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As on the circle, the conclusion is not else than a new beginning.

A Marina (l’incipit iniziale),

me (la perseveranza in itinere),

Michela (il costante incoraggiamento e fondamentale supporto finale).
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Abstract

Although circular data are special, they arise in many different contexts. Examples
are found in earth sciences, meteorology, biology, physics, etc. Standard statistical
techniques cannot be used to analyze circular data because of circular geometry of
the sample space. There are different approaches to handle circular data. In the
embedding approach the direction are treated as angles, while in the most popular
intrinsic approach the direction are treated as unit complex number and modeled
by von Mises distribution. An alternative, and more general class of distribution
models can be obtained using the so called wrapping approach, in which the circular
distributions are obtained wrapping the distributions on the real line onto the unit
circle.

In this thesis, after giving a general overview about circular data, we deeply
analyze the wrapping approach showing the main drawback and advantages of this
method. Focusing on wrapped Normal distribution, we provide an approximation
for this circular distribution that turns out to be very useful to improve the inferen-
tial results. This approximation, in fact, is directly used into the Bayesian inference
procedure allowing to overcome the main disadvantage, the identifiability problem,
and to show the flexibility and ease of applicability of this approach in model with
complex structure as measurement error model and high dimensional spatial and
spatiotemporal model. The main contribution of this work is substantially of over-
coming the identifiability problem with the consequently possibility to apply the
standard in line inferential procedures and methods to circular data as well.

In order to appreciate the flexibility and the ease of applicability and inter-
pretability of the wrapping approach two original applications of measurement error
model for circular data are presented: the first in a spatial context and the second
in a dynamic spatiotemporal context. Some remarks and discussions about future
developments conclude the thesis.
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Chapter 1

Introduction

Circular data arise in many different contexts. Many examples of this kind of data
are found in earth science, meteorology (as wind direction analysis), biology (e.g.
study of animal movement direction), physics and, more in general, in any context
where the study of data recorded in degrees or radius in a circle is needed. Although
it is quite common to find and deal with circular data, their handling arises several
difficulties. Their particularity is due to the support, finite and in the unit circle
[0, 2π), and to the dependence of descriptive and inferential results on choosing the
starting point in the unite circle. These features make this kind of data special and
different from in line data, so that ad hoc statistical methods and modeling are
needed for their management. Henceforth, we refer to data with support in R or in
a subset of R as ‘in line’ data whereas for data with support in [0, 2π) we specify
the adjective ‘circular ’.
In the following section we introduce the motivating example, regarding a meteorological-
marine issue, that leads us to deal with circular data; whereas in Section 1.2 we give
some examples and graphical representations of these data. Finally, we conclude
this chapter providing an essential review of circular data literature and describing
the structure of the thesis.

1.1 Motivating Example

Most of the studies carried out on marine data are based on outputs from deter-
ministic models, usually climatic forecasts computed at several spatial and temporal
resolution. Wave heights and wave directions, these last being circular data mea-
sured in degrees, are the main results of marine forecasts. The principal provider
for global numerical wave forecasts in Europe is the European Center for Medium-
Range Weather Forecasts (ECMWF), which runs as global medium range (3-5 up
to 10 day forecasts, 55 km spatial resolution) and as high resolution short term (3
days, 25 km resolution Wave Amplitude Model,WAM ) models in the Mediterranean
Area. Despite all efforts and improvements in model implementation and the grow-
ing amount of assimilated data, wave heights and wave directions are often biased
and not efficiently estimated by numerical models. It arises, thus, the need to im-
prove the quality of the forecasting system by a statistical post-processing that aims

1



Chapter 1. Introduction

Figure 1.1: Fourteen buoys of the Italian wave network (RON).

to correct the estimates through observed data given by the Italian wave network
(RON) constituted of 14 buoys (see Figure 1.1).
A first tentative to calibrate the computed data is founded in Bruschi et al. (2005),
but in that work the difficulty to deal with circular data leads directly the authors to
choose for a simplified semiparametric model where the main directions of the wave
(i.e. the circular data) occur only as a dummy variables. The starting motive of this
thesis is, then, to find a flexible and easily applicable method to manage and model
directly circular data. Of course, it exists a quite wide literature about circular data
(see e.g. Mardia (1972), Mardia and Jupp (1999), Jammalamadaka and SenGupta
(2001) or Fisher (1993)) but it is limited to descriptive statistics and simple and
standard models as the regression model or simple temporal series models.
Our goal, here, is to find out a flexible and easily interpretable procedure that allows
to extend to circular data all the models and inferential procedures applied to in line
data, including the fairly complicated model such as the spatial and spatiotemporal
ones.

1.2 Examples of Circular Data and Graphical Rep-

resentation

The oldest observed circular data sets regard the studies of animal navigation. Fa-
mous are the turtle data about animal orientation after laying eggs cited in Stephens
(1963). Other examples of circular data in biology are the mallard data of the British
Ornithologists’ Union and the swimming directions of the Daphnia (Waterman and
Jander’s data cited in Waterman (1963)).
In the context of image analysis, circular data occur, for example, in machine vision
(Mardia et al., 1996) or in orientation of textures (Blake and Marinos, 1990).
Also in the medicine context it is possible to find circular data as, for instance, the
incidence of onsets of a particular disease (or of deaths) at various times of the year.
Perhaps, the more profitable context where circular data have been studied and used
is surely in physics. Von Mises (1918) introduced his famous probability distribution
in order to study the deviation of measured atomic weights from integral values.

2



1.3 A Brief Tour

Figure 1.2: Circular raw plots: (a) row plot of turtles data; (b) row plot and density
estimate of British mallards data.

Generally speaking, we can assert that we are able to find circular data in many
other contexts and environments and as many graphical representation are available
to depict circular data, as well. Some of them are here presented.

The easiest plot is the circular raw plot, where the data are drawn directly on
the circle. For instance, the raw circular plots for turtle data and mallard data are
depicted in Figure 1.2.
Sometimes it can be useful to borrow circular plots from the in line graphical rep-
resentation in order to understand the difference or similarity between in line and
circular data. The corresponding plot of the in line histogram is given by the rose
diagram in which the bars of the histogram are replaced by sectors. Two examples
are given in Figure 1.3.

1.3 A Brief Tour

Perhaps the oldest reference about circular data goes back to 1918 when von Mises
introduced his probability density. Besides von Mises, between the authors that
have given the major contribute to circular statistics we can include Watson and
Stephens with their results about goodness of fit and statistic test theory (Watson,
1961; Stephens, 1963, 1970). Between the 60’s and the 80’s, Kent contributed to
the study of complex circular distributions and one of his more important work is
reported in Kent (1978). More recently, in Fisher (1993) we find a comprehensive
treatise on circular data distributions with particular attention to non-parametric
methods in spatial structure analysis. Finally, in Mardia (1972) and in Mardia and
Jupp (1999) there are the more important results and knowledge about approaches,
probability distribution theory and inference for circular data. But only in the
last years, by the developing of more computationally efficient estimation procedure
such as MCMC methods and the EM algorithm, statistics for circular data has
regarded, other than the descriptive and the probability distribution analysis, also
the computing of simple linear models (see Harrison and Kanji, 1988; Fisher, 1993;
Fisher and Lee, 1992), linear models in a Bayesian context (Guttorp and Lockhart,

3



Chapter 1. Introduction

Figure 1.3: Rose diagrams: (a) rose diagram of mortality data; (b) wind rose dia-
gram.

1988; Damien and Walker, 1999) and models for circular time series (see Breckling,
1989; Coles, 1998; Mardia and Jupp, 1999; Ravindran, 2002; Hughes, 2007).
This is only a short review of the major authors and works about circular data
analysis but it is sufficient to realize that, probably due to the difficulties peculiar
to this kind of data, their modeling is limited to quite simple and low dimensional
models. As a matter of fact, there are not in literature examples of high dimensional
circular data models or circular data analysis in spatial or spatiotemporal structure
or, more in general, circular data models having complex structure. The main goal
of this thesis is to provide a flexible and of ease applicability and interpretability
modeling tool for circular data. In particular, our aim is to find out a procedure
that allows to overcome the problems and difficulties due to the peculiar features
to circular data in order to extend to this kind of data all the models and methods
already employed for standard in line statistical analysis.

The main contribution of this work is substantially methodological and the pre-
sented applications regard basically simulated data, even if a real data application is
provided in Chapter 5 as an example to appreciate the goodness of inference results.
In order to have a general overview about circular data and their main features and
properties, in Chapter 2 we provide some descriptive statistics and describe the three
approaches (embedding, intrinsic and wrapping) for handling circular data. For each
of them, we present the main circular distributions describing the probability func-
tion and properties. Moreover, the relationship between circular distributions and
a comparison in terms of advantages and drawbacks of the three approaches is dis-
cussed.
In Chapter 3 we deeply analyze the wrapping approach and demonstrate the reason
why we consider this approach the most suitable in the pursuit of our goal. Follow-
ing the work of Coles (1998), we describe the parameter estimation procedure for
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the wrapped Normal distribution, giving also some simulated examples. Then, we
analyze the effect of sample size and data variability on inference results, revealing
the main drawback of the wrapping approach: the identifiability problem concerning
the wrapping coefficients. The main contribution of this thesis consists in solving
the wrapping coefficients identifiability problem demonstrating that all the wrapped
Normal distribution can be approximated adequately by only the three wrapping co-
efficient values {−1, 0, 1}. This evidence, which is originally showed here, is directly
used into the Bayesian inference procedure through an opportune prior probability
on the k coefficients, obtaining a considerable improvement of the inference results.
This new setting of the inference procedure allows the computing of models as the
high dimensional multivariate ones and models with complex structure as the mea-
surement error, spatial and spatiotemporal models.
In Chapter 4, we present a definition and a general exposition of measurement error
(ME) models and successively we show the ease of derivation of the ME wrapped
model. Then, in order to verify the relationship between in line and wrapped ME
model, a simulation-based study is carried out in which particular attention is ded-
icated to sensitivity analysis to the error variance on parameter estimation.
The first interesting application of the Bayesian inference procedure derived in Chap-
ter 3 regards a circular spatial model implemented in Chapter 5. For this purpose
we first give a general overview of the in line spatial modeling and then we focus
on point-referenced data models. For this kind of spatial models, we illustrate a
hierarchical Bayesian modeling that constitutes the basic structure even in case of
wrapped spatial model, which is successively derived. It is worth to note that the
derivation of the circular spatial model is particularly easy and intuitive using the
wrapping approach. Considering the spatial process as a characterization of a mul-
tivariate circular distribution on d spatial locations, the wrapped spatial process is
directly obtained applying the wrapping procedure described in Chapter 3 to each
component of the process. This peculiar feature to wrapping approach, together with
the easy interpretability of the wrapping distribution parameters, are the strength
of this method. In fact, the easy extension of the wrapped model to the spatial con-
text is possible thanks to the straightforward modeling of the multivariate circular
distributions. In order to show the flexibility of this approach, we show some simu-
lated examples inherent two spatial processes with different dimensions. Moreover,
an extensive simulation plan is projected to find out the better parameter set up in
case of high dimensional multivariate model. The case of a spatial process for real
wave direction data recorded in 27 spatial locations in Adriatic sea concludes the
chapter.
The application where the flexibility of the wrapping approach appears more evi-
dently and, at the same time, essential for the implementation of complex models, is
reported in Chapter 6. In this chapter, in fact, we introduce an in line spatiotemporal
model and its related Bayesian model specification. Moreover, a dynamic spatiotem-
poral modeling is illustrated. Even in this case of a very complex model structure,
we can derive the corresponding wrapped circular model straightforwardly. A simu-
lated example of a dynamic spatiotemporal measurement error model concludes the
chapter. Even and especially in this case, where the complexity of the implemented
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Chapter 1. Introduction

model induces an inference procedure computationally intensive, the implementa-
tion is made possible thanks to the ease ‘trasportability’ of the in line inference
procedure to the circular wrapped model.
It is worth to note that the models presented in Chapters 5 and 6 represent the
first examples in literature of spatial (point-referenced) and dynamic spatiotempo-
ral models, respectively, for circular data.
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Chapter 2

Circular Data

2.1 Introduction

Circular data are rather special, but they arise in many different contexts. Many
examples of circular data are found in various scientific fields such as earth sciences,
meteorology ( as for example the wind directions), biology (e.g. the orientations of
turtles after laying eggs), physics, etc. Standard statistical techniques can not be
used to analyze circular data. This is due to the circular geometry of the sample
space. For example, let x1, x2, . . . , xn be independent observations on the unit circle,
such that 0 < xi < 2π, i = 1, 2,. . . , n; the mean direction x̄, that is the mean of
the x1, . . . , xn circular observations, is not equal to 1

n

∑n
i=1 xi. To see this, consider

a sample of size 2 on the circle consisting of the angles 1◦ and 359◦. Cutting the
circle at 0◦ would give the sample mean direction as 180◦, whereas cutting the circle
at 180◦ = (−180◦) would give the sample mean as 0◦. So, the resulting summary
statistics depend strongly on the point where the circle is cut.
It turns out that the appropriate way of constructing summary statistics for circular
data is to regard points on the circle as unit vectors in the plane and then take polar
coordinates of the sample mean of these vectors.

There are two useful ways of regarding directions in the plane: as angles and as
unit complex numbers. So, chosen an initial direction and orientation for the unit
circle, each point x on the circle can be represented by an angle θ or equivalently
by a unit complex number z. These quantities are related to x by

x = (cos θ, sin θ)T and z = eiθ = cos θ + i sin θ,

as shown in Figure 2.1
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Chapter 2. Circular Data

Figure 2.1: Representation of the direction x by angle θ and by complex number z.

These two ways to represent directions can be regarded respectively as an intrinsic
approach (directions considered as points on the circle itself) and embedding ap-
proach (directions are special points in the plane).
More details about these approaches will be argued in Section 2.4.
A last notation is useful especially in the next chapters in order to avoid misunder-
standing.

2.2 Descriptive Statistics

In this section we summarize some circular descriptive statistics useful to introduce
the argument and to understand the problems related to using this kind of data. In
particular, we describe the main location and dispersion quantities.

2.2.1 Measures of location and concentration

Let x1,. . . ,xn be unit vectors with corresponding angles θi, i = 1,. . . ,n. The mean
direction θ̄ of θ1,. . . ,θn is the direction of the resultant x1+ . . . +xn of x1,. . . ,xn.
Since the Cartesian coordinates of xi are (cos θi, sin θi), for i = 1,. . . ,n, we can
define

C̄ =
1

n

n∑
i=1

cos θi, S̄ =
1

n

n∑
i=1

sin θi (2.1)

Therefore, the mean direction, θ̄, is the solution of the equations:

cos θ̄ = C̄/R̄, sin θ̄ = S̄/R̄ (2.2)

where the mean resultant length R̄, associated with the mean direction θ̄, is given
by

R̄ = (C̄2 + S̄2)1/2. (2.3)

When R̄ > 0, θ̄ can be written explicitly as follows:
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2.2 Descriptive Statistics

θ̄ =

{
tan−1(S̄/C̄) if C̄ ≥ 0
tan−1(S̄/C̄) + π if C̄ < 0

(2.4)

From (2.1) and (2.2) it follows that

R̄ =
1

n

n∑
i=1

cos (θi − θ̄) (2.5)

and for R̄ > 0
n∑
i=1

sin (θi − θ̄) = 0 (2.6)

Equation (2.6) is analogous to

n∑
i=1

(yi − ȳ) = 0

where y1, . . . , yn are the in line observations with sample mean ȳ. As a matter of
fact, equations (2.5) and (2.6) state that the sums of deviations about the mean are
zero.
It is not difficult to show that the sample mean direction is invariant under rotation.
This can be shown supposing a new choice of initial direction, making angle α with
the original initial direction and rewrite the data points as θ′i = θi − α and C̄ ′ =
1
n

∑n
i=1 cos θ′i, S̄

′ = 1
n

∑n
i=1 sin θ′i. This equivariance is analogous to the equivariance

under translation of the sample mean of the in line observations.
Another important measure of location is the median direction. In an analogous
way for data on the line, it is possible to define the sample median direction θ̃ of
the angles θ1,. . . ,θn as any angle φ such that: (i) half of the data points lie in the
arc [φ,φ+π), and (ii) the majority of the data points are nearer to φ than to φ+π.
In particular, when the sample size n is odd, the median is one of the data points,
otherwise the sample median is taken as the midpoint of two appropriate adjacent
data points.

Measures of Concentration and Dispersion

In order to analyze concentration and dispersion of circular data, mean resultant
length R̄ given by (2.3) becomes very important. It lies in the range [0, 1] and, in
particular, R̄ = 1 implies that all the data points coincide. Thus R̄ is a measure
of concentration of the data. However, R̄ = 0 does not imply uniform dispersion
around the circle. To see this, we note, for example, that any data set of the form
θ1,. . . , θn, θ1 + π,. . . , θn + π has R̄ = 0 without being equally distributed around
the circle.
The resultant length R is the length of the vector resultant x1 + · · ·+ xn, thus,

R = nR̄
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Chapter 2. Circular Data

. For most descriptive and inferential purposes, the mean resultant length R̄ is more
important that any measure of dispersion. Using of R̄ in an inferential purposes is
argued in Section 3.4.
Moreover, using R̄ it is possible to define the circular variance:

V = 1− R̄ (2.7)

Similarly to in line variance, the smaller the value of the circular variance is, the
more concentrated the distribution will be. However, note that 0 ≤ V ≤ 1, unlike an
ordinary in line variance. Also, note that in the light of the above remark concerning
the interpretation of R̄ = 0, V = 1 does not necessarily imply a maximally dispersed
distribution.
Other measures of dispersion are the sample circular standard deviation, given by

υ = [−2 log(1− V )]1/2 = [−2 log R̄]1/2 (2.8)

and the sample circular dispersion:

δ̂ =
1− R̄2

2R̄2
(2.9)

where R̄2 denotes the mean resultant length of the doubled angles 2θ1,. . . ,2θn. The
circular dispersion δ̂ plays an important role in calculating a confidence interval for
a mean direction and in comparing and combining several sample mean directions
(see Fisher (1993, §4.4.4, §5.4.2)).

2.2.2 Sample trigonometric moment

In Section 2.2.1 the moments C̄ and S̄ were introduced for defining the sample mean
direction and the sample circular variance. It is useful to combine them into the
first trigonometric moment. In particular, θ̄ and R̄ are the angular and amplitude
components of the first trigonometric moment about the zero direction

m1
′
= C̄ + iS̄ = R̄eiθ̄ (2.10)

Extending this notation, we can define the pth trigonometric moment about the zero
direction for p = 1, 2, . . . as

mp
′
= C̄p + iS̄p = R̄pe

iθ̄p (2.11)

where

C̄p =
1

n

n∑
i=1

cos pθi S̄p =
1

n

n∑
i=1

sin pθi (2.12)

and θ̄p and R̄p denote the sample mean direction and sample mean resultant length
of pθ1, . . . ,pθn. The pth sample trigonometric moments about the mean direction are
obtained in a similar way:

mp =
1

n

n∑
i=1

cos p(θi − θ̄) + i
1

n

n∑
i=1

sin p(θi − θ̄) (2.13)
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2.3 Circular Probability Distributions

In particular, using equation (2.5) and (2.6) it holds that

m1 =
1

n

n∑
i=1

cos (θi − θ̄) = R̄ (2.14)

(because
∑n

i=1 sin (θi − θ̄) = 0), and

m2 =
1

n

n∑
i=1

cos 2(θi − θ̄) (2.15)

From the first and second trigonometric moments about zero direction, m
′
1 and m

′
2,

we obtain measures of skewness and kurtosis for circular data defined, respectively,
as

ŝ =
R̄2 sin(θ̄2 − 2θ̄)

(1− R̄)3/2
(2.16)

and

k̂ =
R̄2 cos(θ̄2 − 2θ̄) − R̄4

(1− R̄)2
(2.17)

For symmetric unimodal data sets, ŝ is nearly zero. Data from an unimodal dis-
tribution, tend to have a sample kurtosis value around zero, while more peaked
distributions have positive sample kurtosis.

Other measures of location and spread

Can be useful to define measures as the mode and the range for circular data. The
sample modal direction θ̌ is the direction corresponding to the maximum concentra-
tion of the data. One way of determining θ̌ is to find the value of θ maximizing a
density estimate f(θ), although this method depends on the amount of smoothing
involved in the density estimation procedure (see Fisher (1993, §2.2))
Finally, turning to measures of spread, we define the sample range as the length of
the smallest arc which contains all the observations.

2.3 Circular Probability Distributions

In this section basic concepts of distributional theory for circular data are introduced.
For this purpose, the distribution function and characteristic function of circular
data are defined. Moreover, population versions of trigonometric moments and
measures of locations and dispersion are introduced in order to define the probability
distribution and other characteristics of circular data.

2.3.1 Distribution function and characteristic function

Let f(θ) be the probability density function of a continuous random variable Θ,
i.e. f(θ) is a non-negative 2π periodic function such that f(θ + 2π) = f(θ) and
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Chapter 2. Circular Data

∫ 2π

0
f(θ)dθ = 1. The distribution function F (θ) can be defined over any interval

(θ1, θ2) by F (θ2)−F (θ1) =
∫ θ2
θ1
f(θ)dθ. In particular, after choosing an initial direc-

tion and an orientation of the unit circle (generally 0◦ direction and anticlockwise
orientation), F (θ) is defined as

F (θ) =

∫ θ

0

f(φ)dφ (2.18)

obviously it holds that, F (2π) = 1.
Another useful tool for handling the distribution of a random angle θ is the function
p 7→ E[eipθ]. Since θ and θ + 2π represent the same direction, it is necessary to
restrict t to integer values only. The characteristic function of a random angle θ is
the doubly-infinite sequence of complex numbers {φp : p = 0,±1, . . . } given by

φp = E[eipθ] =

∫ 2π

0

eipθf(θ)dθ, p = 0,±1,±2, . . . (2.19)

In many cases, it is useful to remember the following equivalence eipθ = cos pθ+
i sin pθ, for instance, in order to write the characteristic function, (2.19), as

φp =

∫ 2π

0

cos pθf(θ)dθ + i

∫ 2π

0

sin pθf(θ)dθ (2.20)

The complex numbers {φp : p = 0,±1, . . . } are the Fourier coefficients of the distri-
bution function F (θ). When φp’s are related to F (θ) by the formula (2.19), it is
usual to approximate

f(θ)dθ ∼=
1

2π

∞∑
p=−∞

φpe
−ipθ (2.21)

The relationship (2.21) does not carry any implication that the series is convergent,
still less that it converges to F (θ). However, from the last equation and under
opportune moment convergence constraint (i.e. if

∑∞
p=1((E[cos pθ])2 + (E[sin pθ])2)

is convergent), the random variable Θ has a density f(θ) defined almost everywhere
as

f(θ) =
1

2π

∞∑
p=−∞

φpe
−ipθ =

1

2π

{
1 + 2

∞∑
p=1

(αp cos pθ + βp sin pθ)

}
(2.22)

The characteristic function has the following properties:

i) a probability distribution on the circle is determined by its characteristic func-
tion (uniqueness property);

ii) weak convergence of distributions is equivalent to point-wise convergence of
characteristic functions, i.e. a sequence F1, F2, . . . of distribution functions
converges weakly to F if and only if φ

(n)
p → φp for p = 0,±1, . . . , where φ

(n)
p

and φp denote the characteristic function of Fn and F (see Mardia (1972, §3.3,
§4.2));
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2.3 Circular Probability Distributions

iii) let Θ1 and Θ2 be two angular random variables; the characteristic function of
(Θ1,Θ2) is defined as φp,q = E[eipθ1+iqθ2 ];

iv) the variables Θ1 and Θ2 are independent if and only if φp,q = φp φ
′
q (where φ

and φ′ are the marginal characteristic functions of Θ1 and Θ2);

v) let Sn = Θ1+ . . . +Θn be the sum of n identically distributed random variables
with common characteristic function φp, then the characteristic function of Sn
is φnp .

2.3.2 Trigonometric moments and other population charac-
teristics

In analogy with the sample trigonometric moments, (2.10)-(2.13), we can easily
define the population trigonometric moments.
The pth trigonometric moment of f(θ), p = 1, 2,. . . , is given by

µ
′
p ≡ ρpe

iµ
′
p = ρp cosµ

′
p+ isinµ

′
p

=
∫ 2π

0
cos pθf(θ)dθ + i

∫ 2π

0
sin pθf(θ)dθ

(2.23)

µ
′
p = α

′
p + iβ

′
p

(2.24)

where α
′
p and β

′
p are the pth cosine and sine moments respectively.

When p = 1, we write ρ for ρ1 and µ for µ1, i.e.

µ
′

1 = ρeiµ (2.25)

where µ is the mean direction and ρ is the (population version of) mean resultant
length .
The pth central (centred about its mean direction µ) trigonometric moment of Θ is

µp ≡ ρpe
iµp = ρp cosµp+ isinµp

=

∫ 2π

0

cos p(θ − µ)f(θ)dθ + i

∫ 2π

0

sin p(θ − µ)f(θ)dθ
(2.26)

µp = αp + iβp (2.27)

When p = 1, we get α1 = ρ and β1 = 0, since
∫ 2π

0
cos θdθ = ρ cosµ,

∫ 2π

0
sin θdθ =

ρ sinµ, so that
∫ 2π

0
cos (θ − µ)dθ = ρ and

∫ 2π

0
sin (θ − µ)dθ = 0.

Considering equations (2.23)-(2.27) and the characteristic function definitions (2.19)-
(2.20) it is easy to note that φp, αp and βp are the population versions of the pth

sample trigonometric moments m
′
p, C̄p and S̄p defined by (2.11) and (2.12). Hence

the characteristic function can be identified by the pth trigonometric moments and
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vice versa.
Replacing R̄ with ρ in the sample quantities defined in the previous Section, we can
easily obtain the population measures reported below. In particular, the circular
variance of Θ is defined by

υ = 1− ρ, 0 ≤ υ ≤ 1; (2.28)

the circular standard deviation is defined, not as
√
υ but as

σ = [−2 log(1− υ)]
1
2 ≡ (−2 log ρ)

1
2

.

Finally, the population measures of skewness and kurtosis are defined, respectively,
as

s = β2/(1− ρ)3/2

and
K = (α2 − ρ4)/(1− ρ)2.

2.4 Statistical Approaches to Model Circular Data

There are many approaches to analyze circular data. The main ones are the Em-
bedding approach, the Intrinsic approach and the Wrapping approach.

2.4.1 The embedding approach

In the embedding approach the sample space is considered as a part of a larger space
and the distributions on the Sp−1 (the circular sample space) can be obtained by
radial projection of the in line distributions on Rp.

Projected Normal Distribution

Let Y be a random vector in Rp such that Pr(Y = 0) = 0, then ‖Y‖−1Y (with
‖Y‖ is the norm of Y) is the corresponding projected distribution on Sp−1. For
instance, if Y has a p-variate Normal distribution with mean vector µ and variance-
covariance matrix Σ, Np(µ,Σ), the corresponding projected distribution on Sp−1 is
called projected Normal distribution, PNp(µ,Σ).
The most used distribution in the embedding approach is surely the projected normal
distribution in case p = 2, PN2(µ,Σ), that is obtained projecting the bivariate in
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line Normal distribution N2(µ,Σ).
The probability density function of the projected Normal distribution PN2(µ,Σ)
(Mardia, 1972) is:

Pr(θ;µ,Σ) =
ψ(θ; 0,Σ)+ | Σ |1/2 D(θ)Ψ(D(θ))ψ(| Σ |−1/2 (YTΣ−1Y)−1/2µ ∧Y)

YTΣ−1Y
(2.29)

where ψ(·; 0,Σ) denotes the probability density function of N2(0,Σ), ψ and Ψ
denote, respectively, the probability density function and the cumulative density
function of N(0, 1), Y = (cos θ, sin θ)T , µ∧Y = µ1 sin θ−µ2 cos θ with µ = (µ1, µ2)T

and

D(θ) =
YTΣ−1Y

(YTΣ−1Y)1/2

The principal properties of the projected Normal distribution are:

(i) the distribution PN2(µ,Σ) reduces to the uniform distribution if and only if
µ = 0 and Σ = σ2I2, with I2 is the (2x2) identity matrix.

(ii) projected Normal distribution can be bimodal and/or asymmetrical.

In general, the densities obtained by embedding a generic distribution on Rp onto
Sp−1, can turn out to be very complicated and hence obtaining the likelihood-based
inference can be extremely challenging. Moreover, most of the literature is focused
on developing statistical methods for the projected Normal distribution only, which
is a significant limitation of the embedding approach.

2.4.2 The intrinsic approach

In the intrinsic approach, the circle is used as the sample space. The directions are
represented as points on the circle and probability distributions are defined on the
circle directly. The main probability distributions obtained from this approach are
the Uniform, Cardioid and von Mises distributions. In the following we present, for
each of them, the probability density function, the distribution function and their
main properties.

The circular Uniform distribution Uc

The most basic distribution on the circle is the Uniform distribution. It is the unique
distribution on the circle which is invariant under rotation and reflection. With this
model, all directions between 0◦ and 360◦ are equally likely.
The uniform model for circular data becomes relevant as a null model, against which
several alternative (unimodal, multimodal) models can be tested.
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Figure 2.2: Density plot of circular Uniform distribution

The Probability density function is given by

f(θ) =
1

2π
, 0 ≤ θ ≤ 2π, (2.30)

while the Distribution function is

F (θ) =
θ

2π
, 0 ≤ θ ≤ 2π. (2.31)

Thus, for α ≤ β ≤ α + 2π it holds that

Pr(α < θ ≤ β) =
β − α

2π
(2.32)

i.e. the probability is proportional to the arc length. Its characteristic function is

φp =

{
1, p = 0
0, p 6= 0

(2.33)

Follow from equations (2.19), (2.23) and (2.28), that ρ = 0, so υ = 1 and there is no
concentration about any particular direction. The density plot is reported in Figure
2.2.

The Moments and some properties are given below:

(i) the mean direction µ is undefined;

(ii) the mean resultant length is ρ = 0;

(iii) the circular dispersion is δ =∞;

(iv) under a mild condition (see Section 4.3.1 Mardia (1972)), for any independent
and identically distributed random variables Θ1,. . . , Θn, Sn = Θ1+ . . . +Θn

tends to the uniform distribution as n → ∞. Furthermore, let Θ1 be dis-
tributed uniformly and let Θ2 have any distribution whatsoever; if Θ1 and Θ2

are independently distributed, then the characteristic function of (Θ1 + Θ2)
is given by (2.33). Hence, by the characteristic function uniqueness property,
(Θ1 + Θ2) is distributed uniformly.
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The Cardioid Distribution C(µ, ρ)

The cardioid distribution was introduced by Jeffreys (1948). This is a symmetric
unimodal two-parameter distribution, sometimes referred to as the Cosine distribu-
tion.

The probability density function is given by

f(θ) =
1

2π
{1 + 2ρ cos (θ − µ)} , 0 ≤ θ < 2π, 0 ≤ ρ ≤ 1/2 (2.34)

while the distribution function is

F (θ) = (ρ/π) sin (θ − µ) + θ/(2π), 0 ≤ θ ≤ 2π (2.35)

The Moments and some properties are:

(i) the mean direction is µ;

(ii) the mean resultant length is ρ(≤ 1/2);

(iii) the circular dispersion is δ = 1/(2ρ2);

(iv) as ρ→ 0, the distribution converges to the uniform distribution Uc.

The von Mises Distribution VM(µ, h)

This distribution was introduced by von Mises (1918) in order to study the devia-
tions of measured atomic weights from integral values. From the statistical inference
point of view, the von Mises is one of the most famous and used distributions on the
circle. This is a symmetric (about θ = µ) unimodal distribution which is commonly
used to modeling unimodal samples of circular data.

The probability density function - VM(µ, h) is

f(θ) =
1

2πJ0(h)
eh cos (θ−µ) (2.36)

where

J0(h) =
1

2π

∫ 2π

0

eh cos θdθ (2.37)

is the modified Bessel function of the first kind and order zero. The function J0 has
power series expansion given by

J0(h) =
∞∑
r=0

1

(r!)2
(h/2)2r (2.38)
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Figure 2.3: von Mises distribution with concentration parameter equal to 0.5, 1, 2,
4.

The parameter µ is the mean direction and the parameter h is known as the concen-
tration parameter. A graphical representation of von Mises with different concen-
tration parameter is reported in Figure 2.3. The mean resultant length ρ is equal
to A1(h) where it is defined as A1(h) = J1(h)/J0(h) and, in general,

Ap(h) = Jp(h)/J0(h), p = 1, 2, . . . (2.39)

with

Jp(h) =
∞∑
r=0

1

Γ(p+ r + 1)Γ(r + 1)
(h/2)2r+p (2.40)

The distribution function is given by

F (θ) = [2πJ0(h)]−1

∫ θ

0

eh cosudu (2.41)

Main moments and properties are given below.

(i) Mean direction: µ;

(ii) Mean resultant length: ρ = A1(h);

(iii) Circular dispersion: δ = [hA1(h)]−1;

(iv) αp = Ap(h) and βp = 0,p ≥ 1;

(v) φp = eipµ Jp(h)

J0(h)
;

(vi) as h→ 0, the distribution converges to the uniform distribution Uc;

(vii) as h→∞, the distribution tends to the point distribution concentrated in the
direction µ;
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2.4 Statistical Approaches to Model Circular Data

(viii) mode is at θ = µ and antimode (the opposite point in the circle at mode
point) is at θ = µ+ π. Note that VM(µ+ π, h) and VM(µ,−h) are the same
distribution, so to eliminate this indeterminacy of the parameters µ and h, it
is usual to take h ≥ 0;

(xi) the ratio of the density at the mode to the density at the antimode is given
by e2h, so that the larger the value of h the greater is the clustering around
the mode.

The von Mises distribution is perhaps the most prominent and used in literature, and
its fame is due to the possibility of calculating the maximum likelihood parameter
estimations. But one of the main drawbacks of this approach is that there are not
many distributions available other than the von Mises and mixtures of von Mises
distributions. Moreover, the extension to multivariate case for this distribution is
still an open problem. Only in last recent work (Mardia et al., 2007, 2008) we can
see some applications of bivariate and trivariate von Mises distribution but their
inference needs quite complex estimation procedure. These are the reasons why the
wrapping approach, described in next section is often preferred to the previous ones.

2.4.3 Wrapping approach

The wrapping approach consists to wrap a known distribution in the real line around
a circumference of a circle with a unit radius. The main characteristics of this ap-
proach is the flexibility: a rich class of distributions on the circle can be obtained
using the wrapping technique because it is possible to wrap any known distribution
in the real line onto the circle.

Wrapped distribution -general

Let Y be a in line random variable with probability density function f(y), the
corresponding circular random variable Xw is obtained by the following wrapping
procedure:

Xw = Y (mod2π) (2.42)

The probability density function fw(θ) of Xw is obtained by wrapping f(y), defined
on R, around the circumference of a circle of unit radius, that is

fw(θ) =
∞∑

k=−∞

f(θ + 2kπ), 0 ≤ θ < 2π (2.43)

with corresponding distribution function given by

Fw(θ) =
∞∑

k=−∞

F (θ + 2kπ)− F (2kπ), 0 ≤ θ < 2π (2.44)

where F is the distribution function of Y .
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The main properties are:

(a) (y1 + y2)w = y1w + y2w; i.e. the wrapping procedure is a homomorphism from
R to the circle.

(b) If the characteristic function of Y is φ, then the characteristic function {φp : p = 0,±1, . . . }
of Xw is given by

φp = φ(p). (2.45)

To see this:

φp =

∫ 2π

0

eipθfw(θ)dθ =
∞∑

k=−∞

∫ 2π(k+1)

2πk

eipθf(θ)dθ =

∫ ∞
∞

eipyf(y)dy = φ(p).

(c) If φ is integrable then Y has a density and

fw(θ) =
∞∑

k=−∞

f(θ + 2kπ) =
1

2π

{
1 + 2

∞∑
p=1

(αp cos pθ + βp sin pθ)

}
(2.46)

where φ(p) = αp + iβp. This result follows from (2.43) and from (2.44) and
from considering the series

∑∞
p=1 (α2

p + β2
p) convergent because it holds that

∞∑
p

| φp |2 ≤
∞∑
p

| φp | ≤
∫ ∞
−∞
| φ(p) | dp.

(d) If Y is infinitely divisible, then Xw is infinitely divisible.

(e) There are (infinitely) many distributions on the line which can be wrapped
onto any given distribution on the circle. To see this, let g be the probability
density function of a distribution on the circle and define a probability density
function on the line by

f(y) = prg(y), 2rπ < y ≤ 2π(r + 1), r = 0,±1,±2, . . .

where pr are any non-negative numbers such that
∑∞

r=−∞ pr = 1. Then fw = g.

Now, in the following subsections, we consider the main wrapped distributions.

Wrapped Poisson Distribution

Consider an in line random variable on the integers Y . Using a modified wrapping
procedure, we can obtain the discrete wrapped random variable as:

Xw = 2πY (mod2πm) (2.47)

with support on the lattice {2πr/m : r = 0, 1, . . . ,m − 1} on the circle. In other
words, just as the reduction modulo 2π wraps the in line onto the circle, so (if m is
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2.4 Statistical Approaches to Model Circular Data

a positive integer) the reduction modulo 2πm wraps the integer onto the group of
mth roots of 1, regarded as a subgroup of the circle (Mardia and Jupp, 1999).
The probability density function of Xw is given by:

Pr

(
xw =

2πr

m

)
=

∞∑
k=−∞

p(r + km), r = 0, 1, . . . ,m− 1 (2.48)

where p is the probability function of the in line variable Y .
In particular, if Y has the Poisson distribution with mean λ, then, from (2.48), Xw

has the wrapped Poisson distribution with probability function given by:

Pr

(
xw =

2πr

m

)
= e−λ

∞∑
k=0

λr+km

(r + km)!
, r = 0, 1, . . . ,m− 1 (2.49)

From (2.45), the characteristic function of θ is

φp = exp{λ(1− e2πip/m)}

.

Wrapped Cauchy Distribution

Let Y be the Cauchy in line distribution with probability density function

f(y;µ, a) =
1

π

a

a2 + (y − µ)2
, −∞ < µ <∞, a > 0;

and characteristic function is e−a|p|−ipµ. From (2.46) we are able to derive the wrapped
Cauchy distribution, WC(µ, ρ), with density

fw(θ;µ, ρ) =
∞∑

k=−∞

f(θ + 2πk;µ, a) =
1

2π

{
1 + 2

∞∑
p=1

ρp cos p(θ − µ)

}
(2.50)

where ρ = e−a.

Properties:

(i) the mean direction is µ(mod2π) and the mean resultant length is ρ;

(ii) the WC(µ, ρ) distribution is unimodal and symmetric about µ;

(iii) as ρ→ 0 it tends to uniform distribution and as ρ→ 1 it becomes concentrated
at the point µ.
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Wrapped Normal distribution

This is a symmetric unimodal two-parameter distribution which can be obtained by
wrapping the in line Normal distribution N(µ̃, σ2) around the circle, with

σ2 = −2 log ρ

i.e.
ρ = e−σ

2/2 (2.51)

From the (2.43), the probability density function of the wrapped Normal distribution,
WN(µ, ρ), is

fw(θ) =
1

σ
√

2π

∞∑
k=−∞

exp

{
−(θ − µ+ 2kπ)2

2σ2

}
(2.52)

Since the characteristic function of N(µ̃, σ2) is given by φ(p) = e(iµp−p2σ2/2), from
the property (b) of the wrapped distribution derives that

φp = eiµp−p
2σ2/2, αp = e−p

2σ2/2 cos pµ, βp = e−p
2σ2/2 sin pµ

Using the previous quantities in equation (2.46), we obtain an useful representation
of the density function (2.52) as

fw(θ) =
1

2π

{
1 + 2

∞∑
p=1

ρp
2

cos p(θ − µ)

}
(2.53)

For practical purposes, the probability density function (2.53) can be approximated
adequately by the first three terms when σ2 > 2π, while for σ2 ≤ 2π the term with
k = 0 of (2.52) gives a reasonable approximation, (see Mardia and Jupp, 1999, p.50).

Moments and properties

(i) the mean direction is µ = µ̃(mod2π);

(ii) the mean resultant length is ρ = e−σ
2/2. Properties (i) and (ii) indicate a

correspondence between parameters of in line and circular distribution.

(iii) Circular dispersion: δ = (1− ρ4)/(2ρ2);

(iv) as ρ→ 0, the distribution converges to the uniform distribution Uc;

(v) as ρ→ 1, the distribution tends to the point distribution concentrated in the
direction µ;

(vi) the mode is at θ = µ;

(vii) if θ ∼ WN(µ, ρ) then (θ − ψ) ∼ WN(µ− ψ, ρ);
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2.4 Statistical Approaches to Model Circular Data

Figure 2.4: In line Normal distribution (top panel) and corresponding wrapped
Normal distribution (bottom panel).

(viii) from property (a) of the wrapped distributions and from equation (2.51) it
follows that if Θ1 and Θ2 are two independent variables distributed as wrapped
Normal, Θi ∼ WN(µi, ρi) i = 1, 2, then

(Θ1 + Θ2) ∼ WN(µ1 + µ2, ρ1ρ2).

Here we present only some of the circular distributions that we can obtain using
wrapping method but in theory it is possible to derive a large (infinite) number of
circular distributions, as many as the in line distributions are. This is of course an
important advantage respect to the intrinsic approach. Moreover, in the majority
of the wrapped distribution there is a correspondence between the in line parame-
ters and corresponding wrapped parameters. This allows a easy interpretability of
circular parameters and, then, of the all circular inference results.

2.4.4 Relationship among approaches and circular distribu-
tions

Considering the von Mises distribution, VM(µ, h), when h = 0 it correspond to the
circular Uniform distribution. Moreover, the approximation ey ' 1 + y shows that
for small h, the von Mises can be approximate to Cardioid distribution:

VM(µ, h) ' C(µ, h/2) (2.54)
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Chapter 2. Circular Data

Thus a von Mises distribution with a small concentration parameter can be ap-
proximated by the Cardioid distribution with the same mean direction and mean
resultant length equal to h/2. For large h, instead, it can be shown that, given
Θ ∼ VM(µ, h), we have

[h−1/2(Θ− µ)] ∼ N(0, 1), h→∞ (2.55)

More generally, any von Mises distribution can be approximated by a wrapped
Normal distribution:

VM(µ, h) ∼= WN(µ,A1(h)), h→∞ (2.56)

where the A1(h) is defined by equation (2.39). Although the approximation (2.56)
was derived as a first-order approximation for large h, Kent (1978) has shown that
the approximation holds to a higher order in h; more precisely:

fVM(θ;µ, h)− fWN(θ;µ,A1(h)) = O(h−1/2), h→∞ (2.57)

where fVM and fWN are the densities of the von Mises VM(µ, h) and the wrapped
Normal WN(µ,A1(h)) distribution, respectively. Stephens (1963) has numerically
verified that the approximation (2.57) is satisfied for intermediate values of h. The
worst match between a von Mises distribution and the wrapped Normal distribution
occurs for h ∼= 1.4, but also in this case the two distributions are very close. The
von Mises is also close to the wrapped Cauchy distribution WC(µ,A1(h)) with the
same mean direction and mean resultant length. This means that statistician can
choose the most appropriate approach and, consequently, the most appropriate dis-
tributions according to his purpose. In particular, from statistical inference point of
view, the intrinsic approach with von Mises distribution is the most suitable method
to obtain the maximum likelihood parameter estimates. With the other approaches,
instead, this result is unfeasible. On the other hand, for practical purposes, where
the flexibility and interpretability are often the needful requirements, the wrapping
approach performs better. In the last years, in fact, several developments for the
wrapping approach have been focused on both to extend the wrapped family of cir-
cular distributions and to improve their inferential results.

2.5 Discussion

In this chapter we illustrate some basic tool to handle circular data. We first give
measurements of location, concentration and the other descriptive statistics, then,
we provide some element of circular distribution theory. In the second part of
the chapter, we describe the three different approaches to model circular data. In
particular, for each of them, we illustrate the main circular distributions providing
descriptive and probabilistic characteristics and properties. Finally, the relationships
between the approaches and related distributions are discussed. In particular, from a
statistical inference point of view, the intrinsic approach with von Mises distribution
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is the only one that allows a feasible maximum likelihood estimate of the parameters.
Conversely, the wrapping approach, with its many circular distribution, appears
particularly suitable for the practical purpose considering the ease of interpreting of
the parameters. Finally, the embedding approach with its projected distributions is
the method that arises difficulties in terms of both inference results and parameters
interpretation.

In the next chapter we deeply analyze the wrapping approach in order to illus-
trate the main features and properties of this method. Our study aims to provide a
method for extending to circular data the inferential procedures and models applied
to in line data. In particular, we aim to apply to circular data, procedures and
models of spatial and spatiotemporal contexts.
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Chapter 3

Wrapping Approach

In the previous chapter we anticipate as the wrapping approach builds models for
circular data by wrapping an in line density function f(y), defined on R, around the
circle obtaining the wrapped density function fw(x) defined by

fw(x) =
∞∑

k=−∞

f(x+ 2kπ) 0 ≤ x < 2π. (3.1)

Thus, given a circular random variable X defined in [0, 2π), through the trans-
formation (X + 2Kπ), with unobservable variable K ∈ Z, we extend the support
of X to R so that we can apply an in line density function f(y) to the argument
(X + 2Kπ). In other words, X represents a wrapped version of the in line random
variable Y , which has probability density function f(y | Ψ) that depends on an
unknown parameter vector Ψ.
The great advantage of the class of wrapped models, and in particular of the wrapped
Normal model, is the possibility of extending to circular multivariate variables and
processes in a easy way. For example, suppose Y is a d-dimensional random vec-
tor following the multivariate Normal distribution with probability density function
f(y | µ,Σ). The wrapping procedure Xw = Y (mod2π) can be applied component-
wise to obtain a d-dimensional multivariate distribution on the circle, with density

fw(x1, . . . , xd) =
∞∑

k1=−∞

· · ·
∞∑

kd=−∞

f(x1 + 2k1π, . . . , xd + 2kdπ) (3.2)

Marginally, each variable Xi has a univariate wrapped Normal distribution, while
the correlation structure is defined by the variance-covariance matrix, Σ of the in
line distribution f(y).
Suppose to have n replications of the d-dimensional Normal variable Y , in matrix
form we can write:

Y = X + 2Kπ (3.3)

where K = {K(1), . . . , K(n)}′ and X = {X(1), . . . , X(n)}′ denotes a set of n d-
dimensional circular random variables. Each X(i), i = 1, . . . , n has density function
on domain [0, 2π)d and such that (X(i), X(j), i 6= j) are assumed to be pairwise in-
dependent and identically distributed .
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More precisely, equation (3.3) can be rewritten as:
Y (1)

...
Y (i)

...
Y (n)

 =


X(1) + 2K(1)π

...
X(i) + 2K(i)π

...
X(n) + 2K(n)π

 =


(X

(1)
1 + 2K

(1)
1 π, . . . , X

(1)
d + 2K

(1)
d π)

...

(X
(i)
1 + 2K

(i)
1 π, . . . , X

(i)
d + 2K

(i)
d π)

...

(X
(n)
1 + 2K

(n)
1 π, . . . , X

(n)
d + 2K

(n)
d π)


(3.4)

Thus, the observed vector X(i) is one component of the vector pair (X(i), K(i)),
where the component K(i), referred to as the vector of wrapping coefficients, is
unobservable.

This construction can be easily extended to circular stochastic processes, either
in time or space. As a matter of fact, considering the d-components of (3.2) as
variables of a process observed at d time points or d spatial locations and denoting
by fd the marginal joint density of this process, the corresponding wrapped density
is given by:

fd(x1, . . . , xd) =
∞∑

k1=−∞

· · ·
∞∑

kd=−∞

f(x1 + 2k1π, . . . , xd + 2kdπ). (3.5)

This class of models was studied in time series modeling by Breckling (1989), while
general theory of wrapped circular distributions is introduced and discussed in Fisher
(1993), Mardia and Jupp (1999) and Jammalamadaka and SenGupta (2001).
The extension to multivariate case given by (3.2) and (3.5) is one of the major ad-
vantages of this approach. Because of the growing amount of data, the possibility
of modeling large data sets, often recorded in multivariate framework, is a focus
of the modern methodologies. For this reason, in the last years, several attempts
have been done to extend the most used circular distribution, the von Mises, to
multivariate case. Only in the last recent literature we can find some results about
this issue: Mardia et al. (2007), Hughes (2007) and Mardia et al. (2008), but even
in these works, the modeled dimension is not higher than three and, however, with
no few difficulties for the definition and estimation of the probability models.
Wrapping distributions and processes, therefore, provide a convenient and intuitive
way to generate circular models. Moreover, the wrapped models have further advan-
tages as the ease of interpretation due to the correspondence between the circular
and wrapped parameters (see properties (i) and (ii) of the wrapped Normal distri-
bution in Section 2.4.3). Besides, the in line distribution properties still hold under
the wrapping procedure.

The difficulty in using such models stems from the complexity of inference: work-
ing directly with the density (3.1) or (3.2), the parameter estimation computing
is intractable. A solution was developed by Fisher and Lee (1994) who used the
Expectation-Maximization (EM) algorithm to obtain parameter estimates, treat-
ing the wrapping coefficients k′s as missing data. Though elegant this procedure
presents high computational complexity: the E-step involves ratios of large infinite
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sums which need to be approximated at each step making the algorithm compu-
tationally inefficient. More recently, Coles (1998) and Ravindran (2002) adopted a
data augmentation approach to estimate the missing unobserved wrapping coeffi-
cients and the other parameters.
In this work we follow and extend the procedure proposed by Coles (1998) to a mul-
tivariate high dimensional process. In particular, we aim to deepen the knowledge
about the wrapping approach and the role of the wrapping coefficients k′s in the
parameter estimation in order to overcome the problems and difficulties in inference
indicated, but not completely solved, in Coles (1998).

3.1 Parameter Estimation

The main difficulty in working with the wrapping approach is that the form of the
density function is constituted by large sums, and cannot be simplified as close form.
In order to solve this drawback, we assume that a circular distribution is obtained
by wrapping onto the circle of an in line distribution. Therefore, if it is possible to
unwrap the distribution on the circle and to obtain a distribution on the real line,
it will be possible to use all the standard statistical techniques for variables defined
on the real line. In other words, given a circular random variable X, it is always
possible to write the corresponding in line random variable Y as Y = (X + 2Kπ),
where X is defined in [0, 2π) and K is the unobservable variable representing the
number of times Y is wrapped to obtain X. Therefore, if it is feasible to add the
information on K, and thus unwrap X, then it is possible to work directly with Y .

In this sense, making inference on X, whose density function fw(y) is written
in (3.1), is intractable. The in line density function f(y), instead, is simpler and
describes the density of the in line variable Y or, equivalently, of the vector pair
(X,K) of which we observe only X. The equivalence

Y ≡ (X,K) (3.6)

has to be interpreted as the joint distribution for (X,K) with argument (X + 2Kπ)
and parameters vector Ψ.
As K is a unobservable variable, a natural and convenient approach, that enables to
overcome the uncertainty on K by writing conditional distribution, is the Bayesian
via Markov Chain Monte Carlo (MCMC) methods. The basis of such methods is to
simulate a Markov chain whose equilibrium distribution is proportional to a required
function π(t), which, in our case, is the posterior distribution of (K,Ψ).
The most general MCMC method is the Metropolis-Hastings (M-H) algorithm that
we briefly introduce.
Given a current value t(i) = t, a proposed value t′ is simulated from an arbitrary
transition density q(t′ | t). Then, t(i+1) is adopted according to the following rule:

t(i+1) =

{
t′ with probability ∆(t(i), t′)
t(i) with probability 1−∆(t(i), t′)

(3.7)
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where

∆(t, t′) = min

{
1,
π(t′)q(t | t′)
π(t)q(t′ | t)

}
(3.8)

In our situation, t is multivariate and defined by t = {Ψ,K}, and the algorithm
is applied in cycles to subsets of t. This is done simply replacing π(t) in equation
(3.8) with the appropriate conditional density, πm(tm | t−m), and cycling through
m, with a proposed transition density qm for each component. For more details, see
Smith and Roberts (1993). The implementation of the M-H algorithm is carried out
by successively updating the components of Ψ, the parameter vector of the in line
distribution, and the wrapping coefficient vector, K, one component at a time.
Note that, in the multivariate case, each vector X(i) carries its own vector K(i) =
(k

(i)
1 , . . . , k

(i)
d ) of missing components, so the number of unknown parameters in this

model is large. But, recalling equation (3.4), the algorithm is simplified by the
following identities:

Pr(Ψ | X,K) =
Pr(X,K | Ψ)Pr(Ψ)

Pr(X,K)
∝ Pr(X,K | Ψ)Pr(Ψ) (3.9)

and

Pr(k
(i)
j | X,K(−i), k

(i)
−j,Ψ) = Pr(k

(i)
j | X(i), k

(i)
−j,Ψ)

=
Pr(X(i), k(i) | Ψ)

Pr(X(i) | Ψ)

∝ Pr(X(i), k(i) | Ψ), i = 1, . . . , n; j = 1, . . . , d

(3.10)

Henceforth, we assume Y and, then (X,K), distributed as multivariate Normal
densities with parameter vector Ψ = {µ,Σ}, therefore, Pr(X(i), k(i) | Ψ) is a multi-
variate Normal density function, while Pr(X,K | Ψ) is the product of such functions
due to the conditional independence of the X(i). Substituting the posterior densi-
ties (3.9) and (3.10) into equation (3.8) leads to easy expressions for the acceptance
probability of proposal transitions in the simulated Markov chain.
One possible choice for the transition density qm is based on a random walk. In this
case, for each component of Ψ a transition of the form

t′ = t+ ε (3.11)

is adopted where ε ∼ Uniform[−a, a].

Instead, the transition model for each wrapping coefficient k
(i)
j is a discrete random

walk given by
k′ = k + ε (3.12)

where ε = {−1, 0, 1} with probabilities {p, 1− 2p, p} respectively, for some oppor-
tune choice of p.
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Figure 3.1: Univariate example 1: histogram of the in line data Y, simulated from
N(0, π/4), and histogram and rose diagram of the corresponding wrapped data.

Univariate Example 1 Univariate Example 2
Parameter True Posterior 95% True Posterior 95%

Value Median Posterior Interval Values Median Posterior Interval
µ 0 0.007 [-0.016, 0.008] 1 1.148 [0.768,1.425]
σ2 π/4 0.775 [0.713, 0.822] π 2.578 [2.367, 3.624]

Table 3.1: Estimates of the two univariate wrapped Normal distributions plotted in
Figure 3.1

For more details about estimation procedure see Coles (1998). Wide literature can
be found for having a general overview about Bayesian inference by MCMC algo-
rithms: among the most recent works we cite Gelman et al. (2004), Barbieri (1996),
Gelman et al. (1996), Besag et al. (1995), Daniel and Gatsonis (1999), Gelfand et al.
(1995), Gelfand and Smith (1990), Harville and Zimmerman (1996).

3.1.1 Simulated examples

In this section we present some simulated examples of univariate and multivariate
cases in order to show the M-H algorithm for the parameter estimation procedure
described in the previous section. In the univariate case we apply the M-H to
two simulated data sets drawn from univariate Normal distributions, N(0, π/4) and
N(1, π) respectively. These data sets are depicted in Figure 3.1-3.2.

For the first example we use quite flat priors for both parameters µ and σ2; in
particular a Normal prior N(0, 10) for the mean parameter µ and an inverse Gamma
prior InvGamma(4, 10) for σ2. A different setting, instead, is adopted for the second
example: a Normal prior N(1, 0.5) for µ, and an InvGamma(10, 40) for σ2 that are
more informative with respect to the priors of the first example. To decide this kind
of setting we followed the suggestions written in Coles (1998), where the author
recommends to use more informative priors when the data variability increases.
The Markov chain Monte Carlo outputs for these two data sets are summarized in
Table 3.1 and depicted in Figure 3.3.
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Figure 3.2: Univariate example 2: histogram of in line data Y, simulated from
N(1, π), and histogram and rose diagram of the corresponding wrapped data.

Figure 3.3: Traces of the estimated parameter chains of univariate examples 1 and
2
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Figure 3.4: Bivariate example: scatter plot of the in line data Y, simulated from
N2(µ = (0, 1)′ ,Σ), and histogram and rose diagram of the corresponding wrapped

components.

Bivariate Example
Parameter True Posterior 95%

Value Median Posterior Interval
µ1 0 -0.092 [-0.167, 0.123]
µ2 1 1.042 [0.986, 1.208]
σ2

1 1 1.067 [0.967, 1.245]
σ2

2 1 1.103 [0.920, 1.289]
σ12 0.7 0.668 [0.562, 0.845]

Table 3.2: Parameter estimates of the bivariate wrapped Normal distribution plotted
in Figure 3.4

More generally, we can generalize the parameter estimation procedure described
in the previous section to the multivariate case by using an inverse Wishart prior for
the variance-covariance matrix, Σ, of the multivariate wrapped Normal distribution.
For this example, we simulated the in line data Y from a bivariate Normal distribu-
tion N2(µ,Σ) and then applied the wrapping procedure componentwise in order to
obtain the corresponding two circular components X1 and X2. The simulated data
specification are reported in Table 3.2 and some graphical representations are given
in Figure 3.4.

For this bivariate case, the transition density for the variance-covariance matrix is
an inverse Wishart with d + 1 degrees of freedom (where d is the dimension of the
multivariate in line distribution) and scale matrix equal to the variance-covariance
matrix at the previous iteration. More details about using the Wishart and inverse
Wishart prior for variance-covariance matrix in MCMC algorithm can be found in
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Univariate Example 1 Univariate Example 2
Parameter Z-score Z-score

µ 0.169 1.983
σ2 -0.234 -1.315

Table 3.3: Geweke Z-score diagnostic for the parameters of both univariate examples.

Gelman (2006) and Kass and Natarajan (2006); general details about the random
walk transition density in Metropolis-Hastings algorithms can be read in Chib and
Greenberg (1998) and in Ishwarant and Gatsonis (2000).
Table 3.2 shows that the parameter estimation produces good results also for the
generalized bivariate Normal distribution, with posterior estimates very close to true
values and small posterior intervals.

Through the examples just examined, we showed the easy applicability of the
wrapping approach in both the univariate and the more general multivariate cases.
Moreover, analyzing the results obtained from univariate examples, we remark good
estimates in the first example where the simulated data have been drawn from a
distribution with small variance (equal to π/4), whereas very poor estimates have
been obtained from the second example data which has quite large variability (equal
to π). In the first univariate example, in fact, the posterior interval lengths for µ
and σ are respectively equal to 0.024 and 0.109; in the second example, instead, they
are larger: 0.667 and 1.257, respectively, suggesting a low reliability of estimates.
Besides, looking at the chain traces reported in Figure 3.3 (bottom plots), we realize
the chain convergence failure. The autocorrelation function and the Geweke conver-
gence diagnostic (Geweke, 1992), reported respectively in Figure 3.5 and in Table
3.3, confirm this failure. In the second example, in fact, the chains of both param-
eters have high correlation and the Z-score falls in the extreme tail of the standard
Normal distribution, rejecting the null hypothesis of equality of means between the
first and last part of the chain.
The estimate unreliability problem highlighted for data sets with large variability
was very briefly discussed by Coles (1998). He asserts that when the in line data
exhibit large variance, there is little information available in wrapped data to as-
certain how many times an in line observation has been wrapped. In other words,
when the data have large variance, determining the wrapping coefficients k’s is very
difficult and all inferential results are instable.

In the next section, we analyze the central role of the k’s coefficients in the
wrapping approach in order to detect when and how the identifiability problem
for k’s arises. Moreover, we aim to use the acquired knowledge on k’s to improve
inference and, consequently, the estimate reliability for any data sets.

To analyze the role and the behavior of the wrapping coefficients in inference
and to verify the k’s identifiability problem for large variability data sets, we apply
the parameter estimation procedure described in Section 3.1 to several simulated
data sets. In particular, we first detect the data sets where the inference procedure

34



3.2 Sample Size Effect on Parameter Estimation

Figure 3.5: Autocorrelation functions of the estimated parameters of the univariate
example 1 and 2.

fails, and, for these data, we investigate the role of the k coefficients in inference.
For the first purpose, we take into account different data scenarios using data sets
that differ both in dimension (number of replications) and in variability.

3.2 Sample Size Effect on Parameter Estimation

In this section we show some applications of the parameter estimation procedure in
the case of univariate wrapped Normal model: in particular, here we investigate the
effects of changing the sample size (or number of replications), n. Moreover, for all
simulated data, we analyze the influence of the prior distributions on the posterior
estimates.

We start our analysis considering four data sets that differ in the number of
replications. As our aim here is to study exclusively the sample size effect on the es-
timates, we decide to use the same distribution of the univariate example 1 described
in Section 3.1 that gave good results. For this purpose, we draw four samples from
the in line Gaussian distributions with zero mean, variance equal to π/4 and sample
size n equal to 10, 40, 100 and 300, respectively. Then we wrap these simulated
data to obtain the corresponding wrapped Normal data sets.
In figure 3.6 we report the histograms of the in line variables and the rose diagrams
with density estimates of the corresponding wrapped variables. We can note that
when the number of replications is less than 40, the density shape is quite irreg-
ular, showing more than one mode, so in these cases, we expect a poor inference
on parameter estimates. In cases (c) and (d), where the number of replications is
instead more than 100, the data distribution is regular, and good estimation results
are expected.
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Figure 3.6: Histograms of the in line data simulated from N(0, π/4) and corre-
sponding rose diagrams, density estimates (red lines) and means (blue dots) of the
wrapped data. The number of replications n is respectively equal to 10 (a), 40 (b),
100 (c) and 300 (d).
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Flat Priors Informative Priors
Parameter Z-score Z-score Z-score Z-score Z-score Z-score Z-score Z-score

(a) (b) (c) (d) (a) (b) (c) (d)
µ 0.569 0.427 0.201 0.186 0.552 0.331 0.210 0.113
σ2 -0.901 -0.723 -0.702 -0.526 -0.628 -0.567 -0.354 -0.298

Table 3.4: Geweke Z-score diagnostic (computed with burn-in of 1000 iteration) for
the chains depicted in Figures 3.7 and 3.8

µ σ2

True Posterior 95% True Posterior 95%
N Value Median Posterior Interval Values Median Posterior Interval
10 0 -0.012 [-0.511, 0.530] π/4=0.785 0.626 [0.293, 1.438]
40 0 -0.077 [-0.356, 0.200] π/4=0.785 0.786 [0.538, 1.217]
100 0 0.037 [-0.130, 0.208] π/4=0.785 0.761 [0.569, 1.014]
300 0 -0.008 [-0.106, 0.092] π/4=0.785 0.779 [0.671, 0.916]

Table 3.5: Posterior results for the four data sets plotted in Figure 3.6, obtained
using the flat priors: µ ∼ N(0, 25) and σ2 ∼ InvGamma(4, 8)

In tables 3.5 and 3.6 the results of inference for the four data set are reported. To
obtain the estimates in Table 3.5 we use quite flat priors on µ and σ2: µ ∼ N(0, 25)
and σ2 ∼ InvGamma(4, 8). Instead, to obtain the results in Table 3.6, we use more
informative priors that are: µ ∼ N(0, 2) and σ2 ∼ InvGamma(4, 2). As expected,
the smaller the n value is, the less accurate the estimates are. As a matter of fact,
the 95% posterior interval lengths increase as the number of replications decreases.
In the case of flat priors, for the parameter µ the length is 1.041 with n = 10 and
0.198 with n = 300; while in case of more informative priors we have a posterior
interval length of 1.021 for n = 10 and of 0.196 for n = 300. We have basically the
same behavior of the posterior interval length for the variance σ2.
Finally, viewing the chain plots in Figures 3.7-3.8, we note that the priors have no so
much influence both on the parameter estimates, that mainly depend on the sample
dimension n, and on the chains convergence, that occurs quite quickly. For both flat
and more informative priors, in fact, the chains convergence occurs after only 1000
iteration and the Geweke diagnostic reported in Table 3.4 confirms this evidence.
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µ σ2

True Posterior 95% True Posterior 95%
N Values Median Posterior Interval Values Median Posterior Interval
10 0 -0.032 [-0.506, 0.515] π/4=0.785 0.831 [0.278, 1.388]
40 0 -0.008 [-0.258, 0.268] π/4=0.785 0.751 [0.534, 1.152]
100 0 -0.027 [-0.192, 0.138] π/4=0.785 0.728 [0.569, 0.957]
300 0 -0.019 [-0.122, 0.074] π/4=0.785 0.761 [0.655, 0.903]

Table 3.6: Posterior results for the four data sets plotted in Figure 3.6, obtained
using the priors: µ ∼ N(0, 2) and σ2 ∼ InvGamma(4, 2)

Figure 3.7: MCMC chain traces for µ and σ2 parameters of the four simulated data
sets. Outputs obtained with flat priors µ ∼ N(0, 25) and σ2 ∼ InvGamma(4, 8)
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Figure 3.8: MCMC chain traces for µ and σ2 parameters of the four simulated
data sets. Outputs obtained with informative priors µ ∼ N(0, 2) and σ2 ∼
InvGamma(4, 2)
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µ σ2

True Posterior 95% True Posterior 95%
σ2 Value Median Posterior Interval Values Median Posterior Interval
π/10 0 0.026 [-0.048, 0.151] π/10=0.314 0.328 [0.283, 0.391]
π/8 0 0.002 [-0.052, 0.089] π/8=0.393 0.372 [0.314, 0.457]
π/6 0 -0.071 [-0.172, 0.027] π/6=0.524 0.495 [0.382, 0.656]
π/4 0 -0.003 [-0.122, 0.189] π/4=0.785 0.837 [0.578, 1.033]
π/2 0 0.008 [-0.159, 0.182] π/2=1.571 1.278 [0.856, 1.778]
π 0 -0.146 [-0.323, 0.345] π=3.142 2.487 [2.179, 3.622]

3π/2 0 0.291 [-1.150, 1.537] 3π/2=4.712 5.956 [2.894, 9.115]

Table 3.7: Posterior results for the seven data sets plotted in Figure 3.7, obtained
using the following flat priors: µ ∼ N(0, 30) and σ2 ∼ InvGamma(4, 8)

3.3 Variability Effect on Parameter Estimation

Now we deal with the effect of modifying the data set variability on the parameter
estimates. As in the previous examples, we consider several data sets that, in this
case, differ in variability, while the number of replications n remains constant. For
this purpose we choose the sample size n equal to 300, i.e. the sample size that in
the previous subsection gave the best results. Besides, we carry out the variability
effect analysis considering also the influence of the prior distributions on the posterior
estimates.

We simulate seven wrapped Normal data sets by wrapping the in line data sim-
ulated from Gaussian Normal distributions that have zero mean and variance equal
to π/10, π/8, π/6, π/4, π/2, π and 3π/2, respectively.
In Figure 3.9 we can see the histograms and the rose diagrams of the seven data sets
used for the analysis. It is worth noting plots (f) and (g): they clearly show that
when the in line variance is larger than π the corresponding wrapped distribution
is highly dispersed and seems very similar to the circular Uniform distribution.
The MCMC inference results for these seven data sets are summarized in Tables
3.7-3.8. In particular, Table 3.7 refers to the case of quite flat priors on the parame-
ters, that is µ ∼ N(0, 30) and σ2 ∼ InvGamma(4, 8), while Table 3.8 considers the
case of more informative priors that is µ ∼ N(0, 1) and σ2 ∼ InvGamma(4, 2).

At a first sight, we can say that the results in Table 3.8 are more accurate than those
in Table 3.7. The estimates are closer to the true values and the posterior interval
lengths are smaller when the priors are more informative. In particular, considering
the parameter µ, the interval lengths are between 0.141 and 2.687 with flat priors
and between 0.129 and 2.187 with more informative priors.
Finally, we report the parameter chain traces in Figures 3.10-3.11. The first figure
refers to the case of flat priors, while the second one to the case of more informative
priors. Comparing these figures and the Geweke convergence diagnostic results
reported in Table 3.9, we realize that the priors have not so much influence on
the chain convergence and on the estimates as the variability have: the Geweke
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Figure 3.9: Histograms of the in line data simulated from N(0, σ2) and correspond-
ing rose diagrams, density estimates (red lines) and means (blue dots) of wrapped
Normal data. The variance σ2 is respectively equal to π/10 (a), π/8 (b), π/6 (c),
π/4 (d), π/2 (e), π (f) and 3π/2 (g).
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µ σ2

True Posterior 95% True Posterior 95%
σ2 Value Median Posterior Interval Values Median Posterior Interval
π/10 0 0.037 [-0.028, 0.101] π/10=0.314 0.325 [0.279, 0.382]
π/8 0 -0.006 [-0.062, 0.077] π/8=0.393 0.379 [0.324, 0.447]
π/6 0 -0.079 [-0.161, 0.003] π/6=0.524 0.505 [0.432, 0.596]
π/4 0 -0.003 [-0.101, 0.098] π/4=0.785 0.787 [0.673, 0.933]
π/2 0 0.002 [-0.139, 0.152] π/2=1.571 1.398 [1.193, 1.648]
π 0 -0.041 [-0.343, 0.290] π=3.142 2.887 [2.379, 3.522]

3π/2 0 0.192 [-0.650, 1.537] 3π/2=4.712 5.012 [3.893, 8.436]

Table 3.8: Posterior results for the seven data sets plotted in Figure 3.7, obtained
using the following informative priors: µ ∼ N(0, 1) and σ2 ∼ InvGamma(4, 2)

Flat Priors Informative Priors
Variance Z-score Z-score Z-score Z-score

µ σ2 µ σ2

π/10 0.198 -0.154 0.167 -0.187
π/8 0.123 -0.267 0.231 -0.126
π/6 0.206 -0.312 0.210 -0.256
π/4 0.154 -0.212 0.189 -0.206
π/2 0.567 -0.498 0.379 -0.401
π 1.981 -1.785 1.657 -1.259

3π/2 3.526 -2.764 2.228 -2.029

Table 3.9: Geweke Z-score diagnostic (computed with burn-in of 5000 iterations) for
the chains depicted in Figures 3.10 and 3.11

diagnostic fails and the posterior interval lengths increase when the variance is larger
than π/2. Anyway, when the variance is not too large, for example in the cases of
σ2 = π/2 or σ2 = π, the informative priors helps the MCMC algorithm to obtain
more accurate estimates. To see this we can look at the posterior intervals related
to these variances in Tables 3.7 and 3.8.
Summarizing the evidence that emerges from all these examples, we can state that
the main problem for ”goodness of inference” in the wrapping approach is due to
the large variability of data. Besides, the introduction of more informative priors
improves the estimates only when the variability is not too large, as between π/2 and
π. Finally, from this simulation-based study, we have detected the data variability
threshold, equal to π/2, over which the inference procedure of wrapping approach
fails.
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Figure 3.10: MCMC chain traces for µ and σ2 parameters of the seven simulated data
sets. Outputs obtained with flat priors µ ∼ N(0, 30) and σ2 ∼ InvGamma(4, 8)
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Figure 3.11: MCMC chain traces for µ and σ2 parameters of the seven simu-
lated data sets. Outputs obtained with informative priors: µ ∼ N(0, 1) and
σ2 ∼ InvGamma(4, 2)
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Figure 3.12: Normal density and its corresponding Wrapped Normal density with
µ = π

2
(left) and µ = π

2
+ 2π (right)

3.4 Identifiability Problem

After detecting the kind of data sets where the inference procedure fails, we now
investigate the role of the wrapping coefficients k’s in the inference procedure, first
in general and then in the particular case of data sets with large variability.

3.4.1 Wrapped density approximation

Recalling the definition given in Section 2.4.3 about the circular variable X and its
probability density function

fw(x) =
∞∑

k=−∞

f(x+ 2kπ), 0 ≤ x < 2π,

we note that the k’s coefficients have to be interpreted as the “tool” to expand the
circular domain [0, 2π) to the in line domain R, so that, an in line density distri-
bution f can be applied to the argument x + 2kπ. Then, the unobserved values
k’s determine the support on which the in line density is fitted and, in this sense,
the central role of these coefficients in the inference parameter estimation is easily
realizing.
To understand the meaning of the k’s, the graphical representation of the wrapped
Normal distributions shown in Figure 3.12 can be useful. Examining this plot we
realize that the same wrapping distribution can be obtained from different in line
distributions. More precisely, the same wrapping Normal distribution can be ob-
tained from different in line distributions that have the same scale but a different
location parameter, i.e having 2kπ shifted mean. Therefore, by only observing the
circular distribution it is difficult to identify which is the in line distribution that
have generated it, i.e. the k’s values are not uniquely identified.
Basically, the point that we want to investigate is summarized by the following
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Y ∼ N(0, π/2) x
X=Y mod(2π) −π −2π/3 −π/3 0 π/3 2π/3 π

Pr(Y = x | X = x) (k=0) 0.500 0.985 1.000 1.000 1.000 0.985 0.500
Pr(Y = x+ 2π | X = x) (k=1) 0.500 0.015 0.000 0.000 0.000 0.000 0.000
Pr(Y = x− 2π | X = x) (k=-1) 0.000 0.000 0.000 0.000 0.000 0.015 0.500

Table 3.10: Conditional probabilities using Y ∼ N(0, π/2)

sentence: “given a circular observed value x, drawn for example from a wrapped
Normal distribution, which is the most likely corresponding in line value y?” To
answer to this question, we extend a Mardia’s assertion (Mardia and Jupp, 2000,
p. 50) saying that when the in line Normal distribution variance is less than 2π,
the term with k = 0 of the density (2.43) gives a reasonable approximation of the
same density. In particular, we approximate the wrapped density distribution (2.43)
with the terms k = 0, k = 1 and k = −1 and, for each of them, we compute the
probability Pr(Y | X = x) in order to determine the most likely in line values for a
given x.
Suppose to have the in line Normal distribution Y ∼ N(0, σ2), the density approxi-
mation with the terms k = 0, k = 1, k = −1 of the wrapped Normal distribution is
given by:

f(x) = (2πσ2)−1/2

[
exp

{
− x2

2σ2

}
+ exp

{
−(x+ 2π)2

2σ2

}
+ exp

{
−(x− 2π)2

2σ2

}]
,

(3.13)
where the first term corresponds to no wrapping, the second to a positive wrapping
and the third to a negative wrapping.
The target probability Pr(Y | X = x) will be Pr(Y = x | X = x) if we use
the approximation with k = 0; Pr(Y = x + 2kπ | X = x) if we use the ap-
proximation with k = 1 and Pr(Y = x − 2kπ | X = x) if we use k = −1.

Moreover, Pr(Y = x | X = x) = Pr(Y=x,X=x)
Pr(X=x)

, where Pr(Y = x,X = x) is the

first term of (3.13) while Pr(X = x) coincides with (3.13). In the same way,
Pr(Y = x+2π,X = x) is the second term of the (3.13) and Pr(Y = x−2π,X = x)
is the third term.
As an example we apply the density approximation to four wrapped Normal den-
sities obtained wrapping the in line distributions Y ∼ N(0, π/2), Y ∼ N(0, π),
Y ∼ N(0, 4π/3), Y ∼ N(0, 2π), respectively. The results, reported in Tables
3.10- 3.13 and in Figure 3.13, represent the probabilities that an observed circu-
lar value x is obtained by wrapping the in line value y k-times around the circle,
with k ∈ {−1, 0,−1}.
Observing Table 3.10 and Figure 3.13(a) we can see that the value 2π/3 = 120◦

has a probability of 0.015 to come from the in line distribution represented by the
approximation with k = −1 while the equivalent probability with k = 0 is 0.985.
Table 3.10 also shows that any wrapping of an order greater than 1 is unlikely to
occur if the in line variance takes a value of π/2. Moreover, it easy to calculate the
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Y ∼ N(0, π) x
X=Y mod(2π) −π −2π/3 −π/3 0 π/3 2π/3 π

Pr(Y = x | X = x) (k=0) 0.500 0.890 0.985 0.996 0.985 0.890 0.500
Pr(Y = x+ 2π | X = x) (k=1) 0.500 0.110 0.015 0.002 0.000 0.000 0.000
Pr(Y = x− 2π | X = x) (k=-1) 0.000 0.000 0.000 0.002 0.015 0.110 0.500

Table 3.11: Conditional probabilities using Y ∼ N(0, π)

Y ∼ N(0, 4π/3) x
X=Y mod(2π) −π −2π/3 −π/3 0 π/3 2π/3 π

Pr(Y = x | X = x) (k=0) 0.500 0.828 0.957 0.982 0.957 0.828 0.500
Pr(Y = x+ 2π | X = x) (k=1) 0.500 0.172 0.041 0.009 0.002 0.000 0.000
Pr(Y = x− 2π | X = x) (k=-1) 0.000 0.000 0.002 0.009 0.041 0.172 0.500

Table 3.12: Conditional probabilities using Y ∼ N(0, 4π/3)

Y ∼ N(0, 2π) x
X=Y mod(2π) −π −2π/3 −π/3 0 π/3 2π/3 π

Pr(Y = x | X = x) (k=0) 0.500 0.737 0.878 0.920 0.878 0.737 0.500
Pr(Y = x+ 2π | X = x) (k=1) 0.500 0.259 0.108 0.040 0.013 0.004 0.001
Pr(Y = x− 2π | X = x) (k=-1) 0.001 0.004 0.013 0.040 0.108 0.259 0.500

Table 3.13: Conditional probabilities using Y ∼ N(0, 2π)
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Figure 3.13: Probability density plots of Normal distributions conditioned on
wrapped values X = x, related to Tables 3.10-3.13

probability that the wrapping of Y has no effect, that is Y = x, as the probability
of the Normal distribution calculate on the support [−π, π). The probability values
for the four distributions described in Tables 3.10-3.13 are listed in Table 3.14.

It is interesting to note that all these probabilities are high although they decrease
when the in line, and the corresponding wrapped, variance increase. This last issue
is evident if we look at Figure 3.13. In particular, comparing plot (a) and (d) for
x = 2π/3, we realize that when the variance is small (case (a)) x has a very small
probability of coming from an in line distributions represented by k 6= 0; when the
variance increases till 2π (case (d)), instead, x has a not negligible probability of
coming from the in line distributions represented by k 6= 0.

Y ∼ N(0, σ2)
σ2 Pr(Y = x)
π/2 0.988
π 0.924

4π/3 0.875
2π 0.790

Table 3.14: Probability that the wrapping has no effect (Pr(Y = x)) related to
four Normal distributions with zero means and different variances listed in Tables
3.10-3.13
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What we have described constitute the identifiability problem on k’s that occurs
when we have to handle data with large variability. Moreover, we have verified the
close relationship between the distribution variance and k identifiability problem
and, then, demonstrate the reason why the inference procedure fails when the data
exhibit large variance. Finally, this study on identifiability problem for k reveals that
the density approximation with the three terms k = −1, k = 0 and k = 1 represents
a good approximation for distributions with variance until 2π and higher; allowing
us to use this information in the parameter estimation procedure, introducing for
example a prior distribution on wrapping coefficients k’s directly.
Recalling the posterior density (3.10) in Section 3.1 and collecting the k’s in the
vector K, we can rewrite it as:

Pr(K | X,Ψ) =
Pr(K,X,Ψ)

Pr(X,Ψ)
=
Pr(X | Ψ,K)Pr(K)

Pr(X,Ψ)

∝ Pr(X | Ψ,K)Pr(Ψ | K)Pr(K),

(3.14)

where Pr(X | Ψ,K) is still distributed as multivariate Normal density while through
the Pr(K) we can give a prior probability to the wrapping coefficients. A reason-
able one is the Multinomial distribution on values {−1, 0,−1}. In particular, by the
simulation-study of this section (see Figure 3.13 and related tables) we realize that
when the circular mean in between 0◦ and π, the two most likely values for k’s are 0
and −1; whereas when the circular mean is between π and 2π the most likely values
are 0 and 1.

At this point, a legitimate objection can be raised: the wrapping approach ap-
plicability is limited to small variability data sets because of the k’s identifiability
problem described above. Now we show that this is a misrepresented problem in
that for variance over a “threshold”, the wrapped Normal distribution can be ap-
proximated by the circular Uniform distribution. In this case there is no reason
to use the wrapped Normal distribution to fit the data. Next, we aim to find an
analytic derivation of a “threshold” value for the variance.

3.4.2 Tests of uniformity and threshold value for variance

Here we present the main tests for uniformity in order to assess when a wrapped
Normal distribution can be approximated by a circular Uniform distribution. We
first give a formal description of these tests and then we apply them to different
simulated data sets.

Rayleigh’s test
The Rayleigh’s test is based on the intuitive idea of rejecting uniformity when the
vector sample mean (C̄, S̄), defined in Section 2.2.1, is far from 0, i.e., recalling
equations (2.2) and (2.3), when R̄ is large.
The Rayleigh’s test is the score test of uniformity within the von Mises model
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(2.36). Put ω = (h cosµ, h sinµ)T , the log-likelihood based on circular observations
x1, . . . , xn is

l(ω;x1, . . . , xn) = nωT x̄− n log I0(h),

where I0(h) is the modified Bessel function and x̄ = 1
n

∑n
i=1 (cosxi, sinxi)

T is the
sample mean vector.
The score is:

U =
∂l

∂ωT
= nx̄− nA(h)(cosµ, sinµ)T . (3.15)

From the moments properties of R̄, it is possible to demonstrate (Mardia and Jupp,
(2000), pp. 94-95) that the score statistic is

UTvar(U)−1U = 2nR̄2 (3.16)

From the general theory of score test (see Cox and Hinkley, 1974), the large
sample asymptotic distribution of 2nR̄2 under uniformity is a Chi-square with two
degrees of freedom:

2nR̄2 ∼ χ2
2, (3.17)

where n is the sample size. It has been demonstrated, also, that the Rayleigh’s test
coincides with the likelihood test of uniformity within the von Mises family.

Kuiper’s test
The Kuiper’s test is based on the empirical distribution function. As for in line
case, this test measures the deviation between the empirical distribution, Sn(x),
and the Uniform cumulative distribution functions (cdf), F (x) = x/2π. In the case
of circular data, the definition of cumulative distribution function is not obvious and
is quite different from the in line cdf. In the circular data case, in fact, we first have
to choose the circle zero point and orientation, then we need to augment the ordered
observations, x1, . . . , xn, of x(0) = 0 and x(n+1) = 2π. The Sn is then defined by:

Sn(x) =
i

n
if x(i) ≤ x ≤ x(i+1) i = 0, 1, . . . , n. (3.18)

Just as in Kolmogorov-Smirnov’s test for in line distribution (see Durbin, 1973),
the following quantities are defined:

D+
n = sup

x
{Sn(x)− F (x)} , D−n = sup

x
{F (x)− Sn(x)} .

To overcome the dependence of D+
n and D−n on the choice of the initial direction,

Kuiper (1960) defined

Vn = D+
n +D−n . (3.19)

The statistic (3.19) has been demonstrated (see Mardia and Jupp, 2000, p.101;
Jammalamadaka and SenGupta, 2001, pp.154-155) to be invariant under the change
of initial direction. The null hypothesis of uniformity is rejected for large values of
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Vn. Moreover, the Kuiper’s test is consistent against all alternative to uniformity.
For practical purposes, the following modification of Vn is used:

V ∗n = n1/2Vn

(
1 +

0.155√
n

+
0.24

n

)
.

Table of upper quantiles of V ∗n are given in Stephens (1970) and Arsham (1988).

Watson’s test
Watson (1961) provided a modification of the Cramér-von Mises test (see Durbin,
1973) suitable for circular data. The Watson’s statistics is:

W 2
n =

∫ 2π

0

[
(Sn(x)− F (x))−

∫ 2π

0

(Sn(x)− F (x))dF

]2

dF. (3.20)

It follows from this definition that the Watson’s statistic is invariant under rotations
and reflections.
As for the Kuiper’s test, it is useful to consider the following modified statistic:

W ∗2
n =

(
W 2
n −

0.1

n
+

0.1

n2

)(
1 +

0.8

n

)
.

The upper quantiles of W ∗2
n were calculated by Stephens (1970).

Rao’s spacing test
The next is one of the so called spacing tests because they are based on the sample
arc lengths T1, . . . , Tn defined as:

Ti = x(i) − x(i−1), i = 1, . . . , n− 1, Tn = 2π − (x(n) − x(1)).

Under uniformity E[Ti] = 2π/n. Hence, it is reasonable to reject uniformity for
large values of

L =
1

2

n∑
i=1

∣∣∣∣Ti − 2π

n

∣∣∣∣. (3.21)

Large values of L indicate clustering of observations. This statistic was introduced
by Rao (1969) and extends to circular data the corresponding in line test suggested
by Kendall (1946).
An extensive table of quantiles of L is given in Russell and Levitin (1996), while
Sherman (1950) shows that a suitable transformation of L is asymptotically standard
Normal distributed.

Here we apply the four uniformity tests to several simulated wrapped Normal
data sets that differ in sample size and variability. Results are listed in Tables
3.15-3.17.
When the sample size is equal to 30, the tests reveal uniformity even with a variance
larger that π/2 (in the simulated example with variance equal to 2π/3), while when
the sample size increases to 100 and 1000, the uniformity is detected with variances
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n=30 Rayleigh Kuiper Watson Rao Spacing
X=Y(mod 2pi) Stat. p-value Stat. p-value Stat. p-value Stat. p-value
X ∼WN(0, π/2) 0.43 0.003 2.08 < 0.01 0.31 < 0.01 157.94 < 0.05
X ∼WN(0,2π/3) 0.29 0.08 1.56 > 0.15 0.14 > 0.10 126.04 > 0.01
X ∼WN(0, 5π/6) 0.19 0.34 1.24 > 0.15 0.08 > 0.10 125.39 > 0.10
X ∼WN(0, π) 0.23 0.21 1.30 > 0.15 0.10 > 0.10 124.74 > 0.10
X ∼WN(0, 7π/6) 0.17 0.43 1.29 > 0.15 0.08 > 0.10 127.30 > 0.10
X ∼WN(0, 4π/3) 0.18 0.38 1.24 > 0.15 0.06 > 0.10 124.18 > 0.10
X ∼WN(0, 5π/3) 0.21 0.24 1.42 > 0.15 0.09 > 0.10 138.26 > 0.10
X ∼WN(0, 2π) 0.16 0.47 1.13 > 0.15 0.07 > 0.10 130.40 > 0.10
X ∼WN(0, 3π) 0.12 0.67 0.94 > 0.15 0.04 > 0.10 130.23 > 0.10
X ∼WN(0, 10π) 0.09 0.75 0.90 > 0.15 0.04 > 0.10 125.65 > 0.10

Table 3.15: Tests of uniformity for wrapped Normal density with sample size n = 30.
The bold line indicates the first variance value beyond which the test accepts the
hypothesis of uniformity.

n=100 Rayleigh Kuiper Watson Rao Spacing
X=Y(mod 2pi) Stat. p-value Stat. p-value Stat. p-value Stat. p-value
X ∼WN(0, π/2) 0.52 2e− 8 3.64 < 0.01 1.37 < 0.01 162.53 < 0.001
X ∼WN(0, 2π/3) 0.38 7e− 7 8.04 < 0.01 7.18 < 0.01 153.24 < 0.001
X ∼WN(0, 5π/6) 0.32 2e− 5 2.53 < 0.01 0.54 < 0.01 142.39 > 0.10
X ∼WN(0, π) 0.28 3e− 4 2.37 < 0.01 0.45 < 0.01 132.78 > 0.10
X ∼WN(0,7π/6) 0.11 0.27 1.35 > 0.15 0.09 > 0.10 125.95 > 0.10
X ∼WN(0, 4π/3) 0.10 0.35 1.22 > 0.15 0.09 > 0.10 123.48 > 0.10
X ∼WN(0, 5π/3) 0.11 0.24 1.42 > 0.15 0.1 > 0.10 125.26 > 0.10
X ∼WN(0, 2π) 0.10 0.32 1.03 > 0.15 0.07 > 0.10 126.10 > 0.10
X ∼WN(0, 3π) 0.05 0.74 1.19 > 0.15 0.07 > 0.10 122.65 > 0.10
X ∼WN(0, 10π) 0.08 0.50 1.15 > 0.15 0.06 > 0.10 122.60 > 0.10

Table 3.16: Tests of Uniformity for wrapped Normal density with sample size n =
100. The bold line indicates the first variance value beyond which the test accepts
the hypothesis of uniformity.
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n=1000 Rayleigh Kuiper Watson Rao Spacing
X=Y(mod 2pi) Stat. p-value Stat. p-value Stat. p-value Stat. p-value
X ∼WN(0, π/2) 0.47 8e− 18 10.10 < 0.01 11.53 < 0.01 165.47 < 0.001
X ∼WN(0, 2π/3) 0.36 6e− 15 23.13 < 0.01 65.79 < 0.01 150.45 < 0.001
X ∼WN(0, 5π/6) 0.29 5e− 12 6.14 < 0.01 4.42 < 0.01 145.93 < 0.001
X ∼WN(0, π) 0.21 3e− 9 4.58 < 0.01 2.29 < 0.01 134.36 > 0.10
X ∼WN(0, 7π/6) 0.17 8e− 7 3.73 < 0.01 1.45 < 0.01 135.02 > 0.10
X ∼WN(0, 4π/3) 0.12 2e− 5 3.02 < 0.01 0.82 < 0.01 135.60 > 0.10
X ∼WN(0, 5π/3) 0.09 3e− 4 2.43 < 0.01 0.44 < 0.01 134.50 > 0.10
X ∼WN(0, 2π) 0.06 0.027 1.97 < 0.025 0.24 < 0.025 132.74 > 0.10
X ∼WN(0,3π) 0.03 0.46 1.15 > 0.15 0.07 > 0.10 134.10 > 0.10
X ∼WN(0, 10π) 0.02 0.64 1.22 > 0.15 0.06 > 0.10 129.90 > 0.10

Table 3.17: Tests of Uniformity for wrapped Normal density with sample size n =
1000. The bold line indicates the first variance value beyond which the test accepts
the hypothesis of uniformity.

Figure 3.14: Plots of wrapped Normal distributions (n=100) with different variances.

larger than π (i.e. with variance 7π/6) and 2π (i.e. with variance 3π) respectively.
To realize what happens when the in line and the corresponding circular variance
increase, the plot depicted in Figure 3.14, related to the case of n = 100, can be
useful. We note that when the variance is larger than π (central and right plots)
there is no different in practice between the wrapped Normal distribution and the
circular Uniform distribution.

Nevertheless, the above results are only empirical. Here we want to derive ana-
lytically a variance threshold over which we can approximate the wrapped Normal
distribution to the Uniform distribution. For this purpose we remind the quantity
that the Rayleigh test is based on, i.e. the sample mean resultant length R̄. Its
corresponding population quantity is given by ρ, that is the concentration wrapped
Normal parameter and a transformation of the in line Gaussian distribution vari-
ance, ρ = e−σ

2/2. Moreover, we know from the (ii) property (see Section 2.4.2) of
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the von Mises distribution that
ρ = A(h)

with
A(h) = J1(h)/J0(h), (3.22)

where Jp(h) is the modified Bessel function of order p defined in (2.40).
So, both the wrapped Normal variance (or concentration) and the Rayleigh’s test
statistic are based on A(h) quantity. Here the point is: the function Jp(h) has
two power series expansions, one for small h and one for large h. Consequently
the function A(h) has two series expansions for small h and for large h, too. In
particular, for small h it is:

As(h) =
h

2

{
1− 1

8
h2 +

1

48
h4 + o(h4)

}
, (3.23)

while for large h it is:

Al(h) = 1− 1

2h
− 1

8h2
− 1

8h3
+ o(h−3). (3.24)

The idea for determining the variance threshold is to find the value of h for which
the two power series expansions (3.23) and (3.24) are ‘close’each other and to A(h).
Equalizing the ratio of the first terms of both series expansions (3.23) and (3.24) to
one we obtain the following expression:

As(h)

Al(h)
=

h
2

+ o(h)

1− 1
2h

+ o(h−1)

=
h2 + o(h2)

2h− 1 + o(1)
= 1

⇔ h2 − 2h+ 1 + o(1) = 0

⇔ h2 − 2h+ 1 +O(h) = 0

⇒ h = 1 +O(h)

(3.25)

The result (3.25) indicates that the threshold we are searching is in a neighborhood
of 1 of length 1, i.e. it is in the set [0, 2]. In order to have a more precise value, we
compute, for different values of h, the numerical approximations of both quantities
(3.23) and (3.24) and, using the relationship ρ = e−σ

2/2, the corresponding variances
σ2
s and σ2

l . The results are reported in Table 3.18.
Comparing the values of As(h) and Al(h) to the tabulated values of the function A(h)
based on Table C of Batschelet (1965), we realize that the approximation is based
on As(h) for the values of h in (0, 1.4] corresponding to variance σ2 in [1.074,∞).
Whereas, for larger values of h, corresponding to σ2 ≤ 1.109, the approximation
based on Al(h) appears more suitable than As(l). This leads to establish threshold
values for the variance that can be summarized as the follows:
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h As(h) Al(h) A(h) σ2
s σ2

l

0.0 0.000 0.000 0.000 ∞ -
0.1 0.050 -141.5 0.050 5.991 -
0.2 0.100 -20.25 0.100 4.605 -
0.3 0.148 -6.685 0.148 3.817 -
0.4 0.196 -2.984 0.196 3.258 -
0.5 0.242 -1.500 0.242 2.833 -
0.6 0.287 -0.759 0.287 2.494 -
0.7 0.330 -0.334 0.330 2.215 -
0.8 0.371 -0.064 0.371 1.981 -
0.9 0.410 0.119 0.410 1.780 4.263
1.0 0.446 0.250 0.446 1.606 2.773
1.1 0.481 0.348 0.481 1.453 2.109
1.2 0.513 0.424 0.513 1.316 1.715
1.3 0.543 0.485 0.543 1.191 1.449
1.4 0.575 0.534 0.570 1.074 1.256
1.5 0.618 0.580 0.596 0.962 1.109
1.6 0.653 0.620 0.620 0.852 0.994
1.7 0.691 0.640 0.640 0.740 0.901
1.8 0.732 0.662 0.662 0.623 0.824
1.9 0.779 0.681 0.681 0.499 0.759
2.0 0.833 0.698 0.698 0.365 0.704
2.1 0.897 0.714 0.714 0.218 0.657
2.2 0.971 0.728 0.728 0.058 0.615
2.3 1.060 0.741 0.741 - 0.579
2.4 1.165 0.754 0.754 - 0.546446
2.5 1.291 0.765 0.765 - 0.517541

Table 3.18: Numerically approximations of A(h) function and corresponding vari-
ances.
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- h < 1⇔ σ2 > π/2: the variance is considered ”large”;

- 1 ≤ h ≤ 2⇔ 0.72 ≤ σ2 ≤ π/2: the variance has intermediate values and both
the approximation As(h) and Al(h) can be used;

- h > 2⇔ σ2 < 0.72: the variance is considered ”small”.

These variance thresholds are coherent with the empirical results obtained by the
simulation-base study on test of uniformity. So, we can assert that when the in line
variance, and its corresponding circular, are larger that π/2 the wrapped Normal
circular distribution can be well approximated by Uniform circular distribution.

3.5 Discussion

In this chapter we illustrate the MCMC estimate procedure for the wrapping ap-
proach. Through univariate and multivariate simulated examples, we point out some
inference problems that occur in specific kinds of data; in particular the data vari-
ability effect on inference estimate results is studied. We find a strong relationship
between ‘large’ data variability and poor inference results due to the identifiability
problem on wrapping coefficients (see Section 3.3).
We investigate and deeply analyze the wrapping coefficients identifiability problem,
providing original evidences and results. From this study, we realize two key as-
pects of both circular data and the wrapping approach. We demonstrate that the
suitable distribution for circular data with ‘large’ variability is the circular Uniform
distribution. In particular, we provide an analytic value-definition of ‘large’ vari-
ance, equal to π/2, beside that the circular distribution can be well approximated
by circular Uniform distribution. Moreover, we numerically show that this threshold
value increases until π when the sample size is n = 100.
The second key aspect is related to wrapped circular distribution. We demon-
strate that when the data variability is small, the wrapped Normal density f(x) =

(2πσ2)−1/2
∑∞

k=−∞ exp
{
−(x−µ+2kπ)2

2σ2

}
is adequately approximated by only three k-

values {−1, 0, 1}. This evidence, here originally showed, is directly used into the
Bayesian inference procedure, through an opportune prior probability on k coeffi-
cients, solving the identifiability problem and allowing a more efficient inference on
the wrapped distribution model.
Thus, the opportunity of overcoming the difficulty due to the identifiability wrapping
coefficients problem, allows us to appreciate the main advantages of the wrapping
approach: the ease of extending to the multivariate case and the easy interpretability
of the parameters in terms of circular phenomena behavior. With regard to these
advantages, we point out that the examples in literature in which the wrapping
approach is used concern only with a bivariate wrapped Normal distribution (see
e.g. Coles, 1998) and a univariate regression model and univariate autoregressive
model (see for example Ravindran, 2002), i.e. regard only computationally simple
models. In the same way, we point out also that in the most recent works concerning
the von Mises distribution, the attempts of extending to multivariate case, Mardia
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et al. (2007) and Mardia et al. (2008), present difficulties in both definition and
estimation of probability models even with low model dimension. Thus, in case of
multivariate framework and, more in general, with complex models, the wrapping
Normal is preferable to von Mises distribution.
In the next chapters we show that the new inference procedure setting, that involves
the prior on k, allows to implement fairly complicated models such as the measure-
ment error model in a multivariate framework.
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Chapter 4

Measurement Error Model

In this chapter we deal with measurement error (ME) models, also called error-in-
variables models. Here we give a general overview of these models, while the main
applications and discussions about it will be in the next chapters. In particular we
refer to ME models in the spatiotemporal models context.
For the simplest linear ME model from bivariate data, the goal is to estimate a
straight line fit between the two variables, both of which are measured with error.
Adcock (1877) is usually recorded as the first scholar who specifically considers such
model.
In this chapter we first introduce the ME model and its properties in a in line
standard context. Then, we derive the wrapped version of the ME model and analyze,
also in this case, the related properties.

4.1 ME Models Definition

In this section we give the definition and a brief overview of the main properties and
inference methods regarding the ME models. A comprehensive account of linear
measurement error models can be found in Fuller (1987). More recently, discussion
on statistical regression with measurement error is available in Cheng and Van Ness
(1999); whereas useful extension to ME in nonlinear models are discussed in Carroll
et al. (1995), where it is possible to find a brief reference to the Bayesian approach
for the ME models, also. A very recent work on ME model applied to dental
data is in Ghosh et al. (2008). Moreover, a paper on a fully Bayesian approach to
nonparametric regression problem with error in variables is presented in Berry et al.
(2002).

Classical ME Model

The standard regression model with one explanatory variable is

ν = β0 + β1χ+ ξ (4.1)

where the independent variable, χ, is either fixed or random and the error, ξ, has
zero mean and is uncorrelated with χ.
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The corresponding classical linear ME model assumes that the variable χ and γ are
related by

γ = β0 + β1χ (4.2)

but that the “true” variables χ and γ are unobservable and can only be observed
with additive errors. Thus, instead of observing χ and γ directly, we observe the
variables

ω = χ+ ε and ν = γ + ξ (4.3)

where χ and the errors, ε and ξ, are uncorrelated.
Because both χ and γ are measured with error, model (4.2)-(4.3) is called measure-
ment error model.
Applications in which the variable χ is measured with error are perhaps more com-
mon that those in which χ is measured precisely. Most medical variables as well as
variables observed in biological or physical sciences are measured with non-negligible
error.
For a sample of size n, the linear univariate ME model (4.2)-(4.3) can be formulated
as follows. The unobserved variables (χi, γi) satisfy

γi = β0 + β1χi, i = 1, 2, . . . , n. (4.4)

However, we observe (ωi, νi) which are the observed variables plus the additive errors
(εi, ξi):

ωi = χi + εi and νi = γi + ξi i = 1, 2, . . . , n. (4.5)

There are two separate models for the form (4.2)-(4.3) depending on the assump-
tion about χi. If the χ’s are fixed (or random but in latter case no or at least only
minimal assumptions are made about the distribution of the χi), then the models is
known as a functional model ; whereas if χ’s are independent identically distributed
random variables and independent of (not just uncorrelated with) the errors, the
model is known as structural model, (Fuller, 1987).

Berkson Model

An important special case of ME models is the Berkson model. Berkson (1950)
proposed a different regression model with measurement error which is appropriate in
many applications. A key assumption in the classical ME model is that in equations
(4.5) the true variable χi is independent of the errors (εi, ξi). Berkson called the ωi
under this assumption, uncontrolled observation. If the measured quantity is fixed
but the true value differs by an error from the measurement, then

χi = ωi + εi, (4.6)

that is, the true value is the observed value plus a random error. Berkson called
such ωi controlled observation.
The main consequence in writing the error model as (4.6) rather than as (4.5) is
that in the classical ME model the conditional distribution of ω given χ is modeled;
while in the Berkson model the conditional distribution of χ given ω is modeled.
This corresponds to the fact that χ is independent of ε in the classical ME model
whereas ω is independent of ε in the Berkson model.
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4.2 Properties and Parameter Estimation Meth-

ods for ME Models

Although the regression model can be considered a special case of ME models, here
it is useful to point out some properties that distinguish ME models from its special
case.
One of the most important difference between ME models and ordinary regression
models concerns model identifiability. It is often assumed that all the random vari-
ables in the ME model are jointly Normal distributed. In this case, model (4.2)-(4.3)
is a not identifiable structural model. This means that different sets of parameters
can lead to the same joint distribution of ω and ν, and in this situation it is impossi-
ble to estimate consistently the parameters from data without further assumptions.
There are six side conditions any one of which makes the Normal structural model
identifiable:

(a) the ratio of the error variance, λ = σ2
ξ/σ

2
ε , is known;

(b) the χ reliability ratio, kχ, is known;

(c) σ2
ε is known;

(d) σ2
ξ is known;

(e) both of the error variance, σ2
ξ and σ2

ε , are known;

(f) the intercept, β0, is known and E(χ) 6= 0.

Assumption (a) is the most popular of these additional assumptions and is the
one with the most published theoretical results. It has a long history dating back to
Adcock (1877). Assumption (b) is commonly found in social sciences and psychology
literature. The ratio

kχ =
σ2
χ

σ2
χ + σ2

ε

=
V ar(χ)

V ar(ω)
,

is called the reliability ratio (Fuller, 1987, Section 1.1) and is related to the bias
of the estimated slope parameter β1 of the standard regression model. In the ME
model, the predictor χ cannot be observed directly, but we observe ω = χ+ ε where
ε is independent of χ, has zero mean and variance σ2

ε . In this case the ordinary
least squares regression of ν on ω is a consistent estimate not of β1 but instead of
β1∗ = kχβ1. Thus, the least squares regression of ν on ω produces an estimator that
is biased. The bias is attenuated toward zero but increase as σ2

ε increases. This
is one of the more important differences between the ME model and the standard
regression model. A general overview about bias and attenuation issues can be
founded in Fuller (1987) and in Carroll et al. (1995).
Assumption (c) has gained attention recently and is a popular assumption for non-
linear models (see Cheng and Van Ness, 1999, Chap. 6). Moreover, it is also likely
to be realistic in many applications because it is not uncommon to have replications
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of ω, which can be used to estimate σ2
ε . Assumption (d) and (f), instead, are less

useful and cannot be used to make the structural ME model with more than one
explanatory ω variable identifiable. Finally, assumption (e) frequently leads to the
same estimates as those for assumption (a.
For the functional ME model, even without any side conditions, the parameters
β0 and β1 are identifiable (Bowden and Turkington, 1984); but, unfortunately, this
does not guarantee the existence of a consistent estimate of β1, thus, also for the
functional model we need some side conditions or other additional information to
obtain consistent estimates. For the functional model, then, side conditions (a) and
(e) can be used to obtain consistent maximum likelihood estimates. Whereas, the
consistent estimates resulting from the other structural model side conditions do not
come from maximum likelihood. Finally, the condition (b) is not well defined for
the functional model. A comprehensive account of maximum likelihood parameter
estimate, by using the side conditions, for both structural and functional models
can be found in Fuller (1987) and Cheng and Van Ness (1999).
The side conditions are needed to estimate the Berkson model parameters as well,
(see Fuller, 1987). Whereas it is demonstrated (Cheng, 1994), that the least squares
estimates for Berkson model coincide with the usual regression least squares esti-
mates.

An alternative approach for estimating the parameters of a ME model uses in-
strumental variables (IV). Instrumental variables are adopted in place of side condi-
tions to make the model identifiable. As a matter of fact, in absence of information
about the measurement error variance, the ME model parameter estimation is pos-
sible only if other variables (instrumental variables) are provided in addition to the
unbiased measurement ω = χ+ ε. One potential source of an instrumental variables
is a second measurement of χ obtained by an independent method. Consider the
ordinary regression model with one explanatory variable ω,

νi = β0 + β1ωi + εi (4.7)

with Cov((ε1, . . . , εn)′) = σ2
ε I and the ωi independent and identically distributed.

Suppose, in this situation, that a random sample z = (z1, . . . , zn) is available such
that

(i) z is uncorrelated with ε, and

(ii) z is correlated with ω.

Observe that

1

n

∑
i

(zi − z̄)νi =
1

n

∑
i

(zi − z̄)β0 +
1

n

∑
i

(zi − z̄)ωiβ1 +
1

n

∑
i

(zi − z̄)εi

=
1

n

∑
i

(zi − z̄)ωiβ1 +
1

n

∑
i

(zi − z̄)εi

→ 1

n

∑
i

(zi − z̄)ωiβ1, as n→∞,
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by the properties of z. This suggests the following estimator of β1:

β̂1IV =

∑
(zi − z̄)νi∑
(zi − z̄)ωi

, (4.8)

and the intercept β0 is estimated by β̂0IV = ν̄− β̂1IV ω̄. The supplementary variable
z is called instrumental variable, because it is used merely as an instrument in
the estimation of parameters. Estimator (4.8) is called the instrumental variable
estimator of β1. There is no normality assumption made on any variable. The only
assumptions regard the instrumental variable: the properties (i) and (ii) above.
It can be shown (see Fuler 1987, Cheng and Van Ness 1999, Chap. 4), (see Cheng
and Van Ness, 1999, Chapter 4) that the instrumental variable estimator (4.8) is
consistent and asymptotically Normal with variance σ2

εσ
2
z/(σzω)2, where σ2

z is the
variance of z and σzω is the covariance between z and ω.
Consider, now, the structural ME model

ωi = χi + εi, νi = β0 + β1χi + ξi,

which can be written as (4.7) with εi = ξi − β1εi. Clearly, the error εi is correlated
with ωi. Therefore, if a third variable, z, is available with the properties

(i’) z is uncorrelated with (ε, ξ),

(ii’) z is correlated with χ,

then the instrumental variable estimator of β1 is exactly (4.8), which is consistent
and asymptotically Normal with variance

σ2
εσ

2
z/(σzχ)2. (4.9)

From (4.9), the new variable z has to be uncorrelated with the errors (ε, ξ), but
preferably strongly correlated with χ because the (asymptotic) variance of the in-
strumental variable estimator ought to be as small as possible. More details about
inference via instrumental variables can be founded in Fuller (1987) and Carroll
et al. (1995).

4.3 ME models as a Missing Data Problem: the

Bayesian Approach

The classical measurement error problem discussed until now states that one set of
variables, χ, is never observable, i.e. always missing. As such, the ME model is a
particular case of missing data problem but with supplementary information about
χ in the form of surrogate, ω.
Henceforth, by surrogate we mean that ω and ν are conditionally independent given
χ.
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The earlier measurement error model literature has pursued the functional mod-
eling approach without any distributional specification on χ’s variables. Instead,
the most recent missing data literature for ME models, as for example Berry et al.
(2002), pursues likelihood and Bayesian methods, i.e. follows the structural model-
ing approach where χ is assumed as a random variables. For these last models, the
likelihood definition when the variable χ is unobserved becomes a basic inference
tool.

4.3.1 Bayesian methods when χ variable is unobservable

The classical ME model defined in (4.2)-(4.3), is specified if the joint distribution
for ν, ω and χ is specified:

Pr(ν, ω, χ) = Pr(ν | ω, χ)Pr(ω, χ). (4.10)

When ω is a surrogate, i.e. ω | χ is independent from ν | χ, it provides no additional
information about ν when χ is known, so that, (4.10) is

Pr(ν, ω, χ) = Pr(ν | χ, α)Pr(ω, χ)

= Pr(ν | χ, α)Pr(ω | χ, β)Pr(χ, γ)
(4.11)

Equation (4.11) has three components: the first, Pr(ν | χ, α), is the underlying
model of primary interest, with unknown parameter α; the second, Pr(ω | χ, β), is
the error model for ω giving the ‘true’ covariates χ, with unknown parameter β;
finally the third component is the joint distribution of the χ and its parameter γ.
Instead, considering the Berkson model, the joint distribution is still (4.10) but the
unobserved variable χ is related to ω by χ = ω + ε. In this case, the likelihood is
given by the product over the sample of the following terms:

Pr(ν, ω, χ) = Pr(ν | χ, α)Pr(ω, χ)

= Pr(ν | χ, α)Pr(χ | ω, δ)Pr(ω, φ)
(4.12)

Both (4.11) and (4.12) describe a hierarchical structure. The only difference between
(4.11) and (4.12) is the way in which the joint distribution for Pr(ω, χ) is factorized.
In the Berkson error model (4.12), the unobserved true variable, χ, is conditional
to the surrogate, ω besides the unknown parameter δ. In (4.11), instead, the surro-
gate is observed conditionally on the unobserved true χ, with the consequent need
to specify a probability distribution on χ, i.e. it is needed to follow a structural
modeling approach.
There are debates in literature regarding the appropriateness of (4.11) or (4.12) in
different applications, see e.g. Richardson and Gilks (1993) or Section 7.3 of Car-
roll et al. (1995). However, the usual distinction between structural and functional
models, namely whether unknown covariates, χ’s, are random variable or fixed con-
stants, is blurred in the Bayesian framework, where all parameters are random. In
fact, the Bayesian distinction between functional and structural models is that under
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4.4 Wrapped ME model

the latter the χ’s have a common parametric distribution. So that, the structural
ME model has Pr(χi | γ) i.i.d., that is, of the same form for all sample variable
χi,with i = 1, . . . , n and with a common parameter γ.
In the functional model, instead, Pr(χi | γ) are dependent on the ith observation.
In this case, a possible approach can be a hierarchical model, where the Pr(χ | γ)
is independent of i and the parameter γ follows its own independent probability
distribution.
A second possibility, intermediate between the functional and the structural ap-
proaches, is to specify a flexible distribution, as in Mallick and Gelfand (1995),
derived following a modified Breckson model specification.

In order to fit the ME models (4.11) and (4.12) as fully Bayesian models, a
prior specification on all unknown model parameters is needed. Generally speaking,
denoting with Λ = {α, β, γ, δ, φ} the parameter vector, we can refer to posterior
density distribution proportionally as the product of the likelihood and the priors.
For the classical ME model (4.11), the posterior density is

Pr(Λ | ν, ω, χ) ∝ Pr(ν | χ, α) Pr(ω | χ, β) Pr(χ | γ) Pr(α, β, γ)

∝ Pr(ν | χ, α) Pr(ω | χ, β) Pr(χ | γ) Pr(α) Pr(β) Pr(γ)
(4.13)

where the factorization Pr(α, β, γ) = Pr(α) Pr(β) Pr(γ) is suggested by the hier-
archical structure in (4.11), (see Mallick and Gelfand, 1995).
In a similar way we obtain the posterior density distribution for the Berkson model,
given by

Pr(Λ | ν, ω, χ) ∝ Pr(ν | χ, α) Pr(χ | ω, δ) Pr(ω | φ) Pr(α, δ, φ)

∝ Pr(ν | χ, α) Pr(χ | ω, δ) Pr(ω | φ) Pr(α) Pr(δ) Pr(φ).
(4.14)

Since the posterior densities are specified, inference is performed using the Markov
Chain Monte Carlo algorithms as Gibbs sampling, (Gelfand and Smith, 1990) or
Metropolis-Hastings (Smith and Roberts, 1993), to obtain random draws from these
posterior distributions.

Further approaches as a semiparametric method for functional models can be
used for inference in ME models with missing data, (see e.g. Carroll et al., 1995,
Chap. 9).
Henceforth, we deal with ME models by a Bayesian approach applying (4.13) or
(4.14).

4.4 Wrapped ME model

As mentioned above, the main properties of the wrapping approach are the flexibility
and easy applicability to several probability models and processes. Now we exhibit
the application of the wrapping procedure to quite complicated model frameworks
as the ME models. The ME models issue discussed until now concerns the general
literature on the in line measurement error models. Here we show the corresponding
wrapped version of ME models (WME).
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From the ME model definitions in (4.2)-(4.3), inherent the classical ME model, as
well as the definition (4.6) for the Berkson model, we note that all components of
the measurement error models are additive. This feature is very important because
it allows us to apply the wrapping procedure Xw = Y (mod2π) described in Section
2.4.3, componentwise.
For this purpose, consider the property (a) of the wrapping distribution in Section
2.4.3 applied to in line variables for deriving the corresponding circular wrapped (w)
variables:

(y1 + y2)w = y1w + y2w, (4.15)

i.e. the wrapping procedure is a homomorphism from R to the circle. Applying
this property to each additive component of the ME model we can obtain the cor-
responding wrapped version of the ME models. So, given the classical ME model

ν = γ + ξ, with γ = β0 + β1χ

ω = χ+ ε

the corresponding wrapped classical ME model is

νw = (γ + ξ)w = γw + ξw (4.16)

ωw = (χ+ ε)w = χw + εw (4.17)

Similarly, the wrapped version of the Berkson ME model is

νw = (γ + ξ)w = γw + ξw (4.18)

χw = (ω + ε)w = ωw + εw (4.19)

Thus, following the wrapping approach procedure (see Chapter 3), we can apply
to circular variable any in line statistical model. Besides, property (4.15) allows to
preserve the ME model structure for the circular variable as well.
The relations between the variables ν, χ, ω assumed in the in line ME model, as
for example the linear relationship between ν and χ given by the β’s coefficients,
can change for the circular variables νw, χw in the WME model. But it is worth
to remind that the most remarkable advantages of the wrapping approach are the
assumption for which the circular variables are thought as coming from their own
corresponding in line variables, and the correspondence between in line and circu-
lar parameters. So, conditionally to the wrapping coefficients k’s, it is possible to
unwrap the circular variables to apply the in line statistical model and inferential
methods to the circular variables directly (see Section 2.4.3). Then, as said, the cor-
responding circular parameter estimations are obtained using the correspondence
that exists between the in line and circular parameters.
As an example, assume the Normal distribution of the errors, ξ and ε, in the classic
ME model, so that also the variables ν and ω are Normal distributed and, in partic-
ular, ν ∼ N(γ, σ2

ξ ), where σ2
ξ is the variance of ξ. Under this hypothesis, when γ is

estimated, i.e. γ = β0 + β1χ is estimated, we can obtain the corresponding circular
estimate by γw = γ(mod2π). Similarly, we can derive the circular variance applying
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4.5 Relationship between in line and Wrapped ME Model

the relationship (2.51), ρ = e−σ
2/2, between the in line and circular variance of the

wrapped Normal distribution, (see properties (i) and (ii) of the wrapped Normal
distribution in Section 2.4.3). In this sense, all the hypotheses on the errors and on
the relationship between variables of the ME model hold in WME model by assum-
ing the corresponding wrapped distribution on circular variables.
Moreover, as mentioned in Section 3.1, the conditioning on k’s parameters leads to
choose for a Bayesian parameter estimation approach. For the same reason, also for
the WME model, the Bayesian parameter estimation described in Section 4.3 is the
most suitable.

Now we check what has just been mentioned about the correspondence between
the in line and circular ME model. In particular, we focus on the analysis of the
error variances effect in the ME model and in its corresponding WME model. As
the side conditions reveal, the error variance has a very important role in parameter
estimation and in depiction of the ME model itself. The next section aims to study
these aspects.

4.5 Relationship between in line and Wrapped

ME Model

We present some simulated examples in order to illustrate the relationship between
the ME model and its corresponding wrapped ME model.
For this purpose, let Y = X + 2Kπ be the wrapped Normal model representation,
where Y is a in line Normal random variable and X the corresponding circular
random variable with support [0, 2π). We assume the following ME model

Yobs = Ytrue + ξY (4.20)

where Yobs is the observed variable and ξY is a measurement Normal error with zero
mean and variance σ2

ξY
. The latent unobserved variable Ytrue is supposed normally

distributed with mean µtrue and variance σ2
Ytrue

.
The corresponding wrapped variables are obtained by the wrapping procedure as
follows: Xtrue = Ytrue(mod2π) and Xobs = Yobs(mod2π). So, given the wrapped vari-
ables Xtrue and Xobs, it is interesting to know how ξX = (Xobs−Xtrue) is distributed;
i.e. we are interested in investigating if the wrapping procedure has an influence,
and how, on the parameter estimation of the ME model.
Moreover, a sensitivity analysis to the error variance on the ME model parameter
estimation is carried out through the analysis of the ratio σ2

ξY
/σ2

Ytrue
in both cases,

in line and wrapped variables. This investigation is particularly important in a ME
model context for at least two different aspects: a constant ratio σ2

ξY
/σ2

Ytrue
verifies

the side condition (a) and (b) of Section 4.2 about the ME model identifiability;
furthermore, the ratio provides a characterization of the ME model itself indicating
the incidence of the error on the whole variability of the model.

For this study, we use eleven different simulated data sets obtained drawing both
Ytrue and ξY from a Normal distribution and computing Yobs by their sum. The
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wrapped variables are obtained by wrapping the in line variables as usual. For each
of the in line and wrapped data sets a graphical representation and a summarizing
table of the estimated parameters are reported in Figures 4.1-4.2 and in Tables 4.1-
4.2 respectively. Whereas the complete inference results achieved by the parameter
estimation procedure showed in Section 3.1 are reported in Table 4.3.

In Table 4.1 we report six simulated in line and corresponding wrapped data sets
in which we analyze the effect on the estimation of the σ2

Ytrue
(data sets A, B, C)

and the effect of the σ2
ξ (data sets D, E, F) separately.

In the first three simulated data sets the variance of Ytrue is fixed equal to 1 whereas
the variance σ2

ξ changes its value giving as many variance ratios equal to 0.25, 1 and
2.25 respectively. The same ratios are accomplished fixing the σ2

ξ equal to 0.25 and
varying the variance σ2

Ytrue
in the last three examples.

In general, we can say that a correspondence occurs between the Gaussian parame-
ters and the wrapped Normal parameters and this correspondence persists in a ME
model context as well. To stress this issue, we report, in the right column of Tables
4.1-4.2 inherent to wrapped Normal distribution, the circular parameter, ρ, and the
corresponding in line parameter σ2, the last one computed by transformation (2.51):
ρ = e−σ

2/2. Moreover, we underline the sensitivity of wrapped parameter estima-
tion to data variability: when the variability increases less correspondence occurs
between in line and wrapped parameters. This issue arises independently from the
ratio value. As a matter of fact, analyzing estimates in Table 4.3 we realize that
the posterior interval size increases more according to the variables variability than
to the variance ratio value. As an example, from Table 4.3, we can see that the
posterior interval sizes of the parameter estimates for data set C (0.74 and 2.00
for σ2

Xtrue
and σ2

ξX
respectively) are larger than the posterior interval sizes for the

parameters in data set F (equal to 0.14 and 0.11) even though the variances ratio,
equal to 2.25, is the same for both data sets.
This aspect is even more evident for the data sets G-K where the ratio is constantly
equal to 1/3 but the posterior interval sizes increase as the scale value of the vari-
ance increases, i.e. the estimates become less reliable as the variability of the data
increases. This is perfectly coherent with the simulation-based outcome achieved in
Section 3.3 about the variability effect on the parameter estimate accuracy.

4.6 Discussion

In this chapter we introduce general definition and aspects of the measurement error
models and analyze the main inferential approach and methods for their estimation.
An interesting aspect of the ME model as missing data approach is investigated,
leading to some important considerations about the Bayesian inferential approach.
Moreover, the full Bayesian model for ME model is specified.
After that the classical in line ME model is presented, the corresponding wrapped
ME model is introduced. By using one of the properties of the wrapping distribu-
tions, we are able to derive the wrapped ME model such that the structure and the
main properties of the in line ME model are conserved. Finally, the relationship
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Case Normal Distribution Wrapped Normal Distribution
Y ∼ N(µ̃, σ2) X ∼ WN(µ = µ̃(mod2π), ρ)

Ytrue ∼ N(0, 1.00) Xtrue ∼ WN(µ = −0.009, ρ = 0.57 ≡ σ2 = 1.12)
ξY ∼ N(0, 0.25) ξX ∼ WN(µ = 0.044, ρ = 0.88 ≡ σ2 = 0.26)

A Yobs = (Ytrue + ξY ) ∼ N(0, 1.25) Xobs ∼ WN(µ = 0.034, ρ = 0.52 ≡ σ2 = 1.31)
σ2
ξY
/σ2

Ytrue
= 0.25 σ2

ξX
/σ2

Xtrue
= 0.23

Ytrue ∼ N(0, 1.00) Xtrue ∼ WN(µ = 0.009, ρ = 0.58 ≡ σ2 = 1.09)
ξY ∼ N(0, 1.00) ξX ∼ WN(µ = 0.031, ρ = 0.62 ≡ σ2 = 0.95)

B Yobs ∼ N(0, 2.00) Xobs ∼ WN(µ = −0.021, ρ = 0.30 ≡ σ2 = 2.41)
σ2
ξY
/σ2

Ytrue
= 1 σ2

ξX
/σ2

Xtrue
= 0.87

Ytrue ∼ N(0, 1.00) Xtrue ∼ WN(µ = 0.008, ρ = 0.59 ≡ σ2 = 1.08)
ξY ∼ N(0, 2.25) ξX ∼ WN(µ = −0.07, ρ = 0.38 ≡ σ2 = 1.95)

C Yobs ∼ N(0, 3.25) Xobs ∼ WN(µ = −0.021, ρ = 0.31 ≡ σ2 = 2.65)
σ2
ξY
/σ2

Ytrue
= 2.25 σ2

ξX
/σ2

Xtrue
= 1.81

Ytrue ∼ N(0, 0.50) Xtrue ∼ WN(µ = −0.008, ρ = 0.77 ≡ σ2 = 0.51)
ξY ∼ N(0, 0.25) ξX ∼ WN(µ = 0.044, ρ = 0.88 ≡ σ2 = 0.26)

D Yobs ∼ N(0, 1.25) Xobs ∼ WN(µ = 0.034, ρ = 0.52 ≡ σ2 = 1.31)
σ2
ξY
/σ2

Ytrue
= 0.50 σ2

ξX
/σ2

Xtrue
= 0.51

Ytrue ∼ N(0, 0.25) Xtrue ∼ WN(µ = −0.11, ρ = 0.88 ≡ σ2 = 0.26)
ξY ∼ N(0, 0.25) ξX ∼ WN(µ = 0.044, ρ = 0.88 ≡ σ2 = 0.26)

E Yobs ∼ N(0, 0.50) Xobs ∼ WN(µ = −0.09, ρ = 0.79 ≡ σ2 = 0.47)
σ2
ξY
/σ2

Ytrue
= 1 σ2

ξX
/σ2

Xtrue
= 1

Ytrue ∼ N(0, 0.11) Xtrue ∼ WN(µ = −0.009, ρ = 0.95 ≡ σ2 = 0.11)
ξY ∼ N(0, 0.25) ξX ∼ WN(µ = 0.044, ρ = 0.88 ≡ σ2 = 0.26)

F Yobs ∼ N(0, 0.36) Xobs ∼ WN(µ = −0.09, ρ = 0.84 ≡ σ2 = 0.34)
σ2
ξY
/σ2

Ytrue
= 2.25 σ2

ξX
/σ2

Xtrue
= 2.36

Table 4.1: Table of simulated in line distributions and corresponding wrapped dis-
tributions. In the A, B and C cases he unobserved variable variance is fixed while
in the D, E and F cases the fixed parameter is the error variance.
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Case Normal Distribution Wrapped Normal Distribution
Y ∼ N(µ̃, σ2) X ∼ WN(µ = µ̃(mod2π), ρ)

Ytrue ∼ N(0, 0.03) Xtrue ∼ WN(µ = 0.02, ρ = 0.98 ≡ σ2 = 0.03)
ξY ∼ N(0, 0.01) ξX ∼ WN(µ = −0.006, ρ = 0.99 ≡ σ2 = 0.01)

G Yobs = (Ytrue + ξY ) ∼ N(0, 0.04) Xobs ∼ WN(µ = 0.04, ρ = 0.98 ≡ σ2 = 0.04)
σ2
ξY
/σ2

Ytrue
= 0.33 σ2

ξX
/σ2

Xtrue
= 0.33

Ytrue ∼ N(0, 0.15) Xtrue ∼ WN(µ = −0.003, ρ = 0.93 ≡ σ2 = 0.14)
ξY ∼ N(0, 0.05) ξX ∼ WN(µ = −0.002, ρ = 0.97 ≡ σ2 = 0.05)

H Yobs ∼ N(0, 0.20) Xobs ∼ WN(µ = −0.08, ρ = 0.91 ≡ σ2 = 0.18)
σ2
ξY
/σ2

Ytrue
= 0.33 σ2

ξX
/σ2

Xtrue
= 0.35

Ytrue ∼ N(0, 0.30) Xtrue ∼ WN(µ = 0.005, ρ = 0.86 ≡ σ2 = 0.30)
ξY ∼ N(0, 0.10) ξX ∼ WN(µ = 0.01, ρ = 0.96 ≡ σ2 = 0.09)

I Yobs ∼ N(0, 0.40) Xobs ∼ WN(µ = −0.06, ρ = 0.84 ≡ σ2 = 0.34)
σ2
ξY
/σ2

Ytrue
= 0.33 σ2

ξX
/σ2

Xtrue
= 0.30

Ytrue ∼ N(0, 0.90) Xtrue ∼ WN(µ = 0.07, ρ = 0.66 ≡ σ2 = 0.83)
ξY ∼ N(0, 0.30) ξX ∼ WN(µ = 0.11, ρ = 0.95 ≡ σ2 = 0.32)

J Yobs ∼ N(0, 1.20) Xobs ∼ WN(µ = 0.09, ρ = 0.60 ≡ σ2 = 1.01)
σ2
ξY
/σ2

Ytrue
= 0.33 σ2

ξX
/σ2

Xtrue
= 0.38

Ytrue ∼ N(0, 1.50) Xtrue ∼ WN(µ = −0.08, ρ = 0.43 ≡ σ2 = 1.68)
ξY ∼ N(0, 0.50) ξX ∼ WN(µ = −0.04, ρ = 0.79 ≡ σ2 = 0.46)

K Yobs ∼ N(0, 2.00) Xobs ∼ WN(µ = 0.13, ρ = 0.28 ≡ σ2 = 2.54)
σ2
ξY
/σ2

Ytrue
= 0.33 σ2

ξX
/σ2

Xtrue
= 0.27

Table 4.2: Table of simulated in line distributions and corresponding wrapped dis-
tributions. The variance ratio σ2

ξ/σ
2
Ytrue

is constant.
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Figure 4.1: Plot of simulated in line distributions (left plots) and corresponding
wrapped distributions (right rose diagram plots) inherent to distributions reported
in Table 4.1
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Figure 4.2: Plot of simulated in line distributions (left plots) and corresponding
wrapped distributions (right rose diagram plots) inherent to distributions reported
in Table 4.2
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Latent Variabletrue Error Variable ξ
Data Ratio In line Wrapped 95% In line Wrapped 95%
Set True value Estimate Posterior True value Estimate Posterior

σ2
ξ/σ

2
true σ2

Ytrue
σ2
Xtrue

Median σ2
ξY

σ2
ξX

Median

A 0.25 1.00 1.12 [0.77, 1.47] 0.25 0.26 [0.20, 0.33]
B 1.00 1.00 1.09 [0.71, 1.49] 1.00 0.95 [0.57, 1.46]
C 2.25 1.00 1.08 [0.72, 1.46] 2.25 1.95 [0.87, 2.87]
D 0.25 1.00 1.10 [0.69, 1.51] 0.25 0.24 [0.18, 0.33]
E 1.00 0.25 0.26 [0.21, 0.34] 0.25 0.26 [0.20, 0.34]
F 2.25 0.11 0.11 [0.04, 0.18] 0.25 0.26 [0.21, 0.32]
G 0.33 0.03 0.03 [0.01, 0.05] 0.01 0.01 [0.007, 0.013]
H 0.33 0.15 0.14 [0.05, 0.25] 0.05 0.05 [0.02, 0.08]
I 0.33 0.30 0.30 [0.24, 0.37] 0.10 0.09 [0.03, 0.17]
J 0.33 0.90 0.83 [0.56, 1.24] 0.30 0.32 [0.22, 0.41]
K 0.33 1.50 1.68 [0.98, 2.36] 0.50 0.46 [0.26, 0.78]

Table 4.3: ME model variance estimates

between in line and its corresponding wrapped ME model is investigated with a
particular attention to the sensitivity analysis to the error variance on parameter
estimation. This last analysis is carried out by simulation-based study, and it con-
firms the evidence came out in Section 3.3 about the variability effect on parameter
estimation: even in the case of ME model, the data variability of the circular data
influences the estimation reliability.
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Chapter 5

Spatial Modeling

In this chapter we present the essential elements of the standard in line spatial
model and the corresponding wrapped spatial model. In particular we provide a
first overview on the spatial data and models, then we focus on point-referenced
data describing the main elements of this of model. Successively we introduce the
wrapped spatial model showing some applications to simulated and real data.

5.1 Introduction to Spatial Models

Spatial data can be thought of as a realization of a random process (or random field)

{Y(s) : s ∈ D} (5.1)

where s is a vector of locations and D is a subset of Rd.
The definition of a spatial data set induces a classification of the data in three main
categories according to the definition of D or s:

a) point-referenced data;

b) areal data;

c) point pattern data.

Case a) is often referred to as geostatistical (Matheron, 1962) data where s varies
continuously over D.
Also the second type of spatial data is often denoted with another name: lattice
data. A lattice of locations evokes the idea of regularly spaced points in Rd linked
to the neighbors. For this reason in areal (or lattice) data, D (it can be of regular or
irregular shape) is partitioned into a finite number of areal units with well-defined
boundaries. Thus, the locations s ∈ D, in this case, are the regions (or blocks)
themselves. In this context, data are typically sums or averages of variable over
blocks. To introduce the spatial association, it is necessary in this case to define a
neighborhood structure based on the arrangement of the blocks in the map. Once
the neighborhood is defined, models resembling autoregressive time series models
are considered. The most important models that incorporate such neighborhood
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information are the simultaneously autoregressive (SAR) and conditionally autore-
gressive (CAR) models, introduce by Whittle (1954) and Besag (1974) respectively.
The third case c) arises when the response variable is the location of “events ”.
In point-pattern data, in fact, the variable to be analyzed is often fixed and the
locations s are thought as random, i.e., D itself is random. Such data are often of
interest in studies of event clustering, where the goal is to determine whether an
observed spatial point pattern is an example of a cluster process or merely the result
of a random event process over space.

5.2 Point-referenced Data Models

As mentioned above, the basic concept underlying the spatial theory is to think of
data as resulting from observations of the stochastic process Y (s), defined in (5.1).
In point-referenced data, D is a fixed subset of the d-dimensional Euclidean space.
In situations where d > 1, the process is often referred to as spatial process.
To introduce the statistical model for spatial data, it is necessary to give some basic
definition and concepts as stationarity, isotropy and variograms.

5.2.1 Stationarity

The random process (5.1) is usually defined through the finite-dimensional distribu-
tion

Fs1,...,sn(y1, . . . , yn) = Pr(Y (s1) < y1, . . . , Y (sn) < yn), n ≥ 1 (5.2)

which must satisfy Kolmogorov’s conditions of symmetry (i.e., the probability dis-
tribution F remains invariant when yi and si are subjected to the same permutation)
and consistency (i.e., Fs1,...,sk+1

(y1, . . . , yk,∞, . . . ,∞) = Fs1,...,sk(y1, . . . , yk, )). Con-
sidering that data represent sampling of a single realization, inference on Y without
further assumptions is unfeasible.
One strongest assumption regards stationarity. The process is said to be strictly
stationary if, for any given n > 1, any set of n sites {s1, . . . , sn} and any h ∈ Rd, the
distribution of (Y (s1), . . . , Y (sn)) is the same as that of (Y (s1 + h), . . . , Y (sn + h)).
The strictly stationarity legitimizes, the use of the observations y(si) as different
realizations of the same random variable. Nevertheless, this condition is rarely sat-
isfied, as a consequence, a less restrictive condition is weak stationarity (also called
second-order stationarity). Cressie (1993, pag.53) defines a spatial process to be
weakly stationary if:

µ(s) ≡ µ(i.e., the process has a constant mean)

and
Cov(Y (s), Y (s+ h)) = C(h)

for all h ∈ Rd such that s and s + h both lie within D.
Weak stationarity implies that the covariance relationship between the values of the
process at any two locations can be summarized by a covariance function C(h),
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and this function depends only on the distance vector h. Note that assumed the
existence of all variances, strong stationarity implies weak stationarity. The converse
is not true in general but it holds for the Gaussian process. Defining, in fact,
as Gaussian the process Y (s) that has, for any n > 1 and for any set of sites
{s1, . . . , sn}, Y = (Y (s1), . . . , Y (sn))T distributed as a multivariate Normal, the
weak stationarity, i.e., the stationarity on the first two moments, implies strictly
stationarity as well.
There is another type of stationarity that leads to definition of the another crucial
instrument for geostatistics: the variogram.

5.2.2 Variogram

The intrinsic stationarity is defined through the first difference:

E(Y (s + h)− Y (s)) = 0,

E(Y (s + h)− Y (s))2 = V ar(Y (s + h)− Y (s)) = 2γ(h)
(5.3)

Equation 5.3 makes sense only if the left-hand side depends only on h (so that the
right-hand side can be written at all), and not the particular choice of s. In this
case, then, the process Y (s) is intrinsically stationary.

Function 2γ(h) is the variogram (Matheron, 1962), whereas γ(h) is called the
semivariogram. From definition (5.3) it easy to verify some properties of the vari-
ogram:

(i) γ(−h) = γ(h) i.e., the variogram is a even function;

(ii) γ(0) = 0 i.e., the variogram is continuous at the origin.

The first property is always verified, while the second one is not granted. It is
possible that as h→ 0, γ(h)→ τ 2 > 0. Matheron (1962) defined this quantity the
nugget effect specifying that the only possible reason for τ 2 > 0 is the measurement
error. This leads to add a white-noise process to the process with continuous sample
path.

Another important property of the variogram is its relationship with the covari-
ance function C(h):

2γ(h) = V ar(Y (s + h)− Y (s))

= V ar(Y (s + h)) + V ar(Y (s))− 2Cov(Y (s + h), Y (s))

= C(0) + C(0)− 2C(h)

= 2(C(0)− C(h))

Thus
γ(h) = C(0)− C(h) (5.4)

where C(0) = σ2 is the variance of the process, also called partial sill. The sill is
properly defined by lim||h||→∞ γ(||h||) = τ 2 + σ2. Finally, the last parameter that
characterizes the variogram, together with the sill and the nugget, is the range that
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Figure 5.1: Variogram and its parameters.

is the value of ||h|| at which γ(||h||) reaches its ultimate level (the sill). A graphical
representation of these parameters is depicted in Figure 5.1.

A variogram to be valid must satisfy a negative definiteness condition (Matheron,
971b) given by ∑

i

∑
j

aiajγ(si − sj) ≤ 0, (5.5)

for any finite number of spatial locations s1, . . . , sn and for any set of constants
a1, . . . , an such that

∑
i ai = 0.

Other conditions for a valid variogram are discussed in Cressie (1993).

5.2.3 Isotropy

A third important concept is the isotropy. If the semivariogram function γ(h) de-
pends upon the distance vector only through its length ||h||, then the process is
isotropic, if not, it is anisotropic. Thus, for a isotropic process, γ(h) is a real-valued
function of a univariate argument and can be written as γ(||h||).
Isotropic processes are popular because for them a number of relatively simple para-
metric forms are available as candidates for the semivariogram. Denoting ||h|| by t,
we now consider some of the more important forms.

Linear:

γ(t) =

{
τ 2 + σ2t if t > 0, τ 2 > 0, σ2 > 0,

0 otherwise.

Note that γ(t) → ∞ as t → ∞, and so this semivariogram does not correspond to
a weakly stationary process, but only to an intrinsically stationary process.

Spherical:

γ(t) =


τ 2 + σ2t if t ≥ 1/φ,

τ 2 + σ2
{

3φt
2
− 1

2
(φt)3

}
if 0 < t ≤ 1/φ,

0 otherwise.
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5.2 Point-referenced Data Models

Figure 5.2: Theoretical semivariogram: (a) linear, (b) spherical, (c) exponential.

The value t = 1/φ is the range while φ is often referred to as the decay parameter.
The spherical semivariogram is valid in d = 1, 2 or 3. The spherical form does give
rise to a stationary process and so the corresponding covariance function is easily
computed.

Exponential:

γ(t) =

{
τ 2 + σ2(1− exp(−φt)) if t > 0,

0 otherwise.

The exponential has an advantage over the spherical in that it is simpler in functional
form and it is valid in all dimensions.

Note from Figure 5.2 (c) that the sill is reached only asymptotically, meaning
that the range 1/φ is infinite. In cases like this, it is appropriate to introduce the
notion of effective range, that is the distance at which there is essentially no linger-
ing spatial correlation. A common definition of effective range t̃, is the distance at
which this correlation drops to only 0.05. Setting exp(−φt̃) equal to this value we
obtain t̃ ≈ 3/φ, since log(0.05) ≈ −3. The procedure to find a distance over that
the covariance function is supposed valued under a fix value is commonly used to
decide reasonable value for the range parameter.

Gaussian:

γ(t) =

{
τ 2 + σ2(1− exp(−φ2t2)) if t > 0,

0 otherwise.

The Gaussian variogram yields very smooth realizations of the spatial process.

Wave:

γ(t) =

{
τ 2 + σ2(1− sin (φt)

φt
)) if t > 0,

0 otherwise.

The Wave variogram is as example of not monotonic increase due to sin function.
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Model Variogram γ(t)

Linear γ(t) =
{
τ2 + σ2t if t > 0
0 otherwise

Spherical γ(t) =

 τ2 + σ2 if t ≥ 1/φ
τ2 + σ2

[
3
2φt−

1
2 (φt)3

]
if 0 < t ≤ 1/φ

0 otherwise

Exponential γ(t) =
{
τ2 + σ2(1− exp(−φt)) if t > 0
0 otherwise

Gaussian γ(t) =
{
τ2 + σ2(1− exp(−φ2t2)) if t > 0
0 otherwise

Power γ(t) =
{
τ2 + σ2tλ if t > 0
0 otherwise

Wave γ(t) =

{
τ2 + σ2(1− sin (φt)

φt )) if t > 0,
0 otherwise

Matern γ(t) =

{
τ2 + σ2

[
1− (2

√
νtφ)ν

2ν−1Γ(ν)Kν(2
√
νtφ)

]
if t > 0,

0 otherwise

Table 5.1: Semivariograms for common parametric isotropic models.

Power law:

γ(t) =

{
τ 2 + σ2tλ if t > 0,

0 otherwise.

This semivariogram generalizes the linear one and produces valid intrinsic stationary
semivariograms with 0 ≤ λ < 2.

Matérn:

γ(t) =

{
τ 2 + σ2

[
1− (2

√
νtφ)ν

2ν−1Γ(ν)
Kν(2

√
νtφ)

]
if t > 0,

0 otherwise,

where Kν is the modified Bessel function of order ν. This class of semivariograms
was originally suggested by Matérn (1986). The parameter ν > 0 controls the
smoothness of the realized random field, while φ is a spatial scale parameter. We
refer to Matérn semivariogram as a class because, with opportune parametrization
of ν, we obtain other semivariogram forms as for example the exponential (with
ν = 1/2) and the Gaussian (with ν →∞).
The semivariograms above described and their covariance functions are summarized
in Tables 5.1 and 5.2 respectively.

5.2.4 Variogram model fitting

Several variogram estimators exist in literature (a comprehensive account of these
estimators can be found in Cressie (1993, sec. 2.5)) and perhaps the most customary
is the method-of-moment estimator due to Matheron (1962):

γ̂(t) =
1

2N(t)

∑
(si,sj)∈N(t)

[Y (si)− Y (sj)]
2, (5.6)
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5.3 Hierarchical Modeling for Univariate Point-referenced Data

Model Covariance function C(t)
Linear C(t) does not exist

Spherical C(t) =

 0 if t ≥ 1/φ
σ2
[
1− 3

2φt−
1
2 (φt)3

]
if 0 < t ≤ 1/φ

τ2 + σ2 otherwise

Exponential C(t) =
{
σ2exp(−φt) if t > 0
τ2 + σ2 otherwise

Gaussian C(t) =
{
σ2exp(−φ2t2) if t > 0
τ2 + σ2 otherwise

Power C(t) does not exist

Wave C(t) =

{
σ2 sin (φt)

φt if t > 0,
τ2 + σ2 otherwise

Matern C(t) =

{
σ2

2ν−1Γ(ν) (2
√
νtφ)νKν(2

√
νtφ) if t > 0,

τ2 + σ2 otherwise

Table 5.2: Covariance functions for common parametric isotropic models.

where N(t) is the set of pairs of the points such that ||si − sj|| = t, and N(t) is
the number of the pairs in this set. Although easy and of immediate intuition, this
estimator is sensible to outliers. To overcome this drawback, Hawkins and Cressie
(1984) proposed a robust variogram estimator.
However, these estimators are not necessarily conditionally negative-definite, so we
need to have recourse to valid variograms. For this purpose, the usual approach to
fit the variogram consists of plotting the empirical variogram and then choose the
theoretical variogram model that best fits the “data”. More formally we can treat
this as an estimation problem and estimate the parameter sill, range and nugget
following some goodness-of-fit criteria, (see Smith, 2001).
Finally, if the distribution model is available, it is possible to obtain maximum
likelihood estimates for the variogram parameters, (see Cressie, 1993, Sec. 2.6).
Hierarchical Bayesian approach is similar to likelihood approach although it is eas-
ier work directly with the covariance function rather than changing to a partial
likelihood in order to introduce the semivariogram.

5.3 Hierarchical Modeling for Univariate Point-

referenced Data

From a Bayesian point of view, there are basically two ways to introduce spatial
models: either in first-stage specification, to directly model data in a spatial fashion,
or in a second-stage specification, to model the spatial structure via the random
effects. In the last case, the spatial process is viewed as latent component and data,
modeled at the first stage, help to learn about the process. In the last years, a
fairly extensive literature on spatial prediction has been developed from a Bayesian
perspective, like Ecker and Gelfand (1997), Diggle et al. (1998), Karson et al. (1999).
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5.3.1 Spatial model definition

The basic spatial model is:

Y (s) = µ(s) + w(s) + ξ(s) s = (s1, . . . , sd) (5.7)

where the mean structure, µ(s), can be expressed through the covariates x, i.e.,
µ(s) = xT (s)β. The residual is partitioned into two components, a spatial process,
w(s), and a non spatial term ξ(s). The first are assumed to be realizations from a
stationary Gaussian spatial process with zero mean vector, while ξ(s) are uncorre-
lated pure error terms. Substantially, w(s) introduce the partial sill (σ2) and range
(φ) parameters, while ξ(s) add the nugget effect (τ 2).

5.3.2 Hierarchical Bayesian methods

Consider a general Gaussian linear model Y ∼ Nn(Xβ,Σ), where the response
variable is nx1 data vector with known variance and covariance matrix Σ and X is
an nxp matrix of covariates. From a Bayesian point of view, the likelihood and the
prior for the unknown parameter vector β are given respectively by:

Y | β ∼ Nd(Xβ,Σ),

β ∼ Np(Aα, V ).

Then, it can be shown that the marginal distribution of Y is

Y ∼ Nd(XAα,Σ +XVXT ),

and the posterior distribution of β is

β | Y ∼ Np(Dd, D)

where D−1 = XTΣ−1X+V −1 and d = XTΣ−1Y+V −1Aα. Thus, the Bayesian point
estimate for parameter β can be found, for example, by averaging of the posterior
distribution: E(β | Y) = Dd.

In a spatial context, where we suppose to collect the data in Y = (Y (s1), . . . , Y (sd))
T ,

we can adopt the same approach upon an appropriate definition of the Σ matrix.
For example, in case of a spatial model with nugget effect, the matrix is

Σ = σ2H(φ) + τ 2I, (5.8)

where H is a correlation matrix with Hij = ρ(si − sj;φ) and ρ is a valid isotropic
correlation function on R2 indexed by the parameter φ.
Let Ψ = (β, σ2, τ 2, φ)T , a Bayesian solution requires an appropriate prior distri-
bution Pr(Ψ), so that the parameter estimate can be obtained from the posterior
distribution notoriously proportional to the product of likelihood and prior:

Pr(Ψ | Y) ∝ f(Y | Ψ)Pr(Ψ).
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5.4 Wrapped Spatial Models

Then, the full specification of the spatial model comes from the likelihood (as the
product of the probability distribution function) and the priors (which are typically
chosen independent each other for the different parameters) as:

Y | Ψ ∼ N(Xβ, σ2H(φ) + τ 2I)
Pr(Ψ) = Pr(β)Pr(σ2)Pr(τ 2)Pr(φ).

(5.9)

The common choices for the priors are the multivariate Normal for β and the inverse
Gamma for σ2 and τ 2. The prior for φ depends on the choice of ρ function. In the
simple exponential case, for example, where ρ(si− sj;φ) = exp(−φ||si− sj||), (with
univariate φ), a Gamma prior is often chosen.

The conditional model (5.9) can be processed hierarchically as well, by writing
the first-stage specification, regarding data conditional on both parameter and spa-
tial process f(Y | Ψ,W), and the second-stage specification, regarding the spatial
process Pr(W | θ) itself. The posterior distribution, Pr(Ψ | Y), in this case is
proportional to f(Y | Ψ,W)Pr(W | Ψ)Pr(Ψ), i.e.,

Pr(Ψ | Y) ∝ f(Y | Ψ,W)Pr(W | Ψ)Pr(Ψ)

Formally, we can rewrite model (5.9) as

first-stage Y | Ψ,W ∼ Nn(Xβ + W, τ 2I)
second-stage W | σ2, φ ∼ Nn(0, σ2H(φ)),

(5.10)

where W = (w(s1, . . . , sn))T and such that Y (si) are conditionally independent
given w(si), while H(φ) is the correlation matrix specified in (5.8). Even in this
case, the Bayesian model specification is completed by adding priors for β, τ 2 and
for the hyperparameters σ2 and φ. The conditional model is preferred because of
its close form that makes the MCMC methods (the Gibbs sampling in particular)
more efficient. Moreover, the first model is more steady. Note, in fact, that if two
locations si and sj are very close to each other, the matrix σ2H(φ) is close to singular
while σ2H(φ) + τ 2I not.

5.4 Wrapped Spatial Models

Recalling the wrapped process definition in Chapter 3 and its density (3.5), we de-
rive the wrapped spatial model as follows. Let Y = (Ys1 , . . . , Ysd)

T be a spatial
Gaussian process defined on d spatial locations, i.e. Y ∼ Nd(µ̃,Σ) where the spatial
structure is specified through the covariance matrix Σ. To obtain the corresponding
wrapped process, we apply to the vector Y the wrapping procedure X = Y (mod2π)
componentwise so that we achieve the circular vector X = (Xs1 , . . . , Xsd)

T , where
Ysi = Xsi + 2Ksiπ with s ∈ s, i = 1, . . . , d, and each of the Xsi is wrapped Normal
WN(µ = µ̃(mod2π), ρ). Then, the spatial wrapped model can be completely speci-
fied given an appropriate definition of the spatial matrix Σ as shown in the previous
subsection.
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Chapter 5. Spatial Modeling

Considering as above a spatial model with nugget effect, then the covariance matrix
is Σ = σ2H(φ) + τ 2I and the wrapped Normal spatial models is defined as follows:

X,K | Ψ ∼ Nd(µ, σ
2H(φ) + τ 2I)

Pr(Ψ) = Pr(µ)Pr(σ2)Pr(τ 2)Pr(φ).
(5.11)

Note that model (5.11) is equivalent to the conditional model (5.9) assuming the
equivalence Y ≡ (X,K) that, as said in Section 3.1, has to be interpreted as the
joint distribution for (X,K) with argument (X + 2Kπ) and parameters vector Ψ =
{µ, σ2, τ 2, φ}. Moreover, expression (5.11) can be directly used into equations (3.9)
and (3.14) in order to obtain the posterior distributions of all parameters and k’s
coefficients of the wrapped spatial model.
That is, formally, we have

Pr(Ψ | X,K) ∝ Pr(X,K | Ψ)Pr(Ψ), (5.12)

and
Pr(K | X,Ψ) ∝ Pr(X,Ψ | K)Pr(K). (5.13)

By equation (5.12) and (5.13) we have a fully specified Bayesian wrapped spatial
model through which, in the next subsection, we compute spatial data examples.
The first two applications regard simulated data while the last is a spatial data
example applied to real data.

5.4.1 Examples

Simulated examples

Here we present two examples of simulated wrapped spatial processes with different
dimension d. Simulation is straightforward. The in line spatial process, Y, is simu-
lated from a multivariate Normal distribution of dimension d and its corresponding
wrapped process X is obtained by applying the wrapping procedure componentwise:
X(i) = Y(i)(mod2π), i = 1 . . . , n. This is repeated until a sample of size n is ob-
tained. In our case, n = 100.
The likelihood used in (5.12) is:

P (X,K | Ψ = (µ,Σ)) ∝ |Σ|−n/2 exp {−1

2
(X + 2Kπ − µ)TΣ−1(X + 2Kπ − µ)}

(5.14)
where Σ = (σ2H(φ)) is the covariance spatial matrix and H is the distance matrix.
The parameters σ2 and φ are the partial sill and the range, respectively. In these
example we solve a wrapped Normal spatial model without nugget effect, modeled
as a conditional model according to (5.9). Equation (5.14) is the likelihood of a
”standard” in line Gaussian spatial process where the variable is (X + 2Kπ).
The estimation procedure is the same described in Section 3.1.
For the first example, regarding a spatial process with dimension d = 3, we simu-
late a multivariate Normal distribution with vector mean µ = {0.7, 0.9, 1.2} and
spatial covariance matrix having partial sill σ2 = 0.8 and range equal to 1.2.
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5.4 Wrapped Spatial Models

Spatial wrapped Normal model (d=3)
Parameter True Posterior 95%

Value Median Posterior Interval
µ1 0.80 0.76 [0.67, 0.98]
µ2 1.00 1.04 [0.98, 1.21]
µ3 1.20 1.28 [1.01, 1.38]
σ2 0.80 0.82 [0.67, 0.95]
φ 1.2 1.26 [1.15, 1.43]

Table 5.3: Parameter estimates of the wrapped spatial Normal processes with di-
mension d = 3.

Spatial wrapped Normal model (d=6)
Parameter True Posterior 95%

Value Median Posterior Interval
µ1 0.80 0.73 [0.63, 1.02]
µ2 1.00 1.11 [0.89, 1.32]
µ3 1.20 1.32 [1.06 1.56]
µ4 0.70 0.67 [0.61, 0.97]
µ5 1.30 1.41 [1.16, 1.61]
µ6 0.60 0.58 [0.53, 0.78]
σ2 1.00 1.03 [0.91, 1.20]
φ 1.00 0.97 [0.86, 1.18]

Table 5.4: Parameter estimates of the wrapped spatial Normal processes with di-
mension d = 6.

Whereas for the second example with d = 6, we set the vector mean equal to
µ = {0.8, 1, 1.2, 0.7, 1.3, 0.6} and σ2 = φ = 1. For both simulated examples we set
data on a regular 50km x50km lattice.
The priors used in the Metropolis-Hastings algorithm are: µ ∼ Nd(µ0,Σ0); σ2 ∼
InvGamma(α0, β0) and φ ∼ Gamma(a0, b0). In particular we used the same setting
in both the examples with µ0 unit vector of dimension d = 3 and d = 6 respectively;
and with α0 = 4, β0 = 8, a0 = 3 and b0 = 3. In Figures 5.3-5.4 we show the traces
(without burn in and thin) of the estimated parameter chains of Spatial WN Process
with dimensions d=3 and d=6; while the complete inference results are reported in
Tables 5.3 and 5.4.

Comparing Figures 5.3 and 5.4, the remarkable feature is the very different num-
ber of iterations need to reach convergence. When d = 3 the chains converge after
about 1000 MCMC iterations. Instead, when the process dimension is d = 6, the
simulated chains need more than 15000 iterations to converge. This evidence induces
us to look for a general “behavior” of the Metropolis-Hastings (M-H) algorithm used
for the wrapped spatial process. For this the reason we projected a simulation plan
that takes into account several aspects of data and of the M-H algorithm itself as:
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Chapter 5. Spatial Modeling

Figure 5.3: Traces of estimated parameters of Spatial WN Process with dimensions
d=3

Figure 5.4: Traces of estimated parameters of Spatial WN Process with dimensions
d=6
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dimension of the process (d=3,6,15,30, so that 4 different simulation schemes are
computed), parameter setting for transition density (a,b,c), prior setting (for µ, φ
and σ2), variability of the data (given by the variance of the true µ values) and
number of iterations. As an example, we report in Table 5.5 the scheme concerning
the simulation scheme for the spatial process with dimension d = 3. In appendix
there are the schemes of the simulation plans regarding the spatial process with
dimension d = 6, d = 15 and the results for each of them. Each of the 3 simulation
schemes are constituted by 24 different simulations (the simulation identification is
reported in the first column of the scheme), subdivided in 3 groups of 8 simulations.
The simulated data are reported in column named “µ true values ” . We choose two
different setting for the data: data set with small variability µ = (−0.5,−0.2, 0.5)
and data set with quite large variance µ = (−2, 0.4, 2). For both simulated data
sets we choose different prior setting. In particular, for µ we differ in uncentred
(about the mean of data) multivariate Normal distribution MVN(0,sigma.mu), and
centred multivariate Normal distribution MVN(-0.5,-0.2,0.5). The kurtosis of these
distribution is settled through the “Variance of µ Prior” setting, and also in this
case we opt for two choices, more or less diffuse covariance matrix, obtained through
“sigma.mu out-diag”, and “sigma.mu diag”.
Also for range parameter φ we set two different priors: Gamma(3, 40) andGamma(2, 20),
where the former is more informative than the latter. Follows the same aim we set
two priors for partial sill parameter as well: InvGamma(8, 9) and InvGamma(4.8, 5).
Finally, the setting for the transition density parameter are provided. Considering
the Metropolis-Hastings algorithm illustrated in Section 3.1, we adopt a random
walk as transition density, so a, b, c are the parameters of the uniform distributions
related to the random walk errors for µ σ2 and φ respectively. Each of the 24 differ-
ent simulations of this scheme is repeated 50 times and for a fix number of iterations
equal to 5000.
Summarizing the results obtained by the simulation plans, we are able to detect
some important characteristic and general behavior of spatial process and the M-H
algorithm. First of all, when the process dimension increases, also the iteration
numbers to reach chains convergence increases but non in a linear way. Moreover,
analyzing the estimate accuracy (see estimates and posterior interval sizes related
to simulation plans in appendix A) we confirm, (as just highlighted in Section 3.4)
that large variability of the data leads to poor inference due to the identifiability
problem. Finally, we discover that, as the computation complexity increases, the
wrapped model becomes instable because of the large number of parameters to esti-
mate. Note that for each variable of the process a k coefficient have to be estimated.
So, another aspect, apart from the data variability, that involve inferential problem
is the high dimension of the process. Notwithstanding these drawbacks, the posterior
distribution for k’s coefficients worked out in equation (3.14) allow us to overcome
these problems.
As an example of the robustness of the inferential procedure described in Chapter
3, now we compute a high dimensional wrapped spatial model for real data.
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Figure 5.5: Map of the 27 spatial location in the Adriatic sea

Real data example

For this example we use Wam data, provided by European Center for Medium-
Range Weather and briefly described in first chapter. These data regard wave mean
direction values estimated on 25km x 25km regular lattice on all the Mediterranean
sea and recorded each 6 hour time interval. The data are located in a portion of
Adriatic sea between Ancona and Ortona registered on December 19, 2002 at 00:00
am. The number of spatial locations considered is d = 27.
Figure 5.5 shows the geographic locations of the points in Adriatic sea whereas the
wave mean direction data are reported in Table 5.6.

As in the previous simulated examples, we use the same prior setting for µ ∼
Nd(µ0,Σ0); σ2 ∼ InvGamma(α0, β0) and φ ∼ Gamma(a0, b0), but, in this case,
to set the prior parameters we use the information about data obtained whether
from previous works or from simulation plan results. The Bayesian approach in
this context of real data application is particularly suitable in that allows us to use
the information about data directly in the inference procedure through opportune
prior setting. In particular, from previous studies about these marine data (Bruschi
et al., 2005) we know that a reasonable value for µ0 is around 0.5 and suitable
priors for partial sill and range are σ2 ∼ InvGamma(8, 9) and φ ∼ Gamma(3, 40)
respectively.
Another important inferential aspect regards the number of iterations of the M-H
algorithm. For this high dimension model, we need at least 150000 iterations to
reach the convergence and, in order to have uncorrelated chains, we choose a thin
of 10. We report in Figure 5.6 the observed values, the estimated values and their
95% posterior interval for the vector parameter µ. The complete inferential results
for this parameter vector are listed in Table 5.6.

Analyzing Figure 5.6, we note that the observed data are very close to estimate
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5.4 Wrapped Spatial Models

Figure 5.6: Observed values, estimated values and 95% posterior interval for the
parameter vector µ
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values even if the posterior interval sizes (quite large for all parameters) reveal not
so accurate estimates. This is due to the high dimension that makes the model quite
instable. In fact, comparing the posterior intervals sizes of the simulated example
with d = 6 with posterior intervals sizes of model with d = 3, we note that in mean
the second interval sizes are about a quarter of the first ones.
Probably, using more advanced MCMC algorithm we could obtain more quick and
accurate results, but the main purpose here is providing a new method to apply the
spatial models to circular data without taking into account of the computational
aspects.

5.5 Discussion

In this chapter we introduce the spatial modeling. We provide general definitions
of the spatial data categories and describe the common tools and notions of spa-
tial statistics as stationarity, isotropy and variograms. Then, we focus on point-
referenced data developing a Bayesian hierarchical model.
Next, extending the wrapped multivariate Normal density, we derive the wrapped
spatial process formulation.
The ease and flexibility of the wrapping approach inference applied to spatial mod-
els is well represented in the examples that conclude the chapter. We first show
two simulated examples with different number of spatial locations. The evidence
that comes from these examples lead us to project a simulation plan in order to
understand the behavior of the wrapping inferential procedure in a spatial context
characterized by high dimensional models. The plan takes into account several as-
pects of both spatial model and Metropolis-Hastings algorithm. The knowledge
obtained from simulation plan is directly used in inference procedure, through prior
specification, to carry out the estimates of wrapped spatial model applied to real
data set.
The reliability of the real data estimates constitute a good starting point to extend
the wrapping inferential procedure to spatiotemporal models.
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Chapter 5. Spatial Modeling

Id. Coordinates Coordinates Wave Estimate 95%
Point X (UTM) Y(UTM) Direction Wave direction Posterior Interval
o1.1 458916.9 4705414 0.47 0.52 [0.31, 0.89]
o1.2 418491.4 4761300 0.62 0.64 [0.34, 1.08]
o1.3 438868.6 4761088 0.65 0.74 [0.17, 1.34]
o1.4 459245.8 4760936 0.70 0.75 [0.01, 1.37]
o1.5 479622.9 4760845 0.68 0.70 [0.06, 1.42]
o1.6 500000 4760815 0.62 0.64 [-0.18, 1.32]
o2.1 438621.3 4733326 0.70 0.69 [0.26, 0.94]
o2.2 459080.9 4733175 0.67 0.65 [0.02, 1.28]
o2.3 479540.5 4733084 0.47 0.53 [-0.25, 1.02]
o2.4 500000 4733053 0.32 0.38 [-0.35, 0.97]
o3.1 479458.5 4705323 0.38 0.39 [-0.51, 0.83]
o3.2 500000 4705293 0.21 0.28 [-0.52, 0.92]
o3.3 500000 4677534 0.29 0.33 [-0.22, 1.05]
o0.0 462149.4 4695402 0.61 0.56 [0.16, 1.04]
a1.1 360285.2 4901130 0.73 0.79 [0.14, 1.52]
a1.2 359694.5 4873362 0.64 0.70 [-0.02, 1.30]
a2.1 380244.6 4900734 0.84 0.79 [0.26, 1.45]
a2.2 379738.3 4872967 0.75 0.79 [0.09, 1.53]
a2.3 379234.4 4845200 0.73 0.76 [-0.11, 1.26]
a3.1 400203.9 4900400 0.72 0.74 [0.26, 1.59]
a3.2 399782.1 4872632 0.69 0.73 [0.01, 1.54]
a3.3 399362.1 4844866 0.68 0.76 [0.07, 1.40]
a4.1 419825.7 4872359 0.64 0.67 [0.04, 1.51]
a4.2 419489.8 4844592 0.73 0.71 [0.25, 1.37]
a4.3 419155.5 4816827 0.80 0.80 [0.02, 1.55]
a5.1 439617.4 4844380 0.60 0.63 [-0.05, 1.28]
a0.0 396280.2 4853800 0.83 0.91 [0.11, 1.65]

Table 5.6: Observed values, posterior estimates and posterior interval of the wave
direction (expressed in radiant) on 25km x 25km lattice (UTM coordinates) recorded
in a portion of Adriatic sea between Ancona and Ortona. The points identified by
”o” are related to Ortona coast, while the points with ”a” are related to Ancona
coast.

92



Chapter 6

Spatiotemporal Modeling

In recent years there has been a tremendous growth in the statistical models and
techniques to analyze spatiotemporal data such as air pollution data. Besides, the
major part of the environmental data, as for example the rain precipitations, the
wind directions, the temperatures and so on, are often observed both in spatial and
in temporal contexts. It is not uncommon that the most important works about spa-
tiotemporal modeling regard environmental data, see for example Wikle and Cressie
(1998), Wikle (2003) and Gelfand et al. (2005).
Among the many possible approaches to the building of space-time models, the
most natural in environmental science is the hierarchical one. Working with pro-
cesses over bounded spatial and temporal domains, theoretical arguments tell us
that we have few ergodicity results and, more generally, few situations where con-
sistent estimation is possible. Hence, assessment of uncertainty through customary
likelihood asymptotics can be a risky practice while a fully Bayesian analysis will re-
sult in exact inference. Admittedly, prior specification for spatio-temporal Bayesian
models requires care and fitting will usually be more demanding (though the tools
are becoming more and more available) but the resulting inferential comfort can
provide justification.
In the next chapter we illustrate the basic framework of spatiotemporal modeling
in the Bayesian hierarchical approach with particular attention to the dynamic for-
mulation.

6.1 Spatiotemporal model formulation

The spatiotemporal modeling can be considered as an extension of spatial modeling
of previous chapter. So, extending the definition of the spatial point-referenced
model (5.7), a general form for point-referenced spatiotemporal model is

Y (s, t) = µ(s, t) + e(s, t) s = s1, . . . , sd t = 1, . . . , T (6.1)

where Y (s, t) denote the measurement at location s and at time t; µ(s, t) denote
the mean structure and e(s, t) are the residuals. As for the spatial model, even in
this case, suppose x(s, t) a vector of covariates associated to Y (s, t), we can express
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Chapter 6. Spatiotemporal Modeling

the mean structure as µ(s, t) = x(s, t)Tβ(s, t). Note that this last formulation allow
spatiotemporal varying coefficient β’s even if usually it is adopted β(s, t) = β, or
only temporally or spatially varying coefficient as β(s, t) = β(t) and β(s, t) = β(s).
Finally, e(s, t) can be written as w(s, t) + ξ(s, t) where ξ(s, t) is a Gaussian white
noise process and w(s, t) is the mean zero spatiotemporal process.
Again, as in spatial context, the model (6.1) can be viewed as conditional model
given µ(s, t) and w(s, t) at first stage, or hierarchically, given w(s, t) at second stage
as well.
Therefore, all the spatiotemporal structure is given by e(s, t). Following Gelfand
et al. (2004), the residuals are partitioned as follows:

e(s, t) = α(t) + w(s) + ξ(s, t), (6.2)

e(s, t) = αs(t) + ξ(s, t), (6.3)

e(s, t) = wt(s) + ξ(s, t) (6.4)

The expressions for e(s, t) do not invoke spatiotemporal interaction. Moreover, in
each of (6.2), (6.3) and (6.4) the pure error terms are i.i.dN(0, σ2

ξ ) and they represent
a residual term od spatiotemporal explanation.
Now, we analyzing in detail the components of the previous three expressions (6.2)-
(6.4), denoting with α all the temporal effects, while with w the spatial effects.
The first, (6.2), provide an additive temporal and spatial effect; while in (6.3), αs(t)
indicates a temporal evolution at each site, and in (6.4) wt(s) indicates a spatial
evolution over time. To better understand the structure of αs(t) and wt(s) we can
collect the residuals e(s, t) into a dxT matrix where rows represent the spatial process
over time and the columns represent the temporal process over space, i.e.,

e(s, t) =


e(s1, 1), . . . , e(sd, 1)
e(s1, 2), . . . , e(sd, 2)

...
e(s1, T ), . . . , e(sd, T )

 =


w1(s)
w2(s)

...
wT (s)

 = (αs1(t), αs2(t), . . . , αsd(t))
′ .

(6.5)
For each time t = 1, . . . , T , wt(s) is a spatial process on locations s1, . . . , sd and, for
each spatial location si, i = 1, . . . , d, αs(t) is a temporal process.

Returning to (6.2), w(s) is modeled as a customary Gaussian spatial process
following Section 5.3. For the temporal component, instead, if t is continuous, we
can model α(t) as a stationary Gaussian process; in particular, posing, for a set
(t1, . . . , tm) α = (α(t1), . . . , α(tm))′, we model α ∼ N(0, σ2

αΣ(φ)), where (Σ(φ))rs =
ρ(|tr − ts|;φ) for a valid correlation function ρ. In case of discrete time points
t = 1, 2, . . . , T , we can simply view α(1), α(T ) as the coefficients associated with a
set of time dummy variables. With this assumption, we can adopt for α(t) a model
as α(t) = ρα(t − 1) + ε(t) where ε(t) are i.i.d N(0, σ2

α). In particular, if ρ < 1 we
have a stationary autoregressive time series model AR(1), while if ρ = 1 we model
α(t) as random walk.
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6.2 Spatiotemporal Bayesian model specification

Considering the specification about αs(t) mentioned above, the autoregressive
or random walk model provide a suitable specification for the spatial component in
(6.3). That is, we can assume αs(t) = ραs(t− 1) + εs(t) where again εs(t) are i.i.d.
The case with ρ < 1 is proposed in Hill et al. (1999) while the model for ρ = 1 can
be found in Case and Shiller (1989).

Finally, the component wt(s) in (6.4) can be viewed as a collection of indepen-
dent spatial process where the subscript t indicate the temporal slice at which the
spatial process is referred. Note that with this expressions of wt(s) we are able to
catch the temporal evolution of the spatial processes by comparing the spatial pro-
cess parameters over time. Similar consideration about the spatial evolution of the
temporal processes observed at each location are done.

6.2 Spatiotemporal Bayesian model specification

Now, we give the distribution specification for the model (6.1) for each of the cases
(6.2), (6.3) and (6.4).
For a ease representation, we assume Y′ = (Y′1, . . . ,Y

′
T ) where Y′t = (Y (s1, t), . . . , Y (sd, t)),

and µ′ = (µ′1, . . . , µ
′
T ), where µt = Xtβ with Xt is the covariates matrix and β is

supposed constant.
Under (6.2) let α′ = (α(t1), . . . , α(tT )), w′ = (w(s1), . . . ,w(sn)) and ξ′ =

(ξ(s1, 1), ξ(s1, 2), . . . , ξ(sn, T ). Then, the model (6.1) can be rewritten as

Y = µ+α⊗ 1dx1 + 1Tx1 ⊗w + ξ, (6.6)

where ⊗ denote the Kronecker product. The corresponding conditional joint density
distribution is

Y | β,α,w, σ2
ξ ∼ N(µ+α⊗ 1dx1 + 1Tx1 ⊗w, σ2

ξITdxTd). (6.7)

Conditionally to w and α, Yt are independent, so the likelihood resulting from (6.7)
arise as product of independent Normal densities. The posterior distribution can
be obtained by the product of likelihood and opportune priors. The conditional
model (6.7) is for sure the most intuitive to fit but it is characterized by a high-
dimensional posterior distribution. Even in this case, just as for spatial model,
we can obtain a much lower-dimensional posterior by marginalization. For this
purpose, let w ∼ N(0, σ2

wH(δ), and suppose that α(t) follows an AR(1) so that
α ∼ N(0, σ2

αA(ρ)). Hence, if α, w and ξ are independent, marginalizing over w
and α we obtain the following marginal conditional density

Y | β, σ2
ξ , σ

2
α, ρ, σ

2
w, δ ∼ N(µ, σ2

αA(ρ)⊗ 1dx11
′
dx1 + σ2

w1Tx11
′
Tx1 ⊗H(δ) + σ2

ξITdxTd).
(6.8)

Under (6.3), we have α′ = (α(1)′, . . . , α(T )′), where α′(t) = (αs1(t), . . . , αsd(t)).
So the model (6.1) can be rewritten as

Y = µ+α+ ξ.
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Chapter 6. Spatiotemporal Modeling

The corresponding conditional joint density distribution is

Y | β,α, σ2
ξ ∼ N(µ+α, σ2

ξITdxTd). (6.9)

If the αsi(t) follow a AR(1) model independently across i, then, marginalizing over
α we obtain the following marginal conditional density:

Y | β, σ2
ξ , σ

2
α, ρ,∼ N(µ, A(ρ)⊗ ITdxTd + σ2

ξITdxTd). (6.10)

In a similar way, we can rewrite the model (6.1) under the assumption (6.4),
assuming w′ = (w′1, . . . ,w

′
T ) where w′t = (wt(s1), . . . , wt(sd)), as

Y = µ+ w + ξ,

and the corresponding conditional joint density distribution is

Y | β,w, σ2
ξ ∼ N(µ+ w, σ2

ξITdxTd). (6.11)

If the w ∼ N(0, σ
2(t)
w H(δ(t))) independently across t = 1, . . . , T , then, marginalizing

over w we obtain the following marginal conditional density:

Y | β, σ2
ξ , σ

2
w, δ,∼ N(µ, D(σ2

w, δ) + σ2
ξITdxTd), (6.12)

where σ2′
w = (σ

2(1)
w , . . . , σ

2(T )
w ), δ′ = (δ(1), . . . , δ(T )) and D(σ2

w, δ) is a block diagonal

matrix with the tth block given by σ
2(t)
w H(δ(t)). Because D is block diagonal, likeli-

hood evaluation associated with (6.12) is easier than for (6.8).
Finally, note that with either (6.3) or (6.4), e(s, t) is comprised of two sources of
error that the data cannot directly separate. However, through the assumption on
the αs(t) or on the wt(s), we can learn about the process that guide the error com-
ponents as (6.10) and (6.12) reveal.
More details and results can be found in Banerjee et al. (2004, Chap. 8).

6.3 Dynamic Spatiotemporal modeling

In this section we present an approach for data that arise from a time series of
spatial processes. We decide to work in the setting of Bayesian dynamic models
(West and Harrison, 1997). In the following we first give the basic assumption and
definition for dynamic linear modeling, then we describe the temporal evolution
of a latent space model by a dynamic spatiotemporal model. This notation and
theoretical framework are necessary to implement the dynamical spatio-temporal
model in next sections.

6.3.1 Dynamic linear model

Dynamic linear model often referred to as state-space models in time-series litera-
ture, offer a versatile framework for fitting several time-varying models. Here we
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6.3 Dynamic Spatiotemporal modeling

describe directly the multivariate dynamic linear model (DLM) considering the uni-
variate DLM as a special case of the former.
Suppose for t = 1, . . . , T that Yt is a (column) vector of d observations on the time
series Y1, . . . ,YT . The multivariate DLM is defined via a quadruple

{F,G,V,W}t = {Ft,Gt,Vt,Wt}

for each time t, where:

Ft is a known (pxd) dynamic regression matrix;

Gt is a known (pxp) state evolution matrix;

Vt is a known (dxd) observational variance matrix;

Wt is a known (pxp) evolution variance matrix.

The corresponding model equations are:

Yt = F′tθt + νt ξt ∼ N(0,Vt) measurement equation, (6.13)

θt = Gtθt−1 + ωt εt ∼ N(0,Wt) transition equation, (6.14)

where the error sequences νt and ωt are independent and mutually independent.
Equation (6.13) is the measurement equation for the model, defining the sampling
distribution for Yt conditional on the quantity θt. It is assumed that, given this vec-
tor, Yt is conditionally independent of the past values of the series. This equation
relates the observations to θt via a dynamic linear regression with a multivariate
normal error structure having known, though possibly time varying, observation
variance matrix Vt. The matrix Ft plays the role of the regression matrix of known
values of independent variables, and θt is the dynamic vector of the regression pa-
rameters, referred to as the state vector of the model. The mean response at t is
µt = F′tθt, simply the expected value of the Yt in (6.13), which defines the level
of the series at time t. Finally, in the observation equation, ξt is the observational
error at time t. Equation (6.14) is the state transition equation, defining the time
evolution of the state vector. A one-step Markov evolution is evident; given θt−1,
and the known values of the Gt and Wt, the distribution of θt is fully determined
independently of values of the state vector and data prior to time t− 1. The deter-
ministic component of the evolution is the transition from state θt−1 to Gtθt−1, a
simply linear transformation via the state transition transfer matrix Gt. The evo-
lution is completed with the addiction of the transition error term εt, with known
transition variance matrix Wt.
Note that the ξ error is simply a random permutation in the measurement process
that affects the observations Yt but has no further influence on the series. The error
εt, by contrast, influences the development of the system into the future.
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6.3.2 Updating equation

Now we show the recursive procedure that allows the updating measurement and
state equation of the model DLM (6.13)-(6.14).
The central characteristic of the DLM (6.13)-(6.14) is that, at any time, existing
information about the system is represented and sufficiently summarized by the
posterior distribution for the current state vector. These posterior distributions are
generally classified as:

predictive distribution θt | Yt−1, . . . ,Y1: the state at current time is condi-
tioned to information up to previous times;

filter distribution θt | Y1, . . . ,Yt: the state at current time is conditioned to
information up to current times;

smoother distribution θt | YT ,YT−1 . . . ,Y1: the state at current time is condi-
tioned to all information.

In particular the predictive distribution is

θt | Yt−1, . . . ,Y1 ∼ Np(at,Rt)

where
at = Gtmt−1 and Rt = GtCt−1G

′
t +Wt; (6.15)

the filtering distribution is

θt | Y1, . . . ,Yt ∼ Np(mt,Ct)

with
mt = at +Atet and Ct = Rt −AtQtA

′
t (6.16)

where
At = RtFtQ

−1
t and et = Yt − ft

and
Qt = F ′tRtFt + Vt and ft = F ′tat.

Finally, the smoother distribution is given by

θT | YT ,YT−1 . . . ,Y1 ∼ Np(mT ,CT ).

The opportune combinations of these posterior distributions allow us to obtain the
posterior estimate of the state vector Θ = (θ1, . . . ,θT ) as follows.
Pose, Y = (Y1, . . . ,YT ) from the Markov structure of the DLM it is demonstrated
that the posterior distribution of the state vector is

Pr (Θ | Y ) = Pr (θT | Y)
T−1∏
t=1

Pr (θt | Y1, . . . ,Yt,θt+1) .

So, in order to generate Θ from Pr (Θ | Y) we backward sample from smoother
distribution as follows:
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(a) for t = T we sample θT

θT | Y ∼ N (mT ,CT )

(b) for t = T − 1, . . . , 1 we sample θt from Pr (θt | Y1, . . . ,Yt,θt+1), where

θt | Y1, . . . ,Yt,θt+1 ∼ N (ht,Ht)

with
ht = mt +Bt (θt+1 − at+1) and Ht = Ct −BtRt+1B

′
t

and

Bt = CtG
′
t+1R

−1
t+1.

The vectors mt,at,Ct,Rt (t = 1, . . . , T ) are the output of the forward filtering. In
particular, starting from θ0 ∼ N (m0,C0) we compute θt by the prediction distri-
bution

θt | Y1, . . . ,Yt−1 ∼ N (at,Rt) ,

with at and Rt, defined in (6.15); then we draw θt from the filter distribution

θt | Y1, . . . ,Yt ∼ N (mt,Ct) ,

where mt and Ct are defined in (6.16).
Hence, in the forward sampling, starting from θ0 ∼ N (m0,C0) (m0 and C0 fixed)
for each t = 1, . . . , T we sample from

θt | Y1, . . . ,Yt ∼ N (mt,Ct) ,

and we save at,Rt through equations (6.15). In the backward sampling, starting
from θT | Y ∼ N (mT ,CT ) , for each t = T − 1, . . . , 1 we sample from

θt | Y1, . . . ,Yt,θt+1 ∼ N (ht,Ht) .

6.3.3 Dynamic formulation for spatiotemporal models

In this subsection we adapt the above dynamic modeling framework to univariate
spatiotemporal models (defined in 6.1) with spatially varying coefficients.
The response Y (s, t) is first modeled through a measurement equation, which incor-
porate the measurement error ξ(s, t), as serially and spatially uncorrelated zero-mean
Gaussian disturbances. The transition equation involves the regression parameters
of the covariates. Here we adopt a very flexible formulation for the spatiotemporal
model, originally provided in Gelfand et al. (2005), where the regression parameters
β̃(s, t) is decomposed into a purely temporal component, βt, and a spatiotemporal
component β(s, t). Both of them are generated through transition equation, cap-
turing their Markovian dependence in time. The transition equation of the purely
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temporal component is as in usual DLM, while the spatiotemporal component is
generated by a multivariate Gaussian spatial process. Thus, we can write the spa-
tiotemporal modeling framework as
Measurement equation:

Y (s, t) = µ(s, t) + ξ(s, t) ξ ∼ Nd(0, σ
2
ξ ),

µ(s, t) = xT (s, t)β̃(s, t)

β̃(s, t) = βt + β(s, t),

(6.17)

Transition equation:

βt = βt−1 + εt, εt ∼ Np(0,Σε),

β(s, t) = β(s, t− 1) + w(s, t).
(6.18)

In (6.18) we introduce a linear model of coregionalization (Banerjee et al., 2004,
Sec. 7.2) for w(s, t), i.e., w(s, t) = Av(s, t) with v(s, t) vector of p independent
replications of a Gaussian spatial process. Following subsection 6.3.1, the Bayesian
hierarchical model for (6.17) and (6.18) may be completed by prior specification as

β0 ∼ N(m0,C0)

Σε ∼ IW (aξ, Bξ)

Σw ∼ IW (aw, Bw)

σ2
ξ ∼ IG(aξ, bξ)

m0 ∼ N(0,Σ0)

(6.19)

In order to achieve a DLM representation of the model (6.17)-(6.18), we collect,
for each time point, the observations on all sites into Yt = (Y (s1, t), . . . , Y (sd, t))

T .
Consequently, also the covariates Ft = (xT (s1, t), . . . ,x

T (sd, t)) and the temporal,
βt, and spatiotemporal, β(s, t), regression parameters θt = 1d⊗βt+β∗t are collected,
so we can write the data equation of a the dynamic spatial model as a usual DLM
measurement equation form:

Yt = Ftθt + ξt ξ ∼ Nd(0, σ
2
ξI)

θt = 1d ⊗ βt + β∗t ,
(6.20)

where β∗t = (β(s1, t), . . . , β(sd, t))
T .

With the prior specification in (6.19) the model (6.20) is fully specified. For more
detail see e.g. Gelfand et al. (2005).

6.4 Wrapped Spatiotemporal Modeling

The wrapped spatiotemporal model is an extension of the wrapped spatial model
and it can be obtained in a similar way.
Given the general form of the spatiotemporal model Y (s, t) = µ(s, t) + e(s, t) s =
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s1, . . . , sd t = 1, . . . , T , we can apply the wrapping procedure for each additive
component of the model. In fact, the expression (6.1), can be viewed as a measure-
ment error model and then we can resort to the approach illustrated in Section 4.4
to build a spatiotemporal wrapped model.
Without lose in generalization, under the assumption (6.2), we can rewrite the model
(6.1) as follows:

Y (s, t) = µ(s, t) + α(t) + w(s) + ξ(s, t) s = (s1, . . . , sd) t = 1, . . . , T

= χ(s, t) + ξ(s, t)

with χ(s, t) = µ(s, t) + α(t) + w(s)

(6.21)

The last two equation in (6.21) are clearly represented in a ME Berkson model
form (Section 4.1). Thus, as illustrated in Section 4.4, we can again resort to the
distribution property (a) of the wrapping distribution in Section 2.4.3, (y1 + y2)w =
y1w + y2w, in order to obtain the results as in (4.19).

A legitimate objection is that in this context, χ(s, t) is not a variable as in
Berkson ME model but a process. Then, again we can apply the wrapping procedure
Xi = Yi(mod2π) componentwise to each in line component Yi of the temporal or
spatial process as shown in Section 5.4.
Without loss of generalization, consider the expression (6.21) with a mean structure,
µ(s, t) = x(s, t)β, constant and centered on zero, the wrapped spatiotemporal model
is given by

(Y (s, t))w = (χ(s, t) + ξ(s, t))w

= αw(t) + ww(s) + ξw(s, t)

Moreover, consider a time continuous process and let α(t) = (α(t1), . . . , α(tT ))′

be a stationary Gaussian process. In this case we apply the wrapping procedure
componentwise to α(ti) i = 1, . . . , T in order to obtain the corresponding wrapped
Normal process distributed as WNT (0, σ2

αΣ(φ)). In the same way, supposing w(s)
be a d-dimensional spatial Gaussian process N(0, σ2

wΣ(φw)) and ξ(s, t) ∼ N(0, σ2
ξ ),

we can achieve their corresponding wrapped distribution as follows:

αw(t) ∼ WNT (0, σ2
αΣ(φα)

w(s) ∼ WNd(0, σ
2
wΣ(φw))

ξ(s, t) ∼ WN(0, σ2
ξ )

(6.22)

Through the expression (6.21) and with the specifications (6.22) the spatiotemporal
model under the assumption (6.2) is fully derived. In a similar way we can easily
derive the spatiotemporal model under the assumptions (6.3) and (6.4).
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6.4.1 Simulated Example

Here, we aim to provide an hierarchically development of a ME model. Our spa-
tiotemporal modeling framework is given by:

Xobs(s, t) = Xtrue(s, t) + ηobs(s, t) (6.23)

Xtrue(s, t) = αXtrue(s, t− 1) + ηtrue(s, t) (6.24)

where Xobs(s, t), ηobs(s, t) and ηtrue(s, t) are supposed distributed as wrapped Nor-
mal and Xtrue(s, t) is a wrapped autoregressive process (see Breckling, 1989).

Now, following the wrapping approach inference (Section 3.1), the equivalence
Y ≡ (X,K) holds, ((X,K) is the joint distribution with argument (X + 2Kπ))
and then, posing Yobs = (Xobs + 2Kobsπ) and Ytrue = (Xtrue + 2Ktrueπ), the model
(6.23)-(6.24) is rewritten as:

Yobs(s, t) = Ytrue(s, t) + ξ(s, t) ξ(s, t) ∼ N(0, σ2
ξ ) (6.25)

Ytrue(s, t) = αYtrue(s, t− 1) + ε(s, t) ε(s, t) ∼ N(0, σ2
ε ) (6.26)

Collecting the observations over spatial locations, we obtain Yobs(t) = (Yobs(s1, t), . . . , Yobs(sd, t)),
Ytrue(t) = (Ytrue(s1, t), . . . , Ytrue(sd, t)), ξs(t) = (ξ(s1, t), . . . , ξ(sd, t)) and εs(t) =
(ε(s1, t), . . . , ε(sd, t)). With this formulation, the model (6.25)-(6.26) can be rewrit-
ten as follows:

Yobs(t) = Ytrue(t) + ξs(t) ξs(t) ∼ Nd(0, σ
2
ξI) (6.27)

Ytrue(t) = αYtrue(t− 1) + εs(t) εs(t) ∼ Nd(0,Σε(t)) (6.28)

where Σε(t) is the covariance matrix that characterize the spatial structure of data.
The model (6.27)-(6.28) presents a usual DLM form where (6.27) is the measure-
ment equation while (6.28) is the transition equation for the (latent) dynamic spatial
Gaussian process Ytrue(t). Thus, the latent process is computed by inferential pro-
cedure shown in Section 6.3.

The fully Bayesian specification involves the likelihood and the prior specifica-
tions in order to obtain the posterior distribution. For the model (6.27)-(6.28),
assuming Ψ = (σ2

ξ , α,Σε(t)), the posterior distribution is:

Pr(Ψ,Ytrue | Yobs) ∝ Pr(Yobs | Ψ,Ytrue)Pr(Ytrue | Ψ)Pr(Ψ) (6.29)

where

Yobs | Ψ,Ytrue ≡ Yobs(t) | Ytrue(t), σ2
ξ ∼ Nd(Ytrue(t), σ

2
ξI) (6.30)

and

Ytrue | Ψ ≡ Ytrue(t)|αYtrue(t− 1),Σε(t) ∼ Nd(αYtrue(t− 1),Σε(t)) (6.31)
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Returning to the wrapped formulation, the corresponding wrapped model of
(6.29) is:

Pr(Ψ,Xtrue,Ktrue |Xobs,Kobs) ∝
Pr(Xobs,Kobs | Ψ,Xtrue,Ktrue)Pr(Xtrue,Ktrue | Ψ)Pr(Ψ)

(6.32)

where
Xobs,Kobs | Ψ,Xtrue,Ktrue ∼ Nd(Xtrue(t) + 2Ktrueπ, σ

2
ξI) (6.33)

and

Xtrue,Ktrue | Ψ ∼ Nd(α(Xtrue(t− 1) + 2Ktrue(t− 1)π),Σε(t)) (6.34)

The wrapped spatiotemporal model is completely specified adding the posterior
distribution for k’s wrapping coefficients, as follows:

Pr(K∗ |X∗Ψ) ∝ Pr(X∗,Ψ | K∗)Pr(K∗)

where ∗ means that the expression holds for both Kobs and Ktrue. Parameter esti-
mates for the model (6.27)-(6.28) are obtained through the following two steps:

A. A Metropolis step, as illustrated in Section 3.1, for each parameter of Ψ =
(σ2

ξ , α,Σε(t));

B. A forward filtering backward sampling (FFBS) step, as described in Section
6.3, to compute Ytrue(t), t = 1, . . . , T

Now we see the generation of the simulated data in more detail. Considering
the model (6.27)-(6.28), as usual, we simulate in line data, Yobs(t) and Ytrue(t), and
then apply the wrapping procedure X = Y (mod2π) to obtain circular data, Xobs(t)
and Xtrue(t). Here, Yobs(t) and Ytrue(t) are spatial processes, thus to obtain their
corresponding circular process we need to apply wrapped procedure for each of the
d components, (Yobs(s1, t), . . . , Yobs(sd, t)), as illustrated in Section 5.4.
Yobs(t) and Ytrue(t) are both drawn from d dimensional Normal distribution. In
particular, Yobs(t) ∼ Nd(Ytrue(t), σ

2
ξI), while Ytrue(t) ∼ Nd(αYtrue(t− 1),Σε(t)). We

choose for Σε(t) an exponential spatial covariance function (see Section 5.2.3), so
that Ytrue(t) ∼ Nd(αYtrue(t− 1), σ2exp(−hφε).

In this example, we consider a spatial process of size d = 10 and T = 100 time
points, so that Yobs and Ytrue are T x d matrix. We simulate from a model with
parameters: Ψ = {σξ =

√
0.1, α = 0.8, σε = 0.4, φε = 0.007}.

As mentioned above, estimates are obtained through steps A and B. In particular,
to estimate the parameters in step A, we resort to the likelihood resulting from (6.33)
and an InvGamma(4, 8) prior for σ2

ξ . While for the parameters α, σ2
ε and φε we

resort to the likelihood resulting from (6.34) and priors given by α ∼ Beta(15/4, 2),
σ2
ε ∼ InvGamma(20, 14), φε ∼ Gamma(3, 3). Finally, for the wrapping coefficients
k’s, we choice as prior a Multinomial distribution on values (−1, 0, 1) with related
probability vector (1/4, 1/2, 1/4). The choice of this particular prior setting is the
result of knowledge gained from Chapter 3 about k’s and from the simulation plan
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True Posterior 95%
Values Median Posterior Interval

σξ
√

0.1 0.319 [0.297, 0.331]
σε 0.4 0.422 [0.367, 0.452]
φε 0.007 0.0065 [0.0048, 0.0084]
α 0.8 0.842 [0.781, 0.879]

Table 6.1: Parameter estimates of the wrapped spatiotemporal dynamic model.

Spatiotemporal model
Parameter Z-score

σ2
ξ 0.169
σ2
ε -1.334
φε 1.154
α -0.234

Table 6.2: Geweke Z-score diagnostic for the parameters of wrapped spatiotemporal
dynamic model.

computed in Section 5.4.1. In these studies we have found that when the complexity
of the model increases (and in our case (6.27)-(6.28) is a spatiotemporal dynamic
model with quite high number of spatial locations and time points), informative
priors helps to improve both the reaching of the MCMC chains convergence and the
estimate reliability as well.
To estimate the latent spatial process Ytrue(t), t = 1, . . . , T , instead, the setting in
step B regards the initial parameters m0 and C0 (see Section 6.3.2) posed equal to
zero vector and diagonal unit matrix respectively. The other matrix of the DLM
formulation are easily obtained by expressions described in Section 6.3.1. Finally,
due to the quite high spatial and temporal dimensions of the model, a large number
of chain iterations are necessary to reach the convergence. Here we set a number of
iterations equal to 250000 with a burn in of 50000. Moreover we adopt a thin of 10
in order to eliminate the autocorrelation in the chains.

The inference results are reported in Table 6.1 while in Figure 6.1 are depicted
the traces of the estimated parameters.

Despite the complexity of the model, the use of informative priors for all param-
eters and especially for the k’s coefficients produce a very reliable results in terms
of estimates and convergence as well. In fact, the posterior interval sizes of the
estimates, listed in Table 6.1, are small and the convergence is confirmed by the
Geweke diagnostic listed in Table 6.2.

It can be notice that the use of informative priors for Ψ and the introduction of
opportune priors (derived from Section 3.1) on k’s, leads to a considerable improving
of inference results in terms of estimate reliability. Without this contribute, the
computation of complicated model as the spatial model or spatiotemporal model
remains intractable.
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Figure 6.1: Traces of the estimate parameters of wrapped spatiotemporal dynamic
model.

6.5 Discussion

In this chapter we give a general overview on spatiotemporal models considering
several space-time settings. In particular we focus on models that provide:

i) additive temporal and spatial effects;

ii) temporal evolution over sites;

iii) spatial evolution over time.

For each of these formulations, we provide definitions and Bayesian model specifi-
cations.
Next, we introduce the dynamic spatiotemporal modeling (also called state-space
modeling), considered a very flexible representation for spatiotemporal structure. In
this context we show a very general and fashionable formulation originally provided
by Gelfand et al. (2005).
Then we derive the wrapped spatiotemporal model as an extension of a wrapped
spatial model and a particular case of a measurement error model. Concludes the
chapter a simulated example of dynamic wrapped spatiotemporal model. Details
about simulation and inference results are provided with particular attention to the
computational aspects.

Finally, it is worth to note that the framework of the simulated example can be
viewed as a part of a more general calibrating model. To see this, recall the moti-
vating example mentioned in the first chapter in which the target is the calibration
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of the WAM (estimated) data through RON data (observed). A general structure
for a calibrating model can be the following one:

XWAM(s, t) = f(Xtrue(s, t)) + νWAM(s, t) s = s1, . . . , sd

Xobs(s, t) = f(Xtrue(s, t)) + νobs(s, t) t = 1, . . . , T

where the calibration is obtained through the common latent spatiotemporal pro-
cess Xtrue(s, t) expressed in both equations of model. The model illustrated in the
simulated example basically constitutes a hierarchical development of each of two
equations of the above given calibrating model. Thus, we can affirm that the good
results obtained in the simulated example, constitute the basis for a future work
dealing with the calibrating model computation.
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The attempt to overcome the difficulty of treating directly wave direction data Br-
uschi et al. (2005) and the research of a method to extend the in line inference
procedures to circular data are the starting motives of this thesis.
For circular data, in fact, the usual descriptive and inferential statistical methods
cannot be used because of the circular geometry of the sample space. Moreover,
the difficulty in managing these data is basically the reason why only “standard”
simple models, as linear regression or easy models for temporal time series, have
been proposed. In this work, we have developed and extended an approach that can
be applied also to structurally and computationally more complicated models as the
spatial or spatiotemporal ones.

In Chapter 1 and 2 we have given a fairly comprehensive account of circular data,
describing the descriptive and probabilistic aspects. Particular attention it has been
given to probabilistic approaches to model circular data through which the prob-
abilistic distributions for circular data are derived. Then, we have focused on the
wrapping approach. This method to handle circular data has been already adopted
in earlier works as in Coles (1998) and Ravindran (2002) via data augmentation
approach. In the former, a bivariate wrapped Normal distribution and a wrapped
autoregressive model have been computed. Ravindran, instead, has provided a list
of circular distributions derived from wrapping approach together with a linear re-
gression and an autoregressive model. It is worth to note that, notwithstanding the
flexibility and the ease of applicability and interpretability of this approach, there
are not in literature other examples of the use of the wrapping approach for circular
data. In fact, the large part of the works and results about circular data are carried
out via intrinsic approach by the von Mises distribution. For this reason, we have
decided to deeply analyze the features, advantages and drawbacks of the wrapping
approach in Chapter 3. From this study, it has been evidenced that, despite the
advantages to have many (infinite) wrapped distributions (as many as the in line
distribution are) and the ease of interpretability, the main drawbacks are related
to the high number of parameters to estimate (for each circular observation xj, the
relative wrapping coefficient kj has to be estimated) and the identifiability problem
inherent to the wrapping coefficients. In particular, we have realized and demon-
strated that the identifiability problem occurs when the data arise large variability.
In fact, due to the definition of wrapped distribution itself, the large data variance is
confounded with a large value of the wrapping coefficients avoiding to obtain good
inference results. Probably, the reason of the limited use of the wrapping approach
for circular data regards just these drawbacks.
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The main contribution of this thesis deals with the overcoming of these disad-
vantages. In particular we have demonstrated that the wrapping coefficient values
(k-values) that characterized the wrapped Normal distribution are essentially three
(−1, 0, 1), and the inference can be limited only upon these values. In other words,
we have shown that the wrapped Normal density is well approximated by only three
k-values (−1, 0, 1), and it is substantially a mixture of three Normal (in line) dis-
tribution characterized by k-values equal to (−1, 0, 1). This knowledge is directly
expressed in the inference procedure through the prior on the k’s themselves, solving
the identifiability problem and leading to a considerable improvement in the esti-
mate results.
Thus, the Bayesian inference procedure derived in Section 3.4, as a consequence of
the study carried out on the wrapping approach, constitutes a crucial result that
allows to solve the identifiability problem and, thus, substantially to overcome the
peculiar difficulties related to wrapped circular distributions as well as to apply the
standard in line models to circular data.

Another key feature of the wrapping approach regards the ease of extending
the wrapped distributions to the multivariate case, as illustrated in Chapter 3.
Because of the growing amount of assimilated data, the multivariate modeling is
becoming a main target of the modern methodologies that often have to manage
large data sets that contain different sources of data. In this sense, the von Mises
distribution shows all its limits. In fact, its extension to the multivariate case is still
an open problem and, even only in the three dimension case, the definition and the
parameter estimation of the distribution probability is a challenge (see Mardia et al.,
2008). Conversely, the multivariate wrapped Normal distribution presents evident
theoretical and practice advantages in that all its marginals are wrapped Normal.

In order to illustrate the ease of applying the wrapped circular distribution to
fairly complicated contexts, in Chapter 4 we have given a general overview on mea-
surement error (ME) model needed to derive the circular wrapped version of the
ME model. In particular, we have shown that using the wrapped probability distri-
bution properties described in Section 2.4.3 we are able to derive in a intuitive way
the wrapped circular ME model. The spatial and spatiotemporal applications in
Chapter 5 and 6 constitute two examples of ME models in spatial and spatiotempo-
ral contexts respectively. In particular, in Chapter 5 we have derived the wrapped
spatial Normal model as an extension of a multivariate wrapped Normal ME model
providing several simulated examples as well. Moreover, in order to appreciate the
wrapped multivariate modeling, a simulation plan to understand the behavior of the
MCMC estimation algorithm has been projected. From the evidences of the plan, it
has been possible to set opportunely the MCMC algorithm for the multivariate high
dimensional real data example obtaining, even in this case, good estimate results.
Furthermore, it is important to point out that the definition of a spatial structure
on a circular distribution different from the wrapped Normal, for example on a von
Mises distribution, can be very difficult. Due to the not easy interpretability of the
von Mises parameters, it can be very complicated to define, in a meaningful way, a
spatial structure.
Perhaps the flexibility of the wrapping approach is even more highlighted and ap-
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preciated in the simulated example of Chapter 6. There, after having illustrated the
in line spatiotemporal modeling and having derived the corresponding wrapped spa-
tiotemporal model, we have provided a simulated wrapped dynamic spatiotemporal
ME model. Notwithstanding the complexity of the in line model, we was able to
carry out the corresponding wrapped version and to obtain good estimation results.
It is worth to note that the spatial and dynamic spatiotemporal models are originally
presented here for the first time.

With regard to future works, the development of the wrapped dynamic spa-
tiotemporal ME model that concludes the Chapter 6 is particularly interesting. In
Section 6.5, in fact, we have pointed out as this simulated example substantially
constitutes the main structure for the development of a calibrating circular model
for the mean wave directions provided by RON and WAM sources (see Section 1.1).
More in general, the inferential improvement of the wrapping approach introduced
here is a starting point to extend to circular data any in line model in the class of
Normal error model, and at the same time, can constitute the basic idea for a future
work of extending this approach to any other class of non Normal model.
Besides the applications that can derive directly from the extension and general-
ization of the simulated examples computed in this work, the main contribution
carried out in this thesis involves new future work prospects of both computational
and data integration aspects.
About the computational aspect, we believe that more efficient computing algo-
rithms can be used for our purpose. Recent MCMC developments regard adaptive
algorithms to automatically tune the Markov chain parameters during a run (Haario
et al., 2005). These new methods could provide a very useful tool to improve the
MCMC performance of our estimation procedure, especially in high dimensional
multivariate contexts. Moreover, the approximation of the wrapped Normal density
by a mixture of three in line Normal densities depending on three k’s values (−1, 0, 1)
suggests the non Bayesian inferential method based on the EM algorithm. With this
approximation the wrapped Normal parameter estimation via EM wouldn’t ought
to present particular difficulties. Moreover, it can be interesting to compare this last
EM estimation procedure with the EM estimation results carried out by Fisher and
Lee (1994). Even in this work, the k coefficients were treated as missing data but
the limitation of that procedure was its complexity: only low parameter dimension
wrapped models have been estimated. Thus, the comparison between the Fisher
and Lee’s EM procedure and the EM that exploits the mixture of the three Normal
densities can be useful to asses the possible computation improvement provided by
the latter algorithm.
Regarding the data integration aspect, we point out that it is strictly related to
the recent growing amount of data that involves the management of large data sets
of different sources. Thus, the need to develop methods that allow to integrate
circular and in line data in mixed models appears a focus work. Considering, for
example, the regression model, we find some applications of linear response with
circular variables in Mardia (1976) and in Johnson and Wehrly (1978). A more
challenge application regards regression of circular variable on in line explanatory
variables. A first solution based on the intrinsic approach by von Mises distribution
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has been proposed in Gould (1969) and Laycock (1975), where the in line variables
are mapped into circle by the link function y 7→ βy(mod2π), i.e. adopting a so-
lution substantially equivalent to the wrapping approach. Successively, Fisher and
Lee (1992) proposed to use a one-to-one link function. Fisher (1993, Sec. 6.4) shows
an iterative method to calculate the maximum likelihood estimates under opportune
choice of the link function. But, even in this last case, the use of the intrinsic ap-
proach is limited from both computational problems, that arise especially with large
number of explanatory variables, and the choice of the link function that influences
the inference results.
Thus, even for mixed model, the wrapping approach appears preferable to the in-
trinsic approach and, conversely of the latter, offers an easier interpretation of the
parameters.
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Chapter A. Simulation plan
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