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Nomenclature 
 
 
a, b       longitudinal and lateral rotor flapping 
e       command-attitude transfer function gain coefficient 
e(t)       white noise 
g       (9.81 m/s2) acceleration of gravity  
p, q       roll, pitch rates 
y(t)       noise in velocity signals 
u, v, w       longitudinal, lateral and vertical speed  
Alon , Blat , Xu , Yv , Xa     on-axis derivatives 
Yb , Lb , Ma , Zcoll,      on-axis derivatives       
Mu , Mv , Lu , Lv     speed derivatives 
Alat , Blon , Mb , La , Mcoll    off-axis derivatives 
F(q)       auto regressive polynomial filtering function 
Kp , Ki , Kd      baseline inner loop PID parameters – Longitudinal 
Kpv , Kiv , Kdv      baseline outer loop PID parameters – Longitudinal 
KpLat , KiLat , KdLat      baseline inner loop PID parameters – Lateral 
KpvLat , KivLat , KdvLat     baseline outer loop PID parameters – Lateral 
Kpm , Kim       feedforward inner loop PI parameters – Longitudinal 
Kpvm , Kivm       feedforward outer loop PI parameters – Longitudinal 
KpmLat , KimLat      feedforward inner ioop PI parameters – Lateral 
KpvmLat , KivmLat      feedforward outer loop PI parameters – Lateral 
Tfilt, TfiltPhi       feedforward filter constants – Longitudinal, Lateral 
θ, φ       longitudinal and lateral attitude angles 
δ       command-attitude transfer function damping coefficient  
δlon , δlat, δcoll     cyclic longitudinal, lateral, collective control inputs 
τe       main rotor time constant 
ωnp , ωnq      lateral, longitudinal fuselage-rotor-bar natural frequencies 
 

Acronyms  
 
 
AHRS  Attitude and Heading Reference System 

AR  Auto Regressive 

AV  Air Vehicle 

CAPECON Civil uav APplications & Economic effectivity of potential CONfiguration solutions 

COTS  Commercial Off-The-Shelf 

CRIO  CompactRIO 

DL  Data Link 

EU  European Union 

FCS  Flight Control System 

FF  Feedforward 

FFA  Feedforward Action 

FMS  Flight Management System  

FPGA  Field Programmable Gate Array 

GPS  Global Positioning System 

GCS  Ground Control Station 

GS  Ground Segment 
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GV  Ground Vehicle 

HIL  Hardware In the Loop 

ILOS  In Line Of Sight 

I/O  Input/Output 

MGCS  Mobile Ground Control Station 

MGS  Mobile Ground Segment 

MMP  Mission Modular Payload 

NGCS  Navigation Guidance & Control System 

NI  National Instruments 

PID  Proportional Integral Derivative 

PI  Proportional Integral 

PWM  Pulse Width Modulation 

R/C  Radio Controlled 

RF  Radio Frequency 

RUAV  Rotary Wing Unmanned Aerial Vehicle  

SISO  Single Input / Single Output 

SS  States space 

TPP  Tip-Path Plane 

UAV  Unmanned Aerial Vehicle 

UDP  User Datagram Protocol 

UMTS  Universal Mobile Telecommunications System 

UNIBO  University of Bologna 

USB  Universal Serial Bus 

Wp  Waypoint 
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1 Motivation and Background 

 
 

It is well known that Unmanned Air Vehicles (UAVs) may represent a promising and 

cost-effective alternative to manned aircraft for a large number of civil applications. 

Compared to traditional air vehicles, UAVs may, in fact, offer significant advantages in terms 

of human safety (especially in dull, dirty and dangerous missions), operational cost reduction 

and work rate efficiency. In particular Rotorcraft UAV (RUAV) systems, due to their versatile 

flight modes, maneuverability and vertical take-off and landing capabilities, represent even a 

more promising solution than fixed wing UAVs. 

In the last years UNIBO has developed an unmanned small scale helicopter that is now 

capable of autonomous flight and that can be used inside the Universities as a platform for 

researches in control and navigation laws, meanwhile it could be proposed as a technological 

prototype for industries interested in UAV development and manufacturing. In order to take 

advantage of existing and cost effective technology, UNIBO has used Commercial Of The 

Shelf (COTS) sensors and electronics for its RUAV avionics package. 

The analysis and design of a good flight control system requires the knowledge of an 

accurate model of vehicle dynamics [1]: such model can be obtained using the known System 

identification techniques used for bigger machines, with some simplifications. 

In this thesis a simple System Identification Procedure for Control Design is presented. 

In particular the identified system shall be used, in the following, to compare performances of 

a traditional PID controller that will be referred as Baseline controller [2,3], versus a 

Feedforward control algorithm based on dynamic model inversion of longitudinal and lateral 

dynamics. The proposed time-domain identification procedure is entirely developed in 

Matlab-Simulink environment, and requires no other external software applications. 

The control of small scale helicopter (Rotorcraft UAV, RUAV), in order to maintain a 

stable attitude and to follow a desired trajectory, is particularly critical since it is well known 

that helicopters are inherently unstable systems. A good number of papers have been written 

in the last years about methodologies for increasing the limited performances of this class of 

small scale helicopters, but only few of them use the identified dynamic models to support 

advanced control design [1].  

The validation of this innovative model-based feedforward (FF) controller for the 

UNIBO RUAV, as well as comparison in terms of performances with a Baseline controller 
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will be performed in a Hardware In the Loop (HIL) test bench.  

In a first step the two control systems will be tuned with the same basic gains in order to 

assess the effect of the FF term, then in a second step, two sets of automatically tuned 

parameters (one for the Baseline and another one for the FF) will be used. These two sets of 

gains will be automatically tuned in order to make an impartial analysis by superimposing that 

the two controllers have similar performances (rise time, settling time).  

Hardware In the Loop tests, as well as stability margins analysis, will demonstrate how, 

tuning the two systems to achieve the same performances, the feedforward controller allows 

to work with greater stability and, hence, with less oscillating attitudes. Finally, in the last 

section, it will be shown how the FF control architecture improves the tracking performances 

of a given guidance logic. 

 

 

1.1 UNIBO RUAV Project Overview 

 

The increasing interest in military Unmanned Air Vehicles (UAVs) is fuelling an 

equally ambitious build-up in the civil community. It is well known that UAVs may represent 

a promising and cost-effective alternative to manned aircraft for a large number of civil 

applications [4]. Compared to traditional air vehicles, UAVs may offer significant advantages 

in terms of human safety (especially in dull, dirty and dangerous missions), operational cost 

reduction and work rate efficiency. Nevertheless, while research activities in UAV or Rotary 

Wing UAV systems are very advanced in the United States, UAV interest in Europe has 

begun only in the last years. As a result, the European Union has sponsored the UAV 

development program CAPECON, to attempt to kick-start a civil UAV industry in Europe 

and try to fill the gap with the United States. In the last years, the University of Bologna 

(UNIBO) has carried out several research projects concerning the development and 

manufacturing of fixed wing UAV systems for the civil aviation market.  

The goal to be achieved with the UNIBO RUAV research program was to develop a 

helicopter capable of autonomous flight which could be used inside the university as platform 

for researches in control and navigation laws; meanwhile it should be proposed as 

technological prototype to industry interested in UAV development and manufacturing. 
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An UAV system is generally constituted by at least four main integrated sub-systems (see 

figure1): the air vehicle (AV), the ground support system, the data link (DL) and the data 

distribution (DD) [5].  

 
Figure 1: UAV System 

 

- The AV includes all the airborne systems: the basic helicopter platform, the onboard 

computer and sensors, the mission payload and all the software necessary to guide, 

navigate and control the helicopter. 

-  The ground support system includes all the ground infrastructures and equipments to 

enable the AV operations, such as a mobile ground control station (GCS), a logistic 

and maintenance segment and a Ground Vehicle.  

- The Data Link supports video, data and telemetry communications between the AV 

and the Ground Support Systems, while the Data Distribution is able to transmit 

annotated significant data, collected at the GCS, to potential users at remote locations.  

 

The subsystem hardware and software equipments can be much or less sophisticated, 

depending on the RUAV system size and complexity.  

For the purpose of the RUAV program, a small scale hobby model helicopter was used as 

flying platform, which was certainly a significant physical constraint for the RUAV 

subsystem equipment choice and development. 

The work performed to develop the RUAV platform was carried out following a series of 

subsequent logical steps:  

-  first the RUAV hardware (including the onboard avionics, the air vehicle and the data 

link system) was selected and interfaced, placing attention to vibration isolation, 

electromagnetic interference and accessibility  

-  following the hardware set-up, sensor data acquisition software was developed and 

tested in flight in order to ensure sensor measurement reliability. This step plays a 
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crucial role in a RUAV development because, if the helicopter has to fly 

autonomously, reliable information about its states is needed by the onboard control 

and navigation system.  

-  parallel to the hardware set-up, simulation plays an important role in the development 

of an autonomous helicopter. A simulation model was developed, based on helicopter 

dynamics identification flight tests, to be used for the design of the onboard control 

and navigation algorithm 

-  once the previous task were completed, the onboard hardware and software were 

integrated into the simulation loop using a Hardware In the Loop (HIL) simulator. In 

this scenario, performance and possible errors of the onboard software can be detected 

during intensive ground safe and risk free tests  

-  in the end, autopilot flight test were performed for final verification and tuning of the 

control and navigation system. 

 

One important aspect to be taken into account in the development of a RUAV system is 

that it is, actually, an aerial robot. The set-up of a capable task-worthy aerial robots is 

essentially an integration effort and, always, requires knowledge of several different 

disciplines and experimentation on new system development. In the past years most of the 

research efforts in miniature autonomous helicopter were lost for hardware integration and for 

obtaining reliable sensor measurement. For that reasons, taken also into account the outcomes 

of the CAPECON program, it was decided to evaluate the feasibility of using COTS sensors 

and electronics for the RUAV avionics package. Both the hardware and the software were 

integrated placing attention to modularity, growth potential, versatility and possibility for ease 

reconfiguration and software implementation. Results achieved in this work showed that the 

selected hardware and the onboard software were able to provide accurate flight data 

measurement and good helicopter control capabilities. Thanks to its modular architecture and 

accurate flight data measurement capabilities, the RUAV system may become a useful 

research test bench in several different field such as: 

-aircraft /rotorcraft dynamic model identification 

-researches in control and navigation laws (fast and ease software implementation could 

results also in a speed up of the research time) 

-researches in man machine interface and air system integration which is addressed as one of 

the most critical technology aspect for the future development of the civil UAVs and their 

integration into the airspace [6,7]. 
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2 UNIBO RUAV System description 

 
 

The UNIBO RUAV, shown in Figure 2, is built around a modified Hirobo Eagle II 60 

hobby helicopter which was modified to accommodate the avionics hardware, equipped with 

a more powerful engine, longer fiberglass blades, both for the main and the tail rotor, and 

longer tail boom. The new main rotor is a 2 blades see-saw type rotor with Bell-Hiller 

stabilizer bar, which augments servo torque with aerodynamic moment to change the blades 

cyclic pitch and adds lagged rate feedback to improve the helicopter handling qualities, and a 

1.84 m diameter; the helicopter total mass is about 11.2 kg. A National Instruments 

CompactRIO system has been selected as flight computer and performs both the task of 

Autopilot and Flight Management System (FMS). For flight data acquisition a Crossbow 

NAV420 GPS-aided Attitude and Heading Reference System (AHRS) and ultrasonic sensors 

have been installed to provide accurate signals in velocity, altitude and helicopter attitude.  

Details of airframe set-up and performance calculation can be found in [8,9].  

 

The on-board computer NI compactRio is programmed using Labwiev coding language 

that allows quick set up of different control logic algorithms. In a first step a traditional PID 

controller [2,3,10] has been implemented, while recently the proposed advanced controller 

based on feed-forward compensation has been coded. 

 

  

 
Figure 2: UNIBO Rotary wing UAV 
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The main helicopter characteristics are: 

 

1. main rotor diameter: 1840 mm 

-   tail rotor diameter: 330 mm 

2. total helicopter mass: 11.2 kg 

3. engine: OS 91 Engine 15 cc; power 2.9 CV 

4. main rotor rpm: 1200-1300 

5. tail rotor rpm: 5000 -6000 

6. payload carrying capabilities: 5-6 kg 

 

1.1 Flight Computer  

The CRIO system from NI was selected as flight computer due to its ability to fulfill 

many among the stated design requirements. Particularly, the most important CRIO features 

that encouraged its choice as onboard computer for the UNIBO RUAV system were: 

1. modular and versatile architecture 

2. easily reconfigurable with minimal time investment 

3. ultrahigh performance and low power consumption 

4. relatively low cost system   

5. ease and open access to low level hardware resources 

6. rapid embedded control and acquisition system development that rival the performance 

and optimization of custom-designed circuitry 

7. possibility to use LabView graphical programming tool to develop a variety of different 

applications 

8. relatively small size and weight compared to its control and data acquisition capabilities 

 

The CRIO platform includes the CRIO-9004 real time controller endowed with an 

industrial  Penthium 200 MHz floating –point processor, a four slot reconfigurable chassis 

featuring three million gate FPGAs chipset and a wide variety of analog\digital I\O module 

types. 

Figure 5 shows the CRIO configuration actually mounted on the UNIBO RUAV system.  
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Figure 3: National Instruments CRIO Onboard Compute r 

 

The real time controller also features a 100 Mb/s Ethernet port for network 

communication with an host computer and a 9 PIN serial port. 

The FPGA module currently used are: 

9. CRIO 9411 mounted in slot 1 having 6 digital input channels 

10. another CRIO 9411 mounted in slot 2 having 6 digital input channels 

11. CRIO 9474 mounted in slot 3 having 8 digital output channels 

12. another CRIO 9474 mounted in slot 4 having 8 digital output channels 

 

Each CRIO module contains already build in signal conditioning.  

FPGA devices are very useful and powerful since they combine the versatility of a 

reconfigurable digital architecture with a matrix of configurable-logic blocks surrounded by a 

periphery of I/O channels. This way, signal can be routed within the FPGA matrix in any 

arbitrary manner by programmable interconnected switches and wire routes (figure 4).  

 

 
 

Figure 4: CRIO Field Programmable Gate Array (FPGA)  Structure 
 

Control loops can be also implemented inside the FPGA environment using “while 

loops” up to 40 MHz (25 ns). Moreover, these FPGA modules are ease programmable with NI 

LabView without need to know specialized hardware design languages  such as VHDL (the 

LabView code is directly compiled in VHDL before being downloaded on the FPGA 

devices). 

FPGA Modules: 

� 16 DO Channels 

� 12 DI Channels 

Real Time Core: 

� Penthium 200 MHz 

� Serial Port 

� Ethernet 100 Mb/s  
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2.1 CRIO Real Time Application Design 

 

 

The real time control and acquisition system which is possible to develop with the CRIO 

system typically contains four main components (see figure 5): 

1. RIO FPGA core application for input, output, inter-thread communication and control 

2. Time critical loop for floating point control, signal processing, analysis and point-by-point 

decision making  

3. Normal priority loop for embedded data logging, remote panel interfaces and 

Ethernet/serial communication 

4. Networked host PC for remote graphical user interface, historical data logging and 

postprocessing 

 

 
Figure 5: CRIO Programming Structure 

 

Depending on the application requirements, it’s possible to implement one or all of these 

application components.  

The onboard software currently implemented on the flight computer follows this standard 

approach.



15 

2.2 Sensors 

 

If a UAV has to fly autonomously or needs stability augmentation in remote controlled 

flight, its flight control algorithms need information about its state, which can be obtained by 

means of onboard sensors. Depending on the vehicle type and its mission, sensors can be 

different. For the purpose of this work, sensor types have been split into Attitude Heading and 

Reference System (AHRS) and altitude sensors. 

 

2.3 Attitude Heading and Reference System (AHRS) 

Most common attitude sensors are based on gyros that can be either mechanical, 

piezoelectric or optical. A three axis gyro platform measures angular rates along all axes of 

the vehicle and is usually contained in an Inertial Measurement Unit (IMU) which also 

provides data from accelerometers. Magnetometers are also used to determine heading of the 

air vehicle by measuring the Earth magnetic field. Attitude and position can be then calculated 

in a state estimator by integrating IMU measurements. However the high accuracy, simplicity 

and availability of the Global Positioning System (GPS) makes it the emerging standard 

positioning system for UAVs as well as for general and commercial aviation. Depending on 

the quality of the GPS receiver, the achievable accuracy and the GPS update rate varies. Since 

common GPS update rate is usually once a second, this can result in a limited bandwidth of 

the UAV controller. A common way of solving that problem is to fuse data from all the flight 

sensors into a navigation filter in a state estimator. In addition altitude data (coming from a 

radar or sonar altimeter) and magnetometers measurements can be also used to improve the 

navigation filter. Usually an extended Kalman filter approach is used to integrate data from all 

the navigation sensors.  

Unibo, using rapid prototyping approach, has adopted a complete AHRS like the 

CrossBow NAV 420, which was chosen as navigation platform for the purpose of this work. 

This kind of unit is able to directly deliver vehicle attitude, GPS velocity and position data, 

acceleration and rates at a rate up to 100 Hz, thanks to a high performance Kalman filter 

algorithm implemented on an internal digital signal processing module. Velocity data includes 

aiding from the inertial instruments such reducing the latency associated with stand-alone 

GPS measurements.     
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Particularly, the NAV 420 uses the latest in solid-states sensor technology and consists of the 

following subsystems (see figure 6): 

1) Inertial Sensor Array: This is an assembly of three accelerometers, three gyros (rate 

sensors) and four temperature sensors. 

2) A three axis fluxgate magnetometer board used to compute heading. 

3) A WAAS capable GPS receiver for position and velocity measurement.  

4) A digital signal processing (DSP) module, which receives the signals from the inertial 

sensors and magnetometers. This unit converts the signals to digital data, filters the data, 

computes the attitude solution, monitors and processes all BIT data, and transmits the results 

to the user.  

The NAV420 analog sensor signals are sampled and converted to digital data at 1 kHz. The 

sensor data is filtered and down-sampled by a DSP. 

 
Figure 6: NAV420CA System Architecture 

 

 

The choice of this kind of platform significantly reduced development time in signal 

processing and sensor fusion, greatly improves measurement reliability and guarantees sensor 

stability and performance in a high vibration operating environment, like the one of a small 

rotary wing platform.  

Preliminary flight tests have showed it adequate controllability and robustness for the 

maneuvers required in hover-like flight. [8, 9] 
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3 Development of Dynamic Model 
Structure 

 

The foundations for the development of the linear parameterized model are equations of 

motion derived form the first principle [1] 

Using system identification, we want to achieve the best possible fit of the flight-data 

with a model that is consistent with the physical knowledge and intuition. The first part of the 

problem consists of the derivation of the dynamic equations that will define the state-space 

model with the unknown parameters. Once accomplished, the parameters of the model can be 

identified. Based on the results obtained, the model structure will be refined until satisfactory 

results are achieved 

 

3.1 Equation of Motion 

 
The helicopter model has been built by combining the six degrees of freedom rigid body 

equations of motion (in body axis) with the lateral and longitudinal flapping dynamics and the 

rotorspeed dynamics [1,11]. 

 
Figure 7: AV reference frame, forces & moments 
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The rigid body equations of motion for a helicopter are given by the Newton-Euler equations 

shown below. Here the cross products of inertia are neglected. 
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The set of forces and moments acting on the helicopter are organized by components: ()mr for 

the main rotor; ()tr for the tail rotor; ()fus for the fuselage (including fuselage aerodynamic 

effects); ()vf for the vertical fin and ()ht for the horizontal stabilizer. These forces and moments 

are also shown in Figure 8 along with the main helicopter variables.  

Qe is the torque produced by the engine to counteract the aerodynamic torque on the main 

rotor blades. Qe is considered ≥ 0 when the helicopter blades rotate clockwise (viewed from 

above). In the above equations it is assumed that the fuselage center of pressure coincides 

with the c.g.; therefore, the moments created by the fuselage aerodynamic forces were 

neglected.  

3.2 Rotor/Stabilizer-Bar Dynamics 

The simplest way to represent the rotor dynamics is as a rigid disc which can tilt about 

the longitudinal and lateral axis. The resulting rotor equations of motions are two first order 

differential equations, for the lateral and longitudinal flapping: 

 
     
     

 (2) 
     (3) 

 
 
Mettler and Al, in the initial application of system identification to the modelling of the R-50 

[12],. were treating the rotor/stabilizer bar as a lumped system. The resulting model was 

accurate. However because the stabilizer bar has a major influence on the helicopter’s flight-

dynamic characteristics, they decided to explicitly model the stabilizer bar system. This 
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allowed better study of the effects of the stabilizer bar during flight control design or handling 

quality evaluations. 

The stabilizer bar can be regarded as a secondary rotor, attached to the rotor shaft above 

the main rotor, through an unrestrained teetering hinge. The blades consist of two simple 

paddles. The stabilizer bar receives cyclic inputs from the swash-plate in a similar way as the 

main blades. Because of the teetering hinge and the absence of restraint, the stabilizer bar is 

virtually not subject to cross axis effects (the stabilizer bar restoring forces are entirely 

centrifugal, resulting in a resonant frequency for  the flapping motion which is identical to the 

rotor rotation speed. Therefore, independently of the amount of damping in the system, the 

phase lag between the control input and the dynamic response is exactly 90°). In general it 

can written the lateral ( d ) and longitudinal ( c) stabilizer bar dynamic equations using the 

same equations  as for the single rotor system but in an uncoupled form: 

 

     (4) 
 

 
 
Where Dlat and Clon are the input derivatives, and τ s is the stabilizer bar’s time constant, which 

is a function of the paddle lock number γ s and the rotor speed Ω. 

The stabilizer bar does not exert any forces or moments on the shaft. The bar dynamics are 

coupled to the main rotor via the bell mixer. The bell mixer is a mechanical mixer, which 

superposes a cyclic command proportional to the amount of stabilizer bar flapping to the 

cyclic commands coming from the swash-plate. The resulting augmented lateral and 

longitudinal main rotor cyclic commands can be written as: 

 

     (5) 
 

 
 
The gains Kd and Kc are the stabilizer bar gearing, which are functions of the geometry of the 

bell mixer. Applying the Laplace transformation to the stabilizer bar lateral flapping equations 

(Eq. 4) we obtain: 

 

     (6) 
 

 

which shows that the stabilizer bar does indeed act as a lagged rate feedback. 
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Using the same tip-path plane model formulation for the single rotor flapping equations, and 

introducing the augmented cyclic commands gives: 

 

    
 (7) 

 

 

where Blat ,Blon and Alon ,Alat are the input derivatives, τ f is the main rotor time constant, which 

is a function of the main blade lock number γ and the rotor speed Ω. Ba and Ab account for the 

cross-coupling effects occurring at the level of the rotor itself. 

 

In the final state-space model, the control augmentation is determined through the system’s 

states. Therefore, we need to define the derivatives: Bd =BlatKd and Ac =AlonKc. The relation 

between the derivatives and the gearing of the bell-mixer are: 

 

     (8) 
 

In reality, since the bell-mixer operates the same way independently of the rotor 

azimuth, the gearing is the same for both axes. The gearing value was determined 

experimentally. This relation of Eq. 8 could be used as a constraint between the derivatives 

Blat and Bd ( Alon and Ac ) to reduce the number of unknown parameters. However, since we 

were not certain about our approach to the modelling of the stabilizer bar, we decided to leave 

them free (we will compare the identified value to the value obtained experimentally). 

 

3.3 Heave Dynamics 

The frequency response of the vertical acceleration to collective shows [12] that a first 

order system should adequately capture the heave dynamics. This agrees with the rigid body 

equations from the Newton-Euler equations: 

 

     (9) 
 

The term in parenthesis corresponds to the centrifugal forces that a relevant exclusively for 

the cruise conditions.  
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3.4 Yaw Dynamics 

 

The yaw dynamics of the bare helicopter airframe can usually be modelled as the simple 

first order system: 

      (10) 
 

 

where Nr is the bare airframe yaw damping coefficient and Nped is the sensitivity to the pedal 

control.
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3.5 Unibo RUAW dynamics linear model 

 

The system presented in this paragraph describes the model used for the identification 

tests that will be presented in chapter 6. The equations of this system present both the On-

Axis parameters values and new Off-axis derivatives (see RUAV Dynamic model 

Identification chapter) and can be written as follows: 
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   (11) 

 

This system is similar to the one used by Mettler in [1,11,12] and the hypothesis that 

lead to the linearization can be found in [1]. This model differs from the ones reported in 

literature for the absence of pedal input and yaw dynamic: in small scale helicopters, the cross 

effects due to yaw are close to zero and therefore often negligible (values equal to zero in [6]). 

Moreover here the stabilizer bar has not been explicitly modeled as the results of 

identification (see chapter 6) were found to be enough accurate. As in [12], Mcoll derivative 

have been added in B matrix to account also cross-effect of collective input into helicopter 

longitudinal dynamic. 

The system can be written in the State Space form as: 

 

uxx ⋅Β+⋅Α=&           (12) 
 

uDxCy ⋅+⋅=        (13) 
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where the input command vector is:   [ ]Tcolllatlonu δδδ ,,=     
 (14) 
 

the state vector is:     [ ]Twbaqpvux ,,,,,,,, θφ=  

 

the output vector is:     [ ]Twqpvuy ,,,,,, θφ=     

 (15) 

 

 

and the matrixes are: 

 

 

 

 

(16) 
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4 Baseline and FF controllers architectures 
 

 

In both the Baseline and in FF controllers, two independent SISO control systems are 

used for the lateral and longitudinal dynamics control. The adopted SISO controllers are 

based on PID regulators and have a nested structure: the outer control loop uses helicopter 

longitudinal and lateral velocities errors to produce the attitude reference ( refref φθ , ) for the 

inner attitude loop and the inner attitude loop computes commands ( latlon δδ , ) using outer 

loop’s attitude references ( refref φθ , ) and measured helicopter attitude feedbacks (φθ , ).  The 

vertical position and the heading are controlled by other two separate PID single loop 

controllers. 

  

4.1 Baseline controller description 

Baseline controller for longitudinal and lateral dynamics consists in a SISO PID control 

with a two levels nested loop structure (see fig. 8). Lateral and longitudinal track velocities 

errors are used in the CV blocksets to generate respectively demands for the roll (φ ) and the 

pitch (θ ) attitude control module (CA blocksets),  

A block diagram of a SISO controller for the Baseline control system is represented in Fig. 9. 

 
Figure 8: Block diagram of the Baseline controller for longitudinal or lateral dynamics 

 
In previous schematic, CV is the outer Velocity loop PID blockset described by the 

following transfer function: 

 

( )
s

KsKsK
sCV ivpvdv +⋅+⋅

=
2

 – PID Velocity Controller in Baseline control system (17) 
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where dvK  is the derivative term gain, while pvK and ivK  are respectively the 

proportional and the intergral terms gains.  Again, in Fig.9, the CA blockset describes the 

inner Attitude loop PID implementing the following transfer function: 

 

( )
s

KsKsK
sCA ipd +⋅+⋅

=
2

 – PID Attitude Controller in Baseline control system  (18) 

 

where dK  is the derivative term gain, while pK and iK  are again respectively the 

proportional and the intergral terms gains. The blockset P represents the transfer function of 

the command-to-attitude plant identified dynamic that is enclose in the State Space model (see 

cap.4 about Identification), whereas G2 is the attitude-to-velocity transfer function: 

 

( ) ( )
( )   s

s
sP

lonδ
θ= , ( ) ( )

( ) s

s
sP

latδ
φ=   – Longitudinal, Lateral command-attitude TF, from SS model  (19) 

( ) ( )
( )s

su
sG2 θ

π ⋅=
180

, ( ) ( )
( )s

sv
sG2 φ

π ⋅=
180

–Longitudinal, Lateral attitude-velocity TF, derived from SS model  (20) 

 

 

4.2 Feed-Forward controller description 

 The proposed FF control architecture (see fig. 9) is very simple and it is based on SISO 

nested control loops. 

 
Figure 9: Block diagram of the FF controller for lo ngitudinal or lateral dynamics 

 
 

Once again it consists of a velocity outer loop (CVM blockset) based on a PI controller 

with no Derivative term:  

 

( )
s

KsK
sCVM ivmpvm +⋅

=  – PI Velocity controller in Feedforward control system (21) 
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where pvmK and ivmK  are again respectively the proportional and the intergral terms gains  

(22) 

The inner loop is, instead, composed by a FeedForward term + Proportional and Integral 

controller (FFA+CAM blockset): the attitude feedforward  term (FFA) is obtained by the 

inversion of the attitude identified linear model, as described in the next paragraph: 

 

2

223 /1

nq

nqe

lon

elon
sss

A
FFA

ω
ωττ

θ
δ ⋅+⋅+

⋅
−

==  – Feedforward action, Longitudinal  (23) 

( )
s

KsK
sCAM impm   +⋅

=  – PI Attitude controller in Feedforward control system  (24) 

 

The output of the PI velocity controller (CMV blockset) is filtered by means of a first 

order filter (f blockset) with dedicated time constants for longitudinal and lateral controllers 

(Tfilt, TfiltPhi).  

 

                   sT
f

filt ⋅+
=

1

1
  – first order filter in Feedforward control system  (25) 

 

In both cases, the discrete sampling time has been fixed in 0.020 seconds both for lateral and 

longitudinal dynamics. 

 

4.3 Transfer Functions  

The analysis of structures of Baseline and Feed-Forward controllers requires the 

computation of following transfer functions, that will be used in next chapters to compute 

Phase and Gain margins and to perform stability assessment. 

 

( ) ( ) ( )sGsGsCVBLG 21 ⋅⋅=  – Baseline Loop Gain (BLG )Transfer Function (TF)   (26) 

( )
s

KsKsK
sCA

ipd +⋅+⋅
=

2

 – PID Attitude Controller in Baseline control system   (27) 

( )
s

KsK
sCAM impm   +⋅

=   – PI Attitude controller in Feedforward control system  (28) 
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( )
s

KsKsK
sCV ivpvdv +⋅+⋅

=
2

 – PID Velocity Controller in Baseline control system  (29) 

( )
s

KsK
sCVM ivmpvm +⋅

=   – PI Velocity controller in Feedforward control system  (30) 

sT
f

filt ⋅+
=

1

1
     – first order filter in Feedforward control system (31) 
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⋅==   – Feedforward action, Lateral   (33) 

( ) ( ) ( )  sCVMsGsFLG ff ⋅=  – FF Loop Gain       (34) 

( ) ( )
( )sFLG

sFLG
sFTF

+
=

1
  – FF Transfer Function      (35) 

( ) ( ) ( )
( ) ( ) 1+⋅

⋅=
sPsCA

sPsCA
sG1           (36) 

( ) ( )
( )s

su
sG2 θ

π ⋅=
180

  ,   ( ) ( )
( )s

sv
sG2 φ

π ⋅=
180

 – Longitudinal, Lateral attitude-velocity TF, derived from SS model

 (37) 

( ) ( ) ( )sGsGsGff 2fff1 ⋅=          (38) 

( ) ( ) ( ) ( ) ( )
( ) ( ) 1+⋅

⋅+⋅⋅=
sPsCAM

sPsFFAsPsCAM
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( ) s

s
sP

latδ
φ=  – Longitudinal, Lateral command-attitude TF, from SS model   (40) 
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4.4 Vertical Down Velocity Controller  

 

Both in FF and Baseline control architectures Vertical down velocity (Vd) control is 

implemented using a simple PI module [9]; its generic structure is shown in Figure 10.  

 

 
Figure 10: Vertical down velocity control module 

 

The PI gains have been calculated using the well known Ziegler-Nichols rules. 

We have found: 

• pVdK = -1.1 rad/(m/s) 

• iVdK = -0.09 rad/m 

 

The Vd module tracking performance are shown in Figure 11 

 

 
Figure 11: Vertical down velocity controller tracki ng performance 
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4.5 Heading Controller 

 

Heading control is achieved using the onboard gyro AVCS (Angular Velocity Control 

System). Therefore, the implemented algorithm [8] gives a reference yaw rate to the gyro 

AVCS, based on the heading error, calculated with respect to the reference heading set point. 

The heading tracking performance during a flight test are shown in Figure 12 

 

 
Figure 12: Heading controller tracking performance 

 

4.6 Engine Governor 

 

The engine governor manages helicopter throttle in order to maintain constant rotor 

RPM. In the absence of manufacturer data, the governor can be modeled as a proportional-

integral feedback controller [13], maintaining commanded rotorspeed by changing the 

throttle: 

 

Ω−Ω=

⋅+⋅=

ci

iiipt KK

ω

ωωδ
.

          

 (41) 
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where cΩ  is the rotorspeed command, pK  and iK  are proportional and integral feedback 

gains. Throttle servo dynamics is much faster than the rotorspeed dynamics, and was 

neglected in the model. Using Ziegler and Nichols method [14] and fine tuning we have 

found: 

 

pK =0.1 

iK =0.02 

 

Figure 13 shows the throttle response and the rotorspeed tracking (96.3 rad/s) after a 

commanded climb at 2 m/s. 

 

 
Figure 13: Engine governor tracking performance 
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4.7 Discrete-time implementation of Baseline controller 

 

 

Regarding Baseline control system, in the case of the longitudinal, for example, the 

attitude PID controller, it can be written in continuous domain: 

 

( )
s

KsKsK

s

K
KsK

E

PID
sCA ipdi

pd

  
2 +⋅+⋅

=++⋅==
  (42) 

 

where E(s) is the transfer function of the error (difference between set-point and measured 

attitude) and where PID(s) has been written using following constants: dpd TKK ⋅=  and 

i

p
i T

K
K =   

that links the PID proposed representation to a more common one [15]. 

Discrete time domain implementation of PID controller has been done using Backward 

approximation through which, representation of first derivative is done using finite difference: 

 

s

s

T

Ttxtx

dt

tdx )()()( −−
≅

    (43) 

 

Moreover, remembering that in digital controls domain operator 1−z  is used to compute 

the ‘old’ value (value of variable computed or sampled at previous sampling task, 

1
1)( −

− ⋅==− zxxTtx kks ), using z-transform representation, discrete PID can be written in the 

form: 

 

( )
zTzT

KzKTKzKTKTK

E

PID
zCA

ss

ddspdsIsp

⋅−⋅
+⋅⋅−⋅−+⋅+⋅+⋅

==
2

22  )2()(

  (44) 

 

The same backward approximation has been used for the implementation of all the 5 

PID controllers that are present in Baseline control architecture. 

 

Following schematic shows the implementation in Simulink of the PID discrete 

controller: 
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Figure 14: Schematic of the inner loop Attitude PID  controller implementation 
 

It can be noticed that each of the contributions of the PID, as well as the total sum of the 

three terms,  have been saturated between a minimum and a maximum value that has been 

fixed in 40 deg. 

 

As for the inner Attitude controller (CA), the Velocity controller CV can be written in 

continuous domain: 

( )
s

KsKsK

s

K
KsK

E

PID
sCV

ivpvdvvi
pvdv

  
2 +⋅+⋅

=++⋅==   (45) 

 

whereas using z-transform representation can be written in the form: 

 

( )
zTzT

KzKTKzKTKTK

E

PID
zCV

ss

dvdvspvdvsivspv

⋅−⋅
+⋅⋅−⋅−+⋅+⋅+⋅

== 2

22  )2()(
  (46) 

 

Also in this case each of the contributions of the PID, as well as the total sum of the 

three terms,  have been saturated between a minimum and a maximum value that has been 

fixed in 27 deg that is the maximum allowable command.. 
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4.8 Discrete-time implementation of FF+PI control model 

 

 

In FF+PI  controller, the feed forward attitude (FFA) term, as already mentioned, can 

been obtained by inverting the plant identified command-to-attitude transfer function. 

Neglecting cross-effects, this transfer function is a third order system formed by the product 

of a pure integrator term and a second order transfer function [1]: 
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  (47) 

 

A unique formulation, valid for longitudinal and lateral dynamics, can be expressed by: 
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  (48)
 

 

where delta δ is the damping coefficient, ωn is the natural frequency and e is the gain of the 

second order transfer function. 

Comparing relations (1) and (2), for longitudinal dynamic following relations can be written: 

 

e
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nqe ωτ
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⋅⋅
=

2

1
   nqn ωω =   (49) 

 

whereas for lateral dynamic:  
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Hence in the continuous time domain, the feed forward contribute (FFA) will be written as the 

inverse of P(s): 

 

  (51) 
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while turning into the discrete time domain, using Backward approximation [16], the 

command δk  to be actuated can be computed (k index is related to the sample time instant):  

 

( ) ( ) ( )
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 (52) 

 

In the longitudinal control, for example, if krefku _θ= , or, in other words, if the input uk is 

the filtered attitude set-point generated by the CVM blockset, then eq. 52 computes the 

command kklong δδ =_  that would bring the modeled system to perfectly track its original set-

point kref _θ , in total absence of disturbances. 

Note that, the sampling time Ts for feedfoward term has been selected in 0.040 s, 

whereas all the other variables continue to be updated every 0.020 s. This choice has been 

driven by the necessity of bounding the derivatives in eq. 52 as a consequence of the 

relatively poor resolution of the velocity signal computed by the inertial unit Crossbow 

NAV42 

 

In FF+PI controller a first order filter has been implemented in discrete time domain 

using following representation: 

( )11 −− −⋅+= kkfiltkk yuKyy      (53) 

where uk is a generic input signal and yk is the filter output and Kfilt is the discrete first order 

filter constant that is related to the continuous time constant Tfilt  from the following relation: 

 

filts

s
filt TT

T
K

+
=        (54) 

As already mentioned, in longitudinal FF architecture a simple PI (without derivative term) 

was considered instead of a complete PID controller for longitudinal and lateral controls. 

This Attitude PI controller (CAM, M stands for Model-based in FF architecture) can be 

deducted from PID discrete form the by imposing Kd=0,: 
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( )
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Equation 55 reports, for example, the continuous time TF of PI controller for longitudinal 

dynamic. 

 

Figure 15: Schematic of the inner loop Attitude PI controller implementation 
 

Once more, in discrete time domain, Backward approximation was used to implement the 4 

different PI controllers, whose z-trasform representation is given by: 
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   (56) 

 

The CVM transfer function can be deducted, as in the case of the Attitude controller, from 

PID discrete form the by imposing Kdvm=0,: 
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The vertical velocity PID implemented in FF+PI controller is exactly the same of the 

vertical velocity PID implemented in the Baseline controller.  
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5    Guidance 

 
 

The guidance system is composed by two main parts: the lateral track control and the 

altitude controller. In  this case the same logics have been implemented for the Baseline and 

the FeedForward controllers. In the following sections same 

 

5.1 Altitude Controller 

 

 
The altitude-hold is a simple proportional integral controller. It takes as input the 

destination waypoint altitude and the current vehicle altitude and gives as output the vertical 

velocity to maintain or reach the reference altitude. Using Ziegler and Nichols method [14] 

and fine tuning we have found the values of the proportional and integral gains in: 

 
• K p =1.2 
• K i =0.05 

 
Figure 16 shows an example of altitude tracking. 

 
Figure 16: Altitude controller tracking performance  
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In this simulation, the initial helicopter altitude has been fixed in 900 m while the 

commanded altitude has been chosen equal to 1000 m. Therefore the altitude controller 

commands a vertical velocity (saturated at 2 m/s) until the reference altitude is captured. The 

commanded vertical velocity will be actuated as reported in paragraph 3.4. 

5.2 Lateral Track Controller 

 
The primary design objective of the lateral controller is to intercept and track a specified 

flight plan segment by means of a yaw rate command [17]. 

Let’s consider the helicopter in level flight at an arbitrary position relative to the track 

line between way points Wp1 and Wp2, and flying on an arbitrary heading Ψ. We are interested 

to obtain the position and velocity components in the Xtrack, Ytrack reference frame (see Figure 

17). The transformation will be a rotation of an angle (Ψ12 − π/2) and the associated rotation 

matrix is given by: 










−−
−−−

=
)2/cos()2/sin(

)2/sin()2/cos(

1212

1212

πψπψ
πψπψ

ψT   (58) 

 
The Xtrack and Ytrack helicopter position can be found solving the differential equation 

system reported above with initial conditions: 

e  

Figure 17: Track reference frame 
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Applying the above rotation to the North and East helicopter ground speed vector (VN,VE) we 

obtain:  

 









=
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  (59) 

 
The Xtrack and Ytrack helicopter position can be found solving the differential equation system 

reported above with initial conditions: 

 










0

0

tracx

track

Y

X
   (60) 

 
Knowing the current track position (Xtrack, Ytrack) of the helicopter from the destination 

way point Wp2, the control strategy is to point the vehicle ground speed vector in the direction 

of the track intercepting the track-line at point C. The intercept point C is determined by a 

design parameter k where the distance on the track line from the intercept point C to the way 

point Wp2 is at any instant of time equal to (1−k)·Xtrack. From the geometry of the similar 

triangles OAB and OCD (Figure 18), a new control strategy is proposed based on establishing 

the helicopter position and velocity according the following relationship: 

track

track

track

track

Y

Y

kX

X
..

=   (61) 

 

 
Figure 18: Guide control strategy 

 
To achieve this objective, the error E given by: 
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tracktracktracktrack YXYkXE
..

−=   (62) 

 
has to be driven to zero, using the proportional feedback control law that expresses yaw-rate 

commands as: 

 







 −== tracktracktracktrackrrcmd YXYkXKEKr

..

  (63) 

 

The proportional gain Kr is determined iteratively through simulation until good tracking is 

achieved with virtually no overshoot. A value of Kr = -0.0005 and a value of k=0.1 were 

found to be satisfactory in our lateral track control law. The yaw rate command has been 

saturated at ±0.2 rad/s and filtered to eliminate the limit-cycle problem.  

A Simulink™ block diagram that realizes the control scheme described is shown in Figure 19 

 
Figure 19: Simulink guide implementation 

 
The simulation reported in Figures 20, 21 and 22 shows an example of guide tracking 

performance. 

The helicopter is supposed to be in hovering at 1000 m altitude and 44.01 N and 12.01 E 

position with heading North. Then the RUAV is asked to fly at 20 m/s, constant altitude and 

to follow the track described by: 

 

• Wp1=(44 N,12 E) 

• Wp2=(44.03 N,12.05 E) 
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Figure 20: Guide tracking performance – Speed,Altit ude 

 
 
 
 

 
Figure 21: Guide tracking performance – Latitude,Lo ngitude 
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Figure 22: Guide tracking performance – X track ,Ytrack ,Yaw Rate 

 

The proposed design lateral track control handles also wind cases in a simple manner and 

ensures track stability over a wide set of initial conditions [17]. 
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5.3 Fixed-Heading Navigation 

 

The guidance system that has been implemented in the onboard computer includes also 

a fixed yaw navigation modality. This special navigation modality allows to set the yaw target 

parameter to a constant value for each track of the flight plan. For each segment of the flight 

plan connecting two consequent waypoints, together with the usual parameters of the 

waypoint (N, E, H), the yaw attitude can be set to a desired value as well. 

Next table reports an example of flight plan parameters for a ‘8-like’ circuit. This 

particular flight plan will be used in following section to perform other comparisons between 

the Baseline and the FF controllers performances. 

 

Way point n. Delta N Delta E H Velocity 

1 0 0 50 0 

2 20 -20 50 2 

3 60 20 50 2 

4 80 0 50 2 

5 60 -20 50 2 

6 20 20 50 2 

7 0 0 50 2 

Table 1: Waypoints parameters input 
 
 

The target yaw is updated each time a new waypoint is reached and it is kept constant 

till the next one. For example in the ‘8-like’ circuit we will have the following Target Yaws: 

 

Way points track Target Yaw 
1 2 -45 deg 
2 3 45 deg 
3 4 -45 deg 
4 5 -135 deg 
5 6 -225 deg 
6 7 -135 deg 
7 8 -45 deg 

 
Table 2: Waypoints yaw 
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Next figure reports the logic implemented for the fixed yaw navigation. 

 
Figure 23: Target velocity computation  

 
In this case the total velocity setpoint of the helicopter is formed by the velocity V 

towards the waypoint, that is taken from Table 1, together with the other flight information 

(Waypoints positions), and by the real-time computed Ytrack velocity whose effect is to bring 

the rotorcraft trajectory as near as possible the segment connecting WPi and WPi-1. 

 

 
Figure 24: Target velocity computation  

 
 

In a second step, as depicted in figure 24, the total velocity setpoint is decomposed in its 

components in the Body frame Vx and Vy. These latter velocities will be used as input target 

velocities by the control systems (see par 4.1 and 4.2). 
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5.4 Baseline controller In-Flight Autopilot Tests 

 
 

In this paragraph it is shown how the onboard Baseline control software has been tested 

in flight trials starting from basic maneuvers towards more complicated flight plans..  

The complete flight campaign for the Baseline control system has been done following five 

major subsequent steps: 

• First only the attitude (ϕ and θ) PI controllers were tested. During these tests 

collective and tail commands were left to the R/C pilot for safety reasons. As shown in 

Table 3, the final proportional PI gains find by simulation results were almost correct 

while the integral gains were increased of an order of magnitude. This may be due to 

the fact that attitude controller are of course very sensible to external unknown 

disturbances which cannot hardly be simulated.  

 

Attitude PI Gains 

 Kpθ 
[deg/deg] 

K Iθ 

[deg/(deg s)] 
Kpϕ  

[deg/deg] 
K Iϕ 

[deg/(deg s)] 
Calculated -0.77366 -0.22078 -1.0418 -0.11346 

Experimental -1 -1 -1 -1 
 

Table 3: Calculated vs Experimental attitude PI gai ns 
 

Velocity PI Gains 

 
KpVx 

[deg s/m] 
K Ivx 

[deg/m] 
KpVy 

[deg s/m] 
K Ivy 

[deg/m] 
KpVz 

[deg s/m] 
K IVz 

[deg/m] 
Calculated -12.89 -4.03 -11.43 -3.55 -3.622 -4.96 

Experimental -10 -1 -10 -1 -10 -10 
 

Table 4: Calculated vs Experimental velocity PI gai ns 
 

More details on the parameters computation can be found to R.Pretolani’s Phd Thesis [9] 

• Once the attitude controllers were with fist-attempt values calibrated, the nested PI 

Velocity – Attitude controllers were tested. During these tests, collective and tail 

commands were still left to the R/C pilot for safety reasons. As shown in Table 4, the 

final gains were much closer to the one found by simulations.  

• The third step was to test the heading control together with the nested PI velocity 

controller. During these flight tests only collective was left to the R/C pilot for safety 

reasons. The value to be calibrated during these flights was the yaw rate to be sent to 

the gyro AVCS system. For this kind of helicopter we have found adequate a yaw rate 
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of 10 deg/s. This value was kept intentionally low for safety reason but can be 

increased (or varied) if necessary. 

• In the fourth step the full PI controller was tested including the vertical velocity 

control. During these tests no commands was left to the pilot and the helicopter was 

flying completely autonomously. As shown in tables 3 and 4, the final calibrated PI 

gains were higher with respect to the one calculated by simulations. This was due to 

the fact that, during simulations, the gains were kept intentionally low for the 

helicopter to have a very slow response. Vertical velocity flight tests can be very 

dangerous since small helicopters are very responsive to collective inputs and hence 

the helicopter can crash to the ground without any hope to recover it.  Therefore, the 

helicopter team decided to keep the gains small at the beginning and increase them 

once it was sure that the helicopter was flying safely. The first test performed with the 

simulated gains showed that the helicopter was able to maintain hover conditions. 

However, the rate of climb/descent was quite very low and the PI gains were, 

therefore, increased. 

• Finally, after each controller was fine tuned, the full control system was tested over a 

squared flight pattern. The distance tracked by the helicopter was kept within the R/C 

transmitter range and pilot good line of sight in order to recover the helicopter if 

needed.  As shown in Figures 25 and 26, the helicopter was able to perform 

autonomously and successfully the preprogrammed pattern.  

 
Figure 25: Simulate vs Experimental longitudinal co ntroller tracking performance 
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As an example Figure 26 shows good Vx and θ tracking performance and good agreement 

between simulation and real flight tests. 

 

 
Figure 26: Recorded data during autonomous square p attern 

 
In Figure 27: 

• in Red� autopilot ON(1) or OFF(0) 

• in Blue� flight data 

• in Green�autopilot  commanded values 
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Figure 27: Autonomous square pattern RUAV ground tr ack 

 

The flight data that have been collected during these flight tests will be used in next chapter to 

perform the rotorcraft dynamics identification. This identification is fundamental to determine 

the parameters that will be used to compute the FF term (cap. 4), that for the longitudinal 

dynamic are: 
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6 RUAV Dynamic model Identification 

 
Aim of this chapter is to present a simple System Identification Procedure for Control 

Design. In particular the identified system will be used, in next chapters, as plant to compare 

performances of a traditional PID controller versus a feed-forward control algorithm based on 

dynamic model inversion (both for longitudinal and lateral dynamics). The proposed time-

domain identification procedure is entirely developed in Matlab-Simulink environment, and 

requires no other external software applications [25]. 

This chapter is composed of three parts; in the firs Open-Loop (OL) identification 

without cross-effects is presented, the second introduces cross-effects while in the last section 

parameters refinement is performed using a Closed Loop (CL) identification technique. 

Results will demonstrate how the proposed identification procedure provides a model 

showing good agreement with the recorded flight data, especially in closed loop validation 

where cross-axis effects are accounted. 

 

6.1 On-Axis Identification  

 

At the beginning, the helicopter longitudinal and lateral dynamics were considered as 

totally separated without any off-axis effect. The adopted Time-domain identification 

procedure is based on the comparison between the (real) measured signal and the simulated 

one. Measured angular rates signal have been previously filtered using a low pass filter with a 

cut-off frequency of 10 Hz.  

Figure 28 shows a schematic representation of the procedure for longitudinal 

dynamics on-axis identification in Open loop chain. 
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Figure 28: Open Loop On-axis Identification 
The cost function (1) is the sum of the errors between the measured and simulated 

signals and is minimized in order to find the optimum transfer function parameters. 

 

  (66) 

 

where Ymeas and Ysim are, respectively, the measured and simulated data.  

 

The sum is performed every computing task, with a simulation step time equal to 0.01 s, 

both for longitudinal and lateral dynamics.  

 

Proprietary scripts have been used in order to find the unknown model parameter values 

using MATLAB@ function [18]:  

 

FMINSEARCH: Multidimensional unconstrained nonlinear minimization  

 

Once these parameters have been computed, by minimizing CostFunction over a 

training data set, a cross-validation test is then performed using totally new a data set (unused 

data, [19]). 

 

In order to test fitting performances, the following goodness of fit index [19] has been 

computed:  

    (67) 

 

 

It must be noted that R2 index value is strictly related with the data set used (Ymeas) for 

testing the model performance, and that its value can significantly change using different data 

sets. For this reason, it’s more correct to use R2 index to compare the performance of different 

models, using the same input, rather than to assess the performance of the same model using 

different inputs. 

 

Moreover R2 can also assume negative values (typically when the error is, on average, 

greater then the amplitude of signal) but, in any case, the greater is R2 the better is the fitting 

goodness of the model.  
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6.2 Pitch and roll rate 

 

Following a classical approach [1], second order transfer functions for the pitch and roll 

rate responses to pilot inputs have been considered (2, 3), and the relative parameters have 

been identified for several frequency sweeping commands [20].  
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Using the cost function defined in (1), for longitudinal dynamic the following values were 

identified in: 

 

 

while for lateral dynamic: 

 

 

More details and initial values computation are reported in [20]. 

 

Figure 29 gives evidence of training data and Figure 30 of cross-validation data. The 

figures on the left column show the RUAV longitudinal dynamics behavior, while on the right 

show the lateral one. In both figures, the commands histories are reported in the bottom boxes 

while the helicopter responses (angular rates) are in the upper ones. 
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Figure 29:  Longitudinal (left) and Lateral (right)  sweeping input commands (below)  
and relative angular rates (upper) used for system training 

 

 
 

Figure 30:  Longitudinal (left) and Lateral (right)  validation input commands (below)  
and relative angular rates (upper) used for system validation 

 

For cross-validation goodness of fit, the longitudinal index have been computed in 

R2=0.8586 while for lateral in R2=0.6085. A better agreement of the longitudinal model 

validation can effectively be seen by a simple look at the figures above. 

Then, in body-frame reference, first order attitude-velocity transfer functions (4) have 

been chosen, and relative parameters have been identified using different recorded flight 

maneuvers (near hovering conditions [3]). 

  (70) 

 

In both cases g parameter was assumed to be equal to 9.81 m/s2 (gravity acceleration) 

and the remaining parameters have been identified. 
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As above, figures 31 and 32 show training and cross-validation data sets for attitude-

velocity transfer functions (left column: longitudinal dynamic; right column: lateral dynamic; 

upper figures; body frame velocity response; below figures: input command history). 

 
Figure 31:  Input commands (below) and relative spe eds (upper) for Longitudinal (left) and 

Lateral (right) velocity model Identification  

 
Figure 32: input commands (below) and relative spee ds (upper) for Longitudinal (left) and 

Lateral (right) velocity model Validation  
 

Again, using the cost function defined in (1), the following identified parameters were 

computed: 

 

Xu=-0.052 (1/s)  Yv=-0.046  (1/s) 

 

with respectively validated goodness of fit index of R2=0.9366 for longitudinal dynamic and 

R2=0.9586 for lateral.  
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6.3 Vertical speed dynamic 

 

Vertical speed dynamic have been modeled using a first order transfer function from 

command to velocity [1]: 

 

  (71)  

 

Figure 33 shows training and cross-validation data sets used for heave dynamic transfer 

functions identification.  

 
Figure 33: Training (left) and validation (right) d ata sets for heave dynamic transfer functions  

(upper: vertical velocity, below: collective input command) 
 

The relative derivatives have been identified in: 

 

 

 

with a validated goodness of fit index of R2=0.7127. 

 

Table n.1 summarizes the values found for the On-Axis parameters using Open Loop 

identification only: 

 

Xu Yv Alon Blat tf Xa Yb g Lb Ma Zcoll Zw 
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1/s 
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Table 5: On-axis Open Loop Identified Values using a pure longitudinal or lateral maneuver   
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6.4 OFF-Axis Identification in open loop 

 

As already shown in chapter 3, the system below (6) describes the model used for Off-

axis Open Loop (OL) identification tests. The equations of this system present both the known 

On-Axis parameters values (reported in Table 5) and new 11 Off-axis derivatives (reported in 

right column of eq.72 with a question mark) not yet identified  

 

(72) 

 

The first 7 parameters Ab, Ba, Alat, Blon, Ma, Lb, Mcol have been identified using again 

several frequency sweeping inputs near hovering condition [1].  

After many tests, it was found that, as suggested by Mettler [21], it can be set Ab=Ba=0.  

Furthermore, since MATLAB@ fminsearch function seems to work better with a maximum 

of 5 parameters, reducing the number of parameters to be identified it is also desirable. 

 

For off-axis derivatives identification procedure, all unknown parameters were set to 

‘zero’ at first. In all test cases, in order to verify that a true global minimum of the cost 

function was found, all the runs were repeated with different initial conditions. 

 

A new cost function, reported in Fig. 34, that takes into account both errors in 

longitudinal and in lateral attitude, was then adopted: 
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Figure 34: Off-axis Derivatives Open Loop Identific ation 
 

 

The same recorded frequency sweeping input commands have been again used in input 

to the model for both longitudinal and lateral dynamics analysis and, as expected, a great 

improvement has been noticed in reducing attitude drifts compared to the No-Cross-effect-

Model (NCM). 

Figures 35 and 36 report training experiments with longitudinal (Fig.36) and lateral 

(Fig.37) excitements; blue lines depict the experimental recorded data (command history) 

used in input, while red ones belong to the cross-effect model response and green ones to the 

NCM. It can be noticed how the cross identification reduce errors in helicopter attitude 

estimation for both the dynamics. 

 
Figure 35: Off-axis Derivatives Open Loop Identific ation - Training data set: longitudinal inputs  

(Left: pitch angle, Right: roll angle.) 
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For the longitudinal test, the goodness of fit gives R2= 0.7353 vs R2= -5.5632 for NCM 

in pitch and for roll R2= -1.5551 vs R2= -12.5321 for NCM: the fit function show a clear 

increase in attitude estimation. 

 

 

Figure 36: Off-axis Derivatives Open Loop Identific ation - Training data set: lateral inputs  
 (Left: pitch angle, Right: roll angle.) 

 

Also for the lateral sweeping test, a good improvement can be seen in signals fitting, 

and it can be noticed how certain helicopter dynamics are now present in the cross-effects 

model response (e.g. Fig. 36, left, red vs green signal for the roll angle, t=[20÷25s]). In this 

case, for pitch tests, goodness of fit is R2=-3,4643 whereas R2=-6.5254 for NCM and, for roll 

tests, R2=0.7616 whereas R2=0.6636 if no cross effects area accounted.  

All the identified parameters are reported in Table 6. Looking at the values, it can be 

seen that they assume different values if identified with longitudinal or lateral test case and, 

sometimes, present also a change in sign.  

 

Derivative Longitudinal Test 

Value 

Lateral Test 

Value 

OL Mean 

value 

Alat   (-) 0.2023 -0.0446 0.0789 

Blon   (-) 0.0655 -0.0648 3.5000e-004 

La    (-) -0.5404 173.4853 86.4724 

Mb   (-) -37.4823 -69.9203 -53.7013 

Mcoll   (1/s2) -21.8085 -12.3811 -17.0949 

Mu,Mv,Lu, Lv  (rad/(m s)) Set to 0 Set to 0 Set to 0 

Table 6: Off-axis Open Loop Identified Values using  a pure longitudinal or lateral maneuver  
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As to proceed, it was decided to assume mean values for these parameters obtaining a 

sort of ‘mean system’ and to measure goodness of fit of this new model only with cross-

validation tests. 

Using mean values for Alat, Blon, Ma, Lb and Mcoll derivatives makes the model to 

assume a mean behavior between the one optimized with longitudinal test case only and the 

one with lateral one. This behavior has been noticed, by the authors, in all the validation tests 

they have performed. 

Figure 37 shows the cross-validation of the final system with longitudinal and lateral 

real flight data. 

The goodness of fit for longitudinal cross-validation test is R2=0.7549 versus R2= -

0.2332 for NCM for pitch and for roll R2= -0.7291 whereas R2= -0.7301 for NCM. 

The goodness of fit for lateral cross-validation test, instead, gives R2= -0.3219 vs R2= -

2.0041 for NCM for pitch and for roll R2= 0.1903 for roll whereas R2= 0.1058 for NCM. 

Again, cross-effect model shows a better agreement than NCM especially in 

longitudinal dynamic, and it can be seen (Fig 37, right column, phi signal e.g. t=74s) that the 

final model captures some off-axis helicopter dynamics. 

 

 
 

Figure 37: Open Loop Validation - Longitudinal (lef t column) and Lateral (right column) 
 

The OL identification procedure for speed derivatives Mu, Mv, Lu, Lv, was performed 

using zero as starting values for the optimization algorithm, given that the data used were 

relative to flights near hovering condition.  

However, probably due to too big drifts in simulated speed signals, it was not possible to 

find a set of values different from zero providing a better agreement in cross-validation tests. 

Therefore, zero values for Mu, Mu, Lu, Lv, have been used as starting point for closed 

loop identification tests (next section). 
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6.5 OFF-Axis Identification in Closed Loop 

 

 

During closed loop (CL) identification the above mentioned 9 unknown parameters Alat, 

Blon, La, Mb, Mu, Mv, Lu, Lv, Mcol were initialized using the OL mean values (Table 6). 

The proposed CL identification procedure is based on the control architecture depicted 

in Figure 38. In this procedure, real measured set-point values and the relative off-axis 

commands are the inputs to the model (e.g. U_set_point+dlat+dcoll for longitudinal 

maneuvers, V_set_point+dlong+dcoll for lateral ones), while the attitude error (difference 

between real and predicted output of the outer control loop) and the command error 

(difference between real and predicted output of the inner control loop) are used to compute 

the new cost function.  

For longitudinal maneuvers the cost function is: 

            

(74) 

 

while for lateral maneuvers: 

           

            (75) 

 
Figure 38: Closed Loop Identification logic 

 

The table 7 reports the identified values during step-like cross-validation velocity 

maneuvers. 

 

))__()__(( 22 simdlongmeasdlongsimThetameasThetaonCostFuncti −+−=∑

))__()__(( 22 simdlatmeasdlatsimPhimeasPhionCostFuncti −+−=∑



 60 

Derivatives OL (Mean) CL longitudinal CL lateral CL  Mean 

Alat  (-) 0.0789 0.1328 0.0777 0.1053 

Blon  (-) 3.5000e-004 2.9896e-004 3.4119e-004 3.2008e-004 

La  (-) 86.4724 157.4712 89.2649 123.3681 

Mb  (-) -53.7013 -108.0648 -55.6379 -81.8513 

Mu  (rad/(m s)) 0 -0.0053 6.4525e-005 -0.0026 

Mv  (rad/(m s)) 0 -0.0018 -1.6989e-005 -9.0849e-004 

Lu  (rad/(m s)) 0 -8.9655e-004 1.2198e-004 3.8729e-004 

Lv  (rad/(m s)) 0 -0.0026 -8.7996e-006 -0.0013 

Mcol  (rad/(m s)) -17.0949 -17.0854 -17.1030 -17.0942 

Table 7: Values Identified in Off-axis Closed Loop (CL)  
 

It can be noticed that the final values are similar to those reported in [11] and [12] for 

the X-cell helicopter (a small scale model very similar to Unibo RUAV), except for La and 

Mb that, in authors case, are greater than expected but correctly smaller than the on-axis 

corresponding derivatives Lb, Ma (see Table 6 for comparison). 

 

About speed derivatives Mu, Mv, Lu, Lv, it can be seen how the final values are much 

smaller than those found in literature for similar rotorcrafts; anyway in our opinion, this 

confirms that the influence of speed near hover condition can be neglected. In fact, Mu=-

0.0026 means that a speed change of u=2 m/s induces a really poor contribution (0.0052 

rad/s2) to pitch acceleration with respect to the contribution of Ma (e.g. 2.54 rad/s2 with a=1 

deg.). Mv and Lu (the off-axis speed derivatives) are even smaller and therefore negligible. 

 

Validation tests of the identified parameters in different closed loop controls are shown 

in Fig.39 both for longitudinal (left column) and lateral (right column) inputs. 
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Figure 39: Comparison between predicted (solid) and  recorded (dashed) closed loop Baseline 
Control Systems responses for longitudinal (column 1, left) and lateral (column 2, right) 

velocity steps. 
 

 

GIF index Longitudinal Longitudinal NCM GIF index Lateral Lateral NCM 

R2 u 0.9525 0.9447 R2 v 0.9689 0.9662 

R2 theta 0.7886 0.7699 R2 phi 0.8288 0.8250 

R2 dlong, 0.6449 0.6229 R2 dlat -0.3617 -0.4065 

Table 8: Closed loop Goodness of Fit Indexes compar ison  
 

Last of all, Table 8 gives final evidence that accounting cross-effects into the dynamic 

model brings to a better agreement of the model itself regarding speeds, attitude and closed 

loop commands and that this improvement is shown both in longitudinal and lateral dynamics. 

This simple and innovative identification procedure that has been fully developed in a 

Matlab-Simulink environment, has been presented in order to obtain a representative dynamic 

model of a small rotorcraft UAV near hovering flight condition. In following paragraphs, the 

identified model will be used for control design purposes, for example by using MATLAB@ 
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signal constraint blockset, it will be possible to pre-tune controller gains, giving a set of 

control target performances as raise time, maximum overshoot and final error. 

The complete derived models will be used also to perform comparison between 

advanced control architecture, based on feed-forward actions, with common control 

architecture (like PID).  

 

 

6.6 Flight Validation of the Baseline Control System 
Model 

 

 

In this paragraph, before the analysis and comparison between the performance of the 

feed-forward and the baseline control system, is reported the verification of how well the 

model of the baseline control predicts the closed-loop behaviour of UNIBO autonomous 

helicopter dynamics. As already mentioned Baseline control system has been implemented 

and tested in UNIBO RUAV in National Instruments C-Rio computer using NI Labview 

Programming Code and flight trials were used to identify dynamics. Since closed loop 

verification involves all components of the helicopter control system, from the flight-

mechanics to the computer systems, it allows to detect possible anomalies or un-modeled 

dynamics. 

Next table resumes the gains values adopted in flight experiments for UNIBO RUAV 

(baseline) controller. 

 

 Baseline Longitudinal Baseline Lateral 

Attitude Proportional Kp=-1 KpLat=1 

Attitude Integral Ki=-1 KiLat= 1 

Attitude Derivative Kd=0 KdLat=0 

Velocity Proportional Kpv=-10 KpvLat=10 

Velocity Integral Kiv=-1 KivLat=1 

Velocity Derivative Kdv =0 KdvLat =0 

Filter time constant -- -- 

Table 9:Basic Gains for Baseline Flight tests 
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This set of gains has been tested in a great number of flight trials and it has been showed 

that the system tuned with this set of parameters has sufficient controllability and robustness 

for the maneuvers required for slow hover-like flight. [8,9] 

For closed loop model validation, the helicopter was given a step-like velocity reference 

command in the longitudinal ( Vxref=2 m/s ) and in lateral directions ( Vyref=1.5 m/s ). The 

actual helicopter responses were recorded during the flight-test; meanwhile the predicted 

helicopter responses were obtained from the model of the closed loop system. The 

comparisons between the real and predicted responses, for the lateral and longitudinal 

directions, have been shown in figure 39 in previous paragraph. All key variables, the control 

signals, the attitude angles and the longitudinal and lateral velocities, show a good agreement. 

Notice in particular how the model accurately follows real responses during velocity 

transients. This is a quite important requirement for the simulation model, since the feed-

forward compensation will be very important, above all, during such transients. 
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6.7 Disturbances and sensor noise model 

 

 

The dynamic model described in the previous section predicts only the low frequency 

response of the helicopter (approximately under 5Hz), while real signals acquired by onboard 

sensors present also higher frequency noise values. Analyzing the power spectral density 

(PSD) of speed signals acquired during several flight tests (fig. 40), it can be noticed the 

presence of well distinct peaks at 34 Hz, corresponding to the double of main rotor revolution 

frequency ( Hzn 17≅ω  corresponding to about 1000 rpm). 

 

 
Figure 40: Power spectral density of longitudinal a nd lateral velocity signals 

 
This high frequency noise in attitude and speed signals can downgrade the controller 

performances. In order to have a more realistic prediction of the controller behavior during 

simulation tests that will be performed in Hardware in the loop test bench (see HIL in Chapter 

8), a model of these disturbances should be added to the state space model helicopter 
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dynamics. The effect of noise attitude and speed signals has been predicted by calculating the 

closed loop transfer functions between a injected disturbance on attitude (na(s)) or speed 

(nu(s)) and the consequent speed disturbance (u(s)).  

 

 
Figure 41:  Block diagram of the FF controller with noise injec tion 

 

Referring to figure 41, the transfer function between “noise on attitude” and speed is: 
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and the transfer function between “noise on speed” and speed output is: 
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Same relations are valid both for Feedforward and for the Baseline controller setting, but, for 

the latter, it has to be set: 

 

1)( =sf , 0)( =sFFA      (78) 

 

 Bode plots of Equations 76 and 76 have been reported in Fig.43 and Fig.44.   
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Figure 42:  Bode plot of  velocity -‘noise on attitude’ transfe r function ( u(s)/na(s)) 

 

 
Figure 43:  Bode plot of velocity -‘noise on velocity’ transfer  function ( u(s)/nu(s)) 

 

As it can be seen in fig. 42, all the disturbance frequencies in the attitude signal are 

heavily damped by the system and will have only small influence on controller performances. 

In the case of noise injected in velocity, instead, figure 43 shows that the high frequencies 

remain unaltered and can still disturb the controller. This analysis leads to the conclusion that 

it is necessary to model the high frequencies of speed noise in order to have a more realistic 

prediction of the controller performances during the real flight tests, while noise on attitude in 

not necessary. Moreover modeling ‘noise on velocity’ appears to be critical especially for 

Feedforward controller which operates derivatives (Eq. 52) with velocity speed error signals 

without tunable gains. 

The PSD of the speed signals shows that there is no correlation between the noise 

characteristics and the flight command inputs; for this reason Auto Regressive structure (AR ) 

[19] has been chosen to model these disturbances.  
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In general, the AR model can be written as: 
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    (79)  

 
where )(ty  is the output signal at time t, )(te  is a white noise and q  is a delay operator.  

Identification of nff ......1  parameters has been performed using a least square method starting 

from flight data previously filtered in order to eliminate the low frequency values, which are 

still modeled by state space model. The polynomial order, which is the only free parameter in 

this approach, has been fixed equal to 30, because, previous tests have revealed that this value 

represents a good compromise between accuracy and computational effort. 

Fig 44 shows the result of the identification process. Data used for the identification 

process were the one with the higher power at 33Hz (flight test with longitudinal speed at 

3m/s). As it can be seen, all the main characteristics of the noise PSD have been predicted 

with high accuracy, bringing to a good statistical model of the noise. 

 
Figure 44:  Comparison between modeled (dashed) and original (c ontinuous) flight data PSD  
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7  Comparison of controllers tuned with the 
basic gains 

 
In order to assess the different performances of the two proposed control architectures, a 

preliminary analysis on stability margins and on disturbances rejection has been conducted. 

Since the aim of this first comparison is to test the influence of the presence of the feed 

forward term, the same PID gains were adopted both for Baseline and for Feedforward 

controllers. The set of basic gains, whose values are derived from the ones that have been 

used in flight experiments of UNIBO RUAV Baseline controller, is reported in next table. 

 Baseline Longitudinal Baseline Lateral FF Longitudinal FF Lateral 

Attitude Proportional Kp=-1 KpLat=1   Kpm =-1 KpmLat=1 

Attitude integral Ki=-1 KiLat= 1 Kim=-1 KimLat=1 

Attitude derivative Kd=0 KdLat=0 Kdm=0 KdmLat=0 

Velocity Proportional Kpv=-10 KpvLat=10 Kpvm=-10 KpvmLat=10 
 

Velocity integral Kiv=-1 KivLat=1 Kivm=-1 KivmLat=1 

Velocity derivative Kdv =0 KdvLat =0 Kdvm=0 KdvmLat=0 

Filter time constant -- -- Tfilt=0.15 TfiltLat=0.15 

Table 10:Basic PID gains  
 
Moreover, for Feedforward controller, a time constant of 0.15 s. has been adopted for the first 

order filter both for longitudinal and lateral dynamics. 

7.1 Stability margins 

The analysis of Baseline and FF control systems stability have been conducted using 

Gain and Phase margin analysis [22] The transfer functions BLG and FLG, reported in 

paragraph 4.3 for Baseline and FeedForward systems have been used to plot Bode gain and 

Phase Margins. Following table reports stability margins computed or baseline and FF control 

systems computed with this basic set of parameters. 

 Gain margin (dB) Phase margin (deg) 

Longitudinal 14.15 dB  (@ 4.55 rad/sec) 33.5  deg  (@1.9 rad/sec) Baseline 

Lateral 24.53 dB  (@ 13.57 rad/sec) 30.9 deg  (@1.79 rad/sec) 

Longitudinal 17.58  dB  (@ 14.70 rad/sec) 74.2 deg (@1.66 rad/sec) Feedforward 

Lateral 18.47  dB  (@ 16.08 rad/sec) 74.1 deg  (@1.65  rad/sec) 

Table 11:Stability margins of the FF and Baseline c ontrollers for longitudinal and lateral 

dynamics 
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Compared with the specifications used for flight control design (MIL-F-9490), which 

require a gain margin of 6 dB and a phase margin of 45 deg, it can be seen how the baseline 

system tuned with basic gains of table 10 lacks adequate Phase margins for longitudinal and 

lateral dynamics control [23]. 

On the contrary, it must be noticed that FF tuned with the same PID gains is already 

compliant to the stability margins required by the norms, and thus it means that just adding 

the feedforward term to the Baseline controller in the inner loop, can bring the system to a 

higher stability level.  

 

7.2 Three-axis control and cross effects disturbances. 

 

Another important aspect in controllers design is to achieve a good disturbances 

rejection. In present paragraph we study the relation between disturbances and their effects on 

controlled variables (longitudinal and lateral velocities) and we compared the behavior of the 

FF and the Baseline control systems in the frequency domain 

 

Figure 45: cross effects and external disturbance 

 
In both baseline and proposed FF+PI control systems the control model is composed by 

three SISO controllers working at the same time for longitudinal (Utarget), lateral (Vtarget), and 

vertical (Wtarget) dynamics control. 
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In this way it is possible to give three different set-points time-histories for longitudinal, 

lateral and vertical velocities and make them vary in a total independent way, for example it is 

possible to give a velocity step to longitudinal velocity and zero as set-point for lateral and 

vertical velocities.  

This contemporaneous control over three axis, since the identified model takes into 

account cross-effects (long-lateral, vert-long), induces disturbances on each of the three 

controlled velocities. This kind of disturbances could be considered as internal in order to 

distinguish them form external disturbances as, for example, wing gusts. 

Simulation model used in following simulations takes in to account also wind gust that 

are modeled as command input disturbances (vd Mettler p 152) and are represented as inputs 

wd ,wd1, wd2 in figure 45. As already mentioned and as suggested in ref. (libro Mettler) a 

wind gust disturbs the direction and the speed of the airflow encountered by the helicopter. 

This changes the aerodynamic load of the rotor, producing an uncommanded rotor flapping 

response which will, in turn, disturb the helicopter attitude. If we ignore the forces produced 

by the gust on the fuselage, a wind gust, since it changes the aerodynamic angle of attack at 

the blade (in a cyclic manner), has effect on the helicopter similar to that of a sudden change 

in the cyclic controls. Thus wind gust are effectively modeled as command input disturbances. 

Wind gust model used is the Discrete Wind Gust Model in the form of the standard "1-

cosine" shape in conformity with mathematical representation in the Military Specification 

MIL-F-8785C [24]. The gust is applied to each axis individually, or to all three axes at once. 

It can be specified the gust amplitude (the increase in wind speed generated by the gust), the 

gust length (length, in meters, over which the gust builds up) and the gust start time [18] 

 Figure 47 shows a control structure scheme valid both for FF lateral and longitudinal 

velocity control. We can see that the wind disturbance is modeled as an input and that its 

contribution is summed to FF action (FFA) term and to PI Attitude controller term (CAM).  

 

Figure 46:  FF controller architecture with Wind Disturbance mo deled as command input  

 

It can be demonstrated that, referring for example to longitudinal control system 
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reported in Fig.46 the transfer function between wind disturbances D and controlled 

longitudinal velocity U for longitudinal FF control system is: 
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while for longitudinal Baseline control system: 
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Where the transfer functions (CA, G2, CV, P, etc.) have been already showed in 

paragraph 4.3 

Analogue relations can be found for lateral dynamic. 
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Where this time the transfer functions (CA, G2, CV, P, etc.) refers to the lateral 

dynamic. 

Bode gain diagrams of disturbance-velocity transfer function are reported in figure 

below for Baseline and FF control systems tuned with basic gains (table 10) both for 

longitudinal and for lateral case. 

 

It must be noticed that the feedforward term improves the rejection to disturbances 

especially for those disturbances with frequencies between about 1 and 3 Hz, while for the 

other frequencies the behavior of the FF controller is pretty much the same of the Baseline 

one. 
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Figure 47: Bode diagrams of Baseline and Feedforwar d (dashed) disturbance-to-velocity 

transfer functions. Longitudinal (\upper), Lateral (below) 
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7.3 Time domain comparison with basic gains set 

 

 

Next figure represents a simulation in time domain of a unitary step response performed 

by the Baseline (dotted line) and by the FF (continuous line).  

 

Figure 48: Simulated responses to a unitary longitu dinal velocity set point of  

Baseline and Feedforward controllers tuned with the  same gains values 

 

It can be easily seen how the FF response presents a highly reduced overshoot. 

Remembering that the two controllers share the same gains for PID, it means again that they 

only differ for the presence of the FFA (FeedForward Action) in the FF inner loop. Hence, the 

presence of the FFA term makes the FF inner control loop to work with smaller errors in FF 

controller than in Baseline (see Fig. 39 , second , third row, attitudes) and this highly reduce 

overshoot and settling time. Moreover it can be noticed how the FFA terms reduce the 

oscillations due to the lightly damped rotor-fuselage coupled dynamic (mettler articolo 

optimization)  Finally  it can be observed that, anyway, the rise time is very similar for the 

two controllers if measured at the 90% of the step. 
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In the same simulation reported in figure 39 it was added a gust disturbance starting 

from simulation time t=14 s, it must be noticed how the behavior of the two controller is 

almost identical on the response to this disturbance. The disturbance added to longitudinal 

command was, in this case, modelled as a discrete 1-cosine gust in vertical direction with 

amplitude of 7 m/s that corresponds to a command disturbance of about 5 deg. computed at 

0.75 R (Rotor radius R=0.92 m) and considering a angular rotor speed of about 1200 rpm. 
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8 Hardware in the Loop (HIL) Test bench 

 
 

To asses the performance of the two different controllers, a Hardware In the Loop test 

bench was developed and its architecture is illustrated in figure 49 (right side). 

 

It is composed by: 

- A CRIO, equal to the onboard one, which runs the control software; 

- an FPGA module which acquires PWM commands (PXI 7831); 

- a computer which emulates the helicopter plant and the onboard sensor outputs. 

 

 

 

 

 

Figure 49 Real control loop (left) and Hardware in the loop test bench (right) 

 

CompactRIO digital outputs, that usually drive the servo actuators, are acquired, in the 

HIL test bench, by the PXI FPGA module and converted in degrees of servo control actuation. 

On the simulation computer a NI Labview software implements the state space and noise 

models illustrated before. That module computes, in real time, the helicopter response due to 

control input. A NAV420 emulator simulates the original serial data packet format and is used 

to send information to the main controller. 

Since PC serial port uses RS232 signals and CRIO digital inputs accept TTL voltage levels, 

an integrated circuit board has been placed between computer output and CRIO input. 
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The helicopter ground station can be connected to the HIL for sending to the controller 

the desired speed profile, or any kind of commands, and to save helicopter outputs: these 

outputs are then used for assessing the controller performances. 

 

The HIL global model is composed of a state space model which predicts only the signal 

frequencies under 5Hz and of an Auto Regressive (AR) model which simulate the remaining 

frequencies between 5Hz and 50Hz. 
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9 Baseline and FF controllers parameters 
automatic tuning 

 
 

In order to make an impartial analysis of controllers goodness, in terms of stability and 

performances, an automatic tuning strategy, in house developed and based on step response 

characteristics, has been adopted. In this way, Baseline and Feedforward controllers have 

been automatically tuned in order to have same performances in the response to a unitary (1 

m/s) velocity step. 

Table 2 reports the adopted constraints values . 

 

 Rise Time % Rise Settling Time % Settling % Overshoot % Undershoot 

Longitudinal/Lateral  1. 0 /1.2  (s) 90% 2.5 2% 2% 2% 

Table 12: Response characteristics for longitudinal  and lateral dynamics 

 

 

The meaning of the constraints reported in table 12 is more clearly defined in figure 

50. 

 

 
Figure 50: Unitary step response characteristics 

 

Referring to table 12, it has to be noticed that a very small overshoot requirement has 

been chosen to fulfill the ADS33 [24] hover and low speed specification (cit. “There shall be 
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no noticeable overshoots in the response of translational rate to control”) and that settling 

percentage has been set to the same value of overshoot in order to obtain a first order response 

as prescribed by the norms. 

 

With the adopted automatic tuning procedure and the above constraints it has been 

possible to find the controllers gains reported in table 13.  

 

 Baseline Longitudinal Baseline Lateral FF Longitudinal FF Lateral 

Attitude Proportional  Kp = – 2.0062 KpLat  = 2.4 Kpm = – 1.0336 KpmLat = 1.9068 

Attitude integral Ki = – 4.5837 KiLat = 1.44 Kim= – 2.1015 KimLat = 1.2618 

Attitude derivative Kd  = 0 KdLat = 0.06 -- -- 

Velocity Proportional Kpv = – 11.3730 KpvLat = 7.9685 Kpvm = – 9.5234 KpvmLat = 9.5498 

Velocity integral Kiv = – 0.6914 
KivLat = 0.410 

 
Kivm= – 0.3864 KivmLat = 0.3442 

Velocity derivative Kdv = – 1.1017 KdvLat = 0.0077 -- -- 

Filter time constant -- -- Tfilt = 0.1117 TfiltLat = 0.2187 

Table 13: Controllers parameters computed under per formances constraints 
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10  Comparison of equal-performances 
controllers 

 
In this chapter the comparison between the Baseline and FF controllers will be 

performed by using the tuning parameters that have been computed in previous chapter. These 

parameters allow to achieve very similar performances and have been automatically tuned 

under the performances constraints that have been showed in table 12 of previous section. It 

appears obvious that comparing two systems with very similar performances, the best of the 

two controllers is the one that maintains the greatest stability margins. 

10.1 Stability analysis 

Stability analysis has been performed by computing Gain and Phase stability margins 

[1,23] for the Baseline and the Feedforward control systems. The two Loop Gain transfer 

functions for longitudinal and lateral controllers have been derived from control schemes 

depicted in fig. 9 and fig. 10 and automatically computed tuned parameters have been used 

. 

 
Figure 51: Bode Diagrams for Stability analysis, Lo ngitudinal dynamic: 

Baseline (continuous line) and Feedforward (dashed line) controller 
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Figure 52: Bode Diagrams for Stability analysis, La teral dynamic: 

Baseline (continuous line) and Feedforward (dashed line) controller 
 

Bode magnitude and phase diagrams are reported in figure 52 for Baseline Loop Gain 

(BLG) and the FF Loop Gain (FLG) transfer functions both for longitudinal (left) and lateral 

(right) dynamics in which stability margins have been indicated by means of circular markers. 

As can be easily noticed, they appear to be very similar to those reported in literature [1]. 

 Looking at these figures it can be seen that, in both cases, the feedforward architecture 

assures an improvement of phase and stability margins. In fact, for the Baseline controllers 

the critical frequencies for stability (11.8 rad/sec for the longitudinal, 17.1 rad/sec for the 

lateral dynamic) almost coincide with the natural frequency of the lightly damped coupled 

rotor/stabilizer/fuselage group caused by the stabilizer bar (12.1 rad/sec for the longitudinal 

and 18 rad/sec for the lateral dynamic [23]) and this brings to a great reduction in the gain 

margin.  

 

The effect of the FF compensation brings to a reduction in the lightly damped coupled 

rotor/stabilizer/fuselage influence and, hence, to an improvement of gain margin. 

Gain and Phase stability margins are finally reported in table 14. 
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 Gain margin (dB) Phase margin (deg) 

Longitudinal 5.24 dB  (@ 11.8  rad/sec) 71.6 deg  (@ 2.88 rad/sec) 
Baseline 

Lateral 5.54 dB  (@ 17.1 rad/sec) 69.8 deg (@ 1.47 rad/sec) 

Longitudinal 16.9 dB  (@ 15 rad/sec) 80.2  deg (@1.61 rad/sec) 
Feedforward 

Lateral 12.1 dB  (@ 16.2 rad/sec) 71.6  deg (@1.54 rad/sec) 

Table 14: Stability margins of the FF and Baseline controllers for longitudinal and lateral 

dynamics 

 

It has to be noticed that only FF controller fulfils the specifications for flight control design 

[24], which require a gain margin of 6 dB and a phase margin of 45 deg, whereas the Baseline 

control system lacks adequate Gain margin. 

This stability analysis, moreover, doesn’t take into account noise effects and problems 

due to quantisation of the analogue signals that slightly affect final performances and that will 

be analyzed in next section.  

 

10.2  HIL tests 

 

The Baseline and Feedforward control systems tuned with the parameters reported in the 

previous section, have been tested in the Hardware in The Loop test bench described in fig. 

49. The dynamic model has been used coupled with the velocity signal noise model (ref. 

Chapter 6). 

HIL tests results are reported in next figures and confirm the stability analysis described 

in previous paragraphs. In figure 53 are depicted the axial velocity, pitch attitude (baseline 

and FF) and the longitudinal command, related to a unitary velocity step for the two 

controllers. Whereas the controllers have been automatically tuned in order to attain the same 

velocity performances, a small difference in performance can be anyway observed, like, for 

example, a smaller rise time for the Baseline velocity response. This is probably due to the 

automatic tuning procedure that has set up a slightly faster solution for Baseline controller. 

Another reason for this difference can be found in small differences between the Simulink 

dynamic and control models used during tuning sessions and in the HIL test bench that is 

entirely coded in Labview. Contrary result occurred in lateral controller tuning where 

Baseline controller resulted slightly lower than FF but, anyway, the differences between the 

velocity responses are small and they do not invalidate our comparison. 



 84 

In the second and third strips of the same figure, it can see that the Baseline attitude and 

actuation command signals oscillate, whereas the feedforward ones are much more stable. 

This appears to be consistent with the consideration reported in previous paragraph, about the 

smaller gain margin of Baseline system.  

 
Figure 53: HIL simulation; Longitudinal velocity 1 m/s step 

Same considerations can be applied to the 5 m/s forward and lateral velocity steps (fig 

54 and 56) and to 1 m/s lateral velocity step (fig 55). In the 5 m/s step velocity cases (fig 54 

and fig.56), it has to be noticed that the feedforward controller achieves a reduced overshoot 

amount even if the Baseline can count on the Derivative term of the PID. This can be 

explained considering that, during transients, the FF structure allows smaller errors in the 

inner attitude control loop.  

 Finally, in all performed tests, it has been observed a less oscillating behavior in the 

feedforward controller responses, justified by the greater stability margins that are, at least in 

this case, well better than the norm requirements [24]. 
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Figure 54: HIL simulation; Longitudinal velocity 5 m/s step  

 
Figure 55:HIL simulation; Lateral velocity 1 m/s st ep 
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Figure 56:HIL simulation; Lateral velocity 5 m/s st ep 
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11   Sensitivity analysis of Stability upon 
plant identified parameters 

 
 
 

 
The Feedforward compensators, both for longitudinal and lateral dynamics, have been 

designed starting from the knowledge of the identified command-attitude transfer functions. 

Thus, it is very important to rely on a very good identification model and to understand how 

much stability and performances of feedforward controllers are depending upon the goodness 

of identified parameters. In order to assess this relationship, we studied how much the 

stability margins change as a consequence of drifts of identified parameters from their 

nominal values (identification values).  

Considering, for example, longitudinal dynamics, we have seen in paragraphs 4.2 and 

4.8 that it necessary to know the values of following identified key parameters: 

 

enqlonA τω   ,  ,  

 

in order to compute the longitudinal feedforward term (FFA). 

 

 In this paragraph, we will check, using a proprietary Matlab script, what happens to 

stability margins and to other performances indexes when each of the three parameters change 

of +/-20% in total independent way. In this way we wish to simulate the case that a +/-20% 

error was done in the identification of each key parameter. Obviously, during each test, the 

plant identified model remains the same (identified parameters equal to nominal values) and 

only the controllers key parameters are increased or diminished of 20% of their nominal 

values.   

 Following conventional names will be adopted for key parameters degraded values, 

these names are obtained by adding a plus or minus symbol to key parameters name in order 

to refer to the increased or diminished value. For example: 

 

A lon+= Alon +20%·A lon  (84) 

A lon- = Alon -20%·A lon  (85) 
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Referring to Longitudinal dynamic, nominal values for key parameters  are: 

 

A lon=0.2488                        ωn=12.1                          τe=0.132 

 

Following table has been computed considering all the possible combinations between 

increased and diminished key parameters values: 

 

Test N° Alon ωn τe GM PM Stability 

Nominal Alon ωn τe 
16.9 dB  (@ 15 rad/sec) 80.2  deg (@1.61 rad/sec) 

Yes 

1 Alon- ωn- τe- 
10.2177 dB  (@15.2402) 78.6373  deg.(@1.5372 rad/s) 

Yes 

2 Alon- ωn- τe+ 
9.8140 dB  (@15.7979) 93.7258 deg.(@1.3224 rad/s) 

Yes 

3 Alon- ωn+ τe- 
17.1225 dB  (@13.5070) 80.5648 deg.(@1.6152 rad/s) 

Yes 

4 Alon- ωn+ τe+ 
16.1279 dB  (@13.0511) 96.9602 deg.(@1.3732 rad/s) 

Yes 

5 Alon+ ωn- τe- 
14.1145 dB  (@15.3074) 62.5827 deg.(@1.7712 rad/s) 

Yes 

6 Alon+ ωn- τe+ 
13.6220 dB  (@15.8632) 79.4297 deg (@1.5846 rad/s) 

Yes 

7 Alon+ ωn+ τe- 
22.0459 dB  (@13.4606) 62.9814 deg.(@1.8348 rad/s) 

Yes 

8 Alon+ ωn+ τe+ 
20.5392 dB  (@12.7534) 80.8309 deg.(@1.6456 rad/s) 

Yes 

Table 15: Stability margins of the FF (longitudinal ) with deviation of feedforward key 
parameters of 20% 

 
 

 Stability of the feedforward controller is reported in the table above in the rightest 

column and it has been computed as a Boolean that is true if all real parts of close loop 

transfer function poles are all positive numbers. We can see that the FF system is still stable 

for a variation of +/-20% of key parameters from nominal values. Obviously, the same thing 

could have been derived also from the fact that Gain and Phase margins are still positive, but 

it has been done in this way to have a redundant check.   

 Even some combinations (e.g.  the n.3) appears to be more stable (higher gain margin, 

same phase margin), it can be easily assessed that the time response of the FF controller with 

these key parameters set is less performing than the nominal FF controller. In fact, looking at 

fig.57 it can be seen that the degraded FF system (point-dash line) has higher rise time and 

higher assessment time. This is due to the fact that PI gains were not optimized in each every 

different test (1-8), but the same PI gains values that were optimized for the nominal case 

were adopted. 

 From figure 58 we can also see better how FF nominal controller presents no 

overshoot at all and, moreover, that differences in performances appear to be small and, 
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hence, that degraded FF controller seems to be still a good controller.  

 

Figure 57:Baseline, FF (testcase n.3) responses to a unitary longitudinal velocity step 
 

 In the following table the same kind of analysis have been reported for lateral dynamic 

stability margins computation:  

 

Test N° Blat ωnp τe GM PM Stability 

Nominal Blat ωnp τe 
12.1 dB  (@ 16.2 rad/sec) 71.6  deg (@1.54 rad/sec) Yes 

1 Blat - ωnp- τe- 
16.6759 dB  (@17.4863) 71.8338 deg  (@1.5218) Yes 

2 Blat - ωnp- τe+ 
28.3864 dB  (@25.1427) 85.0821 deg  (@1.5910) Yes 

3 Blat - ωnp+ τe- 
8.1766 dB  (@16.0879) 71.6584 deg  (@1.5481) Yes 

4 Blat - ωnp+ τe+ 
5.1997 dB  (@16.0519) 84.7408 deg  (@1.6300) Yes 

5 Blat + ωnp- τe- 
26.2649 dB  (@18.9148) 62.1976 deg  (@1.5438) Yes 

6 Blat + ωnp- τe+ 
32.7217 dB  (@26.0324) 71.6292 deg  (@1.5372) Yes 

7 Blat + ωnp+ τe- 
13.2472 dB  (@15.9932) 62.1120 deg  (@1.5595) Yes 

8 Blat + ωnp+ τe+ 
9.7695 dB  (@15.9841) 71.5565 deg  (@1.5553) Yes 

Table 16: Stability margins of the FF for lateral d ynamics varying feedforward key parameters 
of 20% 
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Also for lateral dynamic, it can be observed that the system is still stable under all the 

possible combinations of 20% deviated key parameters. 

Finally maximum allowable Deviations have been computed for the FF control system:  

� Longitudinal Dynamic :Evaluation of max allowable Deviations for Norms and 
Stability: 
� 42% for Stability 
� 29% for ADS33 compliancy (GM>6dB, PM> 45 deg) 
 
� Lateral Dynamic :Evaluation of max allowable Deviations for Norms and Stability: 
� 38% for Stability 
� 17% for ADS33 compliancy (GM>6dB, PM> 45 deg) 

 

The FF controller appears to be stable till a deviation of key parameters of about the 

42% while for lateral maximum parameters deviation without instability is 38%.  

This is an important achievement as it means that even in presence of great drifts in 

system dynamics (e.g. due to payload variations, fuel consumption) the feed-forward 

controlled system remains stable. 

Moreover, the maximum deviation of key parameters from their nominal values that 

assures that FF system has Phase Margins and Gain Margins greater than the minimum values 

specified by MIL-F-9490, have been valuated in the 29% for Longitudinal dynamic and in 

17% for lateral dynamic. In presence of greater deviations, the critical Gain Margin limit of 6 

dB was exceeded both for longitudinal and lateral dynamics.  

This appears, again, as a good achievement because it means that even in presence of 

sensible drifts of the key parameters of the system and even if the controller gains are kept to 

their nominal values, the control performances will be still compliant to norms prescriptions 

in terms of stability margins. 
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12 Performances comparisons in 
Navigation 

 
 

In this paragraph, HIL simulations of navigation tests are presented. The aim of these 

tests is to assess the influence of the control system architecture upon the navigation 

performances in terms of deviation of the rotorcraft position from the target trajectory. 

The Baseline and FeedForward Controllers are tuned with the gains of table 13 in 

chapter 9 and, hence, the two controllers should have similar performances to unitary step, 

these performances are those reported in table 13 of chapter 9. 

Next figure reports a comparison of tracking performances of the two controllers in a ‘8-

like’ circuit. In this test the longitudinal target velocity is kept at the constant value of 2 m/s. 

 
Figure 58: Comparison: HIL simulations of ‘8-like’ circuit with velocity of 2 m/s
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The flight path is the same already reported in table 2, and ,hence, the tracking velocity 

is equal to 2 m/s but in this test the yaw orientation has been kept fixed to 0 deg (North). 

 
Figure 59: Zoom of figure 58 

 
Figure 59 shows a zoomed view of figure 58. Here it can be easily noticed that the 

Feedforward controller improve the tracking performances of navigation, reducing the 

tracking oscillations that are much more present in Baseline system. Moreover here it can be 

observed that the feedforward controller almost never brings the rotorcraft beyond the 

subsequent trajectory line since it allows a faster change of trajectory. In fact, even if the 

change of setpoint trajectory occurs, for both the controllers, at the same distance from the 

subsequent waypoint, as the Baseline exhibit a slower and more oscillating response whereas 

the Feedforward change of trajectory appears much more rapid and hence seems to anticipate 

the target trajectory. 

Last figure of this chapter reports a comparison test performed with a target velocity of 

4 m/s in a ‘8-like’ circuit. As in previous test the yaw orientation has been kept fixed to North 

direction for the entire path. In this case it becomes apparent how the Baseline Tracking 

control becomes almost unstable and, as a consequence, its performances are of course 

unacceptable. 

Remembering that the rotorcraft starts form the point (0,0) toward the (20,-20) 

waypoint, it is possible to track the trajectory for the Baseline controller; it seems that the 

biggest issues occurs when the RUAV leave the waypoint (20,-20) towards the waypoint of 
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coordinates (40,0). The Baseline RUAV begins to track circles around the waypoints and 

gradually loose its path.  

The feedforward controller, instead, attains performances very similar to those of the 

2m/s ‘8-like’ circuit reported in figure 58 and 59. 

  
 

Figure 60: Comparison: HIL simulations of ‘8-like’ circuit with velocity of 4 m/s 
 

 

Of course the implemented fixed heading navigation is very simple and could be 

improve, and perhaps, navigation gains tuning could be improved as well, but, in our opinion, 

what should be focused is that the same navigation algorithm, if used in conjunction with two 

different attitude and velocity control systems, brings to completely different results.  

Moreover it must be remarked that the Baseline and FF controller used in these 

navigation tests were automatically tuned in order to attain same performances in a 1 m/s 

velocity step. Hence from this latest simulation, it is evident how the Baseline controller 

presents performances that highly downgrade with the increasing speed of test, whereas the 

FF seems to achieve good performances also for higher velocities. 
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13 Conclusions and Outlook 
 

 

 

In this thesis latest results of the RUAV activity achieved at Bologna University have 

been presented. In particular a model-based feed-forward controller designed for a small scale 

Helicopter has been illustrated and its performances have been assessed and compare to those 

of a traditional Baseline controller. This Feed-Forward controller has a very simple control 

architecture based on nested proportional-integral control loops with feedforward 

compensation in the inner loop. This feedforward term is obtained by the inversion of the 

command-attitude identified plant models and its smart discrete-time implementation has 

been shown as well. 

The accuracy of the model has been initially verified by showing that it successfully 

predicts the behaviour of the baseline control system that is currently used for the UNIBO 

RUAV.  

In subsequent chapters, it has been shown how this control combines benefits of 

feedforward and feedback controllers, where performances are achieved with feedforward 

action and robustness is achieved with feedback, and how feedforward action make the 

system to work with smaller errors and therefore with less saturation problems and so makes 

parameters easier to be tuned.  

A good number of comparisons upon performance and stability has been illustrated 

between the proposed feedforward controller and the baseline controller. The comparisons 

have been done using, in a first step, the same basic tuning parameters for the controllers, then 

different sets of parameters has been adopted. These latter parameters have been derived, in 

order to make an impartial analysis, by mean of an automatic tuning strategy. Moreover, in 

dedicated section, the sensitivity analysis of the stability margins upon the identified plant 

parameters has been evaluated and it has been shown how the proposed model based 

controller remains stable even in presence of big uncertainties on plant identified parameters. 

The presented analysis has been done by using a Hardware In The Loop systems with 

mathematical model of helicopter dynamics identified in low speed flight conditions. This 

identified dynamic has been derived by using a simple and innovative identification 

procedure, developed in a Matlab-Simulink environment, in order to obtain a representative 

dynamic model of a small rotorcraft UAV near hovering flight condition. Preliminary 

parameters identification based on a open-loop session have been shown both with and 

without cross-effects; then a parameters refinement through a closed loop identification 
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technique was performed. For each test, indexes of relative goodness of fit have been 

presented demonstrating the benefits of the improved model. 

In the sequel, the identified model has been used for control design purposes, so it has 

been possible, using Matlab scripts, to pre-tune controller gains, giving a set of control target 

performances as raise time, maximum overshoot and final error. 

 As already mentioned the comparisons upon performance and stability between the 

proposed FF controller and the Baseline one have been done using set of calibrations that 

have been automatically tuned in order to make an impartial analysis. Results have shown 

that, tuning the two systems for achieving the same performances, the feedforward controller 

works with higher stability margins and, hence, with less oscillating attitudes. 

Finally, after illustrating guidance algorithms, a comparison of the tracking abilities of 

the Baseline and FF controller is presented in a typical ‘8-like’ circuit. In this test it has been 

demonstrated how the FF controller allows a smoother trajectory tracking as well.  

As already mentioned, the presented analysis has been done by using a mathematical 

model of helicopter dynamics identified in low speed flight conditions. Anyway, since the 

dynamic model in forward flight conditions can be described by transfer functions of the same 

kind [1], it would be interesting in the future to asses if the benefits of this control technique 

are present also in forward flight. 

 

Unfortunately in the last period of this activity the IMU has been found to be faulty and 

issues has been discovered in velocity signals and, as consequence, it hasn’t been possible to 

perform a comparison of the two controllers in real flight test. A flight trials campaign and a 

deep investigation upon the performances of the Baseline and FF controller will be done once 

the IMU has been restored.  
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