
EXAM-S: an Analysis tool for Multi-Domain
Policy Sets

Rodolfo Ferrini

Technical Report UBLCS-2009-06

March 2009

Department of Computer Science

University of Bologna

Mura Anteo Zamboni 7
40127 Bologna (Italy)

The University of Bologna Department of Computer Science Research Technical Reports

are available in PDF and gzipped PostScript formats via anonymous FTP from the area

ftp.cs.unibo.it:/pub/TR/UBLCS or via WWW at URL http://www.cs.unibo.it/.

Plain-text abstracts organized by year are available in the directory ABSTRACTS.

Recent Titles from the UBLCS Technical Report Series

2008-10 Expressiveness of multiple heads in CHR, Di Giusto, C., Gabbrielli, M., Meo, M.C.,

April 2008.

2008-11 Programming service oriented applications, Guidi, C., Lucchi, R., June 2008.

2008-12 A Foundational Theory of Contracts for Multi-party Service Composition, Bravetti, M.,

Zavattaro, G., June 2008.

2008-13 A Theory of Contracts for Strong Service Compliance, Bravetti, M., Zavattaro, G., June

2008.

2008-14 A Uniform Approach for Expressing and Axiomatizing Maximal Progress and Different

Kinds of Time in Process Algebra, Bravetti, M., Gorrieri, R., June 2008.

2008-15 On the Expressive Power of Process Interruption and Compensation, Bravetti, M., Zavat-

taro, G., June 2008.

2008-16 Stochastic Semantics in the Presence of Structural Congruence: Reduction Semantics for

Stochastic Pi-Calculus, Bravetti, M., July 2008.

2008-17 Measures of conflict and power in strategic settings, Rossi, G., October 2008.

2008-18 Lebesgue’s Dominated Convergence Theorem in Bishop’s Style, Sacerdoti Coen, C., Zoli,

E., November 2008.

2009-01 A Note on Basic Implication, Guidi, F., January 2009.

2009-02 Algorithms for network design and routing problems (Ph.D. Thesis), Bartolini, E., Febru-

ary 2009.

2009-03 Design and Performance Evaluation of Network on-Chip Communication Protocols and

Architectures (Ph.D. Thesis), Concer, N., February 2009.

2009-04 Kernel Methods for Tree Structured Data (Ph.D. Thesis), Da San Martino, G., February

2009.

2009-05 Expressiveness of Concurrent Languages (Ph.D. Thesis), di Giusto, C., February 2009.

2009-06 EXAM-S: an Analysis tool for Multi-Domain Policy Sets (Ph.D. Thesis), Ferrini, R.,

February 2009.

2009-07 Self-Organizing Mechanisms for Task Allocation in a Knowledge-Based Economy (Ph.D.

Thesis), Marcozzi, A., February 2009.

2009-08 3-Dimensional Protein Reconstruction from Contact Maps: Complexity and Experimental

Results (Ph.D. Thesis), Medri, F., February 2009.

2009-09 A core calculus for the analysis and implementation of biologically inspired languages

(Ph.D. Thesis), Versari, C., February 2009.

Dottorato di Ricerca in Informatica
Università di Bologna, Padova

Settore scientifico disciplinare: INF/01

Ciclo XXI

EXAM-S: an Analysis tool for Multi-Domain
Policy Sets

Rodolfo Ferrini

March 2009

Coordinatore: Relatore:

Prof. Simone Martini Prof. Elisa Bertino, Prof. Antonella Carbonaro

Abstract

As distributed collaborative applications and architectures are adopting policy

based management for tasks such as access control, network security and data

privacy, the management and consolidation of a large number of policies is be-

coming a crucial component of such policy based systems. In large-scale dis-

tributed collaborative applications like web services, there is the need of analyz-

ing policy interactions and integrating policies. In this thesis, we propose and

implement EXAM-S, a comprehensive environment for policy analysis and man-

agement, which can be used to perform a variety of functions such as policy prop-

erty analyses, policy similarity analysis, policy integration etc. As part of this en-

vironment, we have proposed and implemented new techniques for the analysis

of policies that rely on a deep study of state of the art techniques. Moreover, we

propose an approach for solving heterogeneity problems that usually arise when

considering the analysis of policies belonging to different domains. Our work fo-

cuses on analysis of access control policies written in the dialect of XACML (Ex-

tensible Access Control Markup Language) [71]. We consider XACML policies

because XACML is a rich language which can represent many policies of interest

to real world applications and is gaining widespread adoption in the industry.

vii

Acknowledgements

In this section I would like to thank all the many people that helped me during

this three years.

First of all I would like to thank my advisors: Prof. Antonella Carbonaro and

Prof. Elisa Bertino:

Prof. Antonella Carbonaro gave me something more than advises for my PhD

experience: she is the friend with which I have shared happiness, sadness and

the personal troubles I had during this three years. Thank you Antonella.

Prof. Elisa Bertino gave me the chance to work in an extraordinary research

group. She taught me how to overcome my limits working harder and better.

I will never forgive her excellent help and the CERIAS Group at Purdue Univer-

sity.

Moreover, I would like to thank Prof. Simone Martini for its fundamental meta-

tutoring activity and for the time he spent helping me. I would like also to thank

my external reviewers who accepted to evaluate this work, dedicating to it part

of their valuable time.

A special thank goes to my family and my friends that always supported me

viii

in this three years and during my stay at Purdue.

Most of all, I would like to thank you Romina... because you are like you are.

Contents

Abstract vii

Acknowledgements viii

List of Figures xvi

1 Introduction 1

1.1 Policy Analysis: Requirements . 2

1.1.1 Policy Comparison . 4

1.1.2 Heterogeneous Policy Analysis 5

1.1.3 Reasoning on Application Domains 6

1.2 EXAM-S: Motivations . 6

1.2.1 Lack of Semantics . 7

1.2.2 Ontologies and Interoperability 8

1.3 Aims of the Thesis . 8

1.4 Outline . 11

2 Background 15

2.1 XACML . 15

2.1.1 Rule Combining Algorithm 16

2.1.2 Hierarchical and Multiple Resource Profile 19

2.1.3 The XACML architecture . 20

x

2.2 Description Logics . 22

2.2.1 DL Overview . 22

2.2.2 Syntax and Semantics . 24

2.2.3 Reasoning Services . 25

2.3 The Semantic Web and OWL . 27

2.3.1 The Ontology Web Language 28

2.3.2 OWL-DL Ontologies . 29

2.3.3 An Example of Semantics Supporting Interoperability: Se-

mantic Web Services . 32

2.4 Ontology Matching . 36

2.4.1 Overview . 36

2.4.2 Ontology Matching: Formalizing the Problem 37

2.4.3 Reviewed approaches . 41

2.4.4 Falcon-AO . 44

I Related Work and Preliminary Definitions 49

3 Related Work 51

3.1 Policy Analysis . 51

3.1.1 Single Policy Analysis . 51

3.1.2 Policy Similarity Analysis . 52

3.2 Semantic Web-Based languages . 54

3.3 Access Control and Ontologies . 55

4 Policy Analysis: Preliminaries 57

4.1 Heterogeneity in Policy Analysis . 57

4.1.1 From Vocabularies to Domains 59

4.1.2 The Formalization of a Policy Domain 61

4.2 Dealing with Heterogeneous and Partial Knowledge 64

4.2.1 Ontology Merging . 64

4.2.2 Ontology Extraction . 65

4.2.3 Hybrid Scenarios . 67

4.3 Trade-off between Expressivity and

Complexity . 67

4.3.1 XACML and Propositional Logic 68

4.3.2 Policy Analysis Services in PL 70

4.3.3 XACML and Description Logic 71

4.3.4 Policy Analysis Services in DL 73

4.3.5 Results and Discussion . 75

II EXAM-S: the Model 79

5 Extending XACML with Semantic Functions 81

5.1 Introduction . 81

5.2 Background notions about RBAC . 83

5.3 Running Example . 84

5.4 The XACML+OWL Framework . 85

5.5 SoD Constraints Definition using OWL Ontologies 88

5.5.1 Static Separation of Duty Constraints 89

5.5.2 Dynamic Separation of Duty Constraints 90

5.6 XACML Policies . 91

5.6.1 Semantic Functions for instances 92

5.6.2 XACML Obligations . 96

5.6.3 Policy Semantics . 97

5.6.4 Automatic Creation of XACML policies 99

5.6.5 Policy evaluation . 100

5.7 A Complete Example of Policy Enforcement 101

5.8 Extended XACML architecture . 103

6 Dealing with Heterogeneous Domains 105

6.1 Ontology Matching . 106

6.2 Ontology Merging Process . 108

6.2.1 Ontology Merging Process 109

6.2.2 Order of the Ontologies in the Merging Algorithm 110

6.3 Ontology Extraction Process . 112

6.3.1 From a Vocabulary to a Domain: the Model 112

6.3.2 Ontology Extraction Algorithm 114

6.4 Policy Reference Ontology . 114

6.5 Policy Set Reference Ontology . 115

7 Policy Similarity Analysis 117

7.1 Analysis Queries on Heterogeneous Policies 118

7.2 An Illustrative Example . 119

7.3 Prelimary Notions . 121

7.4 Policy Filtering . 124

7.4.1 Computation of the Mapping 125

7.4.2 Computation of Φ Mappings 128

7.4.3 Similarity Score between Rules 130

7.4.4 Similarity Score of Rule Elements 131

7.4.5 Similarity Score for Categorical Predicates 132

7.4.6 Similarity Score for Numerical Predicates 136

7.5 Policy Similarity Analyzer . 137

7.5.1 Query Processing Strategy . 137

7.5.2 Query Processing . 147

8 P3P Similarity 149

8.1 P3P . 149

8.2 P3P Similarity Measure . 151

8.3 P3P Policy Similarity Measure . 153

8.3.1 Data Similarity . 155

8.3.2 Purpose Similarity . 156

8.3.3 Recipient Similarity . 157

8.3.4 Retention Similarity . 158

8.3.5 Tuple Similarity . 158

8.3.6 Policy Similarity . 159

8.4 P3P Policy Clustering . 160

8.5 Experiments . 161

III EXAM-S: Implementation 165

9 EXAM-S: the Architecture 167

9.1 Architecture . 167

9.2 Analysis Module . 168

9.2.1 Architecture of the Policy Similarity Analyzer (PSA) 169

9.2.2 Semantic Reasoner submodule 170

9.3 Heterogeneity Module . 170

9.3.1 Policy Reference Ontology creation 171

9.4 Repositories Module . 172

10 Implementation and Experimental Evaluation 175

10.1 Experimental Results: Heterogeneity Module 175

10.2 Implementation: Filtering . 178

10.3 Experimental Results: Filtering . 178

10.3.1 Effectiveness . 179

10.3.2 Efficiency . 180

10.3.3 Scalability . 181

10.4 Implementation: Policy Analyzer . 181

10.5 Experimental Results: Policy Analyzer 182

11 Conclusions and Future Work 187

References 191

A Interoperability in Digital Identity Management 199

A.1 Introduction . 199

A.2 Running Example . 201

A.3 Identity Management for Business Processes 202

A.4 Preliminary concepts . 203

A.5 Interoperable Multi-Factor Authentication 206

A.5.1 Identity attribute matching protocol 207

A.5.2 Multi-factor authentication 210

A.6 System architecture and Implementation 212

A.7 Experimental Evaluation . 215

A.8 Concluding Remarks . 216

List of Figures

1.1 Simple policy example . 4

1.2 Thesis purposes . 10

2.1 A XACML Policy Structure . 18

2.2 The XACML Data Flow . 20

2.3 Semantic Web Layer Cake. 28

2.4 Individuals in OWL. 30

2.5 Properties in OWL. 31

2.6 Properties in OWL. 31

2.7 Properties in OWL. 32

2.8 Categories of schema matching techniques 38

2.9 The FALCON-AO architecture. 45

4.1 An example policy for an university policy-based access control

model. 58

4.2 The domain of the policy P1 depicted in Figure 4.1. 60

4.3 An example MTBDD. 69

4.4 An example MTBDD for a simple policy. 70

5.1 Role hierarchy. 84

5.2 The XACML+OWL framework. 86

5.3 OWL schema for RBAC. 89

xvi

5.4 The function fdeny−override . 98

5.5 The function fpermit−override . 98

5.6 Policy evaluation . 101

5.7 Extended XACML Data Flow Diagram. 104

6.1 The stack of technologies developed for solving domain hetero-

geneity. 106

7.1 The Faculty role hierarchy. 120

7.2 An Example Hierarchy . 133

7.3 MTBDD of policies. 146

7.4 MTBDD for the auxiliary rules. 146

7.5 CMTBDD. 147

7.6 Query MTBDD. 148

8.1 Average Radius varying K from 1 to 100 on a dataset of 1000 policies.161

8.2 Distribution of P3P-enabled search results by search term category. 163

9.1 The EXAM-S Architecture . 168

9.2 Architecture of the Policy Similarity Analyzer (PSA) 170

9.3 Architecture of the Semantic Reasoner Submodule 171

9.4 Architecture of the Policy Reference Ontology creation procedure. . 172

10.1 Comparison between the times of the Ontology Merging algorithm

applied to original referenced ontologies and the Ontology Merg-

ing applied to their policy views. 176

10.2 Total execution times for increasing values in the number of at-

tributes. 177

10.3 Policy Similarity Scores . 180

10.4 Execution time . 181

10.5 Scalability as number of attribute predicates per policy is increased 182

10.6 Total Response Time for Varying Number of Atomic Boolean Ex-

pressions . 183

10.7 Average number of variables generated for policy pairs 184

10.8 Response Time Taken for Preprocessing a Pair of Policies 184

10.9 Total Response Time for Varying Number of Policy Pairs 185

A.1 A loan approval process specification 201

A.2 Approach schema . 209

A.3 System architecture . 213

A.4 Experimental results . 215

Chapter 1

Introduction

In the last decades, Internet has become the de facto standard in communication.

On top of Web technologies, collaborative applications such as distributed sys-

tems and complex SOA architectures, have been developed for resource provi-

sioning and data sharing. Such systems introduce however several security is-

sues. Grids, federations as well as simple service providers and intra-organization

systems, need to find the best trade-off between flexibility in data providing and

reliability of the access control model.

Security in these scenarios is usually managed by exploiting policies-based

access control models. This approach is widespread adopted nowadays since al-

low users and system administrators to decouple the access control management

from the application logic. Particularly important class of such security policies is

represented by access control policies which determine whether requests to pro-

tected resources are permitted or denied. Various types of access control mod-

els and mechanisms have emerged, such as PolicyMaker [12], the ISO 10181-3

model [1] and the eXtensible Access Control Mark-up Language (XACML) [72].

However, even for simple scenarios, the maintenance of consistent policy sets

is not a trivial task. Moreover, due to the dynamism and complexity of those col-

laborative systems, tools that support the analysis of security policies are crucial.

2 Chapter 1. Introduction

Finally, the scenario under consideration becomes even more complicated when

taking into account set of policies belonging to different domains.

For these reasons, analysis tools need to support powerful analysis services

able to be executed over multi-domain policy sets. In the remaining part of this

chapter we discuss the motivations underlying our work and a sketch of the pro-

posed solutions along with an outline of the following chapters.

1.1. Policy Analysis: Requirements

Security policies can be considered as rules stating whether some subjects have

the privileges to access some resources. By this perspective, a policy-based access

control model is a set of rules defined over an application domain. Usually, it is a

good practice to decouple the security policies from the application logic in order

to enhance modularity and simplify management. Policy languages fulfill such

requirement by offering formalisms and related tools supporting the specification

and analysis of such rule sets.

In this thesis we focus our attention on XACML-based policies. XACML (eX-

tensible Access Control Mark-up Language) [72] is the OASIS standard language

for the specification of access control policies. As suggested by the name, XACML

is an XML language able to express a policy in terms of rules over different kind

of entity attributes. Rules are then collected into policies and combined with rule

combining algorithms. Such algorithms are used to define precedence in the ap-

plication of rules if more than one of them applies for a single request. Table 1.1

shows a simplified example of a XACML rule1. XACML has gained widespread

adoption as an industry standard and a detailed description of its features will be

presented in Chapter 2.

However, even if the creation of XACML policies is well supported2, the anal-

ysis and verification of properties that a policyset has to satisfy is still an ongoing

1Some syntactical details have been omitted.
2http://sunxacml.sourceforge.net/javadoc/index.html

Chapter 1. Introduction 3

<Rule RuleId="examplerule" Effect="Permit">

<Target>

<DisjunctiveMatch>

<ConjunctiveMatch>

<Match MatchId="function:string-equal">

<AttributeValue>PhDStudent</AttributeValue>

<AttributeDesignator

AttributeId="action-type"

Category="...attribute-category:subject"

DataType="...#string"/>

</Match>

<Match MatchId="function:string-equal">

<AttributeValue>Read</AttributeValue>

<AttributeDesignator

AttributeId="action-type"

Category="...attribute-category:action"

DataType="...#string"/>

</Match>

<Match MatchId="function:string-equal">

<AttributeValue>Tech_Paper</AttributeValue>

<AttributeDesignator

AttributeId="action-type"

Category="...attribute-category:resource"

DataType="...#string"/>

</Match>

</ConjunctiveMatch>

</DisjunctiveMatch>

</Target>

</Rule>

Table 1.1: A XACML rule.

4 Chapter 1. Introduction

Figure 1.1: Simple policy example

work and no standard approaches have been widely accepted. The reason is

related to the fact that the specification of XACML is not based on a formal se-

mantics. This problem is crucial since the properties that security administrators

should verify are strongly related to the semantics of the involved policies. In

the following, some of the most interesting properties that a policy analysis tool

should support will be described and discussed in detail.

1.1.1 Policy Comparison

Consider a collaborative scenario in which system partners need to compare their

access control policies in order to understand if similar kind of users have similar

capabilities. This kind of requests are of particular interest in federated systems

where users belonging to partners organizations may have the rights to access

shared resources. Consider the policies shown in Figure 1.1 where policy P is

composed by the rules R1, R2 and R3 and P ′ is composed by the rules R′
1 and R′

2.

Policy comparison is the problem of verifying whether two (sets of) policies yield

to similar results.

Policy comparison represents an important issue in real case scenarios. For

example, as policies are increasingly being deployed at various levels within a

distributed system - network devices, firewalls, hosts, applications - an impor-

tant issue is to determine whether all the deployed policies authorize the same

set of requests. Hence a strong requirement in the development of an analysis

environment is devising techniques and tools for assessing policy similarity.

Chapter 1. Introduction 5

1.1.2 Heterogeneous Policy Analysis

The comparison of policies rely on a fine-grained inspection of attribute names

and values within the rules. However, we cannot expect that policies belonging

to different organizations are based on the same vocabulary. Such heterogeneity

in names and values may result in considering as incomparable two policies even

when their effects are semantically equivalent. We classify these heterogeneities

in two different categories:

• Terminological heterogeneity: there is terminological heterogeneity when the

same concept is expressed used different terms;

• Domain heterogeneity: there is domain heterogeneity when similar applica-

tion domains are modeled by taking into account different perspectives;

When considering the policy analysis in a relaxed scenario with multi-domain

policies, additional issues arise. The most challenging problems are related to

the development of a common understanding between the vocabularies under

considerations and extracting and formalizing an application domain based on

a (possibly partial) knowledge of the domain itself. As an example, consider the

policy introduced in Table 1.1. The policy specifies a permit rule allowing student

to read technical papers. We have used the term Tech Paper as a representation

of the concept Technical Paper. However, Tech Paper is just a shortcut, a list of

characters used for convenience. In order to effectively compare policies belong-

ing to different organizations a string-based match is not enough.

In the last decade, due to the introduction of the Semantic Web paradigm [9],

ontologies have been adopted for the formal representation of application do-

mains. On top of ontologies several techniques have been developed for the

alignment and the integration of heterogeneous data. These approaches can be

adopted also in our context improving and optimizing state of the art strategies

taking advantage of the specific features of XACML policies.

6 Chapter 1. Introduction

1.1.3 Reasoning on Application Domains

XACML is essentially based on Attribute Based Access Control (ABAC) in which

access control is enforced depending by the values of certain resource and subject

attributes. However, it is often important to take into account also the seman-

tic relationships among the attributes characterizing the resources and subjects.

XACML, natively, is not able to exploit this kind of information and even its spe-

cialized profiles give support to just a small portion of all the possible scenarios3.

Moreover, due to the rigid structure and features of the underlying data model,

XACML is not able to represent important security constraints such as dynamic

separation of duty (SoD) constraints.

In order to address such shortcomings XACML needs to be improved and this

improvement requires extensions to both the XACML language, namely the in-

troduction of specialized functions, and the XACML reference architecture and

engine. Therefore, the main issue is to identify a specialized data structure to

couple with the reference XACML architecture and engine able to support both

the maintenance of past records and the reasoning capabilities. For the same mo-

tivations introduced in the above section, ontologies4 represent the most suitable

tool to be coupled with XACML to address its limitations. However, enhancing

XACML with such specialized features raises policy analysis to a higher level.

This means that the analysis techniques developed for the standard language are

not enough and new methodologies needs to be devised.

1.2. EXAM-S: Motivations

So far, we have described some of the issues arising from the management of

a policy-based access control model. To date, no comprehensive environments

exist supporting the management of heterogeneity issues arising by considering

multi domain policy datasets and a large variety of query analysis. Specialized

3List of profiles currently available in XACML: http://docs.oasis-open.org/xacml/2.0/
4From now on the term ontology is used to represent a Semantic Web ontology.

Chapter 1. Introduction 7

techniques and tools have been proposed, addressing only limited forms of anal-

ysis (detailed discussion is presented in Chapter 3). Common limitations concern:

• policy conditions: only policies with simple conditions can be analyzed [35];

• relationship characterization: in that for example one can only determine whether

two policies authorize some common request, but no characterization of

such request is provided.

• policy comparison: in Section 1.1.1 we defined policy comparison as: the prob-

lem of verifying whether two (sets of) policies yield to similar results. It is im-

portant to outline the use of the word similar with respect to same. Some

approaches (as for example [56]) consider policy comparison as a boolean

problem. In contrast, we think that even if two policies are different, it is

important to have a solution that gives a measure of that difference. Maybe

two policy sets could be evaluated as different but they may be very sim-

ilar and this is an information that a system administrator could take into

account;

• reasoning services: the definition of analysis services based on application

domain reasoning is a new approach never taken into account in existing

approaches. A sketch of the problem along with some possible analysis

proposals is introduced in [55];

• heterogeneous domain: at the best of our knowledge no tools have been de-

veloped for the management of multi-domain policy sets.

1.2.1 Lack of Semantics

The fact that no one of the tools proposed so far have been widely accepted is due

to the fact that XACML lacks formal semantics. In the last years, several propos-

als have been made to fill such gap [35, 47, 56] each of them taking into account

different subsets of the XACML features, translating the language into different

8 Chapter 1. Introduction

logics5 and providing reasoning services with different complexity. Each of them

has both strong and weak points. For example services in [56] are defined on a

subset of XACML bigger than the one considered in [35]. However, considering

less expressivity yield to the implementation of systems with better performance

when reasoning on large policy data sets.

1.2.2 Ontologies and Interoperability

The Semantic Web [9] has been proposed in 2001 as an extension of the current

Web in which resources are enriched with a well-defined, machine-processable

meaning. One of the main features of the Semantic Web paradigm is the use of

domain ontologies in order to describe the semantics of the data. The actual W3C

Recommendation for the development of Web ontologies is OWL an XML-based

language modeled on top of the Description Logic (DL) family of representation

languages.

In the last years, a number of different ontology-based techniques have been

proposed for addressing interoperability issues. The most interesting one is On-

tology Matching, that is, the process whereby two ontologies are semantically

related at conceptual level; source ontology entities are mapped onto the target

ontology entities according to those semantic relations. When two heterogeneous

systems define their terminology according to the knowledge modeled within an

ontology, an ontology mapping procedures allows one to find relations between

the semantic schemas and thus between the data managed by those systems. We

can take advantage of Ontology Mapping and semantic technologies for solving

the problem of policy heterogeneity.

1.3. Aims of the Thesis

The aims of this thesis are twofold.

5The approaches proposed in [35,47,56] provide mapping respectively with First Order Logic,

MTBDD (Propositional Logic) and Description Logic.

Chapter 1. Introduction 9

On the one hand, we introduce XACML+OWL a framework in which the

XACML language, architecture and engine are extended with ontology reason-

ing. The approach proposed in XACML+OWL allows to decouple the definition

of the main actors and constraints of the access control model from the defini-

tion of the permissions that can be associated with them. This solution improve

the flexibility of XACML in realizing complex security systems and it also over-

comes the XACML limitations outlined in Section 1.1.3. In Chapter 5 we shows

the feasibility of our approach modeling the Role Based Access Control (RBAC).

Specifically, we give support to a particular version of RBAC named constrained

hierarchical RBAC in which roles are organized in a hierarchy and several con-

straints such as static and dynamic separation of duties can be defined over such

roles.

On th other hand, we design EXAM-S (Environment for XACML policy Anal-

ysis and Management with Semantic technologies), a new analysis tool, com-

bining state of the art technologies and offering new solutions based on the in-

troduction of novel analysis services. We also compare EXAM-S with existing

approaches in order to evaluate both correctness and efficiency of the model. We

provide a prototype implementation of the EXAM-S architecture along with ex-

perimental evaluations and a detailed discussion of the results. Finally, we dis-

cuss the applicability of the ideas developed in EXAM-S in other contexts such as

privacy policies and digital identity management.

The realization of EXAM-S is the main contribution of the thesis. The major

issues we have addressed in EXAM-S can be categorized as follows:

Figure 1.2 depicts a conceptual representation of the aims of this dissertation.

The starting point of our work is state of the art policy analysis services (Red

Box). Then, this thesis has three different purposes:

1. Heterogeneity between policies: to deal with the problem of policy heterogene-

ity we propose a stack of semantic integration techniques. Usually, reason-

ing systems adopt the unique name assumption, that is, that different names

have different meanings. In our scenario such assumption cannot be made

10 Chapter 1. Introduction

Figure 1.2: Thesis purposes

since we are working considering policies belonging to different domains.

For this reason, we create an ontology-based process that solves the hetero-

geneity problems by creating a knowledge base of unique names exploited

by the upper-level procedures.

2. Trade-off between Complexity and Expressiveness: to analyze the trade-off be-

tween complexity and expressiveness about the approaches presented so

far. This is a crucial point in the development of EXAM-S. An extensive

analysis of the formalisms currently adopted is necessary in ensuring a flex-

ible design of the system. According to such analysis we then develop an

hybrid set of services that represent a trade-off between expressivity and

complexity.

3. Reasoning Services: to define new services that take into consideration the

policy terminology enriched with semantic data. We add new, original ser-

vices that exploit semantic techniques supporting powerful analysis ser-

vices. We designed such technologies as an alternative solution to stan-

Chapter 1. Introduction 11

dard state of the art approaches. At the best of our knowledge no existing

tools support analysis services based on reasoning over domain knowledge

bases.

The work of this thesis can be logically grouped in four different steps:

• Preliminaries: policy analysis is a complex task and there are several issues

that must be taken into consideration before the design of EXAM-S. For this

reason we discuss related work and provides theoretical background along

with preliminary definitions that are exploited in the following parts of the

thesis.

• The Model: this part concerns the design of the EXAM-S system. The mod-

ules related to the policy analysis are the main contributions of this work

and for this reason they have been treated in more details.

• The Implementation: the EXAM-S architecture, implementation and experi-

mental evaluations are provided in this part. Firstly, we provide the archi-

tecture of EXAM-S considering how the analysis services described in the

previous part can be organized together. Secondly, we describe the details

about the system implementation and discuss the experimental results pro-

viding comparisons with related works.

• Appendix: interoperability is an important issue not only regarding secu-

rity. In this section we provide detailed descriptions on how the solutions

developed for EXAM-S can be exploited in other fields of research.

1.4. Outline

This thesis is organized as follows:

• Chapter 2: in this chapter we introduce background information and neces-

sary preliminaries needed to understand the technical contributions of the

12 Chapter 1. Introduction

dissertation. Specifically, we provide a detailed description of XACML, De-

scription Logics and Ontology Mapping.

• Chapter 3: in this chapter we survey work related to this dissertation. Specif-

ically, we describe existing access control policy models and related lan-

guages, and we review policy analysis and verification approaches.

• Chapter 4: in this chapter we develop the theory behind EXAM-S. We present

the problem of policy heterogeneity providing the definitions that are used

in Chapter 6 in the development of the algorithms. We provide the de-

tails of the most relevant approaches in the field, discussing the differences

between them and pointing out which of the proposed methodologies are

suitable to be combined in our model. Finally, we introduce the theory be-

hind the definition of reasoning services over domain ontologies.

• Chapter 5: in this chapter we present an approach for extending XACML

with new functions for the management of ontology driven access control

models. We introduce both the theory behind the new functions and the so-

lutions to the issues arising from the application of our approach in practice.

Even if the development of this framework is not directly associated with

EXAM-S, the functionalities introduced in this Chapter are taken into con-

sideration in Chapter 7 when we define the core EXAM-S analysis services.

Our services are able to deal with both standard and semantic functions.

• Chapter 6: in this chapter we present the technologies adopted for solving

the heterogeneity problem. These technologies are organized in a compre-

hensive process that can be applied to a large set of real case scenarios. In

this section we propose both definitions and the algorithms that we have

developed.

• Chapter 7: in this chapter we describe the policy analysis services. We pro-

vide the details of two different modules namely: policy filtering and policy

similarity analyzer (PSA). Whereas the PSA provides a precise framework for

Chapter 1. Introduction 13

the analysis of policies, the filtering module has been developed as a sup-

port tool for computing quickly the similarity between two policies. When

the set of policies involved into the analysis process is very large, the com-

bination of the filtering module and PSA provide a good balance between

performance and precision in the results.

• Chapter 8: P3P Policy Similarity. P3P [23] is a W3C Recommendation for the

development of privacy policy. Since many websites nowadays implement

P3P policies [28], P3P policies represents another domain that is suitable

for applying our similarity measure. We describe briefly the P3P language

and the formalization of a similarity function. Experimental evaluations are

reported and described.

• Chapter 9: in this chapter we present the architecture of EXAM-S. The pur-

pose of this chapter is to analyze how the services previously introduced

can be combined together. We address this requirement by providing a de-

tailed description of the relationship between the main services along with

the design of the dedicated modules.

• Chapter 10: we provide the experimental evaluations and a comparative

evaluation between the obtained results and related approaches.

• Chapter 11: we present concluding remarks as well as possible areas of fu-

ture work.

• Appendix A: Interoperability in Digital Identity Management. Interoper-

ability is an important issue associated with several research topics. In this

section we details the results of the application of an ontology-based ap-

proach for dealing with heterogeneities in a Digital Identity Management

scenario.

14 Chapter 1. Introduction

Chapter 2

Background

In this chapter we provide the background which is necessary to understand the

remainder of the thesis. First of all, we recall the basis of the XACML standard.

Furthermore, we introduce notions about Description Logics, ontologies and re-

lated techniques such as ontology mapping.

2.1. XACML

XACML (eXtensible Access Control Mark-up Language) [Moses, 2003] is the OA-

SIS standard language for the specification of access control policies. It is an XML

language able to express a large variety of policies, taking into account proper-

ties of subjects and protected objects as well as context information. In general, a

subject can request an action to be executed on a resource and the policy decides

whether to deny or allow the execution of that action. Several profiles such as

a role profile, a privacy profile etc. have been defined for XACML. An XACML

policy consists of three major components, namely a Target, a Rule set, and a rule

combining algorithm for conflict resolution.

• The Target identifies the set of requests that the policy is applicable to. It con-

tains attribute constraints characterizing subjects, resources, actions, and

environments.

16 Chapter 2. Background

• Each Rule in turn consists of another optional Target, a Condition and an Ef-

fect element. The rule Target has the same structure as the policy Target.

It specifies the set of requests that the rule is applicable to. The Condition

specifies restrictions on the attribute values in a request that must hold in

order for the request to be permitted or denied as specified by the Effect.

The Effect specifies whether the requested actions should be allowed (Per-

mit) or denied (Deny). The restrictions specified by the target and condition

elements correspond to the notion of attribute-based access control, under

which access control policies are expressed as conditions against the prop-

erties of subjects and protected objects. In XACML such restrictions are rep-

resented as Boolean functions taking the request attribute values as input,

and returning true or false depending on whether the request attributes sat-

isfy certain conditions. If a request satisfies the policy target, then the policy

is applicable to that request. Then, it is checked to see if the request satisfies

the targets of any rules in the policy. If the request satisfies a rule target, the

rule is applicable to that request and will yield a decision as specified by the

Effect element if the request further satisfies the rule condition predicates.

If the request does not satisfy the policy(rule) target, the policy(rule) is ”Not

Applicable” and the effect will be ignored.

• The Rule combining algorithm is used to resolve conflicts among applicable

rules with different effects.

Figure 2.1 gives an overview of a policy structure. Whereas Table 2.1 gives the

syntax of the simplified format that will be used in Chapter 7 in the definition of

our similarity measure.

2.1.1 Rule Combining Algorithm

Because a Policy or PolicySet may contain multiple policies or Rules, each of

which may evaluate to different access control decisions, XACML a mechanism

to combine access decisions. This is accomplished using a collection of combining

Chapter 2. Background 17

POLICY: <policy policy-id = ”policy-id combining-algorithm = ”combining-algorithm >

(TARGET ELEMENT)?

< permitrules >

(RULE ELEMENT)*

</permitrules>

<denyrules>

(RULE ELEMENT)*

</permitrules>

</policy>

RULE ELEMENT:

<rule rule-id=”rule-id effect=”rule-effect>

(TARGET ELEMENT)?

<condition>PREDICATE</condition>

</rule>

TARGET ELEMENT:

<target>

<subject>PREDICATE</subject>

<resource>PREDICATE</resource>

<action>PREDICATE</action>

</target>

PREDICATE:

(attr name ⊕ (attr value)+)*

attr name denotes attribute name, attr value denotes attribute value and

⊕ denotes any operator supported by the XACML standard.

Table 2.1: A XACML simplified policy structure.

18 Chapter 2. Background

Figure 2.1: A XACML Policy Structure

algorithms, where each algorithm represents a different way of combining mul-

tiple access decisions into a single one. Following is a list of the most common

combining algorithms:

• Permit-overrides. If any rule evaluates to Permit, then the combined

decision is also Permit.

• Deny-overrides. If any rule evaluates to Deny, then the combined deci-

sion is also Deny.

• First-applicable. The effect of the first rule that applies is the decision

of the policy. The rules must be evaluated in the order that they are listed.

• Only-one-applicable. If more than one rule is applicable, return Inde-

terminate. Otherwise return the access decision of the applicable rule.

Chapter 2. Background 19

In this dissertation, we use the following notation: for a XACML policy el-

ement P, we refer to its Target, Effect (in cases of Rules), its ordered list of

children policy elements, its parent policy element and combining algorithm us-

ing P:target, P:effect, P:children, P:parent, P:comb respectively. P:pos is used to refer

to the position of P w.r.t its sibling policy elements.

2.1.2 Hierarchical and Multiple Resource Profile

The policy evaluation performed by a XACML PDP is defined in terms of a single

requested resource, with the authorization decision contained in a single Result

element in the response. However, A Policy Enforcement Point, or PEP, may wish

to submit a single request context for access to multiple resources, and may wish

to obtain a single response context that contains a separate authorization deci-

sion (Result) for each requested resource. Such a request context might be used

to avoid sending multiple decision request messages between a PEP and PDP,

for example. Alternatively, a PEP may wish to submit a single request context

for all the nodes in a hierarchy, and may wish to obtain a single authorization

decision that indicates whether access is permitted to all of the requested nodes.

The Multiple Resource Profile provides a mechanism such that a PEP can request

authorization decisions for multiple resources in a single request context. It is

important to note that the Multiple Resource Profile does not affect the policy it-

self. It deals with the XACML Access Requests, introducing syntactic shorthand

so that multiple requests contexts can be merged into one. The Hierarchical Re-

source Profile allows users to specify one policy that applies to an entire subtree

of a hierarchy, rather than having to specify a separate policy for each node of the

subtree. In this Profile, a resource organized as a hierarchy may be a with a single

root (tree) or multiple roots (forest), however cycles are not allowed. The nodes

in a hierarchical resource are treated as individual resources. An authorization

decision that permits (or denies) access to an interior node does not imply that

access to its descendant nodes is permitted (or denied).

20 Chapter 2. Background

Figure 2.2: The XACML Data Flow

2.1.3 The XACML architecture

The XACML architecture (Figure 2.2) consists of four main components: (i) the

Policy Administration Point (PAP); (ii) the Policy Decision Point (PDP); (iii) the

Policy Enforcement Point (PEP); (iv) the Policy Information Point (PIP). The PAP

creates the policies evaluated by the PDP. The PDP evaluates applicable poli-

cies against the incoming requests and sends the resulting authorization decision

back to the PEP. The PEP performs access control, making decision requests, and

enforcing the authorization decision provided by the PDP. Finally, the PIP is the

component that provides the attribute values required by the PDP during the

Chapter 2. Background 21

evaluation phase. There is another important component in XACML architec-

ture: the context handler. This component acts as a mediator between the PEP,

the PDP, and the PIP by receiving and dispatching information to the appropriate

component.

22 Chapter 2. Background

2.2. Description Logics

Description Logics (DL) is a family of knowledge representation languages which

can be used to represent the terminological knowledge of an application domain

in a structured and formally well-understood manner [6]. The name comes from

the facts that, on the one hand, the application domains are described using con-

cept descriptions and, on the other hand, they possess formal, logic-based seman-

tics which can be given by a translation into first-order logic (FOL). The rest of

this Section is organized as follows: in Subsection 2.2.1 we give an overview of

Description Logics. DL syntax and semantics are introduced in Subsection 2.2.2

whereas the reasoning services that come with a DL formalism are proposed in

Subsection 2.2.3.

2.2.1 DL Overview

Each DL consists of the following building blocks: atomic concepts, atomic roles

and individuals. Atomic concepts correspond to unary predicates in FOL (e.g.,

Student(x)), atomic roles correspond to binary predicates in FOL (e.g., enrolledIn(x;y))

and individuals represent constant terms in FOL. Atomic concepts and roles are

elementary descriptions of objects; complex concepts and roles can be built on

top of them using DL constructors. For example, applying a concept disjunction

constructor (⊔) on the atomic concepts Male and Female, we retrieve the set of all

individuals who are either Male or Female: Male ⊔ Female. In addition to dis-

junction, DL typically provides the standard boolean operators as constructors:

concept conjunction (⊓) and concept negation (¬). Most DL languages also pro-

vide a restricted quantification, in terms of universal and existential restrictions

on roles. In addition to constructors that allow one to form complex concepts and

roles, DL also provides means for expressing axioms (logical relations) involving

concepts and roles. For example, we can specify concept inclusion of the form

Student ⊑ Person stating that every student is a person, and role inclusion such

as isBrother ⊑ isRelated stating that if two individuals are brothers, then they

Chapter 2. Background 23

are related.

A DL knowledge base (KB) typically consists of the following components:

• A TBox containing intensional knowledge (axioms and concepts) that form

the basic terminology of the KB. The axioms in the TBox are concept inclu-

sions of the form C1 ⊑ C2 where C1 and C2 are concepts (not necessarily

atomic).

• An RBox containing role inclusion axioms of the form R1 ⊆ R2 where R1 and

R2 are DL Roles.

• An ABox containing extensional knowledge about the individuals in the

domain. Axioms in the ABox are of the form C(a), called concept (or type)

assertions, and R(a,b), called role assertions, where a,b are individual

names, R is a role, and C is a concept.

There are different types of TBoxes depending on the nature of the concepts

occurring in their axioms. The simplest TBox type consists of a restricted form of

concept inclusion axioms called concept definitions: sentences of the form A ⊑ C

or A ≡ C, where A is atomic. Restricting a TBox to concept definitions which

are both unique (each atomic concept occurs only once on the LHS of an inclusion

axiom) and acyclic (the RHS of an axiom cannot refer, directly or indirectly, to the

concept in the LHS) yields a definitorial TBox. On the other hand, if a TBox con-

tains axioms of the form C ⊑ D where C is non-atomic, then the axiom is called a

general concept inclusion axiom (GCI) and the TBox is called a general TBox. The dis-

tinction between definitorial and general TBoxes is important since a definitorial

TBox greatly reduces reasoning complexity. A common example of DL concept

constructors is represented by DL number restrictions. The most expressive form

is qualified number restrictions, which allow one to build the concepts > nR.C and

6 nR.C from a role R, a natural number n and a concept C. For example, qualified

number restrictions can be used to represent a father of exactly two sons:

Male ⊓ 6 2 hasChild.Male ⊓ > 2 hasChild.Male

24 Chapter 2. Background

More restricted forms are unqualified number restrictions that do not allow

one to specify what kind of concept is used as role filler in the restriction. For

example, unqualified number restrictions can be used to denote a father of exactly

two children:

Male ⊓ 6 2 hasChild ⊓ > 2 hasChild

Finally, an important feature of DL is the support for datatype, i.e., support for de-

scribing concepts using numbers, strings, regular expressions, IP addresses, etc.

The main approach is to equip DL with an interface to concrete domains, together

with a set of built-in predicates which are associated with that interface. The in-

terface is created by using a new type of roles, called datatype (or concrete) roles,

which links abstract objects from the DL domain with datatype predicates from

the concrete domain. Also, new concept constructors related to these datatype

roles is added. For example, we can denote the set of all people who are more

than 18 years old using a datatype role: ∃age. > 18. Since concrete domains are

important for the purposes of this thesis, in the next section we formally present

their definition and properties.

2.2.2 Syntax and Semantics

In the following the syntax and the semantics of the ALC description logics is

proposed [6].

C, D ::= A | ⊤ | ⊥ | ¬C | C ⊓ D | C ⊔ D | ∀R.C | ∃R.C

The Description Logics ALC is based upon a set CN of concept names A (in-

cluding ⊤ and ⊥), a set RN of role names R, and a set IN of individual names

a. The concepts of the language are constructed by concept names A, role names

R, the connectives ⊓, ⊔ and ¬, and the quantifiers ∀ and ∃. Every concept name

A ∈ CN is an ALC-concept. If R is a role name and C, D are ALC-concepts, then

¬C, C ⊓ D, C ⊔ D,∀R.C,∃R.C are ALC-concepts.

Chapter 2. Background 25

In order to define a formal semantics of ALC-concepts, we consider interpreta-

tions I = (∆I , ·I) that consist of a non-empty set ∆I (the domain of the interpre-

tation) and the interpretation function ·I which assigns to every atomic concept

A a set AI ⊆ ∆I , to every atomic role R a binary relation RI ⊆ ∆I × ∆I and to

every individual a an element aI ∈ ∆I . The interpretation function is extended to

concept descriptions by the following inductive definitions:

⊤I = ∆I

⊥I = ∅
(¬C)I = ∆I\ AI

(C ⊓ D)I = CI ∩ DI

(C ⊔ D)I = CI ∪ DI

(∀R.C)I = {a ∈ ∆I | ∀b.(a, b) ∈ RI → b ∈ CI}

(∃R.C)I = {a ∈ ∆I | ∃b.(a, b) ∈ RI}

Table 2.2: ALC semantics.

2.2.3 Reasoning Services

When a knowledge engineer models a domain, she constructs a terminology, say

T , by defining new concepts, possibly in terms of others that have been defined

before. During this process, it is important to determine whether a newly defined

concept makes sense or whether it is contradictory. From a logical point of view,

a concept makes sense if there is some interpretation that satisfies the axioms of

T (that is, a model of T) such that the concept denotes a nonempty set in that

interpretation. A concept with this property is said to be satisfiable with respect

to T and unsatisfiable otherwise. Checking satisfiability of concepts is a key infer-

ence. As we shall see, a number of other important inferences for concepts can be

reduced to the (un)satisfiability. For instance, in order to check whether a domain

model is correct, or to optimize queries that are formulated as concepts, we may

want to know whether some concept is more general than another one: this is

26 Chapter 2. Background

the subsumption problem. A concept C is subsumed by a concept D if in every

model of T the set denoted by C is a subset of the set denoted by D. Algorithms

that check subsumption are also employed to organize the concepts of a TBox in a

taxonomy according to their generality. Further interesting relationships between

concepts are equivalence and disjointness. These properties are formally defined as

follows. Let T be a TBox.

• Satisfiability: A concept C is satisfiable with respect to T if there exists a

model I of T such that CI is nonempty. In this case we say also that I is a

model of C.

• Subsumption: A concept C is subsumed by a concept D with respect to T if

CI ⊆ DI for every model I of T . In this case we write C ⊑T D or T |= C ⊑
D.

• Equivalence: Two concepts C and D are equivalent with respect to T if CI =

DI for every model I of T . In this case we write C ≡T D or T |= C ≡ D.

• Disjointness: Two concepts C and D are disjoint with respect to T if CI ∩
DI = ∅ for every model I of T .

Chapter 2. Background 27

2.3. The Semantic Web and OWL

The current Web is built on HTML, which describes how information is to be

displayed. While computers are able to parse Web pages for layout and routine

processing, they are unable to process the meaning of their content. The Seman-

tic Web [9] can be defined as an extension of the current Web in which meaning

is added to resources so that machines are allowed to understand them better.

This new architecture is based on the annotation of web documents with addi-

tional semantic data. In these last years a number of new languages have been

proposed in order to carry out this task. XML is the basic language on which

the Semantic Web is based. The most important Recommendations proposed by

W3C specifically designed for the next generation of the Web are the Resource

Description Framework (RDF) [62] and the Web Ontology Language (OWL) [25]

which are build respectively on top of XML and RDF itself. Briefly:

• RDF is the W3C recommendation for the creation of metadata about re-

sources. With RDF one can make statements about a resource in the form of

a subject-predicate-object expression. The described resource is the subject

of the statement, the predicate is a specified relation that links the subject

and the object that is the value assigned to the subject through the predicate.

• OWL is the W3C recommendation for the creation of new ontology op-

timized for the web. The Web Ontology Language OWL is a semantic

markup language for publishing and sharing ontologies on the Web. OWL

is developed as a vocabulary extension of RDF and it is derived from the

DAML+OIL Web Ontology Language. Essentially, with OWL one can de-

scribe a specific domain in terms of class, properties and individuals. It has

three increasingly-expressive sublanguages: OWL Lite, OWL DL and OWL

Full. An overview of the OWL language is presented in Section 2.3.1.

A number of other different languages have been developed around RDF and

OWL such as SPARQL for asking and answering queries against RDF graphs,

28 Chapter 2. Background

Figure 2.3: Semantic Web Layer Cake.

SKOS that provides a model for expressing the basic structure and content of

concept schemes (such as taxonomies and controlled vocabularies) and SWRL a

proposal for a semantic web rules language combining sublanguages of OWL

(specifically OWL DL and OWL Lite) with the rule markup language RuleML.

The technologies specifically developed for Semantic Web have been applied in

many different contexts, as e-learning. The architecture of the Semantic Web is

depicted in 2.3 and is usually referred to as Semantic Web Layer Cake.

2.3.1 The Ontology Web Language

The Web Ontology Language (OWL) [25] is a set of eXtensible Markup Language

(XML) elements and attributes, with well defined semantics, that are used to

define a vocabulary in terms of classes and their relationships. There are three

species of OWL:

• OWL-Lite has limited expressiveness and is suitable for simple class hierar-

chies and constraints. Cardinality is restricted to values of 0 or 1.

Chapter 2. Background 29

• OWL-DL supports description logics [Baa03] and automated reasoning and

is the OWL species used throughout this thesis. OWL-DL has maximum

expressiveness while maintaining computational completeness (i.e., all con-

clusions are guaranteed) and decidability (i.e., all conclusions finish in a fi-

nite time). OWL-DL includes all language constructs but certain constructs

can only be used under certain restrictions (e.g., a class cannot be an in-

stance of another class).

• OWL-Full has the most expressiveness and syntactic freedom (e.g., a class

may be treated simultaneously as a collection of individuals and as an in-

dividual itself), but offers no computational guarantees and therefore, does

not support automated reasoning.

2.3.2 OWL-DL Ontologies

In this section we provide an overview of the OWL-DL ontology language since

it is the one that is currently considered standard language in the development of

Ontologies. All the images provided in this Section have been presented in [42].

Components of OWL-DL Ontologies

An OWL ontology consists of three main components: (i) Individuals, (ii) Prop-

erties and (iii) Classes

An Individual (i.e., Instance) is a constant in Description Logic and represents

an object in the domain of discourse in OWL. OWL-DL, being based on Descrip-

tion Logics, does imposed the Unique Name Assumption. This means that just

because two names are different in OWL-DL does not mean they refer to differ-

ent individuals. Two different OWL-DL class names, for example, may refer to

the same individual. Therefore, it must be explicitly stated in OWL-DL whether

individuals are the same as each other or different from each other. An example

of some individuals is shown in Figure 2.4.

30 Chapter 2. Background

Figure 2.4: Individuals in OWL.

A Property is role or binary predicate in Description Logic and represents a

binary relation in OWL that links two individuals together. Every OWL property

has a specified domain and a range, where a property links an individual from

its domain to an individual in its range.In Figure 2.5, the property hasSibling

links the individual Matthew to the individual Gemma. Properties can have an

inverse. For example, the inverse of hasOwner is IsOwnerOf. Functional prop-

erties are limited to having a single value. Properties can also be symmetrical or

transitive. There are three types of properties in OWL:

1. Object properties link an individual to an individual. For example, Figure

2.6(a) shows an object property hasSister linking the individual Bob to

the individual Alice.

2. Datatype properties link an individual to an XMLS datatype value or an

RDF literal. For example, Figure 2.6(b) shows a datatype property hasAge

linking the individual Bob to the data literal ’28’ which has type xsd:Integer.

3. Annotation properties meta-data on the model which may be added to

classes, individuals or properties and are not instantiated with individu-

als. For example, Figure 2.6(c) shows an annotation property dc:creator

linking the individual Thesis to the data literal (string) “Bob”.

Chapter 2. Background 31

Figure 2.5: Properties in OWL.

(a) Object Property (b) Datatype Property (c) Annotation Property

Figure 2.6: Properties in OWL.

A Class is a concept or unary predicate in Description Logic and represent a set

of individuals in OWL that are defined using formal descriptions that state pre-

cisely the requirements for membership in the class. For example, in Figure 2.7,

the class Person contains the individuals Matthew and Gemma, the class Pet

contains Fluffy and Fido, and the class Country contains Italy, England

and USA. Classes are concrete representations of concepts and may be organized

in a superclass, subclass hierarchy called taxonomy. Subclasses special-

ize, or are subsumed by, their superclasses. Consider, for example, the classes

Animal and Cat where Cat may be a subclass of Animal so that Animal is the

superclass of Cat. This says that: (1) all cats are animals, (2) all members of the

class Cat are also members of the class Animal, and (3) being a Cat implies being

an Animal. One of the key features of OWL-DL is that this subsumption relation-

ship can be automatically computed by a reasoner. OWL classes are essentially

descriptions that specify the conditions that must be satisfied by an individual

32 Chapter 2. Background

Figure 2.7: Properties in OWL.

for that individual to be a member of a particular defined or primitive class.

Reasoning in OWL-DL

Reasoning in OWL-DL is based on the Open World Assumption (OWA), and is

often referred to as Open World Reasoning (OWR). OWA means that it cannot

be assumed that something does not exist until it has been explicitly stated that it

does not exist. In other words, just because something has not been stated as true,

it cannot be assumed to be false. Instead, it must be assumed that the knowledge

has just not yet been added to the knowledge base.

2.3.3 An Example of Semantics Supporting Interoperability: Se-

mantic Web Services

Current XML-based Web service technology provides limited support in mech-

anizing service discovery and invocation, and their integration and composi-

tion. The vision of semantic Web services is to describe the various aspects of

a Web service using explicit, machine-understandable semantics, enabling the

Chapter 2. Background 33

automatic location, combination and use of Web services. Approaches from the

area of semantic Web are being applied to Web services in order to keep the inter-

vention of the human user to the minimum. Semantic markup can be exploited

to automate the tasks of discovering services, executing them, composing them

and enabling interoperation between them [63].

A number of different initiatives are growing around the Semantic Web ser-

vice architecture i.e. W3C Semantic Web Services Interest Group1, Semantic Web

Services Initiative Architecture Committee (SWSA)2, Large Scale Distributed In-

formation System project3 and Web Service Modeling Ontology working group4.

Moreover, different frameworks have been proposed to design the overall

conceptual model. The most interesting projects addressing this point are the

ones proposed in [66] [15] [32]. All these projects identify the following major

phases:

• Automatic Web service discovery: Automatic Web service discovery involves

automatically locating Web services that provide a particular service and

that accomplish to requested properties. A user might require, for example,

“Find a service that sells train tickets between Rome and Milan and that

accepts payment by VISA credit card.” Currently, a human must perform

this task by first using a search engine to find a service and then either read-

ing the Web page associated with that service or executing the service to see

whether it accomplishes to the requested properties. With semantic markup

of services, one can specify the information necessary for Web service dis-

covery as computer-interpretable semantic markup at a service registry and

an (ontology-enhanced) search engine can automatically locate appropriate

services.

• Automatic Web service execution: Automatic Web service execution involves a

1http://www.w3.org/2002/ws/swsig/
2http://www.daml.org/services/swsa/
3http://lsdis.cs.uga.edu/
4http://www.wsmo.org/

34 Chapter 2. Background

computer program or agent automatically executing an identified Web ser-

vice. A user could request, “Buy me a train ticket from www.worldtrain.com

from Rome to Milan on 20 February 2009”. To execute a particular service

on todays Web, such as buying a train ticket, a user generally must go to the

Web site offering that service, fill out a form, and click a button to execute

the service. Alternately, the user might send an http request directly to the

service URL with the appropriate parameters encoded. Both cases require

a human to understand what information is required to execute the service

and to interpret the information the service returns. Semantic markup of

Web services provides a declarative, computer-interpretable API for exe-

cuting services. The markup tells the agent what input is necessary, what

information will be returned, and how to execute, and potentially interact

with, the service automatically.

• Automatic Web service composition and interoperation: Automatic Web service

composition and interoperation involves the automatic selection, composi-

tion, and interoperation of appropriate Web services to perform some task,

given a high-level description of the tasks objective. A user might say,

“Make the travel arrangements for SACMAT 2009 conference”. Currently,

if some task requires a composition of Web services that must interoperate,

the user must select the Web services, manually specify the composition,

ensure that any software for interoperation is custom-created and provide

the input at choice points. With semantic markup of Web services, the in-

formation necessary to select, compose, and respond to services is encoded

at the service Web sites. One can write software to manipulate this markup,

together with a specification of the tasks objectives, to automatically exe-

cute the task. Service composition and interoperation leverage automatic

discovery and execution.

In order to achieve such goals some general assumption has to be introduced.

First of all, services can access and interpret Web published ontologies, and can

Chapter 2. Background 35

communicate using messages whose content is represented, or can be interpreted,

in terms of published ontologies. Service providers publish semantic descriptions

of their service capabilities and interaction protocols that can be interpreted by

prospective consumers.

The potential benefits of Semantic Web services have led to the establishment

of an important research area of interest to both academia and industry. Several

initiatives have been proposed for semantically annotating Web services extend-

ing the conceptual model given above. Each of such approaches provides differ-

ent descriptions of Web services and their related aspects that bring a different

kind of support for discovery and composition.

36 Chapter 2. Background

2.4. Ontology Matching

In this Section we provide background notions about the ontology matching prob-

lem and the most interesting ontology matching techniques. We conclude the

Section with a comparative table (Table 2.3) which lists the features of each one of

the reviewed approach. The information provided in this Section are taken into

account in Chapter 6 when considering the ontology matching algorithm that is

most eligible in our context. This Section is organized as follows: in Section 2.4.1

we provide the motivations behind ontology matching, in Section 2.4.2 we give

a formalization of the problem whereas in Section 2.4.3 we propose a review of

state of the art techniques.

2.4.1 Overview

Schema matching aims at determining relations between entities of two different

input schemas. This task is a research area in a number of different domains.

Examples are data warehouses, e-commerce, database integration and more re-

cently Semantic Web. Like the Web, the semantic web [9] will be distributed and

heterogeneous. In addiction, well defined information is added in order to allow

interoperability between software agents involving a minimal human efforts. The

semantic interoperability over the next Web generation will be grounded in the

use of ontologies. An ontology typically provides a vocabulary that describes a

domain of interest and a specification of the meaning of terms used in the vocab-

ulary.

As it has been introduced above, in the idea of its supporters, the Semantic

Web will be distributed and heterogeneous. Consequently, the aim of the Seman-

tic Web community is not to create a huge, comprehensive knowledge base but

to obtain a number of different, partially overlapping ontologies. Each system

based on Semantic Web technologies is expected to develop its own ontology

either created from sketch or composed by exploiting some other ontology. In or-

der to grant semantic interoperability between all this systems, it is necessary to

Chapter 2. Background 37

provide mapping techniques between ontologies that are defined on overlapping

domains.

2.4.2 Ontology Matching: Formalizing the Problem

Following the approach proposed in [51], it is necessary to clarify the meaning of

mapping with respect to other concepts such as aligning or merging. Alignment

is the process whereby two ontologies are aligned one to the other. This means

that the ontologies (or at least one of the ontologies involved into the alignment

process) will be modified. Mapping could be used to solve problems as alignment

but it does not aim to modify the ontologies. Merging, on the contrary, is the task

that taking in input two schemas returns a reconciled schema. Even for merging,

a mapping provide the basic building on which a technique can be created but the

aims are different. An ontology mapping is the association between entities that

belong to different ontologies along with a confidence score representing their

similarity.

Following the definition given in [80] we formally define a mapping element

as follows:

Definition 2.1 A mapping element is the 5-tuple 〈id, e, e ′, n, R〉 where:

• id: is a unique identifier of the given mapping element;

• e and : are the entities of the first and the second ontology respectively;

• n: is a confidence measure in some mathematical structure (typically in the [0, 1]);

• R: is a relation holding between the entities e and.

A mapping element maps the element e belonging to O to element e ′ belong-

ing to O ′. An ontology matching between O and O ′ is a set of mapping elements

in which e ∈ O and e ′ ∈ O ′. The ontology matching problem is the problem of find-

ing the set of mapping element between some input ontologies that detect all the

overlapping entities.

38 Chapter 2. Background

Figure 2.8: Categories of schema matching techniques

In these years a number of different approaches have been proposed to solve

the ontology matching problem. Here is defined a classification model so that

each involved technique can be categorized. By this way an implicit structure in

which the reviewed approaches can be plugged in is offered. The just presented

classification model was proposed in [77] and enhanced in [80]. It is reported here

in Figure 2.4.2.

The overall classification can be read both in descending (following on how

the techniques interpret the input information) and ascending manner (focusing

Chapter 2. Background 39

on the kind of manipulated objects). Moreover, ontology matching approaches

could be divided into local methods and global methods. Local methods are the

basic ones and enable to measure the similarity correspondence at a local level

i.e. given a matching element 〈id, e, e ′, n, R〉 for the specific R, the value of n is

computed taking into account only the features of the elements and not working

at the global scale of ontologies. On the contrary, global methods work on the

results returned by local methods combining them and considering the ontology

in its totality.

For these reasons a description of principal local methods is given and only

the ascending classification of the presented model is considered. An explanation

of the main methods is given below. Semantic methods are not taken into account

because they are not used in the reviewed approaches. Terminological methods

compare strings. They can be applied to the name, the label or the comments

concerning entities in order to find the ones with which are similar. This class

could be divided into:

• String-based methods: these approaches take advantage of the structure of

the string (as a sequence of letters). A simple string-based method example

is the string equality which returns 0 if the strings are not the same and 1

if they are the same. Formally, String equality is a similarity σ : S × S →

[0, 1] such that ∀x, y ∈ S, σ(x, x) = 1 and if x 6= y, σ(x, y) = 0. Where

S is the set of strings. A more meaningful example is Substring similarity.

Substring similarity is a similarity σ : S × S→ [0, 1] such that ∀x, y ∈ S let t

be the largest common substring of x and y and σ(x, y) =
2 | t |

| x | + | y |
. This

definition can be used for building function based on the largest common

prefix or largest common suffix.

• Language-based methods: this approach relies on using Natural Language

Processing techniques to find associations between instances of concepts

or classes. An example of such method is the similarity measure proposed

by Resnik [citation]. Resnik semantic similarity makes use of an external re-

40 Chapter 2. Background

source in which semantically relations among terms are defined. Given two

terms s and t and a partially ordered synonym resource 〈Σ,6〉 provided

with a probability π, Resnik semantic similarity is a similarity σ : S × S →

[0, 1] such that: σ(s, t) = maxk∈S(s,t)(−log(π(k))). Where k is a concept of

Σ and S(s, t) ∩ Σ so that contains the concepts that subsume both s and t.

Intuitively π(k) provides the probability of encountering such concept k.

Basically, this equation simply means that we search for a concept k, with

maximum information content i.e. with an high value of π(k), that sub-

sumes both s and t.

Structural methods compare the entity structure instead of comparing their

names or identifiers. This comparison can be extended considering methods that

take into account the internal structure of an entity (attributes or properties) and

whose that consider the similarity between related entities.

• Methods based on the internal structure of entities use criteria such as the

range of their properties (attributes and relations), their cardinality, and the

transitivity and/or symmetry of their properties to calculate the similarity

between them.

• Concerning methods based on the external structure, the similarity compar-

ison between two entities (belonging to different ontologies) can be based

on the position of entities within their hierarchies. If two entities from two

ontologies are similar, their neighbors might also be similar.

Extensional-based methods compare the extensions of classes. The easiest way

to compare classes A and B when they share features it is to test their intersection.

The intersection between two classes is defined as the set of common features i.e.

their set of instances. Basically, classes are very similar when A∩B = A = B while

when A ∩ B = 0 the classes are very different. An example of extensional based

similarity measure is Jaccard Similarity: Given two sets A and B, let P(x) the

probability of a random instance to be in set X, the Jaccard similarity is defined

as: σ(A, B) =
P(A ∩ B)
P(A ∪ B)

.

Chapter 2. Background 41

Now that an overview of the mapping problem is given, in Figure 2.4.2 the

implicit structure introduced above is presented. A similar table was firstly pro-

posed in [77]. Figure 2.4.2 is a simplified version of the classification proposed

there.

2.4.3 Reviewed approaches

In this section we provide some review of state of the art ontology matching tools.

Figure 2.3 shows the classification of the reviewed approaches according to the

categories introduced in previous section.

Anchor-PROMPT.

Anchor-PROMPT presented in [74] is an ontology merging and alignment tool

with a sophisticated prompt mechanism for possible matching terms. The anchor-

PROMPT is a hybrid alignment algorithm which takes as input two ontologies,

(internally represented as graphs) and a set of anchors-pairs of related terms,

which can be identified using string-based techniques, using user definition, or

another matcher computing linguistic similarity. Then the algorithm refines them

by analyzing the paths of the input ontologies limited by the anchors in order to

determine terms frequently appearing in similar positions on similar paths. Fi-

nally, based on the frequencies and a user feedback, the algorithm determines

matching candidates.

COMA

COMA (COmbination of MAtching algorithms) proposed in [26] is a composite

schema matching tool. It provides an extensible library of matching algorithms,

a framework for combining obtained results and a platform for the evaluation

of the effectiveness of the different matchers. Matching library is extensible, and

as from it contains 6 elementary matchers, 5 hybrid matchers, and one reuse-

oriented matcher. Most of them implement string-based techniques as a back-

42 Chapter 2. Background

ground idea; others share techniques with Cupid (thesauri look-up, etc.); and

reuse-oriented is a completely novel matcher, which tries to reuse previously ob-

tained results for entire new schemas or for its fragments. Schemas are internally

encoded as DAGs, where elements are the paths. This aims at capturing contexts

in which the elements occur. Distinct features of COMA tool in respect to Cupid,

are a more flexible architecture and a possibility of performing iterations in the

matching process

Cupid

Cupid proposed in [59] implements a hybrid matching algorithm comprising lin-

guistic and structural schema matching techniques, and computes similarity co-

efficients with the assistance of a domain specific thesauri. Input schemas are

encoded as graphs. Nodes represent schema elements and are traversed in a

combined bottom-up and topdown manner. The matching algorithm consists

of three phases and operates only with tree-structures to which non-tree cases

are reduced. The first phase (linguistic matching) computes linguistic similar-

ity coefficients between schema element names (labels) based on morphologi-

cal normalization, categorization, string-based techniques (common prefix, suffix

tests) and a thesauri look-up. The second phase (structural matching) computes

structural similarity coefficients which measure the similarity between contexts

in which basic schema elements occur. The third phase (mapping elements gen-

eration) computes weighted similarity coefficients and generates final alignment

by choosing pairs of schema elements with weighted similarity coefficients value

higher than a fixed threshold.

GLUE

GLUE proposed in [27] employs machine learning techniques to find mappings.

Given two ontologies, for each concept in the first ontology GLUE finds the most

similar concept in the second one using probabilistic definitions of several prac-

tical similarity measures. In addition to this, GLUE also uses multiple learning

Chapter 2. Background 43

strategies, each of which exploits a different type of information either in the data

instances or in the taxonomic structure of the ontologies. The employed sim-

ilarity is the joint probability distribution of the concepts involved, so instead

of committing to a particular definition of similarity, GLUE calculates the joint

distribution of the concepts, and lets the application use the joint distribution to

compute any suitable similarity measure. The overall process could be divided

into three main steps:

1. learning distributions: it learns the joint probability distributions of classes of

each ontologies;

2. similarity estimation: the system estimates the similarity between two classes

in function of their joint probability distributions;

3. relaxation: produces an alignment from the similarity matrix by using heuris-

tic rules in order to choosing the more likely correspondences.

Quick Ontology Mapping

The approach presented in [30] is based on the efficiency / efficacy trade off eval-

uation: the quality of matching algorithm could be slight reduce to obtain a great

improvement of efficiency. This fact allows QOM to produce mapping elements

fast, even for large-size ontologies. However, due to the efficiency requirements

the use of some rules is restricted. The overall process can be divided as follows:

1. QOM uses RDF triples as features;

2. Instead of comparing all entities of the first ontology with all entities of

the second ontology, QOM uses heuristics to lower the number of candi-

date mappings, which is a major problem for run-time complexity. In this

dynamic programming approach it only chooses promising candidate map-

pings.

44 Chapter 2. Background

3. The actual similarity computation is done by using a wide range of similar-

ity functions [30]. The similarity computation was disburdened by remov-

ing extremely costly feature-measure combinations such as the comparison

of all subclasses of two concepts.

4. These individual measures are all used as input to the similarity aggre-

gation. Instead of applying linear aggregation functions, QOM applies a

sigmoid function, which emphasizes high individual similarities and de-

emphasizes low individual similarities.

5. From the similarity values we derive the actual mappings. A threshold to

discard spurious evidence of similarity is applied. Further mappings are

assigned based on a greedy strategy that starts with the largest similarity

values first.

6. Through several iteration the quality of the results rises considerably. The

returned output is a mapping table between the input ontologies.

2.4.4 Falcon-AO

Falcon-AO [48], [45] is defined in [48] as an automatic tool for aligning ontologies.

There are two matchers integrated in Falcon-AO: one is a matcher based on Lin-

guistic Matching for Ontologies, called LMO; the other is a matcher based on Graph

Matching for Ontologies, called GMO and introduced in [44] by the same authors.

In Falcon-AO, GMO takes the alignments generated by LMO as external input

and outputs additional alignments. Reliable alignments are gained through LMO

as well as GMO according to the concept of reliability. The reliability is obtained

by observing the linguistic comparability and structural comparability of the two

ontologies being compared. Figure 2.9, depicts the Falcon-AO main components.

Chapter 2. Background 45

Figure 2.9: The FALCON-AO architecture.

Linguistic Matching for Ontologies

As is known, linguistic matching plays an important role in matching process.

Generally, linguistic similarity between two entities relies on their names, labels,

comments and some other descriptions. The LMO combines two different ap-

proaches to gain linguistic similarities: one is based on lexical comparison; the

other is based on statistic analysis.

In lexical comparison, we calculate the edit distance between names of two

entities and use the following function to capture the string similarity (denoted

by SS):

SS = 1/e

(

ed
s1.len + s2.len − ed

)

Where ed denotes the edit distance between s1 and s2; s1.len and s2.len de-

note the length of the input strings s1 and s2, respectively. In statistic analysis, we

46 Chapter 2. Background

use the algorithm of [76] based on the Vector Space Model (VSM) in our imple-

mentation. Given a collection of documents, we denote N the number of unique

terms in the collection. In VSM, we represent each document as a vector in an

N-dimensional space. The components of the vector are the term weights as-

signed to that document by the term weighting function for each of the N unique

terms. Clearly, most of these are going to be 0, since only a few of the N terms

actually appear in any given document. In our scenario, we construct a virtual

document for each of the ontology entities (classes, properties and instances).

The virtual document of an entity consists of “bag of terms” extracted from the

entity’s names, labels and comments as well as the ones from all neighbors of this

entity. Once the virtual document is constructed it is possible to define a similar-

ity between documents, and thus between ontology elements, using the cosine

distance by taking the vectors’ dot product.

DS = N · Nt

The two methods described above will both take effect in ontology match-

ing. In our implementation, we combine them together, and use the following

equation to calculate the final linguistic similarity

LinguisticSimilarity = wDSDS + wSSSS

Where wDS and wSS are weights associated to respectively the statistical dis-

tance (or document similarity) and the string similarity. In [48] the author assign

to wDS the value 0.8 and the value 0.2 to wSS.

Graph Matching for Ontologies

Another important component in Falcon-AO is GMO, which is based on a graph

matching approach for ontologies. It uses directed bipartite graphs to represent

ontologies and measures the structural similarity between graphs by a new mea-

surement. Details of the approach are described in [44] The main idea of GMO is

Chapter 2. Background 47

as follows. Similarity of two entities from two ontologies comes from the accu-

mulation of similarities of involved statements (triples) taking the two entities as

the same role (subject, predicate, object) in the triples, while the similarity of two

statements comes from the accumulation of similarities of involved entities of the

same role in the two statements being compared.

Usually, GMO takes a set of matched entity pairs, which are typically found

previously by other approaches, as external mapping input in the matching pro-

cess, and outputs additional matched entity pairs by comparing the structural

similarity. Our previous experiments showed that GMO were irreplaceable when

there was little gain from lexical comparison. In addition, GMO can be inte-

grated with other matchers. While using GMO approach to align ontologies,

there should be another component to evaluate reliability of alignments gener-

ated by GMO.

Linguistic vs. Structural Comparability

Given two ontologies to be aligned, GMO always tries to find all the possible

matched entity pairs. However, how to evaluate the reliability of these matched

entity pairs is still a problem. As mentioned above, another component is needed

to select more reliable matched entity pairs by using other information. In Falcon-

AO, we use a simple approach to observe the reliability of matched entity pairs

output by GMO, and select more reliable matched entity pairs to the users. The

approach is based on the measure of linguistic comparability (LC) and structural

comparability (SC) of two ontologies to be aligned. Given two ontologies O1, O2

to be aligned, the linguistic comparability (LC) of O1 and O2 is defined as follows:

LC = M
√

NO1
· NO2

Where M denotes the number of entity pairs with similarity larger than c and

c is an experience value; NO1
and NO2

represent the number of named entities in

O1 and O2, respectively.

48 Chapter 2. Background

System Terminological Structural Extensional

Anchor-PROMPT
√ √ √

COMA
√ √

Cupid
√ √

GLUE
√

QOM
√ √ √

Falcon-AO
√ √ √

Table 2.3: Classification of reviewed approaches

We use VSM method to observe the structural comparability. The vectors V1,

V2 represent the frequency of built-in properties used in O1 and O2 and the el-

ement vij denotes the number of occurrence of built-in property pj in Oi. The

structural comparability of O1 and O2 is the cosine similarity of V1 and V2:

SC = V1 · V2

| V1 | · | V2 |

Part I

Related Work and Preliminary

Definitions

49

50

Chapter 3

Related Work

The techniques proposed in this thesis are closely related to work in the area of

access control policy analysis and policy integration.

3.1. Policy Analysis

Approaches to policy analysis can be broadly classified into two categories: (i)

those that deal with verification of properties of a single policy and (ii) those that

deal with policy similarity analysis that may involve verification of different re-

lationships such as equivalence, refinement, redundancy etc among two or more

policies.

3.1.1 Single Policy Analysis

Most approaches for single policy property analysis are based on model checking

techniques [3], [39] and [93]. Ahmed et al. [3] propose a methodology for analyz-

ing four different policy properties in the context of role-based CSCW (Computer

Supported Cooperative Work) systems; this methodology uses finite-state based

model checking. Since they do not present any experimental results, it is not clear

if their state exploration approach can scale well to policies with a very large set

of attributes and conditions. Guelev et al. propose a formal language for express-

ing access-control policies and queries [39]. Their subsequent work [93] proposes

52 Chapter 3. Related Work

a model-checking algorithm which can be used to evaluate access control policies

written in their proposed formal language. The evaluation includes not only as-

sessing whether the policies give legitimate users enough permissions to perform

their tasks, but also checking whether the policies prevent intruders from achiev-

ing some malicious goals. However, the tool can only check policies of reasonable

size.

3.1.2 Policy Similarity Analysis

Existing approaches to the policy similarity analysis are mostly based on graph,

model checking or SAT-solver techniques [35], [2], [7], [53], [58] and [69]. Koch

et al. [53] use graph transformations to represent policy change and integration,

which may be used to detect differences among policies. Such an approach sup-

ports an intuitive visual representation which can be very useful in the design of

a customized access control policy. However, it can only be used as a specification

method but not as an execution method. Backes et al. [7] propose an algorithm

for checking refinement of enterprise privacy policies. However, their algorithm

only identifies which rule in one policy needs to be compared with the rules in

the other policy. They do not provide an approach to the evaluation of condition

functions. A more practical approach is by Fisler et al. [35], who have developed

a software tool known as Margrave for analyzing role-based access-control poli-

cies written in XACML. Margrave represents policies using the Multi-Terminal

Binary Decision Diagram (MTBDD), which can explicitly represent all variable

assignments that satisfy a Boolean expression and hence provides a good repre-

sentation for the relationships among policies. Policy property verification is then

formulated as a query on the corresponding MTBDD structures. For process-

ing a similarity query involving two policies, the approach proposed by Fisler et

al. is based on combining the MTBDDs of the policies into a CMTBDD (change-

analysis MTBDD) which explicitly represents the various requests that lead to dif-

ferent decisions in the two policies. The MTBDD structure has been credited with

helping model checking scale to realistic systems in hardware verification. The

Chapter 3. Related Work 53

major shortcoming of Margrave is that it can only handle simple conditions, like

string equality matching. A direct consequence of such limitation is an explosion

of the MTBDD size when conditions on different data domains (e.g. inequality

functions) have to be represented. For example, to represent the condition time

is between 8am to 10pm, the MTBDD tool needs to enumerate all possible values

between 8am to 10pm(e.g., time-is-8:00am, time-is-8:01am, time-is-8:02am, ...).

Other relevant approaches are the ones based on SAT-solver techniques. Most

such approaches [58], [69] however only handle policy conflict detection. A recent

approach by Agrawal et al. [2] investigates interactions among policies and pro-

poses a ratification tool by which a new policy is checked before being added to a

set of policies. In [65], McDaniel et al. carry out a theoretical study on automated

reconciliation of multiple policies and then prove that this is an NP-complete

problem. In [56], Kolovski et al. formalize XACML policies by using descrip-

tion logics and then employ logic-based analysis tools for policy analysis. These

SAT-solver based approaches formulate policy analysis as a Boolean satisfiability

problem on Boolean expressions representing the policies. Such approaches can

handle various types of Boolean expressions, including equality functions, in-

equality functions, linear functions and their combinations. By construction, the

SAT algorithms look for one variable assignment that satisfies the given Boolean

expression, although they may be extended to find all satisfying variable assign-

ments. For each round of analysis or query, SAT algorithms need to evaluate

the corresponding Boolean expression from scratch. They cannot reuse previ-

ous results and are not able to present an integrated view of relationships among

policies. Most recently, Mazzoleni et al. [64] have investigated the policy similar-

ity problem as part of their methodology for policy integration. However, their

method for computing policy similarity is limited to identifying policies referring

the same attribute. Unlike aforementioned works that focus on a special case or

a certain type of policy analysis, our approach aims at providing an environment

in which a variety of analysis can be carried out. In particular, our environment is

able not only to handle conventional policy property verification and policy com-

54 Chapter 3. Related Work

parison, but also to support queries on common portions and different portions

of multiple policies. Unlike all approaches to policy similarity analysis which re-

quire extensive comparison between policies, our proposed similarity measure

is a lightweight approach which aims at reducing the searching space, that is, at

reducing the number of policies that need to be fully examined. From the view

of an entire policy analysis system, our policy similarity measure can be seen as

a tool which can act as a filter phase, before more expensive analysis tools are

applied. For completeness it is also important to mention that the problem of

similarity for documents has been investigated in the information retrieval area.

Techniques are thus available for computing similarity among two documents

(e.g. [29], [40] and [67]). However, these cannot be directly applied because of the

special structures and properties of the XACML policies.

3.2. Semantic Web-Based languages

Recently there has been a great amount of attention to how Semantic Web tech-

nologies can be used in policy systems. In particular, there have been a number of

proposals that show how to ground or express policies in a Semantic Web frame-

work [91], [50], [49] and [90]. Rei [50] is a policy specification language based

on a combination of OWL-Lite, logic-like variables and rules. It allows users to

develop declarative policies over domain specific ontologies in RDF and OWL.

Rei allows policies to be specified as constraints over allowable and obligated ac-

tions on resources in the environment. A distinguishing feature of Rei is that it

includes specifications for speech acts for remote policy management and policy

analysis specifications like what-if analysis and use-case management. The suc-

cessor of Rei is Rein [49], which is a policy framework grounded in semantic web

technologies that allows for different policy languages and supports heteroge-

neous policy systems. Rein provides an ontology for describing policy domains

in a decentralized manner and provides a reasoning engine built on top of CWM,

an N3 rules reasoner. Using Rein and CWM, the authors showed how it is pos-

Chapter 3. Related Work 55

sible to develop domain and policy language specific security systems. Rein has

been successfully used as a policy management system in the Policy AwareWeb

project [91], which in turn provides an architecture for scalable, discretionary,

rule-based access control in open and distributed environments. PeerTrust [37]

deals with discretionary access control on the web using semantic web technolo-

gies. It provides a mechanism for gaining access to secure information/services

on the web by using semantic annotations, policies and automated trust negoti-

ation. In PeerTrust, trust is established incrementally through an iterative pro-

cess which involves gradually disclosing credentials and requests for credentials.

PeerTrusts policy language for expressing access control policies is based on def-

inite Horn clauses. A distinguishing feature of PeerTrust is that it expects both

parties to exchange credentials in order to trust each other and assumes that poli-

cies are private, which is appropriate for critical resources such as military ap-

plications and e-commerce sites. Finally, KaOS Policy and Domain Services [90]

use ontology concepts encoded in OWL to build policies. These policies con-

strain allowable actions performed by actors which may be clients or agents. The

KAoS Policy Service distinguishes between authorizations and obligations. The

applicability of the policy is defined by a class of situations which definition can

contain components specifying required history, state and currently undertaken

action.

3.3. Access Control and Ontologies

The most relevant work has focused on strategies for the mapping between RBAC

and OWL [34, 52], on the integration between XACML and OWL [24]. Finin et

al. [34] have introduced ROWLBAC, a representation of RBAC in OWL. They

propose two different approaches: mapping roles to classes, and mapping roles

to values. In the first case roles are represented as class of users, and the role

dominance relation is then mapped to the subsumption relation in OWL. SoD

constraints are then mapped onto to class disjointness constraints in OWL. We

56 Chapter 3. Related Work

remark that this solution has several drawbacks and cannot be applied in the

general case. Consider two classes Di and Dj such that Di ⊆ Dj. Now suppose

that there is a SoD constraint between Di and Dj. If SoD constraints are mapped

onto class disjointness constraints, we have that DI
i ∩ DI

j = ∅. This results in an

inconsistency in the ontology since we have at the same time that Di is included

in Dj and that Di and Dj are no common values. The second solution is to map

classes onto individuals and to bind users to classes through the property role.

This solution is similar to the one adopted in our work but with a substantial

difference: in ROWLBAC constraints are modeled through specialized properties

e.g. dsod and ssod, binding roles together. This solution is more compact than

the one we have adopted in our paper; however a standard DL-reasoner is not

able to detect constraint violations and rules must be added to the ontology, thus

degrading performance. Knetchel et al. [52] have proposed an approach that ex-

ploits OWL for reasoning about RBAC authorizations. The model can support

both roles and class hierarchies; however it does not take into consideration SoD

constraints. The approach that is closer to our XACML+OWL is the one pro-

posed by Damiani et al. [24]. Their approach directly embeds RDF statements

into XACML. However, their approach does not provide any support for OWL

reasoning. Crampton [22] has proposed an extended XACML profile for RBAC

exploiting obligations and blacklists to support DSoD constraints. This approach

is similar to XACML+OWL in the use of obligations; however since in our model

we exploit ontologies, we are able to provide more expressive functionalities.

Other approaches that have different purposes but are related to the technolo-

gies adopted in XACML+OWL are by Kagal et al. [49] and by Kolovski et al. [56].

Rein [49], a general framework based on semantic web technologies, is able to

support general purpose policy systems, and for this reason it is well suited for

solving mismatches among different policy languages. Kolovski et al. [56] have

proposed a DL-based analysis tool for XACML policies. In their approach they

propose a mapping between XACML and Description Logics along with reason-

ing techniques for verifying properties of XACML policies.

Chapter 4

Policy Analysis: Preliminaries

In this chapter we analyze the issues arising from the design and development of

analysis services in a multi-domain environment. Usually, policy analysis tools

offer a number of different services that are executed on policy sets that belong to

the same domain. This assumption makes easier the definition of such services

but represents a strong limitation in the applicability of such tools. Therefore,

with the increasing popularity of distributed systems and of collaborative appli-

cations, there is the need to compare policies from multiple domains. In order to

have a better understanding of the problem we will give a formal definition of

the main issues and the preliminary notions and terminology that will be used

throughout the following chapters.

4.1. Heterogeneity in Policy Analysis

In the analysis of a policy, several information need to be taken into account. Ex-

amples of such information are the names of the subjects that are defined into the

rules, the resources that may be accessed and the actions that may be performed

by the subjects over the resources.

We refer to such data as the Vocabulary of a policy. For example, the vocab-

ulary of the policy depicted in Figure 4.1, is the set of terms:

Vocabulary(P1) = {PhDStudent,FullProfessor,TechnicalPaper,Read}

58 Chapter 4. Policy Analysis: Preliminaries

Figure 4.1: An example policy for an university policy-based access control

model.

The terms Any, Permit and Deny are keywords defined in XACML and for

this reason are not considered in the vocabulary of the policy.

Usually, the existent analysis services are defined considering just the vocab-

ulary on the policies involved in the analysis process. The general assumption is

that if the policies adopts different terms within a rule, then those rules concerns

different concepts.

This assumption is generally true when the policy analysis tools are used in a

centralized scenario. In such a case, we say that the policy vocabularies are coher-

ent with respect to each other and no further improvements to the analysis tool

are necessary. Obviously, this is not the general case. When analyzing policies

belonging to heterogeneous owners, it is crucial to make distinctions between

such inconsistencies that from now on are referred to as naming heterogeneity. We

classify the conflicts that can occur in naming heterogeneity into syntactic and

terminological variations:

• Syntactic variations arise because of the use of different character combina-

tions to denote the same term. An example is the use of TechnicalReport and

Chapter 4. Policy Analysis: Preliminaries 59

Tech Rep to denote a technical report.

• Terminological variations refer to the use of different terms to denote the same

concept. An example of terminological variation is the use of the synonyms

Report and Study to refer a a written document describing some research

results.

Usually, the two categories of variations described above can be handled us-

ing traditional Natural Language Processing (NLP) techniques such as look up

tables and external linguistic resources. Specifically, look up tables enumerate

the possible ways in which the same term can be written by using different char-

acter combinations and, thus, can be exploited when dealing with syntactic vari-

ations. Instead, to detect terminological variations, dictionaries or thesaurus such

as WordNet [31] can be exploited. Such kind of external resources are very useful

in this case since they allow to retrieve all the synonyms of a given term. Ap-

pendix A reports the details of an approach for the application on ontology-based

technologies in Digital Identity Management. Moreover, some detailed results on

naming heterogeneity issues have been reported in [10]1.

4.1.1 From Vocabularies to Domains

So far, we have introduced the simple notion of policy vocabulary and how het-

erogeneities issues arising in this scenario can be solved using standard NLP

techniques. However, the solution we have introduced is far to be considered

exhaustive. It is very difficult, maybe impossible, to effectively determine all the

possible ways a concept can be represented in different systems. For this reason,

we need to take into account some additional information and thus to exploit

more powerful techniques.

A possibility is to consider not only the representation of a concept but also

the relations the concept has with other entities. For example, PhDStudent and

1In the paper an approach is proposed to solve naming heterogeneity in a Digital Identity

Management scenario

60 Chapter 4. Policy Analysis: Preliminaries

Figure 4.2: The domain of the policy P1 depicted in Figure 4.1.

FullProfessor (see Figure 4.1) are not completely decoupled concepts: they

have the common feature of belonging to the more general class of Faculty enti-

ties. Moreover, assuming the perspective of a security administrator, we may also

note that a FullProfessor is expected to have a larger set of permissions than

a PhDStudent. The latter consideration can be mapped to the role subsumption

relation in a typical Role Based Access Control (RBAC) scenario [33], [79]. All this

information represents important knowledge that must be taken into account in

the analysis of heterogeneous policies. We define the Domain of a policy the

set of the terms in the policy vocabulary enriched with the relations defined over

such terms. The domain of policy P1 shown in 4.1 is shown in Figure 4.2: the do-

main is represented as a hierarchy in which each node represent one of the policy

concept whereas each arrows is the standard subsumption relation.

Considering the knowledge modeled within a domain gives the possibility of

exploiting powerful techniques but also it raises new interesting issues. Specif-

ically, when we have two concepts modeled in two different domains we may

have additional conflicts that we refer to as semantic variations. Semantic varia-

tions are related to the use of two different concepts in different semantic schemas

to denote the same term.

Usually, the techniques that take advantage of domain analysis for solving

Chapter 4. Policy Analysis: Preliminaries 61

complex issues such as heterogeneity and interoperability are referred to as se-

mantic techniques. Such approaches have been applied in several application

domain such as multimedia [46], [18] and [87]; databases [86] and [11]; geo-

graphic information systems [36]; connectivity [88] and networks [92], [20]; Web

services [15], [63] and [32]; e-learning [73], [81] and [19]; grid [78], [38] and [83];

bio-informatics [16]; recommender systems [68], [17] and [94].

4.1.2 The Formalization of a Policy Domain

The formalization of a domain is essentially a problem of knowledge represen-

tation. Due to the issues introduced by the Semantic Web view [9], the adoption

of ontologies as a formal knowledge representation system has rapidly grown in

popularity. The notion of ontology has been defined in [13] as the formal speci-

fication of a shared conceptualization. There are several languages for the creation

of ontologies such as DAML+OIL [43], RDF Schema [14] and the Ontology Web

Language (OWL) [25] which is the W3C Recommendation formalism for the de-

velopment of ontologies over the Web.

In this thesis we use OWL as the language for formalizing a policy domain.

This choice is due to several reasons. On one hand OWL is a XML-based lan-

guage with a well defined semantics grounded on Description Logics [6]. On the

other hand OWL is a widely adopted formalism supported by a number of differ-

ent reasoning tools. Moreover, several techniques have been developed with the

purpose of finding relationships between OWL ontologies modeled on different

but related domains. Especially this last feature, known with the name of ontol-

ogy matching, is particularly interesting in our scenario since it allows us to find

similarities between concepts belonging to different semantic schemas. In the

remaining part of this section we introduce the definition of the entities of our

model related to ontologies and ontology matching. The definitions have been

defined considering the ones introduced in [61], [29], [80] and [6].

First of all we define the notion of ontology. Recalling the background section

about ontologies and ontology mapping, we have that an ontology contains two

62 Chapter 4. Policy Analysis: Preliminaries

different parts: the Terminological Box (TBox) that is the structure of the ontol-

ogy, and its Assertional Box (ABox) that is the instances of the entities (classes

and relations) defined in the TBox. In Definition 4.1 we define an ontology TBox,

the ABox is defined in 4.2 whereas the ontology is defined in 4.3

Concerning the TBox we have defined the relations between concepts in two

different sets: R and P , respectively the set of relations and properties. This dis-

tinction intercepts the difference between object properties and datatype proper-

ties in OWL.

Definition 4.1 (Terminological Box) The extensional part of an ontology, or TBOX,

is the tuple:

OT := 〈C,6C,DT ,R,6R, σR,P,6P, σP〉

where C is the set of concepts and 6C is the hierarchy defined over C. DT is the set of

datatypes. R is a set of relations, 6R is the hierarchy defined over R and σR : R→ C ×C
is the signature of R. Finally, P is a set of properties, 6P is the hierarchy defined over P
and σP : P → C × DT is the signatures of P .

An ABox is defined over entities belonging to a TBox.

Definition 4.2 (Assertional Box) The intensional part of an ontology, or ABOX, is

the tuple:

OT
A := 〈CT ,DT T ,RT ,PT , I, V, ιCT , ιDT T , ιRT , ιPT 〉

where CT , DT T , RT and PT are respectively the set of concepts, datatypes, relations and

properties defined in OT. I and V are respectively the set of individuals and of values. The

sets ιCT : CT → 2I, ιDT T : DT T → 2V, ιRT : RT → 2I×I and ιPT : PT → 2I×V are the

instantiations of CT , DT T , RT and PT respectively.

Finally, the ontology is defined as a pair of a Tbox and an ABox defined over

it.

Chapter 4. Policy Analysis: Preliminaries 63

Definition 4.3 (Ontology) An ontology is a tuple:

O := 〈OT, OT
A〉

where OT is a terminological box and OT
A is the assertional box defined over OT.

Moreover, we define the set of the entities belonging to an ontology Oi as the

set:

E(Oi) := C ∪ R ∪ P ∪ I

In Definition 4.4 we introduce the notion of a mapping element following the

approach proposed in [80]:

Definition 4.4 (Mapping Element) Given two ontologies Oi and Oj, a mapping ele-

ment is a tuple:

〈eOi
, eOj

, s〉

where eOi
and eOj

are entities of ontologies Oi and Oj respectively and s is a confidence

measure in some mathematical structure (typically in the range [0, 1]);

An ontology matching is then defined as a set of mapping elements.

Definition 4.5 (Ontology Matching) Given two ontologies Oi and Oj, an ontology

matching is a set πOi,Oj
of mapping elements such that: if 〈eOi

, eOj
, s〉 ∈ πOi,Oj

∧

〈eOi
, e′Oj

, s′〉 ∈ πOi,Oj
then eOj

= e′Oj
and s = s′.

Definition 4.5 is very general and does not specify a unique procedure for

obtaining a mapping between two ontologies. As we have introduced in the

background section, several matching techniques have been proposed. Each such

approach has some advantages and disadvantages, most of which related to the

trade off between performance and mapping accuracy. However, most approaches

provide mappings that reduce to the general form introduced in Definition 4.5.

We discuss the specific ontology matching algorithm used in EXAM-S in Chapter

6. In the rest of this section we use the symbol πOi,Oj
as one of the possible ontol-

ogy matching computed between ontologies Oi and Oj regardless to the specific

implementation.

64 Chapter 4. Policy Analysis: Preliminaries

4.2. Dealing with Heterogeneous and Partial Knowl-

edge

The computation of a policy vocabulary is a simple task since can be reduced to

the enumeration of all attribute names and values appearing in the policy. In-

stead, when working with the domain of a policy, we have to take into consid-

eration also the relations between those terms. If policy attributes are directly

mapped to ontology concepts then the process of obtaining the Domain of a pol-

icy is trivial since we just need to access the associated ontology.

4.2.1 Ontology Merging

One of the key feature in the development of modern ontologies is “reusability”.

The reason is that usually, the development of an ontology, is a complex, time-

consuming and error-prone task. Moreover, is quite common to have different

ontologies that model a partially overlapping domain. Hence, is usually a good

practice (when possible) to reuse already defined ontologies instead of creating

new ones2.

For this reason, in considering ontology-based policy, more complicated sce-

narios may arise. For example we may have heterogeneous knowledge, that is

when the same policy use concepts belonging to different ontologies. This may

represent an additional problem since it is important to verify the consistency of

those concepts and thus to align the group of ontologies exploited verifying ad-

ditional properties. We define the different ontologies that are exploited in the

policy Pi as the set Ontologies(Pi) := {Oj | ∃ eOj
∈ Vocabulary(Pi)}

This problem is usually referred to as Ontology Merging [51] and can be con-

sidered a general case of the ontology matching problem. Ontology merging is

the process of generating a single ontology from two or more existing ontologies.

A merged single ontology includes information from all source ontologies but is

2This feature is supported in OWL by the command owl:imports

Chapter 4. Policy Analysis: Preliminaries 65

more or less unchanged. The original ontologies have similar or overlapping do-

mains but they are unique and not revisions of the same ontology. The intuitive

idea is that, given ontologies Oi and Oj we aim to construct the union of entities

ei ∈ E(Oi) and ej ∈ Oj such that if ei and ej can be considered as the same element

then just one of them is added to the result ontology. For example, we may con-

sider as equivalent the pair of entities eOi
, eOj

belonging to the mapping element

〈eOi
, eOj

, s〉 such that s is greater than a certain threshold τ. Thus, in building up

the merged ontologies we can consider just one of the two entities.

Definition 4.6 (Policy Merged Ontology) Given a policy Pi its merged ontology ÕPi

is the ontology recursively defined as:

ÕPi
:= MERGE

|Ontologies(Pi)|

j=1 (Õ, Oj)

Where Oj ∈ OntologiesPi, Õ is the initial empty ontology and MERGE(Oi, Oj) is a

function that takes in input to ontologies and add the entities in eOj
∈ Oj to Oi such that

∄ 〈eOi
, eOj

, s〉 ∈ πeOi
,eOj

with s greater than an acceptance threshold τ.

It is worth noting that, according to Definition 4.6, if Ontologies(Pi) = {Oj},

that is, the concepts in Vocabulary(Pi) belong all to the same ontology, then

ÕPi
= Oj.

The ÕPi
represents the result of merging recursively all the ontologies ex-

ploited by the policy Pi. Once the merge ontology has been created than it is

possible to execute policy analysis services considering just such common knowl-

edge base.

4.2.2 Ontology Extraction

When a policy does not use semantic data, it is necessary to create a new on-

tology extracting semantic knowledge by the information that can be deduced

from the policy itself. The problem of extract meaningful knowledge by unstruc-

tured data is usually referred to as Ontology Extraction or Ontology Learning and

66 Chapter 4. Policy Analysis: Preliminaries

has been deeply investigated, especially after the introduction of the Semantic

Web paradigm. Interesting approaches have been proposed in [60], [85], [4], [82]

and [84]. In [60] the authors proposes a complex machine learning approach

for the semi-automatic creation of an ontology from generic unstructured data.

In [85], [4] and more recently in [82], the proposed approach is to extract infor-

mation using the data provided in web pages. In [85] the ontology is created ex-

tracting data from general purpose tables and finally in [84] the authors propose

an interesting approach based on Fuzzy Formal Concept Analysis for automatic

generation of ontologies on uncertainty information.

The automatic extraction of meaningful knowledge by unstructured and un-

certain data is a complex task [60]. So, most of the approaches propose some

alternative solutions. Usually, if no assumption can be made on the involved

data then the extraction process is semi-automatic. On the contrary, whenever

the data is organized in a structured fashion it is always possible to obtain more

semantic informations and, thus, create a completely automatic process for the

extraction of the knowledge base.

In our scenario, we consider data defined in XACML policies; this means that

we can exploit the explicit knowledge provided by the policy language to obtain

a first classification of terms. In doing so, we adopt the mapping XACML to

Description Logics proposed in [56]. The details of the mapping are reported in

Section 4.3.3, the key idea is that each attribute-value pair in a XACML policy can

be translated adding two entities to the extracted knowledge base: given the pair

〈attribute, value〉, the relation attribute and the concept value are added

to the ontology. In [56] the authors propose a translation between XACML and

Description Logics, in our case we work with OWL and for this reason we need to

check also the data type of the value before translating the attribute in the correct

OWL properties. In our approach we deal with Strings and all the data types

related to numbers, in future work we plan to extend this mapping for managing

more data types. In our mapping, if the value is a String then it is translated

into a new concept and the attribute become an object property. If the value

Chapter 4. Policy Analysis: Preliminaries 67

is a XML Schema number data type, no concepts are added and the attribute

become a data type property. Given a policy Pi we refer to its extracted ontology

using the symbol ÖPi
.

4.2.3 Hybrid Scenarios

The more complicated scenario is when we have together both heterogeneous

domains and partial knowledge. However, we can easily manage such scenario

by combining together the approaches defined in Definition 4.6 and in Section

4.2.2. We define the Policy Reference Ontology as follows:

Definition 4.7 (Policy Reference Ontology) Given a policy Pi its reference ontology

ȮPi
is the ontology defined as:

ȮPi
:= MERGE(ÕPi

, ÖPi
)

It important to underline that ȮPi
is a general case of both ÕPi

and ÖPi
. And

this more general definition can be applied in all of the three cases regardless the

specific category3 of the policy.

where � ∈ {=, 6=, <,6, >,>}

4.3. Trade-off between Expressivity and

Complexity

In order to define our analysis services, we need to translate an XACML policy

to a more convenient formalism. The choice of such formalism is not trivial since

it influences the efficiency and the expressivity of the services we define. In this

section we discuss in the detail the approach adopted over different formalisms.

Specifically, we analyze the translations of XACML into both Propositional Logic

3Single ontology, multiple ontology, no ontology and partial knowledge

68 Chapter 4. Policy Analysis: Preliminaries

(PL) [35], [93] and Description Logic (DL) [56]. Mappings with First Order Logic

(FOL) have been proposed as well, for example using systems like Alloy [47],

however due to the complexity of some real case policies4 FOL-based systems

are very inefficient, despite the advantage provided by powerful expressivity.

For this reason, in order to find the best trade off between expressivity and com-

plexity, we take into considerations just the mappings with Propositional and De-

scription Logic, in the remaining part of this section we give details about such

interpretations providing both weak and strong features.

4.3.1 XACML and Propositional Logic

One of the first attempt in providing efficient reasoning procedure over subsets

of the XACML language was made employing Propositional Logic. With PL it is

not possible to express all the features defined in the XACML, however it allow

efficient implementation of analysis services using structures such as binary deci-

sion diagrams (BDD). The execution of services using BDD results to be very useful

when dealing with large policy sets. In literature there are essentially two ap-

proaches based on BDD and, thus, to Propositional Logic: Margrave [35] and the

work proposed by Zhang et al. [93]. However, the model proposed by Zhang et

al. is defined over the language RW5 that is slightly different from XACML. For

example in their framework they can obtain two terminal decisions: Permit and

Deny, whereas in XACML it is possible to have also a NotApplicabile terminal.

This is the reason why they can use BDD conversely to Margrave in which a

more powerful structure is employed. For this motivations, in the remaining part

of this section we focus on the XACML-PL mapping proposed by Fisler et al..

Chapter 4. Policy Analysis: Preliminaries 69

Figure 4.3: An example MTBDD.

A closer look to Margrave

Margrave is a tool for the analysis of XACML policies. The key idea in Margrave

is to transform a XACML policy into a boolean function that associates decisions

to the incoming requests. Fisler et al. represent such boolean functions using

Multi Terminal Binary Decision Diagrams (MTBDD). In the following we detail

how a boolean function can be represented with an MTBDDs.

Let f be a boolean function such that f : Bn→B where B = {True, False}. The

function f can be represented as a Binary Decision Diagram (BDD). Each BDD is

essentially a DAG with only one source vertex and two sink vertexes representing

the values True and False. Each internal node i represents the evaluation of

the ith element of the input boolean tuple. If the internal node i is True then the

remaining n − i elements have to be evaluated according to the subtree rooted in

4In [35] Margrave is evaluated against policies with a cardinality of 50 attribute-value pairs.

Moreover, the author say that in real case scenarios each of the typical policies has 5 - 20 pairs

with an upper bound of about 100 pairs.
5Proposed by the same authors.

70 Chapter 4. Policy Analysis: Preliminaries

Figure 4.4: An example MTBDD for a simple policy.

the right child element of the ith node. Otherwise, the left branch is considered.

Conversely, if the function f assume the form f : Bn→ P , where B = {True,

False} and P is a final set of terminals, then a BDD is no more sufficient. We

remark that this is the situation of the XACML policies since they have a num-

ber n of input values that have to be evaluated and three terminals Permit (P),

Deny (D) and Not Applicable (NA). This kind of functions can be efficiently rep-

resented by MTBDDs that are nothing but BDDs in which the cardinality of the

set of terminals can be higher than two. An example of MTBDD is shown in

Figure 4.3.

Given a policy, Margrave constructs a MTBDD that represents that policy.

Each MTBDD is then queried for verifying the properties that the associated pol-

icy should satisfy. Figure 4.4 shows an example of an MTBDD representing a

simple security policy in which faculty can assign grades and students can re-

ceive grades (faculty, student, receive, assign and grades).

4.3.2 Policy Analysis Services in PL

Analysis services that are usually defined over PL are property verification queries.

A property verification is a procedure that aims to verify if the policies under in-

vestigation satisfy a certain property. In this case property verification can be

Chapter 4. Policy Analysis: Preliminaries 71

easily implemented updating the MTBDD representing the policies according to

the feature to verify. We take ad example the restriction to decision property, that

is the set of requests that yield the specified decision. To implement restriction

to decision, Margrave replaces the terminal for the given decision in the policy

MTBDD with logical true and all other terminals with logical false.

Moreover, Fisler et al., define change impact analysis on MTBDDs. Change

impact analysis is the process whereby considering together different policies it

is possible to check the changes into them effects. This service is very useful when

we would like to analyze different version of the same policies and, specifically,

the impact of a policy update.

4.3.3 XACML and Description Logic

In [56] Kolovski et al., define a framework for policy analysis providing a map-

ping with DL. This solution fits in between FOL and PL approaches. On one

hand it provides more expressiveness than PL on the other one, being DL a de-

cidable fragment of FOL, the analysis services come with a lower computation

complexity than the ones defined over FOL.

The basic unit in XACML that yields an access decision is a Rule. To capture

the behavior of XACML correctly, we need to formalize the prerequisite of the

Rule (which is the Target element), and its head (the access decision). We also

need to capture how the access decision is propagated upwards toward the root

PolicySet - for this, the rule and policy combining algorithms have to be taken

into account. While the Target element of Rules and Requests can be mapped to

a DL concept expression (we discuss this in more detail below), the interaction

of the access decision of various policy elements is difficult, if not impossible, to

do using only description logics. This is because of the semantics of the combin-

ing algorithms which requires us to use a formalism that supports preferences.

To capture the behavior of the XACML combining algorithms, we use Defeasi-

ble description logics, which is a formalism that allows for expressing defeasible

72 Chapter 4. Policy Analysis: Preliminaries

rules on top of description logics. Only a limited fragment of DDL is needed to

formalize the combining algorithm.

Mapping rules and requests

A XACML Rule is translated to a rule in R. The Target element is translated to a

DL concept expression C and becomes the antecedent of the new rule. The Effect

is mapped to an effect-literal L ∈ L and becomes the conclusion. The effect-literal

can be either Permit-P or Deny-P where P is the Policy that contains the Rule. This

new rule, denoted C→ L, is added to R. For any policy P and rules r1, r2 such that

Permit−P ∈ Con(r1) and Deny−P ∈ Con(r2), we state that r1 and r2 are conflict-

ing. The full mapping of the Target element to a DL concept expression is given

in Table 4.1. The main idea is that attribute-value pairs are mapped to existential

restrictions for example (role Developer) would be mapped to ∃ role.Developer.

We also allow for propositional combinations of attribute-value pairs. Note here

that we enforce a one-to-one mapping from attribute names and values used in

the XACML policy to their corresponding DL roles and concepts in K (we create

a DL role or a concept with the same name as the XACML attribute or value).

For the XACML construct Any, we formalize it as a disjunction where each

disjunct corresponds to an attribute. For each attribute, we create another dis-

junction from all possible attribute values for that attribute. For example, formal-

izing Any using this mapping would create 15 disjuncts (there are 3 attributes

and 5 attribute values). By assuming that the values for role, action and resource

attributes are disjoint, we can prune the search space significantly (see how the

Any occurring in the running example is mapped below).

Example 4.1 Consider the policy Pi containing the only (natural language) rule Rj: Rj =

Students cannot write and read technical papers. Rj can be mapped in DL as follows:

∃role− type.Students⊓∃res− type.TechnicalReport⊓ (∃action− type.read⊔
∃action − type.write) 7→ Deny − Pi

Chapter 4. Policy Analysis: Preliminaries 73

XACML requests are mapped in the same manner as rules, since they also

can be represented as a list of attribute value pairs. To check whether a request r

matches a rule with target T , we only need to check whether K |= π(T)(r) (equiv-

alent to instance checking in description logics).

Mapping policies and policy sets

To propagate the access decisions from Rules to the root PolicySet, we introduce

the following rules in R:

• For each XACML Rule r : (TargetDenyP), add an axiom to R, R = R ∪
{π(Target) 7→ Deny − P};

• For each XACML Rule r : (TargetDenyP), add an axiom to R, R = R ∪
{π(Target) 7→ Permit − P}

• For each policy element P and parent policy element PS introduce the fol-

lowing axioms: Permit − P 7→ Permit − PS Deny − P 7→ Deny − PS

A Policy or a PolicySet can also have a Target element. However, we can

propagate the constraints specified in Target down to Targets of its children. In

this manner, we propagate the constraints to the XACML Rule elements. Thus,

without loss of generality, we can assume that Policy and PolicySet elements have

empty Target all of the constraints are propagated down to the Target of their

XACML Rules descendants. Table 4.1 summarize the mapping details.

4.3.4 Policy Analysis Services in DL

In [56] the following services are provided:

• Constraints. We already mentioned separation of duty constraints. In addi-

tion, we can also specify more general cardinality constraints; for example,

a user cannot be a member of more than 3 security roles at a time. Property

74 Chapter 4. Policy Analysis: Preliminaries

Syntax π

R ::= (Rule T Effect) π(T) 7→ π(Effect)

Effect ::= Permit | Deny Permit-P | Deny-P

T ::= ((Sub) (Act) ((Res))) π(Sub) ⊓ π(Act) ⊓ π(Res)

Sub | Act | Res ::= Any | Fcn ⊤ | π(Fcn)

Fcn ::= AV | Fcn ∩ Fcn | Fcn

∪ Fcn | ¬ Fcn

π(AV) | π(Fcn) ⊓ π(Fcn) |

π(Fcn) ⊔ π(Fcn) | ¬π(Fcn)

AV ::= (attr-id attr-val) ∃π(attr − id).π(attr − val)

attr-id DL property corresponding

to attr − id

attr-value DL property corresponding

to attr − value

Table 4.1: The mapping function between XACML and DL

(attribute) hierarchies are allowed as well: if X is a brother-of Y, then he is a

relative-of Y.

• Policy Comparison. For two policies (or policy sets) P1 and P2 check if when-

ever P1 yields a decision α, P2 will yield α, too. If not, give a counter exam-

ple.

• Policy Verification. Check if the policy satisfies a particular policy property.

If not, give a counterexample.

• Policy Incompatibility. If for two policies P1 and P2, there cannot exist an ac-

cess request where both policies apply (yield a decision), then these policies

are incompatible.

• Policy Redundancy. For a policy and an access decision (Permit or Deny),

check whether the policy can ever satisfy that decision (or it will be always

overridden by some other policy higher up the hierarchy).

Chapter 4. Policy Analysis: Preliminaries 75

• Policy Querying. Search for policies in the document based on attribute val-

ues.

4.3.5 Results and Discussion

In this section we summarize the key features of Margrave and the DL approach

outlining weak and strong points. In Table 4.2 we briefly represents the differ-

ences between the expressivity of the two approaches.

Summarizing, Margrave represents policies using the Multi-Terminal Binary

Decision Diagram (MTBDD), which can explicitly represent all variable assign-

ments that satisfy a Boolean expression and hence provides a good representation

for the relationships among policies. Policy property verification is then formu-

lated as a query on the corresponding MTBDD structures. The MTBDD structure

has been credited with helping model checking scale to realistic systems in hard-

ware verification. The major shortcoming of Margrave is that it can only handle

simple conditions, like string equality matching. A direct consequence of such

limitation is an explosion of the MTBDD size when conditions on different data

domains (e.g. inequality functions) have to be represented. For example, to rep-

resent the condition “time is between 8am to 10pm”, the MTBDD tool needs to

enumerate all possible values between “8am” to “10pm” (e.g., “time-is-8:00am”,

“time-is-8:01am”, “time-is-8:02am”, . . .).

On the contrary, the approach proposed in [56] is based on DL. Mapping

XACML to Description Logics provide a more interesting subset of the XACML

language but it has the obvious drawback of a higher computational complexity.

The proposed mapping directly translates XACML targets into DL concepts and

attribute value pairs are translated into existential restriction. The effect of a rule

is defined over this basic building blocks and then is propagated to policy and

policy sets effects. The advantage of using Description Logic, is that it is possible

to gain significantly in expressivity but not loosing too much with respect to per-

formance as we will introduce later. However, it is not clear how their mapping

with the different semantic assumptions made in XACML and

76 Chapter 4. Policy Analysis: Preliminaries

Feature Margrave Kolovski et al.

Permit-Overrides yes yes

Deny-Override yes yes

First-Applicable yes yes

Only-One Applicable no no

Ordered-Permit-Overrides no no

Ordered-Deny-Override no no

Different attribute datatype no yes

Role Hierarchy no yes

Resource Hierarchy no yes

Continuous Domains no yes

Multi-subject request no no

Table 4.2: Differences between XACML features supported by the reviewed ap-

proaches

Concerning results in [35] the authors say that Margrave take at most 355 mil-

liseconds (ms) for the parsing of a policy and no longer than 10 ms for property

verification. Regarding the approach by Kolovski, in [54] it is showed to have

comparable time values when considering the translation of a policy and, as ex-

pected, slower performance in the property verification. However, the approach

by Kolovski et al., appear to be much more scalable with respect to Margrave.

This is due to the fact that Margrave need to discretize continuous domains into

finite sets of values each one resulting in a new node in the graph. This means

obtaining an explosions of nodes in the creation of the MTBDD and problems in

the translations of policies.

Finally, we argue that even regardless expressivity, due to the problem of

nodes explosion [56] works better in some specific situations:

• policies with predicates defined over continuous domains;

• policies with a large number of attribute value pairs;

Chapter 4. Policy Analysis: Preliminaries 77

However, Margrave is extremely fast when considering policies with a rea-

sonable numbers of pairs and for this reason is most suitable when comparing

large dataset of policies.

78 Chapter 4. Policy Analysis: Preliminaries

Part II

EXAM-S: the Model

79

80

Chapter 5

Extending XACML with Semantic Functions

In this Chapter we discuss the issue of defining new XACML function for manag-

ing information modeled within ontologies. This part of the thesis is not directly

related to the development of EXAM-S, however in Chapter 7.5 we introduce

new techniques with which we are able to perform policy analysis taking into

considerations the functions defined here.

5.1. Introduction

As we have seen in the background section, the management of data in native

XACML, is supported with low-level functions such as datatype comparison.

Because of such low-level functions it is often difficult to model some impor-

tant class of applications such as the ones requiring support for Role-Based Ac-

cess Control (RBAC). Even if XACML cannot support RBAC natively, due to its

flexibility, it can be extended to support these specialized access control models.

So far, several extensions have been proposed commonly referred to as XACML

profiles1. In particular, the XACML profile for RBAC [5] provides a mapping

between RBAC and XACML introducing new specialized policy sets. However,

the current RBAC profile does not provide any support for many relevant con-

straints, such as static and dynamic separation of duty (SoD). Extending XACML

1List of profiles currently available in XACML: http://docs.oasis-open.org/xacml/2.0/

82 Chapter 5. Extending XACML with Semantic Functions

to support such constraints, however, is an issue that requires extensions to the

XACML language, namely the introduction of specialized functions, and to the

XACML reference architecture and engine. One important requirement for such

an extended architecture and engine is to maintain the record of past accesses

in order to support dynamic SoD. It is also important to take into account the

semantics of role hierarchies with respect to the propagation of authorizations,

both positive and negative, along the role inheritance hierarchies. Supporting

such propagation and, at the same time, enforcing constraints requires some rea-

soning capabilities. Therefore, the main issue with respect to the XACML refer-

ence architecture and the engine is how to integrate such reasoning capabilities.

Because of the wide availability of semantic reasoning tools, such as the ones de-

veloped in the context of the semantic Web [9], the most suitable approach is to

couple XACML with one such tool.

In this paper we thus propose XACML+OWL, a general and powerful frame-

work that integrates XACML and OWL ontologies for supporting RBAC. Our

approach is to decouple the management of constraints, such as SoD, and RBAC

hierarchies from the specification and the enforcement of actual XACML policies.

Such an approach essentially allows to use any XACML engine without requir-

ing any extensions to it; all interactions between the XACML engine and the OWL

ontology are encapsulated inside of specialized functions, referred to as semantic

functions, that are also defined in this paper. XACML+OWL has thus been de-

signed as a two-layer framework in which constraints are modeled by an OWL

ontology, whereas policies are specified by using XACML. The two layers inter-

act through the semantic functions, that basically invoke reasoning operations

on underlying ontology and to return result of those operations to the invoking

XACML policy. Our approch has several advantages: (i) OWL ontologies have

been shown to be expressive enough for expressing security models, including

constraints [49], [56], [89] and [34]; (ii) because of the reasoning services provided

by an OWL ontology, the design and development of ontology-based XACML

policies become easier, thus leading the way to the use of semantic reasoning also

Chapter 5. Extending XACML with Semantic Functions 83

in non-RBAC policies; (iii) since the ontology is decoupled from XACML policies,

the management of constraints and policies become more flexible; (iv) different

XACML-based systems can be based on a single ontology schema, allowing for

the development of distributed and more efficient architectures as well as simpli-

fying the interoperation among heterogeneous policy models.

Important contributions of the paper are as follows:

1. We show that OWL ontologies are powerful enough to represent hierarchi-

cal RBAC and SoD constraints. As a side effect we obtain a new approach to

the mapping of RBAC onto ontologies that addresses major shortcomings

of previous mapping approaches [34] and [52].

2. We propose an extension of the XACML standard for integrating into XACML

semantic reasoning services based on the OWL ontology. Such extension is

based on the semantic functions, to retrieve and reason about the informa-

tion modeled by the ontology. As part of such extension, we extend the

reference architecture of XACML and the XACML data-flow for access con-

trol decisions with the invocation of such functions.

The remainder of the paper is organized as follows. In Section 5.2 we provide

relevant background notions. In Section 5.3 we introduce a running example to

illustrate our approach. The XACML+OWL framework is discussed in Section

5.4. We introduce our strategy for the RBAC and OWL mapping in Section 5.5

whereas details about the extended XACML policies and a complete example of

the policy enforcement process are presented respectively in Sections 5.6 and 5.7.

5.2. Background notions about RBAC

We represent a role hierarchy with a tuple 〈R,6〉, where R is the set of roles and 6

is a partial order relation over the elements of R. We represent users as elements

ui of the set of all users U. For the representation of separation of duty constraints

we follow the definition proposed by Crampton [21]: a SoD constraint is a tuple

84 Chapter 5. Extending XACML with Semantic Functions

Full Professor

Business Office Manager

Dean

Associate Professor

Assistant Professor

Figure 5.1: Role hierarchy.

〈S, (Ci, Cj), ρ〉, where: S is the scope associated with the constraint set Ci, called the

antecedent constraint set; Cj is the consequent constraint set to which the constraint

is applied; and ρ is the temporal context that can take a value in the set {s, d},

where s and d stands respectively for static and dynamic context. The differences

between a static (SSoD) and dynamic (DSoD) SoD is that a SSoD limits the entire

space of the constraint set, whereas a DSoD limits the assignment to the constraint

set during run-time. A constraint 〈S, (Ci, Cj), ρ〉 is satisfied if, whenever x ∈ S is

associated with Ci and y is associated with Cj, then (x, y) ∈ ρ. The general form of

a SoD constraint presented above can be applied to different scenarios restricting

the scope or the constraint set. For example the SSoD constraint 〈U, (Ri, Rj), s〉
specifies that the sets of users assigned to Ri and Rj must be disjoint.

5.3. Running Example

To illustrate our approach we consider a simple scenario from an academy do-

main environment. Specifically, we consider a process for submitting research

proposals. Roles in such scenario are organized according to the hierarchy shown

Chapter 5. Extending XACML with Semantic Functions 85

in Figure 5.1. Other relevant entities in our scenario are the Project resource and

the Submit, Review and Approve action. The overall process consists of the

following activities: (i) the submission of a project; (ii) its review performed by

at least two subjects; and (iii) its approval. Moreover, user-to-role assignments,

permissions, and actions must satisfy the following requirements:

• Req1: a subject cannot belong to more than one role.

• Req2: every subject in the hierarchy except the business office manager can

submit a project.

• Req3: every professor, except assistant professor can review a project.

• Req4: a subject cannot review a project he/she has submitted.

• Req5: a professor can review the same project at most one time.

• Req6: only the business office manager and the dean can approve a project;

• Req7: a subject cannot approve projects he/she has reviewed or submitted;

Req2, Req3 and Req6 constrain the privileges that can be assigned to the roles.

Req1, Req4, Req5 and Req7 specify the SoD constraints holding in our scenario.

Specifically, Req1 is a SSoD constraint whereas Req4, Req5 and Req7 are DSoD

constraints. We finally remark that the scope of the policies is limited to a single

instance of the process where the process is composed by the activities (i), (ii) and

(ii) introduced above.

5.4. The XACML+OWL Framework

The XACML+OWL framework is organized according to the three major com-

ponents (see Figure 5.2): (i) Authoring Environment, (ii) Repositories, and (iii) En-

forcement System. The Authoring Environment supports the specification of ac-

cess control policies, role hierarchies, and constraints. The Repositories store the

86 Chapter 5. Extending XACML with Semantic Functions

Function
Evaluation

Authorization
Request

Obligation
Evaluation

Obligation
Generator

Policies ConstraintsHierarchy
Role

OWL

POLICY AUTHORING

R
E

P
O

S
IT

O
R

IE
S

XACML

POLICY EVALUATION

Decision

E
N

V
IR

O
N

M
E

N
T

A
U

T
H

O
R

IN
G

S
Y

S
T

E
M

E
N

F
O

R
C

E
M

E
N

T

Figure 5.2: The XACML+OWL framework.

Chapter 5. Extending XACML with Semantic Functions 87

OWL ontology and the XACML policies. Such repositories are not directly acces-

sible to the user; however the user that can manage both repositories from the

Authoring Environment. The policies and the ontology are then exploited by the

enforcement level during the enforcement of authorization requests. Finally, the

Enforcement System contains the core XACML engine, organized according to

the XACML reference architecture, extended with additional modules for han-

dling our semantic functions and obligations. The Enforcement System receives

in input an authorization request and performs policy evaluation by querying

the ontology through the invocation of the semantic functions and the obliga-

tions. The result of the enforcement process is the final authorization decision. A

detailed discussion of the extended XACML data flow diagram is presented in

Section 5.8.

A critical module in our architecture is the obligation generator. Obligations in

our model are crucial since they are used to support DSoD constraints. Our ap-

proach to manage such constraints can best be illustrated as follows. Consider a

DSoD constraint stating that no subject can be granted both permissions pi and

pj during the same session2. Suppose a policy P1 (P2) exists which grants per-

mission pi (pj); it is obvious that if such a policy is applied and the permission is

granted to a subject s, the enforcement system must remember this information,

so that in the same session, permission pj is not granted. Our approach to “re-

member such information” is to include in the policies (P1 and P2 in this case)

an obligation that adds such information to the ontology. In our example, the

enforcement system will store the information that s has been granted pi. Now

suppose that during the same session, s issues a request to which P2 applies. The

application of such policy would then result in s receiving permission pj. As for

the case of permission pi, the execution of the obligation associated with P2 will

result in an attempt to update the ontology with the information that s has been

granted pj; such update however will fail, because of an inconsistency in the on-

tology, and thus such information will not be stored and the authorization will

2The specific notion of session is not relevant here.

88 Chapter 5. Extending XACML with Semantic Functions

be denied. Because of the relevance of obligation in enforcing constraints, the

XACML+OWL includes an obligation generator that support for the automatic

creation of obligations. Whenever a new policy is created, this module generates

the necessary obligation and updates automatically the policy.

5.5. SoD Constraints Definition using OWL Ontolo-

gies

In this section we discuss the use of OWL ontologies for the representation role

hierarchies and constraints. We would like to remark here that OWL ontolo-

gies are flexible and the solutions provided here can be easily extended for ap-

plication to different scenarios. Given a role hierarchy 〈R,6〉, we model R as

an OWL class Role,and all the roles in R as instances of this class. The 6 re-

lation is represent through the OWL ObjectProperty subRoleOf(Role,Role).

Moreover, we define subRoleOf to be transitive, thus making it an instance of

owl:TransitiveProperty class. Transitivity makes it possible for a reasoner

to infer that if subRoleOf(Ri, Rj) and subRoleOf(Rj, Rk), then subRoleOf(Ri,

Rk). For example, we model the relation between FullProfessor and AssistantProfessor

in our sample scenario by adding to the ontology the property subRoleOf(

Assistant Professor, Full Professor). For optimization purposes we

also define the property supRoleOf(Role, Role). supRoleOf(Ri, Rj) rep-

resents that Ri dominates Rj. Like subRoleOf, supRoleOf is transitive. We

also specify that subRoleOf and supRoleOf are inverse properties by adding

the owl:inverseOf construct. Pi owl:inverseOf Pj means that for every pair

(x, y) ∈ Pi, there is (y, x) ∈ Pj and vice versa. We finally represent the set of sub-

ject by the Subject class whose instances represent the subjects on which the

policies are defined. The association between a subject to a role is obtained by the

ObjectProperty hasRole(Subject,Role).

Chapter 5. Extending XACML with Semantic Functions 89

Permission

Role Subject

Resource Action

subRoleOf

hasRole

hasPermission

hasActionhasResource

Figure 5.3: OWL schema for RBAC.

5.5.1 Static Separation of Duty Constraints

Let 〈Subject, (Ri, Rj), s〉 be a role-based SSoD constraint. Representing this con-

straint in our ontology means imposing the constraint that the users that are as-

signed to Ri cannot be assigned to Rj and viceversa. In DL ontologies, given a

relation R(A, B), the set of individuals belonging to A that are associated with a

specific instance of B, say b, is represented by the class ∃R : b where : is the role

filler construct. Thus, in order to model the 〈Subject, (Ri, Rj), s〉 constraints, the

following axioms are added to the ontology:

• C′ ≡ ∃hasRole : Ri.

• C′′ ≡ ∃hasRole : Ri.

• C′ owl : disjointWith C′′.

For example, according to Req1 in our running example, the SSoD constraint

concerning full professors and assistant professors is modeled with the axiom

∃hasRole : FullProfessor owl:disjointWith ∃hasRole : AssistantProfessor.

90 Chapter 5. Extending XACML with Semantic Functions

5.5.2 Dynamic Separation of Duty Constraints

Let 〈Subject, (Ri, Rj), d〉 be a role-based DSoD constraint. We model this kind of

constraints by adopting a similar approach to the one introduced for SSoD. The

only difference is that at design time not all the assignments between subjects

and roles are known. Following [34], we create an other class of roles, called

ActiveRole. The instances of such class are all the roles that can be activated

at run-time (from now on we refer to this kind of roles as active roles). Moreover,

also the the hasRole object properties must be extended for handling also ac-

tive roles: hasRole(Subject, (Role ⊔ ActiveRole)). For example, to enforce

Req4 from our running example we add to the ontology roles Submitter and

Reviewer, and the following axiom: hasRole : Submitter owl:disjointWith

hasRole : Reviewer. The dynamic assignment of subjects to roles cannot be

handled by an OWL ontology by itself. Typically, the assignment of a user to

a dynamic role is the result of some specific administrative operations. Instead

of introducing a new specific module to handle such operations, we exploit the

obligation mechanism of XACML. The details of the approach are discussed in

Section 5.6.2.

We can also specify more complex constraints involving not only subjects, but

also actions and resources. For example, we may be interested in add a DSoD be-

tween the set of users that have reviewed a project and the set of users that can ap-

prove a project. It is worth noting that, following the above example, we may add

a constraint between the classes Reviewer and Approver. However, when the ap-

plication has a large number of resources and actions, such an approch would po-

tentially result in creating an exponential number of classes each one for each pos-

sible action-resource pair. In order to address this issue, we add three new classes:

Resource, Action, and Permission. Classes Resource and Action repre-

sent, respectively, resources and actions. The Permission class binds a user to

an action-resource. This association can be obtained through the two functional

ObjectProperties hasAction(Permission, Action), hasResource(Permission,

Resource) linking an action and a resource to a permission and the ObjectProp-

Chapter 5. Extending XACML with Semantic Functions 91

erty hasPermission(Subject, Permission) that links a subject to a permis-

sion. For example, Req7 ca be modeled by adding the following axioms:

• D′ ≡ ∃hasPerm.(∃hasAct : {Review} ⊓ ∃hasRes : {Project});

• D′′ ≡ ∃hasPerm.(∃hasAct : {Submit} ⊓ ∃hasRes : {Project});

• D′ owl : disjointWith D′′;

We remark that after the specification of a new constraint at the Authoring en-

vironment, the associated axioms are automatically generated and added to the

ontology.

5.6. XACML Policies

In XACML a policy is represented by a target, a set of rules, and a rule combin-

ing algorithm (see Section 2). The applicability of the policy to a request is then

determined by evaluating the list of attribute-value pairs provided in the request

against the conditions in the rule target. The XACML profile expresses role as a

subject attributes. Other attributes can also be associated with the subject in or-

der to support fine-grained policies. In XACML+OWL subjects are represented

as OWL individuals. The attributes with which a subject is associated are repre-

sented with both the OWL individuals and data type values related to that subject

through properties. Since the subject role is an individual associated with the sub-

ject through the hasRole property, in our model roles are represented through

subject attributes as defined in the XACML RBAC profile. However, instead of

specifying all the possible subject attributes, the request specifies just the actual

individual that represents the subject in the ontology. Then, we let the policies

specify which are the attributes they require by specifying the name of the prop-

erties associated with the individual. Specifically, we first use the attribute id to

retrieve the subject in the request context, then we apply to such subject the se-

mantic functions able to access the additional attributes required for the policy

92 Chapter 5. Extending XACML with Semantic Functions

evaluation. An example of a function is hasObjectValue(si,Pj) that takes in

input the individual si and the object property Pj and retrieves the set of individ-

uals associated with si through Pj. Such approach does not require modifications

to the policy structure nor to the attribute retrieval mechanism.

5.6.1 Semantic Functions for instances

Given an individual, there are essentially three kinds of information that can be

extracted: (i) the class the individual belongs to; (ii) the class instances with which

the individual is related through an object property; and (iii) the data values asso-

ciated with the individual through a datatype property. In order to retrieve such

information we define the following functions:

• hasObjectValue(si,Pj): it returns the set of instances associated with si

through the object property Pj;

• hasStringValue(si,Pj): it returns the set of string values associated with

si through the datatype property Pj of type String;

• hasIntValue(si,Pj): it returns the set of integer values associated with

si through the datatype property Pj of type Integer;

• relatedTo(si,Pk): it returns all the individuals associated with si through

the object property Pk;

• transitiveRelatedTo(si,Pk): it is the same as the relatedTo function

but the property given in input is the transitive object property Pk. This

means that if (si, sj′) ∈ Pk and (sj′, sj) ∈ Pk then transitiveRelatedTo

returns both sj and s ′
j.

Functions instanceOf and hasObjectValue are associated respectively with

categories (i) and (ii) introduced above. hasStringValue and hasIntValue

provide a way to retrieve the datatype values associated with the input individ-

ual. The only datatype we support are String and Integer. We plan to extend our

Chapter 5. Extending XACML with Semantic Functions 93

<Policy>

<Subject>

<SubjectMatch MatchId=‘‘string-equal’’>

<AttributeValue>Ri</AttributeValue>

<Apply FunctionId:‘‘transitiveRelatedTo’’>

<Apply FunctionId:‘‘hasObjectValue’’>

<SubjAttrDesignator AttrId:‘‘subject-id’’>

<AttributeValue>hasRole</AttributeValue>

</Apply>

<AttributeValue>supRoleOf</AttributeValue>

</Apply>

</SubjectMatch>

</Subject>

</Subject>

<Resource>

<AttributeValue>Project</AttributeValue>

<ResAttrDesignator AttrId=‘‘resource-id’’>

</Resource>

<Action>

<AttributeValue>Submit</AttributeValue>

<ActttrDesignator AttrId=‘‘action-id’’>

</Action>

</Policy>

Table 5.1: A XACML policy with ontology elements.

94 Chapter 5. Extending XACML with Semantic Functions

model to other datatypes in future work. The boolean functions relatedTo and

transitiveRelatedTo are both related to category (ii). transitiveRelatedTo

is particularly useful in our scenario because allow us to check the dominance

relation between two roles. An example, is shown in Table 5.1 in which we pro-

vide an abstraction of a policy that exploits with our functions. Consider the

subject match of the policy, in order to check role dominance we first extract

the role of the subject with the function hasObjectValue, then we retrieve all

the roles subsuming the role Ri. Finally, we compare the obtained bag of roles

with the role Ri with the standard function string − equal. It is worth not-

ing that to support RBAC we just need the functions transitiveRelatedTo

and hasObjectValue. We provide however the functions hasStringValue,

hasIntValue and relatedTo for dealing with some attributes that, even if not

supplied in the standard RBAC, that may be associated with the subject in some

specialized implementations.

Notice that instead of introducing new functions there are some alternative so-

lutions to retrieve subject attributes from an XACML policy. For example we may

embed the name of the property that binds the individual to the required attribute

directly within the attribute id. For example, if we want to determine the role of a

subject, we may define the attribute id urn:subject:subject-id:hasRole.

However, this solution requires an additional module in the context handler able

to “understand” the attribute id and retrieve the intended values. Moreover, if

we want to exploit the full power of DL reasoning, we have to be able to embed

complex expression in the attribute id creating an ad hoc DL-like syntax. Another

solution is to define a function supporting the specification an ontology query (for

example with the SPARQL query language3). However, such an approach has the

problem of the run-time customization of the queries with the actual values pro-

vided in the request.

3http://www.w3.org/TR/rdf-sparql-query/

Chapter 5. Extending XACML with Semantic Functions 95

<Obligation

Id=‘‘addPermission’’, FulfillOn=‘‘Permit’’>

<AttributeAssignment

AttributeId:‘‘urn:addpermission:subject’’>

<SADesignator AttrId:‘‘subject-id’’/>

</AttributeAssignment>

<AttributeAssignment

AttributeId:‘‘urn:addpermission:resource’’>

<RADesignator AttrId:‘‘resource-id’’/>

</AttributeAssignment>

<AttributeAssignment

AttributeId:‘‘urn:addpermission:action’’>

<AADesignator AttrId:‘‘action-id’’/>

</AttributeAssignment>

</Obligation>

Table 5.2: The addPermission obligation.

96 Chapter 5. Extending XACML with Semantic Functions

5.6.2 XACML Obligations

In our approach, constraints are modeled within the ontology, and the PDP is

not aware of which constraints hold for the policies. This a critical issue when

considering dynamic constraints because a policy, in order to grant an authoriza-

tion, must be aware whether such authorization violates come constraints. In

XACML+OWL we solve such issue by exploiting the XACML obligation mecha-

nism. An obligation is an operation that the PDP can send to the PEP along with

the policy evaluation result. The PEP should fulfill the obligation it receives dur-

ing the enforcement of the authorization decision. Depending by the semantics

of the obligation, a failure of its execution may influence the enforcement pro-

cess. In XACML+OWL, we exploit the obligation mechanism for managing the

DSoD constraints. Specifically, we define the new obligation addPermission.

addPermission is considered as a mandatory operation; this means that even

if the PEP should allow access to the required resources, if it cannot fulfill the

obligation, then the access shall be denied. The effect of the addPermission is

to add to the ontology a list of axioms if the permission specified in the associated

policy is granted. As shown in Table 5.2, addPermission is sent to the PEP only

if the effect of the associated policy is evaluated as Permit. In the following, we

list the axioms that are added to the ontology by such obligation:

Ax 1 : Individual(p i type(Permission))

Ax 2 : hasAction(p i, a)

Ax 3 : hasResource(p i, s)

Ax 4 : hasPermission(u, p i)

Those axioms are related to the permissions that are allowed by such policy.

For example, consider a policy that permits to a role r to perform the action a on

the resource s. If a request satisfy the requirements of the policy, the above axioms

are instantiated with the actual values and added to the ontology. Specifically,

Ax1 creates the new permission pi. Ax2 and Ax3 associate pi respectively with

the action a and the resource s. Finally, Ax4 associates the subject u specified in

Chapter 5. Extending XACML with Semantic Functions 97

the request with the permission pi. The addition of new axioms to the ontology

is exploited for checking constraints violation. As we have discussed in Section

5.5, in our approach we reduce constraint evaluation to the problem of checking

the consistency of an ontology. This means that if the addition of new axioms

to a consistent ontology yields an inconsistency, the new axioms that have been

introduced violate some of the constraints defined in the ontology. Obviously, if

an inconsistency is detected the new axioms are deleted from the ontology. This

ensure the consistency of the ontology after each execution of the obligation.

Notice that there are some alternative solutions for managing DSoD constraints.

For example, we may let each policy checks if the enforcement of the permissions

it grants violates the constraints in the ontology. This means to replicate the con-

straints in each policy the constraints are involved. An obvious drawback is that

when we have to change a constraint we have to update both the ontology and

the involved policies. Another possibility is to introduce a dedicated module

specifically designed for acting as a mediator between XACML policies and the

OWL ontology. The role of this new module is to interact with the XACML com-

ponents to provide the necessary information for the enforcement of the requests.

For example we may associate the id of a policy with a certain constraint in the

ontology and, whenever that policy applies, the module checks if the granted

permission violates the constraints. This approach has several drawbacks: first of

all we have to update the XACML enforcement process for dealing with the new

module. Moreover, when a policy or a constraint is changed we have to update

(if necessary) also the associations maintained by the mediator.

5.6.3 Policy Semantics

A XACML policy is a set of rules combined through a rule combining algorithm.

The semantics of a policy defined over a role hierarchy depends from the eval-

uation of its rules and the algorithm by which the rules are combined. Given a

policy Pi we categorize the rules belonging to a policy into two sets DR and PR

defined as follows:

98 Chapter 5. Extending XACML with Semantic Functions

fdeny−override(r, s, a) =

IF

∃ r′ : r 6 r′ ∧ (r′, s, a) ∈ DR;

THEN Deny;

ELSE IF

∃ r′′ : r′′ 6 r ∧ (r′′, s, a) ∈ PR;

THEN Permit;

ELSE NotApplicable;

Figure 5.4: The function fdeny−override

fpermit−override(r, s, a) =

IF

∃ r′ : r′ 6 r ∧ (r′, s, a) ∈ PR

THEN Permit;

ELSE IF

∃ r′′ : r 6 r′′ ∧ (r′′, s, a) ∈ DR;

THEN Deny;

ELSE NotApplicable;

Figure 5.5: The function fpermit−override

DR = {Rulej | Rulej ∈ Poli ∧ EffectRulej = Deny}

PR = {Rulej | Rulej ∈ Poli ∧ EffectRulej = Permit}

where Effect{Rulej} extracts the effect of rule Rulej. Given the role hierarchy

〈R,6〉 and an authorization request (r, s, a), such that r ∈ R, s ∈ S and a ∈
A, the semantics of a policy is specified according to functions fdeny−override and

fpermit−override shown respectively in Figures 5.6.3 and 5.6.3.

fdeny−override grants the access request (r, s, a) if: (i) an applicable rule ∈ PR

exists defined on a role r ′′ that is dominated by r; and (ii) no applicable rule ∈ DR

exists defined on a role r ′ that dominates r. Conversely, given the authorization

request (r, s, a), if an applicable rule ∈ PR exists defined on a role r ′ that is domi-

Chapter 5. Extending XACML with Semantic Functions 99

1: A(Rulek,r) ∧ P(Rulek)→ 〈e, (f>(r), s, a)〉 ∈ XAB

2: A(Rulek,r) ∧ D(Rulek)→ 〈e, (f6(r), s, a)〉 ∈ XAB

Table 5.3: Formalization of authorization rules.

nated by r, then fpermit−override grants the access request without checking for the

presence of deny rules.

5.6.4 Automatic Creation of XACML policies

In this section, we discuss how we translate the authorizations defined by using

the Authoring Environment into the XACML+OWL policies. We remark that the

actual version of XACML+OWL does not provide an automatic procedure for in-

ferring a rule combining algorithm. The user must thus specify the appropriate

algorithm to use for combining the authorization rules into a policy. For simplic-

ity, we first consider the case in which authorization rules are defined on a single

subject. We discuss multi-subject rules later in this section.

At the level of the Authoring Environment an authorization rule is seen as

a tuple 〈Effect, (r, s, a)〉, where Effect ∈ {Permit,Deny}, r ∈ R, s ∈ S and

a ∈ A. We define the predicate A(Rulei, r) as a Boolean predicate that checks

whether the Rulei applies to the role r. We define also the new Boolean predicates

D(Rulei) and P(Rulei) that check respectively whether the Rulei has a Deny or

Permit effect. We also refer to the XACML Authorization Base, that is the repos-

itory containing the rules used for integration of XACML and OWL, as XAB. A

policy is then defined over the rules in XAB by selecting a combining algorithm

and defining the policy target. Given a role hierarchy 〈R,6〉, the interpretation

of a Rulek is given in Table 5.3. The first formula states that if a Permit Rulek

is applicable to role r, then the tuple 〈e, (f>(r), s, a)〉 is added to XAB. f>(r) is

100 Chapter 5. Extending XACML with Semantic Functions

a shortcut for specifying the applicability of Rulek also to roles that dominates

r. In XACML+OWL f> is obtained through the combination of the functions

transitiveRelatedTo and hasObjectValue as shown in Table 5.1. Simi-

larly, the second formula states that if a rule Deny Rulek is applicable to the role

r, then the tuple 〈e, (f6(r), s, a)〉 is added to XAB, where f6 has the inverse se-

mantics of f>.

It is worth noting that the mechanism introduced so far for the automatic cre-

ation of policies, is consistent to the XACML standard even if we have a rule

with multiple subjects. Consider a rule Rulei and the roles r and r ′ such that

A(Rulei, r) ∧ A(Rulei, r
′) are verified. Then in order for Rulei to be applicable

to a certain subject sk, sk must have both roles r and r ′. This means to have two

<subject> element each one specifying: (i) a different role, in our case r and r ′;

(ii) the combination of function hasObjectValue and transitiveRelatedTo

for retrieving the role of the sk. First, we retrieve all the roles dominated by the

role of sk through the functions. Then, this bag of roles is evaluated against each

one of the <subject> element of the rule.

5.6.5 Policy evaluation

In this section we show how the formalization of the policies given in Section 5.6.4

is sound with respect the policy semantics defined in Section 5.6.3. The XACML

policy evaluation process checks whether the target of a policy is applicable, if

this is the case all the rules in the policy are evaluated and the policy value if

finally determined according to the rule combining algorithm. Given a policy Pi,

let XABi = {Rulej ∈ XAB | Rulej ∈ Pi be the set of all rules in Pi. The rules in the

policy and the policy are then evaluated according to the pseudo-code shown in

Figure 5.6.5. Given a role hierarchy 〈R,6〉, the correspondence with the function

fdeny−override is verified by considering that: (i) according to the semantics defined

in Section 5.6.4, r ∈ fleq(r ′) and r ∈ fgeq(r ′) are evaluated True respectively when

r 6 r ′ and r ′ 6 r; and (ii) given Rulek if Effect(Rulek) = Deny then Rulek ∈ DR

Chapter 5. Extending XACML with Semantic Functions 101

deny − override(r, s, a) =

IF

∃ 〈 e, (f6(r′), s, a) 〉 : r ∈ f6(r′) ∧ e = Deny;

THEN Deny;

ELSE IF

∃ 〈 e, (f>(r′), s, a) 〉 : r ∈ f>(r′) ∧ e = Permit;

THEN Permit;

ELSE NotApplicable;

Figure 5.6: Policy evaluation

whereas if Effect(Rulek) = Permit then Rulek ∈ PR. The case for permit −

override follows the approach proposed for deny − override.

5.7. A Complete Example of Policy Enforcement

In this Section we provide a complete example to illustrate the enforcement pro-

cess in XACML+OWL. Suppose we have the request REQUESTi, in which Alice

requires to Review a Project:

REQUEST i:

<Request>

<Subject>

<Attribute AttributeId=‘‘subject-id’’>

<AttributeValue>Alice</AttributeValue>

</Subject>

<Resource>

<Attribute AttributeId=‘‘resource-id’’>

<AttributeValue>Submit</AttributeValue>

</Resource>

<Action>

<Attribute AttributeId=‘‘action-id’’>

102 Chapter 5. Extending XACML with Semantic Functions

<AttributeValue>Project</AttributeValue>

</Action>

</Request>

Suppose now the policy POLICYk that contains the rule RULEj. RULEj allows

the access to perform the Review action on the Project resource to subjects

having a role that subsumes the role Associate Professor:

RULE j

1:<Rule Effect=‘‘Permit’’>

2: <Subject>

3: <SubjectMatch MatchId=‘‘string-equal’’>

4: <AttrValue>Associate Professor</AttrValue>

5: <Apply FunctionId:‘‘hasTransitiveObjectValue’’>

6: <Apply FunctionId:‘‘hasObjectValue’’>

7: <SubjAttrDesignator AttrId:‘‘subject-id’’>

8: <AttributeValue>hasRole</AttributeValue>

9: </Apply>

10: <AttributeValue>supRoleOf</AttributeValue>

11: </Apply>

12: </SubjectMatch>

13: </Subject>

14: <Resource>

15: <AttributeValue>Project</AttributeValue>

16: <ResAttrDesignator AttrId=‘‘resource-id’’>

17: </Resource>

18: <Action>

19: <AttributeValue>Review</AttributeValue>

20: <ActttrDesignator AttrId=‘‘action-id’’>

21: </Action>

22:</Rule>

Moreover, POLICYk has the addPermission obligation introduced in Table

5.2. Now, in order to evaluate RULEj against the individuals in REQUESTi we

Chapter 5. Extending XACML with Semantic Functions 103

need to retrieve the role of Alice. This is done by combining the functions

transitiveRelatedTo and hasObjectValue as is shown from rows 3 to 12.

According to the hierarchy in Figure 5.1, the request is authorized and through

the obligation the following axioms are added to the ontology.

Ax 1 : Individual(p i type(Permission))

Ax 2 : hasAction(p i, Submit)

Ax 3 : hasResource(p i, Project)

Ax 4 : hasPermission(Alice, p i)

Suppose now that Alice requires again the authorization REQUESTi. RULEj

is evaluated again and the and the authorization is granted. However, when the

PEP tries to fulfill the obligation associated with POLICYk, the new axioms violate

the constraint Req5 and an ontology inconsistency is detected. Due to such incon-

sistency, the new axioms are deleted from the ontology and the authorization is

denied.

5.8. Extended XACML architecture

In this Section we propose an extension of the XACML architecture for managing

semantic functions. Figure 5.7 shows the XACML architecture extended for deal-

ing with our new semantic functions. Black boxes represents standard XACML

components whereas blue boxes represents the new modules we have introduced

or extended.

As in the standard XACML model, the Policy Enforcement Point (PEP) re-

ceives an access request, extracts the attributes in the request, generates an XACML

request and sends it to the Context Handler (CH) for the evaluation. It also makes

sure that all the obligations with an authorization decision are executed. The CH

receives a request and forward it to the Policy Decision Point (PDP). The PDP

in turn fetches the applicable policies from the policy repository in the reposi-

tory level. Applicable policies are determined by evaluating, among others, the

104 Chapter 5. Extending XACML with Semantic Functions

requester
access

context
handler

PIP

PEP

subjects

6. attr.
query

7a subject
attributes

Policy Repository

1. policy

P
ol

ic
y

A
ut

ho
ri

ng

7b:
resource
enviraonment
binding
attributes

environment
ontology
reasoner

2. access request

12. response

10. attributes

5. attr. queries

4. request

8. attributes

3. request

13. response

9. resource content

11. ontologies

resource

ontology repository

service

PDP

obligations14. obligations

Figure 5.7: Extended XACML Data Flow Diagram.

semantic functions we have defined in XACML+OWL. In doing this we have in-

troduced an ontology reasoner that performs the required operations on the OWL

ontology. The PDP returns an authorization decision along with the obligation (if

any) that has to be fulfilled by the PEP. Obligations are resolved by the obligation

service that interact with ontology reasoner and returns exceptions if the addition

of new axioms results in an ontology inconsistency.

Chapter 6

Dealing with Heterogeneous Domains

A key feature in our approach is the ability to execute queries and verify prop-

erties on a dataset of heterogeneous policies. This means to create a unified and

consistent vocabulary of terms in a way that every policy in the dataset can be

expressed with it. In Chapter 4 we have identified three different kind of vari-

ations: syntactical, terminological and semantic variations. Usually, Syntactic vari-

ations can be identified by using look up tables. Look up tables enumerate the

possible ways in which the same term can be written by using different character

combinations. Instead, to detect terminological variations, dictionaries or the-

saurus such as WordNet [31] can be exploited. Dictionaries are used to retrieve

all the synonyms of a given term. Dictionaries and look up tables are typical Nat-

ural Language Processing techniques that could be considered as a way to detect

the meaning that lies behind the representation of a word. Semantic variations

can be determined by using ontology matching techniques. However, it is crucial

to adopt much more powerful techniques in order to obtain better mappings and,

in turn, a better reference knowledge base for the policy set to be analyzed.

In this chapter we introduce solutions to the issues introduced in Chapter 4.

Specifically, our aim is to develop a set of technologies that allows us to create

a unified knowledge base for a given policy set. The conceptual architecture of

our approach is depicted in Figure 6.1: the basic building block is the Ontol-

ogy Matching process that is used by all the other methods, on top of ontology

106 Chapter 6. Dealing with Heterogeneous Domains

Figure 6.1: The stack of technologies developed for solving domain heterogene-

ity.

matching we have Ontology Merging and Ontology Extraction. These processes

are not completely decoupled approaches since in the general case, the result of

an ontology merging can be exploited during the extraction of an ontology form

the unstructured policy data. Final blocks are represented by the creation of the

policy reference ontology and in turn reference ontology of the policy set.

In the remaining part of this chapter we describe the architecture in Figure 6.1

adopting a bottom-up approach. In Section 6.1 we describe the ontology match-

ing technique that we use in EXAM-S. Section 6.2 and Section 6.3 are dedicated to

Ontology Merging and Ontology Extraction respectively. Finally Sections 6.4 and

6.5 describe how such technologies are combined in building the Policy Reference

Ontology and the Policy Set Reference Ontology.

6.1. Ontology Matching

An ontology is a formal representation of a domain in terms of concepts and

properties with which those concepts are related. It is used to define the domain

and reason about its features. Ontology matching is the process whereby two

Chapter 6. Dealing with Heterogeneous Domains 107

ontologies are semantically related at conceptual level; concepts belonging to the

source ontology are mapped onto the target ontology concepts according to those

semantic relations [80]. As introduced in Definition 4.5, an ontology matching

function takes as arguments two ontologies Oi and Oj, and returns a set of tuples

of the form 〈eOi
, eOj

, s〉, where eOi
is a concept belonging to ontology Oi, eOi

is a

concept belonging to ontology Oj that matches concept eOi
, and s is a confidence

score, that typically is, a value between 0 and 1, indicating the similarity between

the matched concepts. In Section 2.4 we have reviewed several approaches for

solving the ontology mapping problems. In our approach we use a modified ver-

sion of Falcon-AO [48]. The 2007 Ontology Alignment Evaluation Initiative(OAEI

07) results indicate Falcon to be the best performing ontology matcher available.

Policy View of an Ontology

The Falcon-AO tool is very accurate in finding mappings but when considering

large ontologies the matching function is quite slow. Moreover, as we discussed

in Section 4.2.1, we may have policies that exploit several ontologies in the defi-

nition of the vocabulary. However, not all the entities defined in an ontology are

useful for our purposes. Especially when considering large ontologies it is rea-

sonable to take into consideration only the subset of the entities that are relevant

for the policy vocabulary creation.

For this reason, we introduce the notion of policy view of an ontology. Given

a policy Pi and an ontology Oj such that some elements eOj
are referred by Pi, the

view of policy Pi of the ontology Oj is an ontology ΩPi

Oj
such that: (i) ΩPi

Oj
⊆ Oj;

(ii) for each eOj
∈ Pi, eOj

is added to ΩPi

Oj
along with all the axioms related to it

e.g. if eOj
is a concept we extract the relation defined over it, and all the entities

that belong to the hierarchy in which eOj
appear.

In Chapter 10 we discuss experiments that show that the use if ΩPi

Oj
instead of

the whole Oj provides a trade-off between performance and mapping accuracy

that is good enough for our purposes.

108 Chapter 6. Dealing with Heterogeneous Domains

6.2. Ontology Merging Process

Ontology merging is to process whereby it is possible to obtain a reconciled on-

tology merging the elements belonging to different semantic schemas. In our

model, ontology merging plays a crucial role since is one of the building block

in the architecture of our model. Conceptually, the ontology merging process is

something more than just adding elements belonging to decoupled schemas to

an empty knowledge base. When comparing two ontologies it is possible to have

some overlapping elements, if this is the case the ontology merging algorithm

have to detect this similarities in order to avoid redundancies in the resulting

schema.

Formally, we have to take in consideration the intersection of the elements of

the input ontologies.

Definition 6.1 According to Definition 4.1 and 4.2 we define the intersection of two

ontologies Oi and Oj as the set:

⋂T

Oi,Oj
:= OT

i ∩ OT
j

⋂AT

Oi,Oj
:= OAT

i ∩ OAT

j
⋂

Oi,Oj
:=

⋂T

Oi,Oj
∪ ⋂AT

Oi,Oj

However,
⋂

Oi,Oj
may be difficult to obtain in case of semantic variations. This

is the reason why we exploit the ontology matching algorithm in the merging

process. Since ontology matching provides mappings between entities belong-

ing to different schemas, we can check if such mappings are “good enough” to be

trustable and in such a case we can consider those mapped elements as the same

entity avoiding to repeat them in the merged ontology.

In order for the elements of a mapping to be considered as the same entity, we

evaluate the score of the mapping against a threshold τ. A mapping element is

then considered trustable if its score is greater then the threshold. Obviously, the

higher is the value of the threshold the higher is the probability to have trustable

mappings. The drawback is that assigning an high value to τ we may discard

Chapter 6. Dealing with Heterogeneous Domains 109

good mappings obtaining redundancy in the merged ontology. In order to have

the best performance we have executed several experiments considering both

accuracy and recall of our model according to different values of τ. The details of

such experiments are reported in Chapter 10.

6.2.1 Ontology Merging Process

The ontology merging process is composed by two different algorithms:

• MERGE (Algorithm 1): is the base Merge algorithm that takes in input two

ontologies and returns the reconciled knowledge base. This algorithm im-

plements the function MERGE defined in 4.6.

• ONTOLOGY MERGING (Algorithm 2) : is the function that applies MERGE for

the number of ontologies exploited by policy Pi. This algorithm implements

all the components defined in 4.6;

In the rest of this section we provide the details of the two algorithms.

MERGE (Algorithm 1)

The process starts with the creation of a new empty ontology, then we match

the two input ontologies and the result of the matching is stored in the variable

mapping (line 2). Now there are two important issues to deal with:

1. Given the mapping element 〈eOi
, eOj

, s〉 such that s > τ, which one of the

mapped elements eOi
and eOj

we add to the resulting ontology?

2. In an ontology an entity can be associated to several other entities. For

example a concept may be the root of a hierarchy or maybe is in the range

of some property. For this reason, after one of the two elements is chosen,

say eOi
, and added to the merged ontology, all the axioms in Oj associated

to eOj
have to be modified accordingly.

110 Chapter 6. Dealing with Heterogeneous Domains

The first issue is described later in section 6.2.2. Concerning the second one,

there are several solutions depending by the adopted implementation. For clarity,

in Algorithm 1, we deal with the problem with the generic Oj.update() function

that rename the specified ontology entity with the input name. In the implemen-

tation Chapter we describe alternative solutions and we give detail of the one

that is currently adopted in our prototype.

In lines 3-6, for each mapping element in the mapping list, if the score is

greater than the threshold τ the value belonging to ontology Oi is added to the

result ontology. In lines 7-8 and 9-10, the algorithm check whether there are el-

ements belonging to input ontologies that are not added to the result ontology

and if this is the case the Õi,j is updated with those new elements. The algorithm

terminates returning the merged knowledge base (line 11).

ONTOLOGY MERGING (Algorithm 2)

The ONTOLOGY MERGING algorithm iteratively applies the MERGE procedure to

all the ontologies in the Ontologies(Pi) set. However, one may have the doubt

that changing the order of the ontologies in the input set we may obtain a different

result. Section 6.2.2 addresses this issue offering some interesting considerations

about the MERGE procedure and, more in general, about an ontology mapping

process.

6.2.2 Order of the Ontologies in the Merging Algorithm

There is one question that may arise when considering the two proposed algo-

rithms: if we change the order of the ontology in Ontologies(Pi) the result of

Algorithm 2 will be always the same? In general the reply to such a question

is “no”. However, in our case the probability of having different merging pro-

cesses with a different order of the same ontologies is very low. This is related

to the fact that we take into consideration just the mappings with a score greater

of the threshold τ. We discuss the value that may by assigned to τ in Chapter

Chapter 6. Dealing with Heterogeneous Domains 111

10, anyway a general consideration is the following: the meaning of τ is that if a

mapping has a score greater than τ then the elements in such mapping element

can be considered exactly the same. Moreover, if we have a mapping element

me1,2 between ontologies O1 and O2 that maps eO1
and eO2

with a score greater

than a high value of τ, then when mapping O1 and O2 with O3 the probability

to have eO1
and eO2

mapped to the same element eO3
is very high. This yield to

the obvious consequence that mappings between ontologies are transitive: if eO1

maps eO2
with s1,2 > τ and eO2

maps eO3
with s2,3 > τ than we have also that

with eO1
maps eO3

with s1,3 > τ.

Algorithm 1: MERGE

Input:

Oi: The first ontology to be merged

Oj: the second ontology to be merged

Output:

Õi,j: The ontology resulted by merging the input ontologies

(1) Õi,j = new(Ontology());

(2) mapping = MAP(Oi, Oj);

(3) FOR EACH mek ∈ mapping

(4) IF mek.s > τ

(5) Oj.update(mek.eOj
, mek.eOi

);

(6) Õi,j.add(mek);

(7) FOR EACH eOi
/∈ Õi,j

(8) Õi,j.add(eOi
);

(9) FOR EACH eOj
/∈ Õi,j

(10) Õi,j.add(eOj
);

(11) return Õi,j;

112 Chapter 6. Dealing with Heterogeneous Domains

Algorithm 2: ONTOLOGY MERGING

Input:

Ontologies(Pi): The ontologies exploited in the policy Pi

Output:

ÕPi
: The ontology resulted by merging the ontology exploited in

the policy Pi

(1) ÕPi
= new Ontology();

(2) FOR EACH Oj ∈ Ontologies(Pi)

(3) ÕPi
= MERGE(ÕPi

, Oj);

(4) return ÕPi
;

6.3. Ontology Extraction Process

Ontology extraction is the process whereby it is possible to build an ontology

from either structured or unstructured data with no explicit semantics relations.

We have discussed the theoretical background of this problem in Section 4.2.2, in

this section we provide an algorithm for extracting an ontology having in input

the vocabulary of the policy and some additional semantic data.

6.3.1 From a Vocabulary to a Domain: the Model

The algorithm improves the mapping in Section 4.3.3 by refining the resulting

ontology through a hierarchical organization of the new entities. The motiva-

tion for such refinement is that after the extraction of the entities based on the

mapping between XACML and DL , we obtain a simple list of new properties

and concepts. However, the extracted ontology may be involved in some on-

tology matching processes exploited in further steps. Since ontology matching

Chapter 6. Dealing with Heterogeneous Domains 113

takes advantage of both the entity names and their organization in the ontology,

a knowledge base without a structure i.e. without hierarchies between entities,

is useless for our purposes. For this reason, we combine the mapping in Section

4.2.2 with the subsumption relation between the terms that we retrieve from a

lexical databases, such as WordNet [31].

In WordNet, terms are organized in hierarchies following a standard sub-

sumption relation. We extract the list of concepts1, or path, that bound the term

under consideration to the root of the hierarchy. Then, given two terms ti and

tj, we intersect WordNet paths WNPath(ti) and WNPath(tj) and we pick up the

least common subsumer. Three different scenarios may arise:

1. the common least subsumer is tj (tj subsumes ti): we add to the ontology a

subclass relation between concept ti and tj;

2. the common least subsumer is ti (ti subsumes tj): we add to the ontology a

subclass relation between concept tj and ti;

3. the common least subsumer is the term tk: if a concept tk does not belong to

the ontology, we add the new concept tk along with the subclass relations

between tk and ti and tj, respectively;

4. no common subsumers are found: no relations are added to the ontology;

For example consider the policy shown in Figure 4.1. The least common

subsumer between t1 (Associate Professor), t2 (Full Professor) and t3

(Student) is the WordNet synset represented by the term Person. Moreover, by

just considering together t1 and t2, we obtain as the least common subsumer the

term Professor. The hierarchy returned by the refinement function will have

Person as root. Person then subsumes Student and Professor that in turn

subsumes the concepts Full Professor and Associate Professor.

1Named synset (set of synonyms) in WordNet.

114 Chapter 6. Dealing with Heterogeneous Domains

6.3.2 Ontology Extraction Algorithm

For simplicity we show just the creation of object properties, the case for data

type properties is straightforward because we just need to add the new property

without creating any concept. In lines 2-5 we create a new property and a new

concept given a certain attribute-value pair. In line 6 we update the range of the

property with the new concept, finally in line 7 we return the ÖPi
enriched with

the hierarchies added by the CREATE HIERARCHY function.

Algorithm 3: ONTOLOGY EXTRACTION

Input:

Pairs(Pi): The attribute-value pairs of the policy Pi

Output:

ÖPi
: The ontology extracted by the policy Pi

(1) ÖPi
= new Ontology();

(2) FOR EACH 〈attributej, valuek〉 ∈ Pairs(Pi)

(3) IF ÖPi
.not contains(attributej)

(4) ÖPi
.add(new(ObjectProperty(attributej)));

(5) ÖPi
.add(new(Concept(valuek)));

(6) ÖPi
.attributej.range = ÖPi

.valuek;

(7) return CREATE HIERARCHY(ÖPi
);

6.4. Policy Reference Ontology

In this section we describe the process whereby we create the Reference Ontology

of an input policy. The process, detailed in Algorithm 4, combine the procedures

introduced above. The input of the process is the policy Pi whereas its output

is the Reference Ontology ȮPi
. In lines 3-4 we create ÕPi

merging up all the

ontologies exploited in Pi and retrieved by the function Ontologies(Pi). In line

Chapter 6. Dealing with Heterogeneous Domains 115

we apply ONTOLOGY EXTRACTION obtaining the reconciled Knowledge Base for

those terms that does not belong to any ontology. It is worth noting that if all

terms used in the policy belong to a semantic schema then Vocabulary(Pi) is the

empty set. Finally, we build ȮPi
merging ÕPi

and ÖPi
.

Algorithm 4: POLICY REFERENCE ONTOLOGY

Input:

Pi: The Policy

Output:

ȮPi
: The Reference Ontology Associated with Pi

(1) ÕPi
= new Ontology();

(2) ÖPi
= new Ontology();

(3) IF | Ontologies(Pi) |> 1

(4) ÕPi
= ONTOLOGY MERGING(Ontologies(Pi));

(5) ÖPi
= ONTOLOGY EXTRACTION(Vocabulary(Pi), ÕPi

);

(6) ȮPi
= MERGE(ÕPi

, ÖPi
);

(7) return ȮPi
;

6.5. Policy Set Reference Ontology

The creation of the Policy Set Reference Ontology is the final step in the con-

ceptual architecture of our model. The procedure detailed in Algorithm 5 takes

advantage off all the functions defined in the above sections. The main role of

this algorithm is thus to coordinate each activity calling the related functions.

116 Chapter 6. Dealing with Heterogeneous Domains

Algorithm 5: Policy Set Reference Ontology creation

Input:

PS: Policy Set

Output:

ȮPS: The Unique Ontology Associated with PS

(1) ȮPS = new Ontology();

(2) FOR EACH Pi ∈ PS

(3) ȮPi
= POLICY REFERENCE ONTOLOGY(Pi);

(4) Ontologies.add(ȮPi
);

(5) FOR EACH Ȯj ∈ Ontologies

(6) ȮPS = MERGE(ȮPS, Ȯj);

(7) return ȮPS;

Chapter 7

Policy Similarity Analysis

In this chapter we introduce the EXAM-S policy analysis services. In the defi-

nition of such services we rely on the preliminary section introduced in Section

4. We propose two different approaches: the core of this chapter (Section 7.5) in

which we define an hybrid system that exploits a modified version of MTBDDs.

The second one (Section 7.4) presents a similarity technique that can be exploited

on large policy data sets for optimization purposes. Whereas in Section 7.5 the ap-

proach is very precise and both combines and extends state of the art approaches,

the one proposed in Section 7.4 rely on data mining techniques and is used for

computing quickly a similarity score between policies. The score is used in a fil-

tering techniques for optimizing the data set maintaining only the policies that

are more similar. In both Sections 7.4 and 7.5 we assume that policies involved

into the analysis process have been already processed by the technologies intro-

duced in Section 6. Thus, we assume that if the policies belong to heterogeneous

domains, all the variations introduced in Section 4.1 have been already solved.

The rest of the sections, Section 7.2 and Section 7.1, introduce respectively the

running example and preliminary definitions that will be used in the rest of the

chapter.

118 Chapter 7. Policy Similarity Analysis

7.1. Analysis Queries on Heterogeneous Policies

The notion of analysis query is a key notion in our approach. Because one can

analyze policies and sets of policies from different perspectives, it is important

to also devise a comprehensive categorization of such queries. In our work, we

have thus identified three main categories of analysis queries, which differ with

respect to the information that they query. These categories are: policy metadata

queries, policy content queries, and policy effect queries. Policy metadata queries

analyze metadata associated with policies, such as policy creation and revision

dates, policy author, and policy location. A policy content query, by contrast,

extracts and analyzes the actual policy content, such as the number of rules in

the policy, the total number of attributes referenced in the policy, the presence of

certain attribute values.

A policy effect query determines and analyzes the requests allowed or denied

by policies and interactions among policies. The category of the policy effect

queries is the most interesting one among the query categories we have iden-

tified. The processing of policy effect queries is also far more complex than the

processing of queries in the other two categories, and thus we address its process-

ing in details (see next section). The policy effect query category can be further

divided into two subcategories: (i) queries on single policy; and (ii) queries on

multiple policies. The first subcategory contains one type of query, referred to

as property verification query. The second subcategory contains two main types

of queries, namely common property query and discrimination query. Figure 3.2

provides a taxonomy summarizing the various query types.

In the following, we first introduce some preliminary notions, and then present

more details for each type of policy effect query (query for short), including their

definitions and functionalities.

Chapter 7. Policy Similarity Analysis 119

7.2. An Illustrative Example

To illustrate the discussion we consider a scenario from a content delivery net-

work (CDN) system built on P2P network in which parties can replicate their

data in storage made available by third party resource providers. Real systems

adopting this model are for instance Lockss [8] and LionShare [70]. In such sce-

nario, there are usually two types of parties: data owner and resource owner. A

data owner owns some data, whereas a resource owner manages some resources

for storing data and processing queries on data. A data owner typically needs

to determine which resource owners can be more suited for storing its content.

Examples of such CDN systems can be found in Grid computing systems and

P2P systems. Each such party in a CDN typically has its own access control poli-

cies. The policies of a data owner specify which users can access which data,

among these owned by the data owner, under which conditions. The access con-

trol policies of the resource owners specify conditions for the use of the managed

resources. In large dynamic environments, we cannot expect such policies to be

integrated and harmonized beforehand, also because policies may dynamically

change. Therefore, a subject wishing to run a query has to comply with both the

access control policy associated with the queried data and the access control pol-

icy of the resource to be used to process the query. Because such parties may not

have the same access control policies, in order to maximize the access to the data,

it is important to store the data at the resource owner having access control poli-

cies similar to the access control policies associated with the data. Furthermore,

besides determining the common parts of the access control policies shared by

the data owner and resource owner, the data owner may also be interested in

checking if certain key requests can be successfully handled, if the data were to

be located at a given resource owner. In other words, the data owner may want to

know if the difference among the multiple access control policies has a negative

effect on some important tasks. We now introduce two example policies from the

above scenario.

120 Chapter 7. Policy Similarity Analysis

Full Professor

Business Office Manager

Dean

Associate Professor

Assistant Professor

Figure 7.1: The Faculty role hierarchy.

Example 7.1 Pol1 (Data Owner): Any user with role the is subsumed by “Full Profes-

sor” is authorized to access the data from 8am to 10pm everyday.

Pol2 (Resource Owner): Any user with role that subsumes “PhD Student” or affiliated

with “Purdue University” is authorized to access the resource from 6am to 8pm every-

day.

With the attribute Role associated with the role hierarchy depicted in Figure

7.1. We assume that the Role attribute is associated to the same ontology. If this

is not the case, the procedures introduced in Chapter 6 are applied.

In order for the data owner to decide whether to store the data at the resource

owner, it is crucial to determine which kinds of requests will be permitted by

both policies and which will not. Because in this case we are dealing with only

two policies, the filtering phase is not required and the policies can be directly

transmitted to the PSA. The PSA then returns the following characterization of

the similarity for the input policies:

• When the role is between “Full Professor” and “PhD Student” and time is

in the range of [8am, 8pm], such requests are permitted by Pol1 and Pol2.

• When the role is subsumed by “Full Professor” and time is in the range of

(8pm, 10pm], such requests are permitted by Pol1, denied by Pol2.

• When affiliation is “Purdue University” and time is in the range of [6am,

8pm], such requests are denied by Pol1, permitted by Pol2.

Chapter 7. Policy Similarity Analysis 121

• When (the role subsumes “PhD Student” or affiliation is “Purdue Univer-

sity”), and time is in the range of [6am, 8am), such requests are denied by

Pol1, permitted by Pol2.

By using such characterization, the data owner can check if most requests

(or some important requests) are satisfied and then decide whether to send his

data to such resource owner. More specifically, if the data owner knows that

a large percentage of requests are issued during the time interval [8am, 8pm],

sending the data to this resource owner would be a good choice, as both policies

yield same effect for the requests during that time period. If, instead, it is crucial

that the data be also available at other times, the data owner may determine if

there are other resource owners, whose policies are closer to its own, or use some

data replication strategies to make sure that at any point of time there is at least

one resource owner whose policies allow the data queries to be processed. The

data owner may also investigate additional properties concerning the policies:

for example the data owner may also issue queries like “when are the requests

of users with a role that subsumes “PhD Student” permitted by both policies?”.

For such query the PSA will return the time interval in which both policies are

satisfied.

7.3. Prelimary Notions

In our work, we assume the existence of a finite set A of names. Each attribute,

characterizing a subject or a resource or an action or the environment, has a name

a in A, and a domain, denoted by dom(a), of possible values. The following two

definitions introduce the notion of access request and policy semantics.

Definition 7.1 (Access Request) Let a1, a2, . . . , ak be attribute names in policy P,

and let vi ∈ dom(ai) (1 6 i 6 k). r ≡ {(a1, v1), (a2, v2), . . . , (ak, vk)} is a request, and

eP
r denotes the effect of this request against P.

122 Chapter 7. Policy Similarity Analysis

Definition 7.2 (Policy Semantics) Let P be an access control policy. We define the

semantics of P as a 2-tuple {Bpermit, Bdeny}, where Bpermit and Bdeny are Boolean

expressions corresponding to permit and deny rules respectively. Bpermit and Bdeny

are defined as follows.

rs1i =






Bpermit = TP ∧ ((TPR1
∧ CPR1

) ∨ · · · ∨ (TPRk
∧ CPRk

))

Bdeny = TP ∧ ((TDR1
∧ CDR1

) ∨ · · · ∨ (TDRj
∧ CDRj

))

(7.1)

where, TP denotes a Boolean expression on the attributes of policy target; TPRi
and

CPRi
(i = 1, . . . , k) denote the Boolean expressions on the attributes of the rule target

and rule condition of permit rule PRi; and TDRi
and CDRi

(i = 1, , j) denote the

Boolean expressions on the attributes of the rule target and rule condition of deny rule

DRi.

Example 7.2 Consider policy Pol2 in Example 7.1. An example of request to which

this policy applies is that of a user affiliated with “Purdue University” wishing to access

the data at 9am. According to Definition 7.1, such request can be expressed as r ≡
{(affiliation, ‘‘PurdueUniversity ′′), (time, 9am)}.

Example 7.3 According to Definition 7.2, policy Pol1 in Example 7.1 can be represented

as follows.

rs1i =






Bpermit = (fsub(Ok, Role,FullProfessor)) ∧ (8am 6 time 6 10pm)

Bdeny = NULL

The Boolean expressions (B, T and C) that frequently occur in policies can be

broadly classified into the following five categories, as identified in [13] :

• Category 1: One variable equality constraints. x = c, where x is a variable

and c is a constant.

Chapter 7. Policy Similarity Analysis 123

• Category 2: One variable inequality constraints. x ⊲ c, where x is a vari-

able, c is a constant, and ⊲∈ {<,6, >,>}.

• Category 3: Real valued linear constraints.
∑n

i=1 aixi ⊲ c, where xi is vari-

able, ai, ci are constants, and ⊲∈ {<,6, >,>}.

• Category 4: Semantic constraints. fsub(Ok, C, D), where Ok is the ontology

with respect to the subsumption relation is checked and C, D are concepts

belonging to Ok;

• Category 5: Regular expression constraints. s ∈ L(r) or s /∈ L(r), where s is

a string variable, and L(r) is the language generated by regular expression

r.

• Category 6: Compound Boolean expression constraints.

This category includes constraints obtained by combining Boolean constraints

belonging to the categories listed above. The combination operators are ∨, ∧ and

¬. By using ¬, we can represent the inequality constraint x 6= c as ¬(x = c). It is

worth noting that Boolean expressions on the attributes of policy targets or rule

targets (TP, TPR) usually belong to Category 1. The domains of the attributes that

appear in the above Boolean expressions belong to one of the following categories

:

• Integer domain : The attribute domains in Boolean expressions of categories

1,2 and 6 can belong to this domain.

• Real domain : The attribute domains in Boolean expressions of categories

1,2,3 and 6 can belong to this domain.

• String domain : The attribute domains in Boolean expressions of categories

1,5 and 6 can belong to this domain.

124 Chapter 7. Policy Similarity Analysis

• Semantic domain: The attribute domains in Boolean expressions of cate-

gories 4 belong to this domain.

• Tree domain : Each constant of a tree domain is a string, and for any con-

stant in the tree domain, its parent is its prefix (suffix). The X.500 directories,

Internet domain names and XML data are in the tree domain. For example,

an Internet domain constant .edu is the parent of an Internet domain con-

stant purdue.edu. The attribute domains in Boolean expression of categories

1 and 6 can belong to this domain.

We define a query constraint fq as a Boolean function that represents constraints

on a set of requests. Currently, our system supports two types of fq functions and

their combinations: (i) true, which means there is no constraint; (ii) |R| ⊳ x(⊳∈
{<,6,=, 6=, >,>}), where |R| is the number of requests and x is a constant. For

example, |R| > 0 is a query constraint which checks if the corresponding query

returns at least one request.

Note that in the following discussions on query definitions, the Boolean ex-

pression Bq may belong to any of the five categories mentioned above.

7.4. Policy Filtering

In this section we propose a similarity measure for XACML policies based on

data mining techniques. The same approach have been applied for obtaining

the similarity of policies written in another language: the Platform for Privacy

Preferences (P3P). This approach is presented in Chapter 8. Concerning XACML,

the proposed policy similarity measure is based on the comparison of each cor-

responding component of the policies being compared. Here, the corresponding

component means the policy targets and the same type of elements belonging to

the rules with the same effect. For this reason we are able to deal also with the

semantic functions that we have introduced in Chapter 5. We use a simplified

Chapter 7. Policy Similarity Analysis 125

XACML format for defining the policy similarity measure. Each XACML policy

must be converted to this format when calculating the similarity score.

Table 7.1 gives the syntax of the simplified format1. We would like the policy

similarity measure between any two given policies to assign a similarity score

that approximates the relationship between the sets of requests permitted (de-

nied) by the two policies. The similarity score is a value between 0 and 1, which

reflects how similar these rules are with respect to the targets they are applica-

ble to and also with respect to the conditions they impose on the requests. For

example, in a scenario where a set of requests permitted (denied) by a policy P1

is a subset of requests permitted (denied) by a policy P2, the similarity score for

policies P1 and P2 must be higher than the score assigned in a scenario in which

the set of requests permitted (denied) by P1 and P3 have very few or no request

in common.

7.4.1 Computation of the Mapping

In this subsection we proceed to introduce how to obtain the similarity score of

two policies. Given two policies P1 and P2, the rules in these policies are first

grouped according to their effects, which results in a set of Permit Rules (denoted

as PR) and a set Deny Rules (denoted as DR). Each single rule in P1 is then com-

pared with a rule in P2 that has the same effect, and a similarity score of two rules

is obtained. The similarity score obtained between the rules is then used to find

one-many mappings (denoted as Φ) for each rule in the two policies. For clarity,

we choose to use four separate Φ mappings ΦP
1, ΦD

1 , ΦP
2 and ΦD

2 . The mapping

ΦP
1 (Φd

1) maps each PR(DR) rule r1i in P1 with one or more PR(DR) rules r2j in

P2. Similarly the mapping ΦP
2 (ΦD

2) maps each PR(DR) rule r2j in P2 with one or

more PR(DR) rules r1i in P1. For each rule in a policy P1(P2), the Φ mappings give

similar rules in P2(P1) which satisfy certain similarity threshold.

The computation of the Φ mapping will be addressed in the Section 7.4.2. By

1We have already presented this Table in Chapter 2

126 Chapter 7. Policy Similarity Analysis

POLICY: <policy policy-id = ”policy-id combining-algorithm = ”combining-algorithm >

(TARGET ELEMENT)?

< permitrules >

(RULE ELEMENT)*

</permitrules>

<denyrules>

(RULE ELEMENT)*

</permitrules>

</policy>

RULE ELEMENT:

<rule rule-id=”rule-id effect=”rule-effect>

(TARGET ELEMENT)?

<condition>PREDICATE</condition>

</rule>

TARGET ELEMENT:

<target>

<subject>PREDICATE</subject>

<resource>PREDICATE</resource>

<action>PREDICATE</action>

</target>

PREDICATE:

(attr name ⊕ (attr value)+)*

attr name denotes attribute name, attr value denotes attribute value and

⊕ denotes any operator supported by the XACML standard.

Table 7.1: A XACML policy structure.

Chapter 7. Policy Similarity Analysis 127

using the Φ mappings, we compute the similarity score between a rule and a

policy. We aim to find out how similar a rule is with respect to the entire policy

by comparing the single rule in one policy with a set of similar rules in the other

policy. The notation rs1i(rs2j) denotes the similarity score for a rule r1i(r2j) in

policy P1(P2). The rule similarity score rs1i(rs2j) is the average of the similarity

scores between a rule r1i(r2j) and the rules similar to it given by the Φ mapping.

rs1i and rs2j are computed according to Equations 7.2 and 7.3, where Srule is a

function that assigns a similarity score between two rules.

Next, we compute the similarity score between the permit(deny) rule sets

PR1 (DR1) and PR2(DR2) of policies P1 and P2 respectively. We use the notations

SP
rule−set and SD

rule−set to denote the similarity scores for permit and deny rule sets

respectively. The similarity score for a permit(deny) rule set is obtained by aver-

aging the rule similarity scores (Equations 7.2 and 7.3) for all rules in the set. The

permit and deny rule set similarity scores are formulated by Equation 7.4 and 7.5,

where NPR1
and NPR2

are the numbers of rules in PR1 and PR2 respectively, NDR1

and NDR2
are the numbers of rules in DR1 and DR2 respectively.

rs1i =






∑

rj∈ΦP
1
(r1i)

Srule(r1i, rj)

| ΦP
1(r1i) |

, r1i ∈ PR1

∑

rj∈ΦP
1
(r1i)

Srule(r1i, rj)

| ΦD
1 (r1i) |

, r1i ∈ DR1

(7.2)

rs2j =






∑

ri∈ΦP
2
(r1j)

Srule(r2j, ri)

| ΦP
2(r2j) |

, r2j ∈ PR2

∑

ri∈ΦD
2

(r2j)

Srule(r2j, ri)

| ΦD
2 (r2j) |

, r2j ∈ DR2

(7.3)

SP
rule−set =

NPR1∑

i=1

rs1i +

NPR2∑

i=1

rs2j

NPR1
+ NPR2

(7.4)

128 Chapter 7. Policy Similarity Analysis

SP
rule−set =

NPR1∑

i=1

rs1i +

NPR2∑

i=1

rs2j

NPR1
+ NPR2

(7.5)

Finally, we combine the similarity scores for permit and deny rule sets be-

tween the two policies along with a similarity score between the Target elements

of the two policies, to develop an overall similarity score, Spolicy. The formulation

of Spolicy is given by the following equation:

Spolicy(P1, P2) = wTST(P1, P2) + wpS
P
rule−set + wdSD

rule−set (7.6)

where ST is a function that computes a similarity score between the Target

elements of any two given policies; wp and wd are weights that can be chosen to

reflect the relative importance to be given to the similarity of permit and deny

rule sets respectively. For normalization purpose, the weight values should sat-

isfy the constraint: wT + wp + wd = 1. The intuition behind the similarity score

assigned to any two policies is derived from the fact that two policies are sim-

ilar to one another when the corresponding policy elements are similar. In the

following sections, we introduce the detailed algorithms for the computation of

Φ mappings and rule similarity score Srule. Table 7.4.1 lists main notations used

throughout this section.

7.4.2 Computation of Φ Mappings

In this section, we discuss the procedure for determining the Φ mappings for

each rule in the permit and deny rule sets in a policy. The one-many Φ mappings

determine for each PR(DR) rule in P1(P2) which PR(DR) rules in P2(P1) are very

similar. Intuitively, two rules are similar when their targets and the conditions

they specify are similar. Thus we define a Φ mapping as follows:

Φ(ri) = {rj | Srule(ri, rj) > ǫ} (7.7)

Chapter 7. Policy Similarity Analysis 129

Notation Meaning

P Policy

PR Permit rule set

DR Deny rule set

r Rule

a Attribute

v Attribute value

H Height of a hierarchy

Spolicy Similarity score of two policies

Srule Similarity score of two rules

SP
rule−set Similarity score of two sets of permit rules

SD
rule−set Similarity score of two sets of deny rules

S〈Element〉 Similarity score of elements, 〈Element〉 ∈
{ ′T ′, ′ t ′, ′ c ′, ′ s ′, ′ r ′, ′ a ′}

scat Similarity score of two categorical values

Scat Similarity score of two categorical predicates

snum Similarity score of two numerical values

Snum Similarity score of two numerical predicates

rs Similarity score between a rule and a policy

Φ Rule mapping

Ma Set of pairs of matching attribute names

Mv Set of pairs of matching attribute values

NPR Number of permit rules in a policy

NDR Number of deny rules in a policy

Na Number of attributes in an element

Nv Number of values of an attribute

SPath Length of shortest path of two categorical values

w〈Elementi〉 Weight of similarity scores of elements,

〈Elementi〉 ∈ { ′T ′, ′ t ′, ′ c ′, ′ s ′, ′ r ′, ′ a ′}

ǫ Rule similarity threshold

δ Compensating score for unmatched values

Table 7.2: Notations.

130 Chapter 7. Policy Similarity Analysis

where Srule is computed by Equation 7.8 and ǫ is a threshold. The threshold

term is important here, since it allows us to calibrate the quality of the similarity

approximation. We expect that the actual value of the threshold will be very

specific to the policy domain. This procedure takes two rule sets R′ and R′′ as

input and computes a mapping for each rule in R′ based on Equation 7.7.

7.4.3 Similarity Score between Rules

Since our similarity measure serves as a lightweight filter phase, we do not want

to involve complicated analysis of Boolean expressions. Our similarity measure

is developed based on the intuition that rules ri and rj are similar when both

apply to similar targets and both specify similar conditions on request attributes.

Specifically, we compute the rule similarity function Srule between two rules ri

and rj as follows:

Srule(ri, rj) = wtSt(ri, rj) + wcSc(ri, rj) (7.8)

wt and wc are weights that can be used for emphasizing the importance of

the target or condition similarity respectively. For example, if users are more

interested in finding policies applied to similar targets, they can increase wt to

achieve this goal. The weights satisfy the constraint wt + wc = 1. St and Sc

are functions that compute a similarity score between two rules based on the

comparison of their Target and Condition elements respectively. As the Target

element in each rule contains the Subject, Resource and Action elements, each of

these elements in turn contains predicates on the respective category of attributes.

Thus, the Target similarity function St is computed as follows:

St(ri, rj) = wsSs(ri, rj) + wrSr(ri, rj) + waSa(ri, rj) (7.9)

In Equation 7.9, ws, wr, wa represent weights that are assigned to the corre-

sponding similarity scores. Like in the previous equations, weight values need to

satisfy the constraint ws + wr + wa = 1. Ss, Sr and Sa are functions that return

Chapter 7. Policy Similarity Analysis 131

a similarity score based on the Subject, Resource and Action attribute predicates

respectively in the Target elements of the two given rules. The computation of

functions Sc, Ss, Sr and Sa involves the comparison of pairs of predicates in the

given pair of rule elements, which we discuss in detail in the next subsection.

7.4.4 Similarity Score of Rule Elements

Each of the rule elements Subject, Resource, Action and Condition is represented

as a set of predicates in the form of {attr name1 ⊕1 attr value1, attr name2 ⊕2

attr value2, . . .}, where attr name denotes the attribute name, ⊕ denotes a com-

parison operator and attr value represents an attribute value. Based on the type

of attribute values, predicates are divided into two categories, namely categorical

predicate and numerical predicate.

• Categorical predicate: The attribute values of this type of predicate belong

to the string data type and semantic functions. In case of String data type

such values may or may not be associated with a domain specific ontology.

Attribute values that belong to semantic functions are always associated

with an ontology. If values are associated with more than one ontology,

the techniques introduced in Chpater 6 are applied. Example of predicates

that belong to categorical predicates are “FileType = Documentation” and

“fsub(Ok, Role, FullProfessor)”.

• Numerical predicate: The attribute values of this type of predicate belong

to integer, real, or date/time data types. For example, predicates ”FileSize

< 10MB”, ”Time=12:00” are of numerical type.

The similarity score between two rules ri and rj regarding the same element

is denoted as S〈Element〉, where 〈Element〉 refers to condition, subject, resource or

action. The 〈Element〉 is computed by comparing the corresponding predicate

sets in two rules. There are three steps. First, we cluster the predicates for each

rule element according to the attribute names. It is worth noting that one attribute

132 Chapter 7. Policy Similarity Analysis

name may be associated with multiple values. Second, we find the predicates in

the two rules whose attribute names match exactly and then proceed to compute

a similarity score for their attribute values. The way we compute similarity score

between attribute values differs, depending on whether the attribute value is of

categorical type or numerical type (details about the computation are covered

in the following subsection). Finally, we summarize the scores of each pair of

matching predicates and obtain the similarity score of the rule element. Since not

all attributes in one rule can find a matching in the other, we include a penalty

for this case by dividing the sum of similarity scores of matching pairs by the

maximum number of attributes in a rule. In addition, there is a special case when

the element set is empty in one rule, which means no constraint exists for this

element. For this case, we consider the similarity of the elements of the two rules

to be 0.5 due to the consideration that one rule is a restriction of the other and the

0.5 is the estimation of the average similarity. The formal definition of S〈Element〉

is given by Equation 7.10.

S〈Element〉 =






∑

(a1k,a2l)∈Ma

S〈attr typ〉(a1k, a2l)

max(Na1, Na2)
, Na1 > 0 and na2 > 0;

1, otherwise.

(7.10)

In Equation 7.10, Ma is a set of pairs of matching predicates with the same at-

tribute names; a1k and a2l are attributes of rules r1i and r2j respectively; 〈attr typ〉
is the similarity score of attribute values of the type attr typ; and Na1 and Na2

are the numbers of distinct predicates in the two rules respectively. In addition,

the computation of the similarity score of two policy targets ST is the same as that

for the rule targets i.e. St.

7.4.5 Similarity Score for Categorical Predicates

For the categorical values, we not only consider the exact match of two values,

but also consider their semantic similarity. For example, policy P1 is talking about

Chapter 7. Policy Similarity Analysis 133

Figure 7.2: An Example Hierarchy

the priority of professors, policy P2 is talking about faculty members, and policy

P3 is talking about business staff. In some sense, policy P1 is more similar to

policy P2 than to policy P3 because “professors” is a subset of ”faculty members”

which means that policy P1 could be a restriction of policy P2. Based on this

observation, our approach assumes that a hierarchy relationship exists for the

categorical values. The similarity between two categorical values (denoted as

Scat) is then defined according to the shortest path of these two values in the

hierarchy. The formal definition is shown below:

Scat(v1, v2) = 1 −
SPath(v1, v2)

2H
(7.11)

where SPath(v1, v2) denotes the length of the shortest path between two val-

ues v1 and v2, and H is the height of the hierarchy. In Equation 7.11, the length

of the shortest path of two values is normalized by the possible maximum path

length which is 2H. The closer the two values are located in the hierarchy, the

more similar the two values will be, and hence a higher similarity score scat will

be obtained. Figure 4.1 gives an example hierarchy, where each node represents

a categorical value.

The height of the hierarchy is 3, and the length of maximum path of two values

134 Chapter 7. Policy Similarity Analysis

is estimated as 2 3 = 6 (the actual maximum path in the figure is 5 due to the

imbalance of the hierarchy). SPath(E, B) is 1 and SPath(E, F) is 2. According

to Equation 7.11, the similarity score of nodes E and B is 1-1/6 = 0.83, and the

similarity score of nodes E and F is 1 − 2/6 = 0.67. From the obtained scores,

we can observe that E is more similar to B than to F. The underlying idea is that

the parent-child relationship (B and E) implies that one rule could be a restriction

of the other and this would be more helpful than the sibling relationship (E and

F). To avoid repeatedly searching the hierarchy tree for the same value during

the shortest path computation, we assign to each node a hierarchy code (Hcode),

indicating the position of each node. In particular, the root node is assigned an

Hcode equal to 1, and its children nodes are named in the order from left to right

by appending their position to the parents Hcode with a separator ., where we

will have Hcodes like 1.1 and 1.2. Then the process continues till the leaf level.

The number of elements separated by . is equal to the level at which a node is

located.

From such Hcodes we can easily compute the length of shortest path between

two nodes. We compare two Hcodes element by element until we reach the end of

one Hcode or there is a difference. The common elements correspond to the same

parent nodes they share, and the number of different elements correspond to the

levels that they need to be generalized to their common parent node. Therefore,

the shortest path is the total number of different elements in two Hcodes. For

example, the length of the shortest path from node 1.1 to 1.2 is 2, as there are

two different elements in the Hcodes. Note that our definition of scat can also be

applied to categorical values which do not lie in a hierarchy. In that case, if two

values are matched, their shortest path SPath is 0 and their similarity score will

be 1; otherwise, SPath is infinity and their similarity score becomes 0. Having in-

troduced our approach to compare two single values, we now extend the discus-

sion to two sets of values. Suppose there are two attributes a1 : {v11, v12, v13, v14}

and a2 : {v21, v22, v23}, where a1 and a2 are the attribute names belonging to policy

P1 and P2 respectively, and the values in the brackets are corresponding attribute

Chapter 7. Policy Similarity Analysis 135

values. Note that the values associated with the same attribute are different from

one another. The similarity score of the two attribute value sets is the sum of

similarity scores of pairs 〈v1k, v2l〉 and a compensating score δ (for non-matching

attribute values). Obviously, there could be many combinations of pairs. Our

task is to find a set of pairs (denoted as Mv) which have the following properties:

1. If v1k = v2l, then (v1k, v2l) ∈ Mv.

2. For pairs v1k 6= v2l, pairs contributing to the maximum sum of similarity

scores belong to Mv.

3. Each attribute value v1k or v2l occurs at most once in Mv.

The process of finding the pair set Mv is the following. First, we obtain the

hierarchy code for each attribute value. Then we compute the similarity between

pairs of attribute values with the help of the hierarchy code. Next, we pick up ex-

actly matched pairs, which are 〈v11, v21〉 and 〈v14, v23〉 in the example. For the re-

maining attribute values, we find pairs that maximize the sum of similarity scores

of pairs. In this example, 〈v12, v22〉 has the same similarity score as 〈v13, v22〉, and

hence we need to further consider which choice can lead to a bigger compensat-

ing score.

The compensating score δ is for attribute values which do not have matchings

when two attributes have different number of values. δ is computed as average

similarity scores between unmatched values with all the values of the other at-

tribute. For this example, no matter which pair we choose, the compensating

score is the same. Suppose we choose the pair 〈v12, v22〉, and then one value v13

is left whose compensating score δ is (0.33+0.67+0.17)/3 = 0.39. Finally, the simi-

larity score for the two attribute a1 and a2 takes into account both the similarity

of attribute names and attribute values. Specifically, the similarity score for at-

tribute names is 1 as the exact matching of names is used. The similarity score for

attribute values is the average scores of pairs and the compensating score. The

136 Chapter 7. Policy Similarity Analysis

final score is 1
2
[1 + (1 + 1 + 0.67 + 0.39)/4] = 0.88. The similarity score of two

categorical predicates is finally defined as below:

Scat(a1, a2) =
1

2

[

1 +

∑
(v1k,v2l)∈Mv

scat(v1k, v2l) + δ

max(Nv1, Nv2)

]

(7.12)

δ =






∑

(v1k,−)/∈Mv

Nv2∑

l=1

scat(v1k, v2l)

Nv2
, Nv1 > Nv2

∑

−,(v2l)/∈Mv

Nv1∑

k=1

scat(v1k, v2l)

Nv1
, Nv2 > Nv1

(7.13)

where Nv1 and Nv2 are the total numbers of values associated with attributes

a1 and a2 respectively.

7.4.6 Similarity Score for Numerical Predicates

Unlike categorical values, numerical values do not have any hierarchical relation-

ship. For computation efficiency, the similarity of two numerical values v1 and v2

is defined based on their difference as shown in Equation 7.14.

snum(v1, v2) = 1 −
| v1 − v2 |

range(v1, v2)
(7.14)

snum tends to be large when the difference between two values is small. The

computation of the similarity score of two numerical value sets is similar to that

for two categorical value sets; we thus have the following similarity definition for

numerical predicates:

Snum(a1, a2) =
1

2

[

1 +

∑
(v1k,v2l)∈Mv

scat(v1k, v2l) + δ

max(Nv1, Nv2)

]

(7.15)

Chapter 7. Policy Similarity Analysis 137

δ =






∑

(v1k,−)/∈Mv

Nv2∑

l=1

snum(v1k, v2l)

Nv2
, Nv1 > Nv2

∑

−,(v2l)/∈Mv

Nv1∑

k=1

snum(v1k, v2l)

Nv1
, Nv2 > Nv1

(7.16)

7.5. Policy Similarity Analyzer

In this Section we present the core analysis services provided by EXAM-S. In this

section we exploit a modified version of MTBDDs in which we allow to label

nodes with Description Logic predicates. This allow us to analyze a large va-

riety of policies: (i) policies with standard functions, (ii) policies with semantic

functions, and (iii) policies with both standard and semantic functions. The sec-

tion is organized as follows. Section 7.5.1 presents our query processing Strategy.

Subsections 7.5.1 and 7.5.1 discusses respectively the policy preprocessor and the

ratification module. Subsection 7.5.1 describe the approach based on MTBDDs

whereas in Subsection 7.5.2 we introduce how to execute queries on the model

we have defined.

7.5.1 Query Processing Strategy

For the purposes of this Section, Policies are nothing but Boolean formulae (or

constraints) on attributes. The problem of analyzing policies is then translated

into the problem of analyzing Boolean formulae. The main task of the PSA mod-

ule is to determine all variable assignments that can satisfy the Boolean formulae

corresponding to one or more policies, and also variable assignments that lead to

different decisions for different policies. The Policy Similarity Analyzer module

(PSA) uses the ratification module to preprocess the Boolean formulae, and then

constructs a MTBDD for each policy and a CMTBDD (change-analysis MTBDD)

138 Chapter 7. Policy Similarity Analysis

for each pair of policies to be compared. In order to deal with the semantic func-

tion introduced in Chapter 5 we create an MTBDD which nodes labeled with the

ontology predicates involved int the policies. Queries on a single policy are car-

ried out on the MTBDD of the policy being queried, whereas queries on multiple

policies are carried out on the CMTBDD of corresponding policies.

The technique used for queries on a single policy is a special case of the tech-

nique used for queries on multiple policies; thus we only describe the most gen-

eral technique. It is worth noting that our query processing algorithm applies

to all types of queries on multiple policies. Such algorithm includes two main

phases. The first phase is the construction of the MTBDD and CMTBDD data

structures. Because the MTBDDs and CMTBDDs can be reused for different

queries, thus, once these structures are generated, they are cached in the policy

repository. When such structures are already in the cache, the first phase of the

algorithm reduces to fetching the structures from the cache. The second phase is

related to specific queries, and in turn consists of three steps. The first step pre-

processes the query, the second step constructs the query MTBDD and performs

model checking, and the final step performs some postprocessing. We describe

the details of each phase in the following subsection.

Policy Prepocessor

Given a set of input policies, the first step is to translate these policies expressed

in XACML into Boolean expressions. Another task of the policy preprocessor is

to identify the type of Boolean expressions for all variables in the policies. There

are two steps. First, Boolean expressions of the same variables in all policies are

clustered. Second, in each cluster, the type of the Boolean expressions is checked.

In particular, for a variable x, if the Boolean expressions containing x all belong

to category 1, this cluster of Boolean expressions will be labeled category 1; if

the Boolean expressions of x belong to either category 1 or 2, the cluster will

be labeled category 2; if there is at least one Boolean expression of x belongs

to category 3 or 5, the cluster will be labeled category 3 or 5 respectively. If a

Chapter 7. Policy Similarity Analysis 139

variable appears in a semantic function then it is labeled with category 4. It is

worth noting that, since a semantic function parameter is an entity that belong to

an ontology, is not possible to have a variable that belong to category 4 and to the

other categories at the same time. Note that we do not need to take special care

of Boolean expressions of category 6 since they are just combinations of previous

types of Boolean expressions and such combinations are naturally reflected by

the MTBDD structure. The labeled Boolean expressions are finally sent to the

ratification module for further processing.

Ratification Module

The ratification module has two main tasks. First, it needs to generate unified

nodes for all the policies. Second, it needs to generate auxiliary rules for ad-

ditional constraints introduced by the node unification and domain check. The

unified nodes and auxiliary rules will later be consumed by the MTBDD module.

We now proceed to discuss how the ratification module handles various types

of Boolean expressions. The Boolean expressions of category 1 can be directly

treated as nodes of the form N(f(x)) by the MTBDD module, where N is the name

of the node and f(x) is the Boolean expression of x. To generate unified nodes for

the Boolean expressions of category 2, i.e. one variable inequality constraints, we

need to first find the disjoint domain ranges of the same variable occurring in

different policies. Assume that the original domains of a variable x are [d−
1 , d+

1],

[d−
2 , d+

2], . . . , [d−
n, d+

n], where the superscript ’-’ and ’+’ denote lower and upper

bound respectively, d−
i can be −∞, and d+

i can be +∞ can be (1 6 i 6 n). We

sort the domain bounds in an ascending order, and then employ a plane sweep-

ing technique which scans the sorted domain bounds from left to right and keeps

the ranges of two neighbor bounds if the ranges are covered in the original do-

main. The obtained disjoint ranges: [d′−
1 , d′+

1], [d′−
2 , d′+

2], . . . , [d′−
m, d′+

m] satisfy the

following three conditions.

1. d−
i , d+

i ∈ D, D = {d−
1 , d+

1 , . . . d−
n, d+

n}.

140 Chapter 7. Policy Similarity Analysis

2.
⋃m

i=1[d
′−
i , d′+

i] =
⋃n

j=1[d
−
j , d+

j].

3.
⋂m

i=1[d
′−
i , d′+

i] = ∅.

It is easy to prove that m is at most 4n − 2. After having obtained disjoint

domain ranges, all related Boolean functions are rewritten by using new domain

ranges. Specifically, an original Boolean function d′−
j ⊳ x ⊳ d+

j (1 6 j 6 n, ⊳∈
{<,6}) is reformatted as

∨k

i=1 (d′−
i ⊳ x ⊳ d+

i), where
⋃m

i=1[d
′−
i , d′+

i] =
⋃n

j=1[d
−
j , d+

j].

Then, the ratification module generates unified nodes in the form of N(f(x)),

where f(x) is an inequality function in the form of d′−
i ⊳ x ⊳ d+

i .

Example

Pol3: (x1 < 10 ∧ x1 + x2 < 20), Pol4: (x2 < 10 ∨ x1 + x2 > 10). We can see that

there are two conjunctions containing linear constraints:

(x1 < 10 ∧ x2 < 10 ∨ x1 + x2 < 20)

(x1 < 10 ∧ x1 + x2 < 20 ∨ x1 + x2 > 10).

We adopt a similar approach for the ratification of Boolean expression belong-

ing to category 4, i.e. semantic functions. In this case we need to find disjoint

ranges of classes associated to the same attribute name. Given a variable x we

create the set [c−
1 , c+

1], [c−
2 , c+

2] where the superscripts assume the same meaning

as defined above. Each [c−
i , c+

i] represents classes in the ontology specified in

the semantic function. Lower and Upper bounds are respectively owl : Nothing

and owl : Thing. Then we calculate disjoint ranges applying the same algorithm

proposed for category 2.

Example

Consider as example the following semantic functions:

1. subConceptOf(Attr − id, D)

2. superConceptOf(Attr − id, D ′)

Where D and D ′ are organized in the ontology Ok as follows: D ⊑ D ′. After

the ratification of the variable C we obtain the set of ranges:

Chapter 7. Policy Similarity Analysis 141

[owl : Nothing, D], [D, D ′], [D ′,owl : Thing]

Next, we introduce the processing of Boolean functions of category 3, i.e. real

value linear constraints. Given a linear constraint in the form of f(x1, . . . , xk), we

need to consider it together with other constraints containing variables x1, . . . , xk

in all policies. Consider, for example, the following two Boolean expressions of

two policies. The ratification module will check if each conjunction can be satis-

fied. Sometimes linear constraints can be reduced to and processed in the same

way as Boolean expressions of category 1 or 2, such as the first conjunction which

can be reduced to (x1 < 10 ∧ x2 < 10). For other cases, the ratification mod-

ule generates a node for each linear constraint and an auxiliary rule to indicate

whether there is a solution. If there is a solution, the effect of the rule will be con-

ditional permit, where conditional means the function is satisfied in certain cases.

Otherwise, the effect of the rule will be not applicable. Note that the number of

such conjunctions containing linear constraints is usually very small in real poli-

cies, though the disjunctive form of a formula may become exponentially larger

than the original formula. For the Boolean function of category 5, i.e., regular

expression constraints, finite automata techniques are used to determine satisfia-

bility [41]. An auxiliary rule is then generated to indicate the satisfiability, in the

similar way as that for the Boolean function of category 3.

Finally, we will introduce how to construct auxiliary rules for the domain con-

straint. For a variable x in the integer, real or string domain, an auxiliary rule is

generated to indicate that each time only one node of x can be assigned the value

true. In other words, this rule tells the MTBDD module that each variable can

only have one value or belong to one disjoint range during each round of the

assessment. An example is shown in Figure 7.5.1. For a variable x in the tree

domain, we collect all its values appearing in the policies. For values along the

same path in the tree, an auxiliary rule is needed to guarantee that if a variable

cannot be assigned a certain value, then none of its children value can be satis-

fied. For example, suppose there are two constraints, domain = .edu and domain =

purdue.edu. The auxiliary rule will state that if the node of domain=.edu is false, the

142 Chapter 7. Policy Similarity Analysis

node of domain=purdue.edu should also be false.

MTBDD Module

The MTBDD represents policies as rooted, directed acyclic graphs whose internal

nodes represent Boolean predicates on policy attributes and whose terminals de-

note policy decisions, i.e. Permit, Deny and Not Applicable. MTBDDs are the same

as BDDs (Binary Decision Diagrams) except that they can have more than two

types of terminal nodes as compared to BDDs which have only 0 or 1 terminals.

While in the worst case the number of nodes in an MTBDD is exponential in the

number of variables, in practice the number of nodes is often polynomial or even

linear [35]. So far, we have obtained all inputs for the MTBDD module:

1. unified nodes;

2. reformatted Boolean expressions;

3. auxiliary rules;

We proceed now to present the construction procedure used by the MTBDD

module. First, the MTBDD module constructs the MTBDD for each policy ac-

cording to the reformatted Boolean expression. Then, the MTBDD module com-

bines the MTBDDs of policies to be compared and constructs the corresponding

initial CMTBDD. Note that our system currently only support CMTBDD con-

structed from two policies. For multiple policies, we need to construct CMTBDD

for each pair of policies to be compared and then aggregate the analysis results.

Next, the auxiliary rules are applied to the initial CMTBDD. When the effect of

the rule is permit, the terminal function follows the original CMTBDD. When the

effect of the rule is conditional permit, the terminal function changes its origi-

nal decision to conditional decision, e.g., permit will be changed to conditional

permit. When the effect of the rule is not applicable, the corresponding terminal

function changes to not applicable. Since each MTBDD has five terminals, i.e.,

Permit, Deny, ConditionalPermit, ConditionalDeny, NotApplicable, a CMTBDD has

Chapter 7. Policy Similarity Analysis 143

twenty-five terminals, one for each ordered pair of results from the policies be-

ing compared (such as Permit-to-Permit, Permit-to-deny). Here, we can see that

our CMTBDD has two more types of terminals indicating conditional permit(CP)

and conditional deny(CD) than that in [35]. The CMTBDD contains comparison

results of the associated policies which is then used for various types of queries.

Algorithm 6 summarizes the construction procedure followed by the PSA mod-

ule.

144 Chapter 7. Policy Similarity Analysis

Algorithm 6: MTBDD CMTBDD Construction

Input:

Pi: Pi is a policy and 1 6 i 6 n

Output:

CMTBDD(Pi): The CMTBDD associated with policy Pi

(1) BF = Translate Policy To Boolean Formulae(P1, P2, · · · , Pn);

(2) FOR EACH variable bfi ∈ BF

(3) [f1(x), · · · , fn(x)]← atomic Boolean expressions with x;

(4) IF every fi(x)(1 6 i 6 n) belongs to category 1

(5) construct node N(fi(x));

(6) ELSE

(7) IF fi(x)(1 6 i 6 n) belongs to category 2

(8) compute disjoint domains of x;

(9) convert every fi(x) to f ′i(x) by using new domains;

(10) construct node N(f ′i(x));

(11) construct an auxiliary rule;

(12) ELSE

(13) IF fi(x)(1 6 i 6 n) belongs to category 4

(14) compute disjoint domains of x;

(15) convert every fi(x) to f ′i(x) by using new domains;

(16) construct node N(f ′i(x));

(17) construct an auxiliary rule;

(18) ELSE

(19) IF fi(x)(1 6 i 6 n) belongs to category 3, 5

(20) construct an auxiliary rule;

(21) construct an MTBDD for each policy;

(22) construct an MTBDD for each auxiliary rule;

(23) CMTBDD = combine(MTBDDi);

(24) combine the CMTBDD with auxiliary rules;

(25) return MTBDD CMTBDD.

Chapter 7. Policy Similarity Analysis 145

To illustrate the above steps, let us consider again the Example 1 but this

time from the system’s perspective. Policy Pol1 and Pol2 are first translated into

Boolean formulae. There are three variables occurring in these policies, namely

domain, time and affiliation.

Pol1 = (fsub(Role, FullProfessor)) ∧ (8 6 time 6 22)

Pol2 = (fsup(Role, PhDStudent) ∨ affiliation = ‘‘PurdueUniversity ′′) ∧ (6 6

time 6 20)

For the variable domain and affiliation, whose Boolean expressions belong to

the first category, the preprocessor generate the node a(affiliation = ‘‘PurdueUniversity ′′),

and sends the node to the MTBDD module. For the Boolean formulae of variable

time and role which belong to categories 2 and 4 respectively, the preprocessor

sends them to the ratification module. The ratification module computes the

disjoint range of the variable time and obtain three nodes: t1(6 6 time < 8),

t2(8 6 time 6 20), t3(20 < time 6 22). For the variable Role the following nodes

are obtained:

r1(f
sup(Role, owl : Nothing), fsub(Role, PhDStudent))

r2(f
sup(Role, PhDStudent), fsub(Role, FullProfessor))

r3(f
sup(Role, FullProfessor), fsub(Role, owl : Thing))

Correspondingly, Pol1 and Pol2 are rewritten as:

Pol1 = (r1 ∨ r2) ∧ (t2 ∨ t3)

Pol2 = (r2 ∨ r3 ∨ a) ∧ (t1 ∨ t3)

By taking the unified nodes and new Boolean formulae as inputs, the MTBDD

module first constructs the MTBDD for each policy and auxiliary rules (as shown

in Figures 7.3(a), 7.3(b) and 7.4(a), 7.4(b)). Then it combines these MTBDDs into

a CMTBDD (a section of the resulting CMTBDD is shown in Figure 7.5). In the

following subsection, we show how the CMTBDD is used to execute our analysis

queries.

146 Chapter 7. Policy Similarity Analysis

r1

t3

t2
r2

N P

0 1

1

1

1

0
0

0

(a) Pol1

N P

t2

t1
r3

a

0 1

1

1

1

0

0

r2

0

0
1

(b) Pol2

Figure 7.3: MTBDD of policies.

t2 t2

t3 t3

P N

0 1

1
0

0

t1

0
1 1

01

(a) Auxiliary Rule (time)

P N

0 1

r1

r2

0
1

(b) Auxiliary Rule (role)

Figure 7.4: MTBDD for the auxiliary rules.

Chapter 7. Policy Similarity Analysis 147

t3t3t3

t2 t2 t2

t1t1

a

r2

N−P

0

0

0

0

0

0
0

0
0

0

1

1

11

11

1

1

1

1

N−N P−N P−P

Figure 7.5: CMTBDD.

7.5.2 Query Processing

Recall that each query has three types of components, Bq, eq and fq, where Bq is a

Boolean expression on Attrq, eq is the desired effect and fq is a constraint on a set

of attributes. For a given query, first we normalize its Bq, map the specified ranges

of attributes to the existing unified nodes, and represent the specified ranges as

corresponding unified nodes. Then, we construct the query MTBDD. Here, we

can treat the normalized Bq and effect eq in a query as a rule, and then construct

the MTBDD for it. Now consider a query in we would like to know all the possi-

ble requests allowed for a role that is subsumed by “PhD Student”. Such request

can be translated as “given fsup(Role, PhDStudent), Decision = permit, find all

possible requests”. Figure 7.6 shows the corresponding query MTBDD. After we

obtained the query MTBDD, we combine it with the MTBDD or CMTBDD of

the policies being queries, where we obtain a temporary structure called Query

CMTBDD. By using the model checking technique on the Query CMTBDD, we

are now able to find the requests satisfying the Aq and eq. As for the example

query, we just need to find all paths in the Query CMTBDD which leads to the

148 Chapter 7. Policy Similarity Analysis

N P

0 1

r1

Figure 7.6: Query MTBDD.

terminal named “P-P”. Note that for conditional decisions, the nodes along the

path may need to be examined by plugging the specific variable values.

As for the policy queries with an empty set of Bq, such as the policy relation-

ship evaluation queries, the processing is even simpler. We only need to check

the terminals of the CMTBDD. For example, to check if two policies are equiva-

lent, we check whether there exist only three terminals containing “P-P”, “D-D”

and “N-N”, which means two policies always yield same effects for incoming

requests. Finally, a post-processing may be required if there are constraints speci-

fied by fq. This step is straightforward since we only need to execute some simple

examinations on the requests obtained from the previous step. The results will

then be collected and organized by the result analyzer before being presented to

the user.

Chapter 8

P3P Similarity

In this section we provide some results about the application of the data-mining

approach developed in Section 7.4 for P3P privacy policies. In Section 8.1 we pro-

vide some background information about P3P. We define the similarity function

in Sections 8.2 and . We discuss the meaning of a clustering approach for P3P

policies in Section 8.4. Finally, in Section 8.5, we report details about the experi-

mental evaluation.

8.1. P3P

The Platform for Privacy Preferences Project (P3P) enables Web sites to express

their privacy practices in a standard format that can be retrieved automatically

and interpreted easily by user agents [23]. P3P user agents will allow users to be

informed of site practices (in both machine- and human-readable formats) and

to automate decision-making based on these practices when appropriate. Thus

users need not read the privacy policies at every site they visit.

With the widespread use of web services, a wide range of personal informa-

tion from personal hobby, shopping history to driver license and social security

number can be collected by the service providers. There is no doubt that the mis-

use of such personal information can cause problems like receiving tons of junk

mails and suffering from identity theft. To address the concerns about personal

150 Chapter 8. P3P Similarity

information privacy, the Platform for Privacy Preferences (P3P) is proposed as a

World Wide Web Consortium (W3C) standard for expressing privacy policies of

a website. P3P can help balance the web service providers need for information

to provide consumers with desired services and each individuals privacy prefer-

ences. P3P version 1.0 specifies a protocol for user agents to locate P3P policies

on websites and a syntax for compact policies sent in HTTP response headers. A

format is specified for policy reference files that indicate the location of P3P poli-

cies on a website and the parts of the website to which they apply. Compact P3P

policies is a summary of the sites privacy policy transmitted as a series of tokens

in a P3P HTTP header along with a cookie. Its main purpose to enable the web

browser to make a quick decision about whether to accept a cookie. In addition,

the P3P1.0 recommendation also specifies an XML syntax for privacy policies. In

what follows, we will describe the XML syntax in some detail.

A P3P policy consists of an Entity element(<ENTITY>) which is used to pro-

vide the name and contact information for the website, an Access element(<ACCESS>)

which indicates whether the site provides access to various kinds of information,

a Disputes(<DISPUTES>) which describes dispute resolution procedures and one

or more Statement elements (<STATEMENT>). The Statement element is the most

important component of the policy in that it specifies the data and the type of

information collected (<DATA> and <CATEGORIES> elements) along with how

the information may be used (<PURPOSE> element), how the information may

be shared (<RECIPIENT> element) and the associated data retention policies

(<RETENTION> element). Each of these elements may contain elements chosen

from a predefined set of options, although human readable fields are also pro-

vided for detailed explanations. In addition, the Purpose and Recipient elements

may be associated with a required attribute to indicate whether the correspond-

ing elements are always required or opt-in/opt-out policies apply. The <DATA>

element is associated with an optional attribute to indicate if the user is required

to provide this data. As an example, consider an online business “OnlineStore”.

Their website collects basic information about a visitors computer/connection

Chapter 8. P3P Similarity 151

for administration purposes and aggregate information about visited pages for

improving the site. They do not collect identifiable data and they purge any col-

lected within two weeks. Visitors can contact an independent agency “Foo” re-

garding disputes and will correct any wrongful errors or actions. The P3P policy

corresponding to their privacy practices is given in Table 8.1.

8.2. P3P Similarity Measure

P3P policies represents another domain that is suitable for applying our similar-

ity measure. Though many websites nowadays implement P3P policies [28], it is

still a headache for consumers to read a long policy literally and fully understand

it. Therefore, our goal is to develop a more convenient approach that provides

an overview of web service providers privacy practices by ranking all available

web services and displaying them in a descending order of the percentage of the

difference between the P3P policy and the user privacy concerns. On the other

hand, from the view of a service provider, a new web service provider would like

to have a good P3P policy that can address most consumers privacy concerns. To

obtain the knowledge of common privacy concerns of consumers, the web service

provider may need to survey other websites providing similar services and study

their P3P policies. In such case, a meta policy or a policy writing guideline for

certain type of websites will be very helpful and can save a lot of efforts for a new

service provider. In addition, for web service providers looking for potential col-

laborators, they also need to make sure that their P3P policies are similar so that

their collaboration will not affect their existing customers privacy preferences.

Aims at achieving the above goals, we propose a novel and efficient approach

to quantify the difference between P3P policies. The basic idea is to assign a

similarity score to two P3P policies by summarizing the similarity between each

corresponding component in the two policies. The obtained similarity score can

be used to rank websites as well as clustering P3P policies. Clustering is an im-

portant technique for discovering interesting data patterns and policy clustering

152 Chapter 8. P3P Similarity

<POLICY name=”StorePolicy” discuri=”...” xml:lang=”en”>

<ENTITY>

<DATA-GROUP>

<DATA ref=”# business.name”>OnlineStore

</DATA>

</DATA-GROUP>

</ENTITY>

<ACCESS><nonident/></ACCESS>

<DISPUTES-GROUP>

<DISPUTES resolution-type=”independent” service=”Foo”/>

<REMEDIES><correct/></REMEDIES>

</DISPUTES>

</DISPUTES-GROUP>

<STATEMENT>

<PURPOSE><admin/><develop/></PURPOSE>

<RECIPIENT><ours/></RECIPIENT>

<RETENTION><stated-purpose/></RETENTION>

<DATA-GROUP>

<DATA ref=”# dynamic.clickstream”/>

<DATA ref=”# dynamic.http”/>

</DATA-GROUP>

</STATEMENT>

</POLICY>

Table 8.1: An Example P3P Policy.

Chapter 8. P3P Similarity 153

will help to understand the most common statements in policies which helps to

find meta-policies or policy writing guidelines for different types of organiza-

tions. Our contributions can be summarized as follows.

• We have identified two interesting and important problems. The first prob-

lem is helping a consumer quickly select a suitable web service that satisfy

his privacy concerns from a long list of available web services. The second

problem is helping new web service providers write good P3P policies that

can cover most consumers privacy concerns.

• We have proposed an efficient approach for comparing P3P policies and

also applied it to clustering P3P policies.

• We have carried out a set of experimental studies which demonstrate both

efficiency and effectiveness of our approach.

8.3. P3P Policy Similarity Measure

In this section we apply the similarity measure defined for XACML in the area

of P3P policies 1. The general approach is similar to the one proposed above but

there are some important differences that need to be taken into account. First of

all, values within a P3P policy are predefined built-in keywords with a fixed se-

mantics. Secondary, it is important to deal with both the structure and the model

of a P3P policy. Actually the theoretical model behind a policy is slightly differ-

ent from the language defined for its formalization: this means that a similarity

measure that follows strictly the structure of a P3P document will bring to bad

results in the evaluation of the similarity measure.

The P3P policy similarity measure assigns a score between 0 and 1 to quantify

the distance(similarity) between two P3P policies. The scores are calculated by

comparing the corresponding elements of the given two policies. A score is cal-

culated for each pair of elements being compared. The scores for different types

1For the rest of this section the word “policy” will be used to refer to a P3P policy

154 Chapter 8. P3P Similarity

<dynamic.clickstream, {}, {admin, develop}, {ours}, {stated-purpose}>

<dynamic.http, {}, {admin, develop}, {ours}, {stated-purpose}>

Table 8.2: Simplified form of a P3P Policy

of elements are then aggregated to find the overall similarity score between the

policies. We use a semantically equivalent but simplified form of a P3P policy

when defining the policy similarity measure. In particular, we transform a policy

conforming to the P3P syntax into a list of tuples corresponding to the Statement

depicted in Table 8.2.

elements in the policy. We do not consider the Entity, Access and Disputes ele-

ments because these elements contain information like addresses that are specific

to the website that owns the P3P policy and are not related to their actual privacy

practices as such. The policy similarity measure must only compare elements

which are relevant to how a policy uses what data as we are mainly interested

in knowing how similar two policies are with respect to how each of them deals

with a visitors data. A simplified P3P policy is a list of tuples ti(1 <= i <= n),

where each ti is of the form : ti : 〈Di, Ci, Pi, RTi, RNi〉 where Di corresponds to

a Data element, Ci, Pi, RTi and RNi correspond to the categories, purposes, re-

cipients and retention policies respectively associated with the data element Di.

The simplified form of the P3P policy in Table 8.1 is shown in Table 8.2. The sim-

ilarity score between two policies is hence the similarity score between the list of

tuples corresponding to the policies. The similarity score between two tuples is

calculated as a weighted sum of the similarity between the data, categories, pur-

poses, recipient and retention components of the two tuples. In what follows, we

will first describe how the similarity for different types of components are calcu-

lated and then using these we will show how the overall similarity score between

policies is calculated.

Chapter 8. P3P Similarity 155

8.3.1 Data Similarity

A Data element in a P3P policy is associated with a uriref attribute whose value

specifices a URI reference of data and an optional attribute whose value can be

either yes or no and which specifies whether or not the website requires visitors

to provide this data to access a resource or complete a transaction. In addition,

each data is associated with a Categories element that specifies the intended uses

of the data. The P3P 1.0 standard provides a fixed set of categories to which

the data might belong. In case, the data does not belong to any of the available

categories, then a human readable explanation must be provided. In our work,

we only consider the cases where data fits into one of the available categories.

The similarity between two Data elements Di and Dj is calculated as a weighted

sum of the similarity between uriref/optional attribute values(Sdat) and the

categories associated with the data (Scat). The data similarity SDATA is thus given

in Equation 8.1.

SDATA(Di, Dj) = wdatSdat(Di, Dj) + wcatScat(Ci, Cj) (8.1)

where:

• wdat and wcat are weights such that wdat + wcat = 1,

• Di and Dj are Data elements,

• Ci and Cj are Categories element associated with Di and Dj respectively.

The score Sdat is a weighted average of the similarity between uriref value

and optional value and is given by:

Sdat(Di, Dj) = wuriSuri(ui, uj) + woptSopt(oi, oj) (8.2)

where:

• wuri and wopt are weights such that wuri + wopt = 1,

156 Chapter 8. P3P Similarity

• ui, uj and oi, oj represents the uriref and optional values respectively of

Data elements Di,Dj.

The score Sopt is equal to 1 iff oi is equal to oj and is 0 otherwise. The score

Suri is calculated as follows:

Snodes(ui, uj) =
| path(ui) ∩ path(uj) |

max(height(ui), height(uj))
(8.3)

where:

• path(ui) represents the set of ordered nodes of the data element referred by

ui,

• height(ui) represents the number of nodes in the path of ui.

Finally, the score Scat is given by:

Scat(Ci, Cj) =
| Ci ∩ Cj |

| Ci ∪ Cj |
(8.4)

where:

• | Ci | represents the cardinality of the set Ci.

8.3.2 Purpose Similarity

The Purpose element of a P3P policy consists of a set of elements chosen from

a set of pre-defined purposes. Each of these purposes is associated with a re-

quired attribute whose value may be one of ”always”, ”opt-in” or ”opt-out”. The

similarity between two Purpose elements is calculated by taking into account the

number of common purposes with common value of required attribute between

the two elements. It is given by:

SPURPOSE(Pi, Pj) =

∑
p∈P Satt(p)

| Pi ∪ Pj |
(8.5)

Chapter 8. P3P Similarity 157

Satt(p) =





1, if att1(p) = att2(p)

σ, otherwise
(8.6)

where:

• P = Pi ∩ Pj,

• atti(p) returns the value of the required attribute associated with the pur-

pose p in Pi,

• 0 6 σ 6 1 is the penality returned by Satt(p) if p has different value for

required attribute in Pi and Pj
2.

8.3.3 Recipient Similarity

The similarity between two Recipient elements is calculated in a manner similar

to that used for the Purpose elements. It is given by:

SRECIPIENT(RTi, RTj) =

∑
r∈RT Satt(r)

| RTi ∪ RTj |
(8.7)

Satt(r) =





1, if att1(r) = att2(r)

σ, otherwise
(8.8)

where:

• RT = RTi ∩ RTj,

• atti(r) returns the value of the required attribute associated with the recip-

ient r in RTi,

• 0 6 σ 6 1 is the penality returned by Satt(r) if r has different value for

required attribute in RTi and RTj
3.

2Typically σ may be set to 0.5.
3Typically σ may be set to 0.5.

158 Chapter 8. P3P Similarity

8.3.4 Retention Similarity

The Retention element in P3P policy consists of retention values, indicating the

retention policies, chosen from a set of predefined retention values. The similarity

between two Retention elements is calculated by simply taking into account the

intersection of the set of values in the two elements. It is given by:

SRETENTION(RNi, RNj) =
| RNi ∩ RNj |

| RNi ∪ RNj |
(8.9)

8.3.5 Tuple Similarity

The similarity between two tuples ti and tj is calculated by taking the weighted

sum of the similarity of the corresponding Data, Purpose, Recipient and Retention

elements in the two tuples. It is given by:

STUPLE(ti, tj) = wdataSDATA(Di, Dj) + wpurpSPURPOSE(Pi, Pj) +

wrecSRECIPIENT(RTi, RTj) + wretSRETENTION(RNi, RNj) (8.10)

where:

• ti = 〈Di, Ci, Pi, RTi, RNi 〉,

• wdata + wpurp + wrec + wret = 1,

• Di, Ci represent the data and categories belonging to tuple i,

• Pi represents the set of purposes belonging to the tuple i,

• RTi represents the set of recipients belonging to the tuple i,

• RNi represents the set of retention values belonging to tuple i.

Chapter 8. P3P Similarity 159

8.3.6 Policy Similarity

Finally, the similarity between two P3P policies Pi and Pj is calculated by aver-

aging the similarity scores obtained between pairs of tuples corresponding to the

two policies. Equation 8.11 is used for the computation of the family of sets Θa

that represents all the possible combinations of pairs of the form 〈tni
, tmj

〉 sat-

isfying the conditions that the similarity between each tuple is greater than the

threshold ε 4 and that each tuple is took into consideration at most once. Equa-

tion 8.12 define the set Θ that is the set Θa that maximize the sum of the similarity

between the pairs of tuples it contains. Finally, Equation 8.16, represents the simi-

larity between a pair of policy. Since it is possible that some tuple is not contained

in any of the pairs in Θ we take the average similarity between each of those tu-

ples and all the tuples belonging to the paired policy.

Θa(Pn, Pm) = {(tni
, tmj

) | tni
∈ Pn ∧ tmj

∈ Pm ∧ Striple(tni
, tnj

) > ε ∧

∀ (tni′
, tmj′

), (tni
= tni′

)⇒ (tmj
= tmj′

)}

(8.11)

Θ = Θa′ so that:

∀a





∑

(tmi
,tnj

)∈Θa

Striple(tni
, Smj

) 6
∑

(tni
,tmj

)∈Θa′

Striple(tni
, tmj

)





(8.12)

Sum∈Θ =
∑

(tni
,tmj

)∈Θ

2 Striple(tni
, tmj

) (8.13)

4This threshold is used as a filter. We do not take into considerations the similarities between

pairs of tuples that do not satisfy the constraint on the treeshold.

160 Chapter 8. P3P Similarity

Sum/∈Θ
n =

∑

(tni
,−)/∈Θ

S
avg
triple(tni

, Pm) (8.14)

Sum/∈Θ
m =

∑

(−,tmj
)/∈Θ

S
avg
triple(tnj

, Pn) (8.15)

S(Pn, Pm) =
Sum∈Θ + Sum/∈Θ

n + Sum/∈Θ
m

| Pn | + | Pm |
(8.16)

8.4. P3P Policy Clustering

Policy clustering aims to separate policies into distinct groups based on the differ-

ences in the policies. Each group of policies has its unique characteristics which

can be later used to create a meta policy for this group. In what follows, we

present the details of the clustering algorithm. We use 1 − S(Pi, Pj) as the dis-

tance function between any two policies Pi and Pj and employ the well-known

K-median clustering algorithm with minor modifications. The algorithm consists

of four main steps.

The first step is a preprocessing step which computes the distance between all

pairs of policies and stores the values in a matrix. This avoids distance recom-

putation during the clustering. Second, we randomly select k policies as initial

cluster centroids. Third, we assign each policy to the cluster that has the closest

centroid. Fourth, when all policies have been assigned, recalculate the k centroids

and then repeat Steps 3 and 4 until the centroids no longer change. Note that the

computation of the centroid for policies is different from calculating the center

point of a cluster of points in Euclidean space since it is impossible to compute

an ”average” policy. Therefore, we select a policy which has the minimum sum

of distance to all the other policies as the centroid.

Chapter 8. P3P Similarity 161

Figure 8.1: Average Radius varying K from 1 to 100 on a dataset of 1000 policies.

8.5. Experiments

We have implemented a Java prototype of the clustering algorithm presented in

section above and we have experimented our approach on a subset the TAPPA

db containing 23,891 P3P policies 5. First of all we used the average radius to

evaluate the results of the clustering algorithm. The average radius of a cluster

measures the average distance between two elements in a cluster (the normal-

ized distance between two policies can be obtained subtracting the value of the

similarity between the two policies to 1) and is one of indicators of the quality of

the clusters and hence in turn the quality of the distance measure (in our case the

proposed similarity measure). The smaller the radius the better the clustering in

Figure 8.1 we show the average radius for the value of K ranging from 1 to 100

on a dataset of 1000 policies.

Anyway, the results on the quality of the clusters are not enough. Typically,

a clustering algorithm is used to identify groups of objects in a certain dataset.

5http://cups.cs.cmu.edu/tappa/

162 Chapter 8. P3P Similarity

The groups are identified according to some specific features of the objects. For

example, if we have points in an euclidean space we can clusterize those points

taking into consideration their position within the space. In our case we have

policies that are complex objects that contains a number of different information

and for this reason different perspectives needs to be used in the evaluation step.

Average radius is a good choice for understanding the quality of the resulting

clusters (and in turn the quality of the clustering algorithm) but we need to take

into consideration additional data for understanding the meaning of our clusters.

The TAPPA db maintains some interesting meta-data for each policy:

• Top level domain;

• Top level domain type;

• Traffic rank;

• Domain name;

• URL of the policy;

• Owner of the policy;

• Email contact;

• Address of Website;

• Country where site is registered;

• P3P Policy name;

Moreover, in [28] is proposed an interesting categorization of P3P-enabled

site. The results depicted in Figure 8.2 show some implicit clusters based on how

web-sites (and hence the P3P policies defined for those sites) have been catego-

rized. Since the values reported in Figure 8.2 have been obtained running test

on the TAPPA db would be very interesting to retrieve those categories for the

policies we already have in our dataset.

Chapter 8. P3P Similarity 163

Figure 8.2: Distribution of P3P-enabled search results by search term category.

We are working on all these data in order to come up with interesting test

cases for deeper evaluations of both our P3P similarity measure and the cluster-

ing algorithm.

164 Chapter 8. P3P Similarity

Part III

EXAM-S: Implementation

165

166

Chapter 9

EXAM-S: the Architecture

In this chapter we discuss the various components in the architecture of EXAM-S.

The Chapter is organized as follows: in Section 9.1 we give an overview of the

main components. Section 9.2 discuss the main module in which all the analysis

components are organized. The entities exploited for solving policy heterogene-

ity are introduced in Section 9.3. Finally, Section 9.4 discuss the features of the

repositories main module.

9.1. Architecture

The EXAM-S environment, an overview of which is shown in Figure 9.1, includes

three different modules. The first module is the analysis module, which receives

policies requests and queries from users, and returns request replies and query

results. The second module is the heterogeneity module that contains all the com-

ponents that have been defined in Chapter 6. This module handles policy hetero-

geneities providing a unified vocabulary for the policies involved into the analy-

sis process. Finally, the third module is the one that contains all the repositories

that are exploited by the other modules.

168 Chapter 9. EXAM-S: the Architecture

Figure 9.1: The EXAM-S Architecture

9.2. Analysis Module

The Analysis Module, includes three different levels. The first level is the user

interface, which receives policies requests and queries from users, and returns re-

quest replies and query results. The second level is the request dispatcher, which

handles various requests received from the user interface, dispatches them to

proper analysis module and aggregates obtained results. The third level is the

core level of EXAM and includes four modules supporting different tasks in pol-

icy analysis, namely: policy annotation, policy filtering, policy analysis and Se-

mantic Reasoning. The policy annotation module pre-processes each newly ac-

quired policy by adding annotations to it. The annotations explicitly represent the

behavior or semantics of each function referred in the policy. Such annotations

help in automatically translating policies into Boolean formulae that can then be

evaluated by the policy analysis modules. The annotated policies are stored in

Chapter 9. EXAM-S: the Architecture 169

the policy repository together with the policy metadata. The policy filter module

acts as a filter phase for policy similarity analysis when there is a large amount of

policies to compare. It is a lightweight approach which quickly evaluates similar-

ity between each pair of policies and assigns them a similarity score. According

to the obtained similarity scores, policies with low similarity scores can be safely

pruned from further analysis, whereas policies with high similarity scores can be

further examined. The main goal of the policy filter module is to reduce the num-

ber of policies that need to be analyzed more in details, when dealing with large

size policy sets. The filtering approach we use is based on techniques from infor-

mation retrieval and is extremely fast. The use of filtering in the policy analysis

process is however optional. The policy management module can directly send

analysis queries to the policy similarity analyzer (PSA), to carry out a fine-grained

policy analysis, without performing the filtering. Moreover, the PSA implements

the standard policy analysis queries supported by EXAM-S.

9.2.1 Architecture of the Policy Similarity Analyzer (PSA)

Figure 9.2 shows the architecture of PSA. The basic idea underlying its architec-

ture is to combine the functionalities of the policy ratification technique [2] and

MTBDD technique [35] by using a divide-and-conquer strategy. Specifically, poli-

cies are first passed to a preprocessor which identifies parts to be processed by the

ratification module and parts to be directly transmitted to the MTBDD module.

The ratification module then generates unified nodes and a set of auxiliary rules

that are transmitted to the MTBDD module. The MTBDD module then creates a

combined MTBDD that includes policies and additional rules. By using the com-

bined MTBDD, the PSA module can thus process the queries that we introduced

in Chapter 7. Queries are first translated by the query preprocessor and then ex-

ecuted by the MTBDD module. Finally, the result analyzer reformats the output

of the MTBDD module and reports it to the users.

170 Chapter 9. EXAM-S: the Architecture

Figure 9.2: Architecture of the Policy Similarity Analyzer (PSA)

9.2.2 Semantic Reasoner submodule

Finally, the Semantic Reasoner component supports the PSA for the reasoning

tasks on the specified domain ontology. The main task of this module is to sup-

port the ratification module in finding the disjoint ranges over the involved do-

main ontologies. The Semantic Reasoner, receive the set of ranges and the ontol-

ogy they belong and then creates the set of disjoints ranges. Semantic reasoning

is executed through the use of the Pellet reasoner [75]. The result of the reasoning

procedure is then returned to the PSA and then exploited in the remaining steps

of the analysis process. The architecture of this module is shown in Figure 9.3.

9.3. Heterogeneity Module

This section discuss the features of the heterogeneity modules. This module con-

tains all the components that have been defined in Chapter 6. We have added an

Chapter 9. EXAM-S: the Architecture 171

Figure 9.3: Architecture of the Semantic Reasoner Submodule

interface that is dedicated to the dispatch of the requests to the respective mod-

ule. We have implemented the stack of technologies defined for solving policy

heterogeneity has decoupled modules each one able to perform the associated

algorithm defined in Chapter 6. Subsection 9.3.1 is dedicated to the Policy Refer-

ence Architecture creation submodule.

9.3.1 Policy Reference Ontology creation

Figure 9.4 depicts a conceptual visualization of the Policy Reference Ontology

submodule (PSO). The PSO combine the architectural components exploited in

the involved procedures. The ontology extraction procedure is implemented with

two submodule: the first extracts the taxonomy from the terms in the policy ex-

ploiting the dictionary and the lookup tables. We use WordNet [31] as a reference

dictionary. The second one, creates the relations between those terms exploiting

additional semantic information, such as ontologies and the relations implicitly

defined within the policy. If the policy exploits some ontologies them are merged

172 Chapter 9. EXAM-S: the Architecture

Figure 9.4: Architecture of the Policy Reference Ontology creation procedure.

and used in the extraction procedure.

9.4. Repositories Module

The repository module has been created for optimization purposes. Sometimes,

the operation performed over ontologies, can be expensive especially when deal-

ing with large knowledge bases or with complex policies that use several ontolo-

gies.

For this reason, whenever an ontology mapping or an ontology extraction is

performed, we maintain repositories in which the results of such procedures are

stored. Then, when it is necessary to perform again the same kind of operation,

we check in the repositories if we have already computed the result. If this is

the case then we obviously skip the execution of the operation returning to the

Chapter 9. EXAM-S: the Architecture 173

following procedures (if any) or to the calling module the result of the operation.

Otherwise, the process is carried out as usual. For this reason we have created

two different repositories, the first one the maintain ontologies (both the imported

from external resources and the one generated by the internal modules) and the

second one that store the mapping between them.

Moreover, this is the module in which we maintain the dictionary and the

lookup tables. In Figure 9.1 they are depicted in the same repository for brevity.

As we have already introduced before, we use WordNet as our reference dictio-

nary. WordNet, comes as an autonomous database with its own interface so no

additional components are necessary.

174 Chapter 9. EXAM-S: the Architecture

Chapter 10

Implementation and Experimental

Evaluation

In this chapter we discuss implementation and experimental evaluation of the

approaches developed in Chapters 6 and 7. The Sections are organized as follows:

in Section 10.1 we describe the details of the heterogeneity module. Sections 10.2

and 10.3 present the experiments for the filtering technique, the policy similarity

analyzer is discussed in Sections 10.5 and 10.5.

10.1. Experimental Results: Heterogeneity Module

We have implemented a JAVA prototype of the heterogeneity module. In the

prototype we have exploited the Sun implementation of XACML, the OWL API

for loading, updating and creating ontologies, the Falcon-AO library for ontol-

ogy matching, and the MIT Java WordNet Interface for managing queries on the

WordNet database.

For the experimental evaluation, we generated a set of policies in a XACML

format which serves as input for the creation of the unified vocabulary. At-

tributes were randomly selected by a predefined list while semantic data was

obtained by randomly selecting entities by a set of ontologies retrieved by using

the SWOOGLE ontology search engine.

176 Chapter 10. Implementation and Experimental Evaluation

Figure 10.1: Comparison between the times of the Ontology Merging algorithm

applied to original referenced ontologies and the Ontology Merging applied to

their policy views.

Figure 10.1 shows the comparison between the merge algorithm applied to

original referenced ontologies and the merge algorithm applied only to their pol-

icy views for increasing values in the number of the ontologies involved. The

use of the policy views of an ontology significantly improves the performance

of the merging algorithm. Moreover, the accuracy in the policy analysis results

is not affected by the adoption of the policy view optimization. The reason is

that during the creation of the view, we prune all entities that are not considered

by the structural techniques adopted by state of the art ontology matching tools.

Figure 10.2 shows the total execution time of our process for increasing values in

the number of attributes. We plotted the execution time of the approach for vary-

ing values in the number of total attributes1 between 10 and 50. Each column

shows the time for: (i) the merge algorithm, (ii) the extract algorithm and (iii) the

1Since in our approach we consider attribute-value pairs, it makes more sense to analyze the

times with respect to the number of attributes instead of the number policies.

Chapter 10. Implementation and Experimental Evaluation 177

Figure 10.2: Total execution times for increasing values in the number of at-

tributes.

combination of their result. As expected, most of the execution time is spent in

merging ontologies. Conversely, the extraction is very quick and even for high

number of attributes (not reported in the Figure) e.g. ≈ 100, the execution time is

≈ 150 msec.

In Table 10.1 we report data concerning the accuracy of our model. We eval-

uate the number of similar concepts detected and the correctness of the related

mappings when varying the value of the threshold τ between 0.65 and 0.95. Mod-

ifying the value of τ means changing the acceptance threshold during the merge

algorithm. The results show that it is important to find a good trade-off between

the number of mappings retrieved and their correctness. For this experiment, we

run our prototype on a set of policies with an average number of 50 attributes.

Attributes have been then randomly associated to concepts belonging to a set of

ontologies related to the faculty domain. The results show that for values of τ

between 0.75 and 0.80 our model provides a good balance between the correct-

ness of the mappings and the increase in similarities detected. For values of τ

178 Chapter 10. Implementation and Experimental Evaluation

greater or equal than 0.80 we obtain a higher accuracy but the number of map-

pings seems to be too low for being adopted in practice. Conversely, with values

of τ lower or equal than 0.70 we obtain more hits but the correctness is too low to

be considered acceptable.

Table 10.1: The accuracy of the model.

τ Similarities Detected Correctness

[0.65, 0.70] 86,458% 58,823%

[0.70, 0.75] 85,416% 64,705%

[0.75, 0.80] 80,208% 80,411%

[0.80, 0.85] 58,333% 85,294%

[0.85, 0, 90] 52,083% 91,176%

[0.90, 0.95] 46,875% 94,117%

> 0.95 42,708% 97,059%

10.2. Implementation: Filtering

We have implemented a prototype of the proposed similarity measure techniques

using Java. We have performed extensive testing of the implementation on ran-

domly generated access control policies. We evaluated both the effectiveness and

efficiency of our lightweight policy similarity measure in contrast to exhaustive

policy comparison techniques which involve Boolean expression analysis.

All experiments were conducted on 3Gz Pentium III processor machine with

500MB RAM.

10.3. Experimental Results: Filtering

We first evaluated the effectiveness and efficiency of the policy similarity mea-

sure. This set of experiments were conducted without considering the ontology

Chapter 10. Implementation and Experimental Evaluation 179

matching and dictionary lookup. We then measured the scalability of the imple-

mentation for both the variations with and without ontology. Finally we looked

in detail the differences obtained with respect to the similarity scores when using

the ontology matching and dictionary lookup.

10.3.1 Effectiveness

Since our policy similarity measure is an approximation of the similarity between

two policies, in order to demonstrate the effectiveness of the similarity measure,

we compared our results with those obtained by the exact policy similarity ana-

lyzer proposed in [57] .The output of the exact policy similarity analyzer is a list of

requests and effects of the two policies for these requests. Based on this informa-

tion, we can quantify the differences between two policies using the percentage

of the requests for which the two policies have different effects. The higher the

percentage of such requests the less similar the policies are.

Each policy pair in set-4 and set-8 was input to both the policy similarity mea-

sure and the exact policy similarity analyzer. For each policy pair a policy similar-

ity score and a policy difference percentage was recorded. The test sets set-4 and

set-8 each contained 100 pairs of policies. In set-4 each policy had 4 rules each and

in set-8 each policy had 8 rules each. The maximum number of attribute predi-

cates in any given policy was 68 for set-4 and 124 for set-8. Considering that for

typical policies we have encountered in real world applications the average num-

ber of atomic Boolean expressions lies between 10 and 50, our test sets covered a

much bigger range.

Figure 10.4(a) shows the policy similarity score and policy difference percent-

age for policy pairs in set-4 and set-8 with the threshold ǫ set to 0.5. We can

observe that policy similarity scores decrease when the differences between two

policies increase. This indicates that our policy similarity measure provides a

good approximation of the similarity between policies. We also explore the effect

of the threshold ǫ by varying ǫ from 0.2 to 0.8 for test set set-8. The result is shown

180 Chapter 10. Implementation and Experimental Evaluation

Figure 10.3: Policy Similarity Scores

in Figure 10.4(b). Observe that higher values of ǫ tend to provide a better approx-

imation. This is mainly because that the overall similarity score is the average of

the rule similarity scores above ǫ and using higher values of ǫ prunes more rules

which are less similar to one another.

10.3.2 Efficiency

The previous set of experiments demonstrate the effectiveness of the policy sim-

ilarity measure. In order for our technique to be useful as a filter technique that

can quickly pruning dissimilar policies, it must also be efficient. We compared

the execution time of the policy similarity measure with that of the exact policy

similarity analyzer. The same data sets set-4 and set-8 were used.

The results for set-4 and set-8 are shown in Figure 10.4. Each point in the

graphs corresponds to the average execution time for 10 different policy pairs.

The value of was set to 0.5. From the figures, we can observe that the policy simi-

larity measure almost remains constant for both set-4 and set-8. This is because the

time taken by the policy similarity measure depends on the number of rules and

predicates in the policies being compared which is constant for policies in both

sets. While for the exact policy similarity analyzer, the more difference between

two policies, the more analysis needs to be carried out and hence it requires much

more time. Moreover, the average execution time taken by the policy similarity

Chapter 10. Implementation and Experimental Evaluation 181

Figure 10.4: Execution time

measure is two to three orders of magnitude less than the time taken by the exact

similarity analyzer. Such considerable gain is attributed to the quick comparison

techniques which avoids complicated Boolean expression analysis. This also in-

dicates that the similarity measure can well serve as a filter phase before invoking

the computationally expensive similarity analysis.

10.3.3 Scalability

In this set of experiments, we evaluated the scalability of the policy similarity

measure implementation varying the number of attribute predicates across the

policies and plotted the average time taken to compute the similarity score. For

these experiments the value of the threshold ǫ was set at 0.5. Figure 10.5 reports

the average time taken to compute the similarity scores for 10 policy pairs in set-

4 and set-8, when varying the number of predicates in each policy from 25 to

400. We can observe that our approach scale reasonably well as the number of

predicates per policy increases.

10.4. Implementation: Policy Analyzer

We have developed a prototype of PSA in Java. An implementation of the modi-

fied simplex algorithm [2] has been used for processing Boolean expressions with

182 Chapter 10. Implementation and Experimental Evaluation

Figure 10.5: Scalability as number of attribute predicates per policy is increased

real value linear constraints. The modified CUDD library developed in [35] has

been used for the MTBDD module. In order to test our implementation, we gen-

erated XACML policies with a random number of rules. For each policy rule,

we first randomly generated atomic Boolean expressions, and then concatenated

them with the operator “and” or “or”. The atomic Boolean expression (ABE for

short) usually contains a pair of attribute name and value except for the atomic

linear inequality function which has multiple attributes. The attributes in each

atomic Boolean expression were randomly selected from a predefined attribute

set. We performed policy similarity analysis between pairs of generated XACML

policies with varying number of rules and attributes. The experiments were con-

ducted on a Intel Pentium4 CPU 3.00GHz machine with 512 MB RAM.

10.5. Experimental Results: Policy Analyzer

In the first experiment, we analyzed the total time taken by our policy similarity

analyzer as we increase the number of atomic Boolean expressions associated

with a pair of policies. The average number of atomic Boolean expressions was

varied between 50 and 150 for each policy. The number of rules in each policy

was varied between 8 and 32. The results of this experiment are summarized in

Figure 10.6. Each policy similarity experiment was repeated 10 times. For visual

clarity, we have plotted the time in log scale. The actual minimum and maximum

Chapter 10. Implementation and Experimental Evaluation 183

Figure 10.6: Total Response Time for Varying Number of Atomic Boolean Expres-

sions

response time obtained were 0.1s and 50.4s respectively. We observe a clear trend

here: increasing the number of atomic Boolean expressions results in an increase

in the time needed for similarity analysis. Considering that the number of the

attribute value pairs in policies tend to lie in the range of 20 to 100 as reported

in [35], we believe that our results indicate a positive trend.

In order to study the characteristics of our proposed preprocessing technique,

we examined the average number of average number of MTBDD variables cre-

ated and the time consumed by the preprocessor module for the same policy pairs

used in the first experiment. As shown in Figure 10.7, we can see that the num-

ber of variables introduced due to the creation of disjoint intervals and auxiliary

rules is less than 1.5 times the average number of atomic Boolean expressions

in a policy pair. Next, we plotted the time taken by the preprocessor module

in Figure 10.8 for the policy pairs in the previous experiment. We can see that

the preprocessor scales well with the increase in the number of rules and atomic

Boolean expressions. Specifically, in the case where each policy has 32 rules and

184 Chapter 10. Implementation and Experimental Evaluation

Figure 10.7: Average number of variables generated for policy pairs

Figure 10.8: Response Time Taken for Preprocessing a Pair of Policies

150 atomic Boolean expressions, the preprocessing time is about 0.5% percent

of the overall response time. We can conclude that the overall response time is

mainly dominated by the MTBDD module.

In another experiment, results of which are reported in Figure 10.9, we fixed

the number of atomic Boolean expressions in each policy and varied the number

of pairs of policies to be analyzed for similarity. We considered policies with an

average of 100 atomic Boolean expressions, and ran the experiments for policies

Chapter 10. Implementation and Experimental Evaluation 185

Figure 10.9: Total Response Time for Varying Number of Policy Pairs

with 8 and 16 rules. Each of these experiments were conducted 10 times. The

time axis in Figure 10.9 is in log scale. The minimum and maximum response

time obtained for these experiments were 0.44s and 63s respectively. From this

result, we observe that the current approach can scale reasonably well when de-

ployed in policy integration systems where the number of policies that need to

be integrated in a single point in time ranges in a few hundreds.

186 Chapter 10. Implementation and Experimental Evaluation

Chapter 11

Conclusions and Future Work

The use of policy based security management in distributed collaborative appli-

cations and architectures has led to the proliferation of policies. A direct conse-

quence of this is the need for tools and techniques to manage and consolidate

the large set of policies. In this thesis we have proposed EXAM-S, a comprehen-

sive environment for the analysis and management of access control policies. We

consider policies expressed using XACML (Extensible Access Control Markup

Language) [72] because XACML is a rich language which can represent many

policies of interest to real world applications and is gaining widespread adoption

in the industry. We identified and defined three types of basic policy analysis

queries which can be combined to perform different advanced analyses.

We have faced the policy analysis problems both theoretically and practically.

Concerning theoretical issues, we have compared state of the art approaches in

policy analysis trying to find the best trade-off between expressivity and com-

plexity. The result of this study has been taken as input for the definition of our

services:

• We have addressed the issues arising in policy heterogeneity analysis. Our

approach represents the terminology of a policy through the use of ontolo-

gies and consists of a set of functions that allows one to create a unified

vocabulary for a multidomain policy set. This vocabulary can be then ex-

ploited by policy analysis tools for analyzing and comparing policies. We

188 Chapter 11. Conclusions and Future Work

have implemented a prototype of the proposed approach and demonstrated

its effectiveness and applicability in real case scenarios.

• We have proposed a novel policy similarity measure which can be used as

a filter approach in policy comparison. The policy similarity measure rep-

resents a lightweight approach to quickly analyze similarity of two policies.

Detailed algorithms of computation of similarity scores are presented. To

the best of our knowledge this is the first work to introduce the notion of a

similarity score for access control policies. We have implemented a proto-

type of the similarity filter and reported experimental results that demon-

strate the efficiency and effectiveness of this approach.

• We have proposed a policy similarity analyzer that combines the advan-

tages of MTBDD based model checking and SAT-solver based techniques to

provide a precise characterization of the set of requests permitted, denied

or not-applicable to the policies being analyzed. The experimental results

obtained from the prototype implementation of the analyzer demonstrate

the efficiency and scalability of the proposed approach.

• We have proposed and discussed three other projects that are not strictly

related to the development of EXAM-S but with which they share a num-

ber of common features. In Chapter 5 we have proposed an extension of

XACML for dealing with ontology-based access control models. In Chapter

8 we have applied the filtering technique introduced in Section 7.4 to the

analysis of P3P policies. Finally, in Appendix A we have proposed an ap-

proach for solving interoperability in Digital Identity Management. Even if

the main topic is different from the one addressed in this thesis the combi-

nation of ontology-based techniques for solving heterogeneity are based on

the same assumption and have similar algorithms and results.

Policy Analysis is a challenging task and we plan to improve EXAM-S adopt-

ing more powerful techniques. We have performed preliminary test for a tighter

Chapter 11. Conclusions and Future Work 189

integration of MTBDDs and Description Logics in order to provide better analysis

services. Moreover, we have implemented a prototype of the extended XACML

architecture proposed in Chapter 5. Even if preliminary experimental results are

encouraging we plan to investigate this topic in more detail. Related to semantic

functions we plan to define new analysis services especially created for dealing

with the semantic functions we have proposed. Details about the future work of

this thesis are listed below:

• Semantic Functions: So far we have created a Java prototype of the extended

XACML architecture proposed in Chapter 5 exploiting the the XACML sun

libraries 1. We have then implemented the fsub function exploiting the OWL

API2 and the DL Pellet Reasoner [75]. The implementation of fsup and fsame

is still an ongoing work. However, since such functions can be defined in

terms of fsub we believe that their realization will be soon available. Open

issues in this topic are the variation in performance when modeling equiv-

alent policies by adopting different combination of functions.

• Improving the PSA: We will extend the policy similarity analyzer to compare

more than two policies at once. Preliminary experiments have indicated

that the order in which the policies are compared can result in an order of

magnitude difference in the time needed to perform the comparison. We

plan to study in detail the cause for such difference and then propose opti-

mization techniques to determine the optimum order in which to compare

the policies so as to minimize the comparison time. Moreover,

• New analysis services: We have already defined and realized a mapping be-

tween XACML and DL that extends the one proposed in [56]. Such exten-

sion is motivated by the need to deal with more information than the ones

taken into consideration in [56]. Based on this new mapping, we will de-

velop new powerful analysis services for XACML policies extended with

1http://sunxacml.sourceforge.net/
2http://owlapi.sourceforge.net/

190 Chapter 11. Conclusions and Future Work

semantic functions. Examples of such services are semantic policy redun-

dancy, semantic policy subsumption and semantic validation.

References

[1] Iso 10181-3 access control framework.

[2] D. Agrawal, J. Giles, K. W. Lee, and J. Lobo. Policy ratification. In IEEE International

Workshop on Policies for Distributed Systems and Networks (POLICY), pages 223–232,

2005.

[3] T. Ahmed and A. R. Tripathi. Static verification of security requirements in role

based cscw systems. In Proceedings of the 8th ACM Symposium on Access Control

Models and Technologies (SACMAT), pages 196–203, 2003.

[4] H. Alani, S. Kim, D. E. Millard, M. J. Weal, W. Hall, P. H. Lewis, and N. R. Shad-

bolt. Automatic ontology-based knowledge extraction from web documents. IEEE

Intelligent Systems, 18:14–21, 2003.

[5] A. Anderson, editor. Core and hierarchical role based access control (RBAC)

profile of XACML v2.0. 2005. OASIS Standard, http://docs.oasis-

open.org/xacml/2.0/access control-xacml-2.0-rbac-profile1-spec-os.pdf.

[6] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, ed-

itors. The Description Logic Handbook: Theory, Implementation, and Applications. Cam-

bridge University Press, 2003.

[7] M. Backes, G. Karjoth, W. Bagga, and M. Schunter. Efficient comparison of enter-

prise privacy policies. In Proceedings of the 2004 ACM Symposium on Applied Comput-

ing (SAC), pages 375–382, 2004.

[8] M. Baker, K. Kimberly, and M. Sean. Why traditional storage systems do not help

us save stuff forever. Technical report, HP Labs 2005 Technical Reports, 2005. HPL-

2005-120.

[9] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American,

May 2001.

192 References

[10] E. Bertino, R. Ferrini, A. Musci, F. Paci, and K. J. Steuer. A federated digital iden-

tity management approach for business processes. In Proceedings of 4th International

Conference on Collaborative Computing: Networking, Applications and Worksharing (Col-

laborateCom 2008), 2008.

[11] C. Bizer. D2r map - a database to rdf mapping language. In Posters World Wide Web

Conference 2003 (WWW2003), 2003.

[12] M. Blaze, J. Feigenbaum, and M.Strauss. Compliance checking in the policymaker

trust management system. In Proceedings of the International Conference on Financial

Cryptography, pages 254–274, 1998.

[13] P. Borst and H. Akkermans. An ontology approach to product disassembly. In Pro-

ceedings of EKAW 1997, Lecture Notes in Computer Science, pages 33–48. Springer,

1997.

[14] D. Brickley and R. V. Guha. RDF Vocabulary Description Language 1.0: RDF Schema,

2004. W3C Recommendation 2004, http://www.w3.org/TR/rdf-schema.

[15] M. Burstein, C. Bussler, T. Finin, M. N.Huhns, M. Paolucci, A. P. Sheth, S. Williams,

and M. Zaremba. A semantic web services architecture. IEEE Internet Computing,

1089-7801(5):72–81, 2005.

[16] E. Camon, M. Magrane, D. Barrell, V. Lee, E. Dimmer, J. Maslen, D. Binns, N. Harte,

R. Lopez, and R. Apweiler. The gene ontology annotation (goa) database: sharing

knowledge in uniprot with gene ontology. Nucleic Acids Research, 32:262–266, 2004.

[17] A. Carbonaro and R. Ferrini. Concepts-based content analysis for semantic recom-

mendations. In Proceedings of the ECAI 2006 Workshop on Recommender Systems - 17th

European Conference on Artificial Intelligence (ECAI 2006), 2006.

[18] A. Carbonaro and R. Ferrini. Ontology-based video annotation in multimedia enter-

tainment. In Proceedings of the 3rd IEEE International Workshop on Networking Issues

in Multimedia Entertainment (NIME’07) - 4th IEEE Communications and Networking

Conference (CCNC 2007), 2007.

[19] A. Carbonaro and R. Ferrini. The use of concepts to improve content analysis in a

distance learning system. Int. Journal Cont. Engineering Education and Lifelong Learn-

ing, 17(4-5):369–380, 2007.

[20] S. Castano, A. Ferrara, and G. Messa. Islab hmatch results for oaei 2006. In Proc.

of International Workshop on Ontology Matching, collocated with the 5th International

Semantic Web Conference ISWC-2006, Athens, Georgia, USA, November 2006.

References 193

[21] J. Crampton. Specifying and enforcing constraints in role-based access control. In

Proceedings of 8th ACM Symposium on Access Control Models and Technologies, pages

43–50, 2003.

[22] J. Crampton. XACML and role-based access control. Presentation at DIMACS Work-

shop on Security of Web Services (DIMACS 2005), 2005.

[23] L. Cranor, M. Langheinrich, M. Marchiori, M. Presler-Marshall, and J. Reagle. The

Platform for Privacy Preferences 1.0 (P3P1.0) Specification, 2002. W3C Recommenda-

tion 2002, http://www.w3.org/TR/P3P/.

[24] E. Damiani, S. D. C. di Vimercati, C. Fugazza, and P. Samarati. Extending policy

languages to the semantic web. In Proceedings of ICWE 2004, pages 330–343, 2004.

[25] M. Dean and G. Schreiber. OWL Web Ontology Language Guide, 2004. W3C Recom-

mendation 2004, http://www.w3.org/TR/owl-guide/.

[26] H. H. Do and E. Rahm. Coma a system for flexible combination of schema matching

approaches. In Proceedings of VLDB, pages 610–621, 2002.

[27] A. H. Doan, J. Madhavan, P. Domingos, and A. Halevy. Ontology matching: a ma-

chine learning approach. Handbook of ontologies, International handbooks on information

systems, pages 385–404, 2004.

[28] S. Egelman, L. F. Cranor, and A. Chowdhury. An analysis of p3penabled web sites

among top-20 search results. In Proceedings of the 8th international conference on Elec-

tronic commerce (ICEC06), pages 197–207, 2006.

[29] M. Ehrig, P. Haase, M. Hefke, and N. Stojanovic. Similarity for ontologies - a com-

prehensive framework. In Workshop Enterprise Modelling and Ontology: Ingredients

for Interoperability, at PAKM 2004, 2005.

[30] M. Ehrig and S. Staab. Qom - quick ontology mapping. In Proceedings of 3rd Interna-

tional Semantic Web Conference (ISWC 2004), 2004.

[31] C. Fellbaum. WordNet: An Electronic Lexical Database. MIT Press, 1998.

[32] D. Fensel and C. Bussler. The web service modeling framework (wsmf). Electronic

Commerce Research and Applications, 1(2):113–137, 2002.

[33] D. Ferraiolo and R. Kuhn. Role-based access controls. In 15th NIST-NCSC National

Computer Security Conference, pages 554–563. IEEE Press, October 1992.

[34] T. Finin, A. Joshi, L. Kagal, J. Niu, R. Sandhu, W. H. Winsborough, and B. Thurais-

ingham. ROWLBAC - Representing Role Based Access Control in OWL. In Proceed-

194 References

ings of the 13th Symposium on Access Control Models and Technologies. ACM Press, June

2008.

[35] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz. Verification and

change-impact analysis of acces scontrol policies. In Proceedings of the International

Conference on Software Engineering (ICSE), pages 196–205, 2005.

[36] F. T. Fonseca and M. J. Egenhofer. Ontology-driven geographic information sys-

tems. In Proceedings of the 7th ACM international symposium on Advances in geographic

information systems (GIS ’99), pages 14–19. ACM, 1999.

[37] R. Gavriloaie, W. Nejdl, D. Olmedilla, K. Seamons, and M. Winslett. No registra-

tion needed: How to use declarative policies and negotiation to access sensitive

resources on the semantic web. In European Semantic Web Symposium, 2004.

[38] C. Goble and D. D. Roure. The grid: an application of the semantic web. ACM

SIGMOD Special section on semantic web and data management, 31(4):65–70, 2002.

[39] D. P. Guelev, M. Ryan, and P. Schobbens. Model-checking access control policies. In

Proceedings of the 7th Information Security Conference (ISC), pages 219–230, 2004.

[40] T. Hoad and J. Zobel. Methods for identifying versioned and plagiarized docu-

ments. Journal of the American Society for Information Science and Technology, 54(3):203–

215, 2003.

[41] J. E. Hopcroft and J. D. Ullman. Introduction to automata theory, languages and compu-

tation. Addison Wesley, 1979.

[42] M. Horridge, H. Knublauch, A. Rector, R. Stevens, and C. Wroe. Build-

ing owl ontologies using the protg-owl plugin and co-ode tools (edition

1.0). Technical report, University Of Manchester, 2004. http://www.co-

ode.org/resources/tutorials/ProtegeOWLTutorial.pdf.

[43] I. Horrocks. Daml+oil: A description logic for the semantic web. IEEE Data Engi-

neering Bulletin, 25(1):4–9, 2002.

[44] W. Hu, N. Jian, Y. Qu, and Y. Wang. Gmo: A graph matching for ontologies. In

Proceedings of K-CAP Workshop on Integrating Ontologies, pages 41–48, 2005.

[45] W. Hu and Y. Qu. Falcon-ao: A practical ontology matching system. Web Semantics:

Science, Services and Agents on the World Wide Web, 6(3):237–239, 2008.

[46] J. Hunter. Enhancing the semantic interoperability of multimedia through a core

ontology. Circuits and Systems for Video Technology, IEEE Transactions on, 13(1):49–58,

Jan 2003.

References 195

[47] D. Jackson. Alloy: a lightweight object modelling notation. ACM Transaction on

Software Engineering and Methodologies (TOSEM), 11(2):256–290, 2002.

[48] N. Jian, W. Hu, G. Cheng, and Y.Qu. Falcon-ao: Aligning ontologies with falcon. In

Proceedings of K-CAP Workshop on Integrating Ontologies, pages 85–91, 2005.

[49] L. Kagal, T. Berners-Lee, D. Connolly, and D. Weitzner. Using semantic web tech-

nologies for policy management on the web. In 21st National Conference on Artificial

Intelligence (AAAI), 2006.

[50] L. Kagal, T. Finin, and A. Joshi. A policy language for a pervasive computing en-

vironment. In IEEE 4th InternationalWorkshop on Policies for Distributed Systems and

Networks, 2003.

[51] E. Kalfaoglou and M. Schorlemmer. Ontology mapping: the state of the art. The

Knowledge Engineering Review, 18(1):1–31, 2003.

[52] M. Knechtel, J. Hladik, and F. Dau. Using owl dl reasoning to decide about autho-

rization in RBAC. In OWLED ’08: Proceedings of the OWLED 2008 Workshop on OWL:

Experiences and Directions, 2008.

[53] M. Koch, L. V. Mancini, and F. P.-Presicce. On the specification and evolution of ac-

cess control policies. In Proceedings of the 2004 ACM Symposium on Applied Computing

(SAC), pages 121–130, 2001.

[54] V. Kolovski. A logic-based framework for web access control policies. Technical

report, University of Maryland, 2008.

[55] V. Kolovski and J. Hendler. Xacml policy analysis using description logics. Under

submission, 2008.

[56] V. Kolovski, J. Hendler, and B. Parsia. Analyzing web access control policies. In

Proceedings of the International World Wide Web Conference WWW 2007, pages 677–

686, May 2007.

[57] D. Lin, P. Rao, E. Bertino, N. Li, and J. Lobo. Exam - a comprehensive environment

for analysis of access control policies. Technical report, Department of Computer

Science, Purdue University, 2007.

[58] E. Lupu and M. Sloman. Conflicts in policy-based distributed systems management.

IEEE Transactions on Software Engineering (TSE), 25(6):852–869, 1999.

[59] J. Madhavan, P. A. Bernstein, , and E. Rahm. Generic schema matching with cupid.

In Proceedings of the 27th International Conference on Very Large Data Bases, pages 49–

58, 2001.

196 References

[60] A. Maedche and S. Staab. Ontology learning for the semantic web. IEEE Intelligent

Systems, 16(2):72–79, 2001.

[61] E. Maedche and S.Staab. Measuring similarity between ontologies. In Proceedings

of the European Conference on Knowledge Acquisition and Management (EKAW, pages

251–263. Springer, 2002.

[62] F. Manola and E. Miller. RDF Primer, 2004. W3C Recommendation 2004,

http://www.w3.org/TR/rdf-primer/.

[63] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIl-

raith, S. Narayanan, M. Paolucci, B. Parsia, T.Payne, E. Sirin, N. Srini-

vasan, and K. Sycara. OWL-S: Semantic Markup for Web Services, 2004.

http://www.daml.org/services/owls/1.1/overview/.

[64] P. Mazzoleni, E. Bertino, and B. Crispo. Xacml policy integration algorithms. In Pro-

ceedings of the 11th ACM Symposium on Access Control Models and Technologies (SAC-

MAT), pages 223–232, 2006.

[65] P. McDaniel and A. Prakash. Methods and limitations of security policy reconcili-

ation. ACM Transactions on Information and System Security (TISSEC), 9(3):259–291,

2001.

[66] S. A. McLlraith, T. C. Son, and H. Zeng. Semantic web service. IEEE Intelligent

Systems, 16:46–53, 2001.

[67] D. Metzler, Y. Bernstein, W. B. Croft, A. Moffat, and J. Zobel. Similarity measures

for tracking information flow. In Proceedings of the 14th ACM international conference

on Information and knowledge management (CIKM), pages 517–524, 2005.

[68] S. E. Middleton, N. R. Shadbolt, and D. C. D. Roure. Ontological user profiling in

recommender systems. ACM Transactions on Information Systems (TOIS), 22(1):54–58,

2004.

[69] J. D. Moffett and M. S. Sloman. Policy conflict analysis in distributed system man-

agement. Journal of Organizational Computing, 1993.

[70] D. Morr. Lionshare: A federated p2p app. In Internet2 members meeting, 2007.

[71] T. Moses. Extensible access control markup language (XACML) version 2.0, 2005. OASIS

Standard.

[72] T. Moses. Extensible access control markup language (XACML) version 2.0, 2005. OASIS

Standard.

References 197

[73] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M. Palmr, and

T. Risch. Edutella: A p2p networking infrastructure based on rdf. In Proceedings of

the 11th International Conference on World Wide Web, pages 604–615, 2002.

[74] N. Noy and M. Musen. Anchor-prompt: using non-local context for semantic

matching. In Proceedings of the workshop on Ontologies and Information Sharing at the

International Joint Conference on Artificial Intelligence (IJCAI), pages 63–70, 2001.

[75] B. Parsia and E. Sirin. Pellet: An owl dl reasoner. In Third International Semantic Web

Conference - Poster, 2004.

[76] V. Raghavan and S. Wong. A critical analysis of vector space model for information

retrieval. Journal of the American Society for Information Science, 37(5):279–287, 1986.

[77] E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema match-

ing. The VLDB Journal, 10(4):334–350, December 2001.

[78] D. D. Roure and J. A. Hendler. E-science: The grid and the semantic web. IEEE

Intelligent Systems, 19(1):65–71, 2004.

[79] R. Sandhu, E. J. Coyne, H. L. Feinsteinand, and C. E. Youman. Role-based access

control models. IEEE COMPUTER, 29(2):38–47, 1996.

[80] P. Shvaiko and J. Euzenat. A survey of schema-based matching approaches. Journal

on Data Semantics IV, pages 146–171, 2005.

[81] B. Simon, Z. Miklos, W. Nejdl, M. Sintek, and J. Salvachua. Elena: A mediation

infrastructure for educational services. In Proceedings of the 12th International World

Wide Web Conference, 2003.

[82] V. C. Storey, R. H. L. Chiang, and G. L. Chen. Ontology creation: Extraction of do-

main knowledge from web documents. In Prooceedings 24th International Conference

on Conceptual Modeling (ER 2005), pages 256–269, 2005.

[83] H. Tangmunarunkit, S. Decker, and C. Kesselman. Ontology-based resource match-

ing in the grid the grid meets the semantic web. The SemanticWeb - ISWC 2003,

LNCS, 2780/2003:706–721, 2003.

[84] Q. T. Tho, S. C. Hui, and T. H. C. A. C. M. Fong. Automatic fuzzy ontology gen-

eration for semantic web. IEEE Transactions on Knowledge and Data Engineering,

18(6):842–856, 2006.

[85] Y. A. Tijerino, D. W. Embley, D. W. Lonsdale, and G. Nagy. Ontology generation

from tables. In Proceedings of the Fourth International Conference on Web Information

198 References

Systems Engineering (WISE 03), page 242, Washington, DC, USA, 2003. IEEE Com-

puter Society.

[86] Q. Trinh, K. Barker, and R. Alhajj. Semantic interoperability between relational

database systems. In IDEAS ’07: Proceedings of the 11th International Database En-

gineering and Applications Symposium, pages 208–215, Washington, DC, USA, 2007.

IEEE Computer Society.

[87] C. Tsinaraki, P. Polydoros, and S. Christodoulakis. Interoperability support

for ontology-based video retrieval applications. Image and Video Retrieval,

3115/2004:582–591, 2004.

[88] M. Uschold and M. Gruninger. Ontologies and semantics for seamless connectivity.

SIGMOD Rec., 33(4):58–64, 2004.

[89] A. Uszok, J. M. Bradshaw, R. Jeffers, N. Suri, P. J. Hayes, M. R. Breedy, L. Bunch,

M. Johnson, S. Kulkarni, and J. Lott. Kaos policy and domain services: Toward

a description-logic approach to policy representation, deconfliction, and enforce-

ment. In Proceedings of IEEE Fourth International Workshop on Policy (Policy 2003),

pages 93–98. IEEE Computer Society, 2003.

[90] A. Uszokand and J. Bradshaw. Kaos policies for web services. In W3C Workshop on

Constraints and Capabilities for Web Servies, October 2004.

[91] D. J. Weitzner, J. Hendler, T. Berners-lee, and D. Connolly. Creating the policy-

aware web: Discretionary, rules-based access for the world wide web. In In Web and

Information Security, E. Ferrari and B. Thuraisingham (Eds), IRM Press. Press, 2005.

[92] A. K. Y. Wong, P. Ray, N. Parameswaran, and J. Strassner. Ontology mapping for

the interoperability problem in network management. IEEE Journal on Selected Areas

in Communications, 23(10):2058–2068, 2005.

[93] N. Zhang, M. Ryan, and D. P. Guelev. Evaluating access control policies through

model checking. In Proceedings of the 8th Information Security Conference (ISC), pages

446–460, 2005.

[94] C. N. Ziegler. Semantic web recommender systems. Current Trends in Database Tech-

nology - EDBT 2004 Workshops, LNCS, 3268/2004:74–89, 2004.

Appendix A

Interoperability in Digital Identity

Management

In this chapter we provide an application of ontology mapping in solving nam-

ing heterogeneity in an Identity Management Scenario. The approach described

here has been proposed in [10]. The rest of this Chapter is organized as follows.

In Section A.1 we introduce the problem related to Identity Management in Busi-

ness Process. Section A.2 introduces a running example that is used throughout

the rest of the Sections to illustrate the discussion. Section A.3 discusses the main

issues related to digital identity management for business processes. Section A.4

introduces the notions on which our multi-factor identity attribute verification

protocol is based. Section A.5 presents the multi-factor identity attribute verifica-

tion protocol. Section A.6 discusses the system architecture. Section A.7 reports

experimental results. Finally, Section A.8 concludes the Chapter and outlines

some future work.

A.1. Introduction

Business processes have gained a lot of attention because of the pressing need

for integrating existing resources and services to better fulfill customer needs. A

key feature of business processes is that they are built from composable services,

referred to as component services, that may belong to different domains. In such

200 Appendix A. Interoperability in Digital Identity Management

a context, flexible multi-domain identity management solutions are crucial for

increased security and user-convenience. In particular, it is important that dur-

ing the execution of a business process the component services be able to verify

the identity of the client to check that it has the required permissions for access-

ing the services. Clients identity consists of data, referred to identity attributes,

that encode relevant-security properties of the clients. The management of iden-

tity attributes in business processes raises however a number of challenges. On

one hand, to enable authentication, the propagation of client’s identity attributes

across the component services should be facilitated. On the other hand, identity

attributes need to be protected as they may convey sensitive information about a

client and can be target of attacks. Moreover, because business processes orches-

trate the functions of services belonging to different domains, interoperability

issues may arise in client authentication processes. Such issues range from the

use of different identity tokens and different identity negotiation protocols, such

as the client-centric protocols and the identity-providers centric protocols, to the

use of different names for identity attributes. The use of different names for iden-

tity attributes, that we refer to as naming heterogeneity, typically occurs because

clients and component services use a different vocabulary to denote identity at-

tribute names. In this case, whenever a component service requests from a client

a set of identity attributes to verify its identity, the client may not understand

which identity attributes it has to provide.

To address the problem of multi-domain identity management, we propose

a multi-factor identity attribute verification protocol for business processes that

assures clients privacy and handles naming heterogeneity. The protocol uses an

identity attribute names matching technique based on look-up tables, dictionaries

and ontology mapping, to match component services and clients vocabularies

and aggregated zero knowledge proofs of knowledge (AgZKPK) cryptographic

protocol to allow clients to prove with a single interactive proof the knowledge

of multiple identity attributes without the need to provide them in clear.

Appendix A. Interoperability in Digital Identity Management 201

A.2. Running Example

Figure A.1: A loan approval process specification

In this section we introduce an example of business process that implements

a loan approval process (see Figure A.1). Customers of the service send loan re-

quests. Once a request is received, the loan service executes a simple process

resulting in either a “loan approved” message or a “loan rejected” message. The

decision is based on the amount requested and the risk associated with the cus-

tomer. For amounts lower than 10, 000$ a streamlined process is used. In the

streamlined process low-risk customers are automatically approved. For higher

amounts, or medium and high-risk customers, the credit request requires further

processing. For each request, the loan service uses the functiona provided by two

other services. In the streamlined process, used for low amount loans, a risk as-

sessment service is used to obtain a quick evaluation of the risk associated with

the customer. A full loan approval service (possibly requiring direct involvement

of a loan expert) is used to obtain an assessment about the customer when the

streamlined approval process is not applicable.

Four main activities are involved in the process:

• Loan Request allows a client to submit a loan request to the bank

202 Appendix A. Interoperability in Digital Identity Management

• Check Risk (provided by risk assessment service) computes the risk asso-

ciated with the loan request

• Approve Loan (provided by loan approval service) determines if the loan

request can be approved or rejected

• Loan Response sends to the client the result of the loan request evaluation

process

risk assessment and loan approval services require a set of identity attributes

from the client who has submitted the loan request. The risk assessment service

asks DrivingLicense, CarRegistration and EmployeeID, whereas the loan ap-

proval service requires EmployeeID and CreditCard.

A.3. Identity Management for Business Processes

Managing and verifying clients identity in a business processes raise a number

of challenging issues. A first issue is related to how the client’s identity attribute

have to be managed within the business process. The client of a business process

is not aware that the business process that implements the required service in-

vokes some component services. The client thus trusts the composite service but

not the component services. Therefore, every time the component services have

to verify the client’s identity, the composite service has to act as an intermediary

between the component services and the client. Moreover, since the client’s iden-

tity attributes may contain sensitive information and clients usually do not trust

the component services, the client’s identity attributes should be protected from

potential misuse by component services.

Another issue is related to how the identity verification process is performed.

Because component services belong to different domains, each with its own iden-

tity verification policies, the sets of identity attributes required to verify client’s

identity may partially or totally overlap. Therefore, the client has to prove several

Appendix A. Interoperability in Digital Identity Management 203

times the knowledge of the same subset of identity attributes. It is thus impor-

tant to take advantage of previous client identity verification processes that other

component services have performed.

Finally, another issue is the lack of interoperability because of naming het-

erogeneity. Naming heterogeneity occurs when component services define their

identity verification policies according to a vocabulary different from the one

adopted by clients. Therefore, component services and clients are not able to have

“meaningful” interactions because they do not understand each other. Thus, it is

also necessary that client identity verification process supports an approach to

match identity attribute names of component services and clients vocabularies.

In such respect, a first question to be addressed is which matching technique

to use, which in turn depends from the types of variation in identity attribute

names. A second question is related to the matching protocol to use, that is, by

which party the matching has to be performed and whether the fact that a client

has already performed a matching with a component service may help in a sub-

sequent matching.

To address such issues we propose a multi-factor identity attribute verifica-

tion protocol for business processes that supports a privacy usage of clients iden-

tity attributes and that guarantees interoperable interactions between clients and

component services. In what follows, we provide more details about our ap-

proach.

A.4. Preliminary concepts

To enable multi-factor identity attribute verification, clients have to register their

identity attributes to a registrar. The registrar is an additional component in dig-

ital identity management systems that stores and manage information related to

identity attributes. For each client’s identity attribute m, the registrar records an

identity tuple (σi, Mi, tag, validity−assurance, ownership−assurance, {Wij}).

Each identity tuple consists of tag, an attribute descriptor, the Pedersen commit-

204 Appendix A. Interoperability in Digital Identity Management

ment of m, denoted as Mi, the signature of the registrar on M, denoted as σi, two

types of assurance, namely validity assurance and ownership assurance and a set of

weak identifiers {Wij}. Mi is computed as gmhr, where g and h are generators in

a group G of prime order q. G and q are public parameters of the registrar and

r is chosen randomly from Zq. Validity assurance corresponds to the confidence

about the validity of the identity attribute based on the verification performed at

the identity attribute’s original issuer. Ownership assurance corresponds to the

confidence about the claim that the principal presenting an identity attribute is

its true owner.

Weak identifiers are used to denote identity attributes that can be aggregated

together to perform multi-factor authentication. The identity tuples of each reg-

istered client can be retrieved from the registrar by the component services or the

registrar can release to the client a certificate containing its identity record.

We assume that each of the component services define their identity verifi-

cation policies by specifying a set of identity attribute names that have to be

required from the client. Because of naming heterogeneity, clients may not un-

derstand component services identity verification policies. The type of variations

that can occur in clients and component services identity attribute names can be

classified in: syntactic, terminological and semantic variations.

• Syntactic variations arise because of the use of different character combina-

tions to denote the same term. An example is the use of ”CreditCard” and

”Credit Card” to denote a client’s credit card.

• Terminological variations refer to the use of different terms to denote the same

concept. An example of terminological variation is the use of the synonyms

“Credit Card” and “Charge Card” to refer a client’s credit card.

• Semantic variations are related to the use of two different concepts in differ-

ent knowledge domains to denote the same term.

Syntactic variations can be identified by using look up tables. A look up table

enumerates the possible ways in which the same term can be written by using

Appendix A. Interoperability in Digital Identity Management 205

different character combinations. In detecting terminological variations, dictio-

naries or thesaurus such as WordNet can be exploited. Finally, semantic varia-

tions can be determined by using ontology matching techniques. An ontology

is a formal representation of a domain in terms of concepts and properties with

which those concepts are related. Ontologies can be exploited to define a domain

of interest and for reasoning about its features. Ontology mapping is the process

whereby two ontologies are semantically related at conceptual level; source on-

tology concepts are mapped onto the target ontology concepts according to those

semantic relations [3, 7]. Typically an ontology matching algorithm takes in input

two ontologies Oi and Oj, and returns a set of triples of the form 〈ci, cj, s〉, where

ci is a concept belonging to ontology Oi, cj is a concept belonging to ontology Oj

that matches concept ci, and s is a confidence score, that is, a value between 0 and

1, indicating the similarity between the matched concepts.

To enable the matching of identity attributes by using the above techniques,

we make the following assumptions. Component services’ identity verification

policies are defined according to their domain vocabulary ontology. Moreover,

they track existing mappings with other component services’ ontologies. Such

mappings are formally represented by tuples of the following form:

〈OCS, CS ′, OCS′ , {〈c1, c2, s1,2〉, . . . , 〈cl, cm, sl,m〉}〉

where OCS is the ontology of a component service CS, CS ′ is a component ser-

vice whose ontology OCS′ matches ontology OCS and {〈c1, c2, s1,2〉, . . . , 〈cl, cm, sl,m〉}
is the set of concepts mappings 〈ci, cj, si,j〉 where ci ∈ OCS and cj ∈ OCS′ .

Moreover, each component service keeps a look up table containing alterna-

tive character combinations and store a set of synonyms, denoted as Synset, for

each of the identity attribute names used for expressing its identity verification

policies. Finally, since we want to avoid that the client proves several times the

possession of a same set of identity attributes, we assume that component ser-

vices have a PKI infrastructure that allows them to issue certificates to clients.

These certificates (see Definition 1 below) assert that an identity attribute by a

206 Appendix A. Interoperability in Digital Identity Management

client matches an identity attribute by a component service and that the com-

ponent service has verified that the client owns the attribute. Clients can use

these certificates to prove that they own a set of identity attributes without go-

ing through the authentication process during the execution of the same business

process instance in which the certificates have been released. Instead, clients can

use the certificates in business processes different from the one in which the cer-

tificate have been issued to prove there is a mapping between a set of client’s

attributes and a service’s ontology. This distinction is motivated by the fact that

there is a trust relationship between the component services in the same business

process instance, that may not exist with services external to the process.

Definition A.1 (Proof-of-Identity Certificate) Let S be a component service partici-

pating to a business process BP and C be a client. Let OS be the ontology describing the

domain of S and AttrSet be the set of C’s identity attribute names. The proof of identity

certificate released by S to C upon a successful verification is a tuple 〈Issuer, Owner, OID, Mappings, IssuanceDate

where: Issuer is the identifier of S, Owner is the identifier of C, OID is OS ontology

identifier, Mappings is a set of tuples of the form 〈Attr, Concept〉 where Attr ∈
AttrSet and Concept ∈ OS, and IssuanceDate is the release date of the certificate.

Besides being stored by the clients, proof-of-identity certificates released dur-

ing the execution of a business process instance are stored in a local repository,

denoted as CertRep, by the composite service for the whole process execution.

A.5. Interoperable Multi-Factor Authentication

In this section, we present a multi-factor authentication protocol for business pro-

cesses. The protocol takes place between a client, the composite service and a

component service. Since the client is not aware of the component services, the

composite service has to mediate the interactions between them. The protocol

consists of two phases that make use of the notion of proof-of-identity certifi-

cate introduced in the previous section (see Figure A.2). In the first phase, the

Appendix A. Interoperability in Digital Identity Management 207

component service matches the identity attributes of clients vocabulary with its

own attributes to help the client understand its identity verification policy. In the

second phase, the client carries out an aggregate ZKPK protocol to prove to the

component service the knowledge of the matched identity attributes. Algorithm

1 summarizes the different phases of the protocol.

A.5.1 Identity attribute matching protocol

The technique that we have developed for matching identity attribute names

from different vocabularies is based on the combined use of look-up tables, dic-

tionaries, and ontology mapping.

As we have already mentioned, an important issue is which party has to ex-

ecute the matching. In our context, the matching can be executed by the client,

the composite service or the component services. Performing the matching at

the client has the obvious drawback that the client may lie and asserts that an

identity attribute referred to in the component services policy matches one of its

attribute, whereas this is not the case. The matching process cannot be performed

by the composite service because it should have access to information which are

local to the component services. Therefore, in our approach, the matching is per-

formed by the component services. Notice that because of the privacy-preserving

protocol that we use (see next section), the composite service and the component

services will not learn the values of the identity attributes of the client and there-

fore do not have incentives to lie.

A second issue is how to take advantage of previous interactions that the client

has performed with other component services. It is also important to exploit map-

pings that can exist between ontologies by different component services. To ad-

dress such issue, the matching protocol relies on the use of the proof-of-identity

certificates and matching techniques. We assume that AttrProof is the set of iden-

tity attributes that a component service asks to a client to verify its identity. The

identity attribute name matching process is carried out between the client, the

component service and the composite service when some attributes in AttrProof

208 Appendix A. Interoperability in Digital Identity Management

do not match any of the attributes in AttrSet, the set of clients’ identity attributes.

We refer to the set of component service’s identity attributes that do not match a

client attribute name to as NoMatchingAttr.

Algorithm 7: Multi-factor verification protocol

Input: CertRep: proof-of-identity certificates repository

AttrProof: set of identity attributes requested from the client ci:

proof-of-identity certificate

Output:

(1) FOR EACH ai ∈ AttrProof

(2) IF ∃cj ∈ CertRep such that cj prove the knowledge of ai

(3) THEN ai is verified

(4) ELSE

(5) Match ai with client’s proof-of-identity certificates

(6) Verify AgZKPK

(7) Release new proof-of-identity certificate ci

(8) Store ci in CertRep

The matching process consists of two main phases. The goal of the first phase

is to match the identity attributes that have syntactical and terminological varia-

tions. During this phase, the component service sends to the composite service,

for each identity attribute ai in the NoMatchingAttr, the set Synseti that con-

tains a set of alternative character combinations and a set of synonyms. Thus, the

composite service sends the sets Synseti to the client. The client verifies that for

each identity attribute ai, there is an intersection between Synseti and AttrSet.

If this is the case attribute ai is removed from NoMatchingAttr. Otherwise, if

NoMatchingAttr is not empty, the second phase is performed. During the sec-

ond phase the client sends CertSet, the set of its proof-of-identity certificates to

the composite service that forwards them to the component service. Thus, in the

second phase of the matching process the component service tries to match the

Appendix A. Interoperability in Digital Identity Management 209

Figure A.2: Approach schema

210 Appendix A. Interoperability in Digital Identity Management

concepts corresponding to the identity attributes the client is not able to provide

with concepts from the ontologies of the services which have issued the proof-of-

identity certificates. The mappings can be determined by mapping the ontology

of the component service with the ontologies of the services that have released

the certificates. Those other services are referred to as semantic neighbors of the

component service. Only matches that have a confidence score s greater than

a predefined threshold are selected. The acceptance threshold is set up by the

component service to assess the matches’ validity. The greater the threshold, the

greater is the similarity between the two concepts and thus higher is the proba-

bility that the match is correct. If the component service is able to find mappings

for its concepts, it then verifies by using the information in the proof-of-identity

certificates that each matching concept matches a client’s attribute Attr. If this

check fails, the component service notifies the composite service that terminates

the interaction with the client.

A.5.2 Multi-factor authentication

Once the client receives Match, the set of matched identity attributes from the

composite service, it retrieves from the registrar or from its RegCert the commit-

ments Mi satisfying the matches and the corresponding signatures σi. The client

aggregates the commitments by computing M =
∏n

i=1 Mi = gm1+m2+...+mihr1+r2+...+ri

and the signatures into σ =
∏n

i=1 σi, where σi is the registrar ’s signature on the

committed value Mi = gmihri . According to the ZPK protocol, the client ran-

domly picks y, s in [1, ..q], computes d = gyhs (mod p), and sends d, σ, M,

Mi , 1 6 i 6 t, to the composite service that on in turn sends these values to

the component service. The component service sends back a random challenge

e ∈ [1, ..., q] to the client. Then the client computes u = y + em (mod q) and

v = s + er (mod q) where m = m1 + . . . mt and r = r1 + . . . rt and sends u and

v to the composite service.

Appendix A. Interoperability in Digital Identity Management 211

Algorithm 8: Verification()

Input:

Output:

(1) C: Receive(Match)

(2) C: AttrMathces.Add(Match)

(3) C: FOR EACH 〈Attr, Idi〉 ∈ AttrMatches

(4) C: {Mi, σi} := Select(RegCert, Attr)

(5) C: M =
∏n

i=1 Mi

(6) C: randomly picks y, s ∈ [1..q]

(7) C: d = gyhs (modp)

(8) C: Send({M1, . . . , Mn}, {σ1, . . . , σn }, M, σ, d)

(9) CS: Receive({M1, . . . , Mn}, {σ1, . . . , σn }, M, σ, d)

(10) CS: randomly picks e ∈ [1..q]

(11) CS: Send(e)

(12) C: Receive(e)

(13) C: u := y + em (mod q) where m = m1 + m2 + +mn

(14) C: w := s + er (mod q) where r = r1 + r2 + . . . + rn

(15) C: Send(u, w)

(16) CS: Receive(u, w)

(17) CS: IF (guhw = = dMk (mod p) ∧σ = =
∏t

i=1 σi)

(18) CS: Execute(S);

(19) CS: IssueCertificate();

(20) CS: ELSE

(21) CS: Send(Service Denied)

The composite service forwards u and v to the component service. The com-

ponent service accepts the aggregated zero knowledge proof if guhv = dce. If this

is the case, the component service checks that σ =
∏n

i=1 σi. If also the aggregate

212 Appendix A. Interoperability in Digital Identity Management

signature verification succeeds, the component service releases a proof of iden-

tity certificate to the client. The certificate states that client’s identity attributes

in the Match set are mapped onto concepts of the component service ontology

and that the client has successfully proved the knowledge of those attributes. The

composite service sends the proof-of-identity certificate to the client and stores a

copy of the certificate in its local repository CertRep. The proof-of-identity cer-

tificate can be used by the client to prove the knowledge of an attribute without

performing the aggregate ZKP protocol with another component service.

A.6. System architecture and Implementation

In this section we discuss the system architecture that supports our multi-factor

identity attributes authentication for business processes. We assume that our

processes are implemented as WS-BPEL business processes, that is, as business

processes in which each component service is implemented by a Web service.

The main components of the architecture are: the BPEL engine, the Identity

Attribute Requester module, the Client, the Registrar , the Identity

Verification Handler module, and the component Web services. The WS-

BPEL engine is responsible for scheduling and synchronizing the various activ-

ities within the business process according to the specified activity dependen-

cies, and for invoking Web services operations associated with activities. The

Identity Attribute Requestermodule extends the WS-BPEL engine’s func-

tions by carrying on the communication with the client asking for new identity

attributes whenever necessary. The Identity Attribute Requester keeps

in a local repository the mapping certificate associated with previous clients iden-

tity verifications. The Client supports the functions to trigger the execution

of the WS-BPEL business process, to select the identity attributes matching the

ones requested by the component services, and to generate the aggregate ZKP of

the matched attributes. The Registrar component provides functions for stor-

ing the clients’ identity records and retrieving the public parameters required in

Appendix A. Interoperability in Digital Identity Management 213

Figure A.3: System architecture

the AgZKPK protocol. The Identity Verification Handler intercepts the

components services invocation messages and provides functions for matching

client identity attribute names and performing the aggregate ZKP verification.

Finally, the component Web services support the operations that are orchestrated

by the business process.

The Identity Attribute Requester, the Identity Verification Handler

modules, and the component Web services have been implemented in JAVA. The

Identity Verification Handler implements the identity attribute name

matching protocol using the Falcon-AO v0.7 [1, 2] ontology mapping API and

214 Appendix A. Interoperability in Digital Identity Management

WordNet 2.1 English Lexical database [9]. The Client application has been im-

plemented in JSP while the Registrar has been implemented as a JAVA servlet.

As BPEL engine we have chosen ODE. Finally, we have used Oracle 10g DBMS to

store clients’ identity records, ontology mappings, set of synonyms, session data

and mapping certificates.

Moreover, we have adopted ODE as BPEL engine. Oracle 10g DBMS is used

to store clients’ identity records, ontology mappings, set of synonyms, session

data and mapping certificates. Among these components the most relevant one

is the BPEL Orchestrator in that it provides a number of operations to manage

both identity management and naming heterogeneity according to the protocol

presented in the above Sections. Such component is a logically independent com-

ponent, as shown in Figure A.3; it can however be physically instantiated on the

same hosts supporting the other components. For example, a host supporting a

Web service may also include one such instance. The BPEL Orchestrator provides

the following features:

• orchestrates the Web services that are involved into the process;

• carries on the communication with the client asking for new credentials

whenever necessary;

• implements the protocol for solving naming heterogeneity using the Falcon-

AO v0.7 [1, 2] ontology mapping tool and by exploiting the WordNet 2.1

English Lexical database [9];

All the mapping certificates regarding the client that has instantiated the ac-

tual process are maintained within the Session Cache. During the execution of

a process activity, all the certificates are retrieved and sent to the associated Web

service. When the execution of the activity terminates, the Web service sends

back the new mapping certificates, if any, released to the client and the Session

Cache is updated with the new data.

Appendix A. Interoperability in Digital Identity Management 215

(a) Heterogeneity evaluation (b) AgZKPK Verification versus Creation

Figure A.4: Experimental results

A.7. Experimental Evaluation

We have performed several experiments to evaluate the AgZKPK process that

characterize the proposed approach to multi-factor identity verification and the

identity attribute names matching process. To execute the tests we have devel-

oped a BPEL process composed by four component Web services and we have

created a set of ontologies with an average cardinality of 60 concepts. We have

carried out the following experimental evaluations:

• we have measured the time taken by a component Web service to perform

the two different phases of the identity attribute names matching process

by varying the number of identity attributes that have to be matched from

1 to 8. (Figure A.4(a));

• we have measured the time taken by a component Web service to gener-

ate the aggregate ZKP by varying the number of identity attributes being

aggregated from 1 to 50. (Figure A.4(b));

• we have measured the time taken by a component Web service for aggregate

ZKP verification execution time varying the number of identity attributes

being aggregated from 1 to 50. (Figure A.4(b));

The execution time has been measured in CPU time (milliseconds). Moreover,

for each test case we have executed twenty trials, and the average over all the

trial execution times has been computed.

216 Appendix A. Interoperability in Digital Identity Management

Figure A.4(a) shows the execution times of the two phases of the matching

protocol for varying values in the number of identity attributes verified by a

component service. The execution time of the first phase (green line) slightly

increases and is around 60 ms. Instead, the time of the second phase is constant

because even if the number of identity attributes to be match increases, this phase

performs always the same operation, that is, matching two ontologies. The ex-

ecution time for the ontology matching is constant with respect to the number

of identity attributes, while the execution time of the mapping path creation in-

creases. Regarding ontology matching, the increase in computational time due

to the larger number of attributes is negligible compared to the time required for

the matching process. On the contrary, the time for the mapping path computa-

tion increases, as expected, because the same basic operations are repeated for a

number of times equal to the number of identity attributes considered. This is the

reason why the computation of a mapping path is more efficient than ontology

mapping when considering a smaller number of attributes. Figure A.4(b) reports

the times to create an AgZKP and to verify it for varying values in the number of

identity attributes being aggregated. The execution time to generate the AgZKP

(represented by the blue line in the graph) is almost constant for increasing val-

ues in the number of identity attributes. The reason is that the creation of AgZKP

only requires a constant number of exponentiations. By contrast, the time that the

component Web service takes to perform identity attributes verification linearly

increases with the number of identity attributes to be verified. The reason is that

during the verification the component Web service is required to multiply all the

commitments to verify the resulting aggregate signature.

A.8. Concluding Remarks

In this Chapter we have proposed a digital identity management approach for

business processes. Our approach uses a combination of techniques from the area

of semantic web and security protocols. We plan to extend this work in several

Appendix A. Interoperability in Digital Identity Management 217

directions. One direction is related to deal with heterogeneous identity negotia-

tion protocols. The second direction is related to the definition of a language for

identity verification policies that would allow service providers to specify con-

ditions on identity attributes. We also plan to extend the AgZKPK protocol to

verify that identity attribute’s commitments satisfies such conditions.

218 Appendix A. Interoperability in Digital Identity Management

	Abstract
	Acknowledgements
	List of Figures
	Introduction
	Policy Analysis: Requirements
	Policy Comparison
	Heterogeneous Policy Analysis
	Reasoning on Application Domains

	EXAM-S: Motivations
	Lack of Semantics
	Ontologies and Interoperability

	Aims of the Thesis
	Outline

	Background
	XACML
	Rule Combining Algorithm
	Hierarchical and Multiple Resource Profile
	The XACML architecture

	Description Logics
	DL Overview
	Syntax and Semantics
	Reasoning Services

	The Semantic Web and OWL
	The Ontology Web Language
	OWL-DL Ontologies
	An Example of Semantics Supporting Interoperability: Semantic Web Services

	Ontology Matching
	Overview
	Ontology Matching: Formalizing the Problem
	Reviewed approaches
	Falcon-AO

	I Related Work and Preliminary Definitions
	Related Work
	Policy Analysis
	Single Policy Analysis
	Policy Similarity Analysis

	Semantic Web-Based languages
	Access Control and Ontologies

	Policy Analysis: Preliminaries
	Heterogeneity in Policy Analysis
	From Vocabularies to Domains
	The Formalization of a Policy Domain

	Dealing with Heterogeneous and Partial Knowledge
	Ontology Merging
	Ontology Extraction
	Hybrid Scenarios

	Trade-off between Expressivity and Complexity
	XACML and Propositional Logic
	Policy Analysis Services in PL
	XACML and Description Logic
	Policy Analysis Services in DL
	Results and Discussion

	II EXAM-S: the Model
	Extending XACML with Semantic Functions
	Introduction
	Background notions about RBAC
	Running Example
	The XACML+OWL Framework
	SoD Constraints Definition using OWL Ontologies
	Static Separation of Duty Constraints
	Dynamic Separation of Duty Constraints

	XACML Policies
	Semantic Functions for instances
	XACML Obligations
	Policy Semantics
	Automatic Creation of XACML policies
	Policy evaluation

	A Complete Example of Policy Enforcement
	Extended XACML architecture

	Dealing with Heterogeneous Domains
	Ontology Matching
	Ontology Merging Process
	Ontology Merging Process
	Order of the Ontologies in the Merging Algorithm

	Ontology Extraction Process
	From a Vocabulary to a Domain: the Model
	Ontology Extraction Algorithm

	Policy Reference Ontology
	Policy Set Reference Ontology

	Policy Similarity Analysis
	Analysis Queries on Heterogeneous Policies
	An Illustrative Example
	Prelimary Notions
	Policy Filtering
	Computation of the Mapping
	Computation of Mappings
	Similarity Score between Rules
	Similarity Score of Rule Elements
	Similarity Score for Categorical Predicates
	Similarity Score for Numerical Predicates

	Policy Similarity Analyzer
	Query Processing Strategy
	Query Processing

	P3P Similarity
	P3P
	P3P Similarity Measure
	P3P Policy Similarity Measure
	Data Similarity
	Purpose Similarity
	Recipient Similarity
	Retention Similarity
	Tuple Similarity
	Policy Similarity

	P3P Policy Clustering
	Experiments

	III EXAM-S: Implementation
	EXAM-S: the Architecture
	Architecture
	Analysis Module
	Architecture of the Policy Similarity Analyzer (PSA)
	Semantic Reasoner submodule

	Heterogeneity Module
	Policy Reference Ontology creation

	Repositories Module

	Implementation and Experimental Evaluation
	Experimental Results: Heterogeneity Module
	Implementation: Filtering
	Experimental Results: Filtering
	Effectiveness
	Efficiency
	Scalability

	Implementation: Policy Analyzer
	Experimental Results: Policy Analyzer

	Conclusions and Future Work
	References
	Interoperability in Digital Identity Management
	Introduction
	Running Example
	Identity Management for Business Processes
	Preliminary concepts
	Interoperable Multi-Factor Authentication
	Identity attribute matching protocol
	Multi-factor authentication

	System architecture and Implementation
	Experimental Evaluation
	Concluding Remarks

