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Abstract

Machine learning comprises a series of techniques for automatic extraction of mean-
ingful information from large collections of noisy data. In many real world applica-
tions, data is naturally represented in structured form. Since traditional methods
in machine learning deal with vectorial information, they require an a priori form of
preprocessing. Among all the learning techniques for dealing with structured data,
kernel methods are recognized to have a strong theoretical background and to be
effective approaches. They do not require an explicit vectorial representation of the
data in terms of features, but rely on a measure of similarity between any pair of
objects of a domain, the kernel function. Designing fast and good kernel functions
is a challenging problem. In the case of tree structured data two issues become
relevant: kernel for trees should not be sparse and should be fast to compute. The
sparsity problem arises when, given a dataset and a kernel function, most structures
of the dataset are completely dissimilar to one another. In those cases the classifier
has too few information for making correct predictions on unseen data. In fact,
it tends to produce a discriminating function behaving as the nearest neighbour
rule. Sparsity is likely to arise for some standard tree kernel functions, such as the
subtree and subset tree kernel, when they are applied to datasets with node labels
belonging to a large domain. A second drawback of using tree kernels is the time
complexity required both in learning and classification phases. Such a complexity
can sometimes prevents the kernel application in scenarios involving large amount

of data.

il



This thesis proposes three contributions for resolving the above issues of kernel
for trees. A first contribution aims at creating kernel functions which adapt to
the statistical properties of the dataset, thus reducing its sparsity with respect to
traditional tree kernel functions. Specifically, we propose to encode the input trees
by an algorithm able to project the data onto a lower dimensional space with the
property that similar structures are mapped similarly. By building kernel functions
on the lower dimensional representation, we are able to perform inexact matchings
between different inputs in the original space.

A second contribution is the proposal of a novel kernel function based on the
convolution kernel framework. Convolution kernel measures the similarity of two
objects in terms of the similarities of their subparts. Most convolution kernels are
based on counting the number of shared substructures, partially discarding informa-
tion about their position in the original structure. The kernel function we propose
is, instead, especially focused on this aspect.

A third contribution is devoted at reducing the computational burden related
to the calculation of a kernel function between a tree and a forest of trees, which
is a typical operation in the classification phase and, for some algorithms, also in
the learning phase. We propose a general methodology applicable to convolution
kernels. Moreover, we show an instantiation of our technique when kernels such as
the subtree and subset tree kernels are employed. In those cases, Direct Acyclic
Graphs can be used to compactly represent shared substructures in different trees,

thus reducing the computational burden and storage requirements.
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Chapter 1

Introduction

Since the advent of modern computers the amount of available information has been
increasing more than our capacity of analysing it. The development of automatic
tools for data analysis is still an active area of research. Machine learning comprises
a series of techniques for automatic extraction of meaningful information from large

collections of noisy data.

Traditional methods in machine learning deal with vectorial information even if,
in many real world applications, data are naturally represented in structured form
(graphs for instance): XML data, molecular structures in chemical informatics, parse

trees in natural language processing and protein sequences in bioinformatics.

In order to apply machine learning techniques designed for vectorial data to
structured data, a pre-processing phase is required in order to encode structured
information into vectorial form. A pre-processing is always task specific and needs
to be suitably designed for any new task. The pre-processing can result in the loss

of relevant or necessary information for the given task.

Recent developments in machine learning have produced methods capable of
processing graph structured information directly. Among these, kernel methods are
becoming more and more popular. Being on one hand theoretically well founded

in statistical learning theory, they have on the other hand shown good empirical
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results in many applications. Kernel methods introduce a novel way of handling
structured data since they do not require an explicit representation of each input,
they instead require the definition of a kernel, i.e. a similarity function between all
pairs of objects of a domain. The definition of kernel functions for structures is a
challenging task because of the need to balance the trade-off between accuracy (how
well its values represent the true similarity between objects) and its computational
complexity.

Kernel methods have proven to be successfully for many real world problems.
However, the kernels currently defined in literature have some drawbacks. Investi-
gating ways of overcoming current kernel drawbacks and looking for more effective

kernels is the main motivation for this thesis.

1.1 What is Machine Learning

One of the main motivations for the development of machine learning techniques is to
automatically extract meaningful information from large collections of data: recog-
nizing human speech, detect fraudulent credit card transactions, perform automatic
medical diagnosis. For a more detailed example consider the case of recognizing
tumours in magnetic resonance images (MRI). An MRI exam produces many series
of images (up to 6) each one containing many images (more than 30). All of them
have to be carefully analysed in order to discover the presence of a tumour. This is
a long process and therefore the daily number of examined patients is limited. This
problem features two of the issues typically faced by machine learning: data may
be noisy and no algorithmic solution is known. In the MRI example a radiologist,
in most cases, is able to recognize a tumour but he is not able to formalize the
problem and define an exact and generally applicable procedure for solving it. The
only way to communicate its knowledge to a student, for example, is to give him a
series of images along with their classification (whether they contain a tumour or
not) and guide him in its inference process giving feedbacks on his hypotheses. The

student improves his capacity of recognizing tumours with experience. The aim of
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machine learning is precisely to provide automatic tools to mimic the human ability
to improve its behaviour with experience. Another situation in which the use of
a machine learning approach to problem solving is appropriate is when the results
are subjective. Algorithms able to adapt to user preferences are usually based on
machine learning techniques. For example the notion of interesting web site depends
on the user, so an intelligent search engine should learn user preferences and return

the results based on them.

1.2 Issues in Structured Data Representation

This section discusses the problems of representing tree structured data in Machine
Learning algorithms. Tree data structures are employed to model objects from sev-
eral domains. In natural language processing, parse trees are modelled as ordered
labelled trees. In pattern recognition, an image can be represented by a tree whose
vertices are associated with image components, retaining information concerning
the structure of the image. In automated reasoning, many problems are solved by
searching and the search space is often represented as a tree whose vertices are as-
sociated with search states and edges represent inference steps. Also semistructured

data such as HTML and XML documents can be modelled by labelled ordered trees.

In order to apply to structured data a learning algorithm not specifically designed
for that format the user must first transform the data into a vectorial form. This
task is problem dependent, may be computational demanding, and is prone to loss
of relevant information. In [8] it is described an example of encoding a dataset of
chemical structures into a vectorial form. Each structure is represented by numerical
descriptors called topological indices, which code specific morphological properties
of the molecule. The topological indices must be defined by a domain expert, and
that can be an expensive procedure (given that an expert is available). Moreover
an error by the expert may greatly affect the subsequent learner accuracy. Among
all indices a subset more appropriate for the given task may be chosen. This selec-

tion procedure may have to be repeated if the dataset changes. In many real world
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problems the preprocessing phase affects heavily the accuracy of the learner. More-
over, to maintain all the structured information, the dimensionality of the resultant
vectors may be quite high. This may be a significant drawback considering the
fact that many Machine Learning techniques are not able to effectively scale with
the dimensionality of the input and therefore their predictive power decreases with
increase in the dimensionality of the input. This problem is known as “Curse of Di-
mensionality” [6]. To get an idea of the reason for this performance degradation, it
is sufficient to consider a space X of dimension d. Suppose that X is composed by a
set of points uniformly distributed. If the number of dimensions of A increases, the
number of points necessary to keep the same density must increase exponentially.
In other words, the more the dimensions of the input, the more the probability that
the data are sparse. A sparse dataset gives in general too few information to build
a good classifier. A flat representation for structured data is thus appropriate when
knowledge about the domain can be effectively used to select a set of features. When
such knowledge is not available, instead of manually trying different encodings, it is

desirable to make use of techniques able to directly handle structured data.

1.3 Kernel Methods for Structured Data

The issue of data representation is faced by kernel methods [7,13,48] from a different
perspective. Kernel methods avoid to explicitly represent the data into vectorial
form since the only information they require is about the similarity of each pair of
data items. By definition, kernel methods look for linear relations in the feature
space. Input items are compared via dot products of their representation in the
feature space. The feature space is a vectorial description of the data according to
a predefined set of features. However kernel methods may avoid to directly access
the feature space since it can be shown that it is possible to replace the dot product
with a kernel function, a symmetric positive semidefinite function which computes
the similarity of a pair of items directly in their original space. The advantage

of using kernel functions is that huge, even infinite, feature spaces can be used
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with a computational complexity not dependent on the size of the feature space
but on the complexity of the kernel function. It can be demonstrated that kernel
methods, even if they can implicitly make use of very large feature spaces, they
do not suffer of the curse of dimensionality since Statistical Learning Theory [65]
shows that the generalization capability of a kernel method ultimately depends on
the number of misclassified examples in the learning phase. So far we have showed
that it can be avoided to access directly the feature space representation of the input
examples. The classification of a new example is performed by consider the sign of
the application of the kernel function between the example and the classifier (see
eq. (2.15)). It can be shown that, if the kernel method satisfies the assumptions
of the Representer theorem (see Section 2.3.2), the classifier can be represented as
a weighted sum of the training instances (see section 2.2 for details). Thus the
classification of an example is performed via a weighted sum of kernel evaluations
between the example and a subset of the training instances. Since the representation
of the data in feature space is only accessed implicitly when a kernel function between
two examples is computed, kernel methods can be applied to any type of input by
providing an appropriate kernel function.

Kernel functions have some interesting features:

e the space of kernel functions is closed under operations such as addition and
linear combination. It is then very easy to combine data from different sources.
For example, when classifying web pages, it would be possible to integrate

information from text, images and links by combining the respective kernels.

e If we consider a finite dataset composed by n examples, we can represent the
kernel function by a matrix whose size is always n x n, independently from
the size of each individual example. This property can be useful when a small

dataset of large size examples has to be analyzed.

Kernel methods have proved to be a state of the art technique for many real
world problems. They are described in detail in Section 2.3.2. However designing

good kernel functions, i.e. fast to compute and expressive (see Section 2.3.4 for
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a definition) is an open problem. In the following these two important issues are
discussed. Generally speaking, the main goal of this research is to find methodologies

to overcome them.

1.4 Thesis Motivations

Kernel function evaluations heavily affect the computational burden of kernel meth-
ods. It is therefore important to keep their complexity as low as possible. Unfortu-
nately it has been demonstrated that completely expressive kernels for graphs are
NP-Hard to compute [54]: for example a kernel k(Gy,Gs) that takes into account
the similarity of all possible subgraphs of the two graphs G; and G5 is equivalent
to testing whether Gy and G, are isomorphic (a problem known to be NP-Hard).
Kernel functions must be a compromise between accuracy of the results and com-
putational complexity of the procedure. In the following we try to make clear what
we mean with the term expressiveness. One of the most popular kernel for trees
is the subtree kernel (see section 3.1.1 for a description). It counts the number of
exactly matching subtrees of the inputs. While the restriction to exact match allows
the evaluation of the kernel function to be carried out in nlogn time (where n is
the number of nodes), it prevents the application on settings in which the labels of
the nodes take values from the domain of real numbers, since hardly there will be
any matching subtree. When the number of pairs of inputs having non zero simi-
larity is very low, the kernel has low expressiveness and is said to be sparse. It is a
pathological situation since those kernels are likely to not give enough information
to the classifier, which will behave like a nearest neighbour rule [30,61], i.e. it will
not be able to generalize well on unseen data. Even in cases in which the labels of
the nodes may only have values from a discrete domain, the subtree kernel may be
sparse. For example, we collected some statistics from a dataset of XML data (see
section A.1) and noticed that the subtree kernel would have resulted in a 0 kernel
value, i.e. inputs totally dissimilar, for the 54.71% of the kernel evaluations. Re-

laxing the constraint which allows matchings only between identical subtrees does
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not help because the resulting computational complexity of kernel evaluations would
make the use of kernel methods infeasible. The development of techniques and ker-
nel functions with an acceptable accuracy/complexity trade-off is an open problem

and it is one of the main targets for this research.

A second motivation for the development of novel non sparse and expressive
kernel functions comes from the analysis of the literature on kernel for trees. Most
of them fall under convolution kernel framework, which expresses a kernel on a
pair of structures as a combination of kernels on their constituent substructures.
However, all those kernels focus on the presence of the substructures and partially
discard information about the position of the substructures in the original structure.

This observation led us to investigate whether this type of information can be useful.

There are important computational issues not only in the computation of kernel
functions, but also in the classification phase. As mentioned earlier, the hypothesis h
returned by a kernel method can be expressed as a linear combination of the inputs.
To be more precise, h can be expressed as a linear combination of the wrongly
classified inputs. In order to use h the whole set of wrongly classified inputs must
be kept in memory. While saving in memory a great amount of plain data may
be feasible, saving great amounts of structured data, due to the typical increase
in size, may severely limit the applicability of the technique. Just as an example,
we collected some statistics from an XML dataset [36] finding out that the total
number of nodes of the misclassified inputs tended to increase linearly with the size
of the training set. It is worth pointing out that the reduction of the computational
resources of a kernel method is not only a computational issue, but it also affects
the accuracy of the classifier. In fact, in machine learning it is a well known fact

that the accuracy of the classifier improves with the size of the training set.
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1.5 Outline of the Thesis and Original Contribu-

tions

This section describes the contents of the thesis highlighting its original contribu-
tions.

The thesis is divided into two parts. The first part outlines background concepts
and gives a survey of the state of the art of kernel for trees.

Chapter 2 introduces the notation and basic concepts used throughout the re-
maining chapters. Section 2.1 gives basic definitions about the structures used in the
following chapters. Section 2.2 introduces the Machine Learning framework. Sec-
tion 2.3 gives an overview of two approaches for handling tree structured data, the
Self Organizing Map for Structured Data and kernel methods. The latter comprises
a series of techniques which avoid to explicitly represent the data, since they rely on
information about the similarity of objects in a domain. This type of information
is given by the kernel functions. Sections 2.3.3 and 2.3.4 describe kernel function
properties and discuss the contributions in literature for assessing their quality.

Chapter 3 gives an overview of the kernel functions for tree structured data.
Section 3.1 introduces the convolution kernel framework and describes the kernel
functions based on it. Section 3.2 gives a overview of other approaches for building
kernel functions.

The second part of the thesis is devoted to the presentation of the original con-
tribution.

A drawback of the standard tree kernels is that in the case of large structures
and many symbols, the feature space implicitly defined by these kernels is very
sparse. Chapter 4 proposes a novel family of kernels based on the activation of a
Self Organizing Map for Structured Data, a clustering algorithm which maps tree
structured information in such a way that similar trees are mapped onto nearby areas
to form clusters. Specifically, we make use of this property to design kernel functions
able to perform inexact subtree matching thus reducing the sparsity of the original

kernel while trying to keep its structural information. Section 4.1 describes the novel
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family of kernels based on Self Organizing Map for Structured Data activations, the
Activation Mask Kernel. Section 4.2 discusses the relationships of the new kernel
with other kernels defined in literature. Section 4.3 present experiments performed
to verify the effectiveness of our approach.

A second contribution was motivated by the observation that convolution tree
kernels match substructures without taking into account their “relative positioning”
with respect to one another. In chapter 5 a novel family of kernels is defined which
explicitly focus on this type of information. Section 5.1 gives a formal definition of
the novel kernel and Section 5.2 describes an instance of the general form. Section 5.3
describes the experiments performed in order to establish the effectiveness of the
kernel.

While Support Vector Machines has a high generalization capability, a drawback
of their use is the time required both in learning and classification phases. As a
third contribution, in chapter 6 we present a methodology for reducing that compu-
tational burden for convolution tree kernels by a suitable encoding of the structures
which avoid the re-computation of kernels between the same substructures belong-
ing to different examples. Section 6.1 describes a general methodology applicable to
convolution kernels. Section 6.2 describes the application of our idea to the subtree

and subset tree kernels and shows experiments proving its effectiveness.

1.6 Origin of the Chapters

The material presented in chapter 4 is based on the following articles [2]. Chapter 5
is based on unpublished work. Chapter 6 is based on the following articles [3,4].
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Chapter 2

Background

This chapter introduces basic definitions and concepts necessary for understanding
the works presented in chapters 4,5 and 6. Section 2.1 presents the notation and
definitions related to trees. Sections 2.2 introduces the machine learning framework.
Section 2.3 discusses those techniques for learning on structured data that are used
in the following chapters. Since the focus of this work is on kernel methods, sec-
tions 2.3.3 introduce basic properties of one of the fundamental components of kernel
methods, kernel functions. The chapter ends with section 2.3.4 by discussing ways

to evaluate kernel functions.

2.1 Definitions and Notation

This section recalls basic definitions and notation that will be used in the following

chapters. We start with some definitions on data structures.

A graph is a pair of sets G = (Vg, Eg), where Vg = {v1,v,} is an ordered set of
nodes and Eg = {e;; = (v;,vj), ..., e = (vg, v1)} a set of pairs of nodes, the edges.
The subscript G will be omitted whenever it is clear from the context which graph
we are referring to. An undirected graph is a graph for which ¢;; € £ < e, € E. A
labelled graph is a graph for which a label is attached to each node. Labels will be
represented by means of a function /(v) or, when referring to a specific node v;, by

l; = l(v;). A path p(v;,v;) = v;,...,v;in the graph G is a sequence of nodes for which



Chapter 2. Background 13

Figure 2.1: An example of a labelled directed graph.

there exists an edge connecting any adjacent nodes, i.e. (p;,piy1) € E,1 < i <,
where p; is the i-th node in the path and [ is the length of the path (the number
of nodes comprising p). Two nodes are connected if there exists a path connecting
them. A graph is connected if every pair of distinct vertices in the graph is connected.
A graph is said to have a cycle if there exists a path connecting a node with itself,
ie. dp=pi,...,p. p1=p.

Figure 2.1 gives an example of a labelled directed graph. Note that the graph is

not connected since there is no path connecting nodes labelled with b and c.

A tree is a directed and connected graph without cycles for which every node
has at most one incoming edge. A rooted tree is a tree for which there exists a node
with no incoming edges (the root). In order to simplify the notation, we will use
v € G has a shortcut for v € V5. A leaf is a node with no outgoing edges. If there
is a link e;;, node v; is the parent of v; and node v; is a child of v;. If vj, v, are
children of v;, then v; and v are siblings. A node v; is a descendant of v; if there
exists a path from v; to v; (in this case v; is an ascendant of v;). An ordered tree is

one in which the children of each node are ordered according to some relation.

A positional tree is a tree for which each child node has associated an index
representing its position with respect to its siblings. Note that the set of positional
trees include the set of ordered trees. Figure 2.2 highlights the differences of an
ordered tree with respect to a positional tree: edge labels represent the position
of a node. In the following node positions for ordered trees will be omitted. The

out-degree of a node is the highest positional index associated to a child of the
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Figure 2.2: A positional Tree. The number over an arc represents the position of

the node with respect to its parent.

B

Figure 2.3: A tree (left) and some of its subtrees (right).

node. The maximum out-degree of a tree is the highest index of all the nodes of the
tree. The out-degree of a node for an ordered tree corresponds to the number of its
children. The depth of a node v; with respect to one of its ascendants v; is defined
as the number of nodes comprising the path from v; to v;, When not specified, the

node with respect to the depth is computed, is the root.

A tree can be decomposed in many types of substructures.

Subtree A subtree ¢ is a subset of nodes in the tree T, with corresponding edges,
which forms a tree. A subtree rooted at node v; will be indicated with ¢;, while a
subtree rooted at a generic node v will be indicated by ¢(v). When ¢ is used in a
context where a node is expected, t refers to the root node of the subtree t. The
set of subtrees of a tree will be indicated by Nr. When clear from the context Np
may refer to specific type of subtrees. Figure 2.3 gives an example of a tree together

with its subtrees. Various types of subtrees can be defined for a tree T'.
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Figure 2.5: A tree (left) and all of its subset trees (right).

Proper Subtree A proper subtree t; comprises node v; along with all of its de-

scendants (see figure 2.4 for an example of a tree along with all its proper subtrees).

Subset Tree A subset tree is a subtree for which the following constraint is sat-
isfied: either all of the children of a node belong to the subset tree or none of them.
The reason for adding such a constraint can be understood by considering the fact
that subset trees were defined for measuring the similarity of parse trees in natural
language applications. In that context a node along with all of its children represent
a grammar production. Figure 2.5 gives an example of a tree along with some of its

subset trees.
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2.2 Machine Learning

The machine learning framework encompasses all algorithms capable of improving
their behaviour with experience. According to the definition of Mitchell [44], a
computer program is said to learn from experience E with respect to some class
of tasks T" and performance measure P, if its performance at tasks in 7', measured

according to P, increases with experience F.

Two different scenarios can be distinguished in machine learning: supervised and
unsupervised learning. In the supervised scenario a set of pairs, the training set,
S ={(x;,y;) :i=1,...,n} is provided to the learner. z; € X is the input example
(X denotes the domain of the z;, X is the set of all z; appearing in S), y; € Y is the
label of x;. Fach (z,y) is generated according to an unknown distribution P(x,y).
S is assumed to be independent and identically distributed according to P(x,y).
The domain of Y determines the type of problem (the following list considers only

problems of interest for the present work):

o If y; € {0,1} it is a two-class classification problem. It is the simplest case.

Most machine learning classification algorithms belong to this class.

o If y; € {0,...,n} it is a multi-class classification problem. The prediction of

an instance is selected among n + 1 classes.

o If y; € R it is a regression problem. Regression can be viewed as the problem

of fitting a curve representing the target function.

o If y; € {0,1}™ it is a multi-label classification problem: the classification of x;
is a vector where each dimension represent the classification with respect to

the corresponding label.

The task in supervised learning is to estimate a function h : X — Y, representing
the relationship between x and y values, having at disposal only the set of examples

S. The function h (also called hypothesis) belongs to a set H.
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The best h, represented as h*, minimizes the expected risk:

R(t) = [ Lin(o).9)aP(a,y) (2.)
where L is a loss function measuring the classification error of h. L can be, for
instance, the total number of misclassified examples (binary loss).

Since the distribution P(x,y) is unknown, it is not possible to directly use
equation (2.1) for selecting the best h. A reasonable approach is to minimize the
loss function with respect to the available data.

Re(h) = E Z L(h(x)vy) (2'2)

(z,y)€S
The set of h such that R(h) = 0 is called Version Space [44]. This technique alone,
however, does not lead to an optimal A since there can be infinite functions for
which V(z;,y;) € S : h(x;) = y;. The ability of a function to correctly classify
unseen data is referred to as generalization capability. It is clearly of particular
interest to express the generalization capability of an algorithm without referring
to a specific instance of the problem (a specific set of data). Statistical Learning
Theory is devoted to this problem. Among its results there is a characterization of
the classes of functions with respect to the Vapnik-Chervonenkis (VC) dimension, a
measure of the complexity of the class. The VC dimension of a family of functions
H is defined as the cardinality of the largest subset of points of the domain that
can be labelled arbitrarily by choosing a function h € H. Loosely speaking the
VC dimension grows with the ability of a set of functions to correctly classify any
training set. The following theorem shows that the generalization ability of a family

of functions decreases when increasing the VC dimension.

Theorem 2.1 Let v be the VC dimension of the family of functions H. Then
V6 >0,h € H dependent from a set of parameters O, the upper bound

R@@»s&@@»+ﬂ€9@§@), (2.3)

n

where R, is the empirical risk and n is the size of the training set, holds with prob-
ability at least 1 — & for n > VC(h(O)). Q (@) is a monotonic increasing

function and it is called the confidence interval.
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Note that the generalization ability of an algorithm increases by having at disposal a
larger amount of data. The confidence interval is also related to the VC dimension:
if a function with low complexity is able to correctly classify the training set, then
it is likely to have a low expected risk. The minimization of both terms of eq. (2.3)
is important. When a function is able to correctly classify the training set but has
a large error on the rest of the distribution, then the function is told to overfit the
data. When a function has a low confidence interval but has not enough expressive
power (it is not able to correctly classify the training set), it is told to underfit the
data.

Since the minimization of the empirical risk alone does not guarantee to obtain
high accuracy on the whole distribution, in order to obtain a useful solution, the
learning process needs to incorporate a bias, based on a priori knowledge of the
problem, for restricting the set of functions from which the selection of the best A is
performed. Note that, since the choice of the bias is made before seeing the training
set, the resulting class of functions, may not contain h*. On the other side, given
a bias, it is possible to build a training set such that any algorithm will perform

arbitrarily bad. A priori knowledge may make take the form of
e a restriction of the family H from which A* will be selected,

e a penalization for complex functions (Regularization). An example of a reg-
ularizer is a penalization term which influence the selection towards smooth

functions.

e The selection of a functional class according to the structural risk minimization
principle [10]. Let H; C Hy C ... C Hj, be a sequence of family of functions
with VC(H;) < VC(H;4+1),1 < i < k. Among those functions minimizing the
empirical risk for each H;, the structural risk minimization principle chooses

the one minimizing also a bound of the form of eq. (2.3).

In the unsupervised learning scenario there is no label information available. The

learner is provided with only a set of instances X = {x;:¢=1,...,n}. The task
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here is to find regularities in the set X. The most classical unsupervised technique
is clustering, which has the aim of finding a partition of a dataset such that any
object of a partition has higher similarity with objects in the same partition than
with objects of different partitions.

Machine learning algorithms can be further classified into batch (or off-line) and
on-line algorithms. For batch algorithms the distribution P(x,y) generating the data
is fixed, while for on-line algorithms it may vary in time. Batch methods have at
disposal the whole training set and the learning and classification phase are distinct:
once training has finished, the learner has no possibility to modify its behaviour,
i.e. to adapt to new examples. In on-line methods data arrives sequentially and
learning takes place together with classification. On-line algorithms must be less
computational intensive because the two phases, learning and classification, must

be executed together.

2.3 Machine Learning For Structured Data

The aim of this section is to describe some of the learning algorithms, applicable to

structured data, that will be used in the following chapters.

2.3.1 Self Organizing Maps

The aim of the Self Organizing Maps (SOM) learning algorithm is to learn a feature
map

M:T A (2.4)

which given a vector in the spatially continuous input space Z returns a point in
the spatially discrete output display space A. This is obtained in the SOM by
associating each point in A to a different neuron. Moreover, the output space A
is typically obtained by arranging this set of neurons as the computation nodes
of a one- or two-dimensional lattice. Given an input vector x,, the SOM returns

the coordinates within A of the neuron with the closest weight vector. Thus, the
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set of neurons induce a partition of the input space Z. In typical applications
Z = IR™, where m > 2, and A is given by a two dimensional lattice of neurons. In
this setting, high dimensional input vectors are projected into the two dimensional
coordinates of the lattice, with the aim of preserving, as much as possible, the
topological relationships among the input vectors, i.e., input vectors which are close
to each other should be projected to neurons which are close to each other on
the lattice. The SOM is thus performing data reduction via a vector quantization
approach.

In a more generic case, when the input space is a structured domain with labels

in U, we redefine equation (2.4) to be:
M* Yol A (2.5)
This can be realized through the use of the following recursive definition:

MH(G) = nil fG=¢ (2.6)
Maode (wg, M#E(GW), ..., M#(G?)))  otherwise

where s = source(G), GV, ..., G are the (eventually void) subgraphs pointed
by the outgoing edges leaving from s, nil, is a special coordinate vector into the

discrete output space A, and

Mpoge U X AX -+ X A— A (2.7)
N———
o times

is a SOM, defined on a generic node, which takes in input the label of the node
and the “encoding” of the subgraphs G, ..., G according to the M# map. By
“unfolding” the recursive definition in equation (2.6), it turns out that M#(G) can
be computed by starting to apply M. to leaf nodes, and proceeding with the
application of M,,,q. bottom-up from the frontier to the supersource of the graph

G.

Model of M, 4

In the previous section we saw that the computation of M# can be recast as the

recursive application of the SOM M, 4. to the nodes compounding the input struc-
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ture. Moreover, the recursive scheme for graph G follows the skeleton skel(G) of the

graph. In this section, we give implementation details on the SOM M., .

For each node v in Vg, we have a vector u, of dimension m. Moreover, we
realize the display output space A through a ¢ dimensional lattice of neurons. We
assume that each dimension of the ¢ dimensional lattice is quantized into integers,
ni, i=1,2,...,q,1e, A=[1l...n] x[1...ng] x -+ x [1...n,]. The total number
of neurons is [[?_, n;, and each “point” in the lattice can be represented by a ¢
dimensional coordinate vector ¢. For example, if ¢ = 2, and if we have n; neurons
on the horizontal axis and ns neurons on the vertical axis, then the winning neuron
is represented by the coordinate vector y = (y1,y2) € [1...n1] X [1...ng] of the

neuron which is most active in this two dimensional lattice.

With the above assumptions, we have that
Mopdge : R™ X ([Lo.omg] x - x [Looong])’ = [1..ong] x--- x [1...n,],  (2.8)

and the m + oq dimensional input vector x, to M, ,q4., representing the information

about a generic node v, is defined as

LTy = [“v Yehifw] Yehalo) =" ychO[Uﬂ, (2.9)

where y [, is the coordinate vector of the winning neuron for the subgraph pointed
by the i-th pointer of v. In addition, we have to specify how nil, is defined. We can

choose, for example, the coordinate (—1,...,—1).
—_———

q
Of course, each neuron with coordinates vector ¢ in the ¢ dimensional lattice

will have an associated vector weight we € IR™ .

Notice that, given a DAG D, in order to compute M# (D), the SOM M,
must be recursively applied to the nodes of D. One node can be processed only if
all the subgraphs pointed by it have already been processed by M,,,q.. Thus, the
computation can be parallelized on the graph, with the condition that the above
constraint is not violated. A data flow model of computation fits completely this

scenario. When considering a sequential model of computation, a node update
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scheduling constituted by any inverted topological order for the nodes of the graph
suffices to guarantee the correct computation of M7,

Finally, it must be observed that, even if the SOM M,,,q. is formally just tak-
ing care of single graph nodes, in fact it is also “coding” information about the
structures. This does happen because of the structural information conveyed by the
Yen,jv) used as part of the input vectors. Thus, some neurons of the map will be
maximally active only for some leaf nodes, others will be maximally active only for

some nodes which are roots of graphs, and so on.

Training algorithm for M,,4.

The weights associated with each neuron in the ¢ dimensional lattice M,,,4. can be

trained using the following process:

Step 1 (Competitive step). In this step the neuron which is most similar to
the input node x, (defined as in equation (2.9)) is chosen. Specifically, the
(winning) neuron, at iteration ¢, with the closest weight vector is selected as

follows:
Yy (1) = argmin[[A(z,(t) —me, (1)), (2.10)

where A is a (m + ¢q) x (m + ¢q) diagonal matrix which is used to balance
the importance of the label versus the importance of the pointers. In fact, the
elements A; 1, -+, A\ are set to p, the remaining elements are set to 1-p.

Notice that if cg = 0 and . = 1, then the standard SOM algorithm is obtained.

Step 2 (Cooperative step). The weight vector my , as well as the weight

* )

vector of neurons in the topological neighborhood of the winning neuron, are

moved closer to the input vector:

me, (t +1) = me, (&) +n(t) f(Air) (@0(t) — me, (1)), (2.11)

where the magnitude of the attraction is governed by the learning rate n and

by a neighborhood function f(A;.). A, is the topological distance between
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¢, and ¢;+ in the lattice, i.e., A = |le, — ¢;+||, and it controls the amount
to which the weights of the neighboring neurons are updated. Typically, the

neighborhood function f(-) takes the form of a Gaussian function:

f(Apr) = exp <_2§§;§2) (2.12)

where o is the spread. As the learning proceeds and new input vectors are
given to the map, the learning rate gradually decreases to zero according to
the specified learning rate function type. Along with the learning rate, the

neighborhood radius o(t) decreases as well'.

Putting this all together, the training algorithm of the SOM-SD can be described
as shown by Algorithm 1, where for the sake of notation we denote M, 4. by M.
We will use this concise notation also in the following.

In this version of the algorithm, the coordinates for the (sub)graphs are stored in
y,, once for each processing of graph D, and then used when needed? for the training
of M. Of course, the stored vector is an approximation of the true coordinate vector
for the graph rooted in v. However, since the learning rate 1 converges to zero this
approximation can be negligible.

The SOM can be considered as an instance of a general framework for process-
ing of structured data [27]. Various extensions of the SOM has been described in
literature. The Contextual Self-Organizing Map (CSOM-SD) model family is able
to capture contextual information about the input structure, i.e. information about
the ancestor of a node [24,25]. The Graph SOM-SD model allows the processing
of undirected graphs, and non-positional graphs where the order of edges is not
relevant [26].

The heuristic nature of the SOM-SD can not formally guarantee to preserve

the topology of the items in the input space. In order to overcome this limitation,

! Generally, the neighborhood radius in SOMs never decreases to zero. Otherwise, if the neigh-

borhood size becomes zero, the algorithm reduces to vector quantization (VQ).
2Notice that the use of an inverted topological order guarantees that the updating of the coor-

dinate vectors x, is done before the use of x, for training.
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Algorithm 1: Stochastic Training Algorithm for SOM-SD

input: Set of training DAGs T'= {D;},_,

~» 0 maximum outdegree of DAGs in T', map M, Niter

.....

number of training iterations, p structural parameter, n(0), o, network size;
begin
initialize the weights for M with random values from within U;
for t =1 to Niter

shuffle DAGs in T}
for j=1to N
List(D;) « an inverted topological order for vert(D;);
for v «—first(List(D;)) to last(List(D;)) do
vy — argmingg p) (2w = m{) ) 11+ (1= ) [9ehgyy =m0y )3
foreach my. 4 € M do

mf) e m )+ a®)f(Aeay,) (M) —w);

(r) (r) (r) .
™M a < ™Ye,q) + C“(t)f(A[c,d],yv) (m[gd] - yCh[v])’

return M;

end
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Gianniotis and Tino [20] have proposed a model based approach for constructing
topographic maps of tree structured data. The model is formulated as a constrained
mixture of hidden Markov tree models. The maps are formulated in a principled
framework of probability theory and thus are more theoretically grounded than

SOM-SD.

2.3.2 Kernel Methods

The class of kernel methods comprises all those algorithms that do not require an
explicit representation of the examples but only information about the similarities
among them. The information is given by the kernel functions (for a definition see

Section 2.3.3). Any kernel method can be decomposed into two modules:

e a problem specific kernel function.

e A general purpose learning algorithm.

Since the solver interfaces with the problem only by means of the kernel function, it
can be used with any kernel function, and vice versa. The modularity of the approach
allows to study the two aspects of learning, i.e. representation and optimization,

independently.

Kernel methods look for linear relations in the feature space. In the following, for
simplicity, the task of classification is considered. The problem is generally expressed
as a constrained optimization problem where the objective function usually take the
form of eq. (2.3). If the kernel function employed is symmetric positive semidefinite
the problem is convex and thus has a global minimum. Note that a global minimum
of the cost function exists for any choice of the parameters and kernel function. Thus

the global minimum does not correspond to the optimal solution for the problem.

Wahba’s representer theorem [67] states that the solution of certain optimiza-
tion problems involving an empirical risk term and a quadratic regularizer can be

written in terms of an expansion of the training examples. Thus, given a dataset
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S ={(x;,y;) :i=1,...,n} and a kernel function K, the solution w of the problem

can be expressed as:
w = Z a;y;d(x;). (2.13)

Before showing how to classify an example, the score function must be introduced:
S(z) = (w,2) =Y cuip(r:)d(x) = > K (z;, ). (2.14)

Note that the score function can be expressed as a weighted linear combination of
kernel function evaluations between examples in the dataset and x. The classification

¢(x) of an example with respect to w and kernel K is the sign of the score function:
c(x) = sign (S(x)) = sign <Z aiyiK(a:i,:c)> , (2.15)

The two modules comprising kernel methods, i.e. representation and problem
optimization, are discussed in detail in the rest of the chapter. The following two
sections describe the kernel methods used in the following: the perceptron and the
Support Vector Machines, respectively. Note that the two algorithms are for binary
classification problems, but they can be applied to an n-class problem by adopting
the one-against-all methodology: first n binary classifiers, each devoted to recognize
a single class, are trained. Then, the prediction for the n-class problem is given by

the class whose associated classifier gets the highest confidence (score).

Perceptron

In the original formulation the perceptron [56] was meant to classify data encoded
by real vectors with a linear decision function (a hyperplane).

Every element of the dataset is represented by a feature vector. A prototype vec-
tor w is randomly initialized. Then the classification of each example x; is compared

to the one made by the prototype, computed according to the following formula:

f(z) = sign(w - x; + b)
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If the perceptron is classifying uncorrectly the example then a new prototype w’ is
generated from w:

w' = w+ ay;

where « is a constant (a > 0), y; € {—1,1} is the class of z;. The algorithm has
been demonstrated to converge to the optimal hyperplane provided that the data
are linearly separable [51].

Using the kernel trick it is possible to extend the perceptron to generate a non-
linear decision function and/or to treat structured data by using kernels (see for
example [37]).

The on-line kernel-perceptron algorithm, adapted to tree-kernels, requires to
maintain an implicit representation of the vector w in the feature space. Specifically,
this corresponds to keep in memory the set of the already seen examples for which
the perceptron prediction was erroneous.

Thus we can consider the set of examples M = {(x;,y;) € S: o € {—1,+1}} as
the model of the perceptron and slightly redefine the kernel-perceptron algorithm as
in the following. Let M = () be an initial empty model, a new example z; is added

to the model M whenever its score

S(r;) = Z yi K (i, ;)
(z5,y5)€EM
has different sign from its classification y;. Thus the update and the insertion of the

new example follow the rule:
if (y:S(z;) <0) then M «— M U {(2;,y:)}

For many applications (see page 35), the cardinality of M, and consequently the
memory required for its storage, grows up linearly with the number of tree presen-
tations. Moreover the efficiency in the evaluation of the function S(x) decreases
super-linearly. Clearly, this seems not satisfactory for on-line applications.

The perceptron is a simple and relatively fast algorithm. Its main drawback is

that it does not provide bounds on the generalization error.
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An interesting and effective variant of the simple Perceptron algorithm is the
voted Perceptron proposed in [18]. This algorithm is motivated by a theory related
to converting an on-line learning algorithm into a batch one. Basically, it uses a
deterministic version of a simple “leave-one-out” method whose randomized version
was proposed in [29]. Specifically, the idea of the voted perceptron is to combine the
predictions of the hypotheses visited by the Perceptron algorithm while its training
takes place. These hypotheses can be combined in different ways, for example each
hypothesis can be given a weight equal to the number of times the same hypothesis

has ’survived’, i.e. the number of iterations until the next mistake has been made.

Support Vector Machines

Support Vector Machines (SVMs) are based on the Structural Risk Minimization
principle for which bounds on the generalization error have been proven [65]. SVM is
a binary classifier which projects the examples in a feature space and then looks for
an hyperplane separating positive and negative examples. Among the hyperplanes
separating the data, it is chosen the one maximizing the margin, i.e. the minimum
distance between the hyperplane and the closest example. It is possible to show
that the VC dimension of a linear classifier can be upper bounded in terms of
the margin [65]. If the training set is linearly separable the separating hyperplane
maximizing the margin is unique and corresponds to the solution of the following

problem:
[l

2 (2.16)
subject to V(x;, ;) € Syi(w - ¢(z;)) +b>1

arg min,, ,

where w and b define the hyperplane in the feature space. Considering that the
margin is inversely proportional to the norm of w, minimizing ||w|| corresponds to
finding the less complex function satisfying the constraints in 2.16, i.e. the simplest
function correctly classifying each example. The representer theorem [57] states that

the solution f of the problem 2.16 can be expressed as:

Vee X.f(x) = Z a;k(z;, x).

;€S
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The examples for which the corresponding « is not 0 are called support vectors.
When the training set is not linearly separable, a function f separating the two
classes may be very complex. If the non linear separability is due to noise, perfect
classification of the training set is not desirable since it may overfit the data and
thus reduce the expected risk. In this case a tradeoff between function complexity
and minimization of training error (constraints satisfaction) should be pursued. The

problem 2.16 then becomes:

. w]|? n
arg miny, p ¢ d 2” +cdol &
subject to  V(z;,y;) € S. yi(w - d(x;)) +b>1—¢; (2.17)
The constraints in 2.17 are relaxed with respect to the correspondent constraints
in 2.16. The parameter ¢ determines the balance between minimization of training

error and minimization of expected risk. The parameter is problem dependent and

its best value has to be found empirically.

2.3.3 Kernel Functions

A way for assessing the similarity of objects of a domain is to describe them by a set
of features and then count the number of common features. For reasons that will
be clear in the following, the space of the features is assumed to be a metric space.
A metric space X is a vector space in which a distance d : X x X — R* is defined

such that V z, 2/, 2" € X the following properties hold:
o d(xz,2') >0
e d(z,2)=0&z=2a

o d(z,x') =d(x', x)

o d(x,2") <d(x,z")+d(z", ).

The representation in feature space is obtained by the application of an appropriate

function ¢, v — ¢(x) = {¢i(x)|i > 1}. The elements ¢;(x) are called the features
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of z (according to the mapping ¢). Note that if ¢ is a non linear function, the
relative positioning of the objects in the feature space can change with respect to
the original space. In this sense the use of appropriate kernel functions may (and it
is supposed to) simplify the problem.

The similarity between two objects x, 2’ can be computed by the dot product
of their representation in feature space ie. (z,2’) = > = ¢;(z)¢;(2’), where
m = |¢(x)|. A kernel is a function measuring the similarity of any pair of objects of
a domain, K : X x X — R which corresponds to a closed form for the dot product
of the projection of the examples in feature space.

The Gram matrix G¥ related to a kernel K with respect to a set S of examples

is defined as

G = K(x, 7)) (2.18)

A kernel function is valid if and only if it is symmetric semidefinite positive,
i.e. if any of its Gram matrices are symmetric positive semidefinite. A matrix is
symmetric if Vi, j K (z;, z;) = K(z;, x;) and it is positive semidefinite if Vey, ..., ¢, €
R. ZCiK(:vi,zj)cj = c'G¥c > 0, where ¢’ is the tranpose of c. Equivalently a
matlyrjix is positive semidefinite if all of its eigenvectors are nonnegative. A kernel
function can be expressed as a dot product in a feature space ¢ such that K(z;,z;) =
5, Gl bu(ay).

In the following, when it is clear from the context we will use the term kernel in
place of valid kernel.

Given two examples x; and z;, the relationship between the distance d(z;, z;) in

feature space and the kernel K(x;, ;) is

dzs, ;) =\ K (@i, 20) + K (2,25) = 2K (25,2,).

When two examples are mostly dissimilar, the application of a kernel K to them
returns 0. When the kernel is normalized (see eq. (2.19)) the maximum value of K
is 1.

The class of kernel functions is closed under the operations described in propo-

sition 2.1.
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Proposition 2.1 Let K1, Ky : X x X — R be two kernel functions,

X ={x1,...,2,} a set of examples from the domain x. Then
1. K(z,2") = Ky(z,2") + Ka(x,2") is a valid kernel [59] (additive property).

2. K(z,2'") = Ki(x,2")Ks(x,2') is a valid kernel (multiplicative property). Note
that the property holds when Ky is a positive constant, i.e. multiplying the

kernel by a positive constant gives a valid kernel.
3. K(x,2'") = f(x)f(z), where f is any function defined on the domain .

4. K(x,2") = K4(o(x), ¢(2"). An application of this property is shown together
with the definition of the polynomial kernel (eq. (2.21)).

5. K(z,2') = K1® K3 ((z,u)(2',u) = Ky(z,2")+ K3(u,u'), where K3 : UxU —
R is a valid kernel defined on the domain U, is a wvalid kernel (direct sum

property).

6. K(z,2') = Ki®Ks ((z,u)(2',v)) = Ky (x,2")K3(u,u), where K3 : UxU — R

is a valid kernel defined on U, is a valid kernel (tensor product property).

The proofs of the properties (or references to them) can be found in [28,59]. These
properties show that novel kernels can be defined by combining existing kernels. It
is possible to combine kernels taking into account different aspects of the data, for
example a kernel for web pages can be constructed by the combination of a kernel
defined on the set of words in the page and a kernel defined on the incoming and
outgoing links.

When only the orientation of the ¢ matters, the representation in feature space
and thus the kernel values can be normalized by the following operation:

K(x,2)

VE(z,2)K (2, x')

K'(x,2') = (2.19)

Normalization can be useful when the probability of generating a feature depends on

the size of the original data. For example a representation that counts the number
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of times each label appears in a tree is influenced by the size of the tree: larger trees
have higher chances to have many common features with any small tree.

In the following we give some examples of popular kernels for vectorial data.
Probably the simplest approach for dealing with structured data is to first transform
it to vectorial form and then apply kernel functions defined for vectorial data. This
section briefly reviews kernels for vectorial data. In the following we may generically
refer to kernels defined in this section as standard kernels.

In the following x,y represent vectors belonging to a space R™. The simplest

kernel known in literature is the linear kernel:

K(z,y) = (z,y). (2.20)

Note that feature space of the linear kernel coincides with the input space.

Another widely used kernel for structured data is the polynomial kernel:
K(z,y) = ((x,y) +¢)?, e€R, deN. (2.21)

The feature space associated with the polynomial kernel is composed by products of
elements of the original vectors. d is the maximal order of the resulting monomials.
When e = 0, the feature space is composed by all possible products of groups of d

features. Thus the feature space has dimension:
n+d—1 (n+d—1)!
(@) = ( d ) BCE
For example given a vector x = (1, x9,x3) its representation in feature space for
e=0and d = 2is ¢(z) = (22,23, 23, vV2x129, V22173, V/21923). Note that |z| + 2

operations are required for evaluating eq. (2.21), while an explicit evaluation by

n+d—1

y ) operations. The dot

means of the feature vectors ¢(z) would have required (
product of eq. (2.21) can be replaced by any kernel function (see page 31). The
resulting operation allows to create new features as a combination of the original
ones.

The last function we describe is the gaussian kernel,

|z — yl”
K(x,y) = exp (—T , o0 €R. (2.22)
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The gaussian kernel has the particularity to have a feature space of infinite size.
Note that in this case the use of a kernel function not only saves computational
time, but it is the only way for computing the corresponding dot product in feature
space. The kernel value is maximum when x = y, K(z,2) = 1 and it is monotonic
decreasing when the distance between x and y increases. The parameter o affects

the resulting feature space as follows:

e for very high values of o, all examples become almost parallel and thus all

examples are almost identical.
e Very low values of o produce feature vectors all orthogonal to each other.

In [30] the effects of feature spaces such as those obtained for the gaussian kernel
for extreme values of o, on a kernel method called v-Support Vector Machine [58],
are described in detail.

Kernel functions described in this section are suitable for dealing with vectorial
data. The present work is focused on tree structured data. The kernels described

in literature for this type of data are discussed in section 3.

2.3.4 Evaluating Kernel Functions

It is clear from previous discussions (cfr section 2.3.2) that designing “good” kernel
functions is a major concern for obtaining a successful application. But what is a
good kernel function? This section summarizes the contributions in literature for
helping answering this question. All the following discussion refers to the classifica-
tion problem.

Being valid is a necessary requirement for a kernel function. However not all
valid kernels all equally good for a task. For example a kernel such that Vz;,z; €
X,i# j.K(z;,x;) = 0is a valid kernel but will have a poor generalization capability
because no information is available for points in feature space except for those in

the training set. We formalize the concept by introducing the sparsity index

Sparsity(K,S) = 1) € S|‘SK|2(Z"7) - O}’ (2.23)
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The sparsity index computes the proportion of example pairs in the instance set S
whose kernel value is 0.

On the contrary, given a set of examples z; along with their classification y;
(assume for simplicity to be solving a two-class classification problem), it is easy to
design a valid optimal kernel: K(z;, ;) = yy;.

Cristianini et al. [14] have defined a measure for assessing the appropriateness
of a kernel function in a supervised setting called kernel alignment. Let S =
{z1,29,...,2,} be the set of instances compounding a training set and K;, K>
two kernel functions defined on S. The empirical alignment between K; and K, is
defined as the Frobenius inner product between the corresponding normalized Gram
matrices(see eq. (2.18)):

(6.6,
V(GE, GF) L (GFe, G2

A(KL, Ks, S) = (2.24)

where (GF1, GF2) = Z GGz,

J

Values of A range f;g; —1to 1. The higher the value of A(K, K5, S), the higher
the similarity between K; and K, with respect to S.

The value A can be used to measure how appropriate a kernel K is for a given
two-class classification task by aligning K with a matrix Y defined as: Y;; = y,y;,
where y; = {—1,+1} is the class associated to an instance z;. In the case of a
multiclass classification task Y can be defined as V;; = 1if y; = y; and Y; ; = 0 if
y; # y;- Note that the codomain of A for the multiclass case ranges from 0 to 1.
In [33] the notion of alignment is extended to the case of classification of unbalanced
datasets and the problem of regression.

Gartner [19] defined three properties that should be fulfilled by a good kernel:
completeness, correctness, appropriateness. Let ¢ : X — €2 be a function that assigns
to every example of a domain its class. Functions ¢ are grouped into a concept class
C.

A kernel that is able to incorporate all necessary knowledge for solving a problem

is said to be complete. A kernel is complete if no pair of different examples have the
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same representation (in terms of the kernel): K(x;,-) = K(zj,-) = z; = z;. Any
kernel for structured data that discards information about the structure is hardly
complete. When information about class membership is available, the constraint
x; = x; can be relaxed thus turning the definition into: Ve € C. K (x;,-) = K(zj,) =
c(x;) = c(x;).

A kernel is said to be correct with respect to a concept class C' and an hypothesis
space, if for every concept can be found an hypothesis that correctly classifies all
examples. In the case of the Support Vector Machines, the hypothesis space is
composed of all linear functions in feature space. Thus the definition of correctness
become: Ve € C,3oy; € R,z; € X,0 € R such that Vo € X. >, o, K (z,2) > 0 &
c(x).

Appropriateness refers to the extent to which examples that are close to each
other in class membership are also close to each other in feature space. A kernel is
appropriate for learning concepts in a given concept class by a learning algorithm
if polynomial bounds on its generalization error can be derived for some algorithms
using this kernel. A complete and correct kernel separated the concept well, i.e. it
is able to achieve high accuracy on the given data. An appropriate kernel is able to

generalize well to unseen data.

All previous discussions take into account the quality of a kernel. When back-
ground knowledge cannot drive the choice of substructures, an effective kernel may
be obtained by arbitrarily enlarging the feature space. However using a exponen-
tial number of features without having a polynomial kernel function for implicitly
computing the dot products between examples may lead to intractable algorithms.
The reasoning is valid not only for extreme cases. Even quadratic kernel complexity,
in some practical situations, can lead to unacceptable running time. The reason is
that, for most complex (and usually more accurate) kernel methods, kernel function
evaluations heavily affect the total running time of the algorithm. In order to give
an illustrative example of this claim, we computed some statistics on an execution
of the Support Vector Machines algorithm (see section 2.3.2) by using the svm-light
software [32,45,47] on the dataset from INEX 2005 Competition (a description of
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the dataset can be found in section A.1). The problem is a 11-class classification
task but a two-class problem was derived by giving label +1 to the examples of
the first class and —1 to the examples of all other classes. The statistics were col-
lected by the gprof utility [22]. The kernel function used is the subset tree kernel
(see section 3.1.2). The standard ¢ parameter of the Support Vector Machines took
the values {0.001,0.01,0.1, 1,10, 100, 1000}. All other parameters were given default
values. The algorithm spends on average the 93.27% of its execution time by per-
forming kernel evaluations. While the value depends on the problem, the solver and
the kernel function, it gives a qualitative idea of the dependence of the execution
time from the kernel evaluation procedure. Thus kernel function complexity should
be kept as low as possible, especially when dealing with large datasets.

In practical applications, the right trade-off between expressive power and com-

putational complexity should be selected according to the current task.



Chapter 3

State of the Art on Tree Kernel Functions

Kernel methods make use of kernel functions to measure the similarity of the items
in feature space. Kernel functions are the only type of information specific to the
task that this class of learning algorithms may use. Thus they play a crucial role
for the final outcome of the kernel method.

The methodologies for designing kernels for trees include:

e The use of the convolution kernel framework. Convolution kernels are based
on the idea that a complex object can be described in terms of its constituent
parts, for example a string can be described in terms of its substrings and a
tree in terms of its subtrees. Thus a convolution kernel measures the similarity

of two objects in terms of the similarities of their subparts.

e Explicit extraction of features from trees. This method builds a vectorial
representation of the data and then applies kernels for vectorial data to the

representation obtained. For an example see section 3.2.1.

e Kernels based on generative models. These kernels measure the similarity of
two items as a function of the parameters and states reached by a generative
model for the data. An example of this class of kernels is the Fisher kernel

(see section 3.2.2).

In the following, we will discuss the techniques listed previously. Due to their

popularity, convolution kernels have received much attention from the research com-
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munity. Section 3.1 describes the convolution kernel framework and reviews kernels
derived from it. The description of other types of kernels are grouped together in

section 3.2.

3.1 Convolution Kernels

Convolution kernels for structures were first introduced by Haussler in [28]. They

are a general methodology for computing kernels on complex discrete objects.

By splitting the original object into parts and assuming to have at disposal a
positive semidefinite kernel on the parts, Haussler [28] describes a way for combining
the kernels on the parts that preserves positive semidefiniteness. In particular,
convolution kernels express a kernel on a discrete object by a sum of kernels of their

constituent parts.

Definition 3.1 (Convolution Kernel) Let x,x,,X,,---,X, be D+ 1 non empty
separable metric spaces, x € X a structure and ¥ = (x, 22, ..., zP) the parts of x. A
relation R :x X x, X... XX, XX where R(Z, x) is true if and only if x*, 2%, ... P
are the parts of x. Moreover let R*(x) be the set of all the subparts of x. Then the

convolution kernel can be expressed as:

k(x;, x;) Z Z Hk:d xy, J (3.1)

T;ER* () TjER* (x5) d=1

where the k; are kernels defined on the substructures. In the following we will refer
to the k4 as local kernels. In [28] it is demonstrated that, if the k; are positive

semidefinite, the kernel in eq. (3.1) is also positive semidefinite.

Recently Shin et al. [60] have introduced a more general form than the one of
eq. (3.1) called the mapping kernel. Basically the idea of the mapping kernel is
to restrict the set of substructure pairs over which the local kernel is computed.
Formally speaking, the mapping kernel is defined as follows: let each x € x be

associated with a finite subset X;’ where X; is the set of substructures associated
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with z. Similarly to [28], it is assumed to have at disposal a positive semidefinite

kernel k : ' x ¥’ — R. Then the mapping kernel is defined as follows:

K(ziz)= > ka2, (3.2)

(=] ,x;)EMzi i

where M is part of a mapping system M defined as follows:

M = (X, {X;]x € X} : {Mmrj - X;i X X;j |(zi,25) € x X X}) : (3.3)

M is a triplet composed by the domain of the examples, the space of the substruc-
tures of the examples, and a function M specifying for which pairs of substructures
the local kernel has to be computed.

M is assumed to be finite and symmetric, i.e. Va;,z; € x.[My, .| < 0o and
(2}, 77) € My, if (2},2)) € My, ;. In [60] it is proved that the kernel K of
eq. (3.2) is positive semidefinite if and only if the mapping system M is transitive.
A mapping systems is transitive if and only if Va, x0, 23 € x.(2],2}) € My, 20 A
(xhy, xh) € Myy s = (2, 25) € My, 2, The main advantage of the mapping kernel
is to give a necessary and sufficient condition for building kernels on complex objects
which is typically much easier to prove than positive semidefiniteness.

Since there will references to the mapping kernel in the following, an example
is given in order to clarify its definition. Consider the linear kernel between two
vectors = and u, K(z,u) = ) . z;u;. It can be seen as a special case of mapping

kernel where:
e an m-dimensional vector is described by a set of pairs (z;,7) € x x N.

e x, is the set of pairs composed by the components of the vector x and their

position in the vector.
o ((2/,i),(u,7)) € My, ifi=j.

For example the 3-dimensional vector z = (1,4,5) is described by ((1,1), (4,2),
(5.3))-
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The kernel is defined as:
K(m,y) = E E 5(@1)%’%‘ = E Ty,
i i

where §(i, j) is the dirac function returning 1 whether the two arguments are equal,

0 otherwise.

Convolution kernels have been successfully applied to a variety of problems in-
volving structured data (for references see the following sections), thus appearing to
be a viable way of dealing with structured data. The following sections are devoted

to review convolution kernels for tree structured data.

3.1.1 Subtree Kernel

Viswanathan et al. [66] describe a string kernel which is also applicable to trees.
The features of the kernel when applied to strings or trees are, respectively, the
substrings or the proper subtrees of the input string (tree). Examples of proper

subtrees can be found in Figure 2.4.

The kernel returns a weighted sum of the number of common substrings (proper
subtrees). While there is a quadratic number of substrings of a string, the assump-
tion which the proposed procedure is based on is that the number of matching
substrings is small compared to the size of the feature space. The kernel for strings

is defined as follows:

K(z;,xj) = Z Z [s = u]ws = Z hs(z)hs(y)ws,

SET; uET; seA*

where s,u are substrings of the strings z;,z;, ws is the weight associated to the
substring s, A* is the set of non empty strings of the alphabet A, hy(x) counts the
frequency of the substring s in z, and [condition] is a function returning 1 whether

condition is true, i.e. the two substrings are identical, 0 otherwise.

In order to efficiently compute the set of common substrings

Viswanathan et al. [66] propose to represent the set of substrings by a suffix tree [64].
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By keeping a look-up table for associating weights to substrings it can be shown that
the kernel can be computed in linear time in the size of the strings.

The kernel can be used for comparing ordered trees by first encoding them into
a string format. The encoding of a proper subtree starting at node v is given by the

function tag(v), which can be computed according to the following procedure:

e if v is an unlabelled leaf then tag(v) = [];
e if v is a labelled leaf then tag(v) = [I(v)];

e if v is an unlabelled node with children vy, v, -+ , v,
tag(v) = [tag(vy) tag(ve) - - - tag(v.) |, where the tags of children are sorted in

lexicographical order;

e if v is labelled then tag(v) = [l(v)tag(vi)tag(ve) - - tag(v.)], where again

tags are considered sorted in lexicographical order.

For example, the tree on the left of Figure 2.4 can be represented by [a[b[c][e]][g]]-
In theorem 1 of [66] it is proven that:

1. the tag of the root node, tag(root), is an unique identifier of the tree and can
be constructed in (A+2)(nlog, n) time and O(n) space, where n is the number

of nodes and A is the maximum length of a label;

2. all those strings tag(v) starting with [ and ending with the corresponding

balanced | are proper subtrees;

3. arbitrary substrings of tag(root) correspond to subset trees of the input tree.

In [43] it is pointed out that not all subset trees can be generated if the trees
are represented as strings by the encoding proposed in this section. Figure 2.5 gives
an example of a subset tree, the string [a[b][g]], which cannot be represented by a
substring of [a[b[c|[e]][g]]. While for any tree x, the set of its substrings (obtained
by the encoding described in this section) include the set of its proper subtrees, it is
possible to build a kernel counting the number of proper subtrees by setting wys = 0

for all those substrings not starting and ending with balanced brackets.
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3.1.2 Subset Tree Kernel

As seen in section 3.1.1, the technique proposed in [66] can not measure a similarity
function based on common subset trees. A kernel for trees, based on counting
matching subset trees, has been proposed in [12].

Let’s consider a finite set of trees in which m different subset trees are present. In
this case each feature, i.e. subset tree, can be indexed by an integer between 1 and
m. Then hy(7T) is the number of times the subset tree indexed with s occurs in tree
T. We represent each tree T as a feature vector ¢(T") = [h1(T), ha(T), ..., hy(T)].
The inner product between two trees under the representation

O(T) = [11(T), ho(T), ... hn(T)] is:

K(Th,T3) = ¢(T1) - ¢(T2) = Z hs(T1)hs(T3).

s=1
Thus the subset tree kernel (SST) defines a similarity measure between trees
which is proportional to the number of shared subset trees.
The subset tree can be efficiently calculated by a recursive procedure as follows.
Let the function [;(n) be equal to 1 if the subset tree indexed by i is rooted at node
v, 0 otherwise. Then h;(T7) = Z I;(vy). The subset tree kernel can be written

t1ENT
as follows:
K(T\,To) = Y ho(Ty)hs(T2) = (3.4)
= Y Y L(t) > L) (3.5)
s=1 t1€NT1 tQENTQ
= > ) ) L)t (3.6)
tleNTl tQENT2 s=1
- Y Y ctnn
t1€NT1 t2€NT2
where C(t1,ty) = Z hs(t1)h . Let a production at node t be the subset tree con-

stituted by t and only its direct children, then C'(¢,t3) can be recursively computed

according to the following rules:
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1. if the productions at t; and ¢y are different then C(t1,t9) = 0;

2. if the productions at t; and ¢y are the same, and t; and t, have only leaf

children (i.e. they are pre-terminals symbols) then

Cty,ty) =1 (3.7)

3. if the productions at ¢t and ¢, are the same, and t; and t, are not pre-terminals,

then
ne(t)

Clt,ta) = ] (1 + Clehylta], chylta])) (3.8)

j=1
where nc(ty) is the number of children of ¢; and ch,[t] is the j-th child of

node t.

It can be shown that by substituting eq. (3.8) with the following, we obtain the
subtree kernel (ST) as defined in section 3.1.1:

ne(ty)

Cltr,tz) = [] (Clehylta], chylta))). (3.9)

j=1
In the following we will generically refer to the kernels defined in this section as the
parse tree kernels.

Note that C' can be seen as the local kernel for the convolution kernel defined by
eq. (3.1), where x is the space of trees and y, the set of subtrees of tree x.

Computing the subtree and subset tree kernels ultimately consists in filling a
matrix of size |Np,| X |Nr,| with the appropriate C' values and then summing all
C up. From this last observation it may be concluded that the worst case time
computational complexity of the kernel is O(| Nz, | x |Np,|). However, as discussed
by the same authors, a more accurate analysis shows that the actual complexity
of the above procedure depends on the number of matching productions. Thus the
computation of C'(t1,ts) can be avoided for all (¢, t2) whose production at root node
are different. This observation has resulted in the Fast Tree Kernel algorithm [47],
which has the same worst case complexity but in practical applications may provide

a relevant speed up.
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Subset tree kernel values depend on the number of nodes in the trees. Consider
a small tree t. It should have highest kernel value when compared with itself (it
should be most similar to itself). However a large tree with higher kernel value can
be easily constructed by replicating subset trees of ¢ into the larger tree. In order
to overcome this situation, it is possible to normalize the kernel according to the
formula 2.19.

The subset tree kernel is known to be peaked, i.e. there tend to be a significant
difference between the kernel value of a structure with itself, than the kernel value
with any other structure. This is due to the influence of larger substructures, since
they not only contribute to the kernel with a high value of C' but they also con-
tribute to it with all of their substructures. In order to reduce this phenomenon,
the influence of larger subtrees is thus downweighted. This is obtained by modifying

the kernel as follows:

K(Ty, T) = > N*n,(T1)h(Ty), (3.10)

s=1
where 0 < A < 1 is a weighting parameter and size(s) is the number of nodes of
the subtree s. The addition of A to eq. (3.10) can be accounted for in the recursive

formula by the following modifications to eq. (3.8) and (3.9):

Clty, ) = A, (3.11)
nec(ty)
Clti,ta) = [ A+ Clehslta], chylta])). (3.12)

Convolutions kernels are recognized to have some drawbacks:

e a worst case quadratic complexity makes their application to very large data-
sets infeasible (especially in conjunction with demanding learning algorithms
such as the SVM), since the sparsity assumption is less easily satisfiable and

the quadratic cost may become prohibitive.

e They can’t be used with continuous labels: the probability that a substructure

of a tree would match with any substructure of every other tree would be
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extremely low, and thus the resultant feature space would tend to be sparse.
The same reasoning applies also in the case of labels taken from a discrete but

numerous set.

Most of the works in literature on tree kernels are based on the article of Collins
et al. presented in this section and, basically, describe extensions and adaptation of
it. In fact some authors [34] use the term tree kernel to identify all those kernels
based on eq. (3.4) and the corresponding recursive C' formula. Mainly two fields of

research can be distinguished. They are motivated either by:
1. reduce the kernel computational complexity;
2. adding expressiveness to the kernel.

In the following sections convolution kernels methods aimed at solving one of
the problems listed above, are discussed. Section 3.1.3 introduces a fast tree kernel.
Another kernel aimed at a low computational complexity is the one presented in
section 3.2.1. Sections 3.1.4, 3.1.5, 3.1.6, and 3.1.7 present expressive kernel func-

tions.

3.1.3 Approximate Kernels for Trees

In cases when computational complexity issues don’t allow the application of kernels
with quadratic time complexity, more efficient kernels, i.e. computable in linear time,
with a sufficient expressive power have to be designed. In [55] an approximated tree
kernel with worst case linear time complexity is described. The field of application
is the detection of attacks by the analysis of net logs. Net logs are composed by very
deep trees and thus the worst case quadratic complexity of the subset tree kernel
makes its application to the task infeasible. The speed up is obtained by selecting

a restricted set of sparse and discriminative features:

K(ziaz;) =Y ys) Y. > Cltty),

ti€xy tj€x;
Li=l(root(s)) 1;=I(root(s))
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where ¢; is a node of z; and 7(s) = {0, 1} is a function telling whether the current
subtree has to be selected.

The goodness of a kernel can be measured by its alignment to the matrix yy”
(see section 2.3.4 for a definition of alignment), where y is a vector collecting the

class of the examples:

(' K), = Kwix) = Y K(wi,x)).

YiFY;

In order for the kernel to be fast, a small number of features should be selected.

The final problem to be solved can be formulated as follows:

max. couys D vy Y (s) Y. Y. Cltity),

7,0=1 SES t;€x; tjEx;
li:TOOt(S) lj:'root(s)
subject to E v(s) =N
s€S

where |S]| is the size of the feature space, n the size of the training set and N
is the number of different substructures we want to use for the subsequent kernel
computations. Their experiments suggest that the method can achieve an accuracy
comparable with the tree kernel while being more efficient.

Among the extensions proposed by the authors, it is worth pointing out the
possibility to bound the expected runtime by a user-defined quantity b (this of
course to the detriment of the accuracy). The bound can be obtained by adding a

constraint of the following form to the problem:

S (s)als) <o,

SES

where o(s) is the frequency of the substructure s in the whole set.

3.1.4 Partial Tree Kernel

One way for adding expressiveness to the parse kernel described in section 3.1.2 is to

modify its recursive definition in order to enlarge the corresponding feature space.
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Moschitti [46] proposed the Partial Tree kernel (PT) which can carry out partial
matching between subtrees. Note that the definition of partial tree corresponds to
the definition of subtree (see section 2.1). Figure 2.3 gives an example of a tree
together with some of its partial trees. Note that the feature space of the partial
tree kernel is much larger than the one of the subset tree kernel.

The partial tree kernel is obtained from eq. (3.4) by replacing cases 2 (eq. (3.7))
and 3 (eq. (3.8)) of C' definition with:

|1

C(n17n2) =1 + Z HC<Chn1 [Jh‘],Cth[JQiD, (313)

J1,d2, T |=]J2| =1
where Ji1, Ji2, Ji3, ... Jo1, Jag, Jog, ... are index sequences associated with the or-
dered child sequences ch,,, and ch,, respectively, .J;; and Jo; point to the i-th chil-
dren in the two sequences, |J;| returns the length of the sequence J;. The subset
tree kernel can be obtained back from eq. (3.13) by considering only the contribution
of the longest child sequence from node pairs with same children. The partial tree
kernel can be evaluated in O(p?|Nr,||Nr,|), where p is the maximum out-degree of

the two trees.

3.1.5 Elastic Tree Kernel

In [35] is described a kernel for structured data modelled by labelled ordered trees,
called elastic tree kernel. The kernel extends the one in [11] in allowing matching
between nodes with different labels and matching between substructures built by
combining subtrees with their descendants. Consider two trees T7 and T, and two
subtrees, t; and t,, rooted at nodes v, € T} and vy € T5, respectively. In addition

to the matchings of the subset tree kernel, the following are also permitted:

e t; and t, may match even if they don’t have the same number of children. The
only constraint is to preserve the order of the children, i.e. matching child 2
of ¢t; with child 4 of ¢t5 and child 3 of ¢; with child 1 of ¢, is not allowed. Then
the C formula of eq. (3.8) becomes

C(v1,v2) = Sy, (ne(vy), ne(v2)), (3.14)
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where nc(v) is the number of children of v. Since all matches preserve left-to-

right ordering S can be defined as:

Sm,vz(imj) = Svl,vg(i - 17.]) + Svl,vg(iaj - 1) - S’Ul,Ug(i - ]-7] - 1)+
+Sp15 (1 — 1,5 — 1)C(chi[v1], chjlva]),
(3.15)

and Sy, 4,(4,0) = Sy, 4,(0,7) = 1. Basically the idea is that the number of
matchings considering [ children can be expressed in terms of the number of
matchings considering [ — 1 children. Note the formulation in eq. (3.15) can

be efficiently computed by means of dynamic programming.

t; and t5 may match even if their labels are not identical. Different labels are
penalized by assigning to them a lower matching value. This is obtained by
multiplying each match by a value determined by a function P, (11]l2) € [0, 1],
where Py, (11]l2) is the cost for transforming label [; into ls. For identical labels
Prui(l1,11) = 1 and thus they contribute to the kernel value in the same way

they contribute for the subset tree kernel. The C' function then becomes

C(v1,v2) = Y Pot(li]@) P (I2]@) S, (n(1), ne(v2)), (3.16)
acA

where A is the space of labels. Thus eq. (3.16) takes into account all possible

mutations of the labels of the nodes being computing the C' value.

t; and ¢y can be elastic trees. An elastic is a subset of nodes for which the
relative positions in the original tree are preserved: if a node v is a descendant
of a node m in 77, then v must be a descendant of m in the elastic subtree
ty; if v is, for example, to the left of m, then it must be to the left of m in ¢;.
Figure 3.1 shows an example of a subtree (on the left) and one of its elastic
matching with the tree on the right. Since all descendants of a node can be
part of an elastic subtree, all of them have to be considered. This leads to the

substitution of the C' term in eq. (3.15) with:

(V1 02) Z Z C(vq, o), (3.17)

va €D (v1) vyED(v2)
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Figure 3.1: A subtree (left) and one of its elastic matchings with the tree on the
right.

where D(v) is the set composed by v and all of its descendants of v and the
C' function is the one defined in eq. (3.14). C, can be computed efficiently by
the following formula:
nc(va) nc(v1)
(U1, 02) Z Cq(v1, chj[va]) + Z Co(va, chj[ve])—
j=1

nc(vz) nec(vy)

=3 ST Culehilonl, ehylus]) + Clon, ).

j=1 i=1

(3.18)

Despite the fact that the feature space associated with the elastic tree kernel is
much larger of the one associated with the parse tree kernel, the authors show that
the computational complexities of the two algorithms are the same.

In [34] it is demonstrated that the elastic tree kernel cannot be generalized for
the application to labelled unordered trees. First the authors show that the problem
of computing the elastic tree kernel for unordered trees has the same difficulty of
the problem of counting the number of times one tree T appears into another tree
T', formally formulated as: K'T/(T,7"). Then they show that K'7I(T,T") can be
reduced to a problem known to be NP-HARD: #Perfect Matchings(G). #Perfect
Matchings(G) of the bipartite graph G = X U Y, such that|X| = |Y|, counts the



50 Chapter 3. State of the Art on Tree Kernel Functions

number of perfect matchings in G. A matching is a set edges (z,y) such that x € X
and y € Y and every x and y appear only once in all matches. The matching is
perfect if all nodes of the graph are considered.

Any algorithm for computing the elastic tree kernel for unordered trees is NP-
HARD since it can be ultimately reduced to #Perfect Matchings(G).

A generalization of the elastic tree kernel is presented in [39]. It is based on the
idea that tree edit distance can be defined as an optimization problem of a common
representation, called tree mapping. The authors propose four kernel functions and
demonstrate that three of them are positive semidefinite. Among these, they prove

that the elastic tree kernel is positive semidefinite (the proof was not present in [35]).

3.1.6 Grammar-Driven Tree Kernel

A different technique for adding expressiveness is to allow a limited level of soft
matching between node labels.

In [69] a grammar-driven convolution tree kernel which introduces more linguistic
knowledge into the subset tree kernel. The kernel enlarges the feature space of [11]
by allowing approximate substructure and tree node matchings according to a given
grammar. Approximate substructure matching means that children of a node can

be ignored provided that the following constraints are satisfied:

e the remaining nodes form a valid grammatical rule.

e there must be at least two children in the reduced rule and the first child must
be kept in the reduced rule. These constraints try to retain the underlying

semantic meaning of their corresponding original rules.

For example the two parse trees corresponding to the sentences “buy a red car” and
“buy a car” wouldn’t match for the parse tree kernel, while the grammar-driven tree
kernel allows them to match by reducing the former sentence to
“buy a red car” — “buy a car”.

The second modification allows a restricted level of soft matching between labels.

Two different node labels may match if they belong to the same equivalence node



Chapter 3. State of the Art on Tree Kernel Functions 51

set. The equivalent node sets are defined a priori. A matching between two different
labels is penalized by a factor )\, ;, dependant on the two labels.

The authors do not provide an efficient implementation of the kernel, but claim
that in their experiments the kernel had a complexity of O(|T1]|7%]).

The grammar-driven tree kernel is a specification of the partial tree kernel [46].
Indeed the partial tree kernel generates a much larger feature space but it also
matches non linguistically motivated structures. This may potentially compromise
the performance since some of the over-generated features may possibly be noisy

due to the lack of linguistic interpretation and constraint.

3.1.7 Semantic Syntactic Tree Kernels

Moschitti et al. [9] introduce a family of kernels, specifically designed for being used
in text categorization tasks, called Semantic Syntactic Tree Kernels. The kernels
introduce an embedded semantic term kernel and a leaf weighting component. They
allow partial matches between tree fragments, where a partial match between two
subtrees occurs when they differ only by their terminal symbols. The partial match
between terminal nodes is performed according to a predefined kernel kg. The tree

fragment kernel is defined as:

nt(f1)
K(f1, f2) = comp(fr, f2) [] ks(f1(), f2(9)), (3.19)

i=1
where the function comp(fi, f2) equals 1 whether f; and f, differs only in the ter-
minal nodes, 0 otherwise, nt(fi) is the number of terminal nodes of the two tree
fragments. The semantic syntactic tree kernel is obtained by modifying eq. (3.7) as

follows:

C(Ul,vg) == )\ks(l}l,vg). (320)

The authors discuss two types of kg kernels. The first type is based on a taxonomy
for computing the term similarity. The second type is based on latent semantic
indexing and computes the similarity by means of co-occurrence analysis of terms

in documents and vice versa.
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3.2 Other Approaches for the Design of Kernels
for Tree Structured Data

This section describes the approaches taken for the design of kernel functions for

trees which are not derived from the convolution kernel framework.

3.2.1 Spectrum Tree Kernel

In [38] a kernel based on counting common tree g-grams is described. Tree g-grams
are subtrees isomorphic to paths with ¢ nodes. The kernel is an adaptation of a
string kernel [41] to tree structured data. Figure 3.2 gives an example of some ¢-
grams. The g-grams are represented by pairs (P, [y, . ..,1;), where P; represent the
type of subtree (by fixing the parameter g there are ¢— 1 different type of isomorphic

patterns not counting the labels).

(Py,abad) (Py,baad) (Ps,abad)

Figure 3.2: Some examples of g-grams, with ¢ = 4. P, identifies the structure of

the path, the string the sequence of labels as encountered by visiting the subtree.

A subtree P, matches a tree T' at a node n if there exists a one-to-one mapping

f from the nodes of P into the nodes of T satisfying the following constraints:

e f maps the root of P ton
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e The ordering of the children is preserved by the mapping. Suppose f maps x
to y and x has children zq, ..., xs, y has children vy, ..., vy, m > k, then the
ordering of the children is preserved if there exists a monotone function g such

that f(.T,L> = Yg(i) and i1 < iy = g(Zl) < g(ZQ)
o Vo e Pl(zx) =1(f(x)).

In order to enumerate efficiently all g-grams, the LabelGram algorithm [52] has been
used. It runs in O(gg?|T|), where g is the maximum out-degree of the tree T and |T|
is the number of nodes of T'. Being G,(T") the vector collecting information about

all g-grams in 7', the kernel is defined as follows:
K(T1.T3) = (Gy(T1), Gy (T1) (3.21)

The computational time of computing eq. (3.21) depends on the number of common
g-grams. In their experiments the authors show that the computational time is

“almost linear”.

3.2.2 Tree Fisher Kernel

The Fisher Kernel has been introduced in [31], it is derived from a generative model
using the gradient of the log likelihood with respect to the parameters of the gen-
erative model as the features. This procedure defines a metric directly from the
generative model, capturing the differences in the generative process of a pairs of
objects. The Fisher kernel assumes that the data is generated from a parametric
probability distribution: P(z|d), where 6 = (6y,...,6,) is a set of parameters of the
model. The idea is to form a representation of the data in terms of those parameters
which are sufficient statistics of x. This is achieved by means of the Fisher Score
U,:

U, = Vylog P(z|0). (3.22)

The Fisher kernel is defined as:

K(z,2) =U'T""u,, (3.23)
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where 17! is the Fisher Information matrix:
I = Ep(ao)U.U, . (3.24)

The Fisher Information is the expected value of the inner product of the representa-
tion U, over P(z|@). In practice, often the information matrix is set to the identity
matrix. It is worth noting that when deriving a kernel from a generative model, the
value of kernel between two objects depends also on the other objects used for con-
structing the generative model, i.e the training set. In this sense the Fisher kernel
adapts to the data instead of being a priori defined.

Nicotra et al. [50] describes an application of the Fisher kernel to structured
data. Hidden Tree Markov Models [16] are used as the generative models for trees.
Their algorithm is applied to rooted positional k-ary trees with a label associated

to each node.
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Chapter 4

A Tree Kernel For Non Discrete Domains

Kernel methods offer a novel approach to the treatment of structured data which
has proven to be effective in many applications. In particular, convolution tree
kernels have received much attention from the research community. Despite their
effectiveness, most of them may produce sparse feature spaces when applied to
datasets with node labels belonging to a large domain. In order to identify this
situation we have defined the sparsity index in eq. (2.23). When a kernel is sparse
with respect to a dataset, all kernel values K (x;, x;) for different objects are smaller
than the kernel value of the object with itself, K(x;,z;). In this situation, the
convolution kernel approach can never be trained efficiently, and it will behave like
a nearest neighbour rule [61]. The learner thus will be accurate on the training data,
but unable to generalize well on unseen data. This intuition is formalized in [30]
for the case of normalized kernels and the v-SVM [58], which is a variant of the
SVM (see section 2.3.2). The authors prove that if the kernel function takes a value
smaller than a certain 0 for any pair of different examples then each example is a
support vector for the v-SVM. The value ¢ depends on the size of the training set
and on the ¢ parameter of the v-SVM.

Reducing the sparsity of the Subtree and Subset tree kernels by allowing soft
matching between node labels is not feasible. By modifying the recursive formulation
of the two kernels, i.e. eq. (3.7) and eq. (3.8), for allowing soft matching would result

in a significant increase of the computational burden. In fact any subtree of the first
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tree would match to any subtree of the second tree.

We investigate on whether the ability of a Self-Organizing Maps for Structured
Data to produce a compressed representation of structural information may be used
to generate kernels less sparse than the current tree kernels which, at the same time,
preserve the structural properties of the inputs. Specifically, we propose a family
of kernels, called Activation Mask Kernels, defined on top of SOM-SD exploiting
both its compression and “topology” preserving capabilities. While for concreteness
we developed our idea on the SOM-SD algorithm, any topology preserving low
dimensional representation of the data, which produces a map as output, could

have been used: for example the CSOM-SD or the graph SOM.

The experimental results obtained on a classification task involving a relatively
large corpus of XML formatted data, provide evidence that, when sparsity on the
data is present, the proposed kernels are able to improve the overall categorization
performance over each individual method, i.e. either SVM using tree kernels or
SOM-SDs equipped with a 1-NN classification rule. This demonstrates that, neither
tree kernels nor SOM-SDs are always able to retain all the relevant information for
classification. The approach proposed in this chapter can thus be considered as a
first step in the direction of defining approaches able to fully exploit the structural

information needed to solve learning tasks defined on structured domains.

The chapter is organized as follows: the Activation Mask Kernel is proposed
in Section 4.1, the relationship with similar techniques are discussed in section 4.2,

experimental findings are discussed in Section 4.3.

4.1 Activation Mask Kernel

In this section, we show how novel tree kernels can be defined on the basis of a
SOM-SD. The basic idea is to represent each vertex of a tree upon its activation on
a SOM-SD map and then define a kernel on this space. Specifically, with no loss
of generality, we assume to have set an enumeration of the neurons based on their

position in the map, e.g. the one obtained by a bottom-up left-to-right visit of the
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map. According to this enumeration each neuron is associated with a unique index
m € 1,...,a x b, where a and b are the horizontal and vertical dimensions of the
map.

Let ne.[m] denote the set of indices of neurons (from a SOM-SD) in the e-neighbour-
hood of the neuron with index m, i.e. {m/|A,;, < €}, where A is the topological
distance defined on the 2-dimensional map. An interesting measure of similarity
between two subtrees which takes into account the topology induced by the SOM-
SD can be defined as the cardinality of the intersection of the e-neighbours of the
neurons mostly activated by these subtrees. We define the set of neurons shared by

the two e-neighbours related to structures t; and 5 as

I(t1,t2) = necfyy,] N nelys,), (4.1)

where, we recall, y;, is the index of the winning neuron for the root node of the
subtree ¢;. A similarity measure between two trees T and T can be defined by the

function:

KT, Ty) = > Y Lt ta)]. (4.2)

t1€N7, t2€NT,
Alternative functions which emphasize the alignment between the activation profiles
of two subtrees can be considered instead of the strict intersection. For example,
it is possible to weight differently matching regions depending on the distance from

the activated neurons:

T17T2 Z Q m yt1 <m7yt2)7

t1 €T1,
to€ds,

melc(t1,t2)

where Q. (m,m’) is inversely proportional to the distance A,,,,» between map neurons
m and m’ and Q.(m,m’) = 0 when the neurons are not in the e-neighborhood of

each other, i.e. A,y > €. As an example, Q.(m, m’) can be defined as

- Amm’ if Amm’ <
Q.(mm)y =14 " ‘ (4.3)
0 otherwise
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where 0 < n < 1 is a parameter determining how much the distance influences the

neighbourhood activation.

Since this kernel is built on activation masks of a SOM-SD, we shall refer to this

approach as the activation mask kernel (AM-kernel).

Figure 4.1 gives an example of construction of the feature space representation
of three trees according to the AM-kernel. On the left part of the image three simple
trees selected from the INEX 2005 dataset (see section 4.3) and on the right part
their activation masks referring to a 5 x 4 map. The height of each element of the
map corresponds to the value of the activation. Note that the tree on top and the
tree on the centre are more similar to each other than to the tree on the bottom

and this is reflected in the activation masks.

The similarity function K (77,7T3) is a kernel for any choice of Q.(m,m’). A
way to demonstrate this is to show that there exists a function ¢ such that for
every 11, Ty, we have ¢(T1) - ¢(Ty) = K. (1T1,T3), i.e. K, can be expressed as a dot
product in the feature space induced by ¢. Specifically, let us define a feature space
which has the same dimension as the map produced by the SOM-SD, i.e. Let a X b,
thus obtaining ¢(7T") € R***. Now, given a tree T, we define the mask M € R**?
where every element of M is associated to a neuron of the map. Let M be initially
set to the null vector. The feature vector is then constructed by computing the
best-matching neuron y; for each subtree ¢t € T" when presented to the SOM-SD.
Then, the entries of M associated to neighbours within radius € of y; are updated
according to M,, = M, + Q.(m, y,); finally, the feature vector ¢(7") will be defined
as ¢(T) = [My, ..., M,yp]. At this point it is easy to check that for a given tree T,
My (T) = 3, cr Qe(m, y¢) where ¢ runs over all possible subtrees of 7', and we can

check that the kernel is obtained by performing the dot product in feature space,



60 Chapter 4. A Tree Kernel For Non Discrete Domains

Figure 4.1: Example of representation in feature space of three trees according to
the Activation Mask Kernel for ¢ = 1. On the left part of the image three simple
trees and on the right part their activation masks referring to a 5 x 4 map. The

height of each element of the map corresponds to the value of the activation.
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i.e.

M(Th) - M(Ty) = > My (Ty) My (T)

= Z Z Qe(m7ytl) Z Qe(m’th)

m tleNTl tQENTQ

= Y (@) Qulmyta))

t1 GNTl ,t2 G]\/vT2 m

=5 Y (@m) - Qm.y))

t1,t2 mET,(t1,t2)
= K.(1,T),
where the third derivation is justified by the fact that Q.(m,y,;) = 0 whenever m is
not in the e-neighbourhood of ;.

The computational complexity of a kernel evaluation of the proposed approach
is governed by eq. (4.1) and eq. (4.2). Specifically it is dominated by the selection
of the winning neurons y, which has to be performed for each vertex of each tree
involved. Thus the whole process has complexity O(a - b - (11| 4 |713])). Note that
the proposed approach requires the initial training of a SOM-SD, which however
is performed only once, thus not affecting the overall computational complexity of

kernel evaluations.

4.2 Related Work

The novelty of the proposed approach consists in creating a novel set of features
from the current dataset. It differentiates from feature selection approaches [23]
and feature weighting approaches [68] in the adaptive nature of the feature creation
process.

Moschitti et al. [9] describe a kernel which allows a limited degree of soft match-
ing. However in their approach only leaf node labels can match while not being
identical. Our approach allows soft matchings between entire structures.

The elastic tree kernel [35] also allows matching between node with different
labels and subtrees with “partially” different structure. Although the definition

of the elastic tree kernel allows soft matching between labels, in the experiments
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presented only exact matchings were considered. The similarity function between
labels in [35] is defined as the sum of the similarities of each of the two labels
with respect to each possible label of the domain. Clearly the application of such
approach is severely limited by the size of the label domain. The Activation Mask
Kernel creates a fixed set of features and then performs exact matching on those
features. By fixing the feature space we generally restrict its size with respect to
complex kernels such as the elastic tree kernel, and thus potentially avoid overfitting.
The drawback of our approach consists in the fact that the novel features must
keep enough information for the learning task. Section 4.3 presents some empirical
results and discusses the settings in which the use of SOM-SD enhances the learning

accuracy.

4.3 Experiments and Discussion

Experiments have been performed to evaluate the performances of the new AM-
kernel. We used the INEX 2005 dataset, a relatively large set of XML formatted
documents which were made available as part of the 2005 INEX Competition [15].
The dataset is described in detail in section A.1.

As a baseline we considered the SVM with ST and SST kernels applied to
the dataset. The obtained results, together with the values of the sparsity index
(eq. (2.23)) and alignment (eq. (2.24)) for each kernel, all computed on the test set,
are shown in Table A.2. The best accuracy on test set has been obtained by the
SST kernel with an error rate of 11.21%.

The experiments started by training a number of maps with the SOM-SD soft-
ware!. Due to SOM-SD training times (e.g., about 12 hours for a single large map
(110 x 80) on a AMD Athlon(tm) 64 X2 Dual Core Processor 3800+ ), and the num-
ber of parameters involved, a comprehensive sampling of the parameter space was
not feasible. Thus, we decided to run preliminary experiments involving the valida-

tion set to sort out the most relevant parameters with respect to the definition of the

Lhttp: / /www.vow. edu. au/~markus /apods /software. html
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proposed kernels. The selected parameters were the map dimension, the number of
training iterations, and the value of p; (we set po as 1 — py). For these parameters

the following values were used:
e map dimension: 110 x 80,77 x 56,55 x 40;
e number of training iterations: 32,64, 128;
e 111: 0.05,0.25,0.45,0.65, 0.85.

For what concerns the other SOM-SD (hyper) parameters, the following values
were chosen: « = 1, neighborhood radius=18, type of a decrease=sigmoidal, map
topology=hexagonal. By combining the above parameters, 45 different maps were
built with the aim of spanning as much as possible the space of SOM-SD parame-
ters and therefore getting insights on the dependency of the final results from the
maps. Since the SOM-SD is an unsupervised technique, the union of the training
and validation sets has been used for creating the maps.

After the training phase each map was evaluated on the test set using a k-nn

procedure with £ = 1. Table 4.1 reports the classification performance of each map.
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map | map size | training iterations | p | test error (%)
1 110 x 80 128 0.05 12.264
2 110 x 80 128 0.25 14.259
3 110 x 80 128 0.45 11.370
4 110 x 80 128 0.65 10.455
) 110 x 80 128 0.85 8.647
6 110 x 80 32 0.05 12.617
7 110 x 80 32 0.25 16.587
8 110 x 80 32 0.45 10.912
9 110 x 80 32 0.65 15.423
10 | 110 x 80 32 0.85 11.661
11 | 110 x 80 64 0.05 13.282
12 | 110 x 80 64 0.25 11.723
13 | 110 x 80 64 0.45 14.238
14 | 110 x 80 64 0.65 11.245
15 | 110 x 80 64 0.85 8.855
16 55 x 40 128 0.05 21.638
17 55 x 40 128 0.25 29.079
18 55 x 40 128 0.45 28.081
19 55 x 40 128 0.65 21.326
20 55 x 40 128 0.85 22.511
21 55 x 40 32 0.05 35.169
22 55 x 40 32 0.25 32.488
23 55 x 40 32 0.45 27.770
24 55 x 40 32 0.65 22.137
25 55 x 40 32 0.85 25.629
26 55 x 40 64 0.05 31.844
27 55 x 40 64 0.25 27.541
28 55 x 40 64 0.45 27.749




Chapter 4. A Tree Kernel For Non Discrete Domains 65

29 | 55 x 40 64 0.65 20.121
30 | 55 x 40 64 0.85 19.144
31 77 x 56 128 0.05 21.451
32 | 77 x 56 128 0.25 24.215
33 | 77 x 56 128 0.45 23.488
34 | 77 x 56 128 0.65 16.296
35 | 77 x 56 128 0.85 9.956
36 | 77 x 56 32 0.05 16.234
37 | 77 x 56 32 0.25 22.282
38 | 77 x 56 32 0.45 19.310
39 | 77 x 56 32 0.65 18.624
40 | 77 x 56 32 0.85 17.585
41 77 x 56 64 0.05 17.169
42 | 77 x 56 64 0.25 22.864
43 | 77 x 56 64 0.45 21.721
44 | 77 x 56 64 0.65 9.457
45 | 77 x 56 64 0.85 15.735

Table 4.1: Classification error of the SOM-SD maps on
the INEX 2005 dataset. Lowest error is in bold.

The resulting classification error ranges from significantly above the baseline
(35.17%) to a very much lower values of the classification error (8.65%). The mean
classification error is 18.94% with a standard deviation of 6.98. This means that
the results are indeed very sensitive to the parameter choice. In the following we

analyse the dependence of the classification error from each parameter:

map size The mean classification error of 110 x 80 maps is 12.24% with standard
deviation 2.23, the mean error of 77 x 56 maps is 18.43% with standard de-
viation 4.52 and the mean classification error of 55 x 40 maps is 26.15% with

standard deviation 4.87. For this problem, clearly bigger maps are to be pre-
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ferred. This is due either to the fact that smaller maps do not have enough
neurons for representing effectively all statistically interesting type of struc-
tures for the task or that different structures are positioned too close, i.e. the

topology of the input space can not be preserved.

Training iterations Table 4.2 reports the mean classification error of the maps
with respect to the number of training iterations. Statistics are divided ac-
cording to map size since the values significantly depend on that. Both 55 x 40
and 110 x 80 maps decrease mean error by increasing the number of training
iterations, so it seems a viable suggestion to use as many training iterations

as possible.

Mean Classification Error (%) w.r.t to Map Size
110 x 80 77 X 56 55 x 40 All maps
iter=32 | 13.44 (2.45) | 18.81 (2.26) | 28.64 (5.23) | 20.30 (7.71)
iter=64 | 11.87 (2.07) | 17.39 (5.35) | 25.28 (5.44) | 18.18 (6.74)
iter=128 | 11.40 (2.09) | 19.08 (5.97) | 24.53 (3.74) | 18.34 (6.60)

Table 4.2: Mean classification error of the SOM-SD maps with respect to number of
training iterations (between brackets the standard deviation). Statistics are divided
according to map size. The last column reports the mean classification error of all

the maps.

Parameter p; The parameter p; determines the influence of the label component
when computing the similarity between a neuron and a structure encoded as
a neuron. us determines the influence of the children component. We recall
that in all experiments us has been set to 1 — py. p parameters are clearly
task dependant. In our case, table 4.3 shows that a high value of u; leads to

lowest classification error on average.

Experiments proceeded by testing the activation mask kernels (AM) defined
in Section 4.1. For each map and for different values of € (see eq. (4.1)) a kernel

was defined. For each kernel, the ¢ parameter of the SVM was selected on the
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Mean Classification Error (%) w.r.t to Map Size
110 x 80 77 x 56 95 x 40 All maps
11=0.05 | 12.72 (0.52) | 18.28 (2.78) | 29.55 (7.05) | 20.19 (3.32)
1=0.25 | 14.19 (2.43) | 23.12 (0.99) | 20.70 (2.53) | 22.34 (0.86)
11=0.45 | 12.17 (1.80) | 21.51 (2.10) | 27.87 (0.19) | 20.52 (1.03)
1=0.65 | 12.37 (7.21) | 14.79 (4.76) | 21.19 (1.01) | 16.12 (3.12)
11=0.85 | 9.72 (1.68) | 14.43 (3.98) | 22.43 (3.24) | 15.52 (1.17)

Table 4.3: Mean classification error of the SOM-SD maps with respect to the

parameter p; (between brackets the standard deviation).

Statistics are divided

according to map size. The last column reports the mean classification error of all

the maps.

validation set from the following values: 0.001,0.01,0.1,1,10,100,1000. Finally,

with the selected value, an SVM was trained on the union of the training and

validation sets and then evaluated on the test set. In all the experiments described

in the following a time out of 24 hours on each executable run was set. This was done

in order to obtain the results in a fair amount of time. Indeed, with this limitation,

the overall learning phase with the SVM lasted for more than 3 months.
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Map Activation Mask kernel Classification error | Improvement (%) w.r.t
e=0|e=1|e=2|e=3|€e=4]|e=5 SST SOM-SD
1 7.046 | 6.215 | 6.153 | 6.340 | 6.672 | 6.693 44.6 49.3
2 7.358 | 6.444 | 6.381 | 6.589 | 6.485 | 6.755 43.1 55.2
3 6.610 | 5.383 | 5.238 | 5.6564 | 6.132 | 6.194 53.3 53.9
4 6.319 | 5.841 | 5.716 | 6.256 | 6.568 | 6.568 44.2 40.2
) 6.464 | 5.965 | 6.277 | 6.693 | 7.254 | 6.340 40.3 22.6
6 6.028 | 5.280 | 5.196 | 5.695 | 6.236 | 6.630 53.6 58.8
7 6.610 | 5.945 | 5.259 | 5.425 | 5.487 | 5.508 50.9 66.8
8 6.506 | 5.737 | 5.737 | 5.903 | 5.737 | 5.986 | 48.8 47.4
9 5.965 | 5.737 | 5.924 | 6.153 | 6.194 | 6.049 47.2 61.6
10 6.028 | 5.695 | 5.945 | 6.173 | 6.194 | 6.402 47.0 49.0
11 6.485 | 6.090 | 6.028 | 6.402 | 6.485 | 6.340 46.2 54.6
12 6.818 | 5.633 | 5.342 | 5.674 | 5.425 | 5.882 52.3 54.4
13 6.444 | 5.321 | 5.404 | 5.300 | 5.550 | 5.591 51.8 62.0
14 6.111 | 5.217 | 5.280 | 5.425 | 5.758 | 5.924 48.6 48.8
15 6.672 | 5.529 | 5.882 | 6.049 | 6.153 | 6.589 | 47.5 33.6
16 7.462 | 6.984 | 7.524 | 7.691 | 7.545 | 7.566 37.7 67.7
17 7.732 | 7.358 | 6.838 | 7.088 | 7.005 | 7.233 39.0 76.5
18 7.878 | 7.982 | 8.273 | 8.252 | 7.753 | 8.252 26.2 70.5
19 7.026 | 7.192 | 6.901 | 7.524 | 7.275 | 7.005 32.9 64.7
20 7.358 | 7.067 | 7.566 | 7.649 | 7.462 | 7.732 31.8 66.0
21 8.501 | 8.127 | 8.293 | 8.293 | 8.584 | 9.146 26.0 76.4
22 8.834 | 9.083 | 8.626 | 8.938 | 9.104 | 8.938 19.0 72.0
23 8.397 | 8.397 | 8.127 | 8.293 | 8.065 | 8.190 | 26.9 70.5
24 8.605 | 8.792 | 8.418 | 8.709 | 8.584 | 8.481 23.2 61.1
25 8.273 | 8.481 | 8.481 | 8.917 | 8.709 | 8.481 24.3 66.9
26 8.896 | 8.543 | 8.626 | 8.377 | 8.356 | 8.501 20.6 72.1
27 7.628 | 7.296 | 6.859 | 7.233 | 7.379 | 7.400 34.9 73.5
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28 6.880 | 7.129 | 6.963 | 7.337 | 7.483 | 7.441 | 33.6 73.2
29 7.649 | 7.129 | 7.919 | 7.732 | 7.608 | 7.940 36.4 64.6
30 | 8.460 | 7.899 | 8.148 | 8.148 | 7.857 | 8.190 24.5 55.8
31 7.753 | 7.483 | 7.774 | 8.044 | 8.896 | 7.899 33.2 65.1
32 7171 | 7.213 | 7.483 | 8.106 | 8.086 | 7.566 33.2 69.1
33 7.067 | 6.693 | 6.547 | 6.610 | 6.527 | 6.859 41.6 72.1
34 6.381 | 6.444 | 6.028 | 6.527 | 6.901 | 6.942 41.8 59.9
35 6.444 | 5.571 | 5.716 | 6.194 | 6.360 | 7.067 | 49.0 42.6
36 6.319 | 5.716 | 5.737 | 6.901 | 6.028 | 6.069 49.0 64.8
37 7.587 | 7.213 | 6.818 | 6.901 | 7.192 | 6.818 39.2 69.4
38 6.256 | 6.256 | 6.007 | 6.236 | 6.527 | 6.880 44.2 67.6
39 7.400 | 6.631 | 6.776 | 7.254 | 7.795 | 7.524 40.9 64.4
40 6.735 | 6.360 | 6.090 | 6.776 | 6.693 | 6.797 | 43.3 63.8
41 6.340 | 6.132 | 6.527 | 6.568 | 7.504 | 7.192 43.4 63.1
42 7.026 | 6.402 | 6.714 | 7.441 | 6.776 | 6.880 33.6 67.5
43 7.026 | 6.901 | 7.026 | 7.171 | 7.192 | 7.628 36.0 67.0
44 7.129 | 6.319 | 6.194 | 6.402 | 6.818 | 6.672 44.7 34.5
45 6.277 | 6.111 | 6.485 | 6.506 | 6.444 | 7.171 45.5 61.2

Mean | 7.110 | 6.687 | 6.694 | 6.968 | 7.041 | 7.109 39.5 60.6
Std | 0.814 | 1.030 | 1.044 | 0.996 | 0.956 | 0.893 | 0.012 0.094

Table 4.4: Classification error of the AM kernel on the
INEX 2005 dataset.
validation for each map is in bold. The map that would
be selected in validation is underlined. The improvement,
for example with respect to SST, is computed according

to the following formula: 100 - SFSSL=TTAM " where err is

The e that would be selected in

ETTSST

the classification error of an algorithm.

The classification error of each activation mask kernel is reported in Table 4.4.

In the last two columns of the table, we have reported the error improvement (in %)
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obtained by the best performing kernel on the validation set (in bold) when varying
the € value with respect to SOM-SD and SST performance, respectively. The im-
provement, for example with respect to SST, is computed according to the following
formula: 100- %, where err is the classification error of an algorithm. The
classification error on the test set for each value of € ranges from 9.15% to 5.20% with
a mean value of 6.93% and standard deviation 0.97. By selecting the € value on the

validation set the classification error ranges from 9.08% to 5.20% mean classification

error 6.79% and standard deviation 1.06.

According to these experiments, the method used for selecting the parameters
is reliable. In fact, if for each map we select the best performance obtained on the
test set and we subtract this value from the performance obtained by the value of
€ selected by the validation set, the mean value obtained over the set of maps is
0.25 (with standard deviation 0.256). Moreover, selecting both the map and the €

in validation, would have led us to obtain the lowest classification error, i.e. 5.20%.

In these experiments, the use of the Activation Mask kernel always improved the
classification performance. The mean improvement of the AM-kernel with respect
to the SOM-SD is 60.5% with standard deviation 0.12. In some cases the error is
reduced up to the 76.5% with respect to SOM-SD and up to the 53.6% with respect
to the SVM with SST kernel. The mean improvement with respect to the SST is
39.4% with standard deviation 0.09. The cumulative low standard deviation suggests
that the improvement is quite independent with respect to the chosen map. In
order to further discuss the dependence of the AM-kernel accuracy from the related
map, a graphical comparison among the classification error on the test set of the
methodologies involved in the experiment has been made in Figure 4.2. The error
values of the AM-kernel are related to the e value selected on validation. The plot
suggests that the map accuracy influence the error of the AM-kernel. Nevertheless
starting from any map the error obtained by the AM-kernel is significantly lower

than the SST and SOM-SD ones.

In the following we analyse the dependence of the classification error from each

parameter of the SOM-SD and from the e of the AM-kernel:
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Figure 4.2: Comparison between classification error of the different techniques on
the INEX 2005 test dataset. Maps on the x-axis are sorted by SOM-SD classification
error. The error values of the AM-kernel are related to the e value selected on

validation (which is reported in correspondence of the map error value).

map size The mean classification error of 110 x 80 maps is 5.83% with standard
deviation 0.44, the mean error of 77 x 56 maps is 6.59% and the mean clas-
sification error of 55 x 40 maps is 7.94%. As for the SOM-SD, larger maps
result in lowest classification error. Note however that, for each map size, the
standard deviation is significantly lower than the standard deviation of the
SOM-SD. The gap between the classification error related to different map
sizes is significantly lower than SOM-SD one.

Training iterations Table 4.5 reports the mean classification error of the maps
with respect to the number of training iterations. Statistics are again divided
according to map size. Differently from the SOM-SD, the AM-kernel classifica-

tion accuracy of 110 x 80 and 77 x 56 maps do not benefit from a higher number
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of training iterations. That is reasonable since, if the map is large enough, the
neurons with time specialize more and more tending, in the end, to represent
singular structures. In other words, it is more likely that different structures
are represented by the same set of neurons (getting a higher matching value)
during the first learning iterations than at the end of the learning process.
Since our goal was to let match different structures for reducing sparsity, not
making use of too many training iterations seems a viable suggestion. Only for
55 x 40 maps a higher number of iterations helps in reducing the classification
error. This may be due to the fact that, since the map is relatively small,
very different structures can be forced to be encoded by nearby prototypes
(influencing each other representation) and thus more training iterations are

needed for differentiating those structures.

Mean Classification Error (%) w.r.t to Map Size
110 x 80 77 x 56 55 x 40 All maps
iter=32 | 5.66 (0.33) | 6.36 (0.54) | 8.53 (1.07) | 6.85 (1.50)
iter=64 | 5.68 (0.50) | 6.65 (0.89) | 7.84 (0.80) | 6.73 (1.08)
iter=128 | 6.16 (0.74) | 6.75 (0.51) | 7.45 (0.57) | 6.79 (0.65)

Table 4.5: Mean classification error of the AM-kernel with respect to

number of

training iterations (between brackets the standard deviation). Statistics are divided

according to map size. The last column reports the mean classification error of all

the maps.

Parameter p; Table 4.6 shows the behaviour of the AM-kernel with respect to

w1 values. It seems that there is no evident correlation of the accuracy and
the parameter p;. By comparing corresponding elements of table 4.6 and
table 4.3 it can be noticed that the error is always reduced and the lower
standard deviation of the AM-kernel results suggests that AM-kernel results

are quite robust.

Parameter € We finally analyse the dependence of the results from the neighbour-
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Mean Classification Error (%) w.r.t to Map Size

110x80 | 77x56 | 55x40 | All maps
p1=0.05 | 5.81 (0.54) | 6.51 (0.90) | 8.06 (0.98) | 6.79 (0.81
p1=0.25 | 5.74 (0.56) | 7.25 (0.37) | 7.74 (1.19) | 6.91 (0.71
11=0.45 | 5.46 (0.25) | 6.66 (0.47) | 7.97 (0.46) | 6.70 (0.39
11=0.65 | 5.98 (0.25) | 6.45 (0.23) | 7.75 (0.76) | 6.73 (0.42
11=0.85 | 6.17 (0.45) | 6.06 (0.32) | 8.20 (0.47) | 6.81 (0.42

Table 4.6: Mean classification error of the AM-kernel with respect to the parameter

w1 (between brackets the standard deviation). Statistics are divided according to

map size. The last column reports the mean classification error of all the maps.

hood size of the AM-kernel. Data is presented in table 4.7. The classification

error, for all map size, initially decreases by increasing €, reaches a minimum

when € = 1 or ¢ = 2 and then increases again. This seems to suggest that, at

least for this task, propagating information to a restricted number of neigh-

bouring nodes is beneficial. When, on the contrary, the € value is too high, the

influence of a node extends too far letting match dissimilar structures which

are not supposed to.

Mean Classification Error (%) w.r.t to Map Size

110 x 80 77 % 56 55 x 40 All maps
e=0 | 6.50 (0.39) | 6.86 (0.50) | 7.97 (0.64) | 7.11 (0.51)
e=1|5.74 (0.36) | 6.50 (0.54) | 7.83 (0.71) | 6.69 (0.54)
e=2 | 572 (0.41) | 6.53 (0.60) | 7.84 (0.67) | 6.69 (0.56)
e=3 | 5.98 (0.44) | 6.91 (0.59) | 8.01 (0.60) | 6.97 (0.54)
e=4 | 6.16 (0.50) | 7.05 (0.76) | 7.92 (0.62) | 7.04 (0.63)
e=5 | 6.23 (0.40) | 7.06 (0.46) | 8.03 (0.63) | 7.11 (0.49)

Table 4.7:

Mean classification error of the SOM-SD maps with respect to the

parameter €. Statistics are divided according to map size. The last column reports

the mean classification error of all the maps.
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In order to explain the obtained results, we collected statistics about sparsity on
the test with respect to AM neighbourhood size. The values obtained are listed in
table 4.8. The sparsity index for all maps with € = 0 is basically equivalent to the

Mean Sparsity Index (%) w.r.t to Map Size

110 x 80 77 x 56 55 x 40 All maps
e=0 | 0.55 (0.0001) | 0.55 (0.0005) | 0.54 (0.0018) | 0.55 (0.0008)
e=1 | 0.54 (0.0097) | 0.47 (0.0356) | 0.28 (0.0536) | 0.43 (0.0330)
e=2 | 0.40 (0.0593) | 0.15 (0.0181) | 0.11 (0.0072) | 0.22 (0.0282)
e=3 | 0.16 (0.0361) | 0.10 (0.0084) | 0.09 (0.0093) | 0.12 (0.0179)
e=4 | 0.11 (0.0134) | 0.09 (0.0113) | 0.08 (0.0153) | 0.09 (0.0134)
e=5 | 0.09 (0.0132) | 0.07 (0.0241) | 0.07 (0.0222) | 0.08 (0.0199)

Table 4.8: Mean sparsity index of the AM-Kernel maps with respect to the pa-
rameter € on the INEX 2005 dataset (between brackets the standard deviation).
Statistics are divided according to map size. The last column reports the mean

sparsity index of all the maps.

baseline: 0.54% (see table A.2). This means that apparently no different structures
are represented by the same neuron in the map. Note that having the same set of
matching structures does not imply that kernel functions must be equal since differ-
ent kernel functions may weight differently each match. The reason for adding the
€ parameter was precisely to reduce sparsity, i.e. to allow matchings between struc-
tures represented similarly by the SOM-SD. By increasing the neighbourhood size
€, the sparsity reduces. This is more evident for smaller maps since it is more likely
that structures are represented nearby. However, if we compare the corresponding
elements of table 4.7 and table 4.8 it is evident that a reduction in sparsity does not
implies systematically a reduction of the classification error. Generally speaking,
from € = 0 to € = 2 both the sparsity and the classification error tend to be reduced;
from € = 3 to e = 5 the sparsity still decreases but the classification error increases.
In other words low sparsity does not guarantee high accuracy. High e values may

over-represent a structure on the map thus making it similar to structures which are
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considered different for the current task.

In order to further sustain our claim that the AM kernel is especially useful for
tasks in which traditional kernels are sparse, we ran the same set of experiments on
a similar, but non sparse dataset involving XML documents which has been used for
the 2006 INEX Competition (see section A.2). In this case the training, validation
and test sets consist of 4237, 1816 and 6054 documents, respectively. Each document
belongs to 1 out of 18 classes. By applying the same methodology as in the previous
experiment, the following results were obtained. The sparsity of the SST kernel
was 0.0025 and its classification error was 59.31%. In this case, the mean sparsity
of the AM kernels, computed over 45 different maps, ranged from 0.0026 (with
standard deviation 0.0000051) to 0.0003 (with standard deviation 0.0003034) when
considering the same set of values for the e parameter. The SOM-SD classification
error ranged from 67.66% to 60.77% with a mean value of 63.98%. The test error of
the AM kernel varied from 64.24% to 58.24% with a mean value of 61.579%.

In order to make an empirical analysis of the relationship between sparsity and
classification error, we run a number of experiments on a set of artificial datasets with
different values of sparsity. We considered the two-class problem of discriminating
the examples of the INEX 2006 dataset belonging to class 8 from the examples
belonging to any other class. From this dataset we created 7 more datasets with the
following values of the sparsity index with respect to SST kernel: 0.0025, 0.07, 0.15,
0.21, 0.40, 0.57, 0.75. The datasets were obtained by concatenating to each label
a uniformly generated random number. In this way identical labels have a chance
to be transformed into different labels, thus adding sparsity. The number of digits
composing the random numbers is constant and thus no different labels can become
equal. By varying the range of the random numbers the desired level of sparsity can
be obtained. The test has been performed on the following map: size= 110 x 80,
training iterations= 64, p; = 0.45. Figure 4.3 compares the classification error on
the test set of the SST and AM-kernel on each dataset. Best parameters of the SST,
i.e. A, and AM-kernel (¢) are selected on validation among the same values used

for the previous experiments. The experiments suggests that the AM-kernel, under
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Figure 4.3: Classification error of the SST and AM-kernel on various datasets with

different levels of sparsity.

certain limits, is robust to the increase of sparsity.

It has not been formally demonstrated that the SOM-SD algorithm is able to
always produce the lower dimensional representation which best represent the topol-
ogy of the input space. While the demonstration is beyond the scope of this chapter,
we empirically investigated the usefulness of the SOM-SD learning algorithm by run-
ning the same set of experiments on the INEX 2005 dataset starting from random,
i.e. non trained, maps. Since the number of training iterations was fixed to 0, 15
maps were created. Classification error on the test set of the AM-kernel (results on
the validation set are very similar) ranges from 90.36% to 28.21% with a mean value
of 51.55% and standard deviation 17.68. Results are most evidently correlated with
the parameter jq: higher values of p; give lowest classification error. This is not
surprising since being the map random the structural information contained in the
neurons is useless or misleading, thus by giving more importance to label informa-

tion best results are obtained. The results of the last experiment clearly show the
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usefulness of the SOM-SD learning algorithm.

In order to assess whether the obtained results were dependent on the specific
datasets involving XML documents, we decided to perform additional experiments
involving a different dataset. We selected a dataset which is typically used for
data mining research, i.e. the LOGML dataset (see section A.4). It consists of
user sessions of the Rensselaer Polytechnic Institute Computer Science Department
website, processed in order to obtain tree representations (see section A.4 for details).
It is a two-class classification problem. 3 datasets are available. They comprises
8074, 7409 and 7628 examples, respectively. The datasets are very sparse: the mean
of the 3 sparsity index values is 0.9595. The classification error of the SST and the
AM-Kernel was computed by performing a 3-fold cross-validation considering, in
each round, one of the dataset as the test set. The results are obtained by using 10

different maps, obtained by using the following parameters:
e map dimension: 110 x 80;
e number of training iterations: 32, 64;
e 12 0.05,0.25,0.45,0.65, 0.85.

In Figure 4.4 a comparison between the classification error of the different tech-
niques on the LOGML test set is plotted, again following the same style of presen-
tation as in Figure 4.2. It can be noted that the results obtained for this dataset
show less variance since they are obtained by a 3-fold cross-validation approach.
Also for this dataset, the AM kernel was able to get a significant improvement over
SOM-SD, and over SST, although the improvement in this case is smaller.

As a last remark we want to stress the fact that the AM-kernel can be defined
on top of any topology preserving low dimensional representation of the data, not
necessarily it must be combined with the SOM-SD. For example, when information
about the ascendant nodes is important for the task, maps could be built by means
of the CSOM-SD. The AM-kernel can be defined for more complicated types of
structures such as graphs by using the graph SOM-SD.
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Figure 4.4: Comparison between classification error (using 3-fold cross-validation)
of the different techniques on the LOGML test dataset. Maps on the x-axis are sorted
by SOM-SD classification error. The error values of the AM-kernel are related to
the e value selected on validation (which is reported in correspondence of the map

error value).



Chapter 5

A Novel Kernel for Trees: Convolution

Route Kernel

As the proportion of publications listed in chapter 3 suggests, convolution kernels,
among the class of tree kernels, have received great attention from the research com-
munity. Convolution kernels describe complex objects in terms of their constituent
parts. However, such an approach tends to discard explicit information about the
“relative positioning” of the elements with respect to one another. Even kernels
based on counting the number of common paths such as the Spectrum Tree Ker-
nel (see Definition 3.2.1) do not take into account the relative positioning of the
nodes. The aim of the present chapter is to investigate the usefulness of this type

of information for building expressive non sparse tree kernels.

The chapter is organised as follows: the novel family of kernels, called gener-
alized route kernels, is defined in Section 5.1. Section 5.2 describes an instance of
the generalized route kernel and provides an efficient algorithm for its computation.
Section 5.3 describes experiments performed on two collections of XML formatted
documents showing that the proposed kernel improves on state-of-the-art tree ker-

nels, thus confirming the viability of the approach.
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5.1 Generalized Route Kernel

This section formally describes the proposed Generalized Route Kernel. In par-
ticular, it will be gradually introduced by starting from a simple formulation, and
then adding pieces with the aim of progressively enriching the feature space. In the
end, we will obtain a kernel which is able to match set of routes according to the

similarity of the labels of the correspondent nodes.

Definition 5.1 (Route) Let T be a (positional) tree, vi,vo € T any two nodes in
the tree, and p(vy,ve) = [v1, ..., vs] the (shortest) path connecting vy and vy through
the edges of T (not considering edge direction). Then the route from vy to ve in T,
denoted by m(vy,vq), is the sequence of indices of edges connecting the consecutive
nodes in the path p(vi,vs). This indices are taken positive (or negative) whenever

edges are traversed away from (resp. towards) the root.

Figure 5.1 gives an example of a tree and a route computed between nodes a
and e. The nodes connected by dashed edges represent the shortest path connecting
nodes a and e, i.e. p(a,e). The route connecting nodes a and e is represented by
the sequence [2,3], since node b is the second child of a and node e is the third

child of b. The route connecting nodes g and b is [—3, 2].

Figure 5.1: An example of a route connecting nodes labelled with a and e. The
nodes connected by dashed edges are the ones comprising the path between the two

nodes. The route is formed by the sequence 2, 3 since node b is the second child of

a and node e is the third child of b.



Chapter 5. A Novel Kernel for Trees: Convolution Route Kernel 81

Some other functions must be introduced before getting to the definition of the
route kernel. The parent of a node is identified by the function pa(v). If a node,
i.e. the root, has no parent then pa() is undefined. The function chpos(v) returns
the position of v with respect to its parent, i.e. chpos(v) =1 if v is the i-th child of
pa(v). When pa(v) is undefined, chpos(v) is also undefined. We finally introduce the
function p'(v;, v;) which returns the sequence of node labels of the nodes in p(v;, v;)
respecting the order of the nodes in the path, i.e. if p(v;,v;) = v;,vp, vs,v;, then
P (vi,v;) = (Li, Iy, ls, ;). For example, given the path connecting the nodes labelled
with a and ¢ in Figure 5.1, p' = (a, b, e).

The route 7(v;,v;) can be recursively defined as:

7 (v, pa(v;)) .chpos(v;) if v; # v;

€ it v; = v,

7'('(’(}1',1)]') = (51)

W

where v;, v; are nodes of a tree 7', and the operator creates a sequence from two
list of objects, and € is a symbol for the empty sequence. We use a function ¢ for
comparing generic objects

1 if xz=2a

d(z,2") = ot (5.2)

A first kernel can be defined by comparing the set of all routes:

Ki(T1,Ty) = Z Z k1 (7 (v, v;), m(vg, U)), (5.3)

03,0 €Ty vy, om €T,
where k; is a kernel defined on the routes. For example by setting k;(z, ') = §(z, 2'),
K, would become a kernel counting the number of common routes of the two trees.
It is straightforward to show that if k; is a valid kernel then K is a valid kernel.
Let M be the set of trees, X'T the set of paths in T, Mp pn, = X/Tl X X’ITQ the
Cartesian product of the two sets of paths of 77 and 75, then K; is an instance of

the mapping kernel (see Section 3.1). My, 1, is clearly a transitive function and

thus K is positive semidefinite.
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In order to add expressiveness to the kernel we combine k; with a kernel ko

defined on sequences of node labels:

ka (P (vi, v3), P (v1, Um) ). (5.4)

The combined local kernel k3 = ki ® ko can be defined based on the product between
ki and ko:

Fa(m (vi, v5) 5 7 (v, 0m)) K2 (P (03, 05) 5 P (01, 0m)) =
ki @ ko (7 (vi, 05) 0! (3, 05)) (7 (01, 0m) P! (01, 0m))) - =
ks (7 (i 0) ' (viyv3)) 5 (7 (01, 0) ' (01, 0m))) =
ks (p (vi, v5) 0 (Vi ) -

(5.5)

Note that the operator ® preserves positive semidefiniteness (see page 31), and thus
k% is a valid kernel. k3 is obtained from k% noticing that a pair of nodes (v;,v;)
uniquely determines the route 7 (v;,v;) and the path p (v;,v;), and thus k3 can be
defined to be equivalent to k% although using a simplified notation.

A further extension to the kernel can be obtained by letting match group of
features as in eq.( 2.21). This would allow to count as features the simultaneous
presence of groups of nodes at particular positions:

d

Kp(MuT) = > > ks((wivy), (vom) +e| (5.6)

03,05 €Ty vy,vm €T

where e € R, d € N.

5.2 An instantiation of the Generalized Route Ker-

nel

In this section, we discuss an instance of the generalized route kernel and give for
it an efficient implementation. Our purpose, in this section, is to obtain a kernel
function matching identical pairs of type (7,1), where [ is the label of the last node

in the path associated to the route 7. The following modifications to eq. (5.6) are
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needed. Since k3 is defined in terms of k; and ko, we start by modifying these two

functions:

Ky (0 (v, v5), (o, v)) = 0(m(vi, v;), 7 (0g, Vg ) ) AT (5.7)

where A € R is a user defined parameter and |7 (v;,v;)| is the length of the route
7(v;, v;), which corresponds to the length of the corresponding path. k; in eq. (5.7)
let match only identical routes. Note that the value of each match is weighted ac-
cording to a value A dependent on the length of the route. The basic idea motivating
the introduction of the parameter \ is to downweight the influence of larger routes
in the same way as described for the ST and SST kernels (see section 3.1.2). The

function ks is modified as follows:

ko (P (vi, v3), P (v, vm)) = 6(15, L) (5.8)

ko tests if the labels of the last nodes in the two paths are identical. Note that the
use of the kernel ks could have been avoided by imposing the following condition on
Mo, 1y

((vi,v5), (v, V) € My, < 1 = L. (5.9)

In the following, we also experiment an alternative definition for the kernel ko

based on the production rooted at the last node of the path:

Eproa(p(vi, v5), p(v, v)) = (prod(v;), prod(vy,)), (5.10)

where prod(v) is the subtree rooted at node v and composed by all the children of v.

We further restrict the set of feasible routes by imposing the following condition

to the sets X'T:
’ ;i
X, = {p(vi,vjﬂvi,vj eT hv; € A} , (5.11)
where v; € Z means that v; is a descendant of v;. In other words routes are allowed

only between a node and its descendants or the node itself.

The final form of the route kernel is thus the following:
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d

Kroute(T17T2) = Z 5(Uj7Um)é(ﬂ-(z}hvj)aﬂ-(vlavm)) +e )
(p(i,v5),p(vi,0m))EMT) 1

(5.12)

Since matches are allowed only with identical routes, a node v at depth o in the
tree has associated o non null features: one feature related to the path composed
only by the same node, one feature related to the path p(pa(v),v), one feature related
to the path p(pa(pa(v)),v) = p(pa®(v),v), and so on until the feature related to the
path connecting the root of the tree to the node:p(pa®(v),v). The total number of
non null features for a tree with |7'| nodes is less or equal than Zgl depth(v;) =
avgdepth(T) - |T|, where depth(v) is the depth of node v and avgdepth(T) is the
average depth of a node in 7. Note that the total number of non null features
is equal to avgdepth(T) - |T| when the labels of the nodes in T" are all different.

Figure 5.2 gives an example of the set of features associated with a simple tree.

3 3
o 1 :
= O Ke x I } i
o 1
1 3
Figure 5.2: A tree (left) and its set of features according to the route kernel defined
in eq. (5.12).

5.2.1 Implementation

We now turn our attention to an efficient implementation of the kernel proposed in
eq. (5.11) and eq. (5.12). Without loss of generality it is assumed that parameters e

and d are set to 0 and 1, respectively. Since no routes of different length can match,
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the definition of M given by eq. (5.9) and eq. (5.11), can be rewritten as

Mz, = M) 1, (5.13)

s=0

where o is the smallest of the maximum depth of the trees T and T5. M%{Tz is

defined as:
(V3 v3), (V1 vm)) € ME) 1 & 1 = Ly A (03, 0)| = |7 (vr, 0)| = 5. (5.14)

Clearly Vi # j, 17, Tz../\/l%);p2 N /\/l(le);,,2 = (). Eq. (5.12) can be rewritten as

K (Ty,Ty) = Y Sl vy), w0, vm)) =

((v3,05),(v,0m)) EMT 1

> S S (a(on ) (o o) _

s=0 ()
((Ui7 ’U]'), (’Ul,’l}m)) € MTl,TQ

Q
Q

> 6 (xpa’(v5), v3), 7(pa’ (), vm)) | = > 9 (v, vm) |

((pa® (07, v7), (pa* (vm), vm)) € M3 1) ey

(5.15)

where C'®) (v;,v;) can be computed according to the following rules:
1. if s = 0 then C¥(v;,v;) = §(vy, v;);
2. if s > 0 then C®(v;,v;) = CC~Y(v;,v;)d(chpos(pa(v;)®), chpos(pa(v;)?)).

Eq. (5.15) suggests a strategy for computing the route kernel: by starting from the
set of common labels of the two trees, identical routes of increasing length can be
looked for. Clearly, since a common route of length s can have match only if its
subroute of length s — 1 has a match, the proposed strategy can be stopped as soon
as no more routes of current length are found.

The algorithm we propose (algoritm 2) assumes to treat trees with arbitrary but

finite out-degree. It starts by computing the number of nodes with the same labels.
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It then proceeds by comparing the routes of length s, with s going to from 1 to the

minimum of the maximum of the depths of the two trees.

In the following the behaviour of the algorithm is analyzed in detail. Lines from
1 to 4 initialize internal variables and create a sorted list of nodes for each tree. The
procedure costs O(|T'| log |T'|). Lines from 5 to 12 compute the number of matchings
due to the routes of length 0, i.e. the number of common labels. The computational
complexity of the procedure is O(p|T|). Line 14 creates an array which will con-
tain information about the matchings between routes at current level. Its cost is
O(mazxout). Each while iteration (lines 15 to 42) costs O(n), since L lists may not
contain more than O(n) elements and for each list O(1) operations are performed.
Line 15 has a computational complexity of O(mazout). However, it can be skipped
by making use of a variable and an array of the same size of F'. The variable, say
t, is initially set to 0 and it is incremented every time the while loop is entered.
Whenever F is written to (lines 17 and 25), the current value of ¢ is recorded in the
auxiliary array, say F’. When values from F' are read (lines 22 and 32), they are
considered valid if the corresponding value of F’ is equal to ¢, otherwise the read
operation returns a value of 0. Each while iteration counts the number of common
routes of length s. Initially s = 1; If at least one common route of length s is found
(there is a non empty list L), then, in the next while iteration, routes of length s+ 1
are looked for. Clearly, there are no more than the length of the longest path in the
smallest tree, i.e. min(maxdepth(7}),maxdepth(73)), of such paths. By summing
up the cost of all lines, the total cost of the algorithm in the worst case becomes:
O(|T| *x avgdepth(T) + |T'|log |T'|). Note that the average depth of a node in a tree
can be at most O(n), thus the complexity of the algorithm can be at most O(n?).
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Algorithm 2: Pseudo-code for computing the kernel k,quze (77, o).

© 0 N OO A W N =

e S S S
R W N = O

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Input: 77 and T>, two trees. A, a user defined parameter.
Output: kroute(Th,T2)
k = 0; mazout =max {outdegree(T1),outdegree(Ts)};
create a sorted list List; of nodes v € T1 according to their labels;
create a sorted list Lista of nodes v € Ty according to their labels;
for j =1 to 2 do

vj= 0; // vector of dimension p

foreach v € List; do

v.label= l(v);
v; += v.label;

end
end
k += )\’U—lrUQ;
A2 = A
create array F|[] of dimension mazout;
while |Listi| > 0 A |Listz| > 0 do
for i = 1 to mazout do vy ;= 0, F[L,i] = 0;
; // previous step (and line 39) can be avoided, see text.
foreach node € List; do

Flchpos(v)]= 1;

V1,chpos(v) += v.label;
end
for i = 1 to maxout do vy ;= 0, F[2,i] = 0;
foreach v € Listy do
if F[1,chpos(v)]= 0 then
remove v from Lista;
else

F[2,i] = 1;

V2, chpos(v) += v.label;

substitute v with w s.t. w = pa(v) and w.label= v.label;

end

end
end
foreach v € List; do
if F[2,chpos(v)]= 0 then
remove v from Listy;
else
‘ substitute v with w s.t. w = pa(v) and w.label= v.label;
end

end

end
for : = 1 to maxout do k += szlivli?
Ao = A2 -

end

return k
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5.2.2 Relationship with other Kernels

It is known that, with respect to the feature space, ST C SST C PT. Given a tree
T, ST associates to 1" at most a linear number of non-null features. SST and PT,
with respect to T', have at most an exponential number of non-null features. The
number of non-null features of the Route kernel is at most avgdepth(T)|T|. The
features space of the Route kernel is not directly comparable with the one of the PT
kernel. However if all labels of a tree were identical, the feature space of the Route
kernel would properly be included into the feature space of the PT kernel. This
is not the common case: two matching nodes for the Route kernel having different
ascendants would not match for the PT kernel. The analysis of the Gram matrices
of the various kernels show that ST and SST are more sparse than the route kernel,
which in turn is more sparse than the Partial tree kernel. In fact, the sparsity
index of the PT kernel on the three datasets is 0. The sparsity of the route kernel
is 0.46% for INEX 2005 and 0 for all the other datasets. Regarding computational
complexity, ST is faster than SST, which in turn is faster than PT. The Route kernel
has a lower computational complexity than the PT kernel and, in the worst case,
the same quadratic complexity of the SST. Note that, when avgdepth(T) is O(1),
the computational complexity of the Route kernel is equivalent to the one of the ST

kernel.

5.3 Experiments and Discussion

Experiments were performed to test the effectiveness of the proposed kernel with
respect to ST, SST, the polynomial version of SST (obtained by exponentiating the
kernel value in the same way as described for the route kernel in eq. (5.6)) and the
PT kernel. The implementation of these kernels is available as part of the svm-light

software!. Our approach has been tested on the INEX 2005 dataset (section 5.3.1),

thttp://dit.unitn.it /~moschitt/Tree-Kernel.htm



Chapter 5. A Novel Kernel for Trees: Convolution Route Kernel 89

the INEX 2006 dataset (section 5.3.2), the LOGML dataset (section 5.3.3). In some
cases the training procedure was stopped due to excessive training times. Specifically
we set a 24 hours time out for each single learning procedure. The time out was

necessary because of the number of parameters involved.

5.3.1 Experiments on INEX 2005

In order to verify the effectiveness of the proposed kernel, a number of experiments
were run on the INEX 2005 dataset. For each setting of the hyper-parameters, SVM-

based multi-class classification was performed by using the one-against-all method-
ology.

Experiments were carried out with the local kernel defined on node labels,
eq. (5.8) and with the local kernel defined on productions, eq. (5.10). In both
scenarios a subspace of the parameters of the route kernel were evaluated. Specifi-
cally, experiments were performed with both normalized and not normalized route
kernel. The e parameter in eq. (5.12) was set to 0 in all experiments. The parameter
d in eq. (5.12) was set to 1,2,3. For each combination of the previous parameters,
the A and ¢ parameter of the SVM were selected in validation among the values:
A = {0.05,0.1,0.25,0.50,0.75,1.0,2.0} and ¢ = {0.001,0.01,0.1,1, 10,100, 1000}.
The lowest classification error of the subtree and subset tree kernel is 11.21% (see
appendix A.1). The polynomial version of the SST reached a 10.67% classification
error on the test set. A first set of experiments were performed by making use of the
kernel defined on node labels, eq. (5.8). Table 5.1 summarizes the results obtained.
The classification error ranges from 3.39% to 3.02%. The lowest classification error,
3.02%, is obtained by using the polynomial version with degree 3 of the normalized

kernel.

We proceeded by testing the route kernel with local kernel defined on produc-
tions, as described by eq. (5.10). Table 5.2 summarizes the results obtained. The
classification error ranges from 3.58% to 3.35%. The lowest classification error is

reached by the polynomial version with degree 2 of the not normalized kernel.
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kernel d | best A | best ¢ | error % (valid) | error % (test)
not normalized | 1 | 0.25 1 3.10 3.14
not normalized | 2 1 0.001 3.38 3.10
not normalized | 3 | 0.75 | 0.001 3.66 3.39
normalized 11 0.25 10 3.17 3.17
normalized 2| 0.25 10 3.10 3.06
normalized 3 0.5 10 3.17 3.02

Table 5.1: Accuracy of the route kernel with local kernel defined on node labels on
the INEX 2005 dataset. The columns represent, respectively, the type of kernel, the
exponent d in eq. (5.12), the A and ¢ values selected on validation, the classification

error on validation, the classification error on the test set.

kernel d | best A | best ¢ | error % (valid) | error % (test)
not normalized | 1 | 0.25 1 3.31 3.52
not normalized | 2 | 0.25 0.1 3.66 3.35
not normalized | 3 | 0.75 | 0.001 3.80 3.41
normalized 1] 0.50 100 3.52 3.39
normalized 2 0.1 10 3.52 3.54
normalized 3 0.1 10 3.94 3.58

Table 5.2: Accuracy of the route kernel with local kernel defined on node produc-
tions on the INEX 2005 dataset. The columns represent, respectively, the type of
kernel, the exponent d in eq. (5.12), the A and ¢ values selected on validation, the

classification error on validation, the classification error on the test set.
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Table 5.3 compares the classification error of the route kernel with respect to
ST, SST, the polynomial version of SST and the PT kernel. Note that the Partial
tree kernel has lowest classification error, 2.96%, while the route kernel with local

kernel defined on labels places second with 3.06% classification error.

kernel valid error % | test error %
ST 13.15 11.27
SST 12.79 11.21
Polynomial SST 12.09 10.67
Partial Tree 2.96 2.96
Route, ky =eq. (5.8) 3.10 3.06
Route, ks =eq. (5.10) 3.31 3.52

Table 5.3: Comparison between the classification error of ST, SST, the polynomial
SST, the Partial Tree kernel and the Route kernel, respectively. Data refer to the
INEX 2005 dataset. The columns represent, respectively, the type of kernel, the
lowest classification error on validation, the corresponding classification error on the

test set.

5.3.2 Experiments on INEX 2006

A second round of experiments has been performed on the INEX 2006 dataset
to further test the kernel. For each setting of the hyper-parameters, SVM-based
multiclass classification was performed by using the one-against-all methodology in

a similar manner as for the experiments on the INEX 2005 dataset.

Both local kernels were experimented with the same set of parameters used for
the INEX 2005 dataset (see section 5.3.1). The lowest classification error obtained
on the test set by the subset tree kernel is 60.14%. The polynomial version of the
SST reached a 59.30% classification error on the test set. Table 5.4 summarizes the

results with the local kernel defined on node labels. Classification error values range

from 77.14% to 59.94%.
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kernel d | best A | best ¢ | error % (valid) | error % (test)
not normalized | 1 | 0.05 1000 62.05 64.35
not normalized | 2 | 0.25 1 58.72 59.94
not normalized | 3 | 0.05 0.1 60.55 62.24
normalized 1] 0.05 100 63.88 63.73
normalized 2| 0.25 1000 62.46 70.53
normalized 3| 0.25 10 62.14 77.14

Table 5.4: Accuracy of the route kernel with local kernel defined on node labels on
the INEX 2006 dataset. The columns represent, respectively, the type of kernel, the
exponent d in eq. (5.12), the A and ¢ values selected on validation, the classification

error on validation, the classification error on the test set.

The lowest classification error is obtained by the polynomial version with degree
2 of the not normalized kernel. The improvement of the route kernel with respect to
SST, computed as in Section5.3.1, goes from —30.08% to —1.07%. The improvement
with respect to the AM-kernel ranges from —26.72% to 1.52%. The local kernel, in
the best case, can only slightly improve on the AM-kernel and it always performs

worst than SST.

Experiments proceeded by testing the route kernel with local kernel defined on

node productions. Table 5.5 summarizes the results obtained.

Classification error values range from 63.05% to 57.12%. The lowest classification

error is obtained by the polynomial version with degree 2 of the normalized kernel.

Table 5.6 compares the classification error of the route kernel with respect to
ST, SST, the polynomial version of SST and the PT kernel. Note that the lowest
classification error is obtained by the route kernel with local kernel defined on node
productions, 58.09%. The partial tree kernel reaches a 58.17%. Other kernels have
a classification error going from 1.47% worse than the route kernel to 9.89%. The
INEX 2006 is a harder task than INEX 2005. Nonetheless the route kernel, in
conjunction with the local kernel defined on productions, is able to improve on the

classification error of all the other techniques we compared to.
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kernel d | best A | best ¢ | error % (valid) | error % (test)
not normalized | 1 | 0.50 1 60.94 62.62
not normalized | 2 | 0.05 1 56.33 57.12
not normalized | 3 | 0.05 0.1 57.39 D7.71
normalized 1 0.5 1 61.44 63.05
normalized 2 0.3 10 55.55 58.09
normalized 3 0,3 100 58.22 58.97

Table 5.5: Accuracy of the route kernel with local kernel defined on node produc-

tions on the INEX 2006 dataset. The columns represent, respectively, the type of

kernel, the exponent d in eq. (5.12), the A and ¢ values selected on validation, the

classification error on validation, the classification error on the test set.

kernel valid error % | test error %
ST 68.32 67.98
SST 56.55 59.56
Polynomial SST 55.55 59.88
Partial Tree 597.83 58.87
Route, ky = eq. (5.8) 58.72 59.94
Route, ks =eq. (5.10) 55.55 58.09

Table 5.6: Comparison between the classification error of ST, SST, the polynomial

SST, the Partial Tree kernel and the Route kernel, respectively. Data refer to the

INEX 2006 dataset. The columns represent, respectively, the type of kernel, the

lowest classification error on validation, the corresponding classification error on the

test set.
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5.3.3 Experiments on LOGML

The LOGML dataset consists of user sessions of the Rensselaer Polytechnic Insti-
tute Computer Science Department website. It is a binary classification problem. 3
datasets are available. They comprises 8074, 7409 and 7628 examples, respectively.
Because LOGML is divided into 3 datasets, it was natural to compute the classi-
fication error of the kernels by performing a 3-fold cross-validation considering, in
each round, one of the dataset as the test set. The set of parameters involved is the

same as the one for the INEX 2005 experiments (see section 5.3.1).

kernel d | best A | best ¢ | cross validation error %
not normalized | 1 | 0.75 0.1 16.73
not normalized | 2 0.1 1 16.84
not normalized | 3 0.1 1 17.45
normalized 11 0.75 1 16.20
normalized 2 0.5 1 16.36
normalized 3 0.1 1 16.82

Table 5.7: Classification error of the route kernel with local kernel defined on node
labels on the LOGML dataset. The columns represent, respectively, the type of
kernel, the exponent d in eq. (5.12), the best A and ¢ values, the corresponding cross

validation error.

Table 5.7 summarizes the result obtained by the route kernel with local kernel
defined on node labels. The lowest error is obtained by the normalized version of
the kernel setting A = 0.75 and ¢ = 1.

Table 5.8 summarizes the result obtained by the route kernel with local kernel
defined on node productions. The lowest error is obtained by the normalized version
of the kernel setting A = 0.1 and ¢ = 1.

Finally, table 5.9 compares the route kernel to the ST, SST, the polynomial ver-
sion of SST and the PT kernels. The values listed are the mean of the classification
error on the three folds. Note that the Route kernel with local kernel defined on

node labels has the lowest mean classification error, 16.20%.
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kernel d | best A | best ¢ | cross validation error %
not normalized | 1 0.1 1 16.98
not normalized | 2 0.1 1 18.15
not normalized | 3 | 0.05 1000 19.76
normalized 1 0.1 1 16.79
normalized 2| 0.05 1 17.97
normalized 31 0.05 100 20.09

Table 5.8: Classification error of the route kernel with local kernel defined on node
productions on the LOGML dataset. The columns represent, respectively, the type
of kernel, the exponent d in eq. (5.12), the best A and ¢ values, the corresponding

cross validation error.

kernel cross validation error %
ST 16.72
SST 16.84
Polynomial SST 16.82
Partial Tree 16.40
Route, ks =eq. (5.8) 16.20
Route, ks =eq. (5.10) 16.79

Table 5.9: Comparison between the classification error of ST, SST, the polynomial
SST, the Partial Tree kernel and the Route kernel, respectively. Data refer to the
LOGML dataset.
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5.3.4 Discussion

Experimental results obtained on the three non-trivial datasets, some of which in-
volving up to 18 different classes, have shown that the feature space induced by the
proposed kernel is rich enough to give state of the art performances with respect to
the most widely used tree kernels. The proposed kernel is thus able to reach quite
good results while keeping a reasonable computational complexity. In addition to
that, the proposed algorithm for computing the kernel can be easily adapted to
parallel computation. In fact, each tread of computation could take responsibility
for computing the contribution to the kernel given by the matchings between routes
that end up on specific nodes (of the two trees) with identical label. The same
approach can not be applied to the other kernels because of the strong dependencies

among nodes.



Chapter 6

Efficient Score Computation by
Compacting the Model

While Support Vector Machines has a high generalization capability, several authors
have pointed out that a drawback of this approach is the time required both in
learning and classification phases [5, 17,49, 62]. Typically kernel methods spend
most of their time during execution evaluating kernel functions. This stays true also
for the classification phase. Kernel methods express a solution as a combination of a
subset of training examples, the support vectors. Since the computation of the score
depends on the number of support vectors, when this number is a large fraction of
the training set, the total time required may become excessive for some applications.
This is especially true when dealing with large amount of data.

Several approaches have been pursed to tackle this problem.

Nguyen and Ho [49] describe an iterative process to replace two support vectors
with a new one representing both of them. The replacement operation involves
the maximization of a one-variable function in the range [0,1]. Anguita et al. [5]
replace the set of support vectors with a single one, called archetype. However
the archetype is defined in the feature space and thus it is necessary to solve a
further quadratic optimization problem to find an approximation in input space.
The approximated model, according to the authors “maintain the ability to classify
the data with a moderate increase of the error rate”. Downs et al. [17] proposes

a numerical algorithm for eliminating the linearly dependent support vectors and
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update accordingly their correspondent base vectors. Kudo et al. [40] propose to
represent the model with a vector summing the feature space projections of all the
examples in the model. Since this approach is not convenient when the feature space
is very large, the authors describe a way to approximate the model.

Tipping [62] proposed the Relevance Vector Machine, an algorithm based on
Bayesian theory with a functional form similar to SVM which tries to minimize
the number of support vectors produced during learning. However the Relevance
Vector Machine requires O(N?) time and O(N?) memory to train. Relevance Vector
Machines not only bound the user to a particular learning algorithm, but also can
not be used for on-line settings or large datasets.

All previous cited papers reduce the computational burden of the classification
phase by finding an approximation of the model. In most cases the approximation is
found by solving an optimization problem. The computational complexity or type of
learning algorithm prevent their use in on-line settings. In this chapter we describe
a way to speed up the computation of the score with no approximation and without
the need to solve an optimization problem. The approach we describe can be applied
to any convolution kernel and with any kernel based algorithm. The basic idea is
to avoid the re-computation of kernels between the same substructures belonging to

different examples.

6.1 General Considerations

We start by recalling the definition of generalized convolution kernel given in

section 3.1:

k(i) = Kaa) =Y Y [@,2) € Mo Jk(a',2)),

(@ 7)) €Mz a, @/EX], TEX,,
where [condition] is defined as:

o 1 if condition is true
[condition] =
0 otherwise.
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The score function, instantiated for the case of convolution kernels with respect to

a model M, can be rewritten as:

S@y= Y awn Y > @) e Moy k(e af) =

z €M x’Ex; I;EX;_
© .,Z

= Y Y @) € Mg Jag k(@' 7)) =

/
a’ex z;ex;_
3
T, €M

= Z Z ag, k(2 x) =

’
x’exz zg'(z/,zg)GMx,xi

r;, €M
_ S flal, M) k(' 7).
x’Ex;
(6.1)
where f(z}, M) = Z Q. f(2h, M) sums the o’s related to the same sub-
z;.(z’,z;)eMz,zi
z, €M

structure appearing in different structures of the model. It is clear that the knowl-
edge of the f(x}, M) values would avoid to recompute many times the same kernel
function (for the same substructures in different structures), thus reducing the over-
all time required for computing the score. As it will be shown in the next sections,
the savings could be remarkable especially when dealing with large amount of data.
It is worth noting that our purpose is not to store k values, thus what we are going
to describe is not a cache-like approach. The reason for that is to avoid to have to
recompute some kernel values. In fact, to our knowledge, no finite-size cache (unless

of course it can save all kernel values) can guarantee to have no cache miss.

6.2 Compacting a Forest of Trees

In the following sections it will be shown how to instantiate the results of section 6.1
to the case of tree structured data. Equation (6.1) suggests a general methodology
for reducing the computational resources needed for computing the score function.

In order to compute f(z}, M) efficiently a suitable data structured for encoding the
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substructures of the structures in the model has to defined. In the following we
discuss this problem for learning scenarios involving convolution kernel functions for
which the set X; is composed by the set of subtrees of . We start by observing
that a scoring function is defined on the basis of a set of trees (a forest). It is
quite reasonable to assume that different trees in the forest share common subtrees,
otherwise learning would hardly be effective. If this assumption is true, considering
each tree independently from the others would imply that many partial kernel cal-
culations, i.e. the ones corresponding to the shared subtrees, are recomputed from
scratch. We suggest to represent the forest as a unique structured model, namely
an annotated minimal Directed Acyclic Graph (DAG) representing shared subtrees
only once while keeping track of the frequency of each subtree.

Once the minimal DAG has been computed, the evaluation of the scoring func-
tion for a new tree can be performed by a single match between the tree and the

minimal DAG. As we will see, this can lead to a great gain in computation.

6.2.1 From a Forest to a Directed Acyclic Graph

Given a tree forest F', if there exists a set of trees 7 C F' which share a common
subtree T, then we can think to explicitly represent T only once. Following this idea,
we define a procedure that merges all the trees in a forest F' into a single minimal
DAG, i.e., a DAG with a minimal number of vertices.

More formally, a minimal DAG is represented as an annotated DAG, where
each node is annotated with a pair (label, frequency). The label field represents the
label associated with the node, while the frequency field is used to count how many
repetitions of the same subtree rooted in that node are present in the tree forest.
The exact role of the frequency field will become clearer in the following.

The advantage of having a minimal DAG is the considerable reduction in space
complexity to represent a forest with no loss of information. This space reduction will
eventually lead also to a time complexity reduction. In some cases, this reduction
can even be exponential. In Figure 6.1 an example of a forest and its minimal

DAG representation, is given. In the following we also give the pseudocode and
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implementation details, of a procedure able to efficiently compute shared subtrees

and to exploit this information to represent a forest as an annotated DAG.

Forest Minimal DAG

f f1 f,1
b/\f /\
A Na

a g

Figure 6.1: Example of how to represent a forest as a minimal DAG with no loss
of information. Nodes in the minimal DAG are annotated with a label and the

frequency in the forest of the subtree rooted at that node.

Minimal DAG creation

Figure 6.2 describes the algorithm for creating a minimal DAG from forest of trees.
The procedure InvTopologOrder(7;) used in the algorithm returns a total order of
vertices of T; which is compatible with the (inverted) partial order defined by the arcs
of T;. Thus, the first vertices of the list will be vertices with zero outdegree, followed
by vertices which have only children with zero outdegree, and so on. Using this
order guarantees the (unique) existence of vertices ¢; € uD s.t. dag_rooted_at(c;) =
dag_rooted_at(ch;[v]). In fact, for each i, the vertex ch;[v] is processed before vertex
v and is either inserted in puD or recognized as a duplicated of a vertex already

present in pD.

It should be noted that the function dag_rooted_at(-) can be implemented quite
efficiently by an indexing mechanism, where a unique code is defined for a void child,
and a unique code for the root of each different DAG is generated by recursively

considering the label of the root and the (unique) codes computed for its children.
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MinimalDAG

Input: A tree forest ' = {T1,...,Tx}
/* 1= label, f = frequency, dag = dag_-rooted_at */
Initialize: puD «+ void DAG;

for j — 1to N do
vertex_list «— InvTopologOrder(Tj);
while vertex_list # () do

v = pop(vertex _list);
if Ju € uD s.t. dag(u) = dag(v)
then f(u) — f(u)+ f(v)
else
add to uD a node w where
(w) = I(v) and f(w) = £(v)
forall children ch;[v] of v
add arc (w, ¢;) to uD where
¢i € Nodes(puD) and
dag(c;) = dag(ch;[v])

return uD

Figure 6.2: The algorithm to transform a tree-forest into a minimal DAG.

In our implementation we have realized an indexing mechanism by using Adelson-
Velsky Landis (AVL) trees [1]. Let ¢ be a vertex of a tree 7" and [ the length of the
longest path in 7" starting from ¢ and reaching a vertex of T" with 0 out-degree. Then
an AVL tree for each possible value of [ is defined, i.e. AVLY. When a vertex s € T
with 0 out-degree is processed, there is an attempt to insert it in AV L using as
key the label associated with s. If the key is already present, it means that a vertex
s' with 0 out-degree and same label has already been inserted in AVL®. In that
case, s is marked, the frequency for s’ is incremented by 1, and the pointer to s’ is

associated with it, so that, when the parents of s are processed, their pointers to
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s are substituted by the pointer to s’. When all the vertices with 0 out-degree are
processed, vertices with [ = 1 are considered and the same process is repeated with
the following two differences: i) the children of ¢ are checked and for each marked
child, its pointer is substituted by the associated pointer; i) the key used for the
insertion in AV L™ is given by the concatenation of the label associated with ¢ with
the ordered sequence of (revised) pointers to its children. If the insertion of ¢ fails,
i.e., an “equivalent” vertex is already present, the same operations described for s
are executed. The treatment of vertices with [ > 1 is the same described for the
case [ = 1. Both insertion and lookup into an AVL tree take O(log(n)), where n is
the number of items contained into the AVL tree.

Notice that using a different AVL tree for each value of [ allows us to reduce the
number of vertices inserted in the AVL, thus reducing the searching time for the

key.

Adding a tree to a minimal DAG

The algorithm used to insert a new tree into the model is depicted in Figure 6.3.
Note that it is very similar to the generation of a minimum DAG with the difference
being that in this case the frequency associated with the model is updated with the
frequency of the subtree to be added weighted by the quantity «.

6.2.2 Efficient Score Computation

We have shown how to transform a tree forest into an annotated DAG with no loss
of information. Now, we show how (a variant of) the minimal DAG can be exploited
for the efficient computation of a general scoring function involving tree structured
data.

Going back to the definition of the tree kernels given in Section 3.1.2, it is
useful to notice that the core of the computation of these kernels stands on the
computation of the C(¢;,t;) and that these values could be computed just once for

shared substructures and re-used when needed. Thus, the basic idea of our approach
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Treelns

Input: An ADAG pD and a tree (7, «) to be inserted
/* L= label, f = frequency, dag = dag_-rooted_at */

vertex_list « InvTopologOrder(T);
while vertex_list # () do

v = pop(vertex_list);
if Ju € uD s.t. dag(u) = dag(v)
then f(u) — f(u) +a - f(v)
else
add to uD a node w where
l(w) = 1(v) and f(w) = a- f(v)
forall children ch;[v] of v
add arc (w, ¢;) to uD where
¢i € Nodes(uD) and
dag(c;) = dag(ch;[v])

return puD

Figure 6.3: The algorithm to insert a weighted ADAG in a larger ADAG.

is to build a weighted annotated DAG (the model), very similar to the minimal DAG,
for the training forest. Clearly, the model should also contain information about the

coefficients of the linear combination of the scoring function.

Such a model can be built incrementally and the frequencies associated to the
nodes are computed by simply cumulating the frequencies already associated to the
nodes of the current minimal DAG with the frequencies of the (sub)trees belonging
to the tree which is currently added to the model. Note that, this model is computed
only once and then kept in memory in a way that it will be possible to perform the

computation of the scoring function for new trees efficiently. The algorithm used to
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insert a new tree into the model is presented in Figure 6.3.

Now, let M(r 5y be the model obtained as described above after inserting all the
trees, with the associated « values, belonging to the forest F', and T" any tree. Notice
that the insertion order of the trees is irrelevant, since any insertion order leads to
the same model. We define the following quantity representing the degree of match

between the tree and the model:

Supac(Mpa),T) = Z Zfic(tiatk)a (6.2)

tZ'EM(F’d) treT
where f; is the weighted frequency associated to the root node of the subtree ¢; in
Mr.a)-
Now, we can show that computing this quantity is equivalent to the computation

of the scoring function

Theorem 6.1 Let My = () be the void initial minimal DAG. Consider a forest F
and the models obtained by sequentially inserting each tree T; € F with the associated
a;, i.e. My =Treelns(M;_1,(T;,«;)), where i =1,...,|F| and M|p| = Mpz). Let
Supac(Mpa),T) be defined as in (6.2) and f; the weighted frequencies in Mpg),
then the following holds:

S(T) = Supac(Mra),T).

Proof:Let us consider the set of all the possible subtrees Sy, indexed by k =1, ..., mg.
First of all, we can check easily that, if the algorithm in Figure 6.3 is used to insert

n trees into the model, starting from the void model, then we have:
fro=">_ aiB(Ty) (6.3)
i=1
where (0;(T') is the number of times a given subtree Sy appears into a tree 7T
Now, let root(S) be the root node of a tree S, we have

K(T,T) = Y ) C(t,1)

t;€T; teT

— Z Bi(T;)3;(T)C(root(Sk), root(S;))
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where k, 7 vary over the space of all possible subtrees. The equality above is true

because (3;(T) = 0 whenever the subtree S; is not present in 7". Hence,

ST) = S K@)

= D ) Bu(T)B;(T)C(root(Sy), root(S)))

= (3 BT, (T)C root (S3), root(S,))
kg =1

- Z fif;C(root(Sy), root(S;))

k?j

This last equality is true because of eq. (6.3) and because f; = 3;(T) is true by

definition in a minimal DAG.

Now, since f = 0 when the subtree Sy is not a subgraph of M,, and f] = 0 when
the subtree S; is not a subgraph of pDAG(T'), then we obtain

STy = > > ffiCltty)

tk€Mn tjepnDAG(T)

= SMDAG(M’ru :LLDAG(T))

Thus the statement is proved when n = |F|. O

The result of the above theorem is quite interesting, since it states that any score
function involving the considered tree kernels and representable as in eq. (2.14), thus
any solution of a kernel method problem involving the considered tree kernels, can
be efficiently represented (reduction in space complexity) and computed (reduction
in time complexity) by resorting to annotated minimal DAGs. Thus, after learning,
it is possible to compact the obtained model in order to obtain a more efficient
computation of the scoring function. Thus, for on-line learning, it seems there is the
possibility to improve the efficiency both in space and time. This is the subject of
the next section, where we show how learning with the kernel perceptron, and its

voted variant, can be made efficient.
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DAG-Perceptron Algorithm

Input: stream of pairs (T, y;), where y; € {—1,+1}
Initialize: Model M « void DAG;

Repeat forever
read (7;,y;) from the stream;

Compute Perceptron score:

S(T;) < Supac(M,T;);

if 1;5(T;) < 0 then

M «— Treelns(M, (T;,y;))

Figure 6.4: The DAG-Perceptron algorithm.

6.2.3 The DAG Kernel Perceptron

In this section we show how the result of the theorem can be exploited to make
efficient on-line learning for tree-structured data using the tree kernels described
in Section 3.1.2. Specifically, as an example, we define an efficient version of the
Perceptron algorithm. We call this version the DAG Kernel Perceptron, since it is

based on the minimal DAG described above.

DAG-Based Implementation of the Perceptron

We now describe our DAG-based implementation of the Perceptron algorithm (see
section 2.3.2 for a description). The algorithm is presented in Figure 6.4. The model
is represented as a annotated minimal DAG. Whenever an input tree is misclassified
the model is updated by adding it to the model. In doing that, the weight y; is
added to each node in the annotated DAG corresponding to the input tree nodes.
The soundness of the algorithm is trivially guaranteed by the theorem given in Sec-

tion 6.2.2.
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Another complexity issue, which is important when dealing with large amounts of
data, is considered in the following, and new strategies are given to further improve
the efficiency and effectiveness of our approach.

The computation of the tree kernel is based on the recursive computation of the
C(t1,ta) values. When considering a model represented as a tree forest, storing all
the C(tq,t2) values is not a problem since the computation of the total kernel is
done by summing the values of the kernels between each tree in the forest and the
input tree. Since the same storage space can be reused for different trees in the
forest, the storage requirement is dominated by the largest tree in the forest. On
the contrary, the DAG requires to keep in memory all of its nodes, which store the
C(ty,ts) values. Since the number of DAG vertices generally grows with training!, a
significant storage requirement is expected, especially when considering data mining
applications, where the number of input items could be huge.

For this reason, it is important to limit storage requirements. In this respect, two
observations can be done: i) when considering a vertex v belonging to the input tree,
it is readily evident that when all the C'(u, v) entries, with u belonging to the DAG,
are computed, the entries referring to children of v can be removed, since no other
tree vertex will refer to them; i) an entry C(u,v) is computed (and thus stored)
only if production(u)=production(v), thus the “name” of a vertex u belonging to
the DAG, can be defined as the composition of production(u) plus a progressive
numerical id assigned to the vertices of the DAG bearing the same production(u).
Equivalently this means that, given a vertex v in the input tree, the elements of
the row C'(+,v) can be enumerated progressively, disregarding the 0 valued elements,
which correspond to vertices in the DAG that do not bear the same production as

.

'In fact, each error leads to the insertion of a new tree in the DAG model. In the most favourable
case, the inserted tree is already present in the DAG, and only the frequencies associated to nodes
of the DAG which correspond to nodes of the inserted tree need to be updated. In the worst case,
neither the whole tree, nor any subtree belonging to it are present in the DAG and all the nodes

of the inserted tree need to be added to the DAG.
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On the basis of these observations, the following joint strategies can be adopted
to reduce the storage requirements: i) the input tree is read using a depth-first
visit and as soon as a vertex completes the computation of its C'(u,v) entries, the
storage space for the C'(u,v) entries referring to its children is deallocated; i) for
each distinct production, a list of matching vertices in the DAG is maintained with
the aim of both speeding up the search for a production match, and also to assign
a progressive numerical id to the matching vertices as well as the total number of
matching vertices to the production; in this way, when a new vertex in the input
tree is visited, it is possible to know how much storage space must be dynamically
allocated for that vertex. It should be noticed that each list associated with a
production can be maintained very efficiently by just: (1) using a counter ¢ recording
the current total number of vertices belonging to the list; (2) assigning as id to a
new vertex the current value of ¢; (3) inserting the new vertex at the beginning
of each list and incrementing ¢ by 1. All the above operations can be done in
constant time. The application of the above strategies reduces the storage need
from O(NgogNiree), Where Ny, is the number of nodes in the DAG, and Ny is the
number of nodes in the input tree, to O(Ppazhireebiree), Where P4, is the length of
the longest list of matching vertices associated with productions, h... is the depth
of the input tree, and by, is the branching factor of the input tree. Of course, when
considering more than 1 production, Ny, > P4, and if there are ¢ productions

Ndag

with the same probability to be associated with a vertex, P, = . Moreover,

usually Ntree 2 htreebtree'

6.2.4 Voted Kernel Perceptron

In this section we describe how to use a DAG for computing the score function for
the voted perceptron. The algorithm is described in Section 2.3.2. In our setting,
trees are presented sequentially to the algorithm, and after e mistakes occurred on

the input trees T7,...,T,, the score function is

S.T) = S e K (T, T) (6.4)
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which, exploiting Theorem 6.1, can be rewritten as

SE(T) = Z Z fiEC’(ti,tk) (6.5)

ti€Me t€T

where M, is the model obtained by the kernel perceptron after e mistakes, and ff
are the corresponding weighted frequencies. Let F be the total number of mistakes
after that all the training examples have been visited. Then the score for the average

(unnormalized) voted perceptron is defined as

Svoted(T) = ZCQSB(T)

e=1

where ¢, is the the number of iterations between mistake e and mistake e + 1.

Exploiting eq. (6.5), we can rewrite the above equation as

Svoted<T) - Zce Z Zfzec<tlﬂtk)

= t, €M tp€T

= 2> (Z f) Cti, 1) (6.6)

t;,eMpg tp,eT \e=1

where we impose ff = 0 if t; € M.. Thus, it is clear that the final voted model
is obtained by defining the new weighted frequencies fz = 25:1 ceff. If we define
fe= PRy 7 then it holds that f&*! = f¢+c.y1 f7, which can be used as an on-
line rule to compute incrementally f; = fiE . This implies a doubling of the storage
requirement since for each ¢ we need both a variable to store the current value of ff
and a variable to store the current value of ff_l, however, the time complexity does
not increase significantly since the update of the fs occurs only when a mistake is

made, and the larger the model is, i.e. more variables need to be updated, the less

likely a mistake is generated.

6.2.5 Kernel Combinations

Another efficiency issue is related to the possibility to exploit additional numerical

features € = [&,...,&,] associated with each tree. In that case, the score can be
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obtained as a combination of the score obtained by the tree kernel with the score
obtained by these numerical features. For example, if the combination is the sum,

the score can be computed as
S(E) - S,LLDAG(Ma ,IIL) + S¢<M¢7 52)7

where M, is the set of feature vectors plus labels corresponding to errors. When
using a nonlinear kernel for the computation of the feature score, a proper treatment

is due. In fact, let consider the generic computation of the score for the features

Ss€) = D wikK(&,€)
(€j7yj)€M¢
If d is large, assuming that the computation of the kernel is O(d), the computational
complexity for the score is O(d|My|).

If the &€ vectors are sparse, let say that no more that & < d components are
nonzero, then a more efficient computation can be performed. In fact, nonzero
features of £ vectors can be organized for fast access by feature id. Assuming that
the probability for a feature to be nonzero is | = g, this means that each feature will
be associated with an inverted list with expected length equal to I|Mphi|. Thus,
given an input feature, for each j a match in its inverted list should be found, which
can be done in no less than O(log(1|My|)) by exploiting the sorting of the items by
vector index. This leads to a total complexity of O(|My|klog(l|My|)). However,
we can do better than this. In fact, we know that all the items contained into
the inverted lists of matching features are used for computing the score. The only
problem is to recognize for each j which are the features that match the input.
This can be done using the following procedure. We assume that the inverted lists
are sorted by decreasing vector index. First of all the inverted lists corresponding
to matching input features are recovered and their heads are inserted into a max
heap. Then the maximum value is extracted by the heap and its successor in the
corresponding inverted list is inserted into the heap. This process is repeated giving
origin to a stream of indexes extracted by the heap where equal indexes are clustered

together, allowing the computation of the kernel for that index. This procedure
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has a complexity that is dominated by the insertion into the heap of all the items
into the matching inverted lists. Since the heap will never contain more than k
items, insertion costs log(k), while the total number of items is kl|My|. Thus the
total complexity is O(kl|My|log(k)), which is better than the previous one only if
llog(k) < log(l|My|), i-e., k' < {|My|. Noticing that { € [0, 1], it is not difficult to
realize that when k < |My| a significant savings in computation can be obtained.
For example, assuming binary data structures are used, if |[My| =2 1 =107*, and
k = 2°, we have [log,(k) = 0.0005 versus log, (1| M,]) = 0.71228762, with a speedup
of more than 1424.

When considering the voted perceptron it is trivial to note that when a feature
of a tree is inserted into the model, it remains till the end of training, i.e. when
all examples have been visited. Consequently, the weight ¢ to be associated to that
feature is equal to N — j, where N is the total number of visited examples, while j
is the index of the tree containing that feature and that was erroneously classified?.
Thus, no additional information need to be stored in the model, while the weight c;
in the voted perceptron associated to each feature belonging to tree j, will exactly

bec; =N —j.

6.2.6 Experiments

The experiments presented in this section aim to show that our approach based on
DAGs provides two kinds of benefits to the perceptron algorithms: a much faster

computation time and a much lesser memory requirement.

For such purpose, we measured the computation time and the memory allocation
for both the traditional Perceptron algorithm and the one based on DAGs. The
target learning tasks were those involved in Semantic Role Labelling, i.e. the task to
automatically extract a predicate along with its argument from a natural language
sentence. This is usually divided in two classification steps: argument boundary

detection and argument classification. In the former step, all the nodes of the

2Here we assume that examples are presented in increasing index order.
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sentence parse tree are classified in correct or incorrect boundaries. The correct
label means that the leaves (i.e. words) of the tree rooted in the target node are
all and only those constituting an argument. In the latter step, given a correct
boundary node (i.e. an argument node), its type, i.e. Arg0, Argl,..,Argh, ArgA and
ArgM, is determined.

As a referring dataset, we used PropBank along with PennTree bank 2 (see

section A.3 for a description).

In our experiments, we concentrated on boundary detection as the number of
classifying instances is much larger. Indeed, they include all parse-tree nodes. For
these experiments, we used the first 7 sections of PennTree bank for training for a

total of 71,523 positive and 921,296 negative examples.
As the DAG performance is affected by node distribution within trees along with

their maximum and average out-degree, we have studied such characteristics in our
data sets. Table A.6 reports statistics about the data derived from the boundary
detection dataset. We note that there are a large number of relatively small trees
which however can have a large out-degree. Globally, the amount of nodes that
have to be processed is very large, thus, the dataset is suitable to demonstrate the
computational efficiency of our approach.

We started the experiments with the aim of comparing the standard perceptron
and the dag voted perceptron. Note that computational complexity of the voted
perceptron is higher than the standard perceptron, so the comparison is slightly
unfair.  The reason for using the voted perceptron is that we plan to do more
experimentations, in a future work, aimed at increasing the accuracy on the task.
The task is very complex from an efficiency point of view since the number of
instances of the boundary dataset was about one million.

This dataset is quite demanding for computational expensive approaches like
Support Vector Machines: only using a polynomial kernel on standard features (in

general much faster than tree kernels), 10 days were required to converge.

Figure 6.5, 6.6 and 6.7 show the execution times for the standard perceptron and

the voted dag perceptron when using the polynomial kernel, the subset tree kernel
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and a linear combination of both, respectively. In the case of the tree kernel and
combination of the two kernels, executions with various parameters were run: the
A of the tree kernel has been given the values A € {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
1.0}, the v weighting the linear combination between tree kernel and polynomial
kernel has been given the values v € {0.2,0.3,0.4,0.5,0.6}. However only the values
related to the faster and slower parameter settings are plotted. When using the
polynomial kernel, Figure 6.5, the total time spent by the voted dag perceptron
and the standard perceptron for classifying the training set are 7503.87 and 9332.64
seconds, respectively. Note that the voted perceptron is 1828, 77 seconds faster than

the standard perceptron. The use of the tree kernel, see Figure 6.6, allows the voted
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Figure 6.5: Execution time in seconds for the Standard Perceptron and the Voted
DAG Perceptron using a polynomial kernel with degree 3 (Poly3) over the training
set with 992,819 examples.

dag perceptron to achieve the highest performance: 8681.10 seconds in the worst
case (A = 1.0) against 43995.02 seconds in the most favourable case for the standard

perceptron (A = 0.3), a gap of 9.8 hours, more than 5 times faster. Learning with
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Figure 6.6: Execution time in seconds for the Standard Perceptron and the Voted
DAG Perceptron using the SST tree kernel (Tk) with different values for the A
parameter, i.e. A € {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, over the training set with
992,819 examples. For each method, only the fastest and the slower executions are

reported.

the combination of kernels (see Figure 6.7), requires in the worst case (A = 1.0 and
v = 0.6) 11798.03 seconds for the voted dag perceptron and 20348.36 seconds for
the standard perceptron in the most favourable case (A = 0.4 and v = 0.3). Note
that the voted perceptron is 8550.33 seconds faster (about 2.4 hours). While the
time saved in the case of the polynomial kernel alone is not remarkable, it becomes

really significant when a tree kernel is involved.

Figure 6.8 and 6.9 show the memory usage of standard perceptron and voted dag
perceptron algorithms. When the tree kernel is employed, Figure 6.8, the model
created by the voted dag perceptron comprises from 202682 (A = 0.4) to 232419
(A = 1.0) nodes while the model created by the standard perceptron comprises from

1091652 (A = 0.4) to 1475692 (A = 1.0) nodes. Note that the amount of memory
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Execution Time for Poly3+Tk
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Figure 6.7: Execution time in seconds for the Standard Perceptron and the Voted
DAG Perceptron using a linear combination of a polynomial kernel with degree 3
(Poly3) with the SST tree kernel (Tk), i.e. (1 —~)x Poly3+~*Tk, over the training
set with 992,819 examples. Different values for A and v have been considered, i.e.
A€ {0.3,04, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} and v € {0.2, 0.3, 0.4, 0.5, 0.6}. For each

method, only the fastest and the slower executions are reported.

used by the standard perceptron can be 7 times higher than the one employed by
the voted dag perceptron. The model created by the voted dag perceptron, when
a combination of kernels is employed (Figure 6.9), comprises from 97856 to 103544
nodes, while the model created by the standard perceptron comprises from 328932
to 458814 nodes. he amount of memory used by the standard perceptron can be 4.6
times higher than the one employed by the voted dag perceptron.

A further experimentation has been performed in order to show that the results
obtained are not only related to the particular dataset or domain. Thus, for this
second round of experiments we chose to get our data from the INEX 2005 dataset

(see section A.1 for a description). The training set comprises 4820 examples and is
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Figure 6.8: Evolution of the number of tree nodes stored in memory and belonging
to the model developed by the Standard Perceptron and the Voted DAG Perceptron
during training on the training set with 992,819 examples. Both methods use the
SST tree kernel (Tk) with different values for A, i.e. A € {0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 1.0}. For each method, only the executions with the largest and the lower

number of stored nodes are reported.

relatively small with respect to the one used previously. The training times are very
fast, less than 1 second, thus risking that delays due external factors, such as disk
access, may significantly modify the final values obtained. We thus concatenated
the training and test set and obtained one file with 9631 examples. The INEX
2005 task is multiclass, we transformed it into a two-class problem by considering
as positive the examples of class 3, one of the most numerous, and as negative the
examples of any other class. We compared the standard perceptron and the voted
dag perceptron with respect to training times and memory usage. Since the dataset
is composed of only structured data, only the tree kernel was tested. The lambda

values used were A € {0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}. Figure 6.10 compares the
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execution time of the standard perceptron and the voted dag perceptron. For each
algorithm only the faster and slower parameter settings are plotted. Even for this
dataset the voted dag perceptron outperforms the standard perceptron: the latter
takes from 7.05 to 7.60 seconds to converge, while the former requires only from 1.22
to 1.27 seconds. Finally Figure 6.11 compares the amount of memory used by the two
algorithms. For the Standard Perceptron only the execution with lower number of
nodes is reported. For the Voted Dag Perceptron only the execution with the largest
number of nodes is reported. This is due to the fact that the difference between the
curves related to the largest and lower number of nodes of the same algorithms are
so small compared to the difference between curves related to different algorithms
that the curves related to the same algorithm are indiscernible. The lower number
of nodes for the standard perceptron is 50800, while the largest number of nodes
composing the model for the voted dag perceptron is 1611. The number of nodes
kept in memory by the standard perceptron is 31.5 times higher than the number
of nodes kept in memory by the voted dag perceptron.
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Figure 6.9: Evolution of the number of tree nodes stored in memory and belonging
to the model developed by the Standard Perceptron and the Voted DAG Perceptron
during training on the training set with 992,819 examples. Both methods use a
linear combination of a polynomial kernel with degree 3 (Poly3) with the SST tree
kernel (Tk), i.e. (1 — ) * Poly3 + v * Tk. Different values for A\ and « have been
considered, i.e. A € {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} and v € {0.2, 0.3, 0.4, 0.5,
0.6}. For each method, only the executions with the largest and the lower number

of stored nodes are reported.
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Execution Time for Tk
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Figure 6.10: Execution time in seconds for the Standard Perceptron and the Voted
DAG Perceptron using the SST tree kernel with different values for the \ parameter,
ie. A e {0.3, 04, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, over the union of the INEX 2005

training and test sets.
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Figure 6.11: Evolution of the number of tree nodes stored in memory and be-
longing to the model developed by the Standard Perceptron and the Voted DAG
Perceptron during training on the union of the INEX 2005 training and test
sets. Both methods use the SST tree kernel (Tk) with different values for A, i.e.
A € {0.3,0.4,0.5,0.6,0.7}. For the Standard Perceptron only the execution with
lower number of nodes is reported. For the Voted Dag Perceptron only the execu-

tion with the largest number of nodes is reported.
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Chapter 7

Conclusions

The aim of this thesis was to investigate ways to overcome some of the current
drawbacks of kernel methods. Particularly we faced the following issues: designing
expressive and non sparse kernel functions and alleviating the computational burden
related to the computation of the score in both learning and classification phase.
In the following we recall briefly the contributions for solving these problems and

propose future developments.

In practical applications involving structured data, using a kernel method may
not give an optimal performance because of the sparsity of the adopted kernel. This
is particularly true for structured data involving discrete variables. An example of
this event for subset and subtree kernels applied to XML documents represented as
trees has been discussed. We have suggested that such sparsity can be reduced by
learning a similarity function on the trees which can then be exploited to define non
sparse kernels. Specifically, we have suggested to learn such a function by exploiting
SOM-SD, which is an unsupervised dimensionality reduction method for structured
data with the property that similar items in the input space tend to be represented
similarly by the map. Then, we have defined a family of kernels for trees on top of
the SOM-SD map, and according to the topological information coded into the map.
The aim of this approach was to learn, in an unsupervised fashion, a kernel which is
neither sparse nor uninformative. Experimental results on a relatively large corpus

of XML documents, for which both subset and subtree kernels exhibit the sparsity
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problem, have shown that the new kernels are able to improve with respect to the
performance of SOM-SD and the standard tree kernels. This improvement is quite
independent from the map used to define the kernel, thus showing that the proposed
approach is quite robust. Experimental results obtained on a similar dataset, for
which, however, subset and subtree kernels do not exhibit the sparsity problem,
show that there is not a significant improvement in performances. Thus it seems
reasonable to state that the proposed approach is particularly suited in situations
where standard tree kernels are sparse. A future development for this approach
could be related to building more sophisticated kernels on the map activations. A
first step could be to define a variant of the AM-kernel which weights the encoding
of a substructure according to its similarity to the neuron it is mapped to. A second
line for future research for the AM-kernel could be to employ different dimension-
ality reduction algorithms. The heuristic nature of the SOM-SD can not formally
guarantee to preserve the topology of the items in the input space. The Gener-
ative probabilistic modelling proposed in [20] uses a more theoretically grounded
approach to the problem of projecting data onto a lower dimensional space, and
thus may be employed to optimise the dimensionality reduction step in such a way

that the accuracy of the AM-kernel is improved.

A central issue when designing kernel functions is in defining expressive non
sparse kernels. Considering the class of convolution tree kernels based on decom-
posing the input tree into its substructures, it is known that it is impossible to
define more expressive kernels computable in polynomial time than those already
presented in literature. We have observed, however, that all those kernels focus on
the mere presence of the substructures and partially discard information about the
position of the substructures in the original structure. We have therefore proposed
a novel family of non sparse kernels which especially focus on this aspect. The re-
sults obtained show that indeed these kernels are very effective and motivate us to
look for novel applications in real case scenarios such as problems in chemistry or
bioinformatics. We furthermore plan to compare our kernel with more kernel for

trees and investigate the relationship with them.
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Kernel methods are effective approaches to the modelling of structured objects
in learning algorithms. A drawback of such approaches is related to their typically
high computational complexity for the computation of the score. To alleviate this
problem when kernels such as the subtree and subset tree kernels are used, Direct
Acyclic Graphs can be used to compactly represent shared substructures and fea-
ture vectors in different trees, thus reducing the computational burden and storage
requirements. Results show that substantial computational savings can be obtained
for the perceptron algorithm using tree and polynomial kernels over the PropBank
dataset. The experiments on this very large dataset show that our model makes the
use of kernels for trees practical for applications involving a very large amount of
data. The basic idea of using Direct Acyclic Graphs for encoding a forest of trees can
be exploited in all the learning algorithms where the decision function is computed
as a linear combination of kernel evaluations. Moreover, we have shown that the
same idea behind our contribution can be exploited for any convolution kernel, pro-
vided that a suitable and efficient way of encoding a set of substructure is defined.
As future work we plan to enlarge the number of convolution kernels for which the
computation of the score can be made efficient by compacting the model. A further
line of research that can be pursued is to develop principled strategies for prun-
ing the model in such a way that the effects on the subsequent score computations
are minimized. By representing the model as a single structure, one can analyse
and eliminate those substructures, belonging to different examples, that vanish each
other contribution to the score computation. For some settings it could be possible

to give bounds on the error introduced by the pruning operation.
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Appendix A

Experimental Settings

The following appendices are devoted to the description and analysis of the datasets

used in the experiments presented in chapters 4, 5 and 6.

A.1 INEX 2005

The INEX 2005 dataset comprises a relatively large set of XML formatted docu-
ments which were made available as part of the 2005 INEX Competition [15] (data
can be downloaded from http://cmlmining.lip6.fr). The dataset is formed by XML
documents describing movies from the IMDB site!. Specifically, we make use of the
corpus (m-db-s-0), which consists of 9,640 documents containing XML tags only,
i.e. no further textual information available. All documents have one out of 11 pos-
sible target values. 3377 documents comprise the training set, while 1447 documents

constitute the validation set. All remaining documents form the test set.

The dataset that has been used for many experiments in the thesis is a modified
version of the corpus (m-db-s-0), which is described in [63]. As it will be discussed
the corpus (m-db-s-0) consists of too large structures (with consequent increase in
computational complexity) to allow an in-depth exploration of the properties of the
algorithms proposed. The dataset produced by the preprocessing proposed in [63],
which we are going to describe in the following, has been used to win the INEX 2005

thttp://www.imdb.com
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Competition. Thus, besides reducing the size of the structures, it gives us a strong

benchmark to which compare our results.

A tree structure is extracted for each of the documents in the dataset by follow-
ing the general XML structure within the documents. This resulted in a dataset
consisting of 684191 vertices (subtrees) with maximum out-degree 6418. Managing
such large structures would have posed computational complexity issues especially
in the learning phase, thus practically limiting the number of experiments that could
have been performed. For example in chapter 4 the dataset is used for training a
SOM-SD map: not counting node label size, map prototypes of a two-dimensional
map should be of size 6418 - 2 = 12836. Managing such large vectors would have
dramatically delayed the training process. Thus, while not strictly necessary, a pre-
processing step was performed on the dataset in order to reduce its dimensionality.
First, repeated sequences of tags within the same level of a structure were collapsed.

For example, the structure:

<BB>
<a> </a>

<b> </b> is consolidated to <BB>

<a> </a> <a> </a>
<b> </b> <b> </b>
<a> </a> </B>
<b> </b>

</BB>

A further dimension reduction has been achieved by collapsing simple sub-structures
which have the property of a data sequence into a single vertex. For example, the
sequential structure <A><b><c></c></b></A> can be collapsed to
<A><b&c></b&c></A>, and even further to <A&b&c>. The pre-processing step re-
duced the maximum out-degree to 32, and the total number of vertices to 124, 359.
A preprocessing step was performed in order to reduce also the size of the node
labels. The following steps are particularly suited for the SOM algorithms, but do

not affect the behaviour of the kernel methods. A unique ID is associated with
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each of the possible 197 XML tags. In order to account for nodes which represent
collapsed sequences, we attached a three dimensional data label to each node (the
longest collapsed sequence is of length 3). The first element of the data label gives
the ID of the XML tag it represents, the second element of the data label is the
ID number of the first tag of a collapsed sequence of nodes, and consequently, the
third element is the ID of the tag of the leaf node of a collapsed sequence. For
nodes which do not represent a collapsed structure, the second and third element in
the data label is set to zero. Note that by using a progressive number for encoding
the labels we are imposing a metric on the labels: while all different labels should
be equally dissimilar, it happens that different labels having close IDs turn out to
be more similar than labels having far IDs. Note that avoiding to impose a metric
would have required to define perpendicular vectors for each pair of different labels.
This can be achieved by 197 sized vectors which, again, would have delayed the
training process of the SOM-SD.

Summing up, the reason for applying this preprocessing of the data is threefold:

e it reduces the turn around time for the experiments, and hence, allows a more

comprehensive exploration of the parameter space;

e it replicates the experimental setting of [63], which produces SOM-SD maps

with state of the art performances on this task;

e the resulting dataset, as it will be shown in this section, is sparse, and thus it
is the right candidate to support our claims about the Activation Mask Kernel

(see chapter 4).

Some statistics about the frequency of the class of the examples have been col-
lected. They are summarized in table A.1. The dataset is unbalanced. Class 4 has
the lowest number of examples, 172, while class 8 has the highest, 769.

In order to a baseline, the SVM with Subtree and Subset tree kernels (see sec-
tion 3.1.2) was applied to the dataset. The values of the parameter A used are
0.1,0.2,0.3,0.4, 0.5,0.6, 0.7, 0.8, 0.9, 1.0. The parameter ¢ of the SVM is selected
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frequency | 598 | 486 | 701 | 172 | 435 | 231 | 261 | 769 | 333 | 386 | 448
class 1 2 3 4 5 6 7 8 9 [ 10 | 11

Table A.1: Number of examples for each class of the examples of the INEX 2005

training dataset.

on the validation set among the following values: 0.001,0.01,0.1, 1,10, 100, 1000.
The obtained results, together with the values of the sparsity index (eq. (2.23)) for
each kernel, all computed on the test set, are shown in Table A.2. The best accuracy
on test set has been obtained by the SST kernel with an error rate of 11.21%. This
result was obtained by setting A to 1.1 and setting the c hyper-parameter of SVM to
10. Note that that both ST and SST kernels are sparse on the INEX 2005 dataset.

(Classification Error | Sparsity Index
ST Kernel 11.27% 0.5471
SST Kernel 11.21% 0.5471

Table A.2: Classification error and Sparsity Index of the Tree Kernels on the INEX
2005 dataset.

A.2 INEX 2006

The INEX 2006 dataset is derived from the IEEE corpus composed of 12000 sci-
entific articles from IEEE journals in XML format. It includes XML formatted
documents, each from one of 18 different journals, covering both transactional and
non-transactional journals and across various topics in computer science. However,
there are up to five journals that belong to the same structural (transactional or
non-transactional) and semantic (topics) grouping, therefore distinct differences can-
not be expected from documents of several journals. Furthermore, the journals are
unbalanced in the number of documents they contain in the training dataset, there-
fore, this learning task is high in complexity, yet contains features that are commonly

found in real world problems. The documents used in the training process is the
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training portion of the dataset, which consists of 6053 documents, and the number
of XML tags in each document ranges widely, from 9 to 7024, with a total of 3966123
tags. To represent the structure of a document, a tree could be used where each
node in the tree represents the occurrence and location of XML tags. This would
result in large trees where the maximum depth is 19 and the maximum out-degree
is 1023. Another observation of the INEX 2006 dataset is that there are a total of
165 unique tags, and some tags occur with a high frequency in a number of docu-
ments, but not all tags occur in all documents. The documents used in the testing
process is the testing portion of the dataset, which consists of 6054 documents, and
the proportion of documents in each journal is comparable to the training data, to
ensure that the rules learned from training can be applied to the test data and that
a similar level of performance can be expected. In the experiments presented in
chapters 4 and 5, the dataset has been split into training, validation and test sets.
Each set is made of 4237, 1816 and 6054 documents, respectively. Each document
belongs to 1 out of 18 classes. Statistics about the number of documents belonging
to each class are presented in table A.3. Class 5 has the lowest number of examples,

105, and class 3 the highest, 939. Overall, the dataset is quite unbalanced.

frequency | 160 | 335 | 939 | 285 | 266 | 351 | 281 | 116 | 320
class 1 2 3 4 ) 6 7 8 9

frequency | 230 | 171 | 476 | 526 | 369 | 105 | 294 | 564 | 265
class 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18

Table A.3: Number of examples for each class of the INEX 2006 training dataset.

The training data has a total of almost 4 million nodes and a maximum outdegree
of 1023. The XML documents are represented by trees. Some preprocessing is
applied in order to improve the turn around time for the experiments. Specifically
only documents headers were extracted and then considered for the learning phase.

In order to a baseline, the SVM with Subtree and Subset tree kernels was applied
to the dataset. The values of the parameter A used are 0.1,0.2,0.3,0.4, 0.5,0.6, 0.7,
0.8, 0.9, 1.0. The parameter ¢ of the SVM is selected on the validation set among
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the following values: 0.001,0.01,0.1, 1,10, 100, 1000. The obtained results, together
with the values of the sparsity index for each kernel, all computed on the test set,
are shown in Table A.4. The best accuracy on test set has been obtained by the
SST kernel with an error rate of 59.56%. This result was obtained by setting A to
0.3 and setting the ¢ hyper-parameter of SVM to 1. Note that that both ST and
SST kernels are absolutely not sparse on the INEX 2006 dataset.

(Classification Error | Sparsity Index
ST Kernel 67.98% 0.002489
SST Kernel 59.56% 0.002489

Table A.4: Classification error and Sparsity Index of the Tree Kernels on the INEX
2006 dataset.

A.3 Penn Treebank II

The Penn Treebank II corpus [42] consists of material from the Dow-Jones news
service. It is composed of about 1 million words tagged for part of speech and about
53,700 sentences annotated with predicative information.

Among others, the PropBank project [36] proposes predicate argument struc-
tures to encode shallow semantics from texts. The basic assumption is that such
predicative structures are strictly connected to the syntax of the textual sentences.
Figure A.1 exemplifies such idea by showing the parse tree of the sentence: "Mary
brought a cat to school" along with the predicate argument annotation proposed
by the PropBank project. Only verbs are considered as predicates whereas argu-
ments are labeled sequentially from Arg0 to Argh plus ArgMs including several type
of adjuncts.

Previous work has shown that the automatic PropBank argument annotation,
i.e. Semantic Role Labeling (SRL), can be carried out by applying machine learning
techniques, e.g. [21,53]. These latter represent predicate argument relationships with

vectors of features extracted from the syntactic parse tree of the target sentence.
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Such standard features, firstly proposed in [21], refer to flat information derived from
parse trees, i.e. Phrase Type, Predicate Word, Head Word, Governing Category,

Position and Voice.

For example, Phrase Type is the label of the argument node, i.e. the node
that dominates all and only the argument words. In Figure A.1 the values of such
feature are N, NP and PP for Arg0, Argl and ArgM, respectively. The Parse Tree
Path, instead, represents the path in the parse-tree between a predicate node and
one of its argument nodes. It is expressed as a sequence of nonterminal labels linked
by direction symbols (up or down), e.g. VIVP|NP is the path between the predicate
and Argl.

An alternative representation proposed in [45], is based on the application of
tree kernels to subtrees encoding the predicate/argument relation. More precisely,
each predicate/argument pair is associated with the minimal subtree that includes
the word sequences of them both, hereafter called PAF. For example, in Figure
A1, the substructures inside the three frames are the semantic/syntactic structures

associated with the three arguments of the verb to bring, i.e. Sarg0, Sargi and Sargns-

It is worth to note that PAF aims at capturing all the information between a
predicate and one of its arguments. PAF is quite intuitive and, to conceive it, the
designer requires much less linguistic knowledge about semantic roles than those
necessary to manually define effective features. The main drawback of its use is that

important structural information, i.e. inter-argument dependencies, is neglected.

To each tree in the dataset is also associated a vector of features extracted from
the syntactic parse tree of the target sentence. Thus a single example e; = (T}, v;, ¢;)

is constituted by a tree T; , a vector of features v; , and a class label ¢;.

The large PropBank corpus makes the learning via tree kernels quite time con-
suming. We collected some statistics on the execution time of the Support Vec-
tor Machine in table A.5. Numbers refer to execution on an Intel Core 2 Duo

E6400 2.13GHz based PC in three different scenarios?: 4) for each example e; only

2The following values for the hyperparameters have been used: i) ¢ = 1; ii) c = 1, X\ = 0.4; iii)

c=0.7692, A = 0.4, v = 0.3. These values have been selected by using the validation set.
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the vector of features v; is considered, i.e. the associated tree T; is not used;
an example is thus in the form (v;,¢;); a polynomial kernel of degree 3 is used
(row 1 in Table): Kpyys(vi,v;) = (v; - v; + 1)* ; i) for each example e; only
the tree T; is used and an example is in the form (7}, ¢;); the SST tree kernel
is used (row 2 of Table): Kggr(T;,Tj) ; iii) both the input tree 7; and the as-
sociated vector of features v; of an example e; are considered; the used kernel is
given by a linear combination of the two kernels mentioned above (row 3 in Table):

K<€i> €j) = (1 - ’7) * KPoly3(Uiavj) + 7y * KSST(TivTj>~

Kernel Training time in seconds
Poly3 76,917
Tk 235,899
Poly3+Tk 390,914

Table A.5: Training times for SVM%#"* in three different scenarios involving a poli-
nomial kernel of degree 3 (Poly3), the SST tree kernel (Tk), and a linear combination
of the previous kernels (Poly3+Tk). The training set involves 992,819 examples.

In the experiments presented in the chapter 6 the first 7 sections of PennTree
bank for training were used. They consist of a total of 71,523 positive and 921,296
negative examples. Section 24 was used as validation set for a total of 7,705 positive
and 108,104 negative examples, while section 23 was used as test set for a total of

13,159 positive and 171,114 negative examples.

We have also collected statistics about node distribution, maximum and average
outdegree. Table A.6 reports statistics about the data derived from the boundary

detection dataset.
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Figure A.1: Parse tree of the sentence ”Mary brought a cat to school” along with
the PAF trees for Arg0, Argl and ArgM.

Training | Validation Test
Number of trees 992,819 115,809 184,273
Total number of nodes 14,365,253 | 1,686,167 | 2,643,822
Average number nodes in a tree 14.47 14.56 14.35
Average maximum outdegree 2.32 2.33 2.3
Max outdegree 15 15 13

Table A.6: Features of syntactic trees in the boundary detection dataset.

A.4 LOGML

The LOGML dataset consists of user sessions of the Rensselaer Polytechnic Institute
Computer Science Department website?, collected over a period of three weeks.
Each user session consists of a graph and contains the websites a user visited on
the Computer Science domain. These graphs were transformed to trees by only
enabling forward edges starting from the root node. The goal of the classification
task is to discriminate between users who come from the edu domain and users from
another domain, based upon the users browsing behavior. 3 datasets are available.
They comprises 8074, 7409 and 7628 examples, respectively. The maximum out-
degree of the trees is 137. The datasets are unbalanced: for each of them about 76%

examples belongs to positive class. The datasets are very sparse with respect to the

3http://www.cs.rpi.edu
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SST kernel: the mean of the 3 sparsity index values is 0.9595.

Because of the availability of the three datasets, it was natural to compute the
classification error of the ST and the SST kernels by performing a 3-fold cross-
validation considering, in each round, one of the dataset as the test set. Table A.7
shows the cross validation error and the mean sparsity index on the three datasets,
for the ST and SST kernels. The best accuracy on test set has been obtained by
the ST kernel with an error rate of 16.72%. This result was obtained by setting A
to 1.0 and setting the ¢ hyper-parameter of SVM to 1. Note that that both ST and
SST kernels are sparse on the LOGML dataset.

Cross validation Error | Sparsity Index
ST Kernel 16.72% 0.9635
SST Kernel 16.84% 0.9595

Table A.7: Cross validation error and Sparsity Index of the Tree Kernels on the
LOGML dataset.



References

1]

[10]

G. M. AdelsonVelskii and Y. M. Landis. An information organization algorithm.
Translation in NASA document n63-11777, 1963.

F. Aiolli, G. D. S. Martino, A. Sperduti, and M. Hagenbuchner. ”kernelized” self
organizing maps for structured data. In ESANN 2007 Conference, April 24-27 2007.
F. Aiolli, G. D. S. Martino, A. Sperduti, and A. Moschitti. Fast on-line kernel learning
for trees. In ICDM, volume 0, pages 787-791, Los Alamitos, CA, USA, 2006. IEEE
Computer Society.

F. Aiolli, G. D. S. Martino, A. Sperduti, and A. Moschitti. Efficient kernel-based
learning for trees. In CIDM, pages 308-315, 2007.

D. Anguita, S. Ridella, and F. Rivieccio. An Algorithm for Reducing the Number of
Support Vectors. In Proceeding of WIRNO/, 2004.

R. E. Bellman. Adaptive Control Processes: A Guided Tour. Princeton Universsity
Press, 1961.

K. P. Bennett. Support vector machines: Hype or hallelujah. SIGKDD Ezplorations,
2:2000, 2000.

A. M. Bianucci, A. Micheli, A. Sperduti, and A. Starita. Application of Cascade
Correlation Networks for Structures to Chemistry. Applied Intelligence, 12(1):117—
147, 2000.

S. Bloehdorn and A. Moschitti. Structure and semantics for expressive text kernels.
In CIKM °07: Proceedings of the sizteenth ACM conference on Conference on in-
formation and knowledge management, pages 861-864, New York, NY, USA, 2007.
ACM.

V. S. Cherkassky and F. Mulier. Learning from Data: Concepts, Theory, and Meth-
ods. John Wiley & Sons, Inc. New York, NY, USA, 1998.



138

References

[11]

[12]

[13]

[16]

[17]

[18]

[19]

[20]

[22]

23]

[24]

M. Collins and N. Duffy. Convolution kernels for natural language. In Advances in
Neural Information Processing Systems 14, pages 625-632. MIT Press, 2001.

M. Collins and N. Duffy. New ranking algorithms for parsing and tagging: Kernels
over discrete structures, and the voted perceptron. In ACL02, 2002.

N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines and
Other Kernel-based Learning Methods. Cambridge University Press, March 2000.

N. Cristianini, J. Shawe-taylor, A. Elissee, and J. Kandola. On kernel-target align-
ment. In Advances in Neural Information Processing Systems 1/, pages 367-373.
MIT Press, 2002.

L. Denoyer and P. Gallinari. Report on the xml mining track at inex 2005 and inex
2006: categorization and clustering of xml documents. SIGIR Forum, 41(1):79-90,
2007.

M. Diligenti, P. Frasconi, and M. Gori. Hidden tree markov models for document im-
age classification. IEEE Transactions on Pattern Analysis and Machine Intelligence,
25:2003, 2003.

T. Downs, K. E. Gates, and A. Masters. Exact simplification of support vector
solutions. Journal of Machine Learning Research, 2(293-297):85-87, 2001.

Y. Freund and R. E. Schapire. Large Margin Classification Using the Perceptron
Algorithm. Machine Learning, 37(3):277-296, 1999.

T. Gartner. A survey of kernels for structured data. ACM SIGKDD FEzplorations
Newsletter, 5(1):49-58, 2003.

N. Gianniotis and P. Tino. Visualisation of tree-structured data through generative
probabilistic modelling. IEEE Transactions on Neural Networks, 2008.

D. Gildea and D. Jurasfky. Automatic labeling of semantic roles. Computational
Linguistic, 28(3):496-530, 2002.

S. L. Graham, P. B. Kessler, and M. K. Mckusick. Gprof: A call graph execution
profiler. SIGPLAN Not., 17(6):120-126, 1982.

I. Guyon. An introduction to variable and feature selection. Journal of Machine
Learning Research, 3:1157-1182, 2003.

M. Hagenbuchner, A. Sperduti, and A. C. Tsoi. Contextual processing of graphs
using self-organizing maps. In European symposium on Artificial Neural Networks,

27 - 29 April 2005.



References 139

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

38

[39]

M. Hagenbuchner, A. Sperduti, and A. C. Tsoi. Contextual self-organizing maps for
structured domains. In Workshop on Relational Machine Learning, 2005.

M. Hagenbuchner, A. Sperduti, and A. C. Tsoi. Self-organizing maps for cyclic and
unbounded graphs. In ESANN, pages 203—208, 2008.

B. Hammer, A. Micheli, M. Strickert, and A. Sperduti. A general framework for
unsupervised processing of structured data. Neurocomputing, 57(5):33-35, 2004.

D. Haussler. Convolution kernels on discrete structures. Technical Report UCSC-
CRL-99-10, University of California, Santa Cruz, 1999.

D. P. Helmond and M. K. Warmuth. On weak learning. Journal of Computer and
System Science, pages 551-573, 1995.

K. Ikeda. Effects of kernel function on v-support vector machines in extreme cases.
IEEE Transactions on Neural Networks, 17(1):1-9, 2006.

T. S. Jaakkola and D. Haussler. Exploiting generative models in discriminative clas-
sifiers. In Proceedings of the 1998 conference on Advances in neural information
processing systems 11, pages 487-493, Cambridge, MA, USA, 1999. MIT Press.

T. Joachims. Making large-scale support vector machine learning practical. MIT
Press, Cambridge, MA, USA, 1999.

J. Kandola and J. Shawe-taylor. Refining kernels for regression and uneven classifi-
cation problems. In Proc. of the Ninth Int. Workshop on Artificial Intelligence and
Statistics, 2003.

H. Kashima. Machine Learning Approaches for Structured Data. PhD thesis, Grad-
uate School of Informatics, Kyoto University, Japan, 2007.

H. Kashima and T. Koyanagi. Kernels for semi-structured data. In ICML, pages
291-298, 2002.

P. Kingsbury and M. Palmer. From Treebank to PropBank. In Proceedings of
LREC’02, Las Palmas, Spain, 2002.

J. Kivinen, A. J. Smola, and R. C. Williamson. Online learning with kernels. Signal
Processing, IEEE Transactions on, 52(8):2165-2176, 2004.

T. Kuboyama, K. Hirata, H. Kashima, K. F. Aoki-Kinoshita, and H. Yasuda. A
spectrum tree kernel. Information and Media Technologies, 2(1):292-299, 2007.

T. Kuboyama, K. Shin, and H. Kashima. Flexible tree kernels based on counting the
number of tree mappings. In ECML/PKDD Workshop on Mining and Learning with
Graphs, 2006.



140

References

[40]

[41]

[42]

[43]

[44]
[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

T. Kudo and Y. Matsumoto. Fast methods for kernel-based text analysis. In ACL,
pages 24-31, 2003.

C. S. Leslie, E. Eskin, and W. S. Noble. The spectrum kernel: A string kernel for
svm protein classification. In Pacific Symposium on Biocomputing, pages 566-575,
2002.

M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini. Building a large annotated
corpus of english: the penn treebank. Comput. Linguist., 19(2):313-330, 1993.

S. Menchetti. Learning Preference and Structured Data: Theory and Applications.
PhD thesis, Dipartimento di Sistemi e Informatica, DSI, Universita di Firenze, Italy,
December 2005.

T. M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

A. Moschitti. A study on convolution kernels for shallow semantic parsing. In ACL
’04: Proceedings of the 42nd Annual Meeting on Association for Computational Lin-
guistics, page 335, Morristown, NJ, USA, 2004. Association for Computational Lin-
guistics.

A. Moschitti. Efficient convolution kernels for dependency and constituent syntactic
trees. In ECML, pages 318-329, 2006.

A. Moschitti. Making tree kernels practical for natural language learning. In Pro-
ceedings of EACL’06, Trento, Italy, 2006.

K. R. Muller, S. Mika, G. Ratsch, K. Tsuda, and B. Scholkopf. An introduc-
tion to kernel-based learning algorithms. Neural Networks, IEEE Transactions on,
12(2):181-201, 2001.

D. Nguyen and T. B. Ho. A bottom-up method for simplifying support vector solu-
tions. IEEE Transactions on Neural Networks, 17(3):792-796, 2006.

L. Nicotra, A. Micheli, and A. Starita. Tree fisher kernel. In Proceedings. 2004 IEEFE
International Joint Conference on Neural Networks, pages 1917 — 1922, 2004.

A. B. J. Novikoff. On convergence proofs on perceptrons. Proceedings of the Sympo-
sium on the Mathematical Theory of Automata, 12:615-622, 1962.

N. Ohkura, K. Hirata, T. Kuboyama, and M. Harao. The -gram distance for ordered
unlabeled trees. In Discovery Science, pages 189-202, 2005.

S. Pradhan, K. Hacioglu, V. Krugler, W. Ward, J. H. Martin, and D. Jurafsky. Sup-
port vector learning for semantic argument classification. Machine Learning Journal,

2005.



References 141

[54]

[59]

[60]

[61]

J. Ramon and T. Géartner. Expressivity versus efficiency of graph kernels. pages
65-74. ECML/PKDD’03 workshop proceedings, September 2003.

K. Rieck, U. Brefeld, and T. Kriiger. Approximate kernels for trees. Technical report,
Fraunhofer Publica [http://publica.fraunhofer.de/oai.har] (Germany), 2008.

F. Rosemblatt. A probabilistic model for information storage and organization in the
brain. Psychological Review, 65:386-408, 1958.

B. Scholkopf, R. Herbrich, and A. J. Smola. A generalized representer theorem.
Proceedings of the Annual Conference on Computational Learning Theory, pages 416—
426, 2001.

B. Scholkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett. New support vector
algorithms. Neural Computation, 12(5):1207-1245, 2000.

J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge
University Press, 2004.

K. Shin and T. Kuboyama. A generalization of haussler’s convolution kernel: mapping
kernel. In ICML, pages 944-951, 2008.

J. Suzuki and H. Isozaki. Sequence and tree kernels with statistical feature mining.
In Y. Weiss, B. Scholkopf, and J. Platt, editors, Advances in Neural Information
Processing Systems 18, pages 1321-1328. MIT Press, Cambridge, MA, 2006.

M. E. Tipping. Sparse bayesian learning and the relevance vector machine. The
Journal of Machine Learning Research, 1:211-244, 2001.

F. Trentini, M. Hagenbuchner, A. Sperduti, F. Scarselli, and A. C. Tsoi. A self-
organising map approach for clustering of xml documents. In Proceedings of the
WCCI, Vancouver, Canada, July 2006. IEEE Press.

E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249-260, 1995.
V. N. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

S. Vishwanathan and A. J. Smola. Fast kernels on strings and trees. In Proceedings
of Neural Information Processing Systems 2002, 2002.

G. Wahba. Spline Models for Observational Data, volume 59 of CBMS-NSF Regional
Conference Series in Applied Mathematics. SIAM, Philadelphia, 1990.

D. Wettschereck, D. W. Aha, and T. Mohri. A review and empirical evaluation of fea-
ture weighting methods for a class of lazy learning algorithms. Artificial Intelligence

Review, 11:273-314, 1997.



142 References

[69] M. Zhang, W. Che, A. Aw, C. L. Tan, G. Zhou, T. Liu, and S. Li. A grammar-driven

convolution tree kernel for semantic role classification. In ACL, 2007.



	Abstract
	Acknowledgements
	List of Figures
	Introduction
	What is Machine Learning
	Issues in Structured Data Representation
	Kernel Methods for Structured Data
	Thesis Motivations
	Outline of the Thesis and Original Contributions
	Origin of the Chapters

	I Basics
	Background
	Definitions and Notation
	Machine Learning
	Machine Learning For Structured Data
	Self Organizing Maps
	Kernel Methods
	Kernel Functions
	Evaluating Kernel Functions


	State of the Art on Tree Kernel Functions
	Convolution Kernels
	Subtree Kernel
	Subset Tree Kernel
	Approximate Kernels for Trees
	Partial Tree Kernel
	Elastic Tree Kernel
	Grammar-Driven Tree Kernel
	Semantic Syntactic Tree Kernels

	Other Approaches for the Design of Kernels for Tree Structured Data
	Spectrum Tree Kernel
	Tree Fisher Kernel



	II Original Contributions
	A Tree Kernel For Non Discrete Domains
	Activation Mask Kernel
	Related Work
	Experiments and Discussion

	A Novel Kernel for Trees: Convolution Route Kernel
	Generalized Route Kernel
	An instantiation of the Generalized Route Kernel
	Implementation
	Relationship with other Kernels

	Experiments and Discussion
	Experiments on INEX 2005
	Experiments on INEX 2006
	Experiments on LOGML
	Discussion


	Efficient Score Computation by Compacting the Model
	General Considerations
	Compacting a Forest of Trees
	From a Forest to a Directed Acyclic Graph
	Efficient Score Computation
	The DAG Kernel Perceptron
	Voted Kernel Perceptron
	Kernel Combinations
	Experiments


	Conclusions
	Experimental Settings
	INEX 2005
	INEX 2006
	Penn Treebank II
	LOGML

	References


