column shows the QP angular range, moving from DI to the lowest dis-
sipative events. The products charge ratio is the initial one (ZPL = 18, ZT L = 28)
and the QP mean mass (APL) is given by DIFFIL code.
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Figure 5.8 – 40Ar+60Ni ∆EChIo − ES i spectrum and its ∆EChIo projection. A part of the spec-
trum, not related to evaporation residues, has been removed in ∆EChIo − ES i

spectrum to get a cleaner ∆EChIo projection.

Therefore the heaviest fragment in each event, lying in the residues region, can be

ascribed to quasi-target nuclei if

1. the second heaviest fragment charge is Z ≥ 12 and it is emitted in the QP polar

angular range (see Tab.5.4), fixed by the binary reaction kinematics

2. the second heaviest fragment lies in the same plane of the heaviest fragment

To continue the analysis a border must be set, on ∆E − E spectra, to separate FE

residues from QT fragments.

The borders of the residue region can be chosen taking into account that, if the

residue region and the QT region do not overlap, there is a minimum in the cross

section as a function of Z when Z increases above Z ∼ 34 [154] (see Fig.5.7). In Fig.5.8

the obtained ∆EChIo − ES i spectrum is shown: the position of the minimum cannot

be determined with sufficient precision, so that it is necessary to get a more precise

idea of the quasi-target region extension, combining DIFFIL code and the GEMINI

simulation.

5.2.2 GEMINI simulation

GEMINI evaporation code can be useful to have an idea of the residue region

position in ∆E −E spectra for different values of the residue emission angle θ. To get
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Figure 5.9 – GEMINI output filtered by ”INDRA experimental filter”. Only fusion-
evaporation residues have been plotted.

realistic outputs the experimental set-up must be taken into account. The developed

”INDRA experimental filter” takes into account:

• the entrance and exit ionization chamber windows (2.5µm of mylar each)

• the gas thickness and the gas pressure in the ionization chamber. Special care

has been paid to set the correct pressure value in the code, since it determines

the energy lost in the ionization chamber

• the silicon thickness (300µm)

• the ionization chamber and silicon detector energy distribution, which are ap-

proximated as a gaussian with a width of 1.5% of the calculated energy loss

value.

The energy lost in the target has been neglected5. The ”experimental filter”, evalu-

ating the energy loss in the ionization chamber and the residual energy lost in the

silicon detector (by mean of energy loss table [159]6), permits to reconstruct the ex-

pected ∆E − E spectra, starting from GEMINI outputs, and compare them with the

experimental ones.

Fig.5.9 shows the residue positions in a simulated ∆E − E spectrum. As expected,

since the residue charge is high (Z = 33÷ 40), the residues deposit the larger amount

of their kinetic energy in the ionization chamber and only a small residual amount

5The fused CN lose ∼ 0.06AMeV (∼ 3% of their initial kinetic energy) in the target assuming the
reaction takes place at half of target thickness.

6Data are normalized to [160] below 2AMeV.
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Figure 5.10 – Expected angular distributions for the analyzed reactions obtained with
GEMINI simulation. They suggest the expected decreasing in the fusion-
evaporation residue number as the angle θ increases. When only 4 points are
visible, the 5th is superimposed.

in the silicon detector.

The expected angular distributions of fusion-evaporation events for the five dif-

ferent reactions are shown in Fig.5.10: the statistics decreases by a factor 100 varying

θring from 8.5◦ (ring 4) to 24.5◦ (ring 7). The same behaviour is present in experimen-

tal data, as shown in Fig.5.11.

During the deexcitation of the compound system, α particles and heavier frag-

ments can be emitted by the hot nucleus, causing the emission of the residue in a

wide angular range, which can extend, as suggested by the GEMINI simulations, up

to θ ∼ 30◦ (and, with very low probability, up to θ ∼ 50◦, see Fig.5.10). Increasing

θ, a greater number of residues lie in the region below the Bragg peak, as shown in

Fig.5.12 (see tab 5.5). Moreover increasing θ, the maximum in the Bragg peak popu-

lationmoves towards smaller value of residual energy E, suggesting that the residue

kinetic energy decreases increasing the emission angle, as expected from eq.5.14.

These behaviours indicate that a threshold effect could affect the number of detected

residues: indeed, increasing θ, the number of residues which could produce a signal

lower than the silicon CFD threshold increases.

A pronounced change is observed (Figs.5.11 and 5.12) between ring 6 and 7: the
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Figure 5.11 – Comparison between experimental (left) and simulated (right) ∆E − E spectra
for the 40Ar+60Ni reaction. Simulated data contains only fusion-evaporation
residues. A preliminary rough energy calibration (see beyond in the text) has
been performed for a better comparison.
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Figure 5.12 – ∆EChIo − ES i simulated spectra for rings 4 to 7 for all the analyzed reactions.
The arrow indicates the Bragg peak position.
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Ring Percentage of events
4 ∼ 20%
5 ∼ 28%
6 ∼ 43%
7 ∼ 55%

Table 5.5 – Percentage of residues whose residual energy is smaller than 20MeV (40Ar+60Ni
reaction), according to GEMINI simulation.

statistics clearly decreases, such as the energy deposited in the ionization chamber.

It suggests that the contribution of residues could be strongly hidden for rings more

backward than ring 7 by the deep inelastic contribution.

In order to compare the experimental data with the simulated ones, a prelimi-

nary rough energy calibration has been performed.

Rough energy calibration The corresponding MeV value (x) of a channel χ, in an

energy spectrum, is given by the relation:

x(MeV) = a(MeV/ch)
(

·χ(ch) − p(ch)) (5.19)

where a is the calibration factor and p is the pedestal position, which sets the zero

value of the MeV scale.

Two methods have been used to estimate a:

• the analysis of elastically diffused projectiles

• the analysis of α particles emitted by 252
98 Cf nuclei7

For each ∆E − E spectrum, two projections on the two axes have been realized.

Gaussian fits are performed on the obtained peak, in order to estimate the peaks’

positions in ch, both for elastic scattered projectiles (where present) and 252
98 Cf’s α

particles.

Analysis of elastically diffused projectiles Knowing the beam incident energy

and the scattering angle, kinematic relations relate the elastic scattered projectile

7 252
98 Cf fission fragments, produced by a 252

98 Cf source used in previous INDRA campaign, can
remove 252

98 Cf nuclei from the source itself (self–transfer phenomenon [161]). These nuclei implanted

in INDRA detectors and, being t
252
98 C f
1/2 = 2.6y, they are still present.
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Eα(MeV) Yα
6.076 15 %
6.118 82 %

Table 5.6 – Energies (Eα and branching ratio (Yα) of α particles emitted by 252
98 Cf source [162].

kinetic (Tp f ) and total energies (Etotp f
) at a given angle

Tp f (θpro j) = Etotp f
(θpro j) − mpc2

Etotp f
(θpro j) =

=
2ETOTsist (mtc2ETOTpi

+m2
pc4)

2(E2
TOTsist

−p2
pi

c2 cos2 θpro j)
+

+
ppi c·cos θpro j

√

4(mtc2ETOTpi
+m2

pc4)2−4m2
pc4(E2

TOTsist
−p2

pi
c2 cos2 θpro j)

2(E2
TOTsist

−p2
pi

c2 cos2 θpro j)

where






























ETOTsist = Tpi + mpc2
+ mtc2

ETOTpi
= Tpi + mpc2

ppic =
√

E2
TOTpi

− m2
pc4

(5.20)

mp and mt are the projectile and target masses (in MeV/c2) respectively; Tpi and

ppi the incident projectile kinetic energy and momentum, respectively, and θpro j the

elastic scattered projectile diffusion angle in laboratory system of reference.

This method is limited to INDRA rings located around the grazing angle for the

analyzed reaction.

Analysis of α particles In rings located at θ > θgr elastically diffused nuclei are

no more useful, since their statistics is very low, but these rings can be roughly cal-

ibrated in energy taking advantage of α particles emitted by 252
98 Cf nuclei. Knowing

the emitted α energies (reported in Tab.5.6), it is possible to deduce the calibration

factor a.

This method is quite inaccurate because:

1. the α peak is broad (FWHMS i = (0.64 ± 0.08)MeV and FWHMChIo = (0.28 ±
0.03)MeV)

2. the calibration point obtained with this method is around 6MeV and it is nec-

essary to extrapolate the linear calibration to energy of the order of 50÷60MeV

in ionization chamber and silicon detectors.

The ”INDRA experimental filter” provides the energy loss in the ionization cham-

ber and in silicon detector by elastically diffused projectiles or by α particles, permit-
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Ring aChIo (MeV/ch) pChIo (ch) aS i (MeV/ch) pS i (ch)
4 0.04 50 0.16 70
5 0.04 50 0.16 60
6 0.03 50 0.08 15
7 0.03 50 0.07 15

Table 5.7 – Ionization chambers and silicons energy calibration parameters for the ”low
gain” amplification.

ting to assign a MeV values to the centroid of the calibration energy distribution in

ionization chamber and silicon spectrum. The obtained values are listed in Tab.5.7.

Experimental and simulated data comparison A comparison between the exper-

imental and simulated data is shown in Fig.5.11, where the energy calibration has

been applied to the experimental data.

The GEMINI simulation reproduces the global data behaviour (Bragg peak popula-

tion shift, energy loss decreasing, increasing of counts under the Bragg peak) but

does not reproduce at all the Z edges bending8, being flatter than the experimental

one.

The disagreement between the simulated and experimental data in ring 6 can be at-

tributed to the quite inaccurate energy calibration.

In order to verify if the residue region and the QT region overlap in the ∆E − E

spectra, it is necessary to know the region populated by the QT. Using the simula-

tion, for each ring, the energy lost in the ionization chamber and silicon detectors

by quasi-target nuclei, emitted at the maximum and minimum angles covered by

the detector, have been calculated by DIFFIL code. The calculations have been per-

formed for both ZQT = 28 (the most probable QT Z value in a DIC collision) and

ZQT = 33 (the limit QT charge value which affects the residue counts). Once fil-

tered these values by ”INDRA experimental filter”, it is possible to individuate, on

a ∆E − E simulated matrix, the extension of the quasi-target region. Both kinematic

solutions have been plotted. The obtained value are listed in Tab.5.8 (and plotted in

Fig.5.14(a)) for the 40Ar+60Ni reaction.

Fig.5.13 shows the position of QT region for the 40Ar+60Ni in ∆E − E spectrum of

ring 4. Both the allowed kinematic solutions have been plotted in the picture for

both ZQT = 28 and ZQT = 33. The arrows delimit the QT region for the minimum and

maximum angles covered by the ring.

8This effect is due to the energy loss table used in the ”INDRA experimental filter”.
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Figure 5.13 – Limits of QT region in a ∆E − E spectrum for 40Ar+60Ni reaction.

Fig.5.14 shows the positions of quasi targets regions for all the analyzed reactions.

Increasing the angle, the deep inelastic contribution increases. QTs populate both

the low energy region below the Bragg peak, where the residue number increases

increasing the observed angle, and the region related to a high energy loss in silicon

detector, up to the elastic region (which is not reported in the picture).

Increasing the observed angle, the overlap between the residue region and the deep

inelastic region increases. Therefore, to evaluate the total number of residues in each

ring, becomes more and more important to take into account the DIC contribution.

As previously mentioned good criteria to discriminate a residue from a quasi-

target nucleus is provided by the analysis of the angular coincidence for each candi-

date as residue.

The code developed to this aim allows to select a region in a ∆E − E spectrum (see

Fig.5.15(a)) and allows to draw a bidimensional plot, which shows, in ring vs mod-

ule plane, the number of telescope hit by a heavy fragment (Z ≥ 12) in coincidence

with the one lying in the residue region. If QP energy (see Tab.5.4) is lower than

1AMeV, the code analyzes the coincidence with particles which stop in the ioniza-

tion chamber, otherwise with particles with Z ≥ 12. To this aim it has been necessary

to set some Z thresholds on the detected particles.

For each telescope in the forward rings thresholds delimiting the Z < 4, Z < 12

and Z < 18 regions have been drawn for each ∆E − E correlation, both ∆EChIo − ES i
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Ring p(mbar) θQT ZQT EQT (MeV) Elosschio (MeV) Elosssi (MeV)
7◦ 28 256.1 34.0 194.4

36.9 21.7 �

10◦ 28 247.2 34.3 183.0
4 30 38.2 22.3 �

7◦ 33 248.2 44.7 166.4
66.6 38.1 3.2

10◦ 33 235.8 45.0 153.0
70.1 40.1 4.2

10◦ 28 247.2 34.3 183.0
38.2 22.3 �

14◦ 28 230.4 35.3 167.1
5 30 41.0 24.1 �

10◦ 33 235.8 45.0 153.0
70.1 40.1 4.2

14◦ 33 211.1 46.5 125.1
78.3 42.7 7.3

14◦ 28 230.4 60.0 140.6
41.0 26.2 �

14◦ 33 211.1 78.6 94.8
6 50 78.3 57.1 �

20◦ 28 193.7 63.6 100.1
48.8 33.6 �

19◦ 33 155.7 81.8 35.1
106.2 73.8 5.2

20◦ 28 193.7 63.6 100.1
7 48.8 33.6 �

27◦ 28 118.9 68.0 20.7
79.5 57.2 0.8

Table 5.8 – For each ring the lower and the upper polar angle are chosen as QT emission
angle (θQT ). The corresponding QT kinetic energy EQT is reported, considering
both kinematic solutions. The energy loss in the ionization chamber and in sili-
con detector are evaluated by the experimental filter. Computations have been
performed for QT charge ZQT = 28 and ZQT = 33 for the 40Ar+60Ni reaction.
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Figure 5.15 – a) Selection of a residue region on a ∆EChIo−ES i spectrum in 40Ar+60Ni reaction.
The selected residue region includes the Bragg peak. b) Ring vs. module spec-
trum obtained by the code to estimate the QT events presents in the selected
residue region.

and ∆ES i − ECsI correlations. In particular the following regions have been selected:

Z > 4 region It delimites the light particles region. In the backward rings (10 ÷ 17)

the thresholds have been set on ∆EChIo − ECsI(Tl) correlations, while in the for-

ward rings (4 ÷ 9), since light particles have enough energy to punch-through

the silicon detector, the thresholds have been set on ∆ES i − ECsI(Tl) correlations.

Z > 12 region It delimites the lower limit to the quasi-projectile region. Kinematic

considerations suggest that the QP allowed angular range is between θ ∼ 30◦

and θ ∼ 148◦ (see Tab.5.4), but the statistics permits to identify Z = 12 only for

θ < 90◦. Therefore thresholds have been set for rings 8 ÷ 12 in ∆EChIO − ES i and

∆EChIO − ECsI spectra.

Z > 18 region It indicates the lower part of the fission fragments region: evapora-

tion and fission compete in deexcitation process of hot compound system and,

while evaporation is characterized by an heavy residues, with mass close to

the one of the compound nucleus, symmetric fission is characterized by the

presence of two ”big” fragments, with mass close to one-half of the compound

system mass.

The code permits, as well as to estimate the QT events present in the selected

residues region (NDIC), to extract:
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• the total number of events lying in the residue region Ni

• the number of cross talk events, which have to be removed (see §A.1)

• the number of particles which hit the same ionization chamber (see §A.2)

• the number of events with a heavy fragment in coincidence with Z ≥ 18

Fig.5.15(b) shows the positions of heavy fragments, which stop in the ionization

chambers, detected in coincidence (coincidence region) with fragments in the

residue region selected in Fig.5.15(a). ”Particles hit the same ionization chamber”

events can be easily identified since they produce an increase of counts in detectors

placed behind the same ionization chamber of the analyzed silicon detector. As a

first approximation calibration telescope have not been analyzed, so that their con-

tribution has been removed from the computing. Most of the counts are confined

in a restricted region around ring 8 module 15 (θ = 27◦ ÷ 35◦ , φ = 225◦ ÷ 240◦)

which presents the maximum count. This telescope is located on the reaction plane

(∆Φ = π), suggesting the presence, in the selected region, of DI fragments.

Expanding the selected residues region, as shown in Fig.5.16, the corresponding

coincidence region in ring vs module plane (see Fig.5.17) expands, being centered

around the same telescope. The percentage of deep inelastic contribution in each

selected residue region is reported in Fig.5.16. This behaviour is consistent with the

fact that deep inelastic region lies between the residues and the elastic ones, and,

expanding the selected region, a part of deep inelastic region is included.

Figs.5.16 and 5.18 show the increase of deep inelastic contribution to the residues

region as the observed polar angle increases. As predicted by the previous analysis,

the deep inelastic contribution is more and more significant for less forward rings.

In ring 7 a large percentage of deep inelastic contribution lies in the region below

the Bragg peak. In this case it is impossible to separate deep inelastic from fusion-

evaporation events, so that the obtained total residues number will set just the upper

limit.

The chosen criteria to select the residue region is the requirement of a maximum

deep inelastic contribution of 1% in ring 4, i.e. the contribution to the residual count

of the deep inelastic products is limited to ∼ 1%. In backward rings the tolerated

deep inelastic contribution is greater (up to ∼ 20% in ring 7 for the 40Ar+60Ni reac-

tion), being the two regions more overlapped.

Fully relaxed deep inelastic contribution can be estimated thanks to [154]. Being

a light fragment (Z < 12) emitted in coincidence with the heavy one (Z ≥ 34), the
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Z σZ

5 6.8
6 22.7
7 10.5
8 14.55
9 7.5
10 16.0
11 28.3
12 31.0

5 ÷ 12 137.35

13 ÷ 24 552.8

σtot 690.15

Table 5.9 – Cross section in mbarn, integrated over θ, for detected nuclei resulting from DIC
in reaction 40Ar+58Ni at 7AMeV incident energy [154].

fully relaxed QT cross section is equal to the Z < 12 DI fragments cross section (see

Tab.5.9) and represent ∼ 25% of the DI Z > 12 cross section. This contribution has

been taken into account in the estimation of DI contribution.

Once selected the residue region in each detector, following these criteria, the num-

ber of fragments lying in this region has been counted.

5.2.3 Cross section determination

Due to the axial symmetry of the fusion evaporation reactions, the number of

evaporation residues can be evaluated in a selected ∆φ region for each ring, in order

not to include in the counts also not properly running detectors (see §4.2.1). There-

fore fusion-evaporation events have been counted in a limited region in ∆φ for a

7◦ ≤ θ ≤ 27◦ for each reactions. The selected ∆φ region is the same for all the ana-

lyzed rings and reactions: ∆φ = 45◦ ÷ 180◦

For each ring the total number of detected residues (R) in a detector is the mean

value over the measured values (Ri) in the n modules of the ∆φ selected region:

R =

∑n
i=1 Ri

n
(5.21)

where n is the number of analyzed telescopes.

The percentage of DI coincidence introduces a systematic error in computing the

residues, which has been taken into account.

The uncertainty has been obtained by the quadratic sum of the statistical (σstat) and
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systematic errors (σsist), being the two contribution independent:
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where the statistical uncertainty ∆R
R

∣

∣

∣

∣

stat
is given by

∆R

R

∣

∣

∣

∣

∣

∣

stat

=
1

√

∑n
i=1 Ri

(5.23)

The systematic uncertainty, due to the deep inelastic contribution present in the

residues region, can be estimated as:

∆R

R

∣

∣

∣

∣

∣

∣

sist

=

∑n
i=1 NDICi
∑n

i=1 Ri
(5.24)

where NDICi is the number of heavy fragments, in each analyzed detectors, which,

according to our criteria, are QT fragments.

Fusion-evaporation differential cross section is given by:

dσFE

dθ
=

R
∆θ

∆(dσFE
dθ )

dσFE
dθ

=
∆R

R

(5.25)

where ∆θ is the polar angular aperture of the detector of each ring. The angular un-

certainty is given by the detector angular aperture.

The obtained cross section values are expressed in counts/rad and have to be con-

verted in mbarn/rad to compare different behaviours corresponding to different

reactions. However we remark that, for all the reactions, the dσFE
dθ obtained for

20◦ ≤ θ ≤ 27◦ represents the upper limit of the fusion-evaporation cross section,

due to the high deep inelastic contribution in this region.

Mbarn/count conversion factor Evaporation residue cross section has been nor-

malized with respect to the yields of elastic scattered beam particles measured in

first INDRA ring.

As previously discussed, the number of elastic events hitting a detector i, Ni, should

be costant over all detectors belonging to the same ring if the beam is correctly
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aligned. It is therefore necessary to take into account the beam mis-alignment and

to correct by a factor Ki(φri , θb, φb) each Ni in order to obtain a unique Nring
4
value for

all detectors on the ring.

For each detector i

Nring
4 i
=

Ni

Ki(φri , θb, φb)

∆Nring
4 i

Nring
4 i

=
∆Ni

Ni
+
∆Ki

Ki

(5.26)

assuming, as a first approximation, that Ni and Ki are independent.

The correction factor Ki(φri , θb, φb) for each detector is defined as

Ki(φri , θb, φb) =
f (φri ,C, θb, φb)

f (φri ,C, θb = 0, φb = 0)
(5.27)

where f (φri ,C, θb, φb) is the expected number of elastic projectile nuclei hitting the

detector i (whose mean azimuthal angle is φri), taking into account the beam mis-

alignment (see eq.5.5). f (φri ,C, θb = 0, φb = 0) would be the expected number of

elastic projectile nuclei hitting the detector i if the beam was aligned, i.e.:

f (φri ,C, θb = 0, φb = 0) =
∫

Θgr

Θ
MIN
R4

1

sin4 θ
2

dθ (5.28)

where ΘMIN
R4 is the the minimum polar angle in CM covered by each detector, corre-

sponding to θMIN
R4 = 7◦ in LAB.

The uncertainty on the correction factor Ki is given

∆Ki

Ki
=
∆ f (φri ,C, θb, φb)
f (φri ,C, θb, φb)

(5.29)

where

∆ f (φri ,C, θb, φb) =

∣

∣

∣

∣

∣

∣

∂ f (φri ,C, θb, φb)
∂θb

∣

∣

∣

∣

∣

∣

∆θb +

∣

∣

∣

∣

∣

∣

∂ f (φri ,C, θb, φb)
∂φb

∣

∣

∣

∣

∣

∣

∆φb. (5.30)

The partial derivatives can be expressed as:

∂ f (φri ,C, θb, φb)
∂θb

=
∂ f (φri ,C, θb, φb)

∂ΘVi

∂ΘVi

∂θVi

∂θVi

∂θb

∂ f (φri ,C, θb, φb)
∂φb

=
∂ f (φri ,C, θb, φb)

∂ΘVi

∂ΘVi

∂θVi

∂θVi

∂φb

(5.31)
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From eq.5.5 one gets:
∂ f (φri ,C, θb, φb)

∂ΘVi

=
−1

sin4
(

ΘVi

2

) (5.32)

and, from eq.5.6,

∂ΘVi

∂θVi

= − sin θVi ·
2mp

mt
cos θVi +

√

1 −
(

mp

mt
sin θVi

)2
+

(

mp

mt
cos θVi

)2 [

1 − (mp

mt
sin θVi)

2
]− 1

2

√

1 −
(

−mp

mt
sin2 θVi + cos θVi

√

1 −
(

mp

mt
sin θVi

)2
)2

(5.33)

Combining eqs. 5.7÷5.9, the derivatives of eq.5.10 are

∂θVi

∂θb
=

sin θb OT
2
+TR

2−OR
2

2·OT ·TR
− cos θb OR

TR
cos(φri − φb)

√

1 −
[

cos θb OT
2
+TR

2−OR
2

2·OT ·TR
+

OR
TR

sin θb cos(φri − φb)
]2

∂θVi

∂φb
= −1 ·

OR
TR

sin(φri − φb) sin θb
√

1 −
[

cos θb OT
2
+TR

2−OR
2

2·OT ·TR
+

OR
TR

sin θb cos(φri − φb)
]2

(5.34)

For each detector Ni has been corrected according to eq.5.26 and the obtained values

Nring
4 i
± ∆Nring

4 i
have been plotted in Fig.5.19.

Values are normalized to an arbitrary value to highlight the relative differences.

As expected, Nring
4
in function of φr is costant. A costant fit has then been performed

to extrapolate the best Nring
4
± ∆Nring

4
value.

The mbarns/counts conversion factor (µ) is given by

µ =
σRuth(θMIN

R4 ÷ θ
MAX
R4 )

Nring
4

(5.35)

where σRuth(θMIN
R4 ÷ θMAX

R4 ) is the integrated Rutherford cross section in the angular

range covered by the first INDRA ring (ring 4).

In the evaluation of the integrated Rutherford cross sections, an attempt of taking

into account the behaviour of σel/σRuth around Θgr has been done. Being Θgr the an-

gle at which σel/σRuth = 1/4, integrating up to Θgr with σel = σRuth, an overestimation

of the elastic cross sections is obtained. In Ref. [163], the elastic scattering angular

distributions for 40Ar+109Ag at energies up to 8.4AMeV are reported. To our knowl-

edge no data for Ar+Ni reactions at ∼ 13AMeV energy are present in literature.
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(a) 34Ar+58Ni

(b) 36Ar+60Ni

(c) 36Ar+58Ni

(d) 40Ar+60Ni

(e) 40Ar+64Ni

Figure 5.19 – ”Corrected” total collected elastic events Nring
4 i

in the detector i (normalized

to 1) versus the detector mean azimuthal angle φri . The behaviour is flat, as
expected. The full line is the costant fit result.

A theoretical calculation of the elastic scattering angular distributions has been per-

formed by E. Khan and H. Sy Than9 for all the reactions. The calculation is based on

9Many thanks to the two theoretician colleagues E. Khan and H. Sy Than for their support.
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Figure 5.20 – Elastic scattering angular distributions for the five analysed reactions.

a purely microscopic model: proton and neutron densities have been determined by

using the HF Gogny interaction, while a double folding potential has been used to

deduce the optical potential. The calculation has been performed in the distorted-

wave Born approximation (DWBA) and the obtained angular distributions are plot-

ted in Fig.5.20.

Referring to the 40Ar+109Ag at 8.4AMeV reaction, the elastic scattering angular
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Figure 5.21 – Elastic scattering angular distributions for the Ar+Ag and Kr+Cu reactions.
Curves are normalized at 1.0 in the regionwhere count rate to Rutherford cross
section ratios were constant. Picture is taken from [163].

distribution shown in Fig.5.21 can be parametrized as:

dσ
dΘ

∣

∣

∣

∣

el

dσ
dΘ

∣

∣

∣

∣

Ruth

= 1 Θ ≤ Θgr − 4◦

dσ
dΘ

∣

∣

∣

∣

el

dσ
dΘ

∣

∣

∣

∣

Ruth

= e−k(Θ−Θgr+4◦)
Θ ≥ Θgr − 4◦

(5.36)

where the coefficient k = −0.3466 has been obtained by fitting the angular distri-

bution. The Rutherford cross sections have then been integrated in INDRA ring 4

angular range by weighting dσ
dΩ for the exponential factor in the region Θ ≥ Θgr − 4◦.

The presence of an eventual isotopic dependence has been neglected, assuming the

same slope of the exponential decrease for all the systems, being the available ener-

gies much greater than the Coulomb barrier. Moreover also possible isotopic effects

on the grazing angles have been neglected, since no parametrizations have been

found in literature.

σRuth(θMIN
R4 ÷ θMAX

R4 ), Nring
4
± ∆Nring

4
and µ values are listed in Tab.5.10 for the different

reactions.
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θgr σRuth (barn) Nring
4
(counts) µ (mbarn/count)

34Ar+58Ni 10.2078◦ 1.73 8590 ± 155 0.201 ± 0.004
36Ar+58Ni 9.6622◦ 1.61 18420 ± 445 0.087 ± 0.002
36Ar+60Ni 9.5808◦ 1.22 51100 ± 870 0.0239 ± 0.0004
40Ar+60Ni 8.8485◦ 0.74 26800 ± 400 0.0275 ± 0.0004
40Ar+64Ni 8.7102◦ 0.67 8090 ± 200 0.083 ± 0.002

Table 5.10 – Rutherford cross sections integrated over ring 4 solid angle(σRuth), mean value
of number of elastic events hitting each detector of ring 4 (Nring

4
) and conversion

factor µ for all the reactions.

The relative uncertainty on µ is the relative uncertainty on Nring
4
, given by the fit

procedure:

∆µ

µ
=

∆Nring
4

Nring
4

. (5.37)

The fusion-evaporation differential cross section is given by:

dσFE

dθ
=

R
∆θ

(count/rad) · µ(mbarn/count)

∆(dσFE
dθ )

dσFE
dθ

=
∆( R
∆θ

)
R
∆θ

+
∆µ

µ

(5.38)

The obtained fusion evaporation differential cross sections are plotted in Fig.5.22.
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Figure 5.22 – Measured differential fusion-evaporation cross sections. When only 4 points
are visible, the 5th is superimposed.
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Figure 5.23 – GEMINI differential fusion-evaporation cross sections. When only 4 points are
visible, the 5th is superimposed.

5.3 Conclusions

Differential fusion-evaporation cross sections measured for Ar+Ni are listed in

Tab.5.11 and shown in Fig.5.22. Results obtained with GEMINI simulation are also

displayed in Fig.5.23 for comparison.

Once normalized GEMINI to experimental data, both distributions show the same
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Ring R
∆θ
(counts/rad) R (counts) R (mbarn) R

∆θ
(mbarn/rad)

34Ar+58Ni
4 7607 ± 191 370 ± 9 75 ± 4 1532 ± 66
5 5103 ± 131 332 ± 9 67 ± 3 1027 ± 45
6 1654 ± 67 165 ± 7 33 ± 2 333 ± 19
7 1225 ± 67 142 ± 8 28 ± 2 246 ± 18

σFE(7◦ < θ < 27◦) = 203 ± 10 mbarn
36Ar+58Ni

4 29393 ± 549 1431 ± 27 125 ± 5 2566 ± 110
5 19895 ± 248 1295 ± 16 113 ± 4 1736 ± 63
6 9205 ± 199 916 ± 20 80 ± 4 803 ± 37
7 5857 ± 231 678 ± 27 60 ± 4 511 ± 32

σFE(7◦ < θ < 27◦) = 377 ± 17 mbarn
36Ar+60Ni

4 88661 ± 2468 4317 ± 120 103 ± 5 2115 ± 95
5 65554 ± 449 4268 ± 29 102 ± 2 1564 ± 37
6 30248 ± 444 3009 ± 44 72 ± 2 722 ± 23
7 20203 ± 1152 2338 ± 133 56 ± 4 482 ± 36

σFE(7◦ < θ < 27◦) = 332 ± 14 mbarn
40Ar+60Ni

4 85964 ± 1175 4186 ± 57 115 ± 3 2364 ± 67
5 48079 ± 365 3130 ± 23.8 86 ± 2 1322 ± 30
6 23689 ± 1172 2356.7 ± 117 65 ± 4 651 ± 42
7 14976 ± 4704 1733 ± 544 48 ± 16 412 ± 135

σFE(7◦ < θ < 27◦) = 313 ± 25 mbarn
40Ar+64Ni

4 30820 ± 674 1501 ± 33 125 ± 6 2567 ± 121
5 18706 ± 274 1218 ± 18 101 ± 4 1558 ± 62
6 7876 ± 649 784 ± 65 65 ± 7 656 ± 70
7 5460 ± 1940 632 ± 224 53 ± 20 485 ± 173

σFE(7◦ < θ < 27◦) = 344 ± 37 mbarn

Table 5.11 – Fusion-evaporation cross sections (R) and differential fusion-evaporation cross
sections expressed both in counts and in mbarn are reported for each analysed
INDRA ring. The total measured fusion-evaporation cross section for each re-
action (σFE(7◦ < θ < 27◦)) is also reported.

trend: a strong decreasing in dσFE/dθ as the CNmass decreases. These results are, of

course, very preliminary since the measured angular distributions are not complete

and the peaks of the distributions are missed. As an example the GEMINI 40Ar+60Ni

angular distribution has been reported in Fig.5.24 and the measured part has been

shaded. A further analysis including the VAMOS data will allow to get informations

also on the peak region of the angular distributions.
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Figure 5.24 – GEMINI 40Ar+60Ni residue angular distribution. The shaded part enlightens
the experimentally measured angular distribution

Basing on GEMINI and assuming that experimental and calculated angular dis-

tributions have the same shape, it is possible to extrapolate the fusion-evaporation

cross sections. In Tab.5.12 the percentage of measured σFE is reported, showing an

increase from the n-rich to the n-poor systems. It can be qualitatively understood in

terms of nucleus recoil. The n-rich systems evaporates a great number of neutrons

with respect to the n-poor one, which mainly evaporates α particles. Being the nu-

cleus recoil due to a n emission smaller than the one due to an α particle emission,

the angular distribution of a n-rich system will be more forward peaked and narrow

than the one of a n-poor system. This effect is shown in Fig.5.25, where the peak po-

sitions are reported for each reaction. Experimental distributions are broader than

GEMINI ones, but the ratios of counts in ring 4 and 5 have the same trend, giving

confidence in a proper description, by GEMINI, of the occurring physic processes.

The extrapolation of σFE is, of course, very sensitive to possible uncertainties,

being the measured angular distributions less than 25% of the total angular distri-

σFE(7◦ < θ < 27◦) % of σtot
FE measured σFE extrapolated σreac

34Ar+58Ni 203 ± 10 26.037% 780 ± 39 2497
36Ar+58Ni 377 ± 17 23.599% 1598 ± 72 2562
36Ar+60Ni 332 ± 14 23.455% 1417 ± 57 2606
40Ar+60Ni 313 ± 25 18.675% 1680 ± 134 2713
40Ar+64Ni 344 ± 37 17.626% 1953 ± 210 2801

Table 5.12 – Experimentally measured fusion-evaporation cross section σFE(7◦ < θ < 27◦),
percentage of measured angular distribution obtained by a GEMINI comparison
(% of σtot

FE measured), extrapolated σFE and reaction cross section [1] for each
reactions. The FE cross sections are expressed in mbarn
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Figure 5.25 – GEMINI angular distributions. The peak positions (reported in the legend) and
the distribution width decrease as the CN mass increases.

butions. Moreover the experimental and calculated angular distributions shapes are

slightly different, however the extrapolations permit to compare the obtained values

with the ones reported in literature. Other experimental results found in literature

are listed in Tab.5.13 and displayed in Fig.5.26.

System Ref. E/A (AMeV) σFE (mbarn) σFF (mbarn)
40Ar+natNi [136] 4.2 900 ± 80

4.9 890 ± 80
5.7 930 ± 60

[164] 7.2 900 ± 120
32S+59Co [137] 4.0 756 ± 76

4.5 995 ± 100
4.9 916 ± 92 243 ± 25
5.6 850 ± 85 342 ± 35
6.2 848 ± 85 387 ± 40

40Ar+68Zn [36] 14.6 490 ± 50 500 ± 50
19.6 300 ± 40 200 ± 40

35Cl+62Ni [165] 4.0 929 ± 46
4.1 980 ± 49
4.6 998 ± 50 60 ± 20
4.7 1089 ± 54 90 ± 30
4.8 1091 ± 55 140 ± 45

[166] 4.6 998 ± 70 78 ± 15
4.7 1089 ± 76 114 ± 22
4.9 1091 ± 76 126 ± 24
5.7 960 ± 70 340 ± 100
6.1 956 ± 70 420 ± 85

Table 5.13 – Fusion-evaporation and fusion-fission cross sections published in literature.
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Figure 5.26 – Experimental results found in literature for both fusion-evaporation (full sym-
bols) and fusion-fission (open symbols) cross sections. The lines are only to
drive the eyes. References are reported in the text.

Data are for 40Ar+natNi [136, 164], 32S+59Co [137], 40Ar+68Zn [36] and 35Cl+62Ni

[165, 166]. The total masses of these systems vary from 90 to 108, while the incident

energies from 4AMeV to 20AMeV. In Fig.5.26, both fusion-evaporation and fusion-

fission cross sections are reported; the lines have the aim of driving the eyes. On

these basis a fusion-evaporation cross section of about 600mbarn is expected for
40Ar+60Ni. Wewould remark that the fusion-fission cross section is comparable with

the fusion-evaporation one, but fusion-fission events have been removed during

the analysis. The obtained high cross section values are not in agreement with the

values present in literature. Possible uncertainties sources have been identified in:

• the extrapolation of σFE from the GEMINI angular distributions, which are

slightly different from the experimental angular distributions

• the choice of the grazing angle, which affects the integrated Rutherford cross

section value

• the slope of the exponential decrease of σel/σRuth, which has been chosen con-

stant for all the systems

• the energy resolution. The peak identified as elastic peak could include some

inelastic events, due to the energy resolution.

However a strong decrease in the fusion-evaporation cross sections, even larger than

the decrease of the reaction cross sections, is observed with the CN mass decrease.
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Figure 5.27 – Residue angular distribution as function of the fragment emission energy (in
AMeV). The detector threshold can be located, as a first approximation, around
1AMeV.

Being the decrease of σFE bigger than the σreac one, it cannot be explained in terms

of a smaller number of partial waves participating to the reaction. Moreover the

decrease of σFE can be due neither to the behaviour of σRuth, which has the opposite

trend, nor to the percentage of measured dσ/dθ, which increases when decreasing

the CN mass. The effect can neither be ascribed to a detector threshold effects. The

contribution of the detector thresholds to the residue estimation is, theoretically, less

than 0.3% for all the analyzed reactions. As example in Fig.5.27 a θ vs. E/A corre-

lation obtained by GEMINI simulation is shown. The percentage of events lying in

E/A < 1AMeV region is less than 0.3%.

All these observations are summarized in Fig.5.28, where the behaviours of the

Rutherford (σRuth(7◦ ≤ θ ≤ θgr)), the reaction (σreac) and the extrapolated (σextrap) and

measured (σmeas
FE ) cross sections are shown. The slope of the measured σFE is clearly

higher than the σreac and σRuth ones. The strong decreasing of σFE for the 92Pd, lying

close to the p-drip line in the nuclide chart, could also be explained by the opening

of new deexcitation channels, such as the multifragmentation one: moving toward

the p-drip line a limit may appear in the excitation energy which can be supported

by a nucleus, either in the total energy [167] or in the energy per nucleon [168, 169].

The latter can be related to a limiting temperature for nuclei as derived fromHartree-

Fock calculations [170]. In this case one deals with a limit imposed by the exit chan-

nel looked at, namely fusion evaporation. This idea is supported by the detection of

heavy particles, with Z up to 7, in coincidence with a residue in VAMOS.

We now discuss to what extent experimental fusion cross section can be under-

stood qualitatively in terms of simple models.
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Figure 5.28 – Integrated Rutherford cross section (σRuth(7◦ ≤ θ ≤ θgr)), reaction cross section
(σreac) and the extrapolated (σextrap) cross section as function of the CN mass
is plotted.

The fusion process is connected to the presence of a pocket in the interaction poten-

tial between the two colliding nuclei. The potential shape and therefore the critical

angular momentum lcr for fusion, which could limit the fusion processes [31], are

determined by the competition between the Coulomb repulsion and the sum of nu-

clear attraction and the l-dependent centrifugal force. Increasing the system neutron

number, the nuclear interaction increases, while the Coulomb repulsion remains un-

changed, increasing the well depth. Therefore the fusion reaction is more probable

in n-rich systems and the n-rich fusion cross sections are higher than the n-poor

ones.

Three different models have been taken into account to evaluate a theoretical lcr and

to estimate the corresponding fusion cross section from the equation:

σF = πn
2l(l + 1). (5.39)

As already discussed in §1.2 the effective interaction potential between two ions can

be written as

Ve f f
l (r) = VCB(r) + VN(r) + Vl(r) (5.40)

VCB(r) and Vl(r) have the expression reported in eq.1.7 and 1.16. The r0 gr values of
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r0 gr(fm)
34Ar+58Ni 1.430
36Ar+58Ni 1.430
36Ar+60Ni 1.430
40Ar+60Ni 1.428
40Ar+64Ni 1.427

Table 5.14 – r0gr values used in the computation of Rgr (eq.1.4). These values, inserted in
DIFFIL code (see app.B allow to obtain a θgr value equal to the one obtained
by [1].

eq.1.4 are reported in Tab.5.14. It remains to specify the nucleus-nucleus potential.

The energy density formalism provides us a way of calculating the interaction en-

ergy between two colliding ions. The model consists in writing the total energy of

fermion systems under the form of a functional of the one-body densities. In the

case of colliding heavy ions, the interaction energy calculated as a function of the

relative distance R between the two centers of mass can be interpreted as the real

part of the interaction potential.

In the model proposed by C. Ngô and B. Tamain [171], the calculations are made in

the so-called sudden approximation, which means that the densities ρ1 and ρ2 de-

scribing the two ions, respectively, overlap during the collision without rearrange-

ments. For physical situations implying essentially the surface and the tail of the

potential, so that the central part of the potential is irrelevant, such as in the an-

alyzed reactions, comparisons with experimental data [172, 173] have shown this

approach to be capable of supplying with valuable information.

Starting from the statement that the force, F(s), between two gently curved undeformable

bodies in close proximity, as a function of the least separation distance, s, is proportional to

the interaction potential per unit of area between two flat surfaces made of the same mate-

rial, multiplied by a proportionality factor (proximity theorem, [174, 175]), C. Ngô and

B. Tamain [171] have pointed out that VN(R) can be written as:

VN(R) =
A1/3

1 A1/3
2

A1/3
1 + A1/3

2

UN(R) (5.41)

where the first term is a geometrical factor, due to the assumption, in the calculations,

of spherical nuclei, while the second term has been found to be ”universal”, once

applied the transformation

s = R − R0.

R0 denotes the position of the minimum of the function UN(R) and can be calculated
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Figure 5.29 – Effective potential shape (l = 0) obtained within the model [171].

from the relationship

R0 = r0

(

A1/3
1 + A1/3

2

)

. (5.42)

The universal function UN(R) has been parametrized as:

UN(s) =















−V0 e−0.27 s2/ f m2
s ≥ 0

−V0 + 6.3 s2 MeV/ f m2 s ≤ 0
(5.43)

where r0 = 0.97 fm and V0 = 30MeV for the 40Ar+63Cu reaction.

The effective potentials obtained for the different reactions are shown in Fig.5.29.

For each reaction the critical angular momentum has been determined by a numer-

ical derivative of the effective potential, and the fusion cross section has been esti-

mated. The obtained values are reported in Tab.5.15.

In the model the shell effects and the neutron excess in the surface (as a function

lgr (~) lcr (~) V0 (MeV) σF (barn) σF/σF(100Pd) th σFE/σFE(100Pd) exp
34Ar+58Ni 153 76 31.4 0.618 0.944 0.46 ± 0.04
36Ar+58Ni 159 78 32.2 0.616 0.940 0.95 ± 0.09
36Ar+60Ni 163 80 32.6 0.632 0.965 0.84 ± 0.07
40Ar+60Ni 173 85 34.1 0.655 1 1
40Ar+64Ni 181 89 35.0 0.683 1.043 1.16 ± 0.16

Table 5.15 – Grazing angular momentum (lgr), obtained according to [1]; critical angular mo-
mentum lcr, well depth V0 with respect to the Coulomb barrier, obtained from
C. Ngô model [171] are reported. For each reaction the ratios of the cross section
and the 100Pd cross section have been calculated both from theoretical predic-
tion (σF/σF(100Pd) th) and experimental data (σFE/σFE(100Pd) exp).
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Figure 5.30 – Effective potential shape (l = 0) obtained within the J. Blocki model [174].

of N and Z) are present in the calculated densities, but not in the functional used to

compute VN(R), however this Z and N dependence shows a qualitative behaviour in

agreement with what we found in our reactions.

A more recent parametrization, based on the proximity theorem and using the

nuclear Thomas-Fermi approximation, expresses the proximity potential as

VN(ξ) = 4πγRbΦ(ξ) (5.44)

where
γ = 0.9517

(

1 − 1.7826I2
)

Mev/ f m2

I = N−Z
A

R = (1.28A1/3 − 0.76 + 0.8A−1/3) f m

b = 1 f m

Φ(ξ) =















− 1
2(ξ − ξ0)2 − k(ξ − ξ0)3 ξ ≤ ξ1
−3.437e−

ξ
0.75 ξ ≥ ξ1

(5.45)

with


























ξ1 = 1.2511

ξ0 = 2.54

k = 0.0852

(5.46)

N, Z and A in eq.5.45 refer to the combined system of the two interacting nuclei. As

for the previous model the effective potentials are shown in Fig.5.30 and for each

reaction the critical angular momentum and the fusion cross section have been esti-

mated and reported in Tab.5.16.
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lcr (~) V0 (MeV) σF (barn) σF/σF(100Pd) th σFE/σFE(100Pd) exp
34Ar+58Ni 77 36.1 0.635 0.905 0.46 ± 0.04
36Ar+58Ni 81 37.0 0.664 0.946 0.95 ± 0.09
36Ar+60Ni 82 37.4 0.663 0.946 0.84 ± 0.07
40Ar+60Ni 88 38.6 0.702 1 1
40Ar+64Ni 91 38.8 0.714 1.012 1.16 ± 0.16

Table 5.16 – Critical angular momentum lcr and well depth V0 with respect to the Coulomb
barrier, obtained from J. Blocki model [174] are reported. For each reaction
the ratios of the cross section and the 100Pd cross section have been calcu-
lated both from theoretical prediction (σF/σF(100Pd) th) and experimental data
(σFE/σFE(100Pd) exp).

In the last analysed model, taken from [176], the critical angular momentum lcr

for fusion is calculated by equating the maximum possible attractive nuclear force

due to the proximity potential to the sum of the repulsive Coulomb and l-dependent

centrifugal forces. The droplet model is used to determine static nuclear parameters

which are not dependent on the bombarding energy, such as the matter half density

radius C and the coefficient of surface tension γ entering in the strength factor of the

proximity model potential for heavy ions. The maximum critical angular momen-

tum for fusion is given by

lcr =
7
5

√

−µmuS 3

~2

[

4πγCφb +
Z1Z2e2

S 2

]

(5.47)

with
µ =

ApAt

Ap+At

mu = 931.5 MeV/c2

S = Cp +Ct + 0.3 f m

C ≃ R
(

1 + 1
R2

)

R = (1.28A1/3 − 0.76 + 0.8A−1/3) f m

C = CpCt

Cp+Ct

φ = −0.96

b = 1 f m

γ = 0.9517(1 − 1.7826I2)

I = N−Z
A

(5.48)

The obtained value are listed in Tab.5.17.

For all the models the obtained lcr values are in agreement with what predicted

by [177]. The obtained theoretical σF are not in agreement with what expected from

experimental data in literature, being a factor of ∼ 2 smaller. However they show

a decreasing trend as the CN masses decrease, in agreement with what we found
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lcr (~) σF (barn) σF/σF(100Pd) th σFE/σFE(100Pd) exp
34Ar+58Ni 68 0.494 0.817 0.46 ± 0.04
36Ar+58Ni 72 0.526 0.869 0.95 ± 0.09
36Ar+60Ni 74 0.543 0.898 0.84 ± 0.07
40Ar+60Ni 82 0.605 1 1
40Ar+64Ni 85 0.630 1.041 1.16 ± 0.16

Table 5.17 – Critical angular momenta lcr, obtained according to [176], are reported. For
each reaction the ratios of the cross section and the 100Pd cross section have been
calculated both from theoretical prediction (σF/σF(100Pd) th) and experimental
data (σFE/σFE(100Pd) exp).

experimentally.

The ratios between the fusion cross section and the 100Pd fusion cross section have

been estimated both from experimental data and theoretical predictions. It can be

pointed out that the decrease of σFE cannot be explained only as a dependence of σF

from lcr, being the obtained experimental and theoretical ratios different one from

each other.

The decrease of σFE suggests then a possible dependence of the fusion-evaporation

cross section from the isospin of the reactions.



Appendix A

Data sample selection

In order to perform an analysis of the residue statistic, it is necessary to select a

”clear data sample”, removing, in particular,

• events where the cross talk between two pads of the same silicon wafer occurs

• events where two particles hit the same ionization chamber

A.1 Cross talk events and time marker signals

The analysis of the time marker signals of detectors hit in an event allows, in first

approximation, to identify a cross talk event.

We remark that for each detector of an INDRA telescope, a time marker signal is

generated when the signal induced by the incident particle hitting a detection layer

is greater than the detector CFD threshold. The detector ADC integration gate, in-

stead, is fired by the logic OR between the CFD signals produced by the hit detector

and the following detection layer. Therefore an incident particle can cause an energy

signal and not a time signal, but not vice-versa.

The time marker of each signal is related to:

• the particle time of flight. As previously discussed, the Start to the Time

Marker is given by the detector CFD logic signal, while the Stop, a common

stop, is given by the trigger signal. The time marker value is thus related to

the particle energy and mass.

• the rise time of the signal of the fast amplifier, which increases the time differ-

ence between light charged particles or high energy fragments and low energy

residues.
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Start

LP time of flight

Residue time of flight

Stop

Trigger signal generation

LP time marker

Residue time marker

Reaction

Residue time of flight

Trigger signal generation

Stop

Residue time marker

Start

Figure A.1 – Sketch of time marker signal production for a light particle (LP, upper panel)
and for a M = 1 residue event (lower panel)

• the selected trigger multiplicity. In particular if the selected multiplicity is

M ≥ 1, when the event multiplicity is M = 1, the time marker position is

related only to the delay introduced by cables, and it is independent from the

particle energy and mass.

A sketch is presented in Fig.A.1.

A silicon time marker spectrum generally extends from channel∼ 90 to channel∼
115: the lower part is associated with the ”residue”, whose time marker peak is

centred around channel∼ 100, while the upper part with light particles, whose peak

is centred about channel∼ 110 (see Fig.A.2). A small peak, around channel∼ 110, is

present in the residue time marker spectrum: such events are M ≥ 1 events.

A.1.1 Cross talk events

As discussed in §2.1, each ionization chamber in forward rings is followed by

a silicon wafer, divided in 4 pads. This configuration reduces the dead region be-

tween two contiguous detectors, but may introduce cross talk effects. We refer to

cross talk effects as the production of a signal in a not-fired pad. When an incident

particle deposits energy in one pad, a part of the ionization charge can drift towards

a contiguous pad, producing a signal also in the latter. Due to the charge sharing,

the energy signals associated to a couple of detectors where cross talk occurred is

not simply usable: in order to get the correct energy information, each event where

cross talk had occurred should be identified and reconstructed.

The cross talk origin is related to the n+ wafer region, which is common to all the
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Figure A.2 – ∆E − E spectrum for a detector located under the grazing angle: the residue,
light particle and elastic events regions are identified. For each region the cor-
responding time marker positions are displayed in the other three pads.

four pads and which should be grounded. It has been pointed out in Ref. [178] that

an impedance of ∼ 1Ω can be associated to this region and that it is the reason of

induced signals.

A cross talk event can be identified by the time marker associated to silicon detec-

tors. In case of a cross talk event the signal induced in neighbour silicon pads has

an inverse sign with respect to the main one: i.e. it is a positive signal. Moreover

Reaction

Start

Residue time of flight

Residue time of flight

Start

Residue time marker

Stop

Residue time marker

Cross talk event

Figure A.3 – Sketch of time marker signal production for events without (upper panel) and
with (lower panel) cross talk effect.
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Figure A.4 – ∆E−E spectra obtained in a previous INDRA campaign for the reaction Xe+Sn
at 15Ame incident energy.

the signal rise time is short while the signal decrease time is comparable to the main

signal rise time. The CFD, which works in leading edge mode, fires on the descend-

ing part of the signal introducing a delay in the logic signal production. The time

marker position of a cross talk event will therefore lie at smaller value with respect

to the main one position (see Fig.A.3). As an example a ∆E−E and timemarker spec-

tra of a previous INDRA campaign, where cross talk occurred, are shown in Fig.A.4

and Fig.A.5. In the present campaign no cross talk effects have been observed.

A.2 Removal of events where two particles hit the same

ionization chamber

As it has been previously pointed out, INDRA forward telescopes are consti-

tuted by three detection layers, the first of which has a granularity lower than the

silicon and cesium iodide detectors: each ionization chamber indeed is followed

by 4 telescopes made by a silicon and a CsI(Tl) scintillator detectors. This config-

uration introduces some uncertainties in event reconstruction and in particular in

particles identification without any energy calibrations. When two particles hit the

same ionization chamber, the induced signal is the result of the sum of the ioniza-

tion of both particles. If at least one of them punches through the second layer, the

deposited energy associated to each particle can be reconstructed on the basis of the
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Figure A.5 – Time marker spectra obtained in a previous INDRA campaign for the reac-
tion Xe+Sn at 15Ame incident energy. M = 1 events, elastic events and cross
talk events time markers are shown in different colours: cross talk events time
marker is located at lower values (channels 80 ÷ 90).

residual energy deposited in the second and third detection layers by the punching

through particle: the ∆E − E method provides the particle charge Z, allowing to

reconstruct the incident energy, and thus the energy lost in the ionization chamber.

From the energy deposited by the first particle, the energy of the second particle can

be estimated. This method, however, requires the energy calibrations of all detec-

tors (energy loss must be calculated), which, in this moment, are not yet available.

Therefore, in a first approximation, all the events where two particles hit the same

ionization chamber have been removed from the data sample. During all the anal-

ysis care has been payed in checking the percentage of these removed events lying

always below 1.0%.
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Appendix B

Diffil code

The Diffil code, written by B. Tamain (IPN-Orsay) in 1975, computes the kine-

matics for elastic diffusion, fusion-fission and deep inelastic fully relaxed reactions,

being all the three processes binary processes. The code input parameters are the

mass and charge of the projectile and target nuclei (Ap, Zp and At, Zt respectively)

and the beam incident energy (Ei). The charge ratio of the products is required for

fusion-fission and DI reactions. The code is valid only if the target mass is equal or

bigger than the projectile one.

The code output is a list of kinematic parameters, such as emission angles, velocities

and kinetic energies. Once chosen the outgoing fragment of interest, its character-

istics and its partner characteristics are calculated for all available emission angle θ.

The emission angle step can be set by user.

Later on we refer to quantities calculated in CMwith capital letters, and small letters

will be reserved to quantities in LAB reference system.

B.1 Rutherford elastic diffusion

The electrostatic potential between the two colliding nuclei is assumed to be, in

this simple model, the Coulomb potential

V(r) =
1

4πε0

ZpZte2

r
(B.1)

where e is the electron charge.

The angular momentum and the energy conservation laws allow to determine the

175



176 Chapter B. Diffil code

projectile trajectory in CM, Θ(r). From the motion equations one gets:

sin
Θ

2
=

a0
b

√

1 +
(

a0
b

)2
, (B.2)

where b is the reaction impact parameter and a0 is the distance of minimum ap-

proach:

a0 =
ZpZte2

2E(CM)
. (B.3)

E(CM) is the available energy in CM:

E(CM)
= Ei

At

Ap + At
. (B.4)

At the distance Rgr at which the nuclear interactions become significant, a0 can be

expressed as

a0 =

VCB

∣

∣

∣

∣

Rgr

Rgr

2E(CM)
, (B.5)

being the Coulomb barrier

VCB(r) =
1

4πε0

ZpZte2

r
. (B.6)

Rgr is calculated according to relation

Rgr = 1.35
(

A1/3
p + A1/3

t

)

fm (B.7)

Remembering eq.1.18, the projectile grazing angle is given by

sin
Θgr

2
=

1

2 E(CM)

VCB
+ 1

(B.8)

B.1.1 Projectile diffusion

Elastic diffusion is characterized by a final projectile velocity (in CM) equal to

the initial one and by an initial target velocity (in CM) equal to the CM velocity.

Geometrical considerations allow to relate the projectile emission angle in LAB to

the projectile emission angle in CM:

tan θp =
Vp sinΘp

vCM + Vp cosΘp
(B.9)
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Figure B.1 – Sketch of an elastic collision. Blue arrows are the partners velocities in CM
before the collision. Black lines refer to velocities and emission angles in CM
after the collision. Red arrows are projectile and target velocity after collision.

where
−→
Vp and −−→vCM are the projectile velocity in CM and the center of mass velocity,

respectively. Imposing the momentum conservation law in CM (
−−−−→
P(CM)

= 0), the

center of mass velocity is related to the projectile and target masses ratio

|−−→vCM |=
Ap

At
|−→Vp| (B.10)

Substituting eq.B.10 in eq.B.9 and inverting this relation, one gets the projectile emis-

sion angle in CM:

Θp = arcsin

(

Ap

At
sin θp

)

+ θp. (B.11)

The projectile kinetic energy in LAB can be determined by the projectile emission

velocity
−→
v′p (see Fig.B.1)

v
′2
p =

(

Vp sinΘp

)2
+

(

vCM + Vp cosΘp

)2
(B.12)

Being

vCM =
Ap

Ap + At
vp

Vp = vp − vCM,

(B.13)

one gets

Elab
p =

1
2

Apv
′2
p = (1 + k2

+ 2k cosΘ)

(

At

Ap + At

)2

Ei (B.14)

where k is the projectile and target mass ratio k = Ap

At
.
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B.1.2 Target diffusion

The target emission angles, as function of the projectile emission angle Θp, can

be deduced by geometrical considerations:

Θt = π − Θp

θt =
π − Θp

2

(B.15)

Noting that the target emission velocity is

vt = 2v0 cos θt (B.16)

the target kinetic energy in LAB is

Et = 2(1 + cosΘt)

(

At

Ap + At

)2 Ap

At
Ei (B.17)

Similar considerations allow to estimate projectile emission angle, velocity and ki-

netic energy as function of target emission angle, Θt.

B.2 Fusion-fission and deep inelastic kinematics

Central collisions occurring at low and intermediate energy can lead to fusion

(complete or incomplete) or to dissipative binary processes.

B.2.1 Complete fusion

When complete fusion occurs, the composite system mass and charge are















ACN = Ap + At

ZCN = Zp + Zt

(B.18)

and its excitation energy, neglecting the Q-value of the reaction, is equal to the avail-

able energy in CM:

E⋆CN = Ei
At

Ap + At
MeV (B.19)

Within a liquid drop model, the composite system surface energy is parametrized

according to Ref. [179], as

Esup = 17.9439













1 − 1.7826

(

NCN − ZCN

ACN

)2

A2/3













MeV (B.20)



B.2. Fusion-fission and deep inelastic kinematics 179

and the Coulomb energy

Ecoul = 0.7053
Z2

CN

A1/3
CN

MeV (B.21)

Being the composite system and the CM reference systems coincident, the composite

system recoil velocity

vCN
rec = 1.39

√

EiAp

A2
CN

cm/ns (B.22)

is obtained combining:























ECN =
1
2 ACNv2

CN composite system kinetic energy

vCM = vCN =
Ap

Ap + At
vp CM velocity

B.2.2 Fission and deep inelastic fully relaxed kinematic

Fission kinematics calculations are obtained by a simplemodel based onCoulomb

repulsion between prolate spheroids, which predicts that the most probable total ki-

netic energy released in fission, 〈EK〉, depends linearly on the Coulomb parameter,
Z2

A
1
3
, of the fissioning nuclei [180]1:

E f iss
k = 0.1071 MeV

Z2
CN

A1/3
CN

+ 22.2 MeV (B.23)

Fixed the charge ratio of the two fragments resulting from the composite system

fission or produced in the deep inelastic collision, and indicating with heavy and

light quantities related to the heaviest and the lightest fragments emitted, their

mass can be expressed as

Alight =
ACN

1 + Zheavy

Zlight

Aheavy = Alight
Zheavy

Zlight

(B.24)

taking into account that Aheavy + Alight = ACN and assuming that

Alight

Aheavy
=

Zlight

Zheavy

, given as input parameter. The considered input charge ratios are
Zlight

Zheavy
= 1, for

symmetric fission, and values from the initial charge ratio (
Zlight

Zheavy
=

18
28 ) to

Zlight

Zheavy
=

13
33

1A better parametrization is now available in [181], which shifts E f iss
k of ∼ 10MeV.
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Figure B.2 – Sketch of fission process. Full black lines are the CM velocity and light and
heavy fragments velocities in CM after the CN fission, respectively. Red lines
individuate the light and heavy fragments velocities in LAB.

(see Fig.5.7), for deep inelastic collisions.

The kinetic energies of the two fragments in CM can be linked to the mean energy

released in the fission process, imposing the momentum conservation law

E(CM)
heavy =

4E f iss
k

Zheavy

Zlight

(

1 + Zheavy

Zlight

)3

E(CM)
light = E(CM)

heavy

Zheavy

Zlight

(B.25)

Their velocities in CM are trivially given by

Vlight = 1.39

√

E(CM)
light

Alight
cm/ns

Vheavy = 1.39

√

E(CM)
heavy

Aheavy
cm/ns = Vlight

Zheavy

Zlight

(B.26)

To determine the two fragments emission velocity in LAB (vlight, vheavy), let us refer

to Fig.B.2 and assume θlight and θheavy to be the fragments emission angles in LAB.

LH = LP + PH

PH
2
= (Vheavy)2 − (vCN

rec sin θheavy)2

LP = vCN
rec cos θheavy

(B.27)
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then vheavy is given by

vheavy = vCN
rec cos θheavy +

√

(vCN
rec cos θheavy)2 − vCN 2

rec + V2
heavy (B.28)

Similarly vlight is

vlight = vCN
rec cos θlight +

√

(vCN
rec cos θlight)2 − vCN 2

rec + V2
light (B.29)

Kinetic energies of the two partners in LAB are given by

ELAB
heavy =

1
2 Aheavyv2

heavy

ELAB
light =

1
2 Alightv2

light

(B.30)

Applying the Carnot theorem to
△

LOH one gets the heavy fragment emission angle

in CM (Θheavy) and, similarly, the light fragment one

cosΘheavy =
v2

heavy − vCN 2
rec − V2

heavy

2 vCN
rec Vheavy

cosΘlight =
v2

light − vCN 2
rec − V2

light

2 vCN
rec Vlight

(B.31)

Once selected the fragment of interest (i.e. the heavy or the light one) DIFFIL code

allows to determine the kinematics of the partner one. Known Θheavy, geometrical

considerations (see Fig.B.2) allow to determine the emission angle of the partner

fragment of the heavy fragment

tan θlight =
Vlight sin(π − Θheavy)

Vlight cos(π − Θheavy) + vCN
rec

(B.32)

Similarly the emission angle of the fragment partner of the light one is given by

tan θheavy =
Vheavy sin(π − Θlight)

Vheavy cos(π − Θlight) + vCN
rec

. (B.33)
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