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“Those who seek should not stop seeking until they find.

When they find, they will be disturbed.

When they are disturbed, they will marvel, and will reign over all.”

“Know what is in front of your face

and what is hidden from you will be revealed to you.

For there is nothing hidden that will not be revealed.”

Judas Thomas: 2,5
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Introduction

Statistical modelling and statistical learning theory are two powerful analytical frameworks
for analyzing signals and developing efficient processing and classification algorithms. In
this thesis, these frameworks are applied for modelling and processing biomedical signals
in two different contexts: ultrasound medical imaging systems and primate neural activity
analysis and modelling.

Ultrasound medical imaging systems

In the context of ultrasound medical imaging, two main applications are explored: deconvo-
lution of signals measured from a ultrasonic transducer and automatic image segmentation
and classification of prostate ultrasound scans.

In the former application a stochastic model of the radio frequency signal measured
from a ultrasonic transducer is derived. This model is then employed for developing in a
statistical framework a regularized deconvolution procedure, for enhancing signal resolution.

In the latter application, different statistical models are used to characterize images of
prostate tissues, extracting different features. These features are then uses to segment the
images in region of interests by means of an automatic procedure based on a statistical
model of the extracted features. Finally, machine learning techniques are used for automatic
classification of the different region of interests.

Primate neural activity analysis and modelling

In the context of neural activity signals, an example of bio-inspired dynamical network was
developed to help in studies of motor-related processes in the brain of primate monkeys.
The presented model aims to mimic the abstract functionality of a cell population in 7a
parietal region of primate monkeys, during the execution of learned behavioural tasks. This
project was developed during an internship of six months at the Laboratory of Nonlinear
Systems (LANOS) of the Polytechnical federal School of Luausanne - Switzerland, under
the supervision of prof. Martin Hasler.

Thesis structure

This thesis is organized in two parts. In part I the biomedical background concerning
ultrasound medical imaging system (Chapter 1), prostate cancer diagnosis (Chapter 2) and
neural signal analysis (Chapter 3). This part is meant to give the basic notions about the
application context of the different project developed in this thesis. A common bibliography
with the fundamental reference is given at the end of the part.
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iv INTRODUCTION

In part II the three main projects developed in this work are reviewed in detail. For each
project, a dedicated bibliography is given at the end of the correspondent chapter.

In chapter 4, after a complete and original review on the state of the art of ultrasound sig-
nal deconvolution method, a novel stochastic model for the radio frequency signal recorded
from ultrasound imaging system is presented. The model is than used in a MAP estima-
tion framework for the development of a novel deconvolution algorithm, based on a reduced
complexity Viterbi algorithm and an adaptive scalar quantization method. The proposed
method is than applied on both synthetic and real invivo signals.

In chapter 5, ultrasound signal characterization technique and machine learning method
are used for the development of a computer aided procedure for prostate cancer diagnosis.
The core of the proposed method is an automatic selection of region of interest to be
classified based on an supervised and adaptive segmentation technique. The regions of
interest are then classified with a supervised classifier trained and tested on a experimental
database of trasrectal prostate images.

In chapter 6, an abstract mathematical model of primate 7a area, based on a recurrent
network of spiking neurons is developed. Such model was developed in order to asses
the effect of some critical parameters in data analysis procedures conduced on real neural
activity recorded from 7a area of primate monkey.



Part I

BIOMEDICAL BACKGROUND
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Chapter 1

Ultrasound Imaging Systems

1.1 Ultrasound physic

Sound is related to the vibration motion of particles that constitute a material. In the linear
acoustic theory, the propagation of sound is described through the model of elastic waves.
Elastic waves are related to elastic material, i.e. material that follow Hooke’s law.

In elastic waves, two types of wave can exist: transversal waves and longitudinal waves.
For transverse waves the displacement of the medium is perpendicular to the direction of
propagation of the wave. Transverse waves cannot propagate in a gas or a liquid because
there is no mechanism for driving motion perpendicular to the propagation of the wave. In
longitudinal waves the displacement of the medium is parallel to the propagation of the
wave. Bones excluded, in all the biological tissue the transversal component is subject to
an high attenuation and therefore it can be neglected.

The constitutive equations for a linear and lossless homogeneous medium are:

ρ0c2∇ · v̄ = −
∂p

∂t
(1.1)

∇p = −ρ0
∂v̄

∂t
(1.2)

where p is the pressure associated to th perturbation of a particle with speed v̄ , c is the
propagation speed and is the mass density ρ0 in resting condition.

The wave equation for a lossless linear medium in absence of sources can be obtained
differentiating eq.(1.2) with respect to t and multiplying both the terms of (1.2) for ∇.
Combining the two equations we obtain:

∇2p = 1
c2

∂2p

∂t2 (1.3)

that together with the initial conditions and boundary conditions, describes the propagation
of then pressure field p.

Velocity potential The solution to wave equation can be simplified introducing the scalar
function velocity potential:

v̄(r̄, t) = −∇Φ(r̄, t) (1.4)

3



4 CHAPTER 1. ULTRASOUND IMAGING SYSTEMS

which allows to express the pressure field as

p(r̄, t) = −ρ0
∂Φ(r̄, t)
∂t

. (1.5)

This function will be used in the following sections to find the expression of the ultrasound
field generated by a transducer.

Solution of the homogeneous wave equation in Cartesian coordinate system

Wave eq. (1.3) can be solved with separation of variables method, expressing the solution
in the exponential form:

p(r̄, t) = Aej(ωt−k̄ ·r̄) (1.6)

where k̄ = kx x̂ + kyŷ+ kz ẑ is the wave vector.
To be solution of the eq. (1.3) we must have

k = k2
x + k2

y + k2
z = ω2

c2

where ki is the component along direction i of the wave vector. Therefore, eq. (1.3) admit
an infinite number of solutions called plane waves.

Acoustical impedance. Let’s consider a plane wave that propagates along the direction x̂

p(x, t) = A exp{j(ωt − kxx)}

the speed of the particle oscillation around the propagation direction v can be obtained
from the relation (1.2). We define acoustical impedance the quantity

Z = p

v
. (1.7)

This parameter has the physical dimension of a mechanical resistance and its unit of mea-
sured is called rail= kg

sm2 . The impedance for a plane wave is therefore

Z = ρ0c (1.8)

that is related to propagation speed and to the density of the material. In tab. 1.1 values of
propagation speed, mass density and impedance for several materials an biological tissues
are reported.

Acoustical intensity. It is defined as the power of the acoustic field for surface unit along
the propagation direction:

I = lim
T→∞

1
T

∫

T

p(t)v(t)dt (1.9)

Reflection and refraction of plane waves

The solution of eq. (1.3) found previously is valid only for an homogeneous region. If in
the propagation medium are present discontinuities, both macroscopic and microscopic with
respect to the field wavelength, it is still possible to describe the propagation in terms of
plane wave introducing diffraction, refraction and diffusion phenomena.
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Material Speed of sound Density Impedance

(m/s) (Kg/m3) (µrail)

Air 331 1.02 0.0004
Water 1480 1000 1.48
Mercury 1450 13600 11.4
Quarz 5736 2200 12.4
PZT 3791 7650 29.0

(a)

Tissue Speed of sound Density Impedance

(m/s) (Kg/m3) (µrail)

Muscles 1580 1070 1.70
Liver 1550 1060 1.64
Fat 1459 920 1.38
Brain 1560 1028 1.56
Kidney 1560 1040 1.62
Spleen 1570 1059 1.66
Blood 1575 1060 1.66
Bones 4080 1620 6.6
Eye 1670 1135
Lungs 650 430 0.28

(b)

Table 1.1: Speed of sound, mass density and acoustical impedance in some common
materials (a) and biological tissues (b).

INTERFACE REFLECTION

soft tissue - air 0.99
soft tissue - lung 0.52
soft tissue - bone 0.43
vitreous humor - eye lens 0.01
fat - liver 0.79
soft tissue - fat 0.0069
soft tissue - muscle 0.0004
water - lucote 0.13
oil - soft tissue 0.0043

Table 1.2: Reflection coefficient for common interfaces in medical field.

If in the propagation medium are present non homogeneous regions with dimension
larger than the field wavelength, propagation medium can be modelled as a discrete set
of homogeneous regions characterized by different acoustical properties and reflection and
refraction phenomena can be modelled with the geometric acoustic theory.

In this model, when a plane wave encounter the separation surface between two homo-
geneous regions with propagation speed c1 and c2, and acoustical impedance Z1 and Z2,
the incidence angle θi is related to the reflection angle θr and to the refraction angle θt
by the Snell’s law:

sin θi
sin θt

= c1
c1
. (1.10)

Reflection coefficient R and refraction coefficient T , which give the amplitude of the reflected
and refracted wave respectively, can be computed as

R = Z2 − Z1
Z2 + Z1

T = 2Z2
Z2 + Z1

. (1.11)

Similarly, reflection and refractions coefficients can be defined for the acoustical intensity:

R =
(
Z2 − Z1
Z2 + Z1

)2
T = 4Z1Z2

(Z2 + Z1)2
(1.12)

Eq. (1.11) and (1.12) show that while refraction is dependent on the propagation direction
the reflection depends only on the impedance mismatch between the two regions. In tab.1.2,
several values of reflection coefficients for several common interfaces in medical field.



6 CHAPTER 1. ULTRASOUND IMAGING SYSTEMS

θi θr

θs

Z1

Z2

Figure 1.1: Reflection and refraction of plane waves in Snell law.

Diffusion

If the non homogeneous regions present in the propagation medium have dimension lower or
comparable with the field wavelength, the incident wave will be diffused towards different
directions according to a radiation patter that is function of the field wavelength and of
obstacle geometry. When the dimensions of the non homogeneous region are negligible
with respect to the field wavelength, the obstacle can be modelled as a point scatter. In
this case, the incident field is diffused uniformly along all the directions in the form of
spherical waves.

Such phenomena takes place also when the non homogeneous regions are globally larger
than the wavelength but are characterized by local structures with dimension comparable
or lower than the filed wavelength. In this case the reflected field is composed by two
components: a reflected wave which follows the Snell’s law and a diffused (or non coherent)
wave which propagates along all the direction with different phase and cause a destructive
interference, often referred as speckle.

The diffusion phenomena can be analytically studied through the wave equation for a
lossless non homogeneous medium. In particular, let’s suppose that the acoustic parameters
in the non homogeneous regions are slowly varying and all located in a region V , such that
mass density and adiabatic compressibility can be written as

ρ(r̄) =
{
ρ0 + ρ1(r̄) r̄ ∈ V

ρ0 otherwise (1.13)

β(r̄) =
{
β0 + β1(r̄) r̄ ∈ V

β0 otherwise (1.14)

Imposing the boundary conditions on V

∂ρ(r̄)
∂n

= ∂β(r̄)
∂n

= 0 (1.15)

the wave equation becomes

∇2p(r̄, t) −
1
c2
∂2p(r̄, t)
∂t2

= 1
c2
∂2p(r̄, t)
∂t2

β̃(r̄) + ∇ · [ρ̃(r̄)∇p(r̄, t)] (1.16)
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where

ρ̃(r̄) = ρ1(r̄)
ρ0

β̃(r̄) = β(r̄)
β0

are the relative mass density function and the relative compressibility function in the region
V , respectevly. The eq. (1.16) constitutes a non homogeneous differential problem, which
can be solved through the Green’s function method [12]:

p(r̄, t) = pi(r̄, t) + ps(r̄, t) (1.17)

where pi(r̄, t) it’s the solution of the homogeneous problem, i.e. the incident field, and

ps(r̄, t) =
∫ ∞

−∞

dt0

∫

V

[ 1
c2
∂2p(r̄, t)
∂t2

β̃(r̄0) + ∇ · [ρ̃(r̄0)∇p(r̄0, t0)]G(r̄, t|r̄0, t0)d3r̄0

]
(1.18)

is the field diffused by the region V , while (r̄, t) and (r̄0, t0) are the respectevly the target
and source point of the Green’s function

G(r̄, t|r̄0, t0) = δ(t − t0 − |r̄0 − r̄|/c)
4π|r̄ − r̄0|

(1.19)

of the differential problem (1.16).
The eq. (1.18) has analytical solutions only if the integration region V has a simple

geometry and a general solution can be found only doing some approximations. In particular,
recurring to the Born approximation p(r̄, t)=pi(r̄, t) we obtain:

ps(r̄, t) =
∫ ∞

−∞

dt0

∫

V

[ 1
c2
∂2pi(r̄, t)
∂t2

β̃(r̄0) + ∇ · [ρ̃(r̄0)∇pi(r̄0, t0)]
]
G(r̄, t|r̄0, t0)d3r̄0. (1.20)

Thanks to (1.13) and (1.14), eq. (1.20) can be simplified applying the divergence operator
and exploiting the divergence theorem

ps(r̄, t) =
∫ ∞

−∞

dt0

∫

V

[ 1
c2
∂2pi(r̄, t)
∂t2

β̃(r̄0) + [∇ρ̃(r̄0) · ∇pi(r̄0, t0)]
]
G(r̄, t|r̄0, t0)d3r̄0. (1.21)

Eq. (1.21) can be analytically solved for many elemental integration domains, like spheres
and cylinders, which can be used in many circumstances for modeling with good approxi-
mation some characteristics of real biological tissues [12].

Diffusion of plane waves

Let’s suppose that the incident field is a plane wave

pi(r̄, t) = p0e
i(k̄i·r̄−ωt).

Substituting the incident field in the eq. (1.21) we get

ps(r̄, t) = p0e
−jωt

∫

V0

[

k2
i β̃(r̄0) − j∇ · ρ̃(r̄0)k̄i

]

(

ej(k̄i·r̄0−k|r̄−r̄0|)

4π|r̄ − r̄0|

)

d3r̄0 (1.22)

where k = |k̄i| = ω/c.
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r̄0

r̄

r̄ − r̄0

ψk̄s

Vo

Incident wave

Observation point

Figure 1.2: Reference system for the calculus of the diffused field with Born approximation.

Expanding the exponent of the exponential term which is depended on distance, con-
sidering target points that are far from the origin with respect to size of the region V0 and
considering as reference system the one shown if fig. 1.2, we can write

k|r̄ − r̄0| ≈ k|r̄|

(

1 −
r̄ − r̄0
|r̄|2

)

≈ k|r̄| − k̄s · r̄0

from which follows
k̄i · r̄0 − k|r̄ − r̄0| = (k̄i − k̄s) · r̄0 − kr (1.23)

where ks is the wave vector parallel to r̄, with magnitude k and kr = k̄s · r̄0.
Substituting in eq. (1.22) we get

ps(r̄, t) = p0e−j(ωt−k|r̄|)

4π|r̄|

∫

V0

[

k2β̃(r̄0) − j∇ · ρ̃(r̄0)
]

ej(k̄i−k̄s)·r̄0d3 r̄0. (1.24)

The scattered field can be interpreted as a plane wave, generated by a point source located
in the origin of the reference system, with an anisotropic angular distribution defined by
integral in (1.24). Defining the functions

β(k̄) =
∫

V0

β̃(r̄)e−jk̄·r̄d3r̄ (1.25)

η(k̄) =
∫

V0

ρ̃(r̄)e−jk̄·r̄d3r̄ (1.26)

K̄ = k̄i − k̄s (1.27)

eq. (1.24) can be rewritten as

ps(r̄, t) = p0e−j(ωt−k|r̄ |)

4π|r̄|
k2[β(k̄) + ρ(k̄) cosψ] (1.28)

where
cosψ = k̄i · k̄s

|k̄i|2
. (1.29)

The term [β(k̄) + ρ(k̄) cosψ] is called diffusion function and describes completely the
diffusion properties of a medium, in the limits of Born’s approximation.

Analyzing the expression of the diffusion function some interesting consideration can
be deduced. First of all, if the variation of mass density and compressibility are small
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and random, |β(r̄)| e |ρ(r̄)| will be almost constant for a large set of values of k , and the
magnitude of the diffused field will be proportional to k2, like in the so called Rayleigh’s
diffusion.

The angular variation of the field is rather determined by the spatial variations of mass
density and compressibility. For example, if such variations are isotropic, also the diffused
field will be isotropic with a radiation pattern of a dipole. Therefore, the diffused field
contains many informations about the acoustical properties of the propagation medium.
Such information can be deduced by a complete set of measurement for different values of
K̄ , or for different (ki, φs, θs) in a polar reference system. Such technique is called diffraction
tomography.

In many practical situations, since only a limited set of measurement is available, it is
not possible to reconstruct the diffusion function. This is the case of the medical imaging
systems where the measurement are limited to φs = 0 e ψ = π, and therefore only the
quantity β̃(r̄) − ρ̃(r̄) can be measured. Moreover, in medical imaging system the maximum
frequency is limited by the frequency dependent attenuation which reduces the frequency
range to 1-40 MHz.

Field diffused by a sphere. If the non homogeneous region V1 is a sphere of radius a, the
diffusion function can be found analytically using a polar reference system (s, θ, φ):

β̃(r̄0) =
{

β1 |r̄0| ≤ a

0 |r̄0| > a

ρ̃(r̄0) =
{

ρ1 |r̄0| ≤ a

0 |r̄0| > a

f =
∫ a

0

∫ 2π

0

∫ π

0
(β1 + ρ1 cosθ)ej2π(sin θ/2 cosθ)ss2 sinθ dθdφds

= 2π
∫ a

0
s2(β1 + ρ1 cos θ)

∫ 1

−1
ejsµxdαds

= k2 4π
µ3 (sin µa− µa cos µa)(β1 + p1 cosθ) (1.30)

where

µ = 2ks sin θ/2
α = cosθ

For µa → 0 we have
f → 4π(β1 + p1 cos θ)k2

i V

where V is the volume of the spherical region V1. If no variation of mass density are present,
the diffused filed is isotropic and the diffused power is proportional to k4

i V
2. In fig. 1.3 the

radiation patters of a sphere for different values of ka are shown.

Field diffused by a set of obstacles. If the volume V is constitute by many non ho-
mogeneous regions, the diffused field will depend on the characteristics of each region.
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Figure 1.3: Radiation patterns of a spherical obstacle for different radius computed with
the Born’s approximation.
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Neglecting the multiple diffusions, the diffusion function of a set of N identical obstacles
can be written as

F (θ, φ) = f(θ, φ)
N
∑

i=1
ejk̄·r̄i (1.31)

where r̄i is the position of the i-th obstacle and f(θ, φ) is the diffusion function of a single
obstacle. This model allows to compute with good approximation the field diffused by
tissues that are characterized by an high degree of regularity, evaluating the dependence
on the frequency and scatter position and other effects due to the perturbation of structure
regularity [12] (cap.6). However, since many biological tissue are characterized my an highly
variable (or even random) microstructure, stochastic modelling is mandatory.

Field diffused by a random medium: discrete model. Let’s consider the non homogeneous
region V as a discrete set of obstacles, randomly positioned in an homogeneous substrate.
Each obstacle is assumed to be small if compared to the incident field wavelength. By
neglecting the multiple diffusion, the diffused filed can be written as the sum of the filed
diffuse by each obstacle.

The diffused field can be decomposed in two components: a coherent component and a
non coherent component

p = pc + pinc

The coherent component pc is given by the statistical average with respect all the possible
geometrical configurations of the obstacles. The non coherent component is given by the
random fluctuations around the coherent component, due to all the possible geometrical
configuration of the obstacles.

The diffused field is therefore a random variable with mean value and variance

〈p〉 = pc
〈

p2〉 = | 〈pc〉 |2 +
〈

|pinc|
2〉 .

The diffused component pinc can be written as

pinc(r̄, t) = F (θ, φ)ej(kr̄−ωt) (1.32)
F (θ, φ) =

∑

n

fn(θ, φ)ejr̄·r̄n (1.33)

where r̄n is the position of the n-th obstacle. Since the obstacles are small if compared to
the wavelength, their diffusion functions can be assumed to be the diffusion function of a
sphere:

fn(θ, φ) = k2
i an.

therefore, the overall diffusion function F (θ, φ) is a random variable with zero mean which
statistic will be discussed later on.

The acoustical intensity of the non coherent component is proportional to

〈

|F (θ, φ)|2
〉

= k4
i

[

N
∑

n=1
a2
n

]

and therefore, in the case of identical obstacles, it is proportional toN and follow a quadratic
law wit respect to the frequency of the incident filed. Such kind of diffusion is called
Rayleigh’s diffusion or Rayleigh’s scattering.
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r̄
r̄0

r̄ − r̄0

R

Vo

S

Figure 1.4: Reference system for calculating the signal received by a transducer.

Field diffused by a random medium: continuous model. In this model, the obstacle is
characterized by continuous variation of mass density and compressibility around a constant
mean value, characterized by specific autocorrelation functions. For the sake of simplicity,
let’s assume that the region V is non homogeneous only with respect to the compressibility.
The non coherent component of the filed is therefore

ps(r̄, t) = e−j(ωt−r̄·r̄)

4π|r̄|
k2
i β(k̄)

where in this case β(k̄) and Ps(r̄, t), are random variables whit mean squared value

| 〈ps(r̄)〉 |2 = k4
i

16π2|r̄|2
〈β〉 (1.34)

| 〈β(r̄)〉 |2 =
∫

V

Nβ(r̄)ejk̄·r̄d3r̄ (1.35)

and where Nβ is the autocorrelation function of the compressibility variation.

Diffusion of band-pass pulses

So far, only monochromatic incident fields have been taken into account. However, in
medical imaging systems also band-pass pulses are used. The diffused filed for a band-
pass incident pulse can be computed with different methods in frequency or time domain. If
the expression of the diffused field for a monochromatic incident field is known, the diffused
field for a band-pass pulse can be find integrating its expression with the Fourier transform
of the incident pulse.

Alternatively, the diffused filed can be computed in time domain, integrating the eq.
(1.21). In particular we want to calculate the signal received by the transducer after the
diffusion of band-pass pulse caused by an obstacle. The received signal, expressed in terms
of a voltage V (t), can be calculated as

V (t) = Em(t) ∗t

∫

S(r̄)
ps(r̄, t)dS(r̄) (1.36)

where Em(t) is the transducer electromechanical impulse response and r̄ is the vector that
indicates the points over the transducer surface S(r̄), with respect to the reference system,
shown in fig. 1.4.

The expression of the diffused field can be written in terms of the differential operator

L[.] = β̃(r̄0)
c2

∂2

∂t2
+ ∇ρ̃(r̄0) · ∇ (1.37)
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in the following way

ps(r̄, t) =
∫

−∞

∞dt0

∫

V

L[pi(r̄0, t)]
δ(t − t0 − |r̄0 − r̄|/c)

4π|r̄ − r̄0|
d3r̄0. (1.38)

Substituting in the eq.(1.36) and integrating with respect to t0 over the transducer surface
S(r̄) we get

V (t) = Em(t) ∗t

∫

V

L[pi(r̄0, t)]d3r̄0 ∗t h(r̄, t) (1.39)

where
h(r̄0, t) =

∫

−∞

∞

∫

S

δ(t − t0 − |r̄0 − r̄|/c)
4π|r̄ − r̄0|

dS(r̄)dt0 (1.40)

it is the spatial impulse response over the transducer surface. Introducing the expression
of the incident field that, as will be shown later on, is given by

pi(r̄0, t) =
∫

S(r̄)

A(t − |r̄0 − r̄|/c)
4π|r̄0 − r̄|

dS(r̄)

= A(t)h(r̄0, t), (1.41)

(where A(t) is the electrical excitation of the transducer) the expression of the received
signal is

V (t) = Em(t) ∗t

∫

V

L[A(t)h(r̄0, t)]d3r̄0 ∗t h(r̄, t). (1.42)

Moving the temporal convolution inside the differential operator we get

V (t) = Em(t) ∗t

∫

V

L[A(t)h(r̄0, t) ∗t h(r̄0, t)]d3r̄0

= Em(t) ∗t

∫

V

L[q(r̄0, t)]d3r̄0. (1.43)

The function q(r̄0, t) = A(t)h(r̄0, t) ∗t h(r̄0, t) pulse-echo spatial impulse response, and it
represents the signal diffused by a point scatter located in r̄0, and subject to the incident
filed generated by A(t). This function, which is only dependent by the transducer geometry,
allows characterizing the distribution of the field generated by a transducer and therefore,
its resolution. Such function is often called also point-spread function (PSF).

The received signal can be calculated integrating above the region V the function
L[q(r̄0, t)]:

V (t) = Em(t) ∗t

∫

V

[

β̃(r̄0)
c2

∂2q(r̄0, t)
∂t2

+ ∇ρ̃(r̄0) · ∇q(r̄0, t)
]

d3r̄0.

Manipulating again the expression of the received signal, it can be expressed as the convo-
lution between the transducer electromechanical impulse response E(t), the system point-
spread function q(r̄0, t) and the propagation medium impulse response T (r̄0)

V (t) = Em(t) ∗t T (r̄0) ∗r̄0 q(t, r̄0). (1.44)

where
T (r̄) =

[

β̃(r̄0) + ρ̃(r̄0)
]

∇2. (1.45)

This formulation of the received signal is called convolution model and allows separating
the effects due to imaging system by the effects due to the propagation medium. Such model
will be used in this work as reference model for developing a deconvolution model.
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MATERIAL f = 1 MHz f = 5 MHz

Water 1360 54
Air 0.25 0.01
Brain 3.5 1
Liver 3 0.5
Fat 5 1
Muscle 1.5 0.3
Oil 3 0.12
Bone 0.2 0.04
Perspex 1.5 0.3
Polyethylene 0.6 0.12
Kidney 3 0.5
Blood 17 3
Vitreous humor - 6

Table 1.3: Penetration depth at -3 dB for common materials and tissues.

Absorption and attenuation

So far, only lossless medium were considered. Real materials as well as biological tissues
are characterized by absorption phenomena due to the conversion of mechanical energy
into heat. Such conversion is due to different physical mechanism like:

• viscosity, caused internal friction in the materials;

• thermal diffusion and mass diffusion, i.e. molecular movements respectively due to
temperature and concentration gradients, that perturb waves motion;

• molecular inertia.

Absorption can be modeled as an exponential reduction of acoustic wave amplitude as
function of the distance

As(r̄) = A0e
−α|r̄| (1.46)

where α is called absorption coefficient, while A0 is the wave amplitude. it can be shown
that the absorption coefficient is dependent by the frequency of the incident field according
to the relation

α = c · fβ (1.47)

where c is the propagation speed, f is the frequency of incident field and β is characteristic
parameter of the propagation medium.

Moreover, like reviewed in sec. 1.1, the material non homogeneities cause reflection and
refraction phenomenas, that causes a reduction of the acoustic field during its propagation.
The overall effect of reflection, diffusion and absorption causes an attenuation that can be
modeled as an exponential law:

A(r̄) = A0e
−a|r̄| a = α + αs (1.48)

where αs is the attenuation coefficients due to field diffusion.
Such attenuation can be also expressed in term of acoustical intensity:

I(r̄) = I0e
−µ|r̄|

where µ is the intensity attenuation coefficient, related to the attenuation coefficient by the
relation

µ = 2a
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Figure 1.5: Functional block diagram of a generic digital ultrasound imaging system

Typically the attenuation of materials is expressed in dB by the expression

A(dB) = µ · f · |r̄|

where µ is the attenuation coefficient expressed in dB
cmMHz

. Anther common way for express-
ing material attenuation is the penetration depth for different frequencies, which indicates
the depth at which the acoustic intensity is attenuated of 3 dB. In tab. 1.3, values of
penetration depth for different material and biological tissues are reported.

(intro)

1.2 Ultrasound imaging systems architecture

A functional block diagram of a generic digital ultrasound imaging system is shown in fig.
1.5. This block diagram is composed of two different sections: the transmit section, which
drives the ultrasound transducer to generate the ultrasound beam, and the receive sec-
tion, which performs all the processing related to signal acquisition like, amplification and
pre-conditioning, analog to digital conversion, scan conversion and display. Transmit and
receive sections are then synchronized by a timing system (T/R switch), which guarantees
an exclusive access to the system probe.

1.2.1 Transmit section

This section is composed of all the components necessary for generating the tension pulses
used for exciting the piezoelectric elements that compose the probe and generate the ul-
trasonic beam. Operating frequencies for medical ultrasound are in the 1-40 MHz range,
with external imaging machines typically using frequency of 1-15 MHz, while intravenous
cardiovascular machines use frequencies up to 40 MHz. The main limitation in using high
frequency pulses is the frequency dependent attenuation of biological tissues, which in-
creases with the frequency and at 10 MHz is already 1 dB/Cm/MHz. Such big attenuation,
together with the transmission power limit poses a compromise between the maximum imag-
ing depth and the maximum frequency of the ultrasound field.
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Older and simpler imaging systems are equipped only with a mono-element probe. The
transmit section is composed of a pulse generator and an high voltage amplifier necessary
for pulse amplification. Very high voltages are in fact required for driving the piezoelectric
transducers that generate the ultrasonic filed. The focusing of the ultrasound beam is
usually made with a focused transducer, while the image scan is done mechanically moving
the probe.

Modern and more complex imaging systems are equipped with multi-element phased
array probes, which allow to implement focusing and image scan electronically. Either one
focus at fixed depth or multiple focus at different depth can be used. All that is made
by the beamforming stage, which drives all the probe elements with a pattern of delayed
pulses in order to focus the ultrasound beam and move it in the desired position, reducing
the secondary lobes of the radiation pattern. Typically, when probes with a high number
of elements are employed, in order to reduce the complexity of the transmit system, an
high-voltage multiplexer is used for selecting and driving groups of elements with pulses
that are generated serially by the pulse generator.

1.2.2 Receive section

This section is more complex than the transmit one, both from a circuital and functional
point of view. Here, all the processing necessary for signal acquisition, memorization and
display are done. In fig. 1.5 all the blocks composing the receiving stage are shown.

Low noise pre-amplifier. This is the first block immediately after the ultrasound transducer
and it serves to amplify the received signal which amplitude is just some µV, due to the high
attenuation encountered during the propagation. To have an idea of the order of magnitude
of the overall acoustical attenuation it should be noted that the attenuation experienced
by a sinusoidal wave with frequency of 3 MHz, reflected by a structure at 15 cm of depth
can vary from 60 up to 80 dB. A low noise figure and high dynamical range is therefore
mandatory in this stage.

Time gain compensation amplifier. During the propagation through the tissues, the ul-
trasound field is affected by depth dependent attenuation. Therefore, structures that have
the same reflectivity but are located at different depth will have a different intensity. In
order to have a uniform representation of tissue reflectivity a time dependent amplification,
usually called time gain compensation (TGC), is required. To adapt this amplification to
the different operating conditions, the manufacturers provide on the system control inter-
face different variable controls to adjust amplifier gain at the different depth or modify the
parameters of the gain curve.

Time gain compensation is also necessary to reduce the signal dynamic before the
analog to digital conversion. Due to large tissue attenuation, ultrasonic echo RF signal is
characterized by a very large desired dynamic range (qualitatively about 160 dB), which
can hardly be obtained by an ADC at the conventional sampling rate that in commercial
equipment ranges from 33 MHz to 50 MHz [10]. For these reasons, preliminary fixed time
gain compensation is usually applied to the RF signal before its conversion, in order to
partially compensate the tissue attenuation and reduce the required dynamic range to about
100 dB. Then, usually up to 1024 levels (12 bits) are employed for signal quantization.
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A/D converter. This stage converts the radio frequency signal from analog to digital.
The sampling can be done before or after the beamforming stage according to the type of
beamforming system (analog or digital). In system equipped with analog beamforming, the
A/D conversion is done after the beamforming block in the receive stage and it’s missing
in the transmit stage. In system equipped with digital beamforming, the conversion is done
after the TGC block in the receive stage and before the beamforming stage in the transmit
stage. The resolution and sampling frequency of the converter depend on the characteristics
of the imaging system and on its position in the imaging system scheme.

Focusing and beamforming stage. In all the system equipped with multi-element probes,
as in the transmit chain, there is a beamforming block that provide for focusing and image
scan in reception. Transmit and receive beamforming blocks are usually synchronized by the
beamforming control system. Like in transmission, one fixed focus or multiple focus located
at different depth can be used in the receive stage. Of course, multiple focus in transmission
and in reception provide a better focusing and therefore image of higher quality. However,
the higher is the number of focus, the more complex and slower will be the beafmorming.
Together with the probe, beamforming stage is the most critical part of imaging system and
it strongly determines system resolution. For further details about beamforming and system
resolution see [29].

Demodulation stage. After the amplification, the received signal is ready to be analyzed
for extracting the desired information and processed to be displayed. The information
necessary to generate the B mode image is contained in the signal envelope. The envelope
amplitude is in fact related to the tissue reflectivity. Therefore, in most of the equipment,
the focusing stage is followed by a envelope detection stage and only the B mode image
is available to the user. Recently, some manufactures gave access to the radio frequency
signal before the envelope detection in their equipment. As claimed by many authors, this
approach is fundamental for tissue characterization purposes [26][25], since many information
concerning the tissues microstructure is contained in the radio frequency signal.

Preprocessing stage. With pre-processing are meant all the processing performed on the
B mode image before its display on the screen, with the purpose of increasing the image
intelligibility. Such processing are usually guided by the user through different controls that
are available on the system interface. An example of pre-processing is gamma correction,
which consist in re-mapping through a nonlinear function the signal dynamic on the gray-
level scale.

1.2.3 Probes

The main distinction in ultrasound probes is between mono-element and multi-element
transducers. Historically developed as first type of probe, mono-element tranducers are
now more diffused in industrial applaications for nondestructiove material inspection, since
their require sympler control hardware and can easly handle high operating powers. The
main drawback of monoelemnt tranducer is the need of mechanical focusing.

Thanks to electronig focusing, multi-element probes are preferred in medical imaging
applications. Driven by many clinical needs, transducers for medical imaging appear in a
wide variety of forms and sizes accoriding to diagnostic filed, as shown in fig. 1.6. Multi-
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Figure 1.6: Examples of medical ultrasound probes. From left to right: convex cardiac
probe, rectal probe, high frequency linear array, transvaginal probe and convex array probe.
(Picture taken from http://www.newtech-medical.com)

Figure 1.7: Configuration of multi-element probes and possible region scanned by the
acoustic beam: sequential linear array (a), curvilinear array(b), linear phased array (c),
1.5D array (d) and 2D array (e).
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element probes can be further classified accoring to their geometry: linear sequential,
curvilinear, 1D, 1.5D or 2D, as schematized in fig 1.7.

Linear Sequential Arrays can have up to 512 elements in current commercial equipment.
A subset of the available elements is selected to image lines that are directed perpendic-
ular to the face of the transducer, as shown in fig. 1.7(a); the acoustic beam is therefore
focused but not steered. The advantage of this scheme is that the array elements have high
sensitivity when the beam is directed straight ahead. The disadvantage is that the field of
view is limited to the rectangular region directly in front of the transducer. Linear-array
transducers must have a large footprint to obtain an adequate field of view.

Curvilinear or convex arrays have a different shape than sequential linear arrays, but
they operate in the same manner. In both cases, the scan lines are directed perpendicular
to the transducer face, but because of its convex shape, scans a wider field of view, as shown
in fig. 1.7(b).

The more advanced linear phased arrays have 128 elements. All the elements are used
to transmit and receive each line of data. As shown in fig. 1.7(c), by driving all the element
with a phased pulses pattern, the scanner steers the ultrasound beam through a sector-
shaped region in the azimuth plane. With this technique it is possible to scan a region that
is significantly wider than the footprint of the transducer, making them suitable for scanning
through restricted acoustic windows. As a result, these transducers are ideal for cardiac
imaging, where the transducer must scan through a small window to avoid the obstructions
of the ribs (bone) and lungs (air). However the image obtained as a depth dependent axial
resolution.

The so-called 1.5D array is similar to a 2D array in construction but operates as a 1D
array. The 1.5D array contains elements along both the azimuth and elevation dimensions.
Features such dynamic focusing and phase correction can be implemented in both dimen-
sions to improve image quality. Since a 1.5D array contains a limited number of elements
in elevation (e.g., 3 to 9 elements), steering is not possible in that direction. Fig. 1.7(d)
illustrates a B-scan made with a 1.5D phased array. Linear sequential scanning is also
possible with 1.5D arrays.

A 2D phased-array has a large number of elements in both the azimuth and elevation
dimensions. Therefore, 2D arrays can focus and steer the acoustic beam in both dimensions.
Using parallel receive processing, a 2D array can scan a pyramidal region in real time to
produce a volumetric image, as shown in fig. 1.7(e).

In medical imagign conventional linear, curved and phased array have typical azimuth
apertures that vary in length from 25 to 60 mm and elevation apertures that are 2-16
mm. The number of elements in 1D dimensional array varies from 32 to 400 and typical
frequency range form 1 MHZ (for harmonic imaging) to 15 MHz (for high resolution imaging

of superficial structures). Finally, the fractional bandwidth range from 30-100 % [29].

1.2.4 Imaging modes

A-Mode. Amplitude Mode is the first and the simplest ultrasound imaging mode. It consist

in a one dimensional track in which the amplitude of the returned echo along a single line

is displayed.

M-Mode. Motion Mode is the first imaging mode to display movements. It is realized

displaying different A- Mode scanline acquired in different moments and it allows the
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DEPTH SCANLINES

(cm) 25 50 100 200

5 616 308 154 77
10 308 154 77 38
15 205 103 51 26
20 154 77 38 19
25 123 61 30 15
30 103 51 25 12

Table 1.4: Maximum achievable frame per seconds for a give number of scanlines and
imaging depth.

monitoring of position, impedance and speed of the moving interfaces.

B-Mode. The brightness modulated mode is the 2D extension of the A-mode, where the

returned echoes are displayed in a 2D image which intensity is proportional to echoes

amplitude. Through B-mode imaging it is possible to obtain an anatomical cross section

of tissues. This section is obtained by scanning manually or electronically the area of

interest with several A-mode in different directions and displaying the different scanlines

in an image.

Real time B-Mode. With real time B mode it is meant a succession of B mode images that

display the tissue in different time instant. In order to have real time imaging of a tissue,

the scansion must be performed electronically. Although fast, due to the fine propagation

speed of the ultrasonic filed, the time required for scanning and area is not negligible and

it strongly dependent on several factors like the imaging equipment and the area to be

imaged. If we neglect the delay due to the electronic circuits, the maximum number of B

mode images per second that can be acquired is called frame rate, and is given by

FR = c

2DN (1.49)

where D and N are respectively the maximum scanning depth and the number of scanlines,

while c is the speed of sound in the tissue. This expression put in evidence the compromise

between the achievable frame rate and the area to be imaged. In table 1.4 the maximum

frame rate achievable as function of the scansion depth and scan lines number is shown.

1.3 Modeling and simulation of ultrasound imaging systems

(review of available models and software for ultrasound simulation: to be written)

1.4 Future trends in ultrasound medical imaging

Diagnostic ultrasound is used in almost all medical fields and has already become the

preferred imaging modality in a variety of clinical situations. For example, as reviewed

in chap.2, ultrasound imaging plays a keyrole in diagnostic procedure for prostate cancer

assessment, management and therapy. The reasons of its success in many clinical context

are basically three: ultrasound imaging systems are in general less invasive, faster and

chapter than the other imaging techniques. Ultrasound imaging is therefore particularly
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well suited to offer noninvasive and economic solution to mass screening, allowing earlier

detection of pathologies and effective treatment of presymptomatic disease.

Unfortunately, the quality of the images obtained with ultrasound imaging systems is

always poor if compared to the quality provided by other techniques. However, in the last

decades ultrasound image quality has improved significantly. This improvement is due to

several engineering and technological innovations and breakthroughs like the introduction

of a new generation of enhanced bandwidths transducers or scanheads, the introduction of

digital imaging systems, and the advent of contrast agents [17].

Within this framework, signal processing techniques play a important role for enhancing

image quality, for the development of new imaging technique and methods for computer

aided detection of pathologies. In this work, among the possible future applications we will

focus on:

• image quality enhancement through signal deconvolution (chapter 4);

• automatic image segmentation (chapter 5);

• computer aided diagnosis of pathologies (chapter 5).





Chapter 2

Ultrasound Aided

Diagnosis of Prostate Cancer

Prostate carcinoma is the most frequent diagnosed visceral cancer and the second most

common cause of cancer death. As a significant cause of morbidity and mortality, prostate

cancer is now a major health care problem. The development of computer aided procedure

for prostate cancer diagnosis is therefore an important and challenging field of research.

The development of tools that can assist radiologist to accurately identify suspicious regions

require a deep knowledge about anatomy, biology and medical procedures involved. In this

chapter, some fundamental information about prostate anatomy, pathologies and clinical

procedures for cancer diagnosis are reviewed.

Author contributes. An original overview of the current procedure and future trend for

prostate cancer diagnosis from an biomedical engineering point of view is given.

2.1 Prostate anatomy and pathologies

The prostate is a compound tubuloalveolar exocrine gland of the male mammalian repro-

ductive system and it differs considerably among species anatomically, chemically, and

physiologically [33]. The main function of the prostate is to store and secrete a clear,

slightly alkaline (pH 7.29) fluid that constitutes 10-30 % of the volume of the seminal fluid

that, along with spermatozoa, constitutes semen. The rest of the seminal fluid is produced

by the two seminal vesicles [33].

A healthy adult human prostate is a chestnut shaped gland enveloped in a fibrus capsule.

Its base is attached below the urinary bladder neck, and the apex is fixed to the urogenital

diaphragm urinary (see fig. 2.1). It borders on the posterior side with the rectum and on the

anterior side with the fibromuscolar stroma connected to the pubis through the puboprostatic

ligaments. On the superior posterior side it is attached to the seminal vesicles, a pair

of simple tubular glands that secrete a significant proportion of the fluid that ultimately

becomes semen [32]. The excretory ducts of seminal vesicles open into the vas deferens, as

they enter the prostate gland, and they are lined with the epithelium of the transition zone.

Within the prostate, the urethra coming from the bladder is called the prostatic urethra and

23
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Figure 2.1: Prostate location and anatomy. (picture taken from http://www.cancer.gov/)

Figure 2.2: Schematic illustration of prostate sagittal (left) and axial (right) sections.

merges with the two ejaculatory ducts. (The male urethra has two functions: to carry urine

from the bladder during urination and to carry semen during ejaculation.) The prostate is

finally sheathed in the muscles of the pelvic floor, which contract during the ejaculatory

process.

According to the classic work of McNeal [19] the prostate gland is divided in three

different zones: the transition zone, the central zone, and the the peripheral zone (see

fig. 2.2). The tradition zone surrounds the urethra and extends form the ejaculatory ducts

proximally. The peripheral zone encompass the peripheral zone form the base to the apex.

The central zone is composed of tissue immediately surrounding the ejaculatory ducts and

it expands inferiorly. The significance of this architecture is based upon the relationship of

these three zones to prostatic disease [2]. In the young male the peripheral zone comprises

75% of prostate volume, the transition zone 20% and the central zone 5%. But with the age
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this ratios change and after 40 years, since benign hyperplasia is almost inevitable, the

transition zone may enlarge ad occupy most of the gland.

Before describing the different prostate pathologies, their locations and incidences, we

will briefly discuss some medical terminology. With tumor and cancer are meant a class

of swellings or lesions formed by an abnormal growth of cells (termed neoplastic)[1][34][30].

Tumor is not synonymous with cancer since a tumor can be benin, pre-malignant or malig-

nant, whereas cancer is by definition malignant. Benign lesions do not grow in an unlimited,

aggressive manner, does not invade surrounding tissues, and does not metastasize. On the

contrary, cancer cells display uncontrolled growth (division beyond the normal limits), in-

vasion (intrusion on and destruction of adjacent tissues), and sometimes metastasis (spread

to other locations in the body via lymph or blood). According to the tissue involved, several

main types of cancer can be distinguished:

• carcinoma is cancer that begins in the skin or in tissues that line or cover internal

organs;

• adenocarcinoma is carcinoma that originates in glandular tissues, as the prostate;

• sarcoma is cancer that begins in bone, cartilage, fat, muscle, blood vessels, or other

connective or supportive tissue;

• leukemia is cancer that starts in blood-forming tissue such as the bone marrow, and

causes large numbers of abnormal blood cells to be produced and enter the blood;

• lymphoma and multiple myeloma are cancers that begin in the cells of the immune

system;

• central nervous system cancers are cancers that begin in the tissues of the brain and

spinal cord.

Prostate diseases can be distinguished in three main categories [33]: Prostatitis, bening

hyperplasia and Prostate cancer.

Prostatitis, is an inflammation of prostate gland. It’s a benign pathology and in the

acute case is mainly treated with antibiotics [31].

Bening hyperplasia (BPH) consists in prostate enlargement. Due to prostate volume

growth, the urination becomes difficult and the main symptoms of BPH include needing to

go to the toilet often and/or taking a while to get started. It is fairly common among aging

men and it occurs mainly in the transition zone. BPH can be treated with medication, a

minimally invasive procedure or, in extreme cases, surgery that removes the prostate.

Prostate cancer, often referred as prostate carcinoma (or adenocarcinoma), is a malignant

pathology, and as all the cancers is characterized by an abnormal and uncontrolled cells

mutation and replication. As BPH, prostate cancer might cause pain, difficulty in urinating,

problems during sexual intercourse, erectile dysfunction and other symptoms. If not detected

early and in more aggressive forms, the disease can advance to stages characterized by local

invasion of the surrounding tissues (seminal vesicles, bones, rectum), usually resulting in

lethality (see fig. 2.12).

The heterogeneous and multifocal nature of prostate cancer lesions poses significant

difficulties in their detection. Whit regard to heterogeneity, prostate cancer tissue typically

reveals a juxtaposition on benign cells, preneoplastic lesions and neoplastic lesions of vary-

ing severity [2]. With regard to multifocality, individual cancer lesions in a given section of



26 CHAPTER 2. ULTRASOUND AIDED DIAGNOSIS OF PROSTATE CANCER

Figure 2.3: Schematic representation of clinical procedures steps for detection and grading
of prostate cancer.

prostate cancer tissue have been described as genetically distinct. This observation sug-

gests that multiple cancer lesion may emerge and evolve independently, posing significant

difficulties in their detection. Concerning prostate cancer emerging locations, typically 70%
of prostate carcinoma arise in peripheral zone, 25% in the transition zone and 5% in the

central zone [16].

2.2 Prostate cancer diagnosis procedure

Prostate cancer is now the second most frequently diagnosed cancer in men, with about

782.600 news cases occurred during the 2007 [6]. Incidence rates of prostate cancer vary

significantly worldwide, with the highest recorded rate in United States. With about 254.000

deaths in 2007, prostate cancer is the sixth worldwide leading cause of cancer death in men

[6].

The only well established risks factors for prostate cancer are older age, ethnicity (black

highest, white average, asian lowest), diet, environment, and family history of disease [6].

Autopsy data from American males revealed that for 50-year-old male the lifetime risk of

developing prostate cancer is nearly 42%, although the lifetime risk of having clinically-

detected cancer is 17.2% [14]. These statistics highlight how this disease has an high

prevalence but a variable aggressiveness. In other words, most men die with, rather then

because of their prostate cancer. Therefore, early detection, as well as accurate knowledge

of the biological potential of each case is fundamental for cancer management.

A schematic representation of the different steps of current clinical screening protocols

for prostate cancer diagnosis is shown in fig. 2.3. All the protocols are based on standard

clinical tests like digital rectal examination, prostate specific antigen level measurement and

prostate imaging, whose results are used in decision for making and/or repeating biopsy.

Hystopatological analysis is in fact the standard and most reliable test for cancer diagnosis

and for cancer aggressiveness assessment.



2.2. PROSTATE CANCER DIAGNOSIS PROCEDURE 27

Figure 2.4: Digital rectal examination of prostate. (picture taken from http://cancerinfo.tri-
kobe.org/)

Figure 2.5: Transrectal ultrasound imaging of prostate. (picture taken from
http://cancerinfo.tri-kobe.org/)

2.2.1 Digital rectal examination

Digital rectal examination (DRE) is an internal examination of the rectum consisting in

palpation of the organs adjacent to the rectum wall (see fig. 2.4). This noninvasive and non-

expensive examination is commonly used in prostate cancer screening to check for growths

in or enlargement of the prostate gland and a tumour in the prostate, can often be felt as a

hard lump. Unfortunately, since only the back wall of the prostate gland is accessible to a

doctor, only abnormalities located in the middle or front part of the gland can be detect with

this exam. Moreover, only superficial and relatively large lesion can be detected. Therefore,

this test is always used in combination with the prostate specific antigen (PSA) test.
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2.2.2 Prostatic specific antigen

This test measures the amount of PSA in the blood, a glycoprotein produced almost ex-

clusively in the epithelium of the prostate gland. While usually abundant in the seminal

fluid, PSA is normally found in low concentration in blood serum. Two forms of PSA exist

in the serum: a protein-bound form and a free or unbound form. PSA produced by normal

tissues, is less likely to be bound to proteins whereas the PSA produced by cancer binds

to proteins in a higher percentage. Thus, when free PSA is > 30% the likelihood of cancer

is low, whereas when it is <25% the likelihood of cancer increases.

The normal value for total PSA level is controversial but it is generally quoted as <4

ng/mL and adjusted with different criteria according to the screening protocols. However,

almost 27% of biopsy-proven prostate cancers present with a normal PSA, and 70-80%
of patients with elevated PSA levels do non have prostate carcinoma [16]. This lack of

specificity is due to the fact that the amount of PSA increases also with aging, and in

presence of prostatitis and benign hyperplasia. PSA velocity, the PSA variation per year,

can be useful for differentiating prostate cancer forms: values > 0.75 ng/ml/year is not only

a suggestive cancer but also may be related to tumour aggressiveness.

Patients with abnormal DRE and elevated PSA values should be further evaluated for

presence of prostate cancer via imaging of the prostate.

2.2.3 Prostate imaging

Several types of imaging test can be used for prostate cancer diagnosis and management:

transrectal ultrasound (TRUS), computer axial tomography (CAT) and magnetic resonance

imaging (MRI) are among the most common. For a complete review about prostate imaging

techniques see [23, 16].

Transrectal ultrasound. TRUS allows the radiologist to closely examine the prostate gland

by inserting a transrectal ultrasound probe into the rectum and illuminating with the ul-

trasound beam the gland from the posterior side (see fig. 2.2 and 2.5). Currently, the

most widely used probe is a 7 MHz transducer with an endorectal probe, which allow the

radiologist to obtain imaging of prostate axial or sagittal sections (see fig. 2.6 and 2.7 ).

Scanning usually begins in the axial plane at the base of the prostate. Seminal vesicles

are visualized first, identified bilaterally as dark anechoic cystic structures. Then prostate

gland is imaged starting form the base down to the apex.

The different anatomical zones of the gland appear in different ways [5] [28]. The anatom-

ical distinction between peripheral and central zones is in fact generally not visible by

ultrasound, since in a normal man, these two zones are seen as an homogeneous isoechoic

area in the posterior section of the prostate. Their normal echo pattern is used as reference

for definig the other structures as hyperechoic or hypoechoic. According to this criteria, the

prostate capsule appears as an hyperechoic structure that can be identified all around the

gland. Several hypoecoic rounded structures can be identified around the prostate gland;

these are venous of the prostatic vascular system. The transition zone is the central part of

the gland and in a normal young man comprises only a small percentage of the whole gland

and thus is difficult to image. In older men with BPH, the transition zone expand com-

pressing its surrounding fibromuscular tissue becoming visible as moderately hypoechoic

compared to the central and peripheral zones and it is often filled with cystic spaces.
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Figure 2.6: Schematic representation of prostate axial section (right) and correspondent
anglular array TRUS image (pictures taken from [5] and [24] respectively). Bottom of the
picture corresponds to posterior side.

Figure 2.7: Schematic representation of prostate sagittal section (right) and correspondent
linear-array TRUS image (pictures taken from [5] and [24] respectively). Bottom of the
picture corresponds to posterior side.

TRUS is currently the most used imaging technique because it is relatively inexpensive,

non-invasive and, mainly, because allows real-time imaging and it is therefore suitable for

guiding biopsy protocols. Unfortunately, the diagnostic ability of grey scale TRUS is limited

by the intrinsically poor visibility of most of prostate cancers [22]. The parameters that

govern the sonographic appearance of prostate cancer are still uncertain and the described

appearance of common cancers range from hyperechoic to hypoechoic lesions. For examples,

it has been suggested that fibrosis often appears as an increased echogenicity lesion [24] and

edema and neo-vascularity explain hypoechoic tumors. While hyperechoic cancers are rare,

and hypoechoic cancers more common, especially at advanced stages, at early stages most

of the contemporary tumors appears either isoechoic or distinguished by a non-specific echo

irregularity [22]. TRUS is also rarely useful in detecting extra capsular extension (ECE),

i.e. spreading of the tumor outside prostate gland. However, TRUS enables an accurate

measurement of prostate size, which is an useful information in determining the PSA density

(PSA level/prostate volume). Therefore, TRUS is mainly used to guide prostate biopsys
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and not for cancer staging.

Finally, some authors reported that the employment of TRUS doppler improves the

accuracy of gray-scale imaging by around 8-10% and its use seems to be promising [22].

Computer axial tomography. It is an X-ray based imaging procedure which can be used

for obtaining cross-sectional images of prostate gland. Although this technique is widely

used in diagnosing many tumours, due to its lack of contrast resolution it is insufficient

to distinguish the prostate from its surrounding structures. Therefore its use is limited to

verify if known tumours are spreading to the surrounding organs.

Magnetic resonance. It uses radio waves and strong magnetic fields for creating very

clear cross-sectional images and views form different angles of prostate gland with better

soft tissue resolution than any other imaging modality [23]. However a comparison between

MRI and TRUS demonstrated that the MRI is more sensitive but less specific than TRUS

and in general it doesn’t effectively change the level of accuracy of the diagnosis process

[18, 20]. The advantage provided by MRI imaging is the possibility of monitoring with better

resolution and definition also the extension of the tumour to the surrounding organs with

the same scan.

2.2.4 TRUS guided biopsy protocols

Historically, the prostate was evaluated for cancer by simple digital rectal examination, and

biopsy to obtain a tissue diagnosis was performed blindly. The advent of ultrasound imaging

technology offered a new way to evaluate the prostate, and biopsy protocols were soon

developed to incorporate ultrasound guidance. However, uniquely among image-guided

biopsies, prostate biopsy is not lesion-directed but rather based on a systematic sampling

of those areas where cancer incidence is higher. As the disease is often multi-centric, the

different areas throughout the whole gland are sampled. In particular, since most of the

cancers arises in the peripheral zone, most of the protocols aim to maximize its sampling.

The motivation behind this, as discussed before, is the weak diagnostic significance of

imaging inspection techniques due to the high variability of prostate cancer patterns. In

other words, ultrasound imaging is used to guide and monitor the biopsy needles insertions

in the different areas of the prostate gland. Since metal, if compared to soft tissues, has an

high acoustic impedance, biopsy needles appears as hyperechoic lines in TRUS scans, as

shown in fig. 2.9.

The first landmark sampling technique was the sextant protocol reported in 1989 [11].

As originally described, six biopsies were obtained in a parasagittal line drawn halfway

between the lateral border and midlines bilaterally, from the base, midgland and apex, as

shown in fig. 2.8. Although the sextant biopsy protocol was a major advance, with a 20-25%
of positive biopsy rate, with a wider experience it was found also inaccurate, principally

because it under-samples the peripheral zone [22].

Modifications of the sextant protocol were introduced from the mid 1990s onwards. For

example, in the modified sextant biopsy protocol a better sampling of the peripheral zone

around the lateral margins is obtained moving laterally and angling anterolaterally the

biopsy trajectories. This improved in some cases the detection rate from 80 to 89 % [22].

However, with time even the modified sextant protocol was found to miss some tumours

and many alternatives where explored. Therefore, several extended protocols using more



2.2. PROSTATE CANCER DIAGNOSIS PROCEDURE 31

Figure 2.8: Diagrammatic representation of sextant biopsy protocol sampling patterns
(left) and biopsy needle trajectories in the axial sections of prostate gland (right)

Figure 2.9: Example of biopsy needles appearance (pointed by white arrows) in a sagittal
section TRUS image during prostate biopsy.
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cores (8 or 10) directed to the peripheral zone were introduced. Although the available

results show that the extended protocols can improve diagnosis accuracy it is still a matter

of debate whether extended protocols are substantially better than the modified sextant

protocol.

Repeated biopsies. In some cases, there can be clinical suspicious of undisclosed cancer

after a negative biopsy. Examples include patients with high PSA level or with rising PSA

level. Among these patients, repeated biopsy may detect cancer in 19-41% of the cases [22].

Logically with repeated negative biopsy, the likelihood of missing cancer diminishes with

each sampling. However, biopsy is a quite invasive procedure and many complications like

bleeding, pain/discomfort, infections and urinary retentions can be encountered, especially

in case of repeated or systematic sampling protocols involving many cores.

2.2.5 Cancer staging and risk assessment

The dominant and most reliable method for prostate carcinoma diagnosis and aggressive-

ness assessment, in research as well as in clinical procedure, is the Gleason grading [13].

This method is based entirely on histological pattern of arrangement of carcinomas cells

in contrast agents stained prostatic tissue sections. Specifically the method is a catego-

rization of glandular differentiation and pattern of growth of the tumour, at relatively low

magnification (x10 - x40) in five basic grades patterns [13] (see fig. 2.11). Due to the hetero-

geneous nature of prostate cancer lesions, histopathological inspection of prostate tissues

often reveal an ensemble of benin lesions, prenoplastic lesions and neoplastic lesions with

different aggressiveness. To take into account this heterogeneity, the five basic grade pat-

terns are used to generate an histological score, which can range from 2 to 10, by adding

the primary grade pattern and the secondary grade pattern. The primary pattern is the the

one that is predominant in area, by simple visual inspection. The secondary is the second

most common pattern. For complete review of the method see [13].

The Gleason grading score is therefore and indicator of cancer stage: the higher is the

grade, the more advanced is the cancer. Typically, cancers with Gleason scores lower than

6 are considered well differentiated and associated with a good prognosis. Those with a

Gleason score of 8-10 have the worst prognosis and the highest risk of recurrence.

Gleason score is often combined with PSA level and clinical stage for risk assessment.

The primary goal of staging is to distinguish patients with organ-confined, locally invasive,

or metastatic diseases. For a complete review of prostate cancer staging and risk assessment

see [16].

In fig. 2.12 different prostate cancer clinical stage stages are shown. At its initial stages

(stage I), when confined into the prostatic capsule, prostate carcinoma is essentially curable

by surgical intervention and/or radiation therapy. It cannot be felt during a digital rectal

exam and usually is not visible by imaging. It is topically found accidentally during surgery

for other reasons, such as benign prostatic hyperplasia. The Gleason score is low. Stage I

prostate cancer may also be called stage A1 prostate cancer.

In stage II, cancer is more advanced than in stage I, but has not spread outside the

prostate. The Gleason score can range from 2-10. Stage II prostate cancer may also be

called stage A2, stage B1, or stage B2 prostate cancer.

In stage III, cancer has spread beyond the outer layer of the prostate to nearby tissues.

Cancer may be found in the seminal vesicles. The Gleason score can range from 2-10.
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Figure 2.10: Examples of histologies, obtained with needle biopsy, of humane prostate
tissue affected by atypical benin hyperplasia (left) and atrophic adenocarcinoma (right)
respectively.

Figure 2.11: Gleason grades. (original Gleason’s draw)
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Figure 2.12: Prostate cancer stages. (picture taken from http://www.cancer.gov/)

Stage III prostate cancer may also be called stage C prostate cancer.

In stage IV, cancer has metastasized to lymph nodes near or far from the prostate or

to other parts of the body, such as the bladder, rectum, bones, liver, or lungs. Metastatic

prostate cancer often spreads to the bones. The Gleason score can range from 2-10. Stage

IV prostate cancer may also be called stage D1 or stage D2 prostate cancer.

2.3 Future trends in US aided prostate cancer diagnosis

The early detection of prostate cancer is crucial for the success of treatments. Unfortunately,

early prostate cancer usually has no symptoms. Moreover, as shown in this chapter, prostate

cancer screening, diagnosis and staging is among the most controversial issues in modern

public health, and the procedures involved have been a topic of continual debate since

the early 1990s [20]. Besides, diagnostic conclusions can vary largely between individual

urologists. This inter-observer variability may result in totally different decisions from the

same set of diagnostic information [35]. Due to the lack of accuracy of imaging tests, the

diagnosis procedure often unavoidably end with a histological confirmation by means of a

biopsy.

Unfortunately, very often many biopsy are needed in order to obtain reliable results

and in some cases, even when al the diagnostic tests have been carried out about 10% of

incipient cancers go undetected because none of the biopsy needles insertion reached the

lesion position [18].

One possible way of improving the accuracy of prostate cancer diagnosis procedure is

to use computer-aided analysis (CAD) of the ultrasound image. The ultimate goal of these

methods is to provide additional tools to the radiologists for improving the early detec-
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tion rate of prostate cancer, reducing the inter-observer variability of diagnosis accuracy

and avoiding unnecessary biopsies, guiding the biopsy needles into the suspicious regions.

Among these methods 2D and 3D image segmentation, volume estimation, cancer detec-

tion and staging are the main task invoked in developing tools for aiding prostate cancer

diagnosis,

Many works concerning CAD of prostate cancer have been published in literature. Al-

though encouraging, the results published so far are often not proven to be clinically sig-

nificant, or sometimes they cannot be considered representative, due to the limited number

of patients used. Moreover, the performance published are not always comparable due

to the different equipments employed, different way of selecting the region of interests to

be classified (manual, automated), different type (regular, irregular) and size of the region

of interests. For a complete review of the different methods published in literature see

[27][35][18][20].

Although computerized analysis of ultrasound images is not likely to replace radiologists,

it is expected that further development and improvement of this technology will continue to

be an important area of research, and ongoing development of such algorithms will improve

the diagnosis and treatment of prostate diseases in the near future.





Chapter 3

Neural signals analysis and modeling

The task of understanding the principles of information processing in the brain poses, apart

from numerous experimental questions, challenging theoretical problems on all levels of

modelling, from molecules to behaviour. The mammalian cortex is a complex system, char-

acterized by its dynamics and architecture, which underlie many functions such as action,

perception, learning, language, and cognition. Its structural architecture has been stud-

ied for more than a hundred years; however, its dynamics have been addressed much less

thoroughly. The mammalian cortex appears to adhere to two fundamental principles of

functional organization, functional integration and functional specialization, where the in-

tegration within and among specialized areas is mediated by connections among them.

Computational models at different space-time scales can help to understand the fun-

damental mechanisms that undergo neural processes and relate these processes to neuro-

science data. Modelling at the single neuron level is necessary because this is the level at

which information is exchanged between the computing elements of the brain. Mesoscopic

models tell us how neural elements interact to yield emergent behaviour at the level of

microcolumns and cortical columns. Macroscopic models can inform us about whole brain

dynamics and interactions between large-scale neural systems such as cortical regions, the

thalamus, and brain stem.

Each level of description is strongly related to neuroscience data, from single-unit

recordings, through local field potentials to functional magnetic resonance imaging (fMRI),

electroencephalogram (EEG), and magnetoencephalogram (MEG). Models of the cortex can

establish which types of large-scale neuronal networks can perform computations and char-

acterize their emergent properties.

In this chapter, a brief overview of mammalian neocortex architecture and information

processing mechanisms is presented. A more detailed literature overview of the posterior

parietal cortex, a portion of the parietal lobe which manipulates mental images, integrates

sensory and motor portions of the brain and which is involved in formation of plans, is then

given. Such area of the brain is particularly important for the development of brain com-

puter interfaces (BCI) for the control of artificial motor prosthesis. Behavioural experiments

performed by trained monkeys and the data analysis procedure applied on neural activity

recorded through the experiment are described in detail.

37
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Figure 3.1: Lateral view of the left hemisphere of the human brain: the four lobes with
the cerebellum and brainstem.

3.1 Brain structure and neurophysiology

Primate neocortex can be roughly divided in six, anatomically and functionally distinct,

regions: frontal, temporal, occiptial, parietal, cingulate and insular cortex as shown in

fig.3.1. Frontal, temporal, occipital and parietal lobes are located on the lateral surface of

the neocortex, while cingulate cortex occupies the medial surface surrounding the corpus

callosum, the set of fibers that connects right and left cerebral hemispheres. Finally, the

insular cortex occupies the region that separates the temporal, from the parietal and frontal

cortex, and is ejectively hidden by the overgrowth of these three lobes.

An important feature of the primate cortex is its specific shape, composed of alternating

elevated convex and depressed concave regions, called gyri and sulci, respectively. Three

particularly pronounced sulci are used to define the borders between the cortex regions

the lateral sulcus (the sylvian fissure) separates the temporal from the parietal and frontal

regions, the central sulcus separates the frontal from the parietal lobe, and the parieto-

occipital sulcus separates the parietal from the occipital lobe [15].

The thickness of the cortex is 2-4mm for most of the species, and it can be divided into

six layers according to the typical cell types present. In general, the same structure is

observed in most of the cortex regions, but the variations in thickness of certain layers, and

in intensity of fibres enables their identification. Thus, according to the widely accepted

anatomy-based definition proposed by K. Brodmann in 1909, the cortex areas can be further

divided in 47 sub-areas according to their neural cells organization. For further details see

[15].

Alternative cortex study is based on identification of functional regions, for example, ac-

cording to their role in sensory information processing and generation of motor commands.

Information processing in brain is highly hierarchical: the information received through

periphery sensory cells is transmitted to the primary sensory regions, then further to the

unimodal association areas that integrate information related to one single type of sensa-

tions, e.g. vision, auditory sensations etc. In the multimodal associative areas, sensations

of different modalities are then integrated, in order to extract more complex information and

generate output signals. These signals are further conveyed to the primary motor associ-

ation areas responsible for initial planning of motor commands. Finally the premotor and

primary motor cortex directly control movements, following the received inputs.
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Figure 3.2: Posterior parietal cortex areas in human (a) and mokey (b) brain.

Posterior parietal cortex

The parietal cortex (PC), shown in fig.3.1, is anatomically defined by the positions of the

three pronounced sulci: the lateral sulcus, the central sulcus and the parieto-occipital

sulcus. Brodmann areas 1,2, and 3, placed on the postcentral gyrus, are the most anterior

part of the parietal cortex, and represent the primary somatosensory region. The posterior

parietal cortex (PPC) in humans extends to the supramarginal and angular gyrus, the regions

classified as Brodmann area 40 and 39, respectively. The latter occupies the junction of the

parietal, temporal and occipital lobes. These two areas are involved in language processing,

spatial orientation and semantic representation. They are described only in the context of

studies in humans, since no evidence of the equivalent regions is found in monkeys [21].

The regions of interest for this work are the Brodmann areas 5 and 7, the surface inside

the intraparietal sulcus (IPS), and the related regions on the medial wall of the hemisphere.

In humans, both regions 5 and 7 belong to the superior parietal lobe (SPL), while the inferior

parietal lobe (IPL) refers to the Brodmann areas 39 and 40. The anatomical organization

of the monkey cortex is somewhat different and SPL contains the area 5, while the area

7 belongs to the IPL. Since most of the presented conclusions come from the studies on

monkeys, the terms PPC, SPL and IPL will be mostly used in the context of the monkey

cortex. Their anatomy and functional roles will be described in more details in the following

sections.

Different informations about the PPC functions have been collected through clinical

examination of patients with parietal lesions. Equivalent studies are carried on monkeys

after chirurgical removal of certain regions in PPC, in order to monitor the consequences

[7][21]. Typically, the patients had no significant visual, somatosensory or motor disorders,

but they demonstrated deficits in reaching and grasping objects and in visually guiding

reaching and grasping. In fig. 3.2, an overview of the PCC regions and their positions on

the neocortex in human and monkey brain is given.

An brief overview of the main properties of the main regions of monkey PCC in now given.

For a complete review see [21]. Most of these properties were obtained by recording activity

in the brain of monkeys, trained to follow visual or auditory commands. In a typical setup a

monkey is placed in front of a screen and instruction for controlling the experiment are given.

Several electrodes are inserted into the area of interest tissue to record the extracellualr

potential of singular cells. Finally spike trains are extracted form these signals and used

to analyze cells behaviour dynamic during the experiments and deduce it functionality.



40 CHAPTER 3. NEURAL SIGNALS ANALYSIS AND MODELING

Medial intraparietal region (MPI) . It is usually related to planning of reaching move-

ments and it is considered the part of the area 5, and therefore, the part of the superior

parietal lobe. This region is believed to take part in spatial representation for control of

arm movements and providing signals for visually guided reaching for the motor-related

regions.

Lateral intraparietal region (LIP). It is a part of the inferior parietal lobe (IPL) in the

monkey cortex and it receives inputs from the extrastriate cortex and it is connected to

other visually related PCC regions. This region is often related to planning eyes movements

toward both, the visual and auditory stimuli.

Ventral intraparietal region (VIP). It receives several visually and motion related areas,

together with inputs from somatosensory regions, and projects to the area F4 of the pre-

motor cortex, responsible for head and mouth movements. This region integrates visual and

somatosensory information and initiates corresponding motor activities.

Anterior intraparietal region (AIP). It is believed to contribute to the hand shaping and

grasping of 3D objects. The populations of visually and motor responsive cells were found

in this regions indicating that it contributes to control of visually guided movements.

Broadmann area 5. As a part of the superior parietal lobe (SPL), is a motor-related region,

playing role in the planning and coordination of hand reaching movements. It represents

the source of most of the inputs to the motor and premotor regions of the frontal lobe,

supplying the information necessary for initiation of the reaching movements. Some studies

highlighted the presence in this area of spatial representation of hand and target positions,

and of the appearance of intention and attention before a movement.

Brodmann area 7. It is a part of the inferior parietal lobe (IPL) in the monkey cortex, and

is usually anatomically divided into the regions 7a and 7b. The first of them is of particular

interest for the presented work, and some of its properties are examined in the following

sections. The area 7a receives multiple visual inputs, mainly from the areas V2, PO, the

superior temporal sulcus and the dorsal prelunate gyrus.

Brodmann area 7m. As part of the medial parietal cortex is considered to be the early

stage in the control of a visually guided reaching. It receives inputs from the visual areas

of the occipitoparietal cortex, and projects to the dorsal premotor cortex and it is believed

to contribute in planning of motor commands for hand movements or visual monitoring of

hand trajectories.

The studies on patients with parietal lesions indicate that PPC act as an interface be-

tween sensory processing and motor and premotor regions. The PPC receives sensory inputs

of different modalities like visual and auditory signals, somatosensory inputs and informa-

tion about the positions of limbs, hands and eyes, and plays a crucial role in integrating

such information in the early stages in planning motor activities, generating commands for

movements of hands, limbs and eyes on a more abstract level. In particular, in [8] and

[9] a study on the mechanisms that coordinate eyes and hand movements in parietal area

7a (inferior parietal lobule of the posterior parietal cortex) of trained monkeys performing

several eye-hand directional motor tasks, is presented.
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3.2 Experimental data and data analysis procedures

In [3], the signal recorded in n [8] and [9] were studied through data analysis and machine

learning techniques for the identification of motor intention, the early motor plan, in the

PPC and on the directional tuning of cells activity . In the neurophysiological literature,

the (motor) intention is defined as an early plan for movement that specify the goal and

the type of the movement but does not, necessarily, contain the explicit commands for the

motor neurons, necessary for executing that movement [4]. Therefore, motor intention is an

important high level and abstract representation of a movement that can be used as input for

computer or for controlling mechanical devices in brain computer interfaces. Such studies

aim to provide sophisticated prosthesis for patients with movement disorders, and help them

to improve the quality of their life.

The set of behavioural tasks performed by monkeys were designed in order to assess the

questions of interest. Two rhesus monkeys were seated in front of a touch-sensitive screen,

and trained to follow the instruction signals, presented on the screen. Simultaneously,

the neural activity in the 7a area of the parietal lobe was monitored through a 7-channel

multielectrode recording system. This allowed the recording of up to 14 cells simultaneously

in each recording. All the details on animals, experiments and the recording system are

presented in [8] and [9].

Behavioural tasks description. At the beginning of all the trial, a red light is turned on

the center of the screen. The animal is required to gaze and touch this target for a variable

period, indicated as CHT (Control Holding Time). At the end of the CHT, the red light is

turned off, and the monkey is required to follow a given, task specific, instruction. Such

instruction is contained in a visual target signal that appears in one of eight peripheral

positions fig. 3.3. According on the task, the animal is supposed to either reach for the

target, or wait for the go signal first, and than reach for it. Typically, each task is executed

for variable target positions, and several repetitions. One complete block of data consists

of four trial replications, for each of the 8 target positions, in each of the six behavioural

tasks, plus three repetitions for sixteen target positions in the last task given on fig. 3.3.

In the reach task (RT), as soon as the target appears, the monkey reacts first moving

the eyes toward the target, then the hand follows in coordination with the eyes. The reach

fixation task (RFT) requires a fixed position of the eyes at the center of the screen, from

the beginning till the end of the trial. After its presentation, the monkey locates the target

position by the peripheral vision, and moves the hand only toward it. Coordination between

the eyes movement and the hand movement is not required by this task.

Three memory tasks (MT) start with the presentation of an instruction signal in one of

the 8 positions. After 300 milliseconds, this signal goes off, and the monkey must remain

firm for a variable memory-delay time, until the go-signal appears on the screen. After the

go-signal, the monkey is required to move both the eyes and the hand (memory reach, MR)

toward the memorized target location; or just the hand (memory reach-fixation, MRFT),

while keeping the eyes fixed on the center); or just eyes (memory eye, ME), with the hand

firm on the center of the workspace.

Finally, in the no-go task (NGT), the monkey keeps the eyes and the hand immobile

during the entire trial. This task was used for monitoring the neural activity in a behavioural

condition where the instruction signal, presented as in the other memory tasks, did not call

for any future eye and/or hand movement, but rather for not to move the eye and/or the
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Figure 3.3: Schematic representation of the experiments. (Picture kindly provided by J.
Acimovic)

hand. The epochs corresponding to each of the tasks are presented in fig. 3.3.

Neural activity and data analysis. Two data bases of spike rates were available as the

outcome of the described experiments. The schematic representation of one of them is given

in fig. 3.4. The presented example consists of forty five ’files’, while the second data base

has fifty seven files. The ’file’ stands for spike trains from individual cells, each recorded

from a fixed array of electrodes (up to 7), including signals for the six tasks, eight target

positions, and four trials for each combination (Task, Target). Also, each ’file’ includes the

recordings for the seventh task, from sixteen target positions and three repetitions. Each

data set within a ’file’ contains of at most fourteen recorded spike trains, since from each

electrode recording, neural activity from up to two different cells was collected, together
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Figure 3.4: Schematic representation of the data base. The example corresponds to the
recording of one monkey collected for 45 electrode positions. (Picture kindly provided by
J. Acimovic)

with corresponding epoch marks, i.e. markers denoting the beginning and the end of each

behavioural epoch within a trial. The markers were determined by continuous recording of

eyes and hand position in each trial.

The two described data bases are analyzed separately and within one data base all files

are considered separately since different files correspond to different electrode positions and

therefore, it was not possible to combine them in the common decoding task. Moreover all

the recording set not resulted in a complete data set of data for the specific task were

discarded.

Finally, since different files correspond to different recording regions, a separate clas-

sifier was constructed for each file. The problem of interest is to distinguish between spike

train recordings which encode the intention for making a movement, from those correspond-

ing to absence of movement planning. With the term ’movement’ we mean any movement

involving the eyes or the hand. The underlying hypothesis is that the presence of intention

for moving is encoded in the modulation of the firing rate of the recorded neurons. This is

a plausible assumption for the particular recorded set of neurons, the brain region named

posterior parietal cortex, which is believed to participate in eye-hand coordination in pri-

mates [8][9]. Therefore, it is realistic to expect that neurons in this region become more

active, as a way to increase their information transfer, during the epochs generally believed

as corresponding to ’planning and making a movement’, which we call ’motor intention’ in

this work.

To investigate the hypothesis that motor intention is encoded in the neural activity and

to support the possibility of extracting it through the analysis of the neural activity at fire

rate level, two different machine learning based algorithms were developed. In the first

method only the epochs directly involved in the eye-hand coordination task are considered.

Knowing the key processes related to each of the epochs, we can straightforwardly assign

presence or absence of ’motor intention’ to some of them. Since the behaviour of the monkeys

is not so well determined, especially in certain experimental phases, some ambiguity about

the classifier output is always present. The goal of this method was to test the aptitude of
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Figure 3.5: Schematic representation of the classification procedure. (Picture kindly
provided by J. Acimovic)

a sophisticated algorithm to read the presence/absence of ’motor intention’ from the cortex

area under study, allowing us to test the limitations imposed by the experiments design,

and analyzing the expected results when those limitations are removed. An overall scheme

of the whole procedure is shown in fig. 3.5.

The second approach doesn’t take into account the notion of experiment epochs, and

focuses ’motor intention’ detection in time. Continuous recordings, from the beginning to

the end of a trial, were considered rather than just a set of selected epochs. The number of

data examples, as well as the temporal resolution, is defined by introducing a time window.

The window is moving along the spike train in discrete time steps, with the predefined

time shift. For each distinct window position, spike rates are calculated in the standard

way, as the number of spikes within the window divided by the window size. A set of

recordings obtained simultaneously provides one vector of spike rates. Several choices

for the window length were tested, from 100 ms to 1sec. These values correspond to the

dynamics of the experimental epochs, the smallest among them are several hundreds of

milliseconds long, the longest ones last for a couple of seconds. The window shift is fixed

to the half of its length, for every choice of the window. The definition of experiment epochs

is therefore considered only in the training phase and discarded in the classification phase.

This procedure represents a more complex problem, since different and sometimes unknown

information that are encoded in the neural activity get mixed even more than in the first

method. However, it allows estimating the probability of detecting the presence/absence

of motor intention in a set of simultaneously recorded spike trains not a priori segmented

into epochs, giving additional information regarding the considered processes. An overall
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scheme of the whole procedure is shown in fig. 3.5.

Results and critical parameters The results obtained with both the first and the second

procedure and presented in [3]. The first procedure show very good performance, confirming

the hypothesis of motor intention encoding in the neural activity. The classification error

never exceeds 30% of wrongly classified data instances. The average performance, calculated

over the complete set of available files for one data base, reveals the desired behaviour: the

average error amounts to 4.33% and 6.58% error for the two considered data bases. However,

the obtained result shows a big variance with respect to the different files, highlighting the

effect of choosing different cells.

The precision obtained with the second procedure strongly depends on the window size.

A very small window enables the analysis of small recording segments and better precision,

but, at the same time, it deteriorates the classification procedure. Therefore, the chosen

window size should be as small as possible, but sufficiently big to ensure enough variability

in obtained spike rate values. The classification error obtained with this procedure does

not exceed 40%, while the average error stays below 30%.

Such limitation, gave the motivations for developing an abstract model which behaviour

resembles that of the biological system and can be used to test some relevant parameters

of the machine learning procedure presented in [3]. The model is presented in detail in

chapter 6.
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Chapter 4

Ultrasound signal deconvolution

Ultrasounds scanners are a cost effective, mobile, noninvasive, harmless, and suitably ac-

curate imaging equipments and are widely used in medical imaging applications. The main

drawback of ultrasound imaging is that signal resolution is low if compared to the other

imaging technique. Ultrasound images often suffer of characteristic artefact’s like atten-

uation, speckle, shadows and signal dropouts, missing boundaries due to the orientation

dependence of acquisition, which make the diagnosis hard.

One of the main limitation in signal resolution is upper bound on signal frequency

imposed by tissues attenuation. As reviewed in chapter 1, the attenuation of soft tissues

increases linearly with the frequency, limiting in deep scanning the maximum frequency to

10 MHz. This relatively low frequency causes the presence of a non-negligible diffused

component in the echo field, which appear as a signal dependent noise often called speckle.

Another cause of signal quality degradation is the finite bandwidth of the piezo-electric

transducer of the system probe which, together with their small size imposed by medical

applications and limitations of beamforming system, causes a non-negligible dimension of

the transmitted acoustic beam and therefore an imperfect focusing. Ultrasound images are

thus affected by a spatial dependent blurring which causes distortion and smoothing of

tissues details, as well as a degradation of image contrast.

Many signal and image processing techniques like de-speckling [23] and deconvolu-

tion have been used with the purpose of enhancing ultrasound image quality. Although

theoretically denoising and deconvolution of signals are two aspects of the same problem,

i.e. signal restoration, and they should be treated jointly, in many works presented in

literature they are often tackled with different and independent procedures. Both of the

problems are in fact challenging tasks that require complex signal processing techniques to

be solved. Moreover, although speckle noise depredates image quality, it contains valuable

information about the tissue microstructure and many authors claim that such information

is fundamental for tissue characterization and therefore it should be preserved [34][29].

Author contributes. In this chapter, we will focus our attention on deconvolution techniques

for ultrasound signals and, after an original review of the approaches existing in literature,

a stochastic signal model and a statistical framework for ultrasound signal deconvolution is

presented.

53



54 CHAPTER 4. ULTRASOUND SIGNAL DECONVOLUTION

4.1 Literature overview

Image restoration techniques, such as deconvolution, can be employed to improve the res-

olution of ultrasound images reducing the spatial dependent blurring introduced by the

beamforming system, with the goal of improving their diagnostic significance. In decon-

volution techniques, the blurring affecting the image is modelled as linear and in general

three-dimensional function h(r̄), called point spread function (PSF), which filters the real

tissue response x(r̄)
y(r̄) = x(r̄) ∗ h(r̄) (4.1)

as reviewed with a different notation in chapter 1. Such model is valid until Born and weak

scattering approximation are valid.

Theoretically speaking, as the system PSF is a band-limited function and due to the

presence of noise, signal deconvolution is an ill-posed problem. To obtain a stable algorithm

delivering a unique solution, additional constraints must be imposed. Therefore, designing

a method which exhibits the most suitable compromise among computational complexity,

reliability and portability for biomedical real-time imaging applications is still an open

challenge. Good reviews of the existing approaches for image deconvolution are in [17] [6]

[11].

In literature, two main approaches are most common when dealing with image deconvo-

lution. The first incorporates the Point Spread Function (PSF) estimation procedure within

the deconvolution algorithm. This approach often leads to the development of computation-

ally heavy algorithms, usually far from satisfying the real-time signal processing constraints

distinctive of the US biomedical investigation environment. In the second approach, PSF

and true image estimation are two disjoint tasks. Within this approach, these procedures

can be implemented by relatively simple algorithms, possibly suitable for real-time imple-

mentation.

Since a recent review on the existing techniques for ultrasound image deconvolution is

missing, a brief comparison the main paper published so far will follow. Such comparison

will focus on:

• data type (simulated, phantom object, biological tissue, materials);

• transducer central frequency;

• sampling frequency;

• signal resolution;

• signal model (1D, 2D or 3D);

• PSF type (minimum or mixed phase);

• PSF estimation technique;

• deconvolution method.

The main works concerning deconvolution methods for ultrasound signals published so far

are summarized in table 4.1.

Unlike in the context of image processing, where procedure for joint estimation of system

PSF and deconvolution were applied with success, practically all the methods for ultra-

sound signal deconvolution are based on two disjoint procedures for PSF estimation and
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WORK DATA

Type Probe Sampling Resolution

Jirik 2008 [14] invivo tissues 2.5-3.5 MHz 3-4 Mhz* 14 bits
Michailovich 2007 [21] invivo tissues 3.5 MHz 25 Mhz 14 bits
Ng 2007 [27] simulated and 5-10 MHz 66.6 MHz -

invivo phantoms
Michailovich 2005 [22] inivio tissues 3.5 MHz 25 Mhz 14 bits
Neelamani 2005 [25] images - - -
Michailovich 2004 [20] simulated and invivo 3.5 MHz 25 Mhz 14 bits
Michailovich 2003 [19] simulated and invivo 3.5 MHz 25 Mhz 14 bits
Wan 2003 [36] invivo tissues 33-44 Mhz 200 MHz -
Adam 2002 [3] inivio tissues 3.5 MHz 25 Mhz 14 bits
Taxt 2001 [32] invivo phantom 8 MHz 20 MHz -
Karensen 1999 [15] invivo material 10 MHz - -
Taxt 1999 [33] invivo tissues 3 MHz 10 Mhz 8 bits
Arbeytrane 1995 [2] invivo phantoms 3.5 MHz 12 MHz -
Jensen 1994 [13] invivo tissues 3 MHz 20 MHz -

* sampling rate after quadrature demodulation.

(a)

WORK METHOD

Type PSF estimation Reflectivity estimation

Jirik 2008 [14] 2D MP - iterative bayesian Iterative bayesian
Michailovich 2007 [21] 2D MP, see [22] Paramteric inverse filter
Ng 2007 [27] 3D MP - known, time varing EM procedure
Michailovich 2005 [22] 2D MP - cepstrum denoising, phase unwrap MAP Gaussian and Laplacian
Neelamani 2005 [25] 2D MP - known Fourier-Wavlet reg. inversion
Michailovich 2004 [20] 2D MP - phase unwrap -
Michailovich 2003 [19] 1D mP - cepstrum wavelet denoising -
Wan 2003 [36] 1D mP - higher order cep. Fourier-Wavlet reg. inversion
Adam 2002 [3] 1D mP - wavelet reg cepstrum Approximated inversion
Taxt 2001 [32] 3D MP - complex cepstrum Wiener filter
Karensen 1999 [15] 1D MP - time varing MAP bernoulli gaussian
Taxt 1999 [33] 1D MP - noise robust Wiener filter
Arbeytrane 1995 [2] 1D MP - higher order cep. Wiener filter
Jensen 1994 [13] 1D mP - cepstrum Wiener filter

Legend:
mP = minimum phase - MP = mixed phase

(b)

Table 4.1: Comparison of the published methods for ultrasound signal deconvolution.

tissue reflectivity recovery. The only exception is constituted by the work presented in [14]

where the system PSF and tissue reflectivity are iteratively estimated through a Bayesian

procedure which uses a cepstrum based method as initial estimation of the system PSF.

The main reason behind the difficulties in applying blind deconvolution procedures on us

images is that while in classical deconvolution context like astronomy all algorithms are

applied in image domain, in ultrasound images deconvolution is performed on the radio

frequency signal obtained by the ultrasonic transducer (see chapter 1 for further details).

In this signal domain, many regularization priors that are usually exploited can’t be used.

Most of the published procedures are applied to relatively low frequency imaging system

(3-3.5 Mhz) where the benefits of deconvolution are more evident, although some works on

higher frequency (5-10 MHz) [15][32][27] and on high frequency systems (33-44 MHz)[36]

were presented.

Although the physical nature of ultrasound image formation suggests a three-dimensional

model for the observed signal, except [32] and [27], all the method reported in literature are

based on 1D or 2D signal models. Such simplification is due to the fact that all the commer-

cial ultrasound image equipments provides 2D images and real three-dimensional scanners
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have been introduced only recently. Moreover, since 1D deconvolution methods doesn’t re-

quire the memorization of the whole image, the processing can be ideally performed during

the signal acquisition.

Estimation of imaging system PSF with good accuracy has appeared to be a difficult

and challenging problem [21][14]. The most successful techniques are all based on homo-

morphic blind deconvolution methods [28]. In particular cepstrum-based techniques and

their generalization [13] [19] have been demonstrated to provide a good estimation of PSF

power spectrum. While power spectrum can be easily estimated with good precision, phase

estimation is not so straightforward, mainly due to the requirement of phase unwrapping,

which is an ill-posed problem [21]. Since the assumption of minimum-phase seems to be

not applicable in most of US imaging systems, either robust phase estimation procedure

or deconvolution methods that can estimate true tissue reflectivity relaying only on partial

information about system PSF are required [21][14].

Once the PSF is estimated, tissue reflectivity can be estimated applying to the observed

signal the regularized inverse operator of the PSF. Regularization is mandatory due to the

presence of noise in the observed signal and in general non-perfect knowledge of system

PSF. While many approach for PSF estimation have been proposed, less interest have been

dedicated to reflectivity estimation. The first and simplest method employed for reflectivity

estimation is the Wiener’s filter, which can be considered as a L2-norm regularization of

the solution. Wiener filter. together with L1-norm regularization, is a standard reference

deconvolution technique. Most of the published works employ these two procedures fore

signal de-blurring. However, recently new approaches based on Expectation Maximization

[27], Bayesian estimation [14] and parametric inverse filter [21] have been proposed. All of

these approaches try to overcome to the main limitations of Wiener and Laplacian filter, that

tends to produces oversmoothed and too sparsified solutions respectively, due to unrealistic

signal models.

All the techniques proposed in literature can be set in a statistical framework which

allows highlighting their main features and limitations. Thus, in the following section a

statistical model of the US radio frequency signal will be introduced. Such model will be

then used as starting point for the development of a novel reflectivity estimation procedure

that will be explained in this chapter.

4.2 Proposed approach

As reviewed in chapter 1 and in [26], if the propagation is linear, each A-lines of an ultra-

sound imaging system can be mathematically modelled as the convolution between tissue

reflectivity and system point spread function. Without loss of generality, we can adopt

a discrete space-time an consequently introduce a vector matrix notation and writing the

observed signal as:

y = Hx + n (4.2)

where x is the original data vector, H the known blurring operator matrix and n the mea-

surement noise. If h is the impulse response of the imaging acquisition system then H

is the block circular convolutional matrix built with h. The measurement noise n is here

considered white gaussian.

Since in general h is a band-limited function and due to presence of observation noise

n, deconvolution, i.e. the estimation of x from the observation of y, is an ill-posed problem

and its solution is not unique. A stable and unique inverse solution can be obtained by
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imposing additional regularization constraints on the inverse solution. The basic ideas of

regularization consist of considering a family of approximate solution depending on one or

more positive parameters, called regularization parameters, which results in the minimization

of a suitable functional φ

x̂ = min
x
φ(x, y, λ̄) (4.3)

where λ̄ is the regularization parameters vector.

The main property of this approach is that, in the case of noise-free observation, the fam-

ily of solutions converge to the exact solution, even for a non-zero value of the regularization

parameters.

4.2.1 Estimation of system PSF

Different techniques are available to perform the PSF estimation: a common method for

measuring h is the insonification of a metal wire sank in a water filled tank. However,

since in general the system PSF is a shift-variant function, this technique gives only a

good estimation of the PSF in the focal zone. Moreover, due to aberration and phase

distortion caused by the propagation inside the tissue, the real PSF is different and should

be estimated from the observed signal.

Minimum phase PSF can be easily estimated form the observed signal by means of

homomorphic blind deconvolution techniques [13] [3][22], which employ denoising method in

signal cepstrum domain for pulse recovery.

Non-minimum phase PSFs can be theoretically recovered estimating the phase form

the observed signal by means of phase unwrapping algorithms [20][22]. However, these

technique have been proved to be an ill-posed, an their performance are very sensitive to

noise and therefore, unreliable.

Therefore, in order to have a controllable setup, in this investigation in all the simulations

on synthetic signals the system PSF is assumed to be a known non-minimum phase pulse,

while on real invivo ultrasound images only the minimum phase version of the PSF estimated

with the method presented in [22] is used, leaving as future development the characterization

of deconvolution algorithm to not perfect knowledge of system PSF.

4.2.2 Statistical approach to regularized inversion

In a statistical framework regularization is imposed by seeking the solution x̂ which maximize

functional based on a stochastic model of the acquired signal and of the observation noise.

Such approach is related to statistical estimation theory [16]. Two main approaches are

here considered: the Maximum Likelihood (ML) estimation and the Maximum a Posteriori

(MAP).

Maximum Likelihood

In the maximum likelihood (ML) approach, the solution is found minimizing

x̂ML = max
x

{logp(y|x)} = min
x

{− logp(y|x)} (4.4)

being p(y|x) the probability of the observation given the data, i.e. the likelihood.

Since we assumed an additive noise model we can write:

p(y|x) = pn(y − Hx) (4.5)
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and since the noise is assumed white gaussian

pn(n) = 1
(2πσ2

n)N/2 e
− 1

2σ2
n

nTn
(4.6)

where σn is the noise standard deviation and N is the number of samples, the likelihood

function can be written as

p(y|x) = 1
(2πσ2

n)N/2 e
− 1

2σ2
n

(y−Hx)T (y−Hx)
(4.7)

and substituting in eq. (4.4) becomes:

x̂ = min
x

(y − Hx)T (y − Hx) = min
x

||y − Hx||2. (4.8)

where ||.|| is the L2-norm. From eq.(4.8) it clear that ML solution equals the minimum

L2-norm solution of the problem (4.2). Since:

(y − Hx)T (y − Hx) = yTy − 2xTHTy + xTHTHx (4.9)

and the term yTy does not depend on x, we can rewrite eq.(4.8) as:

x̂ = min
x

{−2xTHTy + xTHTHx} (4.10)

differentiating with respect to x, and reminding that

∂

∂x
xTa = a (4.11)

∂

∂x
xTWx = (W + WT)x (4.12)

we find

HTHx̂ = HTy (4.13)

i.e.

x̂ML = (HTH)−1HTy (4.14)

where A = (HTH)−1HT is the pseudo-inverse of H, which coincides with H−1 when H is

square and full rank.

Maximum a Posteriori

When no assumptions can be made on the true signal, the ML estimate assures the best

results. Otherwise, it is a fundamental rule of estimation theory that the use of prior

knowledge on the data will lead to a more accurate estimator [16].

We define the MAP estimate as:

x̂MAP = arg max
x

{log(p(x|y))} (4.15)

where p(x|y) is the probability of the true data given the observation. Keeping in mind the

Bayes rule:

p(y, x) = p(x|y)p(y) = p(y|x)p(x) (4.16)
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and noting that p(y) does not depend on x, we can rewrite (4.15) as

x̂ = arg max
x

{log(p(y, x))} = max
x

{log(p(y|x)) + log(p(x))} (4.17)

Reminding (4.5) we can rewrite the MAP solution as

x̂MAP = arg min
x

{||y − Hx||2 − 2σ2
n logp(x)} (4.18)

Equation (4.18) is the starting point of many image restoration problems, which differ from

each other in the choice of the penalty p(x). At this point it worth saying that if MAP

is better performing than ML, minimizing (4.18) could be a non trivial task for two main

reasons: first of all the functional to be minimized, a part from few cases, does not have

a closed form solution, and sometimes can be non-convex; second, since the matrix HTH

in (4.9) is non diagonal, the problem is not separable, that is on the contrary the case of

denoising problems.

Now, the MAP estimator for some notable cases will be derived. Suppose x is an i.i.d.

process, i.e. we can write

p(x) =
N
∏

i=1
p(xi) (4.19)

and substituting in (4.18) the MAP estimator becomes

x̂MAP = arg min
x

||y − Hx||2 − 2σ2
n

N
∑

i=1
lnp(xi) (4.20)

Gaussian Distribution. Suppose that x follows a Gaussian distribution

p(x|µ, σ2
x ) = 1√

2πσx
· e− (x−µ)2

σ2
x . (4.21)

Thanks to the i.i.d hypothesis the LL function becomes

x̂MAP = arg min
x

||y − Hx||2 + 2σ2
n

σ2
x

N
∑

i=1
(xi − µ)2 (4.22)

which is the well-known Wiener filter. For Gaussian distributed data, the MAP estimator

is therefore equivalent to the Tikhonov regularization. Although this estimator is simple

and generally succeed to enhance the visual quality of US images, in presence of edges

and coherent scatters the estimation often produces ringing effects or over-smooths the

reflectivity function.

Laplacian Distribution Suppose now that x follows a Laplacian distribution

p(x|µ, λ) = 1
λ

· e−| x−µλ | (4.23)

where the variance is σ2 = 2 ∗ λ2. Then the MAP estimator becomes

x̂MAP = arg min
x

||y − Hx||2 + 2σ2
n

λ

N
∑

i=1

∣

∣

∣

∣

∣

xi − µ

∣

∣

∣

∣

∣

(4.24)

which corresponds to the L1-norm regularization of the solution. Such model, proposed for

modelling the tissue reflectivity in [22], permits a better recovery of the stronger reflectors at

structural boundaries. The main drawback of this model is that it provides sparse solutions

even where the real tissue reflectivity it is not sparse [27].
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Figure 4.1: Generalized gaussian distribution

Generalized Gaussian Distribution Suppose now that x follows a Generalized Gaussian

distribution

p(x|µ, σ, α) = a · e−| x−µb |α (4.25)

where µ is the mean value, σ is the standard deviation and α is the shape parameter. The

parameters are defined as

a = 1
2Γ(1 + 1

α
)b

b = σ

√

Γ( 1
α
)

Γ( 3
α
)
. (4.26)

Generalized Gaussian distribution can easily fit the statistics of a wide set of signal observed

in real contexts. Changing the value of the shape parameter α a family of heavy-tailed

distribution can be defined (see fig.4.1). Moreover, for α = 1 the GGD becomes a Laplacian

distribution, while for α = 2 becomes a Gaussian.

For a GGD distribution the MAP estimator becomes

x̂MAP = arg min
x

||y − Hx||2 + 2σ2
n

N
∑

i=1

∣

∣

∣

∣

∣

xi − µ

b

∣

∣

∣

∣

∣

α

. (4.27)

The main drawback of GGD modeling is that the estimator (4.27) has no closed form solution,

due to the non quadratic expression of the regularization, and for some values of α it

constitutes a non-convex optimization problem. Therefore, iterative minimization algorithms

must be used. In the following section a stochastic model for the observed signal y and an

approach for the minimization of the MAP estimator will be presented.

4.2.3 US radio frequency signal model

Although the GGD can fit a wide class of signals, a simple stationary model is not suitable

for the high non stationary statistic exhibited by biological tissues. As proposed in [27],
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the impedance of soft tissues varies macroscopically in a piecewise-smooth way, but locally

the reflectivity exhibit a pseudo-random fast variation. These assumptions can be justified

by considering the physical interaction between the ultrasonic field and the propagation

medium. As reviewed in chapter 1, all the structure characterized by spatial variation of the

acoustical parameters that are big if compared to the ultrasonic field wavelength generates

coherent reflections. The intensity of this component of the reflected field is typically

piecewise smooth and can be assumed as an estimation of the macroscopic profile of tissues

reflectivity. On the contrary, all the spatial variation that are smaller than the wavelength

of the incident radiation give raise to scattering phenomena and therefore to non-coherent

reflections. The intensity of this component of the reflected field is typically rapidly varying

and is not directly related to the microscopic profile of tissue reflectivity.

Such consideration can be translated modeling the tissue reflectivity x as

x = Σs (4.28)

where s is a N x 1 vector of generalized Gaussian distributed samples with unitary variance

and Σ is a N x N diagonal matrix containing the echogencity profile σ̄ = {σ0, . . . , σN} which

is a piecewise smooth sequence. Although the model is formulated as 1D, it can be easily

extend to 2D or 3D without loss of generality rearranging multi-dimensional signals into

1D equivalents by lexicographical orders, as explained in [5].

Substituting 4.28, the observed signal model becomes:

z = HΣs + n = u + n (4.29)

The proposed model has two parameters: the echogencity (or variance) profile and the

shape parameter. While echogencity profile σ̄ can be used for modelling signal dynamic,

the shape parameter can be used for adjusting signal sparseness, i.e. for modelling different

scatters densities. As shown in fig. 4.3, starting from the same echogencity profile, different

levels of reflectivity sparseness can be obtained varying the shape parameters. Such feature

can be exploited in two different way: as a fixed a priori value, for obtaining a desired level

of solutions sparseness; as an unknown parameter to be estimated, for characterizing the

tissue properties in terms of first order statistic.

The two possible interpretations of the proposed model leads to two different type of

algorithms with different complexity: while the first require the minimization of the functional

(4.27) with respect to x, the latter theoretically require a joint maximization with respect to x

and α . While for pure image processing purposes the first approach can lead to satisfactory

results, in the context of ultrasonic tissue characterization preserving and enhancing the

information contained in signal statistic is fundamental. However, although the tissue

characterization point of view as adaptive approach should lead in general to better results,

if low computational complexity is demanded the first solution can be preferable.

In the following sections, the application of the proposed model for image quality en-

hancement will be presented, leaving the development of tissue characterization techniques

as future development.

4.3 Viterbi algorithm based deconvolution

As reviewed in chapter 1, one of the main advantages of ultrasound imaging versus the

other imaging techniques is its real-time nature. Thus, all signal processing techniques
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Figure 4.3: Example of piecewise smooth tissue echogencity (red curve) and magnitude
of tissue reflectivity generated with the proposed model (4.28), for different values of the
shape parameter: α=0.5 (top), α=1 (center) α=2 (bottom).



4.3. VITERBI ALGORITHM BASED DECONVOLUTION 63

that aim to improve image quality, and therefore also deconvolution algorithms, should in

general preserve this important feature. Unfortunately, deconvolution of ultrasound signals

is in general an hard task that require computationally expensive techniques often far from

real-time applications. Therefore, in this section we will develop a novel deconvolution

technique aiming to an affordable computational cost.

In modern digital ultrasound imaging systems the measured RF signal is quantized, usu-

ally with a 12-14 bit resolution for RF signal. Such high resolution is necessary because

of the high dynamical range of ultrasound signals, due to tissue attenuation (see chapter 1

for further details), for performing with high accuracy the bearing and finally for preserving

the information contained in the signal. However, for imaging purposes the required res-

olution is lower: after the envelope detection and log compression the signal envelope is

usually quantized with a resolution of 8-bit, which corresponds to 256 levels of gray, i.e.

the maximum contrast that human eyes can detect [10].

This operative condition can be exploited for modeling the tissue reflectivity sample xI
as a discrete value random process distributed on a finite alphabet of size X = {x1, . . . , xK},

where K is the size of the alphabet. Thus, the blurred tissue reflectivity sequence u = Hx

can be thought as the output of a finite-state discrete-time Markov random process, with

finite state space of dimension J. For a shift-invariant system PSF of length L and a tissue

reflectivity alphabet X of size K , the Markov random process associated to the blurred

reflectivity sample has therefore J = K L−1 possible states defined by

ui =
L
∑

j=1
hjxi−j . (4.30)

The problem of recovering tissue reflectivity is therefore equivalent to the problem of de-

tecting symbols affect by noise and intersymbol interference [8]. Similar approaches were

proposed in literature in the context of image restoration [30][24] and deconvolution of

Bernoulli Gaussian processes [7].

Since eq.(4.30) creates a one by one correspondence between the reflectivity samples

sequences and the states of the Markov process we can write

ui ≡ (xi−1, . . . , xi−L). (4.31)

The MAP estimation of the tissue reflectivity x is therefore equivalent to the MAP estimation

of the process states sequence u. For finite-state discrete-time Markov random process in

memoryless noise the density p(y, u) can be written as:

p(y, u) = p(y|u)p(u) =
N
∏

i=1
p(yi|ui+1, ui)p(ui+1|ui) (4.32)

and defining the transition metric

γ(ui+1, ui) , − lnp(yi|ui+1, ui) − lnp(ui+1|ui) (4.33)

we can write

− lnp(y, u) =
N
∑

i=1
γ(ui+1, ui). (4.34)

Eq. (4.34) shows that the probability of having a states sequence u given the observed

sequence y is equivalent to the probability length of a path inside a random graph. Thus,
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Figure 4.4: Example of trellis diagram of a Markov process with four states u1 = {x1, x1},
u2 = {x1, x2}, u3 = {x2, x1},u4 = {x2, x2}. Such diagram correspond to a blurring operator
of length 2 applied on sequences of symbols with cardinality 2.

the MAP estimation of the states sequence u corresponds to find the shortest path in a

graph with branches weighted by the metric (4.33). This problem is known to be be optimally

solved with a low computational cost by Viterbi algorithm (VA) [8].

For the proposed signal model, eq. (4.33) can be rewritten as:

γ(ui+1, ui) ,



yi −
L
∑

j=1
hjxi−j





2

+ 2σ2
n

∣

∣

∣

∣

xi
σi

∣

∣

∣

∣

α

(4.35)

4.3.1 Viterbi algorithm

Viterbi algorithm was proposed in 1967 as a method of decoding convolutional codes. Since

that time, it has been recognized as an attractive solution to a variety of discrete estimation

problems, somewhat as the Kalman filter has been adapted to a variety of continuous

estimation problems. In its most general form the VA can be viewed as a solution to the

problem of MAP estimation of the finte-state discrete-time Markov process observed in

memoryless noise.

Through VA, the shortest path that minimize (4.34) is computed in a recursive manner

over the trellis-diagram [8] associated to the process. The trellis-diagram is a graphic way

to represent a finite-state process in a redundant form: states, transitions and sequences are

represented by means of nodes, branches and paths. Such diagram shows all the possible

transitions from and to each state uj at step i and can recursively generate all the possible

state-sequences of a certain length N. Since each states sequence is in fact associated

to a unique path inside the trellis, VA will then estimate the MAP state-sequence û by

recursively generating all the possible paths of length N, discarding the concurrent ones

by considering their distances from the observed sequence y, computed by means of the

eq.(4.33). Finally, the minimum distance path will be chosen as the estimated sequence.

An example of trellis diagram associated to a finite-state Markov process is shown in figure

4.4: at step i, each state uj is connected with only K states at step i+ 1.

The drawback of this procedure is that even for not so large values of K and L, the VA

becomes already impractical, since its computational and memory demands is proportional

to N · K L−1. Thus, for real-time biomedical image processing application, a computational

cost reduction is mandatory.
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4.3.2 Computational cost reduction

Several modifications have been proposed to reduce VA memory-requirement, such as purg-

ing unnecessary states [35], truncation of memory length [9], and merging of states [12]. Most

of these methods exploit the systematic structure of information coding or prior information

about noise level for reducing the number states necessary for optimal decoding.

While in digital communication data is assumed to be uncorrelated, in the context of

tissue reflectivity signal correlation can be exploited for reducing the number of algorithm

states. In the proposed model, signal correlation is due to the piecewise smooth trend of the

echogencity map σ̄ . Since σ̄ is a piecewise smooth function, adjacent samples are highly

correlated and therefore a reduced number of states is demanded for estimating the true

tissue reflectivity.

Thus, it is reasonable to assume that not all the states are important and that the

unpromising survivors possessing small weights can be omitted with small probability of

discarding the best path. For these motivations, in this work we adopted a reduced states

VA based on the M-algorithm [4]. In M-algorithm only M survivor paths inside the trellis are

kept at each algorithm step i. These path are selected among all the possible candidates by

means of their distance from the observed partial sequence yi = {y1, . . . , yn}. M-algorithm

can be summarized with the following steps:

1. Forward from the root state, repeat the loop 2) - 4).

2. Extend all the paths form level i− 1 to level i.

3. Keep the M paths closest to yi = {y1, . . . , yn} and discard the others;

4. Stop criteria: if all the paths are in the same subset go to 5) else go to 2;

5. Release as output the first branch, delete all paths in storage, and set a new root

node equal to the end node of the released path.

While Viterbi algorithm can be considered as multiple-list single-survivor algorithm, M-

algorithm is a single list multiple survivor algorithm. The number of survivor M is related

to power of the noise n that affect the observed signal an to the length L of the system PSF

: the stronger the noise power and the longer the PSF, the larger the number of required

survivors must be in order to obtain satisfactory results.

Adaptive codebook. Signal correlation can be also exploited for adapting the alphabet X
to signal dynamic and reduce the distortion introduced by signal quantization. Ultrasound

signals are in fact characterized by a big amplitude dynamic. However the statistical

distribution of signal amplitude is highly non uniform, due to the amplitude variations in

time introduced by the echogencity component. In the proposed model, such variation is

modelled through the echogencity map σ̄ .

At each time step i, the signal distribution is therefore generalized Gaussian with vari-

ance σ2
i . From source coding theory is noted that, if signal statistic is known, the minimum

mean square error quantization is obtained by using an non uniform quantization alphabet
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Figure 4.5: Example of codebooks with 33 level of quantization obtained with Lloyd-Max
rules for different values of shape parameters.

computed with Loyd Max rules [1]:

tj = xj + xj−1

2

∫ tj+1

tj
(x − xj )p(x)dx = 0

j = 1, . . . ,M

(4.36)

where xj are the codebook symbols and tj the quantization thresholds. Once the number

of desired quantization level has been fixed, the shape parameter α of the GGD is the only

factor that determines the codebook structure, and in particular it is directly related to its

non-uniformity, as shown in fig. 4.5.

Thus, the minimum distortion codebook can be pre-computed for a generalized Gaussian

source with variance σ = 1 and at each time step i it is shrinked or expanded in order to

keep the probability that the true tissue reflectivity can be greater than the maximum

codebook value smaller than the 0.1%. This procedure can be intuitively interpreted as an

adaptive selection of the quantization levels, with respect to the finest quantization grid

defined by the system A/D converter, as shown in fig. 4.6, or more theoretically speaking

as an adaptive scalar quantization. Thanks to the codebook adaptivity, if the number of

adopted symbols is big enough, the distortion introduced is visually negligible, even when

the signal reach the maximum amplitude.

A correct estimation of the echogencity is therefore fundamental for distortion minimiza-

tion and algorithm stability. However, a smoothed estimation of the echogencity map σ̄ can

be obtained by low pass filtering the envelope of the observed signal z or it wiener filtered

version.
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Figure 4.6: Interpretation of the adaptive codebook as adaptive subset of the quantizer
levels.

4.4 Algorithm performance

In order to asses the effect of the different parameter on algorithm performance, we performed

several test on synthetic signals generated according to the proposed model, and on real

signals recorded with a commercial ultrasound imaging equipment. The parameters of the

proposed procedure to be tuned are:

• the number of survived states M;

• the codebook size K ;

• the codebook shape parameter α .

The number of survived states M is a critical parameter that determines the stability of

the algorithm against noise: if M is too small, the algorithms becomes unstable. As shown

in fig. 4.7, increasing M the algorithm becomes stable and its performance, evaluated in

terms of improvement in signal to noise ratio in decibels:

ISNR = 20log10

( ||y − x||
||x̂ − x||

)

. (4.37)

increase. From the results obtained on synthetic signals we verified that a minimum number

of K = 200 survivors is sufficient to have stability for signal with an average SNR > 20

dB, while no significant ISNR improvement can be obtained for K > 2000.

Similar considerations can be drawn for the alphabet size K : if only few symbols are

used, especially when the signal dynamic is big the distortion introduced by the quantization

becomes unacceptable. A good balance between distortion and computational cost can be

obtained with codebook size that ranges from 33 to 129 symbols.

While the number of survivors M and the codebook size K are tuned in order to have

algorithm stability, limit the distortion introduced by the quantization and achieve an af-

fordable computational cost, the shape parameter plays a fundamental role in governing

solution regularization and in particular its sparseness and robustness against noise. As

shown in fig. 4.8, decreasing the shape parameter, the solution becomes sparser and while
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where the signal is smaller and highly corrupted by noise, a noise suppression effect is

noted, where the signal to noise ratio is higher the solution is closer to the original signal.

Finally, a comparison between inverse filter, Wiener filter and reduced complexity Viterbi

deconvolution has been performed. As shown in fig. 5.11, while the solution provided by

inverse filter is unstable and Wiener filter provides a stable solution but the estimated

tissue reflectivity is over-smoothed, reduced complexity Viterbi deconvolution provide a

stable solution that preserve the sparse nature of the tissue reflectivity. A further proof

of the superior performance of the prosed method with respect to the Wiener filter can be

evaluated comparing the power and phase spectrum of the tissue reflective estimated by the

two methods, shown in fig. 4.10 and 4.11. While Wiener filter is able to recover the signal

spectrum only in where the signal to noise ratio is higher than the regularization parameter

and phase spectrum is wrongly estimated, the proposed method is able to equalize signal

power spectrum also in the frequency band where the signal to noise ratio is low and a

good recovery of phase spectrum is obtained.

To verify the effectiveness of the proposed algorithm as a de-blurring method for ul-

trasound images we tested it on an US signals database which comprises synthetic phan-

tom (CIRS Model 047) acquisitions and in-vivo TRUS acquisitions of prostate glands (264

frames), both obtained with a commercial ultrasound equipment (MYLAB90 Esaote S.p.a.).

The minimum phase version of PSF h was obtained with the homomorphic based deconvo-

lution procedure mentioned is section 4.2.1.

All signals were processed column-wise with the settings obtained on synthetic signals.

Figures 4.12 compare to the original B-Mode images (figure 4.12(a)) the visual quality

of images processed with Wiener filter (figure 4.12(b)) and with MAP estimation (figure

4.12(c)),: as it can be seen, resolution and contrast in the images processed with the

proposed method are much better than in the original ones and Wiener filtered one.

Algorithm performance was also qualitatively evaluated in terms of signal resolution

improvement and image quality enhancement. To quantify the resolution improvement we

measured the resolution gain at -6dB (RG-L/A) along the deconvolution direction [2]; the

Peak Signal to Noise Ratio (PSNR) and the Structural Similarity Index (SSIN) were used

to compute the dissimilarity between the original and processed image, in terms of loss of

correlation, luminance distortion and contrast distortion [18]; finally we measured the image

contrast enhancement on phantoms by means of the Contrast Gain (CG) [31].

For in-vivo and phantom RF signals processing, the average results over the whole

datasets obtained with the estimated system response are shown in table 4.1(a) and table

4.1(b), respectively. As it can be clearly seen, the proposed algorithm provides a good

resolution increase for both in-vivo and phantom acquisitions, with better performance on

the in-vivo frames. The images SSIN is quite close to the maximum value of 1, with better

performance on in-vivo frames.

Finally, we compared algorithm performance to wiener filter and an publicly available

deconvolution algorithms in literature presented in [25]. As shown by the results in Table

4.1(a) and 4.1(b), the proposed algorithm outperforms both of them with respect to the

proposed metric.

4.5 Disussion

The goal of the research presented in this chapter was the development of deconvolution

algorithm for resolution rapprochement of ultrasound imaging system signals. The function



4.5. DISUSSION 69

100 200 300 400 500 600 700 800 900 1000 1100 1200
−2

−1

0

1

2

Samples

A
m

pl
itu

de

(a) M = 50 - unstable

100 200 300 400 500 600 700 800 900 1000 1100 1200
−2

−1

0

1

2

Samples

A
m

pl
itu

de

(b) M = 100 - unstable

100 200 300 400 500 600 700 800 900 1000 1100 1200
−2

−1

0

1

2

Samples

A
m

pl
itu

de

(c) M = 1000 - ISNR = 1.5 dB

100 200 300 400 500 600 700 800 900 1000 1100 1200
−2

−1

0

1

2

Samples

A
m

pl
itu

de

(d) M = 2000 ISNR = 2.1 dB

Figure 4.7: Comparison of the deconvolution of a synthetic signal for different numbers of
survived paths.
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Figure 4.8: Comparison of the deconvolution of a synthetic signal for different level of
sparisty α.
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Figure 4.9: Comparison of the deconvolution of a synthetic signal generated according
to the proposed model with inverse filter (a), wiener filter and reduced complexity Viterbi
algorithm (c).
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Figure 4.10: Comparison between power and phase spectrum of the original tissue reflec-
tivity and Wiener filter estimation.

of the proposed method is increasing the resolution of echo graphic imaging system which

is limited by the finite bandwidth of the piezoelectric elements of the imaging probe. Signal

deconvolution is a challenging problem: due to the observation noise and the band-limited

nature of system PSF, the estimation of the true tissue reflectivity is an ill-posed problem

and regularized inversion techniques are therefore necessary.

After a complete review of the ultrasound signal deconvolution techniques presented in

literature, a statistical framework and a novel stochastic signal model is proposed. The

deconvolution procedure is based on two steps: system point spread function estimation

and tissue reflectivity deconvolution.

System PSF is estimated through blind homomorphic deconvolution techniques pre-

sented in literature. In order to avoid instability caused by phase unwrapping algorithm for

phase estimation, only the minimum phase version of system PSF is taken into account.

The proposed tissue reflectivity deconvolution is developed in a statistical framework

and it is formulated as a MAP estimation problem. A prior model of the observed signal is
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Figure 4.11: Comparison between power (a) and phase 4.11(b) spectrum of the original
tissue reflectivity and reduced complexity Viterbi estimation.

used for imposing solution regularization: the unknown tissue reflectivity is modelled as a

the product between a piecewise-smooth function, i.e. tissue echogencity, and a generalized

Gaussian random process. The shape parameter of the generalized Gaussian distribution

can be used for controlling the sparisty of the solution and thus its regularization. This

model leads to two possible type of application: image enhancement or tissue characteri-

zation.

The MAP estimator for the proposed model requires the minimization of a non convex

function and thus, iterative methods are required. Although these methods can provide sat-

isfactory performance in terms accuracy, their computational cost is very high and therefore

signal can’t be processed in real time. In order to develop a fast image rapprochement

technique, tissue estimation is reformulated in a quantized domain, where Viterbi algorithm

and adaptive quantization techniques can be used for reducing the computational cost of

the estimation, allowing a real time implementation.

A reduced states Viterbi algorithm based on adaptive quantization codebook is proposed
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(a) Original image (b) Wiener filter (c) MAP estimation

Figure 4.12: Comparison between B-mode image before (a) processing, Wiener filter
deconvolution (b) and MAP estimation with the proposed method (c).

(a) Prostate results

RG CG PSNR SSIN

Map estim. 4.88 3.38 23.04 0.94

Wiener filter 1.92 1.62 21.20 0.91

FWD [25] 1.72 1.17 17.54 0.77

(b) Phantom results

RG CG PSNR SSIN

Map estim. 3.85 5.06 2.50 0.96

Wiener filter 1.5 1.20 22.00 0.87

FWD [25] 1.20 1.70 18.24 0.87

Table 4.2: Image enhancement evaluation metrics computed for the invivo prostate gland
frames (a) and for the invivo phantom frames (b).

for MAP tissue reflectivity estimation. The method has been tested on synthetic signal in

order to tune the different parameters of the algorithm and obtain an affordable compromise

between computational cost and estimation accuracy. The obtained results show that while

Wiener filter produces smoothed version of the true tissue reflectivity, the proposed method

is able to recover its sparse nature with interesting noise suppression properties, providing

better performance also in terms of power and phase spectrum enhancement.

Finally, to verify the effectiveness of the proposed algorithm as a de-blurring method for

ultrasound images the method has been applied on real in-vivo signals of biological tissues

and phantom object and compared with Wiener filter and a publicly available deconvolution

method, obtaining better performance in terms of visual quality, resolution and contrast

enhancement.

Future development of this project can include:

• extension of the proposed model for two-dimension signal deconvolution;

• assessment of the sensitivity of the proposed method to imperfect knowledge of system

PSF;

• development of method for regularized estimation of tissue echogencity;
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• development of tissue characterization procedure based on the proposed signal model

and MAP estimation.
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Chapter 5

Ultrasound signal

segmentation and classification

Accurate segmentation, or simply boundary detection, of prostate in ultrasound images

plays a key role in clinical procedures for prostate cancer diagnosis, such as region of

interest selection, accurate placement of needles in biopsy protocols and the measurement

of the prostate gland volume (see chapter 2). So far, all this tasks have been performed

manually by expert radiologist personnel. Since manual delineation of the boundaries is

irreproducible, slow and heavily user dependent, automatic segmentation has a significant

advantage over manual annotation. However, compared to the other imaging techniques,

ultrasound images have lower resolution, lower intensity contrast and inherent speckle

noise. All this issues make the automatic segmentation of images difficult and an important

area of research.

Another class of algorithms of interest is automatic methods for prostate cancer detection

and staging based on machine learning techniques. The shortcomings of the current clinical

methods have in fact induced a great number of studies aimed in improving the detection

rate of prostate cancer by computer aided techniques, providing assistance to radiologists in

the diagnosis of prostate carcinoma and in the guidance of biopsy. However, as mentioned

by many authors, since in the learning process only the pixels in the biopsied area can be

considered, classification of prostate tissues is an imperfect supervision problem. Moreover,

since it is difficult to transform the physical labels in the extracted tissue into pixel labels,

even the labels of pixels in the limited area are imperfect. Therefore, although encouraging,

the results published so far are often not proven to be clinically significant and not always

comparable, mainly because of the lack of standard learning procedures and a publicly

available images database.

Author contributes. In this chapter, after a review of the existing approach for ultrasound

image segmentation and tissue classification, a novel procedure for computer aided diagnosis

of prostate cancer based on an automatic method for region of interest selection is presented.

The proposed procedure is then tested on an experimental database composed of transrectal

scans of prostate glands affected by malignant and benign pathologies.

81
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5.1 Ultrasound image segmentation

Ultrasound image segmentation is strongly influenced by signal quality as well as by the

tissue imaged. The characteristic artefacts of ultrasound images like attenuation, speckle,

shadows and signal dropouts, missing boundaries due to the orientation dependence of

acquisition, make the segmentation task complicated. While in other areas of medical

imaging (CAT, MRI) application of general image processing methods is sufficient, in the

case of ultrasound signals more complex and specialized methods are needed in order to

obtain satisfactory results.

In literature, there are a large number of papers describing segmentation procedures

applied to ultrasound images. For a complete review of the state of the art of medical

and ultrasound image segmentation methods see [32] and [28]. Basically, the techniques

proposed so far for medical image segmentation can be summarized in eight main classes:

• thresholding methods;

• region growing methods;

• classification methods;

• clustering methods;

• Markov random field methods;

• artificial neural networks;

• deformable models methods;

• atlas-guided methods;

Since most of the new segmentation techniques reported in literature are often developed

for a specific clinical application, in this section we will give a brief review of the main

methods employed for medical image segmentation, focusing on their application in the

context of prostate ultrasound images segmentation.

Prostate segmentation problem can be meant as two different, and in general indepen-

dent, segmentation problems: prostate boundary detection and segmentation of prostate

gland in regions of interest. While many algorithms for prostate boundary detection have

been proposed in literature (see [28] and [2]) only few works concerning region of inter-

ests segmentation have been proposed [23][2]. The motivations behind this predominance of

work concerning prostate boundary segmentation are basically two. First, prostate bound-

ary segmentation for volume assessment is an important and primary task in current clinical

procedure for cancer diagnosis (see chapter 2). Second, since it is not clear in literature

which effectiveness measures should be used for evaluating the performance of segmenta-

tion methods [12], evaluating the performance of region of interests segmentation algorithms

is a complex task that require a large database of manual selections performed by expert

personnel .

Thresholding methods. The thresholding techniques are the simplest image segmentation

methods. They are based on the assumption that the image intensities of the objects to

be segmented and the of background follows a multimodal distribution. The breakpoint for
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Figure 5.1: Example of image histogram showing three apparent classes and correspondent
thresholds for image segmentation.

segmenting the image is therefore finding the thresholds for separating the desired classes

(see fig.5.1).

Two main classes of thresholding technique can be distinguished: global thresholding

and local thresholding. Global thresholding is the simplest and fastest method, since only

one set of thresholds is used for the entire image. In local thresholding the image is

dived in sub-images that are processed independently with different sets of thresholds.

These methods are often more complex and give more accurate segmentations. Thresholding

methods cab be further classified according to the methods used for computing the thresholds

from the image histogram: histogram shape based, clustering based, entropy based, object

attributes based, spatial techniques, local techniques. For a complete review see [37].

Thresholding method was applied with success for detecting pubic arch in TRUS during

prostate brachytherapy [30]. However, thresholding techniques are not powerful enough for

more complex problems like prostate boundaries detection and region of interest segmen-

tation.

Region growing methods. The goal of region growing techniques is to divide the image

into its regions, according to image properties such as pixel intensity or other statistical

information. These techniques require first a seed point to begin from. Then, the pixels

connected to that seed point that have the same predefined characteristic are found and

added to the region. Region growing methods can be categorized in three classes: merging,

splitting and merge and split [25].

Region growing was applied for computing prostate volume from a manually placed

seed point in the center of the gland [8]. The critical point in region growing methods is

the choice of the properties according to segment the image.

Classification methods. Classification methods, described in [41], are pattern recognition

techniques where a feature space is partitioned by learning the partitioning function through

examples of labelled data points. Such techniques can be easily applied to images asso-

ciating to each image pixel a feature vector. The disadvantage of this approach is that

performance ca be biased by the dataset used in learning the partitioning function. Such

methods are also very often computationally demanding. Moreover, in medical field train-

ing data is not always available or it can’t be easy defined. In particular, defining training
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set for image segmentation is usually very time demanding and complex and therefore not

feasible.

However, some works, about prostate image segmentation using a classification ap-

proach, like neural networks, have been reported in literature [33].

Clustering methods. Clustering methods lay in the class of unsupervised learning meth-

ods. The accuracy of clustering techniques is usually lower that the one obtained with

supervised methods. The main advantage of unsupervised methods is that they don’t need

a training data. The most three common clustering algorithms used so far in medical image

segmentation are: the K-means. the fuzzy C-means and the expectation maximization (see

[41]). The main limitation of these techniques is that no spatial information is included in

the segmentation process.

Recently, also spectral clustering techniques were applied with good results in ultra-

sound images segmentation, including prostate boundary and regions of interest segmen-

tation [43][1][23] and to my knowledge, together with the method presented in [24], they

are the only methods for prostate region of interest segmentation presented in literature.

The main limitations of these procedures are two: first regions of interest segmentation is

limited only to hypoechoic regions and although hypoechoic regions are the more likely to

be cancerous, as reviewed in chapter 2, prostate cancer appearance in ultrasound images

can be also hyperechoic and isoechoic. Second, only grey levels and dominant contours

features are used for regions of interest segmentation.

Markov random field methods. Markov random fields (MRFs) are statistical models that

can be used for modelling the spatial interaction between neighbouring or nearby pixels.

In medical imaging, they are typically used because most pixels belong to the same class

as their neighbouring pixels, since any anatomical structure that consists of only one pixel

has a very low probability of occurring.

MRFs are often used for regularizing segmentations obtained with clustering algorithms

such as the K-means algorithm, under a Bayesian prior model [4][29]. The regularization is

obtained by maximizing the a posteriori probability of the segmentation, given the image

data. This maximization is usually achieved by iterative methods such as iterated condi-

tional modes, simulated annealing. The main issue associated with MRF models is proper

selection of the parameters controlling the strength of spatial interactions. In addition,

MRF methods usually require computationally intensive algorithms.

Despite their disadvantages, MRFs are widely used in many image processing and

computer vision problems (image segmentation, image restoration, texture modelling, stereo

matching), and they were successfully used for segmenting MRI brain images, and breast

lesions in mammography and US scans [6] [5].

Artificial neural networks methods. Artificial neural networks (ANNs) are supervised

learning models in which the learning function is synthesized by the combination of a

large number of simple elementary processing units called neurons.

One of the attractive features of ANNs is their capability to adapt to different tasks.

The main limitation of this techniques is that, as all the supervised techniques, their perfor-

mance depends on the training set which must be big enough. Moreover, although ANNs

are intrinsically parallel, their processing is usually simulated on serial computers, thus

reducing this potential computational advantage.
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Figure 5.2: Example of boundaries segmentation with deformable contours in a MRI
image. Left: original image. Right: segmented image with initial (gray) and final (white)
boundaries (picture taken from [32]).

ANNs are widely used in medical imaging as a classifiers, for image segmentation [46]

and also for prostate segmentation [33].

Deformable models methods. Deformable models (or active contours) are model-based

techniques for delineating region boundaries by using closed parametric curves, or surfaces,

that can be deformed under the influence of force fields. Objects boundaries are therefore

delineated placing a closed starting curve (or surface) near the desired boundaries and

then deforming it through an iterative relaxation process. Internal forces are computed from

within the curve (or surface) to keep it smooth throughout the deformation. External forces

are then derived from the image to drive the curve toward the desired boundaries. In fig.

5.2 an example of active contours segmentation is shown.

The main advantages of deformable models are their ability to directly generate closed

parametric curves or surfaces from images and their incorporation of smoothness and shape

constraint that provides robustness to noise and spurious edges. The main drawback is

the requirement of an initialization, often done manually, and a big sensitivity to such

initialization. Such problem is critical in case the number and the location of the objects

to be segmented are unknown. In this case, a large number of initial curves is required,

resulting in computational demanding procedures.

However, deformable models are widely applied in medical image analysis, including

prostate boundaries segmentation. For a general review see [21] [2].

Atlas-guided methods. Atlas-guided methods are a powerful tool for medical-image seg-

mentation when a standard atlas or template is available. Conceptually, atlas-guided ap-

proaches are similar to classifiers except that they are implemented in the spatial domain of

the image rather than in a feature space. The atlas is generated by gathering information on

the anatomy to be segmented. This atlas is then used as a reference frame for segmenting

new images. The main drawback of these techniques is, of course, the need of a database

for constructing the atlas. An example of atlas-guide method for computer guided prostate

biopsy can be found in [45].

Summary. Many research papers concerning prostate ultrasound images segmentation

have been published. Most of the techniques presented concern prostate boundary seg-
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mentation, while only few works about region of interest segmentation have been published.

Most of the methods for prostate boundary segmentation depend on human interaction and

their performances are therefore user dependent.

Based on the literature overview of the exiting methods it can be concluded that:

• most of the procedures for prostate segmentation are focused on boundary detection;

• most of the algorithms are semiautomatic and require user interaction, which implies

more effort, more time, low repeatability and user dependent results;

• most of the algorithms use 2D ultrasound images rather than 3D images, since the

segmentation of 3D images can be obtained through the segmentation of the corre-

spondent 2D slices;

• most of the algorithms are based on deformable models;

• most of the algorithms require manual segmented images for training and are therefore

highly biased by the training set due to the high variability of prostate shapes;

• the methods for prostate region of interest segmentation presented in literature are

limited to hypoechoic regions.

Therefore, to overcome the limitations of the existing procedures, new procedures should

ideally be:

• user independent;

• independent on training images;

• focused on regions of interest segmentation.

5.2 Ultrasound aided tissue characterization

So far, the most used imaging modality in ultrasound system has been the B mode. With

this technique, an estimation of the sonified tissue reflectivity is obtained by extracting the

amplitude modulation of the radio frequency echo signal, obtained with an ultrasound probe

(see chapter 1.1). in general, B mode images quality is limited by many factors (attenuation,

resolution limits, speckle noise, etc.) and therefore radiologists can only obtain a qualitative

characterization of the sonified tissues.

The frequency of the ultrasound beam generated by medical commercial equipment

ranges from 2 to 10 MHz. During its propagation the ultrasound field undergo different in-

teractions with the structural elements of the imaged tissues, like scattering and absorption,

which are function of the ultrasound frequency, temperature and acoustical characteristic of

the tissues. Therefore, the ultrasound echo signal contains valuable information about the

physical properties of the tissue.

In general, such information can be estimated analyzing both the radio frequency signal

before the envelope detection and the B mode image, and used in combination with machine

learning techniques, it can provide a quantitative tissue characterization. The results of this

characterization can be displayed to radiologists, together with the conventional B mode

image, to be used as additional guidance in biopsy protocols. All the methods presented

literature are based on a common scheme which comprises:
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(a)

(b)

(c)

Figure 5.3: Schematic representation of different methods for ROI in ultrasound tissue
characterization: manual selection (a), automatic selection with rectangular equal-sized
regions (b) and automatic adaptive selection with irregular regions (c)

.

• selection of regions of interests (ROI) to be characterized;

• estimation from Rf signal or/and B mode image of features within the selected ROI;

• classification of the ROI.

Therefore, the different methods can be classified according to the implementation of each

step of this scheme. At first, the different tissue characterization methods can be classified

according to the possible ROI selection methods, summarized in fig. 5.3.

The first, and simpler method, is manual selection of the region of interests (fig. 5.3(a)

and 5.4(a)). Such procedure, although it is simple and it allows the inclusion of experts

knowledge, it’s not real time and easily reproducible, it is time consuming and user depen-

dent.

The second method is automatic segmentation of the whole prostate gland in rectangular

ROI of equal size (fig. 5.3(b) and 5.4(b)). This procedure is currently the most common used

in tissue characterization and once the prostate boundaries are detected is completely

automatic and provides good performance. However it is often highly redundant and time

consuming (big homogeneous regions are systematically divided in smaller regions) and it
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(a) manual selection

(b) automatic selection or rectangular roi

(c) automatic segmentation of irregular roi

Figure 5.4: Examples of regions of interest segmentation methods: manual selection (a),
automatic selection of regular region (b) and automatic selection of irregula regions(c).
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doesn’t allow the inclusion of morphological info in the feature estimation step. Moreover,

since the ROI are blindly positioned inside the prostate gland, their size is limited by a

compromise between classification accuracy and feature estimation reliability: big ROI tend

to produce inaccurate characterization while with small ROI size the estimation of many

features becomes noisy.

The third method is automatic and adaptive segmentation of the whole prostate gland in

ROI of irregular size (fig. 5.3(c) and 5.4(c)). The main difference of this method with respect

to the other two is that the segmentation is based on the analysis of the acquired signal, and

therefor adaptive. This procedure is theoretically the best one for tissue characterization:

it is completely automatic, repeatable, user independent, adapted to the image features

and allows the inclusion of morphological information. Feature estimation is usually less

computationally demanding, since the number of ROI is noticeably smaller, and its results

are less noisy. However, the computational burden of the segmentation must be low in

order to keep the advantage due to the reduction of the region of interests. Finally, the

performances of the feature estimation and classification steps are strongly dependent to

the goddess of the ROI segmentation.

Tissue characterization methods can be further classified according to the type of data

required (RF signal, B mode image), employed features, classifier type. Although most of

the initial applications of ultrasound-based tissue characterization are related to breast

and liver tissues, recently such methods have been extended with success to other type

of tissues like bones, myocardium, retina. For a survey on the existing ultrasound-based

tissue characterization procedures see [39] and [34].

Prostate tissue characterization. A review of the published methods for prostate cancer

detection can be found in [26]. In this chapter, that review is integrated with some works

published after its compilation and with some works already existing that were not included.

The review of the published methods was focused on the system of acquisition and data used

(type, probe central frequency, sampling frequency, number of cases available), region of

interests available (type, size and number), classification technique (features and classifier)

and on the obtained performance (sensitivity, specificity and accuracy). The results of the

review are shown in tab.5.1. Based on the results of the review it can be concluded that:

• the number of available cases is often low with respect to the high variability of

prostate cancer;

• although in the past B mode was the only data available, the accessibility RF signal

is now available in commercial equipment and its use for tissue characterization is

increasing;

• in most of the works published ROI are rectangular and equal-sized;

• the size of the ROI is different and ranges from 0.1 cm2 up to 1.45 cm2;

• the standard features used are: first order, textural parameters, fractal parameters,

spectral parameters when RF signal is available;

• the optimal features employed don’t match across the publication, which suggests a

data-set dependency of optimal features;

• combining features form B mode and RF signal results in more effective classification;
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WORK DATA

Type Probe Sampling Cases

Basset [3] B mode - - -
Houston [15] B mode 7 MHz 33 MHz 25 (11)
Loch[27] B mode 7.5 MHz 33 MHz 61
Mohamed [22] B mode - - -
Llobet [19] B mode - - 289
Schmitz [36] RF 7.5 MHz 33 MHz 33
Scheipers[35] RF 7.5 MHz 33 MHz 100
Feleppa [10] RF 7.5 MHz 50 MHz 67 (26)
Mohamed [24] RF 7 MHz - 20

(a)

WORK ROI TECHINQUE RESULTS

Size Number Features Classifier SE SP ACC

Basset [3] 64 x 64 - Textural - 71 83 -
Houston [15] 121 x 10 25 Textural 73 86 80
Loch[27] - 553 Textural Neural N. - - 84
Mohamed [22] Irregular - Textural SVM 83 90 83
Llobet [19] Irregular 1531 Textural SVM 68 53 61.6
Schmitz [36] 128 x 16 170484 Multi. Neuro-Fuzzy - - 86
Scheipers[35] 128 x 16 3405 Multi. Kohonen Map 82 88 83
Feleppa [10] 64 x 1 705 Spectral Neural N. - - 80
Mohamed [24] Irregular 3405 Multi. SVM 83 100 94.4

(b)

Table 5.1: Comparison of the the published methods for prostate tissue characterization
with ultrasounds.

• because the features used have highly nonlinear interdependence, only nonlinear

models like support vector machines and neural networks seems to be suitable for

classification;

• with an average accuracy bigger than 80 %, the published ultrasound tissue charac-

terization methods outperform visual interpretation of images;

• a critical comparison of the different methods is missing, mainly due to the lack of

large publicly available image dataset;

• clinical evaluation of the methods is fundamental for assessing their real performance;

• no information about computational cost and implementation of the methods is avail-

able.

Therefore, to overcome the limitations of the existing procedures, new procedures should

ideally be:

• based on features that are less depended by the acquisition system;

• focused on automatic segmentation of irregular regions of interest;

• tested on a large database with several examples of the different cancer stages and

variants;

• tested in a clinical environment to asses the real diagnostic accuracy;
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5.3 Proposed system for ultrasound-aided prostate cancer diagnosis

According to the review on the published methods for prostate segmentation and tissue

characterization, relying on the paradigm of fig. 5.4(a) a new procedure for ultrasound

aided prostate cancer diagnosis with the following characteristics is proposed:

• the segmentation is performed with a multi feature approach, i.e. different classes of

features are estimated;

• all the features are estimated starting from the radio frequency signal before time

gain compensation and envelope detection;

• B mode features are estimated after envelope detection and log compression of the

radio frequency signal;

• since many boundary estimation algorithms are available in literature, a rough es-

timation of prostate boundary is considered as given and therefore as input to the

system;

• prostate boundary estimation is assumed to be inaccurate as performed by automatic

algorithm or done manually by non trained personnel;

• ROI selection is performed inside the given prostate border with an automatic and

adaptive procedure, in order to produce ROI of different size;

• since prostate boundary is assumed to be unreliable, ROI selection algorithm must

be robust against it;

• among the methods for ultrasound signal segmentation, procedure based on unsuper-

vised learning and Markov random field are used because of their ability in classify

heterogeneous data and simple inclusion of a priori information;

• the performance of ROI selection algorithm on in-vivo images are evaluated in the

context of the overall tissue characterization system, and therefore by means of the

accuracy in detecting and classifying lesions;

• supervised and nonlinear learning methods are used for ROI classification;

The proposed procedure is therefore based on three steps: automatic segmentation of

prostate in ROIs, features estimation on the segmented ROIs, characterization of ROIs

through a classifier. Each step on the method, and its performance on real invivo images,

are explained in details in the following sections.

5.3.1 Regions of interest segmentation algorithm

A schematic representation of the proposed algorithm for ROI segmentation is shown in fig.

5.5. The algorithm is composed of four sequential steps:

• features estimation with a moving window for each signal sample inside the prostate;

• segmentation of each sample in K different classes with a clustering procedure;

• regularization of the segmentation through a Markov random field based algorithm;

• identification of regions boundary and elimination of regions smaller than a fixed area;
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Figure 5.5: Schematic representation of the ROI segmentation algorithm.

Features estimation

The goal of ROI segmentation algorithm is to divide the prostate gland in regions of interest

according to the characteristics of the imaged tissues. Such segmentation is realized by

means of features that are extracted from the observed signal in order to capture the different

characteristics of the imaged tissue that can be estimated.

As reviewed in chapter 2, normal and cancerous prostate tissues have an heterogeneous

set of appearance patterns, which makes identification of the different regions extremely

difficult. As claimed by many authors [36][35][26], a multi feature approach is fundamental

for prostate tissue characterization.

First of all, homogeneous regions that can be clearly seen in the B mode images must

be identified. Therefore, textural features as well as statistical parameters extracted from

the signal envelope should be employed. Furthermore, some kind of lesions appears as

isoechoic to the surrounding tissues. In order to detect such lesions, features related to

physical characteristics, like spectral features and statistical models of backscattering, must

be included.

Among the features proposed in literature and developed in this work, the following were

tested:

• texture parameters: Haralick’s and Unser’s features [44];

• spectral parameters: central frequency, midband, slope [18];

• B mode statistical modeling: Nakagami [38], Nakagami fitting of the image diffused

component extracted with the method preseted in [];

• RF signal statistical modeling: generalized gaussian [42].

Since a complete set of all parameters tested has a big dimensionality and most of the fea-

tures are correlated, in order to keep the computational cost of the segmentation procedure

low, a selection of the most significative ones is necessary.

Clustering

Although, as emerged from the literature review, methods based on deformable models

are used in most of the published papers, all of them are focused on prostate boundary

segmentation rather than ROI selection. Deformable models are proved to be efficient when

the number of desired regions of interest is either well defined or easily deducible from the

image to be segmented. Due to the heterogeneous appearance in ultrasound images of the

prostate tissues, the number of regions of interest can vary noticeably from image to image.
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(a) (b) (c)

Figure 5.6: Three examples possible segmentation results (continuous line) respect to a
ground truth reference (dotted line): (a) wrong estimation of clusters number, (b) correct
estimation, (c) cluster overfitting.

Moreover, most of the segmentation procedure that are based on deformable models use

only the grey level image for guiding the segmentation, which is not suitable for prostate

tissue characterization. Thus, among the techniques for ultrasound signal segmentation,

reviewed in section 5.1, methods based on unsupervised learning are adopted in this work.

As shown in fig. 5.5, the segmentation procedure is based on a clustering algorithm followed

by a MRFs regularization.

Clustering techniques easily allows the combination of multiple description parameters

and data mining in an high dimension space, with a feasible computational cost. All the

clustering methods aim to group data points into clusters, basing only on the information

found in the data that describes the points and their relationships. For an extensive review

of clustering techniques see [40]. In this work, three different clustering algorithm were

evaluated: K-means[40], G-Means [14] and PG-Means [11].

K-means is one of the most popular iterative descent clustering algorithms. It is a

distance based clustering algorithms, i.e. similarity between points is evaluated by means

of their distance in the feature space. More precisely, points partitioning is obtained by

minimizing the following energy function:

W (C ) = 1
2

K
∑

k=1

∑

C (i)=k
d(xi, c̄k ) (5.1)

where C represent the clustering of all the data points i in K predetermined number of

clusters, C (i) = k stands for the assignment of the assignment of the ith data point to the

kth cluster with center ck , and d(., .) is the distance measure which can be either euclidean,

cosine, Minkowski or Mahalanobis. Minimization of the functional (5.1) require the joint

minimization with respect to clusters centers ck and assignment of data points to clusters,

and it is not feasible in closed form. However, it can be minimized by an iterative procedure,

the K means algorithm, which consists of two steps:

1. for a given clustering C eq.(5.1) is minimized with respect to cluster centers {c1, . . . , cK}
yielding the mean of the point currently assigned to each clusters;

2. given a current set of means {c1, . . . , cK}, eq.(5.1) is minimized assigning each data

point to the nearest cluster center ck , with respect to distance d(., .);

3. step 1 and 2 are iterated until the assignment does not change.
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An important point in K-Means is the choice of settings: distance measure, number of

clustering classes and initial values for the centroids. The most critical parameter is the

number of clustering classes, which is usually a priori unknown in ultrasound images. In

the context of medical images, a clustering algorithm should be able to isolate the different

homogeneous regions, detecting with good precision their boundaries and possibly avoiding

their splitting in unnecessary smaller regions, i.e. clusters overfitting, as shown in fig.5.6.

In literature, different methods for estimating the number of clusters in data have been

proposed [41] [14] [11]. Although these methods provides in general good performance they

are very computational intensive. Moreover, especially when data clusters are slightly

superimposed in features space, very often the number of cluster estimated is bigger than

the real number of cluster required, resulting in data overfitting. Therefore, in this work

we adopted a fixed number of clusters testing different values between 4 and 8 in order

to obtain a good isolation of the pathological regions from the healthy regions. No high

accuracy in boundary detection is required in this phase, since this requirement will be

fulfilled by the MRF regularization algorithm.

MRF regularization

The main drawback of clustering techniques is the lack of spatial information, which in

the case of ultrasound images causes noisy segmentations, with irregular jagged-edges,

wrong classified pixels and small isolated ROIs. Such issue can be mitigated applying

a regularization algorithm, based on a MRFs [4], on the segmentation obtained with the

clustering procedure, as proposed in [29]. This paradigm was applied with success for the

first time to ultrasound images in [7], for breast lesion segmentation.

Image segmentation problem is now formulated as a MAP estimation problem: the

observed features vectors Yi = {Y i, 1, . . . , Yi,N} for each image pixel i are modelled as a

Markov random field on a 2D rectangular grid and the data to be estimated is the assignment

of each pixel i to a class k ∈ {1, . . . , K}, indicated as Xi = k . The segmentation of the

whole image X is therefore given by

XMAP = arg max
X
p(Y|X )p(X )

= arg min
X

− lnp(Y|X ) − lnp(X ).
(5.2)

The conditional distribution p(Yi,j |Xi = k) of the observed feature j is assumed to be

Gaussian with conditional mean µki,j and conditional variance σki,j . The class Xi is modeled

as a MRF and therefore, thanks to the Hammersly-Clifford thorem, the prior density p(X )
can be written as a Gibbs density:

p(X ) = 1
Z

exp
{

−
∑

c∈I

Vc(X )
}

(5.3)

where c are the cliques, i.e. a subset of the whole image I , that are neighbours of each other.

The function and Vc(X ) is the clique potential function, which in this work is a defined on

second order neighbourhood system defined as follows

Vc(X )
{

−β, if Xi = Xq

+β, if Xi 6= Xq
, β > 0 (5.4)
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i

q

Figure 5.7: Second order neighborhood system

where β is the Gibbs parameter, i is the center of the clique center and q is a point inside

the clique, as shown in fig 5.7.

Under these assumptions and under the assumption of independent features and of

conditional independence of all the image pixels the minimization of (5.2) is equivalent to

the minimization of the following energy function

U(X |Y) =
∑

j

∑

i

[ln(σki,j ) +
(Yi,j − µki,j )2

2(σki,j)2
] +
∑

cεC

Vc(X ) (5.5)

Since this would results in unacceptable computational requirements, all the algorithms

renounce to achieve the global optimum and try to minimize a different function. One of

the most used energy minimization algorithm is the Iterated Conditional Modes (ICM), first

proposed in [4] and applied in different medical image segmentation problems. The ICM

minimizes the energy function no more on the entire grid, but pixel-by-pixel. In other words,

we have to minimize in every pixel:

U(xi|Y) =
∑

j

[ln(σki,j ) +
(Yi,j − µki,j )2

2(σki,j)2
] +
∑

c∈δi

Vc(X ) (5.6)

where δi is the neighbourhood system centered on the pixel i. This results in an iterative

algorithm which drastically reduces computational requirements, and it provides a local op-

timum very close to the global one, if initialized with K-means segmentation. The algorithm

was implemented following the adaptive methodology proposed in [29]: conditional mean

µki,j and conditional variance σki,j are estimated over windows whose size is reduced after a

certain number of iteration until algorithm convergence is reached, i.e. either the number

of modified pixels is lower than a fixed threshold or the maximum number of iteration has

been reached.

After The parameters to be tuned are therefore:

• the number of iterations with fixed window;

• the maximum number of total iteration;

• the minimum number of modified pixels;

• the Gibbs constant.
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(a) (b)

(c) (d)

Figure 5.8: Example of ultrasound image segmentation: prostate B mode image (a), K-
means segmentation with 5 classes (b), ICM regularized segmentation (c) and selected
ROI with cancerous zones marked in red (d).

As shown in pic.5.8, the segmentation provided by the ICM is much better than K-Means

one: clusters are now more regular and the effect of speckle noise is completely removed.

Recently, new clustering algorithms based on MRF and capable of achieving a almost-

global optimum have been developed. However, the ICM is far more efficient, and it is now

the algorithm that best combines computational demands and effectiveness. For details,

refer to [9].

ROI selection and performance evaluation

If the regularization performed by the ICM was successful, we expect that all the image

pixels are clustered groups of homogeneous image intensity and well defined shape. The

different clusters are then examined and further divided according their spatial distribution:

all the pixels that forms a connected and closed area are identified as a single region of

interest. If ROI of a minimum size are required, all the regions smaller than a fixed number

of pixels are reassigned to the adjacent regions applying a morphological erosion operator

on them [13]. An example of a B mode image segmentation with the intermediate steps

output is shown in fig.5.8.

Since segmentation is performed with an unsupervised learning procedure and a com-

plete a ground truth is not available, evaluating segmentation accuracy in a quantitative

manner is not easy. While in prostate boundary segmentation an high precision is de-

manded, in ROI segmentation the main requirement is to divide prostate gland in regions
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smaller enough in order to isolate the regions marked as pathological with good accuracy

and divide the remaining part of the gland avoiding overfitting. Such condition can be easily

verified and therefore used for selecting the most relevant features and tuning the number of

clustering classes, in order to avoid clusters overfitting and inclusion of pathological regions

in healthy regions.

As reported by some authors [19], unless radical prostatectomy is performed, due to the

biopsy protocol employed in prostate cancer assessment, only partial information about the

extension of pathological region is available (see chapter 2 for details). Therefore, in most

of the cases, classification of prostate tissues is s semi-supervised learning problem.

As explained in detail in the next sections, the images database used in this work is

constituted of images where biopsy confirmed pathological regions are marked above the B

mode scans. Since such regions represent a smaller part of the whole unknown pathological

areas, they can be considered as an high specificity (almost 100%) and low sensitivity pixels

labelling. Thus, the segmentation parameters were set in order to obtain ROI small enough

to isolate the marked regions, avoid cluster overfitting and minimize segmentation time as:

• 4 clustering classes;

• 2 iterations with fixed window;

• 8 the maximum number of total iteration;

• 1% of image pixels as minimum number of modified pixels;

• Gibbsian constant β = 4;

while Euclidean distance and Unser’s textural features, Nakagami envelope fitting and RF

spectrum central frequency seems to provide the best compromise between segmentation

accuracy and computation time.

5.3.2 Feature estimation and selection for ROI characterization

Once the ROI are selected, a new set of features is computed for each of them. Besides the

feature estimated for image segmentation, also the following feature were tested:

• texture parameters: fractal parameters [44];

• spectral parameters: polynomial fitting of wavelet spectrum [20];

The main difference with the feature estimation performed in the segmentation step is

that now the features are no more computed on a sliding window: each ROI is examined as

a unique set of data points. Besides to provide a more robust estimation of all the features,

this approach allows the estimation of morphological features, when they could be relevant

for ROI characterization, and reduces noticeably the number of parameters to be extracted

with a consequent reduction of the computational cost.

A complete feature set of all parameters mentioned before would have a huge dimen-

sionality of about 140 attributes. For this reason a first selection step is performed keeping

for each group of features only those highly correlated to the ground truth class, and so to

the pathology, discarding the other ones. This way dimensionality is reduced but synergies

between different features are saved.
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In this application a hybrid feature selection algorithm is used to rank and prune the

initial feature set [17]. Hybrid feature selection algorithms take advantage both of filter and

wrapper models, i.e. they make use of both an independent measure and performances of a

mining algorithm to evaluate feature subsets. Independent measure is used to decide the

best subset for a given cardinality while mining algorithm are used to select the final best

subset among the best subsets across different cardinalities.

The chosen independent measure is the min-Redundant Max-Relevance (mRMR) cri-

terion proposed in [31]. The mRMR measure is based on mutual information between the

current feature set and class corrected with the averaged mutual information between fea-

tures in the feature set. Maximizing this measure yields to define a feature set S with

maximum relevance with respect to a class c

D(S, c) = 1
|S|

∑

Yi∈S

I(Yi, c) (5.7)

and minimum redundancy

R(S) = 1
|S|2

∑

Yi,Yj∈S

I(Yi, Yj ) (5.8)

where Yi is a feature and I is the mutual information. In practice, the first step of hybrid

feature selection algorithm consists on maximizing mRMR measure defined as

Φ(D,R) = D − R (5.9)

The chosen mining algorithm is a Fisher Linear Discriminant (FLD) and the implemented

search technique is a sequential forward selection. For increasing cardinality subset max-

imizing mRMR measure is selected and performances of FLD trained on this subset are

computed. The feature selection outputs are both a ranked list and a minimum subset,

dependent on the mining algorithm. The best cardinality and consequently the best subset

are chosen as that performing the minimum FLD misclassification error. Typically the best

cardinality is smaller than the maximum number of features because not all of them have

the same relevance. The selected and ranked feature for the available dataset is constituted

of 54 attributes and is shown in table 5.2, where the first 20 features are meant to be the

most relevant.

5.3.3 Classification

The last stage of the proposed method is a supervised classifier. In this phase, the selected

ROI are classified by means of the set of features extracted in the feature selection proce-

dure. The result of the classification will be displayed over the standard B mode image:

position and extension of all cancerous ROIs are marked with false colors. Such information

can be used by radiologist in guiding biopsy protocols.

Among the possible supervised machine learning techniques a Support Vector Machine

(SVM) classifier was adopted[41]. As reported in the literature review at the beginning of

this chapter, nonlinear classifier seems to be preferable for prostate tissue characterization

and SVM have been proved to be a good choose.

SVMs are a set of related supervised learning methods used for classification and re-

gression. Viewing input data as two sets of vectors in an n-dimensional space, an SVM will

construct a separating hyperplane in that space, one which maximizes the margin between
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Index Feature name Index Feature name

01 Fractal(2) Alfa1 28 Fractal(2) Alfa4
02 WDES Diff. Proj. n.8 29 homogeneity135
03 Intercept AR(2)burg 30 Bmode
04 correlation135 31 mean90
05 Nakagami logm 32 Fractal(2) Beta4
06 Fractal(1) Beta10 33 Intercept2 AR(3)lmsd
07 Fractal(2) Beta10 34 Fractal(1) Beta8
08 Naka w Diff. Proj. n.8 35 Slope
09 Nakagami logOmega 36 Fractal(2) Beta8
10 homogeneity90 37 Geometric feature
11 mean0 38 Fractal(2) Beta3
12 Fractal(1) Alfa3 39 Fractal(1) Alfa5
13 Fractal(2) Beta6 40 Fractal(1) Beta6
14 Slope1 AR(3)burg 41 Intercept1 AR(3)lmsd
15 Fractal(1) Alfa1 42 ASM Estimated Fc
16 clusterprom135 43 Haralick Left Entropy
17 Geometric feature 44 Slope AR(2)lmsd
18 entropy135 45 WSP Band 3
19 Fractal(2) Beta2 46 Fractal(2) Alfa2
20 contrast90 47 correlation45
21 Intercept ZC 48 Intercept
22 Slope FFT 49 Fractal(1) Alfa9
23 Haralick Left Sum of Squares 50 Slope ZC
24 Slope1 AR(3)lmsd 51 Slope AR(2)burg
25 WSP Fit Coeff. 2 52 Haralick Left Correlation
26 Slope2 AR(3)burg 53 Haralick Left Sum Average
27 WSP Band 1 54 Naka w Coher. Proj. n.9

Table 5.2: Feature selection and ranking results.

the two data sets. To calculate the margin, two parallel hyperplanes are constructed, one

on each side of the separating hyperplane. Intuitively, a good separation is achieved by the

hyperplane that has the largest distance to the neighbouring datapoints of both classes,

since in general the larger the margin the better the generalization error of the classifier.

The original optimal hyperplane algorithm proposed by Vladimir Vapnik in 1963 was a

linear classifier. However, in 1992, Bernhard Boser, Isabelle Guyon and Vapnik suggested

a way to create non-linear classifiers by applying the kernel trick to maximum-margin

hyperplanes [41]. The resulting algorithm is formally similar, except that every dot product

is replaced by a non-linear kernel function. This allows the algorithm to fit the maximum-

margin hyperplane in the transformed feature space. The transformation may be non-linear

and the transformed space high dimensional; thus though the classifier is a hyperplane in

the high-dimensional feature space it may be non-linear in the original input space. Some

common kernels include:

• polynomial functions (homogeneous or inhomogeneous);

• radial basis function;

• Gaussian radial basis function;

• sigmoidal functions;

For further details about SVMs see [41]. In this work a Gaussian radial basis function was

adopted and the corresponding feature space is thus a Hilbert space of infinite dimension.

All the simulations were performed using the publicly available software implementation of

SVM classifiers called svmlight [16].
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(a) (b)

(c) (d)

Figure 5.9: Example of database reference images for supervised learning representing
different prostate sagittal sections, with histologically confirmed cancerous regions marked.

5.4 Experimental results

The proposed method for prostate tissue classification was applied to a database of in-

vivo scans in order to asses its accuracy. The experimental database was provided by the

University of Florence and is formed by TRUS images of prostate sagittal section. All the

signals were acquired with a commercial ESAOTE ultrasound machine using a transrec-

tal broadband probe, with central frequency of 7.5 MHz, sampling at 50 MHz the radio

frequency signal before time gain compensation with a resolution of 12 bits. The dataset

contains 37 different cases of prostate pathologies, 22 cases of prostate carcinoma and 15

cases of benign hyperplasia, acquired before biopsy. For each case, ten consecutive image

frame were recorded.

All the malignant cases have cancerous regions marked on the B mode image by radiolo-

gist after histological verification. All the cancer foci were identified during the histological

examination. These labels constitute the ground truth for both segmentation algorithm tun-

ing and classifier training. In fig.5.9 some examples of the reference images are shown.

Since, unless radical prostatectomy is performed, with high probability the portion of tissue

sampled during biopsy is smaller than the true cancer extension, the available ground truth
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must be considered as an incomplete labelling. The learning problem is not fully supervised

and specificity of the classification can’t be evaluated in a reliable way.

However, since the main goal of computer methods for prostate cancer diagnosis is the

identification of all the cancer foci for guiding biopsy, possible overestimations of the size of

cancerous region does not affect the clinical performance of the computer aided diagnosis

procedure. Thus, the main goal is the development of an high sensitivity classification

method which is able to identify all the cancer foci with an average level of specificity.

Learning procedure and performance test

For pursuing the mentioned goals the learning problem was formulated in the following

way:

• the whole images database is segmented using the proposed segmentation method,

obtain about 300 ROI;

• all the examples of normal ROI are taken only from the benign cases;

• only the ROI marked by radiologist as pathological are used as examples of cancerous

regions in the learning phase;

• the whole set of features listed in table 5.2 are extracted above the selected ROI;

• the classifier is then trained above a random subset of the available data using strat-

ified 10-fold cross validation;

• the remaining images are then segmented using the proposed segmentation method;

• in calculating classification performance, the ROI extracted are now considered as

normal or cancerous according to the available ground truth: all the ROI that are

superimposed for more than the 70% with the ground truth are entirely labelled as

cancerous;

Since ROI have different sizes, the classification results must be normalized in order to take

into account the size of each ROI. Therefore, classification performances are evaluated in

terms of correctly classified pixels inside the prostate border.

Typical measures to assess classifier performances are sensitivity (SE), specificity (SP),

accuracy (Acc) defined as:

SE = TP
TP+FN (5.10)

SP = TN
TN+FP (5.11)

Acc = TP+TN
TP+TN+FP+FN (5.12)

where TP are true positive pixels, TN are true negative pixels, FP are false positive pixels

and FN are true negative pixels.

Since, in the segmentation phase and in other investigation performed on the same

dataset, some malignat cases were proved to be source of errors, two different data set

where created:

• Dataset 1, which comprises all the available cases;

• Dataset 2, where 4 malignat cases where excluded during the training phase.
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Settings SE SP Acc

Set 1 - 10 features 0.80 0.71 0.75
Set 1 - 20 features 0.93 0.73 0.87
Set 1 - 54 features 0.95 0.74 0.89
Set 2 - 54 features 0.90 0.84 0.87

Table 5.3: Classification performance of the proposed tissue characterization method.

The average classification performance obtained by the proposed procedure on the two

dataset are resumed in table 5.3. The classification results confirm that the first 20 features

are the most relevant: while increasing the number of features from 10 to 20 a significant

performance improvement is noted, only slightly improvement are obtained when the com-

plete set of feature is used. Among the most relevant features we found textural features

(Unser’s and fractal), statistical features (Nakagami and Nakagami fitting on the diffused

component extracted form the B mode image) and spectral (slope, intercept), confirming that

a multi-feature approach is fundamental.

Moreover, the results confirm that excluding the ambiguous case form the training set

improve significantly the sensitivity of the method. The high value of sensitivity obtained

(always > 90%) suggests that the proposed method is able to identify most of the known

cancer locations. As said before, since only partial information about the real extension

of cancerous areas is available and since classification where performed above the whole

image, the specificity value obtained is not fully reliable and gives just quantitative infor-

mation about method performance. However, analyzing the results obtained on the benign

cases we observed that the number of false positive is extremely low and we can therefore

conclude that the low specificity value is due to the over estimation of cancer size in ma-

lignant images. Since the classification results are meant to be used for guiding biopsy, an

over estimation of the tumour size is less problematic than false positive on benign cases,

which would causes unnecessary additional biopsies.

Finally, in figures 5.10 and 5.11 examples of the classification results displayed above

the B mode scans as visual guidance for biopsy are given.

5.5 Discussion

The primary goal of the research presented in this chapter was the development of a com-

puter aided detection procedure for prostate cancer assessment by means of TRUS scans.

The function of the proposed tool is assisting radiologist to accurately identify the suspicious

regions for biopsy.

After a complete review of ultrasound image segmentation and tissue characterization

techniques presented in literature, the main characteristics for the development of a novel

computer aided tissue characterization were defined. The proposed method consists of two

main parts: regions of interest segmentation and tissue characterization.

Regions of interest segmentation is based on an automatic selection of the region of

interests inside the prostate gland performed by means of an unsupervised learning proce-

dure. The prostate gland boundary is supposed to be known but, since its accuracy does not

influence the accuracy of region of interest segmentation, it can be performed manually by

non trained users or automatically, by one of the different algorithms proposed in literature.

Tissue characterization step is based on a multi features approach where the features

are extracted from both radio frequency signal and B mode image. Each region is then
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(a)

(b)

(c)

Figure 5.10: Example of the classification results displayed above the B mode prostate
sagittal scans as visual guidance for biopsy (right panel) and ground truth for learning
(left panel).
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(a)

(b)

(c)

Figure 5.11: Example of the classification results displayed above the B mode prostate
sagittal scans as visual guidance for biopsy (right panel) and ground truth for learning
(left panel).
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classified by a support vector machine classifier and the classification results are plotted

on the B mode image as guidance information for biopsy.

The proposed method has been evaluated on a database of radio frequency signals

recorded with commercial equipments which comprises 22 cases of prostate cancer and 15

cases of benign prostate pathologies. Since only partial information about the extension

of cancerous areas in malignant cases where available, the main goal was to obtain a

procedure able to identify most of the cancer sites and therefore, an high specificity.

The obtained results shows that the proposed method can identify most of the cancer

foci with an high level of sensitivity (> 90%) and since most of the false positive are related

to malignant cases, the lower value of specificity can be interpreted as an overestimation

of cancers size.

Further development of this project can include:

• development of a procedure for automatic prostate boundary segmentation;

• employment of semi-supervised learning techniques in the training phase in order to

compensate the partial information about pathological areas;

• evaluation of the proposed method on larger image databases in order to evaluate

with higher accuracy its performance;

• evaluation of the proposed method for the computer aided detection of different

pathologies;

• evaluation of the proposed method in a real clinical environment;
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Chapter 6

Primate behavioural tasks modelling

The goal of the this project, developed at the Laboratory of Nonlinear Systems (LANOS) of

the Polytechnical federal School of Luausanne - Switzerland, was to build up a simplified

neural microcircuit model, to support different conclusion derived from the machine learning

based analysis presented in [1]. Such analysis was motivated by the study on the neural

activity in parietal area 7a (inferior parietal lobule of the posterior parietal cortex) of trained

monkeys performing several eye-hand directional motor tasks, presented in [2] and [3] and

reviewed in chapter 3. Data analysis procedures rely on upon the hypothesis that even if the

available recording are too limited to extract precise motor information, it could be possible

to read motor intention from the set of simultaneously recorded spike trains, by combining

information from all the available recordings. Unfortunately, the available recording sets

were too limited and the results obtained strongly depend on the available data and on the

window size used for the computation of the spiking rate.

Author contributes. In order to asses the effect on classification performance of number

of available recordings and of the window size, an abstract model able to learn abstract

representation of some the behavioural tasks presented in [2] and [3] was built. Such model

was built following a liquid state machine (LSM) approach [12][20]. Although the models

employed very simple, the number of parameters to be tuned is quite high and at the

moment, no simple design strategies are available for LSM. Thus, following the approach

proposed in [5], biological motivated settings for some model parameters were adopted in

order to simplify the network design and its training procedure. Following this approach,

we developed a tuning procedure that allowed the design of artificial neural microcircuits

able to learn correctly abstract representations of the real behavioural tasks.

6.1 Third generation neural networks and liquid state machines

The task of understanding the principles of information processing in the brain poses, apart

form numerous experimental question, challenging theoretical problems on all levels of

modelling, from molecules to behaviour. Advanced models of the human brain present it

as recurrent neural network (RNN): a network of neurons with feedback connections. This

type of neural network can learn many behaviours/sequence processing tasks, algorithms

and programs that are not learnable by traditional machine learning methods. Moreover
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RNN are computationally more powerful and biologically more plausible than other adap-

tive approaches such as Hidden Markov Models (no continuous internal states), feedforward

networks and Support Vector Machines (no internal states at all). Recent applications of

RNN include adaptive robotics and control, handwriting recognition, speech recognition,

keyword spotting, music composition, attentive vision, protein analysis, stock market pre-

diction, and many other sequence problems. All these considerations explain the rapidly

growing interest in artificial RNNs for technical applications: general computers which can

learn algorithms to map input sequences to output sequences, with or without a teacher.

However, the main drawback of RNN is the complex training procedure, often task de-

pendent. Various algorithms like back-propagation through time and real-time recurrent

learning have been proposed to train RNNs; however all these algorithms suffer of com-

putational complexity, resulting in slow training, complex performance surfaces, instability

and decay of performances according to the network topology and complexity.

To overcome this problem Jaeger [13] and Maas [20] introduced independently a new

training paradigm for RNN named Echo State Network (ESN) and Liquid State Machine

(LSM) respectively. While ESN have been introduced with the purpose of developing a

simpler and more powerful training paradigm for RNN of sigmoidal neurons, LSM have

been introduced aiming to realistic model of information processing in biological system;

thus the latter approach uses more sophisticated models for spiking neurons and chemical

synapses.

In this chapter we will present the mathematical models employed in the present work

to build recurrent neural networks of spiking neurons (SRNN) and train them with the

ESN/LSM approach. Such paradigm will be used in the present work to build a toy model.

Neurons

Detailed conductance-based neuron models can reproduce electrophysiological measure-

ments with an high degree of accuracy, but because of their intrinsic complexity these

model cannot be easily analyzed and employed to build neural network for engineering

computational purposes [9].

For these reason, simple phenomenological spiking neurons models are usually em-

ployed. In the present work we will adopt a formal threshold model of neuronal firing,

and in particular the Leaky Integrate and Fire (LIF) model, which is the simplest model for

spiking neurons.

The leaky integrator model basically consists of a parallel of capacitor C and a resistor

R , driven by a current I(t). Thus the membrane potential of the neuron u(t) is ruled by the

following dynamic eq,:

τm
du

dt
= −u(t) + RI(t) (6.1)

where τm = RC is the leaky integrator time constant.

A spike event is then formally described by firing time t(f ), defined by the threshold

criterion

t(f ) : u(t(f )) = θ. (6.2)

Immediately after a spike event t(f ), the membrane potential is reset to a new value ur < θ

and the dynamic (6.1) is forced to the reset value during an absolute refractory time τr .

At the end of the refractory time τs the integration restart with the new initial condition

u(t(f ) + τ+
r ) = ur .
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The combination of the leaky integrator dynamic (6.1) and reset (6.2) define the LIF

neuron model. In case the neuron is stimulated by a constant current I(t) = I0, the trajectory

of the membrane potential after a spike has occurred at t = t(1), with ur = 0, is given by

u(t) = RI0

[

1 − exp
(

− t − t(0)

τm

)]

(6.3)

For t → ∞ the membrane potential tends to RI0. For RI0 < θ no spikes will occur, while

for RI0 ≥ θ a spike will occur at time t(2) = t(1) + T where

T = τm ln RI0
RI0 − θ

. (6.4)

Therefore the neuron firing rate can be defined as

R = 1
T + τr

=
[

τr + τm ln RI0
RI0 − θ

]−1
. (6.5)

Since T → 0 for RI0 → ∞, the maximum firing rate is therefore RM = 1/τr .
In a network context, the input current of the neuron can be thought as the sum of two

different terms: an internal constant current J, due to self-induction effect present in the

neuron, an external current Iext(t) = Ii(t) + Ie(t) + In(t) due to the current induced by the

input synapses Ii(t), external analog inputs Ie(t) and to diffusive noise In(t)[9] (where In(t)
is a white zero mean Gaussian noise).

Synapses

In a network context the input current Ii(t) is generated by the activity of pre-synaptic

neurons, namely all the neurons which output is connected to the considered neuron through

a synapse.

In the framework of LIF model, each pre-synaptic spike generates a post-synaptic current

pulse, which will excite all the neurons connected to it through the different synapses. These

synapses will be called spiking synapses in order to distinguish them from the synapses

that are inducing the external current Ie(t), here called analog synapses.

The total input current to a neuron i due to pre-synaptic activity is therefore modelled

as:

Ii(t) =
∑

j,g

wij (t − t
(g)
i )
∑

f

αij (t − t
(f )
j ) (6.6)

where αij (t− t
(g)
j ) are the synapses current pulses, wij (t− t

(g)
j ) are the synaptic weights and

t
(g)
j are the spike instants of neuron j .

In general, as indicated in (6.6), the synaptic weights wij can be dependent by all the

spiking times t
(g)
i < t. In this case we will call the synapses dynamic spiking synapses.

This type of dynamic modification of synaptic weights is a short-term effects and it should

not be confused with the long-term dynamic modification of synaptic weights induced by

synaptic plasticity. Short term dynamic modification of synaptic weight has been evidenced

by a large number of experimental studies [24].

In the other hand, when the synaptic weights are not dependent by all the spiking times

t
(g)
i < t we will call the synapses static spiking synapses.
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Dynamic synapse model. In this work we will employ the dynamical synapse model pre-

sented in [24] and derived from the results presented in [22]. In this model, the synaptic

weight of each synapse is modified for each incoming spike g at time t(g) according to

following discrete-time dynamical model:

w
g
ij =wij · ug · Rg

ug =U + ug−1(1 − U) exp(−∆g−1/F )
Rg =1 + (Rg−1 − ug−1Rg−1 − 1) exp(−∆g−1/D)

(6.7)

where ∆k = t(k) − t(k−1) are the inter-spike intervals, F and D are the model parameters

and u1 = U and R1 = 1 the initial conditions.

Post-synaptic current. For both static and dynamic spiking synapses a relatively simple

and quite realistic model for the post-synaptic current pulses is the following

αij (s) = q

τ
ij
s − τ

ij
t

[

exp
(

−
s− ∆ij

τ
ij
s

)

− exp
(

−
s− ∆ij

τ
ij
t

)]

θ(s− ∆ij ) (6.8)

where τ
ij
s ,τ

ij
t and ∆ij are the pulse decay time constant, pulse rise time constant and prop-

agation delay constant of synapse ij respectively, and q is a normalization constant (for

q = exp(1) the maximum value of α(s) will be 1).

Such model can be simplified imposing τt → τs in eq. (6.8), obtaining

αij (s) = q
s− ∆ij

(τijs )2
exp

(

−
s− ∆ij

τ
ij
s

)

θ(s− ∆ij ) (6.9)

Complete model

The complete model for LIF neuron exited by spiking synapses, external analog inputs,

self-induction current and noise is therefore

τm
dui
dt

= −ui(t) + R





∑

j,g

wij(t − t
(g)
i )
∑

f

αij (t − t
(f )
j ) + Ie(t) + In(t) + Ji



 . (6.10)

Since in general in a network neurons have the same time constant τm and the same

resistance R , we can rewrite eq. (6.10) in an equivalent form, introducing the equivalent

synaptic weights w
′

ij , the external potential Ue(t), the noise potential In(t) and the self-

induction potential Ei:

τm
dui
dt

= −ui(t) +
∑

j,g

w
′

ij (t − t
(g)
i )
∑

f

αij (t − t
(f )
j ) + Ue(t) + Un(t) + Ei, (6.11)

thus reducing the number of the parameters.

Model discretization

In order to integrate the eq.(6.11) we must discretize it and apply numerical integration

methods. Since the model is quite simple, it can be integrated with sufficient accuracy by

one-step Euler method.
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Figure 6.1: ESN architecture (figure taken from [13]).

Defining a sampling step δ such that tn − tn−1 = δ and applying Euler numerical

integration method, we obtain the following discrete-time equivalent model:

Ui(tn+1) =ui(tn)
(

1 −
δ

τm

)

+ δ

τm





∑

j

w
′

ij(tn+1 − t
(f )
i )
∑

f

αij (tn+1 − t
(f )
j )

+ Ue(tn+1) + Un(tn+1) + Ei]

(6.12)

Network architecture

In the following section we will show how it is possible to build recurrent neural networks of

spiking neurons, in order to employ an ESN learning approach. The ESN (of LSM) training

approach [13] consist in building recurrent neural networks of either analog or spiking

neurons, organized with a special topology, shown in figure. The network is composed

of three main sub-network: an input network composed by a single layer of neurons, an

internal unit usually called reservoir and an output layer composed by a single layer of

neurons.

Input layer. The input layer acts like a converter of the input signals and as an interface

with the reservoir layer and its mad of spiking neurons. The input signals, which can be

both spike trains and analog signal, are converted in spike trains and transmitted to the

reservoir by means of static spiking synapses. The input layer is completely characterized

by:

• synaptic weights [NxK] matrix W in;

• synapses time constants [NxK] matrix τin;

• synapses transmission delays [NxK] matrix ∆in;

• neurons self induction potentials [1xK] vector Ēin;
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Reservoir layer. In the present work, the reservoir is a recurrent neural network of N spik-

ing neurons interconnected with either static on dynamic spiking synapses. The reservoir

is therefore completely characterized by:

• synaptic weights [NxN] matrix W ;

• synapses time constants [NxN] matrix τ;

• synapses transmission delays [NxN] matrix ∆;

• dynamic synapses parameters [NxN] matrixes F , D and U;

• neurons self induction potentials [1xN] vector Ē;

Output layer. The output layer act as a filter that converts spikes incoming from the

reservoir in analog values and is therefore made of analog neurons connected to the reservoir

through static spiking synapses. The output layer is completely characterized by:

• synaptic weights [LxN] matrix W out ;

• synapses time constants [LxN] matrix τout ;

• synapses transmission delays [LxN] matrix ∆out;

As defined independently in [13] and [20], the ES approach to RNN train consist in ran-

domly generate, according to some criteria, the input layer and reservoir parameters and

training only the parameters for the output layer. In the next chapter we will illustrate

the dynamical properties and the theoretical computational performances of this approach,

proofing its generality and giving some measure to quantify experimentally the computa-

tional performance of this architecture with respect to some class of tasks.

6.2 Proposed model

6.2.1 Behavioural tasks modelling and information representation

Among the possible experimental behavioural tasks described in [2] and [3], summarized in

chapter 3.2, we focused our attention on the modelling of the reach task (RT) and of the

no-go task (NGT), since these are the simpler tasks that require only short-term memory

to be solved, leaving as further possible developments the modelling of more complex tasks

like memory tasks.

The model adopted for the behavioural task modelling is a recurrent neural network

that, designed with a LSM approach, will be trained in order to correctly solve abstract

representations of the behavioural tasks RT and NGT. The first goal of the training procedure

is to develop a network that is able to encode through its dynamic the spatial information

incoming from the input layer, in order to be able to manifest the intention of moving towards

a specific direction. The second and more demanding requirement is to integrate along

time the visual stimulus provided by the input layer (central target followed by a peripheral

target), in order to manifest correctly moving intention towards a specific direction only in

presence of a specific sequence of inputs. Both the training and the test dataset must be

designed in order to verify the fulfilment of these properties.
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Figure 6.2: Schematic representation of the toy model network architecture.

The structure of the network is the one shown in fig. 6.2. As in LSM approach, the

network is organized in three layers: an input layer, an internal (recurrent) layer and an

output layer. The input layer comprises nine different analog inputs, one for each of the

eight possible peripheral targets and for the central target. The output layer comprises

eight analog outputs, one for each possible direction of movement.

Information encoding. The information that we want to represent is the activations of

input targets and the activations of the movement commands towards the different possible

directions. Since both input and output of the network are analog signals, the activation of

a specific input or output during a time interval T was represented with a continuous pulse

of current with unitary amplitude, while the inhibition of a with a zero level, as shown in

fig. 6.3.

A behavioral RT was therefore represented as the activation of the start signal (CT ) of

random duration Ts, followed immediately by the activation of a target signal (PT1, . . . PT8)

of duration Tt . The exact values for Ts and Tt are randomly chosen with uniform probability

above two intervals [Ts1Ts2] and [Tt1Tt2]. The desired output corresponds to the activation

of only the output correspondent to the activated input and it was represented as a pulse

of the same length and synchronized with it, as shown in fig. 6.4.

To assure that the network correctly ingrate along time the information presented, it

is necessary to include into the training and test data sets examples of NGT. Due to the

representation of the input information (no task encoding information is present), such tasks

couldn’t be modelled exactly as real behavioural tasks described in section 3.2. Thus, NGT

were represented as tasks in which the central target before the peripheral target is missing

(see fig. 6.5). The training data set and the test data set must include several examples

of different duration of all the possible real and fake targets. An example of a complete set

of tasks is shown in fig. 6.6).
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Figure 6.3: Activation of input/output of the network represented as a current pulse.

Figure 6.4: Representation of a reach task (RT) as a sequence of activation of the central
target (continuous line) and activation of a peripheral target (dotted line) and correspon-
dent desired output.

6.2.2 Network architecture

Input Layer. The input layer is an abstract representation of the information coming

from the visual cortex, i.e., the activation of one of the eight possible peripheral targets

(PT1, . . . , PT8) and of the central target (CT). Since the activation of the different target is

encoded in an analog current value that must be converted in spike trains, the input layer

is constituted of nine excitatory LIF neurons, each of them connected to only one input.

Therefore each neuron acts like a current to spikes converter. This conversion is realized

injecting directly the input currents into the neurons through analog synapses. Since no

spiking synapses are present, the mathematical model of the input neurons is described by
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Figure 6.5: Representation of a no-go task (NGT) as activation of a peripheral target
(dotted line) without the activation of the central target and correspondent desired output.

the eq.

τin
dui
dt

= −ui(t) + winjRIi(t), 1 ≤ i ≤ 9 (6.13)

obtained from (6.10) adding a time dependent input current Ii(t) scaled by a factor winj , and

neglecting both the spiking synapses and the noise term. The noise term was neglected

since the input neurons purely act like converters from the input information representation,

analog values, to the recurrent neural network information representation, spike events. In-

deed, in neural modelling noise take into account both statistic nature of neurons behaviour

and stimulus coming from unknown sources. Both of these effects will be considered in the

model of the recurrent neural network neurons adding an escape noise term.

The results of this conversion are spike trains that are transmitted from the input layer to

the recurrent neural network through static spiking synapses, whose post-synaptic potential

is described by eq. 6.9 and whose connection topology and strength are defined by the

connection matrix W in = {win
ij } ≥ 0. In conclusion, the input layer is completely defined

by:

• scaling factor of input analog synapses winj ;

• synaptic weights [Nx9] matrix W in;

• synapses time constants [Nx9] matrix τin;

• synapses transmission delays [Nx9] matrix ∆in;

• neurons time constant τin and threshold θin;

that we will indicate with the notation Nin = {W in, τin,∆in, τin, θin}.

Recurrent network. The recurrent neural network is an abstract representation of the

neural circuits responsible for spatial information representation and temporal information

integration in area 7a of the parietal cortex. As revealed by neurophysiologic studies,
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Figure 6.6: Example of input and output signals for complete set of real and fake task.
The different target position are represented with different colors, while the star signal is
represented with dotted line.

the 7a area of the parietal cortex is responsible of the integration of visual perception of

the space and movement control and its cells exhibit directional tuning properties both an

single cell and populations of cells level [2][3]. The data analysis procedures presented in

[1] revealed the possibility of extracting motor intention from the neural activity of trained

monkey performing behavioural task involving hand and eyes coordinated movements.

Therefore, the toy model should be able to capture both the temporal information inte-

gration property and the directional tuning property. These properties require a spatially

organized and specialized network endowed of short term memory property [12]. For these

reasons, we decided to employ a recurrent neural network of LIF neurons connected through

static spiking synapse, with fading memory property, that will be trained with an ESN/LSM

approach.

The RNN is composed of N LIF neurons from which NE are excitatory and NI are

inhibitory. The excitatory and inhibitory populations of neurons are described respectively

by

• synaptic weights [NxNE ] matrix W E ;

• synapses time constants [NxNE ] matrix τE ;

• synapses transmission delays [NxNE ] matrix ∆E ;

• neurons time constant τE , threshold θE and self induction potentials [1xNE ] vector

ĒE ,

that we will indicate with the notation NE = {W E , τE ,∆E , τE , θE} and by

• synaptic weights [NxNI ] matrix W I ;



6.2. PROPOSED MODEL 121

• synapses time constants [NxNI ] matrix τ I ;

• synapses transmission delays [NxNI ] matrix ∆I ;

• neurons time constant τI , threshold θI and self induction potentials [1xNI ] vector ĒI ,

that we will indicate with the notation NI = {W I , τ I,∆I , τE , θI}.

Output layer. The output layer is an abstract representation of an hypothetic cortical

brain area connected to the RNN which try to extract the information encoded by it and

tries to express the intention of moving in a particular direction, according to the given

visual stimulus.

The layer is constituted by eight analog linear neurons, one for each possible target

position, connected via static spiking synapses to the RNN. Each neuron simply performs

a linear combination (readout) of the activity of the RNN, according to

Uout
i (t) = R

∑

j

wout
ij

∑

f

αout(t − t
(f )
j ) (6.14)

where

αout(t) = q
t − ∆out

(τout)2
exp

(

− t − ∆out

τout

)

θ(t − ∆out) (6.15)

is the kernel that converts spikes into potentials. The internal potential is finally transmitted

through analog synapses to the eight output (MT1, . . . ,MT8).

The output layer is completely defined by:

• synaptic weights [8xN] matrix W out ;

• synapses time constant τout;

• synapses transmission delay ∆out .

The synaptic weights matrix W out will be computed in the training phase of the network

according to the problem to be solved (regression or classification), while all the parameters

of the input layer and of the recurrent neural network will be tuned in order obtain the

desired performances.

6.2.3 Model parameters tuning and network training

The model is completely defined by the set of parameters Nin, N = {NE ,NI}, τout , ∆out ,

and W out . Since we adopted the LSM training paradigm, only the output layer will be

tuned through the training procedure in order to obtain the desired performance. Both the

input layer and the recurrent neural network parameters will be fixed, according to some

design criteria, to obtain the desired properties and performances, indeed the short term

memory property necessary to correctly classify all the possible tasks.

Several studies investigating analytical properties of ESN, analytical conditions for

short term memory and different design strategies are available [19][14]. The strategies

developed so far can be divided in three main categories:

• GENERAL: methods/guidelines to generate good reservoirs without regarding of the

task.
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• UNSUPERIVISED: pre-training of the reservoir with respect to the given input;

• SUPERVISED: pre-training of the reservoir with respect to both the given input and

the desired output.

Since in the proposed model both input and output signal are an abstract representation

of the real behavioural tasks and no detailed information about the real representation in

the brain of the visual stimuli and motor command are available, the design paradigms that

can be employed for our purposes belong to the first class. Moreover, since no information

about the real structure of the 7a brain area and about how its topology is influenced by

training are available, among the possible approach belonging to this class, the random

generation approach seems to be the more suitable for a preliminary study [14].

In LSM, the number of parameter to be tuned is bigger and the dynamical behaviour of

the model more complex, thus general design strategies are still lacking. Despite the lack

of general design paradigms, in [18] an analytical proof of LSM approximation properties

and a quantitative measure for evaluating LSM computational are given. Moreover, LSM

were successfully applied to real problem like movement prediction from images [5]. In that

work, the network parameters were tuned according to experimental evidences exposed in

[10] and [26]. Although these models are still only a rough approximation of a real neural

microcircuit, they take into account some important features observed in biological neural

networks like synaptic depression and facilitation [10], the columnar functional organization

and the connectivity ratio between different layers of the neocortex [26]. Synaptic depression

and facilitation are modelled through the dynamical model of synaptic weights 6.7, whose

parameters are chosen according to the data reported in [10]. Columnar organization and

connectivity are modelled organizing the neural microcircuit as a 3D structure and randomly

generate the connectivity matrix with the following probability of connection between two

neurons i and j

p(i, j) = Ce− D(i,j)
λ2 (6.16)

where D(i, j) is the distance between the neurons i and j , C is a parameter depending on

the connection type (excitatory or inhibitory) and λ is the connection probability parameter.

Neurons parameters. In the present work, following the approach proposed in [5], we

adopted biologically realistic settings for neurons and synapses parameters but we didn’t

take into account the depression/facilitation effect in synapses, since we used the static

model in order to simplify the tuning procedure.

For neurons parameters we chose to keep constant inside all the network layers the

following

• membrane time constant τm = 30 ms;

• leakage resistance R = 10 MΩ;

• spiking threshold θ = 15 mV;

• refractoriness time constant for excitatory neurons τr = 3 ms;

• refractoriness time constant for inhibitory neurons τr = 2 ms;

• diffusive noise variance σn = 5 mV;
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and to generate randomly the following

• autoinjection current uniformly distributed on [13.5 14.5] nA;

• reset potential uniformly distributed on [13.5 14.5] mV.

The membrane time constant defines the neurons memory. Compared to the duration of

the toy model tasks (from 130 ms to 310 ms) neurons memory is too small to correctly

solve them and network integration is therefore mandatory. Refractoriness time limits the

maximum spiking frequency of excitatory and inhibitory neurons to to 333 Hz and 500 Hz,

respectively. All the other model parameters are set individually with different criteria for

each layer.

Input layer. Input layer mainly act just like a rate to spikes train converter and is therefore

formed only by excitatory neurons. The only requirement is a proper mapping of the input

dynamic range on neurons spiking rate. This condition is assured by the input current levels

that, compared to leakage resistance, neurons threshold and input current scaling, is set to

obtain a spike rate which is close to the maximum, in correspondence of an input activation.

The second function of this layer is the transmission of the input signal into the recurrent

network and it is realized by the synapses whose parameters were generated according to

the following settings

• connections topology: randomly generated to obtain a connectivity of 20 % for each

input neuron;

• connections strength: equal for all the synapses, W in = win = 10−2;

• synapses time constants: randomly generated with uniform distribution on [2.5 3.5]
ms;

• synapses transmission delays: randomly generated with uniform distribution on [.1 1]
ms.

Since the synapses time constants are one order of magnitude smaller than neurons mem-

brane time constant, according to the consideration exposed in [17], the neurons of the

recurrent network will operate as integrator rather than coincidence detectors with respect

to the signal coming from the input layer.

Recurrent network. The design of this part of the network is critical for the achievement

of the desired properties and performance: the richer will be its dynamical behaviour the

better will be the overall network performance. The main goal is to obtain the larger short

term memory achievable while keeping the echo state property. Unfortunately, there are no

design criteria available in literature. In order to simplify the tuning procedure, we reduce

the number of parameter to be tuned adopting again some biological motivated values for

most of them. In particular we set

• 80 % of the neuron are excitatory and 20 % are inhibitory;

• connections topology: randomly generated to obtain a connectivity of 20 % for each

neuron;
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• connections strength for inhibitory neurons: randomly generated with Gaussian dis-

tribution, mean value WmI = −2WmE and root mean square σ = WmE · 10−3;

• excitatory neurons synapses time constants: randomly generated with uniform distri-

bution on [2.5 3.5] ms;

• excitatory neurons synapses time constants: randomly generated with uniform distri-

bution on [5 7] ms;

• synapses transmission delays: randomly generated with uniform distribution on [.1 1]
ms for both excitatory and inhibitory neurons.

Once again, since the synapses time constants are one order of magnitude smaller than

neurons membrane time constant, the neurons of the recurrent network will operate as

integrator also with respect to the spikes coming from the internal connections.

The design strategy for the recurrent layer adopted in the present work is quite different

from the one employed in [5]. In our approach the network is generated with an unstructured

fashion, imposing only a sparsity criteria and the only parameter to be tuned is the average

value for connection strength WmE

Output layer. The output layer simply acts like a kernel that converters the spikes coming

from the neurons of the recurrent layer into potential and sum them. Neurons of the output

layer are connected with all the neurons of the recurrent network through spiking synapses

whose connection strengths are tuned by the training procedure. The remaining parameters

were set as

• synapses time constants: equal for all the synapses, τout = τout = 20; ms;

• synapses transmission delays: equal for all the synapses, ∆out = ∆out = 0 ms.

Once the network parameters are generated, the only parameter to be tuned is the

average connection strength for the excitatory connections WmE . To tune such parameter

we performed a grid search randomly generating a number of networks sufficiently big to

evaluate its effect on networks performance. In particular we wanted to maximize the number

of networks that have at least 6 output with a classification error lower or equal to 10%
(operating output). Thus, after networks were generated, we trained the respective output

coefficients matrixes W out with a linear regression with respect to the desired outputs matrix

of the training set y
d
:

W out = U−1y
d

(6.17)

where U−1 is the pseudoinverse of the matrix U , which rows are the time evolution of the

network internal states

Ui(t) =
∑

f

αoutij (t − tfi ) (6.18)

computed for different time instant tn feeding the network with the training set input, as

shown in fig. 6.7.

The output pulses classification is then realized computing the pulses energy and com-

paring it with a fixed threshold value σ : all the output pulses whose energy is above

threshold will be classified as activation of the output and viceversa as no activation, as

shown in fig. 6.7. Finally, classification error for each network output is computed and the
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Figure 6.7: Output connection linear training and output classification.

WmE % of selected nets

1 · 10−3 4.5
3 · 10−3 25
5 · 10−3 49
10 · 10−3 29
15 · 10−3 21
20 · 10−3 7

Table 6.1: Percentual number of selected networks vs average connection strength of
excitatory synapses measured on 1000 networks.

networks are selected according to the number of operating outputs. In tab.6.1 the results

obtained for different values of WmE computed on 1000 randomly generated networks are

shown: the best absolute performance, measured as the number of selected networks, where

obtained for WmE = 5 · 10−3.

In conclusion, once WmE is tuned, the networks selection procedure can be summarized

in the following steps:

• randomly generates all the network parameters according to the defined distributions;

• train the output coefficients with the training set;

• compute the output signals and the classification error for the test set;

• if the number of outputs with classification error ≤ 10% is > 6 the network is selected,

otherwise discarded.
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6.3 Performance evaluation

Following the procedure presented in the previous section, we selected 200 networks made

of 500 neurons and 200 networks made of 100 neurons, storing their spiking instants while

fed by a suitable long training and testing sets of tasks. Subsequently we used this data

to study how the number of available neurons affects the classification performance of all

the network outputs. Moreover we tested how the neurons number and the window length

for the rate computing affect the performance of a SVM classifier that try to distinguish RT

tasks from NGT tasks, comparing the obtained results with the ones obtained on the real

data in [1].

6.3.1 Linear classifier.

In order to understand how the number of available cells reduces the number of operating

outputs, we applied 100 times the following procedure to all the selected networks:

• random selection of M% of the network neurons (M = 50%,30%,20%,10%,5%);

• training of the output layer connected only to the selected neurons;

• performance evaluation on the testing set;

Networks performance are evaluated in terms of number of operating outputs (outputs with

classification error ≤ 10%). Average performances, computed meaning the results obtained

on the complete set of 200 selected networks, are shown in fig. 6.8 and fig. 6.9. We observed

that networks with 500 neurons globally outperform the networks with 100 neurons (fig. 6.8

and fig. 6.9); for both cases, a clear drop of average performance is visible when the number

of available neurons decreases, while the variance increases due to the decreasing of the

number of available neurons.

The effect of the random selection of network neurons is better represented in fig. 6.10

and fig. 6.11. Such picture show the results obtained for each network for a sample of 80

networks of size 500 and 100, with best and worst performance displayed by bins around

the average values. Comparing the average values, the effect of the random generation of

the network is clear: once the number of available neurons is reduced, the performance

of networks that were performing in the same interval (from 7 to 8 outputs operating) are

pretty different, if only few neurons are available. Performance dispersion vs. the different

combinations of neurons, displayed by bins around the average value, shows that for most

of the networks the same performance can still be obtained with a sufficiently high number

of neurons, if the best neurons are selected. .

6.3.2 SVM classifier.

In order to asses how the number of the available cells and the length of the window for

the rate computing influence the classification performance, when we try to distinguish RT

form NGT basing on the rate activity of the available neurons, we modified the network

architecture substituting the output layer with a block of spike to rate conversion followed

by an SVM classifier with a radial basis functions (RBF) kernel, as shown in fig. 6.12. For

the SVM classifier we adopted the freeware library LIBSVM [6].

The spiking rate for neuron i is computed as the number of spike events in a time slot

of duration W :
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Figure 6.8: Average number of operating outputs measured on 200 networks of 500 neurons
(yellow bars). Maximum and minimum number of operating output are displayed by bins
around the average performance.

Figure 6.9: Average number of operating outputs measured on 200 networks of 100 neurons
(yellow bars). Maximum and minimum number of operating output are displayed by bins
around the average performance.



128 CHAPTER 6. PRIMATE BEHAVIOURAL TASKS MODELLING

Figure 6.10: Average number of operating outputs of different networks of 500 neurons
(yellow bars), measured over 100 random selection of different percentage of available neu-
rons. Maximum and minimum number of operating output for each network are displayed
by bins around the average performance.

Figure 6.11: Average number of operating outputs of different networks of 100 neurons
(yellow bars), measured over 100 random selection of different percentage of available neu-
rons. Maximum and minimum number of operating output for each network are displayed
by bins around the average performance.
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Figure 6.12: Schematic representation of the SVM based classification procedure.

Figure 6.13: Methods employed for rate computing.

Ri(k) = #{f|k ·W ≤ t
(f )
i < (k + 1) ·W}
W

where k = 1, 2, . . . ,
⌊

Trec
W

⌋

(6.19)

where Trec is the epoch duration. In order to model the two different data analysis pro-

cedures and verify some neurophysiologists experimental evidence about the effect of the

window length in classification based on rates, we used two different methods to compute

rate from spike train. As shown in fig. 6.13, in the first method we take a portion or the

whole epoch of interest and compute a rate value for each neuron, obtain a rate vector R̄ .

This method resembles the first data analysis procedure presented in section 3.2. In the

second method we split the whole epoch of interest in not overlapping windows of constant

length, computing a rate value for each neuron, obtain thus a rate vector for each window.

This method resembles the second data analysis procedure presented in section 3.2.

Finally, we applied 100 times on the rate datasets obtained thorough the conversion

methods the following procedure:
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• random selection of M% of the network neurons (M = 50%,30%,20%,10%,5%);

• grid search to tune the SVM classifier parameters C and γ;

• training of the output layer connected only to the selected neurons;

• performance evaluation on the testing set.

For both methods, networks performances were evaluated in terms of percentage number of

correctely classified tasks.

Method one. Average performance of method one for different numbers of available neu-

rons and window lengths are shown in fig. 6.14. Such curves were obtained with 200

networks of size 100, first averaging the results obtained by each network with 100 random

neurons selections and then averaging such mean values above all the networks. Best and

worst performances are displayed by bins around the average values. Like for the linear

classifier, a clear drop of the average performance is noticed when the number of available

neurons decreases. In particular, the effect of the number of available neurons on networks

performance is highlightened in pic.6.16 (gray panel), were the results obtained with a sam-

ple of 50 networks setting w = 30 ms are shown. Like for the linear classifier, the reduction

of the number of available neurons degradates the average performance and increases its

variance.

Best average results were obtained for W = 10 ms; a slight drop of performance as the

window length increases is visible. The effect of the window length for rate computing can

be better evaluated in pic.6.15 (gray panel), were the results obtained by each network are

averaged above 100 random selection of 20 % of all the neurons. Such result seems to be in

contradiction with the experimental evidence presented in some work in literature where it’s

argued that classification accuracy should increase by increasing the length of the window

for rate computing. This contradiction is probably a model limitation due to the dynamic

behaviour of the network chosen to solve the proposed tasks: shor-term memory. In network

with short term memory property the state excited by an inputs sequence tends to vanish as

T → ∞ and therefore, increasing the window length we don’t add any information useful for

classification purposes but on the contrary add more uncertainty about the network state.

Method 2. Average performance of method two for different numbers of available neurons

and window lengths are shown in fig. 6.17. Such curves were obtained with 200 networks

of size 100, first averaging the results obtained by each network with 100 random neurons

selections and then averaging such mean values above all the networks. Best and worst per-

formances are displayed by bins around the average values. Average performance obtained

with method two are generally worst than performance obtained with method one. Such re-

sult was expectable since method two represents a more complex classification problem. In

particular, while for big values of window length (80 ms and the whole epoch) performances

are almost the same, for smaller values performance of method one are sensibly worst. This

is due to the presence of many rate vectors belonging to the last part of the tasks epoch,

were the network memory is fading and classification is therefore more difficult.

Once again a clear drop of the average performance is observed when the number of

available neurons decreases. In particular, the effect of the number of available neurons on

networks performance is highlightened in pic.6.16, were the results obtained with a sample

of 50 networks setting w = 30 ms are shown. By increasing the window length we observed
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Figure 6.14: Average percentage number of correctely classified tasks of method 1, for
different numbers of available neurons and rate computing window lengths. Performances
were measured and averaged on 200 networks of 100 neurons. Maximum and minimum
performance are displayed by bins around the average values.

an increasing of the average performance, until an optimum value is reached. Such value

seems to be dependent by the neurons number: around 80 ms for 50%, 30% and 20% and

around 50 ms for 10% and 5%. The effect of the window length for rate computing can be

better evaluated in pic.6.15, were the results obtained by each network are averaged above

100 random selection of 50 % of all the neurons. Such results are qualitatively similar to

the ones obtained with method one.

6.4 Discussion

The goal of the project presented in this chapter was the devotement of an artificial neural

microcircuit model to support different conclusion derived from an experimental data analysis

conduced on invivo recorded neural activivity of primate monkeys.

The proposed model is based on a liquid state machine approach [24]. The model

includes leaky integrate and fire neurons and chemical synapses models. The design pro-

cedure developed is based on a random generation of the network topology, according to

some biological motivated settings for the main parameters. The proposed model is able to

learn and solve, with a satisfactory level of accuracy, simple abstract representations of the

behavioural tasks performed by real monkeys presented in [2][3].

The aim of this study was the investigation of the effect of some critical parameters in

classification procedure based on the analysis of neural activity measured at the level of

individual cells. Such parameters are the number of simultaneously available cells and the

length of the window used for the spiking rate computation.

The results obtained with the artificial model highlightened the critical role of these

parameters in the success of data analysis and classification procedures based on neural

spike trains. In particular, the performance bound obtained are similar to one observed
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Figure 6.15: Average percentage number of correctly classified tasks of method 1 and
2, for different rate computing window lengths with 50% of network neurons available.
Performance were measured and averaged on 200 networks of 100 neurons.
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Figure 6.16: Average percentage number of correctly classified tasks of method 1 and 2,
for different number of available neurons, with W=30 ms. The performance were measured
and averaged on 200 networks of 100 neurons. Maximum and minimum performance are
displayed by bins around the average values.
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Figure 6.17: Average percentage number of correctly classified tasks of method 1 and
2, for different numbers of available neurons and rate computing window lengths. The
performance were measured and averaged on 200 networks of 100 neurons.

applying the same classification procedure on real data in [1].

Possible developments of this project can include:

• study and comparison of properties of the selected networks;

• investigation of the literature to understand deeply the dynamical properties of the

model and try to overcome to its limitations and model more complex task requiring

longer memory [4][7][8][23][25][21];

• use of biological motivated criteria [26][15] and prior information about how topology

is influenced by leering process[16];

• use of more complex and more biological related neurons models [11];

• use of more complex and more biological related synapses models [10];

Publications

1. A. Palladini, J. Acimovic, M. Hasler: Modeling behavioral tasks to asses visual infor-

mation integration and Motor information encoding in parietal cortex. Proceedings

of the International Symposium on Nonlinear System Theory and Application 2008

(NOLTA 2008). Awarded as best student paper.
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