
Dottorato di Ricerca in Informatica
Università di Bologna, Padova

Ciclo XXI

Settore scientifico disciplinare: INF/01

Kernel Methods for Tree Structured Data

Giovanni Da San Martino

Coordinatore Dottorato: Relatore:

Prof. S. Martini Prof. A. Sperduti

Esame finale anno 2009

Abstract

Machine learning comprises a series of techniques for automatic extraction of mean-

ingful information from large collections of noisy data. In many real world applica-

tions, data is naturally represented in structured form. Since traditional methods

in machine learning deal with vectorial information, they require an a priori form of

preprocessing. Among all the learning techniques for dealing with structured data,

kernel methods are recognized to have a strong theoretical background and to be

effective approaches. They do not require an explicit vectorial representation of the

data in terms of features, but rely on a measure of similarity between any pair of

objects of a domain, the kernel function. Designing fast and good kernel functions

is a challenging problem. In the case of tree structured data two issues become

relevant: kernel for trees should not be sparse and should be fast to compute. The

sparsity problem arises when, given a dataset and a kernel function, most structures

of the dataset are completely dissimilar to one another. In those cases the classifier

has too few information for making correct predictions on unseen data. In fact,

it tends to produce a discriminating function behaving as the nearest neighbour

rule. Sparsity is likely to arise for some standard tree kernel functions, such as the

subtree and subset tree kernel, when they are applied to datasets with node labels

belonging to a large domain. A second drawback of using tree kernels is the time

complexity required both in learning and classification phases. Such a complexity

can sometimes prevents the kernel application in scenarios involving large amount

of data.

iii

This thesis proposes three contributions for resolving the above issues of kernel

for trees. A first contribution aims at creating kernel functions which adapt to

the statistical properties of the dataset, thus reducing its sparsity with respect to

traditional tree kernel functions. Specifically, we propose to encode the input trees

by an algorithm able to project the data onto a lower dimensional space with the

property that similar structures are mapped similarly. By building kernel functions

on the lower dimensional representation, we are able to perform inexact matchings

between different inputs in the original space.

A second contribution is the proposal of a novel kernel function based on the

convolution kernel framework. Convolution kernel measures the similarity of two

objects in terms of the similarities of their subparts. Most convolution kernels are

based on counting the number of shared substructures, partially discarding informa-

tion about their position in the original structure. The kernel function we propose

is, instead, especially focused on this aspect.

A third contribution is devoted at reducing the computational burden related

to the calculation of a kernel function between a tree and a forest of trees, which

is a typical operation in the classification phase and, for some algorithms, also in

the learning phase. We propose a general methodology applicable to convolution

kernels. Moreover, we show an instantiation of our technique when kernels such as

the subtree and subset tree kernels are employed. In those cases, Direct Acyclic

Graphs can be used to compactly represent shared substructures in different trees,

thus reducing the computational burden and storage requirements.

iv

Acknowledgements

I would like to express my gratitude to my tutor, Professor Alessandro Sperduti, for

its guidance and support.

I also thank my family for its support over these years.

Finally I would like to thank everybody that has been on my side and helped me

whenever I needed, and whenever I did not.

v

Contents

Abstract iii

Acknowledgements v

List of Figures ix

1 Introduction 1

1.1 What is Machine Learning . 2

1.2 Issues in Structured Data Representation 3

1.3 Kernel Methods for Structured Data 4

1.4 Thesis Motivations . 6

1.5 Outline of the Thesis and Original Contributions 8

1.6 Origin of the Chapters . 9

I Basics 11

2 Background 12

2.1 Definitions and Notation . 12

2.2 Machine Learning . 16

2.3 Machine Learning For Structured Data 19

2.3.1 Self Organizing Maps . 19

2.3.2 Kernel Methods . 25

vi

2.3.3 Kernel Functions . 29

2.3.4 Evaluating Kernel Functions 33

3 State of the Art on Tree Kernel Functions 37

3.1 Convolution Kernels . 38

3.1.1 Subtree Kernel . 40

3.1.2 Subset Tree Kernel . 42

3.1.3 Approximate Kernels for Trees 45

3.1.4 Partial Tree Kernel . 46

3.1.5 Elastic Tree Kernel . 47

3.1.6 Grammar-Driven Tree Kernel 50

3.1.7 Semantic Syntactic Tree Kernels 51

3.2 Other Approaches for the Design of Kernels for Tree Structured Data 52

3.2.1 Spectrum Tree Kernel . 52

3.2.2 Tree Fisher Kernel . 53

II Original Contributions 55

4 A Tree Kernel For Non Discrete Domains 56

4.1 Activation Mask Kernel . 57

4.2 Related Work . 61

4.3 Experiments and Discussion . 62

5 A Novel Kernel for Trees: Convolution Route Kernel 79

5.1 Generalized Route Kernel . 80

5.2 An instantiation of the Generalized Route Kernel 82

5.2.1 Implementation . 84

5.2.2 Relationship with other Kernels 88

5.3 Experiments and Discussion . 88

vii

5.3.1 Experiments on INEX 2005 89

5.3.2 Experiments on INEX 2006 91

5.3.3 Experiments on LOGML . 94

5.3.4 Discussion . 96

6 Efficient Score Computation by Compacting the Model 97

6.1 General Considerations . 98

6.2 Compacting a Forest of Trees . 99

6.2.1 From a Forest to a Directed Acyclic Graph 100

6.2.2 Efficient Score Computation 103

6.2.3 The DAG Kernel Perceptron 107

6.2.4 Voted Kernel Perceptron . 109

6.2.5 Kernel Combinations . 110

6.2.6 Experiments . 112

7 Conclusions 123

A Experimental Settings 127

A.1 INEX 2005 . 127

A.2 INEX 2006 . 130

A.3 Penn Treebank II . 132

A.4 LOGML . 135

References 137

viii

List of Figures

2.1 An example of a labelled directed graph. 13

2.2 A positional Tree. The number over an arc represents the position of

the node with respect to its parent. 14

2.3 A tree (left) and some of its subtrees (right). 14

2.4 A tree (left) and all of its proper subtrees (right). 15

2.5 A tree (left) and all of its subset trees (right). 15

3.1 A subtree (left) and one of its elastic matchings with the tree on the

right. 49

3.2 Some examples of q-grams, with q = 4. Pi identifies the structure of

the path, the string the sequence of labels as encountered by visiting

the subtree. 52

4.1 Example of representation in feature space of three trees according

to the Activation Mask Kernel for ε = 1. On the left part of the

image three simple trees and on the right part their activation masks

referring to a 5 × 4 map. The height of each element of the map

corresponds to the value of the activation. 60

ix

4.2 Comparison between classification error of the different techniques

on the INEX 2005 test dataset. Maps on the x-axis are sorted by

SOM-SD classification error. The error values of the AM-kernel are

related to the ε value selected on validation (which is reported in

correspondence of the map error value). 71

4.3 Classification error of the SST and AM-kernel on various datasets

with different levels of sparsity. 76

4.4 Comparison between classification error (using 3-fold cross-validation)

of the different techniques on the LOGML test dataset. Maps on the

x-axis are sorted by SOM-SD classification error. The error values of

the AM-kernel are related to the ε value selected on validation (which

is reported in correspondence of the map error value). 78

5.1 An example of a route connecting nodes labelled with a and e. The

nodes connected by dashed edges are the ones comprising the path

between the two nodes. The route is formed by the sequence 2, 3 since

node b is the second child of a and node e is the third child of b. . . 80

5.2 A tree (left) and its set of features according to the route kernel

defined in eq. (5.12). 84

6.1 Example of how to represent a forest as a minimal DAG with no loss

of information. Nodes in the minimal DAG are annotated with a

label and the frequency in the forest of the subtree rooted at that node.101

6.2 The algorithm to transform a tree-forest into a minimal DAG. 102

6.3 The algorithm to insert a weighted ADAG in a larger ADAG. 104

6.4 The DAG-Perceptron algorithm. 107

6.5 Execution time in seconds for the Standard Perceptron and the Voted

DAG Perceptron using a polynomial kernel with degree 3 (Poly3) over

the training set with 992,819 examples. 114

x

6.6 Execution time in seconds for the Standard Perceptron and the Voted

DAG Perceptron using the SST tree kernel (Tk) with different values

for the λ parameter, i.e. λ ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0},
over the training set with 992,819 examples. For each method, only

the fastest and the slower executions are reported. 115

6.7 Execution time in seconds for the Standard Perceptron and the Voted

DAG Perceptron using a linear combination of a polynomial kernel

with degree 3 (Poly3) with the SST tree kernel (Tk), i.e. (1 − γ) ∗
Poly3+γ ∗Tk, over the training set with 992,819 examples. Different

values for λ and γ have been considered, i.e. λ ∈ {0.3, 0.4, 0.5, 0.6,

0.7, 0.8, 0.9, 1.0} and γ ∈ {0.2, 0.3, 0.4, 0.5, 0.6}. For each method,

only the fastest and the slower executions are reported. 116

6.8 Evolution of the number of tree nodes stored in memory and belonging

to the model developed by the Standard Perceptron and the Voted

DAG Perceptron during training on the training set with 992,819

examples. Both methods use the SST tree kernel (Tk) with different

values for λ, i.e. λ ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. For each

method, only the executions with the largest and the lower number

of stored nodes are reported. 117

6.9 Evolution of the number of tree nodes stored in memory and belonging

to the model developed by the Standard Perceptron and the Voted

DAG Perceptron during training on the training set with 992,819

examples. Both methods use a linear combination of a polynomial

kernel with degree 3 (Poly3) with the SST tree kernel (Tk), i.e. (1−
γ)∗Poly3+γ ∗Tk. Different values for λ and γ have been considered,

i.e. λ ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} and γ ∈ {0.2, 0.3, 0.4,

0.5, 0.6}. For each method, only the executions with the largest and

the lower number of stored nodes are reported. 119

xi

6.10 Execution time in seconds for the Standard Perceptron and the Voted

DAG Perceptron using the SST tree kernel with different values for

the λ parameter, i.e. λ ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, over

the union of the INEX 2005 training and test sets. 120

6.11 Evolution of the number of tree nodes stored in memory and be-

longing to the model developed by the Standard Perceptron and the

Voted DAG Perceptron during training on the union of the INEX

2005 training and test sets. Both methods use the SST tree kernel

(Tk) with different values for λ, i.e. λ ∈ {0.3, 0.4, 0.5, 0.6, 0.7}. For

the Standard Perceptron only the execution with lower number of

nodes is reported. For the Voted Dag Perceptron only the execution

with the largest number of nodes is reported. 121

A.1 Parse tree of the sentence ”Mary brought a cat to school” along with

the PAF trees for Arg0, Arg1 and ArgM. 135

xii

Chapter 1

Introduction

Since the advent of modern computers the amount of available information has been

increasing more than our capacity of analysing it. The development of automatic

tools for data analysis is still an active area of research. Machine learning comprises

a series of techniques for automatic extraction of meaningful information from large

collections of noisy data.

Traditional methods in machine learning deal with vectorial information even if,

in many real world applications, data are naturally represented in structured form

(graphs for instance): XML data, molecular structures in chemical informatics, parse

trees in natural language processing and protein sequences in bioinformatics.

In order to apply machine learning techniques designed for vectorial data to

structured data, a pre-processing phase is required in order to encode structured

information into vectorial form. A pre-processing is always task specific and needs

to be suitably designed for any new task. The pre-processing can result in the loss

of relevant or necessary information for the given task.

Recent developments in machine learning have produced methods capable of

processing graph structured information directly. Among these, kernel methods are

becoming more and more popular. Being on one hand theoretically well founded

in statistical learning theory, they have on the other hand shown good empirical

2 Chapter 1. Introduction

results in many applications. Kernel methods introduce a novel way of handling

structured data since they do not require an explicit representation of each input,

they instead require the definition of a kernel, i.e. a similarity function between all

pairs of objects of a domain. The definition of kernel functions for structures is a

challenging task because of the need to balance the trade-off between accuracy (how

well its values represent the true similarity between objects) and its computational

complexity.

Kernel methods have proven to be successfully for many real world problems.

However, the kernels currently defined in literature have some drawbacks. Investi-

gating ways of overcoming current kernel drawbacks and looking for more effective

kernels is the main motivation for this thesis.

1.1 What is Machine Learning

One of the main motivations for the development of machine learning techniques is to

automatically extract meaningful information from large collections of data: recog-

nizing human speech, detect fraudulent credit card transactions, perform automatic

medical diagnosis. For a more detailed example consider the case of recognizing

tumours in magnetic resonance images (MRI). An MRI exam produces many series

of images (up to 6) each one containing many images (more than 30). All of them

have to be carefully analysed in order to discover the presence of a tumour. This is

a long process and therefore the daily number of examined patients is limited. This

problem features two of the issues typically faced by machine learning: data may

be noisy and no algorithmic solution is known. In the MRI example a radiologist,

in most cases, is able to recognize a tumour but he is not able to formalize the

problem and define an exact and generally applicable procedure for solving it. The

only way to communicate its knowledge to a student, for example, is to give him a

series of images along with their classification (whether they contain a tumour or

not) and guide him in its inference process giving feedbacks on his hypotheses. The

student improves his capacity of recognizing tumours with experience. The aim of

Chapter 1. Introduction 3

machine learning is precisely to provide automatic tools to mimic the human ability

to improve its behaviour with experience. Another situation in which the use of

a machine learning approach to problem solving is appropriate is when the results

are subjective. Algorithms able to adapt to user preferences are usually based on

machine learning techniques. For example the notion of interesting web site depends

on the user, so an intelligent search engine should learn user preferences and return

the results based on them.

1.2 Issues in Structured Data Representation

This section discusses the problems of representing tree structured data in Machine

Learning algorithms. Tree data structures are employed to model objects from sev-

eral domains. In natural language processing, parse trees are modelled as ordered

labelled trees. In pattern recognition, an image can be represented by a tree whose

vertices are associated with image components, retaining information concerning

the structure of the image. In automated reasoning, many problems are solved by

searching and the search space is often represented as a tree whose vertices are as-

sociated with search states and edges represent inference steps. Also semistructured

data such as HTML and XML documents can be modelled by labelled ordered trees.

In order to apply to structured data a learning algorithm not specifically designed

for that format the user must first transform the data into a vectorial form. This

task is problem dependent, may be computational demanding, and is prone to loss

of relevant information. In [8] it is described an example of encoding a dataset of

chemical structures into a vectorial form. Each structure is represented by numerical

descriptors called topological indices, which code specific morphological properties

of the molecule. The topological indices must be defined by a domain expert, and

that can be an expensive procedure (given that an expert is available). Moreover

an error by the expert may greatly affect the subsequent learner accuracy. Among

all indices a subset more appropriate for the given task may be chosen. This selec-

tion procedure may have to be repeated if the dataset changes. In many real world

4 Chapter 1. Introduction

problems the preprocessing phase affects heavily the accuracy of the learner. More-

over, to maintain all the structured information, the dimensionality of the resultant

vectors may be quite high. This may be a significant drawback considering the

fact that many Machine Learning techniques are not able to effectively scale with

the dimensionality of the input and therefore their predictive power decreases with

increase in the dimensionality of the input. This problem is known as “Curse of Di-

mensionality” [6]. To get an idea of the reason for this performance degradation, it

is sufficient to consider a space X of dimension d. Suppose that X is composed by a

set of points uniformly distributed. If the number of dimensions of X increases, the

number of points necessary to keep the same density must increase exponentially.

In other words, the more the dimensions of the input, the more the probability that

the data are sparse. A sparse dataset gives in general too few information to build

a good classifier. A flat representation for structured data is thus appropriate when

knowledge about the domain can be effectively used to select a set of features. When

such knowledge is not available, instead of manually trying different encodings, it is

desirable to make use of techniques able to directly handle structured data.

1.3 Kernel Methods for Structured Data

The issue of data representation is faced by kernel methods [7,13,48] from a different

perspective. Kernel methods avoid to explicitly represent the data into vectorial

form since the only information they require is about the similarity of each pair of

data items. By definition, kernel methods look for linear relations in the feature

space. Input items are compared via dot products of their representation in the

feature space. The feature space is a vectorial description of the data according to

a predefined set of features. However kernel methods may avoid to directly access

the feature space since it can be shown that it is possible to replace the dot product

with a kernel function, a symmetric positive semidefinite function which computes

the similarity of a pair of items directly in their original space. The advantage

of using kernel functions is that huge, even infinite, feature spaces can be used

Chapter 1. Introduction 5

with a computational complexity not dependent on the size of the feature space

but on the complexity of the kernel function. It can be demonstrated that kernel

methods, even if they can implicitly make use of very large feature spaces, they

do not suffer of the curse of dimensionality since Statistical Learning Theory [65]

shows that the generalization capability of a kernel method ultimately depends on

the number of misclassified examples in the learning phase. So far we have showed

that it can be avoided to access directly the feature space representation of the input

examples. The classification of a new example is performed by consider the sign of

the application of the kernel function between the example and the classifier (see

eq. (2.15)). It can be shown that, if the kernel method satisfies the assumptions

of the Representer theorem (see Section 2.3.2), the classifier can be represented as

a weighted sum of the training instances (see section 2.2 for details). Thus the

classification of an example is performed via a weighted sum of kernel evaluations

between the example and a subset of the training instances. Since the representation

of the data in feature space is only accessed implicitly when a kernel function between

two examples is computed, kernel methods can be applied to any type of input by

providing an appropriate kernel function.

Kernel functions have some interesting features:

• the space of kernel functions is closed under operations such as addition and

linear combination. It is then very easy to combine data from different sources.

For example, when classifying web pages, it would be possible to integrate

information from text, images and links by combining the respective kernels.

• If we consider a finite dataset composed by n examples, we can represent the

kernel function by a matrix whose size is always n × n, independently from

the size of each individual example. This property can be useful when a small

dataset of large size examples has to be analyzed.

Kernel methods have proved to be a state of the art technique for many real

world problems. They are described in detail in Section 2.3.2. However designing

good kernel functions, i.e. fast to compute and expressive (see Section 2.3.4 for

6 Chapter 1. Introduction

a definition) is an open problem. In the following these two important issues are

discussed. Generally speaking, the main goal of this research is to find methodologies

to overcome them.

1.4 Thesis Motivations

Kernel function evaluations heavily affect the computational burden of kernel meth-

ods. It is therefore important to keep their complexity as low as possible. Unfortu-

nately it has been demonstrated that completely expressive kernels for graphs are

NP-Hard to compute [54]: for example a kernel k(G1, G2) that takes into account

the similarity of all possible subgraphs of the two graphs G1 and G2 is equivalent

to testing whether G1 and G2 are isomorphic (a problem known to be NP-Hard).

Kernel functions must be a compromise between accuracy of the results and com-

putational complexity of the procedure. In the following we try to make clear what

we mean with the term expressiveness. One of the most popular kernel for trees

is the subtree kernel (see section 3.1.1 for a description). It counts the number of

exactly matching subtrees of the inputs. While the restriction to exact match allows

the evaluation of the kernel function to be carried out in n log n time (where n is

the number of nodes), it prevents the application on settings in which the labels of

the nodes take values from the domain of real numbers, since hardly there will be

any matching subtree. When the number of pairs of inputs having non zero simi-

larity is very low, the kernel has low expressiveness and is said to be sparse. It is a

pathological situation since those kernels are likely to not give enough information

to the classifier, which will behave like a nearest neighbour rule [30,61], i.e. it will

not be able to generalize well on unseen data. Even in cases in which the labels of

the nodes may only have values from a discrete domain, the subtree kernel may be

sparse. For example, we collected some statistics from a dataset of XML data (see

section A.1) and noticed that the subtree kernel would have resulted in a 0 kernel

value, i.e. inputs totally dissimilar, for the 54.71% of the kernel evaluations. Re-

laxing the constraint which allows matchings only between identical subtrees does

Chapter 1. Introduction 7

not help because the resulting computational complexity of kernel evaluations would

make the use of kernel methods infeasible. The development of techniques and ker-

nel functions with an acceptable accuracy/complexity trade-off is an open problem

and it is one of the main targets for this research.

A second motivation for the development of novel non sparse and expressive

kernel functions comes from the analysis of the literature on kernel for trees. Most

of them fall under convolution kernel framework, which expresses a kernel on a

pair of structures as a combination of kernels on their constituent substructures.

However, all those kernels focus on the presence of the substructures and partially

discard information about the position of the substructures in the original structure.

This observation led us to investigate whether this type of information can be useful.

There are important computational issues not only in the computation of kernel

functions, but also in the classification phase. As mentioned earlier, the hypothesis h

returned by a kernel method can be expressed as a linear combination of the inputs.

To be more precise, h can be expressed as a linear combination of the wrongly

classified inputs. In order to use h the whole set of wrongly classified inputs must

be kept in memory. While saving in memory a great amount of plain data may

be feasible, saving great amounts of structured data, due to the typical increase

in size, may severely limit the applicability of the technique. Just as an example,

we collected some statistics from an XML dataset [36] finding out that the total

number of nodes of the misclassified inputs tended to increase linearly with the size

of the training set. It is worth pointing out that the reduction of the computational

resources of a kernel method is not only a computational issue, but it also affects

the accuracy of the classifier. In fact, in machine learning it is a well known fact

that the accuracy of the classifier improves with the size of the training set.

8 Chapter 1. Introduction

1.5 Outline of the Thesis and Original Contribu-

tions

This section describes the contents of the thesis highlighting its original contribu-

tions.

The thesis is divided into two parts. The first part outlines background concepts

and gives a survey of the state of the art of kernel for trees.

Chapter 2 introduces the notation and basic concepts used throughout the re-

maining chapters. Section 2.1 gives basic definitions about the structures used in the

following chapters. Section 2.2 introduces the Machine Learning framework. Sec-

tion 2.3 gives an overview of two approaches for handling tree structured data, the

Self Organizing Map for Structured Data and kernel methods. The latter comprises

a series of techniques which avoid to explicitly represent the data, since they rely on

information about the similarity of objects in a domain. This type of information

is given by the kernel functions. Sections 2.3.3 and 2.3.4 describe kernel function

properties and discuss the contributions in literature for assessing their quality.

Chapter 3 gives an overview of the kernel functions for tree structured data.

Section 3.1 introduces the convolution kernel framework and describes the kernel

functions based on it. Section 3.2 gives a overview of other approaches for building

kernel functions.

The second part of the thesis is devoted to the presentation of the original con-

tribution.

A drawback of the standard tree kernels is that in the case of large structures

and many symbols, the feature space implicitly defined by these kernels is very

sparse. Chapter 4 proposes a novel family of kernels based on the activation of a

Self Organizing Map for Structured Data, a clustering algorithm which maps tree

structured information in such a way that similar trees are mapped onto nearby areas

to form clusters. Specifically, we make use of this property to design kernel functions

able to perform inexact subtree matching thus reducing the sparsity of the original

kernel while trying to keep its structural information. Section 4.1 describes the novel

Chapter 1. Introduction 9

family of kernels based on Self Organizing Map for Structured Data activations, the

Activation Mask Kernel. Section 4.2 discusses the relationships of the new kernel

with other kernels defined in literature. Section 4.3 present experiments performed

to verify the effectiveness of our approach.

A second contribution was motivated by the observation that convolution tree

kernels match substructures without taking into account their “relative positioning”

with respect to one another. In chapter 5 a novel family of kernels is defined which

explicitly focus on this type of information. Section 5.1 gives a formal definition of

the novel kernel and Section 5.2 describes an instance of the general form. Section 5.3

describes the experiments performed in order to establish the effectiveness of the

kernel.

While Support Vector Machines has a high generalization capability, a drawback

of their use is the time required both in learning and classification phases. As a

third contribution, in chapter 6 we present a methodology for reducing that compu-

tational burden for convolution tree kernels by a suitable encoding of the structures

which avoid the re-computation of kernels between the same substructures belong-

ing to different examples. Section 6.1 describes a general methodology applicable to

convolution kernels. Section 6.2 describes the application of our idea to the subtree

and subset tree kernels and shows experiments proving its effectiveness.

1.6 Origin of the Chapters

The material presented in chapter 4 is based on the following articles [2]. Chapter 5

is based on unpublished work. Chapter 6 is based on the following articles [3, 4].

10 Chapter 1. Introduction

Part I

Basics

11

Chapter 2

Background

This chapter introduces basic definitions and concepts necessary for understanding

the works presented in chapters 4,5 and 6. Section 2.1 presents the notation and

definitions related to trees. Sections 2.2 introduces the machine learning framework.

Section 2.3 discusses those techniques for learning on structured data that are used

in the following chapters. Since the focus of this work is on kernel methods, sec-

tions 2.3.3 introduce basic properties of one of the fundamental components of kernel

methods, kernel functions. The chapter ends with section 2.3.4 by discussing ways

to evaluate kernel functions.

2.1 Definitions and Notation

This section recalls basic definitions and notation that will be used in the following

chapters. We start with some definitions on data structures.

A graph is a pair of sets G = (VG, EG), where VG = {v1, vn} is an ordered set of

nodes and EG = {eij = (vi, vj), . . . , ekl = (vk, vl)} a set of pairs of nodes, the edges.

The subscript G will be omitted whenever it is clear from the context which graph

we are referring to. An undirected graph is a graph for which eij ∈ E ⇔ eji ∈ E. A

labelled graph is a graph for which a label is attached to each node. Labels will be

represented by means of a function l(v) or, when referring to a specific node vi, by

li = l(vi). A path p(vi, vj) = vi, . . . , vj in the graphG is a sequence of nodes for which

Chapter 2. Background 13

a

cd

a b

Figure 2.1: An example of a labelled directed graph.

there exists an edge connecting any adjacent nodes, i.e. (pi, pi+1) ∈ E, 1 ≤ i ≤ l,

where pi is the i-th node in the path and l is the length of the path (the number

of nodes comprising p). Two nodes are connected if there exists a path connecting

them. A graph is connected if every pair of distinct vertices in the graph is connected.

A graph is said to have a cycle if there exists a path connecting a node with itself,

i.e. ∃ p = p1, . . . , pl. p1 = pl.

Figure 2.1 gives an example of a labelled directed graph. Note that the graph is

not connected since there is no path connecting nodes labelled with b and c.

A tree is a directed and connected graph without cycles for which every node

has at most one incoming edge. A rooted tree is a tree for which there exists a node

with no incoming edges (the root). In order to simplify the notation, we will use

v ∈ G has a shortcut for v ∈ VG. A leaf is a node with no outgoing edges. If there

is a link eij, node vi is the parent of vj and node vj is a child of vi. If vj, vk are

children of vi, then vj and vk are siblings. A node vj is a descendant of vi if there

exists a path from vi to vj (in this case vi is an ascendant of vj). An ordered tree is

one in which the children of each node are ordered according to some relation.

A positional tree is a tree for which each child node has associated an index

representing its position with respect to its siblings. Note that the set of positional

trees include the set of ordered trees. Figure 2.2 highlights the differences of an

ordered tree with respect to a positional tree: edge labels represent the position

of a node. In the following node positions for ordered trees will be omitted. The

out-degree of a node is the highest positional index associated to a child of the

14 Chapter 2. Background

a

b

c e

g

2 3

31

Figure 2.2: A positional Tree. The number over an arc represents the position of

the node with respect to its parent.

a

b

c e

g ⇒

a

b

c e

g

a

b g

c e

g a

gb

c e

a

b

c e

a

b

e

Figure 2.3: A tree (left) and some of its subtrees (right).

node. The maximum out-degree of a tree is the highest index of all the nodes of the

tree. The out-degree of a node for an ordered tree corresponds to the number of its

children. The depth of a node vi with respect to one of its ascendants vj is defined

as the number of nodes comprising the path from vj to vi. When not specified, the

node with respect to the depth is computed, is the root.

A tree can be decomposed in many types of substructures.

Subtree A subtree t is a subset of nodes in the tree T , with corresponding edges,

which forms a tree. A subtree rooted at node vi will be indicated with ti, while a

subtree rooted at a generic node v will be indicated by t(v). When t is used in a

context where a node is expected, t refers to the root node of the subtree t. The

set of subtrees of a tree will be indicated by NT . When clear from the context NT

may refer to specific type of subtrees. Figure 2.3 gives an example of a tree together

with its subtrees. Various types of subtrees can be defined for a tree T .

Chapter 2. Background 15

a

b

c e

g ⇒

a

b

c e

g

b

c e

g c e

Figure 2.4: A tree (left) and all of its proper subtrees (right).

a

b

c e

g ⇒

a

b

c e

g

a

b g

c e

g

b

c e

Figure 2.5: A tree (left) and all of its subset trees (right).

Proper Subtree A proper subtree ti comprises node vi along with all of its de-

scendants (see figure 2.4 for an example of a tree along with all its proper subtrees).

Subset Tree A subset tree is a subtree for which the following constraint is sat-

isfied: either all of the children of a node belong to the subset tree or none of them.

The reason for adding such a constraint can be understood by considering the fact

that subset trees were defined for measuring the similarity of parse trees in natural

language applications. In that context a node along with all of its children represent

a grammar production. Figure 2.5 gives an example of a tree along with some of its

subset trees.

16 Chapter 2. Background

2.2 Machine Learning

The machine learning framework encompasses all algorithms capable of improving

their behaviour with experience. According to the definition of Mitchell [44], a

computer program is said to learn from experience E with respect to some class

of tasks T and performance measure P , if its performance at tasks in T , measured

according to P , increases with experience E.

Two different scenarios can be distinguished in machine learning: supervised and

unsupervised learning. In the supervised scenario a set of pairs, the training set,

S = {(xi, yi) : i = 1, . . . , n} is provided to the learner. xi ∈ X is the input example

(X denotes the domain of the xi, X is the set of all xi appearing in S), yi ∈ Y is the

label of xi. Each (x, y) is generated according to an unknown distribution P (x, y).

S is assumed to be independent and identically distributed according to P (x, y).

The domain of Y determines the type of problem (the following list considers only

problems of interest for the present work):

• If yi ∈ {0, 1} it is a two-class classification problem. It is the simplest case.

Most machine learning classification algorithms belong to this class.

• If yi ∈ {0, . . . , n} it is a multi-class classification problem. The prediction of

an instance is selected among n+ 1 classes.

• If yi ∈ R it is a regression problem. Regression can be viewed as the problem

of fitting a curve representing the target function.

• If yi ∈ {0, 1}m it is a multi-label classification problem: the classification of xi

is a vector where each dimension represent the classification with respect to

the corresponding label.

The task in supervised learning is to estimate a function h : X → Y , representing

the relationship between x and y values, having at disposal only the set of examples

S. The function h (also called hypothesis) belongs to a set H.

Chapter 2. Background 17

The best h, represented as h∗, minimizes the expected risk:

R(h) =

∫
L(h(x), y)dP (x, y) (2.1)

where L is a loss function measuring the classification error of h. L can be, for

instance, the total number of misclassified examples (binary loss).

Since the distribution P (x, y) is unknown, it is not possible to directly use

equation (2.1) for selecting the best h. A reasonable approach is to minimize the

loss function with respect to the available data.

Re(h) =
1

n

∑
(x,y)∈S

L(h(x), y) (2.2)

The set of h such that R(h) = 0 is called Version Space [44]. This technique alone,

however, does not lead to an optimal h since there can be infinite functions for

which ∀(xi, yi) ∈ S : h(xi) = yi. The ability of a function to correctly classify

unseen data is referred to as generalization capability. It is clearly of particular

interest to express the generalization capability of an algorithm without referring

to a specific instance of the problem (a specific set of data). Statistical Learning

Theory is devoted to this problem. Among its results there is a characterization of

the classes of functions with respect to the Vapnik-Chervonenkis (VC) dimension, a

measure of the complexity of the class. The VC dimension of a family of functions

H is defined as the cardinality of the largest subset of points of the domain that

can be labelled arbitrarily by choosing a function h ∈ H. Loosely speaking the

VC dimension grows with the ability of a set of functions to correctly classify any

training set. The following theorem shows that the generalization ability of a family

of functions decreases when increasing the VC dimension.

Theorem 2.1 Let v be the VC dimension of the family of functions H. Then

∀ δ > 0, h ∈ H dependent from a set of parameters Θ, the upper bound

R(h(Θ)) ≤ Re(h(Θ)) + Ω

(
VC(h(Θ))

n

)
, (2.3)

where Re is the empirical risk and n is the size of the training set, holds with prob-

ability at least 1 − δ for n > VC(h(Θ)). Ω
(
VC(h(Θ))

n

)
is a monotonic increasing

function and it is called the confidence interval.

18 Chapter 2. Background

Note that the generalization ability of an algorithm increases by having at disposal a

larger amount of data. The confidence interval is also related to the VC dimension:

if a function with low complexity is able to correctly classify the training set, then

it is likely to have a low expected risk. The minimization of both terms of eq. (2.3)

is important. When a function is able to correctly classify the training set but has

a large error on the rest of the distribution, then the function is told to overfit the

data. When a function has a low confidence interval but has not enough expressive

power (it is not able to correctly classify the training set), it is told to underfit the

data.

Since the minimization of the empirical risk alone does not guarantee to obtain

high accuracy on the whole distribution, in order to obtain a useful solution, the

learning process needs to incorporate a bias, based on a priori knowledge of the

problem, for restricting the set of functions from which the selection of the best h is

performed. Note that, since the choice of the bias is made before seeing the training

set, the resulting class of functions, may not contain h∗. On the other side, given

a bias, it is possible to build a training set such that any algorithm will perform

arbitrarily bad. A priori knowledge may make take the form of

• a restriction of the family H from which h∗ will be selected,

• a penalization for complex functions (Regularization). An example of a reg-

ularizer is a penalization term which influence the selection towards smooth

functions.

• The selection of a functional class according to the structural risk minimization

principle [10]. Let H1 ⊆ H2 ⊆ . . . ⊆ Hk be a sequence of family of functions

with VC(Hi) < VC(Hi+1), 1 ≤ i < k. Among those functions minimizing the

empirical risk for each Hi, the structural risk minimization principle chooses

the one minimizing also a bound of the form of eq. (2.3).

In the unsupervised learning scenario there is no label information available. The

learner is provided with only a set of instances X = {xi : i = 1, . . . , n}. The task

Chapter 2. Background 19

here is to find regularities in the set X. The most classical unsupervised technique

is clustering, which has the aim of finding a partition of a dataset such that any

object of a partition has higher similarity with objects in the same partition than

with objects of different partitions.

Machine learning algorithms can be further classified into batch (or off-line) and

on-line algorithms. For batch algorithms the distribution P (x, y) generating the data

is fixed, while for on-line algorithms it may vary in time. Batch methods have at

disposal the whole training set and the learning and classification phase are distinct:

once training has finished, the learner has no possibility to modify its behaviour,

i.e. to adapt to new examples. In on-line methods data arrives sequentially and

learning takes place together with classification. On-line algorithms must be less

computational intensive because the two phases, learning and classification, must

be executed together.

2.3 Machine Learning For Structured Data

The aim of this section is to describe some of the learning algorithms, applicable to

structured data, that will be used in the following chapters.

2.3.1 Self Organizing Maps

The aim of the Self Organizing Maps (SOM) learning algorithm is to learn a feature

map

M : I → A (2.4)

which given a vector in the spatially continuous input space I returns a point in

the spatially discrete output display space A. This is obtained in the SOM by

associating each point in A to a different neuron. Moreover, the output space A
is typically obtained by arranging this set of neurons as the computation nodes

of a one- or two-dimensional lattice. Given an input vector xv, the SOM returns

the coordinates within A of the neuron with the closest weight vector. Thus, the

20 Chapter 2. Background

set of neurons induce a partition of the input space I. In typical applications

I ≡ IRm, where m� 2, and A is given by a two dimensional lattice of neurons. In

this setting, high dimensional input vectors are projected into the two dimensional

coordinates of the lattice, with the aim of preserving, as much as possible, the

topological relationships among the input vectors, i.e., input vectors which are close

to each other should be projected to neurons which are close to each other on

the lattice. The SOM is thus performing data reduction via a vector quantization

approach.

In a more generic case, when the input space is a structured domain with labels

in U , we redefine equation (2.4) to be:

M# : U#[i,o] → A (2.5)

This can be realized through the use of the following recursive definition:

M#(G) =

 nilA if G = ξ

Mnode

(
us,M#(G(1)), . . . ,M#(G(o))

)
otherwise

(2.6)

where s = source(G), G(1), . . . , G(o) are the (eventually void) subgraphs pointed

by the outgoing edges leaving from s, nilA is a special coordinate vector into the

discrete output space A, and

Mnode : U ×A× · · · ×A︸ ︷︷ ︸
o times

→ A (2.7)

is a SOM, defined on a generic node, which takes in input the label of the node

and the “encoding” of the subgraphs G(1), . . . , G(o) according to the M# map. By

“unfolding” the recursive definition in equation (2.6), it turns out thatM#(G) can

be computed by starting to apply Mnode to leaf nodes, and proceeding with the

application of Mnode bottom-up from the frontier to the supersource of the graph

G.

Model of Mnode

In the previous section we saw that the computation of M# can be recast as the

recursive application of the SOMMnode to the nodes compounding the input struc-

Chapter 2. Background 21

ture. Moreover, the recursive scheme for graph G follows the skeleton skel(G) of the

graph. In this section, we give implementation details on the SOM Mnode.

For each node v in VG, we have a vector uv of dimension m. Moreover, we

realize the display output space A through a q dimensional lattice of neurons. We

assume that each dimension of the q dimensional lattice is quantized into integers,

ni, i = 1, 2, . . . , q, i.e., A ≡ [1 . . . n1]× [1 . . . n2]× · · · × [1 . . . nq]. The total number

of neurons is
∏q

i=1 ni, and each “point” in the lattice can be represented by a q

dimensional coordinate vector c. For example, if q = 2, and if we have n1 neurons

on the horizontal axis and n2 neurons on the vertical axis, then the winning neuron

is represented by the coordinate vector y ≡ (y1, y2) ∈ [1 . . . n1] × [1 . . . n2] of the

neuron which is most active in this two dimensional lattice.

With the above assumptions, we have that

Mnode : IRm × ([1 . . . n1]× · · · × [1 . . . nq])
o → [1 . . . n1]× · · · × [1 . . . nq], (2.8)

and the m+ oq dimensional input vector xv toMnode, representing the information

about a generic node v, is defined as

xv =
[
uv ych1[v] ych2[v] · · · ycho[v]

]
, (2.9)

where ychi[v] is the coordinate vector of the winning neuron for the subgraph pointed

by the i-th pointer of v. In addition, we have to specify how nilA is defined. We can

choose, for example, the coordinate (−1, . . . ,−1︸ ︷︷ ︸
q

).

Of course, each neuron with coordinates vector c in the q dimensional lattice

will have an associated vector weight wc ∈ IRm+oq.

Notice that, given a DAG D, in order to compute M#(D), the SOM Mnode

must be recursively applied to the nodes of D. One node can be processed only if

all the subgraphs pointed by it have already been processed by Mnode. Thus, the

computation can be parallelized on the graph, with the condition that the above

constraint is not violated. A data flow model of computation fits completely this

scenario. When considering a sequential model of computation, a node update

22 Chapter 2. Background

scheduling constituted by any inverted topological order for the nodes of the graph

suffices to guarantee the correct computation of M#.

Finally, it must be observed that, even if the SOM Mnode is formally just tak-

ing care of single graph nodes, in fact it is also “coding” information about the

structures. This does happen because of the structural information conveyed by the

ychi[v] used as part of the input vectors. Thus, some neurons of the map will be

maximally active only for some leaf nodes, others will be maximally active only for

some nodes which are roots of graphs, and so on.

Training algorithm for Mnode

The weights associated with each neuron in the q dimensional latticeMnode can be

trained using the following process:

Step 1 (Competitive step). In this step the neuron which is most similar to

the input node xv (defined as in equation (2.9)) is chosen. Specifically, the

(winning) neuron, at iteration t, with the closest weight vector is selected as

follows:

yi∗(t) = arg min
ci
‖Λ(xv(t)−mci(t))‖, (2.10)

where Λ is a (m + cq) × (m + cq) diagonal matrix which is used to balance

the importance of the label versus the importance of the pointers. In fact, the

elements λ1,1, · · · , λm,m are set to µ, the remaining elements are set to 1-µ.

Notice that if cq = 0 and µ = 1, then the standard SOM algorithm is obtained.

Step 2 (Cooperative step). The weight vector myi∗ , as well as the weight

vector of neurons in the topological neighborhood of the winning neuron, are

moved closer to the input vector:

mcr(t+ 1) = mcr(t) + η(t)f(∆i∗r)(xv(t)−mcr(t)), (2.11)

where the magnitude of the attraction is governed by the learning rate η and

by a neighborhood function f(∆i∗r). ∆i∗r is the topological distance between

Chapter 2. Background 23

cr and ci∗ in the lattice, i.e., ∆i∗r = ‖cr − ci∗‖, and it controls the amount

to which the weights of the neighboring neurons are updated. Typically, the

neighborhood function f(·) takes the form of a Gaussian function:

f(∆i∗r) = exp

(
− ∆2

i∗r

2σ(t)2

)
(2.12)

where σ is the spread. As the learning proceeds and new input vectors are

given to the map, the learning rate gradually decreases to zero according to

the specified learning rate function type. Along with the learning rate, the

neighborhood radius σ(t) decreases as well1.

Putting this all together, the training algorithm of the SOM-SD can be described

as shown by Algorithm 1, where for the sake of notation we denote Mnode by M.

We will use this concise notation also in the following.

In this version of the algorithm, the coordinates for the (sub)graphs are stored in

yv, once for each processing of graph D, and then used when needed2 for the training

ofM. Of course, the stored vector is an approximation of the true coordinate vector

for the graph rooted in v. However, since the learning rate η converges to zero this

approximation can be negligible.

The SOM can be considered as an instance of a general framework for process-

ing of structured data [27]. Various extensions of the SOM has been described in

literature. The Contextual Self-Organizing Map (CSOM-SD) model family is able

to capture contextual information about the input structure, i.e. information about

the ancestor of a node [24, 25]. The Graph SOM-SD model allows the processing

of undirected graphs, and non-positional graphs where the order of edges is not

relevant [26].

The heuristic nature of the SOM-SD can not formally guarantee to preserve

the topology of the items in the input space. In order to overcome this limitation,

1Generally, the neighborhood radius in SOMs never decreases to zero. Otherwise, if the neigh-

borhood size becomes zero, the algorithm reduces to vector quantization (VQ).
2Notice that the use of an inverted topological order guarantees that the updating of the coor-

dinate vectors xv is done before the use of xv for training.

24 Chapter 2. Background

Algorithm 1: Stochastic Training Algorithm for SOM-SD

input: Set of training DAGs T = {Di}i=1,...,N , o maximum outdegree of DAGs in T , map M, Niter

number of training iterations, µ structural parameter, η(0), σ, network size;

begin

initialize the weights for M with random values from within U ;

for t = 1 to Niter

shuffle DAGs in T ;

for j = 1 to N

List(Dj) ← an inverted topological order for vert(Dj);

for v ←first(List(Dj)) to last(List(Dj)) do

yv ← arg min[a,b]

(
µ ‖uv −m

(l)
[a,b]
‖+ (1− µ) ‖ych[v] −m

(r)
[a,b]
‖
)

;

foreach m[c,d] ∈M do

m
(l)
[c,d]
←m

(l)
[c,d]

+ α(t)f(∆[c,d],yv
) (m

(l)
[c,d]
− uv);

m
(r)
[c,d]
←m

(r)
[c,d]

+ α(t)f(∆[c,d],yv
) (m

(r)
[c,d]
− ych[v]);

return M;

end

Chapter 2. Background 25

Gianniotis and Tino [20] have proposed a model based approach for constructing

topographic maps of tree structured data. The model is formulated as a constrained

mixture of hidden Markov tree models. The maps are formulated in a principled

framework of probability theory and thus are more theoretically grounded than

SOM-SD.

2.3.2 Kernel Methods

The class of kernel methods comprises all those algorithms that do not require an

explicit representation of the examples but only information about the similarities

among them. The information is given by the kernel functions (for a definition see

Section 2.3.3). Any kernel method can be decomposed into two modules:

• a problem specific kernel function.

• A general purpose learning algorithm.

Since the solver interfaces with the problem only by means of the kernel function, it

can be used with any kernel function, and vice versa. The modularity of the approach

allows to study the two aspects of learning, i.e. representation and optimization,

independently.

Kernel methods look for linear relations in the feature space. In the following, for

simplicity, the task of classification is considered. The problem is generally expressed

as a constrained optimization problem where the objective function usually take the

form of eq. (2.3). If the kernel function employed is symmetric positive semidefinite

the problem is convex and thus has a global minimum. Note that a global minimum

of the cost function exists for any choice of the parameters and kernel function. Thus

the global minimum does not correspond to the optimal solution for the problem.

Wahba’s representer theorem [67] states that the solution of certain optimiza-

tion problems involving an empirical risk term and a quadratic regularizer can be

written in terms of an expansion of the training examples. Thus, given a dataset

26 Chapter 2. Background

S = {(xi, yi) : i = 1, . . . , n} and a kernel function K, the solution w of the problem

can be expressed as:

w =
n∑
i

αiyiφ(xi). (2.13)

Before showing how to classify an example, the score function must be introduced:

S(x) = 〈w, x〉 =
n∑
i

αiyiφ(xi)φ(x) =
n∑
i

αiyiK(xi, x). (2.14)

Note that the score function can be expressed as a weighted linear combination of

kernel function evaluations between examples in the dataset and x. The classification

c(x) of an example with respect to w and kernel K is the sign of the score function:

c(x) = sign (S(x)) = sign

(
n∑
i

αiyiK(xi, x)

)
, (2.15)

The two modules comprising kernel methods, i.e. representation and problem

optimization, are discussed in detail in the rest of the chapter. The following two

sections describe the kernel methods used in the following: the perceptron and the

Support Vector Machines, respectively. Note that the two algorithms are for binary

classification problems, but they can be applied to an n-class problem by adopting

the one-against-all methodology: first n binary classifiers, each devoted to recognize

a single class, are trained. Then, the prediction for the n-class problem is given by

the class whose associated classifier gets the highest confidence (score).

Perceptron

In the original formulation the perceptron [56] was meant to classify data encoded

by real vectors with a linear decision function (a hyperplane).

Every element of the dataset is represented by a feature vector. A prototype vec-

tor w is randomly initialized. Then the classification of each example xi is compared

to the one made by the prototype, computed according to the following formula:

f(x) = sign(w · xi + b)

Chapter 2. Background 27

If the perceptron is classifying uncorrectly the example then a new prototype w′ is

generated from w:

w′ = w + αyixi

where α is a constant (α > 0), yi ∈ {−1, 1} is the class of xi. The algorithm has

been demonstrated to converge to the optimal hyperplane provided that the data

are linearly separable [51].

Using the kernel trick it is possible to extend the perceptron to generate a non-

linear decision function and/or to treat structured data by using kernels (see for

example [37]).

The on-line kernel-perceptron algorithm, adapted to tree-kernels, requires to

maintain an implicit representation of the vector w in the feature space. Specifically,

this corresponds to keep in memory the set of the already seen examples for which

the perceptron prediction was erroneous.

Thus we can consider the set of examples M = {(xi, yi) ∈ S : αi ∈ {−1,+1}} as

the model of the perceptron and slightly redefine the kernel-perceptron algorithm as

in the following. Let M = ∅ be an initial empty model, a new example xi is added

to the model M whenever its score

S(xi) =
∑

(xj ,yj)∈M

yjK(xi, xj)

has different sign from its classification yi. Thus the update and the insertion of the

new example follow the rule:

if (yiS(xi) ≤ 0) then M ←M ∪ {(xi, yi)}

For many applications (see page 35), the cardinality of M , and consequently the

memory required for its storage, grows up linearly with the number of tree presen-

tations. Moreover the efficiency in the evaluation of the function S(x) decreases

super-linearly. Clearly, this seems not satisfactory for on-line applications.

The perceptron is a simple and relatively fast algorithm. Its main drawback is

that it does not provide bounds on the generalization error.

28 Chapter 2. Background

An interesting and effective variant of the simple Perceptron algorithm is the

voted Perceptron proposed in [18]. This algorithm is motivated by a theory related

to converting an on-line learning algorithm into a batch one. Basically, it uses a

deterministic version of a simple “leave-one-out” method whose randomized version

was proposed in [29]. Specifically, the idea of the voted perceptron is to combine the

predictions of the hypotheses visited by the Perceptron algorithm while its training

takes place. These hypotheses can be combined in different ways, for example each

hypothesis can be given a weight equal to the number of times the same hypothesis

has ’survived’, i.e. the number of iterations until the next mistake has been made.

Support Vector Machines

Support Vector Machines (SVMs) are based on the Structural Risk Minimization

principle for which bounds on the generalization error have been proven [65]. SVM is

a binary classifier which projects the examples in a feature space and then looks for

an hyperplane separating positive and negative examples. Among the hyperplanes

separating the data, it is chosen the one maximizing the margin, i.e. the minimum

distance between the hyperplane and the closest example. It is possible to show

that the VC dimension of a linear classifier can be upper bounded in terms of

the margin [65]. If the training set is linearly separable the separating hyperplane

maximizing the margin is unique and corresponds to the solution of the following

problem:

arg minw,b
||w||2

2

subject to ∀(xi, yi) ∈ S.yi(w · φ(xi)) + b ≥ 1
(2.16)

where w and b define the hyperplane in the feature space. Considering that the

margin is inversely proportional to the norm of w, minimizing ||w|| corresponds to

finding the less complex function satisfying the constraints in 2.16, i.e. the simplest

function correctly classifying each example. The representer theorem [57] states that

the solution f of the problem 2.16 can be expressed as:

∀x ∈ X .f(x) =
∑
xi∈S

αik(xi, x).

Chapter 2. Background 29

The examples for which the corresponding α is not 0 are called support vectors.

When the training set is not linearly separable, a function f separating the two

classes may be very complex. If the non linear separability is due to noise, perfect

classification of the training set is not desirable since it may overfit the data and

thus reduce the expected risk. In this case a tradeoff between function complexity

and minimization of training error (constraints satisfaction) should be pursued. The

problem 2.16 then becomes:

arg minw,b,ξ
||w||2

2
+ c
∑n

i=1 ξi

subject to ∀(xi, yi) ∈ S. yi(w · φ(xi)) + b ≥ 1− ξi
ξi ≥ 0 i = 1, . . . , n

(2.17)

The constraints in 2.17 are relaxed with respect to the correspondent constraints

in 2.16. The parameter c determines the balance between minimization of training

error and minimization of expected risk. The parameter is problem dependent and

its best value has to be found empirically.

2.3.3 Kernel Functions

A way for assessing the similarity of objects of a domain is to describe them by a set

of features and then count the number of common features. For reasons that will

be clear in the following, the space of the features is assumed to be a metric space.

A metric space X is a vector space in which a distance d : X ×X → R+ is defined

such that ∀ x, x′, x′′ ∈ X the following properties hold:

• d(x, x′) ≥ 0

• d(x, x′) = 0⇔ x = x′

• d(x, x′) = d(x′, x)

• d(x, x′) ≤ d(x, x′′) + d(x′′, x′).

The representation in feature space is obtained by the application of an appropriate

function φ, x → φ(x) = {φi(x)|i ≥ 1}. The elements φi(x) are called the features

30 Chapter 2. Background

of x (according to the mapping φ). Note that if φ is a non linear function, the

relative positioning of the objects in the feature space can change with respect to

the original space. In this sense the use of appropriate kernel functions may (and it

is supposed to) simplify the problem.

The similarity between two objects x, x′ can be computed by the dot product

of their representation in feature space i.e. 〈x, x′〉 =
∑m

i = φi(x)φi(x
′), where

m = |φ(x)|. A kernel is a function measuring the similarity of any pair of objects of

a domain, K : X × X → R which corresponds to a closed form for the dot product

of the projection of the examples in feature space.

The Gram matrix GK related to a kernel K with respect to a set S of examples

is defined as

GK
i,j = K(xi, xj). (2.18)

A kernel function is valid if and only if it is symmetric semidefinite positive,

i.e. if any of its Gram matrices are symmetric positive semidefinite. A matrix is

symmetric if ∀i, jK(xi, xj) = K(xj, xi) and it is positive semidefinite if ∀c1, . . . , cn ∈
R.
∑
i,j

ciK(xi, xj)cj = cTGKc ≥ 0, where cT is the tranpose of c. Equivalently a

matrix is positive semidefinite if all of its eigenvectors are nonnegative. A kernel

function can be expressed as a dot product in a feature space φ such that K(xi, xj) =∑
i φn(xi)φn(xj).

In the following, when it is clear from the context we will use the term kernel in

place of valid kernel.

Given two examples xi and xj, the relationship between the distance d(xi, xj) in

feature space and the kernel K(xi, xj) is

d(xi, xj) =
√
K(xi, xi) +K(xj, xj)− 2K(xi, xj).

When two examples are mostly dissimilar, the application of a kernel K to them

returns 0. When the kernel is normalized (see eq. (2.19)) the maximum value of K

is 1.

The class of kernel functions is closed under the operations described in propo-

sition 2.1.

Chapter 2. Background 31

Proposition 2.1 Let K1, K2 : X × X → R be two kernel functions,

X = {x1, . . . , xn} a set of examples from the domain χ. Then

1. K(x, x′) = K1(x, x′) +K2(x, x′) is a valid kernel [59] (additive property).

2. K(x, x′) = K1(x, x′)K2(x, x′) is a valid kernel (multiplicative property). Note

that the property holds when K2 is a positive constant, i.e. multiplying the

kernel by a positive constant gives a valid kernel.

3. K(x, x′) = f(x)f(x′), where f is any function defined on the domain χ.

4. K(x, x′) = K4(φ(x), φ(x′)). An application of this property is shown together

with the definition of the polynomial kernel (eq. (2.21)).

5. K(x, x′) = K1⊕K3 ((x, u)(x′, u′)) = K1(x, x′)+K3(u, u′), where K3 : U×U →
R is a valid kernel defined on the domain U , is a valid kernel (direct sum

property).

6. K(x, x′) = K1⊗K3 ((x, u)(x′, u′)) = K1(x, x′)K3(u, u′), where K3 : U×U → R

is a valid kernel defined on U , is a valid kernel (tensor product property).

The proofs of the properties (or references to them) can be found in [28,59]. These

properties show that novel kernels can be defined by combining existing kernels. It

is possible to combine kernels taking into account different aspects of the data, for

example a kernel for web pages can be constructed by the combination of a kernel

defined on the set of words in the page and a kernel defined on the incoming and

outgoing links.

When only the orientation of the φ matters, the representation in feature space

and thus the kernel values can be normalized by the following operation:

K ′(x, x′) =
K(x, x′)√

K(x, x)K(x′, x′)
(2.19)

Normalization can be useful when the probability of generating a feature depends on

the size of the original data. For example a representation that counts the number

32 Chapter 2. Background

of times each label appears in a tree is influenced by the size of the tree: larger trees

have higher chances to have many common features with any small tree.

In the following we give some examples of popular kernels for vectorial data.

Probably the simplest approach for dealing with structured data is to first transform

it to vectorial form and then apply kernel functions defined for vectorial data. This

section briefly reviews kernels for vectorial data. In the following we may generically

refer to kernels defined in this section as standard kernels.

In the following x, y represent vectors belonging to a space Rm. The simplest

kernel known in literature is the linear kernel:

K(x, y) = 〈x, y〉 . (2.20)

Note that feature space of the linear kernel coincides with the input space.

Another widely used kernel for structured data is the polynomial kernel:

K(x, y) = (〈x, y〉+ e)d, e ∈ R, d ∈ N. (2.21)

The feature space associated with the polynomial kernel is composed by products of

elements of the original vectors. d is the maximal order of the resulting monomials.

When e = 0, the feature space is composed by all possible products of groups of d

features. Thus the feature space has dimension:

|φ(x)| =
(
n+ d− 1

d

)
=

(n+ d− 1)!

(n− 1)!d!
.

For example given a vector x = (x1, x2, x3) its representation in feature space for

e = 0 and d = 2 is φ(x) = (x2
1, x

2
2, x

2
3,
√

2x1x2,
√

2x1x3,
√

2x2x3). Note that |x| + 2

operations are required for evaluating eq. (2.21), while an explicit evaluation by

means of the feature vectors φ(x) would have required
(
n+d−1

d

)
operations. The dot

product of eq. (2.21) can be replaced by any kernel function (see page 31). The

resulting operation allows to create new features as a combination of the original

ones.

The last function we describe is the gaussian kernel,

K(x, y) = exp

(
−||x− y||

2

2σ2

)
, σ ∈ R. (2.22)

Chapter 2. Background 33

The gaussian kernel has the particularity to have a feature space of infinite size.

Note that in this case the use of a kernel function not only saves computational

time, but it is the only way for computing the corresponding dot product in feature

space. The kernel value is maximum when x = y,K(x, x) = 1 and it is monotonic

decreasing when the distance between x and y increases. The parameter σ affects

the resulting feature space as follows:

• for very high values of σ, all examples become almost parallel and thus all

examples are almost identical.

• Very low values of σ produce feature vectors all orthogonal to each other.

In [30] the effects of feature spaces such as those obtained for the gaussian kernel

for extreme values of σ, on a kernel method called ν-Support Vector Machine [58],

are described in detail.

Kernel functions described in this section are suitable for dealing with vectorial

data. The present work is focused on tree structured data. The kernels described

in literature for this type of data are discussed in section 3.

2.3.4 Evaluating Kernel Functions

It is clear from previous discussions (cfr section 2.3.2) that designing “good” kernel

functions is a major concern for obtaining a successful application. But what is a

good kernel function? This section summarizes the contributions in literature for

helping answering this question. All the following discussion refers to the classifica-

tion problem.

Being valid is a necessary requirement for a kernel function. However not all

valid kernels all equally good for a task. For example a kernel such that ∀xi, xj ∈
X , i 6= j.K(xi, xj) = 0 is a valid kernel but will have a poor generalization capability

because no information is available for points in feature space except for those in

the training set. We formalize the concept by introducing the sparsity index

Sparsity(K,S) =
|{(i, j) ∈ S|K(i, j) = 0}|

|S|2
. (2.23)

34 Chapter 2. Background

The sparsity index computes the proportion of example pairs in the instance set S

whose kernel value is 0.

On the contrary, given a set of examples xi along with their classification yi

(assume for simplicity to be solving a two-class classification problem), it is easy to

design a valid optimal kernel: K(xi, xj) = yiyj.

Cristianini et al. [14] have defined a measure for assessing the appropriateness

of a kernel function in a supervised setting called kernel alignment. Let S =

{x1, x2, . . . , xn} be the set of instances compounding a training set and K1, K2

two kernel functions defined on S. The empirical alignment between K1 and K2 is

defined as the Frobenius inner product between the corresponding normalized Gram

matrices(see eq. (2.18)):

A(K1, K2, S) =

〈
GK1 , GK2

〉
F√

〈GK1 , GK1〉F 〈GK2 , GK2〉F
, (2.24)

where
〈
GK1 , GK2

〉
F

=
n∑

i,j=1

GK1
i,j G

K2
i,j .

Values of A range from −1 to 1. The higher the value of A(K1, K2, S), the higher

the similarity between K1 and K2 with respect to S.

The value A can be used to measure how appropriate a kernel K is for a given

two-class classification task by aligning K with a matrix Y defined as: Yi,j = yiyj,

where yi = {−1,+1} is the class associated to an instance xi. In the case of a

multiclass classification task Y can be defined as Yi,j = 1 if yi = yj and Yi,j = 0 if

yi 6= yj. Note that the codomain of A for the multiclass case ranges from 0 to 1.

In [33] the notion of alignment is extended to the case of classification of unbalanced

datasets and the problem of regression.

Gärtner [19] defined three properties that should be fulfilled by a good kernel:

completeness, correctness, appropriateness. Let c : X → Ω be a function that assigns

to every example of a domain its class. Functions c are grouped into a concept class

C.

A kernel that is able to incorporate all necessary knowledge for solving a problem

is said to be complete. A kernel is complete if no pair of different examples have the

Chapter 2. Background 35

same representation (in terms of the kernel): K(xi, ·) = K(xj, ·) ⇒ xi = xj. Any

kernel for structured data that discards information about the structure is hardly

complete. When information about class membership is available, the constraint

xi = xj can be relaxed thus turning the definition into: ∀c ∈ C.K(xi, ·) = K(xj, ·)⇒
c(xi) = c(xj).

A kernel is said to be correct with respect to a concept class C and an hypothesis

space, if for every concept can be found an hypothesis that correctly classifies all

examples. In the case of the Support Vector Machines, the hypothesis space is

composed of all linear functions in feature space. Thus the definition of correctness

become: ∀c ∈ C, ∃αi ∈ R, xi ∈ X , θ ∈ R such that ∀x ∈ X .
∑

i αiK(xi, x) ≥ θ ⇔
c(x).

Appropriateness refers to the extent to which examples that are close to each

other in class membership are also close to each other in feature space. A kernel is

appropriate for learning concepts in a given concept class by a learning algorithm

if polynomial bounds on its generalization error can be derived for some algorithms

using this kernel. A complete and correct kernel separated the concept well, i.e. it

is able to achieve high accuracy on the given data. An appropriate kernel is able to

generalize well to unseen data.

All previous discussions take into account the quality of a kernel. When back-

ground knowledge cannot drive the choice of substructures, an effective kernel may

be obtained by arbitrarily enlarging the feature space. However using a exponen-

tial number of features without having a polynomial kernel function for implicitly

computing the dot products between examples may lead to intractable algorithms.

The reasoning is valid not only for extreme cases. Even quadratic kernel complexity,

in some practical situations, can lead to unacceptable running time. The reason is

that, for most complex (and usually more accurate) kernel methods, kernel function

evaluations heavily affect the total running time of the algorithm. In order to give

an illustrative example of this claim, we computed some statistics on an execution

of the Support Vector Machines algorithm (see section 2.3.2) by using the svm-light

software [32, 45, 47] on the dataset from INEX 2005 Competition (a description of

36 Chapter 2. Background

the dataset can be found in section A.1). The problem is a 11-class classification

task but a two-class problem was derived by giving label +1 to the examples of

the first class and −1 to the examples of all other classes. The statistics were col-

lected by the gprof utility [22]. The kernel function used is the subset tree kernel

(see section 3.1.2). The standard c parameter of the Support Vector Machines took

the values {0.001, 0.01, 0.1, 1, 10, 100, 1000}. All other parameters were given default

values. The algorithm spends on average the 93.27% of its execution time by per-

forming kernel evaluations. While the value depends on the problem, the solver and

the kernel function, it gives a qualitative idea of the dependence of the execution

time from the kernel evaluation procedure. Thus kernel function complexity should

be kept as low as possible, especially when dealing with large datasets.

In practical applications, the right trade-off between expressive power and com-

putational complexity should be selected according to the current task.

Chapter 3

State of the Art on Tree Kernel Functions

Kernel methods make use of kernel functions to measure the similarity of the items

in feature space. Kernel functions are the only type of information specific to the

task that this class of learning algorithms may use. Thus they play a crucial role

for the final outcome of the kernel method.

The methodologies for designing kernels for trees include:

• The use of the convolution kernel framework. Convolution kernels are based

on the idea that a complex object can be described in terms of its constituent

parts, for example a string can be described in terms of its substrings and a

tree in terms of its subtrees. Thus a convolution kernel measures the similarity

of two objects in terms of the similarities of their subparts.

• Explicit extraction of features from trees. This method builds a vectorial

representation of the data and then applies kernels for vectorial data to the

representation obtained. For an example see section 3.2.1.

• Kernels based on generative models. These kernels measure the similarity of

two items as a function of the parameters and states reached by a generative

model for the data. An example of this class of kernels is the Fisher kernel

(see section 3.2.2).

In the following, we will discuss the techniques listed previously. Due to their

popularity, convolution kernels have received much attention from the research com-

38 Chapter 3. State of the Art on Tree Kernel Functions

munity. Section 3.1 describes the convolution kernel framework and reviews kernels

derived from it. The description of other types of kernels are grouped together in

section 3.2.

3.1 Convolution Kernels

Convolution kernels for structures were first introduced by Haussler in [28]. They

are a general methodology for computing kernels on complex discrete objects.

By splitting the original object into parts and assuming to have at disposal a

positive semidefinite kernel on the parts, Haussler [28] describes a way for combining

the kernels on the parts that preserves positive semidefiniteness. In particular,

convolution kernels express a kernel on a discrete object by a sum of kernels of their

constituent parts.

Definition 3.1 (Convolution Kernel) Let χ, χ
1
, χ

2
, . . . , χ

D
be D+ 1 non empty

separable metric spaces, x ∈ χ a structure and ~x = (x1, x2, . . . , xD) the parts of x. A

relation R : χ
1
×χ

2
× . . .×χ

D
×χ where R(~x, x) is true if and only if x1, x2, . . . , xD

are the parts of x. Moreover let R∗(x) be the set of all the subparts of x. Then the

convolution kernel can be expressed as:

k(xi, xj) =
∑

~xi∈R∗(xi)

∑
~xj∈R∗(xj)

D∏
d=1

kd(x
d
i , x

d
j), (3.1)

where the kd are kernels defined on the substructures. In the following we will refer

to the kd as local kernels. In [28] it is demonstrated that, if the kd are positive

semidefinite, the kernel in eq. (3.1) is also positive semidefinite.

Recently Shin et al. [60] have introduced a more general form than the one of

eq. (3.1) called the mapping kernel. Basically the idea of the mapping kernel is

to restrict the set of substructure pairs over which the local kernel is computed.

Formally speaking, the mapping kernel is defined as follows: let each x ∈ χ be

associated with a finite subset χ
′

x
, where χ

′

x
is the set of substructures associated

Chapter 3. State of the Art on Tree Kernel Functions 39

with x. Similarly to [28], it is assumed to have at disposal a positive semidefinite

kernel k : χ
′ × χ′ → R. Then the mapping kernel is defined as follows:

K(xi, xj) =
∑

(x′i,x
′
j)∈Mxi,xj

k(x′i, x
′
j), (3.2)

where M is part of a mapping system M defined as follows:

M =
(
χ,
{
χ
′

x
|x ∈ χ

}
,
{
Mxi,xj ⊆ χ

′

xi
× χ′

xj
|(xi, xj) ∈ χ× χ

})
. (3.3)

M is a triplet composed by the domain of the examples, the space of the substruc-

tures of the examples, and a functionM specifying for which pairs of substructures

the local kernel has to be computed.

M is assumed to be finite and symmetric, i.e. ∀xi, xj ∈ χ.|Mxi,xj | < ∞ and

(x′j, x
′
i) ∈ Mxj ,xi if (x′i, x

′
j) ∈ Mxi,xj . In [60] it is proved that the kernel K of

eq. (3.2) is positive semidefinite if and only if the mapping systemM is transitive.

A mapping systems is transitive if and only if ∀x1, x2, x3 ∈ χ.(x′1, x
′
2) ∈ Mx1,x2 ∧

(x′2, x
′
3) ∈ Mx2,x3 ⇒ (x′1, x

′
3) ∈ Mx1,x3 . The main advantage of the mapping kernel

is to give a necessary and sufficient condition for building kernels on complex objects

which is typically much easier to prove than positive semidefiniteness.

Since there will references to the mapping kernel in the following, an example

is given in order to clarify its definition. Consider the linear kernel between two

vectors x and u, K(x, u) =
∑m

i xiui. It can be seen as a special case of mapping

kernel where:

• an m-dimensional vector is described by a set of pairs (xi, i) ∈ χ× N.

• χ
x

is the set of pairs composed by the components of the vector x and their

position in the vector.

• ((x′, i), (u′, j)) ∈Mx,u if i = j.

For example the 3-dimensional vector x = (1, 4, 5) is described by
(
(1, 1), (4, 2),

(5, 3)
)
.

40 Chapter 3. State of the Art on Tree Kernel Functions

The kernel is defined as:

K(x, y) =
∑
i

∑
j

δ(i, j)xiuj =
∑
i

xiui,

where δ(i, j) is the dirac function returning 1 whether the two arguments are equal,

0 otherwise.

Convolution kernels have been successfully applied to a variety of problems in-

volving structured data (for references see the following sections), thus appearing to

be a viable way of dealing with structured data. The following sections are devoted

to review convolution kernels for tree structured data.

3.1.1 Subtree Kernel

Viswanathan et al. [66] describe a string kernel which is also applicable to trees.

The features of the kernel when applied to strings or trees are, respectively, the

substrings or the proper subtrees of the input string (tree). Examples of proper

subtrees can be found in Figure 2.4.

The kernel returns a weighted sum of the number of common substrings (proper

subtrees). While there is a quadratic number of substrings of a string, the assump-

tion which the proposed procedure is based on is that the number of matching

substrings is small compared to the size of the feature space. The kernel for strings

is defined as follows:

K(xi, xj) =
∑
s∈xi

∑
u∈xj

[[s = u]]ws =
∑
s∈A∗

hs(x)hs(y)ws,

where s, u are substrings of the strings xi, xj, ws is the weight associated to the

substring s, A∗ is the set of non empty strings of the alphabet A, hs(x) counts the

frequency of the substring s in x, and [[condition]] is a function returning 1 whether

condition is true, i.e. the two substrings are identical, 0 otherwise.

In order to efficiently compute the set of common substrings

Viswanathan et al. [66] propose to represent the set of substrings by a suffix tree [64].

Chapter 3. State of the Art on Tree Kernel Functions 41

By keeping a look-up table for associating weights to substrings it can be shown that

the kernel can be computed in linear time in the size of the strings.

The kernel can be used for comparing ordered trees by first encoding them into

a string format. The encoding of a proper subtree starting at node v is given by the

function tag(v), which can be computed according to the following procedure:

• if v is an unlabelled leaf then tag(v) = [];

• if v is a labelled leaf then tag(v) = [l(v)];

• if v is an unlabelled node with children v1, v2, · · · , vc,
tag(v) = [tag(v1) tag(v2) · · · tag(vc)], where the tags of children are sorted in

lexicographical order;

• if v is labelled then tag(v) = [l(v) tag(v1) tag(v2) · · · tag(vc)], where again

tags are considered sorted in lexicographical order.

For example, the tree on the left of Figure 2.4 can be represented by [a[b[c][e]][g]].

In theorem 1 of [66] it is proven that:

1. the tag of the root node, tag(root), is an unique identifier of the tree and can

be constructed in (λ+2)(n log2 n) time and O(n) space, where n is the number

of nodes and λ is the maximum length of a label;

2. all those strings tag(v) starting with [and ending with the corresponding

balanced] are proper subtrees;

3. arbitrary substrings of tag(root) correspond to subset trees of the input tree.

In [43] it is pointed out that not all subset trees can be generated if the trees

are represented as strings by the encoding proposed in this section. Figure 2.5 gives

an example of a subset tree, the string [a[b][g]], which cannot be represented by a

substring of [a[b[c][e]][g]]. While for any tree x, the set of its substrings (obtained

by the encoding described in this section) include the set of its proper subtrees, it is

possible to build a kernel counting the number of proper subtrees by setting ws = 0

for all those substrings not starting and ending with balanced brackets.

42 Chapter 3. State of the Art on Tree Kernel Functions

3.1.2 Subset Tree Kernel

As seen in section 3.1.1, the technique proposed in [66] can not measure a similarity

function based on common subset trees. A kernel for trees, based on counting

matching subset trees, has been proposed in [12].

Let’s consider a finite set of trees in which m different subset trees are present. In

this case each feature, i.e. subset tree, can be indexed by an integer between 1 and

m. Then hs(T) is the number of times the subset tree indexed with s occurs in tree

T . We represent each tree T as a feature vector φ(T) = [h1(T), h2(T), . . . , hm(T)].

The inner product between two trees under the representation

φ(T) = [h1(T), h2(T), . . . hm(T)] is:

K(T1, T2) = φ(T1) · φ(T2) =
m∑
s=1

hs(T1)hs(T2).

Thus the subset tree kernel (SST) defines a similarity measure between trees

which is proportional to the number of shared subset trees.

The subset tree can be efficiently calculated by a recursive procedure as follows.

Let the function Ii(n) be equal to 1 if the subset tree indexed by i is rooted at node

v, 0 otherwise. Then hi(T1) =
∑

t1∈NT1

Ii(v1). The subset tree kernel can be written

as follows:

K(T1, T2) =
m∑
s=1

hs(T1)hs(T2) = (3.4)

=
m∑
s=1

∑
t1∈NT1

Is(t1)
∑

t2∈NT2

Is(t2) (3.5)

=
∑

t1∈NT1

∑
t2∈NT2

m∑
s=1

Is(t1)Is(t2) (3.6)

=
∑

t1∈NT1

∑
t2∈NT2

C(t1, t2)

where C(t1, t2) =
m∑
s=1

hs(t1)hs(t2). Let a production at node t be the subset tree con-

stituted by t and only its direct children, then C(t1, t2) can be recursively computed

according to the following rules:

Chapter 3. State of the Art on Tree Kernel Functions 43

1. if the productions at t1 and t2 are different then C(t1, t2) = 0;

2. if the productions at t1 and t2 are the same, and t1 and t2 have only leaf

children (i.e. they are pre-terminals symbols) then

C(t1, t2) = 1 (3.7)

3. if the productions at t1 and t2 are the same, and t1 and t2 are not pre-terminals,

then

C(t1, t2) =

nc(t1)∏
j=1

(1 + C(chj[t1], chj[t2])) (3.8)

where nc(t1) is the number of children of t1 and chj[t] is the j-th child of

node t.

It can be shown that by substituting eq. (3.8) with the following, we obtain the

subtree kernel (ST) as defined in section 3.1.1:

C(t1, t2) =

nc(t1)∏
j=1

(C(chj[t1], chj[t2])). (3.9)

In the following we will generically refer to the kernels defined in this section as the

parse tree kernels.

Note that C can be seen as the local kernel for the convolution kernel defined by

eq. (3.1), where χ is the space of trees and χx the set of subtrees of tree x.

Computing the subtree and subset tree kernels ultimately consists in filling a

matrix of size |NT1 | × |NT2| with the appropriate C values and then summing all

C up. From this last observation it may be concluded that the worst case time

computational complexity of the kernel is O(|NT1| × |NT2|). However, as discussed

by the same authors, a more accurate analysis shows that the actual complexity

of the above procedure depends on the number of matching productions. Thus the

computation of C(t1, t2) can be avoided for all (t1, t2) whose production at root node

are different. This observation has resulted in the Fast Tree Kernel algorithm [47],

which has the same worst case complexity but in practical applications may provide

a relevant speed up.

44 Chapter 3. State of the Art on Tree Kernel Functions

Subset tree kernel values depend on the number of nodes in the trees. Consider

a small tree t. It should have highest kernel value when compared with itself (it

should be most similar to itself). However a large tree with higher kernel value can

be easily constructed by replicating subset trees of t into the larger tree. In order

to overcome this situation, it is possible to normalize the kernel according to the

formula 2.19.

The subset tree kernel is known to be peaked, i.e. there tend to be a significant

difference between the kernel value of a structure with itself, than the kernel value

with any other structure. This is due to the influence of larger substructures, since

they not only contribute to the kernel with a high value of C but they also con-

tribute to it with all of their substructures. In order to reduce this phenomenon,

the influence of larger subtrees is thus downweighted. This is obtained by modifying

the kernel as follows:

K(T1, T2) =
m∑
s=1

λsize(s)hs(T1)hs(T2), (3.10)

where 0 < λ ≤ 1 is a weighting parameter and size(s) is the number of nodes of

the subtree s. The addition of λ to eq. (3.10) can be accounted for in the recursive

formula by the following modifications to eq. (3.8) and (3.9):

C(t1, t2) = λ, (3.11)

C(t1, t2) =

nc(t1)∏
j=1

(λ+ C(chj[t1], chj[t2])). (3.12)

Convolutions kernels are recognized to have some drawbacks:

• a worst case quadratic complexity makes their application to very large data-

sets infeasible (especially in conjunction with demanding learning algorithms

such as the SVM), since the sparsity assumption is less easily satisfiable and

the quadratic cost may become prohibitive.

• They can’t be used with continuous labels: the probability that a substructure

of a tree would match with any substructure of every other tree would be

Chapter 3. State of the Art on Tree Kernel Functions 45

extremely low, and thus the resultant feature space would tend to be sparse.

The same reasoning applies also in the case of labels taken from a discrete but

numerous set.

Most of the works in literature on tree kernels are based on the article of Collins

et al. presented in this section and, basically, describe extensions and adaptation of

it. In fact some authors [34] use the term tree kernel to identify all those kernels

based on eq. (3.4) and the corresponding recursive C formula. Mainly two fields of

research can be distinguished. They are motivated either by:

1. reduce the kernel computational complexity;

2. adding expressiveness to the kernel.

In the following sections convolution kernels methods aimed at solving one of

the problems listed above, are discussed. Section 3.1.3 introduces a fast tree kernel.

Another kernel aimed at a low computational complexity is the one presented in

section 3.2.1. Sections 3.1.4, 3.1.5, 3.1.6, and 3.1.7 present expressive kernel func-

tions.

3.1.3 Approximate Kernels for Trees

In cases when computational complexity issues don’t allow the application of kernels

with quadratic time complexity, more efficient kernels, i.e. computable in linear time,

with a sufficient expressive power have to be designed. In [55] an approximated tree

kernel with worst case linear time complexity is described. The field of application

is the detection of attacks by the analysis of net logs. Net logs are composed by very

deep trees and thus the worst case quadratic complexity of the subset tree kernel

makes its application to the task infeasible. The speed up is obtained by selecting

a restricted set of sparse and discriminative features:

K(xi, xj) =
∑
s

γ(s)
∑
ti∈xi

li=l(root(s))

∑
tj∈xj

lj=l(root(s))

C(ti, tj),

46 Chapter 3. State of the Art on Tree Kernel Functions

where ti is a node of xi and γ(s) = {0, 1} is a function telling whether the current

subtree has to be selected.

The goodness of a kernel can be measured by its alignment to the matrix yyT

(see section 2.3.4 for a definition of alignment), where y is a vector collecting the

class of the examples:

〈
yyT , K

〉
F =

∑
yi=yj

K(xi, xj)−
∑
yi 6=yj

K(xi, xj).

In order for the kernel to be fast, a small number of features should be selected.

The final problem to be solved can be formulated as follows:

maxγ∈{0,1}|S|

n∑
i,j=1

yiyj
∑
s∈S

γ(s)
∑
ti∈xi

li=root(s)

∑
tj∈xj

lj=root(s)

C(ti, tj),

subject to
∑
s∈S

γ(s) = N

where |S| is the size of the feature space, n the size of the training set and N

is the number of different substructures we want to use for the subsequent kernel

computations. Their experiments suggest that the method can achieve an accuracy

comparable with the tree kernel while being more efficient.

Among the extensions proposed by the authors, it is worth pointing out the

possibility to bound the expected runtime by a user-defined quantity b (this of

course to the detriment of the accuracy). The bound can be obtained by adding a

constraint of the following form to the problem:∑
s∈S

γ(s)σ(s) ≤ b,

where σ(s) is the frequency of the substructure s in the whole set.

3.1.4 Partial Tree Kernel

One way for adding expressiveness to the parse kernel described in section 3.1.2 is to

modify its recursive definition in order to enlarge the corresponding feature space.

Chapter 3. State of the Art on Tree Kernel Functions 47

Moschitti [46] proposed the Partial Tree kernel (PT) which can carry out partial

matching between subtrees. Note that the definition of partial tree corresponds to

the definition of subtree (see section 2.1). Figure 2.3 gives an example of a tree

together with some of its partial trees. Note that the feature space of the partial

tree kernel is much larger than the one of the subset tree kernel.

The partial tree kernel is obtained from eq. (3.4) by replacing cases 2 (eq. (3.7))

and 3 (eq. (3.8)) of C definition with:

C(n1, n2) = 1 +
∑

J1,J2,|J1|=|J2|

|J1|∏
i=1

C(chn1 [J1i], chn2 [J2i]), (3.13)

where J11, J12, J13, . . . J21, J22, J23, . . . are index sequences associated with the or-

dered child sequences chn1 and chn2 respectively, J1i and J2i point to the i-th chil-

dren in the two sequences, |J1| returns the length of the sequence J1. The subset

tree kernel can be obtained back from eq. (3.13) by considering only the contribution

of the longest child sequence from node pairs with same children. The partial tree

kernel can be evaluated in O(ρ3|NT1||NT2|), where ρ is the maximum out-degree of

the two trees.

3.1.5 Elastic Tree Kernel

In [35] is described a kernel for structured data modelled by labelled ordered trees,

called elastic tree kernel. The kernel extends the one in [11] in allowing matching

between nodes with different labels and matching between substructures built by

combining subtrees with their descendants. Consider two trees T1 and T2 and two

subtrees, t1 and t2, rooted at nodes v1 ∈ T1 and v2 ∈ T2, respectively. In addition

to the matchings of the subset tree kernel, the following are also permitted:

• t1 and t2 may match even if they don’t have the same number of children. The

only constraint is to preserve the order of the children, i.e. matching child 2

of t1 with child 4 of t2 and child 3 of t1 with child 1 of t2 is not allowed. Then

the C formula of eq. (3.8) becomes

C(v1, v2) = Sv1,v2(nc(v1), nc(v2)), (3.14)

48 Chapter 3. State of the Art on Tree Kernel Functions

where nc(v) is the number of children of v. Since all matches preserve left-to-

right ordering S can be defined as:

Sv1,v2(i, j) = Sv1,v2(i− 1, j) + Sv1,v2(i, j − 1)− Sv1,v2(i− 1, j − 1)+

+Sv1,v2(i− 1, j − 1)C(chi[v1], chj[v2]),

(3.15)

and Sv1,v2(i, 0) = Sv1,v2(0, j) = 1. Basically the idea is that the number of

matchings considering l children can be expressed in terms of the number of

matchings considering l − 1 children. Note the formulation in eq. (3.15) can

be efficiently computed by means of dynamic programming.

• t1 and t2 may match even if their labels are not identical. Different labels are

penalized by assigning to them a lower matching value. This is obtained by

multiplying each match by a value determined by a function Pmut(l1|l2) ∈ [0, 1],

where Pmut(l1|l2) is the cost for transforming label l1 into l2. For identical labels

Pmut(l1, l1) = 1 and thus they contribute to the kernel value in the same way

they contribute for the subset tree kernel. The C function then becomes

C(v1, v2) =
∑
a∈A

Pmut(l1|a)Pmut(l2|a)Sv1,v2(nc(v1), nc(v2)), (3.16)

where A is the space of labels. Thus eq. (3.16) takes into account all possible

mutations of the labels of the nodes being computing the C value.

• t1 and t2 can be elastic trees. An elastic is a subset of nodes for which the

relative positions in the original tree are preserved: if a node v is a descendant

of a node m in T1, then v must be a descendant of m in the elastic subtree

t1; if v is, for example, to the left of m, then it must be to the left of m in t1.

Figure 3.1 shows an example of a subtree (on the left) and one of its elastic

matching with the tree on the right. Since all descendants of a node can be

part of an elastic subtree, all of them have to be considered. This leads to the

substitution of the C term in eq. (3.15) with:

Ca(v1, v2) =
∑

va∈D(v1)

∑
vb∈D(v2)

C(va, vb), (3.17)

Chapter 3. State of the Art on Tree Kernel Functions 49

a

d

a e

b

b

a

d

a

a c e

e

c

b

a

Figure 3.1: A subtree (left) and one of its elastic matchings with the tree on the

right.

where D(v) is the set composed by v and all of its descendants of v and the

C function is the one defined in eq. (3.14). Ca can be computed efficiently by

the following formula:

Ca(v1, v2) =

nc(v2)∑
j=1

Ca(v1, chj[v2]) +

nc(v1)∑
j=1

Ca(v2, chj[v1])−

−
nc(v2)∑
j=1

nc(v1)∑
i=1

Ca(chi[v1], chj[v2]) + C(v1, v2),

(3.18)

Despite the fact that the feature space associated with the elastic tree kernel is

much larger of the one associated with the parse tree kernel, the authors show that

the computational complexities of the two algorithms are the same.

In [34] it is demonstrated that the elastic tree kernel cannot be generalized for

the application to labelled unordered trees. First the authors show that the problem

of computing the elastic tree kernel for unordered trees has the same difficulty of

the problem of counting the number of times one tree T appears into another tree

T ′, formally formulated as: K |T |(T, T ′). Then they show that K |T |(T, T ′) can be

reduced to a problem known to be NP-HARD: #Perfect Matchings(G). #Perfect

Matchings(G) of the bipartite graph G = X ∪ Y, such that|X| = |Y |, counts the

50 Chapter 3. State of the Art on Tree Kernel Functions

number of perfect matchings in G. A matching is a set edges (x, y) such that x ∈ X
and y ∈ Y and every x and y appear only once in all matches. The matching is

perfect if all nodes of the graph are considered.

Any algorithm for computing the elastic tree kernel for unordered trees is NP-

HARD since it can be ultimately reduced to #Perfect Matchings(G).

A generalization of the elastic tree kernel is presented in [39]. It is based on the

idea that tree edit distance can be defined as an optimization problem of a common

representation, called tree mapping. The authors propose four kernel functions and

demonstrate that three of them are positive semidefinite. Among these, they prove

that the elastic tree kernel is positive semidefinite (the proof was not present in [35]).

3.1.6 Grammar-Driven Tree Kernel

A different technique for adding expressiveness is to allow a limited level of soft

matching between node labels.

In [69] a grammar-driven convolution tree kernel which introduces more linguistic

knowledge into the subset tree kernel. The kernel enlarges the feature space of [11]

by allowing approximate substructure and tree node matchings according to a given

grammar. Approximate substructure matching means that children of a node can

be ignored provided that the following constraints are satisfied:

• the remaining nodes form a valid grammatical rule.

• there must be at least two children in the reduced rule and the first child must

be kept in the reduced rule. These constraints try to retain the underlying

semantic meaning of their corresponding original rules.

For example the two parse trees corresponding to the sentences “buy a red car” and

“buy a car” wouldn’t match for the parse tree kernel, while the grammar-driven tree

kernel allows them to match by reducing the former sentence to

“buy a red car” → “buy a car”.

The second modification allows a restricted level of soft matching between labels.

Two different node labels may match if they belong to the same equivalence node

Chapter 3. State of the Art on Tree Kernel Functions 51

set. The equivalent node sets are defined a priori. A matching between two different

labels is penalized by a factor λl1,l2 dependant on the two labels.

The authors do not provide an efficient implementation of the kernel, but claim

that in their experiments the kernel had a complexity of O(|T1||T2|).
The grammar-driven tree kernel is a specification of the partial tree kernel [46].

Indeed the partial tree kernel generates a much larger feature space but it also

matches non linguistically motivated structures. This may potentially compromise

the performance since some of the over-generated features may possibly be noisy

due to the lack of linguistic interpretation and constraint.

3.1.7 Semantic Syntactic Tree Kernels

Moschitti et al. [9] introduce a family of kernels, specifically designed for being used

in text categorization tasks, called Semantic Syntactic Tree Kernels. The kernels

introduce an embedded semantic term kernel and a leaf weighting component. They

allow partial matches between tree fragments, where a partial match between two

subtrees occurs when they differ only by their terminal symbols. The partial match

between terminal nodes is performed according to a predefined kernel kS. The tree

fragment kernel is defined as:

K(f1, f2) = comp(f1, f2)

nt(f1)∏
i=1

kS(f1(i), f2(i)), (3.19)

where the function comp(f1, f2) equals 1 whether f1 and f2 differs only in the ter-

minal nodes, 0 otherwise, nt(f1) is the number of terminal nodes of the two tree

fragments. The semantic syntactic tree kernel is obtained by modifying eq. (3.7) as

follows:

C(v1, v2) = λkS(v1, v2). (3.20)

The authors discuss two types of kS kernels. The first type is based on a taxonomy

for computing the term similarity. The second type is based on latent semantic

indexing and computes the similarity by means of co-occurrence analysis of terms

in documents and vice versa.

52 Chapter 3. State of the Art on Tree Kernel Functions

3.2 Other Approaches for the Design of Kernels

for Tree Structured Data

This section describes the approaches taken for the design of kernel functions for

trees which are not derived from the convolution kernel framework.

3.2.1 Spectrum Tree Kernel

In [38] a kernel based on counting common tree q-grams is described. Tree q-grams

are subtrees isomorphic to paths with q nodes. The kernel is an adaptation of a

string kernel [41] to tree structured data. Figure 3.2 gives an example of some q-

grams. The q-grams are represented by pairs (Pi, l1, . . . , lq), where Pi represent the

type of subtree (by fixing the parameter q there are q−1 different type of isomorphic

patterns not counting the labels).

b

a a

b

(P1,abab)

b

a

b

a

(P2,baab)

b

a

b

a

(P3,abab)

Figure 3.2: Some examples of q-grams, with q = 4. Pi identifies the structure of

the path, the string the sequence of labels as encountered by visiting the subtree.

A subtree Pi matches a tree T at a node n if there exists a one-to-one mapping

f from the nodes of P into the nodes of T satisfying the following constraints:

• f maps the root of P to n

Chapter 3. State of the Art on Tree Kernel Functions 53

• The ordering of the children is preserved by the mapping. Suppose f maps x

to y and x has children x1, . . . , xk, y has children y1, . . . , ym, m ≥ k, then the

ordering of the children is preserved if there exists a monotone function g such

that f(xi) = yg(i) and i1 < i2 ⇒ g(i1) < g(i2).

• ∀x ∈ P, l(x) = l(f(x)).

In order to enumerate efficiently all q-grams, the LabelGram algorithm [52] has been

used. It runs in O(qg2|T |), where g is the maximum out-degree of the tree T and |T |
is the number of nodes of T . Being Gq(T) the vector collecting information about

all q-grams in T , the kernel is defined as follows:

K(T1, T2) = 〈Gq(T1), Gq(T2)〉 . (3.21)

The computational time of computing eq. (3.21) depends on the number of common

q-grams. In their experiments the authors show that the computational time is

“almost linear”.

3.2.2 Tree Fisher Kernel

The Fisher Kernel has been introduced in [31], it is derived from a generative model

using the gradient of the log likelihood with respect to the parameters of the gen-

erative model as the features. This procedure defines a metric directly from the

generative model, capturing the differences in the generative process of a pairs of

objects. The Fisher kernel assumes that the data is generated from a parametric

probability distribution: P (x|~θ), where ~θ = (θ1, . . . , θn) is a set of parameters of the

model. The idea is to form a representation of the data in terms of those parameters

which are sufficient statistics of x. This is achieved by means of the Fisher Score

Ux:

Ux = ∇θ logP (x|θ). (3.22)

The Fisher kernel is defined as:

K(x, z) = UT
x I
−1Ux, (3.23)

54 Chapter 3. State of the Art on Tree Kernel Functions

where I−1 is the Fisher Information matrix:

I−1 = EP (x|θ)UxU
T
x . (3.24)

The Fisher Information is the expected value of the inner product of the representa-

tion Ux over P (x|θ). In practice, often the information matrix is set to the identity

matrix. It is worth noting that when deriving a kernel from a generative model, the

value of kernel between two objects depends also on the other objects used for con-

structing the generative model, i.e the training set. In this sense the Fisher kernel

adapts to the data instead of being a priori defined.

Nicotra et al. [50] describes an application of the Fisher kernel to structured

data. Hidden Tree Markov Models [16] are used as the generative models for trees.

Their algorithm is applied to rooted positional k-ary trees with a label associated

to each node.

Part II

Original Contributions

55

Chapter 4

A Tree Kernel For Non Discrete Domains

Kernel methods offer a novel approach to the treatment of structured data which

has proven to be effective in many applications. In particular, convolution tree

kernels have received much attention from the research community. Despite their

effectiveness, most of them may produce sparse feature spaces when applied to

datasets with node labels belonging to a large domain. In order to identify this

situation we have defined the sparsity index in eq. (2.23). When a kernel is sparse

with respect to a dataset, all kernel values K(xi, xj) for different objects are smaller

than the kernel value of the object with itself, K(xi, xi). In this situation, the

convolution kernel approach can never be trained efficiently, and it will behave like

a nearest neighbour rule [61]. The learner thus will be accurate on the training data,

but unable to generalize well on unseen data. This intuition is formalized in [30]

for the case of normalized kernels and the ν-SVM [58], which is a variant of the

SVM (see section 2.3.2). The authors prove that if the kernel function takes a value

smaller than a certain δ for any pair of different examples then each example is a

support vector for the ν-SVM. The value δ depends on the size of the training set

and on the c parameter of the ν-SVM.

Reducing the sparsity of the Subtree and Subset tree kernels by allowing soft

matching between node labels is not feasible. By modifying the recursive formulation

of the two kernels, i.e. eq. (3.7) and eq. (3.8), for allowing soft matching would result

in a significant increase of the computational burden. In fact any subtree of the first

Chapter 4. A Tree Kernel For Non Discrete Domains 57

tree would match to any subtree of the second tree.

We investigate on whether the ability of a Self-Organizing Maps for Structured

Data to produce a compressed representation of structural information may be used

to generate kernels less sparse than the current tree kernels which, at the same time,

preserve the structural properties of the inputs. Specifically, we propose a family

of kernels, called Activation Mask Kernels, defined on top of SOM-SD exploiting

both its compression and “topology” preserving capabilities. While for concreteness

we developed our idea on the SOM-SD algorithm, any topology preserving low

dimensional representation of the data, which produces a map as output, could

have been used: for example the CSOM-SD or the graph SOM.

The experimental results obtained on a classification task involving a relatively

large corpus of XML formatted data, provide evidence that, when sparsity on the

data is present, the proposed kernels are able to improve the overall categorization

performance over each individual method, i.e. either SVM using tree kernels or

SOM-SDs equipped with a 1-NN classification rule. This demonstrates that, neither

tree kernels nor SOM-SDs are always able to retain all the relevant information for

classification. The approach proposed in this chapter can thus be considered as a

first step in the direction of defining approaches able to fully exploit the structural

information needed to solve learning tasks defined on structured domains.

The chapter is organized as follows: the Activation Mask Kernel is proposed

in Section 4.1, the relationship with similar techniques are discussed in section 4.2,

experimental findings are discussed in Section 4.3.

4.1 Activation Mask Kernel

In this section, we show how novel tree kernels can be defined on the basis of a

SOM-SD. The basic idea is to represent each vertex of a tree upon its activation on

a SOM-SD map and then define a kernel on this space. Specifically, with no loss

of generality, we assume to have set an enumeration of the neurons based on their

position in the map, e.g. the one obtained by a bottom-up left-to-right visit of the

58 Chapter 4. A Tree Kernel For Non Discrete Domains

map. According to this enumeration each neuron is associated with a unique index

m ∈ 1, . . . , a× b, where a and b are the horizontal and vertical dimensions of the

map.

Let neε[m] denote the set of indices of neurons (from a SOM-SD) in the ε-neighbour-

hood of the neuron with index m, i.e. {m′|∆m′m ≤ ε}, where ∆ is the topological

distance defined on the 2-dimensional map. An interesting measure of similarity

between two subtrees which takes into account the topology induced by the SOM-

SD can be defined as the cardinality of the intersection of the ε-neighbours of the

neurons mostly activated by these subtrees. We define the set of neurons shared by

the two ε-neighbours related to structures t1 and t2 as

Iε(t1, t2) = neε[yt1] ∩ neε[yt2], (4.1)

where, we recall, yti is the index of the winning neuron for the root node of the

subtree ti. A similarity measure between two trees T1 and T2 can be defined by the

function:

K(I)
ε (T1, T2) =

∑
t1∈NT1

∑
t2∈NT2

|Iε(t1, t2)|. (4.2)

Alternative functions which emphasize the alignment between the activation profiles

of two subtrees can be considered instead of the strict intersection. For example,

it is possible to weight differently matching regions depending on the distance from

the activated neurons:

Kε(T1, T2) =
∑
t1∈T1,

t2∈T2,

m∈Iε(t1,t2)

Qε(m, yt1)Qε(m, yt2),

whereQε(m,m
′) is inversely proportional to the distance ∆mm′ between map neurons

m and m′ and Qε(m,m
′) = 0 when the neurons are not in the ε-neighborhood of

each other, i.e. ∆mm′ > ε. As an example, Qε(m,m
′) can be defined as

Qε(m,m
′) =

 ε− η∆mm′ if ∆mm′ ≤ ε

0 otherwise
(4.3)

Chapter 4. A Tree Kernel For Non Discrete Domains 59

where 0 ≤ η ≤ 1 is a parameter determining how much the distance influences the

neighbourhood activation.

Since this kernel is built on activation masks of a SOM-SD, we shall refer to this

approach as the activation mask kernel (AM-kernel).

Figure 4.1 gives an example of construction of the feature space representation

of three trees according to the AM-kernel. On the left part of the image three simple

trees selected from the INEX 2005 dataset (see section 4.3) and on the right part

their activation masks referring to a 5 × 4 map. The height of each element of the

map corresponds to the value of the activation. Note that the tree on top and the

tree on the centre are more similar to each other than to the tree on the bottom

and this is reflected in the activation masks.

The similarity function Kε(T1, T2) is a kernel for any choice of Qε(m,m′). A

way to demonstrate this is to show that there exists a function φ such that for

every T1, T2, we have φ(T1) · φ(T2) = Kε(T1, T2), i.e. Kε can be expressed as a dot

product in the feature space induced by φ. Specifically, let us define a feature space

which has the same dimension as the map produced by the SOM-SD, i.e. Let a× b,
thus obtaining φ(T) ∈ Ra×b. Now, given a tree T , we define the mask M ∈ Ra×b

where every element of M is associated to a neuron of the map. Let M be initially

set to the null vector. The feature vector is then constructed by computing the

best-matching neuron yt for each subtree t ∈ T when presented to the SOM-SD.

Then, the entries of M associated to neighbours within radius ε of yt are updated

according to Mm = Mm +Qε(m, yt); finally, the feature vector φ(T) will be defined

as φ(T) = [M1, . . . ,Ma×b]. At this point it is easy to check that for a given tree T ,

Mm(T) =
∑

t∈T Qε(m, yt) where t runs over all possible subtrees of T , and we can

check that the kernel is obtained by performing the dot product in feature space,

60 Chapter 4. A Tree Kernel For Non Discrete Domains

33
00
00

13
21
18

13
00
00

20
36
00

20
00
00

1

2

3

4

1

2

3

4

5

0

0.5

1

1.5

2

2.5

3

33
00
00

13
21
18

13
00
00

13
26
00

20
00
00

1
2

3
4

1

2

3

4

5

0

1

2

3

4

33
00
00

13
21
18

21
18
00

21
00
00

13
00
00

20
36
00

20
00
00

1
2

3
4

1

2

3

4

5

0

1

2

3

4

Figure 4.1: Example of representation in feature space of three trees according to

the Activation Mask Kernel for ε = 1. On the left part of the image three simple

trees and on the right part their activation masks referring to a 5 × 4 map. The

height of each element of the map corresponds to the value of the activation.

Chapter 4. A Tree Kernel For Non Discrete Domains 61

i.e.

M(T1) ·M(T2) =
∑
m

Mm(T1)Mm(T2)

=
∑
m

∑
t1∈NT1

Qε(m, yt1)
∑

t2∈NT2

Qε(m, yt2)

=
∑

t1∈NT1
,t2∈NT2

∑
m

(
Qε(m, yt1) ·Qε(m, yt2)

)
=

∑
t1,t2

∑
m∈Iε(t1,t2)

(
Qε(m, yt1) ·Qε(m, yt2)

)
= Kε(T1, T2),

where the third derivation is justified by the fact that Qε(m, yt) = 0 whenever m is

not in the ε-neighbourhood of yt.

The computational complexity of a kernel evaluation of the proposed approach

is governed by eq. (4.1) and eq. (4.2). Specifically it is dominated by the selection

of the winning neurons y, which has to be performed for each vertex of each tree

involved. Thus the whole process has complexity O(a · b · (|T1| + |T2|)). Note that

the proposed approach requires the initial training of a SOM-SD, which however

is performed only once, thus not affecting the overall computational complexity of

kernel evaluations.

4.2 Related Work

The novelty of the proposed approach consists in creating a novel set of features

from the current dataset. It differentiates from feature selection approaches [23]

and feature weighting approaches [68] in the adaptive nature of the feature creation

process.

Moschitti et al. [9] describe a kernel which allows a limited degree of soft match-

ing. However in their approach only leaf node labels can match while not being

identical. Our approach allows soft matchings between entire structures.

The elastic tree kernel [35] also allows matching between node with different

labels and subtrees with “partially” different structure. Although the definition

of the elastic tree kernel allows soft matching between labels, in the experiments

62 Chapter 4. A Tree Kernel For Non Discrete Domains

presented only exact matchings were considered. The similarity function between

labels in [35] is defined as the sum of the similarities of each of the two labels

with respect to each possible label of the domain. Clearly the application of such

approach is severely limited by the size of the label domain. The Activation Mask

Kernel creates a fixed set of features and then performs exact matching on those

features. By fixing the feature space we generally restrict its size with respect to

complex kernels such as the elastic tree kernel, and thus potentially avoid overfitting.

The drawback of our approach consists in the fact that the novel features must

keep enough information for the learning task. Section 4.3 presents some empirical

results and discusses the settings in which the use of SOM-SD enhances the learning

accuracy.

4.3 Experiments and Discussion

Experiments have been performed to evaluate the performances of the new AM-

kernel. We used the INEX 2005 dataset, a relatively large set of XML formatted

documents which were made available as part of the 2005 INEX Competition [15].

The dataset is described in detail in section A.1.

As a baseline we considered the SVM with ST and SST kernels applied to

the dataset. The obtained results, together with the values of the sparsity index

(eq. (2.23)) and alignment (eq. (2.24)) for each kernel, all computed on the test set,

are shown in Table A.2. The best accuracy on test set has been obtained by the

SST kernel with an error rate of 11.21%.

The experiments started by training a number of maps with the SOM-SD soft-

ware1. Due to SOM-SD training times (e.g., about 12 hours for a single large map

(110×80) on a AMD Athlon(tm) 64 X2 Dual Core Processor 3800+), and the num-

ber of parameters involved, a comprehensive sampling of the parameter space was

not feasible. Thus, we decided to run preliminary experiments involving the valida-

tion set to sort out the most relevant parameters with respect to the definition of the

1http://www.uow.edu.au/∼markus/apods/software.html

Chapter 4. A Tree Kernel For Non Discrete Domains 63

proposed kernels. The selected parameters were the map dimension, the number of

training iterations, and the value of µ1 (we set µ2 as 1− µ1). For these parameters

the following values were used:

• map dimension: 110× 80, 77× 56, 55× 40;

• number of training iterations: 32, 64, 128;

• µ1: 0.05, 0.25, 0.45, 0.65, 0.85.

For what concerns the other SOM-SD (hyper) parameters, the following values

were chosen: α = 1, neighborhood radius=18, type of α decrease=sigmoidal, map

topology=hexagonal. By combining the above parameters, 45 different maps were

built with the aim of spanning as much as possible the space of SOM-SD parame-

ters and therefore getting insights on the dependency of the final results from the

maps. Since the SOM-SD is an unsupervised technique, the union of the training

and validation sets has been used for creating the maps.

After the training phase each map was evaluated on the test set using a k-nn

procedure with k = 1. Table 4.1 reports the classification performance of each map.

64 Chapter 4. A Tree Kernel For Non Discrete Domains

map map size training iterations µ test error (%)

1 110 × 80 128 0.05 12.264

2 110 × 80 128 0.25 14.259

3 110 × 80 128 0.45 11.370

4 110 × 80 128 0.65 10.455

5 110 × 80 128 0.85 8.647

6 110 × 80 32 0.05 12.617

7 110 × 80 32 0.25 16.587

8 110 × 80 32 0.45 10.912

9 110 × 80 32 0.65 15.423

10 110 × 80 32 0.85 11.661

11 110 × 80 64 0.05 13.282

12 110 × 80 64 0.25 11.723

13 110 × 80 64 0.45 14.238

14 110 × 80 64 0.65 11.245

15 110 × 80 64 0.85 8.855

16 55 × 40 128 0.05 21.638

17 55 × 40 128 0.25 29.079

18 55 × 40 128 0.45 28.081

19 55 × 40 128 0.65 21.326

20 55 × 40 128 0.85 22.511

21 55 × 40 32 0.05 35.169

22 55 × 40 32 0.25 32.488

23 55 × 40 32 0.45 27.770

24 55 × 40 32 0.65 22.137

25 55 × 40 32 0.85 25.629

26 55 × 40 64 0.05 31.844

27 55 × 40 64 0.25 27.541

28 55 × 40 64 0.45 27.749

Chapter 4. A Tree Kernel For Non Discrete Domains 65

29 55 × 40 64 0.65 20.121

30 55 × 40 64 0.85 19.144

31 77 × 56 128 0.05 21.451

32 77 × 56 128 0.25 24.215

33 77 × 56 128 0.45 23.488

34 77 × 56 128 0.65 16.296

35 77 × 56 128 0.85 9.956

36 77 × 56 32 0.05 16.234

37 77 × 56 32 0.25 22.282

38 77 × 56 32 0.45 19.310

39 77 × 56 32 0.65 18.624

40 77 × 56 32 0.85 17.585

41 77 × 56 64 0.05 17.169

42 77 × 56 64 0.25 22.864

43 77 × 56 64 0.45 21.721

44 77 × 56 64 0.65 9.457

45 77 × 56 64 0.85 15.735

Table 4.1: Classification error of the SOM-SD maps on

the INEX 2005 dataset. Lowest error is in bold.

The resulting classification error ranges from significantly above the baseline

(35.17%) to a very much lower values of the classification error (8.65%). The mean

classification error is 18.94% with a standard deviation of 6.98. This means that

the results are indeed very sensitive to the parameter choice. In the following we

analyse the dependence of the classification error from each parameter:

map size The mean classification error of 110× 80 maps is 12.24% with standard

deviation 2.23, the mean error of 77 × 56 maps is 18.43% with standard de-

viation 4.52 and the mean classification error of 55× 40 maps is 26.15% with

standard deviation 4.87. For this problem, clearly bigger maps are to be pre-

66 Chapter 4. A Tree Kernel For Non Discrete Domains

ferred. This is due either to the fact that smaller maps do not have enough

neurons for representing effectively all statistically interesting type of struc-

tures for the task or that different structures are positioned too close, i.e. the

topology of the input space can not be preserved.

Training iterations Table 4.2 reports the mean classification error of the maps

with respect to the number of training iterations. Statistics are divided ac-

cording to map size since the values significantly depend on that. Both 55×40

and 110× 80 maps decrease mean error by increasing the number of training

iterations, so it seems a viable suggestion to use as many training iterations

as possible.

Mean Classification Error (%) w.r.t to Map Size

110× 80 77× 56 55× 40 All maps

iter=32 13.44 (2.45) 18.81 (2.26) 28.64 (5.23) 20.30 (7.71)

iter=64 11.87 (2.07) 17.39 (5.35) 25.28 (5.44) 18.18 (6.74)

iter=128 11.40 (2.09) 19.08 (5.97) 24.53 (3.74) 18.34 (6.60)

Table 4.2: Mean classification error of the SOM-SD maps with respect to number of

training iterations (between brackets the standard deviation). Statistics are divided

according to map size. The last column reports the mean classification error of all

the maps.

Parameter µ1 The parameter µ1 determines the influence of the label component

when computing the similarity between a neuron and a structure encoded as

a neuron. µ2 determines the influence of the children component. We recall

that in all experiments µ2 has been set to 1 − µ1. µ parameters are clearly

task dependant. In our case, table 4.3 shows that a high value of µ1 leads to

lowest classification error on average.

Experiments proceeded by testing the activation mask kernels (AM) defined

in Section 4.1. For each map and for different values of ε (see eq. (4.1)) a kernel

was defined. For each kernel, the c parameter of the SVM was selected on the

Chapter 4. A Tree Kernel For Non Discrete Domains 67

Mean Classification Error (%) w.r.t to Map Size

110× 80 77× 56 55× 40 All maps

µ1=0.05 12.72 (0.52) 18.28 (2.78) 29.55 (7.05) 20.19 (3.32)

µ1=0.25 14.19 (2.43) 23.12 (0.99) 29.70 (2.53) 22.34 (0.86)

µ1=0.45 12.17 (1.80) 21.51 (2.10) 27.87 (0.19) 20.52 (1.03)

µ1=0.65 12.37 (7.21) 14.79 (4.76) 21.19 (1.01) 16.12 (3.12)

µ1=0.85 9.72 (1.68) 14.43 (3.98) 22.43 (3.24) 15.52 (1.17)

Table 4.3: Mean classification error of the SOM-SD maps with respect to the

parameter µ1 (between brackets the standard deviation). Statistics are divided

according to map size. The last column reports the mean classification error of all

the maps.

validation set from the following values: 0.001, 0.01, 0.1, 1, 10, 100, 1000. Finally,

with the selected value, an SVM was trained on the union of the training and

validation sets and then evaluated on the test set. In all the experiments described

in the following a time out of 24 hours on each executable run was set. This was done

in order to obtain the results in a fair amount of time. Indeed, with this limitation,

the overall learning phase with the SVM lasted for more than 3 months.

68 Chapter 4. A Tree Kernel For Non Discrete Domains

Map Activation Mask kernel Classification error Improvement (%) w.r.t

ε = 0 ε = 1 ε = 2 ε = 3 ε = 4 ε = 5 SST SOM-SD

1 7.046 6.215 6.153 6.340 6.672 6.693 44.6 49.3

2 7.358 6.444 6.381 6.589 6.485 6.755 43.1 55.2

3 6.610 5.383 5.238 5.654 6.132 6.194 53.3 53.9

4 6.319 5.841 5.716 6.256 6.568 6.568 44.2 40.2

5 6.464 5.965 6.277 6.693 7.254 6.340 40.3 22.6

6 6.028 5.280 5.196 5.695 6.236 6.630 53.6 58.8

7 6.610 5.945 5.259 5.425 5.487 5.508 50.9 66.8

8 6.506 5.737 5.737 5.903 5.737 5.986 48.8 47.4

9 5.965 5.737 5.924 6.153 6.194 6.049 47.2 61.6

10 6.028 5.695 5.945 6.173 6.194 6.402 47.0 49.0

11 6.485 6.090 6.028 6.402 6.485 6.340 46.2 54.6

12 6.818 5.633 5.342 5.674 5.425 5.882 52.3 54.4

13 6.444 5.321 5.404 5.300 5.550 5.591 51.8 62.0

14 6.111 5.217 5.280 5.425 5.758 5.924 48.6 48.8

15 6.672 5.529 5.882 6.049 6.153 6.589 47.5 33.6

16 7.462 6.984 7.524 7.691 7.545 7.566 37.7 67.7

17 7.732 7.358 6.838 7.088 7.005 7.233 39.0 76.5

18 7.878 7.982 8.273 8.252 7.753 8.252 26.2 70.5

19 7.026 7.192 6.901 7.524 7.275 7.005 32.9 64.7

20 7.358 7.067 7.566 7.649 7.462 7.732 31.8 66.0

21 8.501 8.127 8.293 8.293 8.584 9.146 26.0 76.4

22 8.834 9.083 8.626 8.938 9.104 8.938 19.0 72.0

23 8.397 8.397 8.127 8.293 8.065 8.190 26.9 70.5

24 8.605 8.792 8.418 8.709 8.584 8.481 23.2 61.1

25 8.273 8.481 8.481 8.917 8.709 8.481 24.3 66.9

26 8.896 8.543 8.626 8.377 8.356 8.501 20.6 72.1

27 7.628 7.296 6.859 7.233 7.379 7.400 34.9 73.5

Chapter 4. A Tree Kernel For Non Discrete Domains 69

28 6.880 7.129 6.963 7.337 7.483 7.441 33.6 73.2

29 7.649 7.129 7.919 7.732 7.608 7.940 36.4 64.6

30 8.460 7.899 8.148 8.148 7.857 8.190 24.5 55.8

31 7.753 7.483 7.774 8.044 8.896 7.899 33.2 65.1

32 7.171 7.213 7.483 8.106 8.086 7.566 33.2 69.1

33 7.067 6.693 6.547 6.610 6.527 6.859 41.6 72.1

34 6.381 6.444 6.028 6.527 6.901 6.942 41.8 59.9

35 6.444 5.571 5.716 6.194 6.360 7.067 49.0 42.6

36 6.319 5.716 5.737 6.901 6.028 6.069 49.0 64.8

37 7.587 7.213 6.818 6.901 7.192 6.818 39.2 69.4

38 6.256 6.256 6.007 6.236 6.527 6.880 44.2 67.6

39 7.400 6.631 6.776 7.254 7.795 7.524 40.9 64.4

40 6.735 6.360 6.090 6.776 6.693 6.797 43.3 63.8

41 6.340 6.132 6.527 6.568 7.504 7.192 43.4 63.1

42 7.026 6.402 6.714 7.441 6.776 6.880 33.6 67.5

43 7.026 6.901 7.026 7.171 7.192 7.628 36.0 67.0

44 7.129 6.319 6.194 6.402 6.818 6.672 44.7 34.5

45 6.277 6.111 6.485 6.506 6.444 7.171 45.5 61.2

Mean 7.110 6.687 6.694 6.968 7.041 7.109 39.5 60.6

Std 0.814 1.030 1.044 0.996 0.956 0.893 0.012 0.094

Table 4.4: Classification error of the AM kernel on the

INEX 2005 dataset. The ε that would be selected in

validation for each map is in bold. The map that would

be selected in validation is underlined. The improvement,

for example with respect to SST, is computed according

to the following formula: 100 · errSST−errAM
errSST

, where err is

the classification error of an algorithm.

The classification error of each activation mask kernel is reported in Table 4.4.

In the last two columns of the table, we have reported the error improvement (in %)

70 Chapter 4. A Tree Kernel For Non Discrete Domains

obtained by the best performing kernel on the validation set (in bold) when varying

the ε value with respect to SOM-SD and SST performance, respectively. The im-

provement, for example with respect to SST, is computed according to the following

formula: 100 · errSST−errAM
errSST

, where err is the classification error of an algorithm. The

classification error on the test set for each value of ε ranges from 9.15% to 5.20% with

a mean value of 6.93% and standard deviation 0.97. By selecting the ε value on the

validation set the classification error ranges from 9.08% to 5.20% mean classification

error 6.79% and standard deviation 1.06.

According to these experiments, the method used for selecting the parameters

is reliable. In fact, if for each map we select the best performance obtained on the

test set and we subtract this value from the performance obtained by the value of

ε selected by the validation set, the mean value obtained over the set of maps is

0.25 (with standard deviation 0.256). Moreover, selecting both the map and the ε

in validation, would have led us to obtain the lowest classification error, i.e. 5.20%.

In these experiments, the use of the Activation Mask kernel always improved the

classification performance. The mean improvement of the AM-kernel with respect

to the SOM-SD is 60.5% with standard deviation 0.12. In some cases the error is

reduced up to the 76.5% with respect to SOM-SD and up to the 53.6% with respect

to the SVM with SST kernel. The mean improvement with respect to the SST is

39.4% with standard deviation 0.09. The cumulative low standard deviation suggests

that the improvement is quite independent with respect to the chosen map. In

order to further discuss the dependence of the AM-kernel accuracy from the related

map, a graphical comparison among the classification error on the test set of the

methodologies involved in the experiment has been made in Figure 4.2. The error

values of the AM-kernel are related to the ε value selected on validation. The plot

suggests that the map accuracy influence the error of the AM-kernel. Nevertheless

starting from any map the error obtained by the AM-kernel is significantly lower

than the SST and SOM-SD ones.

In the following we analyse the dependence of the classification error from each

parameter of the SOM-SD and from the ε of the AM-kernel:

Chapter 4. A Tree Kernel For Non Discrete Domains 71

 5

 10

 15

 20

 25

 30

 35

 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45

Cl
as

sif
ica

tio
n

Er
ro

r i
n

%

Maps Sorted by Classification Error

SOM-SD 110x80
SOM-SD 77x56
SOM-SD 55x40

AM Kernel
SST Kernel

3
2 2 2

3
4 4

2
2
2
1
2
2
2
2 2 1 1

3
5
0 1 1

0

1
1 3 1 1 3

0

2
3 3

2
2
1
1 5

5 2

2

0 1
3

Figure 4.2: Comparison between classification error of the different techniques on

the INEX 2005 test dataset. Maps on the x-axis are sorted by SOM-SD classification

error. The error values of the AM-kernel are related to the ε value selected on

validation (which is reported in correspondence of the map error value).

map size The mean classification error of 110 × 80 maps is 5.83% with standard

deviation 0.44, the mean error of 77 × 56 maps is 6.59% and the mean clas-

sification error of 55 × 40 maps is 7.94%. As for the SOM-SD, larger maps

result in lowest classification error. Note however that, for each map size, the

standard deviation is significantly lower than the standard deviation of the

SOM-SD. The gap between the classification error related to different map

sizes is significantly lower than SOM-SD one.

Training iterations Table 4.5 reports the mean classification error of the maps

with respect to the number of training iterations. Statistics are again divided

according to map size. Differently from the SOM-SD, the AM-kernel classifica-

tion accuracy of 110×80 and 77×56 maps do not benefit from a higher number

72 Chapter 4. A Tree Kernel For Non Discrete Domains

of training iterations. That is reasonable since, if the map is large enough, the

neurons with time specialize more and more tending, in the end, to represent

singular structures. In other words, it is more likely that different structures

are represented by the same set of neurons (getting a higher matching value)

during the first learning iterations than at the end of the learning process.

Since our goal was to let match different structures for reducing sparsity, not

making use of too many training iterations seems a viable suggestion. Only for

55× 40 maps a higher number of iterations helps in reducing the classification

error. This may be due to the fact that, since the map is relatively small,

very different structures can be forced to be encoded by nearby prototypes

(influencing each other representation) and thus more training iterations are

needed for differentiating those structures.

Mean Classification Error (%) w.r.t to Map Size

110× 80 77× 56 55× 40 All maps

iter=32 5.66 (0.33) 6.36 (0.54) 8.53 (1.07) 6.85 (1.50)

iter=64 5.68 (0.50) 6.65 (0.89) 7.84 (0.80) 6.73 (1.08)

iter=128 6.16 (0.74) 6.75 (0.51) 7.45 (0.57) 6.79 (0.65)

Table 4.5: Mean classification error of the AM-kernel with respect to number of

training iterations (between brackets the standard deviation). Statistics are divided

according to map size. The last column reports the mean classification error of all

the maps.

Parameter µ1 Table 4.6 shows the behaviour of the AM-kernel with respect to

µ1 values. It seems that there is no evident correlation of the accuracy and

the parameter µ1. By comparing corresponding elements of table 4.6 and

table 4.3 it can be noticed that the error is always reduced and the lower

standard deviation of the AM-kernel results suggests that AM-kernel results

are quite robust.

Parameter ε We finally analyse the dependence of the results from the neighbour-

Chapter 4. A Tree Kernel For Non Discrete Domains 73

Mean Classification Error (%) w.r.t to Map Size

110× 80 77× 56 55× 40 All maps

µ1=0.05 5.81 (0.54) 6.51 (0.90) 8.06 (0.98) 6.79 (0.81)

µ1=0.25 5.74 (0.56) 7.25 (0.37) 7.74 (1.19) 6.91 (0.71)

µ1=0.45 5.46 (0.25) 6.66 (0.47) 7.97 (0.46) 6.70 (0.39)

µ1=0.65 5.98 (0.25) 6.45 (0.23) 7.75 (0.76) 6.73 (0.42)

µ1=0.85 6.17 (0.45) 6.06 (0.32) 8.20 (0.47) 6.81 (0.42)

Table 4.6: Mean classification error of the AM-kernel with respect to the parameter

µ1 (between brackets the standard deviation). Statistics are divided according to

map size. The last column reports the mean classification error of all the maps.

hood size of the AM-kernel. Data is presented in table 4.7. The classification

error, for all map size, initially decreases by increasing ε, reaches a minimum

when ε = 1 or ε = 2 and then increases again. This seems to suggest that, at

least for this task, propagating information to a restricted number of neigh-

bouring nodes is beneficial. When, on the contrary, the ε value is too high, the

influence of a node extends too far letting match dissimilar structures which

are not supposed to.

Mean Classification Error (%) w.r.t to Map Size

110× 80 77× 56 55× 40 All maps

ε=0 6.50 (0.39) 6.86 (0.50) 7.97 (0.64) 7.11 (0.51)

ε=1 5.74 (0.36) 6.50 (0.54) 7.83 (0.71) 6.69 (0.54)

ε=2 5.72 (0.41) 6.53 (0.60) 7.84 (0.67) 6.69 (0.56)

ε=3 5.98 (0.44) 6.91 (0.59) 8.01 (0.60) 6.97 (0.54)

ε=4 6.16 (0.50) 7.05 (0.76) 7.92 (0.62) 7.04 (0.63)

ε=5 6.23 (0.40) 7.06 (0.46) 8.03 (0.63) 7.11 (0.49)

Table 4.7: Mean classification error of the SOM-SD maps with respect to the

parameter ε. Statistics are divided according to map size. The last column reports

the mean classification error of all the maps.

74 Chapter 4. A Tree Kernel For Non Discrete Domains

In order to explain the obtained results, we collected statistics about sparsity on

the test with respect to AM neighbourhood size. The values obtained are listed in

table 4.8. The sparsity index for all maps with ε = 0 is basically equivalent to the

Mean Sparsity Index (%) w.r.t to Map Size

110× 80 77× 56 55× 40 All maps

ε=0 0.55 (0.0001) 0.55 (0.0005) 0.54 (0.0018) 0.55 (0.0008)

ε=1 0.54 (0.0097) 0.47 (0.0356) 0.28 (0.0536) 0.43 (0.0330)

ε=2 0.40 (0.0593) 0.15 (0.0181) 0.11 (0.0072) 0.22 (0.0282)

ε=3 0.16 (0.0361) 0.10 (0.0084) 0.09 (0.0093) 0.12 (0.0179)

ε=4 0.11 (0.0134) 0.09 (0.0113) 0.08 (0.0153) 0.09 (0.0134)

ε=5 0.09 (0.0132) 0.07 (0.0241) 0.07 (0.0222) 0.08 (0.0199)

Table 4.8: Mean sparsity index of the AM-Kernel maps with respect to the pa-

rameter ε on the INEX 2005 dataset (between brackets the standard deviation).

Statistics are divided according to map size. The last column reports the mean

sparsity index of all the maps.

baseline: 0.54% (see table A.2). This means that apparently no different structures

are represented by the same neuron in the map. Note that having the same set of

matching structures does not imply that kernel functions must be equal since differ-

ent kernel functions may weight differently each match. The reason for adding the

ε parameter was precisely to reduce sparsity, i.e. to allow matchings between struc-

tures represented similarly by the SOM-SD. By increasing the neighbourhood size

ε, the sparsity reduces. This is more evident for smaller maps since it is more likely

that structures are represented nearby. However, if we compare the corresponding

elements of table 4.7 and table 4.8 it is evident that a reduction in sparsity does not

implies systematically a reduction of the classification error. Generally speaking,

from ε = 0 to ε = 2 both the sparsity and the classification error tend to be reduced;

from ε = 3 to ε = 5 the sparsity still decreases but the classification error increases.

In other words low sparsity does not guarantee high accuracy. High ε values may

over-represent a structure on the map thus making it similar to structures which are

Chapter 4. A Tree Kernel For Non Discrete Domains 75

considered different for the current task.

In order to further sustain our claim that the AM kernel is especially useful for

tasks in which traditional kernels are sparse, we ran the same set of experiments on

a similar, but non sparse dataset involving XML documents which has been used for

the 2006 INEX Competition (see section A.2). In this case the training, validation

and test sets consist of 4237, 1816 and 6054 documents, respectively. Each document

belongs to 1 out of 18 classes. By applying the same methodology as in the previous

experiment, the following results were obtained. The sparsity of the SST kernel

was 0.0025 and its classification error was 59.31%. In this case, the mean sparsity

of the AM kernels, computed over 45 different maps, ranged from 0.0026 (with

standard deviation 0.0000051) to 0.0003 (with standard deviation 0.0003034) when

considering the same set of values for the ε parameter. The SOM-SD classification

error ranged from 67.66% to 60.77% with a mean value of 63.98%. The test error of

the AM kernel varied from 64.24% to 58.24% with a mean value of 61.579%.

In order to make an empirical analysis of the relationship between sparsity and

classification error, we run a number of experiments on a set of artificial datasets with

different values of sparsity. We considered the two-class problem of discriminating

the examples of the INEX 2006 dataset belonging to class 8 from the examples

belonging to any other class. From this dataset we created 7 more datasets with the

following values of the sparsity index with respect to SST kernel: 0.0025, 0.07, 0.15,

0.21, 0.40, 0.57, 0.75. The datasets were obtained by concatenating to each label

a uniformly generated random number. In this way identical labels have a chance

to be transformed into different labels, thus adding sparsity. The number of digits

composing the random numbers is constant and thus no different labels can become

equal. By varying the range of the random numbers the desired level of sparsity can

be obtained. The test has been performed on the following map: size= 110 × 80,

training iterations= 64, µ1 = 0.45. Figure 4.3 compares the classification error on

the test set of the SST and AM-kernel on each dataset. Best parameters of the SST,

i.e. λ, and AM-kernel (ε) are selected on validation among the same values used

for the previous experiments. The experiments suggests that the AM-kernel, under

76 Chapter 4. A Tree Kernel For Non Discrete Domains

 9

 10

 11

 12

 13

 14

 15

 16

 17

 0 10 20 30 40 50 60 70 80

C
la

ss
ifi

ca
tio

n
E

rr
or

 o
n

T
es

t

Datasets sorted according to Sparsity Index

SST
AM-Kernel

Figure 4.3: Classification error of the SST and AM-kernel on various datasets with

different levels of sparsity.

certain limits, is robust to the increase of sparsity.

It has not been formally demonstrated that the SOM-SD algorithm is able to

always produce the lower dimensional representation which best represent the topol-

ogy of the input space. While the demonstration is beyond the scope of this chapter,

we empirically investigated the usefulness of the SOM-SD learning algorithm by run-

ning the same set of experiments on the INEX 2005 dataset starting from random,

i.e. non trained, maps. Since the number of training iterations was fixed to 0, 15

maps were created. Classification error on the test set of the AM-kernel (results on

the validation set are very similar) ranges from 90.36% to 28.21% with a mean value

of 51.55% and standard deviation 17.68. Results are most evidently correlated with

the parameter µ1: higher values of µ1 give lowest classification error. This is not

surprising since being the map random the structural information contained in the

neurons is useless or misleading, thus by giving more importance to label informa-

tion best results are obtained. The results of the last experiment clearly show the

Chapter 4. A Tree Kernel For Non Discrete Domains 77

usefulness of the SOM-SD learning algorithm.

In order to assess whether the obtained results were dependent on the specific

datasets involving XML documents, we decided to perform additional experiments

involving a different dataset. We selected a dataset which is typically used for

data mining research, i.e. the LOGML dataset (see section A.4). It consists of

user sessions of the Rensselaer Polytechnic Institute Computer Science Department

website, processed in order to obtain tree representations (see section A.4 for details).

It is a two-class classification problem. 3 datasets are available. They comprises

8074, 7409 and 7628 examples, respectively. The datasets are very sparse: the mean

of the 3 sparsity index values is 0.9595. The classification error of the SST and the

AM-Kernel was computed by performing a 3-fold cross-validation considering, in

each round, one of the dataset as the test set. The results are obtained by using 10

different maps, obtained by using the following parameters:

• map dimension: 110× 80;

• number of training iterations: 32, 64;

• µ: 0.05, 0.25, 0.45, 0.65, 0.85.

In Figure 4.4 a comparison between the classification error of the different tech-

niques on the LOGML test set is plotted, again following the same style of presen-

tation as in Figure 4.2. It can be noted that the results obtained for this dataset

show less variance since they are obtained by a 3-fold cross-validation approach.

Also for this dataset, the AM kernel was able to get a significant improvement over

SOM-SD, and over SST, although the improvement in this case is smaller.

As a last remark we want to stress the fact that the AM-kernel can be defined

on top of any topology preserving low dimensional representation of the data, not

necessarily it must be combined with the SOM-SD. For example, when information

about the ascendant nodes is important for the task, maps could be built by means

of the CSOM-SD. The AM-kernel can be defined for more complicated types of

structures such as graphs by using the graph SOM-SD.

78 Chapter 4. A Tree Kernel For Non Discrete Domains

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10

C
la

ss
ifi

ca
tio

n
E

rr
or

 in
 %

Maps Sorted by Classification Error

SOM-SD 110x80
AM Kernel

SST Kernel

3 3 1 2 2 2 1 1 1 2

Figure 4.4: Comparison between classification error (using 3-fold cross-validation)

of the different techniques on the LOGML test dataset. Maps on the x-axis are sorted

by SOM-SD classification error. The error values of the AM-kernel are related to

the ε value selected on validation (which is reported in correspondence of the map

error value).

Chapter 5

A Novel Kernel for Trees: Convolution

Route Kernel

As the proportion of publications listed in chapter 3 suggests, convolution kernels,

among the class of tree kernels, have received great attention from the research com-

munity. Convolution kernels describe complex objects in terms of their constituent

parts. However, such an approach tends to discard explicit information about the

“relative positioning” of the elements with respect to one another. Even kernels

based on counting the number of common paths such as the Spectrum Tree Ker-

nel (see Definition 3.2.1) do not take into account the relative positioning of the

nodes. The aim of the present chapter is to investigate the usefulness of this type

of information for building expressive non sparse tree kernels.

The chapter is organised as follows: the novel family of kernels, called gener-

alized route kernels, is defined in Section 5.1. Section 5.2 describes an instance of

the generalized route kernel and provides an efficient algorithm for its computation.

Section 5.3 describes experiments performed on two collections of XML formatted

documents showing that the proposed kernel improves on state-of-the-art tree ker-

nels, thus confirming the viability of the approach.

80 Chapter 5. A Novel Kernel for Trees: Convolution Route Kernel

5.1 Generalized Route Kernel

This section formally describes the proposed Generalized Route Kernel. In par-

ticular, it will be gradually introduced by starting from a simple formulation, and

then adding pieces with the aim of progressively enriching the feature space. In the

end, we will obtain a kernel which is able to match set of routes according to the

similarity of the labels of the correspondent nodes.

Definition 5.1 (Route) Let T be a (positional) tree, v1, v2 ∈ T any two nodes in

the tree, and p(v1, v2) = [v1, . . . , v2] the (shortest) path connecting v1 and v2 through

the edges of T (not considering edge direction). Then the route from v1 to v2 in T ,

denoted by π(v1, v2), is the sequence of indices of edges connecting the consecutive

nodes in the path p(v1, v2). This indices are taken positive (or negative) whenever

edges are traversed away from (resp. towards) the root.

Figure 5.1 gives an example of a tree and a route computed between nodes a

and e. The nodes connected by dashed edges represent the shortest path connecting

nodes a and e, i.e. p(a, e). The route connecting nodes a and e is represented by

the sequence [2, 3], since node b is the second child of a and node e is the third

child of b. The route connecting nodes g and b is [−3, 2].

a

b

c e

g

2 3

31

Figure 5.1: An example of a route connecting nodes labelled with a and e. The

nodes connected by dashed edges are the ones comprising the path between the two

nodes. The route is formed by the sequence 2, 3 since node b is the second child of

a and node e is the third child of b.

Chapter 5. A Novel Kernel for Trees: Convolution Route Kernel 81

Some other functions must be introduced before getting to the definition of the

route kernel. The parent of a node is identified by the function pa(v). If a node,

i.e. the root, has no parent then pa() is undefined. The function chpos(v) returns

the position of v with respect to its parent, i.e. chpos(v) = i if v is the i-th child of

pa(v). When pa(v) is undefined, chpos(v) is also undefined. We finally introduce the

function pl(vi, vj) which returns the sequence of node labels of the nodes in p(vi, vj)

respecting the order of the nodes in the path, i.e. if p(vi, vj) = vi, vh, vs, vj, then

pl(vi, vj) = (li, lh, ls, lj). For example, given the path connecting the nodes labelled

with a and g in Figure 5.1, pl = (a, b, e).

The route π(vi, vj) can be recursively defined as:

π(vi, vj) =

 π (vi, pa(vj)) .chpos(vj) if vi 6= vj

ε if vi = vj
(5.1)

where vi, vj are nodes of a tree T , and the “.” operator creates a sequence from two

list of objects, and ε is a symbol for the empty sequence. We use a function δ for

comparing generic objects

δ(x, x′) =

 1 if x = x′

0 if x 6= x′.
(5.2)

A first kernel can be defined by comparing the set of all routes:

K1(T1, T2) =
∑

vi,vj∈T1

∑
vl,vm∈T2

k1(π(vi, vj), π(vl, vm)), (5.3)

where k1 is a kernel defined on the routes. For example by setting k1(x, x′) = δ(x, x′),

K1 would become a kernel counting the number of common routes of the two trees.

It is straightforward to show that if k1 is a valid kernel then K1 is a valid kernel.

Let M be the set of trees, χ
′

T
the set of paths in T , MT1,T2 = χ

′

T1

× χ
′

T2

the

Cartesian product of the two sets of paths of T1 and T2, then K1 is an instance of

the mapping kernel (see Section 3.1). MT1,T2 is clearly a transitive function and

thus K1 is positive semidefinite.

82 Chapter 5. A Novel Kernel for Trees: Convolution Route Kernel

In order to add expressiveness to the kernel we combine k1 with a kernel k2

defined on sequences of node labels:

k2(pl(vi, vj), p
l(vl, vm)). (5.4)

The combined local kernel k3 = k1⊗k2 can be defined based on the product between

k1 and k2:

k1(π (vi, vj) , π (vl, vm))k2(pl (vi, vj) , p
l (vl, vm)) =

k1 ⊗ k2

((
π (vi, vj) , p

l (vi, vj)
)
,
(
π (vl, vm) , pl (vl, vm)

))
=

k′3
((
π (vi, vj) , p

l (vi, vj)
)
,
(
π (vl, vm) , pl (vl, vm)

))
=

k3 (p (vi, vj) , p (vl, vm)) .

(5.5)

Note that the operator ⊗ preserves positive semidefiniteness (see page 31), and thus

k′3 is a valid kernel. k3 is obtained from k′3 noticing that a pair of nodes (vi, vj)

uniquely determines the route π (vi, vj) and the path p (vi, vj), and thus k3 can be

defined to be equivalent to k′3 although using a simplified notation.

A further extension to the kernel can be obtained by letting match group of

features as in eq.(2.21). This would allow to count as features the simultaneous

presence of groups of nodes at particular positions:

Kgr(T1, T2) =

 ∑
vi,vj∈T1

∑
vl,vm∈T2

k3 ((vi, vj) , (vl, vm)) + e

d

, (5.6)

where e ∈ R, d ∈ N.

5.2 An instantiation of the Generalized Route Ker-

nel

In this section, we discuss an instance of the generalized route kernel and give for

it an efficient implementation. Our purpose, in this section, is to obtain a kernel

function matching identical pairs of type (π, l), where l is the label of the last node

in the path associated to the route π. The following modifications to eq. (5.6) are

Chapter 5. A Novel Kernel for Trees: Convolution Route Kernel 83

needed. Since k3 is defined in terms of k1 and k2, we start by modifying these two

functions:

k1(π(vi, vj), π(vl, vm)) = δ(π(vi, vj), π(vl, vm))λ|π(vi,vj)|, (5.7)

where λ ∈ R is a user defined parameter and |π(vi, vj)| is the length of the route

π(vi, vj), which corresponds to the length of the corresponding path. k1 in eq. (5.7)

let match only identical routes. Note that the value of each match is weighted ac-

cording to a value λ dependent on the length of the route. The basic idea motivating

the introduction of the parameter λ is to downweight the influence of larger routes

in the same way as described for the ST and SST kernels (see section 3.1.2). The

function k2 is modified as follows:

k2(pl(vi, vj), p
l(vl, vm)) = δ(lj, lm). (5.8)

k2 tests if the labels of the last nodes in the two paths are identical. Note that the

use of the kernel k2 could have been avoided by imposing the following condition on

MT1,T2 :

((vi, vj), (vl, vm)) ∈MT1,T2 ⇔ lj = lm. (5.9)

In the following, we also experiment an alternative definition for the kernel k2

based on the production rooted at the last node of the path:

kprod(p(vi, vj), p(vl, vm)) = δ(prod(vj), prod(vm)), (5.10)

where prod(v) is the subtree rooted at node v and composed by all the children of v.

We further restrict the set of feasible routes by imposing the following condition

to the sets χ
′

T
:

χ
′

T
=
{
p(vi, vj)|vi, vj ∈ T ∧ vj ∈

vi
4
}
, (5.11)

where vj ∈
vi
4 means that vj is a descendant of vi. In other words routes are allowed

only between a node and its descendants or the node itself.

The final form of the route kernel is thus the following:

84 Chapter 5. A Novel Kernel for Trees: Convolution Route Kernel

Kroute(T1, T2) =

 ∑
(p(vi,vj),p(vl,vm))∈MT1,T2

δ(vj, vm)δ(π(vi, vj), π(vl, vm)) + e

d

,

(5.12)

Since matches are allowed only with identical routes, a node v at depth o in the

tree has associated o non null features: one feature related to the path composed

only by the same node, one feature related to the path p(pa(v), v), one feature related

to the path p(pa(pa(v)), v) = p(pa2(v), v), and so on until the feature related to the

path connecting the root of the tree to the node:p(pao(v), v). The total number of

non null features for a tree with |T | nodes is less or equal than
∑|T |

i=1 depth(vi) =

avgdepth(T) · |T |, where depth(v) is the depth of node v and avgdepth(T) is the

average depth of a node in T . Note that the total number of non null features

is equal to avgdepth(T) · |T | when the labels of the nodes in T are all different.

Figure 5.2 gives an example of the set of features associated with a simple tree.

a

b

c e

g

2 3

31

⇒
a

b

c

g

e

g

3

e

3

c

1 b

2

c

2

1

e

2

3

Figure 5.2: A tree (left) and its set of features according to the route kernel defined

in eq. (5.12).

5.2.1 Implementation

We now turn our attention to an efficient implementation of the kernel proposed in

eq. (5.11) and eq. (5.12). Without loss of generality it is assumed that parameters e

and d are set to 0 and 1, respectively. Since no routes of different length can match,

Chapter 5. A Novel Kernel for Trees: Convolution Route Kernel 85

the definition of M given by eq. (5.9) and eq. (5.11), can be rewritten as

MT1,T2 =
o⋃
s=0

M(s)
T1,T2

, (5.13)

where o is the smallest of the maximum depth of the trees T1 and T2. M(s)
T1,T2

is

defined as:

((vi, vj), (vl, vm)) ∈M(s)
T1,T2

⇔ lj = lm ∧ |π(vi, vj)| = |π(vl, vm)| = s. (5.14)

Clearly ∀i 6= j, T1, T2.M(i)
T1,T2
∩M(j)

T1,T2
= ∅. Eq. (5.12) can be rewritten as

Kr(T1, T2) =

 ∑
((vi,vj),(vl,vm))∈MT1,T2

δ(π(vi, vj), π(vl, vm))

 =

o∑
s=0

 ∑
((vi, vj), (vl, vm)) ∈M(s)

T1,T2

δ (π(vi, vj), π(vl, vm))

 =

o∑
s=0

 ∑
((pas(vj), vj), (pa

s(vm), vm)) ∈Ms
T1,T2

δ (π(pas(vj), vj), π(pas(vm), vm))

=
o∑
s=0

 ∑
vj ∈ T1

vm ∈ T2

C(s)(vj, vm)

 ,

(5.15)

where C(s)(vi, vj) can be computed according to the following rules:

1. if s = 0 then C(s)(vi, vj) = δ(vi, vj);

2. if s > 0 then C(s)(vi, vj) = C(s−1)(vi, vj)δ(chpos(pa(vi)
s), chpos(pa(vj)

s)).

Eq. (5.15) suggests a strategy for computing the route kernel: by starting from the

set of common labels of the two trees, identical routes of increasing length can be

looked for. Clearly, since a common route of length s can have match only if its

subroute of length s− 1 has a match, the proposed strategy can be stopped as soon

as no more routes of current length are found.

The algorithm we propose (algoritm 2) assumes to treat trees with arbitrary but

finite out-degree. It starts by computing the number of nodes with the same labels.

86 Chapter 5. A Novel Kernel for Trees: Convolution Route Kernel

It then proceeds by comparing the routes of length s, with s going to from 1 to the

minimum of the maximum of the depths of the two trees.

In the following the behaviour of the algorithm is analyzed in detail. Lines from

1 to 4 initialize internal variables and create a sorted list of nodes for each tree. The

procedure costs O(|T | log |T |). Lines from 5 to 12 compute the number of matchings

due to the routes of length 0, i.e. the number of common labels. The computational

complexity of the procedure is O(ρ|T |). Line 14 creates an array which will con-

tain information about the matchings between routes at current level. Its cost is

O(maxout). Each while iteration (lines 15 to 42) costs O(n), since L lists may not

contain more than O(n) elements and for each list O(1) operations are performed.

Line 15 has a computational complexity of O(maxout). However, it can be skipped

by making use of a variable and an array of the same size of F . The variable, say

t, is initially set to 0 and it is incremented every time the while loop is entered.

Whenever F is written to (lines 17 and 25), the current value of t is recorded in the

auxiliary array, say F ′. When values from F are read (lines 22 and 32), they are

considered valid if the corresponding value of F ′ is equal to t, otherwise the read

operation returns a value of 0. Each while iteration counts the number of common

routes of length s. Initially s = 1; If at least one common route of length s is found

(there is a non empty list L), then, in the next while iteration, routes of length s+1

are looked for. Clearly, there are no more than the length of the longest path in the

smallest tree, i.e. min(maxdepth(T1),maxdepth(T2)), of such paths. By summing

up the cost of all lines, the total cost of the algorithm in the worst case becomes:

O(|T | ∗ avgdepth(T) + |T | log |T |). Note that the average depth of a node in a tree

can be at most O(n), thus the complexity of the algorithm can be at most O(n2).

Chapter 5. A Novel Kernel for Trees: Convolution Route Kernel 87

Algorithm 2: Pseudo-code for computing the kernel kroute(T1, T2).
Input: T1 and T2, two trees. λ, a user defined parameter.

Output: kroute(T1, T2)

k = 0; maxout =max {outdegree(T1),outdegree(T2)};1

create a sorted list List1 of nodes v ∈ T1 according to their labels;2

create a sorted list List2 of nodes v ∈ T2 according to their labels;3

for j = 1 to 2 do4

vj= 0; // vector of dimension ρ5

foreach v ∈ Listj do6

v.label= l(v);7

vj += v.label;8

end9

end10

k += λvT
1 v2;11

λ2 = λ · λ;12

create array F[] of dimension maxout;13

while |List1| > 0 ∧ |List2| > 0 do14

for i = 1 to maxout do v1,i= 0, F[1,i] = 0;15

; // previous step (and line 39) can be avoided, see text.

foreach node ∈ List1 do16

F[chpos(v)]= 1;17

v1,chpos(v) += v.label;18

end19

for i = 1 to maxout do v2,i= 0, F[2,i] = 0;20

foreach v ∈ List2 do21

if F[1,chpos(v)]= 0 then22

remove v from List2;23

else24

F[2,i] = 1;25

v2,chpos(v) += v.label;26

substitute v with w s.t. w ≡ pa(v) and w.label= v.label;27

end28

end29

end30

foreach v ∈ List1 do31

if F[2,chpos(v)]= 0 then32

remove v from List1;33

else34

substitute v with w s.t. w ≡ pa(v) and w.label= v.label;35

end36

end37

end38

for i = 1 to maxout do k += λ2vT
1,iv2,i;39

λ2 = λ2 · λ;40

end41

return k42

88 Chapter 5. A Novel Kernel for Trees: Convolution Route Kernel

5.2.2 Relationship with other Kernels

It is known that, with respect to the feature space, ST ⊆ SST ⊆ PT . Given a tree

T , ST associates to T at most a linear number of non-null features. SST and PT,

with respect to T , have at most an exponential number of non-null features. The

number of non-null features of the Route kernel is at most avgdepth(T)|T |. The

features space of the Route kernel is not directly comparable with the one of the PT

kernel. However if all labels of a tree were identical, the feature space of the Route

kernel would properly be included into the feature space of the PT kernel. This

is not the common case: two matching nodes for the Route kernel having different

ascendants would not match for the PT kernel. The analysis of the Gram matrices

of the various kernels show that ST and SST are more sparse than the route kernel,

which in turn is more sparse than the Partial tree kernel. In fact, the sparsity

index of the PT kernel on the three datasets is 0. The sparsity of the route kernel

is 0.46% for INEX 2005 and 0 for all the other datasets. Regarding computational

complexity, ST is faster than SST, which in turn is faster than PT. The Route kernel

has a lower computational complexity than the PT kernel and, in the worst case,

the same quadratic complexity of the SST. Note that, when avgdepth(T) is O(1),

the computational complexity of the Route kernel is equivalent to the one of the ST

kernel.

5.3 Experiments and Discussion

Experiments were performed to test the effectiveness of the proposed kernel with

respect to ST, SST, the polynomial version of SST (obtained by exponentiating the

kernel value in the same way as described for the route kernel in eq. (5.6)) and the

PT kernel. The implementation of these kernels is available as part of the svm-light

software1. Our approach has been tested on the INEX 2005 dataset (section 5.3.1),

1http://dit.unitn.it/∼moschitt/Tree-Kernel.htm

Chapter 5. A Novel Kernel for Trees: Convolution Route Kernel 89

the INEX 2006 dataset (section 5.3.2), the LOGML dataset (section 5.3.3). In some

cases the training procedure was stopped due to excessive training times. Specifically

we set a 24 hours time out for each single learning procedure. The time out was

necessary because of the number of parameters involved.

5.3.1 Experiments on INEX 2005

In order to verify the effectiveness of the proposed kernel, a number of experiments

were run on the INEX 2005 dataset. For each setting of the hyper-parameters, SVM-

based multi-class classification was performed by using the one-against-all method-

ology.

Experiments were carried out with the local kernel defined on node labels,

eq. (5.8) and with the local kernel defined on productions, eq. (5.10). In both

scenarios a subspace of the parameters of the route kernel were evaluated. Specifi-

cally, experiments were performed with both normalized and not normalized route

kernel. The e parameter in eq. (5.12) was set to 0 in all experiments. The parameter

d in eq. (5.12) was set to 1, 2, 3. For each combination of the previous parameters,

the λ and c parameter of the SVM were selected in validation among the values:

λ = {0.05, 0.1, 0.25, 0.50, 0.75, 1.0, 2.0} and c = {0.001, 0.01, 0.1, 1, 10, 100, 1000}.
The lowest classification error of the subtree and subset tree kernel is 11.21% (see

appendix A.1). The polynomial version of the SST reached a 10.67% classification

error on the test set. A first set of experiments were performed by making use of the

kernel defined on node labels, eq. (5.8). Table 5.1 summarizes the results obtained.

The classification error ranges from 3.39% to 3.02%. The lowest classification error,

3.02%, is obtained by using the polynomial version with degree 3 of the normalized

kernel.

We proceeded by testing the route kernel with local kernel defined on produc-

tions, as described by eq. (5.10). Table 5.2 summarizes the results obtained. The

classification error ranges from 3.58% to 3.35%. The lowest classification error is

reached by the polynomial version with degree 2 of the not normalized kernel.

90 Chapter 5. A Novel Kernel for Trees: Convolution Route Kernel

kernel d best λ best c error % (valid) error % (test)

not normalized 1 0.25 1 3.10 3.14

not normalized 2 1 0.001 3.38 3.10

not normalized 3 0.75 0.001 3.66 3.39

normalized 1 0.25 10 3.17 3.17

normalized 2 0.25 10 3.10 3.06

normalized 3 0.5 10 3.17 3.02

Table 5.1: Accuracy of the route kernel with local kernel defined on node labels on

the INEX 2005 dataset. The columns represent, respectively, the type of kernel, the

exponent d in eq. (5.12), the λ and c values selected on validation, the classification

error on validation, the classification error on the test set.

kernel d best λ best c error % (valid) error % (test)

not normalized 1 0.25 1 3.31 3.52

not normalized 2 0.25 0.1 3.66 3.35

not normalized 3 0.75 0.001 3.80 3.41

normalized 1 0.50 100 3.52 3.39

normalized 2 0.1 10 3.52 3.54

normalized 3 0.1 10 3.94 3.58

Table 5.2: Accuracy of the route kernel with local kernel defined on node produc-

tions on the INEX 2005 dataset. The columns represent, respectively, the type of

kernel, the exponent d in eq. (5.12), the λ and c values selected on validation, the

classification error on validation, the classification error on the test set.

Chapter 5. A Novel Kernel for Trees: Convolution Route Kernel 91

Table 5.3 compares the classification error of the route kernel with respect to

ST, SST, the polynomial version of SST and the PT kernel. Note that the Partial

tree kernel has lowest classification error, 2.96%, while the route kernel with local

kernel defined on labels places second with 3.06% classification error.

kernel valid error % test error %

ST 13.15 11.27

SST 12.79 11.21

Polynomial SST 12.09 10.67

Partial Tree 2.96 2.96

Route, k2≡ eq. (5.8) 3.10 3.06

Route, k2≡ eq. (5.10) 3.31 3.52

Table 5.3: Comparison between the classification error of ST, SST, the polynomial

SST, the Partial Tree kernel and the Route kernel, respectively. Data refer to the

INEX 2005 dataset. The columns represent, respectively, the type of kernel, the

lowest classification error on validation, the corresponding classification error on the

test set.

5.3.2 Experiments on INEX 2006

A second round of experiments has been performed on the INEX 2006 dataset

to further test the kernel. For each setting of the hyper-parameters, SVM-based

multiclass classification was performed by using the one-against-all methodology in

a similar manner as for the experiments on the INEX 2005 dataset.

Both local kernels were experimented with the same set of parameters used for

the INEX 2005 dataset (see section 5.3.1). The lowest classification error obtained

on the test set by the subset tree kernel is 60.14%. The polynomial version of the

SST reached a 59.30% classification error on the test set. Table 5.4 summarizes the

results with the local kernel defined on node labels. Classification error values range

from 77.14% to 59.94%.

92 Chapter 5. A Novel Kernel for Trees: Convolution Route Kernel

kernel d best λ best c error % (valid) error % (test)

not normalized 1 0.05 1000 62.05 64.35

not normalized 2 0.25 1 58.72 59.94

not normalized 3 0.05 0.1 60.55 62.24

normalized 1 0.05 100 63.88 63.73

normalized 2 0.25 1000 62.46 70.53

normalized 3 0.25 10 62.14 77.14

Table 5.4: Accuracy of the route kernel with local kernel defined on node labels on

the INEX 2006 dataset. The columns represent, respectively, the type of kernel, the

exponent d in eq. (5.12), the λ and c values selected on validation, the classification

error on validation, the classification error on the test set.

The lowest classification error is obtained by the polynomial version with degree

2 of the not normalized kernel. The improvement of the route kernel with respect to

SST, computed as in Section5.3.1, goes from −30.08% to −1.07%. The improvement

with respect to the AM-kernel ranges from −26.72% to 1.52%. The local kernel, in

the best case, can only slightly improve on the AM-kernel and it always performs

worst than SST.

Experiments proceeded by testing the route kernel with local kernel defined on

node productions. Table 5.5 summarizes the results obtained.

Classification error values range from 63.05% to 57.12%. The lowest classification

error is obtained by the polynomial version with degree 2 of the normalized kernel.

Table 5.6 compares the classification error of the route kernel with respect to

ST, SST, the polynomial version of SST and the PT kernel. Note that the lowest

classification error is obtained by the route kernel with local kernel defined on node

productions, 58.09%. The partial tree kernel reaches a 58.17%. Other kernels have

a classification error going from 1.47% worse than the route kernel to 9.89%. The

INEX 2006 is a harder task than INEX 2005. Nonetheless the route kernel, in

conjunction with the local kernel defined on productions, is able to improve on the

classification error of all the other techniques we compared to.

Chapter 5. A Novel Kernel for Trees: Convolution Route Kernel 93

kernel d best λ best c error % (valid) error % (test)

not normalized 1 0.50 1 60.94 62.62

not normalized 2 0.05 1 56.33 57.12

not normalized 3 0.05 0.1 57.39 57.71

normalized 1 0.5 1 61.44 63.05

normalized 2 0.3 10 55.55 58.09

normalized 3 0,3 100 58.22 58.97

Table 5.5: Accuracy of the route kernel with local kernel defined on node produc-

tions on the INEX 2006 dataset. The columns represent, respectively, the type of

kernel, the exponent d in eq. (5.12), the λ and c values selected on validation, the

classification error on validation, the classification error on the test set.

kernel valid error % test error %

ST 68.32 67.98

SST 56.55 59.56

Polynomial SST 55.55 59.88

Partial Tree 57.83 58.87

Route, k2≡ eq. (5.8) 58.72 59.94

Route, k2≡ eq. (5.10) 55.55 58.09

Table 5.6: Comparison between the classification error of ST, SST, the polynomial

SST, the Partial Tree kernel and the Route kernel, respectively. Data refer to the

INEX 2006 dataset. The columns represent, respectively, the type of kernel, the

lowest classification error on validation, the corresponding classification error on the

test set.

94 Chapter 5. A Novel Kernel for Trees: Convolution Route Kernel

5.3.3 Experiments on LOGML

The LOGML dataset consists of user sessions of the Rensselaer Polytechnic Insti-

tute Computer Science Department website. It is a binary classification problem. 3

datasets are available. They comprises 8074, 7409 and 7628 examples, respectively.

Because LOGML is divided into 3 datasets, it was natural to compute the classi-

fication error of the kernels by performing a 3-fold cross-validation considering, in

each round, one of the dataset as the test set. The set of parameters involved is the

same as the one for the INEX 2005 experiments (see section 5.3.1).

kernel d best λ best c cross validation error %

not normalized 1 0.75 0.1 16.73

not normalized 2 0.1 1 16.84

not normalized 3 0.1 1 17.45

normalized 1 0.75 1 16.20

normalized 2 0.5 1 16.36

normalized 3 0.1 1 16.82

Table 5.7: Classification error of the route kernel with local kernel defined on node

labels on the LOGML dataset. The columns represent, respectively, the type of

kernel, the exponent d in eq. (5.12), the best λ and c values, the corresponding cross

validation error.

Table 5.7 summarizes the result obtained by the route kernel with local kernel

defined on node labels. The lowest error is obtained by the normalized version of

the kernel setting λ = 0.75 and c = 1.

Table 5.8 summarizes the result obtained by the route kernel with local kernel

defined on node productions. The lowest error is obtained by the normalized version

of the kernel setting λ = 0.1 and c = 1.

Finally, table 5.9 compares the route kernel to the ST, SST, the polynomial ver-

sion of SST and the PT kernels. The values listed are the mean of the classification

error on the three folds. Note that the Route kernel with local kernel defined on

node labels has the lowest mean classification error, 16.20%.

Chapter 5. A Novel Kernel for Trees: Convolution Route Kernel 95

kernel d best λ best c cross validation error %

not normalized 1 0.1 1 16.98

not normalized 2 0.1 1 18.15

not normalized 3 0.05 1000 19.76

normalized 1 0.1 1 16.79

normalized 2 0.05 1 17.97

normalized 3 0.05 100 20.09

Table 5.8: Classification error of the route kernel with local kernel defined on node

productions on the LOGML dataset. The columns represent, respectively, the type

of kernel, the exponent d in eq. (5.12), the best λ and c values, the corresponding

cross validation error.

kernel cross validation error %

ST 16.72

SST 16.84

Polynomial SST 16.82

Partial Tree 16.40

Route, k2≡ eq. (5.8) 16.20

Route, k2≡ eq. (5.10) 16.79

Table 5.9: Comparison between the classification error of ST, SST, the polynomial

SST, the Partial Tree kernel and the Route kernel, respectively. Data refer to the

LOGML dataset.

96 Chapter 5. A Novel Kernel for Trees: Convolution Route Kernel

5.3.4 Discussion

Experimental results obtained on the three non-trivial datasets, some of which in-

volving up to 18 different classes, have shown that the feature space induced by the

proposed kernel is rich enough to give state of the art performances with respect to

the most widely used tree kernels. The proposed kernel is thus able to reach quite

good results while keeping a reasonable computational complexity. In addition to

that, the proposed algorithm for computing the kernel can be easily adapted to

parallel computation. In fact, each tread of computation could take responsibility

for computing the contribution to the kernel given by the matchings between routes

that end up on specific nodes (of the two trees) with identical label. The same

approach can not be applied to the other kernels because of the strong dependencies

among nodes.

Chapter 6

Efficient Score Computation by

Compacting the Model

While Support Vector Machines has a high generalization capability, several authors

have pointed out that a drawback of this approach is the time required both in

learning and classification phases [5, 17, 49, 62]. Typically kernel methods spend

most of their time during execution evaluating kernel functions. This stays true also

for the classification phase. Kernel methods express a solution as a combination of a

subset of training examples, the support vectors. Since the computation of the score

depends on the number of support vectors, when this number is a large fraction of

the training set, the total time required may become excessive for some applications.

This is especially true when dealing with large amount of data.

Several approaches have been pursed to tackle this problem.

Nguyen and Ho [49] describe an iterative process to replace two support vectors

with a new one representing both of them. The replacement operation involves

the maximization of a one-variable function in the range [0, 1]. Anguita et al. [5]

replace the set of support vectors with a single one, called archetype. However

the archetype is defined in the feature space and thus it is necessary to solve a

further quadratic optimization problem to find an approximation in input space.

The approximated model, according to the authors “maintain the ability to classify

the data with a moderate increase of the error rate”. Downs et al. [17] proposes

a numerical algorithm for eliminating the linearly dependent support vectors and

98 Chapter 6. Efficient Score Computation by Compacting the Model

update accordingly their correspondent base vectors. Kudo et al. [40] propose to

represent the model with a vector summing the feature space projections of all the

examples in the model. Since this approach is not convenient when the feature space

is very large, the authors describe a way to approximate the model.

Tipping [62] proposed the Relevance Vector Machine, an algorithm based on

Bayesian theory with a functional form similar to SVM which tries to minimize

the number of support vectors produced during learning. However the Relevance

Vector Machine requires O(N3) time and O(N2) memory to train. Relevance Vector

Machines not only bound the user to a particular learning algorithm, but also can

not be used for on-line settings or large datasets.

All previous cited papers reduce the computational burden of the classification

phase by finding an approximation of the model. In most cases the approximation is

found by solving an optimization problem. The computational complexity or type of

learning algorithm prevent their use in on-line settings. In this chapter we describe

a way to speed up the computation of the score with no approximation and without

the need to solve an optimization problem. The approach we describe can be applied

to any convolution kernel and with any kernel based algorithm. The basic idea is

to avoid the re-computation of kernels between the same substructures belonging to

different examples.

6.1 General Considerations

We start by recalling the definition of generalized convolution kernel given in

section 3.1:

k(x, xi) =
∑

(x′,x′i)∈Mx,xi

k(x′, x′i) =
∑
x′∈χ′

x

∑
x′i∈χ

′
xi

[[(x′, x′i) ∈Mx,xi]]k(x′, x′i),

where [[condition]] is defined as:

[[condition]] =

 1 if condition is true

0 otherwise.

Chapter 6. Efficient Score Computation by Compacting the Model 99

The score function, instantiated for the case of convolution kernels with respect to

a model M , can be rewritten as:

S(x) =
∑
xi∈M

αxi
∑
x′∈χ′

x

∑
x′i∈χ

′
xi

[[(x′, x′i) ∈Mx,xi]]k(x′, x′i) =

=
∑
x′∈χ′

x

∑
x′
i
∈χ′
xi

xi∈M

[[(x′, x′i) ∈Mx,xi]]αxi k(x′, x′i) =

=
∑
x′∈χ′

x

∑
x′
i
.(x′,x′

i
)∈Mx,xi

xi∈M

αxi k(x′, x′i) =

=
∑
x′∈χ′

x

f(x′i,M) k(x′, x′i).

(6.1)

where f(x′i,M) =
∑

x′
i
.(x′,x′

i
)∈Mx,xi

xi∈M

αxi . f(x′i,M) sums the α’s related to the same sub-

structure appearing in different structures of the model. It is clear that the knowl-

edge of the f(x′i,M) values would avoid to recompute many times the same kernel

function (for the same substructures in different structures), thus reducing the over-

all time required for computing the score. As it will be shown in the next sections,

the savings could be remarkable especially when dealing with large amount of data.

It is worth noting that our purpose is not to store k values, thus what we are going

to describe is not a cache-like approach. The reason for that is to avoid to have to

recompute some kernel values. In fact, to our knowledge, no finite-size cache (unless

of course it can save all kernel values) can guarantee to have no cache miss.

6.2 Compacting a Forest of Trees

In the following sections it will be shown how to instantiate the results of section 6.1

to the case of tree structured data. Equation (6.1) suggests a general methodology

for reducing the computational resources needed for computing the score function.

In order to compute f(x′i,M) efficiently a suitable data structured for encoding the

100 Chapter 6. Efficient Score Computation by Compacting the Model

substructures of the structures in the model has to defined. In the following we

discuss this problem for learning scenarios involving convolution kernel functions for

which the set χ
′
x is composed by the set of subtrees of x. We start by observing

that a scoring function is defined on the basis of a set of trees (a forest). It is

quite reasonable to assume that different trees in the forest share common subtrees,

otherwise learning would hardly be effective. If this assumption is true, considering

each tree independently from the others would imply that many partial kernel cal-

culations, i.e. the ones corresponding to the shared subtrees, are recomputed from

scratch. We suggest to represent the forest as a unique structured model, namely

an annotated minimal Directed Acyclic Graph (DAG) representing shared subtrees

only once while keeping track of the frequency of each subtree.

Once the minimal DAG has been computed, the evaluation of the scoring func-

tion for a new tree can be performed by a single match between the tree and the

minimal DAG. As we will see, this can lead to a great gain in computation.

6.2.1 From a Forest to a Directed Acyclic Graph

Given a tree forest F , if there exists a set of trees T ⊆ F which share a common

subtree T̂ , then we can think to explicitly represent T̂ only once. Following this idea,

we define a procedure that merges all the trees in a forest F into a single minimal

DAG, i.e., a DAG with a minimal number of vertices.

More formally, a minimal DAG is represented as an annotated DAG, where

each node is annotated with a pair (label, frequency). The label field represents the

label associated with the node, while the frequency field is used to count how many

repetitions of the same subtree rooted in that node are present in the tree forest.

The exact role of the frequency field will become clearer in the following.

The advantage of having a minimal DAG is the considerable reduction in space

complexity to represent a forest with no loss of information. This space reduction will

eventually lead also to a time complexity reduction. In some cases, this reduction

can even be exponential. In Figure 6.1 an example of a forest and its minimal

DAG representation, is given. In the following we also give the pseudocode and

Chapter 6. Efficient Score Computation by Compacting the Model 101

implementation details, of a procedure able to efficiently compute shared subtrees

and to exploit this information to represent a forest as an annotated DAG.

Forest Minimal DAG

g

f

b

a

f

b

a

g

f

b

f

a g

b

b,4

f,1 f,1

g,2a,3

g,1 f,2

Figure 6.1: Example of how to represent a forest as a minimal DAG with no loss

of information. Nodes in the minimal DAG are annotated with a label and the

frequency in the forest of the subtree rooted at that node.

Minimal DAG creation

Figure 6.2 describes the algorithm for creating a minimal DAG from forest of trees.

The procedure InvTopologOrder(Tj) used in the algorithm returns a total order of

vertices of Tj which is compatible with the (inverted) partial order defined by the arcs

of Tj. Thus, the first vertices of the list will be vertices with zero outdegree, followed

by vertices which have only children with zero outdegree, and so on. Using this

order guarantees the (unique) existence of vertices ci ∈ µD s.t. dag rooted at(ci) ≡
dag rooted at(chi[v]). In fact, for each i, the vertex chi[v] is processed before vertex

v and is either inserted in µD or recognized as a duplicated of a vertex already

present in µD.

It should be noted that the function dag rooted at(·) can be implemented quite

efficiently by an indexing mechanism, where a unique code is defined for a void child,

and a unique code for the root of each different DAG is generated by recursively

considering the label of the root and the (unique) codes computed for its children.

102 Chapter 6. Efficient Score Computation by Compacting the Model

MinimalDAG

Input: A tree forest F = {T1, . . . , Tk}
/* l ≡ label, f ≡ frequency, dag ≡ dag rooted at */
Initialize: µD ← void DAG;

for j ← 1 to N do

vertex list← InvTopologOrder(Tj);

while vertex list 6= ∅ do

v = pop(vertex list);

if ∃u ∈ µD s.t. dag(u) ≡ dag(v)

then f(u)← f(u) + f(v)

else

add to µD a node w where

l(w) = l(v) and f(w) = f(v)

forall children chi[v] of v

add arc (w, ci) to µD where

ci ∈ Nodes(µD) and

dag(ci) ≡ dag(chi[v])

return µD

Figure 6.2: The algorithm to transform a tree-forest into a minimal DAG.

In our implementation we have realized an indexing mechanism by using Adelson-

Velsky Landis (AVL) trees [1]. Let t be a vertex of a tree T and l the length of the

longest path in T starting from t and reaching a vertex of T with 0 out-degree. Then

an AVL tree for each possible value of l is defined, i.e. AV L(l). When a vertex s ∈ T
with 0 out-degree is processed, there is an attempt to insert it in AV L(0) using as

key the label associated with s. If the key is already present, it means that a vertex

s′ with 0 out-degree and same label has already been inserted in AV L(0). In that

case, s is marked, the frequency for s′ is incremented by 1, and the pointer to s′ is

associated with it, so that, when the parents of s are processed, their pointers to

Chapter 6. Efficient Score Computation by Compacting the Model 103

s are substituted by the pointer to s′. When all the vertices with 0 out-degree are

processed, vertices with l = 1 are considered and the same process is repeated with

the following two differences: i) the children of q are checked and for each marked

child, its pointer is substituted by the associated pointer; ii) the key used for the

insertion in AV L(1) is given by the concatenation of the label associated with q with

the ordered sequence of (revised) pointers to its children. If the insertion of q fails,

i.e., an “equivalent” vertex is already present, the same operations described for s

are executed. The treatment of vertices with l > 1 is the same described for the

case l = 1. Both insertion and lookup into an AVL tree take O(log(n)), where n is

the number of items contained into the AVL tree.

Notice that using a different AVL tree for each value of l allows us to reduce the

number of vertices inserted in the AVL, thus reducing the searching time for the

key.

Adding a tree to a minimal DAG

The algorithm used to insert a new tree into the model is depicted in Figure 6.3.

Note that it is very similar to the generation of a minimum DAG with the difference

being that in this case the frequency associated with the model is updated with the

frequency of the subtree to be added weighted by the quantity α.

6.2.2 Efficient Score Computation

We have shown how to transform a tree forest into an annotated DAG with no loss

of information. Now, we show how (a variant of) the minimal DAG can be exploited

for the efficient computation of a general scoring function involving tree structured

data.

Going back to the definition of the tree kernels given in Section 3.1.2, it is

useful to notice that the core of the computation of these kernels stands on the

computation of the C(ti, tj) and that these values could be computed just once for

shared substructures and re-used when needed. Thus, the basic idea of our approach

104 Chapter 6. Efficient Score Computation by Compacting the Model

TreeIns

Input: An ADAG µD and a tree (T, α) to be inserted

/* l ≡ label, f ≡ frequency, dag ≡ dag rooted at */

vertex list← InvTopologOrder(T);

while vertex list 6= ∅ do

v = pop(vertex list);

if ∃u ∈ µD s.t. dag(u) ≡ dag(v)

then f(u)← f(u) + α · f(v)

else

add to µD a node w where

l(w) = l(v) and f(w) = α · f(v)

forall children chi[v] of v

add arc (w, ci) to µD where

ci ∈ Nodes(µD) and

dag(ci) ≡ dag(chi[v])

return µD

Figure 6.3: The algorithm to insert a weighted ADAG in a larger ADAG.

is to build a weighted annotated DAG (the model), very similar to the minimal DAG,

for the training forest. Clearly, the model should also contain information about the

coefficients of the linear combination of the scoring function.

Such a model can be built incrementally and the frequencies associated to the

nodes are computed by simply cumulating the frequencies already associated to the

nodes of the current minimal DAG with the frequencies of the (sub)trees belonging

to the tree which is currently added to the model. Note that, this model is computed

only once and then kept in memory in a way that it will be possible to perform the

computation of the scoring function for new trees efficiently. The algorithm used to

Chapter 6. Efficient Score Computation by Compacting the Model 105

insert a new tree into the model is presented in Figure 6.3.

Now, let M(F,~α) be the model obtained as described above after inserting all the

trees, with the associated α values, belonging to the forest F , and T any tree. Notice

that the insertion order of the trees is irrelevant, since any insertion order leads to

the same model. We define the following quantity representing the degree of match

between the tree and the model:

SµDAG(M(F,~α), T) =
∑

ti∈M(F,~α)

∑
tk∈T

fiC(ti, tk), (6.2)

where fi is the weighted frequency associated to the root node of the subtree ti in

M(F,~α).

Now, we can show that computing this quantity is equivalent to the computation

of the scoring function

Theorem 6.1 Let M0 = ∅ be the void initial minimal DAG. Consider a forest F

and the models obtained by sequentially inserting each tree Ti ∈ F with the associated

αi, i.e. Mi = TreeIns(Mi−1, (Ti, αi)), where i = 1, . . . , |F | and M|F | ≡ M(F,~α). Let

SµDAG(M(F,~α), T) be defined as in (6.2) and fi the weighted frequencies in M(F,~α),

then the following holds:

S(T) = SµDAG(M(F,~α), T).

Proof:Let us consider the set of all the possible subtrees Sk indexed by k = 1, ...,mS.

First of all, we can check easily that, if the algorithm in Figure 6.3 is used to insert

n trees into the model, starting from the void model, then we have:

fk =
n∑
i=1

αiβk(Ti) (6.3)

where βk(T) is the number of times a given subtree Sk appears into a tree T .

Now, let root(S) be the root node of a tree S, we have

K(Ti, T) =
∑
ti∈Ti

∑
t∈T

C(ti, t)

=
∑
k,j

βk(Ti)βj(T)C(root(Sk), root(Sj))

106 Chapter 6. Efficient Score Computation by Compacting the Model

where k, j vary over the space of all possible subtrees. The equality above is true

because βi(T) = 0 whenever the subtree Si is not present in T . Hence,

S(T) =
n∑
i=1

αiK(Ti, T)

=
n∑
i=1

αi
∑
k,j

βk(Ti)βj(T)C(root(Sk), root(Sj))

=
∑
k,j

(
n∑
i=1

αiβk(Ti))βj(T)C(root(Sk), root(Sj))

=
∑
k,j

fkf̄jC(root(Sk), root(Sj))

This last equality is true because of eq. (6.3) and because f̄j = βj(T) is true by

definition in a minimal DAG.

Now, since fk = 0 when the subtree Sk is not a subgraph of Mn and f̄j = 0 when

the subtree Sj is not a subgraph of µDAG(T), then we obtain

S(T) =
∑
tk∈Mn

∑
tj∈µDAG(T)

fkf̄jC(tk, tj)

= SµDAG(Mn, µDAG(T)).

Thus the statement is proved when n = |F |. 2

The result of the above theorem is quite interesting, since it states that any score

function involving the considered tree kernels and representable as in eq. (2.14), thus

any solution of a kernel method problem involving the considered tree kernels, can

be efficiently represented (reduction in space complexity) and computed (reduction

in time complexity) by resorting to annotated minimal DAGs. Thus, after learning,

it is possible to compact the obtained model in order to obtain a more efficient

computation of the scoring function. Thus, for on-line learning, it seems there is the

possibility to improve the efficiency both in space and time. This is the subject of

the next section, where we show how learning with the kernel perceptron, and its

voted variant, can be made efficient.

Chapter 6. Efficient Score Computation by Compacting the Model 107

DAG-Perceptron Algorithm

Input: stream of pairs (Ti, yi), where yi ∈ {−1,+1}
Initialize: Model M ← void DAG;

Repeat forever

read (Ti, yi) from the stream;

Compute Perceptron score:

S(Ti)← SµDAG(M,Ti);

if yiS(Ti) ≤ 0 then

M ← TreeIns(M, (Ti, yi))

Figure 6.4: The DAG-Perceptron algorithm.

6.2.3 The DAG Kernel Perceptron

In this section we show how the result of the theorem can be exploited to make

efficient on-line learning for tree-structured data using the tree kernels described

in Section 3.1.2. Specifically, as an example, we define an efficient version of the

Perceptron algorithm. We call this version the DAG Kernel Perceptron, since it is

based on the minimal DAG described above.

DAG-Based Implementation of the Perceptron

We now describe our DAG-based implementation of the Perceptron algorithm (see

section 2.3.2 for a description). The algorithm is presented in Figure 6.4. The model

is represented as a annotated minimal DAG. Whenever an input tree is misclassified

the model is updated by adding it to the model. In doing that, the weight yi is

added to each node in the annotated DAG corresponding to the input tree nodes.

The soundness of the algorithm is trivially guaranteed by the theorem given in Sec-

tion 6.2.2.

108 Chapter 6. Efficient Score Computation by Compacting the Model

Another complexity issue, which is important when dealing with large amounts of

data, is considered in the following, and new strategies are given to further improve

the efficiency and effectiveness of our approach.

The computation of the tree kernel is based on the recursive computation of the

C(t1, t2) values. When considering a model represented as a tree forest, storing all

the C(t1, t2) values is not a problem since the computation of the total kernel is

done by summing the values of the kernels between each tree in the forest and the

input tree. Since the same storage space can be reused for different trees in the

forest, the storage requirement is dominated by the largest tree in the forest. On

the contrary, the DAG requires to keep in memory all of its nodes, which store the

C(t1, t2) values. Since the number of DAG vertices generally grows with training1, a

significant storage requirement is expected, especially when considering data mining

applications, where the number of input items could be huge.

For this reason, it is important to limit storage requirements. In this respect, two

observations can be done: i) when considering a vertex v belonging to the input tree,

it is readily evident that when all the C(u, v) entries, with u belonging to the DAG,

are computed, the entries referring to children of v can be removed, since no other

tree vertex will refer to them; ii) an entry C(u, v) is computed (and thus stored)

only if production(u)=production(v), thus the “name” of a vertex u belonging to

the DAG, can be defined as the composition of production(u) plus a progressive

numerical id assigned to the vertices of the DAG bearing the same production(u).

Equivalently this means that, given a vertex v in the input tree, the elements of

the row C(·, v) can be enumerated progressively, disregarding the 0 valued elements,

which correspond to vertices in the DAG that do not bear the same production as

v.

1In fact, each error leads to the insertion of a new tree in the DAG model. In the most favourable

case, the inserted tree is already present in the DAG, and only the frequencies associated to nodes

of the DAG which correspond to nodes of the inserted tree need to be updated. In the worst case,

neither the whole tree, nor any subtree belonging to it are present in the DAG and all the nodes

of the inserted tree need to be added to the DAG.

Chapter 6. Efficient Score Computation by Compacting the Model 109

On the basis of these observations, the following joint strategies can be adopted

to reduce the storage requirements: i) the input tree is read using a depth-first

visit and as soon as a vertex completes the computation of its C(u, v) entries, the

storage space for the C(u, v) entries referring to its children is deallocated; ii) for

each distinct production, a list of matching vertices in the DAG is maintained with

the aim of both speeding up the search for a production match, and also to assign

a progressive numerical id to the matching vertices as well as the total number of

matching vertices to the production; in this way, when a new vertex in the input

tree is visited, it is possible to know how much storage space must be dynamically

allocated for that vertex. It should be noticed that each list associated with a

production can be maintained very efficiently by just: (1) using a counter c recording

the current total number of vertices belonging to the list; (2) assigning as id to a

new vertex the current value of c; (3) inserting the new vertex at the beginning

of each list and incrementing c by 1. All the above operations can be done in

constant time. The application of the above strategies reduces the storage need

from O(NdagNtree), where Ndag is the number of nodes in the DAG, and Ntree is the

number of nodes in the input tree, to O(Pmaxhtreebtree), where Pmax is the length of

the longest list of matching vertices associated with productions, htree is the depth

of the input tree, and btree is the branching factor of the input tree. Of course, when

considering more than 1 production, Ndag > Pmax and if there are q productions

with the same probability to be associated with a vertex, Pmax =
Ndag
q

. Moreover,

usually Ntree ≥ htreebtree.

6.2.4 Voted Kernel Perceptron

In this section we describe how to use a DAG for computing the score function for

the voted perceptron. The algorithm is described in Section 2.3.2. In our setting,

trees are presented sequentially to the algorithm, and after e mistakes occurred on

the input trees T1, . . . , Te, the score function is

Se(T) =
e∑
j=1

αjK(Tj, T) (6.4)

110 Chapter 6. Efficient Score Computation by Compacting the Model

which, exploiting Theorem 6.1, can be rewritten as

Se(T) =
∑
ti∈Me

∑
tk∈T

f ei C(ti, tk) (6.5)

where Me is the model obtained by the kernel perceptron after e mistakes, and f ei

are the corresponding weighted frequencies. Let E be the total number of mistakes

after that all the training examples have been visited. Then the score for the average

(unnormalized) voted perceptron is defined as

Svoted(T) =
E∑
e=1

ceSe(T)

where ce is the the number of iterations between mistake e and mistake e + 1.

Exploiting eq. (6.5), we can rewrite the above equation as

Svoted(T) =
E∑
e=1

ce
∑
ti∈Me

∑
tk∈T

f ei C(ti, tk)

=
∑
ti∈ME

∑
tk∈T

(
E∑
e=1

cef
e
i

)
C(ti, tk) (6.6)

where we impose f ei = 0 if ti 6∈ Me. Thus, it is clear that the final voted model

is obtained by defining the new weighted frequencies f̃i =
∑E

e=1 cef
e
i . If we define

f̃ ei =
∑e

j=1 cjf
j
i , then it holds that f̃ e+1

i = f̃ ei +ce+1f
e+1
i , which can be used as an on-

line rule to compute incrementally f̃i = f̃Ei . This implies a doubling of the storage

requirement since for each i we need both a variable to store the current value of f ei

and a variable to store the current value of f̃ e−1
i , however, the time complexity does

not increase significantly since the update of the f̃s occurs only when a mistake is

made, and the larger the model is, i.e. more variables need to be updated, the less

likely a mistake is generated.

6.2.5 Kernel Combinations

Another efficiency issue is related to the possibility to exploit additional numerical

features ξ ≡ [ξ1, . . . , ξd] associated with each tree. In that case, the score can be

Chapter 6. Efficient Score Computation by Compacting the Model 111

obtained as a combination of the score obtained by the tree kernel with the score

obtained by these numerical features. For example, if the combination is the sum,

the score can be computed as

S(Ti) = SµDAG(M,Ti) + Sφ(Mφ, ξi),

where Mφ is the set of feature vectors plus labels corresponding to errors. When

using a nonlinear kernel for the computation of the feature score, a proper treatment

is due. In fact, let consider the generic computation of the score for the features

Sφ(ξi) =
∑

(ξj ,yj)∈Mφ

yjK(ξi, ξj)

If d is large, assuming that the computation of the kernel is O(d), the computational

complexity for the score is O(d|Mφ|).
If the ξ vectors are sparse, let say that no more that k � d components are

nonzero, then a more efficient computation can be performed. In fact, nonzero

features of ξ vectors can be organized for fast access by feature id. Assuming that

the probability for a feature to be nonzero is l = k
d
, this means that each feature will

be associated with an inverted list with expected length equal to l|M]phi|. Thus,

given an input feature, for each j a match in its inverted list should be found, which

can be done in no less than O(log(l|Mφ|)) by exploiting the sorting of the items by

vector index. This leads to a total complexity of O(|Mφ|k log(l|Mφ|)). However,

we can do better than this. In fact, we know that all the items contained into

the inverted lists of matching features are used for computing the score. The only

problem is to recognize for each j which are the features that match the input.

This can be done using the following procedure. We assume that the inverted lists

are sorted by decreasing vector index. First of all the inverted lists corresponding

to matching input features are recovered and their heads are inserted into a max

heap. Then the maximum value is extracted by the heap and its successor in the

corresponding inverted list is inserted into the heap. This process is repeated giving

origin to a stream of indexes extracted by the heap where equal indexes are clustered

together, allowing the computation of the kernel for that index. This procedure

112 Chapter 6. Efficient Score Computation by Compacting the Model

has a complexity that is dominated by the insertion into the heap of all the items

into the matching inverted lists. Since the heap will never contain more than k

items, insertion costs log(k), while the total number of items is kl|Mφ|. Thus the

total complexity is O(kl|Mφ| log(k)), which is better than the previous one only if

l log(k) < log(l|Mφ|), i.e., kl < l|Mφ|. Noticing that l ∈ [0, 1], it is not difficult to

realize that when k � |Mφ| a significant savings in computation can be obtained.

For example, assuming binary data structures are used, if |Mφ| = 214, l = 10−4, and

k = 25, we have l log2(k) = 0.0005 versus log2(l|Mφ|) = 0.71228762, with a speedup

of more than 1424.

When considering the voted perceptron it is trivial to note that when a feature

of a tree is inserted into the model, it remains till the end of training, i.e. when

all examples have been visited. Consequently, the weight c to be associated to that

feature is equal to N − j, where N is the total number of visited examples, while j

is the index of the tree containing that feature and that was erroneously classified2.

Thus, no additional information need to be stored in the model, while the weight cj

in the voted perceptron associated to each feature belonging to tree j, will exactly

be cj = N − j.

6.2.6 Experiments

The experiments presented in this section aim to show that our approach based on

DAGs provides two kinds of benefits to the perceptron algorithms: a much faster

computation time and a much lesser memory requirement.

For such purpose, we measured the computation time and the memory allocation

for both the traditional Perceptron algorithm and the one based on DAGs. The

target learning tasks were those involved in Semantic Role Labelling, i.e. the task to

automatically extract a predicate along with its argument from a natural language

sentence. This is usually divided in two classification steps: argument boundary

detection and argument classification. In the former step, all the nodes of the

2Here we assume that examples are presented in increasing index order.

Chapter 6. Efficient Score Computation by Compacting the Model 113

sentence parse tree are classified in correct or incorrect boundaries. The correct

label means that the leaves (i.e. words) of the tree rooted in the target node are

all and only those constituting an argument. In the latter step, given a correct

boundary node (i.e. an argument node), its type, i.e. Arg0, Arg1,..,Arg5, ArgA and

ArgM, is determined.

As a referring dataset, we used PropBank along with PennTree bank 2 (see

section A.3 for a description).

In our experiments, we concentrated on boundary detection as the number of

classifying instances is much larger. Indeed, they include all parse-tree nodes. For

these experiments, we used the first 7 sections of PennTree bank for training for a

total of 71,523 positive and 921,296 negative examples.

As the DAG performance is affected by node distribution within trees along with

their maximum and average out-degree, we have studied such characteristics in our

data sets. Table A.6 reports statistics about the data derived from the boundary

detection dataset. We note that there are a large number of relatively small trees

which however can have a large out-degree. Globally, the amount of nodes that

have to be processed is very large, thus, the dataset is suitable to demonstrate the

computational efficiency of our approach.

We started the experiments with the aim of comparing the standard perceptron

and the dag voted perceptron. Note that computational complexity of the voted

perceptron is higher than the standard perceptron, so the comparison is slightly

unfair. The reason for using the voted perceptron is that we plan to do more

experimentations, in a future work, aimed at increasing the accuracy on the task.

The task is very complex from an efficiency point of view since the number of

instances of the boundary dataset was about one million.

This dataset is quite demanding for computational expensive approaches like

Support Vector Machines: only using a polynomial kernel on standard features (in

general much faster than tree kernels), 10 days were required to converge.

Figure 6.5, 6.6 and 6.7 show the execution times for the standard perceptron and

the voted dag perceptron when using the polynomial kernel, the subset tree kernel

114 Chapter 6. Efficient Score Computation by Compacting the Model

and a linear combination of both, respectively. In the case of the tree kernel and

combination of the two kernels, executions with various parameters were run: the

λ of the tree kernel has been given the values λ ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,

1.0}, the γ weighting the linear combination between tree kernel and polynomial

kernel has been given the values γ ∈ {0.2, 0.3, 0.4, 0.5, 0.6}. However only the values

related to the faster and slower parameter settings are plotted. When using the

polynomial kernel, Figure 6.5, the total time spent by the voted dag perceptron

and the standard perceptron for classifying the training set are 7503.87 and 9332.64

seconds, respectively. Note that the voted perceptron is 1828, 77 seconds faster than

the standard perceptron. The use of the tree kernel, see Figure 6.6, allows the voted

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 200000 400000 600000 800000 1e+06

T
im

e
in

 s
ec

.

Number of tree examples

Execution Time for Poly3

Standard Perceptron
Voted Dag Perceptron

Figure 6.5: Execution time in seconds for the Standard Perceptron and the Voted

DAG Perceptron using a polynomial kernel with degree 3 (Poly3) over the training

set with 992,819 examples.

dag perceptron to achieve the highest performance: 8681.10 seconds in the worst

case (λ = 1.0) against 43995.02 seconds in the most favourable case for the standard

perceptron (λ = 0.3), a gap of 9.8 hours, more than 5 times faster. Learning with

Chapter 6. Efficient Score Computation by Compacting the Model 115

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 200000 400000 600000 800000 1e+06

T
im

e
in

 s
ec

.

Number of tree examples

Execution Time for Tk

Voted Dag Perceptron λ=0.4
Voted Dag Perceptron λ=1.0

Standard Perceptron λ=0.3
Standard Perceptron λ=1.0

Figure 6.6: Execution time in seconds for the Standard Perceptron and the Voted

DAG Perceptron using the SST tree kernel (Tk) with different values for the λ

parameter, i.e. λ ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, over the training set with

992,819 examples. For each method, only the fastest and the slower executions are

reported.

the combination of kernels (see Figure 6.7), requires in the worst case (λ = 1.0 and

γ = 0.6) 11798.03 seconds for the voted dag perceptron and 20348.36 seconds for

the standard perceptron in the most favourable case (λ = 0.4 and γ = 0.3). Note

that the voted perceptron is 8550.33 seconds faster (about 2.4 hours). While the

time saved in the case of the polynomial kernel alone is not remarkable, it becomes

really significant when a tree kernel is involved.

Figure 6.8 and 6.9 show the memory usage of standard perceptron and voted dag

perceptron algorithms. When the tree kernel is employed, Figure 6.8, the model

created by the voted dag perceptron comprises from 202682 (λ = 0.4) to 232419

(λ = 1.0) nodes while the model created by the standard perceptron comprises from

1091652 (λ = 0.4) to 1475692 (λ = 1.0) nodes. Note that the amount of memory

116 Chapter 6. Efficient Score Computation by Compacting the Model

 0

 5000

 10000

 15000

 20000

 25000

 0 200000 400000 600000 800000 1e+06

T
im

e
in

 s
ec

.

Number of tree examples

Execution Time for Poly3+Tk

Standard Perceptron λ=0.4, γ=0.3
Standard Perceptron λ=1.0, γ=0.6

Voted Dag Perceptron λ=0.3, γ=0.5
Voted Dag Perceptron λ=1.0, γ=0.6

Figure 6.7: Execution time in seconds for the Standard Perceptron and the Voted

DAG Perceptron using a linear combination of a polynomial kernel with degree 3

(Poly3) with the SST tree kernel (Tk), i.e. (1−γ)∗Poly3+γ ∗Tk, over the training

set with 992,819 examples. Different values for λ and γ have been considered, i.e.

λ ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} and γ ∈ {0.2, 0.3, 0.4, 0.5, 0.6}. For each

method, only the fastest and the slower executions are reported.

used by the standard perceptron can be 7 times higher than the one employed by

the voted dag perceptron. The model created by the voted dag perceptron, when

a combination of kernels is employed (Figure 6.9), comprises from 97856 to 103544

nodes, while the model created by the standard perceptron comprises from 328932

to 458814 nodes. he amount of memory used by the standard perceptron can be 4.6

times higher than the one employed by the voted dag perceptron.

A further experimentation has been performed in order to show that the results

obtained are not only related to the particular dataset or domain. Thus, for this

second round of experiments we chose to get our data from the INEX 2005 dataset

(see section A.1 for a description). The training set comprises 4820 examples and is

Chapter 6. Efficient Score Computation by Compacting the Model 117

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 0 200000 400000 600000 800000 1e+06

N
um

be
r

of
 n

od
es

 in
 m

em
or

y

Number of tree examples

Memory Usage for Tk

Voted Dag Perceptron λ=0.4
Voted Dag Perceptron λ=1.0

Standard Perceptron λ=0.4
Standard Perceptron λ=1.0

Figure 6.8: Evolution of the number of tree nodes stored in memory and belonging

to the model developed by the Standard Perceptron and the Voted DAG Perceptron

during training on the training set with 992,819 examples. Both methods use the

SST tree kernel (Tk) with different values for λ, i.e. λ ∈ {0.3, 0.4, 0.5, 0.6, 0.7,

0.8, 0.9, 1.0}. For each method, only the executions with the largest and the lower

number of stored nodes are reported.

relatively small with respect to the one used previously. The training times are very

fast, less than 1 second, thus risking that delays due external factors, such as disk

access, may significantly modify the final values obtained. We thus concatenated

the training and test set and obtained one file with 9631 examples. The INEX

2005 task is multiclass, we transformed it into a two-class problem by considering

as positive the examples of class 3, one of the most numerous, and as negative the

examples of any other class. We compared the standard perceptron and the voted

dag perceptron with respect to training times and memory usage. Since the dataset

is composed of only structured data, only the tree kernel was tested. The lambda

values used were λ ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. Figure 6.10 compares the

118 Chapter 6. Efficient Score Computation by Compacting the Model

execution time of the standard perceptron and the voted dag perceptron. For each

algorithm only the faster and slower parameter settings are plotted. Even for this

dataset the voted dag perceptron outperforms the standard perceptron: the latter

takes from 7.05 to 7.60 seconds to converge, while the former requires only from 1.22

to 1.27 seconds. Finally Figure 6.11 compares the amount of memory used by the two

algorithms. For the Standard Perceptron only the execution with lower number of

nodes is reported. For the Voted Dag Perceptron only the execution with the largest

number of nodes is reported. This is due to the fact that the difference between the

curves related to the largest and lower number of nodes of the same algorithms are

so small compared to the difference between curves related to different algorithms

that the curves related to the same algorithm are indiscernible. The lower number

of nodes for the standard perceptron is 50800, while the largest number of nodes

composing the model for the voted dag perceptron is 1611. The number of nodes

kept in memory by the standard perceptron is 31.5 times higher than the number

of nodes kept in memory by the voted dag perceptron.

Chapter 6. Efficient Score Computation by Compacting the Model 119

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 0 200000 400000 600000 800000 1e+06

N
um

be
r

of
 n

od
es

 in
 m

em
or

y

Number of tree examples

Memory Usage for Poly3+Tk

Voted Dag Perceptron λ=0.4, γ=0.6
Voted Dag Perceptron λ=1.0, γ=0.6

Standard Perceptron λ=0.4, γ=0.4
Standard Perceptron λ=1.0, γ=0.6

Figure 6.9: Evolution of the number of tree nodes stored in memory and belonging

to the model developed by the Standard Perceptron and the Voted DAG Perceptron

during training on the training set with 992,819 examples. Both methods use a

linear combination of a polynomial kernel with degree 3 (Poly3) with the SST tree

kernel (Tk), i.e. (1 − γ) ∗ Poly3 + γ ∗ Tk. Different values for λ and γ have been

considered, i.e. λ ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} and γ ∈ {0.2, 0.3, 0.4, 0.5,

0.6}. For each method, only the executions with the largest and the lower number

of stored nodes are reported.

120 Chapter 6. Efficient Score Computation by Compacting the Model

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
im

e
in

 s
ec

.

Number of tree examples

Execution Time for Tk

Voted Dag Perceptron λ=0.7
Voted Dag Perceptron λ=0.3

Standard Perceptron λ=0.7
Standard Perceptron λ=0.3

Figure 6.10: Execution time in seconds for the Standard Perceptron and the Voted

DAG Perceptron using the SST tree kernel with different values for the λ parameter,

i.e. λ ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, over the union of the INEX 2005

training and test sets.

Chapter 6. Efficient Score Computation by Compacting the Model 121

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
um

be
r

of
 n

od
es

 in
 m

em
or

y

Number of tree examples

Memory Usage for Tk

Voted Dag Perceptron λ=0.7
Standard Perceptron λ=0.9

Figure 6.11: Evolution of the number of tree nodes stored in memory and be-

longing to the model developed by the Standard Perceptron and the Voted DAG

Perceptron during training on the union of the INEX 2005 training and test

sets. Both methods use the SST tree kernel (Tk) with different values for λ, i.e.

λ ∈ {0.3, 0.4, 0.5, 0.6, 0.7}. For the Standard Perceptron only the execution with

lower number of nodes is reported. For the Voted Dag Perceptron only the execu-

tion with the largest number of nodes is reported.

122 Chapter 6. Efficient Score Computation by Compacting the Model

Chapter 7

Conclusions

The aim of this thesis was to investigate ways to overcome some of the current

drawbacks of kernel methods. Particularly we faced the following issues: designing

expressive and non sparse kernel functions and alleviating the computational burden

related to the computation of the score in both learning and classification phase.

In the following we recall briefly the contributions for solving these problems and

propose future developments.

In practical applications involving structured data, using a kernel method may

not give an optimal performance because of the sparsity of the adopted kernel. This

is particularly true for structured data involving discrete variables. An example of

this event for subset and subtree kernels applied to XML documents represented as

trees has been discussed. We have suggested that such sparsity can be reduced by

learning a similarity function on the trees which can then be exploited to define non

sparse kernels. Specifically, we have suggested to learn such a function by exploiting

SOM-SD, which is an unsupervised dimensionality reduction method for structured

data with the property that similar items in the input space tend to be represented

similarly by the map. Then, we have defined a family of kernels for trees on top of

the SOM-SD map, and according to the topological information coded into the map.

The aim of this approach was to learn, in an unsupervised fashion, a kernel which is

neither sparse nor uninformative. Experimental results on a relatively large corpus

of XML documents, for which both subset and subtree kernels exhibit the sparsity

124 Chapter 7. Conclusions

problem, have shown that the new kernels are able to improve with respect to the

performance of SOM-SD and the standard tree kernels. This improvement is quite

independent from the map used to define the kernel, thus showing that the proposed

approach is quite robust. Experimental results obtained on a similar dataset, for

which, however, subset and subtree kernels do not exhibit the sparsity problem,

show that there is not a significant improvement in performances. Thus it seems

reasonable to state that the proposed approach is particularly suited in situations

where standard tree kernels are sparse. A future development for this approach

could be related to building more sophisticated kernels on the map activations. A

first step could be to define a variant of the AM-kernel which weights the encoding

of a substructure according to its similarity to the neuron it is mapped to. A second

line for future research for the AM-kernel could be to employ different dimension-

ality reduction algorithms. The heuristic nature of the SOM-SD can not formally

guarantee to preserve the topology of the items in the input space. The Gener-

ative probabilistic modelling proposed in [20] uses a more theoretically grounded

approach to the problem of projecting data onto a lower dimensional space, and

thus may be employed to optimise the dimensionality reduction step in such a way

that the accuracy of the AM-kernel is improved.

A central issue when designing kernel functions is in defining expressive non

sparse kernels. Considering the class of convolution tree kernels based on decom-

posing the input tree into its substructures, it is known that it is impossible to

define more expressive kernels computable in polynomial time than those already

presented in literature. We have observed, however, that all those kernels focus on

the mere presence of the substructures and partially discard information about the

position of the substructures in the original structure. We have therefore proposed

a novel family of non sparse kernels which especially focus on this aspect. The re-

sults obtained show that indeed these kernels are very effective and motivate us to

look for novel applications in real case scenarios such as problems in chemistry or

bioinformatics. We furthermore plan to compare our kernel with more kernel for

trees and investigate the relationship with them.

Chapter 7. Conclusions 125

Kernel methods are effective approaches to the modelling of structured objects

in learning algorithms. A drawback of such approaches is related to their typically

high computational complexity for the computation of the score. To alleviate this

problem when kernels such as the subtree and subset tree kernels are used, Direct

Acyclic Graphs can be used to compactly represent shared substructures and fea-

ture vectors in different trees, thus reducing the computational burden and storage

requirements. Results show that substantial computational savings can be obtained

for the perceptron algorithm using tree and polynomial kernels over the PropBank

dataset. The experiments on this very large dataset show that our model makes the

use of kernels for trees practical for applications involving a very large amount of

data. The basic idea of using Direct Acyclic Graphs for encoding a forest of trees can

be exploited in all the learning algorithms where the decision function is computed

as a linear combination of kernel evaluations. Moreover, we have shown that the

same idea behind our contribution can be exploited for any convolution kernel, pro-

vided that a suitable and efficient way of encoding a set of substructure is defined.

As future work we plan to enlarge the number of convolution kernels for which the

computation of the score can be made efficient by compacting the model. A further

line of research that can be pursued is to develop principled strategies for prun-

ing the model in such a way that the effects on the subsequent score computations

are minimized. By representing the model as a single structure, one can analyse

and eliminate those substructures, belonging to different examples, that vanish each

other contribution to the score computation. For some settings it could be possible

to give bounds on the error introduced by the pruning operation.

126 Chapter 7. Conclusions

Appendix A

Experimental Settings

The following appendices are devoted to the description and analysis of the datasets

used in the experiments presented in chapters 4, 5 and 6.

A.1 INEX 2005

The INEX 2005 dataset comprises a relatively large set of XML formatted docu-

ments which were made available as part of the 2005 INEX Competition [15] (data

can be downloaded from http://xmlmining.lip6.fr). The dataset is formed by XML

documents describing movies from the IMDB site1. Specifically, we make use of the

corpus (m-db-s-0), which consists of 9, 640 documents containing XML tags only,

i.e. no further textual information available. All documents have one out of 11 pos-

sible target values. 3377 documents comprise the training set, while 1447 documents

constitute the validation set. All remaining documents form the test set.

The dataset that has been used for many experiments in the thesis is a modified

version of the corpus (m-db-s-0), which is described in [63]. As it will be discussed

the corpus (m-db-s-0) consists of too large structures (with consequent increase in

computational complexity) to allow an in-depth exploration of the properties of the

algorithms proposed. The dataset produced by the preprocessing proposed in [63],

which we are going to describe in the following, has been used to win the INEX 2005

1http://www.imdb.com

128 Appendix A. Experimental Settings

Competition. Thus, besides reducing the size of the structures, it gives us a strong

benchmark to which compare our results.

A tree structure is extracted for each of the documents in the dataset by follow-

ing the general XML structure within the documents. This resulted in a dataset

consisting of 684191 vertices (subtrees) with maximum out-degree 6418. Managing

such large structures would have posed computational complexity issues especially

in the learning phase, thus practically limiting the number of experiments that could

have been performed. For example in chapter 4 the dataset is used for training a

SOM-SD map: not counting node label size, map prototypes of a two-dimensional

map should be of size 6418 · 2 = 12836. Managing such large vectors would have

dramatically delayed the training process. Thus, while not strictly necessary, a pre-

processing step was performed on the dataset in order to reduce its dimensionality.

First, repeated sequences of tags within the same level of a structure were collapsed.

For example, the structure:

<BB>

<a>

<a>

<a>

</BB>

is consolidated to <BB>

<a>

A further dimension reduction has been achieved by collapsing simple sub-structures

which have the property of a data sequence into a single vertex. For example, the

sequential structure <A><c></c> can be collapsed to

<A><b&c></b&c>, and even further to <A&b&c>. The pre-processing step re-

duced the maximum out-degree to 32, and the total number of vertices to 124, 359.

A preprocessing step was performed in order to reduce also the size of the node

labels. The following steps are particularly suited for the SOM algorithms, but do

not affect the behaviour of the kernel methods. A unique ID is associated with

Appendix A. Experimental Settings 129

each of the possible 197 XML tags. In order to account for nodes which represent

collapsed sequences, we attached a three dimensional data label to each node (the

longest collapsed sequence is of length 3). The first element of the data label gives

the ID of the XML tag it represents, the second element of the data label is the

ID number of the first tag of a collapsed sequence of nodes, and consequently, the

third element is the ID of the tag of the leaf node of a collapsed sequence. For

nodes which do not represent a collapsed structure, the second and third element in

the data label is set to zero. Note that by using a progressive number for encoding

the labels we are imposing a metric on the labels: while all different labels should

be equally dissimilar, it happens that different labels having close IDs turn out to

be more similar than labels having far IDs. Note that avoiding to impose a metric

would have required to define perpendicular vectors for each pair of different labels.

This can be achieved by 197 sized vectors which, again, would have delayed the

training process of the SOM-SD.

Summing up, the reason for applying this preprocessing of the data is threefold:

• it reduces the turn around time for the experiments, and hence, allows a more

comprehensive exploration of the parameter space;

• it replicates the experimental setting of [63], which produces SOM-SD maps

with state of the art performances on this task;

• the resulting dataset, as it will be shown in this section, is sparse, and thus it

is the right candidate to support our claims about the Activation Mask Kernel

(see chapter 4).

Some statistics about the frequency of the class of the examples have been col-

lected. They are summarized in table A.1. The dataset is unbalanced. Class 4 has

the lowest number of examples, 172, while class 8 has the highest, 769.

In order to a baseline, the SVM with Subtree and Subset tree kernels (see sec-

tion 3.1.2) was applied to the dataset. The values of the parameter λ used are

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0. The parameter c of the SVM is selected

130 Appendix A. Experimental Settings

frequency 598 486 701 172 435 231 261 769 333 386 448

class 1 2 3 4 5 6 7 8 9 10 11

Table A.1: Number of examples for each class of the examples of the INEX 2005

training dataset.

on the validation set among the following values: 0.001, 0.01, 0.1, 1, 10, 100, 1000.

The obtained results, together with the values of the sparsity index (eq. (2.23)) for

each kernel, all computed on the test set, are shown in Table A.2. The best accuracy

on test set has been obtained by the SST kernel with an error rate of 11.21%. This

result was obtained by setting λ to 1.1 and setting the c hyper-parameter of SVM to

10. Note that that both ST and SST kernels are sparse on the INEX 2005 dataset.

Classification Error Sparsity Index

ST Kernel 11.27% 0.5471

SST Kernel 11.21% 0.5471

Table A.2: Classification error and Sparsity Index of the Tree Kernels on the INEX

2005 dataset.

A.2 INEX 2006

The INEX 2006 dataset is derived from the IEEE corpus composed of 12000 sci-

entific articles from IEEE journals in XML format. It includes XML formatted

documents, each from one of 18 different journals, covering both transactional and

non-transactional journals and across various topics in computer science. However,

there are up to five journals that belong to the same structural (transactional or

non-transactional) and semantic (topics) grouping, therefore distinct differences can-

not be expected from documents of several journals. Furthermore, the journals are

unbalanced in the number of documents they contain in the training dataset, there-

fore, this learning task is high in complexity, yet contains features that are commonly

found in real world problems. The documents used in the training process is the

Appendix A. Experimental Settings 131

training portion of the dataset, which consists of 6053 documents, and the number

of XML tags in each document ranges widely, from 9 to 7024, with a total of 3966123

tags. To represent the structure of a document, a tree could be used where each

node in the tree represents the occurrence and location of XML tags. This would

result in large trees where the maximum depth is 19 and the maximum out-degree

is 1023. Another observation of the INEX 2006 dataset is that there are a total of

165 unique tags, and some tags occur with a high frequency in a number of docu-

ments, but not all tags occur in all documents. The documents used in the testing

process is the testing portion of the dataset, which consists of 6054 documents, and

the proportion of documents in each journal is comparable to the training data, to

ensure that the rules learned from training can be applied to the test data and that

a similar level of performance can be expected. In the experiments presented in

chapters 4 and 5, the dataset has been split into training, validation and test sets.

Each set is made of 4237, 1816 and 6054 documents, respectively. Each document

belongs to 1 out of 18 classes. Statistics about the number of documents belonging

to each class are presented in table A.3. Class 5 has the lowest number of examples,

105, and class 3 the highest, 939. Overall, the dataset is quite unbalanced.

frequency 160 335 939 285 266 351 281 116 320

class 1 2 3 4 5 6 7 8 9

frequency 230 171 476 526 369 105 294 564 265

class 10 11 12 13 14 15 16 17 18

Table A.3: Number of examples for each class of the INEX 2006 training dataset.

The training data has a total of almost 4 million nodes and a maximum outdegree

of 1023. The XML documents are represented by trees. Some preprocessing is

applied in order to improve the turn around time for the experiments. Specifically

only documents headers were extracted and then considered for the learning phase.

In order to a baseline, the SVM with Subtree and Subset tree kernels was applied

to the dataset. The values of the parameter λ used are 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,

0.8, 0.9, 1.0. The parameter c of the SVM is selected on the validation set among

132 Appendix A. Experimental Settings

the following values: 0.001, 0.01, 0.1, 1, 10, 100, 1000. The obtained results, together

with the values of the sparsity index for each kernel, all computed on the test set,

are shown in Table A.4. The best accuracy on test set has been obtained by the

SST kernel with an error rate of 59.56%. This result was obtained by setting λ to

0.3 and setting the c hyper-parameter of SVM to 1. Note that that both ST and

SST kernels are absolutely not sparse on the INEX 2006 dataset.

Classification Error Sparsity Index

ST Kernel 67.98% 0.002489

SST Kernel 59.56% 0.002489

Table A.4: Classification error and Sparsity Index of the Tree Kernels on the INEX

2006 dataset.

A.3 Penn Treebank II

The Penn Treebank II corpus [42] consists of material from the Dow-Jones news

service. It is composed of about 1 million words tagged for part of speech and about

53,700 sentences annotated with predicative information.

Among others, the PropBank project [36] proposes predicate argument struc-

tures to encode shallow semantics from texts. The basic assumption is that such

predicative structures are strictly connected to the syntax of the textual sentences.

Figure A.1 exemplifies such idea by showing the parse tree of the sentence: "Mary

brought a cat to school" along with the predicate argument annotation proposed

by the PropBank project. Only verbs are considered as predicates whereas argu-

ments are labeled sequentially from Arg0 to Arg5 plus ArgMs including several type

of adjuncts.

Previous work has shown that the automatic PropBank argument annotation,

i.e. Semantic Role Labeling (SRL), can be carried out by applying machine learning

techniques, e.g. [21,53]. These latter represent predicate argument relationships with

vectors of features extracted from the syntactic parse tree of the target sentence.

Appendix A. Experimental Settings 133

Such standard features, firstly proposed in [21], refer to flat information derived from

parse trees, i.e. Phrase Type, Predicate Word, Head Word, Governing Category,

Position and Voice.

For example, Phrase Type is the label of the argument node, i.e. the node

that dominates all and only the argument words. In Figure A.1 the values of such

feature are N, NP and PP for Arg0, Arg1 and ArgM, respectively. The Parse Tree

Path, instead, represents the path in the parse-tree between a predicate node and

one of its argument nodes. It is expressed as a sequence of nonterminal labels linked

by direction symbols (up or down), e.g. V↑VP↓NP is the path between the predicate

and Arg1.

An alternative representation proposed in [45], is based on the application of

tree kernels to subtrees encoding the predicate/argument relation. More precisely,

each predicate/argument pair is associated with the minimal subtree that includes

the word sequences of them both, hereafter called PAF. For example, in Figure

A.1, the substructures inside the three frames are the semantic/syntactic structures

associated with the three arguments of the verb to bring, i.e. SArg0, SArg1 and SArgM .

It is worth to note that PAF aims at capturing all the information between a

predicate and one of its arguments. PAF is quite intuitive and, to conceive it, the

designer requires much less linguistic knowledge about semantic roles than those

necessary to manually define effective features. The main drawback of its use is that

important structural information, i.e. inter-argument dependencies, is neglected.

To each tree in the dataset is also associated a vector of features extracted from

the syntactic parse tree of the target sentence. Thus a single example ei ≡ (Ti, vi, ci)

is constituted by a tree Ti , a vector of features vi , and a class label ci.

The large PropBank corpus makes the learning via tree kernels quite time con-

suming. We collected some statistics on the execution time of the Support Vec-

tor Machine in table A.5. Numbers refer to execution on an Intel Core 2 Duo

E6400 2.13GHz based PC in three different scenarios2: i) for each example ei only

2The following values for the hyperparameters have been used: i) c = 1; ii) c = 1, λ = 0.4; iii)

c = 0.7692, λ = 0.4, γ = 0.3. These values have been selected by using the validation set.

134 Appendix A. Experimental Settings

the vector of features vi is considered, i.e. the associated tree Ti is not used;

an example is thus in the form (vi, ci); a polynomial kernel of degree 3 is used

(row 1 in Table): KPoly3(vi, vj) = (vi · vj + 1)3 ; ii) for each example ei only

the tree Ti is used and an example is in the form (Ti, ci); the SST tree kernel

is used (row 2 of Table): KSST (Ti, Tj) ; iii) both the input tree Ti and the as-

sociated vector of features vi of an example ei are considered; the used kernel is

given by a linear combination of the two kernels mentioned above (row 3 in Table):

K(ei, ej) = (1− γ) ∗KPoly3(vi, vj) + γ ∗KSST (Ti, Tj).

Kernel Training time in seconds

Poly3 76,917

Tk 235,899

Poly3+Tk 390,914

Table A.5: Training times for SVMLight in three different scenarios involving a poli-

nomial kernel of degree 3 (Poly3), the SST tree kernel (Tk), and a linear combination

of the previous kernels (Poly3+Tk). The training set involves 992,819 examples.

In the experiments presented in the chapter 6 the first 7 sections of PennTree

bank for training were used. They consist of a total of 71,523 positive and 921,296

negative examples. Section 24 was used as validation set for a total of 7,705 positive

and 108,104 negative examples, while section 23 was used as test set for a total of

13,159 positive and 171,114 negative examples.

We have also collected statistics about node distribution, maximum and average

outdegree. Table A.6 reports statistics about the data derived from the boundary

detection dataset.

Appendix A. Experimental Settings 135

S

N

NP

D N

VP

V Mary

 to

brought

a cat

PP

IN N

school

Arg. 0

Arg. M Arg. 1

Predicate

NP

D N

VP

V

brought

a cat

SArg1 VP

V

 to

brought

PP

IN N

school

S

N

V Mary

brought

VP

SArg0 SArgM

Figure A.1: Parse tree of the sentence ”Mary brought a cat to school” along with

the PAF trees for Arg0, Arg1 and ArgM.

Training Validation Test

Number of trees 992,819 115,809 184,273

Total number of nodes 14,365,253 1,686,167 2,643,822

Average number nodes in a tree 14.47 14.56 14.35

Average maximum outdegree 2.32 2.33 2.3

Max outdegree 15 15 13

Table A.6: Features of syntactic trees in the boundary detection dataset.

A.4 LOGML

The LOGML dataset consists of user sessions of the Rensselaer Polytechnic Institute

Computer Science Department website3, collected over a period of three weeks.

Each user session consists of a graph and contains the websites a user visited on

the Computer Science domain. These graphs were transformed to trees by only

enabling forward edges starting from the root node. The goal of the classification

task is to discriminate between users who come from the edu domain and users from

another domain, based upon the users browsing behavior. 3 datasets are available.

They comprises 8074, 7409 and 7628 examples, respectively. The maximum out-

degree of the trees is 137. The datasets are unbalanced: for each of them about 76%

examples belongs to positive class. The datasets are very sparse with respect to the

3http://www.cs.rpi.edu

136 Appendix A. Experimental Settings

SST kernel: the mean of the 3 sparsity index values is 0.9595.

Because of the availability of the three datasets, it was natural to compute the

classification error of the ST and the SST kernels by performing a 3-fold cross-

validation considering, in each round, one of the dataset as the test set. Table A.7

shows the cross validation error and the mean sparsity index on the three datasets,

for the ST and SST kernels. The best accuracy on test set has been obtained by

the ST kernel with an error rate of 16.72%. This result was obtained by setting λ

to 1.0 and setting the c hyper-parameter of SVM to 1. Note that that both ST and

SST kernels are sparse on the LOGML dataset.

Cross validation Error Sparsity Index

ST Kernel 16.72% 0.9635

SST Kernel 16.84% 0.9595

Table A.7: Cross validation error and Sparsity Index of the Tree Kernels on the

LOGML dataset.

References

[1] G. M. AdelsonVelskii and Y. M. Landis. An information organization algorithm.

Translation in NASA document n63-11777, 1963.

[2] F. Aiolli, G. D. S. Martino, A. Sperduti, and M. Hagenbuchner. ”kernelized” self

organizing maps for structured data. In ESANN 2007 Conference, April 24-27 2007.

[3] F. Aiolli, G. D. S. Martino, A. Sperduti, and A. Moschitti. Fast on-line kernel learning

for trees. In ICDM, volume 0, pages 787–791, Los Alamitos, CA, USA, 2006. IEEE

Computer Society.

[4] F. Aiolli, G. D. S. Martino, A. Sperduti, and A. Moschitti. Efficient kernel-based

learning for trees. In CIDM, pages 308–315, 2007.

[5] D. Anguita, S. Ridella, and F. Rivieccio. An Algorithm for Reducing the Number of

Support Vectors. In Proceeding of WIRN04, 2004.

[6] R. E. Bellman. Adaptive Control Processes: A Guided Tour. Princeton Universsity

Press, 1961.

[7] K. P. Bennett. Support vector machines: Hype or hallelujah. SIGKDD Explorations,

2:2000, 2000.

[8] A. M. Bianucci, A. Micheli, A. Sperduti, and A. Starita. Application of Cascade

Correlation Networks for Structures to Chemistry. Applied Intelligence, 12(1):117–

147, 2000.

[9] S. Bloehdorn and A. Moschitti. Structure and semantics for expressive text kernels.

In CIKM ’07: Proceedings of the sixteenth ACM conference on Conference on in-

formation and knowledge management, pages 861–864, New York, NY, USA, 2007.

ACM.

[10] V. S. Cherkassky and F. Mulier. Learning from Data: Concepts, Theory, and Meth-

ods. John Wiley & Sons, Inc. New York, NY, USA, 1998.

138 References

[11] M. Collins and N. Duffy. Convolution kernels for natural language. In Advances in

Neural Information Processing Systems 14, pages 625–632. MIT Press, 2001.

[12] M. Collins and N. Duffy. New ranking algorithms for parsing and tagging: Kernels

over discrete structures, and the voted perceptron. In ACL02, 2002.

[13] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines and

Other Kernel-based Learning Methods. Cambridge University Press, March 2000.

[14] N. Cristianini, J. Shawe-taylor, A. Elissee, and J. Kandola. On kernel-target align-

ment. In Advances in Neural Information Processing Systems 14, pages 367–373.

MIT Press, 2002.

[15] L. Denoyer and P. Gallinari. Report on the xml mining track at inex 2005 and inex

2006: categorization and clustering of xml documents. SIGIR Forum, 41(1):79–90,

2007.

[16] M. Diligenti, P. Frasconi, and M. Gori. Hidden tree markov models for document im-

age classification. IEEE Transactions on Pattern Analysis and Machine Intelligence,

25:2003, 2003.

[17] T. Downs, K. E. Gates, and A. Masters. Exact simplification of support vector

solutions. Journal of Machine Learning Research, 2(293-297):85–87, 2001.

[18] Y. Freund and R. E. Schapire. Large Margin Classification Using the Perceptron

Algorithm. Machine Learning, 37(3):277–296, 1999.

[19] T. Gartner. A survey of kernels for structured data. ACM SIGKDD Explorations

Newsletter, 5(1):49–58, 2003.

[20] N. Gianniotis and P. Tino. Visualisation of tree-structured data through generative

probabilistic modelling. IEEE Transactions on Neural Networks, 2008.

[21] D. Gildea and D. Jurasfky. Automatic labeling of semantic roles. Computational

Linguistic, 28(3):496–530, 2002.

[22] S. L. Graham, P. B. Kessler, and M. K. Mckusick. Gprof: A call graph execution

profiler. SIGPLAN Not., 17(6):120–126, 1982.

[23] I. Guyon. An introduction to variable and feature selection. Journal of Machine

Learning Research, 3:1157–1182, 2003.

[24] M. Hagenbuchner, A. Sperduti, and A. C. Tsoi. Contextual processing of graphs

using self-organizing maps. In European symposium on Artificial Neural Networks,

27 - 29 April 2005.

References 139

[25] M. Hagenbuchner, A. Sperduti, and A. C. Tsoi. Contextual self-organizing maps for

structured domains. In Workshop on Relational Machine Learning, 2005.

[26] M. Hagenbuchner, A. Sperduti, and A. C. Tsoi. Self-organizing maps for cyclic and

unbounded graphs. In ESANN, pages 203–208, 2008.

[27] B. Hammer, A. Micheli, M. Strickert, and A. Sperduti. A general framework for

unsupervised processing of structured data. Neurocomputing, 57(5):33–35, 2004.

[28] D. Haussler. Convolution kernels on discrete structures. Technical Report UCSC-

CRL-99-10, University of California, Santa Cruz, 1999.

[29] D. P. Helmond and M. K. Warmuth. On weak learning. Journal of Computer and

System Science, pages 551–573, 1995.

[30] K. Ikeda. Effects of kernel function on ν-support vector machines in extreme cases.

IEEE Transactions on Neural Networks, 17(1):1–9, 2006.

[31] T. S. Jaakkola and D. Haussler. Exploiting generative models in discriminative clas-

sifiers. In Proceedings of the 1998 conference on Advances in neural information

processing systems II, pages 487–493, Cambridge, MA, USA, 1999. MIT Press.

[32] T. Joachims. Making large-scale support vector machine learning practical. MIT

Press, Cambridge, MA, USA, 1999.

[33] J. Kandola and J. Shawe-taylor. Refining kernels for regression and uneven classifi-

cation problems. In Proc. of the Ninth Int. Workshop on Artificial Intelligence and

Statistics, 2003.

[34] H. Kashima. Machine Learning Approaches for Structured Data. PhD thesis, Grad-

uate School of Informatics, Kyoto University, Japan, 2007.

[35] H. Kashima and T. Koyanagi. Kernels for semi-structured data. In ICML, pages

291–298, 2002.

[36] P. Kingsbury and M. Palmer. From Treebank to PropBank. In Proceedings of

LREC’02, Las Palmas, Spain, 2002.

[37] J. Kivinen, A. J. Smola, and R. C. Williamson. Online learning with kernels. Signal

Processing, IEEE Transactions on, 52(8):2165–2176, 2004.

[38] T. Kuboyama, K. Hirata, H. Kashima, K. F. Aoki-Kinoshita, and H. Yasuda. A

spectrum tree kernel. Information and Media Technologies, 2(1):292–299, 2007.

[39] T. Kuboyama, K. Shin, and H. Kashima. Flexible tree kernels based on counting the

number of tree mappings. In ECML/PKDD Workshop on Mining and Learning with

Graphs, 2006.

140 References

[40] T. Kudo and Y. Matsumoto. Fast methods for kernel-based text analysis. In ACL,

pages 24–31, 2003.

[41] C. S. Leslie, E. Eskin, and W. S. Noble. The spectrum kernel: A string kernel for

svm protein classification. In Pacific Symposium on Biocomputing, pages 566–575,

2002.

[42] M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini. Building a large annotated

corpus of english: the penn treebank. Comput. Linguist., 19(2):313–330, 1993.

[43] S. Menchetti. Learning Preference and Structured Data: Theory and Applications.

PhD thesis, Dipartimento di Sistemi e Informatica, DSI, Università di Firenze, Italy,

December 2005.

[44] T. M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

[45] A. Moschitti. A study on convolution kernels for shallow semantic parsing. In ACL

’04: Proceedings of the 42nd Annual Meeting on Association for Computational Lin-

guistics, page 335, Morristown, NJ, USA, 2004. Association for Computational Lin-

guistics.

[46] A. Moschitti. Efficient convolution kernels for dependency and constituent syntactic

trees. In ECML, pages 318–329, 2006.

[47] A. Moschitti. Making tree kernels practical for natural language learning. In Pro-

ceedings of EACL’06, Trento, Italy, 2006.

[48] K. R. Muller, S. Mika, G. Ratsch, K. Tsuda, and B. Scholkopf. An introduc-

tion to kernel-based learning algorithms. Neural Networks, IEEE Transactions on,

12(2):181–201, 2001.

[49] D. Nguyen and T. B. Ho. A bottom-up method for simplifying support vector solu-

tions. IEEE Transactions on Neural Networks, 17(3):792–796, 2006.

[50] L. Nicotra, A. Micheli, and A. Starita. Tree fisher kernel. In Proceedings. 2004 IEEE

International Joint Conference on Neural Networks, pages 1917 – 1922, 2004.

[51] A. B. J. Novikoff. On convergence proofs on perceptrons. Proceedings of the Sympo-

sium on the Mathematical Theory of Automata, 12:615–622, 1962.

[52] N. Ohkura, K. Hirata, T. Kuboyama, and M. Harao. The -gram distance for ordered

unlabeled trees. In Discovery Science, pages 189–202, 2005.

[53] S. Pradhan, K. Hacioglu, V. Krugler, W. Ward, J. H. Martin, and D. Jurafsky. Sup-

port vector learning for semantic argument classification. Machine Learning Journal,

2005.

References 141

[54] J. Ramon and T. Gärtner. Expressivity versus efficiency of graph kernels. pages

65–74. ECML/PKDD’03 workshop proceedings, September 2003.

[55] K. Rieck, U. Brefeld, and T. Krüger. Approximate kernels for trees. Technical report,

Fraunhofer Publica [http://publica.fraunhofer.de/oai.har] (Germany), 2008.

[56] F. Rosemblatt. A probabilistic model for information storage and organization in the

brain. Psychological Review, 65:386–408, 1958.

[57] B. Scholkopf, R. Herbrich, and A. J. Smola. A generalized representer theorem.

Proceedings of the Annual Conference on Computational Learning Theory, pages 416–

426, 2001.

[58] B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett. New support vector

algorithms. Neural Computation, 12(5):1207–1245, 2000.

[59] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge

University Press, 2004.

[60] K. Shin and T. Kuboyama. A generalization of haussler’s convolution kernel: mapping

kernel. In ICML, pages 944–951, 2008.

[61] J. Suzuki and H. Isozaki. Sequence and tree kernels with statistical feature mining.

In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural Information

Processing Systems 18, pages 1321–1328. MIT Press, Cambridge, MA, 2006.

[62] M. E. Tipping. Sparse bayesian learning and the relevance vector machine. The

Journal of Machine Learning Research, 1:211–244, 2001.

[63] F. Trentini, M. Hagenbuchner, A. Sperduti, F. Scarselli, and A. C. Tsoi. A self-

organising map approach for clustering of xml documents. In Proceedings of the

WCCI, Vancouver, Canada, July 2006. IEEE Press.

[64] E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.

[65] V. N. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

[66] S. Vishwanathan and A. J. Smola. Fast kernels on strings and trees. In Proceedings

of Neural Information Processing Systems 2002, 2002.

[67] G. Wahba. Spline Models for Observational Data, volume 59 of CBMS-NSF Regional

Conference Series in Applied Mathematics. SIAM, Philadelphia, 1990.

[68] D. Wettschereck, D. W. Aha, and T. Mohri. A review and empirical evaluation of fea-

ture weighting methods for a class of lazy learning algorithms. Artificial Intelligence

Review, 11:273–314, 1997.

142 References

[69] M. Zhang, W. Che, A. Aw, C. L. Tan, G. Zhou, T. Liu, and S. Li. A grammar-driven

convolution tree kernel for semantic role classification. In ACL, 2007.

	Abstract
	Acknowledgements
	List of Figures
	Introduction
	What is Machine Learning
	Issues in Structured Data Representation
	Kernel Methods for Structured Data
	Thesis Motivations
	Outline of the Thesis and Original Contributions
	Origin of the Chapters

	I Basics
	Background
	Definitions and Notation
	Machine Learning
	Machine Learning For Structured Data
	Self Organizing Maps
	Kernel Methods
	Kernel Functions
	Evaluating Kernel Functions

	State of the Art on Tree Kernel Functions
	Convolution Kernels
	Subtree Kernel
	Subset Tree Kernel
	Approximate Kernels for Trees
	Partial Tree Kernel
	Elastic Tree Kernel
	Grammar-Driven Tree Kernel
	Semantic Syntactic Tree Kernels

	Other Approaches for the Design of Kernels for Tree Structured Data
	Spectrum Tree Kernel
	Tree Fisher Kernel

	II Original Contributions
	A Tree Kernel For Non Discrete Domains
	Activation Mask Kernel
	Related Work
	Experiments and Discussion

	A Novel Kernel for Trees: Convolution Route Kernel
	Generalized Route Kernel
	An instantiation of the Generalized Route Kernel
	Implementation
	Relationship with other Kernels

	Experiments and Discussion
	Experiments on INEX 2005
	Experiments on INEX 2006
	Experiments on LOGML
	Discussion

	Efficient Score Computation by Compacting the Model
	General Considerations
	Compacting a Forest of Trees
	From a Forest to a Directed Acyclic Graph
	Efficient Score Computation
	The DAG Kernel Perceptron
	Voted Kernel Perceptron
	Kernel Combinations
	Experiments

	Conclusions
	Experimental Settings
	INEX 2005
	INEX 2006
	Penn Treebank II
	LOGML

	References

