
Expressiveness of Concurrent Languages

Cinzia Di Giusto

Technical Report UBLCS-2009-05

March 2009

Department of Computer Science

University of Bologna

Mura Anteo Zamboni 7
40127 Bologna (Italy)

The University of Bologna Department of Computer Science Research Technical Re-

ports are available in PDF and gzipped PostScript formats via anonymous FTP from the

area ftp.cs.unibo.it:/pub/TR/UBLCS or via WWW at URL http://www.cs.unibo.it/.

Plain-text abstracts organized by year are available in the directory ABSTRACTS.

Recent Titles from the UBLCS Technical Report Series

2008-11 Programming service oriented applications, Guidi, C., Lucchi, R., June 2008.

2008-12 A Foundational Theory of Contracts for Multi-party Service Composition, Bravetti, M.,

Zavattaro, G., June 2008.

2008-13 A Theory of Contracts for Strong Service Compliance, Bravetti, M., Zavattaro, G., June

2008.

2008-14 A Uniform Approach for Expressing and Axiomatizing Maximal Progress and Different

Kinds of Time in Process Algebra, Bravetti, M., Gorrieri, R., June 2008.

2008-15 On the Expressive Power of Process Interruption and Compensation, Bravetti, M., Zavat-

taro, G., June 2008.

2008-16 Stochastic Semantics in the Presence of Structural Congruence: Reduction Semantics for

Stochastic Pi-Calculus, Bravetti, M., July 2008.

2008-17 Measures of conflict and power in strategic settings, Rossi, G., October 2008.

2008-18 Lebesgue’s Dominated Convergence Theorem in Bishop’s Style, Sacerdoti Coen, C., Zoli,

E., November 2008.

2009-01 A Note on Basic Implication, Guidi, F., January 2009.

2009-02 Algorithms for network design and routing problems (Ph.D. Thesis), Bartolini, E., Febru-

ary 2009.

2009-03 Design and Performance Evaluation of Network on-Chip Communication Protocols and

Architectures (Ph.D. Thesis), Concer, N., February 2009.

2009-04 Kernel Methods for Tree Structured Data (Ph.D. Thesis), Da San Martino, G., February

2009.

2009-05 Expressiveness of Concurrent Languages (Ph.D. Thesis), di Giusto, C., February 2009.

2009-06 EXAM-S: an Analysis tool for Multi-Domain Policy Sets (Ph.D. Thesis), Ferrini, R.,

February 2009.

2009-07 Self-Organizing Mechanisms for Task Allocation in a Knowledge-Based Economy (Ph.D.

Thesis), Marcozzi, A., February 2009.

2009-08 3-Dimensional Protein Reconstruction from Contact Maps: Complexity and Experimental

Results (Ph.D. Thesis), Medri, F., February 2009.

2009-09 A core calculus for the analysis and implementation of biologically inspired languages

(Ph.D. Thesis), Versari, C., February 2009.

2009-10 Probabilistic Data Integration, Magnani, M., Montesi, D., March 2009.

iii

iv

Dottorato di Ricerca in Informatica
Università di Bologna e Padova

Expressiveness of Concurrent Languages

Cinzia Di Giusto

March 2009

Coordinatore: Tutore:

Simone Martini Maurizio Gabbrielli

Progress in theoretical computer science brings
understanding in place of confusion and confi-
dence in place of fear.

C.A.R. Hoare
Preface of Milner’s book Communi-
cation and Concurrency

vii

viii

Abstract

The aim of this thesis is to go through different approaches for proving expressive-

ness properties in several concurrent languages. We analyse four different calculi

exploiting for each one a different technique.

We begin with the analysis of a synchronous language, we explore the expressive-

ness of a fragment of CCS! (a variant of Milner’s CCS where replication is considered

instead of recursion) w.r.t. the existence of faithful encodings (i.e. encodings that

respect the behaviour of the encoded model without introducing unnecessary com-

putations) of models of computability strictly less expressive than Turing Machines.

Namely, grammars of types 1,2 and 3 in the Chomsky Hierarchy.

We then move to asynchronous languages and we study full abstraction for two

Linda-like languages. Linda can be considered as the asynchronous version of CCS

plus a shared memory (a multiset of elements) that is used for storing messages.

After having defined a denotational semantics based on traces, we obtain fully ab-

stract semantics for both languages by using suitable abstractions in order to identify

different traces which do not correspond to different behaviours.

Since the ability of one of the two variants considered of recognising multiple

occurrences of messages in the store (which accounts for an increase of expressive-

ness) reflects in a less complex abstraction, we then study other languages where

multiplicity plays a fundamental role. We consider the language CHR (Constraint

Handling Rules) a language which uses multi-headed (guarded) rules. We prove that

multiple heads augment the expressive power of the language. Indeed we show that

ix

if we restrict to rules where the head contains at most n atoms we could generate

a hierarchy of languages with increasing expressiveness (i.e. the CHR language al-

lowing at most n atoms in the heads is more expressive than the language allowing

at most m atoms, with m < n).

Finally we analyse a language similar but simpler than CHR. The κ-calculus is a

formalism for modelling molecular biology where molecules are terms with internal

state and sites, bonds are represented by shared names labelling sites, and reactions

are represented by rewriting rules. Depending on the shape of the rewriting rules,

several dialects of the calculus can be obtained. We analyse the expressive power of

some of these dialects by focusing on decidability and undecidability for problems

like reachability and coverability.

x

Acknowledgements

I am greatly indebted to my advisor Maurizio Gabbrielli. During the last four years

he has always been present, giving suggestions, listening to me, finding counter

examples, reading and correcting my drafts. Thanks for all this and above all for

having been a friend.

I would like to thank Catuscia Palamidessi for having hosted me in her team

Comete at École Polytechnique in Paris. I have greatly benefit from her and her

team experience and suggestions. In particular I owe much to Frank Valencia, for

the discussions, the criticisms, for the huge amount of things he taught me and also

for the laughs and for the friendship.

Many thanks to Catuscia Palamidessi and Frank de Boer for having accepted to

evaluate this dissertation. Thanks for your comments.

I would like to thank Jorge Pérez, who proofread this work and whose suggestions

were fundamental. Thanks for your priceless help.

I am also indebted to many people with whom I discussed the work in this dis-

sertation: Nadia Busi, Giorgio Delzanno, Roberto Gorrieri, Cosimo Laneve, Simone

Martini, Maria Chiara Meo, Mogens Nielsen, Fabio Panzieri, Davide Sangiorgi and

Gianluigi Zavattaro.

Finally I am most grateful to all friends I met here in Bologna and during

my PhD: Antonio, Claudio, Cristian, Giulio, Marco, Matteo, Micaela, Stefano and

Valentina.

xi

I dedicate this thesis to Enrico, thanks for all the love, the support, the patience

and for the things to come.

Cinzia Di Giusto

Bologna, March 2009

xii

Contents

Abstract ix

Acknowledgements xi

List of Tables xvii

List of Figures xix

1 Introduction 1

1.1 Concurrency . 1

1.2 Expressiveness . 4

1.2.1 Language encoding . 4

1.2.2 Decidability vs Undecidability 6

1.3 Reasoning Techniques . 7

1.4 Summary of the thesis . 8

1.5 Contributions . 10

2 Background 11

2.1 RAM . 11

2.2 Fixpoint theory . 12

2.3 Petri net . 14

xiii

3 Below Turing Expressiveness - The Role of Non-Determinism 17

3.1 Introduction . 17

3.2 The Calculi . 21

3.2.1 Parametric Definitions: CCS and CCSp 22

3.2.2 Replication: CCS! . 23

3.3 The Role of Strong Non-Termination 23

3.4 CCS! without choice . 27

3.5 Undecidability results for CCS−ω! . 30

3.6 CCS! and Chomsky Hierarchy . 33

3.6.1 Encoding Regular Languages 33

3.6.2 Impossibility Result: Context Free Languages 36

3.6.3 Trios-Processes. 38

3.6.4 Inside Context Sensitive Languages (CSL) 43

3.7 Conclusions and Related Works . 44

4 Full Abstraction Techniques for Asynchrounous Languages 47

4.1 Introduction . 48

4.2 Preliminaries . 50

4.2.1 Linda-core . 51

4.2.2 Linda-inp . 53

4.3 Denotational semantics . 53

4.3.1 Denotational semantics for Linda-core 54

4.3.2 Denotational semantics for Linda-inp 60

4.4 Full Abstraction for Linda-core . 63

4.5 Full Abstraction for Linda-inp . 68

4.6 Conclusions and Related work . 73

xiv

5 Multiplicity Matters 77

5.1 Introduction . 78

5.2 Preliminaries . 80

5.2.1 CHR constraints and notation 81

5.2.2 Syntax . 82

5.2.3 Operational semantics . 83

5.3 On the Turing completeness of CHR 86

5.4 Separating CHR and CHR1 . 90

5.4.1 Separating CHR and CHR1 by considering data sufficient an-

swers . 92

5.4.2 Separating CHR and CHR1 by considering qualified answers . 95

5.4.3 Separation result for weak acceptable encodings 97

5.4.4 A note on logic programs and Prolog 100

5.5 A hierarchy of languages . 102

5.6 Conclusions and Related works . 106

6 Graphs Rewriting Systems - a Hierarchy 109

6.1 Introduction . 110

6.2 Preliminaries . 117

6.2.1 κ-calculi . 117

6.2.2 Decision problems for qualitative analysis. 121

6.3 (Un)Decidability Results for κ dialects 121

6.3.1 Decidability results . 122

6.3.2 Undecidability results . 126

6.4 Related work . 132

6.5 Conclusions . 134

7 Concluding Remarks 137

7.1 Future developments . 139

xv

References 141

xvi

List of Tables

3.1 An operational semantics for finite processes. 22

5.1 The standard transition system for CHR 83

xvii

xviii

List of Figures

3.1 Termination-Preserving CCS! Processes (CCS−ω!) in the Chomsky Hi-

erarchy. 20

3.2 Alternative evolutions of P involving α 26

3.3 Confluence from P to R . 27

3.4 Encoding of regular expressions . 34

4.1 An operational semantics . 52

4.2 An operational semantics . 53

4.3 A denotational semantics . 55

4.4 Fixpoint . 58

4.5 A denotational semantics . 60

4.6 Fixpoint . 62

5.1 RAM encoding in CHR1 . 87

5.2 RAM encoding in CHR on CT∅ . 89

5.3 A program for defining ≤ in CHR . 95

6.1 Representation of the κ-rule (6.1) . 111

6.2 The κ lattice . 112

6.3 Linear bidirectional polymerisation 113

6.4 Bond Flipping . 114

6.5 The κ lattice and the (un)decidability of RP, SCP, CP 116

xix

6.6 Bond flipping and free flipping . 119

6.7 Species for the encoding . 127

6.8 Enconding RAMs in κ. 127

6.9 Encoding RAMs in κ−n. 128

6.10 Grid representing the register R1. 129

6.11 Encoding of decrement instructions [[j : DecJump(Ri, l)]]κ−d−u in κ−d −u .131

xx

Chapter 1

Introduction

It was a dark and stormy night . . .

Charles M. Schulz
Snoopy

This dissertation investigates and examines the application of some of the tech-

niques used for assessing the expressiveness of concurrent languages. We will go

through the different techniques by analysing several languages and providing some

novel results; in some cases we will apply techniques commonly used in the process

algebra field to other areas like logic programming. Here we generally introduce the

thesis by describing the domain of interest.

1.1 Concurrency

Concurrency theory is concerned with the modelling of dynamic systems that con-

sist of the composition of several parts that interact among each other. Nowadays

many systems fit in this definition: Internet, mobile computing, parallel computing

(grids), and if we consider systems that cannot be classified under the standard

2 Chapter 1. Introduction

computer world we can refer to biological systems: interactions between molecules

or, abstracting even more, to complex interactions between societies (animal or even

human interactions). More precisely a concurrent model can be represented by a

group of independent entities called processes which collaborate and combine by

exchanging messages.

In the past twenty years, since the importance and ubiquity of these systems

have been proven real, scientists have tried to give a mathematical foundation to

concurrent computations. These systems differentiate from the sequential ones not

only in the domain of application but in their very conceptual foundations: concur-

rent systems usually deal with infinite computations – therefore the system cannot

be described as a function with inputs and outputs – and non determinism plays a

fundamental role in their behaviour.

Starting from the ‘80s, several models for concurrent computations have been

proposed. The first approach was to consider extensions of the λ-calculus with

some form of parallelism – consider for example the works on PCF by Plotkin [109].

Then in 1980 Milner [91] proposed a new approach represented by the Calculus

of Communicating Systems (CCS). CCS is generally accepted as the first proposal

of process algebras. In some sense, CCS resembles the λ-calculus: processes are

treated in the same way the λ-calculus deals with functions. The aim of the two

languages is clearly different: CCS constructors focus on how to express interaction

and communication between processes whereas the λ-calculus describes functions

and their behaviour.1

Independently in the same years two other languages were proposed: Hoare’s

Communicating Sequential Processes (CSP) [71], and Bergstra and Klop’s Algebra

of Communicating Processes (ACP) [11]. Both languages, similarly to CCS, allow

the description of systems in terms of processes that operate independently, and

interact with each other through message-passing communication.

Taking inspiration from these basic calculi a huge variety of languages has been

proposed. Take as an example CCS: it can be extended in several ways. Consider,

1For a refined version of [91] see [93].

Chapter 1. Introduction 3

for instance, the type of messages exchanged. In CCS only pure synchronisation

is allowed: processes synchronise on some given channels but the configuration of

connection cannot change dynamically. Milner et al. then proposed the π-calculus

[95] as a generalisation of CCS in precisely this sense: This is achieved by giving

the possibility of passing names of connections along the channels. Taking again

inspiration from the λ-calculus where terms can be passed around, Sangiorgi in [113]

generalises the notion of mobility of the π-calculus, letting the process to exchange

not only names but also other processes. In this way a series of languages can be

obtained called Higher Order π-calculi (see also [84, 115]).

Once the relevance of a language has been proved, one can also focus on certain

features and change them to serve specific purposes. Take for example protocols of

communication: the π-calculus (and CCS) uses synchronous communication which

is not always convenient for describing certain settings. Consequently Honda and

Tokoro in [73] (and independently Boudol in [15]) proposed an asynchronous version

of the π-calculus. Or one can focus on mobility of processes and instead of Higher

Order calculi one can think of a sort of bounded place in which computation can

occur as in Mobile ambients [28] by Cardelli and Gordon or as in the Join calculus

[57] by Fournet and Gonthier.

Hence, from these few examples one can see that many variants of the landmark

languages have been introduced. There are many reasons that support this phe-

nomenon (see also [98]): for example new variants may simplify the presentation of

the calculus (a constructor can be easier to understand or implement) or a specific

language can be tailored to a specific domain of application. Therefore there are

two problems that need to be addressed. First, every time a new language is pro-

posed two legitimate questions need to be answered: Why is this language useful?

What does the new language add w.r.t. other proposals? These raise the issue of

expressiveness. Second, we have to endow these languages with suitable reasoning

techniques that permits to analyse the terms of the language. The thesis focuses

mainly on expressiveness; however, we find it necessary to mention both issues. This

is the content of the next two sections.

4 Chapter 1. Introduction

1.2 Expressiveness

When considering sequential languages the expressiveness problem has been settled

already and falls under the realm of computability theory. Due to the peculiarities

of concurrent models, computability theory cannot always be used as it falls short

to account for more specific behaviours: e.g. two languages can be proven to be

Turing powerful and nevertheless because of the action of distribute and concurrent

operations one can exhibit a behaviour that is not observable in the second language.

This distinctive aspect will be clarified later.

Expressiveness studies for concurrent languages can be classified depending on

the reference for comparison. This way, while absolute expressiveness describes the

possible behaviours of a process algebra without referring back to other calculi,

relative expressiveness aims to compare two different process algebras. See, e.g.

Parrow [105] for a recent survey on the issue.

In this thesis we are mainly interested in the notion of relative expressiveness.

Suppose we have two calculi L1 and L2, we want to be able to determine if L1 is

as expressive as L2 or if the two calculi could be distinguished in some way. When

we say that one language is as expressive as another we presuppose the existence of

some encoding/mapping J·K : L2 → L1 that translates the terms of L2 into terms

of L1. Notice that the languages considered are usually Turing powerful therefore

some encoding will always exist; however we are interested only in certain kinds of

mappings: the ones that satisfy some given and reasonable criteria.

This is also known as language encoding.

1.2.1 Language encoding

Language encoding or embedding was first proposed by Shapiro in [120] and by de

Boer and Palamidessi in [38].

The idea is that a language L is more expressive than a language L′ or, equiv-

alently, L′ can be encoded in L, if each program written in L′ can be translated

into an L program in such a way that: (1) the intended observable behaviour of

Chapter 1. Introduction 5

the original program is preserved (more precisely, it can be reconstructed from the

observables of the translated program) and (2) the translation process satisfies some

additional property (conditions) which indicate how easy this process is and how

reasonable the decoding of the observables is. For example, typically one requires

the translation to be compositional w.r.t. (some of) the operators of the language.

As discussed in [38], these additional properties are needed in order to use the notion

of encoding as a tool for language comparison: i.e. for showing that under certain

hypothesis a language cannot be encoded in another. In fact, since the languages

that we are considering are often Turing complete, they would always admit an en-

coding, provided that the observables for the target language are powerful enough.

Indeed, if we “flatten” the notion of observables: e.g. by associating to every pro-

gram P the same trivial empty observables, then every program falls in the same

equivalence class.

The technique is ubiquitous in process calculi. As an example in [100], Palamides-

si shows that if we fix some criteria for the encoding (a uniform fully distributed

translation) then it is not possible to encode the π-calculus into the asynchronous

π-calculus up to any reasonable notion of equivalence. This is achieved by showing

the incapability of the asynchronous π-calculus to break the symmetry in certain

configurations. This is known as the leader election problem (see [125] for a survey

on the subject).

Gorla in [67] and more recently in [68], while comparing communication primi-

tives (synchronism, communication media, pattern matching) discusses the possible

criteria for defining when an encoding could be considered reasonable. In particular

the author requires an encoding to be (1) compositional, (2) name invariant, (3)

divergence preserving, (4) operationally correspondent and (5) success sensitive.

An example where the same approach has been followed but the area of appli-

cation is different is [85] by Laneve and Vitale. They show that the κ-calculus,

a language for modelling molecular biology, is more expressive than a restricted

version of the calculus, called nanoκ, which is obtained by restricting to “binary

reactants” only (that is, by allowing at most two process terms in the left hand side

6 Chapter 1. Introduction

of rules, while n terms are allowed in κ). This result is obtained by showing that,

under some specific assumptions, a particular (self-assembling) protocol cannot be

expressed in nanoκ.

1.2.2 Decidability vs Undecidability

Until now we have discussed techniques that aim to prove directly that either two

languages are equivalent by providing an encoding and showing its correctness with

bisimulation or that two languages could be told apart by showing that under some

hypothesis such an encoding does not exist. In order to show that an encoding

between two languages L1 and L2 does not exist one could also proceed indirectly

by showing that a certain property is decidable in L1 but not in L2.

This is particular relevant in the context of concurrent languages. Indeed the

presence of non-determinism permits to provide easily unfaithful encodings of Turing

equivalent models, i.e. encodings which add unnecessary computations, a sort of

garbage. The presence of this garbage gives the possibility of deciding properties

like reachability of a given configuration, which are usually undecidable in Turing

equivalent models.

In literature we find several examples of this technique: in [19] Busi et al. show

that termination is decidable in a CCS-like language while in [26] Busi and Zavattaro

show that reachability is decidable in a fragment of the Mobile Ambients calculus.

Decidability proofs can often be carried out by reducing to problems on Petri

Nets, a well known and extensively studied formalism. One of the first studies in

this sense is [48] by Dufourd et al. which gives a classification of decidable proper-

ties on classes of Petri Nets. In particular, the technique described in [55] (derived

from studies on Petri Nets) has been extensively used for comparing the expressive

power of reactive systems. Finkel and Schnoebelen show that the presence of a

well-quasi-ordering on transition systems permits to prove the existence of a termi-

nating computation. For example in [3] Abdulla et al. use well structured transition

systems (transition systems equipped with a well quasi ordering) to compare the ex-

pressive power of Multiset Rewriting Systems w.r.t. decidability of properties like

Chapter 1. Introduction 7

coverability and reachability. Similarly in [25] Busi and Zavattaro, by exploiting

the technique of well structured transition systems, prove that altough the language

analysed is Turing powerful, recognising terminating computations is decidable.

1.3 Reasoning Techniques

The second problem that needs to be tackled is how elements or programs of the

calculus can be compared. This is important if one considers that usually one is

interested in making sure an implementation is faithful to some (formal) specifi-

cation. The correctness of such a comparison is formalised by a behavioural (or

observational) equivalence. Basically, one has two ways of defining observational

(or behavioural) equivalences: either by using a proper bisimilarity or a testing

semantics (see [83] for a survey on equivalence checking).

Bisimilarity [117, 118] is generally accepted as the finest behavioural equivalence

one would like to impose on processes. Bisimulation was originally introduced by

Milner and Park [93, 103] for CCS-like process calculi to describe the operational

behaviour of processes. Informally speaking, two process are bisimilar if any action

by one of them can be mimicked (or matched) by an equal action from the other in

such a way that the derivatives are still bisimilar. As an example on how this tech-

nique has been applied consider [110]: here Pous uses some proof techniques based

on weak bisimulation (a bisimulation where internal actions are not considered)

for reasoning about distributed implementations of process algebras with mobility.

Moreover it could happen that the concept needs to be adapted to different lan-

guages; this way several formalisations have been introduced. For example in [116]

Sangiorgi investigates other forms of bisimulation e.g. open bisimulation that takes

into account names instantiation in the π-calculus. Or in [114] Sangiorgi discusses

some suitable definitions of bisimulation for the Higher Order π-calculus.

The second technique we mention is testing semantics. Testing semantics was

originally proposed for the λ-calculus in [97]. In [40] the concept was adapted to

the concurrent language CCS. In testing semantics, the leading intuition is that of

8 Chapter 1. Introduction

experiment : two programs are equivalent if they pass the same tests, where a test is

an observer, usually a distinguished process, and a way of observing it. This tool is

useful for proving safety properties. For example it has been used in [1] for checking

secrecy properties of cryptographic protocols.

1.4 Summary of the thesis

In what follows we describe the organisation of this dissertation: Chapter 2 quickly

introduces some of the necessary terminology.

The core of the thesis is then divided into four chapters. Each chapter is devoted

to a different technique. Since the languages analysed are different every language

is introduced in the corresponding chapter.

In Chapter 3, we begin with the analysis of a synchronous language: we explore

the expressiveness of a fragment of CCS!, a variant of CCS where replication is

considered instead of recursion. We study the existence of faithful encodings (i.e.

encodings that respect the behaviour of the encoded model without introducing

unnecessary computations) of models of computability strictly less expressive than

Turing Machines. Namely, grammars of types 1,2 and 3 in the Chomsky Hierarchy.

We provide faithful encodings of type 3 grammars (Regular Languages). We then

show that it is impossible to provide a faithful encoding of type 2 grammars (Con-

text Free Languages). We show that CCS! processes in our fragment can generate

languages which are not type 2. We finally show that the languages generated by

processes in the fragment considered are type 1 (Context Sensitive Languages). 2

We then move to asynchronous languages and in Chapter 4 we study full ab-

straction for two Linda-like languages. Linda can be considered as the asynchronous

version of CCS plus a shared memory (a multiset of elements) that is used for storing

messages. The first variant provides primitives for adding and removing messages

from a shared memory, local choice, parallel composition and recursion. The second

one adds the possibility of checking for the absence of a message in the store. After

2Part of this work also appeared in [6].

Chapter 1. Introduction 9

having defined a trace-based denotational semantics, we obtain a fully abstract se-

mantics for both languages by using suitable abstractions. These are used to identify

different traces which do not correspond to different operational behaviours. The

ability of the second variant considered of recognising multiple occurrences of mes-

sages in the store (which accounts for an increase of expressiveness) reflects in a less

complex abstraction: i.e. different traces correspond to different behaviours and

simpler saturations is needed for accomplish full abstraction.3

We thus study other languages where multiplicity plays a fundamental role. In

particular, we focus on Multiset Rewriting Systems. In Chapter 5, we consider the

language CHR (Constraint Handling Rules) which is a general purpose, committed-

choice declarative language which, differently from other similar languages, uses

multi-headed (guarded) rules. CHR inherits many features from logic programming

languages. Hence, in this chapter, we apply techniques typical from process algebra

to a language that has some concurrent characteristics but that has not been used

for describing concurrent systems.

We prove that multiple heads augment the expressive power of the language. In

fact, we first show that restricting to single head rules affects the Turing complete-

ness of CHR, provided that the underlying constraint theory (where constructing

elements of the language are defined) does not contain function symbols. Next we

show that, also when considering generic constraint theories, under some rather rea-

sonable assumptions it is not possible to encode CHR (with multi-headed rules) into

a single-headed CHR language while preserving the semantics of programs. Finally,

we show that also the number of atoms in the heads of rules matters, as the CHR

language allowing at most n atoms in the heads is more expressive than the language

allowing at most m atoms, for an m, m < n.4

Finally, in Chapter 6 we analyse a language similar but simpler than CHR. The κ-

calculus is a formalism for molecular biology where molecules are terms with internal

states and sites, bonds are represented by shared names labelling sites, and reactions

3Part of this work has been presented in [44].
4Part of this work is reported in [66].

10 Chapter 1. Introduction

are represented by rewriting rules. Depending on the shape of the rewriting rules,

several dialects of the calculus can be obtained. We analyse the expressive power of

some of these dialects by focusing on the thin boundary between decidability and

undecidability for problems like reachability and coverability.5

Chapter 7 draws some conclusions and discuss some possible future develop-

ments.

1.5 Contributions

Most of the material presented in this dissertation has been previously reported in

the following works appeared in Proceedings of International Conferences:

• J. Aranda, C. Di Giusto, M. Nielsen and F. Valencia. CCS with Replication

in the Chomsky Hierarchy: The Expressive Power of Divergence. In APLAS

’07, volume 4807 of LNCS, pages 383-398. Springer, 2007.

• C. Di Giusto, M. Gabbrielli, M. C. Meo. Expressiveness of multiple heads in

CHR. In SOFSEM ’09, volume 5404 of LNCS, pages 205–216. Springer, 2009.

• G. Delzanno, C. Di Giusto, M. Gabbrielli, C. Laneve, G. Zavattaro On the

Qualitative Analysis of Calculi for Formal Molecular Biology Under submis-

sion.

• C. Di Giusto, M. Gabbrielli. Full abstraction for Linda. in ESOP ’08, volume

4960 of LNCS, pages 78–92. Springer, 2008.

5This work has also appeared in [41].

Chapter 2

Background

If you do not know history, it is as if you
were born yesterday. If you were born yes-
terday, then any leader can tell you any-
thing.

Howard Zinn
Speech on ”War and Social

Justice”, 2008

Here we introduce the necessary background for the following chapters.

2.1 RAM

In the following chapters, whenever we want to show the Turing completeness of

a language we will encode RAMs (Random Access Machines) or Minsky machines

into it. We recall here some basic notions on this Turing equivalent formalism. A

RAM [96] M(v0, v1) is a two-counter machine which consists of two registers R1 and

R2 holding arbitrary large natural numbers and initialised with the values v0 and

v1, and a program, i.e. a finite sequence of numbered instructions which modify the

two registers. There are three types of instructions j : Inst() where j is the number

of the instruction:

12 Chapter 2. Background

• j : Succ(Ri): adds 1 to the content of register Ri and goes to instruction j+1;

• j : DecJump(Ri, l): if the content of the register Ri is not zero, then decreases

it by 1 and goes to instruction j + 1, otherwise jumps to instruction l;

• j : Halt: stops computation and returns the value in register R1.

where 1 ≤ i ≤ 2, j, l ≤ n and n is the maximum number of instructions of the

program.

An internal state of the machine is given by a tuple (pi, r1, r2) where the program

counter pi indicates the next instruction and r1, r2 are the current contents of the two

registers. Given a program, its computation proceeds by executing the instructions

as indicated by the program counter. The execution stops when the program counter

reaches the Halt instruction. In some encodings we will not use the Halt instruction

to signal termination instead we allow jumps to instruction numbers greater than

the maximum number of instructions of the program. In Chapter 3 we generalise

Minsky machines to RAMs with n registers.

2.2 Fixpoint theory

The second chapter makes use of some concepts from the fixpoint theory. In the

following we introduce the basic needed notions (a more complete introduction can

be find in [49] or in [56]):

The theorems we will need are build on the notions of poset, upper and lower

bound:

Definition 2.1 (Poset) A partially ordered set (poset) (S,≤) is a set equipped

with a binary relation ≤ which is reflexive, anti-symmetric and transitive.

Definition 2.2 (Upper and Lower bound) Given a poset (S,≤) an element (or

a point) x ∈ S is an upper bound of a subset X of S if ∀y ∈ X y ≤ x. x is the

least upper bound (or join) of X, denoted by lubSX, if x is an upper bound of X

and if ∀y ∈ X y ≤ z with z ∈ S, then x ≤ z.

Chapter 2. Background 13

Dually x ∈ S is a lower bound of a subset X of S if ∀y ∈ X x ≤ y. x is the

greatest lower bound (or meet) of X, denoted by glbSX, if x is a lower bound of X

and if ∀y ∈ X z ≤ y with z ∈ S, then z ≤ x.

If we specialise the notion of poset we obtain complete partial orders (cpo) and

lattices:

Definition 2.3 (Complete partial order) A directed set D is a set where every

finite subset E of D has an upper bound in E.

A complete partial order is a poset (S,≤) such that for every directed set D of

S there exist a lubSD.

Definition 2.4 (Complete lattice) A complete lattice is a poset (S,≤) such that

for every subset X of S there exist a lubSX and a glbSX. In particular ⊥ = lubS∅ =

glbSS and > = glbS∅ = lubSS

On complete lattices we can define fixpoints:

Definition 2.5 (Fixpoint) Given a poset (S,≤) and a function f : S → S, x ∈ S
is a fixpoint of f iff x = f(x). x is a prefixpoint iff x ≤ f(x) and x is a postfixpoint

iff f(x) ≤ x

Finally we give the definition of monotonicity and continuity for functions over

posets:

Definition 2.6 (Monotone function) Let (S,≤) and (T,�) be posets. A func-

tion f : S → T is monotone iff:

∀x, y ∈ S such that x ≤ y then f(x) � f(y)

Definition 2.7 (Continuous function) Let (S,≤) and (T,�) be posets. A func-

tion f : S → T is continuous iff:

∀D ⊆ S directed, f(lubSD) = lubT{f(d) | d ∈ D}

14 Chapter 2. Background

We now give two results which characterise fixpoints w.r.t. some characteristics

of the function f .

Theorem 2.1 (Knaster-Tarski) A monotonic function f on a complete lattice

(L,≤) has a least fixpoint and a greatest fixpoint. Moreover the least fixpoint is the

meet of all its prefixpoints and the greatest fixpoint is the join of all its postfixpoints.

The ordinal powers of a monotonic function f : C → C on a complete partial

order (C,≤) are defined as

f ↑n=

⊥C n = 0

f(f ↑n−1) otherwise

This second result is usually attributed to Kleene.

Theorem 2.2 (Kleene) If f is a continuous function on a complete partial order

(C,≤) and x0 ∈ C is a prefixpoint of f then lub{fn(x0) | n ∈ N} is the least fixpoint

of f greater than x0. In particular f ↑ ω is the least prefixpoint and the least fixpoint

of f .

2.3 Petri net

Place/Transition Petri nets (or P/T nets) are an interesting infinite state model

for the representation and analysis of parallel processes. We recall here the basic

notation, for a full description of this computational model see [111].

Definition 2.8 A P/T net is a tuple N = (S, T, F,m0), where S and T are the

finite sets of places and transitions, such that S ∩ T = ∅, and F is the transition

function associating to each transition two finite multisets of places called the pre-set

and the post-set of the transition.

A finite multiset over the set S of places is called a marking, and m0 is the initial

marking. Given a marking m and a place p, the number of instances of p in m is

denoted with m(p).

Chapter 2. Background 15

The marking m of a P/T net can be modified by means of transitions firing: a

transition with pre-set t′ and post-set t′′ can fire if its pre-set is included in m, and

upon transition firing the new marking of the net becomes m \ t′ ∪ t′′ where \ and ∪
are the difference and union operators for multisets, respectively.

We are interested in this formal model since several problems, such as reachability

or coverability, are decidable (for a survey on this topic see [51]).

Definition 2.9 (Boundedness or coverability) A P/T net is bounded if its set

of reachable markings is finite.

Definition 2.10 (Reachability) The reachability problem for P/T nets consists

of deciding if given a P/T net N = (S, T, F,m0) and a marking m of N , if m can

be reached from m0.

Thus we have the following decidable properties:

Theorem 2.3 Given a P/T net N , the following properties are decidable:

• Coverability

• Reachability

• Termination

P/T nets can be extended in several ways, obtaining a hierarchy of models where

several properties remain decidable, for a survey on this topic see [48].

16 Chapter 2. Background

Chapter 3

Below Turing Expressiveness - The Role

of Non-Determinism

In re mathematica ars proponendi pluris
facienda est quam solvendi.

Georg Cantor

In this chapter we study the existence of faithful encodings into CCS! of models of

computability strictly less expressive than Turing Machines. Namely, grammars of

Types 1 (Context Sensitive Languages), 2 (Context Free Languages) and 3 (Regular

Languages) in the Chomsky Hierarchy. We provide faithful encodings of Type 3

grammars. We show that it is impossible to provide a faithful encoding of Type 2

grammars and that termination-preserving CCS! processes can generate languages

which are not Type 2. We finally show that the languages generated by termination-

preserving CCS! processes are Type 1 .

3.1 Introduction

As already mention in the Chapter 1, when speaking of concurrency, Milner’s CCS

[93], a calculus for the modelling and analysis of synchronous communication, is a

standard representative of process calculi.

18 Chapter 3. Below Turing Expressiveness - The Role of Non-Determinism

Infinite behaviour is ubiquitous in concurrent systems. Hence, it ought to be

represented by process terms. In the context of CCS we can find at least two

representations of them: Recursive definitions and Replication. Recursive process

definitions take the form A(y1, . . . , yn) each assumed to have a unique, possibly

recursive, parametric process definition A(x1, . . . , xn)
def
= P . The intuition is that

A(y1, . . . , yn) behaves as P with each yi replacing xi. Replication takes the form

!P and it means P | P | · · · ; an unbounded number of copies of the process P in

parallel. An interesting result is that in the π-calculus, itself a generalisation of

CCS, parametric recursive definitions can be encoded using replication up to weak

bisimilarity. This is rather surprising since the syntax of !P and its description

are so simple. In fact, in [19] it is stated that in CCS recursive expressions are

more expressive than replication. More precisely, it is shown that it is impossible to

provide a weak-bisimulation preserving encoding from CCS with recursion, into the

CCS variant in which infinite behaviour is specified only with replication. From now

on we shall use CCS to denote CCS with recursion and CCS! to the CCS variant

with replication.

Now, a remarkable expressiveness result in [20] states that, in spite of its being

less expressive than CCS in the sense mentioned above, CCS! is Turing powerful.

This is done by encoding (Deterministic) Random Access Machines (RAM) in CCS!.

Nevertheless, the encoding is not faithful (or deterministic) in the sense that, un-

like the encoding of RAMs in CCS, it may introduce computations which do not

correspond to the expected behaviour of the modeled machine. Such computations

are forced to be infinite and thus regarded as non-halting computations which are

therefore ignored. Only the finite computations correspond to those of the encoded

RAM.

A crucial observation from [20] is that to be able to force wrong computation

to be infinite, the CCS! encoding of a given RAM can, during evolution, move from

a state which may terminate (i.e. weakly terminating state) into one that cannot

terminate (i.e., strongly non-terminating state). In other words, the encoding does

not preserve (weak) termination during evolution. It is worth pointing that since

Chapter 3. Below Turing Expressiveness - The Role of Non-Determinism 19

RAMs are deterministic machines, their faithful encoding in CCS given in [19] does

preserve weak termination during evolution. A legitimate question is therefore:

What can be encoded with termination-preserving CCS! processes?

We shall investigate the expressiveness of CCS! processes which indeed preserve

(weak) termination during evolution. This way we disallow the technique used in

[20] to unfaithfully encode RAMs.

A sequence of actions s (over a finite set of actions) performed by a process P

specifies a sequence of interactions with P ’s environment. For example, s = an.b̄n

can be used to specify that if P is input n a’s by environment then P can output

n b’s to the environment. We therefore find it natural to study the expressive-

ness of processes w.r.t. sequences (or patterns) of interactions (languages) they can

describe. In particular we shall study the expressiveness of CCS! w.r.t. the exis-

tence of termination-preserving encodings of grammars of Types 1 (Context Sensitive

grammars), 2 (Context Free grammars) and 3 (Regular grammars) in the Chomsky

Hierarchy whose expressiveness corresponds to (non-deterministic) Linear-bounded,

Pushdown and Finite-State Automata, respectively. As elaborated later in the re-

lated work, similar characterisations are stated in the Caucal hierarchy of transition

systems for other process algebras [18].

It is worth noticing that by using the non termination-preserving encoding of

RAM’s in [19] we can encode Type 0 grammars (which correspond to Turing Ma-

chines) in CCS!.

Now, in principle the mere fact that a computation model fails to generate some

particular language may not give us a definite answer about its computation power.

For a trivial example, consider a model similar to Turing Machines except that

the machines always print the symbol a on the first cell of the output tape. The

model is essentially Turing powerful but fails to generate b. Nevertheless, our re-

striction to termination-preserving processes is a natural one, much like restricting

non-deterministic models to deterministic ones, meant to rule out unfaithful encod-

ings of the kind used in [20]. As matter of fact, Type 0 grammars can be encoded

by using the termination-preserving encoding of RAMs in CCS [19].

20 Chapter 3. Below Turing Expressiveness - The Role of Non-Determinism

CSL
CCS−ω

!

REG
CFL

Figure 3.1: Termination-Preserving CCS! Processes (CCS−ω!) in the Chomsky Hi-

erarchy.

For simplicity, let us use CCS−ω! to denote the set of CCS! processes which

preserve weak termination during evolution as described above. We first provide a

language preserving encoding of Regular grammars into CCS−ω! . We also prove that

CCS−ω! processes can generate languages which cannot be generated by any Regular

grammar. Our main contribution is to show that it is impossible to provide language

preserving encodings from Context-Free grammars into CCS−ω! . Conversely, we also

show that CCS−ω! can generate languages which cannot be generated by any Context-

free grammar. We conclude our classification by stating that all languages generated

by CCS−ω! processes are context sensitive. The results are summarised in Fig. 3.1.

This chapter is organised as follows. Section 3.2 introduces the CCS calculi under

consideration. We then discuss in Sections 3.3, 3.4, 3.5 how unfaithful encodings

are used in [20] to provide an encoding of RAM’s. We prove the above-mentioned

results in Section 3.6. Finally, some concluding remarks are given in Section 3.7. 1

1A preliminary version of this work appeared in [6].

Chapter 3. Below Turing Expressiveness - The Role of Non-Determinism 21

3.2 The Calculi

In what follows we shall briefly recall the CCS constructs and its semantics as well

as the CCS! calculus.

Finite CCS. In CCS, processes can perform actions or synchronise on them.

These actions can be either offering port names for communication, or the so-

called silent action τ. We presuppose a countable set N of port names, ranged

over by a, b, x, y . . . and their primed versions. We then introduce a set of co-names

N = {a | a ∈ N} disjoint from N . The set of labels, ranged over by l and l′, is

L = N ∪ N . The set of actions Act , ranged over by α and β, extends L with a

new symbol τ. Actions a and a are thought of as complementary, so we decree that

a = a. We also decree that τ = τ .

The processes specifying finite behaviour are given by:

P,Q . . . := 0 | α.P | (νa)P | P | Q (3.1)

Intuitively 0 represents the process that does nothing. The process α.P performs

an action α then behaves as P . The restriction (νa)P behaves as P except that it can

offer neither a nor ā to its environment. The names a and ā in P are said to be bound

in (νa)P . The bound names of P , bn(P), are those with a bound occurrence in P ,

and the free names of P , fn(P), are those with a not bound occurrence in P . The

set of names of P , n(P), is then given by fn(P) ∪ bn(P). Finally, P | Q represents

parallelism; either P or Q may perform an action, or they can also synchronise when

performing complementary actions.

Notation 3.1 We shall write the summation P+Q as an abbreviation of the process

(ν u) (u | u.P | u.Q). We also use (νa1 . . . an)P as a short hand for (νa1) . . . (νan)P .

We often omit the “0” in α.0.

The above description is made precise by the operational semantics in Table 3.1.

A transition P
α−→ Q says that P can perform α and evolve into Q.

In the literature there are at least two alternatives to extend the above syntax

to express infinite behaviour. We describe them next.

22 Chapter 3. Below Turing Expressiveness - The Role of Non-Determinism

ACT
α.P

α−→ P
RES

P
α−→ P ′

(ν a) P
α−→ (ν a) P ′

if α 6∈ {a, a}

PAR1
P

α−→ P ′

P | Q α−→ P ′ | Q PAR2
Q

α−→ Q′

P | Q α−→ P | Q′

COM
P

l−→ P ′ Q
l−→ Q′

P | Q τ−→ P ′ | Q′

Table 3.1: An operational semantics for finite processes.

3.2.1 Parametric Definitions: CCS and CCSp

A typical way of specifying infinite behaviour is by using parametric definitions [94].

In this case we extend the syntax of finite processes (Equation 3.1) as follows:

P,Q, . . . := . . . | A(y1, . . . , yn) (3.2)

Here A(y1, . . . , yn) is an identifier (also call, or invocation) of arity n. We assume

that every such an identifier has a unique, possibly recursive, definition

A(x1, . . . , xn)
def
= PA

where the xi’s are pairwise distinct, and the intuition is that A(y1, . . . , yn) behaves

as its body PA with each yi replacing the formal parameter xi. For each A(x1, . . . , xn)
def
= PA, we require fn(PA) ⊆ {x1, . . . , xn}.

Following [65], we should use CCSp to denote the calculus with parametric defi-

nitions with the above syntactic restrictions.

Remark 3.2 As shown in [65], however, CCSp is equivalent w.r.t. strong bisi-

milarity to the standard CCS. We shall then take the liberty of using the terms CCS

and CCSp to denote the calculus with parametric definitions as done in [94].

The rules for CCSp are those in Table 3.1 plus the rule:

CALL
PA[y1, . . . , yn/x1, . . . , xn]

α−→ P ′

A(y1, . . . , yn)
α−→ P ′

if A(x1, . . . , xn)
def
= PA (3.3)

As usual P [y1 . . . yn/x1 . . . xn] results from replacing every free occurrence of xi with

yi renaming bound names in P wherever needed to avoid capture.

Chapter 3. Below Turing Expressiveness - The Role of Non-Determinism 23

3.2.2 Replication: CCS!

One simple way of expressing infinite is by using replication. Although, mostly

found in calculus for mobility such as the π-calculus and mobile ambients, it is also

studied in the context of CCS in [19, 65].

For replication the syntax of finite processes (Equation 3.1) is extended as follows:

P,Q, . . . := . . . | !P (3.4)

Intuitively the process !P behaves as P | P | . . . | P |!P ; unboundedly many

P ’s in parallel. We call CCS! the calculus that results from the above syntax The

operational rules for CCS! are those in Table 3.1 plus the following rule:

REP
P |!P α−→ P ′

!P
α−→ P ′ (3.5)

3.3 The Role of Strong Non-Termination

In this section we shall single out the fundamental non-deterministic strategy for

the Turing-expressiveness of CCS!. First we need a little notation.

Notation 3.3 Define
s

=⇒, with s = α1 . . . αn ∈ L∗, as

(
τ−→)∗ α1−→ (

τ−→)∗ . . . (τ−→)∗ αn−→ (
τ−→)∗.

For the empty sequence s = ε,
s

=⇒ is defined as (
τ−→)∗.

We shall say that a process generates a sequence of non-silent actions s if it can

perform the actions of s in a finite maximal sequence of transitions. More precisely:

Definition 3.1 (Sequence and language generation) The process P generates

a sequence s ∈ L∗ if and only if there exists Q such that P
s

=⇒ Q and Q 6 α−→ for

any α ∈ Act . We define the language of (or generated by) a process P , L(P), as the

set of all sequences P generates.

24 Chapter 3. Below Turing Expressiveness - The Role of Non-Determinism

The above definition basically states that a sequence is generated when no re-

duction rules can be applied. It is inspired by language generation of the model

of computations we are comparing our processes with. Namely, formal grammars

where a sequence is generated when no rewriting rules can be applied.

As we shall see below (strong) non-termination plays a fundamental role in the

expressiveness of CCS!. We borrow the following terminology from rewriting sys-

tems:

Definition 3.2 (Termination) We say that a process P is (weakly) terminating

(or that it can terminate) if and only if there exists a sequence s such that P generates

s. We say that P is (strongly) non-terminating, or that it cannot terminate if and

only if P cannot generate any sequence.

Busi et al. in [20] show the Turing-expressiveness of CCS!, by providing a

CCS! encoding [[·]] of RAMs [96]. The encoding is said to be unfaithful (or non-

deterministic) in the following sense: Given M , during evolution [[M]] may make

a transition, by performing a τ action, from a weakly terminating state (process)

into a state which do not correspond to any configuration of M . Nevertheless such

states are strongly non-terminating processes. Therefore, they may be thought of

as being configurations which cannot lead to a halting configuration. Consequently,

the encoding [[M]] does not preserve (weak) termination during evolution.

Remark 3.4 The work [20] considers also guarded-summation for CCS!. The re-

sults about the encodability of RAM’s our work builds on can straightforwardly be

adapted to our guarded-summation free CCS! fragment. (See Section 3.4)

Now rather than giving the full encoding of RAMs in CCS!, let us use a much

simpler example which uses the same technique in [20]. Below we encode a typical

context sensitive language in CCS!.

Chapter 3. Below Turing Expressiveness - The Role of Non-Determinism 25

Example 3.1 Consider the following processes:

P = (ν k1, k2, k3, ub, uc) (k1 | k2 | Qa | Qb | Qc)

Qa = !k1.a.(k1 | k3 | ub | uc)
Qb = k1.!k3.k2.ub.b.k2

Qc = k2.(!uc.c | ub.DIV)

where DIV =!τ . It can be verified that L(P) = {anbncn}. Intuitively, in the process

P above, Qa performs (a sequence of actions) an for an arbitrary number n (and

also produces n ub’s). Then Qb performs bm for an arbitrary number m ≤ n and

each time it produces b it consumes a ub. Finally, Qc performs cn and diverges if

m < n by checking if there are ub’s that were not consumed. �

The Power of Non-Termination. Let us underline the role of strong non-

termination in Example 3.1. Consider a run

P
anbm
=⇒ . . .

Observe that the name ub is used in Qc to test if m < n, by checking whether some

ub were left after generating bm. If m < n, the non-terminating process DIV is

triggered and the extended run takes the form

P
anbmcn
=⇒ τ−→ τ−→ . . .

Hence the sequence anbmcn arising from this run (with m < n) is therefore not

included in L(P).

The tau move. It is crucial to observe that there is a τ transition arising from

the moment in which k2 chooses to synchronise with Qc to start performing the c

actions. One can verify that if m < n then the process just before that τ transition

is weakly terminating while the one just after is strongly non-terminating.

Formally the class of termination-preserving processes is defined as follows.

Definition 3.3 (Termination Preservation) A process P is said to be weakly

termination-preserving if and only if whenever P
s

=⇒ Q
τ−→ R:

26 Chapter 3. Below Turing Expressiveness - The Role of Non-Determinism

• if Q is weakly terminating then R is weakly terminating.

We use CCS−ω! to denote the set of CCS! processes that are termination-preserving.

One may wonder why only τ actions are not allowed in Definition 3.3 when moving

from a weakly terminating state into a strongly non-terminating one. The next

proposition answers to this.

Proposition 3.1 For every P, P ′, α 6= τ if P
α−→ P ′ and P is weakly terminating

then P ′ must be weakly terminating.

Proof: As a mean of contradiction let P ′ be a strongly non-terminating process such

that P
α−→ P ′ where α 6= τ . Let γ be an arbitrary maximal sequence of transitions

from P. Since P
α−→ P ′, the action α will be performed in γ as a visible action

or in a synchronisation with its complementary action ᾱ. In the synchronisation

case, one can verify that there exists another maximal sequence γ′ identical to γ

except that in γ′, α and ᾱ appear as visible actions instead of their corresponding

synchronisation. Therefore, there exists a sequence P
t1=⇒ Q

α−→ R
t2=⇒9 (Fig.

3.2). From P
t1=⇒ Q

α−→ R and P
α−→ P ′, we can show that P

α−→ P ′ t1=⇒ R
t2=⇒9

(Fig. 3.3) thus contradicting the assumption that P ′ is a strongly non-terminating

process. 2

Figure 3.2: Alternative evolutions of P involving α

We conclude this section with a proposition which relates preservation of termi-

nation and the language of a process.

Chapter 3. Below Turing Expressiveness - The Role of Non-Determinism 27

Figure 3.3: Confluence from P to R

Proposition 3.2 Suppose that P is terminating-preserving and that L(P) 6= ∅. For

every Q, if P
s

=⇒ Q then ∃s′ such that s.s′ ∈ L(P).

Proof: Let Q an arbitrary process such that P
s

=⇒ Q. Since L(P) 6= ∅ then P is

weakly terminating. From Definition 3.3 and Proposition 3.1 it follows that Q is

weakly terminating. Hence there exists a sequence s′ such that P
s

=⇒ Q
s′

=⇒ R 9

and thus from Definition 3.1 we have s.s′ ∈ L(P) as wanted. 2

3.4 CCS! without choice

In this section we show that the encoding proposed by Busi, Gabbrielli and Zavattaro

in [20] of RAMs (Minsky machines) into CCS! with guarded summation can be

adapted to the summation free fragment. We extend the syntax of CCS! (Equation

3.4) by considering the operator +:

P,Q, · · · := . . . | P +Q (3.6)

with the following operational rule:

SUM
P

α−→ P ′

P +Q
α−→ P ′ (3.7)

Hence the encoding of the instructions and of a register rj storing the value cj

28 Chapter 3. Below Turing Expressiveness - The Role of Non-Determinism

is:

J(i : Succ(rj)K := !pi.(incj | inc.pi+1)

J(i : DecJump(rj, s)K := !pi.(decj | (dec.pi+1 + zero.ps))

J(rj : cj)K := nrj |
!nrj.(ν m, i, d, u) (outm |!m.(incj.i+ decj.d) |
!i.(m | inc | u | d.u.(m | dec)) |
d.(zero | u.DIV | nrj) |∏

cj
(u | d.u.(m | dec)))

where DIV is a process able to activate an infinite observable computation, for

instance w′ |!w′.w′.
Along the computation, some “garbage process” can appear:

Gj : (ν m, i, d, u) (!m.(incj.i+ decj.d) |!i.(m | inc | u | d.u.dec) | u.DIV)

Definition 3.4 Let R be a RAM with program instructions (1 : I1), . . . , (m : Im)

and registers r1, . . . , rn. Given the configuration (i, c1, . . . , cn) of R, we define

J(i, c1, . . . , cn)KR =(ν p1 . . . pm, nr1, inc1, dec1 . . . nrn, incn, decn, inc, dec, zero)

(p1 | [[(1 : I1)]] | . . . | [[(m : Im)]] |
∏
i∈TI

pi.w |

[[r1 = c1]] | . . . | [[rn = cn]]
∏
k1

G1 | . . . |
∏
kn

Gn)

where the modelling of program instructions [[(i : Ii)]], the modelling of registers

[[rj = cj]], the set of terminating indexes TI, and the garbage G1, . . . , Gn have been

defined above, and k1 . . . kn are natural numbers.

The following theorem, whose proof is in [21] states the correctness of the en-

coding.

Theorem 3.5 Let R be a RAM with program (1 : I1), . . . , (m : Im) and state

(i, c1, . . . , cn) and let the process P be in [[(i, c1, . . . , cn]]R. Then (i, c1, . . . , cn) termi-

nates if and only if P converges. Moreover P converges if and only if P ≈ τ.P +w.

Chapter 3. Below Turing Expressiveness - The Role of Non-Determinism 29

This proves that convergence and weak bisimulation are undecidable in CCS!.

If we consider the CCS! fragment without choice it is still possible to adapt the

previous encoding to our language:

J(i : Succ(rj)Km := J(i : Succ(rj)K

J(i : DecJump(rj, s)Km := !pi.(decj | (〈〈dec.pi+1 + zero.ps〉〉))
〈〈dec.pi+1 + zero.ps〉〉 := (ν lvd, lvz) (dec.(pi+1 | lvz | lvd.DIV) |

zero.(ps | lvd | lvz.DIV))

J(rj : cj)Km := nrj |
!nrj.(ν m, i, d, u) (m |!m.〈〈(incj.i+ decj.d)〉〉 |
!i.(m | inc | u | d.u.(m | dec)) |
d.(zero | u.DIV | nrj) |∏

cj
(u | d.u.(m | dec)))

〈〈incj.i+ decj.d〉〉 := (ν lvd, lvi) (incj.(i | lvd | lvi.DIV) |
decj.(d | lvi | lvd.DIV))

Where DIV is a process able to activate an infinite observable computation, for

instance w′ |!w′.w′.
The translation of choice in both 〈〈dec.pi+1 + zero.ps〉〉 and 〈〈incj.i + decj.d〉〉

introduces more computations which do not follow the expected behaviour of the

modeled RAM . However these computations are also infinite. Intuitively, once the

choice has been done, e.g. inc (zero) or dec can still participate in the computation

as they are in parallel, in this case the local variables lvd, lvi(lvz) trigger divergence,

ensuring that the computation cannot terminate.

So more formally we can define a RAM machine in the following way:

Definition 3.5 Let R be a RAM with program instructions (1 : I1), . . . , (m : Im)

and registers r1, . . . , rn. Given the configuration (i, 0, . . . , 0) of R, we define the

following encoding in CCS! without choice:

J(i, c1 . . . cn)KRm =(ν p1 . . . pm, nr1, inc1, dec1 . . . nrn, incn, decn, inc, dec, zero)

(p1 | [[(1 : I1)]]m | . . . | [[(m : Im)]]m |
∏
i∈TI

pi.w |

[[r1 = 0]]m | . . . | [[rn = 0]]m

30 Chapter 3. Below Turing Expressiveness - The Role of Non-Determinism

where the modelling of program instructions [[(i : Ii)]]m, the modelling of registers

[[rj = cj]]m, the set of terminating indexes TI have been defined above.

As the computations move forward garbage processes G1, . . . , Gn and the residual

terms from 〈〈dec.pi+1 + zero.ps〉〉 and 〈〈incj.i+ decj.d〉〉 can appear. For the sake of

simplicity, we omit the garbage processes and residual terms describe above in the

configuration, but they could be included similarly as in Definition 3.4. So similarly

as before (the proof is a straightaforward adaptation of the one in [21])the following

theorem states the correctness of the encoding J·KRm .

Theorem 3.6 Let R be a RAM with program (1 : I1), . . . , (m : Im) and registers

r1, . . . , rn. Given the initial configuration (1, 0, . . . , 0) of R and let the process P be in

[[(i, 0, . . . , 0)]]Rm. Then (i, 0, . . . , 0) terminates if and only if P converges. Moreover

P converges if and only if P ≈ τ.P + w.

This proves that convergence and weak bisimulation are undecidable in CCS!

without choice. From now on the term CCS! will refer to the CCS! variant without

choice.

3.5 Undecidability results for CCS−ω!

To prove the undecidability of whether a given CCS! process preserves termination,

we reduce to the halting problem of RAMs.

Lemma 3.1 Let P be a CCS! process, if L(P)=∅ then P is termination-preserving.

Proof: Let first observe that by definition L(P) = ∅ iff P is not weakly terminating.

As a mean of contradiction, let L(P) = ∅ and P be non-terminating preserving,

since P is not terminating-preserving then P
s

=⇒ Q
τ−→ R such that Q is weakly

terminating and R is non-weakly terminating. Therefore Q recognises at least one

sequence and consequently also P . As P recognises at least one sequence, L(P) 6= ∅,
a contradiction. 2

Chapter 3. Below Turing Expressiveness - The Role of Non-Determinism 31

Notice that the notion of weakly termination and convergence are not the same,

as the first one takes into account the visible actions whereas the second one not. For

example !a is not weakly terminating but it is convergent, and (ν a) (a |!a.a | b.a)

is not convergent but it is weakly terminating, in fact L((ν a) (a |!a.a | b.a)) =

{b}. However when considering RAMs the two notion are equivalent, indeed we can

prove the following:

Lemma 3.2 [[M]]Rm is weakly terminating iff [[M]]Rm is convergent.

Proof: If [[M]]Rm is convergent, then there exists a correct terminating run of the

encoding, made of τ actions which at the end it executes w, after which there is no

further observable actions. If there would be a further observable action it would be

w′ and it would generate an infinite observable computation. Therefore if [[M]]Rm is

convergent then L([[M]]Rm) = {w} hence [[M]]Rm is weakly terminating.

Conversely if [[M]]Rm is weakly terminating, there is at least a sequence generated

from [[M]]Rm , since there are only two observable names in [[M]]Rm : {w,w′}, this

sequence can be:

1. A sequence with just τ actions, i.e. the string is ε: In this case [[M]]Rm would

be convergent but [[M]]Rm would exhibit w as well. Thus a sequence with only

τ actions cannot exist.

2. A sequence with w′: if w′ appears in the sequence then the reached process is

of the form Q |!w′.w′, therefore the process would be non-weakly terminating.

Hence a sequence with w′ cannot exist.

3. A sequence with w: From item 1 and 2, the sequence can be made of only

w′s. But there is only a w in the sequence as the computation only allows to

access one register. Once the instruction associated to w has been executed (

pi.w, where i is the register index), there is no further activation of registers.

Therefore if [[M]]Rm is weakly terminating then L([[M]]Rm) = {w}, therefore there

is a finite sequence of τ actions from [[M]]Rm ended at w, otherwise an infinite

32 Chapter 3. Below Turing Expressiveness - The Role of Non-Determinism

sequence of τ actions would mean an infinite execution of the RAM M associated.

Thus it would be impossible to reach w along that computation. So [[M]]Rm is

convergent.

Hence we conclude that [[M]]Rm is weakly terminating iff [[M]]Rm is convergent.

2

The previous lemma is necessary to prove the following undecidability result:

Theorem 3.7 The property of determine whether a CCS! process P is terminating-

preserving is undecidable.

Proof: Let us consider the encoding [[·]]Rm from RAM into CCS!
2, it suffices to prove

that a RAM M halts iff (ν a) (a | a.[[M]]Rm | a.DIV) is not terminating preserving.

First, we prove that (ν a) (a | a.[[M]]Rm | a.DIV) is not terminating preserving

iff [[M]]Rm is weakly terminating.

If [[M]]Rm is non-weakly terminating (hence L([[M]]Rm) = ∅) then (ν a) (a |
a.[[M]]Rm | a.DIV) is non-weakly terminating (L((ν a) (a | a.[[M]]Rm | a.DIV)) = ∅
) and therefore by lemma 3.1 (ν a) (a | a.[[M]]Rm | a.DIV) is terminating-preserving.

On the other hand, if [[M]]Rm is weakly terminating, then (ν a) (a | a.[[M]]Rm

| a.DIV) is weakly terminating but (ν a) (a | a.[[M]]Rm | a.DIV)
τ

=⇒ (ν a) (a |
a.[[M]]Rm | a.DIV)

τ−→ (ν a) (a.[[M]]Rm | DIV) where (ν a) (a.[[M]]Rm | DIV) is

non-weakly terminating therefore (ν a) (a | a.[[M]]Rm | a.DIV) is not terminating

preserving .

As [[M]]Rm is weakly terminating iff [[M]]Rm is convergent by lemma 3.2 and

(ν a) (a | a.[[M]]Rm | a.DIV) is not terminating preserving iff [[M]]Rm is weakly

terminating, therefore [[M]]Rm is convergent iff (ν a) (a | a.[[M]]Rm | a.DIV) is not

terminating preserving. Finally as M halts iff [[M]]Rm is convergent, we conclude

that M halts iff (ν a) (a | a.[[M]]Rm | a.DIV) is not terminating preserving. 2

2Recall this is the CCS! variant without choice

Chapter 3. Below Turing Expressiveness - The Role of Non-Determinism 33

3.6 CCS! and Chomsky Hierarchy

In this section we study the expressiveness of termination-preserving CCS! proc-

esses in the Chomsky hierarchy. Recall that, in a strictly decreasing expressive

order, Types 0, 1, 2 and 3 in the Chomsky hierarchy correspond, respectively,

to unrestricted-grammars (Turing Machines), Context Sensitive Grammars (Non-

Deterministic Linear Bounded Automata), Context Free Grammars (Non-Deter-

ministic PushDown Automata), and Regular Grammars (Finite State Automata).

We assume that the reader is familiar with the notions and notations of formal

grammars. A grammar is a quadruple G = (Σ, N, S, P) where Σ are the terminal

symbols, N the non-terminals, S the initial symbol, P the set of production rules.

The language of (or generated by) a formal grammar G, denoted as L(G), is defined

as all those strings in Σ∗ that can be generated by starting with the start symbol

S and then applying the production rules in P until no more non-terminal symbols

are present.

3.6.1 Encoding Regular Languages

Regular Languages (REG) are those generated by grammars whose production rules

can only be of the form A→ a or A→ a.B. They can be alternatively characterised

as those recognised by regular expressions which are given by the following syntax:

e = ∅ | ε | a | e1 + e2 | e1.e2 | e∗

where a is a terminal symbol.

Definition 3.6 Given a regular expression e, we define JeK as the CCS! process

(ν m) (JeKm | m) where JeKm, with m 6∈ fn([[e]]), is inductively defined as in Figure

3.4.

Remark 3.8 The conditionals on language emptiness in Definition 3.6 are needed

to make sure that the encoding of regular expressions always produce termination-

preserving processes. To see this consider the case a + ∅. Notice that while [[a]] = a

34 Chapter 3. Below Turing Expressiveness - The Role of Non-Determinism

J∅Km = DIV

JεKm = m

JaKm = a.m

Je1 + e2Km =


Je1Km if L(e2) = ∅
Je2Km if L(e1) = ∅
Je1Km + Je2Km otherwise

Je1.e2Km = (ν m1) (Je1Km1 | m1.Je2Km) with m1 6∈ fn(e1)

Je∗Km =

m if L(e) = ∅
(ν m′) (m′ |!m′.JeKm′ | m′.m) with m′ 6∈ fn(e) otherwise

where DIV =!τ.

Figure 3.4: Encoding of regular expressions

and [[∅]] = DIV are termination-preserving, a+DIV is not. Hence [[e1+e2]] cannot be

defined as [[e1]]+[[e2]]. Since the emptiness problem is decidable for regular expressions,

it is clear that given e, [[e]] can be effectively constructed.

The following proposition states the correctness of the encoding.

Proposition 3.3 Let [[e]] be as in Definition 3.6. We have L(e) = L([[e]]) and

furthermore [[e]] is termination-preserving.

Proof: The proof will proceed by induction on the structure of regular expressions.

If e = a or e = ε then the thesis follows straightforwardly.

Hence suppose e = e1 + e2 where both L(e1) and L(e2) are not-empty then

we have that L(e1 + e2) = L(e1) ∪ L(e2), by inductive hypothesis we have that

this is equivalent to L(Je1K)∪L(Je2K) and both Je1K, Je2K are termination preserving.

However it is easy to see that L(Je1K)∪L(Je2K) = L(Je1K+Je2K) and by definition 3.6

we can conclude that this is equal to L(Je1 + e2K). Moreover since the two processes

Je1K, Je2K are termination preserving and since they are not sharing any channel

Chapter 3. Below Turing Expressiveness - The Role of Non-Determinism 35

apart from the coordination channel m, the parallel composition of the two cannot

introduce divergent computation, therefore Je1 + e2K is termination-preserving.

A similar proof can be given for e = e1.e2, indeed L(e1.e2) = {s.t | s ∈ L(e1)

and t ∈ L(e2)} which by inductive hypothesis is equal to {s.t | s ∈ L(Je1K) and t ∈
L(Je2K)}. From definition 3.6 it can be observed that this is the same as L(Je1.e2K).

Similarly as before if both L(e1) and L(e2) are not-empty since we are not introduc-

ing divergent computation the process Je1.e2K is termination-preserving. Otherwise

if one of the languages is empty the whole language reduces to the empty set and

as proved in 3.1 the language is termination preserving.

Finally if e = e∗1 (and L(e1) is not empty) then L(e∗1) =
⋃
i≥0 L(ei1) and

ei1 =

ε if i = 0

e1.e
i−1
1 otherwise

By inductive hypothesis we have that L(e1) = L(Je1K). We will first prove that

L(e∗1) ⊆ L(Je∗1K. Let s ∈ L(e∗1) by definition s is either ε or s ∈ L(ei1) = L(e1.e1︸ ︷︷ ︸
i times

).

In the first case from definition 3.6 (by synchronising at the first step m′ with m′.m)

we have that ε ∈ L(Je∗1K). Otherwise taking the other synchronisation the process can

generate i times the characters L(Je1K) thus concluding that s ∈ L(Je∗1K). Conversely

if s ∈ L(Je∗1K), s can either be ε or a concatenation of sequences generated by Je1K.

The first case is obvious. In the second case by inductive hypothesis we have that

s ∈ L(Je1K.Je1K︸ ︷︷ ︸
i times

) which we have already shown being equal to L(e1.e1︸ ︷︷ ︸
i times

) and

thus concluding s ∈ L(e∗1). Moreover the process is termination-preserving since

divergence is never introduced. 2

From the standard encoding from Type 3 grammars to regular expressions and

the above proposition we obtain the following result.

Theorem 3.9 For every Type 3 grammar G, we can construct a termination-preser-

ving CCS! process PG such that L(G) = L(PG).

Proof: Follows immediately from Proposition 3.3 2

36 Chapter 3. Below Turing Expressiveness - The Role of Non-Determinism

The converse of the theorem above does not hold; Type 3 grammars are strictly

less expressive.

Theorem 3.10 There exists a termination-preserving CCS! process P such that

L(P) is not Type 3.

Proof: The above statement can be shown by providing a process which generates

the typical anbn context-free language. Namely, let us take

P = (ν k, u) (k |!(k.a.(k | u)) | k.!(u.b)).

One can easily verify that P is termination-preserving and that L(P) = anbn. 2

3.6.2 Impossibility Result: Context Free Languages

Context-Free Languages (CFL) are those generated by Type 2 grammars: grammars

where every production is of the form A→ γ where A is a non-terminal symbol and

γ is a string consisting of terminals and/or non-terminals.

We have already seen that termination-preserving CCS! process can encode a

typical CFL language such as anbn. Nevertheless, we shall show that they cannot in

general encode Type 2 grammars.

The nesting of restriction processes plays a key role in the following results CCS!.

Definition 3.7 The maximal number of nesting of restrictions |P |ν can be induc-

tively given as follows:

|(ν x) P |ν = 1 + |P |ν |P | Q|ν = max(|P |ν , |Q|ν)
|α.P |ν = |!P |ν = |P |ν |0|ν = 0

A very distinctive property of CCS! is that the maximal nesting of restrictions

is invariant during evolution.

Proposition 3.4 Let P and Q be CCS! processes. If P
s

=⇒ Q then |P |ν = |Q|ν .

Chapter 3. Below Turing Expressiveness - The Role of Non-Determinism 37

Proof: The proposition can be proved by induction on the reductions steps of the

operational semantics:

• ACT
α.P

α−→ P
: from definition 3.7 |α.P |ν = |P |ν .

• RES
P

α−→ P ′

(ν a) P
α−→ (ν a) P ′

if α 6∈ {a, a}: by inductive hypothesis we have that

|P |ν = |P ′|ν hence by definition 3.7 |(ν a) P |ν = |(ν a) P ′|ν .

• PAR1

P
α−→ P ′

P | Q α−→ P ′ | Q: by inductive hypothesis we have that |P |ν = |P ′|ν
hence by definition 3.7 |P | Q|ν = |P ′ | Q|ν . (Similarly one can prove rule

PAR2)

• COM
P

l−→ P ′ Q
l−→ Q′

P | Q τ−→ P ′ | Q′ : by inductive hypothesis we have that |P |ν = |P ′|ν
|Q|ν = |Q′|νand hence by definition 3.7 |P | Q|ν = |P ′ | Q′|ν .

• REP
P |!P α−→ P ′

!P
α−→ P ′

: by inductive hypothesis we have that |P |!P |ν = |P ′|ν
hence by definition 3.7 |P |!P |ν = max(|P |ν , |!P |ν) but |P |ν = |!P |ν thus

concluding that |!P |ν = |P ′|ν .

2

Remark 3.11 In CCS because of the unfolding of recursive definitions the nest-

ing of restrictions can increase unboundedly during evolution3. E.g., consider A(a)

where A(x)
def
= (ν y) (x.ȳ.R | y.A(x)) (see Section 3.2.1) which has the following

sequence of transitions

A(a)
aaa...
=⇒ (νy)(R | (νy)(R | (νy)(R | . . .)))

3Also in the π-calculus [119], an extension of CCS! where names are communicated, the nesting

of restrictions can increase during evolution due to its name-extrusion capability.

38 Chapter 3. Below Turing Expressiveness - The Role of Non-Determinism

Another distinctive property of CCS! is that if a CCS! process can perform a

given action β, it can always do it by performing a number of actions bounded by

a value that depends only on the size of the process. In fact, as stated below, for a

significant class of processes, the bound can be given solely in terms of the maximal

number of nesting of restrictions.

Now, the above statement may seem incorrect since as mentioned earlier CCS! is

Turing expressive. One may think that β above could represent a termination signal

in a TM encoding, then it would seem that its presence in a computation cannot

be determined by something bounded by the syntax of the encoding. Nevertheless,

recall that the Turing encoding in [20] may wrongly signal β (i.e., even when the

encoded machine does not terminate) but it will diverge afterwards.

The following section is devoted to some lemmas needed for proving our impos-

sibility results for CCS! processes.

3.6.3 Trios-Processes.

For technical reasons we shall work with a family of CCS! processes, namely trios-

processes. These processes can only have prefixes of the form α.β.γ . The notion of

trios was introduced for the π-calculus by Parrow in [104]. We shall adapt trios and

use them as a technical tool for our purposes.

We shall say that a CCS! process T is a trios-process iff all prefixes in T are

trios ; i.e., they all have the form α.β.γ and satisfy the following: If α 6= τ then α

is a name bound in T , and similarly if γ 6= τ then γ is a co-name bound in T . For

instance (νl)(τ.τ.l | l.a.τ) is a trios-process. We will view a trio l.β.l as linkable node

with incoming link l from another trio, outgoing link l to another trio, and contents

β.

Interestingly, the family of trios-processes can capture the behaviour of arbitrary

CCS! processes via the following encoding:

Chapter 3. Below Turing Expressiveness - The Role of Non-Determinism 39

Definition 3.8 Given a CCS! process P , [[P]] is the trios-process (ν l) (τ.τ.l | JP Kl)
where JP Kl, with l 6∈ n(P), is inductively defined as follows:

J0Kl = 0

Jα.P Kl = (ν l′) (l.α.l′ | [[P]]l′) where l′ 6∈ n(P)

JP | QKl = (ν l′, l′′) (l.l′.l′′ | [[P]]l′ | [[Q]]l′′) where l′, l′′ 6∈ n(P) ∪ n(Q)

J!P Kl = (ν l′) (!l.l′.l | ![[P]]l′) where l′ 6∈ n(P)

J(ν x) P Kl = (ν x) [[P]]l

Notice that the trios-process [[α.P]]l encodes a process α.P much like a linked list.

Intuitively, the trio l.α.l′ has an outgoing link l to its continuation [[P]]′l and incoming

link l from some previous trio. The other cases can be explained analogously. Clearly

the encoding introduces additional actions but they are all silent—i.e., they are

synchronisations on the bound names l, l′ and l′′.

Unfortunately the above encoding is not invariant w.r.t. language equivalence

because the replicated trio in J!P Kl introduces divergence. E.g, L((νx)!x) = {ε} but

L([[(νx)!x]]) = ∅. It has, however, a pleasant invariant property: weak bisimilarity.

Definition 3.9 (Weak Bisimilarity) A (weak) simulation is a binary relation R
satisfying the following: (P,Q) ∈ R implies that:

• if P
s

=⇒ P ′ where s ∈ L∗ then ∃Q′ : Q s
=⇒ Q′ ∧ (P ′, Q′) ∈ R.

The relation R is a bisimulation iff both R and its converse R−1 are simulations.

We say that P and Q are (weak) bisimilar, written P ≈ Q iff (P,Q) ∈ R for some

bisimulation R.

Proposition 3.5 For every CCS! process P , P ≈ [[P]] where [[P]] is the trios-process

constructed from P as in Definition 3.8.

Proof: Follows immediately from Definition 3.8. 2

Another property of trios is that if a trios-process T can perform an action α,

i.e., T
s.α

=⇒, then T
s′.α
=⇒ where s′ is a sequence of actions whose length bound can

be given solely in terms of |T |ν .

40 Chapter 3. Below Turing Expressiveness - The Role of Non-Determinism

Proposition 3.6 Let T be a trios-process such that T
s·β

=⇒. There exists a sequence

s′, whose length is bounded by a value depending only on |T |ν, such that T
s′·β
=⇒.

Proof: Our approach is to consider a minimal sequence of visible actions t =

β1. . . . βm performed by T leading to β (i.e., P
t

=⇒ and βm = β) and analyse the

causal dependencies among the (occurrences of) the actions in this t. Intuitively,

βj depends on βi if T , while performing t, could not had performed βj without

performing βi first. For example in

T = (νl)(νl′)(νl′′)(τ.a.l | τ.b.l′ | l.l′.l′′ | l′′.c.τ)

β = c, t = abc, we see that c depends on a and b, but b does not depend on a since

T could had performed b before a.

We then consider the unique directed acyclic graph Gt arising from the transitive

reduction4 of the partial ordered induced by the dependencies in t. Because t is

minimal, β is the only sink of Gt.

We write βi ;t βj (βj depends directly on βi) iff Gt has an arc from βi to βj.

The crucial observation from our restrictions over trios is that if βi ;t βj then (the

trios corresponding to the occurrences of) βi and βj must occur in the scope of a

restriction process Rij in T (or in some evolution of T while generating t). Take

e.g, T = τ.a.τ | (ν l) (τ.b.l | l.c.τ) with t = a.b.c and b ; c. Notice that the trios

corresponding to the actions b and c appear within the scope of the restriction in T .

To give an upper bound on the number of nodes of Gt (i.e., the length of

t), we give an upper bound on its length and maximal in-degree. Take a path

βi1;tβi2 . . .;tβiu of size u in Gt. With the help of the above observation, we con-

sider sequences of restriction processes Ri1i2Ri2i3 . . . Riu−1iu such that for every k < u

the actions βik and βik+1
(i.e., the trios where they occur) must be under the scope of

Rikik+1
. Note that any two different restriction processes with a common trio under

their scope (e.g. Ri1i2 and Ri2i3) must be nested, i.e., one must be under the scope

of the other. This induces tree-like nesting among the elements of the sequence

4The transitive reduction of a binary relation r on X is the smallest relation r′ on X such that

the transitive closure of r′ is the same as the transitive closure of r.

Chapter 3. Below Turing Expressiveness - The Role of Non-Determinism 41

of restrictions. E.g., for the restrictions corresponding to βi1;tβi2;tβi3;tβi4 we

could have a tree-like situation with Ri1i2 and Ri3i4 being under the scope of Ri2i3

and thus inducing a nesting of at least two. We show that for a sequence of restric-

tion processes, the number m of nesting of them satisfies u ≤ 2m. Since the nesting

of restrictions remains invariant during evolution (Proposition 3.4) then u ≤ 2|T |ν .

Similarly, we give an upper bound 2|T |ν on the indegree of each node βj of Gt (by

considering sequences Ri1j, . . . , Rimj such that βik ; βj, i.e having common trio

corresponding to βj under their scope). We then conclude that the number of nodes

in Gt is bounded by 2|T |ν×2|T |ν . 2

Main Impossibility Result. We can now prove our main impossibility result.

Theorem 3.12 There exists a Type 2 grammar G such that for every termination-

preserving CCS! process P , L(G) 6= L(P).

Proof: It suffices to show that no process in CCS−ω! can generate the CFL anbnc.

Suppose, as a mean of contradiction, that P is a CCS−ω! process such that L(P) =

anbnc.

Pick a sequence ρ = P
an

=⇒ Q
bnc

=⇒ T 9 for a sufficiently large n. From Proposi-

tion 3.5 we know that for some R, [[P]]
an

=⇒ R
bnc

=⇒ and R ≈ Q . Notice that R may

not be a trios-process as it could contain prefixes of the form β.γ and γ. However,

such prefixes into τ.β.γ and τ.τ.γ, we obtain a trios-process R′ such that R ≈ R′

and |R|ν = |R′|ν . We then have R′ bnc
=⇒ and, by Proposition 3.6, R′ s′·c

=⇒ for some

s′ whose length is bounded by a constant k that depends only on |R′|ν . Therefore,

R
s′·c
=⇒ and since R ≈ Q, Q

s′·c
=⇒ D for some D. With the help of Proposition 3.4

and from Definition 3.8 it is easy to see that |R′|ν = |R|ν = |[[P]]|ν ≤ 1 + |P |+ |P |ν
where |P | is the size of P . Consequently the length of s′ must be independent of

n, and hence for any s′′ ∈ L∗, ans′cs′′ 6∈ L(P). Nevertheless P
an

=⇒ Q
s′·c
=⇒ D and

therefore from Proposition 3.2 there must be at least one string w = ans′cw′ ∈ L(P);

a contradiction. 2

It turns out that the converse of Theorem 3.12 also holds: termination-preserving

CCS! processes can generate non CFL’s.

42 Chapter 3. Below Turing Expressiveness - The Role of Non-Determinism

Theorem 3.13 There exists a termination-preserving CCS! process P such that

L(P) is not a CFL.

Proof: Take

P = (ν k, u) (k |!k.a.(k | u)) | k.!u.(b | c))

One can verify that P is termination-preserving. Furthermore, L(P) ∩ a∗b∗c∗ =

anbncn, hence L(P) is not a CFL since CFL’s are closed under intersection with

regular languages. 2

Now, notice that if we allow the use of CCS! processes which are not termina-

tion-preserving, we can generate anbnc straightforwardly by using a process similar

to that of Example 3.1.

Example 3.2 Consider the process P below:

P = (ν k1, k2, k3, ub) (k1 | k2 | Qa | Qb | Qc)

Qa = !k1.a.(k1 | k3 | ub)
Qb = k1.!k3.k2.ub.b.k2

Qc = k2.(c | ub.DIV)

where DIV =!τ. One can verify that L(P) = {anbnc}. �

Termination-Preserving CCS. Type 0 grammars can be encoded by using the

termination-preserving encoding of RAMs in CCS given in [19]. However, the fact

that preservation of termination is not as restrictive for CCS as it is for CCS! can also

be illustrated by giving a simple termination-preserving encoding of Context-Free

grammars.

Theorem 3.14 For every type 2 grammar G, there exists a termination-preserving

CCS process PG, such that L(PG) = L(G).

Proof: For simplicity we restrict ourselves to Type 2 grammars in Chomsky normal

form. All production rules are of the form A → B.C or A → a. We can encode

the productions rules of the form A → B.C as the recursive definition A(d)
def
=

Chapter 3. Below Turing Expressiveness - The Role of Non-Determinism 43

(ν d′) (B(d′) | d′.C(d)) and the terminal production A→ a as the definition A(d)
def
=

a.d. Rules with the same head can be dealt using the summation P + Q. One can

verify that, given a Type 2 grammar G, the suggested encoding generates the same

language as G.

Notice, however, that there can be a grammar G with a non-empty language

exhibiting derivations which do not lead to a sequence of terminal (e.g., A→ B.C,

A → a, B → b, C → D.C,D → d). The suggested encoding does not give us a

termination-preserving process. However one can show that there exists another

grammar G′, with L(G) = L(G′) whose derivations can always lead to a final se-

quence of terminals . The suggested encoding applied to G′ instead, give us a

termination-preserving process. 2

3.6.4 Inside Context Sensitive Languages (CSL)

Context-Sensitive Languages (CSL) are those generated by Type 1 grammars. We

conjecture that every language generated by a termination-preserving CCS! process

is context sensitive.

The next proposition reveals a key property of any given weakly termination-

preserving CCS! process P which can be informally described as follows. Suppose

that P generates a sequence s of size n. By using a technique similar to the proof

of Theorem 3.12 and Proposition 3.6, we conjecture that we can prove that there

must be a trace of P that generates s with a total number of τ actions bounded by

kn where k is a constant associated to the size of P . More precisely,

Conjecture 3.1 Let P be a termination-preserving CCS! process. There exists a

constant k such that for every s = α1 . . . αn ∈ L(P) then there must be a sequence

P (
τ−→)m0

α1−→ (
τ−→)m1 . . . (

τ−→)mn−1 αn−→ (
τ−→)mn 9

with Σn
i=0mi ≤ kn.

Now recall that context-sensitive grammars are equivalent to linear bounded

non-deterministic Turing machines. That is a non-deterministic Turing machine

44 Chapter 3. Below Turing Expressiveness - The Role of Non-Determinism

with a tape with only kn cells, where n is the size of the input and k is a constant

associated with the machine. Given P , we can define a non-deterministic machine

which simulates the runs of P using the semantics of CCS! and which uses as many

cells as the total number of performed actions, silent or visible, multiplied by a

constant associated to P . Therefore, with the help of Conjecture 3.1, we obtain the

following result.

Theorem 3.15 If P is a termination-preserving CCS! process then L(P) is a con-

text sensitive language.

Notice that from the above theorem and Theorem 3.12 it follows that the lan-

guages generated by termination-preserving CCS! processes form a proper subset of

context sensitive languages.

3.7 Conclusions and Related Works

We have studied one possible interpretation of the non-determinism which is intrinsic

in the language. We disallow the ability of synchronising simultaneously on the same

channel, ability that is necessary for encoding Turing Machines. Indeed we prove

that the calculus obtained in this way, CCS−ω! , can faithfully encode Regular lan-

guages but it is impossible to provide a faithful encoding of Context Free Languages.

Finally we conjecture that the languages generated by termination-preserving CCS!

processes are Context Sensitive.

The closest related work is that in [19, 20] already discussed in the introduction.

Furthermore in [19] the authors also provide a discrimination result between CCS!

and CCS by showing that the divergence problem (i.e., given P , whether P has an

infinite sequence of τ moves) is decidable for the former calculus but not for the

latter.

In [65] Giambiagi et al. study replication and recursion in CCS focusing on the

role of name scoping. In particular they show that CCS! is equivalent to CCS with

recursion with static scoping. The standard CCS in [93] is shown to have dynamic

Chapter 3. Below Turing Expressiveness - The Role of Non-Determinism 45

scoping. A survey on the expressiveness of replication vs recursion is given in [101]

where several decidability results about variants of π, CCS and Ambient calculi

can be found. None of these works study replication with respect to computability

models less expressive than Turing Machines.

In [99] Nielsen et al. showed a separation result between replication and recur-

sion in the context of temporal concurrent constraint programming (tccp) calculi.

They show that the calculus with replication is no more expressive than finite-state

automata while that with recursion is Turing Powerful. The semantics of tccp is

rather different from that of CCS. In particular, unlike in CCS, processes interact

via the shared-memory communication model and communication is asynchronous.

In the context of calculi for security protocols, the work in [75] uses a process

calculus to analyse the class of ping-pong protocols introduced by Dolev and Yao.

Huttel and Srba show that all nontrivial properties, in particular reachability, be-

come undecidable for a very simple recursive variant of the calculus. The authors

then show that the variant with replication renders reachability decidable. The cal-

culi considered are also different from CCS. For example no restriction is considered

and communication is asynchronous.

There is extensive work in process algebras and rewriting transition systems pro-

viding expressiveness hierarchies similar to that of Chomsky as well as results closely

related to those of formal grammars. For example works involving characterisation

of regular expression w.r.t. bisimilarity include [82, 92] and more recently [7]. An

excellent description is provided in [18]. These works do not deal with replication

nor the restriction operator which are fundamental to our study.

As for future work, we plan to provide a proof for Conjecture 3.1 or to find a

counterexample. Moreover a somewhat complementary study to the one carried in

this chapter would be to investigate what extension to CCS! is needed for providing

faithful encoding of RAMs. Clearly the extension with recursion does the job but

there may be simpler process constructions from process algebra which also do the

job.

46 Chapter 3. Below Turing Expressiveness - The Role of Non-Determinism

Chapter 4

Full Abstraction Techniques for

Asynchrounous Languages

To repeat abstractly, universally, and dis-
tinctly in concepts the whole inner nature
of the world, and thus to deposit it as a
reflected image in permanent concepts al-
ways ready for the faculty of reason, this
and nothing else is philosophy.

Arthur Schopenhauer
The World as Will and

Representation

This chapter, differently from the previous one, studies an asynchronous lan-

guage. The language is analysed w.r.t. the existence of fully abstract models. Full

abstraction was introduced in the ‘60 (see [122] for an introduction on the subject)

the idea is to deal with a denotational semantics of the language under consideration

and then reduce the equivalence of terms to the equality of their semantics values.

As an example of how this technique has been used see [70] where Hennessy and

Plotkin exhibit a fully abstract model for a parallel programming language or see

[109] where Plotkin proved that a fully abstract model for PCF does not exist.

Here we investigate full abstraction of a trace semantics for two Linda-like lan-

guages. The first language provides primitives for adding and removing messages

48 Chapter 4. Full Abstraction Techniques for Asynchrounous Languages

from a shared memory, local choice, parallel composition and recursion. The second

one adds the possibility of checking for the absence of a message in the store. After

having defined a denotational semantics based on traces, we obtain fully abstract

semantics for both languages by using suitable abstractions in order to identify

different traces which do not correspond to different operational behaviours.

4.1 Introduction

One of the fundamental purposes of a semantics is to provide a rigorous mean for

proving the correctness of programs w.r.t. some behavioural specification. Several

different tools (operational, denotational, algebraic and logic) can be used to this

aim and ideally one would like to have a compositional and fully abstract semantics.

Compositionality is of course an important feature since it is the foundation for

managing large systems complexity when considering program verification, analysis

and (modular) design.

Full abstraction is also a desirable feature since it allows to simplify and “econo-

mise” as much as possible a semantics while preserving its correctness. However,

in general this is a rather difficult target to achieve. To be more precise and to set

the ground for the content of this chapter, following [17, 37, 74] we can summarise

the terms of the problem as follows. Given a language L, define a semantics that

associates to each process (or program) P in L a set of observable properties O(P).

This is usually done in operational terms by using a transition system and a suitable

definition of O(P) which identifies computational aspects relevant for a specific class

of applications. In case such semantics is compositional, i.e. if we can reconstruct

O(P op Q) from O(P) and O(Q) for any operator op of the language L, we have a

satisfactory semantics, since the observational equivalence on processes induced by

O(P) is preserved by contexts. More precisely, we have that O(P) = O(Q) iff, for

any context C[•], O(C[P]) = O(C[Q]) holds.

However often this is not the case and in order to obtain a compositional se-

mantics some richer semantic structures than those used in O(P) need to be con-

Chapter 4. Full Abstraction Techniques for Asynchrounous Languages 49

sidered. For example, as we will see in Section 4.4, typically pairs representing the

input/output behaviour of a process are not sufficient to obtain compositionality

and one has to use traces. It can happen that these richer semantic structures “add

too much” in the sense that the semantics J·K based on them allows to distinguish

processes which have the same behaviour w.r.t. O(P), under any possible context.

In this case suitable abstractions must be used in J·K in order to obtain a fully

abstract result which, in general, can be stated as follows: JP K = JQK iff, for any

context C[•], O(C[P]) = O(C[Q]) holds.

In this chapter we investigate the full abstraction problem, as described above,

for two variants of Linda. Linda [63] is a programming paradigm which allows

interprocess communication through a shared data space, also called tuple space,

where processes can post and retrieve messages (also called tuples). The shared

memory paradigm offers some advantages since it decouples communication between

processes: communication is in fact asynchronous and processes do not need to be

aware of each other identity or location. Indeed, the Linda paradigm has received

also a commercial interest, mainly due to the applications which use the Java Spaces

from Sun Microsystems [58] and TSpaces from IBM [76] models, both based on

Linda (a more detailed comparison of Linda implementations can be found in [127]).

Distributed Linda-like languages have also been investigated. Notably, Klaim [39]

is an implemented language based on the Linda paradigm where the central store is

replaced by several distributed local stores and processes mobility among different

locations is supported.

Fully abstract semantics based on traces for input/output observables have been

studied many years ago for several concurrent languages, as we shall discuss in

Section 4.6. However, to the best of our knowledge no one has yet addressed this

problem for a Linda-like language.

Many different formalisations and variants of Linda have been defined. Here we

use essentially the process-algebraic formalisation of Linda introduced in [23, 24]

Busi et al. and we consider two very basic Linda dialects. The first one, which we

call Linda-core, apart from the usual operators in process algebra (choice, parallel

50 Chapter 4. Full Abstraction Techniques for Asynchrounous Languages

composition, recursion) contains the two Linda primitives in and out which allow

to remove and add messages to the store, respectively. For Linda-core we define a

compositional, fixpoint trace semantics which is correct but not fully abstract when

considering the input/output pairs. Hence we introduce a suitable abstraction on

traces and show that this allows us to obtain a fully abstract semantics. The second

dialect (Linda-inp) enriches the syntax of Linda-core by allowing also a construct

(inp) which allows to check the absence of information in the store. We prove that in

this case a much simpler abstraction on traces is sufficient to obtain a full abstraction

result. This accounts for the augmented expressive power of the language with inp,

which can be formally proven by using the techniques in [23, 131]. Unfortunately,

due to the saturation operator, the fully abstract semantics are not compositional.

This is unavoidable in our trace model, since the properties that we need to abstract

depend on sets of traces (rather than on single ones). Of course this does not mean

that in general a compositional fully abstract semantics based on traces does not

exist. However, in case it existed, it would use traces substantially more complicated

than ours.

The remainder of the chapter is organised as follows. Section 4.2 introduces the

Linda languages under consideration while Section 4.3 defines their denotational

semantics. We then provide the fully abstract semantics for the core language in

Section 4.4. Section 4.5 contains the main theorem on the full abstraction for the

language extended with the inp primitive. Finally, Section 4.6 concludes by dis-

cussing some related works. 1

4.2 Preliminaries

In this section, following the process algebraic view of Linda proposed in [23] we

recall the syntax of the Linda languages that we consider and their operational

semantics.

1A preliminary version of this chapter appeared in [44].

Chapter 4. Full Abstraction Techniques for Asynchrounous Languages 51

4.2.1 Linda-core

As previously mentioned, Linda is a paradigm which provides a simple model to

describe communication between processes. The central notion in Linda is the one

of tuple space. A tuple space is a shared data space (i.e. a common store) where all

the tuples representing the information to be exchanged are stored. Here we shall

abstract from the specific nature of tuples assuming that these are elementary mes-

sages. Communication is represented by the concurrent and asynchronous activity

of several processes which add or remove messages from the common store. I.e. the

sender dispatches a message through a non-blocking operation which adds the tuple

in the tuple space. Then the message has an independent existence until a receiver

retrieves and removes it from the shared space. Such kind of communication is called

generative (see [63]).

Processes of the language Linda-core, denoted by P,Q, . . . , are then given by

the following grammar:

P ::= 0 | out(a).P | in(a).P | P | P | P + P | recX.P (4.1)

where we assume that a ∈ Msg and Msg denotes the set of all possible messages

(or tuples), ranged over by a, b,

Intuitively 0 represents the process that does nothing. The process out(a).P adds

the message a to the store and then behaves as P . The message a which has been

added to the store will be visible to other processes only after the completion of the

out(a) action, however note that other interpretations are possible for this primitive

(see [22]). If a is present in the tuple space, in(a).P removes the message and then

behaves as P . Otherwise if a is not present, the process in(a).P is suspended until a

becomes available in the store. The parallel construct P | Q is interpreted in terms

of interleaving. The process P+Q can non-deterministically choose to behave either

as P or as Q (hence we have a form of local choice). Finally we have the recursion

operator where we assume that guarded recursion is used.

The operational semantics of Linda-core is described by means of a transition

system T = (Conf,→). Configurations Conf are pairs of the form 〈P,M〉 where P

52 Chapter 4. Full Abstraction Techniques for Asynchrounous Languages

R1 〈out(a).P,M〉 → 〈P,M⊕{a}〉

R2 〈in(a).P,M⊕{a}〉 → 〈P,M〉

R3
〈P,M〉 → 〈P ′,M′〉

〈P | Q,M〉 → 〈P ′ | Q,M′〉 and
〈Q,M〉 → 〈Q′,M′〉

〈P | Q,M〉 → 〈P | Q′,M′〉
R4 〈P +Q,M〉 → 〈P,M〉 and 〈P +Q,M〉 → 〈Q,M〉

R5
〈P [recX.P/X],M〉 → 〈P ′,M′〉
〈recX.P,M〉 → 〈P ′,M′〉

Figure 4.1: An operational semantics for Linda-core.

is a process and M is a multiset containing tuples, also called tuple space or store.

The transition relation → ⊆ Conf × Conf is the least relation satisfying the rules

in Figure 4.1, which should be self-explaining, provided we introduce the following

notation.

Notation 4.1 To describe updates in the store we will use ⊕ and 	 to denote

multisets union and difference, respectively. So M⊕ {a} means that a message (a

tuple) ‘a’ has been added to the store while M	{a} indicates that a copy of ‘a’ has

been removed.

A transition 〈P,M〉 → 〈Q,M′〉 then means that the process P reduces to Q,

possibly by producing some changes in the store which evolves from M to M′ .

A sequence of configurations is called run or computation. The reflexive transitive

closure of → is denoted by ⇒. By using the transition system described above we

can characterise several different notions of observables. The ones we are interested

in here consider simply the input/output behaviour of a process in terms of the

tuple space. The input is therefore the initial tuple space, while the output is the

final store produced by a process which cannot further procede in the computation

(denoted by 9) either because it is suspended on an in operation or because it has

consumed all the actions. More precisely we define the observables as follows.

Chapter 4. Full Abstraction Techniques for Asynchrounous Languages 53

R6 〈inp(a)?P : Q,M⊕{a}〉 → 〈P,M〉
〈inp(a)?P : Q,M〉 → 〈Q,M〉 provided a 6∈ M

Figure 4.2: The rule for inp.

Definition 4.1 (Observables O(P)) Let P be a Linda process. We define

O(P) = {(M1,Mn) | 〈P,M1〉 ⇒ 〈Pn,Mn〉9}. (4.2)

4.2.2 Linda-inp

We will now introduce a slightly different variant of Linda, called Linda-inp, obtained

by adding a new operator inp(a)?P : Q which allows also to check whether a message

is not present in the store. More precisely, the previous construct checks whether

the store contains the message a: if the message is present in the store then the

process continues with P , otherwise with Q.

Therefore we will add to the grammar in (4.1) the following primitive:

P ::= inp(a)?P : P (4.3)

The operational semantics for Linda-inp is obtained by (a transition system

defined by) adding to the rules of Figure 4.1 the rules contained in Figure 4.2. The

observables can be defined as before.

4.3 Denotational semantics

It is easy to see that the operational semantics which associates to a process P

its observables O(P) is not compositional. For example consider the processes

P = out(a).in(a).out(b) and Q = out(b). Then O(P) = O(Q) holds, however, con-

sidering the process R = in(a).out(ok) we have that (∅, {ok}) ∈ O(P | R)\O(Q | R)

which means that the observables of a parallel composition cannot be obtained from

the observables of the two processes being composed (in parallel). This problem

is in general well known, in fact in order to obtain a compositional model more

54 Chapter 4. Full Abstraction Techniques for Asynchrounous Languages

informative structures than input/output pairs have been used. In particular, mod-

els based on traces (or sequences) have been used for many concurrent languages,

starting from the early works on dataflow languages [80], imperative ones [17] and

concurrent constraint programming [37].

In the following we will define a compositional semantics which correctly models

the O(P) observables and which is based on traces. This semantics is similar to

those used for timed Linda in [36] (and therefore to that one of [37]), even though

the technical treatment is different. In fact in [36], where maximal parallelism was

assumed, the denotational model uses traces of pairs of tuple spaces, representing the

input and the output at each step of the computation. Here, due to the interleaving

semantics and to local choice, this kind of sequences is not sufficient to obtain a

correct model. Essentially the problem is that we have to distinguish the processes

out(a) | in(a) and out(a).in(a)+ in(a).out(a) (because when starting with an empty

store the second process can produce an empty store as a result) and this cannot be

done by using simply input/output pairs. Hence, here we consider a denotational

model which associates to a process a set of sequences of the form α1, . . . , αn where

each αi is an element of the set A = {in(a), out(a), in(a), inp(a) | a ∈Msg} (where

Msg denotes all the possible messages, as previously mentioned). The first two

kinds of actions in A are obvious as they represent the corresponding operations on

the store, while in(a) and inp(a) are used to express absence of information. We

denote with S the set of all possible sequences defined in this way.

We introduce now two denotational semantics (one for each language we are con-

sidering) based on traces which are compositional by construction. Such semantics

are the least functions which satisfy the equations in Figure 4.3 for Linda-core and

the equations in Figure 4.3 plus that in Figure 4.5 for Linda-inp.

4.3.1 Denotational semantics for Linda-core

More precisely we define denotational semantics for the Linda-core language as a

fixpoint:

Chapter 4. Full Abstraction Techniques for Asynchrounous Languages 55

D1 J0K = {ε}

D2 Jout(a).P K = {out(a) · s | s ∈ JP K}

D3 Jin(a).P K = {in(a) · s | s ∈ JP K} ∪ {in(a)}

D4 JP | QK = JP K |̃ JQK
where the operator |̃ is inductively defined as follow:

(x · s) |̃ y = y |̃ (x · s) = {(x · t) | t ∈ s |̃ y} ∪ {y · x · s}
(x · s) |̃ (y · t) = (y · t) |̃ (x · s) =

{(x · u) | u ∈ s |̃ (y · t)} ∪ {(y · u) | u ∈ (x · s) |̃ t}

with x, y ∈ A and s, t, u ∈ S.

D5 JP +QK = JP K ∪ JQK

D6 JrecX.P K = JP [recX.P/X]K

Figure 4.3: A denotational semantics for Linda-core.

Definition 4.2 The denotational semantics J·K is defined as the least function J·K :

Processes→ 2S , which satisfy the equations in Figure 4.3. The order on functions

is the one induced by set inclusion on the co-domain.

Well known fixpoint results (see Section 2.2) allow to obtain the semantics as the

least fixpoint of the operators defined implicitly by the equations in the Figure 4.3.

The equations should be self-explanatory apart from a few details. The denotation

of the 0 process is the empty sequence, while the equations D2 and D3 show the

expected behaviour for the basic primitives. Note that in equation D3 we have two

cases: the first one corresponds to the case in which a is present in the store, thus

the computation can proceed (with the sequence s) after the in action. On the

other hand, the in(a) action represents the absence of a in the store, in which case

the computation terminates (the process is suspended). The parallel operator is

interpreted in terms of interleaving as usual, while since the choice is local, it can

56 Chapter 4. Full Abstraction Techniques for Asynchrounous Languages

be modeled by a simple set union. Recursion is treated in the usual way.

The following is devoted to some definitions and lemmata needed for proving

that the denotational semantics is correct w.r.t. our notion of observables.

First we need to relate traces with observables, therefore we define the evaluation

function of a trace as follows (↑ means undefined).

Definition 4.3 Given a trace s ∈ S and a store M, the function eval1(s,M) is

defined by the following cases:

eval1(ε,M) =M
eval1(out(x) · t,M) = eval1(t,M⊕{x})

eval1(in(x) · t,M) =

eval1(t,M	{x}) if x ∈M
↑ otherwise

eval1(in(x) · t,M) =

M if x 6∈ M and t = ε

↑ otherwise

Lemma 4.1 Given a Linda-core process P , for every run

〈P, M0〉 → . . .→ 〈P ′, Mn〉9

there exists a trace s ∈ JP K such that eval1(s,M0) =Mn.

Proof: The proof proceeds by induction on the number of steps of the run

〈P,M0〉 → 〈P1,M1〉 → . . .→ 〈Pn,Mn〉

Thus by inductive hypothesis there exists a trace s1 ∈ JP1K such that

eval1(s1,M1) =Mn

We now analyse all the possible steps that could have taken place as a first

action:

• if P = out(a).P ′ thenM1 =M0⊕{a}, s = out(a) ·s1 ∈ JP K and eval1(out(a) ·
s1,M0) = eval1(s1,M1)

Chapter 4. Full Abstraction Techniques for Asynchrounous Languages 57

• similarly if P = in(a).P ′ then M1 = M0 	 {a}, s = in(a) · s1 ∈ JP K and

eval1(in(a) · s1,M0) = eval1(s1,M1)

• if P = Q+R then M0 =M1 and s = s1 ∈ JP K

• if P = Q | R then without loss of generality suppose that Q is the process

that is reducing: 〈Q,M0〉 → 〈Q′,M1〉 with an action α, hence P1 = Q′ | R,

s1 ∈ JQ′ | RK and s1 = sQ′ |̃sR. Now since α · sQ′ ∈ JQK then α · s1 ∈ JQ | RK

• if P = recX.Q then the first action α can take place only if 〈Q[recX.Q/X,

M0〉 → 〈Q′,M1〉. Thus P1 = Q′ and α · s1 ∈ JQ[recX.Q/X]K = JP K.

2

Generalising the previous result we can show the following:

Corollary 4.1 Given a Linda-core process P ,

O(P) ⊆ {(M0, eval1(s,M0)) | s ∈ JP K and eval1(s,M0) 6=↑} holds.

Proof: Let (M0,Mn) ∈ O(P) hence there exists a run:

〈P,M0〉 → . . .→ 〈P ′,M′〉9

and for Lemma 4.1 we can associate a trace s in the denotational semantics such

that eval1(s,M0) =Mn. 2

In order to complete the correctness result (i.e. proving the other inclusion) we

will use a fixpoint characterisation of the semantics J·K (see Section 2.2 for an intro-

duction on fixpoints). This can be obtained by first considering an interpretation as

a mapping I : Processes → 2S which associates to each process a denotation (i.e.

a set of sequences). The set I of all interpretations is easily seen to be a cpo with

the ordering induced by ⊆.

A function F : I → I is obtained by substituting J·K for F(I) in equations

D1-D5 and in the left hand side of equation D6, and by replacing J·K for I in the

right hand side of equation D6 (see Figure 4.4).

58 Chapter 4. Full Abstraction Techniques for Asynchrounous Languages

D1 F(I)(0) = {ε}

D2 F(I)(out(a).P) = {out(a) · s | s ∈ F(I)(P)}

D3 F(I)(in(a).P) = {in(a) · s | s ∈ F(I)(P)} ∪ {in(a)}

D4 F(I)(P | Q) = F(I)(P) |̃ F(I)(Q)

D5 F(I)(P +Q) = F(I)(P) ∪ F(I)(Q)

D6 F(I)(recX.P) = I(P [recX.P/X])

Figure 4.4: Definition of F .

We will now inductively define a series of functions {Fn(⊥) | n ≥ 0}, where ⊥
is the least interpretation, F0(⊥) = ⊥ and Fn(⊥) = F(Fn−1(⊥)). This characteri-

sation allows us to prove that:

Lemma 4.2 ∀n > 0 if s ∈ Fn and eval1(s,M0) 6=↑ then 〈P,M0〉 → . . . →
〈P ′, eval1(s,M0)〉9 is a sequence of length O(n)2 and (M0, eval1(s,M0)) ∈ O(P).

Proof: We will proceed by induction on the structure of processes and on induction

on the powers of the operator Fn(⊥):

• P = α.P1: where α is an input or output action, if s ∈ Fn(⊥)(P) then

Fn(⊥)(P) = (by definition)

{α.s | s ∈ F(Fn−1(⊥))(P1)}

By inductive hypothesis there exists a sequence

〈P1,M′〉 −→ . . . −→ 〈P ′, eval1(s,M′)〉9

thus (M′, eval1(s,M′)) ∈ O(P1), dependingly on α we can reconstruct M′

(e.g. if α is an output action then following from rule R1

〈P,M0〉 → 〈P1,M0 ⊕ {a}〉
2The length of the sequence is n plus a certain number of configurations that are due to the

application of rule R4 and that does not correspond to any action in the denotational semantics

Chapter 4. Full Abstraction Techniques for Asynchrounous Languages 59

therefore M0 ⊕ {a} =M′) and conclude that (M0, eval1(s,M0)) ∈ O(P).

• P = P1 | P2: if s ∈ Fn(⊥)(P) then

Fn(⊥)(P) = (by definition)

F(Fn−1(⊥))(P1) |̃ F(Fn−1(⊥))(P2)

By inductive hypothesis we have two runs 〈P1,M′〉 → . . . → 〈P ′, eval1(s1,

M′)〉9 such that s1 ∈ F(Fn−1(⊥))(P1) and symmetrically 〈P2,M′′〉 → . . .→
〈P ′, eval1(s2,M′′)〉 9 such that s2 ∈ F(Fn−1(⊥))(P2). Hence since there

exists a mapping between traces and runs and following from the application

of Rule R3, we can reconstruct the trace s and the corresponding run proving

that (M0, eval1(s,M0)) ∈ O(P).

• P = P1 + P2 if s ∈ Fn(⊥)(P) then

Fn(⊥)(P) = (by definition)

F(Fn−1(⊥))(P1) ∪ F(Fn−1(⊥))(P2)

Therefore let us assume that s ∈ F(Fn−1(⊥))(P1) (the other situation is

symmetric), by inductive hypothesis (M0, eval2(s,M0)) ∈ O(P1) butO(P1) ⊆
O(P) hence concluding the proof.

• P = recX.P1 if s ∈ Fn(⊥)(P) then

Fn(⊥)(P) = (by definition)

F(Fn−1(⊥))(P) = (by definition)

Fn−1(⊥)(P [recX.P1/X])

Therefore by inductive hypothesis we have that 〈P [recX.P1/X],M0〉 → . . .→
〈P ′, eval1(s,M0)〉9 is a sequence of length O(n− 1) and we can easily con-

clude that (M0, eval1(s,M0)) ∈ O(P)

2

Finally using a well known fixpoint theorem attributed to Kleene (Section 2.2)

we can prove that:

60 Chapter 4. Full Abstraction Techniques for Asynchrounous Languages

D7 Jinp(a)?P : QK = {in(a) · s | s ∈ JP K} ∪ {inp(a) · s | s ∈ JQK}

Figure 4.5: The equations for Linda-inp.

Corollary 4.2 Given a Linda-core process P ,

{(M0, eval1(s,M0)) | s ∈ JP K and eval1(s,M0) 6=↑} ⊆ O(P) holds.

Proof: It is easy to see that F is a continuous function therefore applying the

theorem of Kleene for fixpoints it can be shown that the semantics J·K is the least

fixpoint of F , which can be obtained as the least upper bound of {Fn(⊥) | n ≥ 0}.
Indeed given a trace s ∈ JP K for the fixpoint theorem s ∈ Fn for some n and then

for lemma 4.2 we can conclude (M0, eval1(s,M0)) ∈ O(P) 2

Summarising the previous two results state that:

Theorem 4.2 (Correctness) Given a Linda-core process P ,

O(P) = {(M0, eval1(s,M0)) | s ∈ JP K and eval1(s,M0) 6=↑} holds.

4.3.2 Denotational semantics for Linda-inp

To obtain a denotational semantics for Linda-inp we extend the denotational se-

mantics for Linda-core with the equation that treats the inp operator.

Definition 4.4 The denotational semantics J·K is defined as the least function J·K :

Processes → 2S , which satisfy the equations in Figure 4.3 plus the one in Figure

4.5. The order on functions is the one induced by set inclusion on the co-domain.

When considering the Linda-inp language the denotational semantics can be

obtained from Figure 4.3 by adding the equation in Figure 4.5. This difference

w.r.t. the case of Linda-core is due to the presence of the inp, which is described

by Equation D7: when a is present both the inp(a) and the in(a) construct are

modeled in the same way, but when a is not present we have to distinguish the two

cases (by using in(a) and inp(a)) since it would not be correct to use the evaluation

given in Definition 4.3 for the in(a).

Chapter 4. Full Abstraction Techniques for Asynchrounous Languages 61

In order to prove the correctness of the model introduced above we need to add

to eval1 the new cases obtaining the evaluation function eval2:

Definition 4.5 Given a trace s ∈ S and a store M, the function eval2(s,M) is

defined by the following cases:

eval2(inp(x) · t,M) =

eval2(t,M) if x 6∈ M
↑ otherwise

eval2(α(x) · t,M) = eval1(α(x) · t,M) for α 6= inp

Moreover we need to adapt Lemma 4.1 and 4.2 adding the cases of the inp

operator:

Lemma 4.3 Given a Linda-inp process P , for every run

〈P,M0〉 → . . .→ 〈P ′,Mn〉9

there exists a trace s ∈ JP K such that eval2(s,M0) =Mn.

Proof: The proof proceed in the same way as in Lemma 4.1, we only have to

consider the case when P = inp(a)?Q : R by inductive hypothesis there exists a

trace s1 ∈ JP1K such that eval2(s1,M1) =Mn. Without loss of generality suppose

that P1 = Q thenM1 =M0	{a}, s = in(a) · s1 ∈ JP K and eval2(in(a) · s1,M0) =

eval1(s1,M1). 2

Generalising the previous result we can show the following:

Corollary 4.3 Given a Linda-inp process P ,

O(P) ⊆ {(M0, eval1(s,M0)) | s ∈ JP K and eval1(s,M0) 6=↑} holds.

Proof: Let (M0,Mn) ∈ O(P) hence there exists a run:

〈P,M0〉 → . . .→ 〈P ′,M′〉9

and for Lemma 4.3 we can associate a trace s in the denotational semantics such

that eval2(s,M0) =Mn. 2

62 Chapter 4. Full Abstraction Techniques for Asynchrounous Languages

D7 F(I)(inp(a)?P : Q) = {in(a) · s | s ∈ F(I)(P)} ∪ {inp(a) · s |
s ∈ F(I)(Q)}

Figure 4.6: Definition of F .

In order to complete the correctness result, we will use the fixpoint characteri-

sation introduced before plus the rule in Figure 4.6.

Again this characterisation allows us to prove that:

Lemma 4.4 ∀n > 0 if s ∈ Fn and eval2(s,M0) 6=↑ then 〈P,M0〉 → . . . →
〈P ′, eval21(s,M0)〉9 is a sequence of length O(n) and (M0, eval2(s,M0)) ∈ O(P).

Proof: The proof proceeds as in Lemma 4.2, the only case left is the one of the inp

operator, so let P = inp(a)?P1 : P2, if s ∈ Fn(⊥)(P) then

Fn(⊥)(P) = (by definition)

{in(a).s | s ∈ F(Fn−1(⊥))(P1)} ∪ {inp(a).s | s ∈ F(Fn−1(⊥))(P2)}

By inductive hypothesis there exists either a sequence

〈P1,M′〉 → . . .→ 〈P ′, eval2(s,M′)〉9

or a sequence 〈P2,M′〉 → . . . → 〈P ′, eval2(s,M′)〉 9 and (M′, eval2(s,M′)) ∈
O(P1). Then from R6 we can easily reconstruct M′ and thus conclude that (M0,

eval2(s,M0)) ∈ O(P). 2

Finally:

Corollary 4.4 Given a Linda-inp process P ,

{(M0, eval2(s,M0)) | s ∈ JP K and eval2(s,M0) 6=↑} ⊆ O(P) holds.

Proof: It is easy to see that F is a continuous function therefore applying the

theorem of Kleene for fixpoints it can be shown that the semantics J·K is the least

fixpoint of F , which can be obtained as the least upper bound of {Fn(⊥) | n ≥ 0}.
Indeed given a trace s ∈ JP K for the fixpoint theorem s ∈ Fn for some n and then

for lemma 4.4 we can conclude (M0, eval2(s,M0)) ∈ O(P). 2

Summarising, the previous two results state that:

Chapter 4. Full Abstraction Techniques for Asynchrounous Languages 63

Theorem 4.3 (Correctness) Given a Linda-inp process P ,

O(P) = {(M0, eval2(s,M0)) | s ∈ JP K and eval2(s,M0) 6=↑} holds.

4.4 Full Abstraction for Linda-core

The aim of this section is to obtain a fully abstract semantics for Linda-core. The

semantics introduced in the previous section represents a too fine description of

the actions that affect the store, since it records all the possible changes while the

observables capture only the initial and the final state. It is therefore immediate to

find processes which have a different denotation, while having the same input/output

behaviour under any possible context.

In order to obtain full abstraction we saturate the denotational semantics by

adding all those traces which, intuitively, represent a computation whose input/out-

put behaviour, in any possible context, can be simulated by a trace which is already

in the semantics. The formal definition is as follows.

Definition 4.6 (Saturation) Let T ⊆ S be a set of traces. We define the satura-

tion of T as the minimal set Sat(T) which satisfies the following rules:

i) if s ∈ T then s ∈ Sat(T)

ii) if s · out(a) · t · in(a) · v ∈ Sat(T) then s · t · v ∈ Sat(T)

iii) if s ·out(a) ·t · in(a) ·v ∈ Sat(T) then s ·out(a) ·t · in(a) ·out(a) · in(a) ·v ∈ Sat(T)

iv) s ∈ Sat(T) iff s · in(a) · out(a) ∈ Sat(T)

v) if s · out(a) · t ∈ Sat(T) then s · t′ ∈ Sat(T) where t′ ∈ {out(a) |̃ t}

vi) all the traces in T of the form t · in(a) · u with u 6= ε are removed.

According to the previous definition in Sat(T) we add all the traces which (i) are

derived (inductively) from the traces in T by performing the following operations:

(ii) Removing complementary actions out(a) and in(a) which appear, in this order,

64 Chapter 4. Full Abstraction Techniques for Asynchrounous Languages

in different places of the sequence; it is rather clear that this does not change the

operational behaviour described by the original sequence. (iii) Adding a “stuttering

step” represented by a sequence out(a) · in(a) of two complementary actions is also

allowed, provided that both these actions occur before (in this order) in the sequence.

Intuitively, if the out(a) action does not appear before in the sequence we cannot

add it, since the presence of a could trigger some new computation; moreover, since

the multiplicity of a message is relevant, also in case the sequence contains out(a)

and not in(a) we cannot add the sequence out(a) · in(a) because after the added

out(a) we would have one more a than in the original sequence, which, again, could

trigger new computations. (iv) Stuttering steps of the form in(a) · out(a) can be

safely added and removed only at the end of a sequence. (v) As stated in [22]

an output prefix out(a).P is observably equivalent to out(a) | P , note that from

this rule follows that the core-language cannot observe the order of appearance of

messages. (vi) Finally, in(a) represents a process suspended because the message

a is not present in the store, hence it is not correct to assume that other actions

could take place afterwards. Clearly this is not anymore true (apart from rule (vi))

in presence of a construct which allows to check for absence of information, as we

will see in the next section.

The fully abstract semantics is obtained by applying the saturation defined above

to the semantics J·K. In order to prove the full abstraction result we proceed by

steps. First we prove that the abstraction introduced by Sat is correct (under any

context) w.r.t. O(P). This result is obtained by first showing that the construction

of Sat(JP K) does not add any trace that does not respect the observables of P . This

is the content of the following Proposition, whose proof is immediate

Proposition 4.1 Given a process P ,

O(P)={(M0, eval1(s,M0))|s∈Sat(JP K)}.

Proof: For Theorem 4.2, O(P) = {(M0, eval1(s,M0)) | s ∈ JP K} and since by

definition JP K ⊆ Sat(JP K), O(P) ⊆ {(M0, eval1(s,M0)) | s ∈ Sat(JP K)}.

Chapter 4. Full Abstraction Techniques for Asynchrounous Languages 65

For the other set-inclusion we shall analyse all the possible traces in Sat(JP K).

Thus suppose that s = s1 ·out(x) ·s2 ·in(x) ·s3 ∈ JP K. Then there exists t = s1 ·s2 ·s3

and u = s1 · out(x) · s2 · in(x) · out(x) · in(x) · s3 ∈ Sat(JP K). It can be easily

shown that eval1(t,M0) and eval1(u,M0) are equal to eval1(s,M0) thus we are

not adding anything in O(P). We can proceed similarly for all the other traces

obtained applying the rules in definition 4.6. 2

Now we are ready to state that the abstract (saturated) semantics is correct

under any context w.r.t. the chosen observation criteria. A context C[•] is defined

as a process with a hole, that is, a process where a subprocess is left unspecified.

C[P] is then the process obtained from C[•] by replacing • for the process P .

Theorem 4.4 (Correctness for Linda-core) Given two Linda-core process A,

B, if Sat(JAK) = Sat(JBK) then, for every context C[•], O(C[A]) = O(C[B]) holds.

Proof: We will first prove O(C[A]) ⊆ O(C[B]). Let (M0,M1) ∈ O(C[A]) then

following from Theorem 4.2 there exists s ∈ JC[A]K such that M1 = eval1(s,M0).

Since the denotational semantics we provide is compositional s = c ◦̃ t for some

suitable ◦̃, where c ∈ JC[•]K and t ∈ JAK.
Since JAK ⊂ Sat(JAK) = Sat(JBK) then t ∈ Sat(JBK) therefore two cases could

arise: (1) t ∈ JBK hence s ∈ JC[B]K and (M0,M1) ∈ O(C[B]). (2) t 6∈ JBK then

there exists u ∈ JBK such that u is derived from t following the rules in definition 4.6

and eval1(t,M0) = eval1(u,M0). Hence by induction on the structure of c it can

be easily proved that eval1(c ◦̃ u,M0) =M1 and therefore (M0,M1) ∈ O(C[B]).

The other set inclusion O(C[B]) ⊆ O(C[A]) is symmetrical. 2

To obtain full abstraction we need now to prove the converse of the above theo-

rem. This is the central result of this section and is the content of the following.

Theorem 4.5 Let A, B be two Linda-core processes, if Sat(JAK) 6= Sat(JBK) then

there exists a context C[•] such that O(C[A]) 6= O(C[B]).

Proof: Suppose that there exists t ∈ Sat(JAK) r Sat(JBK) and consider a generic

s ∈ Sat(JBK) (thus t 6= s). From the definition of Sat it follows that we can choose

66 Chapter 4. Full Abstraction Techniques for Asynchrounous Languages

s and t as the shortest sequences such that: (i) they do not contain sub-sequences

of the form out(x) · u · in(x) · out(x) · in(x), (ii) they do not contain suffixes of the

form in(x) · out(x), (iii) every output appears as soon as possible and (iv) between

two consecutive inputs the outputs are ordered in lexicographic order.

Then assume that t and s have the following form: t = r ·α(x) · t1, s = r ·β(y) ·s1

where the common prefix r can also be empty and α, β ∈ A with α 6= β.

The proof is by cases, where we analyse the first couple of different actions α

and β. In each case we will construct a context C[•] which allows to distinguish A

and B (that is, a context such that O(C[A]) 6= O(C[B])). In the proof we will use

the following notation: if in(a1), in(a2), . . . , in(an) are all the input actions which

appear, in this order, in the sequence r (which can also contain other out actions),

then InComp(r) denotes the sequence out(a1) · out(a2) · · · out(an): intuitively this

sequence is a sort of complement (w.r.t. in actions) of r which allows to proceed in

the computation when composed in parallel with r. Furthermore, in order to further

simplify the notation, in the following we will use these assumptions:

c1 = InComp(r)

c2 is a sequence consisting of as many in(x) as the out(x) in r

c3 is a sequence consisting of as many in(y) as the out(y) in r

We have then the following cases:

1. let β(y) · s1 = ε , thus t = r · α(x) · t1 and s = r. Depending on t we can

construct the following distinguishing contexts C[•]:

(a) if t = r · out(x) · t1 then C[•] = • | c1.c2.in(x).out(ok);

(b) if t = r · in(x) · t1 noticing that t1 6= out(x), the following context can be

provided C[•] = • | c1.out(x).InComp(t1).

The symmetric case is completely analogous.

Chapter 4. Full Abstraction Techniques for Asynchrounous Languages 67

2. α(x) = in(x) and β(y) = in(y) (with x 6= y) then in order to distinguish the

two processes we need to make further distinctions (note that by construction

t1 6= out(x)):

(a) if eval1(t1, ∅) 6= {x} then C[•] = • | c1.c3.out(x)

(b) if eval1(t1, ∅) = {x} and the actions out(y), in(y) do not appear in t1

then C[•] = • | c1.c3.out(x).InComp(t2)

(c) otherwise since out(y) appears in t1, it can be provided the following

context C[•] = • | c1.c3.out(x).in(y).out(y).out(y).

3. α(x) = out(x) and β(y) = in(y) or vice versa: then it can be easily shown

that the context C[•] = • | c1.c2.c3.in(x).out(ok) allows to distinguish A and

B.

4. α(x) = out(x) and β(y) = out(y) (with x 6= y). By hypothesis we can choose

t = r ·out(x) . . . in(v) . . . and s = r ·out(y) . . . in(w) . . . where in(v) and in(w)

are the first input actions after out(x) and out(y) respectively. Moreover out(x)

does not appear before in(w) in s. Then two cases could arise if v 6= x then

the context C[•] = • | c1.c4.c5 where c4 and c5 are sequences of as many

in(v) and in(w) as the out(v) and out(w) that precedes the two input actions

respectively. Instead if v = x then we can safely assume in(w) does not

appear in s and the context C[•] = • | c1.c5.InComp(t1) can distinguish the

two processes.

5. There are some remaining cases, where the two sequences are different because

of a in action. However, due to the construction of our semantics, r · in(x) ∈
Sat(JJAKK) iff r · in(x) · s ∈ Sat(JJAKK). Therefore we can omit to consider the

sequence r · in(x) and just consider the case of the sequence r · in(x) · s, which

is included above.

This completes the proof. 2

The previous two theorems can be summarised in the following immediate corol-

lary.

68 Chapter 4. Full Abstraction Techniques for Asynchrounous Languages

Corollary 4.5 (Full Abstraction for Linda-core) Let A, B be two Linda-core

processes, Sat(JAK) = Sat(JBK) iff, for any context C[•], O(C[A]) = O(C[B]) holds.

4.5 Full Abstraction for Linda-inp

Now we move to consider the language Linda-inp where we can test for the absence

of a message in the store by using the primitive inp. As underlined in Section 4.1,

such a possibility augments the expressive power of the language. In semantic terms

this means that we can construct more powerful contexts, thus allowing to discrim-

inate processes which were identified by Linda-core contexts. As a simple example,

consider the two processes A = out(a).out(b) and B = out(b).out(a). These proc-

esses cannot be distinguished (w.r.t. the observables O) by any Linda-core contexts,

indeed the corresponding traces out(a) · out(b) and out(b) · out(a) are identified by

the saturation operation. However, the context C[•] = • | in(a).(inp(b)?out(nok) :

out(ok)) allows to distinguish them, since it allows to check that a is present and b is

absent in the store. Indeed we have that (∅, ok ∈ O(C[A])\O(C[B])). This example

shows that a fully abstract semantics for Linda-inp must induce a finer equivalence

on processes than Sat or, in other terms, that a less abstract operation has to be

used to saturate sequences. However the Denotational semantics provided in Section

4.3.2 is not fully abstract. In fact, consider the two processes A = inp(a)?0 : 0 and

B = in(a) +A : these two processes cannot be distinguish by any context, yet they

have a different denotational semantics. Thus we need the following definition.

Definition 4.7 (Saturation for Linda-inp) Let T ⊆ S be a set of traces. We

define the inp-saturation of T as the set Sat2 (T) which is obtained by performing

the following steps (in this order) on T :

1. all the traces in T of the form t · in(a) · u with u 6= ε are removed;

2. all the in(x) actions in all traces are replaced by inp(x) (for any x).

Chapter 4. Full Abstraction Techniques for Asynchrounous Languages 69

Condition 1 ensures that we obtain correct traces once we have performed the

transformation in 2. In fact, in(a) comes from the evaluation of in(a), when a is

not present. Since such an evaluation is suspended, it is not correct to assume that

some action can be performed later. Thus, before transforming in(a) into inp(a)

(and therefore moving from the eval1 of Definition 4.3 to eval2 of Definition 4.5)

we have to delete these traces. The correctness of the saturation is stated by the

following proposition.

Proposition 4.2 Given a process P ,

O(P) = {(M0, eval2(s,M0))|s∈Sat2(JP K)}.

Proof: Immediate. 2

Now, as before, we are ready to state that the abstract semantics is correct under

any context w.r.t. the chosen observation criteria.

Theorem 4.6 (Correctness for Linda-inp) Let A, B be two Linda-inp proc-

esses, if Sat2(JAK) = Sat2(JBK) then, for every context C[•], O(C[A]) = O(C[B])

holds.

Proof: We will first prove O(C[A]) ⊆ O(C[B]). Let (M0,M1) ∈ O(C[A]) then

following from Theorem 4.3 there exists s ∈ JC[A]K such that M1 = eval2(s,M0).

Since the denotational semantics we provide is compositional s = c ◦̃ t for some

suitable ◦̃, where c ∈ JC[•]K and t ∈ JAK.
Applying the rules in Definition 4.7 we can construct a trace t′ such that eval2(t,

M0) = eval2(t
′,M0). Hence t′ ∈ Sat2(JAK). Now since Sat2(JAK) = Sat2(JBK),

t′ ∈ Sat2(JBK) two cases could arise: (1) t′ ∈ JBK hence s ∈ JC[B]K and (M0,M1) ∈
O(C[B]). Or (2) t′ 6∈ JBK therefore there exists u ∈ JBK where some of the actions in

have been replaced with inp and eval2(t,M0) = eval2(u,M0). Hence by induction

on the structure of c it can be easily proved that eval2(c ◦̃ u,M0) = M1 and

therefore (M0,M1) ∈ O(C[B]).

The other set inclusion O(C[B]) ⊆ O(C[A]) is symmetrical. 2

70 Chapter 4. Full Abstraction Techniques for Asynchrounous Languages

And finally to obtain full abstraction we need now to prove the converse of the

above theorem. This is the content of the following.

Theorem 4.7 Let A, B be two Linda-inp processes, if Sat2(JAK) 6= Sat2(JBK) then

there exists a context C[•] such that O(C[A]) 6= O(C[B]).

Proof: Suppose that there exists t ∈ Sat2(JAK) r Sat2(JBK) and consider a generic

s ∈ Sat2(JBK). Since s 6= t by hypothesis, we can assume that t and s have the

following form:

Let t = r · α1(x1) · · ·αn(xn) and s = r · β1(y1) · · · βm(ym) where the common

prefix r can also be empty and α1, . . . , αn, β1, . . . , βm ∈ A with α1 6= β1.

The proof is by cases, where we analyse the first different actions α1 and β1

in the sequences t and s. In each case we will construct a context C[•] which

allows to distinguish A and B (that is, a context such that O(C[A]) 6= O(C[B])).

As in the proof of Theorem 4.5, if in(a1), in(a2), . . . , in(an) are all the input actions

which appear, in this order, in the sequence r then InComp(r) denotes the sequence

out(a1) · out(a2) · · · out(an). Furthermore, in order to further simplify the notation,

in the following we will use these assumptions:

c1 = InComp(r)

c2 is a sequence consisting of as many in(a) as the out(a) in r

c3 is a sequence consisting of as many in(b) as the out(b) in r

We have then the following cases:

1. t = r · out(a) · t1 and s = r; In this case C[•] = • | c1.c2.in(a).out(ok) allows

to distinguish A and B.

2. t = r · in(a) · t1 and s = r; then C[•] = out(a).• | c1.c2.inp(a)?out(ok) : out(no)

is the distinguishing context.

3. t = r · out(a) · t1 and s = r · out(b) · s1. We have the following sub-cases:

Chapter 4. Full Abstraction Techniques for Asynchrounous Languages 71

(a) If the number of out(a) in t is different from the number of out(a) in s

then it can be easily proved that there is a context that distinguishes the

two programs (essentially it is a context that counts the occurrences of

the out(a)). Similarly if we are considering the b’s. The following is an

example.

Example 4.1 If t = out(a) · in(a) · out(a) · out(b) and s = out(b) · out(a)

then we can build the distinguishing context

C[•] = • | in(a).out(a).inp(a)?out(ok) : out(no)

�
(b) Now suppose that the number of out(a) (or out(b)) is the same in t and

s. If in t1 or in s1 there is an input action again it is easy to provide a

distinguishing context, either by blocking the execution of the rest of the

trace after the input or by querying the store for the presence/absence of

messages in the store. The following provide an example.

Example 4.2 If t = out(a) · in(b) · out(b) and s = out(b) · in(b) · out(a)

then we can consider the distinguishing context

C[•] = • | in(a).out(b).inp(b)?out(ok) : out(no)

�
(c) If in t1 and in s1 there are only outputs then either there is an output

action that it is not present in one of the two traces, and in this case it is

straightforward to build a distinguishing context, or the output actions

of a sequence are a permutation of output actions of the other sequence;

also in this case it is easy to construct a context that distinguishes the

two processes by checking the presence of a message and the absence of

the other one, as shown by the following.

Example 4.3 If t = out(a) · out(b) and s = out(b) · out(a) then the

distinguishing context C[•] = • | in(a).inp(b)?out(ok) : out(no) (as seen

in the initial part of this Section). �

72 Chapter 4. Full Abstraction Techniques for Asynchrounous Languages

4. t = r · out(a) · t1, s = r · in(b) · s1 and s′ = r · inp(b) ∈ Sat2(JBK). It suffices

to consider C[•] = • | c1.c2.c3.in(a).out(ok).

5. t = r · out(a) · t1, s = r · in(b) · s1 and s′ = r · inp(b) · s2 ∈ Sat2(JBK). The

following situations may arise:

(a) if out(a) 6∈ s2 then C[•] = • | c1.c2.c3.in(a).out(ok);

(b) if in(b) 6∈ t1 then C[•] = out(b).• | c1.inp(b)?out(ok) : out(no);

(c) otherwise the only significant case is when s′ = r · inp(b) · out(a) · t1 and

therefore a suitable context can be constructed observing that the order

of the actions is different (i.e. b is consumed in two different positions).

This is shown in the following.

Example 4.4 If t = out(a) and s = in(b) · out(b) · out(a) recalling that

s′ = inp(b) · out(a) we can build the distinguishing context

C[•] = out(b).• | in(b).out(b).inp(b)?out(ok) : out(no)

�
6. t = r · in(a) · t1, s = r · in(b) · s1 and s = r · inp(b) ∈ Sat2(B). In this case

C[•] = out(a).• | c1.c2.c3.inp(a)?out(ok) : out(no).

7. t = r · in(a) · t1, s = r · in(b) · s1 and s′ = r · inp(b) · s2 ∈ Sat2(JBK). We should

here distinguish between the following further cases

(a) if out(a) 6∈ t1 and in(a) 6∈ s2 then C[•] = out(a).• | c1.c3;
(b) otherwise the worst possible scenario happens when s2 = in(a) · t1 and t1

and s1 are “symmetrical” in a and b. As already shown in some preceding

cases, when the order of the actions changes it is always possible to find

a distinguishing context. This is shown in the following, last example.

Example 4.5 Let A = inp(a)?(out(a).in(b).out(b)) : (in(b).out(b)), and

B= inp(b)? (out(b).in(a).out(a)) : (in(a).out(a)) thus Sat2(JAK) = {in(a)·
out(a) · in(b) · out(b), inp(a) · in(b) · out(b), . . .} and Sat2(JBK) = {in(b) ·

Chapter 4. Full Abstraction Techniques for Asynchrounous Languages 73

out(b) · in(a) · out(a), inp(b) · in(a) · out(a), . . .} and the following context

can distinguish between the two programs:

C[•] = • | inp(a)?out(ok1) : (inp(b)?out(ok2) : out(no))

�

8. There are some remaining cases, where the two sequences are different because

of a inp action. However, due to the construction of our semantics, r · inp(x) ∈
Sat2(JAK) iff r · in(x) · s ∈ Sat2(JAK). Therefore we can omit to consider the

sequence r · inp(x) and just consider the case of the sequence r · in(x) ·s, which

is included above.

This completes the proof. 2

The previous two theorems can be summarised in the following immediate corol-

lary.

Corollary 4.6 (Full Abstraction for Linda-inp) Let A and B be two Linda-

inp processes, Sat2(JAK) = Sat2(JBK) iff, for any context C[•], O(C[A]) = O(C[B])

holds.

4.6 Conclusions and Related work

We have studied the full abstraction problem for two variants of the Linda paradigm.

For the first one, the Linda-core language, we have provided a trace semantics

which is fully abstract w.r.t. the input/output notion of observables. This has

been obtained by using a suitable abstraction in order to identify different traces

which do not represent meaningful operational differences. The second language,

Linda-inp, allows also checking for the absence of information. The augmented

expressive power of this language permits us to obtain a full abstraction result by

using a much simpler abstraction.

In the specific context of Linda, full abstraction has been previously investigated

by Brogi and Jaquet in [16] which used also techniques inspired by Horita et al. in

74 Chapter 4. Full Abstraction Techniques for Asynchrounous Languages

[74]. The results in [16] are completely different from ours, since in such a paper a

semantics based on sequences is shown to be fully abstract with respect to a notion

of observable which consider traces of computations. We prefer to consider a coarser

notion of observables, consisting in the input/output behaviour, which accounts for

a “black box” use of processes. Clearly our notion of observables leads to a more

difficult full abstraction result, being the denotational model based on traces.

Results similar to ours have been obtained in the context of concurrent constraint

programming (CCP) by De Boer and Palamidessi [37], however this language differs

from Linda since it does not allow to remove information from the store. This

monotonic nature of CCP makes its semantic treatment simpler, hence the results

in [37] cannot be applied directly to the languages we consider here. Also Brookes

[17] provides a trace model and a full abstraction result for a shared variable parallel

language which is substantially different from Linda. The same applies to the results

in [74].

More generally, full abstraction results have been provided for many concurrent

languages and in quite various settings, which however are different from the case

we consider here. In fact, even though our Linda-core language can be seen as a

fragment of asynchronous CCS (and therefore of asynchronous π-calculus), all the

full abstraction results available for these languages consider different observational

equivalences from ours. Probably the closer work in this sense is [14] by Boreale et

al., where full abstraction of a trace semantics w.r.t. may testing equivalence has

been studied. Note however that may testing is different from the observational

equivalence that we consider (which is based on the input-output behaviour). For

example, the processes in(a).in(b) and in(b).in(a) are may testing equivalent (see

[14]) while they are not equivalent in our case, since they can be distinguished by

the context C[•] = out(a) | •.
Several other papers consider barbed equivalences and their relations with bisim-

ulation, (notably [4] for asynchronous π-calculus and [23] for Linda-like process alge-

bras) which, as previously mentioned, are completely different from the equivalence

we consider. It is also worth noticing that the construct inp, which is not available in

Chapter 4. Full Abstraction Techniques for Asynchrounous Languages 75

π-calculus and in CCS, change considerably the semantics of the language, thus for

Linda-inp one cannot use existing results for CCS or π-calculus. For example, [23]

shows that in presence of inp the coarse congruence contained in barbed equivalence

is a new, specific congruence called inp-bisimulation while for the core language it

is the usual one.

Recently, full abstraction results for π-calculus with contextual equivalence [108]

and for Java-like languages with testing equivalence have been obtained in [79] (by

considering weak bisimulation) and in [78] (by using a model based on traces). Also

in these cases the considered equivalences are different from ours.

We plan to extend our results by considering the full abstraction issue for the

language Klaim [39], which is based on Linda and supports distribution and mobility.

76 Chapter 4. Full Abstraction Techniques for Asynchrounous Languages

Chapter 5

Multiplicity Matters

The inevitable end of multiple chiefs is
that they fade and disappear for lack of
unity.

Napoleon Bonaparte

In the previous chapter, one can notice that the expressiveness gap between the

two languages analysed (the operators in Linda-inp permit to count the occurrences

of the messages in the store while this is not possible in Linda-core) reflects in an

easier fully abstract model. Here we want to generalise this observation by study-

ing other languages where multiplicity matters. To this aim we consider Multiset

Rewriting Systems, which are sets of rules that specify how to transform a multiset

into another multiset. The key issue is to compare the expressiveness of dialects ob-

tained by bounding the number of elements in the head of the rules. The language

considered is CHR.

In this chapter, we first analyse the Turing completeness of the language then

we show that despite the previous results, multiple heads do augment the expressive

power of the language: we prove that, under certain reasonable assumptions, it is not

possible to encode the CHR language (with multi-headed rules) into a single headed

language while preserving the semantics of programs. tics of programs. Moreover

we show that also the number of elements in the heads of rules matters, as the

78 Chapter 5. Multiplicity Matters

CHR language allowing at most n elements in the heads is more expressive than the

language allowing at most m elements, with m < n.

5.1 Introduction

Constraint Handling Rules (CHR) [59, 60] is a committed-choice declarative lan-

guage which has been originally designed for writing constraint solvers and which is

nowadays a general purpose language. A CHR program consists of a set of multi-

headed guarded (simplification and propagation) rules which allow one to rewrite

constraints into simpler ones until a solved form is reached. The language is para-

metric w.r.t. an underlying constraint theory CT which defines the meaning of basic

built-in constraints.

The presence of multiple heads is a crucial feature which differentiates CHR

from other existing committed choice (logic) languages. Many examples in the vast

literature on CHR provide empirical evidence for the claim that such a feature is

needed in order to obtain reasonably expressive constraint solvers in a reasonably

simple way (see the discussion in [60]). However this claim was not supported by

any formal result, so far.

In this chapter we prove that multiple heads do indeed augment the expressive

power of CHR. Since we know that CHR is Turing powerful [121], we first show

that CHR with single heads, called CHR1 in what follows, is also Turing powerful,

provided that the underlying constraint theory allows the equality predicate (inter-

preted as pattern matching) and that the signature contains at least one function

symbol (of arity greater than zero). This result is certainly not surprising; however

it is worth noting that, as we prove later, when considering an underlying (constra-

int theory defined over a) signature containing finitely many constant symbols and

no function symbol CHR (with multiple heads) is still Turing complete, while this

is not the case for CHR1.

This provide a first separation result which is however rather weak, since usual

constraint theories used in CHR do allow function symbols. Moreover computability

Chapter 5. Multiplicity Matters 79

theory is not always the right framework for comparing the expressive power of

concurrent languages, since often one has to compare languages which are Turing

powerful (see also the discussion in Chapter 1).

Hence in the second part of the chapter we compare the expressive power of CHR

and CHR1 by using the notion of language encoding, first formalised in [38, 120, 124].

Intuitively, a language L is more expressive than a language L′ or, equivalently, L′
can be encoded in L, if each program written in L′ can be translated into an L
program in such a way that: 1) the intended observable behaviour of the original

program is preserved (under some suitable decoding); 2) the translation process

satisfies some additional restrictions which indicate how easy this process is and how

reasonable the decoding of the observables is. For example, typically one requires

that the translation is compositional w.r.t. (some of) the syntactic operators of the

language [38].

We prove that CHR cannot be encoded into CHR1 under the following three

assumptions. First we assume that the observable properties to be preserved are

the constraints computed by a program for a goal, more precisely we consider data

sufficient answers and qualified answers. Since these are the two typical CHR ob-

servables for most CHR reference semantics, assuming their preservation is rather

natural. Secondly we require that both the source CHR language and the target

CHR1 share the same constraint theory defining built-in constraints. This is also

a natural assumption, as CHR programs are usually written to define a new (user-

defined) predicate in terms of the existing built-in constraints. Finally we assume

that the translation of a goal is compositional w.r.t. conjunction of goals, that is, we

assume that JA,BKg = JAKg, JBKg for any conjunctive goal A,B, where J Kg denotes

the translation of a goal. We believe this notion of compositionality to be reason-

able as well, since essentially it means that the translated program is not specifically

designed for a single goal. It is worth noticing that we do not impose any restriction

on the translation of the program rules.

From this main separation result follows that CHR cannot be encoded in (cons-

traint) logic programs nor in pure Prolog. This does not conflict with the fact that

80 Chapter 5. Multiplicity Matters

there exist many CHR to Prolog compilers: it simply means that these compilers do

not satisfy our assumptions (typically, they do not translate goals in a compositional

way).

Then we consider the class of CHR programs which have qualified answers and

trivial data sufficient answers only. Roughly, data sufficient answers are the results

of terminating computations which contain built-in constraints only, while qualified

answers can contain also some user-defined constraints, that is, some constraints

which are defined by the program rules (rather than by the underlying theory).

Trivial data sufficient answers are those identical to the original goal. We show that

the previous separation result holds also when considering this class of programs.

This has some relevance because qualified answers are the main observable property

considered in the CHR semantics, and programs having qualified answers only are

common.

Next we show that also the number of atoms (greater than one) affects the

expressive power of the language. In fact we prove that, under some slightly stronger

assumptions on the translation of goals, there exists no encoding of CHRn into

CHRm (CHR with at most n (m respectively) atoms in the head of the rules), for

m < n.

The remainder of this chapter is organised as follows. Section 5.2 introduces the

languages under consideration. We then provide the encoding of RAMs in CHR1

and discuss the Turing completeness of this language in Section 5.3. Sections 5.4

and 5.5 contain the separation results while Section 5.6 concludes by discussing some

related works. Some of the results shown in this chapter has previously appeared in

[66].

5.2 Preliminaries

In this section we give an overview of CHR syntax and operational semantics fol-

lowing [60].

Chapter 5. Multiplicity Matters 81

5.2.1 CHR constraints and notation

We first need to distinguish the constraints handled by an existing solver, called

built-in (or predefined) constraints, from those defined by the CHR program, called

user-defined (or CHR) constraints. Therefore we assume that the signature contains

two disjoint sets of predicate symbols for built-in and CHR constraints.

Definition 5.1 (Built-in constraint) A built-in constraint c is defined by:

c ::= a | c ∧ c | ∃xc

where a is an atomic built-in constraint (an atomic constraint is a first-order atomic

formula). For built-in constraints we assume given a (first order) theory CT which

describes their meaning.

Definition 5.2 (User-defined constraint) A user-defined (or CHR) constraint

is a conjunction of atomic user-defined constraints.

We use c, d to denote built-in constraints, h, k to denote CHR constraints and

a, b, f, g to denote both built-in and user-defined constraints (we will call these gen-

erally constraints). The capital versions of these notations will be used to denote

multisets of constraints. We also denote by false any inconsistent conjunction of

constraints and with true the empty multiset of built-in constraints.

We will use “,” rather than ∧ to denote conjunction and we will often consider

a conjunction of atomic constraints as a multiset of atomic constraints: We prefer

to use multisets rather than sequences (as in the original CHR papers) because our

results do not depend on the order of atoms in the rules. In particular, we will use

this notation based on multisets in the syntax of CHR.

The notation ∃V φ, where V is a set of variables, denotes the existential closure

of a formula φ w.r.t. the variables in V , while the notation ∃−V φ denotes the

existential closure of a formula φ with the exception of the variables in V which

remain unquantified. Fv(φ) denotes the free variables appearing in φ.

82 Chapter 5. Multiplicity Matters

Moreover, if t̄ = t1, . . . tm and t̄′ = t′1, . . . t
′
m are sequences of terms then the

notation p(t̄) = p′(̄t′) represents the set of equalities t1 = t′1, . . . , tm = t′m if p = p′,

and it is undefined otherwise. This notation is extended in the obvious way to

sequences of constraints.

5.2.2 Syntax

A CHR program is defined as a sequence of two kinds of rules: simplification and

propagation (some papers consider also simpagation rules, since these are abbrevi-

ations for propagation and simplification rules we do not need to introduce them).

Intuitively, simplification rewrites constraints into simpler ones, while propagation

adds new constraints which are logically redundant but may trigger further simpli-

fications.

Definition 5.3 A CHR simplification rule has the form:

r @ H ⇔ C | B

while a CHR propagation rule has the form:

r @ H ⇒ C | B,

where r is a unique identifier of a rule, H (the head) is a (non-empty) multiset of

user-defined constraints, C (the guard) is a possibly empty multiset of built-in con-

straints and B is a possibly empty multiset of (built-in and user-defined) constraints.

A CHR program is a finite set of CHR simplification and propagation rules.

In the following when the guard is true we omit true | . Also the names of

rules are omitted when not needed. A CHR goal is a multiset of (both user-defined

and built-in) constraints. An example of a CHR Program is shown in next Section:

Example 5.1.

Chapter 5. Multiplicity Matters 83

Solve
CT |= c ∧ d↔ d′ and c is a built-in constraint

〈(c,G), K, d〉 −→ 〈G,K, d′〉

Introduce
h is a user-defined constraint

〈(h,G), K, d〉 −→ 〈G, (h,K), d〉

Simplify
H ⇔ C | B ∈ P x = Fv(H) CT |= d→ ∃x((H = H ′) ∧ C)

〈G,H ′ ∧K, d〉 −→ 〈B ∧G,K,H = H ′ ∧ d〉

Propagate
H ⇒ C | B ∈ P x = Fv(H) CT |= d→ ∃x((H = H ′) ∧ C)

〈G,H ′ ∧K, d〉 −→ 〈B ∧G,H ′ ∧K,H = H ′ ∧ d〉

Table 5.1: The standard transition system for CHR

5.2.3 Operational semantics

We describe now the operational semantics of CHR by slightly modifying the tran-

sition system defined in [60]. We use a transition system T = (Conf ,−→) where

configurations in Conf are triples of the form 〈G,K, d〉, where G are the constraints

that remain to be solved, K are the user-defined constraints that have been accu-

mulated and d are the built-in constraints that have been simplified.

An initial configuration has the form 〈G, ∅, ∅〉 while a final configuration has

either the form 〈G,K, false〉 when it is failed, or the form 〈∅, K, d〉 when it is

successfully terminated because there are no applicable rules.

Given a program P , the transition relation −→⊆ Conf × Conf is the least

relation satisfying the rules in Table 5.1 (for the sake of simplicity, we omit indexing

the relation with the name of the program). The Solve transition allows to update

the constraint store by taking into account a built-in constraint contained in the

goal. The Introduce transition is used to move a user-defined constraint from the

goal to the CHR constraint store, where it can be handled by applying CHR rules.

The transitions Simplify and Propagate allow to rewrite user-defined con-

84 Chapter 5. Multiplicity Matters

straints (which are in the CHR constraint store) by using rules from the program.

As usual, in order to avoid variable name clashes, both these transitions assume that

all variables appearing in a program clause are fresh ones. Both the Simplify and

Propagate transitions are applicable when the current store (d) is strong enough

to entail the guard of the rule (C), once the parameter passing has been performed

(this is expressed by the equation H = H ′). Note that, due to the existential

quantification over the variables x appearing in H, in such a parameter passing the

information flow is from the actual parameters (in H ′) to the formal parameters (in

H), that is, it is required that the constraints H ′ which have to be rewritten are

an instance of the head H1. The difference between Simplify and Propagate lies

in the fact that while the former transition removes the constraints H ′ which have

been rewritten from the CHR constraint store, this is not the case for the latter.

Given a goal G, the operational semantics that we consider observes the final

stores of computations terminating with an empty goal and an empty user-defined

constraint. Following the terminology of [60], we call such observables data sufficient

answers.

Definition 5.4 [Data sufficient answers [60]] Let P be a program and let G be a

goal. The set SAP (G) of data sufficient answers for the query G in the program P

is defined as:

SAP (G) = {∃−Fv(G)d | 〈G, ∅, ∅〉 −→∗ 〈∅, ∅, d〉 6−→}.

We also consider the following different notion of answer, obtained by computa-

tions terminating with a user-defined constraint which does not need to be empty.

Definition 5.5 [Qualified answers [60]] Let P be a program and let G be a goal.

The set QAP (G) of qualified answers for the query G in the program P is defined

as:

QAP (G) = {∃−Fv(G)(K ∧ d) | 〈G, ∅, ∅〉 −→∗ 〈∅, K, d〉 6−→}.
1This means that the equations H = H ′ express pattern matching rather than unification.

Chapter 5. Multiplicity Matters 85

Both previous notions of observables characterise an input/output behaviour,

since the input constraint is implicitly considered in the goal. Clearly in general

SAP (G) ⊆ QAP (G) holds, since data sufficient answers can be obtained by setting

K = ∅ in Definition 5.5.

Note that in presence of propagation rules, the abstract (naive) operational se-

mantics that we consider here introduces redundant infinite computations (because

propagation rules do not remove user defined constraints). It is possible to define

different operational semantics (see [2] and [47]) which avoids these infinite compu-

tations by allowing to apply at most once a propagation rule to the same constraints.

The results presented here hold also in case these more refined semantics are consid-

ered, essentially because the number of applications of propagations rules does not

matter. We refer here to the naive operational semantics because it is much simpler

than those in [2] and [47].

An example can be useful to see what kind of programs we are considering here.

The following program implements the sieve of Eratosthenes to compute primes.

Example 5.1 The following CHR program which consists of three simplifications

rules, given a goal upto(N) with N natural number, computes all prime numbers

up to N : the first two rules generate all the possible candidates as prime numbers,

while the third one removes all the incorrect information.

upto(1)⇔ true

upto(N)⇔ N > 1 | prime(N), upto(N − 1)

prime(X), prime(Y)⇔ X mod Y = 0 | prime(Y)

For example suppose that the goal is upto(4) then the following is a possible evolution

of the program:

〈upto(4), ∅, ∅〉 −→∗ 〈∅, (prime(4), prime(3), prime(2)), ∅〉

From the goal upto(4) we, first, generate all possible candidates, then we apply the

third rule that checks for every couple of constraints prime(X), prime(Y) if X is

86 Chapter 5. Multiplicity Matters

divisible by Y and in this case restores in the pool of constraints only the constraint

prime(Y) (said otherwise we remove the constraint prime(X)).

〈∅, (prime(4), prime(3), prime(2)), ∅〉 −→∗ 〈∅, (prime(3), prime(2)), ∅〉

Since there are no applicable rules 〈∅, (prime(3), prime(2)), ∅〉 is a final configura-

tion. Note that this is a qualified answer and the program with this goal has no

data sufficient answers. �
In the following we study several CHR dialects defined by setting a limit in the

number of the atoms present in the head of rules.

Definition 5.6 (CHR dialects) CHRn defines a CHR language where the number

of atoms in the head of the rules is at most n.

5.3 On the Turing completeness of CHR

In this section we discuss the Turing completeness of CHR1 by taking into account

also the underlying constraint theory. In order to show the Turing completeness of

a language we encode RAMs (see Section 2.1) into it.

We first show that CHR1 is Turing powerful, provided that the constraint theory

allows the built-in = (interpreted as pattern matching) and that the underlying

signature contains at least a function symbol (of arity one) and a constant symbol.

This result is obtained by providing an encoding J K : Machines→ CHR of a RAM

M(v0, v1) in CHR as shown in Figure 5.1: Every rule takes as input the program

counter and the two registers and updates the state according to the instruction in

the obvious way. The variable X is used for outputting the result at the end. Note

that, due to the pattern matching mechanism, a generic goal i(pi, s, t,X) can fire at

most one of the two rules encoding the DecJump instruction (in fact, if s is a free

variable no rule in the encoding of DecJump(r1, pl) is fired).

Without loss of generality we can assume that the counters are initialised with

0, hence the encoding of a machine M with n instructions has the form:

JM(0, 0)K := {JInstruction1K, . . . , JInstructionnK}

Chapter 5. Multiplicity Matters 87

Jpi : HaltK := i(pi, R1, R2, X)⇔ X = R1

Jpi : Succ(r1)K := i(pi, R1, R2, X)⇔ i(pi+1, succ(R1), R2, X)

Jpi : Succ(r2)K := i(pi, R1, R2, X)⇔ i(pi+1, R1, succ(R2), X)

Jpi : DecJump(r1, pl)K := i(pi, 0, R2, X)⇔ i(pl, 0, R2, X)

i(pi, succ(R1), R2, X)⇔ i(pi+1, R1, R2, X)

Jpi : DecJump(r2, pl)K := i(pi, R1, 0, X)⇔ i(pl, R1, 0, X)

i(pi, R1, succ(R2), X)⇔ i(pi+1, R1, R2, X)

Figure 5.1: RAM encoding in CHR1

(note that the initial values of the register are not considered in the encoding of

the machine: they will be used in the initial goal, as shown below). The following

theorem states the correctness of the encoding. The proof is immediate.

Theorem 5.1 A RAM M(0, 0) halts with output k if and only if the goal i(1, 0, 0, X)

in the program JM(0, 0)K has a data sufficient answer X = k.

It is worth noting that the presence of a function symbol (succ() in our case) is

crucial in order to encode natural numbers and therefore to obtain the above result.

Indeed, as we prove below, when considering a signature containing only a finite

number of constant symbols the language CHR1, differently from the case of CHR,

is not Turing powerful. To be more precise, assume that CT defines only the =

symbol (to be interpreted as pattern matching, as in the previous case) and assume

that such a theory is defined over a signature containing finitely many constant

symbols and no function symbol (of arity > 0). Let us call CT∅ the resulting theory.

We first observe that, when considering CT∅, CHR1 is computationally equiva-

lent to ground CHR1 w.r.t. termination, where ground CHR1 indicates the CHR1

language obtained by considering only ground rules and goals. Here and in the fol-

lowing Ground(E) denotes the set all ground instances of the syntactic expression

E. Obviously a ground CHR1 program can be seen as a propositional program, that

is, a program where each predicate symbol has arity 0 and where guards are not

88 Chapter 5. Multiplicity Matters

present (they are always satisfied or falsified, of course). More precisely, we have

the following lemma.

Lemma 5.1 Let P be a CHR1 program on CT∅ and G be a goal. Then the existence

of a terminating computation for G in P can be decided iff it can be decided the

existence of a terminating computation for a ground goal G′ ∈ Ground(G) in the

ground program Ground(P).

Proof: Immediate, by observing that for each (finite) derivation for G in P which

uses the rules r1, . . . , rn we can use suitable ground instances of r1, . . . , rn to obtain

a derivation for a suitable ground instance G′ of G. The thesis then follows from

the fact that, due to our assumption on CT∅, both Ground(P) and Ground(G) are

finite sets. 2

Next we show that ground CHR1 is computationally equivalent to P/T nets (see

Section 2.3).

Lemma 5.2 Ground CHR1 is computationally equivalent to P/T nets w.r.t. termi-

nation.

Proof: Let P be a ground CHR1 program, we can build the corresponding P/T

net in the following way: the set of places corresponds to the set of ground atomic

CHR1 constraints, the set of transitions correspond to the set of rules, and given a

rule

rule @ H ⇔ B

the corresponding transition takes as input the constraints in H and the output

corresponds to the constraints in B (note that we can assume that guards are missing,

since they are either true or false). The initial marking is built by placing a token

to the place correspondent to the ground atomic CHR1 constraints present in the

ground goal G. It is easy, then, to prove that this construction is correct. In

particular, G has a terminating computation in P iff the computation for the initial

marking corresponding to G terminates in the net corresponding to P . 2

Now we are ready to state the desired result.

Chapter 5. Multiplicity Matters 89

Jpi : HaltK2 := i(pi, R1, R2, X)⇔ X = R1

Jpi : Succ(r1)K2 := i(pi, R1, R2, X)⇔ s(R1, SuccR1), i(pi+1, SuccR1, R2, X)

Jpi : Succ(r2)K2 := i(pi, R1, R2, X)⇔ s(R2, SuccR2), i(pi+1, R1, SuccR2, X)

Jpi : DecJump(r1, pl)K2 :=

i(pi, R1, R2, X), s(PreR1, R1)⇔ i(pi+1, P reR1, R2, X)

zero(R1), i(pi, R1, R2, X)⇔ i(pl, R1, R2, X), zero(R1)

Jpi : DecJump(r2, pl)K2 :=

i(pi, R1, R2, X), s(PreR2, R2)⇔ i(pi+1, R1, P reR2, X)

zero(R2), i(pi, R1, R2, X)⇔ i(pl, R1, R2, X), zero(R2)

Figure 5.2: RAM encoding in CHR on CT∅
Theorem 5.2 CHR1 on CT∅ is not Turing complete.

Proof: Immediate from the two previous lemmata by observing that in P/T Nets

termination is decidable. 2

On the other hand, CHR (with multiple heads) is still Turing powerful also when

considering the theory CT∅. Indeed, as we show in Figure 5.2, we can encode RAMs

into CHR (defined on CT∅). The basic idea here is that to encode the values of the

registers we use chains (conjunctions) of atomic formulas of the form s(R1, SuccR1),

s(SuccR1, SuccR
′
1) . . . (recall that R1, SuccR1, SuccR

′
1 are variables and we have

countably many variables; moreover recall that the CHR computation mechanism

avoid variables capture by using fresh names for variables each time a rule is used).

It is also worth noting that for the correctness of the encoding it is essential that

pattern matching rather than unification is used when applying rules (this ensures

that in the case of the decrement only one of the two instructions can match the

goal and therefore can be used). The correctness of the encoding is stated by the

following theorem whose proof is immediate.

Theorem 5.3 A RAM M(0, 0) halts with output k > 0 (or k = 0) if and only if

the goal zero(R1) ∧ zero(R2) ∧ i(1, R1, R2, X) in the program JM(0, 0)K2 produces a

90 Chapter 5. Multiplicity Matters

qualified answer

∃−X,R1(X = R1 ∧ s(R1, SuccR
1
1)

∧
i=1...k−1

(SuccRi
1, SuccR

i+1
1))

(or ∃−X,R1(x = R1 ∧ zero(R1))).

Previous theorems state a separation result between CHR and CHR1, however

this is rather weak since the real implementations of CHR usually consider a non-

trivial constraint theory which includes function symbols. Therefore we are inter-

ested in proving finer separation results which hold for Turing powerful languages.

This is the content of the following section.

5.4 Separating CHR and CHR1

In this section we consider a generic non-trivial constraint theory CT. We have seen

that in this case both CHR and CHR1 are Turing powerful, which means that in

principle one can always encode CHR into CHR1. The question is how difficult and

how acceptable such an encoding is and this question can have important practi-

cal consequences: for example, a distributed algorithm can be implemented in one

language in a reasonably simple way and cannot be implemented in another (Tur-

ing powerful) language, unless one introduces rather complicated data structures or

loses some compositionality properties (see [125]).

We prove now that, when considering acceptable encodings and generic goals

whose components can share variables, CHR cannot be embedded into CHR1 while

preserving data sufficient answers. As a corollary we obtain that also qualified

answers cannot be preserved.

First we have to formally define what an acceptable encoding is. We define a

program encoding as any function J K : PCHR → PCHR1 which translates a CHR

program into a (finite) CHR1 program (PCHR and PCHR1 denote the set of CHR

and CHR1 programs, respectively). To simplify the treatment we assume that both

the source language CHR and the target language CHR1 use the same built-in

Chapter 5. Multiplicity Matters 91

constraints semantically described by a theory CT (actually this assumption could

be relaxed). Note that we do not impose any other restriction on the program

translation (which, in particular, could also be non compositional).

Next we have to define how the initial goal of the source program has to be trans-

lated into the target language. Here we require that the translation is compositional

w.r.t. the conjunction of atoms, as mentioned in the introduction. Moreover since

both CHR and CHR1 share the same CT we assume that the built-ins present in

the goal are left unchanged. These assumptions essentially mean that our encod-

ing respects the structure of the original goal and does not introduce new relations

among the variables which appear in the goal. Finally, as mentioned before, we

are interested in preserving data sufficient and qualified answers. Hence we have

the following definition where we denote by GCHR and GCHR1 the class of CHR and

CHR1 goals, respectively (we differentiate these two classes because, for example,

a CHR1 goal could use some user defined predicates which are not allowed in the

goals of the original program2). Note that the following definition is parametric

w.r.t. a class G of goals: clearly considering different classes of goals could affect

our encodability results. Such a parameter will be instantiated when the notion of

acceptable encoding will be used.

Definition 5.7 (Acceptable encoding) Let G be a class of CHR goals. An ac-

ceptable encoding (of CHR into CHR1, for the class of goals G) is a pair of mappings

J K : PCHR → PCHR1 and J Kg : GCHR → GCHR1 which satisfy the following condi-

tions:

• PCHR and PCHR1 share the same CT;

• for any goal (A,B) ∈ GCHR, JA,BKg = JAKg, JBKg holds. We also assume

that the built-ins present in the goal are left unchanged;

2This means that in principle the signatures of (language of) the original and the translated

program are different.

92 Chapter 5. Multiplicity Matters

• Data sufficient (qualified) answers are preserved for the class of goals G, that

is, for all G ∈ G ⊆ GCHR, SAP (G) = SAJP K(JGKg) (QAP (G) = QAJP K(JGKg))

holds.

Note that, since we consider goals as multisets, with the second condition here

we are not requiring that the order of atoms in the goals is preserved by the trans-

lation: We are only requiring that the translation of A,B is the conjunction of the

translation of A and of B. Weakening this condition by requiring that the transla-

tion of A,B is some form of composition of the translation of A and of B does not

seem reasonable, as conjunction is the only form for goal composition available in

these languages.

We are now ready to prove our separation results, next section considers only

data sufficient answers.

5.4.1 Separating CHR and CHR1 by considering data suffi-

cient answers

In order to prove our first separation result we need the following lemma which

states a key property of CHR1 computations. Essentially it says that if the conjunc-

tive G,H with input constraint c produces a data sufficient answer d, then when

considering one component, say G, with the input constraint d we obtain the same

data sufficient answer. Moreover the same answer can be obtained, either for G or

for H, also starting with an input constraint c′ weaker than d.

Lemma 5.3 Let P be a CHR1 program and let (c,G,H) be a goal, where c is a built-

in constraint, G and H are multisets of CHR constraints and V = Fv(c,G,H).

Assume that (c,G,H) in P has the data sufficient answer d. Then the following

holds:

• Both the goals (d,G) and (d,H) have the same data sufficient answer d.

• If CT |= c 6→ d then there exists a built-in constraint c′ such that Fv(c′) ⊆ V ,

CT |= c′ 6→ d and either (c′, G) or (c′, H) has the data sufficient answer d.

Chapter 5. Multiplicity Matters 93

Proof: The proof of the first statement is straightforward (since we consider single

headed programs). In fact, since the goal (c,G,H) has the data sufficient answer d

in P , the goal (d,G) can either answer d or can produce a configuration where the

user defined constraints are waiting for some guards to be satisfied in order to apply

a rule r, but since the goal contains all the built-in constraints in the answer all the

guards are satisfied letting the program to answer d.

We prove the second statement. Let

δ = 〈(c,G,H), ∅, ∅〉 −→∗ 〈∅, ∅, d′〉 6−→

be the derivation producing the data sufficient answer d = ∃−V d′ for the goal

(c,G,H).

By definition of derivation and since by hypothesis CT |= c 6→ d, δ must be of

the form

〈(c,G,H), ∅, ∅〉 −→∗ 〈(c1, G1), S1, d1〉 −→ 〈(c2, G2), S2, d2〉 −→∗ 〈∅, ∅, d′〉9,

where for i ∈ [1, 2], ci and di are built-in constraints such that CT |= c1 ∧ d1 6→ d

and CT |= c2 ∧ d2 → d. We choose c′ = ∃−V (c1 ∧ d1). By definition of derivation

and since P is a CHR1 program, the transition

〈(c1, G1), S1, d1〉 −→ 〈(c2, G2), S2, d2〉

must be a rule application of a single headed rule r, which must match with a

constraint k that was derived (in the obvious sense) by either G or H. Without loss

of generality, we can assume that k was derived from G. By construction c′ suffices

to satisfy the guards needed to reproduce k, which can then fire the rule r, after

which all the rules needed to let the constraints of G disappear can fire. Therefore

we have that

〈(c′, G), ∅, ∅〉 −→∗ 〈∅, ∅, d′′〉9

where CT |= ∃−V d′′ ↔ ∃−V d′(↔ d) and then the thesis. 2

Note that Lemma 5.3 is not true anymore if we consider (multiple headed) CHR

programs. Indeed if we consider the program P consisting of the single rule

rule @ H,H ⇔ true | c

94 Chapter 5. Multiplicity Matters

then the goal (H,H) has the data sufficient answer c in P , but for each constraint

c′ the goal (H, c′) has no data sufficient answer in P . With the help of the previous

lemma we can now prove our main separation result. The idea of the proof is that

any possible encoding of the rule

r @ H,G⇔ true | c

into CHR1 would either produce more answers for the goal H (or G), or would not

be able to provide the answer c for the goal H,G.

Theorem 5.4 Let G be a class of goals such that if H is an head of a rule then H ∈
G. When considering data sufficient or qualified answers, there exists no acceptable

encoding of CHR in CHR1 for the class G.

Proof: We first consider data sufficient answers. The proof is by contradiction.

Consider the program P consisting of the single rule

r @ H,G⇔ true | c

and assume that JP K is the translation of P in CHR1. Assume also that c (restricted

to the variables in H,G) is not the weakest constraint, i.e. assume that there exist

d such that CT |= d 6→ ∃−V c where V = Fv(H,G). Note that this assumption

does not imply any loss of generality, as we consider non trivial constraint systems

containing at least two different constraints.

Since the goal (H,G) has the data sufficient answer ∃−V c in the program P

and since the encoding preserves data sufficient answers the goal J(H,G)Kg has the

data sufficient answer ∃−V c also in the program JP K. From the compositionality of

the translation of goals and the previous Lemma 5.3 it follows that there exists a

constraint c′ such that Fv(c′) ⊆ V , CT |= c′ 6→ ∃−V c and either the goal J(c′, H)Kg,

or the goal J(c′, G)Kg has the data sufficient answer c in the encoded program JP K.

However neither (c′, H) nor (c′, G) has any data sufficient answer in the original

program P . This contradicts the fact that JP K is an acceptable encoding for P , thus

concluding the proof for data sufficient answers. The thesis for qualified answers

Chapter 5. Multiplicity Matters 95

reflexivity @ Lessequal(X, Y)⇔ X = Y | true
antisymmetry @ Lessequal(X, Y), Lessequal(Y,X)⇔ X = Y

transitivity @ Lessequal(X, Y), Lessequal(Y, Z)⇒ Lessequal(X,Z)

Figure 5.3: A program for defining ≤ in CHR

follows immediately from the previous part, as qualified answers contain the set of

data sufficient answers. 2

The hypothesis made on the class of goals G is rather weak, as typically heads

of rules have to be used as goals. As an example of the application of the previous

theorem consider the program (from [60]) contained in Figure 5.3 which allows one

to define the user-defined constraint Lessequal (to be interpreted as ≤) in terms

of the only built-in constraint = (to be interpreted as syntactic equality). For

example, given the goal {Lessequal(A,B), Lessequal(B,C), Lessequal(C,A)} after

a few computational steps the program will answer A = B,B = C,C = A. Now

for obtaining this behaviour it is essential to use multiple heads, as already claimed

in [60] and formally proved by previous theorem. In fact, following the lines of

the proof of Theorem 5.4, one can show that if a single headed program P ′ is any

translation of the program in Figure 5.3 which produces the correct answer for the

goals above, then there exists a subgoal which has an answer in P ′ but not in the

original program.

5.4.2 Separating CHR and CHR1 by considering qualified

answers

The proof of theorem 5.4 cannot be used for programs which have qualified answers

and trivial data sufficient answers only (trivial answers are those identical to the

goal). Nevertheless, since qualified answers are the most interesting ones for CHR

programs, one could wonder what happens when considering these programs.

Here we prove that also when considering this class of programs CHR cannot be

96 Chapter 5. Multiplicity Matters

encoded into CHR1. Actually, the proof of this result is somehow easier to obtain

since the multiplicity of atomic formulas here is important. In fact, if u(x, y) is a

user-defined constraint, the meaning of u(x, y), u(x, y) does not necessarily coincide

with that one of u(x, y). This is well known also in the case of logic programs

(see any article on the S-semantics of logic programs): consider, for example, the

program:

u(x, y)⇔ x = a u(x, y)⇔ y = b

which is essentially a pure logic program written with the CHR syntax. Notice that

when considering an abstract operational semantics, as the one that we consider here,

the presence of commit-choice does not affect the possible results. For example, in

the previous program when reducing the goal u(x, y) one can always choose (non

deterministically) either the first or the second rule.

Now the goal u(x, y), u(x, y) in such a program can have the (data sufficient)

answer x = a, y = b while this is not the case for the goal u(x, y) which has either

the answer x = a or the answer y = b (of course, using guards one can make

more significative examples). Thus, when considering user-defined predicates, it is

acceptable to distinguish u(x, y), u(x, y) from u(x, y), i.e. to take into account the

multiplicity. This is not the case for “pure” built-in constraints, since the meaning of

a (pure) built-in is defined by a first order theory CT in terms of logical consequences,

and from this point of view b ∧ b is equivalent to b.

In order to prove our result we need first the following straightforward Lemma

which states that, when considering single headed rules, if the goal is replicated then

there exists a computation where at every step a rule is applied twice. Hence it is

easy to observe that if the computation will terminate producing a qualified answer

which contains a user-defined constraint, then such a constraint is replicated.

Lemma 5.4 Let P be a CHR1 program. If (G,G) is a goal whose evaluation in P

produces a qualified answer (c,H) containing the atomic user-defined constraint k,

then the goal (c,G,G) has a qualified answer containing (k, k).

Hence we can prove the following separation result.

Chapter 5. Multiplicity Matters 97

Theorem 5.5 Let G be the class of all possible goals and let us restrict to a class

of CHR programs which, for any goal G, have no data sufficient answers different

from G. When considering qualified answers there exists no acceptable encoding of

CHR into CHR1 for the class G.

Proof: The proof will proceed by contradiction. Let P be a program consisting of

a single rule:

r @ H,H ⇔ true | k
where k is an atomic user-defined constraint. The goal (H,H) in P has a qualified

answer k (note that P has no data sufficient answer).

Suppose that there exists an acceptable encoding of P . Hence the goal J(H,H)Kg
in JP K has a qualified answer k (with the built-in constraint true). Since the com-

positionality hypothesis imply that J(H,H)Kg = JHKg, JHKg, from Lemma 5.4 it

follows that J(H,H)Kg in program JP K has also a qualified answer (k, k), but this

answer cannot be obtained in the program with multiple heads thus contradicting

one of the hypothesis on the encoding. Therefore such an encoding cannot exist. 2

5.4.3 Separation result for weak acceptable encodings

Given previous negative results we are now interested in seeing whether CHR can be

encoded in CHR1 under a weaker preservation of answers, as specified in Definition

5.8. That is, we intend to see whether we can obtain an encoded program which for

some (translated) goals possibly computes a superset of the answers obtained in the

original program by the original goals.

Definition 5.8 Let G be a class of CHR goals. An acceptable encoding (of CHR

into CHR1, for the class of goals G) is a pair of mappings J K : PCHR → PCHR1 and

J Kg : GCHR → GCHR1 which satisfy the following conditions:

• PCHR and PCHR1 share the same CT;

• for any goal (A,B) ∈ GCHR, JA,BKg = JAKg, JBKg holds. We also assume

that the built-ins present in the goal are left unchanged;

98 Chapter 5. Multiplicity Matters

• Data sufficient (qualified) answers are weakly preserved for the class of goals

G, that is, for all G ∈ G, SAP (G) ⊆ SAJP K(JGKg) (QAP (G) ⊆ QAJP K(JGKg))

holds.

Note that with weakly acceptable encodings we relax the condition on preser-

vation of data sufficient (qualified) answers and we admit translations of programs

and goals which compute a superset of the answers of the original program and goal.

This point deserves some further explanation: in some cases it could happen that

the translated program computes the same answers of the original program on some

goals, while on some other goals it computes more answers. For example, consider

the case of a CHR program P which is intended to be used with a conjunctive goal

A,B: in case we evaluate an atomic goal, say A, in P , typically one get no (sig-

nificant) answer, because of multiple heads. On the other hand, in the translated

program JP K the goal JAKg could produce some answers. These however are not in-

teresting for our purposes, since the intended goals for the translated programs are

of the form JAKg, JBKg. Of course, the specific class of interesting goals depends on

the program and therefore it is difficult to formalise the problem in general. Hence

in this case we could be interested in weakly acceptable encodings.

Here we show that also in this weaker sense CHR cannot be embedded into

CHR1. First of all we need to define more precisely what it means for a goals to be

share-free:

Definition 5.9 Consider a goal (c,H,G) where c is a built-in constraint and H and

G are (multisets of) user defined predicates. Such a goal is called share-free iff

• H and G do not share variables;

• c = c1 ∧ c2 and CT |= c↔ ∃−Fv(H)c1 ∧ ∃−Fv(G)c2.

If a goal is not share-free it is called sharing goal.

This separation result uses the property of CHR1 derivations stated by the fol-

lowing lemma. Here and in the following, when we say that a constraint c does not

affect the variables V , formally we mean that CT |= (∃V c)↔ c.

Chapter 5. Multiplicity Matters 99

Lemma 5.5 Let P be a CHR1 program and let (G,H) be a share-free goal, where G

and Hcontain user defined predicates (i.e. CHR constraints). Assume that (G,H)

in P has the data sufficient answer d. Then the following holds:

• for any data sufficient answer c of G in P , c does not affect the variables in

H;

• for any data sufficient answer c′ of H in P , c′ does not affect the variables in

G;

• G in P has the data sufficient answer c and H in P has the data sufficient

answer c′ such that CT |= c ∧ c′ ↔ d holds.

Proof: Straightforward by observing that in CHR1 (and in CHR) computations all

rules applied are renamed in order to avoid variable clashes. Then, since G and H

do not share any variables and since CHR1 heads are singletons, it follows that any

rule applied to G and to the goals derived (in the obvious sense) from G cannot

affect the variables in H and vice versa. This implies the thesis. 2

We have then the following result .

Theorem 5.6 Let G be the class of share-free goals and assume that we consider

data sufficient answers. Moreover assume that, for any pair of goals A and B, if

A and B do not share variables then JAKg and JBKg do not share variables. Then

there exists no weak acceptable encoding of CHR into CHR1 for the class G.

Proof: Let us consider the program P consisting of a single rule

r @ H(x), I(y)⇔ true | b(x, y)

where b is any built-in predicate that relate x and y, such that

CT |= (∃−xb(x, y) ∧ ∃−yb(x, y)) 6↔ b(x, y)

As a mean of contradiction suppose that there exists a weak acceptable encoding

JP K of such a program.

100 Chapter 5. Multiplicity Matters

Consider the initial goal (H(x), I(y)) which has the data sufficient answer b(x, y)

in P . Now consider the encoded program JP K and the encoded goal J(H(x), I(y))Kg.

By definition of weak acceptable encoding it follows that J(H(x), I(y))Kg in JP K

produces the data sufficient answer b(x, y).

From Lemma 5.5 and the hypothesis on J Kg (see Definition 5.7) it follows that

there exists a data sufficient answer c for the goal JH(x)Kg in JP K and d for the

goal JI(y)Kg in JP K such that c does not affect the variable y, d does not affect the

variable x and CT |= c ∧ d ↔ b(x, y) holds. However this is a contradiction, since

b(x, y) is a predicate relating x and y, hence it cannot be equivalent (in CT) to a

conjunction c∧d where c does not affect y and d does not affect x. This contradicts

the existence of a weak acceptable encoding thus concluding the proof. 2

Note that in the previous theorem we assume that the translation (of goals) does

not introduce capture of variables. This ensure us that the translation process treats

correctly the variable names: of course, these can be changed in the translation,

however the identification of variables having different names in different goals has

to be avoided.

We do not know whether Theorem 5.6 (and therefore previous corollary) holds

when considering the class of sharing goals only. However, since share-free goals

are a subset of all possible goals, obviously in case of weakly acceptable encodings

previous theorem can be stated by considering the class of all possible goals. Hence

we have the following obvious corollary.

Corollary 5.1 Let G be the class of all possible goals. When considering data suf-

ficient answers or qualified answers there exists no weakly acceptable encoding of

CHR in CHR1 for the class G.

5.4.4 A note on logic programs and Prolog

(Constraint) Logic programming and Prolog are programming languages quite dif-

ferent from CHR, mainly because they are sequential ones, without any guard mech-

anism and commit operator. Nevertheless, since many CHR implementations are

Chapter 5. Multiplicity Matters 101

built on top of a Prolog system, by using a compiler which translates CHR programs

to Prolog, it is meaningful to compare these sequential languages with CHR.

Note that here, following the general terminology (see for example [5]), a (cons-

traint) logic program is a set of (definite) clauses, to be interpreted operationally in

terms of SLD-resolution, thus using a non deterministic computational model. Real

logic programming systems eliminate such a non determinism by choosing a specific

selection rule (for selecting the atom in the goals to be evaluated) and a specific rule

for searching the SLD-tree.

Following [5] we call pure Prolog a logic programming language which uses the

leftmost selection rule and the depth-first search (this corresponds to consider clauses

top-down, according to the textual ordering in the program). Implemented Prolog

systems are extensions of pure Prolog obtained by considering specific built-ins for

arithmetic, control etc. Some of these built-ins have a non logical nature, which

complicates their semantics.

All our technical lemmata about CHR1 can be stated also for (constraint) logic

programming and pure Prolog (the proofs are similar, modulo some minor adjust-

ments). Hence our separation results hold also when considering these languages

rather than CHR1. These can be summarised as follows.

Corollary 5.2 Let G be a class of goals such that if H is an head of a rule then

H ∈ G. When considering data sufficient answers or qualified answers there exists

no acceptable encoding of CHR in constraint logic programming nor in pure Prolog

for the class G.

As mentioned in the introduction, previous result does not conflict with the

fact that there exist many CHR to Prolog compilers: it simply means that, when

considering pure Prolog, these compilers do not satisfy our assumptions (typically,

they do not translate goals in a compositional way). Moreover real Prolog systems

use several non logical built-in’s, which are out of the scope of previous results.

102 Chapter 5. Multiplicity Matters

5.5 A hierarchy of languages

After having shown that multiple heads increase the expressive power w.r.t. the case

of single heads, it is natural to ask whether considering a different number of atoms

in the heads makes any difference. In this section we show that this is indeed the

case, since we prove that, for any n > 1, there exists no encoding of CHRn+1 into

CHRn. Thus, depending on the number of atoms in the heads, we obtain a chain of

languages with increasing expressive power.

In order to obtain this generalisation we need to strengthen the requirement on

acceptable encodings given in Definition 5.7. More precisely, we now require that, for

any goal G, the translation JGKg is the identity function. This accounts for a “black

box” use of the program: we do not impose any restriction on the program encoding,

provided that the interface remains unchanged. We have then the following result.

Theorem 5.7 Let G be the class of all possible goals and assume that the goal

translation is the identity. When considering data sufficient answers there exists no

acceptable encoding of CHRn+1 in CHRn for the class G.

Proof: Let P be the following CHRn+1 program:

rule @ h1 . . . hn+1 ⇔ true | d

where d is a built-in constraint such that Fv(d) ⊆ V and CT |= d 6↔ false, where

V = Fv(h1 . . . hn+1). Hence given the goal G = h1 . . . hn+1 the program P has the

data sufficient answer d.

Observe that every goal with at most n user defined constraints has no data

sufficient answer in P . Now as a mean of contraction let JP K be a suitable encoding

in CHRn and consider a run of G in JP K with final configuration 〈∅, ∅, d′〉, where

CT |= ∃−V (d′)↔ d:

δ = 〈G, ∅, ∅〉 →∗ 〈Hi, Gi, di〉 → 〈Hi+1, Gi+1, di+1〉 →∗ 〈∅, ∅, d′〉,

where, without loss of generality, we can assume that in the derivation δ, for any

configuration 〈G′, K ′, c′〉 we can use either a Simplify or a Propagate transition only

Chapter 5. Multiplicity Matters 103

if G′ does not contain built-ins and Gi is the last goal to be reduced in the run

by using either a Simplify or a Propagate transition, therefore Gi has at most n

user-defined constraints, Hi = ∅ and there is such a rule r ∈ JP K such that r is the

last rule used in δ. Since d is a built-in constraint, r can be of the following form

H ⇔ C | C ′. In this case Hi = Gi+1 = ∅, Hi+1 contains only built-in predicates, Gi

and H have at most n user defined constraints. Then

CT |= di → ∃Fv(H)((Gi = H) ∧ C)

CT |= (di ∧ C ′ ∧ (Gi = H)) 6↔ false

and CT |= d↔ ∃−V (di ∧ C ′ ∧ (Gi = H)).

By construction the goal (Gi, di) has the data sufficient

∃−Fv(Gi,di)(di ∧ C ′ ∧ (Gi = H)) in JP K.

But the goal (Gi, di) has no data sufficient answer in P thus contradicting the

fact that JP K was an acceptable encoding for P . 2

Similarly as before, we generalise the previous theorem to the case where the

program has qualified answers and trivial data sufficient answers only.

Theorem 5.8 Let G be the class of all possible goals (and let us restrict to a class of

CHR programs which, for any goal G, have no qualified answers different from G).

When considering qualified answers there exists no acceptable encoding of CHRn+1

in CHRn for the class G.

Proof: Let P be the following CHRn+1 program:

rule @ h1 . . . hn+1 ⇔ true | k

where k is an atomic user defined constraint such that Fv(k) ⊆ V , where V =

Fv(h1 . . . hn+1). Hence given the goal G = h1 . . . hn+1 the program P has only the

qualified answer k and since k is an atomic user defined constraint, we have that

k 6= (h1 . . . hn+1).

Observe that every goal with at most n user defined constraints has only itself

as qualified answer in P .

104 Chapter 5. Multiplicity Matters

Now as a mean of contraction let JP K be a suitable encoding in CHRn then since

the encoded program has to preserve all the answers in the original P , every ground

goal JGnKG with at most n user defined constraints has a qualified answer Gn in

JP K.

Therefore, if we denote by Gn = h1 . . . hn, by previous observation and by defi-

nition of qualified answers, we have that there exists two derivations

〈JGnKG, ∅, ∅〉 →∗ 〈∅, G′n, d〉9

and

〈Jhn+1KG, ∅, ∅〉 →∗ 〈∅, h′n+1, d
′〉9,

such that CT |= Gn ↔ ∃−Fv(JGnKG)(G
′
n ∧ d) and CT |= hn+1 ↔ ∃−Fv(Jhn+1KG)(h

′
n+1 ∧

d′).

Without loss of generality, we can assume that

Fv(G′n, d) ∩ Fv(h′n+1, d
′) ⊆ Fv(JGnKG) ∩ Fv(Jhn+1KG).

Now consider the goal G, from what previously said we have that:

〈JGKG, ∅, ∅〉 →∗ 〈Jhn+1KG, G′n, d〉

but we also know that 〈Jhn+1KG, ∅, ∅〉 →∗ 〈∅, h′n+1, d
′〉 9 and this cannot be pre-

vented by any step in the previous run, thus we obtain:

JGKG → 〈∅, (G′n, h′n+1), d ∧ d′〉,

where CT |= G↔ ∃−Fv(JGKG)(G
′
n∧h′n+1∧d∧d′). Since G is not a qualified answer for

the goal G in P and since JP K is a suitable encoding of P in CHRn, we have that there

exists {h′j1 , . . . h′js} ⊆ {G′n, h′n+1}, with s ≤ n, such that 〈∅, (h′j1 , . . . h′js), d ∧ d′〉 →
〈G′, H ′, d′′〉 in JP K.

Then, since CT |= G↔ ∃−Fv(JGKG)(G
′
n ∧ h′n+1 ∧ d ∧ d′), we have that

CT |= hj1 , . . . hjs ↔ ∃−Fv(Jhj1 ,...hjsKG)(h
′
j1
, . . . h′js ∧ d ∧ d′)

Chapter 5. Multiplicity Matters 105

and therefore hj1 , . . . hjs is not a qualified answer for Jhj1 , . . . hjsKG in JP K (since it

is always possible to make another derivation step from hj1 , . . . hjs in JP K).

But, by previous observations, the same goal has itself as answer in P thus

contradicting the fact that JP K was an acceptable encoding for P . 2

Remark 5.9 Note that if we consider only the class of goals that are “reasonable”

for a given program, i.e. goals that respects the intended meaning of the program,

previous theorems are not valid anymore. Indeed in this restricted sense in the

program

rule @ h1 . . . hn+1 ⇔ true | k

any goal different from h1 . . . hn+1 is not a reasonable goal since there are no feasible

answers related to it.

Hence in this case all CHRn dialects for n > 2 are as expressive as CHR2,

indeed it is possible to provide the following encoding.

Every rule

rule @ h0 . . . hn ⇔ C | B

is translated into

r1 @ h0, h1 ⇔ i1

r2 @ h2, i1 ⇔ i2

. . .

rn @ hn, in−1 ⇔ C | B

where i1, . . . , in are fresh user-defined constraints that cannot be used in goals and

that are only introduce for encoding the program.

We think that this restriction is too strong thus we prefer to consider the class G
of all possible goals.

106 Chapter 5. Multiplicity Matters

5.6 Conclusions and Related works

In this chapter we have studied the expressiveness of CHR in terms of language

encoding. We have proved that multiple heads augment the expressive power of the

language, indeed we have shown that CHR cannot be encoded in CHR with single

heads under quite reasonable assumptions. These results are shown to hold also

for (constraint) logic programming and pure Prolog. Then we extended this result

by showing that CHR is more expressive than CHR with single heads also when

considering programs which allow qualified answers only. More precisely we have

proved that, when considering this class of programs, CHR cannot be encoded into

CHR1 assuming that goals are translated in a compositional way and that both the

languages use the same theory for built-in constraints. Finally we have shown that,

under some slightly stronger assumptions, in general the number of atoms in the

head of rules affects the expressive power of the language. In fact we have proved

that CHRn cannot be encoded into CHRm, with n > m.

There exists a very large literature on the expressiveness of concurrent languages,

however there are only few papers which consider the expressive power of CHR: A

recent study is [121], where the authors show that it is possible to implement any

algorithm in CHR in an efficient way, i.e. with the best known time and space com-

plexity. This result is obtained by introducing a new model of computation, called

the CHR machine, and comparing it with the well-known Turing machine and RAM

machine models. Earlier works by Frühwirth [62, 61] studied the time complexity

of simplification rules for naive implementations of CHR. In this approach an upper

bound on the derivation length, combined with a worst-case estimate of (the number

and cost of) rule application attempts, allows to obtain an upper bound of the time

complexity. The aim of all these works is clearly completely different from ours, even

though it would be interesting to compare CHR and CHR1 in terms of complexity.

When moving to other languages, somehow related to our paper is the work by

Zavattaro [130] where the coordination languages Gamma [9] and Linda [64] are

compared in terms of expressive power. Since Gamma allows multiset rewriting it

Chapter 5. Multiplicity Matters 107

reminds CHR multiple head rules, however the results of [130] are rather different

from ours, since a process algebraic view of Gamma and Linda is considered where

the actions of processes are atomic and do not contain variables. On the other hand,

our results depend directly on the presence of logic variables in the CHR model of

computation. Relevant for our approach is also [38] which introduces the original

approach to language comparison based on encoding, even though in this paper

rather different languages with different properties are considered.

A similar comparison is done in [85], where Laneve and Vitale show that a

language for modelling molecular biology, called κ-calculus (which will be analysed

in the next chapter), is more expressive than a restricted version of the calculus,

called nano-κ, which is obtained by restricting to “binary reactants” only (that is,

by allowing at most two process terms in the left hand side of rules, while n terms

are allowed in κ). This result is obtained by showing that, under some specific

assumptions, a particular (self-assembling) protocol cannot be expressed in nano-

κ, thus following a general technique which allows to obtain separation results by

showing that (under some specific hypothesis) a problem can be solved in a language

and not in another one (see also [100] and [125]).

This technique is rather different from the one we used, moreover also the as-

sumption on the translation used in [85] are different from ours. Nevertheless, since

κ (and nano-κ) can be easily translated in CHR, it would be interesting to see

whether some results can be exported from a language to another. We left this as

future work. We are also planning to investigate what happens when the source and

the target CHR languages have different theories for the built-ins: we believe that

some results hold also in this more general case, however some technical details need

to be spelt out.

We also plan to investigate what happens when considering translation of CHR

into real Prolog systems (with non logical built-ins). Some of the properties that we

used in our technical lemmata in this case do not hold anymore, however we believe

that also in this case we can establish separation results similar to those shown in

section 5.4.4.

108 Chapter 5. Multiplicity Matters

Chapter 6

Graphs Rewriting Systems - a Hierarchy

There is grandeur in this view of life, with
its several powers, having been originally
breathed into a few forms or into one; and
that, whilst this planet has gone cycling on
according to the fixed law of gravity, from
so simple a beginning endless forms most
beautiful and most wonderful have been,
and are being, evolved.

Charles Darwin
The Origin of Species

This chapter keeps focusing on rewriting systems. Moreover the language anal-

ysed is similar to some extent to CHR. But instead of investigating on the expressive-

ness of multiple heads here we study the expressiveness of several dialects obtained

by allowing or forbidding certain kinds of rules.

Here we analyse the expressive power of some dialects of the κ-calculus by fo-

cusing on the thin boundary between decidability and undecidability for problems

like reachability and coverability.

110 Chapter 6. Graphs Rewriting Systems - a Hierarchy

6.1 Introduction

In recent years we are witnesses of an increasing interest in applications of specifi-

cation languages used in concurrency as formal models of biological systems. Lan-

guages like Petri nets, term rewriting, and process calculi are becoming common

idioms for fostering the cooperation between researchers working in biology and

computer science [12, 29, 34, 45, 50, 53, 106, 54, 69, 107, 123].

Qualitative analysis like reachability [45, 106] and symbolic model checking [52],

and static analysis like abstract interpretation [33] can be used for validation and

optimisation (e.g. detection of dead rules and dependencies) of models that are

used by biologists for experiments in silico (e.g. stochastic simulations). However,

general purpose decision procedures are not always applicable to validate formal

models of biological systems. Indeed, the level of granularity used in modelling bio-

logical mechanisms can dramatically influence the expressive power of the resulting

formal languages, as in the case of the passage from basic chemistry (that may be

modelled by Petri nets) to bio-chemistry (that requires binding sites, thus becoming

Turing-complete) [133]. For this reason, as in other applications of concurrency, an

important foundational issue is the study of dialects for which qualitative analysis

is computable in an effective way and the isolation of minimal fragments in which

it is proved to be impossible.

In this chapter, we investigate the boundary between decidability and unde-

cidability of qualitative analysis of biological systems. As a formal model for our

analysis, we consider the κ calculus [34]. κ is a formalism for modelling molecular bi-

ology where molecules are terms with internal state and sites, bonds are represented

by names that label sites, and reactions are represented by rewriting rules.

For example, EGFR[tk 0](1z) represents a molecule of species EGFR that is not

phosphorilated – the internal state tk is 0 – and that is bond to another molecule –

its site 1 is labelled with a name z.

The reaction in Fig. 6.1 defines the first step of the Receptor Tyrosine Kinase

(RTK) growth factor EGF (a dimeric form of EGF binds two receptors EGFR, thus

Chapter 6. Graphs Rewriting Systems - a Hierarchy 111

phosphorylating the tyrosine kinase site – tk switches from 0 to 1). Briefly a kinase is

a type of enzyme that transfers phosphate groups from high-energy donor molecules,

such as ATP (Adenosine-5’-triphosphate a nucleotide) to specific target molecules

(substrates); the process is called phosphorylation. Kinase enzymes that specifically

phosphorylate tyrosine amino acids are called tyrosine kinases. RTK then acts as

a receptor which dimerizes upon ligand binding. This induces a signalling cascade

that helps regulating a number of cellular processes. For example in the activation of

the epidermal growth factor (EGF). EGF plays an important role in the regulation

of cell growth, proliferation, and differentiation by binding to its receptor EGFR.

This reaction is rendered by the following κ rule:

EGF (1x + 2y),EGF (1x + 2z),EGFR(1y),

EGFR[tk 0](1z) � EGF (1x + 2y),EGF (1x + 2z),

EGFR(1y),EGFR[tk 1](1z)

(6.1)

EGF
1

2

EGF
1

2

x

EGFR

tk=0

1

EGFR

1

y z

EGF
1

2

EGF
1

2

x

EGFR

tk=1

1

EGFR

1

y z

Figure 6.1: Representation of the κ-rule (6.1)

A recent contribution turns out to be rather close to the present one [33]. Using

abstract interpretation (abstracting away from the multiplicity of molecules – al-

ways considered unbounded – and from the exact structure of molecular complexes)

authors design an efficient algorithm for computing the set of reachable complexes

in a fragment of κ with a local rule set and over-approximating the set of reachable

complexes in the general case.

As a matter of fact, classical problems, such as reachability and coverability, turn

out to be undecidable in κ. Therefore one is either compelled to design approximated

112 Chapter 6. Graphs Rewriting Systems - a Hierarchy

analyses or to study these properties in dialects of κ. We choose the second direction,

thus yielding a number of precise analyses that do not abstract away either from the

multiplicity of molecules or from the exact structure of complexes. To this aim, we

consider a number of κ dialects that, as we discuss in the following, take inspiration

from biological phenomena such as the molecular self-assembly [128] or the DNA

branch migration [102]. These dialects are ordered into a lattice by the sublanguage

relation – see Figure 6.2.

κ−n

κ+ff −d

κ+ff −d−u

κ+ff

κ+bf κ+ff −n

κ κ+bf −n

κ−d−i

κ−d−u−i

κ+bf −d

κ−d

κ−d−u

κ+bf −d−u

Figure 6.2: The κ lattice

Let us unravel the lattice with the restrictions imposed to κ to obtain the sub-

languages κ−n, κ−d, and κ−d −u . The calculus κ−n follows by removing any form

of destruction of molecules (the molecules never decrease). This fragment naturally

models those systems where molecules always keep their “identity” even when they

are part of a complex because, for example, they can subsequently dissociate from

Chapter 6. Graphs Rewriting Systems - a Hierarchy 113

Figure 6.3: Linear bidirectional polymerisation

the complex. This is the case of polymers, that is chemical structures obtained by

joining monomers that react on complementary surfaces. A simple polymerisation

– the linear bidirectional one, where the complementary surfaces of monomers are

two (that we respectively call l and r in the following) – is modelled by the following

κ−n rules depicted in Fig. 6.3:

A(r),A(l) � A(rx),A(lx) (6.2)

A(rx),A(lx) � A(r),A(l) (6.3)

The reaction (6.2) defines polymerisation (the creation of a bond between two

monomers with free complementary surfaces); (6.3) defines depolymerization (the

destruction of the bond, but not of the monomers).

The additional restriction yielding κ−d is the one that disallows the removal of

bonds (depolymerizations are forbidden). This restriction is inspired by molecular

self-assembly, which is a process where molecules, initially unbound, adopt a defined

arrangement. The DNA-origami method is a popular example of self-assembly that

allows to create arbitrary two-dimensional shapes, such as Borromean rings [87], us-

ing DNA. In κ−d self-assembly is directly enforced because bonds cannot be broken.

The last dialect along this axis, called κ−d −u , is obtained by considering mole-

cules without internal states. In several cases such states are not useful. An example

is the DNA self-assembly governed by the Watson-Crick complementary base pair-

ing [126].

We also consider two other subcalculi that forbid destructions of molecules and

bonds: κ−d−i and κ−d−u−i. These dialects are obtained from κ−d and κ−d −u , re-

spectively, by restricting reductions to those that never verify the connectedness of

114 Chapter 6. Graphs Rewriting Systems - a Hierarchy

Figure 6.4: Bond Flipping

reactants. For example, the polymerisation (6.2) is a reaction of this type. It turns

out that the Watson-Crick complementary base pairing may be defined in κ−d−u−i.

Our analysis also takes into account a different axis. In [32] a new reaction rule

has been introduced, called exchange. According to this reaction, the interaction

between two molecules may flip a bond from one to the other. For example, the

reader may consider the case where a thief molecule T may connect to a third site

of the monomer A and steals the polymer connected to the site l of A (see also Fig.

6.4):

T (t+ s),A(h) � T (tx + s),A(hx) (6.4)

T (tx + s),A(hx + ly) � T (tx + sy),A(hx + l) (6.5)

(reaction 6.5 is an example of bond flipping).

Bond flipping allows us to model other interesting DNA systems, such as those

based on branch migration used to create, for instance, a nanoscale biped walking

along a DNA strand [129]. The calculi including bond flipping are made evident

with the superscript +bf . Finally, we consider also a more liberal form of flipping,

called free flipping (see Figure 6.6), in which flipping can occur also between two

unbound molecules. With free flipping, the thief molecule T can steal the polymer

to a monomer without previously connecting to it:

T (s),A(ly) � T (sy),A(l) (6.6)

Chapter 6. Graphs Rewriting Systems - a Hierarchy 115

For all of the 14 dialects of κ we investigate three problems: the Reachability

Problem (RP), the Simple Coverability Problem (SCP) and the Coverability Problem

(CP).

The RP is the decision problem associated to the existence of a derivation (sim-

ulation) from an initial solution to a target. As shown in [45, 52, 106], this problem

is of high relevance for validation of formal models of biological systems.

The SCP is the decision problem associated to the existence of a derivation from

an initial solution to a target with given components, regardless of their multiplicity.

SCP is a generalisation of the decision problem associated to the static analysis

considered in [33].

Finally, CP is the decision problem associated to the existence of a derivation

from an initial solution to a target that contains given components: CP is a gen-

eralisation of RP that can naturally be used to formulate structural properties of

biological networks without need of specifying an entire target solution.

Our results about the (un)decidability of RP, SCP, and CP in the κ lattice are

illustrated in Figure 6.5.

The undecidability results are proved by modelling Turing complete formalisms

in the calculi, while the decidability results are proved by reduction to decidable

properties in finite state systems or Petri-nets. As far as the undecidability results

are concerned, the most surprising one is the undecidability of CP in κ−d −u . We

prove that this very poor fragment of κ – in which molecules have no state and

bonds cannot be neither destroyed nor flipped – is powerful enough to encode RAM

Machines [96], a Turing complete formalism. It is also interesting to observe that this

result about κ−d −u relies on the possibility to test at least the presence of bonds. In

fact, κ−d−u−i is no longer Turing complete because CP is decidable for this fragment

(CP allows one to test whether a certain complex, for instance representing the

termination of a computation, can be produced).

While the dialects that include κ−d −u are Turing complete, many of them re-

tain decidable SCP and/or RP properties. These facts, apparently contrasting with

Turing universality of the calculi, are consequences of the following monotonic prop-

116 Chapter 6. Graphs Rewriting Systems - a Hierarchy

κ−n

κ+ff −d

κ+ff −d−u

κ+ff

κ+bf κ+ff −n

κ κ+bf −n

κ−d−i

κ−d−u−i

κ+bf −d

κ−d

κ−d−u

κ+bf −d−u

RP

CP

SCP

Figure 6.5: The κ lattice and the (un)decidability of RP, SCP, CP

erties: reactions cannot decrease either (i) the total number of molecules in the

solution or (ii) the size of the complexes in the solution. In the calculi satisfying the

form of monotonicity (i) we show that it is possible to compute an upper-bound to

the number of molecules in the solutions of interest for the analysis of RP. In this

way, we reduce our analysis to a finite state system. For the calculi satisfying the

form of monotonicity (ii) we show that it is possible to compute an upper-bound

to the size of the complexes in the solutions of interest for the analysis of SCP. In

this case, even if it is not possible to reduce to a finite state system (because there

is no upper-bound to the number of instances of the complexes in the solutions

of interest), we can reduce to Petri-nets in which reachability and coverability are

decidable.

Chapter 6. Graphs Rewriting Systems - a Hierarchy 117

The chapter is organised as follows: Section 6.2 recalls κ, its fragments and

the needed terminology. Section 6.3 discusses the separation results between the

fragments of κ. Section 6.4 discusses related contributions in literature. Section 6.5

concludes with few final remarks.

6.2 Preliminaries

This section introduces κ and its dialects, together with the terminology that is

necessary in the sequel.

6.2.1 κ-calculi

Two countable sets of species A,B,C, . . ., and of bonds x, y, z, . . . are assumed.

Species are sorted according to the number of sites a, b, c, . . . and fields h, i, j, . . .

they possess. Sites may be either bound to other sites or unbound, i.e. not con-

nected to other sites. The configuration of sites are defined by partial maps, called

interfaces and ranged over by σ, ρ, The interfaces associate to sites either a

bond or a special empty value ε, which models the fact that the site is unbound.

For instance, if A is a species with three sites, (2 7→ x; 3 7→ ε) is one of its

interfaces. This map is written 2x + 3 (the ε is always omitted). We notice that this

σ does not define the state of the site 1, which may be bound or not. Such (proper)

partial maps are used in reaction rules in order to abstract from sites that do not

play any role in the reactions (similar for evaluations, see below). In the following,

when we write σ + σ′ we assume that the domains of σ and σ′ are disjoint. The

functions dom(·) and ran(·) return the domain and the range of a function.

Fields represent the internal state of a species. The values of fields are also

defined by partial maps, called evaluations, ranged over by u, v, For instance,

if A is a species with three fields, {1 7→ 5; 2 7→ 0; 3 7→ 4}, shortened into 15 +20 +34,

is a possible evaluation. We assume there are finitely many internal states, that is

every field is mapped into a finite set of values. As for interfaces, u+v, we implicitly

assume that the domains of u and v are disjoint.

118 Chapter 6. Graphs Rewriting Systems - a Hierarchy

Definition 6.1 A molecule A[u](σ) is a term where u and σ are a total evaluation

and a total interface of A.

Solutions, ranged over by S, T , . . . , are defined by: S ::= A[u](σ) | S, S.

Bonds in solutions occur at most twice; in case bonds occur exactly twice the solution

is proper.

A pre-solution is a sequence of terms A[u](σ) where u and σ are partial functions

and bonds occur at most twice. A pre-solution is proper if (similarly as before) bonds

occur exactly twice.

The set of bonds in S is denoted bonds(S).

In the rest of the paper the composition operator “,” is assumed to be associative,

so (S, S ′), S ′′ is equal to S, (S ′, S ′′) (therefore parentheses will be always omitted).

Let σ ≤ σ′ if dom(σ) = dom(σ′) and, for every i, if σ(i) 6= ε then σ(i) = σ′(i)

(the two interfaces may differ on sites mapped to the empty value ε by σ as σ′ may

map such sites to bonds).

Reactions have the shape L � R, where L and R are pre-solutions called reactants

and products, respectively. The general shape of reactions is defined in the next

definition. Following [32], we extend the definition of [34] with exchange reactions,

thus the calculus is an extension of the κ-calculus.1

Definition 6.2 Reactions of the κ+ff calculus – the κ calculus with free flipping

rules – are either creations C, or destructions D, or exchanges E.

The format of creations is

A1[u1](σ1), . . . , An[un](σn) � A1[u
′
1](σ

′
1), . . . , An[u′n](σ′n), B1[v1](φ1), . . . , Bk[vk](φk)

where, for every i, dom(ui) = dom(u′i), σi ≤ σ′i, and vi and φi are total. Reactants

and products are proper.

The format of destructions is

A1[u1](σ1), . . . , An[un](σn) � Ai1 [u
′
i1

](σ′i1), . . . , Aim [u′im](σ′im)

1Another difference with [34] is that we allow newly produced molecules unbound from existing

ones.

Chapter 6. Graphs Rewriting Systems - a Hierarchy 119

where i1, . . . , im is an ordered sequence in [1 . . . n], for every ij, dom(uij)=dom(u′ij),

σij ≥ σ′ij , and if ij /∈ {i1, . . . , im} then σij is total. Reactants and products are

proper.

The format of exchanges is

A[u](ax + σ),B [v](b+ ρ) � A[u′](a+ σ),B [v′](bx + ρ)

where ran(σ) = ran(ρ).

Creations may change state, produce new bonds between two unbound sites, or

synthesise new molecules. Destructions behave the other way around. Exchanges

are reminiscent of the π calculus because they define a migration of a bond from

one reactant to the other. We distinguish two types of exchanges: the one occurring

between connected molecules, called (connected) bond flipping, and the one occurring

between disconnected molecules, called free (bond) flipping. These are illustrated

below:

Figure 6.6: Bond flipping and free flipping

The operational semantics of κ+ff calculus uses the following two definitions:

120 Chapter 6. Graphs Rewriting Systems - a Hierarchy

• the structural equivalence between solutions, denoted ≡, is the least one sat-

isfying (we remind that solutions are already quotiented by associativity of

“,”):

– S, T ≡ T, S;

– S ≡ T if there exists an injective renaming ı on bonds such that S = ı(T).

• A1[u1 +u′1](σ1◦ı+σ′1), . . . , An[un+u′n](σn◦ı+σ′n) is an (ı, u′1 · · ·u′n, σ′1, · · · , σ′n)

instance of A1[u1](σ1), . . . , An[un](σn) if ı is an injective renaming on bonds

and the maps uj + u′j and σj ◦ ı+ σ′j are total with respect to the species Aj.

Definition 6.3 The reduction relation of the κ+ff calculus, written →, is the least

one satisfying the rules:

• let L � R be a reaction of κ+ff , S be an (ı, ũ, σ̃)-instance of L, and T be an

(ı, ũ′, σ̃′)-instance of R. Then S → T ;

• let S→T and (bonds(T) \ bonds(S)) ∩ bonds(R) = ∅, then S,R→ T,R;

• let S ≡ S ′, S ′ → T ′, and T ′ ≡ T , then S → T .

The κ+ff calculus groups several sub-calculi that have in turn simpler formats

of rules. We have already depicted in Figure 6.5 the fragments we study. We move

from κ+ff along two different axes:

1. we restrict reactions by letting im = n in destructions (forbidding cancellations

of molecules), the superscript −n; removing destructions, the superscript −d;

removing destructions and considering species with emptyset of sites (removing

fields), the superscript −d − u; removing destructions, fields, and such that

no bond occurs in the left-hand side of creations and exchanges, except the

flipping one, the superscript −d− u− i;

2. we restrict exchanges by allowing bond-flipping only, the superscript +bf , and

by removing exchanges, no superscript +bf or +ff .

Chapter 6. Graphs Rewriting Systems - a Hierarchy 121

Some of the combinations are empty. For example, a calculus without checks of

bonds and with cancellation of bonds is meaningless as, in order to remove one

bond, it is necessary to test its presence first.

6.2.2 Decision problems for qualitative analysis.

A first basic qualitative property is whether a solution eventually produces “some-

thing relevant” or not. Clearly this “something relevant” can be defined in a variety

of ways. In this paper we consider its formalisation in terms of reachability and

coverability, two standard properties which have been extensively investigated in

many concurrent formalisms. Few preliminary notions are required.

Definition 6.4 (Complex) Given a proper solution, a complex is a sub-solution

that is connected (there is a path of bonds connecting every pair of molecules therein)

and proper. Two complexes in a solution are equal if they are structurally equivalent.

Let S(S) be the set of different complexes in S; let also →∗ be the transitive and

reflexive closure of →.

Definition 6.5 RP: the reachability problem of T from a proper solution S checks

the existence of R such that S →∗ R and R ≡ T ;

SCP: the simple coverability problem of T from a proper solution S checks the

existence of R such that S →∗ R and S(R) = S(T) and R ≡ T, T ′, for some

T ′;

CP: the coverability problem of T from a proper solution S checks the existence of

R such that S →∗ R and R ≡ T, T ′, for some T ′.

6.3 (Un)Decidability Results for κ dialects

In this section we study the (un)decidability of RP, SCP, and CP in the κ lattice

of Figure 6.5. The overall results represented in that figure are the consequences

122 Chapter 6. Graphs Rewriting Systems - a Hierarchy

of theorems that we detail in the remainder of this section. For each decidability

region – one for RP, one for SCP, and one for CP – we prove that the corresponding

property is decidable in the top language of the region and undecidable in the bottom

language(s) among those not included in the region.

We separate the presentation of our results in two subsections, the first one is

devoted to decidability, the latter to undecidability.

6.3.1 Decidability results

The proofs of decidability follow by reduction to decidable problems in either finite

state systems or P/T nets (see Section 2.3).

Our first positive result is for the κ+ff −n fragment.

Theorem 6.1 RP is decidable in κ+ff −n .

Proof: We reduce RP to the reachability problem in a finite state system. Let R be

a set of κ+ff −n reactions and let S and T be two proper solutions. We notice that,

in order for S →∗ T , all intermediary solutions traversed by the computation must

have a number of molecules which is less or equal to the number nT of molecules in

T . This is because in κ+ff −n it is not possible to delete molecules.

Let A be the set of species occurring either in S or in a rule of R. Let also

setT (A) be the set of (proper) solutions with a number of molecules less than nT .

This set is finite up-to structural equivalence because the number of sites and fields

of species is finite, the values of fields is finite, and the possible combinations of

bonds is finite, as well. By mapping every solution R to its canonical representative

in the structural equivalence class, called [R], we can build a finite state system

FSST such that, by Definition 6.3, given two solutions in setT (A), R → R′ if and

only if [R] → [R′]. We conclude the proof by observing that S →∗ T if and only if

[S]→∗ [T], and this latter property is decidable in FSST . 2

The next result is about the decidability of SCP in κ+bf −d . This follows from the

property that, in κ+bf −d , the connectedness of two molecules can never be broken.

Chapter 6. Graphs Rewriting Systems - a Hierarchy 123

Lemma 6.1 Let S and T be two proper solutions of the κ+bf −d calculus such that

S → T . If there exists a path of bonds connecting two molecules in S – i.e. the two

molecules are connected – then the two molecules are still connected in T (possibly

with a different path).

Proof: Bonds can only be created and flipped in κ+bf −d . In particular, in this last

case, a flip occurs if the affected molecules – not only the reactants – are already

connected (see the top picture of Figure 6.6). This entails the property of the lemma.

2

Theorem 6.2 SCP is decidable for κ+bf −d .

Proof: We reduce to the target marking reachability problem for P/T nets, which is

decidable [27]. This problem amounts to checking, given a P/T net P and a target

marking mt, whether a marking m is reachable in P such that m(p) = 0 for every

place p such that mt(p) = 0, and m(p′) ≥ mt(p
′) for every other place p′.

Let R be a set of κ+bf −d reactions and S, T and R be proper solutions such that

S(T) = S(R) and R ≡ T,R′, for some solution R′. Let nT be the maximum number

of molecules of a complex in T .

As a consequence of Lemma 6.1, if S →∗ R, then the complexes occurring in every

intermediary solution traversed by the computation have a number of molecules

smaller or equal to nT .

Let A be the set of species occurring either in S or in a rule of R, and let

SETT (A) be the set of complexes composed of at most nT molecules belonging to

the species in A. As in the proof of Theorem 6.1, this set SETT
≡(A) is finite if taken

up-to structural equivalence.

We define the following P/T net. The places are the elements of SETT
≡(A). We

build the transitions in two steps. Given a rule ρ : L � R, we first define REDρ as

the least set containing all reductions S1, · · · , Sn → S ′1, · · · , S ′m such that:

i) Si and S ′j ∈ SETT
≡(A) for every i and j;

124 Chapter 6. Graphs Rewriting Systems - a Hierarchy

ii) the reduction is obtained by applying Definition 6.3 that instantiates ρ with a

proof-tree PT,

iii) for every i, Si is directly involved in the reduction (i.e. at least one molecule

of its is an instance of a term in L in the unique leaf of PT).

Condition (iii) ensures that set REDρ is finite up to structural equivalence. Indeed,

we have that n is less or equal than the number of terms in L, m is less or equal

than the number of terms in R, and SETT
≡(A) is finite. For each rule ρ and each

reduction S1, · · · , Sn → S ′1, · · · , S ′m in REDρ we build a P/T transition with pre-set

[S1], . . . , [Sn] and post-set [S ′1], . . . , [S
′
m]. Let mS and mT be the initial and final

markings corresponding to S and T , respectively. The above P/T net faithfully re-

produces the possible computations of S that traverse solutions retaining complexes

composed of at most nT molecules. This allows us to reduce SCP of S to the target

marking reachability of mT in the above P/T net, which is decidable. 2

Our last decidability result regards κ−d−i.

Theorem 6.3 CP is decidable in κ−d−i.

Proof: We reduce to the coverability problem in P/T net. Let R be a set of κ−d−i

reactions and S, T and R be proper solutions such that R ≡ T,R′ for some solution

R′. Let nT be the maximum number of molecules of a complex in T .

As in the proof of Theorem 6.2, let A be the set of species occurring either in S

or in a rule of R, and let SETT (A) be the set of complexes composed of at most nT

molecules belonging to the species in A. The set SETT
≡(A) is finite.

We define the following P/T net. Places are elements of SETT,+
≡ (A) that extends

SETT
≡(A) with the places Â[u](σ), for every species A ∈ A, every evaluation u,

and with partial functions σ mapping every site to ε (properly speaking, Â is not

a molecule because σ cannot be partial). Note that the number of places is finite

because the additional places Â[u](σ), with respect to the P/T net already discussed

in Theorem 6.2, is finite (A is taken from the finite set A, the possible evaluations

u are finite and similarly for σ).

Chapter 6. Graphs Rewriting Systems - a Hierarchy 125

Transitions are defined in two steps. Given a rule ρ : L � R, we first define

RED+
ρ as the least set containing all reductions S1, · · · , Sn → S ′1, · · · , S ′m such that:

i) Si and S ′j are complexes composed only of molecules belonging to species in

A (possibly with size greater than nT);

ii) the reduction is obtained by applying Definition 6.3 that instantiates ρ with a

proof-tree PT,

iii) for every i, Si is directly involved in the reduction (i.e. at least one molecule

of its is an instance of a term in L in the unique leaf of PT).

Note that, unlike the proof of Theorem 6.2, RED+
ρ can be infinite as we do not impose

any restriction to the sizes of Si. Nevertheless, it is possible to group transitions

in RED+
ρ into finitely many different groups. For every S1, · · · , Sn → S ′1, · · · , S ′m in

RED+
ρ , we let a transition with pre-set given by the following places

• [Si] if Si has no more than nT molecules;

• Â1 [u1](σ1), · · · , Âm ′ [um′](σm′) if Si has more than nT molecules and the mole-

cules of Si that participate to the reduction (the ones that instantiate the

terms in L in the unique leaf of PT) are

A1 [u1](σ1 + ρ1), · · · ,Am ′ [um′](σm′ + ρm)

with ε 6∈ ran(ρi) and {ε} = ran(σi)

and post-set given by the following places

• [S ′j] if S ′j has no more than nT molecules;

• Â1 [u1](σ1), · · · , Âm ′ [um′](σm′) if S ′j has more than nT molecules and the mole-

cules of S ′j that participate to the reduction (the ones that instantiate the

terms in R in the unique leaf of PT) are

A1 [u1](σ1 + ρ1), · · · ,Am ′ [um′](σm′ + ρm)

with ε 6∈ ran(ρi) and {ε} = ran(σi).

126 Chapter 6. Graphs Rewriting Systems - a Hierarchy

The set of transitions is finite because both the pre-sets and the post-sets use places

in SETT,+
≡ (A) and their cardinality is less or equal to the number of terms in L and

R, respectively.

Let mS and mT be the initial and final markings corresponding to S and T ,

respectively. This P/T net does not faithfully represent all the complexes that can

be produced by computations starting from S. In fact, while every complex with

cardinality less than nT is represented by a place, this is not the case for complexes

bigger than nT . When such a complex is created, the net removes the structure of

bonds, and considers only the states and the free sites of its molecules. However, this

information is sufficient for the coverability analysis in the κ−d−i-calculus because,

by Lemma 6.1, the size of a complex cannot decrease, thus complexes larger than

nT cannot directly produce the complexes of interest for the analysis but can only

trigger reactions necessary in order to reach such complexes. As in the κ−d−i-calculus

the bond names cannot be tested in the reactants of a reaction, the loss of this

information for large structures is not problematic.

This construction allows us to reduce the coverability problem for κ−d−i to the

coverability of the marking mT in P/T net, which is decidable. 2

6.3.2 Undecidability results

Our undecidability results follow by reducing to undecidable problems such as the

halting problem for RAMs (see Section 2.1)

Here we consider RAMs in which registers are initially set to zero and where the

instruction 0 is Halt. Our first negative result is for reachability of a solution in κ.

Theorem 6.4 RP is undecidable in κ.

Proof: We reduce the termination problem for RAMs to RP.

Let M be a RAM with n instructions. To encode it in κ we use five species:

1. P is the program counter; it retains one field with values in [0, . . . , n] and no

site;

Chapter 6. Graphs Rewriting Systems - a Hierarchy 127

Figure 6.7: Species for the encoding

2. Z1 and Z2, both with one site, represent the value 0;

3. R1 and R2, both with two sites, represent the unity to be added to or removed

from registries.

Let j, l ∈ [0..n] and let i ∈ {1, 2}. The encoding [[·]]κ is defined in Figure 6.8. It turns

[[j : Succ(Ri)]]κ =

 P [1j], Zi(1) � P [1j+1], Zi(1
x), Ri(1

x + 2)

P [1j], Ri(2) � P [1j+1], Ri(2
x), Ri(1

x + 2)

[[j : DecJump(Ri, l)]]κ =


P [1j], Zi(1) � P [1l], Zi(1)

P [1j], Zi(1
x), Ri(1

x + 2) � P [1j+1], Zi(1)

P [1j], Ri(2
x), Ri(1

x + 2) � P [1j+1], Ri(2)

[[j : Halt]]κ =


P [1j], Z1(1), Z2(1) � P [10], Z1(1), Z2(1)

P [1j], Zi(1
x), Ri(1

x + 2) � P [1j], Zi(1)

P [1j], Ri(2
x), Ri(1

x + 2) � P [1j], Ri(2)

Figure 6.8: Enconding RAMs in κ.

out that the RAM halts if and only if the solution P [10], Z1(1), Z2(1) is reachable

from the initial state. Therefore we conclude that RP is undecidable in κ. 2

Theorem 6.5 SCP is undecidable in κ−n.

Proof: We reduce the termination problem for RAMs to SCP in κ−n. For this, we

modify the encoding of RAMs used for κ in the previous theorem as follows:

128 Chapter 6. Graphs Rewriting Systems - a Hierarchy

• a binary field to the species R1 and R2 is added. When this field is zero, the

molecule is considered garbage, otherwise it is a valid one.

Without loss of generality, we assume that the two registers are incremented at least

once.

The encoding [[·]]κ−n is defined in Figure 6.9.

[[j : Succ(Ri)]]κ−n =

 P [1j], Zi(1) � P [1j+1], Zi(1
x), Ri[1

1](1x + 2)

P [1j], Ri(2) � P [1j+1], Ri(2
x), Ri[1

1](1x + 2)

[[j : DecJump(Ri, l)]]κ−n =



P [1j], Zi(1) � P [1l], Zi(1)

P [1j], Zi(1
x), Ri[1

1](1x + 2) �

P [1j+1], Zi(1), Ri[1
0](1 + 2)

P [1j], Ri(2
x), Ri[1

1](1x + 2) �

P [1j+1], Ri(2), Ri[1
0](1 + 2)

[[j : Halt]]κ−n =



P [1j], Z1(1), Z2(1) � P [10], Z1(1), Z2(1)

P [1j], Zi(1
x), Ri[1

1](1x + 2) �

P [1j], Zi(1), Ri[1
0](1 + 2)

P [1j], Ri(2
x), Ri[1

1](1x + 2) �

P [1j], Ri(2), Ri[1
0](1 + 2)

Figure 6.9: Encoding RAMs in κ−n.

Namely, the increment refines the previous encoding by setting to 1 the field of

the new R; the decrement, rather than removing one molecule at the end of the

register, which is not allowed in κ−n, removes the bond and resets the field to zero;

the halt operation turns every molecule R to garbage. We now observe that any

solution that contains the complexes in the target solution

T = P [10], Z1(1), Z2(1), R1[1
0](1 + 2), R2[1

0](1 + 2)

Chapter 6. Graphs Rewriting Systems - a Hierarchy 129

encodes a halting configuration. Thus, termination of a RAM can be reduced to

SCP for the corresponding κ−n encoding and for the target solution T . 2

We observe that, without using fields and destructions, as in κ−d −u , it is not

possible to reuse the encoding scheme of Theorems 6.4 and 6.5.

In the following theorem we prove that the use of creations in molecules without

fields is sufficient to make the CP problem undecidable.

Theorem 6.6 CP is undecidable in κ−d −u .

Proof: We define an encoding of RAMs by using constructions on species with

emptysets of fields. Instructions are implemented by species Pj with a site 1 that

may be bound to a molecule of species D. When this happens, the instruction is

disabled. A further species Halt with no sites will represent a terminating state.

Registers are implemented by grids of increasing height (see Figure 6.10). The

!"#

!"#

!"#

$"%&#

$"%'#

()*"%'#

$"%&#

()*"%'#

()"%'# $"%&#

"#

&#
+#

"#

"#

&#
+#

"#

"#

"#

'#

'# '#

'#

"#

"#

"#

"#

+#

+#

+#

+#

&#

&# &#

&#

Figure 6.10: Grid representing the register R1.

first column consists of Zi molecules with three sites; the other nodes of the grid,

called register molecules, are either Ri,j molecules or NVi,j or NV ′i,j molecules, i ∈
{1, 2} and j ranging over instruction numbers, all retaining 4 sites. The meaningful

part of the grid is the topmost row: the number of molecules Ri,j therein represents

the value of the corresponding register while the other rows represent previous values

(we add a new row when performing a decrement). For instance, the register in

Figure 6.10 contains the value 1 obtained after two increments –performed by the

instruction with index 3–, two decrements –performed by the instruction with index

130 Chapter 6. Graphs Rewriting Systems - a Hierarchy

4–, and a subsequent increment –performed by the instruction with index 3. The

encoding of [[j : Inc(Ri,j)]]κ−d−u increases the topmost row of the grid with a molecule

Ri,j. The encoding of an increment [[j : Succ(Ri)]]κ−d−u is defined by the three rules

Pj(1), Zi(1) �Pj(1
x), D(1x), Zi(1

y),

Ri,j(1
y+ 2 + 3 + 4), Pj+1(1)

Pj(1), Ri,j′(2 + 3) �Pj(1
x), D(1x), Ri,j′(2

y + 3),

Ri,j′(1
y+ 2 + 3 + 4), Pj+1(1)

Pj(1), NVi,j′(2 + 3) �Pj(1
x), D(1x), NVi,j′(2

y+ 3),

Ri,j′(1
y+ 2 + 3 + 4), Pj+1(1)

The encoding of [[j : DecJump(Ri, l)]]κ−d−u is more complex. The key idea is

to copy the topmost row of the grid (from left to right according to the graphi-

cal representation of the grid in Figure 6.10) reducing, if possible, the number of

molecules Ri,j′ . This is obtained replacing the first encountered Ri,j′ molecule with

the molecule NV ′i,j. If there is no such molecule available, all molecules in the new

topmost row will be of species NVi,j (i.e. the kind of molecule used to copy molecules

of species NVi,j′ or NV ′i,j′). The copy records j in the second index of the register

molecules: in this way, when the copy is finished (i.e. the new instance of Zi is pro-

duced) it is possible to release the molecule representing the next instruction, that

is Pj+1 in case the decrement succeeded, Ps otherwise. The encoding of a decrement

[[j : DecJump(Ri, l)]]κ−d−u

is reported in Figure 6.11.

The encoding [[j : Halt]]κ−d−u simply produces the Halt molecule and is defined

by the rule

Pj(1) � Pj(1
x), D(1x), Halt

The encoding satisfies the following property: the RAM halts if and only the

solution P1(1), Z1(1 + 2 + 3), Z2(1 + 2 + 3) in the corresponding κ−d −u encoding can

produce molecule Halt . Thus, termination of RAMs is reduced to CP with target

solution T = Halt . Therefore the undecidability of CP in κ−d −u . 2

Chapter 6. Graphs Rewriting Systems - a Hierarchy 131

Pj(1), Zi(1) � Pj(1
x), D(1x), Zi(1

y), Pl(1)

Pj(1), Ri,j′(2 + 3) � Pj(1
x), D(1x), Ri,j′(2 + 3y), NV ′i,j(1 + 2 + 3 + 4y)

Pj(1), Xi,j′(2 + 3) � Pj(1
x), D(1x), Xi,j′(2 + 3y), NVi,j(1 + 2 + 3 + 4y)

(X ∈ {NV,NV ′})
Xi,j(1 + 4x), Yi,j′(1

y + 3x),Wi,j′(2 + 4y) � Xi,j(1
z + 4x), Yi,j′(1

y + 3x),

Wi,j′(2
u + 4y), Xi,j(1 + 2z + 3 + 4u)

(X,W ∈ {NV,NV ′}, Y ∈ {NV,NV ′})
NVi,j(1 + 4x), Yi,j′(1

y + 3x), Ri,j′(2 + 4y) � NVi,j(1
z + 4x), Yi,j′(1

y + 3x),

Ri,j′(2
u + 4y), NV ′i,j(1 + 2z + 3 + 4u)

(Y ∈ {NV,NV ′})
NV ′i,j(1 + 4x), Yi,j′(1

y + 3x), Ri,j′(2 + 4y) � NV ′i,j(1
z + 4x), Yi,j′(1

y + 3x),

Ri,j′(2
u + 4y), Ri,j(1 + 2z + 3 + 4u)

(Y ∈ {NV,NV ′})
Ri,j(1 + 4x), Yi,j′(1

y + 3x), Ri,j′(2 + 4y) � Ri,j(1
z + 4x), Yi,j′(1

y + 3x),

Ri,j′(2
u + 4y), Ri,j(1 + 2z + 3 + 4u)

(Y ∈ {R,NV,NV ′})
Ri,j(1 + 4x), Yi,j′(1

y + 3x), Xi,j′(2 + 4y) � Ri,j(1
z + 4x), Yi,j′(1

y + 3x),

Xi,j′(2
u + 4y), NV ′i,j(1 + 2z + 3 + 4u)

(X ∈ {NV,NV ′}, Y ∈ {R,NV,NV ′})
Ri,j(1 + 4x), Yi,j′(1

y + 3x), Zi,j′(2
y + 3) � Ri,j(1

z + 4x), Yi,j′(1
y + 3x),

Zi,j′(2
y + 3u), Zi,j(1

u + 2z + 3), Pj+1(1)

(Y ∈ {R,NV,NV ′})
NV ′i,j(1 + 4x), Yi,j′(1

y + 3x), Zi,j′(2
y + 3) � NV ′i,j(1

z + 4x), Yi,j′(1
y + 3x),

Zi,j′(2
y + 3u), Zi,j(1

u + 2z + 3), Pj+1(1)

(Y ∈ {R,NV,NV ′})
NVi,j(1 + 4x), Yi,j′(1

y + 3x), Zi,j′(2
y + 3) � NVi,j(1

z + 4x), Yi,j′(1
y + 3x),

Zi,j′(2
y + 3u), Zi,j(1

u + 2z + 3), Pl(1)

(Y ∈ {R,NV,NV ′})

Figure 6.11: Encoding of decrement instructions [[j : DecJump(Ri, l)]]κ−d−u in

κ−d −u .

132 Chapter 6. Graphs Rewriting Systems - a Hierarchy

Our last negative result is for the fragment κ+ff −d −u .

Theorem 6.7 SCP is undecidable in κ+ff −d −u .

Proof: We proceed as described in Theorem 6.6 assuming, without loss of generality

as in Theorem 6.5, that the two registers are incremented at least once. The new

construction adds rules that come into play in case the Halt molecule is produced.

In fact, the molecule Halt triggers the “destruction” of the grids representing the

registers: one molecule is produced for each end of each bond, and the bond is

passed to such new molecule. Following this approach we know a priori the exact

structure of the structures that will be available at the end of the computation in

case of RAM termination. 2

6.4 Related work

In this section we discuss some related works by first focusing on formal models

specifically proposed for describing biological systems and then considering more

generally the fields of term/graph rewriting and process calculi.

As we said in the Introduction, the closest work to this contribution is [33] where

a syntactic restriction entailing a form of SCP is proposed. This restriction – κ with

local rule sets – is orthogonal to the ones proposed in this chapter. It does not cover

the reachability analysis of finite structures with recurrent patterns, such as finite

polymers. In these cases, the analysis in [33] yields an over-approximation of the

reachable complexes. How much reasonable is this over-approximation is not clear.

Apart from κ, the literature reports several proposals for describing (and rea-

soning on) biological systems, which use a variety of formal tools, including process

calculi, term/graph rewriting, (temporal) logic, and rule based languages. However,

the expressive power of most of these formalisms is the one of Petri nets. Therefore,

the decidability of reachability and coverability problems is an immediate conse-

quence of the corresponding results on Petri nets.

Formalisms whose expressive power is similar to κ, miss results analogous to those

contained in this chapter. For example, the biochemical abstract machine Biocham

Chapter 6. Graphs Rewriting Systems - a Hierarchy 133

[53, 54] is a rule-based model similar to κ. However reactions are constrained to

specify completely the reagent solution, unlike κ where reactions partially specify

reactants and products. It is worth noticing that the Biocham constraint do not

allow finite descriptions of rules creating polymers of arbitrary length. As a conse-

quence, when considering purely qualitative aspects, i.e. removing kinetic quantities,

the Biocham can be reduced to a classical Petri net [53].

Another rule-based model for describing and analysing biological processes is

Pathway Logic [50, 123]. This model is based on rewrite logic, which allows to de-

scribe biological entities and their relations at different levels of abstractions and

granularity by using elements of an algebraic data type (to describe states) and

rewrite rules (to describe transitions between states and therefore behaviours). Even

though Pathway Logic models of biological processes are developed in Maude sys-

tem, which is Turing complete, yet the analysis of biological systems uses the, so

called, Pathway Logic Assistant for representing models in terms of Petri Nets [123].

Therefore, also in this case, the relevant decidability results derive from the analo-

gous results on Petri nets. This is the case also for the model used in [69].

A different model, based on graph transformation has been proposed by Blinov

et al. [12]. However, in this case, the relevant properties (e.g. membership of a given

species in a reaction network) are semi-decidable and we are not aware of suitable

restrictions on the general model that ensure decidability for some of them.

As regards the fields of term/graph rewriting and process calculi, we have not

find results from which we can derive immediately those we have obtained for κ. In

particular, for term rewriting systems, the reductions to Petri net reachability can

be applied to decide reachability for associative-commutative ground term rewriting

(AC) [90] and for Process Rewrite Systems (PRS) [89]. However, AC and PRS are

more expressive than Petri nets, but strictly less expressive than Turing machines

[89]. On the other hand our positive results are given for fragments of κ that are

Turing-complete. As such, the set of derivatives of a κ solution may not be a regular

set of terms. Thus, decision procedures based on tree automata like those proposed

in fragments of non-ground term rewriting [31, 35, 77, 112] cannot be applied to the

134 Chapter 6. Graphs Rewriting Systems - a Hierarchy

κ-lattice.

Decidability results for reachability in process calculi like Mobile Ambients,

Boxed Ambients, and Bio-ambients are given in [13, 26, 27, 43, 132]. These results

are obtained for fragments (or for weak semantics) that ensure the monotonicity of

the generated ambient structures.

In addition they consider process calculi (Mobile/Boxed/Bio Ambients) which

operate on tree-like structures and without fresh name generation. This contrasts

with the dialect of κ of Figure 6.5, that operate on (possibly cyclic) graph-structures

and admit dynamic creation of new names (bonds).

Concerning Graph Rewriting Systems (GRS) there exist folk theorems about

reachability that state its undecidability in full-fledged GRS and its decidability for

GRS in which rules do not add new nodes. We are not aware of (un)decidability

results for decision problems like reachability and coverability in graph rewriting

systems with features similar to those considered in our κ-lattice. The only spe-

cific results we are aware of are those given for reachability in context-free graph

grammars [46] and for coverability in GRS that are well-structured with respect to

the graph minor relation [81]. However, we consider here more general rules than

those of context-free graph grammars. Furthermore, we do not see how to apply the

decision procedure proposed in [81] to languages in the κ-lattice that, in general, do

not enjoy strict compatibility with respect to the graph minor ordering.

6.5 Conclusions

We have investigated three decidability problems for several κ dialects. These prob-

lems allow one to check whether, starting from a given initial solution, a sequence

of reactions described in the κ formalism produces a solution having some specific

features. Hence our results, summarized in Figure 6.5, can be seen as a first step in

the direction of qualitative analysis of κ calculus.

Besides presenting techniques for qualitative analysis, we also characterise the

computational power of κ-like biologically inspired models. In this respect, the main

Chapter 6. Graphs Rewriting Systems - a Hierarchy 135

result is that we can remove bond and molecule destruction and the internal state

of molecules from κ without losing Turing completeness (see the modelling of 2

Counter Machines presented in “ the proof of Theorem 6.6). On the contrary, if we

remove the possibility to test the presence of one bond in a reaction, the calculus is

no longer Turing universal (see Theorem 6.3).

Our work can be extended along at least two lines. First, several other fragments

of κ can be considered for a similar investigation. Notably nanoκ that admits at

most two reactants. In particular, our encoding of a 2CM into κ−d−i uses ternary (at

the left hand side) rules and we conjecture that a 2CM cannot be encoded faithfully

into κ−d−i with binary rules only.

Second, there are several other interesting properties to investigate, for example

a form of coverability where one admits complexes strictly larger than the original

ones. In this perspective, we plan to exploit the theory of well structured transition

systems as done in [81] to prove decidability of coverability w.r.t. the graph minor

relation in classes of graph rewriting systems.

136 Chapter 6. Graphs Rewriting Systems - a Hierarchy

Chapter 7

Concluding Remarks

Parlare oscuramente lo sa fare ognuno,
ma chiaro pochissimi.

Galileo Galilei
(Considerazioni al Tasso)

In this thesis we have studied four different approaches for studying expressive-

ness issues. We have chosen four languages with different aims and behaviours, and

have shown how to apply the techniques in different environments.

We began with the analysis of a synchronous language CCS−ω! and we have ex-

plored its expressiveness w.r.t. the existence of faithful encodings of grammars of

types 1,2 and 3 in the Chomsky Hierarchy. The leitmotiv that guided us in the anal-

ysis was to study the expressiveness gap given by one source of non-determinism.

Non-determinism is, indeed, one of the characteristic features of concurrent lan-

guages and the language we analysed is not the only one presenting such a behaviour.

It would be certainly interesting to discuss different sources of non determinism in

concurrency from the expressiveness point of view. Unfortunately this is not trivial

as non-determinism is intrinsic to the language i.e. it is not introduced by a specific

syntactic operator and therefore it cannot be isolated without introducing unnatural

definitions.

138 Chapter 7. Concluding Remarks

We have then moved to an asynchronous language by analysing the full abstrac-

tion problem for two Linda-like languages: Linda-core and Linda-inp. We have first

defined a trace-based denotational semantics and then we have obtained fully ab-

stract semantics for both languages by using suitable saturations. Full abstraction

was one of the techniques inherited from the λ-calculus and its use in concurrency

is, nowadays, source of discussion (see for example the discussion in [10]). In fact,

apart from the way we have applied it, it is sometimes used for proving correctness

of encodings (or more generally, as a way of transporting behavioural equivalences

from one language to another). In this context the main criticism is that full ab-

straction is too strong a tool for comparison and might rule out possible terms of

the language that are instead recognised correct by tools as bisimulation or testing

semantics.

Next we have returned to typical techniques for concurrent calculi: language

encoding and decidability of properties. For the first one, we have chosen a language

that is not generally considered as a concurrent calculus even if it presents some

parallel characteristics. In fact, multiple heads of CHR can be viewed as a way of

handling a group of atoms simultaneously. Indeed we show that this feature of the

language increases the expressiveness: When considering generic constraint theories

and under some rather reasonable assumptions it is not possible to encode CHR

(with multi-headed rules) into CHR1 while preserving the semantics of programs.

Moreover we have also shown that restricting the number of atoms in the head of

the rules generates a hierarchy of languages with increasing expressiveness.

Finally, we have analysed a language similar but simpler than CHR: the κ-

calculus. By restricting the shape of the rewriting rules of the calculus, we have

obtained several dialects. We have analysed their expressive power by focusing on

the decidability and undecidability for problems like reachability and coverability.

Apart from the hierarchy of languages we have obtained, such a technique can be

interesting also because it can set the type of “questions” that are feasible for a

language: for instance, does it make sense to check if a particular state of the

system is reachable? Or reversing the problem one can ask whether there exists a

Chapter 7. Concluding Remarks 139

convenient restriction of a calculus such that a particular property is decidable.

In the next section we discuss some possible future works that can be tackled

following the same lines of this dissertation.

7.1 Future developments

Possible future developments have already been discussed at the end of every chap-

ter. Here we want to add some more general directions related to the idea of explor-

ing expressiveness techniques for concurrent formalisms.

For instance, we have not mentioned one of the areas of concurrency with a

strong impact on real systems: Model Checking. Model checking [30] is an auto-

matic technique used for verifying concurrent systems, which has been efficiently

implemented and it is currently used by industry in the design of (mostly) embed-

ded systems. The idea is to analyse if a suitable model of the system satisfies given

properties defined in a proper modal logic [86]: i.e. can the system reach a possibly

dangerous state?

Such a technique can clearly be used as a reasoning technique. Its key elements

are: (1) the representations of the systems (the model) and (2) a suitable logic for

expressing interesting properties. Recently Delzanno and Gabbrielli [42] have con-

sidered a denotational semantics based on traces for a language similar to Linda

and provide a compact representation of them by means of constraints. As such,

their semantics resembles the one proposed in Chapter 4. This representation could

represent a suitable model; therefore since the system is formalised using constraint

logic programming one can think of defining a proper logic and thus testing prop-

erties on the system using a constraint solver. It would be interesting, then, to see

if this proposal has a place in the model checking setting.

Another topic that has not been touched in this dissertation is the computational

complexity of decidable properties, that is, the cost of deciding whether or not a

certain property is satisfied by the system under analysis. This has been studied

for example for bisimulation: Mayr in [88] shows that strong bisimulation of Basic

140 Chapter 7. Concluding Remarks

Parallel Processes is co-NP-hard or more generally Balcázar et al. [8] prove that

bisimilarity over finite labelled transition systems is P-complete. Therefore it could

be interesting to see if such analysis applies to properties like the ones studied

in Chapter 6. Indeed, as mentioned above, knowing that a property is decidable

can have some significance for other purposes. Thus being able to determine the

computational complexity can help studying the feasibility of a given problem: i.e.

if checking the reachability of a state is exponential in time means that in practice

the problem is not tractable.

Related to complexity, one could also try something a bit more ambitious. In

the last decade there has been a growing interest in finding proper restrictions to

the λ-calculus in order to prove that all the definable functions belong to a given

complexity class, for example polynomial time (see [72] for a survey on the subject).

The idea would be to obtain something similar for concurrent languages. To this

aim one should decide first which metric to use (since there is no agreement on

how to calculate complexity of concurrent systems) and then try to find proper

restrictions in order to obtain interesting classes of languages. Notice that one has

also to define which the interesting problems are: for instance, instead of focusing on

the number of steps one can think in terms of the number of communications needed

to accomplish a certain action, therefore bounding the capacity of the transmissions

means.

References

[1] Mart́ın Abadi and Andrew D. Gordon. Reasoning about cryptographic pro-

tocols in the spi calculus. In CONCUR, volume 1243 of Lecture Notes in

Computer Science, pages 59–73. Springer, 1997.

[2] Slim Abdennadher. Operational semantics and confluence of constraint prop-

agation rules. In Principles and Practice of Constraint Programming, pages

252–266, 1997.

[3] Parosh Aziz Abdulla, Giorgio Delzanno, and Laurent Van Begin. Comparing

the expressive power of well-structured transition systems. In Jacques Duparc

and Thomas A. Henzinger, editors, CSL, volume 4646 of Lecture Notes in

Computer Science, pages 99–114. Springer, 2007.

[4] Roberto M. Amadio, Ilaria Castellani, and Davide Sangiorgi. On bisimulations

of the asynchronous π-calculus. Theoretical Computer Science, 195(2):291–

324, 1998.

[5] Krzysztof R. Apt. From logic programming to Prolog. Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA, 1996.

[6] Jesús Aranda, Cinzia Di Giusto, Mogens Nielsen, and Frank D. Valencia. CCS

with replication in the chomsky hierarchy: The expressive power of divergence.

In APLAS, volume 4807 of Lecture Notes in Computer Science. Springer, 2007.

[7] Jos C. M. Baeten and Flavio Corradini. Regular expressions in process alge-

bra. In LICS ’05, pages 12–19, Washington, DC, USA, 2005. IEEE Computer

Society.

142 References

[8] José Balzacar, Joaquim Gabarro, and Miklos Santha. Deciding bisimilarity is

P-complete. Formal aspects of computing, 4(6 A):638–648, 1992.

[9] Jean-Pierre Banâtre and Daniel Le Métayer. Programming by multiset trans-

formation. Communications of the ACM, 36(1):98–111, 1993.

[10] Romain Beauxis, Catuscia Palamidessi, and Frank D. Valencia. On the asyn-

chronous nature of the asynchronous pi-calculus. In Concurrency, Graphs and

Models, volume 5065 of LNCS, pages 473–492. Springer, 2008.

[11] Jan A. Bergstra and Jan Willem Klop. Process algebra for synchronous com-

munication. Information and Control, 60(1-3):109–137, 1984.

[12] Michael L. Blinov, Jin Yang, James R. Faeder, and William S. Hlavacek. Graph

theory for rule-based modeling of biochemical networks. In Transactions on

Computational Systems Biology VII, volume 4230 of LNCS, pages 89–106,

2006.

[13] Iovka Boneva and Jean-Marc Talbot. When ambients cannot be opened.

Theor. Comput. Sci., 333(1-2):127–169, 2005.

[14] Michele Boreale, Rocco De Nicola, and Rosario Pugliese. Trace and test-

ing equivalence on asynchronous processes. Information and Computation,

172(2):139–164, 2002.

[15] Gérard Boudol. Asyncrony and the π-calculus. (note). Technical report, Rap-

port de Recherche 1702, INRIA, Sophia-Antipolis., 1992.

[16] Antonio Brogi and Jean-Marie Jaquet. Modeling coordination via asyn-

chronous communication. In Proceedings of the Second Int.l Conference

on Coordination Languages and Models, pages 238–255, London, UK, 1997.

Springer-Verlag.

[17] Stephen D. Brookes. Full abstraction for a shared-variable parallel language.

Information and Computation, 127(2):145–163, 1996.

References 143

[18] Olaf Burkart, Didier Caucal, Faron Moller, and Bernhard Steffen. Verification

on infinite structures, chapter 9, pages 545–623. Elsevier, North-Holland, 2001.

[19] Nadia Busi, Maurizio Gabbrielli, and Gianluigi Zavattaro. Replication vs.

recursive definitions in channel based calculi. In Thirtieth International Col-

loquium on Automata, Languages and Programming (ICALP’03), volume 2719

of Lecture Notes in Computer Science, pages 133–144. Springer-Verlag, 2003.

[20] Nadia Busi, Maurizio Gabbrielli, and Gianluigi Zavattaro. Comparing recur-

sion, replication, and iteration in process calculi. In Thirtyfirst International

Colloquium on Automata, Languages and Programming (ICALP’04), volume

3142 of Lecture Notes in Computer Science, pages 307–319. Springer-Verlag,

2004.

[21] Nadia Busi, Maurizio Gabbrielli, and Gianluigi Zavattaro. On the expressive

power of recursion, replication, and iteration in process calculi. To appear in

Mathematical Structures in Computer Science, 2008.

[22] Nadia Busi, Roberto Gorrieri, and Gianluigi Zavattaro. Three semantics of

the output operation for generative communication. In Proceedings of the

Second Int.l Conference on Coordination Languages and Models, pages 205–

219, London, UK, 1997. Springer-Verlag.

[23] Nadia Busi, Roberto Gorrieri, and Gianluigi Zavattaro. A process alge-

braic view of linda coordination primitives. Theoretical Computer Science,

192(2):167–199, 1998.

[24] Nadia Busi, Roberto Gorrieri, and Gianluigi Zavattaro. On the Turing equiva-

lence of Linda coordination primitives. Theoretical Computer Science, 230(1-

2):260–261, 2000.

[25] Nadia Busi and Gianluigi Zavattaro. On the expressive power of move-

ment and restriction in pure mobile ambients. Theoretical Computer Science,

322(3):477–515, 2004.

144 References

[26] Nadia Busi and Gianluigi Zavattaro. Deciding reachability in mobile ambients.

In ESOP, volume 3444 of Lecture Notes in Computer Science, pages 248–262,

2005.

[27] Nadia Busi and Gianluigi Zavattaro. Reachability analysis in boxed ambients.

In ICTCS, volume 3701 of Lecture Notes in Computer Science, pages 143–159,

2005.

[28] Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theoretical Computer

Science, 240(1):177–213, 2000.

[29] Luca Cardelli and Gianluigi Zavattaro. On the Computational Power of Bio-

chemistry. In Third International Conference on Algebraic Biology (AB’08),

volume 5147 of Lecture Notes in Computer Science, pages 65–80. Springer-

Verlag, 2008.

[30] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model checking.

MIT Press, Cambridge, MA, USA, 1999.

[31] Jean-Luc Coquidé, Max Dauchet, Rémi Gilleron, and Sándor Vágvölgyi.

Bottom-up tree pushdown automata and rewrite systems. In RTA, volume

488 of LNCS, pages 287–298, 1991.

[32] Alberto Credi, Marco Garavelli, Cosimo Laneve, Sylvain Pradalier, Serena

Silvi, and Gianluigi Zavattaro. Modelizations and simulations of nano devices

in nanok calculus. In CMSB 2007, volume 4695 of Lecture Notes in Computer

Science, pages 168–183, 2007.

[33] Vincent Danos, Jérôme Feret, Walter Fontana, and Jean Krivine. Abstract

interpretation of cellular signalling networks. In VMCAI, volume 4905 of

LNCS, pages 83–97, 2008.

[34] Vincent Danos and Cosimo Laneve. Formal molecular biology. Theoretical

Computer Science, 325(1):69–110, 2004.

References 145

[35] Max Dauchet and Sophie Tison. The theory of ground rewrite systems is

decidable. In LICS, pages 242–248, 1990.

[36] Frank S. de Boer, Maurizio Gabbrielli, and Maria Chiara Meo. A timed linda

language and its denotational semantics. Fundamenta Informaticae, 63(4),

2004.

[37] Frank S. de Boer and Catuscia Palamidessi. A fully abstract model for con-

current constraint programming. In Proceedings TAPSOFT/CAAP ’91: vol

1, pages 296–319, New York, NY, USA, 1991. Springer-Verlag New York, Inc.

[38] Frank S. de Boer and Catuscia Palamidessi. Embedding as a tool for language

comparison. Information and Computation, 108(1):128–157, 1994.

[39] Rocco De Nicola, Gian Luigi Ferrari, and Rosario Pugliese. Klaim: A kernel

language for agents interaction and mobility. IEEE Transactions on Software

Engineering, 24(5):315–330, 1998.

[40] Rocco De Nicola and Matthew C. B. Hennessy. Testing equivalence for proc-

esses. In Josep Dı́az, editor, Automata, Languages and Programming, 10th

Colloquium, volume 154 of Lecture Notes in Computer Science, pages 548–

560, Barcelona, Spain, 18–22 July 1983. Springer-Verlag.

[41] Giorgio Delzanno, Cinzia Di Giusto, Maurizio Gabbrielli, Cosimo Laneve, and

Gianluigi Zavattaro. A qualitative analysis of formal molecular biology. Tech-

nical report, 2008.

[42] Giorgio Delzanno and Maurizio Gabbrielli. Compositional verification of asyn-

chronous processes via constraint solving. In ICALP, volume 3580 of Lecture

Notes in Computer Science, pages 1239–1250. Springer, 2005.

[43] Giorgio Delzanno and Roberto Montagna. On reachability and spatial reach-

ability in fragments of bioambients. Electronic Notes in Theoretical Computer

Science, 171(2):69–79, 2007.

146 References

[44] Cinzia Di Giusto and Maurizio Gabbrielli. Full abstraction for Linda. In

ESOP ’08, volume 4960 of Lecture Notes in Computer Science, pages 78–92.

Springer, 2008.

[45] David L. Dill, Merrill Knapp, Pamela Gage, Carolyn L. Talcott, Keith Lader-

oute, and Patrick Lincoln. The pathalyzer: A tool for analysis of signal trans-

duction pathways. In SBRG, volume 4023 of LNCS, pages 11–22. Springer,

2005.

[46] Frank Drewes, Hans-Jörg Kreowski, and Annegret Habel. Hyperedge replace-

ment, graph grammars. In Handbook of Graph Grammars, pages 95–162.

World Scientific, 1997.

[47] Gregory J. Duck, Peter J. Stuckey, Maria J. Garćıa de la Banda, and Christian

Holzbaur. The refined operational semantics of constraint handling rules. In

ICLP, Lecture Notes in Computer Science, pages 90–104, 2004.

[48] Catherine Dufourd, Alain Finkel, and Philippe Schnoebelen. Reset nets be-

tween decidability and undecidability. In Kim G. Larsen, Sven Skyum, and

Glynn Winskel, editors, Proceedings of the 25th International Colloquium on

Automata, Languages and Programming (ICALP’98), volume 1443 of Lecture

Notes in Computer Science, pages 103–115, Aalborg, Denmark, July 1998.

Springer.

[49] James Dugundji and Andrzej Granas. Fixed Point Theory. Springer-Verlag

New York, Inc., 2003.

[50] Steven Eker, Merrill Knapp, Keith Laderoute, Patrick Lincoln, José Meseguer,

and M. Kemal Sönmez. Pathway logic: Symbolic analysis of biological signal-

ing. In Pacific Symposium on Biocomputing, pages 400–412, 2002.

[51] Javier Esparza and Mogens Nielsen. Decidability Issues for Petri Nets-a Sur-

vey. Bulletin of the European Association for Theoretical Computer Science,

52:245–262, 1994.

References 147

[52] François Fages. Symbolic model-checking for biochemical systems. In ICLP,

volume 2916 of LNCS, page 102. Springer, 2003.

[53] François Fages and Sylvain Soliman. Formal cell biology in biocham. In SFM,

volume 5016 of LNCS, pages 54–80, 2008.

[54] Francois Fages, Sylvain Sollman, and Nathalie Chabrier-Rivier. Modelling and

querying interaction networks in the biochemical abstract machine biocham.

Journal of Biological Physics and Chemistry, 4:64–73, 2004.

[55] Alain Finkel and Philippe Schnoebelen. Well-structured transition systems

everywhere! Theoretical Computer Science, 256(1-2):63–92, 2001.

[56] Thomas Forster. Logic, Induction and Sets. Cambridge University Press, 2003.

[57] Cédric Fournet and Georges Gonthier. The reflexive cham and the join-

calculus. In POPL ’96: Proceedings of the 23rd ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, pages 372–385, New York,

NY, USA, 1996. ACM.

[58] Eric Freeman, Ken Arnold, and Susanne Hupfer. JavaSpaces Principles, Pat-

terns, and Practice. Addison-Wesley Longman Ltd., Essex, UK, UK, 1999.

[59] Thom W. Frühwirth. Introducing simplification rules. Technical report, 1991.

[60] Thom W. Frühwirth. Theory and practice of constraint handling rules. Journal

of Logic Programming, 37(1-3):95–138, 1998.

[61] Thom W. Frühwirth. As time goes by II: More automatic complexity anal-

ysis of concurrent rule programs. Electronic Notes in Theoretical Computer

Science, 59(3), 2001.

[62] Thom W. Frühwirth. As time goes by: Automatic complexity analysis of sim-

plification rules. In 8th International Conference on Principles of Knowledge

Representation and Reasoning, Toulouse, France, 2002.

148 References

[63] David Gelernter. Generative communication in linda. ACM Transactions on

Programming Languages and Systems, 7(1):80–112, 1985.

[64] David Gelernter and Nicholas Carriero. Coordination languages and their

significance. Communications of the ACM, 35(2):96, 1992.

[65] Pablo Giambiagi, Gerardo Schneider, and Frank D. Valencia. On the expres-

siveness of infinite behavior and name scoping in process calculi. In FoSSaCS

2004, pages 226–240, 2004.

[66] Cinzia Di Giusto, Maurizio Gabbrielli, and Maria Chiara Meo. Expressiveness

of multiple heads in chr. In SOFSEM 2009, volume 5404 of Lecture Notes in

Computer Science, pages 205–216. Springer, 2009.

[67] Daniele Gorla. Comparing communication primitives via their relative expres-

sive power. Information and Computation, 206(8):931–952, 2008.

[68] Daniele Gorla. Towards a unified approach to encodability and separation

results for process calculi. In CONCUR, volume 5201 of Lecture Notes in

Computer Science, pages 492–507. Springer, 2008.

[69] Monika Heiner, David Gilbert, and Robin Donaldson. Petri nets for systems

and synthetic biology. In SFM, volume 5016 of LNCS, pages 215–264, 2008.

[70] Matthew C. B. Hennessy and Gordon Plotkin. Full abstraction for a simple

parallel programming language. In J. Bečvář, editor, Mathematical Founda-

tions of Computer Science 1979, volume 74 of Lecture Notes in Computer Sci-

ence, pages 108–120, Olomouc, Czechoslovakia, 3–7 September 1979. Springer-

Verlag.

[71] Charles Antony Richard Hoare. Communicating Sequential Processes. Prentice

Hall International Series in Computer Science, 1985.

[72] Martin Hofmann. Programming languages capturing complexity classes.

SIGACT News, 31(1):31–42, 2000.

References 149

[73] Kohei Honda and Mario Tokoro. An object calculus for asynchronous com-

munication. In ECOOP, volume 512 of Lecture Notes in Computer Science,

pages 133–147, 1991.

[74] Eiichi Horita, Jan W. de Bakker, and Jan J. M. M. Rutten. Fully abstract

denotational models for nonuniform concurrent languages. Information and

Computation, 115(1):125–178, 1994.

[75] Hans Huttel and Jiri Srba. Recursion vs. replication in simple cryptographic

protocols. In SOFSEM’05, volume 3381 of Lecture Notes in Computer Science,

pages 175–184. Springer-Verlag, 2005.

[76] IBM. Tspaces. http://www.almaden.ibm.com/cs/TSpaces/index.html.

[77] Florent Jacquemard. Decidable approximations of term rewriting systems. In

RTA, volume 1103 of LNCS, pages 362–376, 1996.

[78] Alan Jeffrey and Julian Rathke. Java jr. : Fully abstract trace semantics for a

core java language. volume 3444 of Lecture Notes in Computer Science, pages

423–438. Springer-Verlag, 2005.

[79] Alan Jeffrey and Julian Rathke. Full abstraction for polymorphic pi-calculus.

Theoretical Computer Science, 2007. To appear.

[80] Bengt Jonsson. A model and proof system for asynchronous networks. In

Proceedings of the fourth annual ACM symposium on Principles of distributed

computing, pages 49–58, New York, NY, USA, 1985. ACM Press.

[81] Salil Joshi and Barbara König. Applying the graph minor theorem to the

verification of graph transformation systems. In CAV, volume 5123 of LNCS,

pages 214–226, 2008.

[82] Paris C. Kanellakis and Scott A. Smolka. CCS expressions finite state proc-

esses, and three problems of equivalence. Information and Computation,

86(1):43–68, 1990.

http://www.almaden.ibm.com/cs/TSpaces/index.html

150 References

[83] Antońın Kučera and Petr Jančar. Equivalence-checking on infinite-state sys-

tems: Techniques and results. Theory and Practice of Logic Programming,

6(3):227–264, 2006.

[84] Ivan Lanese, Jorge A. Pérez, Davide Sangiorgi, and Alan Schmitt. On the

expressiveness and decidability of higher-order process calculi. In LICS ’08:

Proceedings of the 2008 23rd Annual IEEE Symposium on Logic in Computer

Science, pages 145–155, Washington, DC, USA, 2008. IEEE Computer Society.

[85] Cosimo Laneve and Antonio Vitale. Expressivity in the k family. In MFPS

XXIV, 2008.

[86] Zohar Manna and Amir Pnueli. The temporal logic of reactive and concurrent

systems. Springer-Verlag New York, Inc., New York, NY, USA, 1992.

[87] C. Mao, W. Sun, and N.C. Seeman. Assembly of Borromean rings from DNA.

Nature, 386(6621):137 –138, 1997.

[88] Richard Mayr. On the Complexity of Bisimulation Problems for Basic Parallel

Processes. Lecture Notes in Computer Science, pages 329–341, 2000.

[89] Richard Mayr. Process rewrite systems. Inf. Comput., 156(1-2):264–286, 2000.

[90] Richard Mayr and Michael Rusinowitch. Reachability is decidable for ground

ac rewrite systems. In Infinity ’98, pages 53–64, 1998.

[91] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture

Notes in Computer Science. Springer, 1980.

[92] Robin Milner. A complete inference system for a class of regular behaviours.

Journal of Computer and System Sciences, 28(3):439–466, 1984.

[93] Robin Milner. Communication and concurrency. Prentice Hall International

(UK) Ltd., Hertfordshire, UK, 1989.

References 151

[94] Robin Milner. Communicating and mobile systems: the π-calculus. Cambridge

University Press, New York, NY, USA, 1999.

[95] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile proc-

esses, part I and II. Information and Computation, 100(1):1–40 and 41–77,

1992.

[96] Marvin Minsky. Computation: finite and infinite machines. Prentice Hall,

1967.

[97] James H. Morris. Lambda-Calculus Models of Programming Languages. PhD

thesis, MIT, 1968.

[98] Uwe Nestmann. Welcome to the jungle: A subjective guide to mobile process

calculi. In Christel Baier and Holger Hermanns, editors, CONCUR, volume

4137 of Lecture Notes in Computer Science, pages 52–63. Springer, 2006.

[99] Mogens Nielsen, Catuscia Palamidessi, and Frank D. Valencia. On the expres-

sive power of concurrent constraint programming languages. In PPDP 2002,

pages 156–167. ACM Press, October 2002.

[100] Catuscia Palamidessi. Comparing the expressive power of the synchronous

and asynchronous pi-calculi. Mathematical Structures in Computer Science,

13(5):685–719, 2003.

[101] Catuscia Palamidessi and Frank D. Valencia. Recursion vs replication in proc-

ess calculi: Expressiveness. Bulletin of the EATCS, 87:105–125, 2005.

[102] I.G. Panyutin and P. Hsieh. The kinetics of spontaneous DNA branch migra-

tion. Proc. National Academy of Science USA, 91(6):2021–2025, 1994.

[103] David Park. Concurrency and automata on infinite sequences. In Proceedings

of the 5th GI-Conference on Theoretical Computer Science, pages 167–183,

London, UK, 1981. Springer-Verlag.

152 References

[104] Joachim Parrow. Trios in concert. In Gordon Plotkin, Colin Stirling, and

Mads Tofte, editors, Proof, Language and Interaction: Essays in Honour of

Robin Milner, pages 621–637. MIT Press, 2000.

[105] Joachim Parrow. Expressiveness of process algebras. Electronic Notes in The-

oretical Computer Science, 209:173–186, 2008.

[106] Mor Peleg, Iwei Yeh, and Russ B. Altman. Modelling biological processes

using workflow and petri net models. Bioinformatics, 18(6):825–837, 2002.

[107] Andrew Phillips and Luca Cardelli. Efficient, correct simulation of biological

processes in the stochastic pi-calculus. In Computational Methods in Systems

Biology, volume 4695 of Lecture Notes in Computer Science, pages 184–199.

Springer, September 2007.

[108] Benjamin C. Pierce and Davide Sangiorgi. Behavioral equivalence in the poly-

morphic pi-calculus. In Proceedings of the 24th ACM SIGPLAN-SIGACT,

pages 242–255, New York, NY, USA, 1997. ACM Press.

[109] Gordon Plotkin. Lcf considered as a programming language. Theoretical Com-

puter Science, (5):223–255, 1977.

[110] Damien Pous. Using bisimulation proof techniques for the analysis of dis-

tributed abstract machines. Theoretical Computer Science, 402(2-3):199–220,

2008.

[111] Wolfgang Reisig. Petri nets: an introduction. Springer-Verlag New York, Inc.,

New York, NY, USA, 1985.

[112] Kai Salomaa. Deterministic tree pushdown automata and monadic tree rewrit-

ing systems. J. Comput. Syst. Sci., 37(3):367–394, 1988.

[113] Davide Sangiorgi. Expressing Mobility in Process Algebras: First-Order and

Higher-Order Paradigms. PhD thesis CST–99–93, Department of Computer

Science, University of Edinburgh, 1992.

References 153

[114] Davide Sangiorgi. Bisimulation for higher-order process calculi. Information

and Computation, 131(2):141–178, 1996.

[115] Davide Sangiorgi. π-calculus, internal mobility, and agent-passing calculi.

Theoretical Computer Science, 167(1-2):235–274, 1996.

[116] Davide Sangiorgi. A theory of bisimulation for the π-calculus. Acta Informat-

ica, 33(1):69–97, 1996.

[117] Davide Sangiorgi. On the bisimulation proof method. Mathematical Structures

in Computer Science, 8(5):447–479, 1998.

[118] Davide Sangiorgi. On the origins of bisimulation and coinduction. To appear

in TOPLAS, 2008.

[119] Davide Sangiorgi and David Walker. PI-Calculus: A Theory of Mobile Proc-

esses. Cambridge University Press, New York, NY, USA, 2001.

[120] Ehud Y. Shapiro. The family of concurrent logic programming languages.

ACM Comput. Surv., 21(3):413–510, 1989.

[121] Jon Sneyers, Tom Schrijvers, and Bart Demoen. The computational power and

complexity of Constraint Handling Rules. In T. Schrijvers and T. Frühwirth,

editors, Proceedings of the 2nd Workshop on Constraint Handling Rules

(CHR’05), number CW 421 in Dept. Computer Science, Technical report,

pages 3–17, Sitges, Spain, October 2005.

[122] Joseph Stoy. Denotational semantics: The Scott-Strachey approach to pro-

gramming language theory. MIT Press, 1977.

[123] Carolyn L. Talcott. Pathway logic. In SFM, volume 5016 of LNCS, pages

21–53, 2008.

[124] Frits W. Vaandrager. Expressive results for process algebras. In Proceedings of

the REX Workshop on Sematics: Foundations and Applications, pages 609–

638, London, UK, 1993. Springer-Verlag.

154 References

[125] Maria Grazia Vigliotti, Iain Phillips, and Catuscia Palamidessi. Tutorial on

separation results in process calculi via leader election problems. Theoretical

Computer Science, 388(1-3):267–289, 2007.

[126] J.D. Watson and F.H.C. Crick. A Structure for Deoxyribose Nucleic Acid.

Nature, 171:737–738, 1953.

[127] George Wells, Peter Clayton, and Alan G. Chalmers. A Comparison of Linda

Implementations in Java. In Peter H. Welch and Andrè W. P. Bakkers, editors,

Communicating Process Architectures 2000, pages 63–76, sep 2000.

[128] G.M. Whitesides, J.P. Mathias, and C.T. Seto. Molecular self-assembly and

nanochemistry – a chemical strategy for the synthesis of nanostructures. Sci-

ence, 254:1312–1319, 1991.

[129] P. Yin, M. Harry, M.T. Choi, R. Colby, R. Calvert, and N.A. Pierce. Pro-

gramming biomolecular self-assembly pathways. Nature, 451:318–322, 2008.

[130] Gianluigi Zavattaro. On the incomparability of gamma and linda. Technical

report, Amsterdam, The Netherlands, 1998.

[131] Gianluigi Zavattaro. Towards a hierarchy of negative test operators for genera-

tive communication. Electronic Notes in Theoretical Computer Science, 16(2),

1998.

[132] Gianluigi Zavattaro. Reachability analysis in bioambients. Electron. Notes

Theor. Comput. Sci., 227:179–193, 2009.

[133] Gianluigi Zavattaro and Luca Cardelli. Termination problems in chemical

kinetics. In CONCUR, volume 5201 of Lecture Notes in Computer Science,

pages 477–491, 2008.

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Concurrency
	Expressiveness
	Language encoding
	Decidability vs Undecidability

	Reasoning Techniques
	Summary of the thesis
	Contributions

	Background
	RAM
	Fixpoint theory
	Petri net

	Below Turing Expressiveness - The Role of Non-Determinism
	Introduction
	The Calculi
	Parametric Definitions: CCS and CCSp
	Replication: CCS!

	The Role of Strong Non-Termination
	CCS! without choice
	Undecidability results for CCS! -
	CCS! and Chomsky Hierarchy
	Encoding Regular Languages
	Impossibility Result: Context Free Languages
	Trios-Processes.
	Inside Context Sensitive Languages (CSL)

	Conclusions and Related Works

	Full Abstraction Techniques for Asynchrounous Languages
	Introduction
	Preliminaries
	Linda-core
	Linda-inp

	Denotational semantics
	Denotational semantics for Linda-core
	Denotational semantics for Linda-inp

	Full Abstraction for Linda-core
	Full Abstraction for Linda-inp
	Conclusions and Related work

	Multiplicity Matters
	Introduction
	Preliminaries
	CHR constraints and notation
	Syntax
	Operational semantics

	On the Turing completeness of CHR
	Separating CHR and CHR1
	Separating CHR and CHR1 by considering data sufficient answers
	Separating CHR and CHR1 by considering qualified answers
	Separation result for weak acceptable encodings
	A note on logic programs and Prolog

	A hierarchy of languages
	Conclusions and Related works

	Graphs Rewriting Systems - a Hierarchy
	Introduction
	Preliminaries
	-calculi
	Decision problems for qualitative analysis.

	(Un)Decidability Results for dialects
	Decidability results
	Undecidability results

	Related work
	Conclusions

	Concluding Remarks
	Future developments

	References

