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Abstract

The application of Concurrency Theory to Systems Biology is in its earliest stage

of progress. The metaphor of cells as computing systems by Regev and Shapiro

[85] opened the employment of concurrent languages for the modelling of biologi-

cal systems. Their peculiar characteristics led to the design of many bio-inspired

formalisms which achieve higher faithfulness and specificity.

In this thesis we present π@, an extremely simple and conservative extension of

the π-calculus representing a keystone in this respect, thanks to its expressiveness

capabilities. The π@ calculus is obtained by the addition of polyadic synchronisa-

tion and priority to the π-calculus, in order to achieve compartment semantics and

atomicity of complex operations respectively.

In its direct application to biological modelling, the stochastic variant of the cal-

culus, Sπ@, is shown able to model consistently several phenomena such as formation

of molecular complexes, hierarchical subdivision of the system into compartments,

inter-compartment reactions, dynamic reorganisation of compartment structure con-

sistent with volume variation.

The pivotal role of π@ is evidenced by its capability of encoding in a composi-

tional way several bio-inspired formalisms, so that it represents the optimal core of

a framework for the analysis and implementation of bio-inspired languages. In this

respect, the encodings of BioAmbients [88], Brane Calculi [22] and a variant of P

Systems [78] into π@ are formalised. The conciseness of their translation into π@

allows their indirect comparison by means of their encodings. Furthermore it pro-
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vides a ready-to-run implementation of minimal effort whose correctness is granted

by the correctness of the respective encoding functions.

Further important results of general validity are stated on the expressive power of

priority. Several impossibility results are described, which clearly state the superior

expressiveness of prioritised languages and the problems arising in the attempt of

providing their parallel implementation. To this aim, a new setting in distributed

computing (the last man standing problem) is singled out and exploited to prove

the impossibility of providing a purely parallel implementation of priority by means

of point-to-point or broadcast communication.
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Chapter 1

Introduction

Scientific Research in the 20th century has been characterised by the flowering of

interdisciplinary fields, aiming at the extension of human knowledge by connecting

and integrating information, perspectives, methods and tools which derive from dif-

ferent academic disciplines. Representative field of this approach is Systems Biology,

whose domain spreads from several branches of Biology such as Biochemistry, Molec-

ular Biology and Physiology to more distant areas, such as Physics, Mathematics,

Statistics, Engineering and Informatics.

The study of complex interactions at molecular and cellular level in biological

systems constitute the main focus of this recent discipline, with the ambitious task

of deeply understanding their behaviour. The unconventional approach adopted

subverts the traditional reductionist paradigm in an attempt to embrace the intrin-

sic complexity of the reality under examination. In other words, while the usual

scientific strategy devotes its efforts to describing complex phenomena by grasp-

ing the laws that govern their basic constituents, Systems Biology proceeds on the

assumption that the emerging behaviour of a complex system cannot be simply

characterised by the exhaustive knowledge of its elements: it can only be captured

by considering the system as a whole in the full complexity of interaction of its

subparts. Therefore, “Systems Biology [. . . ] is about putting together rather than
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taking apart, integration rather than reduction.” [75]

The promises of this young discipline are difficult to pursue as well as challenging:

advances in the detailed knowledge of cellular dynamics are going to produce a deep

impact on several research areas of primary importance – from the related fields of

Bioinformatics to farther ones like Nanotechnology, all having important effects on

many branches of medical research, e.g. Pharmacology, Preventive Medicine – and

also affect the development of new disciplines such as Predictive and Personalised

Medicine, Synthetic Biology, Natural Computing. On the other hand, such advances

are bound to the application of cutting edge technologies or even to the development

of newer ones for the collection of huge amounts of data, while new tools, techniques

and computational power are needed for their analysis.

In particular, during these last years several efforts have been devoted to the

development of many software tools [46, 91, 63, 90, 59, 61] for the analysis of the

collected information and formulation of consistent models of biomolecular systems,

whose predictive properties may substantially shorten the time required for wet

experiments by allowing their realisation in silico. The need for model interchange

between these software tools underlined for the first time the problem of defining a

common language able to express the fundamental entities considered by Systems

Biology and their interaction laws. The Systems Biology Markup Language (SBML)

[52] was the first practical answer to this need, and it constitutes nowadays a widely

adopted standard for Systems Biology related software.

Beyond this practical need of data interchange, the definition of SBML presup-

posed the conception of the first widely accepted theoretical domain where compu-

tational models of biological systems could have been expressed: each SBML model

can be characterised by several entities, from the simple definition of chemical species

and their reaction laws to the description of the (static) structure of the system by

means of compartments, all of this completed by quantitative parameters related to

physical or chemical units of measure, reaction rates, compartment sizes, and so on.

Without aspiring to completeness, SBML captures the essential entities that any

formalism devoted to these bio-modellings should consider.
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As to strengthen the interdisciplinary character of this research, the assertion of

cells as computing systems by Regev et al. [85] evidenced a new point of conjunction

between Systems Biology and Computer Science. The abstraction of molecules as

parallel, interacting entities of computation opened Concurrency Theory to a new

field of application, by denoting abstract computer languages as optimal candidates

for the representation of biomolecular systems. The major practical consequence of

that simple metaphor was that the theoretical results, analysis techniques, software

tools developed in recent years for the study of concurrent systems could be directly

applied or adapted to the study of biological systems, so as to bring insights and

explanations on their deepest functioning.

As first working example of biological modelling by means of these languages, a

simple biochemical pathway was expressed [86] by means of the π-calculus [69, 70,

68], an abstract calculus for the formalisation of concurrent and mobile processes

interacting over named channels. The essential primitives of this language turned

out to fit very well the basic expressive needs of biochemical modelling: molecules

were represented by parallel processes, chemical reactions were modelled as binary

synchronisations over channels, simple molecular structures encoded by the sharing

of private names. Stochastic simulation by means of Gillespie’s algorithm [44, 45]

provided the first kind of quantitative analysis applied to these models [89, 84, 60].

The peculiar features of this new setting for the application of concurrent calculi

raised the need to design new ad-hoc primitives to be introduced in such languages,

in order to better reproduce the structures and mechanisms of interaction typical of

this biological world. This design phase flowed into the birth of the first so-called

bio-inspired process calculi (e.g., [88, 22, 83, 37] ), specifically aimed at the modelling

of biological phenomena at molecular and cellular level of abstraction.

Nowadays a wide variety of formalisms (e.g., [19, 29, 35, 55, 49, 57, 38, 26, 4,

8]) has been proposed for the representation of biological systems. Several efforts

have been directed to broaden the types of analysis to be applied, from stochastic

simulation [80, 35, 27, 25, 26, 3] to differential equations [14, 19, 9, 56], from static

analysis [74, 7] to causality [36, 48] and even advanced model checking techniques
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[28, 30].

On the one hand the expressiveness provided by such formalisms and their spe-

cialisation allows a more faithful representation of the biological phenomena of in-

terest, on the other hand it totally departs from the attempt of standardisation

pursued with the definition of SBML: even if new likely essential primitives and

structures have been identified, it is still far from clear what the language of Sys-

tems Biology may be – provided that such unique language exists – with respect to

the features to be included and how they should be arranged. Definite answers to

such issues will require years of work for the design of further formalisms, analysis

and comparison of their expressiveness, development of related software tools and

consequent evaluation of their effectiveness and usability.

Motivated by the intention to take some significant step in this precise direction,

we focus on the idea of grasping the essence of the fundamental primitives of bio-

inspired formalisms proposed so far and on the way they may better integrated

into a common programming framework: with simplicity in mind, we try to design

a basic calculus able to reproduce many of the salient mechanisms of biological

modelling considered in several bio-inspired calculi. As a result we obtain far more

than expected: a stochastic calculus for the simulation of biological systems with

dynamic structure, a low-level language for the modular encoding and comparison

of bio-inspired calculi and the outline of a framework for the implementation of the

related software tools for analysis and simulation of models written in such calculi

— the π@ language.

1.1 Contribution

The proper synthesis of biological primitives into one single language must take into

account two distinct aspects.

From a biological perspective, the language needs to include a suitable subset

of features able to model the most common situations of interest. In this respect

concurrency, reactivity, nondeterminism are the basic ingredients of this recipe, con-
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sidered by all the cited formal languages. Beyond them, peculiar phenomena such

as formation of complexes, subdivision in compartments with dynamical structure,

mobility of elements between compartments constitute further characteristics which

inspired the definition of many of the first bio-inspired calculi (e.g. [88, 22, 83, 37])

and still guide an increasing number of proposals [31, 57, 21, 54].

From the point of view of computer science, the language must be designed in the

best way in order to include and harmonise all the considered features without losing

ease of use. An extraordinary virtue would be the possibility to seamlessly introduce

even new features that have still to be identified and designed into the upcoming

bio-inspired formalisms. Therefore, if the greedy strategy of directly merging all or

parts of such calculi into one single formalism [79] can be effective in the imme-

diate period, a foresighted approach must pursue general applicability and provide

extreme flexibility in order to be extensible.

The π@ calculus presented here – whose name is pronounced pi-at, like the french

word “paillette” – embodies these design principles, by addressing at the same time

as high conservativeness as possible, in order to preserve the theoretical results and

analysis techniques already conceived and to require a small effort for the adaptation

of existing software tools or the development of new ones.

The π@ language is strongly based on the π-calculus, which represents an optimal

starting point for its broad applicability. Mobility constitutes the peculiar feature

of this calculus, expressed by the capability of estabilishing new communication

links between processes thanks to the transmission of new channel names over the

existing communication channels. As previously pointed out, this capability fitted

the representation of molecular structures but turned out to be insufficient for the

proper modelling of higher level structures such as compartments, which have been

explicitly formalised later in several bio-inspired calculi.

Instead of following the same high-level approach, we try to obtain the maximum

result with the minimum effort by extending the π-calculus in the first instance with

polyadic synchronisation [18], a communication paradigm which considers channels

composed of multiple names in the guise of how Internet domains are represented
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by the juxtaposition of names. This simple extension – which does not affect the

essence of the π-calculus at all – combined with mobility, gives π@ the capacity of

representing compartments with dynamical structure with respect to both their hi-

erarchical organisation and the possibility of exchanging elements between adjacent

compartments.

This low-level approach is completed by enriching π@ with a general mechanism

for the proper encoding of high-level instructions as sequences of low-level opera-

tions. While this top-down design strategy has been long consolidated for standard

computer programming, in a concurrent setting it raises consistent safety issues due

to the unpredictable behaviour of parallel, interacting systems. This problem is rad-

ically solved by extending π@ with priority [33], a scheduling scheme which grants

the possibility of composing such sequences of operations atomically.

In synthesis, π@ ensues from the addition of polyadic synchronisation and pri-

ority to the π-calculus, the first one representing a minimal syntactic extension for

the expression of complex biological structures, the second one constituting a gen-

eral solution for achieving atomicity in concurrent settings, which corresponds to

the ability of providing high-level operations at will by the atomic assembly of the

existing lower-level instructions.

Such optimistic claims about the virtues of this language need to be supported

under several point of views. From a biological perspective, its suitableness to the

modelling of complex biological system needs to be demonstrated and its relation-

ship with the existing bio-inspired calculi must be investigated. From a theoretical

perspective, the expressive power gained from the addition of the chosen extensions

(priority in particular) needs to be analysed in order to discover the full capabilities

of the language and to determine its limits.

Some first important answers to such questions are given in this thesis. The

expressiveness of priority, the main concept introduced in π@, is studied and original

insights about its strong properties are unveiled, insights which transcend the leading

biological thread and constitute relevant results in the field of Concurrency Theory.

The relation between π@ and some of the bio-inspired formalisms previously
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cited is shown in terms of their encodability into π@. In particular, the modular

encodings of BioAmbients [88], Brane Calculi [22] and a variant of P Systems [78]

are formalised. Such encodings constitute the first examples of the wide applica-

bility of the low-level approach adopted here and of the valuable properties of π@

primitives. The conciseness characterising these encodings gives evidence of the ease

of implementation of such formalisms on top of π@, which fully supports the choice

of π@ as the abstract core of a framework for the quick development of bio-inspired

languages.

With respect to biological modelling, π@ consequently appears at least as expres-

sive as the encoded formalisms. The direct application of π@ to biological modelling

is accomplished by the presentation of a stochastic variant of the calculus, Sπ@,

whose definition is associated with an extension of one of the most exploited sim-

ulation algorithms – Gillespie’s [44, 45] – modified so that multiple compartments

with varying volumes can be properly taken into account. Examples of modellings

are also described and it is shown how some common biological phenomena (e.g.

osmosis) can now be easily recovered in this language.

1.2 Structure of the thesis

The thesis is divided into two parts. The first one, from Chap. 2 to Chap. 5 is

devoted to the analysis of the expressiveness of π@, while the second part, from

Chap. 6 to Chap. 8 treats the stochastic counterpart of π@, the Sπ@ language.

In particular, Chap. 2 introduces some of the formalisms which are considered in

the following chapters to demonstrate the encoding capabilities of π@: first, the π-

calculus is presented and illustrated with an example of simple biological modelling.

BioAmbients and Brane Calculi are then formalised and exemplified in the same

way. Catalytic P Systems – the variant of membrane systems considered later for

the encoding – are finally described.

Chapter 3 investigates the expressiveness of various kinds of priority in a dis-

tributed settings. Two different instances of static priority are considered, according
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to the classification described in [33]: the expressiveness of two languages denoted

respectively by global and local priority is evaluated with respect to both broadcast-

ing and the usual point-to-point communication which characterises, for example,

the π-calculus as well as many other calculi considered here. Consistent separation

results of general validity are then stated, which give important hints about the

expressive power of priority and the price to be paid for its exploitation. The results

provided in this chapter were first presented in [98] and are extensively discussed in

[97].

In Chap. 4 the π@ language is presented. Polyadic synchronisation and the

type of priority exploited in this language are first introduced, then the calculus is

formalised together with one simpler variant – the core-π@ – limited in the use of

such extensions and representing a bridge between π@ and its stochastic counterpart,

Sπ@. The application of the calculus to biological modelling is explained by means

of a simple example, as for the bio-inspired calculi introduced in Chap. 2.

The encodings of BioAmbients, Brane Calculi and catalytic P systems into π@

is discussed in Chap. 5. First, the requirements which suitable encodings should

satisfy are discussed. The ideas that allow such translations are then explained step

by step during the formalisation of the respective encoding functions, which are

finally formalised. The first definitions of such encodings were presented in [92, 93],

while in [99] a gentle and detailed explanation of all the encoding ideas and related

technical issues is given.

With Chap. 6 the second part of the thesis begins. A short introduction to Gille-

spie’s stochastic simulation algorithm is given, then the Sπ@ calculus is formalised:

the extension to multiple compartments of Gillespie’s algorithm is defined, followed

by an optimised implementation with lower computational complexity. Sπ@ syntax

and semantics is then presented. Chap. 7 briefly describes a prototype, SBML-

capable implementation of the MSSA (the Multi-compartment Stochastic Simulator,

MSS), while Chap. 8 shows two practical examples of modelling in Sπ@, with the

results of their stochastic simulation in the MSS. The first multi-compartment ex-

tension of Gillespie’s algorithm was first presented in [95], and its optimised variant
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in [96]. The improved version of this algorithm is discussed in [94].

Chap. 9 closes this work by summarising the results collected throughout the

thesis and suggesting the next steps for future research in the direction followed

here.



Part I

The π@ calculus

10



Chapter 2

Background

In this chapter the main languages of interest for the rest of the thesis are introduced.

Section 2.1 is a gentle introduction to the basic features of the π-calculus, in

particular of its syntax and reduction semantics via a structural congruence. It

also comprises a non-trivial, original example of a biological system modelled in

π-calculus: the insulin secretion process of a pancreatic β cell in response to a

rise of glucose in the blood. We discuss the limitations of this representation, in

particular for the difficulties in handling properly the surrogate of compartments

that π-calculus is able to express and for the lack of transactional mechanisms.

BioAmbients and Brane Calculi are introduced in the same way in Section 2.2

and Section 2.3 respectively.

Finally, Sect. 2.4 reports the definition of catalytic P Systems.

2.1 The π-calculus

The π-calculus [69, 70] is a derivative of CCS [64] where parallel processes interact

through synchronisation over named channels, with the capability of receiving new

channels and subsequently using them for interaction with other processes, in order

to model mobility.

Names constitute the basic entities of the calculus. Each name represents a

channel which can be used for synchronisation by parallel processes. For example,
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the system

a(x).P
∣
∣ a〈z〉.Q (2.1)

represents two parallel processes a(x).P and a〈z〉.Q, the first one ready to receive

some datum (whose local name is x) over the channel a, the second one ready to

send some datum z over the same channel a. The datum z represents in turn another

channel, which can be used by the first process for subsequent communications.

If a〈z〉.Q sends z to a(x).P , then the subsequent behaviour of the two processes

is specified by the expressions Q and P respectively. More precisely, we write that

the system of Expr. (2.1) may evolve in the following way:

a(x).P
∣
∣ a〈z〉.Q → P{z/x}

∣
∣ Q (2.2)

where P{z/x} represents the process P where all the occurrences of the placeholder

x have been replaced by z. Here, x is said to be a bound name, in opposition to a

which is free.

The transition of the system a(x).P
∣
∣ a〈z〉.Q to the system P{z/x}

∣
∣ Q is gov-

erned by to reduction relation “→”, which states that two processes may exchange

data if they are ready to perform input/output respectively over the same channel.

The nondeterministic choice between two (or more) possible transitions is de-

noted by the choice operator “+”. For example, in the system

a(x).P ′ + b(y).P ′′
∣
∣ a〈z〉.Q

∣
∣ b〈w〉.R

the first process may undergo two different, equally possible transitions, caused by

a synchronisation with the second process or the third one, respectively. The first

transition can be written as

a(x).P ′ + b(y).P ′′
∣
∣ a〈z〉.Q

∣
∣ b〈w〉.R → P ′{z/x}

∣
∣ Q

∣
∣ b〈w〉.R

while the second as

a(x).P ′ + b(y).P ′′
∣
∣ a〈z〉.Q

∣
∣ b〈w〉.R → P ′′{w/y}

∣
∣ a〈z〉.Q

∣
∣ R
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Depending on the occurring transition, the future behaviour of the first process is

denoted by P ′{z/x} or P ′′{w/y} respectively.

Since the order used for enumerating the possible choices is meaningless, i.e. the

choice operator is commutative (and associative), we write that

a(x).P ′ + b(y).P ′′ ≡ b(y).P ′′ + a(x).P ′

where “≡” represents a congruence relation between processes that are meant to be

characterised by the same behaviour.

Anyway, the choice operator is not the first cause of nondeterminism. As usual

for concurrent calculi, the parallelism of the system can produce nondeterministic

behaviour. For example, the system

a(x).P
∣
∣ a〈z〉.Q

∣
∣ a〈w〉.R

is subjected to two transitions, depending on the process that will actually perform

the output operation on channel a:

a(x).P
∣
∣ a〈z〉.Q

∣
∣ a〈w〉.R → P{z/x}

∣
∣ Q

∣
∣ a〈w〉.R

a(x).P
∣
∣ a〈z〉.Q

∣
∣ a〈w〉.R → P{w/x}

∣
∣ a〈z〉.Q

∣
∣ R

It is possible to prevent unwanted interactions between processes by limiting the

scope of a name:

(ν a)
(
a(x).P

∣
∣ a〈z〉.Q

) ∣
∣ a〈w〉.R (2.3)

Thanks to the restriction operator “ν ”, the name a in the first two processes

represents a private channel between them. Even if the same name a occurs also

in the third process, it constitutes a completely different communication channel.

Any renaming of the restricted channels (as well as bound names, by a procedure

called alpha-conversion) has no effect on the behaviour of the systems. In fact the

following expression

(ν b)
(
b(x).P

∣
∣ b〈z〉.Q

) ∣
∣ a〈w〉.R
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is equivalent to Expr. 2.3, since b(x).P and b〈z〉.Q are able to exchange data exactly

as before.

In order to model recursive behaviour, an operator of replication is introduced

in the language. A process P preceded by “!” is thought of as being replicated an

unlimited number of times. That is

! P ≡ P
∣
∣ P

∣
∣ · · ·

The formal definition of π-calculus grammar follows.

Definition 2.1 Let

N be a set of names on a finite alphabet, x, y, z, . . . ∈ N ;

N = {x | x ∈ N}

The syntax of π-calculus is defined in terms of the following grammar:

P ::= 0

∣
∣
∣

∑

i∈I

πi.Pi

∣
∣
∣ P

∣
∣ Q

∣
∣
∣ ! P

∣
∣
∣ (ν x)P

π ::= τ
∣
∣
∣ x(y)

∣
∣
∣ x〈y〉

where

• 0 represents the null process;

• x(y) expresses the capability of performing an input on the channel x and

receiving a datum which is then bound to the name y;

• x〈y〉 expresses the capability of sending the name y on the channel x;

• τ is the invisible, uncontrollable action;

• P
∣
∣ Q represents the parallel composition of processes;

• ! P stands for the unlimited replication of process P ;

•
∑

i∈I πi.Pi represents the nondeterministic choice between several input/output

communication capabilities, denoted also as π1.P1 + π2.P2 + . . .;
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• (ν x)P represents the scope restriction of the name x to process P .

The full definition of the congruence relation ≡ follows. It depends in turn on

the function fn(P ) which returns the set of free names occurring in P .

Definition 2.2 The congruence relation ≡ is defined as the least congruence satis-

fying alpha conversion, the commutative monoidal laws with respect to both (
∣
∣ ,0)

and (+,0) and the following axioms:

(ν x)P
∣
∣ Q ≡ (ν x)(P

∣
∣ Q) if x /∈ fn(Q)

(ν x)P ≡ P if x /∈ fn(P )

! P ≡ ! P
∣
∣ P

where the function fn is defined as

fn(τ)
def
= ∅ fn(x(y))

def
= {x}

fn(x〈y〉)
def
= {x, y} fn(0)

def
= ∅

fn(π.P )
def
= fn(π) ∪ fn(P ) fn(

∑

i∈I πi.Pi)
def
=

⋃

i fn(πi.Pi)

fn(P
∣
∣ Q)

def
= fn(P ) ∪ fn(Q) fn(! P )

def
= fn(P )

fn((ν x)P )
def
= fn(P ) \ {x}

The relation describing the possible transitions of a process is defined in terms of

few simple reduction rules, which exploit the congruence relation previously given.

Definition 2.3 π-calculus semantics is given in terms of the reduction system de-

scribed by the following rules:

TAU:
τ.P → P

COMM:
(µ(y).P + M)

∣
∣ (µ〈z〉.Q + N) → P{z/y}

∣
∣ Q

PAR:
P → P ′

P
∣
∣ Q → P ′

∣
∣ Q

RES:
P → P ′

(ν x)P → (ν x)P ′

STRUCT:
P ≡ Q P → P ′ P ′ ≡ Q′

Q → Q′
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The TAU rule represents an internal, unobservable change of state of some process

P. The transition of Expr. (2.2) is formalised by rule COMM. The PAR rule de-

scribes the meaning of the parallel operator: each process capable of some internal

transition, can evolve even when put in parallel with other processes. The RES

rule allows transition of processes in presence of restricted names. The key role of

restriction (as well as the semantics of the replication) is hidden by rule STRUCT,

which states that if two processes are structurally congruent, then they can perform

the same transitions.

The capability of encoding the λ-calculus [67] in the π-Calculus implies the

Turing-completeness of the π-Calculus. As an alternative proof, we provide the

encoding of a very simple class of Random Access Machines (RAMs) which in [71]

is shown to be Turing-complete. Each RAM is composed of a finite set of registers

r1, . . . , rn holding arbitrary large natural numbers, and of a finite set of indexed in-

structions (1 : I1), . . . , (m : Im) which represent the program executed by the RAM.

Each instruction can be of two kinds:

• (i : Inc(rj)): increment by 1 the contents of the register rj and execute the

next instruction;

• (i : DecJump(rj, s)): if the contents of the register rj is not zero, then decrease

it by 1 and execute the next instruction, otherwise jump to instruction number

s.

The internal state of a RAM is described by a configuration (i, c1, . . . , cn) where i

is the program counter which indicates the next instruction, while c1, . . . , cn are the

values stored in the registers.

Definition 2.4 A Random Access Machine (RAM) R is defined as a pair R =

(I, n), where

I = {(1 : I1), . . . , (m : Im)}

is the set of instructions of R, with |I| = m, n is the number of registers of R and

each instruction Ii is of two possible kinds:
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• Ii = Inc(rj) (1 ≤ j ≤ n);

• Ii = DecJump(rj, s)) (1 ≤ j ≤ n).

An internal configuration C of R is defined as a state vector

C = (i, c1, . . . , cn)

with i representing the program counter and c1, . . . , cn ∈ N the current values stored

in the n registers of R.

The transition function ;R: C→ C over the set of configurations C of a RAM

R is defined as

(i, c1, . . . , cn) ;R (i′, c′1, . . . , c
′
n)

if

• Ii = Inc(rj) and i′ = i+ 1, c′j = cj + 1, c′p = cp for p 6= j;

• Ii = DecJump(rj, s), cj > 0 and i′ = i+ 1, c′j = cj − 1, c′p = cp for p 6= j;

• Ii = DecJump(rj, s), cj = c′j = 0 and i′ = s, c′p = cp for p 6= j.

Proposition 2.1 The π-Calculus is Turing-complete.

Proof: The main program of a RAM R can be encoded as a process M (specified

by means of several processes M1, . . . ,Mm, one for every instruction of the RAM),

and each register rj as an independent process Rj, whose internal state is related

to the value stored in the register itself. The main program M interacts with each

process register Rj over a small set of channels tj, zj, nj, incj used respectively to:

• test the state of the register (output from M to Rj on tj), which can be zero

(corresponding to an incoming answer on zj) or non zero (answer on nj): in

this last case the register is decremented;

• increment the register (output on incj);
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Each instruction (i : Ii) corresponds to the definition of a replicated process Mi,

spawned by an output on the channel mi:

• in the presence of an increment operation (i : Inc(rj)),

Mi ≡ ! mi.incj.incj.mi+1

• in the presence of a “jump if zero/decrement” operation (i : DecJump(rj, s)),

we have

Mi ≡ ! mi.tj.(zj.ms + nj.mi+1)

Each register Rj is encoded as a stack of processes whose length corresponds to

the value stored in the register itself. The first process in the stack reacts to the

instructions given by the main process, according to the following definitions:

Zj ≡ tj.zloopj.zj +

incj.(ν a)
(
nloopj〈a〉.incj

∣
∣ a.zloopj.a

)

ZLj ≡ ! zloopj.Zj

Recursive behaviour of Zj is achieved by guarded replication on zloopj in a usual

way. The first branch of the choice answers a possible query by sending one output

on zj, which signals the value zero stored in the register. One output on incj spawns

a new process Nj (defined below) linked to a process Zj, which represents a queue

of length one. The process Nj is defined as follows:

Nj(a) ≡ tj.a.a.nj +

inc.(ν a′)
(
nloopj〈a

′〉.incj
∣
∣ a′.nloopj〈a〉.a

′
)

NLj ≡ ! nloopj(a).Nj(a)

Similarly to Zj, each process Nj listens on tj in order to answer on nj that the

value stored in the register is greater than zero, then the register is decremented by

sending an output on a, which activates the next process in the stack. The increment

operation is exactly the same as for Zj.
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Finally, the internal state (i, c1, . . . , cn) of a RAM R is encoded as

〈
[

(i, c1, . . . , cn)
]
〉
R

= mi

∣
∣ Rc1

1

∣
∣ · · ·

∣
∣ Rcn

n

∣
∣ ZL1

∣
∣ NL1

∣
∣ · · ·

∣
∣ ZLn

∣
∣ NLn

where

R0
j , Zj

Rk
j , (ν a1, . . . , ak)

(
Nj(ak)

∣
∣ ak.nloop〈ak−1〉.ak

∣
∣ · · ·

∣
∣

a2.nloopj〈a1〉.a2

∣
∣

a1.zloopj.a1

)
(k > 0)

We have that for each configuration C′ of a RAM R immediately reachable from

C, that is C ;R C
′, there exists a sequence of reductions M1 → · · · → Mp between

their corresponding encodings and vice versa, so that

C ;R C
′ ⇐⇒ 〈

[
C

]
〉
R
≡M1 → · · · →Mp ≡ 〈

[
C′

]
〉
R

(p < 8)

Furthermore, the encoding fully preserves the determinism of the RAM (in fact only

one reduction is possible for each encoded configuration 〈
[
C

]
〉 and for each of the

above intermediate steps Mi between two encoded configurations) and consequently

also its divergence.

2

For an extended treatment of the π-calculus we refer to [69, 70, 65, 68].

The key idea behind the modelling of biological systems by means of the π-

calculus is that biochemical elements can be seen as parallel processes, and their

interaction as communication. In particular, each molecule of the system can be

represented by a process and its reaction with other molecules can be modelled as

a communication over a fixed channel. For example, the chemical reaction

R : R1 +R2 → P1 + P2



20 Chapter 2. Background

where the molecules R1 and R2 react according to reaction R, and release P1 and

P2 as products of the reaction, can be modelled in π-calculus as

R1 , r.P1 R2 , r.P2 R1

∣
∣ R2 → P1

∣
∣ P2

where each process is named as the corresponding molecule, and reaction R is asso-

ciated with channel r.

Furthermore, the communication of restricted names between π-calculus pro-

cesses can be exploited for the modelling of local bindings between molecules. If

M1 and M2 represent two molecules ready to bind, the corresponding expression in

π-calculus is

M1 , (ν b)(bind〈b〉.M ′
1) M2 , bind(x).M ′

2

M1

∣
∣ M2 → (ν b)(M ′

1

∣
∣ M ′

2{b/x}) (b /∈ fn(M ′
2))

where M ′
1 and M ′

2{b/x} (and no other process) share the name b after their reaction.

Restriction may be also exploited in order to model compartments. A compart-

ment can be thought of as a box separating the external environment from its con-

tent. A typical biological example is the cell: its external membrane protects against

the dispersion of cell material and regulates the exchange of substances. From an

external point of view, the content of the compartment is completely hidden by the

compartment itself. Hence we may represent in π-calculus the compartment C as

(ν c1, . . . , ck)
(
M1

∣
∣ · · ·

∣
∣ Ml

∣
∣ P1

∣
∣ · · ·

∣
∣ Pn)

where the compartment C is represented by a set of restricted names c1, . . . , ck, the

content of C is constituted by P1, . . . , Pn under the hypothesis that

fn(P1

∣
∣ · · ·

∣
∣ Pn) ⊆ {c1, . . . , ck}

i.e. the direct interaction of such elements with some external process is prevented

by restricting all their channels. The set of processes M1

∣
∣ · · ·

∣
∣ Ml constitutes

an interface of the compartment to the external world, that is, in the case of a

cell, the membrane itself (and in particular all the transmembrane channels and

proteins). These would constitute the only processes enabled to interact with the

outer environment.
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Modelling Biological Systems in π-calculus

We can now try to model in π-calculus the simple biological system drawn in Fig. 2.1.

The figure sketches the insulin secretion process of a pancreatic β cell in response

to a rise in glucose in the blood. The glucose is transported inside the cell by a

transmembrane channel protein, GLUT2. Here it undergoes glycolysis, which leads

to the production of pyruvate and ATP. The rise in ATP concentration inhibits the

action of K+ channels, which in turn causes a rise in K+ ions near the membrane

and consequently its depolarisation. Voltage-sensitive Ca2+ channels are therefore

activated and allow the entry of Ca2+ ions, which activate the fusion of the insulin-

containing vesicles with the cell membrane (exocytosis), with subsequent dumping

of insulin molecules into the blood.

The corresponding π-calculus system will be composed of a compartment C

representing the cell, with the shape

(ν c1, . . . , ck)
(
CHAN1

∣
∣ · · ·

∣
∣ CHANl

∣
∣ MOL1

∣
∣ · · ·

∣
∣ MOLn

∣
∣ V ES

∣
∣ · · ·

∣
∣ V ES

)

where membrane channels CHANi are the only processes aware of names external

to the cell itself, unlike the molecules MOLi and the insulin vesicles V ES.

The first elements to model are the glucose molecule and the glucose channel.

The entry of glucose inside the cell can be modelled as an interaction between the

process representing the glucose molecule and that representing the glucose channel.

If the glucose molecule is represented by the process GLU , since its interaction

with processes external to the cell must be prevented after its entry, it is worth

substituting all the channels of GLU with new restricted names. Furthermore, the

GLU process must exhibit some sort of recursive behaviour, because it must be able

to synchronise at any time with some glucose channel and then be ready again for

the other chemical interactions. Such recursive behaviour may be captured by an

expression like

GLU , glutrans.GLU + glureact.PY R
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Figure 2.1: Insulin secretion in pancreatic β cells in response to a rise

in glucose concentration. (1) The rise in glucose concentration of the blood is

reflected by a rise in glucose inside the cell, as a consequence of the action of GLUT2

glucose transporter. (2) The rise of glucose accelerates the conversion of ADP into

ATP , with consequent rise in intracellular ATP concentration. (3) ATP inhibits

the action of ATP -sensitive K+ channels, which reduce the expulsion rate of K+

ions from the cell. (4) The increasing presence of K+ depolarises the membrane

and triggers the opening of voltage-sensitive Ca2+ channels. (5) Fusion proteins are

activated by Ca2+ ions and (6) trigger the exocytosis of secretory vesicles containing

insulin.

where the channel glutrans carries the interaction with the glucose channel, while a

synchronisation over glureact triggers the glycolysis of GLU with consequent pro-

duction of pyruvate PY R. The recursive behaviour would be obtained by direct

recursion (after the transportation, indicated by the synchronisation over glutrans,

the process becomes GLU again), but since it is not allowed in the version of the

π-calculus considered here, it must be encoded by combining replication and restric-

tion, in the following way:

GLU , (ν g)
(
g

∣
∣ ! g.(glutrans.g + glureact.PY R)

)
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The internal synchronisation over g allows us to spawn a new subprocess

(glutrans.g + glureact.PY R)

able to interact nondeterministically either over glureact and generate PY R, or

synchronise over glutrans and then produce another process g, thus returning to

its initial state. The above formalisation still lacks a significant detail: after the

interaction over glutrans and the entry in the cell, the process GLU must own

a new set of restricted names. Such names must be received by GLU during the

interaction with the glucose transporter:

GLU(glutrans, glureact) ,

(ν g)
(
g〈glutrans, glureact〉

∣
∣ ! g(t, r).(t(nt, nr).g〈nt, nr〉+ r.PY R)

)

(2.4)

Now the internal synchronisation over g spawns a new subprocess GLUSUB

GLU(glutrans, glureact) →

(ν g)
(
GLUSUB

∣
∣ ! g(t, r).(t(nt, nr).g〈nt, nr〉+ r.PY R)

)

with

GLUSUB , glutrans(nt, nr).g〈nt, nr〉+ glureact.PY R

where the placeholders t, r have been replaced by glutrans, glureact respectively

in consequence of the input/output operation. GLUSUB is ready to react over

glureact or to trigger the simulated movement of GLU inside some other compart-

ment whose respective names for the reaction and transportation of glucose are

received as nr and nt by GLU at the time of the transportation itself.

The glucose transporter GLUT2, represented by the process GLUCHAN , can

be easily modelled as

GLUCHAN(gtout, gtin, grin) , ! gtout〈gtin, grin〉

where gtout is the channel for glucose transportation outside the cell, gtin is the

name used for the same purpose but inside the cell, and grin is the channel for the
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glycolysis of GLU inside the cell. As previously noticed, GLUCHAN is a cross-

compartment process, since it must be aware of channels both inside and outside

the cell.

The effect of glycolysis is the conversion of ADP into ATP . Even if such process

involves several other chemical components, for sake of simplicity it can be easily

modelled as direct interaction between the ADP and GLU molecules. For the same

reason, the inhibition of K+ channel proteins by ATP can be modelled as direct

interaction between the ATP molecule and the K+ channel proteins, over some

name inhk:

ADP (glureact, inhk) , glureact.ATP (inhk)

ATP (inhk) , inhk

Since the consequent behaviour of the ATP molecule is not relevant for the present

purposes, the corresponding process lacks any recursive formalisation.

In order to model the potassium molecule and channel protein, similar consider-

ations can be applied. In particular, the potassium molecule K may be represented

as

K(ktrans, kreact) ,

(ν k)
(
k〈ktrans, kreact〉

∣
∣ ! k(t, r).(t(nt, nr).k〈nt, nr〉+ r)

)

Despite of their similarity, the processes GLU and K differ in the product of their

reactions: GLU reduces to PY R, while in the current formalisation K reduces to

the null process.

The expression of the K+ channel protein, KCHAN , is a little more complex

than the corresponding process GLUCHAN . In fact, KCHAN can be inhibited

in consequence of ATP binding. In other words, its recursive behaviour shall be

interrupted after an interaction over the inhk channel. This effect can be achieved

by a slight modification of the recursion used for GLU :

KCHAN(ktin, ktout, krout, inhk) ,

(ν kc)
(
kc

∣
∣ ! kc.(inhk + ktin〈ktout, krout〉.kc)

)
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After the interaction over inhk, the process kc is not replicated and any further

action of the process KCHAN is prevented.

The polarisation of the membrane caused by the rise in K+ concentration after

the inhibition of K+ channels can be modelled by a fictitious process POL triggered

by K+ ions, which then activates the Ca2+ channels:

POL(kreact, caact) , kreact.caact

The Ca2+ channel protein is formalised as the process CACHAN , which closely

resembles GLUCHAN :

CACHAN(catout, catin, carin, caact) , caact.! catout〈catin, carin〉

The channel is activated only after interaction over caact, as required. The calcium

process CA is defined exactly as K:

CA(catrans, careact) ,

(ν c)
(
c〈catrans, careact〉

∣
∣ ! c(t, r).(t(nt, nr).c〈nt, nr〉+ r)

)

The stimulation of the exocytosis by the rise in Ca2+ concentration can be mod-

elled as mediated by a docking protein DOCKP which is activated by Ca2+ ions

and trigger the expulsion of the insulin molecules INS contained in the vesicle V ES:

DOCKP (careact, dockves, insout) , careact.dockves〈insout〉

Since the vesicle V ES (as well as all the INS molecules inside it) is completely

embedded inside the cell, the DOCKP process must also communicate to V ES

the external name(s) insout which enables the communication of the processes INS

with the environment surrounding the cell.

V ES(dockves) , (ν insin)
(
dockves(insout).! insin.INS(insout)
∣
∣ INS(insin)

∣
∣ · · ·

∣
∣ INS(insin)

)

The process V ES represents another compartment, where all the names of the

embedded processes (INS) are restricted, while only one cross-compartment process
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filters their interaction with the external environment. In this very simple model,

the INS processes are formalised as

INS(ins) , ins

Finally, the whole system can be summarised as

SY S , GLU(gtout, grout)
∣
∣ K(ktout, krout)

∣
∣ Ca(catout, carout)

∣
∣

(ν gtin, grin, ktin, krin, catin, carin, inhk, caact, dockves, insin)
(

GLU(gtin, grin)
∣
∣ GLUCHAN(gtout, gtin, grin)

∣
∣ K(ktin, krin)

∣
∣ KCHAN(ktout, ktin, krin, inhk)

∣
∣

∣
∣ ADP (grin, inhk)

∣
∣ ATP (inhk)

∣
∣ POL(krin, caact)

∣
∣ Ca(catin, carin)

∣
∣ CACHAN(catout, catin, carin, caact)

∣
∣ DOCKP (carin, dockves, insout)

∣
∣ V ES(dockves)

)

This modelling approach in π-calculus allows us to express to some extent the

idea of compartments, but reveals several drawbacks.

The most evident is the need to encode compartment scoping by restricting all

the free names of the enclosed processes. As an even worse consequence we have that

cross-compartment processes must handle all the names of the interacting processes,

taking care of the correspondence between distinct names representing the same

channel inside different compartments. The model becomes even more complicated

when such processes need to create new restricted names and communicate them

externally. If we then require compartment operations which affect their nesting

structure (merging, splitting, creation, movement of whole compartments) the above

approach becomes practically unfeasible, both for the difficulties in name handling

and the impossibility of ensuring atomicity of such complex operations without a

purely centralised implementation.
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2.2 BioAmbients

The BioAmbient calculus rises as an enhancement of the π-calculus in order to over-

come the same technical difficulties we encountered during the modelling example

of insulin secretion in β cells. More precisely, BioAmbients joins the communication

power of the π-calculus and the compartment abstraction given by the Ambient

calculus [23, 20]. Compartments are represented by ambients, denoted by square

brackets:

Sys , [P
∣
∣ Q

∣
∣ [R]]

The above system Sys is composed of one root ambient containing three elements:

the processes P and Q, and another nested ambient [R], which in turns contains

another process R.

Processes can communicate in the style of the π-calculus, but communication

capabilities are extended to fit the needs of the new setting denoted by ambients.

Processes can interact if they lie in the same ambient or in nearby ambients, where

two ambients are nearby if one of them is directly nested into the other or they are

children of the same parent ambient. Therefore, four directions of communications

are introduced:

• intra-ambient, for processes inside the same ambient;

• sibling-to-sibling, when processes lie in compartments that are children of the

same parent ambient;

• child-to-parent, for a process willing to communicate with a process located

in the parent ambient;

• parent-to-child, representing the counterpart of the previous one.

Intra-ambient communication is denoted by the prefix local:

Sys , [local chan!{d}.P
∣
∣ local chan?{x}.Q

∣
∣ [R]]

The process local chan!{d}.P is ready to send some datum d over the channel chan

to some process which must be located within the same ambient. local chan?{x}.Q
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m[local c!{a}.P |local c?{x}.Q] → m[P |Q{a/x}]

m[s2s c!{a}.P ] | n[s2s c?{x}.Q] → m[P ] | n[Q{a/x}]

Figure 2.2: Graphic illustration of BioAmbients local and sibling-to-sibling com-

munications.

is a candidate for such synchronisation, since it is listening on the same channel

inside the same ambient. For these reason, the above system can reduce in the

following way:

Sys , [local chan!{d}.P
∣
∣ local chan?{x}.Q

∣
∣ [R]] →

[P
∣
∣ Q{d/x}

∣
∣ [R]]

The effect of the communication is the same as for the π-calculus: the name d is

received and substituted for the local placeholder x in Q.

Sibling-to-sibling communication is denoted by the prefix s2s:

Sys , [[s2s chan!{d}.P
∣
∣ Q]

∣
∣ [s2s chan?{x}.R

∣
∣ S]] →

[[P
∣
∣ Q]

∣
∣ [R{d/x}

∣
∣ S]]

Parent-to-child and child-to-parent are complementary, denoted by c2p and p2c
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m[p2c c!{a}.P | n[c2p c?{x}.Q] ] → m[P | n[Q{a/x}] ]

m[p2c c?{x}.P | n[c2p c!{a}.Q] ] → m[P{a/x} | n[Q] ]

Figure 2.3: Graphic illustration of BioAmbients parent-to-child and child-to-parent

communications.

prefixes, and permit both the input/output directions:

Sys1 , [[c2p chan!{d}.P
∣
∣ Q]

∣
∣ p2c chan?{x}.R

∣
∣ S] →

[[P
∣
∣ Q]

∣
∣ R{d/x}

∣
∣ S]

Sys2 , [[c2p chan?{x}.P
∣
∣ Q]

∣
∣ p2c chan!{d}.R

∣
∣ S] →

[[P{d/x}
∣
∣ Q]

∣
∣ R

∣
∣ S]

In Sys1 the outer process R receives the datum, while in Sys2 it sends the datum

to the inner process P .

In addition to the above communications, BioAmbients inherits from Mobile

Ambients the operations needed to change dynamically the structure of nesting of

ambients. Such operations are called capabilities. Processes cause the movement

of whole ambients across the nesting tree, in agreement with the basic intuitions

behind compartment semantics. For example, it is possible to cause the merging of

two sibling ambients (children of the same parent ambient) in the following way:

[[merge+ n.P
∣
∣ Q]

∣
∣ [merge− n.R

∣
∣ S]

∣
∣ T ] →

[[P
∣
∣ Q

∣
∣ R

∣
∣ S]

∣
∣ T ]
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m[merge+ c.P |Q]
∣
∣ n[merge− c.R|S] → m[P |Q|R|S]

m[enter c.P |Q] | n[accept c.R|S] → n[ R | S | m[P |Q] ]

n[m[exit c.P |Q] | expel c.R|S] → m[P |Q] | n[R|S]

Figure 2.4: Graphic illustration of BioAmbients capabilities.

The merge+ and merge− capabilities are complementary and can be triggered only

if the name n matches.

Ambients can also enter some other sibling ambient

[[enter n.P
∣
∣ Q]

∣
∣ [accept n.R

∣
∣ S]

∣
∣ T ] →

[[[P
∣
∣ Q]

∣
∣ R

∣
∣ S]

∣
∣ T ]

or exit their own parent ambient

[[[exit n.P
∣
∣ Q]

∣
∣ expel n.R

∣
∣ S]

∣
∣ T ] →

[[[P
∣
∣ Q]

∣
∣ [R

∣
∣ S]

∣
∣ T ]

by additional complementary capabilities, enter/accept and exit/expel.

We now give the definitions for the syntax, structural congruence and reduction

semantics of BioAmbients, in the same style of π-calculus and π@ semantics. For

further details we refer to [88].
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Definition 2.5 Let N be a set of names on a finite alphabet, n,m, p, . . . ∈ N . The

syntax of BioAmbients is defined as

π ::= $n!{m}
∣
∣
∣ $n?{m}

$ ::= local
∣
∣
∣ s2s

∣
∣
∣ p2c

∣
∣
∣ c2p

M, N ::= enter n
∣
∣
∣ accept n

∣
∣
∣ exit n

∣
∣
∣ expel n

∣
∣
∣ merge+ n

∣
∣
∣ merge− n

P, Q ::= (new n)P
∣
∣
∣ P

∣
∣ Q

∣
∣
∣ ! P

∣
∣
∣ [P ]

∣
∣
∣

∑

i∈I
πi.Pi

∣
∣
∣

∑

i∈I
Mi.Pi

Definition 2.6 The congruence relation ≡ is defined as the least congruence satis-

fying the following rules:

P |Q ≡ Q|P (P |Q)|R ≡ P |(Q|R)

P |0 ≡ P [0] ≡ 0

!0 ≡ 0 !P ≡ P |!P

(new n)0 ≡ 0 (new n)(new m)P ≡ (new m)(new n)P

(new n)(P |Q) ≡ P |(new n)Q if n /∈ fn(P )

(new n)[P ] ≡ [(new n)P ]

$n?{m}.P ≡ $n?{p}.P{p/m} if p /∈ fn(P )

(new n)P ≡ (new m)P{m/n} if m /∈ fn(P )

where fn(P ) is naturally extended to BioAmbients processes.

Definition 2.7 BioAmbients semantics is given in terms of the reduction system

described by the following rules:

[(T + enter n.P )|Q]|[T ′ + accept n.R)|S] → [[P |Q]|R|S]

[[(T + exit n.P )|Q]|(T ′ + expel n.R)|S] → [P |Q]|[R|S]

[(T + merge+ n.P )|(Q]|[T ′ + merge− n.R)|S] → [P |Q|R|S]

(T + local n!{m}.P )|(local n?{p}.Q + T ′) → P |Q{m/p}

(T + p2c n!{m}.P )|[(c2p n?{p}.Q + T ′)|R] → P |[Q{m/p}|R]

[R|(T + c2p n!{m}.P )]|(p2c n?{p}.Q + T ′) → [R|P ]|Q{m/p}

[R|(T + s2s n!{m}.P )]|[(s2s n?{p}.Q + T ′)|S] → [R|P ]|[Q{m/p}|S]
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P → Q

(ν n)P → (ν n)Q

P → Q

[P ] → [Q]

P → Q

P |R → Q|R

P ≡ P ′ P → Q Q ≡ Q′

P ′ → Q′

The above reduction rules are graphically illustrated in Fig. 2.2, 2.3, 2.4.

2.2.1 Modelling the insulin example in BioAmbients

The example of Fig. 2.1 can be exploited again to explain the basic modelling ideas

which may be applied in BioAmbients.

Since BioAmbients embeds directly the π-calculus (we can obtain a straightfor-

ward translation just by substituting each π input/output operation with a local

communication) we may start sketching the modelling of the GLU molecule of Expr.

(2.4) in the following way:

GLU(. . .) , (ν g)(local g!{. . .}
∣
∣ ! local g?{. . .}.GLU ′(g, . . .))

GLU ′ should both listen for a possible transportation of the molecule into another

compartment and communicate its ability of reacting as glucose. We may then try

to take advantage of the multiple directions of communication of BioAmbients and

use just a unique name glu in the local direction for reacting, and in the c2p and

p2c directions for modelling the movement to a new compartment:

GLU ′(g, glu, . . .) , local glu!{}.PY R(. . .) +

p2c glu?{g′, glu′, . . .} +

c2p glu?{g′, glu′, . . .}

Unfortunately, in this way we cannot exploit at all the abstraction of ambient nor

the directions of communication, because we are still modelling the localisation of

processes by means of names: even if GLU ′ receives some new set of names after

the p2c or c2p communication, it is not able to change ambient without some exit

or enter capability. Consequently, in order to take some advantage from the novel

primitives introduced in BioAmbients, we must forget the idea of name as means

to model mobility or localisation, and leave this job to ambients: even a simple

molecule like GLU should be modelled as an ambient on its own. Furthermore it
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may be possible to exploit the way ambients move as a whole in order to simplify

the expression for GLU :

GLU , [! enter glu
∣
∣ ! exit glu

∣
∣ c2p glu?{}.PY R]

The above formalisation embeds the idea that the movement into a new ambient and

the chemical reactivity are completely orthogonal and independent. The exit glu

capability is superfluous, since in the simple model of the system we are considering

the glucose molecules are not going to leave the cell once they entered, but it is valid

in general for any molecule or element undergoing some sort of “passive” conveyance

into other compartments without knowledge of its direction. The movement of the

ambient as a whole preserves the integrity of the process even if composed of several

parallel subprocesses, but the previous expression does not describe correctly the

real behaviour of the glucose molecule: in fact, after its degradation into PY R,

the GLU process is still able to be transported across compartments, even if the

molecule itself may not exist anymore. Consequently we are forced to exploit the

same expedient used for π-calculus and π@ modelling, even in presence of ambients:

GLU , [local glu!{}
∣
∣ ! local glu?{}.(enter glu.local glu!{} +

exit glu.local glu!{} +

c2p glu?.PY R)]

Now the movement of the molecule is allowed in either direction and disabled after

its degradation. It is worth noticing how the introduction of multiple communication

directions (local, s2s, p2c, c2p) and capabilities (merge, enter/accept, exit/expel)

reduces the number of channel names needed: each name embeds in fact seven

distinct interactions. The scoping induced by ambients allows also to avoid the use

of restriction, at least in this simple case.

The corresponding expression for the glucose channel becomes very simple:

GLUCHAN , ! accept glu

Even if the previous expression of GLU is correct intuitively, the mixing of

communications and capabilities is not allowed in BioAmbients. A slight correction
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allows us to overcome this issue:

GLU , [local glu!{}
∣
∣ ! local glu?{}.(s2s gludock!{}.enter glu.local glu!{}+

c2p gludock!{}.exit glu.local glu!{}+

c2p glu!.PY R)]

and GLUCHAN must be corrected accordingly:

GLUCHAN , ! s2s gludock?{}.accept glu

The direction s2s is justified by the structure of the system: the GLU molecule

external to the cell is an ambient sibling of the ambient represented by the cell

itself, where the process GLUCHAN resides.

The formalisation of GLU as an ambient affects the expression of ADP . The

local reaction (inside the cell) of glycolysis becomes an inter-ambient communication,

reflected by the p2c direction:

ADP , p2c glu?{}.ATP

The interaction of ATP can be instead considered local, provided that the potassium

channel is not modelled as an ambient:

ATP , local inhk!{}

Under this hypothesis, the process KCHAN is not substantially different from the

corresponding π-calculus expression:

KCHAN , (ν kc)(local kc!{}
∣
∣ ! local kc?{}.(local inhk?{}

+ p2c kdock!{}.expel k{}.local kc!{}))

The loop which spawns a new KCHAN subprocess is disabled after the inhibition

by the ATP molecule. The expulsion of potassium K from the current ambient is
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modelled in agreement with the previous considerations about the molecule GLU :

K , [local k!{}
∣
∣ ! local k?{}.(s2s kdock!{}.enter k.local k!{}+

c2p kdock!{}.exit k.local k!{}+

c2p k!)]

The other processes can be encoded by following similar considerations:

POL , p2c k?{}.local act!{}

CACHAN , local act?{}.! s2s cadock!{}.accept ca

CA , [local ca!{}
∣
∣ ! local ca?{}.

(s2s cadock!{}.enter ca.local ca!{}+

c2p cadock!{}.exit ca.local ca!{}+

c2p ca!{})]

DOCKP , p2c ca?{}.expel dockves

The encoding of the vesicle V ES requires more attention. In the biological

model, the insulin molecules never lie inside the cell. Therefore, if in BioAmbients

V ES is represented by an ambient, one way to represent the operation would be to

make the V ES ambient exit the cell and afterwards dump all the insulin molecules

INS in the blood:

V ES , [exit dockves.! expel ins
∣
∣ [exit ins.INS]

∣
∣ · · ·

∣
∣ [exit ins.INS]]

However, this encoding does not exploit the expressive power of ambients. A smarter

approach would merge the content of V ES with the ambient corresponding to the

blood vessel after the expulsion of the vesicle from the cell:

V ES , [exit dockves.merge+ insves
∣
∣ [INS]

∣
∣ · · ·

∣
∣ [INS]]
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This encoding requires that some complementary process is ready for the merge

operation in the parent ambient of the cell:

V ESMERGE , ! merge− insves

It is worth remarking that in both cases the exocytosis process is not modelled

atomically. Finally, the system is given by the following expression:

SY S , GLU
∣
∣ K

∣
∣ CA

∣
∣ V ESMERGE

∣
∣

[GLU
∣
∣ GLUCHAN

∣
∣ K

∣
∣ KCHAN

∣
∣ ADP

∣
∣ ATP

∣
∣ POL

∣
∣

CA
∣
∣ CACHAN

∣
∣ DOCKP

∣
∣ V ES]

Thanks to the introduction of ambients, there is no need to keep explicit trace of

the free names of each process. Unfortunately, possible problems emerging from the

need of atomicity for complex operations are not resolved, exactly as in π-calculus.

2.3 Brane Calculi

The peculiar spatial rearrangement typical of biological membranes inspired the

definition of Brane Calculi [22]. Here membranes constitute both the boundaries

of compartments and the place where “computation” happens, that is where con-

current processes are thought to be located and to interact with the surrounding

environment. Membranes are denoted by (| · |) and can be nested, exactly like ambi-

ents. In the following expression, the system S is composed of an outer membrane

whose behaviour is specified by σ:

S , σ(| P ◦ ρ(| Q |) ◦R |) (2.5)

The outer membrane contains another membrane, whose behaviour is specified by

ρ and whose content is Q.

S, P,Q,R are called systems : each system represents a collection of zero or more

membranes that may be nested as we have just seen or composed in parallel by

means of the operator ◦, like the three systems P , ρ(| Q |) and R. Systems specify
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the global structure of each Brane expression, i.e. the shape of the tree of nested or

sibling membranes.

σ and ρ are called (mem)branes : each brane specifies the behaviour of the mem-

brane with respect to the other membranes, by indicating which type of actions may

be performed. For example, if

σ , exo⊥.σ′ ρ , exo.ρ′

the system of Expr. (2.5) becomes

S , exo⊥.σ′(| P ◦ exo.ρ′(| Q |) ◦ R |) (2.6)

σ specifies that the outer membrane is ready to perform an exo⊥ action, while ρ is

ready to perform the complementary exo action. The exo/exo⊥ reduction formalises

exocytosis, corresponding to the same phenomenon described in the example of

insulin secretion. In consequence of the exocytosis, the content Q of the inner

membrane is expelled out of the external membrane, and the two membranes are

merged together:

S → S ′ S ′ , Q ◦ σ′|ρ′(| P ◦ R |) (2.7)

The expression σ′|ρ′ denotes the parallel composition of branes, where the ‘|’ opera-

tor is kept distinct from the ‘◦’ operator for the parallel composition of systems. The

peculiar behaviour of exocytosis preserves bitonality, that is the parity of the level

of nesting of each Brane process with respect to the tree structure of membranes. In

fact, consider the level of nesting of Q before and after the reduction: if we match

such level with the number of membranes that surround a given process, then Q

passes from level 2 to level 0 of nesting. Any exo/exo⊥ operation will never move

some process P from an odd level to an even one, or vice versa. This property is

preserved not only by the exo/exo⊥ action, but by all the actions of Brane.

The phago/phago⊥ reduction causes the inverse effect of the exocytosis: an ex-

ternal process is engulfed by a sibling membrane by surrounding it with a portion

of the membrane itself. For example, if

Q , phago.γ(| T |) ρ′ , phago⊥(τ).ρ′′
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(| exo⊥.t
∣
∣ t′(|exo.s

∣
∣ s′(|P |) ◦Q|) |) → (| P ◦ s

∣
∣ s′

∣
∣ t

∣
∣ t′(|Q|) |)

phago.s|s′(|P |) ◦ phago⊥(r).t|t′(|Q|) → t|t0(|r(|s|s
′(|P |)|) ◦Q|)

pino(r).t|t′(|P |) → t|t′(|P ◦ r(||)|)

Figure 2.5: Graphic illustration of Brane reduction rules.

then the system S ′ of Expr. (2.7) becomes

S ′ , phago.γ(| T |) ◦ σ′|phago⊥(τ).ρ′′(| P ◦ R |)

and can undergo the following reduction:

S ′ → σ′|ρ′′(| P ◦ R ◦ τ(| γ(| T |) |) |)

The external system γ(|T |) has been engulfed and surrounded by the membrane τ ,

which is thought of as a portion of the original external membrane of S ′.

The pino action is the simplest operation on membranes: it corresponds to the

inward bending of a membrane which produces a new internal membrane without
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any content:

pino(σ).ρ(| P |) → ρ(| P ◦ σ(| |) |)

The pino action has no complementary pino⊥ co-action.

In [22], two calculi are presented: the phago-exo-pino and the mate-bud-drip

variants.

A study on the relative expressive power of the two variants is reported in [13],

where it is shown that the phago-exo-pino calculus is strictly more expressive than

the mate-bud-drip one. Therefore, only the phago-exo-pino variant is considered

here.

The formal definition of Brane follows, given in terms of a reduction semantics

exactly as for the previous calculi.

Definition 2.8 Let N be a set of names on a finite alphabet, n,m, p, . . . ∈ N . The

syntax of Brane is defined as

P, Q ::= ⋄
∣
∣ P ◦Q

∣
∣ !P

∣
∣ σ(|P |)

σ, τ ::= 0
∣
∣ σ|τ

∣
∣ !σ

∣
∣ a.σ

a ::= phagon
∣
∣ phago⊥n (σ)

∣
∣ exon

∣
∣ exo⊥n

∣
∣ pino(σ)

Definition 2.9 The congruence relation ≡ is defined as the least congruence satis-

fying the following rules:

P ◦Q ≡ Q ◦ P σ|τ ≡ τ |σ

P ◦ (Q ◦R) ≡ (P ◦Q) ◦R σ|(τ |ρ) ≡ (σ|τ)|ρ

P ◦ ⋄ ≡ P σ|0 ≡ σ

!⋄ ≡ ⋄ !0 ≡ 0

!(P ◦Q) ≡ !P ◦ !Q !(σ|τ) ≡ !σ|!τ

!!P ≡ !P !!σ ≡ !σ

!P ≡ P◦ !P !σ ≡ σ|!σ

0(| ⋄ |) ≡ ⋄



40 Chapter 2. Background

P ≡ Q =⇒ P ◦R ≡ Q ◦R σ ≡ τ =⇒ σ|ρ ≡ τ |ρ

P ≡ Q =⇒ !P ≡!Q σ ≡ τ =⇒ !σ ≡!τ

P ≡ Q ∧ σ ≡ τ =⇒ σ(|P |) ≡ τ(|Q|) σ ≡ τ =⇒ a.σ ≡ a.τ

Definition 2.10 Brane semantics is given in terms of the reduction system de-

scribed by the following rules:

P → Q

P ◦R→ Q ◦R

P → Q

σ(|P |)→ σ(|Q|)

Q ≡ P P → P ′ P ′ ≡ Q′

Q→ Q′

phagon.σ|σ0(|P |) ◦ phago⊥n (ρ).τ |τ0(|Q|) → τ |τ0(|ρ(|σ|σ0(|P |)|) ◦Q|)

exo⊥n .τ |τ0(|exon.σ|σ0(|P |) ◦Q|) → P ◦ σ|σ0|τ |τ0(|Q|)

pino(ρ).σ|σ0(|P |) → σ|σ0(|ρ(| ⋄ |) ◦ P |)

The above reduction rules are graphically illustrated in Fig. 2.5. For further details

on Brane calculi we refer to [22].

2.3.1 Modelling the insulin example in Brane

In order to allow the reader to become a little familiar with the Brane language, we

now show how the insulin secretion model can be expressed in this calculus. The

explicit presence in the target model of molecules and molecule channels makes un-

feasible its expression in the core phago-exo-pino variant of Brane that we formalised

in the previous section.

Therefore we consider an additional class of actions which are proposed in [22]

in order to handle explicitly sets of molecules, reactions and cross-membrane con-

veyance. The grammar of processes is then extended with molecules m1, . . . ,mn

and multisets of molecules

p, q , m1 ◦ . . . ◦mk

Multisets of molecules can be used to define molecular reactions, which constitute

an additional class of Brane actions and have the following shape:

p1(p2) ⇉ q1(q2)
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with p1, p2, q1, q2 multisets of molecules. Like the other actions, molecular reactions

are thought to be located on membranes and are part of branes. p1 and p2 represent

the multisets of molecules which must be present outside and inside the membrane

respectively, in order to allow the molecular reaction to occur. The multiset q1

represents the molecules released outside the membrane after the reaction, while q2

the molecules released inside it.

A cross-membrane channel like the calcium channel of Fig. 2.1 can be easily

modelled as follows:

S , CA2+ ◦ CA2+ ◦ !CA2+() ⇉ (CA2+)(| P |)

The molecular reaction !CA2+() ⇉ (CA2+) is enabled independently of the molecules

present inside the membrane, and requires (at least) one molecule of CA2+ to be lo-

cated outside of it. After the reaction, the molecule is released inside the membrane

while disappears outside of it:

S → CA2+ ◦ !CA2+() ⇉ (CA2+)(| CA2+ ◦ P |)

The chemical reaction

m1 +m2 → m3 +m4

where the molecules m1,m2 appear as reactants and m3,m4 as products of the

reaction, may be represented in Brane by the following action if we model the

reaction as happening on the outer surface of the membrane:

m1 ◦m2() ⇉ m3 ◦m4()

or

(m1 ◦m2) ⇉ (m3 ◦m4)

if we want it to be located on the inner surface.

The explicit handling of molecular reactions in the calculus allows us to model

the processes GLU , ATP , ADP , PY R, CA, K and INS as simple molecules. Their
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behaviour is completely passive and specified by the molecular reactions present in

the other processes.

The cross-membrane channel GLUCHAN , whose function is the conveyance of

glucose inside the cell, is expressed straightforwardly:

GLUCHAN , !GLU() ⇉ (GLU)

Glycolysis can be modelled as molecular reaction occurring inside the cell membrane:

GLY COL , !(GLU ◦ ADP ) ⇉ (ATP ◦ PY R)

The encoding of the potassium channel requires it to be deactivated after its binding

to some ATP molecule. The simplest way to obtain this behaviour with a single

molecular reaction is the introduction of a fictitious catalyst KCHANCAT present

inside the cell, which allows the channel process KCHAN to move the potassium

ions across the membrane as long as it does not disappear:

KCHAN , ! (KCHANCAT ◦K) ⇉ K(KCHANCAT )

Such catalyst disappears in consequence of the presence of ATP :

KCHANINH , ! (KCHANACT,ATP ) ⇉ ()

The process of polarisation of the membrane POL can be modelled as molecular

reaction as well:

POL , (K) ⇉ (ACT )

ACT is another fictitious molecule which activates the calcium channel:

CACHAN , (ACT ) ⇉ ().! CA() ⇉ (CA)

The exocytosis of the vesicles is now rendered straightforwardly by the exo/exo⊥

reduction:

V ES , exo(| INS ◦ · · · ◦ INS|)
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Obviously, on the external membrane there must be some process ready to execute

the complementary action:

DOCKP , (CA) ⇉ ().exo⊥

Finally, the system can be expressed as follows:

SY S , GLU ◦ K ◦ CA ◦

σ(| KCHANACT ◦ K ◦ ADP ◦ ATP ◦ CA ◦ V ES |)

with

σ , GLUCHAN | GLY COL | KCHAN | KCHANINH |

POL | CACHAN | DOCKP

The addition of molecular reactions makes Brane a powerful language for bi-

ological modelling. This is evident in the formalisation of the previous example,

which perfectly suited the bitonal properties of Brane. However, the expression

of behaviours that are not included in the design of the calculus (like the calcium

channel CACHAN , or other compartment-related operations which do not preserve

bitonality) requires either the extension of the language with additional primitives

or the introduction of intermediate, fictitious elements which may lead again to

the same atomicity problems encountered during the modelling with π-calculus or

BioAmbients.

2.4 P systems

Quoting from [78]:

“The essential ingredient of a P system is its membrane structure, which

can be a hierarchical arrangement of membranes, like in a cell (hence

described by a tree), or a net of membranes (placed in the nodes of

a graph), like in a tissue, or in a neural net. The intuition behind

the notion of a membrane is that from biology, of a three-dimensional
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vesicle, but the concept itself is generalised/idealised to interpreting a

membrane as a separator of two regions (of the Euclidean space), a finite

inside and an infinite outside, also providing the possibility of a selective

communication among the two regions.

The variety of suggestions from biology and the range of possibilities

to define the architecture and the functioning of a membrane-based-

multiset-processing device are practically endless – and already the lit-

erature of membrane computing contains a very large number of models.”

The high number of P systems models imposes a choice of which is most similar

to process calculi and initially easier to encode: catalytic P systems have been chosen

for the simplicity of evolution rules and static structure of the membrane tree. Below,

preliminary definitions are recalled, then a formal definition of catalytic P systems

is given.

Definition 2.11 Given a set S, a finite multiset over S is a function m : S → IN

such that the set dom(m) = {s ∈ S |m(s) 6= 0} is finite. The multiplicity of an

element s in m is given by the natural number m(s). The set of all finite multisets

over S, denoted byMfin(S), is ranged over by m. A multiset m such that dom(m) =

∅ is called empty . The empty multiset is denoted by ∅.

Given the multiset m and m′, m ⊆ m′ holds if m(s) ≤ m′(s) for all s ∈ S while

⊕ denotes their multiset union: m⊕m′(s) = m(s) +m′(s). The operator \ denotes

multiset difference: (m \m′)(s) = if m(s) ≥ m′(s) then m(s) −m′(s) else 0. The

scalar product, j ·m, of a number j with m is (j ·m)(s) = j · (m(s)). The cardinality

of a multiset is the number of occurrences of elements contained in the multiset:

|m| =
∑

s∈Sm(s).

Some basic definitions on strings, cartesian products and relations are then given.

Definition 2.12 A string over S is a finite (possibly empty) sequence of elements

in S. The length of a string is the number of occurrences of elements contained in

S. With S∗ we denote the set of strings over S, and u, v, w, . . . range over S.



Chapter 2. Background 45

Given a string u = x1 . . . xn, the multiset corresponding to u is defined as follows:

for all s ∈ S, mu(s) = |{i | xi = s ∧ 1 ≤ i ≤ n}|. With abuse of notation, we use u

to denote also mu.

The definition of membrane structure follows.

Definition 2.13 Given the alphabet V = {[, ]}, the set MS is the least set induc-

tively defined by the following rules:

• [ ] ∈MS

• if µ1, µ2, . . . , µn ∈MS, n ≥ 1, then [µ1 . . . µn] ∈MS

We define the following relation over MS: x ∼ y if and only if the two strings can

be written in the form x = [1. . . [2. . .]2 . . . [3. . .]3 . . .]1 and

y = [1. . . [3. . .]3 . . . [2. . .]2 . . .]1 (i.e., if two pairs of parenthesis that are neighbours

can be swapped together with their contents).

The set MS of membrane structures is defined as the set of equivalence classes

with respect to the relation ∼∗.

We call a membrane each matching pair of parenthesis appearing in the mem-

brane structure. A membrane structure µ can be represented as a Venn diagram, in

which any closed space (delimited by a membrane and by the membranes immedi-

ately inside) is called a region of µ.

Definition 2.14 A catalytic P system (of degree d, with d ≥ 1) is a construct

Π = (V,C, µ, w0
1, . . . , w

0
d, R1, . . . , Rd, i0)

where

1. V is a finite alphabet whose elements are called objects;

2. C ⊆ V is a set of catalysts;

3. µ is a membrane structure consisting of d membranes (usually labelled with i

and represented by corresponding brackets [i and ]i, with 1 ≤ i ≤ d);
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4. w0
i , 1 ≤ i ≤ d, are strings over V associated with the regions 1, 2, . . . , d of µ;

they represent multisets of objects present in the regions of µ (the multiplicity

of a symbol in a region is given by the number of occurrences of this symbol in

the string corresponding to that region);

5. Ri, 1 ≤ i ≤ d, are finite sets of evolution rules over V associated with the

regions 1, 2, . . . , d of µ; these evolution rules are of the forms a → v or ca →

cv, where c is a catalyst, a is an object from V \ C, and v is a string from

((V \ C)× {here, out, in})∗;

6. i0 is a number between 1 and d and it specifies the output membrane of Π.
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Expressiveness of priority

Priority is a frequently used feature of many computational systems. High-priority

processes dispose of more central processing unit time in workstations, or preempt

the execution of low priority processes through hardware/software-driven interrupt

mechanisms. In order to model such systems, many basic process algebras have been

enriched with some priority mechanisms (see, e.g., [2, 15, 34, 33, 81]). Priority is

also implicitly used in many stochastic process calculi, where immediate actions take

precedence over timed actions (see, e.g., [5, 50, 10], or where actions are equipped

with an explicit priority level (e.g. [6]).

This chapter is devoted to the investigation of the expressiveness of priority in

(untimed) concurrent systems, in order to delineate the expressive power gained by

the addition of priority and to compare the relative expressive power of different

priority mechanisms, by studying a couple of problems in distributed systems.

According to the classification in [33], the basic priority mechanisms reported in

the literature can be divided into two main groups: those based on global priority

(see, e.g., [1, 34]) and those based on local priority (see, e.g., [15, 81]). The difference

is motivated by the scope of the priority effects on the system: in the case of global

priority, a high-priority action is able to preempt any other low-priority action in

the system, so that only higher priority processes are allowed to evolve. In the case

of local priority, this effect is limited to the location of the process, where a location

can be thought of as a site in a distributed system and may be represented by the
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scope of some name or the guarded choice between actions with different priorities.

An example may be helpful in showing the difference between the two. Consider

the system S composed of five processes

S , a.P
∣
∣ a.Q1 + b.Q2

∣
∣ b.R

∣
∣ c.T1 + d.T2

∣
∣ c.V

where the sum operator represents the usual choice between different actions, output

actions are overlined and high-priority actions are underlined. According to the

semantics of CCSsg (CCS with a global notion of priority) and CCSsl (CCS with local

priority) reported in [33], the processes a.Q1 + b.Q2 and b.R are ready to perform a

high-priority action on channel b. In CCSsg semantics this action is forced to happen

before any other low priority transition in S, while in CCSsl semantics, the action

b only preempts the execution of the action a, so that the synchronisation on c of

the last two processes may even happen first. In other words, with a global priority

notion the only possible internal transition of the system S is

S → a.P
∣
∣ Q2

∣
∣ R

∣
∣ c.T1 + d.T2

∣
∣ c.V

while in presence of local priority also the evolution

S → a.P
∣
∣ a.Q1 + b.Q2

∣
∣ b.R

∣
∣ T1

∣
∣ V

can happen. In both cases only the reduction on channel a is preempted.

As a basic representative for a calculus with global priority, we consider a very

minimal fragment, which we call FAP, of CCS [66] (without restriction and recur-

sion, with asynchronous communication), enriched with static priority and global

preemption (like in CCSsg reported in [33]) where only the prefix operator on in-

puts is present and the asynchronous output is characterised by the possibility of

assigning different priority to the outgoing messages.

As a representative for a calculus with local priority, we consider Phillips’ CCS

with priority guards (CPG for short) [81].

Moreover, we consider two well-known unprioritised calculi, namely the π-calculus

introduced in the previous chapter and its broadcast-based version bπ-calculus [42],

that will be compared with the two prioritised calculi above.
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The two problems in distributed systems we will use to distinguish the expressive

power of these four calculi are the leader-election problem [58] already used to study

expressiveness gap between, e.g., synchronous and asynchronous π-calculus [76], and

an apparently new problem we have called the last man standing problem (LMS for

short), consisting of the capability of processes to recognise the absence of other

processes ready to perform synchronisations or input/output operations. In other

words, the LMS problem is solvable if a process is able to check that it is the only

one active in a network.

We first analyse the expressiveness of global priority, in order to check if it can

be proved to be more expressive than local priority as it would be natural to expect.

As previously mentioned, in order to represent a global priority model we choose

FAP, a fragment of CCS extended with stratified, global priority (a slight variant of

the CCS with static priority and global preemption, CCSsg studied in [33]) where

the only operators are the parallel composition of processes and the prefix on inputs,

while the asynchronous output models the dispatch of messages with two different

levels of priority: the delivery of high-priority messages is ensured to happen before

that of low-priority ones.

We prove that this very simple language (deprived of synchronous communi-

cation, choice, recursion or replication and hence finite) is able to write programs

capable of solving the leader election problem in any connected graph of processes

without knowledge of the number of processes involved in the election.

By applying the idea used in [42, 81] we have as a corollary that FAP cannot be

distributively encoded in the π-calculus, but we prove this to remain true also for

partially correct encodings which introduce divergence or failure in their computa-

tions as consequences of livelocked or deadlocked conditions. This result can also

be extended to the translations of bπ-calculus and CPG into the π-calculus, thus

relaxing the encoding conditions already stated in [42, 81].

Another consequence of the above leader election result in FAP is the impossibil-

ity of its encoding in CPG under uniformity and independence-preserving conditions,

which constitutes the expected result on the expressiveness gap between global and
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π

bπ

CPG

FAP

(1) (2)

(3)

no uniform, independ.-preserving encoding. . .

no uniform encoding. . .

no parallel encoding. . .

. . . retaining a reasonable semantics

. . . retaining a sincere semantics

Figure 3.1: Impossibility results: (1) C.Ene, T.Muntean; (2, 3) I. Phillips; the

remaining ones are presented in this chapter.

local priority in the chosen process algebra framework. It is worth considering that

the separation between these two prioritised languages and the π-calculus is stronger

than that between FAP and CPG themselves, which is a first hint of the expressive

power of priority in both global and local approaches.

In order to strengthen the separation between prioritised and non-prioritised lan-

guages, we then introduce a new setting denoted as the last man standing problem.

In this setting a bunch of n processes must realise if there is only one process par-

ticipating to the LMS (and in that case, the only process would be the “last man

standing”), i.e. understand if n = 1 or n > 1 in a distributed way. We prove that

it is possible to solve the LMS both in FAP and CPG (but we claim that it is also

possible within other priority approaches like [15, 33]), while it is not possible in

non-prioritised languages like the π-calculus but also the bπ-calculus. This result

implies that there exist no distributed encodings of FAP and CPG into the bπ-

calculus, hence showing that the greatest expressiveness of priority does not derive

from the broadcast-like power of preemption, but from the capability of processes

to know if another process is ready to perform a synchronisation on some channel

or not. In non-prioritised calculi it is possible to know if some process is ready to

perform some synchronisation, but it is not decidable if, on the contrary, the condi-

tion does not hold. We show that in a distributed setting this simple capability is

peculiar to priority (global or local, stratified or not) and cannot be obtained other-

wise, even providing broadcast-like primitives and admitting divergent or deadlocked

computations.

The above results are summarised in Fig. 3.1.
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The chapter is structured as follows. In Section 3.1 the process algebras involved

in the separation results are introduced (except for the π-calculus already defined)

and a brief explanation of their main features is given. Section 3.2 contains a short

discussion and the formal definitions of the properties of an encoding. In Sect. 3.2.1

and 3.2.2 the leader election and LMS problems are formalised. In Sect. 3.3.1 and

3.3.2 the respective separation results are shown, then a short discussion is reported.

3.1 Calculi

We introduce now the calculi of interest in this chapter by giving their syntax,

semantics and a short explanation of their functioning.

3.1.1 CCS

One of the first calculi proposed for modelling concurrent systems is CCS [66]. The

main features of CCS are the point-to-point communication capability of processes

and the static nature of links.

Its fundamental entity is the name. Names, present in a potentially unlim-

ited number, are identified with x, y, . . . and are members of the set N of names.

They have no structure and represent communication channels. In addition to

names, processes constitute the other basic entity of CCS. Processes are indicated

as P,Q, . . . ∈ P and are built by names according to the following syntax:

P,Q ::= 0

∣
∣
∣ a(x).P

∣
∣
∣ a〈d〉.P

∣
∣
∣ P +Q

∣
∣
∣ (3.1)

P
∣
∣ Q

∣
∣
∣ (ν a)P

∣
∣
∣ Z

def
= P (3.2)

where

• 0 represents the null process, capable of doing nothing;

• a(x).P represents a process listening on channel a and ready to receive some

datum whose local name, in P , is x; after receiving this datum, the process

behaves as specified in the rest of the program P ;



52 Chapter 3. Expressiveness of priority

Prefix
−

µ.P
µ
−→ P

Sum
P

µ
−→ P ′

P + Q
µ
−→ P ′

Q
µ
−→ Q′

P + Q
µ
−→ Q′

Parallel
P

µ
−→ P ′

P
∣
∣ Q

µ
−→ P ′

∣
∣ Q

Q
µ
−→ Q′

P
∣
∣ Q

µ
−→ P

∣
∣ Q′

Synchronisation
P

a
−→ P ′ Q

a
−→ Q′

P
∣
∣ Q

τ
−→ P ′

∣
∣ Q′

Restriction
P

µ
−→ P ′

(ν a)P
µ
−→ (ν a)P ′

µ, µ 6= a

Constant
P

µ
−→ P ′

Z
µ
−→ P ′

Z
def
= P

Table 3.1: CCS semantic rules.

• a〈d〉.P represents a process ready to perform an output on channel a, that is

to send datum d to another process listening on a; after this output operation,

the process behaves as specified in the rest of the program P ;

• P +Q represents the possibility of choice between two different behaviours, P

and Q; if both P and Q are available, then the choice is nondeterministic;

• P
∣
∣ Q represents the parallel composition of two processes, that is P and Q

are concurrent processes running in parallel;

• (ν a)P represents the restriction of the name a: if some name a appears outside

the process (ν a)P , then it represents a different channel with respect to the

channel a inside P ;

• Z
def
= P allows us to define recursive behaviour of processes by associating the

behaviour of P with the process name Z.

The following example shows two parallel processes able to communicate on
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channel a.

a(x).P
∣
∣ a〈d〉.Q

τ
−→ P [d/x]

∣
∣ Q

The labelled arrow represents the occurrence of the communication, that is the

transition from one state – where a(x).P is listening for a datum and a〈d〉.Q is ready

to send it – to another – Q sent the datum and P received it. The label τ over the

arrow denotes a silent transition, that is the occurrence of a communication that is

invisible to an external observer: in fact it happens silently between two processes,

that are the only entities aware of the communication. The form P [d/x] denotes

that after the transition the variable x has been replaced by (relabelled as) d inside

P .

The following example points out the nondeterminism arising from parallel com-

position. Here two pairs of processes (P,Q and P,R) are ready to communicate, so

the system may evolve in two different ways:

a(x).P
∣
∣ a〈d1〉.Q

∣
∣ a〈d2〉.R

τ
−→ P [d1/x]

∣
∣ Q

∣
∣ a〈d2〉.R

a(x).P
∣
∣ a〈d1〉.Q

∣
∣ a〈d2〉.R

τ
−→ P [d2/x]

∣
∣ a〈d1〉.Q

∣
∣ R

In the first case, ax.P received the datum d1 from ad1.Q, while in the second it

received d2 from a〈d2〉R.

Nondeterminism may arise also in consequence of multiple available choices, like

in the following example.

a(x) + b(y).P
∣
∣ a〈d1〉.Q

∣
∣ b〈d2〉.R

τ
−→ P [d1/x]

∣
∣ Q

∣
∣ b〈d2〉.R

a(x) + b(y).P
∣
∣ a〈d1〉.Q

∣
∣ b〈d2〉.R

τ
−→ P [d2/x]

∣
∣ a〈d1〉.Q

∣
∣ R

Here the process a(x) + b(y).P has two choices: it may receive some datum on

channel a (like in the first transition) or some other on channel b (like in the second

one).

The set of available transitions from each state is determined by a finite set of

semantic rules, reported in Table 3.1.
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〈
[

(i, c1, . . . , cn)
]
〉
R

= MR
i

∣
∣ Rc1

1

∣
∣ · · ·

∣
∣ Rcn

n

MR
i , 〈

[
(i : Ii)

]
〉
R

with R = (I, n) and (i : Ii) ∈ I

〈
[ (
i : Inc(rj)

) ]
〉
R

= incj.M
R
i+1

〈
[ (
i : DecJump(rj, s)

) ]
〉
R

= tj.(zj.M
R
s + nj.M

R
i+1)

R0
j , Zj

Rk
j , (ν a)

(
Nj〈a〉

∣
∣ a.Rk−1

j

)
(k > 0)

Zj , tj.zj.Zj + incj.(ν a)
(
Nj〈a〉

∣
∣ a.Zj

)

Nj(a) , tj.a.nj + incj.(ν a
′)

(
Nj〈a

′〉
∣
∣ a′.Nj〈a〉

)

Table 3.2: Definition of the function 〈
[
·
]
〉 for the encoding of RAMs into CCS,

CPG and bπ-calculus. Although different, these calculi share a common core which

allows the exploitation of the same encoding function for such kind of RAMs.

Proposition 3.1 CCS is Turing-complete.

Proof: The encoding of a RAM into CCS is similar to the one given for the π-

calculus, and is reported in Table 3.2. 2

The main difference between the encodings of RAMs into the π-calculus and CCS

is related to the presence of replication in the π-calculus, which is more tractable

than recursion but requires some additional synchronisation to achieve recursive

behaviour.
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3.1.2 The CPG Language

The CPG language [81] derives from CCS, extended with a local notion of priority

over actions. In this respect, CPG fully embeds (syntactically and semantically)

CCS so that any CCS program is still valid and is denoted by the same semantics,

but in addition each action can be guarded by a set of names representing the actions

whose co-action availability may prevent its execution. For example, in the system

S

S , a : b.Q
∣
∣ b.R

the first action b is guarded by a, so that its execution is prevented by the presence

of any parallel complementary action a. Since there is no such co-action in S, it can

undergo the reduction

S → Q
∣
∣ R

The system S ′

S ′ , a.P
∣
∣ S

cannot reduce in the same way, because of the presence of the action a in a.P . The

locality of this effect can be noticed in the following system

S ′′ , a.P
∣
∣ a : b.Q

∣
∣ b.R

∣
∣ c : b.T

where the following reduction over b is possible:

S ′′ → a.P
∣
∣ a : b.Q

∣
∣ R

∣
∣ T

In fact, the process a : b.Q is still stuck for the presence of the action a, while b.R

is free to synchronise with c : b.T , since there is no presence of co-action c which

would prevent the reduction with the last process.

Definition 3.1 Let N be a set of names on a finite alphabet, x, y, . . . ∈ N . CPG

syntax is defined in terms of the following grammar

P ::= 0

∣
∣
∣ A〈x〉

∣
∣
∣

∑

i∈I

Si : αi.Pi

∣
∣
∣ P1

∣
∣ P2

∣
∣
∣ (ν x)P
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where

αi ::= x
∣
∣
∣ x

∣
∣
∣ τ

and each constant A is assumed to have a unique defining equation A(x) , P . Si ⊆

N represents the set of actions whose co-actions availability prevents the execution

of αi.

We report the reduction semantics given in [81], where N is a set of names, N

co-names, U set of names which can be used as priority guards, U the respective

co-names, Std = N ∪N , Pri = U ∪U , Vis = Std∪Pri, Act = Vis∪{τ}, with u, v, . . .

ranging over Pri, a, b, . . . over Vis, α, β, . . . over Act, S, T, . . . over finite subsets of

Vis, U, V, . . . over finite subsets of Pri.

Definition 3.2 The function fn(P ) ⊆ N ∪ U is defined by induction on P ∈ P as

follows:

fn(
∑

i∈I

Si : αi.Pi) = {n ∈ N ∪ U | ∃i ∈ I : n ∈ Si ∪ {αi} ∨

n ∈ Si ∪ {αi} ∨

n ∈ fn(Pi) }

fn(P1

∣
∣ P2) = fn(P1) ∪ fn(P2)

fn((ν a)P ) = fn(P ) \ {a}

fn(A〈a1, . . . , an〉) = {a1, . . . , an}

Definition 3.3 The congruence relation ≡ on CPG processes is defined as the least

congruence satisfying alpha conversion, the commutative monoidal laws with respect

to both (
∣
∣ ,0) and (+,0) and the following axioms:

(ν x)P
∣
∣ Q ≡ (ν x)(P

∣
∣ Q) if x /∈ fn(Q)

(ν x)P ≡ P if x /∈ fn(P )

A〈b̃〉 ≡ P{b̃/ã} if A(ã)
def
= P
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Definition 3.4 The set off(P ) ⊆ Pri of “higher priority” actions “offered” by P is

defined by induction on CPG processes by the following rules:

off(
∑

i∈I

Si : αi.Pi) = {αi : i ∈ I, αi ∈ Pri, αi /∈ Si}

off(P1

∣
∣ P2) = off(P1) ∪ off(P2)

off(ν aP ) = off(P ) \ {a, a}

off(A〈b̃〉) = off(P{b̃/ã}) if A(ã)
def
= P

Definition 3.5 Let P be a CPG process and let S ⊆ Act be finite. P eschews S

(written P eschewsS) iff off(P ) ∩ S = ∅.

Definition 3.6 CPG semantics is given in terms of the reduction system described

by the following rules:

S : τ.P +M →S∩Pri P

S : a.P +M eschewsT T : a.Q+N eschewsS

(S : a.P +M)
∣
∣ (T : a.Q+N)→(S∪T )∩Pri P

∣
∣ Q

P →U P
′ Q eschewsU

P
∣
∣ Q→U P ′

∣
∣ Q

P →U P
′

(ν a)P →U\{a,a} (ν a)P ′

Q ≡ P P →U P
′ P ′ ≡ Q′

Q→U Q′

We say that P → Q ⇐⇒ ∃X : P →X Q.

The reduction relation →X is parameterised by a set X of names representing

the high priority actions whose co-action availability would prevent the occurrence

of the described reduction.

We report the definition of barb for CPG in [82].

Definition 3.7 Let P be a CPG process. P exhibits barb α, written P ↓ α, iff

• P ≡ (ν y)(S : x.Q+R
∣
∣ T ), with α = x, x /∈ y or

• P ≡ (ν y)(S : x.Q+R
∣
∣ T ), with α = x, x /∈ y.

CPG Turing completeness is directly inherited from CCS:

Proposition 3.2 CPG is Turing-complete.
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3.1.3 The bπ-calculus

The bπ-calculus [42] is a variant of the π-calculus where the point-to-point synchro-

nisation mechanism is replaced by broadcast communication. For example, while

the π-calculus program

S , a〈b〉.P
∣
∣ a(x).Q

∣
∣ a(y).R

∣
∣ a(z).T

can evolve in one step to a system like S1

S → S1 , P
∣
∣ Q{b/x}

∣
∣ a(y).R

∣
∣ a(z).T

where only one ofQ,R, S is affected by the performed communication, in bπ-calculus

the system S directly evolves to S2

S → S2 , P
∣
∣ Q{b/x}

∣
∣ R{b/y}

∣
∣ T{b/z}

where all the processes listening on channel a receive the broadcasted message.

In order to uniform the presentation of the languages analysed here, in the follow-

ing we introduce a variant of the bπ-calculus defined in terms of reduction semantics,

instead of the labelled transition system used in [42].

Definition 3.8 Let N be a set of names on a finite alphabet, x, y, . . . ∈ N . The

syntax of the bπ-calculus is defined in terms of the following grammar

P ::= 0

∣
∣
∣ A〈x〉

∣
∣
∣

∑

i∈I

πi.Pi

∣
∣
∣ P1

∣
∣ P2

∣
∣
∣ (ν x)P

where

πi ::= τ
∣
∣
∣ (x)y

∣
∣
∣ 〈x〉y

and each constant A is assumed to have a unique defining equation A(x) , P .

Definition 3.9 The congruence relation ≡ on bπ-calculus processes is defined as the

least congruence satisfying alpha conversion, the commutative monoidal laws with
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respect to both (
∣
∣ ,0) and (+,0) and the following axioms:

(ν x)P
∣
∣ Q ≡ (ν x)(P

∣
∣ Q) if x /∈ fn(Q)

(ν x)P ≡ P if x /∈ fn(P )

A〈b̃〉 ≡ P{b̃/ã} if A(ã)
def
= P

where the function fn is defined as

fn(τ)
def
= ∅ fn(x(y))

def
= {x}

fn(x〈y〉)
def
= {x, y} fn(0)

def
= ∅

fn(π.P )
def
= fn(π) ∪ fn(P ) fn(

∑

i∈I πi.Pi)
def
=

⋃

i fn(πi.Pi)

fn(P
∣
∣ Q)

def
= fn(P ) ∪ fn(Q) fn(A〈b̃〉)

def
= {b̃}

fn((ν x)P )
def
= fn(P ) \ {x}

The definition of barb for the bπ-calculus follows, the same as for the π-calculus.

Definition 3.10 Let P be a bπ-calculus process. P exhibits barb π, written P ↓ π,

iff

• P ≡ (ν y)(x(z).Q+R
∣
∣ S), with π = x, x /∈ y or

• P ≡ (ν y)(x〈z〉.Q+R
∣
∣ S), with π = x, x /∈ y.

Definition 3.11 bπ-calculus semantics is given in terms of the reduction system

described by the following rules:

R ↓r µ
∏

i(µ(yi).Pi +Mi)
∣
∣ (µ〈z〉.Q+N)

∣
∣ R →

∏

i Pi{z/yi}
∣
∣ Q

∣
∣ R

τ.P → P

P → P ′

(ν x)P → (ν x)P ′

P ≡ Q P → P ′ P ′ ≡ Q′

Q → Q′

where
∏

represents the parallel composition of zero or more processes,

n∏

i=1

Pi = P1

∣
∣ · · ·

∣
∣ Pn

for some n ≥ 0.
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Proposition 3.3 The bπ-calculus is Turing-complete.

Proof: The encoding of a RAM into the bπ-calculus is the same as given for CCS,

in table 3.2. 2

The encoding does not exploit the broadcast capabilities of the bπ-calculus, instead

it carefully forces every output to be received by at most one process. Furthermore,

since the one-to-many communication of the bπ-calculus allows the output message

to be lost if some other process is not listening on the right channel at the right

time (in contrast with the binary synchronisation of the π-calculus, which requires

a previous handshake between the involved processes), such encoding assures the

correctness of the computation by forcing each input to be exhibited before some

output may be performed on the corresponding channel.

3.1.4 The FAP language

As previously outlined, the FAP language is a slight variant of a minimal CCSsg

fragment, that is CCS extended with static, global priority [33]: by keeping FAP

minimal the expressive power of global priority can be better isolated. Only two op-

erators are present in FAP: parallel composition and prefix. The prefix operation is

allowed only after input actions, so that the output can be considered asynchronous

as for the asynchronous π-calculus (see e.g. [76]). Output actions are characterised

by two priority levels, meaning that high priority output synchronisations are guar-

anteed to happen before low priority ones. As an example, consider the system

S , a.P
∣
∣ a.Q

∣
∣ b.R

∣
∣ a

∣
∣ a

∣
∣ b

The processes a, a, b model messages which must be delivered to the processes lis-

tening on the appropriate channels: The message a has higher priority with respect

to any other message in S and hence must be delivered fist. Consequently the only

possible transitions of S are

S → P
∣
∣ a.Q

∣
∣ b.R

∣
∣ a

∣
∣ b S → a.P

∣
∣ Q

∣
∣ b.R

∣
∣ a

∣
∣ b
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where the process receiving the message is nondeterministically chosen. After this

transition, the low-priority messages a and b can finally be delivered. In order to

simplify the notation, inputs lack any denotation of priority, but the results presented

here are completely independent of this design choice.

Definition 3.12 Let N be a set of names on a finite alphabet, x, . . . ∈ N . FAP

syntax is defined in terms of the following grammar

P ::= 0

∣
∣
∣ x.P

∣
∣
∣ x

∣
∣
∣ x

∣
∣
∣ P

∣
∣ Q

In order to keep it simple as well, we define FAP semantics in terms of a reduction

system in the style of [65].

Definition 3.13 Structural congruence for FAP is the congruence ≡ generated by

the following equations:

P
∣
∣ 0 ≡ P, P

∣
∣ Q ≡ Q

∣
∣ P, P

∣
∣ (Q

∣
∣ R) ≡ (P

∣
∣ Q)

∣
∣ R

Definition 3.14 FAP operational semantics is given in terms of the reduction sys-

tem described by the following rules:

x.P
∣
∣ x 7→ P x.P

∣
∣ x ։ P

P ։ P ′

P
∣
∣ Q ։ P ′

∣
∣ Q

P 7→ P ′ P
∣
∣ Q ։/ R

P
∣
∣ Q 7→ P ′

∣
∣ Q

P ≡ Q P 7→ P ′ P ′ ≡ Q′

Q 7→ Q′

P ≡ Q P ։ P ′ P ′ ≡ Q′

Q ։ Q′

We say that P → Q ⇐⇒ P 7→ Q ∨ P ։ Q.

Definition 3.15 For any process in FAP, the function fn is defined as

fn(0) = ∅ fn(x) = {x} fn(x.P ) = {x} ∪ fn(P )

fn(x) = {x} fn(P
∣
∣ Q) = fn(P ) ∪ fn(Q)

As for previous languages, we define the notion of barb.
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Definition 3.16 A FAP process P exhibits barb α, written as P ↓ α, iff

• P ≡ x.Q
∣
∣ R, α = x, or

• P ≡ x
∣
∣ R, α = x, or

• P ≡ x
∣
∣ R, α = x.

3.2 Encodings

In order to provide the results previously outlined, we need now to formalise the

encoding conditions relevant for the expressiveness separation between languages.

As extensively discussed in [100], there is no standard set of requirements that

an encoding should obey. The kind of results we are going to provide suggests that

such requirements should be very weak, in order to increase as much as possible

the strength of the separation between the calculi considered here. For this reason

we closely follow the approach adopted in [82], where the semantics of programs

is evaluated exclusively in terms of observations over maximal computations. They

consist in detecting a subset of the actions that a process can execute during its

overall computations, disregarding the order in which they are executed (or, more

precisely, the order in which they are exhibited). The properties based on this notion

of observation are particularly weak if compared to the set of requirements of Sect.

5.1.2, where any suitable encoding must necessarily preserve the order of execution

of the encoded processes.

We first formalise the notion of observables of a program computation, in the

style of [82].

Definition 3.17 Let L be a process language and processes P, P0, . . . ∈ L. A com-

putation C of P is a finite or infinite sequence P = P0 → P1 → · · · . C is maximal

if it cannot be extended.
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A computation of a process P is the sequence of states P can reach during its

execution. Each process P may present many different computations due to the

nondeterminism intrinsic in concurrent calculi.

Definition 3.18 Let L be a process language with names in N and processes

P0, . . . , .Pi ∈ L. Let C be a computation P0 → · · · → Pi · · · . Given a set of intended

observables Obs ⊆ N , the observables of C are Obs(C) = {x ∈ Obs : ∃i Pi ↓ x}.

The observables of a computation C are the set of all the external interactions the

process may perform in the states reached during the computation.

Some of the separation results are based on the topology of the network of pro-

cesses: for example, the encoding impossibility of the π-calculus into value-passing

CCS [76] is based on the hypothesis that the encoding does not increase the connec-

tion of the network, that is all the processes which are independent (not sharing free

names) in the source language must remain independent after the encoding. The

same criterion will be necessary to separate FAP and CPG.

Definition 3.19 Let L be a process language. Two processes P,Q ∈ L are inde-

pendent if they do not share any free names, that is fn(P ) ∩ fn(Q) = ∅.

We now define the conditions an encoding may preserve, in the style of [82].

Definition 3.20 Let L,L′ be process languages. An encoding
[[
·
]]

:
L→ L′ is

1. observation-respecting if ∀P ∈ L,

• for every maximal computation C of P there exists a maximal computation

C′ of
[[
P

]]
such that Obs(C) = Obs(C′);

• for every maximal computation C of
[[
P

]]
there exists a maximal com-

putation C′ of P such that Obs(C) = Obs(C′);

2. weakly-observation-respecting if ∀P ∈ L,

• for every maximal computation C of P there exists a maximal computation

C′ of
[[
P

]]
such that Obs(C) = Obs(C′);
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• for every maximal computation C of
[[
P

]]
there exists a maximal com-

putation C′ of P such that Obs(C) ⊆ Obs(C′);

3. distribution-preserving if ∀P1, P2 ∈ L,
[[
P1

∣
∣ P2

]]
=

[[
P1

]] ∣
∣

[[
P2

]]
;

4. renaming-preserving if for any permutation σ of the source names in L there

exists a permutation θ in L′ such that
[[
σ(P )

]]
= θ(

[[
P

]]
) and the permuta-

tions are compatible on observables, that is σ|Obs = θ|Obs;

5. independence-preserving if ∀P,Q ∈ L, if P and Q are independent then
[[
P

]]

and
[[
Q

]]
are also independent.

The observation-respecting property is the minimal requirement that any reason-

able encoding should preserve: it ensures that some intended observable behaviour

is preserved by the translation. The weak variant of this condition admits encodings

which introduce divergence or failure deriving from livelocks or deadlocks. Under

certain conditions, like fairness or other hypotheses on scheduling or execution, the

introduction of divergence or failure by the encoding may be tolerated [72, 77] be-

cause it would be guaranteed not (or be very unlikely) to happen anyway.

The distribution-preserving is a very important feature of an encoding in a con-

current framework: it implies its compositionality and above all it guarantees that

the degree of parallelism of the translated system does not decrease.

The renaming-preserving property states that the encoding should not introduce

asymmetries in the system, essential condition to preserve when impossibility results

on problems such as the leader election are completely based on the symmetric

topology of the network.

Independence-preserving represents the property of not increasing the connection

of the network.

According to [76, 82], a distribution- and renaming-preserving encoding is called

uniform, and reasonable if it also preserves the intended observables over maximal

computations. We call sincere a weakly-observation-respecting encoding, which is

complete but only weakly correct, in the meaning that it admits divergence or

premature termination.
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3.2.1 The leader election problem

An electoral system represents the situation of a bunch of processes (modelling for

example a set of workstations in a network) aiming at reaching a common agreement,

i.e. deciding which one of them (and no other) is the leader. The modelling of

the election problem in process algebras requires that the system composed of the

network of processes will sooner or later signal unequivocally the result of the election

on some channels ωi, which become consequently the observables of interest on the

computations of the system.

Definition 3.21 Let L be a process language, and processes P1, . . . , Pk ∈ L. A

network Net of size k, with k ≥ 1, is a system Net = P1

∣
∣ · · ·

∣
∣ Pk.

Definition 3.22 A network Net of size k is an electoral system if for every maximal

computation C of Net ∃i ≤ k : Obs(C) = {ωi}, where Obs = {ωi : i ∈ N}.

In order to keep notation simple, the definition of electoral system reflects the design

choices kept in [76, 42, 81] which are based on the hypothesis that the system

will never perform external interactions on channels which are not intended to be

observable. As in [81, 82], the winner process (the leader) is supposed to signal the

outcome of the election, while all the other processes simply do nothing.

Definition 3.23 Given a network of size k, with Net = P1

∣
∣ · · ·

∣
∣ Pk, two nodes

Pi and Pj (with i 6= j) are neighbours (or connected) if they are not independent.

Definition 3.24 A network Net of size k, with Net = P1

∣
∣ · · ·

∣
∣ Pk, is connected

if one of the following conditions holds:

• k = 1

• ∃i, j ≤ k, with i 6= j, such that Pi and Pj are neighbours and Net′, with

Net′ = P1

∣
∣ · · ·

∣
∣ Pi−1

∣
∣ Pi+1

∣
∣ · · ·

∣
∣ Pk

is also connected.
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In a connected network Net, each node is connected at least to another node, and

there exists no partition of Net into two subnetworks such that there are no cross

connections between processes from one subnetwork to the other. This condition

must hold when some information needs to be propagated between all the nodes.

Definition 3.25 A network Net of size k, with Net = P1

∣
∣ · · ·

∣
∣ Pk, is fully

connected if Pi and Pj are not independent, ∀i, j ≤ k.

In this case each node may interact directly with any other node in the network.

3.2.2 The last man standing problem

The last man standing represents a very simple situation where a bunch of n pro-

cesses in a fully connected network must realise if n = 1 or n > 1 in a distributed

way. The possibility or impossibility to solve the LMS problem is based on the idea

that in a given language L a process P may or may not know if another process Q

is ready to perform some intended action on a given channel. Usually the only way

P has to know the presence of Q is to try a synchronisation on it. Since the input

(and often also the output) is blocking, P results blocked if the condition does not

hold, or it follows another computation without knowledge of the presence of Q.

The definition of LMS system follows.

Definition 3.26 A network Netk of size k is a LMS system if for every maximal

computation C of Netk

• Obs(C) = {y} if k = 1,

• Obs(C) = {n} if k > 1,

where Obs = {y, n}.

3.3 Separation results

The separation results previously outlined follow. We first give those based on the

leader election, and then those based on the LMS problem.
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3.3.1 Leader-election-based separation results

The bπ-calculus and CPG were proved capable of solving the leader election in a

fully connected network without knowledge of the number of processes [42, 81]. Here

we show that in FAP this is possible in any (not only a fully) connected network.

Theorem 3.1 Let P1, . . . , Pk be FAP processes, Net = P1

∣
∣ · · ·

∣
∣ Pk. Let

Pn = mn

∣
∣ sn

∣
∣ mn.sn.(ωn

∣
∣ dn1

∣
∣ · · ·

∣
∣ dnzn

)
∣
∣ dn1.(sn

∣
∣ dn1

∣
∣ · · ·

∣
∣ dnzn

)

...
∣
∣ dnzn

.(sn
∣
∣ dn1

∣
∣ · · ·

∣
∣ dnzn

)

where zn is the number of neighbours of Pn, with 1 ≤ n ≤ k and Pi, Ph are neighbours

iff ∃j, l : dij = dhl, with ωi, sj,mh distinct and ωi 6= sj 6= mh 6= dpq,∀i, j, h, p, q. If

Net is connected, then Net is an electoral system.

Proof: For k = 1, any maximal computation of Net = P1 is of the form

P1 ≡ m1

∣
∣ s1

∣
∣ m1.s1.ω1 7→ s1

∣
∣ s1.ω1 ։ ω1

hence Net is an electoral system. In fact the first reduction is only possible by

a synchronisation on channel m1, while the second is a prioritised reduction on

channel s1. For k ≥ 1,Net = P1

∣
∣ · · ·

∣
∣ Pk, the first (low-priority) reduction can

happen only on one of the mn channels. Suppose – without loss of generality – that

it happens on channel m1. Then the only possible (high-priority) reduction is on

channel s1, and the system evolves as follows

Net =P1

∣
∣ P2

∣
∣ · · ·

∣
∣ Pk 7→

Q1

∣
∣ P2

∣
∣ · · ·

∣
∣ Pk ։

Q2

∣
∣ P2

∣
∣ · · ·

∣
∣ Pk = Net2

with

Q1 = sn
∣
∣ s1.(ω1

∣
∣ d11

∣
∣ · · ·

∣
∣ d1z1)

∣
∣ d11.(s1

∣
∣ d11

∣
∣ · · ·

∣
∣ d1z1)

...
∣
∣ d1z1 .(s1

∣
∣ d11

∣
∣ · · ·

∣
∣ d1z1)
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and

Q2 = ω1

∣
∣ d11

∣
∣ · · ·

∣
∣ d1z1

∣
∣ d11.(s1

∣
∣ d11

∣
∣ · · ·

∣
∣ d1z1)

...
∣
∣ d1z1 .(s1

∣
∣ d11

∣
∣ · · ·

∣
∣ d1z1)

Like in the previous case, after the first two reductions the system exhibits already

the winner. We must verify that for any subsequent computation, no other barb on

ωi, i 6= 1 is exhibited. To prove this, we must ensure that every input on si, i 6= 1 is

exhibited by a sequence of high-priority reductions before some other low-priority

reduction on any of the channels mi, i 6= 1 may occur: in this way any high-priority

message si, i 6= 1 would be extinguished and none of the remaining ωi channels may

be exhibited.

We first remark that for every reduction P → P ′ on channels dnj, the number of

• high-priority outputs on channel dnj in P and P ′ is the same (if dnj 6= dnh

∀n, j, h, otherwise it also increases),

• inputs on channel dnj decreases,

• inputs on channel si for some i increases,

• high-priority outputs on channels dn′h, with (n′, h) 6= (n, j) may (only) grow.

For each neighbour Pi of P1, there exists some j, h such that d1j = dih. This means

that in Net2, for each neighbour Pi of Q2, there is an output dih ready to react with

the corresponding input on dih and to disclose an input on si. After each reduction

on some d1j the number of inputs on s1 increases, but they can grow only up to

a maximum z1. This means that after at most z1 + 1 (high-priority) reductions,

an input on si for some i, Pi neighbour of Q2, is exhibited. In turn, after at most

another zi+1+1 reductions (we must take into account the reduction on si) another

input on sj, Pj neighbour of Pi or Q2, is exhibited, and so on. Since the network

is connected, after at most n +
∑

n∈N zn high-priority reductions, Net2 leads to a
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system where every sn is exhibited, thanks to the fact that the number of high-

priority outputs dnj never decreases, so that any input on dnj can be elided. After

this chain of high-priority reductions, a sequence of k− 1 low-priority reductions on

channels mi, i 6= 1 occur, then (because of the lack of any output si) the computation

ends before any other ωi is exhibited. 2

The next lemma [82] is used to prove that in π-calculus the above results cannot

be obtained without knowledge of the number of processes in the electoral system

and also that the LMS problem is undecidable. As noted in [82], it would also

hold for any language having comparable semantics of the parallel operator, such as

Mobile Ambients [23].

Lemma 3.1 For any π-calculus processes P1, P2, if Pi has a maximal computation

with observables Oi(i = 1, 2) then P1

∣
∣ P2 has a maximal computation with observ-

ables O such that O1 ∪O2 ⊆ O.

Next we state a similar but weaker result for the bπ-calculus, which is also needed

for the separation from FAP and CPG based on the LMS problem.

Lemma 3.2 For any bπ-calculus processes P1, P2, if Pi has a maximal computation

with observables Oi(i = 1, 2) then P1

∣
∣ P2 has two maximal computations C1, C2 (not

necessarily distinct) with respective observables O′
1, O

′
2 such that Oi ⊆ O′

i.

Proof: Let

Pi → Pi2 → · · · → Pin → · · ·

be the two maximal computations (empty, finite or infinite) of P1 and P2, with

observables O1 and O2 respectively. If P1 9 and P2 9 (empty computations) then

the sets of observables O1, O2 are trivially included in the observables of P1

∣
∣ P2.

If P1 → P12, then

P1 ≡ (ν a)(π.Q
∣
∣ R) with π = τ or π = x〈y〉

and

P1

∣
∣ P2 → P12

∣
∣ P ′

2

where P ′
2 may be the same as P2 if (at least) one of the following conditions holds:
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• π = τ ;

• x ∈ a;

• P2 ↓r x.

In the same way, if P12 → P13 then

P12

∣
∣ P ′

2 → P13

∣
∣ P ′′

2

and so on. By defining

C1 = P1

∣
∣ P2 → P12

∣
∣ P ′

2 → P13

∣
∣ P ′′

2 → · · ·

we have that O1 ⊆ O′
1. Symmetrically, by defining

C2 = P1

∣
∣ P2 → P ′

1

∣
∣ P22 → P ′′

1

∣
∣ P23 → · · ·

we have O2 ⊆ O′
2. 2

The next theorem follows the idea in [42, 81]. As discussed for the definition of

sincere semantics, here the condition on the preserved observables is weaker than

those considered in [42, 81] but it is possible to relax them as well.

Theorem 3.2 There is no distribution-preserving and weakly-observation-respect-

ing encoding of FAP in the π-calculus.

Proof: Consider Pn = mn

∣
∣ sn

∣
∣ mn.sn.(ωn

∣
∣ d)

∣
∣ d.(sn

∣
∣ d)

for n = 1, 2. By Theorem 3.1, Net1 = P1, Net2 = P2 and Net12 = P1

∣
∣ P2 are

electoral systems. Let
[[
·
]]

be a weakly-observation-respecting and distribution-

preserving encoding of FAP into the π-calculus. Hence
[[
P1

]]
has a maximal com-

putation C1 with observables Obs(C1) = ω1, because of the weakly-observation-

respecting condition. But also
[[
P2

]]
has a maximal computation C2 with observ-

ables Obs(C2) = ω2.

So we have, for the distribution-preserving property,

[[
Net12

]]
=

[[
P1

∣
∣ P2

]]
=

[[
P1

]] ∣
∣

[[
P2

]]
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By Lemma 3.1,
[[

Net12
]]

has a maximal computation C12 with observables

{ω1, ω2} ⊆ Obs(C12), not included in the set of observables of any maximal compu-

tation of Net12, which contradicts
[[
·
]]

being weakly-observation-preserving. 2

In order to formalise the separation between FAP and CPG, the definitions

pertaining to symmetric configurations of electoral systems are reported from [82].

As previously outlined in Sect. 3.2.1, in order to keep notation simple we omit

restrictions and the restriction-preserving conditions present in [82].

Definition 3.27 Let L be a process language with names in N . A permutation is

a bijection σ : N → N such that σ preserves the distinction between observable

and non-observable names, that is a ∈ Obs ⇐⇒ σ(a) ∈ Obs. Any permutation σ

induces a mapping on processes: P is equal to σ(P ), except that any name a of P

is mapped on σ(a) in σ(P ). Given Obs = {ωi : i ∈ N}, a permutation σ induces a

bijection σ̂ : N→ N defined as σ̂(i) = j ⇐⇒ σ(ωi) = ωj, thus σ(ωi) = ωσ̂(i).

Definition 3.28 Let Net = P1

∣
∣ . . .

∣
∣ Pk be a network of size k. An automor-

phism on Net is a permutation σ such that σ̂|{1,...,k} is a bijection.

Definition 3.29 Let σ be an automorphism on a network of size k. For any i ∈

{1, . . . , k} the orbit Oσ̂(i) generated by σ̂ is defined as

Oσ̂(i) = {i, σ̂(i), σ̂2(i), . . . , σ̂(h−1)(i)}

where σ̂j represents the composition of σ̂ with itself j times, and h is least such that

σ̂h(i) = i. If every orbit has the same size, then σ is well balanced.

Definition 3.30 A network Net = P1

∣
∣ . . .

∣
∣ Pk is symmetric with respect to an

automorphism σ iff ∀i = 1, . . . , k Pσ̂(i) = σ(Pi). Net is symmetric if it is symmetric

with respect to some automorphism with a single orbit (of size k).

Definition 3.31 A ring is a network Net = P1

∣
∣ . . .

∣
∣ Pk which has a single-

orbit automorphism σ such that ∀i, j < k, if fn(Pi) ∩ fn(Pj) 6= ∅ then i = j or

σ̂(i) = j or σ̂(j) = i. A ring is symmetric if it is symmetric with respect to such an

automorphism σ.
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The following lemma is also stated in [82].

Lemma 3.3 Let L,L′ be process languages. If
[[
·
]]

: L → L′ is a uniform,

observation-respecting and independence-preserving encoding, then for any electoral

system Net which is a symmetric ring of size k,
[[

Net
]]

is also a symmetric ring of

size k which is an electoral system.

Corollary 3.1 For any k ≥ 1, there is a symmetric ring of size k in FAP which is

an electoral system.

Proof: It is sufficient to choose a connected symmetric ring and apply Theorem 3.1.

2

The following theorem, reported from [82], implies the non-encodability of π-

calculus into CPG, but also of FAP into CPG.

Theorem 3.3 For any composite non-prime k ≥ 6, if Net is a symmetric ring of

size k in CPG then Net is not an electoral system.

Theorem 3.4 There is no uniform, observation-respecting and independence-preserving

encoding of FAP into CPG.

Proof: By Lemma 3.3, Corollary 3.1 and Theorem 3.3. 2

It is worth remarking that while the separation between π-calculus and CPG

derives from the capability of communicating new names typical of the π-calculus,

the separation between FAP and CPG is a strict consequence of the different scope

of priority in the two languages. This can be straightforwardly explained by the

simple configuration of Fig. 3.2, where a ring of size 6 is ideally represented both

in FAP and CPG. As stated by Corollary 3.1 and Theorem 3.3, leader election is

possible in the first system but not in the second one. In fact, the preemptive effect

of global priority is not circumscribed in any way so that the production of a single

high-priority output in FAP freezes all the processes trying to perform low-priority

reductions. This effect can be exploited for electing the leader in the ring of Fig.

3.2(a), where the processes P1, . . . , P6 are in a low-priority state (i.e. they are ready
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(a)

(b)

Figure 3.2: Expressiveness of global (a) versus local (b) priority by leader election

in a symmetric ring of size 6. The execution of high-priority reductions in languages

characterised by global priority such as FAP (a) implies the freezing of all the low

priority reductions in the system, regardless of the scope of the channel over they

occur. Conversely, languages such as CPG circumscribe the preemptive effect to the

neighbour processes. This difference allows a partially distributed implementation

of this kind of priority, in contrast with the complete centralisation required for the

global variant.

to perform just low-priority reductions). The first process (e.g. P1) which changes

its internal state can immediately become the leader by producing a high-priority

output which freezes all the other processes and propagates a chain of high-priority

reductions in order to denote them as non-leader processes. The same mechanism

cannot be exploited in CPG, because the preemptive effect is bound to the scope

of restricted names, hence only the neighbour processes can be frozen in this way:

thanks to binary synchronisation the process P1 in Fig. 3.2(b) may denote process P2

as non-leader and freeze P3, P6 (neighbours of P2 and P1 respectively) by exploiting

local priority. However, the processes P4, P5 may still attempt the same local leader
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election since they cannot detect in any way the state changes of the rest of the

system, so that the symmetry of the ring is restored and may be never eventually

broken.

The price for the superior expressiveness of global priority may be revealed in a

distributed implementation by the overhead introduced for the additional synchro-

nisations needed in order to freeze all the low-priority processes before the execution

of a high-priority reduction. A unique, central coordinator (represented by C in Fig.

3.2(a)) should be introduced to achieve this result, while in CPG the localised effect

of priority would allow the partial distribution of such coordination.

3.3.2 LMS-based separation results

In this section the separation results based on the last man standing problem are

formalised. First we show that both in FAP and CPG the LMS can be solved, and

then from this expressive capability we derive the impossibility of encoding FAP

or CPG into π-calculus or bπ-calculus under distribution and weak preservation of

observables hypotheses.

Lemma 3.4 Let P be the following FAP process:

P = m
∣
∣ s

∣
∣ q

∣
∣ k.(s

∣
∣ q

∣
∣ k)

∣
∣ m.s.(s.q.(k

∣
∣ n)

∣
∣ l

∣
∣ l.q.y)

Then Netk = P
∣
∣ · · ·

∣
∣ P

︸ ︷︷ ︸

k

is a LMS system of size k, ∀k ≥ 1.

Proof: For k = 1, Net1 = P , Net1 has only one maximal computation C

P 7→ P1 = s
∣
∣ q

∣
∣ k.(s

∣
∣ q

∣
∣ k)

∣
∣ s.(s.q.(k

∣
∣ n)

∣
∣ l

∣
∣ l.q.y) ։

P2 = q
∣
∣ k.(s

∣
∣ q

∣
∣ k)

∣
∣ s.q.(k

∣
∣ n)

∣
∣ l

∣
∣ l.q.y 7→

P3 = q
∣
∣ k.(s

∣
∣ q

∣
∣ k)

∣
∣ s.q.(k

∣
∣ n)

∣
∣ q.y ։

P4 = k.(s
∣
∣ q

∣
∣ k)

∣
∣ s.q.(k

∣
∣ n)

∣
∣ y

where P4 does not allow any further transition and Obs(C) = {y}, as required by a

LMS system of size 1.
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For k = 2, Net2 = P
∣
∣ P , Net2 has several possible computations C of the same

length leading to the same final state

Q9 = s
∣
∣ n

∣
∣ q.y

∣
∣ s

∣
∣ q

∣
∣ k

∣
∣ D

where

D = s.(s.q.(k
∣
∣ n)

∣
∣ l

∣
∣ l.q.y)

One of these computations is

Net2 = P
∣
∣ P 7→ P1

∣
∣ P ։ P2

∣
∣ P ։

Q3 = q
∣
∣ k.(s

∣
∣ q

∣
∣ k)

∣
∣ q.(k

∣
∣ n)

∣
∣ l

∣
∣ l.q.y

∣
∣

m
∣
∣ q

∣
∣ k.(s

∣
∣ q

∣
∣ k)

∣
∣ m.D ։

Q4 = k.(s
∣
∣ q

∣
∣ k)

∣
∣ k

∣
∣ n

∣
∣ l

∣
∣ l.q.y

∣
∣

m
∣
∣ q

∣
∣ k.(s

∣
∣ q

∣
∣ k)

∣
∣ m.D ։

Q5 = s
∣
∣ q

∣
∣ k

∣
∣ n

∣
∣ l

∣
∣ l.q.y

∣
∣

m
∣
∣ q

∣
∣ k.(s

∣
∣ q

∣
∣ k)

∣
∣ m.D ։

Q6 = s
∣
∣ q

∣
∣ n

∣
∣ l

∣
∣ l.q.y

∣
∣

m
∣
∣ q

∣
∣ s

∣
∣ q

∣
∣ k

∣
∣ m.D ։

Q7 = s
∣
∣ n

∣
∣ l

∣
∣ l.q.y

∣
∣

m
∣
∣ s

∣
∣ q

∣
∣ k

∣
∣ m.D 7→

Q8 = s
∣
∣ n

∣
∣ q.y

∣
∣

m
∣
∣ s

∣
∣ q

∣
∣ k

∣
∣ m.D 7→

Q9 = s
∣
∣ n

∣
∣ q.y

∣
∣

s
∣
∣ q

∣
∣ k

∣
∣ D

We have that Q9 does not allow any further reduction. For each computation C

leading to Q9, Obs(C) = {n} ∀C, as required by a LMS system of size 2. In fact,

while Q9 ↓ n, any barb y is guarded by two inputs on channels l and q but each

high-priority output q is consumed before any low-priority output l may react.

For k ≥ 3, Netk has k2 possible initial (low-priority) reductions on channel m

which lead to congruent states. Like for Net2 the first reductions happen respectively
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on channels m, s, s, q:

Netk 7→ P1

∣
∣ P

∣
∣ · · ·

∣
∣ P

︸ ︷︷ ︸

k−1

։ · · · ։ Q4

∣
∣ P

∣
∣ · · ·

∣
∣ P

︸ ︷︷ ︸

k−2

= Netk4

For k ≥ 3, a chain of high-priority reductions happen on channels k, s, q until

every input on k is consumed. After this chain of high-priority reductions every

output s, q is consumed and no other observables {y, n} can be exhibited. After

other k low-priority transitions (one on l and k − 1 on m) no further reduction is

possible. Since for every computation no barb on y is exhibited, Netk is a LMS

system. 2

Lemma 3.5 Let P be a CPG process,

P = a : b.a
∣
∣ b.(b : τ.y

∣
∣ z : b.(b

∣
∣ n

∣
∣ z))

Then Netk = P
∣
∣ · · ·

∣
∣ P

︸ ︷︷ ︸

k

is a LMS system of size k, ∀k ≥ 1.

Proof: For k = 1, Net1 = P , Net1 has only one maximal computation C

P → P1 = a
∣
∣ b : τ.y

∣
∣ z : b.(b

∣
∣ n

∣
∣ z)→P2 = a

∣
∣ y

∣
∣ z : b.(b

∣
∣ n

∣
∣ z)

where P2 does not allow any further transition and Obs(C) = {y}, as required by a

LMS system of size 1.

For k = 2, Net2 = P
∣
∣ P , Net2 has two possible computations C, C′ of length 2

leading to states congruent to Q2:

Net2 = P
∣
∣ P → P1

∣
∣ P →

Q2 = a
∣
∣ b : τ.y

∣
∣ b

∣
∣ n

∣
∣ z

∣
∣ a : b.a

∣
∣ b : τ.y

∣
∣ z : b.(b

∣
∣ n

∣
∣ z)

Q2 is a final state and for both computations Obs(C) = Obs(C ′) = {n} as required

by a LMS system of size 2.

For k ≥ 3, Netk has k · (k−1) possible computations of length 2 leading to states

congruent to Netk2:

Netk → P1

∣
∣ P

∣
∣ · · ·

∣
∣ P

︸ ︷︷ ︸

k−1

→ Q2

∣
∣ P

∣
∣ · · ·

∣
∣ P

︸ ︷︷ ︸

k−2

= Netk2
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Netk2 is a final state and for any computation C of Netk, Obs(C) = {n} as required

for a LMS system of size k. 2

The following is an alternative way with respect to Theorem 3.2 to prove the

separation between FAP and π-calculus and acts as a template for the next theorems.

Theorem 3.5 There is no distribution-preserving and weakly-observation-respect-

ing encoding
[[
·
]]

of FAP into the π-calculus.

Proof: Suppose
[[
·
]]

is distribution-preserving and weakly-observation-respect-

ing. By Lemma 3.4 ∃P : Netk is a LMS system for any k ≥ 1, where Netk =

P
∣
∣ . . .

∣
∣ P . By the weakly-observation-respecting condition,

[[
Net1

]]
has a

computation C1 with observables Obs(C1) = {y}. By the distribution-preserving

condition

[[
Netk

]]
=

[[
P

∣
∣ · · ·

∣
∣ P

]]
=

[[
P

]] ∣
∣ · · ·

∣
∣

[[
P

]]
=

[[
Net1

]] ∣
∣ · · ·

∣
∣

[[
Net1

]]

By Lemma 3.1 then there exists a maximal computation Ck of
[[

Netk
]]

such that

Obs(C1) = {y} ⊆ Obs(Ck), while no computation of Netk contains observable y for

k ≥ 2, which contradicts the weakly-observation-respecting property of the encoding

function
[[
·
]]
. 2

Theorem 3.6 There is no distribution-preserving and weakly-observation-respect-

ing encoding of CPG in the π-calculus.

Proof: By Lemma 3.5 exactly as for Theorem 3.5. 2

Theorem 3.7 There is no distribution-preserving and weakly-observation-respect-

ing encoding of FAP into the bπ-calculus.

Proof: By Lemmas 3.2 and 3.4, exactly as for Theorem 3.5. 2

Theorem 3.8 There is no distribution-preserving and weakly-observation-respect-

ing encoding of CPG into the bπ-calculus.

Proof: By Lemmas 3.2 and 3.5, exactly as for Theorem 3.5. 2
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3.4 Discussion

We have considered FAP, a finite fragment of CCS extended with global priority,

and we have proved, by means of leader-election-based separation results, that it

is not possible to encode it in CPG under uniformity and independence-preserving

conditions on the encoding, thus providing the first expressiveness separation result

between global and local priority within a process algebra framework. We have

then proved that FAP cannot be distributively translated into the π-calculus even

if allowing partially correct implementations, i.e. encodings which may introduce

divergence in computations or also premature termination caused by deadlock.

We have then analysed another setting, called the last man standing (LMS) prob-

lem, which allows us to considerably strengthen the separation between prioritised

(with both global or local priority) languages and non prioritised ones, by showing

that even if we equip the language with broadcast-based primitives like the bπ-

calculus, the expressiveness of priority cannot be obtained under parallel-preserving

conditions.

In other words we have shown that, within the context of the process algebras

considered here, it is not possible to have a distribution-preserving encoding of ei-

ther global or local priority in non-prioritised languages even if we admit asymmetric

translations or divergence/failure in the computation as a consequence of livelocks

or deadlocks. This impossibility result does not depend on the capability of com-

munication of names or values, synchrony or asynchrony of the output, scope extru-

sion, choice on the available input/outputs, recursion or replication, point-to-point

or broadcast communication/synchronisation type, nor on Turing-completeness: in

fact the non-encodability of FAP into π-calculus, bπ-calculus and CPG holds even if

FAP is the one not Turing-complete amongst the calculi considered here and also the

other non-encodability results would still hold by considering finite variants of the

respective calculi. Therefore, such impossibility depends only on the power of the

instantaneous preemption characteristic of the prioritised languages analysed here.

As a consequence we can see that it is not possible to make any purely distributed
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implementation of such kinds of priority on top of standard process calculi even if

admitting good or randomised encodings like those considered in [72, 77] for the

implementation of the choice operator. The strength of the separation suggests also

that any encoding trying to preserve some relaxed condition on the distribution may

be affected by severe performance issues due to the further synchronisations needed

to preserve the constraint of instantaneous preemption.
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Chapter 4

The π@ Calculus

In this chapter we present the π@ language — a simple, conservative and pow-

erful extension of the π-calculus, with two new basic mechanisms: polyadic syn-

chronisation and prioritised communication. In particular, polyadic synchronisation

[18] allows the modeling of compartments in a natural way, but still in the clas-

sic message-passing flavour typical of the π-calculus; priority instead is extremely

useful for implementing transactional mechanisms that are essential when dealing

with compartment operations (e.g., dissolution of a membrane) that involve many

components that are to be updated as a result. Its simple syntax and semantics,

very close to π-calculus, allow a natural extension of many properties and results

already stated for standard π-calculus, thus facilitating π@ theoretical analysis. On

the other hand, it is so powerful that it can be used with a pivotal role for compar-

ing the various compartment-based formalisms. In this sense, we claim that π@ is

the right compromise between the simple and elegant theory of π-calculus and the

biological needs for modeling compartmentalised behavior. In order to match these

expectations even more strikingly, we define a simpler sublanguage, called core-π@,

where polyadic synchronisation is limited to its simplest form (two names at most

are used in a channel name) and priority levels can only be two, and we show its

great flexibility in modelling biological systems.

The chapter is structured as follows. Section 4.1 introduces polyadic synchro-

nisation and Sect. 4.2 a form of prioritised communication, which constitute the
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basic ingredients added to the π-calculus to obtain the language π@. This language

is described in Section 4.3, with its syntax and reduction semantics. Moreover, the

same biological case-study of the insulin secretion process introduced in Chap. 2

is now modeled in π@, showing that the new representation is much more faithful.

Section 4.3.2 ends with the presentation of core-π@, the minimal subcalculus of π@

that we claim is powerful enough to model complex biological systems.

4.1 Polyadic Synchronisation

In the π-calculus, channels and transmitted names are usually synonyms. Polyadic

synchronisation [18] consists in giving structure to channels: each channel is com-

posed of one or more names and identified by all of them in relation to the exact

sequence of their occurrence. For example, an email address is usually written in

the form username@domain, where username and domain are two strings – two

names – both necessary to identify the given email address. Moreover, their order

is crucial since domain@username specifies another, likely nonexistent, address.

Similarly, polyadic synchronisation (in its simplest form) provides the capability of

writing channels as name1@name2. In other words, a channel is indicated by a vec-

tor of two names (name1, name2) and communication between two processes may

happen only if they are pursuing a synchronisation along channels denoted by the

same names.

Apart from this, communication happens in the same way as in the π-calculus.

For example, the transition

polyadic@comm〈d〉.P
∣
∣ polyadic@comm(x).Q → P

∣
∣ Q{d/x}

produces the same renaming effect of a π-calculus transition, but with one difference:

in the π-calculus, the transmission of a name always stands for the transmission of

a channel, while in the above example the transmitted name constitutes only one

component of it.
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An extended form of polyadic synchronisation allows for the use of more than

two names for each channels, like in the following example:

@c1@c2@c3〈d〉.P
∣
∣ c1@c2@c3(x).Q → P

∣
∣ Q{d/x}

In general, there is no limit to the length of the vector of names representing a

channel.

For concision and readability, polyadic synchronisation is often used also in con-

junction with polyadic communication:

polyadic@comm〈a, b, c〉.P
∣
∣ polyadic@comm(x, y, z).Q →

P
∣
∣ Q{a/x, b/y, c/z}

The benefits in terms of simplicity of biological modellings are immediate in

presence of compartments. For example, if the π-calculus process

M(m1, . . . ,mn) , π.M ′ + . . .

is a molecule subjected to movement across the cellular membrane (like the GLU

process of Expr. (2.4)), all of its channels must be restricted after its conveyance

into the cell:

M(mout
1 , . . . ,mout

n )
∣
∣ (ν min

1 , . . . ,m
in
n , . . .)(M(min

1 , . . . ,m
in
n )

∣
∣ · · · )

In particular, any channel protein able to convey the above molecule across dif-

ferent compartments should be aware of all the names mout
1 , . . . ,mout

n ,min
1 , . . . ,m

in
n .

Polyadic synchronisation allows us to model the compartment just as one restricted

name. For example, the above system may be converted as

M(m1, . . . ,mn, cout)
∣
∣ (ν cin, . . .)(M(m1, . . . ,mn, cin)

∣
∣ · · · )

where each input or output action π.M ′ inside M has been encoded as π@c.M ′, and

c represents the compartment M lies in (cout or cin in the above example). In this

way, only one restricted name is needed to formalise a new compartment, regardless

of all the channels the enclosed processes may use. This substantial simplification

affects also the formalisation of cross-compartment processes: they need to handle

only one additional name for each compartment they partially reside in.
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4.2 Priority

The idea behind the notion of priority applied here to the π-calculus [33] is very

similar to the mechanisms adopted for the implementation of schedulers which al-

low us to give processes several levels of priority, depending on their requirements

(responsiveness, cpu load, real-time constraints, etc) for the task they accomplish.

Here we consider a particular kind of priority characterised by global, immediate

preemption (the same considered for the definition of the fragment FAP in Chap.

2): each process denoted by high priority holds the central processing unit and

executes its job before any low priority process may perform some other task. In

π-calculus setting, this is equivalent to forcing high priority synchronisations or

communications to happen before any low priority action. A high priority action is

indicated by underlining the name of the channel. For example, the expression

l〈a〉.P
∣
∣ h〈b〉.Q

contains two processes with different, increasing priority. In the above situation,

both are blocked: in fact, no other process is ready to receive over the channel l or

h. In presence of some process listening on channel l, the first process may react in

the following way:

l〈a〉.P
∣
∣ l(x).P ′

∣
∣ h〈b〉.Q → P

∣
∣ P ′{a/x}

∣
∣ h〈b〉.Q

In fact, this would be the only possible transition since no other reduction is avail-

able. Conversely, when both high and low priority actions are enabled, low-priority

synchronisations can occur only after high-priority ones:

l〈w〉
∣
∣ l(x).P

∣
∣ h〈y〉

∣
∣ h(z).Q 9 0

∣
∣ P{w/x}

∣
∣ h〈y〉

∣
∣ h(z).Q

l〈w〉
∣
∣ l(x).P

∣
∣ h〈y〉

∣
∣ h(z).Q → l〈w〉

∣
∣ l(x).P

∣
∣ 0

∣
∣ Q{y/z} →

0
∣
∣ P{w/x}

∣
∣ 0

∣
∣ Q{y/z}

The first of the two transitions is not allowed because interactions on low-priority

channel l may happen only after the high-priority communication on channel h.
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For sake of clarity, communications between channels with the same name but

different priorities are forbidden. For example, in the following system there are no

possible reductions:

c〈a〉.P
∣
∣ c(x).Q

An additional level of priority can be denoted by double underlining a channel

name:

l〈a〉.P
∣
∣ h〈b〉.Q

∣
∣ u〈c〉.R

If any reduction is available over the u channel, it preempts any reduction over h

and l. Additional levels of priority require the introduction of integer numbers as

labels added to each input/output operation. For this reason the above expression

may be also written as follows:

2 : l〈a〉.P
∣
∣ 1:h〈b〉.Q

∣
∣ 0:u〈c〉.R

where 0 denotes the highest level of priority. The choice of identifying higher priority

levels with decreasing integer numbers is arbitrary and does not affect the semantics

or expressiveness of the language.

Since three levels of priority suffice for our encoding purposes, only the first of

these two syntaxes will be used in the encodings and modelling examples, for its

conciseness and readability.

For a detailed survey of priority in process algebras, we refer to [33].

At first sight, the idea of priority seems foreign and unnecessary for biological

modelling purposes. However, the complexity of this realm makes almost impossible

the design of a suitable and complete modelling language. The presence of several

priority levels for operations allows the composition of high-level, complex opera-

tions as sequences of several simple, low-level steps (transitions) by avoiding any

interference of external processes with the involved elements. Such low-level tran-

sitions can be composed in different ways, depending on the abstraction adopted

to formalise the system of interest. This effect can be achieved by encoding each
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high-level operation as a list of high priority actions, preceded by a single low pri-

ority operation which act as a guard. For example, if the processes P1, P2, P3, P4

represents four proteins which can bind together and form a new complex C, they

can be modelled in π-calculus by exploiting the restriction operator and representing

the binding as the sharing of a private name:

(ν b)P1

∣
∣ P2

∣
∣ P3

∣
∣ P4 → · · · → (ν b)

(
P ′

1

∣
∣ P ′

2

∣
∣ P ′

3

∣
∣ P ′

4

)

Since more than one transition is needed to accomplish the whole process, if one of

the requirements is its atomicity (this is often necessary when the modelled processes

may meanwhile interact with other elements and give rise to undesirable situations

not pertaining to the original model) then there is no way to obtain a satisfactory

modelling in π-calculus. Priority instead allows to ensure that no other process can

interfere during the formation of the above complex. The four molecules can be

formalised as

P1 , l〈b〉.h1〈b〉.h2〈b〉.P
′
1 P2 , l(x).P ′

2

P3 , h1(x).P
′
3 P4 , h2(x).P

′
4

so that after the first synchronisation of P1 and P2 over the low priority channel l, a

sequence of (two) high priority communications between P1 and P3, P4 is triggered

and cannot be interrupted by any other process. In fact, the possibility of performing

the initial low priority action over l guarantees that any other high priority operation

occasionally available in the system has been previously consumed.

4.3 The π@ language

The π@ language joins the expressiveness of polyadic communication and priority in

order to model both localisation of processes inside compartments and atomicity of

complex operations that require more than one reduction step for their completion.

Thanks to the simplicity of such extensions, π@ is very close to the π-calculus: from

a syntactical point of view the only difference is the structure of channels, composed
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of multiple names and tagged by the priority of the action. We use µ to denote a

vector of names x1, . . . , xn and k : µ to denote a channel, that is a natural number

k specifying the priority level followed by a vector of names µ. In particular, k : µ

represents an output operation along channel k : µ, while k : α stands for a generic

input, output or silent action τ of priority level k.

Definition 4.1 Let

N be a set of names on finite alphabet, x, y, z, . . . ∈ N ;

N+ =
⋃

i>0 N
i , µ ∈ N+ ;

N
+

= {µ | µ ∈ N+} ;

α ∈
(
N

+
∪N+ ∪ {τ}

)
;

The syntax of π@ defined in terms of the following grammar:

P ::= 0

∣
∣
∣

∑

i∈I

πi.Pi

∣
∣
∣ P

∣
∣ Q

∣
∣
∣ ! P

∣
∣
∣ (ν x)P

π ::= k :: τ
∣
∣
∣ k :µ(x)

∣
∣
∣ k :µ〈x〉

As previously introduced, the following abbreviations are used for readability:

µ(x) = 2:µ(x) µ〈x〉 = 2:µ〈x〉

µ(x) = 1:µ(x) µ〈x〉 = 1:µ〈x〉

µ(x) = 0:µ(x) µ〈x〉 = 0:µ〈x〉

The definition for structural congruence ≡ is exactly the same as given for π-

calculus, where the function fn is naturally extended to the π@ syntax, that is

fn(k : µ(y))
def
= {µ1, . . . , µn}

fn(k : µ〈y〉)
def
= {µ1, . . . , µn, y}
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where µ = µ1@ · · ·@µn. The reduction semantics is very similar, but defined in

terms of an auxiliary function Ik(P ), representing the set of actions of priority k

which the process P may immediately execute. For example, if

P = a.Q
∣
∣ b

∣
∣ c.R

∣
∣ d+ e.S

∣
∣ a.T

then I0(P ) = {c, e}, I1(P ) = {b, d}, I2(P ) = {a, a, τ}, where the availability of τ

action derives from the interaction of the first and last process.

Definition 4.2 Let Ik(P ) be

Ik
( ∑

i

li :αi.Pi
)

= {αi | li = k};

Ik
(
(ν y) P

)
= Ik(P ) \

{
α | y ∈ {x1, . . . , xn}∧

(α = x1@ . . .@xn ∨ α = x1@ . . .@xn)
}
;

Ik
(
!P

)
= Ik(P

∣
∣ P );

Ik
(
P

∣
∣ Q

)
= Ik(P ) ∪ Ik(Q) ∪ {τ | Ik(P ) ∩ Ik(Q) 6= ∅},

Ik(Q) =
{
α | α ∈ Ik(Q)

}

π@ semantics is given in terms of the following reduction system:

τ /∈
⋃

i<k Ii(M)

k :τ.P + M →k P

P →k P ′

(ν x)P →k (ν x)P ′

τ /∈
⋃

i<k Ii(M
∣
∣ N)

(k :µ(y).P + M)
∣
∣ (k :µ〈z〉.Q + N) →k P{z/y}

∣
∣ Q

P →k P ′ τ /∈
⋃

i<k Ii(P
∣
∣ Q)

P
∣
∣ Q →k P ′

∣
∣ Q

P ≡ Q P →k P ′ P ′ ≡ Q′

Q →k Q′

π@ reduction rules are exactly the same as those of the π-calculus, except for the

additional condition τ /∈
⋃

i<k I
i(. . .) which avoids the execution of low priority

actions if higher priority communications (represented by τ actions) are immediately

available.
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4.3.1 Modelling the insulin example in π@

The benefits deriving from polyadic synchronisation and priority for biological mod-

ellings can be noticed as long as even very simple systems are formalised, like the

one in Fig. 2.1 already described in the π-calculus. We have previously discussed

why a faithful description of a compartment in π-calculus implies that all the names

of the enclosed processes are restricted, in order to prevent their interaction with

the external environment. On the contrary, π@ allows the characterisation of each

compartment by means of a single restricted name, as shown in Sect. 4.1. Therefore,

the shape of the system of Fig. 2.1 becomes

(ν cin)
(
CHAN1

∣
∣ · · ·

∣
∣ CHANl

∣
∣ MOL1

∣
∣ · · ·

∣
∣ MOLn

∣
∣ V ES

∣
∣ · · ·

∣
∣ V ES

)

where the cell is represented by the restricted name cin, the cross-compartment

processes CHAN1, . . . , CHANl communicate to the external environment by a cor-

responding name cout, and the set of free names of the processes MOL1, . . ., MOLn,

V ES is irrelevant for their confinement inside the compartment, as soon as cout

does not appear in such set and cin constitutes one of the names which identify each

channel.

Therefore, the GLU process of Expr. (2.4) may be translated as follows:

GLU(comp, gt, gr) , (ν g)
(
g〈comp〉

∣
∣ ! g(c).(gt@c(cnew).g〈cnew〉+ gr@c.PY R)

) (4.1)

The behaviour of the process is almost the same: replication is exploited for encoding

the recursive behaviour of the molecule, which is always ready either to react or

to be moved into another compartment. These two capabilities are formalised by

an interaction over gr@c and gt@c respectively, where c represents the name of

the compartment the molecule lies in. The movement of the molecule to another

compartment is reflected by receiving a new compartment name and forgetting the

previous one. Since such a name appears in all the channels that allow the molecule

to interact with the other processes, GLU can interact only with elements enclosed

within the same compartment. The simplification of Expr. (2.4) with respect to
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Expr. (4.1) is minimal for the reason that the description of the GLU molecule

includes only two public channels, but it becomes significant as soon as their number

grows.

It is worth remarking that the current semantics of GLU may not correspond to

the intended behaviour of the glucose molecule in the original biological model: if

it requires the movement of the molecule across compartments to be instantaneous,

then Expr. (4.1) does not constitute a correct formalisation because of the additional

internal step needed to spawn the molecule inside the target compartment. Priority

addresses exactly this very common modelling problem: it is possible to use high

priority reductions to model all the operations that in the original model are purely

atomic or not present at all:

GLU(comp, gt, gr) , (ν g)
(
g〈comp〉

∣
∣ ! g(c).(gt@c(cnew).g〈cnew〉+ gr@c.PY R)

) (4.2)

The corresponding expression of the GLUT2 glucose transporter can be slightly

simplified as well:

GLUCHAN(cout, cin, gt) , ! gt@cout〈cin〉

Now, the channel process does not need to know all the names of the transported

molecule. This is a very valuable property, since it means that there is no need to

change the expression of the glucose transporter each time the formalisation of GLU

changes, for example after the addition of new reaction capabilities. As previously

discussed, GLUCHAN is characterised by the presence of two compartment names,

for the reason that it represents a cross-compartment molecule.

The processes representing ADP and ATP are almost unchanged:

ADP (glureact, inhk, c) , glureact@c.ATP (inhk, c)

ATP (inhk, c) , inhk@c

In this case the use of polyadic synchronisation seems to make more complicated the

expression of the above molecules, but the benefit will appear after the formalisation

of the whole cell.
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For the description of the potassium molecule K the same principles leading to

Expr. (4.2) can be applied:

K(kt, kr, comp) ,

(ν k)
(
k〈comp〉

∣
∣ ! k(c).(kt@c(cnew).k〈cnew〉+ kr@c)

)

Even in this case the high priority of internal reductions can provide a more faithful

modelling, like for the potassium channel KCHAN :

KCHAN(cin, cout, inhk) ,

(ν kc)
(
kc

∣
∣ ! kc.(inhk + kt@cin〈cout〉.kc)

)

The remaining processes can be translated in the same way:

POL(c, kreact, caact) , kreact@c.caact@c

CACHAN(cout, cin, cat, caact) , caact@cin.! cat@cout〈cin〉

CA(comp, cat, car) , (ν ca)
(
ca〈comp〉

∣
∣

! ca(c).(cat@c(cnew).ca〈cnew〉+ car@c)
)

DOCKP (cin, car, dockves, cout) , car@cin.dockves@cin〈cout〉

INS(c, ins) , ins@c

Since the vesicle V ES constitutes another, nested compartment inside the cell,

it can be as well represented by a new restricted name:

V ES(cout, dv, ins) , (ν vcin)
(
dv@cout(cext).! ins@vcin.INS(cext, ins)

∣
∣ INS(vcin, ins)

∣
∣ · · ·

∣
∣ INS(vcin, ins)

)

The internal compartment name for V ES is vcin, while cout stands for the name

corresponding to the cell compartment. cext will be bound to the name of the

compartment surrounding the cell, where the insulin molecules will be dumped after

the exocytosis of the vesicle V ES.

If the process of exocytosis is abstracted as a single, atomic operation, then

priority can be used for the loop of the process expelling all the insulin molecules.
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It may be modified as follows:

dv@cout(cext).! ins@vcin.INS(cext, ins)

and the INS molecules accordingly:

INS(c, ins) , ins@c

In this way any sequence of movement of INS molecules would appear as atomic.

The presence of the high priority action immediately after the replication constitutes

a very dangerous operation: a high priority loop of this kind may block the whole

system if there is no guarantee of its termination. In the case of the V ES process

the finite number of INS molecules guarantees such termination.

Finally, the whole system is represented as follows:

SY S , GLU(cout, gt, gr)
∣
∣ K(cout, kt, kr)

∣
∣ Ca(cout, cat, car)

∣
∣

(ν cin)
(

GLU(cin, gt, gr)
∣
∣ GLUCHAN(cout, cin, gt)

∣
∣ K(kt, kr, cin)

∣
∣ KCHAN(cin, cout, inhk)

∣
∣

∣
∣ ADP (gr, inhk, cin)

∣
∣ ATP (inhk, cin)

∣
∣ POL(cin, kr, caact)

∣
∣ Ca(cin, cat, car)

∣
∣ CACHAN(cout, cin, cat, caact)

∣
∣ DOCKP (cin, car, dockves, cout)

∣
∣ V ES(cout, dockves, ins)

)

Like the V ES compartment, the β cell is denoted by only one restricted name, cin.

4.3.2 The core-π@ language

The π@ language is characterised by the capability of using an unbounded number

of names for channels and of priority levels for reductions. The writing of complex

encodings like those presented in Sect. 5.1.3 and 5.1.4 can be significantly simplified

by such flexibility. However, two levels of priority and two names for each channel

are sufficient for most purposes, like the modelling examples previously shown. For
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this reason we introduce a subcalculus of π@, denoted as core-π@, characterised by

only two levels of priority (i.e. normal actions and prioriotised actions) and two

names for each channel. A valuable property of this core-π@ is its straightforward

mapping into its stochastic counterpart Sπ@ [95, 96].

We introduce three distinct sets of names N ,P , C denoting respectively unpriori-

tised actions, prioritised actions and compartments. Each channel x@a is denoted

by an action name and a compartment name. In order to keep notation simple,

compartment names may be omitted when superfluous.

Definition 4.3 Let N ,P , C be distinct sets of names on a finite alphabet, with m,n

ranging over N , p, q over P, a, b over C and x, y over X = N ∪ P ∪ C. The syntax

of the core-π@ language is defined as

P ::= 0

∣
∣
∣

∑

i∈I

πi.Pi

∣
∣
∣ P

∣
∣ Q

∣
∣
∣ ! π.P

∣
∣
∣ (ν x)P

π ::= τ
∣
∣
∣ n@a(x)

∣
∣
∣ n@a〈x〉

∣
∣
∣ τ

∣
∣
∣ p@a(x)

∣
∣
∣ p@a〈x〉

where x represents one or more names x1, . . . , xi ranging over X .

Like for π@, the semantics of this core-π@ is given by means of a reduction

system based on the following congruence relation.

Definition 4.4 The congruence relation ≡ is defined as the least congruence satis-

fying alpha conversion, the commutative monoidal laws with respect to both (
∣
∣ ,0)

and (+,0) and the following axioms:

(ν x)P
∣
∣ Q ≡ (ν x)(P

∣
∣ Q) if x /∈ fn(Q)

(ν x)P ≡ P if x /∈ fn(P )

! π.P ≡ π.(! π.P
∣
∣ P ) if fn(π) ∩ bn(π) = ∅
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where the function fn is defined as

fn(τ) ,∅ fn(τ) ,∅

fn(n@a(x)) ,{n, a} fn(n@a〈x〉) ,{n, a,x}

fn(p@a(x)) ,{p, a} fn(p@a〈x〉) ,{p, a,x}

fn(0) ,∅ fn((ν x)P ) , fn(P ) \ {x}

fn(π.P ) , fn(π) ∪ fn(P ) fn(
∑

i∈I

πi.Pi) ,
⋃

i

fn(πi.Pi)

fn(P
∣
∣ Q) , fn(P ) ∪ fn(Q) fn(! π.P ) , fn(π.P )

Definition 4.5 core-π@ semantics is given in terms of the following reduction sys-

tem:

τ .P + M ։ P

M ։/ M ′

τ.P + M 7→ P

P ։ P ′

(ν x)P ։ (ν x)P ′

P 7→ P ′

(ν x)P 7→ (ν x)P ′

(p@a(x).P + M)
∣
∣ (p@a〈y〉.Q + N) ։ P{y/x}

∣
∣ Q

M
∣
∣ N ։/ R

(n@a(x).P + M)
∣
∣ (n@a〈y〉.Q + N) 7→ P{y/x}

∣
∣ Q

P ։ P ′

P
∣
∣ Q ։ P ′

∣
∣ Q

P 7→ P ′ P
∣
∣ Q ։/ R

P
∣
∣ Q 7→ P ′

∣
∣ Q

P ≡ Q P ։ P ′ P ′ ≡ Q′

Q ։ Q′

P ≡ Q P 7→ P ′ P ′ ≡ Q′

Q 7→ Q′

The presence of only one additional level of priority allows avoidance of the definition

of the Ik() function of Def. 4.2. On the other hand, the definition of the reduction

relation requires two rules for each corresponding rule of π@ semantics.
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Encodings in π@

In this chapter the expressive capabilities of π@ are demonstrated by means of the

definition of the encoding functions of various bio-inspired formalisms. In the next

section the encodings of BioAmbients and Brane Calculi are discussed, while in Sect.

5.2 the encoding in π@ of a variant of P Systems is treated.

5.1 Encoding Bio-inspired Calculi in π@

The key feature which differentiates many recent bio-inspired calculi from the π-

Calculus is the explicit formalisation of compartments. BioAmbients is a modified

version of the Ambient calculus [23, 20], where compartments are represented by

ambients, a sort of boxes containing processes or other nested boxes. In Brane

compartments are bounded by membranes, on the surface of which processes com-

pute. Both ambients and membranes are organised in a tree structure, both can

dynamically modify this structure by performing for example merge, enter/exit or

exo operations. The central issue is how they modify this structure: the most ob-

servable difference is the bitonality preserved by brane semantics and totally absent

in BioAmbients, which corresponds to the preservation of the parity of the nesting

level of processes. As remarked in [22], this peculiarity is enough to preclude an

immediate embedding of one language into the other.

Consequently, on the one hand they gain faithfulness because of their additional
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primitives designed to model the addressed biological phenomena, on the other their

specialisation does not allow us to mutually translate the models expressed in each

language. Furthermore, the high abstraction level of such primitives hides the mech-

anisms underlying the idea of compartment, whose unfolding can reveal their strong

resemblance.

π@ features were chosen to overcome all these issues: the lack of a predefined

semantics for compartments together with the possibility of expressing localisation

by means of polyadic synchronisation and complex atomic operations by means of

priority place π@ one abstraction level underneath, as a sort of assembly language

for compartmentalised formalisms. As previously discussed, it allows consistent

simplification with respect to the π-Calculus the formalisation of biological models

which embed the notion of compartment. In this section we show that π@ is also

able to supply the same high level features offered by bio-oriented languages like

BioAmbients and Brane calculi. In particular, we show how both of them can be

encoded directly in π@, by unfolding the basic functioning of compartment semantics

and providing a common platform for their direct comparison and implementation.

5.1.1 Basic ideas

Compartments and their nesting are very intuitive abstractions: the simple state-

ment that an object is enclosed in a box suggests that it is someway isolated from

the external context; putting one box into another means that, after the operation,

the inner box with all its content are located inside the outer one; merging the con-

tent of two boxes implies putting in the same box all the enclosed objects. To obtain

this behaviour in π@ we must recognise the exact meaning of every operation on

compartments and reproduce step by step the same semantics.

The first concept to unfold is nesting: compartments compose a dynamical tree

structure which must be encoded in π@. As suggested in [68], these kind of struc-

tures can be represented as a set of processes linked by the share of private channels

between parent and child nodes. The encoding of the insuline secretion process

is a simple example of this situation: the cell and the insuline vesicles define the
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boundaries of compartments linked by the presence of cross-compartment processes

(like cross-membrane molecular channels) which are able to interact with elements

located in both compartments. Like in [89], the scoping of private names repre-

sents the boundaries of such compartments, but thanks to polyadic synchronisation

each private name may represent an unlimited number of private communication

channels, as discussed during the modelling of the insuline example. If each node

is supplied with one distinctive name, the simplest way to encode the tree is by

ensuring that each node knows the name identifying its parent compartment.

Therefore, trivial changes in the tree structure may affect an unlimited number

of processes: the simple disclosure of a compartment implies that all contained pro-

cesses must be notified of their new parent compartment name. The same situation

occurs when splitting or merging the content of two compartments, like in BioAm-

bients merge+/merge− and Brane exo/exo⊥ operations. In π@ this turns out to be

a sort of multicast communication, where specific groups of nodes – that is sibling

and child processes – must receive on the appropriate channel a new compartment

name. This result is achieved by a smart use of priority levels: a high priority loop

notifies in turn all the interested processes and ends when such processes do not exist

anymore. By a single line of code, we obtain in π@ the same mechanism typical of

broadcast communication:

BCAST , ! bcast(x, y).(τ + x〈y〉.bcast〈x, y〉)

The above process can be triggered by an output operation bcast〈chn, newchn〉 and

terminate when no high priority synchronisations are available, leaving no residual

terms. Obviously, a high priority complementary output loop

! bcast〈chn, newchn〉 would cause the system to hang, since it prevents any other

computation with normal priority. The avoidance of such high priority and non-

terminating loops is often not trivial. In particular, a homomorphic translation of

the replication operator would immediately cause them to appear, as we will discuss

in the following encodings. This is one of the most difficult translation issues and

will force us to represent indirectly the encoded replicated processes, by keeping

explicit track of each replicated instance in our encoding functions.
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5.1.2 Requirements

The fundamental criterion guiding any encoding is the preservation of some ad-

dressed semantics. While the weak kind of observational semantics considered in

Sect. 3.2 turned out to be appropriate for the addressed negative results (i.e. of

impossible encodability), some more strict semantics should be considered when pro-

viding positive results (i.e. of possible encodability). According to [73], this means

that the encoding function
[[
·
]]

should at least fulfill the notion of operational

correspondence, characterised by two complementary properties: completeness and

soundness. The first means that every possible execution of the source language

may be simulated by its translation, the second ensures that all the states reached

by the translation correspond to some state of the source. As usual for concurrent

languages we also require some additional criteria. As remarked in [76], a reasonable

encoding should also preserve the degree of distribution of the source language (i.e.

homomorphism with respect to parallel composition) and should not depend on the

channel (or compartment) names of the term to be encoded. This also implies a very

valuable property, that is modular compilation, as discussed in [40]. In addition to

the cited criteria, we require that the encoding preserves the termination (denoted

as ⇓) or diverging (denoted as ⇑) behaviour of the translated term, in order to obtain

a totally faithful encoding function. The following definition formalises the notion

of suitable encoding used in this chapter, which embeds all the properties discussed

above.

Definition 5.1 An encoding
[[
·
]]

is suitable if it enjoys the following properties:

1. homomorphism with respect to parallel composition:

[[
P1

∣
∣ P2

]]
=

[[
P1

]] ∣
∣

[[
P2

]]

2. renaming preserving: for any permutation of the source names θ,

[[
θ(P )

]]
= θ(

[[
P

]]
)
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3. termination invariance:

P ⇓ ⇐⇒
[[
P

]]
⇓ P ⇑ ⇐⇒

[[
P

]]
⇑

4. operational correspondence:

(a) if P → P ′ then
[[
P

]]
→∗

[[
P ′

]]
,

(b) if
[[
P

]]
→∗ Q then ∃P ′ : P →∗ P ′ ∧Q→∗

[[
P ′

]]
.

5.1.3 Encoding BioAmbients in π@

As we have just seen, ambients are containers organised in a tree structure: running

processes and nested sub-ambients are located inside them. If each node of the tree

represents an ambient, nodes are complex structures: each node may contain zero

or more parallel processes and may interact with zero or more nested sub-ambients.

Consequently, for the implementation of this tree structure in π@, each encoded

BioAmbients process must be aware of the name of its containing (immediate) am-

bient, but also of the name indicating the parent of its immediate ambient. In

other words, the encoding function
[[
·
]]α

from BioAmbients processes to π@ pro-

cesses which we are now ready to formalise requires the (bound) names a and pa,

representing the immediate ambient and the parent ambient of each BioAmbients

process respectively. This is in accordance with the modelling of cross-compartment

objects in π@ (like ion channels) previously shown: in fact, every BioAmbients pro-

cess may likely interact with some other process placed in some child or parent or

sibling ambient, that is every BioAmbients process is a potential cross-compartment

element.

The similarity between the basic π-calculus operators and the corresponding op-

erators inherited by BioAmbients allows us to encode some of them homomorphically
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in π@. This is the case of parallel composition and restriction:

[[
P

∣
∣ Q

]]α

a,pa
,

[[
P

]]α

a,pa

∣
∣

[[
Q

]]α

a,pa

[[
(new n)P

]]α

a,pa
, (ν n)

[[
P

]]α

a,pa

According to the previous considerations, the encoding function is decorated with

two names representing the ambient a where the encoded process resides and the

outer ambient pa. The name a of the ambient can be used for local communication

directions:

[[
local n!{m}.P

]]α∗

a,pa
, local@n@a〈m〉.(

[[
P

]]α

a,pa
)

[[
local n?{m}.P

]]α∗

a,pa
, local@n@a(m).(

[[
P

]]α

a,pa
)

The name pa of the parent ambient can be exploited for any s2s, c2p/p2c or ambient

capability (merge, exit/expel, enter/accept). For example, the s2s communication

can be encoded in the following way:

[[
s2s n!{m}.P

]]α∗

a,pa
, s2s@n@pa〈m〉.(

[[
P

]]α

a,pa
)

[[
s2s n?{m}.P

]]α∗

a,pa
, s2s@n@pa(m).(

[[
P

]]α

a,pa
)

This encoding explains where such sibling-to-sibling communication is reasonably

happening, that is inside the only compartment known by both processes: their

parent ambient. Nevertheless, the effect of the communication is limited to the

substitution of a name in the scope of the receiving process
[[
P

]]α

a,pa
. The possibility

of exploiting an unbounded number of names (three in this case) for each π@ channel

allows us to model easily the “triple matching” typical of BioAmbients actions: in

fact, in addition to their “proximity” (i.e. the localisation in the same ambient or

parent ambient), the interaction between two processes can happen only if both the

direction (local, c2p/p2c or s2s) and the name n match.

The same considerations hold for c2p/p2c communication:

[[
p2c n!{m}.P

]]α∗

a,pa
, p2c@n@a〈m〉.(

[[
P

]]α

a,pa
)

[[
c2p n?{m}.P

]]α∗

a,pa
, p2c@n@pa(m).(

[[
P

]]α

a,pa
)
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While two processes able to perform a local or s2s communication lie in a symmet-

rical position, the c2p/p2c operation introduces asymmetry in the system, since one

process must be located in the parent ambient of the other. This is reflected by the

compartment names used in the π@ encoding: the outer process uses its ambient

name a to communicate, while the inner process its parent ambient name pa. There

would be no way to make such an operation happen inside the child ambient, since

the outer π@ process does not know (and must not know, in agreement with the

abstraction of compartment scoping previously discussed) any name associated with

the inner ambients.

The correspondence between ambient and parent ambient names of nested com-

partments is stated by the encoding of the compartment operator [·]:

[[
[ P ]

]]α

a,pa
, (ν c)

[[
P

]]α

c,a

At first sight it corresponds to the encoding of the restriction operator of BioAmbi-

ents. The substantial difference can be devised in the names appearing as parameters

of the encoding function in the right-hand side of the expression: the restricted name

c represents the new ambient of the process P , while a represents both the ambient

of [ P ] and the parent ambient of P .

So far, all the problems deriving from the introduction of compartments have

been solved by the only use of polyadic synchronisation. The atomicity-related

problems noticed during the formalisation of compartments in the π-calculus would

emerge now in the attempt of encoding BioAmbients capabilities in π@. Consider

for example the simple merge capability:

[merge+ .P
∣
∣ Q1

∣
∣ · · ·

∣
∣ Qn]

∣
∣ [merge− .R

∣
∣ S1

∣
∣ · · ·

∣
∣ Sm] →

[P
∣
∣ Q1

∣
∣ · · ·

∣
∣ Qn

∣
∣ R

∣
∣ S1

∣
∣ · · ·

∣
∣ Sm]

(5.1)

The encoding in π@ of the above system before the reduction would require two

distinct restricted names corresponding to each of the ambients ready to be merged.

After their merging, only one of such names must be present. This means that

either n + 1 or m + 1 π@ processes must have replaced the name corresponding
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to their current ambient. Furthermore, BioAmbients semantics requires that all of

these n+1 or m+1 changes in the structure of the system happen instantaneously,

that is no other communication or capability can be executed meanwhile. The only

way to grant this constraint in the standard π-calculus (without introducing some

divergent behaviour) would be to put as guard some centralised monitor process

which enables the occurrence of one operation at a time, with the consequence of

excluding any concurrent feature from the encoded system.

The presence of priority in π@ instead easily overcomes such kind of issues with-

out any explicit centralised mechanism. The occurrence of the above merge syn-

chronisation can be followed by a sequence of high priority synchronisations which

notify all the involved processes of their new ambient (or parent ambient) name.

This sequence of high priority operation is actually a loop which must terminate

when all the addressed processes have received the desired data. A remarkable fea-

ture of such loop is that for any compartment-related operation of BioAmbients (but

also of Brane) all these processes reside in the same compartment. This peculiarity

allows us to express the loop in a very general way:

BCAST , ! bcast(x, y, z).(x@y〈z〉.bcast〈x, y, z〉+ τ)

The BCAST process implements a loop triggered by the receiving of three names:

the first two names are used to identify the channel x@y over which the commu-

nication loop will be executed. The third name is a datum which is sent to all

the processes listening on x@y, representing the name of some ambient where some

group of processes is going to move. The use of two levels of (high) priority (de-

noted by single or double-underlined actions, corresponding to integer levels 1 and

0 respectively) provides two very important properties:

• once triggered, the loop will execute entirely before the occurrence of any other

encoded BioAmbients operation, since all such operations – both communica-

tions, as we have shown, and capabilities, as we will show – are guarded by an

initial low priority (integer level 2 of priority, corresponding to no underline)

action;
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• the loop will end without leaving any “garbage” which may interfere with the

system later on.

The first property is granted by the high priority of the replicated bcast input. After

the communication of the datum z over the channel x@y, the process spawns another

copy of itself by means of the same expedient previously showed for the encoding

of recursive behaviour by exploitation of replication. The presence of the τ action

with an intermediate prioritised level allows the termination of the loop when all the

processes listening on x@y have actually received the datum z, so that the remainder

of the BCAST process disappears completely before any other communication or

capability may be performed.

Consequently, the implementation in π@ of the merge capability requires the

triggering of the BCAST loop with the correct parameters. First, we need to un-

derstand where two processes performing a merge+/merge− capability are located:

by checking the semantic rules of Def. 2.7 we can see that such processes must be

located in sibling ambients (ambients that are children of the same outer ambient),

i.e. the corresponding synchronisation in π@ happens in the parent ambient, exactly

as showed for the s2s communication. Second, the communication must carry on

the name associated with one of the two ambients, so that the receiving process

can use it as new compartment name for all of its subsequent synchronisations and

forward it to all the other processes affected by the structural change in the ambient

tree. Since the merging of two ambients is a symmetrical operation, the choice of the

name to be communicated is arbitrary. Here we choose to keep the name associated

with the ambient of the process exhibiting the merge+ capability:

[[
merge+ n.P

]]α∗

a,pa
, merge@n@pa〈a〉.(

[[
P

]]α

a,pa
)

In agreeement with the above considerations, the encoding of merge+ is located in

the parent ambient pa and communicates the name a of its ambient to the process

ready for the complementary merge−:

[[
merge− n.P

]]α∗

a,pa
, merge@n@pa(x).

bcast〈merge, a, x〉.(
[[
P

]]α

x,pa
)
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The merge− operation implies the receiving of some name to be substituted for the

placeholder x which will be used as new ambient in (
[[
P

]]α

x,pa
), while the parent

ambient pa remains unchanged exactly like in the original BioAmbients system. The

subterm bcast〈merge, a, x〉 triggers the BCAST loop which in turn notifies all the

sibling processes (represented by the siblings S1, . . . , Sm of R in Expr. (5.1)) of

their new ambient x (which, again, at this time has been replaced by the name of

the ambient sent by the process performing the complementary merge+ capability).

The name merge used to denote the channels merge@n@a and merge@n@pa is

completely arbitrary and allows us to distinguish this broadcast-like communication

occurring after the merging of compartments from the other broadcast-like loops

that are triggered by the translation of the other BioAmbients capabilities.

Similar considerations lead to the encoding of the enter/accept and exit/expel

capabilities. Their partial asymmetry requires to bring attention to the names trans-

mitted during the reduction and the way they are used afterwards.

The enter/accept reduction is triggered by two processes whose localisation is

symmetrical with respect to the global tree structure of the system: they are inside

ambients children of the same parent ambient, exactly like in the case of the merge

operation. After the reduction, however, their situation is asymmetrical since their

respective ambients are one the child of the other. Consequently, the process per-

forming the accept capability is not going to change location but must communicate

the name corresponding to its ambient to the process ready for the enter capability,

which will use such name to denote its new parent ambient:

[[
accept n.P

]]α∗

a,pa
, enter@n@pa〈a〉.(

[[
P

]]α

a,pa
)

[[
enter n.P

]]α∗

a,pa
, enter@n@pa(x).bcast〈pa, a, x〉.(

[[
P

]]α

a,x
)

As for the merge− operation, the encoding of the enter capability triggers the

BCAST loop which notifies all the involved processes of their new parent ambient.

The exit/expel reduction is the converse of the previous one: the two processes

performing it lie in an asymmetrical position and end symmetrically distributed with

respect to the ambient tree. In this case the process exhibiting the exit capability
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and all of its siblings must be notified of their new parent ambient, represented by

the name of the parent ambient of the process performing the complementary expel:

[[
expel n.P

]]α∗

a,pa
, expel@n@a〈pa〉.(

[[
P

]]α

a,pa
)

[[
exit n.P

]]α∗

a,pa
, expel@n@pa(x).bcast〈pa, a, x〉.(

[[
P

]]α

a,x
)

The enter/accept and exit/expel capabilities differ from merge+ /merge− for a

subtle particular: in the merge− operation the name merge was sent as first param-

eter to BCAST , while in the other two the name pa was used. We may have used

two distinct names enter, exit for indicating the change of the name of the parent

compartment in consequence of each of such capabilities, but their effect is actually

the same, so they can be condensed in the simple idea of “substitution of parent

compartment name”. Similar reasoning can be argued for the encoding of Brane

actions.

A substantial consequence of the above encodings of BioAmbients capabilities

is the silent assumption that all the encoded processes are always listening on the

right channels for possible changes of their ambient or parent ambient names, inde-

pendently of the other actions they are ready to perform. Furthermore, after the

receiving of a new ambient or parent ambient name in consequence of the triggering

of the BCAST loop, each notified process must return exactly in its previous state,

except for the substitution of the old ambient or parent ambient name with the new

one just received. As an example, consider again the situation of Expr. (5.1): the

π@ processes corresponding to S1, . . . , Sm are going to change their ambient name

after the BCAST loop triggered by P and R. This means that each of those m

processes is listening on some channel merge@a, with a representing their current

ambient name. More exactly, each of them is listening simultaneously on

• merge@a in order to be notified of the merging of their ambient,

• merge@pa for the merging of their parent ambient, and

• pa@a for the change of the name of their parent ambient as a consequence of

an exit or an accept operation.
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In order to denote concisely this property, we may say that the π@ encoding of each

BioAmbients communication or capability is put in nondeterministic choice with the

three options expressed by the following process:

TREE(b, a, pa) , pa@a(x).b〈a, x〉+merge@pa(x).b〈a, x〉+

merge@a(x).b〈x, pa〉

(5.2)

The three expressions with shape b〈a, x〉 or b〈x, pa〉, as we will see later on, spawn

another copy of the original process which will use the first received name as ambient

and the second one as parent ambient. It is worth noticing the use of the received

name x after each choice branch:

• the name received over pa@a is used as new parent ambient name, as required

by the exit and enter capabilities;

• the name received over merge@a is used as new ambient name, when the

merging operation affects the local ambient;

• the name received over merge@pa is used as new parent ambient name, when

the merging operation affects the parent ambient.

After the execution of the BCAST loop, all the notified processes return to

their previous state, that is they are ready again to behave as S1, . . . , Sm in the case

of Expr. (5.1), even if they are located in a new compartment. In other words,

the encoding of each communication or capability is represented by a loop which

allows the process to return in its previous state after receiving some new ambient

or parent ambient name. With a slight abuse of notation we may then write that

each communication or capability choice of BioAmbients can be encoded as follows:

[[ ∑

i∈I, I 6=∅
ξi.Pi

]]α

a,pa
,

(ν s)(s〈a, pa〉
∣
∣ ! s(na, npa).SUBSUM(s, na, npa))

(5.3)
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where SUBSUM is just a shorthand for the following expression (since its definition

does not depend only on the names s, na, npa but also on the branches of the choice
∑

i ξi.Pi):

SUBSUM(s, na, npa) ,

∑

i∈I, I 6=∅

[[
ξi.Pi

]]α∗

na,npa
+ TREE(s, na, npa)

(5.4)

Here, replication is exploited as usual for the modelling of recursive behaviour,

which is needed in order to make each process return to the original state after the

interaction with some triggered BCAST loop. The presence of the TREE process

as part of the choice grants that each encoded process is listening on the right

channels and ready to “be passively moved” inside some new ambient or parent

ambient in consequence of the structural change in the nesting tree that has been

triggered by another pair of processes.
∑
ξi.Pi represents either a choice between

capabilities or between communications, since they are kept distinct in the definition

of BioAmbients grammar. In the particular case of a single-branched choice in

the form π.P or M.P the encoding is the same even if the choice operator is not

written explicitly, because we still need to preserve the implicit choice branches with

recursive behaviour expressed by TREE. The function
[[
·
]]α∗

decorated with an

additional star denotes the encoding of each communication or capability, in order

to distinguish it from the encoding of single-branched choices.

This π@ encoding of the choice operator determines severe consequences on the

expression of BioAmbients replication. If we consider the following example

[ ! merge+ n.P
∣
∣ Q]

∣
∣ [merge− .R

∣
∣ S ] →

[ ! merge+ n.P
∣
∣ P

∣
∣ Q

∣
∣ R

∣
∣ S ]

(5.5)

then we may suppose to encode the replication homomorphically:

[[
! P

]]α

a,pa
, !

[[
P

]]α

a,pa
(5.6)

Unfortunately this would cause a high priority loop without termination in Expr.

(5.3). In fact, each encoded process
[[ ∑

ξi.Pi
]]α

a,pa
undergoes an internal, high
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priority reduction on the private channel s which spawns a new copy of a subprocess

SUBSUM(s, a, pa). Consequently, a direct replication of Expr. (5.3) by Expr. (5.6)

would cause an unbounded number of such reductions to happen immediately. Their

high priority level would hang the entire system. It would be possible to overcome

the problem by correcting the encoding of the choice in the following way:

[[ ∑

i∈I, I 6=∅
ξi.Pi

]]α

a,pa
,

(ν s)(SUBSUM(s, a, pa)
∣
∣ ! s(na, npa).SUBSUM(s, na, npa))

(5.7)

with SUBSUM corresponding to Expr. (5.4). The internal high priority reduction

is eliminated because the spawned term SUBSUM(s, a, pa) is now explicitly written

in the encoding. The replication of Expr. (5.7) by Expr. (5.6) now can successfully

translate the BioAmbients system of Expr. (5.5). In fact, after the first reduction

on merge@n@pa, a copy of
[[
P

]]α
is spawned while the original

[[
! merge+ n.P

]]α

is kept and ready to execute another merge+ reduction, in accordance with the

right-hand side of Expr. (5.5).

However, Expr. (5.6) is far from being correct. In fact, if we consider the

following system

[merge+ .P
∣
∣ Q]

∣
∣ [merge− .R

∣
∣ ! S] →

[P
∣
∣ Q

∣
∣ R

∣
∣ ! S]

(5.8)

where the replication acts on the process S which is sibling of the process undergoing

the merge− reduction, we may immediately notice the presence of another high

priority non-terminating loop, even without unfolding the encoding of the whole

system. We just need to recall the meaning of “replication of S” as “an unbounded

number of copies of S”:

! S ≡ ! S
∣
∣ S ≡ ! S

∣
∣ S

∣
∣ S ≡ ! S

∣
∣ S

∣
∣ S

∣
∣ S

∣
∣ · · ·

The encoding of replication of Expr. (5.6) would require each of the copies of
[[
S

]]α

represented by !
[[
S

]]α
to be notified of the change of compartment name triggered
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by the merge operation. Since such number of copies is unbounded and the loop is

characterised by high priority, the system would hang immediately.

Consequently, we are forced to introduce an indirect encoding of BioAmbients

replication by changing the intuitive abstraction of the replication operator itself.

Even if ! P represents an unlimited number of copies of P , there is no need to unfold

all of such copies. More precisely, we may think that there is no need to unfold

more than just one copy of P at each time. In other words, we may represent

! P as ! P
∣
∣ P and consider to unfold a new copy of P only when its previous

copy undergoes some reduction P → P ′. Actually this is equivalent to keeping each

replication in a sort of normal form where each replicated process is exactly unfolded

once. Supposing that P → P ′, the reduction

! P → ! P
∣
∣ P ′

would be then written as

! P
∣
∣ P → ! P

∣
∣ P

∣
∣ P ′

where the copy of P in the right-hand side of the expression is unfolded from ! P

only after the reduction of the first copy of P in the left-hand side to P ′.

This behaviour can be straightforwardly obtained in π@ by encoding each BioAm-

bients replication as a loop where one copy of
[[
P

]]α
is always unfolded and under-

goes the corresponding reductions of the BioAmbients process P . During any such

reductions,
[[
P

]]α
causes another copy of itself to spawn in order to grant that the

semantics of ! P is preserved. Furthermore, the encoding of ! P must observe the

same migration rules expressed by the TREE process of Expr. (5.2). In order to

allow
[[
P

]]α
to spawn a new copy of itself whenever it undergoes some reduction

we must introduce a new parameter in the encoding function, which represents the

private channel over which the spawning event will be communicated: this parame-

ter is needed because the encoding of the action which causes P to reduce may be

several nested calls later with respect to the recursive definition of
[[

! P
]]α

. In fact,

consider the following system:

S , ! (local n?.Q′
1

∣
∣ Q2)
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Its encoding in π@ requires three recursive calls of the encoding function
[[
·
]]α

, one

for each of the following subsystems:

S , ! P P , Q1

∣
∣ Q2 Q1 , local n?.Q′

1

By the previous considerations, we can keep one copy of P always unfolded and

write S in the following way:

S , ! P
∣
∣ P

After the reduction of Q1 to Q′
1, the system should appear as

S
∣
∣ local n!.0 → ! P

∣
∣ P

∣
∣ Q′

1

∣
∣ Q2

where one copy of P is still unfolded. The unfolding of the corresponding π@ process
[[
P

]]α
must be triggered by the local n communication of

[[
Q1

]]α
. In other words,

the π@ process
[[
Q1

]]α
must cause

[[
! P

]]α
to spawn a new copy of

[[
P

]]α
, even if

[[
! P

]]α
is defined recursively as a function of

[[
P

]]α
, in turn defined as a function

of
[[
Q1

]]α
. The only way to achieve this result is by introducing some new name k

passed as parameter from
[[

! P
]]α

until the recursive call of the encoding function
[[
Q1

]]α
, which will use it to spawn a new copy of

[[
P

]]α
as soon as the local n

operation is executed. Hence, the encoding of the local communication (and of all

the other communications and capabilities) should be modified as follows:

[[
local n?{m}.P

]]α

k,a,pa
, local@n@a(m).(

[[
P

]]α

a,pa

∣
∣ unfold@k) (5.9)

unfold@k spawns a new copy of
[[
P

]]α
in the encoding of ! P :

[[
! P

]]α

a,pa
, (ν k)(BANG(k, a, pa)

∣
∣

[[
P

]]α

k,a,pa

∣
∣

! new@k(na, npa).
[[
P

]]α

k,na,npa
)

BANG(k, a, pa) , ! k(na, npa).SUBBANG(k, na, npa)

∣
∣ SUBBANG(k, a, pa)

SUBBANG(k, na, npa) , unfold@k.new@k〈na, npa〉.k〈na, npa〉 +

TREE(k, na, npa)

(5.10)
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The recursive call
[[
P

]]α

k,na,npa
, together with the new encodings suggested by Expr.(5.9),

ensures that each communication or capability appearing after the above replica-

tion will spawn a new copy of
[[
P

]]α
with a high priority reduction on the channel

unfold@k. Such spawning is mediated by the BANG subprocess, which regulates

also the relocation of
[[

! P
]]α

a,pa
by direct embedding of the TREE subprocess dis-

cussed previously. It is worth remarking that such relocation in practice affects

only the subprocess BANG, which is the only process regulating where (in terms

of ambient and parent ambient) the following copies of
[[
P

]]α
will be spawned. In

accordance with the previous considerations, one copy (at least one, more precisely)

of
[[
P

]]α
is always kept unfolded. The relocation of this spawned copy into some

new ambient or parent ambient after some merge or exit/expel or enter/accept

capability happens transparently, since it already embeds in the correct way the

subprocess TREE as part of each encoded choice.

Two remarks allow us to refine Expr. (5.10), which is still not correct.

First, replications may be nested and more than one unfolding may be needed

after some reduction. As an example, consider the following system

S ,! (ν x)! local n?.R′

which we rewrite in terms of some additional shorthands:

S ,! P P , (ν x)Q Q ,! R R , local n?.R′

The unfolding of one copy of each replicated process leads to the following expression:

S ≡ ! P
∣
∣ (ν x)(! R

∣
∣ R)

The reduction of R to R′ requires two unfoldings : one of P and one of R, corre-

sponding to one unfolding for each replication appearing before the communication

or capability (i.e. each replication appearing as ancestor not followed by choice in

the syntactic tree generating the BioAmbients expression). Consequently, one name

k as additional parameter in the corresponding π@ encoding is not enough if more

than one nested replication is present in the BioAmbients process. Hence, the pa-

rameter k must be replaced by the set K = {k1, k2, . . . , kn} containing one name
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for each encoded replication which must be unfolded. This set is added with a new

name after the encoding of each replication and becomes empty after the encoding

of any BioAmbients choice, since any subsequent reduction of R′ does not affect the

replication of P and R anymore.

Second, the constant unfolding of one copy of a replicated process is not sufficient

to express its full behaviour. Consider for example the following system:

S , ! P P , (local n?.P1 + local n!.P2)

If we unfold only one copy of P , we miss the reduction that may happen between

two distinct copies of P themselves. In fact we have that

S ≡ ! P
∣
∣ P

∣
∣ P → ! P

∣
∣ P1

∣
∣ P2

where P1 and P2 follow the reduction over local n. Consequently, at least two copies

of
[[
P

]]α
must be constantly kept unfolded in the corresponding encoded process.

Expr. (5.10) can be then modified as follows:

[[
! P

]]α

K,a,pa
, (ν k)(BANG(k, a, pa)

∣
∣

[[
P

]]α

K∪{k},a,pa

∣
∣

[[
P

]]α

K∪{k},a,pa

∣
∣

! new@k(na, npa).
[[
P

]]α

K∪{k},na,npa
)

The encoding of communications and capabilities is updated accordingly:

[[
local n?{m}.P

]]α

K,a,pa
, local@n@a(m).

([[
P

]]α

∅,a,pa

∣
∣

unfold@k1

∣
∣ · · ·

∣
∣ unfold@kn

)

with K = {k1, . . . , kn}.

The full definition of
[[
·
]]α

is given in Table 5.1 and Table 5.2. Here, the names

oa and opa represent two fictitious names needed for the correct initialisation of the

encoding function, and corresponding to the outermost ambient and parent ambient

of the entire encoded system.

The encoding function
[[
·
]]α

enjoys the requirements discussed in section 5.1.2,

as stated by the following theorem.
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Theorem 5.1
[[
·
]]α

is a suitable encoding (modulo structural congruence), that is:

let P , P1, P2 be BioAmbients processes, let Q be a π@ process, then

1.
[[
P1

∣
∣ P2

]]α
=

[[
P1

]]α ∣
∣

[[
P2

]]α
;

2. for any permutation of the source names θ,
[[
θ(P )

]]α
= θ(

[[
P

]]α
);

3. P ⇓ iff
[[
P

]]α
⇓, P ⇑ iff

[[
P

]]α
⇑;

4. (a) if P → P1 then ∃P2 : P2 ≡ P1 ∧
[[
P

]]α
→∗

[[
P2

]]α
;

(b) if
[[
P

]]α
→∗ Q then ∃P1 : P →∗ P1 ∧Q→

∗
[[
P1

]]α
.

5.1.4 Encoding Brane in π@

Like ambients, membranes are organised in tree structures: each node of the tree

may contain membrane processes or nested membranes. Unlike BioAmbients, Brane

Calculi present two main entities: systems and branes. Their distinction implies

slightly different translations, because the encoding function of systems needs only

two parameters (K, the set corresponding to the bang operators in front of the

system and pc, the name representing the parent compartment) while an additional

parameter is needed for encoding branes (c, the name of the compartment where the

brane process resides). In fact, branes represent the boundaries of compartments:

each new membrane corresponds to the definition of a new compartment, i.e. the

name of the immediate compartment where the associated π@ process is located.

Consequently, the function
[[
·
]]β

from Brane to π@ has two formal parameters when

applied to the parallel composition of systems

[[
P ◦Q

]]β

K,pc
,

[[
P

]]β

K,pc

∣
∣

[[
Q

]]β

K,pc

and three for the parallel composition of branes:

[[
σ

∣
∣ ρ

]]β

K,c,pc
,

[[
σ

]]β

K,c,pc

∣
∣

[[
ρ

]]β

K,c,pc
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Their encoding is almost the same as the encoding of parallel composition of BioAm-

bients processes. The names c and pc play the same role of a and pa for the encoding

function
[[
·
]]α

. The appearance of the additional name c as a parameter of the en-

coding function occurs after the first application of
[[
·
]]β

to branes:

[[
σ(|P |)

]]β

K,pc
, (ν c)(

[[
σ

]]β

K,c,pc

∣
∣

[[
P

]]β

K,c
)

The encoding of a membrane corresponds to the introduction of the new name c

that is used as compartment for branes, and as parent compartment for the inner

system P . Any encoded brane occurring in
[[
P

]]β

K,c
will use the above name c as

parent compartment and will be able to interact over it with the surrounding branes

represented here by
[[
σ

]]β

K,c,pc
. The name pc of the parent compartment is known

only by the branes placed in the outer membrane, in accordance with the same

intuition of compartment nesting exploited for the encoding of ambients.

The basic actions exo/exo⊥, phago/phago⊥ and pino are encoded almost like

BioAmbients capabilities: each operation of the original language is translated with

a synchronisation followed by a sequence of high priority actions which manage the

reorganisation of the tree structure and the unfolding of replicated processes involved

in the computation.

For example, the translation of the exo/exo⊥ actions requires three names for

each channel and triggers the BCAST loop whose definition is exactly the same as

for
[[ ]]α

:

[[
exon.σ

]]β∗

K,c,pc
, exo@n@pc(x).bcast〈exo, c, x〉.(

[[
σ

]]β

∅,pc,x

∣
∣ ΠK) (5.11)

[[
exo⊥n .σ

]]β∗

K,c,pc
, exo@n@c〈pc〉.(

[[
σ

]]β

∅,c,pc

∣
∣ ΠK) (5.12)

The asymmetry of the situation recalls the encoding of the exit/expel capability,

since the internal process listens on the channel exo@n@pc intuitively located in

the parent compartment pc, while the external process is ready to send on the local

channel exo@n@c. The main difference is in the choice and use of the transmitted

name pc by the TREE subprocess and in the compartment where the broadcast

effect of BCAST occurs. In order to understand the rearrangement of the membrane
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tree structure, consider the following example:

S , · · · ◦

c2
︷ ︸︸ ︷

σ(| τ(| P |)
︸ ︷︷ ︸

c3

|)

︸ ︷︷ ︸

c1

σ , exo⊥.σ′|ρ τ , exo.ρ′|γ

c1 represents the parent compartment of the whole system S, while c2 is both the

compartment of σ and the parent compartment of τ (and of the entire subsystem

τ(| P |)). The system S can reduce as follows:

S → S ′ S ′ , · · · ◦ P ◦

c2
︷ ︸︸ ︷

σ′|ρ|ρ′|γ(| · |)
︸ ︷︷ ︸

c1

Two kinds of structural changes can be noticed in the reduction from S to S ′.

First, the parent compartment of P after the reduction coincides with the parent

compartment c1 of S: this justifies the name pc transmitted by the encoded exo⊥

process. Second, the branes ρ′ and γ changed both their compartment and their

parent compartment. In fact, before the reduction, they were respectively c3 and c2,

while after the reduction they become c2 and c1. This means that the corresponding

π@ processes must replace their previous compartment name c3 by their parent

compartment c2, and use as new parent compartment the name c1 sent by the

process performing the
[[
exo⊥

]]β
action. The recursive call

[[
σ

]]β

∅,pc,x
of Expr.

(5.11) reflects this behaviour, as well as the definition of the TREE process:

TREE(b, c, pc) , exo@pc(x).b〈c, x〉 +

exo@c(x).b〈pc, x〉 +

pc@c(x).b〈c, x〉

The first branch of the choice is followed, in the previous example, by the subsystem

P which receives the name of its new parent compartment. The second branch is

followed by the brane γ which receives the name of its new parent compartment but

replaces also the name of its immediate compartment by the name of the previous

parent compartment.
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The third branch is needed for the encoding of the phago/phago⊥ reduction:

[[
phagon.σ

]]β∗

K,c,pc
, phago@n@pc(x).bcast〈pc, c, x〉.(

[[
σ

]]β

∅,c,x

∣
∣ ΠK)

[[
phago⊥n (ρ).σ

]]β∗

K,c,pc
, (ν x)

(
phago@n@pc〈x〉.

(
[[
σ

]]β

∅,c,pc

∣
∣

[[
ρ

]]β

∅,x,c

∣
∣ ΠK)

)

In this case, the name transmitted by the
[[
phago⊥

]]β
process corresponds to the

newly created membrane that surrounds the engulfed process and is used as new

parent compartment.

The pino action has a similar, but simpler encoding:

[[
pino(ρ).σ

]]β∗

K,c,pc
, (ν x)τ.(

[[
σ

]]β

∅,c,pc

∣
∣

[[
ρ

]]β

∅,x,c

∣
∣ ΠK)

In the right-hand side of the encoding, the reduction τ represents an invisible π@

transition, and must not be confused with the notation used for branes. The lack

of complementary action and the very localised effect allows us to disregard any

broadcast loop. The new created membrane is represented by a new restricted name

x used as local compartment by
[[
ρ

]]β

∅,x,c
, whose parent compartment coincides with

the immediate compartment of the encoded process
[[
pino(ρ).σ

]]β

K,c,pc
.

The sequential composition of branes σ.σ′ is encoded exactly like the choice

operator of BioAmbients, as a sort of single-branch choice:

[[
a.σ

]]β

K,c,pc
, BCAST

∣
∣ ν s(! s(nc, npc).

(
[[
a.σ

]]β∗

K,nc,npc
+ TREE(s, nc, npc))

∣
∣

[[
a.σ

]]β∗

K,c,pc
+ TREE(s, c, pc))

The presence of two distinct replication operators in Brane leads to two slightly

different encodings which reflect the fact that systems are only provided with parent

compartment, while branes are also aware of their immediate compartment. The

encoding of branes replication is the same as the one seen for BioAmbients replica-
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tion:

[[
! σ

]]β

K,c,pc
, (ν b)(BANG(b, c, pc)

∣
∣

[[
σ

]]β

K∪{b},c,pc

∣
∣

[[
σ

]]β

K∪{b},c,pc

∣
∣

! new@b(nc, npc).
[[
σ

]]β

K∪{b},nc,npc
)

BANG(b, c, pc) , ! b(nc, npc).SUBBANG(b, nc, npc)
∣
∣

SUBBANG(b, c, pc)

SUBBANG(b, nc, npc) , unfold@b.new@b〈nc, npc〉.b〈nc, npc〉 +

TREE(b, nc, npc)

The encoding of systems replication is simplified by the absence of name for the

immediate compartment, which allow us to shrink the definition in the following

way:

[[
! P

]]β

K,pc
, (ν b)(BANG′(b, pc)

∣
∣

[[
P

]]β

K∪{b},pc

∣
∣

[[
P

]]β

K∪{b},pc

∣
∣

! new@b(npc).
[[
P

]]β

K∪{b},npc

BANG′(b, npc) , ! b(npc).SUBBANG′(b, npc)
∣
∣

SUBBANG′(b, pc)

SUBBANG′(b, npc) , unfold@b.new@b〈npc〉.b〈npc〉 +

exo@npc(x).b〈x〉

Instead of the three branches of the TREE process, only one is present, since only

one of those branches (triggered by a reduction over exo@npc) is related to changes

of the parent compartment name.

The full definition of
[[
·
]]β

is given in Table (5.3) and Table (5.4). Similarly to

the BioAmbients encoding, oc and opc are placeholders standing for the compart-

ment and parent compartment of the outermost processes. The non-trivial encoding

in π@ of molecular reactions and other extensions proposed in [22] is not strictly

related to compartment semantics, but is being considered for future work, due to

its relevance in chemical modelling.
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Also the encoding function
[[
·
]]β

enjoys the requirements discussed in section

5.1.2:

Theorem 5.2
[[
·
]]β

is a suitable encoding (modulo structural congruence), that is:

let P , P1, P2 and ρ1, ρ2 be respectively Brane systems and processes, let Q be a π@

process, then

1.
[[
P1 ◦ P2

]]β
=

[[
P1

]]β ∣
∣

[[
P2

]]β

[[
ρ1

∣
∣ ρ2

]]β
=

[[
ρ1

]]β ∣
∣

[[
ρ2

]]β

2. for any permutation of the source names θ,
[[
θ(P )

]]β
= θ(

[[
P

]]β
);

3. P ⇓ iff
[[
P

]]β
⇓, P ⇑ iff

[[
P

]]β
⇑;

4. (a) if P → P1 then ∃P2 : P2 ≡ P1 ∧
[[
P

]]β
→∗

[[
P2

]]β
;

(b) if
[[
P

]]β
→∗ Q then ∃P1 : P →∗ P1 ∧Q→

∗
[[
P1

]]β
.

5.1.5 Encoding Brane in core-π@

In the encodings of BioAmbients and Brane previously defined, we used three priority

levels and up to three names for each channel in π@. In order to provide similar

encodings in core-π@, we need now to use not more than two names for channel and

two priority levels.

The expedient for reducing the number of names needed for encoding capabilities

and actions is very simple: for example, the exon/exo
⊥
n action can be encoded with

the only name exo n (where the underscore character ’ ’ is used just for sake of clarity

and is part of the string representing the name) instead of the two names exo and n

joint by polyadic synchronisation as exo@n. However, the (unique) consequence of

this change in the encoding is the multiplication of the names needed for representing

each private name in BioAmbients. In fact, each BioAmbients name n must now be

translated as a vector

(enter n, expel n,merge n, local n, s2s n, p2c n, c2p n)
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in order to allow each different communication or capability to operate indepen-

dently. Since Brane lacks restriction and name passing, its encoding in π@ is not

affected by such conversion.

The reduction of the number of levels of priority influences the encoding of

both languages. In the definition of the previous encoding functions, one prioritised

intermediate level was used to “garbage-collect”, by means of a prioritised τ action,

the BCAST processes which terminated the loop with broadcast-like effect. Here

we recall the definition of BCAST :

BCAST , ! bcast(x, y, z).(x@y〈z〉.bcast〈x, y, z〉+ τ)

A naive way to reduce the number of priority levels would be to decrease the priority

level of both the τ transition (which would become a normal low priority transition)

and all the other high priority reductions (which would still be prioritised). The

definition of the BCAST process would be consequently modified as follows:

BCAST , ! bcast(x, y, z).(x@y〈z〉.bcast〈x, y, z〉+ τ)

The problem with this definition of BCAST is that there is no way to know when

the above τ transition will be executed and the loop will terminate its action. In

principle this would not constitute an important issue, since the high priority of

the reductions over x@y and bcast would force the loop to be interrupted when all

the processes waiting for a possible broadcast on the corresponding channel have

been notified of the new compartment or ambient name. Unfortunately, a spurious

process

SP , x@y〈z〉.bcast〈x, y, z〉+ τ

would still be around, ready to interfere with the normal behaviour of the system

over some channel x@y. Such interference may happen for example in the encoding

of the following Brane system:

S ,

c1
︷ ︸︸ ︷

phago.σ|σ′(| P |)
︸ ︷︷ ︸

c2

◦ phago⊥(exo.γ).exo⊥.ρ(| Q |)
︸ ︷︷ ︸

c3
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c1 represents the name of the parent compartment of the whole system S, c2 and c3

are the names corresponding to the immediate compartments of its two subsystems.

S undergoes the following reductions:

S → S ′ → S ′′

with

S ′ , exo⊥.ρ(|

c4
︷ ︸︸ ︷

exo.γ(| σ|σ′(| P |)
︸ ︷︷ ︸

c2

|) ◦ Q |)

and

S ′′ ,

c1
︷ ︸︸ ︷

σ|σ′(| P |)
︸ ︷︷ ︸

c2

◦ ρ|γ(| Q |)

After the first reduction, a fresh membrane is represented by the name c4 which

is then lost after the following exo operation. The BCAST loop triggered by the

encoding of the first reduction would be spawned by the process performing the

phago action with parameters c1, c2, c4, in order to make all the branes in σ′ replace

their parent compartment c1 by the fresh compartment c4. Such BCAST loop may

leave the following spurious process:

SP , c1@c2〈c4〉.bcast〈c1, c2, c4〉+ τ

The use of three priority levels, with an intermediate prioritised level for τ , would

have forced SP to disappear before the transition

[[
S ′

]]β
→

[[
S ′′

]]β

while with only two levels it may be still present in parallel composition with
[[
S ′′

]]β
.

This means that the subprocess
[[
σ|σ′(| P |)

]]β
of the encoded system S ′′ may be

still subject to the effect of SP and be moved again into the parent compartment

identified by c4, even if such compartment is not present anymore in the original

Brane process.

In order to avoid this annoying side effect, we must ensure that any residual

SP process is totally isolated from the the system. This can be achieved by using
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two names c, cb for each compartment, c for the low-priority synchronisation of

processes corresponding to actions, communications and capabilities, while cb for

the high-priority sequence of broadcast actions. After each broadcast, the name cb

is forgotten completely by all the processes and replaced by a new name c′b for the

next broadcast. Consequently, each SP process remaining after the regular end of

the broadcasting loop is not able to communicate with the system, so it is going

to disappear spontaneously by executing the internal τ action after a while. If we

denote any pair of names n, nb as n̈, the new encoding functions
[[
·
]]β′

from Brane

to core-π@ and
[[
·
]]α′

from BioAmbients to core-π@ have almost the same shape

as the previous functions
[[
·
]]β

and
[[
·
]]α

. For example, the parallel composition

of Brane systems is encoded as

[[
P ◦Q

]]β′

K,p̈c
,

[[
P

]]β′

K,p̈c

∣
∣

[[
Q

]]β′

K,p̈c

with the only difference being the names of compartments which are now paired as

discussed. The definition of the processes TREE and BCAST reveals how name

pairs are handled:

BCAST , ! bc@bcast(x, y, nyb, z̈).

(τ + x@y〈nyb, z̈〉.bc@bcast〈x, y, nyb, z̈〉)

TREE(b, c̈, p̈c) , pc@cb(ncb, ẍ).cycle@b〈c, ncb, ẍ〉+

exo@pcb(npcb, ẍ).cycle@b〈c̈, ẍ〉+

exo@cb(ncb, ẍ).cycle@b〈p̈c, ẍ〉

The presence of the names bc and cycle is due to the definition of core-π@ grammar,

which does not allow the denotation of channels by means of only one name.

The BCAST process is not substantially changed, except for the number of

names (five instead of three) handled during the loop: the first two identify the

channel x@y where the broadcast will occur, while z̈ = z, zb denote the two names

associated with the compartment undergoing some structural change. The name

nyb constitutes the replacement of y for the next broadcast occurring in the related

compartment.
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Accordingly, the TREE subprocess receives the three names ncb, ẍ (with ẍ =

x, xb) instead of only one. ncb is used in the first branch of the choice as new broad-

cast name associated with c substituted by cb, in consistency with the encoded

phago operation which updates the names of the parent compartment pc for all the

processes in c. The encoded exo action is characterised by the peculiar property of

eliminating already the name of the inner compartment where the broadcast hap-

pens, so that the new name ncb is useless in the second and third branch of the

TREE process (and in fact it disappears). The same would happen with BioAmbi-

ents merge capability.

The encoding of actions should be consistently updated. The phago⊥ co-action

is not substantially changed:

[[
phago⊥n (ρ).σ

]]β′∗

K,c̈,p̈c
, (ν ẍ)

(
phago n@pc〈ẍ〉.

(
[[
σ

]]β′

∅,c̈,p̈c

∣
∣

[[
ρ

]]β′

∅,ẍ,c̈

∣
∣ ΠK

)

Each action which triggers a BCAST process requires the creation of the new name

ncb previously discussed:

[[
phagon.σ

]]β′∗

K,c̈,p̈c
, phago n@pc(ẍ).(ν ncb)

(bc@bcast〈pc, cb, ncb, ẍ〉.(
[[
σ

]]β′

∅,c,ncb,ẍ

∣
∣ ΠK)

ncb is substituted for cb here as well, as we can notice from the parameters used in

the recursive call of the encoding function.

In Table 5.5 and Table 5.6 the full encoding of Brane in core-π@ is reported. The

encoding of BioAmbients is based on the same ideas and does not require further

insights.

5.2 Encoding catalytic P systems in π@

P systems and process calculi present many similar aspects: interaction between

different elements (by direct communication in π-calculus-like languages, by transi-

tion rules in P systems), localisation of interaction (within the same membrane in P
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systems, within the scope of a name in π-calculus-like languages or within the same

compartment in bio-inspired calculi), concurrency, nondeterminism. However, they

come from distant areas, in fact they are composed of totally different elements: P

systems are made of objects, (sometimes prioritised) rules, membranes. In process

calculi there is only one kind of elements: processes. So it is quite natural to expect

that every element of a P system will be translated in a π@ process. One non trivial

difference to overcome is the maximal parallelism typical of P systems: even if pro-

cess calculi deal with concurrent objects and describe parallel evolution, there is no

immediate correspondence with such a strong constraint in π@, which means that

maximal parallelism must be injected in some way within the behaviour of every

process.

In the next section basic ideas of encoding catalytic P systems in π@ are pre-

sented, first by defining the general form of the encoding function and then by

specifying its simplest parts without considering the difficulties introduced by maxi-

mal parallelism. In Section 5.2.2 the encoding function is finally specified, preserving

modularity and divergence/termination properties of the encoded systems even after

the introduction of maximal parallelism constraints.

5.2.1 Encoding ideas

Despite their similarities, the different features of membrane systems and process

calculi make less obvious the encoding of the selected kind of P systems in π@, with

respect to both how such an encoding may be realised and which requirements it

should satisfy. We may try to adapt the set of constraints defined for a suitable

encoding to this new setting.

As for the previous encoding, we need to preserve some kind of operational

correspondence: if there is a transition between two configurations of a P system

C1 −→ C2, the encoded system
[[
C1

]]
should be able to perform (in one or more

steps) a transition
[[
C1

]]
=⇒

[[
C2

]]
, while if

[[
C1

]]
=⇒ Q, then a configuration

C should exist such that Q =⇒
[[
C

]]
and C1 −→ . . . −→ C.
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The encoding should also fulfill some modularity requirement, although the syn-

tax and semantics of P systems do not allow the expression of such requirements

as homomorphism of the operator of parallel composition. In fact there is no such

operator in P systems, and the description of the state of the system (the kind of el-

ements and their multiplicity) is separated from the specification of their behaviour

(i.e. the reaction rules they undergo) and the structure of the system (the tree of

membranes). The more challenging result in terms of modularity would consist of

the possibility of encoding separately each of these entities: in the following we show

how this can be achieved.

In this section we expose the main ideas which help to provide an encoding satis-

fying the above conditions, while in the next section we show the final version of the

encoding function which also satifies additional constraints about the preservation

of divergence and termination.

Before sketching the first encodings, we define the encoding function in its general

form:

Definition 5.2 Given a catalytic P system Π ∈ ΠDom

Π = (V,C, µ, w0
1, . . . , w

0
d, R1, . . . , Rd, i0)

where ΠDom represents the domain of all the possible catalytic P systems, the encod-

ing function
[[ ]]

: ΠDom −→ P is defined as

[[
Π

]] def
=

[[
µ

]]

MS

∣
∣

[[
w0

1, 1
]]

S

∣
∣ . . .

∣
∣

[[
w0
d, d

]]

S

∣
∣

[[
R1, 1

]]

R

∣
∣ . . .

∣
∣

[[
Rd, d

]]

R

where

[[ ]]

MS
: MS −→ P,

[[ ]]

S
: V ∗ × IN −→ P,

[[ ]]

R
: RDom × IN −→ P,

MS, V ∗, RDom standing respectively for the sets of all possible membrane structures,

multisets of objects (i.e. strings) and evolution rules.
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The next task is the definition of
[[ ]]

MS
,

[[ ]]

S
,

[[ ]]

R
, on which the definition of

[[ ]]
depends, but some remarks are needed first.

Even without specifying the functions
[[ ]]

MS
,
[[ ]]

S
,
[[ ]]

R
, it is easy to observe

that the encoding is completely modular: every piece can be added, eliminated or

modified without affecting the rest of the encoded system. In this way we obtain

exactly our aim, rules do not depend on objects and vice versa, but there is something

more: objects or rules encoding does not depend on membrane structure, since the

only information needed is the number (or the label) of the membrane containing

the object or rule.

A P system is essentially a set of objects observing certain evolution rules: if

we have the rule ca → cbd, the object a can evolve to two new objects b, d, but

only if a catalyst c is nearby. Perhaps the most natural way to compose the steps

of this evolution is: “if an object of type a meets the catalyst c, then it evolves into

two new objects b and d”, thus the objects are thought of as the main actors in

this process. But if we add another rule, a→ e, then the behaviour of the object a

considerably changes: “one possibility is that if the object a meets the catalyst c,

then it evolves into two new objects b and d; another one is that the object a evolves

into the object e”. So if we think of objects as the main actors of evolution, probably

we are not going to find a modular encoding. The key for avoiding this problem is

to spot the real actors: evolution rules. The rule ca → cbd could be expressed in

this way: “forever do: check if an object of type a is nearby, then check if a catalyst

c is nearby too; if they are, replace a with b and d”. Hence, adding another rule

would be not difficult: a→ e would just become another process executing “forever

do: if a is nearby, then replace it with e”. The behaviour of objects would then

become trivial, in fact a would be “if some rule asks for object a, say a is present”.

Obviously other issues would then pop up, caused for example by rules competing

for the same objects, but we will face them later.

Following this interpretation, we could have (ignoring the second parameter of
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the encoding functions, for the moment)

[[
a

]]

S
= a ,

[[
c

]]

S
= c

[[
ca→ cbd

]]

R
= ! c.a.(c

∣
∣ b

∣
∣ d)

In fact

a
∣
∣ c

∣
∣ ! c.a.(c

∣
∣ b

∣
∣ d) →

a
∣
∣ a.(c

∣
∣ b

∣
∣ d)

∣
∣ ! c.a.(c

∣
∣ b

∣
∣ d) →

c
∣
∣ b

∣
∣ d

∣
∣ ! c.a.(c

∣
∣ b

∣
∣ d)

but in this way if the object a is not present, object c disappears even if not used

and the rule process is deadlocked:

c
∣
∣ ! c.a.(c

∣
∣ b

∣
∣ d) → a.(c

∣
∣ b

∣
∣ d)

∣
∣ ! c.a.(c

∣
∣ b

∣
∣ d)

So a correction is necessary

[[
ca→ cbd

]]

R
= ! c.(c+ a.(c

∣
∣ b

∣
∣ d))

so that the checking phase does not delete even unused objects. But another issue

appears, because the rule above may execute forever without producing its output

objects, even if input objects a and c are present: we have introduced divergence.

In fact, after checking the presence of c, we should be able to give some kind of

precedence to the second term of the choice, in order to ensure that if some object

a is present, then the rule completes its job. By means of prioritised choice, it is

possible to model this kind of precedence:

[[
ca→ cbd

]]

R
= ! c.(τ.c+ a.(c

∣
∣ b

∣
∣ d))

In this way we obtain that if a given rule may be applied, for sure it is applied, how-

ever divergence is not completely removed yet: if only object c is present, the above

process would continue its checking forever. Since maximal parallelism introduces

again the same kind of problem, we defer the final solution to the next section.
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One aspect we can consider before dealing with complex encodings is the local-

isation of communication: objects located in one membrane shall not interact with

rules located in another membrane. π@ allows the modelling of this constraint in

a very simple way, by means of polyadic synchronisation. The encoding functions
[[ ]]

R
,

[[ ]]

S
require two parameters: the first is the object or rule to be encoded,

the second is the number (or label) of the surrounding membrane. Localised com-

munication is then obtained easily by specifying the membrane number for every

object manipulated by evolution rules:

[[
c, n

]]

R
= c@n ,

[[
a, n

]]

R
= a@n

[[
ca→ cbd, n

]]

R
= ! c@n.(τ.c@n+ a@n.(c@n

∣
∣ b@n

∣
∣ d@n))

The next step is to understand how to express rules producing objects outside

membrane boundaries. For example, encoding the rule ca→ c(b, out), which ejects

b into the external membrane, requires some knowledge about membrane structure.

The definition 5.2 asserts that the only process owning this knowledge is
[[
µ

]]

MS
,

which is supposed to be properly queried. Thus, a possible solution may be

[[
ca→ c(b, out), n

]]

R
= ! c@n.(τ.c@n+ a@n.(c@n

∣
∣ out@n(x).b@x))

where the instruction out@n(x) queries the membrane structure process about the

label of the outer membrane.

Hence, membrane structure process could be seen as a service replying to two

types of queries: “tell me the label of the membrane surrounding membrane n”, or

“tell me the label of one of membranes inside membrane n”. The second type of

query introduces some kind of nondeterminism, because each membrane may contain

more than one child membrane, so it is necessary to preserve this nondeterministic

behaviour after the encoding. The easiest way to translate a membrane structure

in π@ is considering each membrane as a separated process. Thus, the first type of

query imposes that every membrane process “knows” the label of its surrounding

membrane. In other words, if the membrane structure is a tree, we are going to

implement it with pointers from child membranes to parent membranes. But the
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second type of rule requires that pointers from parent membranes to the inner ones

also exist: including these pointers in the child membranes processes allows the

encoding of each membrane completely disregarding its content.

Definition 5.3 Given a membrane structure µ ∈MS, the encoding function

[[ ]]

MS
: MS −→ P

is defined as

[[
[1 µi1 , . . . , µik ]1

]]

MS

def
=

! out@1〈outside〉
∣
∣

[[
µi1 , 1

]]′

MS

∣
∣ . . .

∣
∣

[[
µik , 1

]]′

MS

where
[[ ]]′

MS
: MS × IN −→ P

is defined as

[[
[n µi1 , . . . , µik ]n, p

]]′

MS

def
=

! out@n〈p〉
∣
∣ ! in@p〈n〉

∣
∣

[[
µi1 , n

]]′

MS

∣
∣ . . .

∣
∣

[[
µik , n

]]′

MS

The main encoding function
[[ ]]

MS
is defined in terms of an auxiliary function

[[ ]]′

MS
, which requires an additional parameter: the label of the parent membrane.

The skin has no parent membrane, so we provide a fictitious name outside to express

the compartment containing the objects ejected from skin and never allowed to enter

again. The encoding of each membrane is completely modular, hence any change

to the membrane structure tree affects only the encodings of the nodes directly

involved: adding or removing a whole subtree requires no changes to the remaining

structure.

Before facing divergence issues and maximal parallelism, the definition of
[[ ]]

S

is given.
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Definition 5.4 Given a string s ∈ V ∗, s = s1s2 . . . sn, the encoding function

[[ ]]

S
: V ∗ −→ P

is defined as
[[
s

]]

S

def
= s1

∣
∣ s2

∣
∣ . . .

∣
∣ sn

Again, the encoding is completely modular. Furthermore, it does not distinguish

catalysts from common objects, in fact the distinction is only useful before compile-

time to check the correctness of P system rules. The reason for the higher degree of

priority will be clear in the next section.

5.2.2 Final encodings

Two issues persist: the divergence introduced in the encoding of evolution rules and

maximal parallelism. Divergence is caused essentially by an endless loop. In fact,

the rule
[[
ca→ cbd

]]

R
= ! c.(τ.c+ a.(c

∣
∣ b

∣
∣ d))

contains a guarded loop, but the guard has no effect if the catalyst c is present,

because it never disappears. So an additional guard is required:

[[
ca→ cbd

]]

R
= coin

∣
∣ ! coin.c.(τ.c+ a.(c

∣
∣ b

∣
∣ d

∣
∣ coin))

First, a coin is given, then every execution of the rule eats a coin, but only a

succesfull execution produces another coin: after the first failure, the loop ends.

Yet, there are issues: in presence of two or more rules, the coin owned by a rule

could be used by another one. Furthermore, if object a or c is absent, the process

may pause in a spurious state and allow other rules to begin computing before ending

execution or releasing back the catalyst c. Even if it is possible to prove that the

final result does not change, this breaks the idea of atomicity for the application of

a rule. Thus, channel coin must be private and the priority of every action shall be

increased:

[[
ca→ cbd

]]

R
= (ν coin)(coin

∣
∣ ! coin.(τ + c.(τ .c+ a.(c

∣
∣ b

∣
∣ d

∣
∣ coin))))
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Maximal parallelism is a heavy constraint on the order of actions: objects may

be used only once for every tick of a sort of global clock. From an algorithmic point

of view, it may be thought of as a global loop of this kind:

while (in each tick at least one rule can be applied) do

while (in current tick some rule can be applied) do

apply a rule, freezing, for current tick, produced objects

done

let clock tick, unfreezing just produced objects

done

The outermost loop can be translated with the same scheme used to overcome

divergence in the encoding of rules: the only requirement is that rules signal in

some way their application performed during each clock tick, in order to allow the

loop to continue if at least one rule has been applied at least once:

[[
ca→ cbd

]]

R
= (ν coin)(! coin.(τ .tick.coin+ c.(τ .(c

∣
∣ tick.coin)+

a.(tick(c
∣
∣ b

∣
∣ d)

∣
∣ coin

∣
∣ worked)))

∣
∣ tick.coin)

Now, every application of the rule produces a worked process, signaling its ap-

plication, and the rule waits for its coin from the tick of the global clock. When the

rule application fails (i.e. when the τ actions are performed), a new process waits

for the next coin. The objects c, b, d produced by the rule are also frozen until next

clock tick. The global clock can expressed by a low priority loop:

! clock :3.worked.bcast〈worked〉.τ.bcast〈tick〉.clock :3
∣
∣ clock :3

∣
∣ worked

The first instruction, executed with the lowest priority, clock : 3, is the guard for

the global clock loop, working in the same way of the one previously seen: its coin

is represented by clock :3. As soon as this low priority guard fires, the presence of

at least one worked process is checked and the potential duplicates are burned by

a subsequent broadcast on the same name. Finally, all the processes waiting for

the next clock tick (rules waiting for their coin, or frozen objects) are awakened by

another broadcast.

Recalling previous considerations about localisation and movement of objects

between membranes, the encoding function for rules can finally be formalised:
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Definition 5.5 Given an evolution rule E ∈ RDom, the function

[[ ]]

R
: RDom × IN −→ P

is defined as

[[
E, n

]]

R

def
= (ν coin)(! coin.(τ .tick.coin+

[[
E, n

]]′

R
)

∣
∣ tick.coin)

∣
∣

∣
∣ CLOCK

∣
∣ BCAST

where

CLOCK ≡ ! clock :3.worked.bcast〈worked〉.τ.bcast〈tick〉.clock :3
∣
∣

∣
∣ clock :3

∣
∣ worked

BCAST ≡ ! bcast(x).(τ + x.bcast〈x〉)

The function
[[ ]]′

R
: RDom × IN −→ P

is defined as

[[
ca→ cv, n

]]′

R

def
= c@n.(τ .(c@n

∣
∣ tick.coin) +

[[
a→ (c, here)v, n

]]′

R
)

[[
a→ v1 . . . vk, n

]]′

R

def
= a@n.(coin

∣
∣ worked

∣
∣

∣
∣

[[
v1, n

]]′′

R

∣
∣ . . .

∣
∣

[[
vk, n

]]′′

R
)

where a ∈ V \ C, c ∈ C, v ∈ (V × {here, out, in})∗, v = v1 . . . vn, V alphabet of the

P system, C set of catalysts.

Finally, the function

[[ ]]′′

R
: (V × {here, out, in})× IN −→ P

is defined as

[[
(a, here), n

]]′′

R

def
= tick.a@n

[[
(a, out), n

]]′′

R

def
= out@n(x).tick.a@x

[[
(a, in), n

]]′′

R

def
= in@n(x).tick.a@x
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The definition of CLOCK and BCAST does not depend on any rule, so an im-

mediate optimisation would be insert them in the encoding of the function
[[ ]]

in

order to avoid useless duplicates, but this affects only the compilation phase.

The above encoding function
[[
·
]]

is summarised in Table 5.7.
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[[
0

]]α
, 0

[[
P

∣
∣ Q

]]α
,

[[
P

]]α ∣
∣

[[
Q

]]α

[[
(new n)P

]]α
,

[[
(new n)P

]]α

∅,oa,opa
[[

[ P ]
]]α

,
[[

[ P ]
]]α

∅,oa,opa
[[

! P
]]α

,
[[

! P
]]α

∅,oa,opa
[[

0
]]α

K,a,pa
, 0

[[
P

∣
∣ Q

]]α

K,a,pa
,

[[
P

]]α

K,a,pa

∣
∣

[[
Q

]]α

K,a,pa

[[
(new n)P

]]α

K,a,pa
, ν n

[[
P

]]α

K,a,pa

[[
[ P ]

]]α

K,a,pa
, ν c

[[
P

]]α

K,c,a

[[
! P

]]α

K,a,pa
, (ν b)(BANG(b, a, pa)

∣
∣

[[
P

]]α

K∪{b},a,pa

∣
∣

[[
P

]]α

K∪{b},a,pa

∣
∣

! new@b(na, npa).
[[

P
]]α

K∪{b},na,npa
)

[[ ∑

i∈I, I 6=∅
ξi.Pi

]]α

K,a,pa
, BCAST

∣
∣ ν s(! s(na, npa).

( ∑

i∈I, I 6=∅

[[
ξi.Pi

]]α∗

K,na,npa

+ TREE(s, na, npa)
) ∣

∣

∑

i∈I, I 6=∅

[[
ξi.Pi

]]α∗

K,a,pa
+ TREE(s, a, pa))

BANG(b, a, pa) , ! b(na, npa).SUBBANG(b, na, npa)
∣
∣ SUBBANG(b, a, pa)

SUBBANG(b, na, npa) , unfold@b.new@b〈na, npa〉.b〈na, npa〉 +

TREE(b, na, npa)

TREE(b, na, npa) , npa@na(x).b〈na, x〉+ merge@npa(x).b〈na, x〉+

merge@na(x).b〈x, npa〉

BCAST , ! bcast(x, y, z).(x@y〈z〉.bcast〈x, y, z〉+ τ)

Table 5.1: Encoding of BioAmbients processes in π@.
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[[
enter n.P

]]α∗

K,a,pa
, enter@n@pa(x).bcast〈pa, a, x〉.(

[[
P

]]α

∅,a,x

∣
∣ ΠK)

[[
accept n.P

]]α∗

K,a,pa
, enter@n@pa〈a〉.(

[[
P

]]α

∅,a,pa

∣
∣ ΠK)

[[
exit n.P

]]α∗

K,a,pa
, expel@n@pa(x).bcast〈pa, a, x〉.(

[[
P

]]α

∅,a,x

∣
∣ ΠK)

[[
expel n.P

]]α∗

K,a,pa
, expel@n@a〈pa〉.(

[[
P

]]α

∅,a,pa

∣
∣ ΠK)

[[
merge− n.P

]]α∗

K,a,pa
, merge@n@pa(x).

bcast〈merge, a, x〉.(
[[

P
]]α

∅,x,pa

∣
∣ ΠK)

[[
merge+ n.P

]]α∗

K,a,pa
, merge@n@pa〈a〉.(

[[
P

]]α

∅,a,pa

∣
∣ ΠK)

[[
local n!{m}.P

]]α∗

K,a,pa
, local@n@a〈m〉.(

[[
P

]]α

∅,a,pa

∣
∣ ΠK)

[[
local n?{m}.P

]]α∗

K,a,pa
, local@n@a(m).(

[[
P

]]α

∅,a,pa

∣
∣ ΠK)

[[
s2s n!{m}.P

]]α∗

K,a,pa
, s2s@n@pa〈m〉.(

[[
P

]]α

∅,a,pa

∣
∣ ΠK)

[[
s2s n?{m}.P

]]α∗

K,a,pa
, s2s@n@pa(m).(

[[
P

]]α

∅,a,pa

∣
∣ ΠK)

[[
p2c n!{m}.P

]]α∗

K,a,pa
, p2c@n@a〈m〉.(

[[
P

]]α

∅,a,pa

∣
∣ ΠK)

[[
c2p n?{m}.P

]]α∗

K,a,pa
, p2c@n@pa(m).(

[[
P

]]α

∅,a,pa

∣
∣ ΠK)

[[
c2p n!{m}.P

]]α∗

K,a,pa
, c2p@n@pa〈m〉.(

[[
P

]]α

∅,a,pa

∣
∣ ΠK)

[[
p2c n?{m}.P

]]α∗

K,a,pa
, c2p@n@a(m).(

[[
P

]]α

∅,a,pa

∣
∣ ΠK)

ΠK , unfold@k1

∣
∣ · · ·

∣
∣ unfold@kn ,

with K = {k1, . . . , kn}

Table 5.2: Encoding of BioAmbients communications and capabilities in π@.
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[[
⋄

]]β
, 0

[[
P ◦Q

]]β
,

[[
P

]]β ∣
∣

[[
Q

]]β

[[
! P

]]β
,

[[
! P

]]β

∅,oc
[[

σ(|P |)
]]β

,
[[

σ(|P |)
]]β

∅,oc
[[
⋄

]]β

K,pc
, 0

[[
P ◦Q

]]β

K,pc
,

[[
P

]]β

K,pc

∣
∣

[[
Q

]]β

K,pc

[[
σ(|P |)

]]β

K,pc
, (ν c)(

[[
σ

]]β

K,c,pc

∣
∣

[[
P

]]β

K,c
)

[[
0

]]β

K,c,pc
, 0

[[
σ

∣
∣ ρ

]]β

K,c,pc
,

[[
σ

]]β

K,c,pc

∣
∣

[[
ρ

]]β

K,c,pc

[[
! P

]]β

K,pc
, (ν b)(BANG′(b, pc)

∣
∣

[[
P

]]β

K∪{b},pc

∣
∣

[[
P

]]β

K∪{b},pc

∣
∣ ! new@b(npc).

[[
P

]]β

K∪{b},npc
)

[[
! σ

]]β

K,c,pc
, (ν b)(BANG(b, c, pc)

∣
∣

[[
σ

]]β

K∪{b},c,pc

∣
∣

[[
σ

]]β

K∪{b},c,pc

∣
∣ ! new@b(nc, npc).

[[
σ

]]β

K∪{b},nc,npc
)

BANG(b, c, pc) , ! b(nc, npc).SUBBANG(b, nc, npc)
∣
∣

SUBBANG(b, c, pc)

BANG′(b, npc) , ! b(npc).SUBBANG′(b, npc)
∣
∣ SUBBANG′(b, pc)

SUBBANG(b, nc, npc) , unfold@b.new@b〈nc, npc〉.b〈nc, npc〉+ TREE(b, nc, npc)

SUBBANG′(b, npc) , unfold@b.new@b〈npc〉.b〈npc〉 + exo@npc(x).b〈x〉

TREE(b, nc, npc) , npc@nc(x).b〈nc, x〉+ exo@npc(x).b〈nc, x〉+

exo@nc(x).b〈npc, x〉

Table 5.3: Encoding of Brane processes in π@
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[[
a.σ

]]β

K,c,pc
, BCAST

∣
∣ (ν s)(! s(nc, npc).

(
[[

a.σ
]]β∗

K,nc,npc
+ TREE(s, nc, npc))

∣
∣

[[
a.σ

]]β∗

K,c,pc
+ TREE(s, c, pc))

[[
phagon.σ

]]β∗

K,c,pc
, phago@n@pc(x).bcast〈pc, c, x〉.(

[[
σ

]]β

∅,c,x

∣
∣ ΠK)

[[
phago⊥n (ρ).σ

]]β∗

K,c,pc
, (ν x)

(
phago@n@pc〈x〉.(

[[
σ

]]β

∅,c,pc

∣
∣

[[
ρ

]]β

∅,x,c

∣
∣ ΠK)

)

[[
exon.σ

]]β∗

K,c,pc
, exo@n@pc(x).bcast〈exo, c, x〉.(

[[
σ

]]β

∅,pc,x

∣
∣ ΠK)

[[
exo⊥n .σ

]]β∗

K,c,pc
, exo@n@c〈pc〉.(

[[
σ

]]β

∅,c,pc

∣
∣ ΠK)

[[
pino(ρ).σ

]]β∗

K,c,pc
, (ν x)τ.(

[[
σ

]]β

∅,c,pc

∣
∣

[[
ρ

]]β

∅,x,c

∣
∣ ΠK)

ΠK , unfold@k1

∣
∣ · · ·

∣
∣ unfold@kn ,

K = {k1, . . . , kn}

BCAST , ! bcast(x, y, z).(x@y〈z〉.bcast〈x, y, z〉+ τ)

Table 5.4: Encoding of Brane actions in π@
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[[
⋄

]]β′

, 0

[[
P ◦Q

]]β′

,
[[

P
]]β′ ∣

∣
[[

Q
]]β′

[[
! P

]]β′

,
[[

! P
]]β′

∅,öc
[[

σ(|P |)
]]β′

,
[[

σ(|P |)
]]β′

∅,öc
[[
⋄

]]β′

K,p̈c
, 0

[[
P ◦Q

]]β′

K,p̈c
,

[[
P

]]β′

K,p̈c

∣
∣

[[
Q

]]β′

K,p̈c

[[
σ(|P |)

]]β′

K,p̈c
, (ν c̈)

([[
σ

]]β′

K,c̈,p̈c

∣
∣

[[
P

]]β′

K,c̈

)

[[
0

]]β′

K,c̈,p̈c
, 0

[[
σ

∣
∣ ρ

]]β′

K,c̈,p̈c
,

[[
σ

]]β′

K,c̈,p̈c

∣
∣

[[
ρ

]]β′

K,c̈,p̈c

[[
! P

]]β′

K,p̈c
, (ν b)

(
BANG′(b, p̈c)

∣
∣

[[
P

]]β′

K∪{b},p̈c

∣
∣

[[
P

]]β′

K∪{b},p̈c

∣
∣ ! new@b( ¨npc).

[[
P

]]β′

K∪{b}, ¨npc

)

[[
! σ

]]β′

K,c̈,p̈c
, (ν b)

(
BANG(b, c̈, p̈c)

∣
∣

[[
σ

]]β′

K∪{b},c̈,p̈c

∣
∣

[[
σ

]]β′

K∪{b},c̈,p̈c

∣
∣ ! new@b(n̈c, ¨npc).

[[
σ

]]β′

K∪{b},n̈c, ¨npc

)

BANG(b, c̈, p̈c) , ! cycle@b(n̈c, ¨npc).SUBBANG(b, n̈c, ¨npc)
∣
∣

SUBBANG(b, c̈, p̈c)

BANG′(b, ¨npc) , ! cycle@b( ¨npc).SUBBANG′(b, ¨npc)
∣
∣ SUBBANG′(b, p̈c)

SUBBANG(b, n̈c, ¨npc) , unfold@b().new@b〈n̈c, ¨npc〉.cycle@b〈n̈c, ¨npc〉 +

TREE(b, n̈c, ¨npc)

SUBBANG′(b, ¨npc) , unfold@b().new@b〈 ¨npc〉.cycle@b〈 ¨npc〉+

exo@npcb(nnpcb, ẍ).cycle@b〈ẍ〉

TREE(b, n̈c, ¨npc) , npc@ncb(nncb, ẍ).cycle@b〈nc, nncb, ẍ〉+

exo@npcb(nnpcb, ẍ).cycle@b〈n̈c, ẍ〉+

exo@ncb(nncb, ẍ).cycle@b〈 ¨npc, ẍ〉

Table 5.5: Encoding of Brane processes in core-π@
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[[
a.σ

]]β′

K,c̈,p̈c
, BCAST

∣
∣ (ν s)

(
! cycle@s(n̈c, ¨npc).

(
[[

a.σ
]]β′∗

K,n̈c, ¨npc
+ TREE(s, n̈c, ¨npc))

∣
∣

[[
a.σ

]]β′∗

K,c̈,p̈c
+ TREE(s, c̈, p̈c)

)

[[
phagon.σ

]]β′∗

K,c̈,p̈c
, phago n@pc(ẍ).

(ν ncb)(bc@bcast〈pc, cb, ncb, ẍ〉.(
[[

σ
]]β′

∅,c,ncb,ẍ

∣
∣ ΠK)

[[
phago⊥n (ρ).σ

]]β′∗

K,c̈,p̈c
, (ν ẍ)

(
phago n@pc〈ẍ〉.(

[[
σ

]]β′

∅,c̈,p̈c

∣
∣

[[
ρ

]]β′

∅,ẍ,c̈

∣
∣ ΠK

)

[[
exon.σ

]]β′∗

K,c̈,p̈c
, exo n@pc(ẍ).

(ν ncb)( bc@bcast〈exo, cb, ncb, ẍ〉.
[[

σ
]]β′

∅,p̈c,ẍ

∣
∣ ΠK)

[[
exo⊥n .σ

]]β′∗

K,c̈,p̈c
, exo n@c〈p̈c〉.(

[[
σ

]]β′

∅,c̈,p̈c

∣
∣ ΠK)

[[
pino(ρ).σ

]]β′∗

K,c̈,p̈c
, (ν ẍ)τ.(

[[
σ

]]β′

∅,c̈,p̈c

∣
∣

[[
ρ

]]β′

∅,ẍ,c̈

∣
∣ ΠK)

ΠK , unfold@k1〈〉
∣
∣ · · ·

∣
∣ unfold@kn〈〉

with K = {k1, . . . , kn}

BCAST , ! bc@bcast(x, y, nyb, z̈).

(τ + x@y〈nyb, z̈〉.bc@bcast〈x, y, nyb, z̈〉)

Table 5.6: Encoding of Brane actions in core-π@
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[[
Π

]] def
=

[[
µ

]]

MS

∣
∣

[[
w0

1, 1
]]

S

∣
∣ . . .

∣
∣

[[
w0
d, d

]]

S

∣
∣

[[
R1, 1

]]

R

∣
∣ . . .

∣
∣

[[
Rd, d

]]

R

with Π = (V, C, µ, w0
1, . . . , w

0
d, R1, . . . , Rd, i0)

[[
[1 µi1 , . . . , µik ]1

]]

MS

def
= ! out@1〈outside〉

∣
∣

[[
µi1 , 1

]]′

MS

∣
∣ . . .

∣
∣

[[
µik , 1

]]′

MS

[[
[n µi1 , . . . , µik ]n, p

]]′

MS

def
= ! out@n〈p〉

∣
∣ ! in@p〈n〉

∣
∣

[[
µi1 , n

]]′

MS

∣
∣ . . .

∣
∣

[[
µik , n

]]′

MS

[[
s, n

]]

S

def
= s1@n

∣
∣ · · ·

∣
∣ sp@n s = s1 . . . sp

[[
E, n

]]

R

def
= (ν coin)(! coin.(τ .tick.coin +

[[
E, n

]]′

R
)

∣
∣ tick.coin)

∣
∣

∣
∣ CLOCK

∣
∣ BCAST

[[
ca→ cv, n

]]′

R

def
= c@n.(τ .(c@n

∣
∣ tick.coin) +

[[
a→ (c, here)v, n

]]′

R
)

[[
a→ v1 . . . vk, n

]]′

R

def
= a@n.(coin

∣
∣ worked

∣
∣

[[
v1, n

]]′′

R

∣
∣ . . .

∣
∣

[[
vk, n

]]′′

R
)

[[
(a, here), n

]]′′

R

def
= tick.a@n

[[
(a, out), n

]]′′

R

def
= out@n(x).tick.a@x

[[
(a, in), n

]]′′

R

def
= in@n(x).tick.a@x

CLOCK ≡ ! clock :3.worked.bcast〈worked〉.τ.bcast〈tick〉.clock :3
∣
∣

∣
∣ clock :3

∣
∣ worked

BCAST ≡ ! bcast(x).(τ + x.bcast〈x〉)

Table 5.7: Encoding of catalytic P systems in π@
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Chapter 6

The Stochastic π@ Calculus

The Sπ@ language can be considered in first approximation as the stochastic version

of the core-π@ introduced in Sect. 4.3.2, which is limited to two levels of priority

and two names for each channel. The ability to give infinite rates to reactions [55]

replaces the two priority levels of this core-π@, while the two names denoting each

action assume different meanings, since the first represents the type of (chemical)

reaction, while the second the compartment where the reaction takes place. The syn-

tax is decorated with information of the volume occupied by each chemical species,

which is used to calculate the effective rate of reactions inside each compartment:

this allows a unique definition of each chemical reaction independently of the num-

ber of compartments, but it also requires a specific extension of the SSA to the

multi-compartment setting. After a short introduction to the original Gillespie’s

simulation algorithm this extension is presented in Sect. 6.2, while in Sect. 6.3 the

Sπ@ language is formalised.

6.1 Gillespie Stochastic Simulation Algorithm

The original SSA considers a fixed volume V containing a mixture of N chemical

species S1, . . . SN interacting through M reaction channels R1, . . . , RM . X1, . . . , XN

represent respectively the number of molecules for each of the Si chemical species.

The state of the system at any time t is characterised by the state vector X(t) =
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(
X1(t), . . . , XN(t)

)
= x where Xi(t) is the number of molecules of species Si at the

given time. νµ = (ν1µ, . . . , νNµ) is the state change vector, which contains all the

information of the number and species of reactant molecules and reaction products

for each reaction Rµ. For a reaction of the kind

Rµ : Si + Sj → Sk i 6= j

we have that νiµ = νjµ = −1, while νkµ = +1 and νlµ = 0 for every other index

l. The probability that an Rµ reaction will occur inside V in the next infinitesimal

time interval (t, t+ dt) is calculated as

aµ(x) dt = Xi(t)Xj(t)cµ dt (6.1)

where cµ dt is the probability that a particular molecular pair of the involved chem-

ical species will react according to Rµ inside V in the next infinitesimal interval

(t, t+ dt) and aµ(x) is the propensity function of Rµ. In general, aµ(x) is calculated

as

aµ(x) = hµ(x)cµ (6.2)

where hµ(x) represents the number of distinct Rµ molecular reactant combinations

available at some time t inside V .

The dynamics of the system obeys the chemical master equation (CME) [44, 45,

16]

δP (x, t|x0, t0)/δt =
∑M

µ=1[aµ(x− νµ)P (x− νµ, t|x0, t0)− aµ(x)P (x, t|x0, t0)]

(6.3)

where P (x, t|x0, t0) is the probability that X(t) will be x, given that X(t0) = x0.

The CME is hard to solve except for very simple systems. The SSA provides a

stochastic simulation method rigorously equivalent to the CME. Starting from an

initial state, the SSA allows the system to evolve stochastically by providing the

next state reached after a single firing of one of the M molecular reactions, chosen

according to the CME. The aim of the algorithm is to find when the next reaction
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fires (i.e. the value of the time variable τ) and which of the M reactions it is (the

index µ of the next reaction Rµ).

The function P (τ, µ|x) dτ represents the probability that, given the state x at

some time t, the next reaction in V will occur in the infinitesimal time interval

(t+ τ, t+ τ + dτ) and will be an Rµ reaction. It can be calculated as the product of

the probability P (τ |x) that, given the state x at some time t, no reaction will occur

in the time interval (t, t+ τ), times the probability aµ(x) dτ that an Rµ reaction will

occur in the time interval (t+ τ, t+ τ + dτ):

P (τ, µ|x) dτ = P (τ |x)aµ(x) dτ

Since [1−
∑

j aj(x) dτ ] is the probability that no reaction will occur in time dτ from

the state x,

P (τ + dτ |x) = P (τ |x) · [1−
∑

j

aj(x) dτ ]

from which

P (τ |x) = exp(−
M∑

j=1

aj(x)τ)

Hence, the function P (τ, µ|x) is given by

P (τ, µ|x) =







aµ(x) exp(−a0(x)τ) 0 ≤ τ < +∞,

µ = 1, . . . ,M

0 otherwise

(6.4)

where a0(x) =
∑M

j=1 aj(x).

In order to generate a random pair (τ, µ) according to Expr. (6.4) by a pair

(z1, z2) obtained by a unit-interval uniform random number generator, the following

resampling is evaluated in the SSA for τ

τ =
1

a0(x)
log

1

z1

(6.5)

while µ is calculated as the smallest integer satisfying

µ
∑

j=1

aj(x) > z2a0(x) (6.6)

The SSA can be summarised as follows:
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Figure 6.1: Two equivalent molecule pairs floating in compartments of different

volume.

Algorithm 1 (Gillespie Stochastic Simulation Algorithm)

1. calculate ai, i = 1, . . . ,M and a0 from Expr. (6.2);

2. generate uniformly two random numbers z1, z2 in the interval (0, 1);

3. calculate τ from Expr. (6.5) and µ from Expr. (6.6);

4. update the states of the species to reflect the execution of reaction µ and set

t = t+ τ ;

5. go to step (1).

For details we refer to [45].

6.2 Stochastic simulation with multiple compart-

ments

Gillespie’s SSA [44, 45] constitutes one of the more exploited chemical abstractions

for the effective simulation of bio-systems expressed in terms of concurrent calculi,

but its original formulation is limited to systems composed of a single, fixed-size

volume.

The most intuitive way to adapt the SSA to multiple compartments [26] is to

consider each compartment as an isolated system evolving in parallel with the oth-

ers, so that each compartment is implemented as an instance of the SSA. Even if
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correct, the above approach is based on strong assumptions which severely limit its

application.

In fact, the distinctive behaviour of biological systems is the continuous inter-

action of their constituting elements. In the case of multi-compartment systems,

this behaviour introduces the necessity of modelling interaction between adjacent

compartments, which consists of the interaction of their respective elements or ex-

change of material. A refined model should also be able to represent a dynamic

compartment structure. When the simulation of compartments is obtained by inde-

pendent instances of the SSA under its original assumptions, the interaction between

compartments must obey the hypothesis of volume invariance but, for a biological

liquid-state system, this means that the exchanged elements must be negligible with

respect to the dimension of the whole compartments. This approximation can be

tolerated while very few molecules are exchanged during the time of the simulation,

but becomes unreasonable when the aim is the modelling of compartments with

dynamic structure (i.e. the system is subject to complex structural changes like,

for example, the movement, merging, splitting of compartments), a necessary step

towards a satisfactory representation of biological systems.

Besides the limit of static compartment structure, the above approach presents

another relevant drawback. Consider the system in Fig. 6.1, composed of two com-

partments with different volume. According to the model of the SSA, the molecules

m1 and m2 have different probability of collision when floating in compartment

C1 compared with C2. In fact, since C2 is characterised by a larger volume, the

probability to collide is lower than in C1. Since the SSA requires the modeller to

specify the reaction rate (more precisely, the “reaction probability per unit time”)

for each reaction, the same kind of reaction (like, for example, the one between m1

and m2) may be characterised by a different rate for each compartment. In other

words, in the presence of K compartments, the same reaction rule (performed by

the same kind of reactants, with the same physical properties) will have K different

rates depending on the compartment the reaction is localised into, hence K different

representations, one for each instance of the SSA.
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The above approach has been usually adopted when providing a stochastic for-

mulation of bio-oriented calculi equipped with explicit compartment semantics such

as BioAmbients [87, 12], where the same reaction in different compartments may

be associated with a unique rate only if all the volumes are assumed constant and

equal, or if compartments are exploited at other abstraction levels (e.g. formation of

protein complexes) such that they cannot be associated with any volume informa-

tion. Some kind of parameterisation of reaction rules can be adopted to overcome

the remarked drawback, but the result is almost useless if the dynamic nature of

compartments in the calculus is taken into proper account.

We follow a different approach to the extension of the SSA to the multi-compartment

model: here we show that by introducing in the model the information pertaining

to the volumes, the SSA can be transparently adapted to the exact representation

of multiple compartments. The extended model – multi-compartment SSA, MSSA

for short – is then shown to be consistent with the kinetic hypotheses of the original

SSA, but closer to the biological scenario and simpler with respect to the approach

discussed above, since it allows us to give unique description of elements and reac-

tions while keeping their rates consistent as a function of the enclosing compartment.

In order to find an expression for the probability of occurrence of each reaction

in a given system, the original SSA [45] considers a gas-phase system of fixed volume

V and, by simple kinetic deductions, calculates the probability cp dt of collision of

two molecules m1 of species Si and m2 of species Sj (modeled as hard spheres of

radii d1 and d2) in the infinitesimal time interval (t, t+ dt) given by

cp dt = dVcoll/V = V −1πd2
12v12 dt

where dVcoll is the average “collision volume”, d12 = d1 + d2 and v12 is the average

relative velocity of the two molecules. In the same way, the probability cµ dt of

reactive collision of two molecules (according to reaction Rµ) is expressed by

cµ dt = cp cr dt = V −1πd2
12v12 cr dt

where cr represents the probability that a given collision is actually reactive.
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We can now introduce a constant rµ, which depends only on the physical prop-

erties of the two molecules and the temperature of the system, such that

cµ dt = V −1 rµ dt

Furthermore, ifXi andXj are the number of molecules of type Si and Sj respectively,

the probability aµ dt that an Rµ reaction will occur somewhere inside V in the

infinitesimal time interval (t, t+ dt) at the state x = X(t) can be expressed as

aµ(x) dt = Xi(t)Xj(t)cµ dt = V −1Xi(t)Xj(t)rµ dt (6.7)

The value aµ captures all the information pertaining to the concentration of the reac-

tants Si and Sj. In the case of a single compartment of fixed volume, aµ depends only

on the quantity of reactants inside V , while in the case of multiple compartments or

variable volume, expression (6.7) allows us to calculate the effective reaction rates

as a function of the number of involved molecules inside each compartment and the

volume of the compartment itself.

The effect of compartments is to separate the enclosed elements, that is to prevent

the interaction between elements placed in different compartments. If m11,m21 are

two molecules of species Si and Sj inside compartment C1, and m12,m22 are two

molecules of species Si and Sj inside compartment C2, even if m11 may interact with

m22 by an Rµ reaction, their collision is prevented because of the separation granted

by compartment boundaries. Even if the pairs m11,m21 and m12,m22 may undergo

the same reaction of type Rµ, the reaction Rµ of elements inside compartment C1 is

completely independent of the same reaction Rµ of elements inside compartment C2.

Therefore, in a multi-compartment environment, each reaction channel should be

denoted not only by the type of reaction but also by the compartment the reaction

happens in.

By following these intuitions, the SSA can be transparently adapted to fit the

multi-compartment model without affecting its original kinetic hypotheses. This can

be achieved by expressing the propensity function aj of each reaction as a function

of the (variable) volume V of the compartment. In the case of reactions fired by
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two reactant molecules, we have:

aµ(x) = hµ(x)cµ = V −1(x)hµ(x)rµ (6.8)

The rµ dt value represents the probability that an Rµ reaction fires in the infinitesi-

mal time dt inside a unit-size volume containing a single molecule pair undergoing

reaction Rµ.

The price of this generalisation is the insertion, in the implementation of the

model, of the information pertaining to the volume size of each compartment, which

can be accomplished in different ways. The most immediate method would be the

definition of a function Vol : C → R returning the volume size of each compartment,

but this would not allow us to model variable volumes.

The approach chosen here is to allow (but not require) the specification of the

volume v(Sj) for each molecule m of species Si, which represents the (average) incre-

ment of volume of a compartment C needed for including the additional element m.

In the case of constant volume, v(Si) = 0 for each i. In fact, the additional volume

needed to include any further element is 0 if the volume is constant. Conversely, at

constant and homogeneous temperature and pressure, for a single chemical species

S occupying the entire volume V , v(S) can be calculated as

v(S) =
V

X
=
m

X
·

1

D
=
wS
D

where X is the number of molecules of S inside V , m is the total mass, D is the

density of S, wS its molecular weight.

In an ideal system at constant and uniform temperature and pressure, thermal

and chemical equilibrium, the volume v(Si) is constant and depends only on the

species S. On the contrary, in a biological system at constant temperature and

pressure, not in chemical, nor structural equilibrium, v(Si) is a function depending

on the kind of the element Si but also on the compartment C, since the chemical

composition of C may vary the average distance between the inner elements, because

of atomic-level forces like van der Waals interactions and hydrogen bonds. Under the

assumption (tolerable if the discussed variation is reasonably small or the chemical
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composition of the compartments is almost the same) of constant v(Si) for each i,

the volume V of each compartment C can be easily calculated as the sum of v(Si)

for each i inside C, even in the case of exchange of molecules or reorganisations in

the compartment structure.

Hence, the volume V (x) of the compartment at some time t in the state x =

X(t) =
(
X1(t), . . . , XN(t)

)
can be calculated as the sum of the volumes occupied by

each of the molecules located inside V . Given the function v : {S1, . . . , SM} → R

which returns the volume occupied by one molecule of each chemical species, V is

calculated as

V (x) =
M∑

j=1

v(Sj)Xj(t) (6.9)

In the case of aeriform systems or systems composed of one (or few) chemical species,

the function v(Sj) can be easily estimated by knowing the molecular weight of the

species and their density. In the case of real systems composed of thousands of

different species, v(Sj) may only be estimated by formulating a specific kinetic

model.

In the presence of more than one compartment, each of the Rj reactions must be

considered with respect to the compartment the reaction occurs in. This means that

each Rµ reaction is characterised by C different propensity functions, one for each

of the C compartments. In the case of reactions fired by two reactant molecules

akµ(x) = hkµ(x)c
k
µ = V −1

k (x)hkµ(x)rµ k = 1, . . . , C (6.10)

while for monomolecular (decay) reactions, which are independent of the volume

akµ(x) = hkµ(x)c
k
µ = Xk

µ(t)rµ k = 1, . . . , C (6.11)

where

x = X(t) =
(
X1(t), . . . ,XC(t)

)
, Xk(t) =

(
Xk

1 (t), . . . , Xk
N(t)

)
(6.12)

Additional reactions which model interaction between distinct compartments (i.e.

the presence of chemical products inside compartments different from the one where
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the reaction initially fired) are still expressed by one of the above two kinds of

reactions.

Each Xk
j (t) represents the number of molecules of the Sj chemical species inside

compartment k at time t. The value akµ(x) dt represents the probability that the

reaction Rµ will happen inside compartment k in the next infinitesimal interval dt.

Each volume Vk is calculated as

Vk(x) =
M∑

j=1

v(Sj)X
k
j (t) (6.13)

The value a0 of Expr. (6.4) becomes

a0(x) =
C∑

k=1

M∑

j=1

akj (x) =
C∑

k=1

ak(x) (6.14)

where
∑M

j=1 a
k
j (x) = ak(x). Expr. (6.6) is then unchanged:

τ =
1

a0(x)
log

1

z1

(6.15)

where a0 is calculated according to Expr. (6.14).

In order to identify both the compartment ψ and the reaction µ by a single

generation of a unit-interval random number z2, Expr. (6.6) is modified so that

(ψ, µ) is the smallest pair of indexes satisfying

ψ
∑

k=1

µ
∑

j=1

akj (x) > z2a0(x) (6.16)

where (ψ, µ) < (ψ′, µ′) according to the standard lexicographic ordering.

The multi-compartmental simulation algorithm (MSSA) can be finally expressed

as a slight variation of the SSA:

Algorithm 2 (Multi-compartmental Stochastic Simulation Algorithm)

1. calculate aki with k = 1, . . . , C, i = 1, . . . ,M from Expr. (6.10), (6.11),

(6.13) and a0 from Expr. (6.14);

2. generate uniformly two random numbers z1, z2 in the interval (0, 1);
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3. calculate τ from Expr. (6.15) and (ψ, µ) from Expr. (6.16);

4. update the states of the species to reflect the execution of reaction (ψ, µ) and

set t = t+ τ ;

5. go to step (1).

The original Gillespie’s propensity functions are recovered when the system is

composed of a single compartment of unitary volume: this may be achieved by

setting v(Sj) = 0 ∀j and adding a fictitious element of volume 1 not participating

in any reaction. Although immediate, this expedient seems quite artificial. A more

faithful model would be obtained by specifying the total (not null) volume of the

products of each reaction equal to the total volume of the respective reactants.

Further elements not taking part in the reactions but influencing their rates (such

as water, which may dilute reactants and slow down reactions even without direct

chemical interaction) should also be specified, because they actually determine the

total volume of the compartment.

It is worth remarking that the MSSA closely follows the original SSA master

equation (6.3). As reported in [45], the key element of the master equation formalism

is the “grand probability function”

P (x, t) ≡ probability that there will be, in the single volume V of the system

at time t, X1 molecules of species S1, X2 of species S2, . . . , XN of

species SN , with x = X(t) =
(
X1(t), . . . , XN(t)

)

whose knowledge would provide a complete characterisation of the system at any

time. The evolution of the system is then considered in the discrete infinitesimal

time interval t+ dt, in which at most one reaction occurs. Hence, given M different

possible chemical reactions, the state X(t + dt) can be reached in M + 1 ways:

either X(t) = X(t+ dt) and no reaction occurs, or one of the M reactions actually

happens. The grand probability function can be then expressed as follows:

P (x; t+ dt) = P (x; t) P (no reaction occurs over dt)

+
∑M

µ=1 P (x− νµ; t) P (reaction Rµ occurs over dt)
(6.17)
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where νµ is the state change vector associated with reaction Rµ, and

P (no reaction occurs over dt) = 1−
M∑

µ=1

aµ(x) dt

P (reaction Rµ occurs over dt) = aµ(x− νµ) dt

in perfect agreement with Expr. (6.1), (6.2), (6.4). Expr. (6.17) becomes the CME

(6.3) when dt tends to zero.

We can now follow the same steps in order to find the expression for the chemical

master equation of the MSSA. Here, we have

P (x, t) ≡ probability that there will be in the system at time t, Xk
i

molecules of each species Si inside each compartment k,

with x corresponding to Expr. (6.12) and

i = 1, . . . , N k = 1, . . . C

The discrete evolution of the system to the state X(t + dt) is again expressed as a

function of the M ·C+1 ways it can be reached, where M is the number of possible

reactions and C the number of compartments.

It is worth remarking that the number of possible reactions in the MSSA is even

greater than M · C, since an unbounded number of inter-compartment reactions

can be introduced to model the exchange of molecules between compartments. In

general, a system can be composed of

• M reactions describing the behaviour of chemical species inside any compart-

ment, corresponding to M · C rules in the MSSA;

• Mic inter-compartment reactions.

The total number of reactions in the system is thenM ·C+Mic. The reactants of each

of these Mic rules must be located in the same compartment. Consequently, it is ide-

ally possible to place each inter-compartment rule inside a specific compartment in

relation to the location of its reactants. For example, the simple inter-compartment

rule

R : S1
1 → S2

1
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which moves a molecule of species S1 from compartment C1 to compartment C2 can

be thought of as being located inside compartment C1, where its reactants reside.

Although conceptually different, these inter-compartment rules can be treated as

standard reactions: they are formally indistinguishable, except for the fact that the

products in their state change matrix are not in the same row (or rows) as the

reactants.

To be rigorous, we should then consider in general a distinct number of reactions

M1, . . .MC for each of the C compartments. In particular, Mj = M + M j
ic where

M j
ic is the number of inter-compartment reactions whose reactants reside in Cj.

However, since this level of detail does not bring any further insight, for the sake of

readability we avoid to index explicitly inter-compartment reactions hereinafter.

We have that

P (x; t+ dt) = P (x; t) P (no reaction occurs over dt)

+
∑

µ,k P (x− νkµ; t)·

P (Rµ occurs in compartment k over dt)

(6.18)

with µ = 1, . . . ,M and k = 1, . . . , C, while νkµ is the state change vector of reaction

Rµ firing inside compartment k and

P (no reaction occurs over dt) = 1−
C∑

k=1

M∑

µ=1

akµ(x) dt

P (Rµ occurs in compartment k over dt) = akµ(x− ν
kµ) dt

in agreement with Expr. (6.10), (6.14). When dt tends to zero, we obtain the CME

for the MSSA:

δP (x, t|x0, t0)/δt =
∑C

k=1

∑M

µ=1[a
k
µ(x− ν

kµ)P (x− νkµ, t|x0, t0)− a
k
µ(x)P (x, t|x0, t0)]

(6.19)

which closely resembles the CME of the SSA.

A clever indexing, which separates the Mic inter-compartment reactions from

the M standard reactions, would give Expr. (6.19) almost the same shape as the

reaction-diffusion master equation of the Next Subvolume Method [41], of which the

CME of the MSSA constitutes a generalisation.
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6.3 Sπ@ syntax and semantics

We formalise now the Sπ@ language.

Definition 6.1 Let N , C be distinct sets of names on a finite alphabet, with m,n

ranging over N , a, b over C and x, y over X = N ∪ C. Also let v range over R

within the interval ]0,+∞[. The syntax of the Sπ@ language is defined as

P ::= 0

∣
∣
∣

∑

i∈I

πi.Pi

∣
∣
∣ P

∣
∣ Q

∣
∣
∣ ! π.P

∣
∣
∣ (ν x)P

π ::= τr

∣
∣
∣ n@a :v(x)

∣
∣
∣ n@a :v〈x〉

where x represents zero or more names x1, . . . , xi ranging over X .

The meaning of the above syntax closely follows that of the standard π-calculus:

• 0 is the null process, capable of doing nothing;

•
∑

i∈I πi.Pi, written also π1.P1+π2.P2 in the case |I| = 2, represents the guarded

choice between different actions;

• P
∣
∣ Q means that P and Q are two processes executing in parallel;

• ! π.P represents guarded replication, which allows the expression of recursive

behaviour in π-like calculi;

• (ν x)P allows the scope restriction of the name x: the restriction of compart-

ment names allows the creation of new compartments, while the restriction

of reaction names is used in several ways, such as for representing bindings

between different elements;

• τr represents an internal transition (silent action) characterised by exponential

rate r ∈ R ∪ {∞}.

The expressions n@a :v(x) and n@a :v〈x〉 represent respectively the polyadic input

and output capabilities of a process, where
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• n is the kind of reaction the process is ready to perform: in Expr. (6.10) it

corresponds to the index µ denoting the reaction Rµ;

• a is the compartment where the reaction may take place, corresponding to k

in Expr. (6.10);

• v corresponds to v(Sµ) in Expr. (6.13) and represents the volume occupied

inside compartment a by the process ready to perform the input or output

action.

The Sπ@ syntax allows the easy specification of processes which are located

(and hence may occupy volume) in more than one compartment. For example, the

process P

P ≡ n@a : v1.Q1 +m@b : v2.Q2 + p@a : v3.Q3

occupies some space both in compartment a and in compartment b. This capability

allows us to represent neatly biological elements like transmembrane proteins, whose

action takes place in the two compartments adjacent to the membrane or even in

three compartments, if the membrane itself needs to be modelled as a compartment.

1 Since Sπ@ syntax does not force the association of a unique volume value with

each action name, P may be written as well as

P ≡ n@a : v13.Q1 +m@b : v2.Q2 + p@a : 0.Q3

with v13 = v1+v3. In fact the volumes occupied in compartments a, b are the same in

both cases. This kind of overloading may be avoided by changing the syntax of the

choice operator, for example by specifying the volume occupied in each compartment

in a list (associative array):

P ≡ [a : v13, b : v2]n@a.Q1 +m@b.Q2 + p@a.Q3

1 As long as the physical hypotheses of the SSA hold (random movement and stirring of

molecules on the surface of membranes), the MSSA can handle both two- and three-dimensional

compartments. In the case of two dimensions, as for membrane surfaces, the spatial information

of elements would not represent their volume but their area.
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Even if in this way the syntax is more rigorous, it loses readability, so Def. (6.1) is

still preferable.

Definition 6.2 The congruence relation ≡ is defined as the least congruence satis-

fying alpha conversion, the commutative monoidal laws with respect to both (
∣
∣ ,0)

and (+,0) and the following axioms:

(ν x)P
∣
∣ Q ≡ (ν x)(P

∣
∣ Q) if x /∈ fn(Q)

(ν x)P ≡ P if x /∈ fn(P )

! π.P ≡ π.(! π.P
∣
∣ P ) if fn(π) ∩ bn(π) = ∅

where the function fn is defined as

fn(n@a :v(x)) ,{n, a} fn(n@a :v〈x〉) ,{n, a,x}

fn(0) = fn(τr) ,∅ fn((ν x)P ) , fn(P ) \ {x}

fn(π.P ) , fn(π) ∪ fn(P ) \ bn(π) fn(
∑

i∈I

πi.Pi) ,
⋃

i

fn(πi.Pi)

fn(P
∣
∣ Q) , fn(P ) ∪ fn(Q) fn(! π.P ) , fn(π.P )

with bn(π) , {x} if π = @n() :avx or bn(π) , ∅ otherwise.

Definition 6.3 Sπ@ semantics is given in terms of the following reduction system:

(S)
r =∞ ∨ M

∞
−→/ M ′

τr.P +M
r
−→ P

(C)
rate(n) =∞ ∨ M

∣
∣ N

∞
−→/ S

(n@a :v1(x).P +M)
∣
∣ (n@a :v2〈y〉.Q+N)

rate(n)
−−−−→ P{y/x}

∣
∣ Q

(R)
P

r
−→ P ′

(ν x)P
r
−→ (ν x)P ′

(P )
P

r
−→ P ′ r =∞ ∨ P

∣
∣ Q

∞
−→/ S

P
∣
∣ Q

r
−→ P ′

∣
∣ Q

(E)
P ≡ Q P

r
−→ P ′ P ′ ≡ Q′

Q
r
−→ Q′
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The rule (S) models the internal, silent transition of a process while the rule (C)

allows the communication of the names x from process P to Q, where they are

properly substituted to names y. The function

rate : N → (R ∪+∞) (6.20)

is an external function which permits us to associate the correct rate with each reac-

tion, where the rate corresponds to the value rµ of Expr. (6.10). Rules (R), (P ), (E)

allow the transition of processes in the presence of restriction and of parallel opera-

tor, or by exploiting structural equivalence.

The introduction of the rates in the reduction relation of Def. 6.3 allows a more

compact definition of Sπ@ semantics, with respect to Def. 4.5 of core π@. In fact,

each rule in Def. 6.3 corresponds to two in Def. 4.5: for example, the precondition

r =∞ ∨ M
∞
−→/ M ′

on rule (S) allows the process τr.P to reduce if either of the following conditions

hold:

• r =∞, i.e. the rate r of the silent action is infinite, or

• M
∞
−→/ M ′, that is any other reduction in the system is characterised by a

finite rate.

In this way, infinite rate reductions are possible if any of the two conditions is true,

while finite rate reductions can be fired only when the second one holds, that is

when there is no infinite rate reduction in the system at that moment.

As for the π@ calculus, infinite-rate transitions can help the modelling of com-

plex atomic operations but can also cause, if not correctly handled, an indefinite

suspension of the time flow in the stochastic simulation, which corresponds to the

hanging of the system.

Definition 6.4 A Sπ@ system S is said to be in standard form if

S = (ν x)
(
P1

∣
∣ · · ·

∣
∣ Pj

∣
∣ ! Pj+1

∣
∣ · · ·

∣
∣ ! Pk

)

and each Pi is a non-empty sum.
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The standard form constitutes a more readable way to write (and an easier way to

handle) systems in π-like calculi: restricted names are all collected on the left and

replicated processes are listed after the non-replicated ones.

Proposition 6.1 For every Sπ@ system S, there exists a system S ′ such that S ≡ S ′

and S ′ is in standard form.

In order to calculate the value hµc of Expr. (6.10) and (6.11), we introduce,

according to [80], the function Act which permits us to know the number of possible

combinations of inputs and outputs on a reaction channel inside a given compart-

ment or the number of silent actions of a given rate.

Definition 6.5 The activity Act of an action π is defined as

Actπ(S) = (Inn@a(S) ·Outn@a(S))−Mixn@a(S)

if π = n@a, corresponding to channel n inside compartment a in the system S, and

Actπ(S) = Numτr(S)

if π = τr. S is in standard form, Inn@a(S) and Outn@a(S) are the number of

unguarded inputs and outputs on channel n inside compartment a, and Mixn@a(S)

is the sum of Inn@a(
∑

i) · Outn@a(
∑

i) for each summation
∑

i in S. Numτr(S) is

the number of silent transitions of rate r in S.

For example, for the system

S , n@a.P1 +m@a.P2 +m@a.P3

∣
∣ n@a.Q

∣
∣ n@a.R

we have three unguarded summations corresponding to the three parallel processes

in S. The values of the functions previously defined are in this case

• Inn@a(S) = 1, for the input guard before P1;

• Outn@a(S) = 2, for the output guards before Q,R;
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• Mixn@a(S) = 0, since there is no summation with both input and output

actions on n@a;

• Actn@a(S) = Inn@a(S) ·Outn@a(S)−Mixn@a(S) = 2.

For m@a we have instead

• Inm@a(S) = 1, for the input guard before P3;

• Outm@a(S) = 1, for the output guards before P2;

• Mixm@a(S) = 1, since the input and output actions on m@a appear both in

the first summation;

• Actm@a(S) = Inm@a(S) ·Outm@a(S)−Mixm@a(S) = 0.

The activities on n@a and m@a are then 2 and 0 respectively, in agreement with

the intuition that the two possible reductions on n@a increase the potential activity

on this channel, while on m@a no reduction can be performed.

The function chan returns all the active channels inside each compartment in a

given system S.

Definition 6.6 Given a Sπ@ system S in standard form

S = (ν x)
(
P1

∣
∣ · · ·

∣
∣ Pj

∣
∣ ! Pj+1

∣
∣ · · ·

∣
∣ ! Pk

)

the function chan is defined recursively as follows:

chan(S) =
k⋃

i=1

chan(Pi)

chan(
∑

i∈I

πi.Pi) =
⋃

i∈I

chan(πi)

chan(n@a :v(x)) = {n@a}

chan(n@a :v〈x〉) = {n@a}

chan(τr) = {τr}
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Definition 6.7 Given a Sπ@ system S in standard form

S = (ν x)
(
P1

∣
∣ · · ·

∣
∣ Pj

∣
∣ ! Pj+1

∣
∣ · · ·

∣
∣ ! Pk

)

the volume Vola of the compartment a in the system S is calculated as follows:

Vola(S) =
k∑

i=1

Vola(Pi)

Vola(
∑

i∈I

πi.Pi) =
∑

i∈I

Vola(πi)

Vola(τr) = 0

Vola(n@a :v〈x〉) = Vola(n@a :v(x))

Vola(n@b :v(x)) =







v a = b

0 otherwise

If Vola(S) = 0, then a is given the default volume value 1.

Each molecule is represented by a choice
∑

i∈I πi.Pi, which may occupy volume in

more than one compartment: Vola considers only that part of the molecule falling

inside compartment a.

The default volume value of 1 is introduced as syntactic facility to allow the

omission of any volume information when not required by the model. The main

drawback of this choice is that it is not possible to catch the undesirable situation of

compartments whose volume assumes value zero at some point during the simulation,

a situation which probably reflects some error in the Sπ@ model. However, a smart

implementation of the language may still spot this occurrence at runtime and notify

it to the user.

The definition of Vola reflects the additive properties of Def. (6.13): its lin-

ear dependence on molecular volumes allows its almost immediate calculation in

terms of modification of its value at the previous step of the algorithm. A definition

of compartment volumes as non-linear functions of molecular volumes, or any de-

pendence on molecular volumes upon the chemical composition of the surrounding
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environment inhibits such additive expression of Vola and increases significantly the

computational cost of its calculation at each step of the simulation.

The following algorithm corresponds to each repetition of the loop of Alg. (2).

Algorithm 3 Given a Sπ@ system S in standard form, the selection of the next

reaction Next(S) and of the delay Delay(S) relative to the MSSA are described by

the following algorithm:

1. For each channel ci in chan(S), with chan(S) = {c1, . . . , cj}, calculate

ai = Actn@b(S) ∗ rate(n)/Volb(S)

if ci = n@b for some n ∈ N , b ∈ C or

ai = Actτr(S) ∗ r

if ci = τr.

2. Calculate a0 =
∑j

i=1 ai

3. Generate two random numbers z1, z2 ∈ [0, 1] and calculate τ, λ such that

τ = (1/a0) ln(1/z1)
λ−1∑

i=1

ai < z2a0 ≤
λ∑

i=1

ai

4. Next(S) = cλ and Delay(S) = τ .

The value cλ = τr for some r or cλ = n@b for some n, b denotes the rate of the

silent action or the reaction channel n (corresponding to µ in Alg. (2)) and the

compartment b (corresponding to ψ in Alg. (2)) of the next reaction happening

after τ time. The process performing the silent transition or the two processes

performing the synchronisation step on cλ are then randomly chosen as for SPiM

[80].
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6.4 Efficient formulation of the simulation algo-

rithm

In the original formulation of the SSA [45] each transition of the system from one

state x to a subsequent state x′ requires at most M operations needed to know

which of the M reactions will happen next, as a function of the random number

generated in the second step of the algorithm. In fact, in order to find the index µ

in Expr. (6.6), M summations are required in the worst case. Several improvements

or alternatives to the SSA have been proposed (e.g. [43, 16, 41]) which reduce the

computational complexity of each transition to O(logM) or optimise it as a function

of reaction rates.

The MSSA inherits the complexity order of the original SSA, linear in the num-

ber of distinct reactions. However in this case the number of independent reactions

is M ·C, where C is the number of compartments. As noted in [41], the simulation

becomes computationally unfeasible if C grows significantly. Unfortunately, none of

the proposed improvements can be directly applied to the MSSA with appreciable

gain. The main reason is that the propensity function akj of each bimolecular reac-

tion depends of the volume Vk of the enclosing compartment. Each reaction firing

may change the volume of one or more compartments, so that all the propensity

functions of bimolecular reactions located into the involved compartments should be

recalculated. This would cause the complexity of the algorithm to be still linear in

the number of theM reactions even after the optimisations proposed in [43, 41]. Also

the optimised direct method (ODM) formulated in [16] would provide no substantial

gain in the (not unusual) case that the chemical composition of the compartments

is almost the same: in this situation the complexity would be almost linear in the

number of compartments in the best case.

Nevertheless, the computational complexity order of the MSSA can be reduced

to O(logM + logC) by exploiting the same data structures proposed in [43] for

enhancing directly the SSA. These structures are justified by two observations. The

first is that only few propensity functions change at each transition and these can
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be easily identified by building a dependency graph. The second is that the linear

search in step (3) can be improved by exploiting (twice) a binary search tree. The

definitions of the needed data structures follow.

Definition 6.8 Let νkµ be the state change vector of reaction µ firing inside com-

partment ψ, νψµ = (νψµ1 , . . . , νψµC ), with νψµj = (νψµj1 , . . . , ν
ψµ
jN ).

Let Re(Rµ) ⊆ {S1, . . . , SN} be the chemical species needed to fire reaction Rµ.

Let G(VG, EG) be a directed graph with vertex set {0, . . . , (C ·M)− 1}. For each

vertex pair (n, n′), n = f(ψ, µ), n′ = f(ψ′, µ′), where f(ψ, µ) = (ψ ∗M +µ), the edge

e = (n, n′) is in EG iff ∃j ∈ {1, . . . , N} : Sj ∈ Re(Rµ′) ∧ ν
ψµ
ψ′j 6= 0.

G represents the dependency graph of the system. Each vertex n of G represents a

reaction Rµ inside a compartment ψ. Every edge from n to n′ indicates that reaction

Rµ inside ψ influences reaction Rµ′ inside ψ′ by changing the concentration in ψ′

of at least one of the reactants of Rµ′ . The dependency graph evidences the only

propensity functions which need to be updated after each transition.

We now define the structure of non-cumulative complete binary search tree. This

definition represents the formalisation of the data structure proposed in [43] for the

enhancement of the SSA as alternative of the Next Reaction Method.

Definition 6.9 A binary tree T is recursively defined as 0 (the empty tree) or

(n, Tl, Tr) where n = (v,D) is the node, v ∈ R
+ is its value and D the associated

data, Tl and Tr are binary trees.

A binary tree T is complete if it is empty, or if all its levels are full, except for

the last which presents all the remaining leaves on the left hand side.

A complete binary tree T is a non-cumulative binary search tree (NCBST) if it

is empty, or if T = ((v,D), Tl, Tr) and

• v corresponds to the sum of the values of the root nodes of Tl and Tr;

• Tl and Tr are NCBSTs as well.
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Figure 6.2: (a) (b) Non-cumulative complete binary search trees. (c) List of

non-cumulative complete binary search trees with increasing heights.

A binary tree is a non-cumulative search tree if each node value is equal to the

sum of the values of its offspring. The definitions are illustrated in Fig. 6.2. A

non-cumulative binary search tree can be transformed into a binary search tree by

recursively adding the value of each non-leaf node to all the nodes of its right subtree.

In the NCBST of Fig. 6.2 (a), the value 41 of the root should be added to the three

nodes on its right, with values 15, 9, 6. In this same subtree, the value 15 should be

added to the leaf with value 6. In the same way, the values 26, 11, 15 of the non-leaf

nodes in the left subtree should be added to their respective right subtrees.

We define now the function which implements the search in a NCBST.

Algorithm 4 Let T = ((v,D), Tl, Tr) be a non-empty NCBST and p ∈ R, p ∈ [0, v[,

with T, p formal parameters of the function:

1. if Tl = Tr = 0 (i.e. T is a leaf) then return (p/v,D), else

2. let Tl = ((vl, D), T ll , T
l
r); if p < vl then set T ← Tl and go to (1), else
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3. set p← (p− vl), T ← Tr and go to (1).

Given a NCBST T = ((v,D), Tl, Tr) and a random number p = r · v, with r ∈ [0, 1[,

the function returns the data associated with the leaf i, where

∑

j<i

(leaf j value) < p <
∑

j≤i

(leaf j value)

and leaves are numbered from left to right, as in Fig. 6.2 (b). The function returns

also the remainder of p scaled to the interval [0, 1[ (denoted in the algorithm by p/v

in the first step), which avoids the generation of a further random number when the

algorithm is called for the second time in the enhanced MSSA. A short example of

execution follows.

Example 6.1 Consider the tree in Fig. 6.2 (a). Let p = 20. The root node is not

a leaf, so it must be checked if p < vl = 26, where vl is the value associated with

the left sub-tree. The condition is true, so the loop cycle must be repeated starting

from Tl. The value of the left sub-sub-tree is vll = 11 < p, hence p ← 20 − 11 and

the search continues in Tlr. Now p = 9 < vlrl = 12 and Tlrl is a leaf, so the algorithm

ends and returns (0.75, D). �

The computational complexity of the algorithm is O(logK), where K is the number

of nodes of the tree. Given a list of l non-negative real numbers, it is also possible

to build a corresponding NCBST in O(l) with all the elements of the list appearing

as leaves of the tree. This is the technique exploited for executing step (3) of the

MSSA in logarithmic time.

We can now define the improved variant of the MSSA. We first consider rein-

dexing of monomolecular and bimolecular reactions, and also distinct expressions

of their propensity functions, in order to keep them separated according to their

(in)dependence on compartment volumes:

a0(x) = m0(x) + b0(x) =
C∑

k=1

mk(x) +
C∑

k=1

bk(x) (6.21)

where
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• m0 represents the sum of the propensity functions of monomolecular reactions;

• b0 is the sum of the propensity functions of bimolecular reactions;

• Mm corresponds to the number of monomolecular reactions Rµ, with

µ = 1, . . . ,Mm;

• Mb corresponds to the number of bimolecular reactions Rµ, with

µ = Mm + 1, . . . ,M so that Mm +Mb = M ;

• mk and bk (with k = 1, . . . , C) are the partial sums of the propensity functions

of monomolecular and bimolecular reactions respectively, inside each of the k

compartments.

The values ak in Expr. (6.14) for bimolecular reactions can be written as

bk(x) =
M∑

j=Mm+1

bkj (x) =
M∑

j=Mm+1

V −1
k (x)hkj (x)rµ

= V −1
k (x)

M∑

j=Mm+1

hkj (x)rµ = V −1
k (x)βk(x) (6.22)

where

βk(x) =
M∑

j=Mm+1

hkj (x)rµ =
M∑

j=Mm+1

βkj (x) (6.23)

with

βkj (x) = hkj (x)rµ (6.24)

Furthermore, the summation of Expr. (6.16) for bimolecular reactions can be ex-

pressed as

ψ
∑

k=1

µ
∑

j=Mm+1

bkj (x) =

ψ−1
∑

k=1

bk(x) +

µ
∑

j=Mm+1

bψj (x) =

ψ−1
∑

k=1

bk(x) + V −1
ψ

µ
∑

j=Mm+1

βψj (x) (6.25)
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For monomolecular reactions, we have simply that

mk(x) =
Mm∑

j=1

mk
j (x) =

Mm∑

j=1

Xk
j (t)rµ (6.26)

The enhanced MSSA (EMSSA) is defined as follows.

Algorithm 5 (Enhanced Multi-compartmental Stochastic Simulation Algorithm)

1. calculate Vk from Expr. (6.13), βkj from Expr. (6.24), βk from Expr. (6.23),

bk from Expr. (6.22), mk from Expr. (6.26), with k = 1, . . . , C, j = Mm +

1, . . . ,M , and b0,m0, a0 from Expr. (6.21);

2. build the dependency graph of the system according to Def. (6.8);

3. build the NCBST Tb such that its leaves are ((bk, k),0,0), then build the

NCBST Tm such that its leaves are ((mk
j , j + (k − 1) ∗Mm),0,0), with k =

1, . . . , C and j = 1, . . . ,Mm;

4. build C NCBSTs such that ((βkj , j),0,0) are the leaves of the k-th NCBST T k,

with j = Mm + 1, . . . ,M and k = 1, . . . , C;

5. generate uniformly two random numbers z1, z2 in the interval (0, 1);

6. calculate τ from Expr. (6.15) and set t = t+ τ ;

7. if a0z2 < m0 then go to step (13);

8. set z2 ← (a0z2 −m0)/b0;

9. let (v,D) be the value returned by Alg. (4) called with parameters (Tb, b0z2);

set ψ ← D, according to Expr. (6.25);

10. let (v′, D) be the value returned by Alg. (4) called with parameters (Tψ, βψ ·v);

set µ← D, according to Expr. (6.25);

11. update the states of the species and Tm, Tb, T
1, . . . , TC to reflect the execution

of the bimolecular reaction (ψ, µ) by updating only the propensity functions,

volumes and sub-trees indicated by the dependency graph built at step (2);
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12. go to step (5).

13. set z2 ← a0z2/m0;

14. let (v,D) be the value returned by Alg. (4) called with parameters (Tm,m0z2);

set ψ ← d1 and µ← d2, where d2 + (d1 − 1) ∗Mm = D;

15. update the states of the species and Tm, Tb, T
1, . . . , TC to reflect the execution

of monomolecular reaction (ψ, µ) by updating only the propensity functions,

volumes and sub-trees indicated by the dependency graph built at step (2);

16. go to step (5).

The initialisation of the algorithm includes the building of the dependency graph

and of three kinds of NCBSTs. The first, constituted by Tm, is the tree of all the

monomolecular reactions of the system. The second, Tb, is the only one that contains

information about the Vk volumes of the compartments. The third kind, represented

by {T 1, . . . , TC}, contains the information about the propensity functions of the

bimolecular reactions inside each compartment. This multi-tree organisation allows

us to express the propensity functions independently of their respective volumes, so

that they do not need to be recalculated as the volumes change.

The height of Tb is ⌈log(2 ·C)⌉, while the height of each T k is ⌈log(2 ·M)⌉. The

search of steps (9) and (10) are consequently executed in O(logC) and O(logM)

respectively. The same cost of O(logC + logM) applies to the search in Tm. The

most expensive operations are steps (11) and (15): if MaxV is the maximum number

of compartments influenced by some reaction Rµ and MaxR is the maximum number

of propensity functions modified by some reaction R′
µ, the number of operations is

bounded by (MaxV logC+MaxR logM), because each update of the leaf of a NCBST

T requires a number of updates of the ancestor nodes proportional to the height of

the tree. Since in most cases MaxV ≪ C and MaxR ≪ M , the computational

complexity of the algorithm is usually O(L(logC + logM)), where L is the number

of transitions of the systems (in practice limited by the detection of some steady
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state condition, or by the availability of time of the user, as for the SSA), each

corresponding to one reaction firing and one execution of the loop in Alg. (5).

It is worth remarking that the introduction of infinite-rate reactions breaks the

correspondence between execution steps of the algorithm and temporal evolution

of the simulated system. In other words, the above complexity analysis considers

as transitions both the time-elapsing steps (caused by finite-rate reactions) and the

immediate steps (corresponding to infinite-rate reactions), even if only the first kind

produces some observable temporal progression in the simulation.

6.4.1 Further enhancements

The number of operations to perform step (11) can be considerably reduced by

grouping together the indexes of the compartments and reactions whose volumes

and propensity functions change simultaneously. This can be achieved by a proper

analysis of the dependency graph of the system and may lead in the best case

to (2 MaxV +2 MaxR + logC + logM) operations. Steps (9), (10) and (13) can be

improved by adapting the enhancements to the SSA discussed in [16] to NCBSTs.

The NCBST structure may be changed as shown in Fig. 6.2 (c). Here the leaves of

NCBSTs of increasing height linked in a list contain the propensity function values in

increasing order of firing frequency of the corresponding reactions. The frequencies

can be calculated by previous benchmarking, as in [16].
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Chapter 7

Implementation

The multi-compartment stochastic simulation algorithm previously described has

been implemented as a prototype tool (the Multi-compartment Stochastic Simulator,

MSS) written in Java [47]. The tool supports the Systems Biology Markup Language

(SBML) [52] and can be integrated into the Systems Biology Workbench (SBW)

[51], an open source framework which allows the interconnection of heterogeneous

software applications oriented to the analysis and simulation of biochemical and

biological models.

In the following we discuss the main features of the MSS and its integration with

SBML and SBW. The chapter is structured as follows. First a short introduction

to SBML is given in Sect. 7.1, in order to provide the reader with the minimal

background necessary to follow the description of how SBML has been extended for

the storage of all the quantitative information needed by the MSSA. Then a short

description of the SBW with few details about its architecture is presented in Sect.

7.2. Finally, in Sect. 7.3 the MSS is described.

7.1 The Systems Biology Markup Language

The Systems Biology Markup Language is a machine-readable format for the repre-

sentation of biochemical and biological models: it is formalised through an XML [11]

schema and allows the description of models characterised by an unlimited number
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of chemical species obeying standard chemical reactions rules of the form

R : m1R1 +m2R2 + . . .+miRi
f
→ n1P1 + n2P2 + . . .+ njPj

where R1, . . . , Ri stand for the reactants, P1, . . . , Pj for the products, m1, n1, . . .

for their stoichiometric coefficients and f represents a reaction law with arbitrary

kinetic which can be totally specified in SBML.

Each model definition consist of several sections, each one devoted to the listing

of the different entities of interest (e.g. compartments, species, reactions, functions,

events and so on):

<model id="SingleReaction" . . . >

<listOfCompartments>

. . .

</listOfCompartments>

<listOfSpecies>

. . .

</listOfSpecies>

<listOfReactions>

. . .

</listOfReactions>

</model>

Each list of entities contains all the elements of the same kind that appear in the

model, each one described by optional attributes. The list of compartments, for

example, contains all the compartments, each one characterised by qualitative or

quantitative attributes such as name (or identifier) and size:

<listOfCompartments>

<compartment name="Comp" size="1">

</listOfCompartments>

The list of species contains the information about each species in the model, with

all the related values of interest (identifier, initial concentration, identifier of the

compartment where the species is located, and so on):
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<listOfSpecies>

<species compartment="Comp" id="r"

initialConcentration="10" />

. . .

</listOfSpecies>

The description of each reaction usually contains several subsections:

• the list of its reactants (with respective stoichiometry);

• the list of products (with stoichiometry as well);

• an additional section which specifies the kinetic law of the reaction by means

of a MathML [24] element.

For example, a simple reaction of the kind R : r → p denoted by mass-action kinetics

with rate k may be written as:

<reaction id="R">

<listOfReactants>

<speciesReference species="r" stoichiometry="1" />

</listOfReactants>

<listOfProducts>

<speciesReference species="p" stoichiometry="1" />

</listOfProducts>

<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times />

<ci> k </ci>

<ci> r </ci>

</apply>

</math>

</kineticLaw>

</reaction>
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<?xml version="1.0" encoding="UTF-8"?>

<sbml level="2" version="1" xmlns="http://www.sbml.org/sbml/level2">

<model id="SingleReaction" name="SingleReaction">

<listOfCompartments> <compartment id="Comp" size="0" /> </listOfCompartments>

<listOfSpecies>

<species boundaryCondition="false" compartment="Comp" id="r" initialConcentration="10" />

<species boundaryCondition="false" compartment="Comp" id="p" initialConcentration="0" />

</listOfSpecies>

<listOfParameters> <parameter id="k" value="0.5" /> </listOfParameters>

<listOfReactions>

<reaction id="R" reversible="false">

<listOfReactants <speciesReference species="r" stoichiometry="1" /> </listOfReactants>

<listOfProducts> <speciesReference species="p" stoichiometry="1" /> </listOfProducts>

<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply> <times /> <ci> k </ci> <ci> r </ci>

</apply>

</math>

</kineticLaw>

</reaction>

</listOfReactions>

</model>

</sbml>

Figure 7.1: Systems Biology Markup Language: representation of a simple model

composed of a single reaction R : r → p with standard mass-action kinetic law.

Each element can contain an optional section annotation, which allows the in-

sertion of arbitrary information about the element:

<species compartment="Comp" id="r"

initialConcentration="10">

<annotation>

. . .

</annotation>

</species>

This peculiarity will turn out to be useful in order to store all the information needed

by the MSSA for the stochastic simulation with variable compartment volumes.

A simple but complete example of SBML model specification is given in Fig. 7.1.
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Figure 7.2: Screenshot of the SBW Broker, the central application of the frame-

work. In the picture, the list of registered applications (modules) and their services.

7.2 The Systems Biology Workbench

The Systems Biology Workbench is an open source, multi-platform framework which

supports the interaction of heterogeneous applications, written in different program-

ming languages (C/C++, Java, Perl, Delphi, . . . ). SBW provides a core infras-

tructure providing a basic application programming interface (API) through which

the SBW-enabled applications can cooperate. The modularity of the framework is

achieved by the abstraction of service: each application provides one or more ser-

vices, and every application can query the SBW Broker (the central process of the

framework, which keeps track of all the applications and services, as shown in Fig.

7.2) in order to know which services are provided by other applications.
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Figure 7.3: Visualisation in the SBW Broker of the service and methods provided

by the Multi-compartment Stochastic Simulator.

The same service can be provided (in different ways) by one or more applications.

For example, the simulation service consist in the possibility of loading arbitrary

SBML code and retrieve the result of its related simulation. No constraints are

given on the kind of simulation, so that it may consist of any kind of stochastic or

deterministic simulation, performed with any algorithm.

This modularity helps the reuse of code, since new features can be added (such

as new simulation algorithms) without the need to update the remaining part of the

framework (for example post-processing or graphics tools for the elaboration and

visualisation of the simulation data).
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Figure 7.4: Selection of the Multi-compartment Stochastic Simulator from the

Graphical User Interface for simulation included in the SBW.

7.3 The Multi-compartment Stochastic Simulator

The Multi-compartment Stochastic Simulator (MSS) is a prototype, multi-platform

application written in Java which implements the MSSA described in the previous

chapter. The MSS is SBML-capable, i.e. is able to read SBML models and perform

their stochastic simulation according to the MSSA.

However, the species volumes v(Sj) for each species Sj (needed by the MSSA

for the simulation in the case of variable volumes) do not appear as attributes in

the SBML description of chemical species. Fortunately, SBML allows the storage of

additional information about any entity of the language in the annotation tag, so

that the species volumes can be easily included in the SBML model for example in
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Figure 7.5: Visualisation in the SBW interface of a run of the MSS.

the following way:

<species compartment="Comp" id="r"

initialConcentration="10">

<annotation>

<speciesVolume volume="0.001" />

</annotation>

</species>

The annotation contains a speciesVolume tag with a single attribute volume whose

value corresponds to v(Sj).

The MSS can act as a standalone, non-interactive application which accepts as

input a few parameters (in particular the name of an SBML file) and exports the
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simulation data as a text file in CSV (comma-separated values) format.

In order to take full advantage from the MSS, its integration with the SBW

must be taken into account. The MSS constitutes indeed an SBW-enabled tool

which provides the simulation service (Fig. 7.3).

All the modules included in the SBW (or external, SBW-enabled applications)

which can take advantage of the simulation service are consequently able to exploit

the MSS. In particular, the graphical simulation interface included in the SBW

provides a more user-friendly interaction with the MSS. Such graphical interface

allows the user to select the module to be used for the simulation (as shown in Fig.

7.4) and to pick the SBML file to be simulated.

Fig. 7.5 shows the graphical result of a simple model simulated by the MSS.
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Chapter 8

Case Studies

In this chapter we present two simple case studies demonstrating the conditions

under which the SSA (and in general any algorithm based on the hypothesis of

constant compartment volume) cannot provide valid simulation results. The first,

in Sect. 8.1, describes a quite common phenomenon in Biology known as osmosis,

which denotes the change of volumes in many cells as a function of the external

concentration of particular solutes. The second example, in Sect. 8.2, considers the

effect of volume variation in the case of cellular growth and division in a simple

biochemical system.

8.1 Osmosis

The simple case study considered in this chapter allows us to observe the limits of

the previous models and the need to introduce volume information specified in Expr.

(6.10), in order to manage correctly the relative rates of reactions as a function not

only of the number of elements for each reactant, but also of its concentration. The

system in Fig. 8.1 depicts a compartment c of variable size containing a water so-

lution placed in a hypotonic environment e. The compartment is bounded by a

semipermeable membrane, i.e. a filter which allows only the water to move across.

Experience shows that this situation causes a net movement of water towards com-

partment c, due to the so-called osmosis phenomenon. Biological occurrence of this
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Figure 8.1: Osmosis by semipermeable membrane in hypotonic solution.

circumstance is common both in animal and vegetal cells. A typical animal cell

swells when placed in hypotonic and shrinks when in hypertonic solution even if

the cell membrane is poorly permeable to water, thanks to the presence of water-

channel proteins which allow only water to flow, in either direction. The process A

may describe a simple abstraction of water-channel protein acquaporin:

HOH(d) ≡ hoh@d : vH2O S(d) ≡ s@d : vS

A(f, g) ≡ ! hoh@f.HOH(g)
∣
∣ ! hoh@g.HOH(f)

S is the solute, HOH represents a water molecule able to interact with the acqua-

porin A and move through the membrane of the cell. In this very simple layout, the

acquaporin is completely symmetrical. The system in Fig. 8.1 may be written as

Sys ≡ HOH(e)
∣
∣ · · ·

∣
∣ HOH(e)

︸ ︷︷ ︸

m1

∣
∣ S(e)

∣
∣ · · ·

∣
∣ S(e)

︸ ︷︷ ︸

n1

∣
∣ A(c, e)

∣
∣

HOH(c)
∣
∣ · · ·

∣
∣ HOH(c)

︸ ︷︷ ︸

m2

∣
∣ S(c)

∣
∣ · · ·

∣
∣ S(c)

︸ ︷︷ ︸

n2

where m1 and n1 represent the number of water molecules and salt ions outside,

m2 and n2 the number of molecules and ions inside the cell membrane and only

one acquaporin is present, for simplicity. If we discard the information about the

volumes Ve and Vc of the two compartments in Expr. (6.10), we are first forced to

introduce asymmetry in the encoding of the acquaporin A, in order to differentiate

the rate re of molecules entering from the rate rc of molecules leaving the cell. The

system can be considered in equilibrium when the probability of a water molecule
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entering is equal to the probability of a water molecule leaving the cell, that is when

h′ere = h′crc (8.1)

where h′e is the number of possible combinations of acquaporin–water molecules

outside, h′c the possible combinations inside the cell. Since only one acquaporin is

present, we have that he = m′
1 and hc = m′

2, where m′
1 and m′

2 are the number of

water molecules at equilibrium. Hence Expr. (8.1) becomes

m′
2/m

′
1 = re/rc

meaning that the equilibrium depends on the rate of the molecules initially conveyed,

which is not true. In reality, under the hypothesis of uniform temperature and

pressure, the equilibrium is reached when the concentration of the two solutions is

the same, that is when

m′
2/n

′
2 = m′

1/n
′
1 (8.2)

where n′
1 and n′

2 are the number of salt ions in the respective compartments. Even

by artificially setting re = 1/n1 and rc = 1/n2, the model would be incorrect in the

case of a variable number of salt ions. Conversely, this dependence is coherently

modeled if we consider the right expressions for Ve and Vc. In fact, by Expr. (6.10),

we have

V −1
e h′ere = V −1

c h′crc (8.3)

Since the volumes are obtained as the sum of the average volumes occupied by each

element, we have

Ve =
∑

e

vH2O +
∑

e

vS = m′
1vH2O + n′

1vS

Vc =
∑

c

vH2O +
∑

c

vS = m′
2vH2O + n′

2vS

which – under the initial symmetric assumption re = rc – properly substituted in

(8.3) leads to

1

vH2O +
n′

1

m′

1
vS

=
1

vH2O +
n′

2

m′

2
vS
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Figure 8.2: Simulation of the osmosis phenomenon in the case of two compart-

ments C1 and C2 with the same initial number of H2O molecules and different salt

concentration: the lower (upper) line represents the number of water molecules in

C2 (C1), with C2 containing half the number of molecules of salt with respect to C1.

that is clearly satisfied by expression (8.2). The inclusion of the volume of both

water molecules and salt ions in the denominator of the above expression affects

the net flux of water molecules through the acquaporin so that its rate smoothly

decreases to zero, with a rapidity depending on the ratio between salt and water.

In Fig. 8.2, a MSSA simulation graph of the above example is reported.

Osmosis involves most living cells, and expression (8.2) describes only one of the

possible equilibrium conditions. For example, plant cells are surrounded by rigid

walls which prevent them from increasing their volume. Consequently, if placed in

hypotonic solution, these cells absorb water until the pressure on cell walls equals

the osmotic pressure, which depends on the absolute temperature T and the dif-

ference of salt ions/molecules concentration. This equilibrium condition cannot be

expressed in Sπ@, since no pressure evaluation is present. Such information may

be taken into account in the model by defining reaction rates as functions of the

absolute temperature T and pressure pc of the compartment, where pc may be in

turn calculated as a function of the compartment c, the absolute temperature and

the elements surrounded by c. This would allow the introduction of temperature,

pressure and some of the structural information pertaining to mechanical properties

of compartment boundaries. Depending on the kind of function used for evaluating
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Reaction Propensity function

R1 : S0 + SAct
k1→ S1 k1 · [S0] · [SAct]

R2 : S1
k−1
→ S0 + SAct k−1 · [S1]

R3 : S0
α0→ S0 + X α0 · [S0]

R4 : S1
α1→ S1 + X α1 · [S1]

R5 : X
kx→ kx · [X]

Table 8.1: Biochemical reactions for a simple system describing a constitutive

promoter S.

pc, the computational complexity of the algorithm may grow significantly.

The osmosis example shows a simple (and biologically common) situation where

the SSA happens not to be faithful if taken “as it is”, since the volume of each

element (and not only compartment volumes) must be properly considered during

the simulation in order to obtain the correct values for reaction rates as a function

of reactants’ concentration. The reason is that SSA already embodies the unique,

fixed-size volume hypothesis, which is correct for fluid systems under the conditions

stated in [45] and needs to be properly translated into other chemical or biological

contexts.

8.2 Cellular growth and division

Another simple yet non-trivial example is the effect of the variation of volume as a

consequence of cellular growth and division. In this section we consider such effect

on the system in Table 8.1, which was firstly analysed in [53] under the hypothesis

of constant volume, while in [62] a hybrid variant of Gillespie’s SSA was formulated

in order to take into account the variation of volume of the cell during the process

of growth and subsequent division.

The system involves a single gene which fluctuates between two states S0 and S1.
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Figure 8.3: Simulation of the system specified in Table 8.1 in the case of a single

molecule of the promoter S (in the graph its level is multiplied by 5 · 103 for the

sake of readability of the graph) and constant volume V ol = 1, with k1 = k−1 = 0.1,

α0 = 1 · 104, α1 = 5 · 104, kx = 10.

The transition S0 → S1 occurs when one regulator protein SAct binds to the gene’s

promoter, while the reverse transition S1 → S0 is supposed to occur autonomously.

The transcription of gene S leads to the production of the protein X at rate α0

when its promoter is in the state S0, and at at rate α1 when it is in the state S1

(with α0 < α1). The protein X spontaneously degrades at rate kx.

Under standard conditions, the concentration of the protein X follows a bistable

condition which depends on the state of the gene S. In the state S0, the concen-

tration level of X quickly reaches an equilibrium at α0/kx, while in S1 at α1/kx, as

shown in Fig. 8.3.

We shall now consider the same system in the case of volume variation as a

consequence of the growth and division of the cellular compartment. In [62], such

growth obeys a deterministic (exponential) function and the division occurs at fixed

time steps. Here we are following an alternative approach, which totally sticks to

the stochastic spirit of the SSA and allows a formulation of the system exclusively
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Figure 8.4: Simulation of stochastic volume variation in the case of growing and

dividing cells. The number of water molecules exponentially grows until the division

of the cell restores its initial amount.

within the standard MSSA.

The exponential growth of the cell compartment can be easily reproduced by

means of the introduction of a new chemical species w with volume v(w) which

may represent the amount of water (and other substances) inside the cell itself. A

reaction rule of the kind

Rw : w → 2 · w

seamlessly introduces an exponential growth of cellular volume (whose speed is a

function of the rate of Rw), supposing that the volume occupied by all the other

elements is negligible, that is v(S0) = v(S1) = v(SAct) = v(X) = 0.

The event of cell division can be signalled by the stochastic appearance of a

single molecule of species k, which dramatically changes the configuration of the

system through a series of infinite-rate reductions. It first sets the volume of the cell
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Figure 8.5: Simulation of cellular growth and division with complete neglect of

volume variation: the concentration of protein X quickly reaches the equilibrium

after each cell division, which happens approximately once per time unit.

to zero, then it “stochastically halves” the number of proteins of species X:

R1k : k + w → k

R2k : k +X → k

R2′k : k +X → k +X ′

with rate(R1k) = rate(R2k) = rate(R2′k) = ∞. R1k eliminates all the water

molecules, while R2k, R2′k simulate the division of the cytosol between the two

budding cells: R2′k replace roughly half of the occurrences of X with X ′, which

represents the protein X inside one of the two new cells, while R2k ideally moves

the protein inside the other budding cell, which is not explicitly modelled.

After a negligible time, the species k disappears according to the reaction

Rkk : k → k0 + n · w n = V ol/v(w)

which also restores the initial volume V ol of the cell (to be precise, such volume

should be “stochastically halved”, but this expedient constitutes an effective way
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Figure 8.6: Level of concentration of the protein X during the process of growth

and division: the division on average occurs once every one time unit, when the cell

has approximately doubled in size. The concentration of protein X never reaches

an equilibrium, following instead an oscillatory regime.

to limit its fluctuation, in the absence of the reliable control mechanisms typical of

real biological cells) and allows the subsequent relabelling of the X ′ proteins:

R1r : k0 +X ′ → X rate(R1r) =∞

A simulation of the fluctuation of the number of water molecules (and conse-

quently of the volume of the system, according to the previous hypotheses) produced

by such reaction rules is shown in Fig. 8.4.

As we have previously discussed, in a standard situation the concentration of the

X protein in the cell reaches an equilibrium which depends on the state of the gene

S. Upon cell division, the number of proteins is halved. If we disregard the variation

of volume, the concentration of X is suddenly halved after each cell division, then

quickly reaches the previous equilibrium level, according to the simulation in Fig.

8.5.

The behaviour of the system considerably changes if, conversely, the volume of

the compartment is properly considered. Fig. 8.6 reports the simulation of the
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system (in perfect agreement with the results presented in [62]) in the case that the

division of the cell occurs once per time unit, after that (on average) the volume of

the cell has doubled. In this situation the concentration of the protein X follows

a quite different law: upon cell division, its concentration does not considerably

change (both the volume and the number of proteins are approximately halved),

while during each growth cycle it follows an oscillatory regime whose local minima

coincide with the cell division (i.e. with the local maxima of cell volume).

The different behaviour of the systems in Figures 8.5 and 8.6 demonstrates the

error deriving from the neglect of volume variations which heavily influences, in this

case, the activity of the protein X.



Chapter 9

Conclusions

The application of concurrent languages to Systems Biology is still in its earliest

stage of progress. Consistent efforts are going to be made in pursuit of increased

biological faithfulness, better exploitation of techniques and development of software

tools for analysis in silico of biological phenomena. To this aim, the evaluation of

the expressiveness of current languages and the integration of further bio-oriented

primitives will play a central role.

In this thesis we have presented π@, an extremely simple language for biological

modelling whose expressive properties make it the keystone for research in this

direction. The π@ language is obtained as a conservative extension of the π-calculus,

extended with polyadic synchronisation and static, global priority.

Despite of its simplicity, π@ presents noteworthy modelling capabilities: beyond

the description of basic chemical reactions, the calculus can model formation of

molecular complexes, hierarchical organisation of the system in subcompartments,

inter-compartment reactions (including exchange of elements between adjacent com-

partments) dynamic compartment structure (run-time creation or destruction of

compartments, merging, splitting, migration of compartments into or out of other

compartments).

Its stochastic counterpart, Sπ@, provides increased faithfulness in quantitative

simulation of models thanks to the inclusion of additional physical properties. The

simulation algorithm consists of a multi-compartment extension of Gillespie’s one,
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and handles the variation of compartment volumes consistently with the dynamic

reorganisation of compartment structure. This extended simulation algorithm, of

which an optimised version is also presented, is shown able to model effectively

further biological phenomena like osmosis, cellular growth and division.

The remarkable expressiveness of π@ gives this calculus the ability of repro-

ducing the exact behaviour of several bio-inspired formalisms. In this respect, the

encodings of BioAmbients, Brane Calculi and catalytic P Systems have been pro-

vided here. Such encodings are modular : they allow independent translation into

π@ of each process of the source language, so that the compilation can be parallel

or incremental. In the case of BioAmbients and Brane Calculi, π@ can replicate the

dynamic behaviour of all the operations related to compartments. Notably, π@ can

also reproduce the semantics of catalytic P systems, which have a static compart-

ment structure but are characterised by maximal parallelism. Also Beta binders [83]

– another well known calculus denoted by explicit compartment semantics – have

been encoded into π@ [17].

On the theoretical side, the first results on the expressiveness of the kind of pri-

ority exploited in π@ have been provided, in terms of separation between prioritised

and non-prioritised formalisms. In particular, two languages denoted by two differ-

ent kinds of static priority have been considered: the first one, FAP, consisting of

a fragment of asynchronous CCS extended with global priority (the same used in

π@, of which FAP is a fragment too, indeed); the second one, CPG, is denoted by a

local kind of priority. The first result on the expressive gap between local and global

priority has been proved here in terms of nonexistence of modular encoding of FAP

into CPG. The most important results are anyway related to the impossibility of

encoding in a modular way such prioritised languages into other two non-prioritised

languages, that is the π-calculus and the bπ-calculus, characterised by point-to-point

and broadcast communication respectively.

The results presented in this thesis establish the possible uses of π@ under dif-

ferent perspectives.

Its direct application to biological modelling provides the greatest flexibility for
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the expression of systems denoted by dynamical structures at molecular and com-

partmental level. The possibility of encoding complex operations as atomic se-

quences of low-level steps provides the calculus with the capability of reproducing

new biological operations at will, which can be then integrated with the existing

ones in a seamless way. Such capability keeps π@ open to the inclusion of future

biological primitives of interest.

The easy encoding of several bio-inspired formalisms (BioAmbients, Brane Cal-

culi, a variant of P Systems presented here and also Beta binders) demonstrates the

usefulness of π@ for the analysis and development of such formalisms: once trans-

lated, their encodings can be analysed and compared in order to understand their

structural and semantic common points and differences. Furthermore, such encod-

ings represent their correct implementation on top of π@: their conciseness evidence

the minimum effort needed to provide such an implementation and to prove its cor-

recness, once a proper implementation of π@ is given. These considerations support

the choice of π@ as the optimal core of a framework for the quick implementation

of bio-inspired formalisms.

The separation results between prioritised and non-prioritised languages points

out the price to pay for such expressiveness and flexibility. The impossibility of

encoding FAP and CPG in a modular way into π-calculus and bπ-calculus attests

to the difficulties of providing a distributed implementation of π@. It is indeed

shown that the semantics of priority (global as well as local) cannot be obtained by

a purely parallel implementation even if powerful primitives such as broadcast are

employed and deadlocks and divergence are tolerated. Consequently, any possible

implementation of π@ is going to be centralised. The strength of the separation

suggests also that even a partial parallelisation may likely cause significant overhead

due to the frequent and spread additional synchronisations, so that the performance

gain addressed with such parallelisation would be dramatically reduced if not totally

lost.

As remarked before, these results on the impossibility of parallelisation of priority

have wide validity. They can be applied in particular to the stochastic variants
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of many other formalisms which would suffer from the same parallelisation issues

deriving from the introduction of infinite-rate transitions in their implementations.

9.1 Future work

The analysis carried out in this thesis leaves much work to do and several open

questions. The implementation of π@ and Sπ@ constitute just the first and easiest

step to be achieved. Further efforts would be required to provide an optimised

implementation, so that the encodings of formalisms on top of this language may

have as good performance as in respective native implementations.

Moreover, π@ expressiveness needs to be investigated in many respects.

For example, the encoding of further formalisms (e.g. [32, 37]) into π@ is def-

initely one of the main directions to follow. This is intrinsically related to the de-

termination of the expressiveness of priority in the reproduction of properties that

are not native in π@ such as, for example, maximal parallelism in the presence of

dynamical compartments, non-binary reactions, and so on.

Another relevant aspect is related to the properties (e.g. causality, stochastic

semantics and observational equivalences) preserved by the encoding functions: the

determination of such properties may shift the application of the related analysis

techniques (e.g. causal analysis, stochastic simulation and even model checking)

directly to the encodings. This would shorten the time required for software devel-

opment by exploiting π@ as bridge towards the encoded formalisms.

With respect to priority, many issues need to be resolved. The relation between

π@ and core-π@ is still unknown, i.e. how the number of priority levels affects

the expressiveness, and also if polyadic synchronisation may be in turn encoded by

priority and under what hypotheses this could be achieved. Moreover, it would be

worth considering local priority in the style of CPG as an alternative: the potential

gain of performance in the implementation and the likely loss of expressiveness

should be evaluated.



Chapter 9. Conclusions 195

Moreover, other extensions to the calculus should be taken into account. The

inclusion of further physical parameters in Sπ@, such as pressure and temperature,

should be considered in relation to the additional computational complexity required

for their simulation.

Syntactic object-oriented facilities in the style of SpiCO [55] should be introduced

in order to simplify the structuring of the code and increase the readability of the

encodings.
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