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“If you try and take a cat apart to see how it works,
the �rst thing you have on your hands

is a non-working cat.”

Douglas Adams





Preface

This work mainly concerns warping techniques for the ma-
nipulation of signals. Our approach on this topic will be

guided by theoretical issues rather than experimental ones. So,
we will not dedicate much space to explain what warping is in
a practical sense. In order to compensate the excess of theory
which will be experienced by the reader in the this work, here
we want to introduce some basic concepts behind frequency
warping in an easy way.

Generically, a signal is described as a measurable quantity
which is able to vary through time and over space. Although
warping could be applied on any kind of signals, as an example
we consider those signals which are intrinsically perceived by
human visual observation, i.e. images. As a signal has to be
measured, the visual information related to a subject which
produces an image can be stored in many ways, determining a
di�erent kind of measure. In modern electronic sensor devices
are employed, in traditional cameras light was stored by a chem-
ical reaction and in humans the storage process is devolved upon
biological sensors. Referring to humans, themeasurement is not
completely carried out by the eyes, since the light information
is reported to the brain which makes some further elaborations
before memorizing it in synapses.

Since signals concern the transport of information, or rather
the communication through time and space, before the inven-
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iv Preface

Figure 1: Escher’s lithograph “Print Gallery” (1956). M. C. Escher
“Prentententoonstelling”© 2003CordonArt-Baarn-Holland. All rights
reserved.

tion of cameras humans have developed alternative methods
to store and communicate images beyond the time and place
where they were living. Of course we are talking about �gura-
tive art. �e measurement performed by a man and reported
on a painting or any other kind of �gurative representation
shows the importance of the way the perceived information is
weighted according to speci�c patterns which are enclosed in
the measurement instrument. Figurative art taught that, since
there is not a single way to represent reality, then there is not a
single way to observe reality. Works of art are always a�ected
by a kind of signal processing, including simple �ltering oper-
ations or complicated non-linear e�ects. Furthermore, we can
notice that during the last centuries, �gurative art deliberately
abandoned the aim of giving a faithful representation of reality
and expressed the willing of going beyond what can be directly
experienced by human senses.
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Figure 2: Warping Grid used by Escher to draw the “Print Gallery”.

In this background, we consider the work ofM. C. Escher. In
his prints he took advantage of some concepts akin tomathemat-
ics, like self-reference, in�nite and recursive processes. In par-
ticular, recursion is themain concept in his print titled the “Print
Gallery”, which is reported in �gure 1. An accurate description
of the mathematical structure of this work can be found in [1].
�e print have been drawn starting from an unwarped image,
representing a man observing a print which illustrates himself
watching the same print recursively (this recursion is called
Droste e�ect). On this image, a warping have bee applied
according to grid which is shown in �gure 2. �e new warped
image is created by making the tales of a square grid built on
the original image correspond to the tales on the new grid. �e
performed operation is more than a deformation, since the grid
is designed such that it contains a progressive scaling operation
which makes the recursive spaces reconnect together. But apart
from the scaling, we want to focus on the global e�ect that the
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author’s point of view has given to the content. �anks to the
grid, the tales of the image have been re-weighted according
to a new sampling, so that some details which were not visible
and recognizable in the original version have been increased in
importance. A very interesting consideration to be done is that
trough the warping operation there is no increase in the global
information contained in the picture. Instead, the way the space
of observation (the square frame) is split among the various part
of the image has been modi�ed.

It is quite intuitive that the problem of recovering the orig-
inal image, which has been treated in [1], is actually the same
problem as drawing the warping image. In fact, one can assume
that the image in �gure 1 is the original one, and then draw a
new image through a grid which nullify the e�ect of the grid in
�gure 2.

�rough this example, we have already illustrated some of
the basic properties and concepts behind thewarping technique.
Possible aims of such an operation can be easily imagine by
comparison with the shown example. For instance, one could
need to exalt some parts of a signal despite to others in order
to perform an accurate feature extraction. �is approach can
be categorized as a direct application of a warping technique,
since the starting point is the unmodi�ed signal. Otherwise,
it could be necessary to remove the e�ects of an acquisition
process which weights non-uniformly the di�erent parts of the
incoming signal. �is approach would be labeled as an inverse
use of a warping technique, since the starting point is an already
warped signal. As we suggested before, there is an intrinsic
duality between the direct and the inverse approach.

�e possibility of recovering the original signal by the war-
ped one, that is the capability of de�ne an inverse unwarping
which exactly inverts the direct one, is a very important issue
when dealing with warping technique from a mathematical
point of view. Invertibility is the major problem which will be
considered in this work. Furthermore we will cope with the way
the warping operation should to be designed, which means, by
comparisonwith the Escher’s print example, what kind of curves
should compose the grid in �gure 2.

We �nally report other hints suggested from Escher’s litho-
graph. Although these consists in conceptual observations ra-
ther than mathematical ones, they reveal to make sense in
hindsight. We notice that the center of 1 was le� unpainted. We
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also learn from [1] that the unwarped picture used by Escher was
not complete, since the unpainted spot gives rise to an empty
spiral. �ese observations can be translated to our perspective
in the following metaphorical meaning. When warping a signal
from a �nite-dimensional domain to another �nite-dimensional
one (i.e. a domain having an upper limited resolution), some
information is necessarily discarded. Maybe a perfect recon-
struction could be achieved anyway, but it involves something
more than merely inverting the steps employed for warping.





Contents

Preface iii

Introduction xiii

I �eoretical Issues onWarped Transforms 1

1 Fourier andWarping Operators 3

1.1 Fourier Operators . . . . . . . . . . . . . . . . . . 4
1.2 Frequency Warping Operators . . . . . . . . . . . 12
1.3 Conclusions . . . . . . . . . . . . . . . . . . . . . 23

2 �e Frequency WarpingMatrix 27

2.1 A Frequency Warping Map Example . . . . . . . 28

2.2 Sparsity of a Warping Matrix . . . . . . . . . . . . 30
2.3 Time-Frequency Sampling . . . . . . . . . . . . . 33
2.4 Smooth vs. non-Smooth Maps . . . . . . . . . . . 35
2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . 36

II Algorithms for Frequency Warping 41

3 Nonuniform Fourier Transform 43

3.1 Introduction to NUFFT . . . . . . . . . . . . . . . 44

ix



x Contents

3.2 Problem Statement . . . . . . . . . . . . . . . . . 46
3.3 Interpolation Approach . . . . . . . . . . . . . . . 47
3.4 SVD-based Proposed Algorithm . . . . . . . . . . 49
3.5 Performances . . . . . . . . . . . . . . . . . . . . . 53
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . 55

4 Factorization of the Aliasing Matrix 59

4.1 Problem Statement and Methodology . . . . . . . 60
4.2 Heuristic Model of the Tails Matrix . . . . . . . . 61
4.3 Modeling of the Aliasing Matrix . . . . . . . . . . 65
4.4 Fast Warping Transforms . . . . . . . . . . . . . . 72
4.5 Performances . . . . . . . . . . . . . . . . . . . . . 78
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . 81
4.A Mathematical Proofs . . . . . . . . . . . . . . . . 82

5 Frame Bounds Estimation 89
5.1 Discrete Frames . . . . . . . . . . . . . . . . . . . 90
5.2 Frame Bounds in Frequency Warping . . . . . . . 92
5.3 Error Estimation . . . . . . . . . . . . . . . . . . . 93
5.4 Experimental Results . . . . . . . . . . . . . . . . 97
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . 97

III Applications on Ultrasound Signals 101

6 Ultrasonic Guided Waves 103
6.1 Introduction to Guided Waves . . . . . . . . . . . 104
6.2 Dispersion-matched Warpograms . . . . . . . . . 107
6.3 Numerical and Experimental Results . . . . . . . 115
6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . 120

Conclusions 123

Bibliography 127







Introduction

During the last years the relevance of time–frequency trans-
formations has widely grown in signal processing. �ese

techniques are commonly addressed to give a new representa-
tion of a source signal. A time-frequency transformation could
be adaptively de�ned in order to match the way the information
is recorded in the source signal. Alternatively, it could be
designed to obtain a sparse representation for compression or
denoising applications. In some cases the two purposes could
match, i.e. the sparse representation also conveys some of the
source characteristics and implements a feature extraction. So,
the ability of generating a �exible tiling of the time-frequency
plane is a major issue. Many transformations have been intro-
duced in order to accomplish this task, including the short time
Fourier transform, the wavelet transform, �lter banks and all
their variations andmutual combination addressed to generalize
their intrinsic characteristics [2, 3]. Nevertheless, such transfor-
mations have some restrictive properties which make them not
suitable in some applications. In particular, some requirements,
like fast computation and orthogonality, limit the degrees of
freedom in choosing the proper time-frequency representation.

In order to approach the aim of an arbitrary time-frequency
tiling, the application of a preliminary invertible transformation
to reshape the frequency axis can be considered [4, 5]. �is
transformation is referred as frequency warping. �e feature
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de�ning how the frequency axis is reshaped is the frequency
warping map.

�e application of frequency warping as a way for general-
izing existing time-frequency transforms has been introduced
some years ago in [6–8]. However, from a mathematical point
of view it has been previously modeled in many ways.

In [9, 10] frequency warping has been described as a non-
stationary resampling in time of the input signal performed by
sampling the outputs of an all-pass �lter chain. �e result-
ing transformation, close to the Laguerre transform, su�ers of
strong limitations in terms of allowed frequency maps. In fact,
Laguerre maps are obtained by considering the composition
between a sigmoidal function, actually the arctangent function,
and its inverse multiplied by a scale parameter. �is param-
eter represents the only degree of freedom and might not be
su�cient as a design parameter in many applications. Later,
frequency warping has been modeled as a projection on a set
of frequency and amplitude modulated functions [11], but as far
as applications are concerned, it was not taken advantage of this
model and only Laguerre functions were applied.

From a computational point of view, frequency warping can
be modeled as the composition of an inverse Fourier transform
and a warped Fourier transform, which can be can be computed
by a nonuniform Fourier transform [12–15]. �is approach is
more general since it allows to design the warping map in an ar-
bitrary way, potentially perfectly suited to the target application.
However, being based on discrete-frequency operations, it could
su�er from inaccuracy.

Moreover, it would be desirable to de�ne frequency warping
as an orthogonal operator, so that, if a further orthogonal trans-
formation is applied in cascade, the whole one would still be
orthogonal. However, as an intrinsic feature, frequency warping
always returns a redundant representation of the source signal.
For this reason, the requirement of making it be orthogonal can
not be ful�lled. Nevertheless, if proper de�ned, it can still be
accurately inverted by applying the adjoint operator of the direct
transform. �is property makes frequency warping belong to
the class of frames [16, 17].

In this work we deal with the problem of de�ning frequency
warping transforms such that the frequency map can be de-
signed in a �exible way, like by a piecewise approach, and the
property of being inverted by the adjoint operator is satis�ed up
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to a predetermined accuracy. In particular, we focus on how the
features of the frequencywarpingmaps a�ect the reconstruction
accuracy, so that designing rules can be inferred for getting an
optimal design. Arbitrary maps could have singularities, hence,
for the sake of generality, non-smooth functions are considered.

Our ultimate goal is to introduce a mathematical model
and a fast and accurate computation algorithm for frequency
warping transforms referred to non-smooth frequency map.
�is result is obtained by extending the modeling based on
nonuniform Fourier transform by the introduction of an alias-
ing suppression technique [18–20].

�ework is organized in three parts. Part I is dedicated to the
introductions of target operators and transforms. In particular
chapter 1 has a strict and rigid mathematical approach, while
chapter 2 focuses on more practical issues. In this part there is
no original contribution but the point of view and the mathe-
matical setting, which is actually the base for successive further
developments.

Part II represents the core of the core of the entire work. Ba-
sically, it concerns the computationalmodel for a practical use of
the operators which have been theoretically introduced in part I.
More precisely, an original contribution for the computation of
nonuniform Fourier transform is given in chapter 3 which is
complementary to the factorization of the aliasing operator in
chapter 4, both involved in the modeling of frequency warping.
Moreover, a analytical characterization of frequency warping in
terms of reconstruction accuracy is given in chapter 5. Most of
the contents of this part represents an original and innovative
contribution.

Part III presents refers to the �eld of ultrasonic waves prop-
agation, where frequency warping has been e�ciently applied
as it perfectly matches the physical behavior of dispersive mode
propagation. Chapter 6 explains how the mathematical model
is transposed over the physical problem and gives some details
about the experimental setup. Although the application of
frequency warping on this topic is still in a preliminary stage,
it reveals to be very promising and innovative.

�e entire work, considered from a global perspective, con-
cerns a wide range of problems and therefore employs a lot
of mathematics. Although an e�ort has been done in order
to uniform the notation and the conventions about the repre-
sentation of signals and operators, the work is not completely
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homogeneous. Moreover, it has been tried to limit the interde-
pendencies among the di�erent parts and chapters, nevertheless
they maintain a certain degree of correlation. So it is strongly
recommended to approach the reading in a linear fashion from
the beginning to the end.







Part

I
�eoretical Issues on

Warped Transforms





Chapter

1
Fourier andWarping

Operators

This chapter will present the notation which will be used in
the rest of the work. More in details, we will refer to either

time-continuous and time-discrete signals and we will provide
de�nitions for mathematical operators applied to both of them.
In particular, wewillmainly deal with time-frequency operators,
so a major space will be dedicated to �xing the notation and
the conventions about the Fourier transform. Finally we will
introduce the frequency warping operator, which will be the
starting point for the further developments of the rest of the
work.

Both Fourier and warping operator will be presented in
the continuous-time, discrete-time continuous-frequency and
discrete-time discrete-frequency cases. A particular attention
will be dedicated to invertibility and reconstruction accuracy.
In this framework we will recall the sampling theorem and the
duality between time and frequency domains. As a conclusion,
we will introduce a additive decomposition of the time-discrete
frequency warping operator in its frequency sampled approxi-
mation and an aliasing term. Both these operators will be deeply
discussed in next chapters.

As a convention, signals will be represented in lowercase
italic letters, while operators will be represented by boldface up-
percase letters. We deliberately introduce an ambiguity between
the representation of the operators and their kernels.

3



4 Chapter 1. Fourier andWarping Operators

1.1 Fourier Operators

We start by reviewing the Fourier transform and its main prop-
erties, which are supposed to be well-known to the reader. So,
the purpose of this section is to present an approach based on
operators for the derivation and description of Fourier trans-
forms. �is may be useful to suggest a comparison to linear
algebra, which will be deeply exploited in this work. Moreover,
this short summary on Fourier transforms may serve as an
exercise to get acquire familiarity with the operators approach.

From a practical point of view, we �rst introduce the contin-
uous Fourier transform, then we derive the Fourier transform
for discrete-time signals and �nally the discrete transform in
both time and frequency. �e aim is to maintain a reference
to the continuous operator in the de�nition of the discrete
transforms, so that, whenwarpingwill be applied, the derivation
to discrete case will be straightforward.

1.1.1 Continuous-Time Operators

In order to illustrate this representation, we start by considering
the Fourier F transform applied on a continuous signal s:

F ∶ L2(R) → L2(R), s(t) ↦ ŝ( f ) = ∫
R

s(t)e− j2πt f dt

so, the operator kernel is simply given by:

F( f , t) = e− j2πt f .
In compact operator notation the Fourier transform is repre-
sented by:

ŝ = Fs
�e adjoint operator will be represented by the † subscript:

F† ∶ L2(R) → L2(R), ŝ( f ) ↦ [F†s](t) = ∫
R

ŝ( f )e− j2πt f d f
and the operator kernel is obtained by complex conjugating F .
�e Fourier operator is unitary, i.e. its inverse operator is given
by the adjoint one:

F−1 = F†
which is easily veri�ed by considering:

[F†F](t, τ) = ∫
R

e− j2πt f e j2πτ f = ∫
R

e− j2π(t−τ) f = δ(t − τ)
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that, in compact notation, is:

F†F = I
where I is the identity operator.

1.1.2 Nyquist�eorem Revisited

Now we want to consider discrete-time signals. In order to do
this, we �rst introduce the sampling operator D (where D stays
for Delta):

D ∶ L2(R)→ ℓ2(Z), s(t)↦ [Ds](n) = ∫
R

s(t)δ(t − n)dt
whose kernel is simply given by:

D(n, t) = δ(t − n).
In order to transformadiscrete-time signal, the Fourier operator
has to be sampled as well, so that we should consider:

[FD†](t, f ) = ∫
R

e− j2πt f δ(t − n)dt = e− j2πn f .

Nowwe suppose that the considered signal is band-limited, with
bandwidth equal to 1/2, then the sampling operation does not
cause a loss in information. Sampling just cause a periodic
repetition in the frequency domain. Let us show this well-
known property by the operator notation. �e sampling can be
represented in the frequency domain as:

FD†Ds

where the operator D†D can be explicitly computed:

[D†D](t, τ) = ∑
n∈Z

δ(t − n)δ(τ − n) = δ(t − τ)∑
n∈Z

δ(t − n)
which is actually a diagonal operator whose diagonal is given
by a Dirac comb. We remind that the Dirac comb can be
equivalently represented by its Fourier series:

∑
n∈Z

δ(t − n) = ∑
n∈Z

e j2πnt
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so we get:

[FD†Ds]( f ) = ∫
R

e− j2πt f ∑
n∈Z

e j2πnt s(t)dt
= ∑

n∈Z
∫

R

e− j2πt( f−n)s(t)dt = ∑
n∈Z

ŝ( f − n).
We can introduce the periodic repetition operator R such that:

R ∶ L2(R)→ L∞(R), ŝ(ξ)↦ [Rs]( f ) = ∫
R

ŝ(ξ)∑
Z

δ(ξ− f +n)
whose kernel is represented by:

R( f , ξ) = ∑
n∈Z

δ(ξ − f + n).
�is equivalence can be �nally set:

FD†D = RF
which means that in order to invert the sampling operation
we must be able to invert the periodic repetition. Normally
periodic repetition is not an invertible operation, unless the
considered signal is band-limited. In particularwe are interested
in baseband signals, so we just suppose that the input signal
has non-zero amplitude only in the interval [−1⁄2 , 1⁄2]. By this
hypothesis, we can invert the periodic repetition by windowing
the spectrum with a rectangular �lter H:

H( f , ξ) = δ( f − ξ)[H(ξ + 1/2)− H(ξ − 1/2)]
whereH is theHeaviside function. So, in case of baseband band-
limited signals, the operator:

F†HFD†D

behaves like an identity operator. In order to specify this result,
we �rst consider:

[F†HF](t, τ) = ∫
R

e j2π f t[H( f + 1/2)− H( f − 1/2)]e− j2π f τd f

= ∫
1⁄2

−1⁄2
e j2π f(t−τ)d f

= sinc(t − τ)
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and then de�ne the resulting operator as:

S(t, τ) = sinc(t − τ)
so that, the global operation performed on the input signal s can
be represented as:

SD†D.

Now we notice that SD† can be written as an interpolator:

SD†(t, n) = ∫
R

sinc(t − τ)δ(τ − n)dτ = sinc(t − n).
It results that this inversion procedure gives as output the input
signal samples interpolated by a sinc function, so it recovers the
original signal if the signal could actually be expressed as a linear
combination of shi�ed sinc functions. Finally we consider this
equality:

SD†DS = F†HRHF.

SinceHRH is equal toH, we conclude that:

SD†DS = S. (1.1)

whichmeans that, given a generic signal, the subspace identi�ed
by S can be recovered a�er sampling by applying SD†.

1.1.3 Discrete-Time Fourier Operators

A�er having explained how to pass from continuous to discrete
domain, we can deal with discrete-time signals. So, from this
point forward, s will represent a sequence in ℓ2(Z). �e Fourier
transform has to be rede�ned for the new input domain. In
particular, it could be desirable to de�ne such that the inverse
operator is equal to the transpose one.

Let us apply a sampling on both sides of equation (1.1):

DSD†DS = DS

which tells us that the subspace identi�ed by DS is invariant
respect to the application of DSD†. Since we consider as input
ℓ2(Z), which is generated by DS, the operator to evaluate is
DSD†:

[DSD†](m, n) = ∫
R

δ(t − n)∫
R

sinc(t − τ)δ(τ −m)dτdt
= ∫

R

δ(t − n)sinc(t −m)dt
= sinc(n −m)
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whichmeans thatDSD† is equal to the identity operator respect
to ℓ2(Z):

DSD† = I
therefore the Fourier operator and its adjoint can be put a�erD:

DSF†FD† = I.
�e direct Fourier transform for discrete-time signals can be
de�ned as follows:

FD† ∶ ℓ2(Z) → L∞(R), s(n)↦ ŝ( f ) = ∑
n∈Z

s(n)e− j2πn f (1.2)

whose kernel is merely given by:

[FD†]( f , n) = e− j2πn f

�e inverse operator can be de�ned by:

[FD†]−1 = DSF† = DF†H
such that:

[FD†]−1 ∶ L2(R)→ ℓ2(Z), ŝ( f ) ↦ s(n) = ∫ 1

0
ŝ( f )e j2πn f dt

where the interval [0, 1] has been equivalently considered rather
than [−1⁄2 , 1⁄2].

We point out that, in the inverse operator, the purpose of
operator DS a�er operator F† is to reduce a Dirac comb of this
kind:

∑
n∈Z

s(n)δ(t − n)
whose energy is in�nite, to a �nite energy sequence trough
substituting the Dirac impulses by Kronecker symbols. So the
Fourier transform of a sequence is intrinsically periodic, the
windowing operation performed by operator H accomplishes
only computational needs. For this reason, we prefer to rep-
resent the Fourier transform of a discrete-time signal and its
inverse by the operator described above.

Nevertheless, it could be convenient as well to de�ne the
Fourier transform so that the inverse operator is given by its
adjoint. In order to do this, we consider:

DF†HFD† = DF†HHFD† = [DF†H][HFD†]
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and since H† = H, we could set:

HFD† ∶ ℓ2(Z)→ L2([0, 1)), s(n)↦ ŝ( f ) = ∑
n∈Z

s(n)e− j2πn f dt

(1.3)
as an alternative de�nition of Fourier transform. �e kernel is
obviously the same as in the previous de�nition, since operator
H only a�ects the codomain. Independently on the adopted
de�nition, the discrete-time operator will be referred as FD.

From a practical point of view, considering the entire fre-
quency axis as output domain rather than a single period, does
not imply substantial di�erences. Instead, from a theoretical
point of view, it will have important implications when fre-
quency warping will be applied. In fact, when an operator is
applied on the frequency domain, even if the axis is restricted
to a single period, the periodicity has to be taken into account
for rightly modeling the e�ects of the considered operator and
potentially for designing it according to someoptimality criteria.

1.1.4 Discrete Fourier Operator

Now we want to introduce discrete operators in both time
and frequency domains. �e approach which will be followed
is quite the same as the one used to introduce discrete-time
operators.

In time domain we considered a sampling step equal to 1.
Because of it, the frequency domain period is equal to 1 as well.
So, it is quite evident that in the frequency domain we must
consider a sampling step smaller than 1. Moreover, in order to
maintain periodicity, the sampling stepmust be contained in the
period an integer number of times. �erefore we will assume
that the sampling step is equal to 1/N , or rather the period is
sampled in N di�erent points. �e sampling operator has to
modi�ed so that it performs this task and will be represented
asDN :

DN ∶ L
∞(R) → ℓ∞(R),

ŝ( f ) ↦ [DN ŝ](k) = ∫
R

ŝ( f )δ( f − k/N)d f
whose kernel is given by:

DN(k , f ) = δ( f − k/N).



10 Chapter 1. Fourier andWarping Operators

Now, we apply this sampling operator on the le� of the Fourier
operator and on the right of the adjoint one:

DSF†D†
NDNFD

† . (1.4)

�e operatorD†
NDN roughly behaves like the operatorD†D, that

is:

[D†
NDN]( f , ξ) = ∑

k∈Z

δ( f − k/N)δ(ξ− k/N)
= δ( f − ξ)∑

k∈Z

δ( f − k/N)
again, the Dirac comb can be represented by:

∑
k∈Z

δ( f − k/N) = N∑
k∈Z

e j2π f kN

so that, from F†D†
NDNF we get:

[F†D†
NDNF](t, τ) = ∫

R

e j2π f tN∑
k∈Z

e j2π f kN e− j2π f τ

= N∑
k∈Z
∫

R

e j2π f(t−τ+kN) = N∑
k∈Z

δ(t − τ + kN).
�e resulting operator performs a repetition with step equal
to N , In order to complete the chain (1.4), we still miss the
D† operator on the right and the DS operator on the le�. By
applying D† we get:

[F†D†
NDNFD

†](t, n) = ∫
R

N∑
k∈Z

δ(t − τ + kN)δ(τ − n)dτ
= N∑

k∈Z

δ(t − n + kN)
while by applying [DS](m, t) = sinc(t −m) on the right we get:

[DSF†D†
NDNFD

†](m, n) =
∫

R

sinc(t−m)N∑
k∈Z

δ(t−n+kN)dt = N∑
k∈Z

sinc(n−m−kN)
where the sinc functions, being sampled on integer values, be-
haves like Kronecker symbols. �e obtained operator represents
a discrete periodic repetition which will be referred as RN :

RN = N−1DSF†D†
NDNFD

† .
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As expected, the sampling in the frequency domain causes
a periodic repetition in discrete time domain. In order to avoid
loss in information, the following operator should maintain the
input signal unchanged:

HNRN

whereHN is suitable rectangular discrete-timewindowof length
equal to N . So, the following statement is surely satis�ed:

HNRNHN s = HN s

and we infer that the signal must be time-limited to an interval
equal or smaller than N samples.

By considering as input domain the space generated byHN ,
we can now de�ne the discrete Fourier transform as:

DNFD
† ∶ RN → ℓ∞(Z), s(n)↦ ŝ(k) = ∑

n∈ZN

s(n)e− j2πnk/N
where ZN is a set of N consecutive integers. �e inverse trans-
form is expressed by:

[DNFD
†]−1 = N−1DSF†D†

N = N−1DF†HD†
N

and it acts on the discrete Fourier transformed signal ŝ as fol-
lows:

[DNFD
†]−1 ∶ ℓ∞(Z)→ R

N ,

ŝ(k)↦ s(n) = N−1 ∑
k∈ZN

ŝ(k)e j2πnk/N .
Here, the setZN is not necessarily the same set used in the direct
transform. A standard choice is to consider for both the sets:

ZN = {0, 1, . . . ,N − 1}
but, as said before, other choices are allowed.

Again, we could rede�ne the direct Fourier operator such
that the output domain is limited in frequency, i.e. RN :

DNHFD† ∶ RN → R
N , s(n)↦ ŝ(k) = ∑

n∈ZN

s(n)e− j2πnk/N
whose inverse is represented by its adjoint multiplied by the
constant being the input dimension:

[DNHFD†]†[DNHFD†] = NIN
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where IN is the identity operator for a R
N .

�e discrete Fourier transform operator will be represented
as FDND , either if the codomain is the entire frequency axis or a
single period.

1.2 FrequencyWarping Operators

In this section we introduce the warping operators. �e pre-
sentation follows the �ow which has been used for the Fourier
operators. So, we start from the continuous case, then introduce
the sampling of the time axis and �nally derive the the sampling
of both time and frequency axis. Preliminarily, the warping of a
generic axis as an intrinsic transformation will be considered,
then it will be transposed to the frequency axis. Even if the
warping is performed in the frequency domain, the frequency
warping operator is de�ned so that it acts in the time-domain.
So, the introduced deformation is not directly observable and
recognizable in the time-domain.

1.2.1 Unitary Operators

Roughly speaking, a unitary operator is an operator such that
its inverse is given by the adjoint one. Unitariness is always
a desirable property for an operator, since it carries out some
advantages which can be very important in signal processing.
More in details, an operatorU is said to be unitary the following
three condition are satis�ed:

• Linearity.
Given two constants a, b ∈ R and two functions or vectors
s1 and s2 , linearity is satis�ed if:

U[as1 + bs2] = aUs1 + bUs2
• Suriectivity.
�is property, also said non-singularity, ensures that no
input function is transformed in the 0 function:

Us = 0 ⇔ s = 0
• Isometry.
�is property consists in preserving distances:

∥Us∥ = ∥s∥
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Linearity is normally satis�ed for most of the operators which
are used in time-frequency analysis. An example of operator
which does not verify the surjectivity property is a �lter, which
by de�nition nullify all the information carried by speci�ed
functions or vectors. Examples of transformations which ful�ll
the isometry property are the time-shi�, the frequency-shi� or
modulation and the scaling.

By considering the isometry property, for ∥Us∥we get:
∥Us∥ = [Us]†[Us] = s†U†Us

so that, the isometry is satis�ed if and only if:

U−1 = U† . (1.5)

which is the property announced at the beginning. We remind
that in the previous section, when we de�ned the Fourier op-
erators, we always provided a de�nition satisfying the unitary
property. As far as warping is concerned, we will attempt to the
same as for Fourier operators.

Since the norm of s is given by the square root of the scalar
product between s and itself, it follows that the scalar product
between two functions or vectors s1 and s2 is invariant respect
to the application of a unitary operator:

[Us1]†[Us2] = s†1U†Us2 = s†1 s2 .
�is formulation suggests the way a unitary operator can be
used. Let us suppose to have another unitary operator, for
example the Fourier operator F. �e composed operator FU is
still unitary, since:

[FU]†[FU] = U†F†FU = U†U = I.
So, the analysis performed by F can be modi�ed through the
application of U, which could be applied either to the right
F or to le� of the input function or vector. �e �rst option
would involve a modi�cation on the operator F, so it may be
not completely painless. �erefore, it should be much more
convenient to apply it preliminarily on the input signal. Wepoint
out that, if the considered operator performs for example a shi�
towards le� and we want to obtain such a modi�cation on the
bases vectors, the transformation to be applied on the signal is
the inverse one, or rather the adjoint one, In fact, if we force U
to act on F rows from the right, we get:

FUs = [[FU]†]†s = [U†F†]†s. (1.6)
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1.2.2 Continuous Warping Operator

Here we want to introduce the concept of deformation of a
continuous function. Intuitively, to get a deformation of a
function one has to introduce a deformation on its axis. �is
means that we must set a function w, such that it maps the old
axis x to the new axis w(x):

w ∶ R → R, x ↦ w(x).
In previous sections we o�en focused on invertibility. To get an
invertiblewarping operator, the functionwmust be an invertible
function, that is:

ẇ > 0 a.e . ⇒ ∃w−1 , w−1(w(x)) = x (1.7)

where ẇ represents the �rst derivative of w while w−1 represents
the functional inverse. Starting from w, we introduce the trans-
formation which substitutes the axis x of an input function s(w)
by w(x). �is is actually the composition of s and w:

Ws = [s ○w](x) = s(w(x)).
�e kernel of this operator can be described as follows:

W(x , y) = δ(w(x) − y)
in fact:

[Ws](x) = ∫
R

δ(w(x) − y)s(y)dy = w(s(x)).
�is operator is candidate to become the warping operator. To
be elected, it must be linear, surjective and isometric. �e �rst
property is straightforward:

W[as1 + bs2] = aWs1 + bWs2 a, b ∈ R.

Surjectivity is guaranteed by (1.7). In fact, being s equal to 0
only on certain intervals or points, it is transformed in the zero
function only if the composition with w makes s(w(x)) return
the only the zero values of s(x). �is is impossible, since w(x),
having positive derivative, maps x onto itself.

To verify the isometry property, we apply the adjoint opera-
tor in order to recover the identity:

[W†W](z, y) = ∫
R

δ(z −w(x))δ(w(x) − y)dx
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then we should set the following integration variable change:

w(x) = ξ ⇒ ẇ(x)dx = dξ ⇒ dx = 1

ẇ(w−1(ξ))dξ (1.8)

which gives:

[W†W](z, y) = ∫
R

δ(z − ξ)δ(ξ − y) 1

ẇ(w−1(ξ))dξ
= 1

ẇ(w−1(z))δ(z − y).
So, the isometry property is not veri�ed, but this negative result
suggest us how to modify the expression of W. �e integral
should contain a factor equal to ẇ(x), so that, by posingw(x) =
ξ, ẇ(x)dx would be simply substituted by dξ. �erefore we set:

W ∶ L2(R)→ L2(R), s(y)↦ [Ws](x) =√ẇ(x)s(w(x))
whose kernel is:

W(x , y) =√ẇ(x)δ(w(x)− y).
Now the isometry property is easily veri�ed:

∥Ws∥2 = ∫
R

ẇ(x)s2(w(x))dx = ∫
R

s2(ξ)dξ = ∥s∥2
where the above substitution (1.8) has been used.

Now we want to focus on the inverse operator W−1 . As we
veri�ed, it can be expressed by the adjoint operator. Anyway,
we did not take advantage of the functional inverse w−1 , which
could serve as a mapping function as well. So we consider:

W̃(z, x) =√ẇ−1(z)δ(w−1(z) − y)
which, combined withW, gives:

[W̃W](z, y) =∫
R

√
ẇ−1(z)ẇ(x)δ(w−1(z)− x)δ(w(x) − y)dx

=
√

ẇ−1(z)ẇ(w−1(z))δ(w(w−1(z)) − y)
= δ(z − y)

where we exploited (1.8) for the expression of ẇ−1 . Finally we
obtained the identity operator, which means that:

W̃ =W† =W−1 .



16 Chapter 1. Fourier andWarping Operators

1.2.3 Continuous Frequency Warping Operator

Now we want to apply the continuous warping operator W

in order to get a deformation of the frequency axis through
an operator to be used in the time-domain. So, basically, the
operator has to be applied between a Fourier transform and an
inverse Fourier transform. �is operator will be referred asWF ,
where the subscript points that the warping is executed in the
transformed domain. We get:

WF = F†WF.

Before going on computing its kernel, we introduce the interme-
diate operator FW :

FW =WF

whose kernel is given by:

FW( f , t) = ∫
R

√
ẇ( f )δ(w( f ) − ξ)e− j2πξtdξ

= √ẇ( f )e− j2πw( f)t .
FW is still a unitary operator, being the composition of unitary
operators. So,WF is represented as:

WF = F†FW .

having the following kernel:

WF(t, τ) = ∫
R

√
ẇ( f )e− j2πw( f)τ e j2π f td f

= ∫
R

√
ẇ( f )e j2π( f t−w( f)τ)d f

and the operator can be formally de�ned as:

WF ∶ L
2(R)→ L2(R), s(τ)↦ [WFs](t) =

= ∫
R

s(τ)∫
R

√
ẇ( f )e j2π( f t−w( f)τ)d f dτ.

We point out that this operator, involving continuous operation,
can not be analytically computed for a generic signal s, since, on
the other hand, not even the continuous Fourier transform of a
generic signal can be analytically performed.
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We underline that WF is still a unitary operator. Another
thing to be taken into account is the shape to be given to the
warping function w. Since we normally deal with real input
signals, it may be required that the output is real as well. So, this
requirement must be imposed on the shape ofw. Intuitively, be-
ing the Fourier transformed of a real signal symmetric respect to
the origin, we should impose that this symmetry is maintained
a�er the application of frequency warping. In a simpler fashion,
we can impose that the real part and the imaginary part of the
operator FW kernel are even and odd respectively:

FW( f , t) = FW
∗(− f , t)√

ẇ( f )e− j2πw( f)t = √ẇ(− f )e j2πw(− f)t
which is veri�ed if:

w( f ) = −w(− f ). (1.9)

that is, w must be an odd function in order to make WF trans-
form a real signal in a real signal. Since w is also an increasing
function, it follows that the origin of the frequency axis is a �xed
point of the w map, that is w(0) = 0.
1.2.4 Discrete-Time Frequency Warping

For discrete-time signals, the procedure to be used to obtain the
corresponding frequency warping operator is the same as for
the continuous time case. �e warping operator has to be put
between a Fourier transform and an inverse Fourier transform.

As far as the Fourier transform of a discrete-time signal is
concerned, we can choose between de�nition (1.2) and (1.3). In
order to maintain the entire frequency axis as codomain, we
choose the �rst de�nition, so that:

WFD = DSF†WFD† = DSWFD
†

is the target operator. �e subscript FD stays to represent that
W is enclosed between a Fourier transform and a passage to a
sampled domain.

Obviously, the warping map w has to be properly rede�ned
in order to adapt to the periodicity of the Fourier transform of
discrete-time signal. More precisely, we require the operator
DS on the right not to cause loss of information, or rather, we
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want WFD to give as output a sequence of Dirac impulses. To
get this result, the warping map has to be de�ned as a function
respecting conditions (1.7) and (1.9) and in addition, it must
preserve periodicity. So, the e�ect ofWFD† is:

[WFD†s]( f ) =√ẇ( f ) ∑
n∈ZN

s(n)e− j2πnw( f)
and we must impose:

[WFD†s]( f ) = [WFD†s]( f + k) k ∈ Z

which can be rewritten as:√
ẇ( f )e− j2πnw( f) =√ẇ( f + k)e− j2πnw( f+k) .

We remind that a complex exponential is a periodic function
whose period is equal to j2π, so we set:

w( f ) = w( f + k)+ nk k , nk ∈ Z

which also satis�es the equivalence of the square root factors.
From the above equation, we derive:

w(k + 1) −w(k) = nk+1 − nk

with n0 = 0 since w(0) = 0. Moreover, limited to the interval[0, 1],w has to be an invertible map, so for surewe havew(1) = 1.
�en it follows:

w( f + k) = k +w( f ) k ∈ Z.

We also remind the property (1.9), which causes:

w( f ) = −w(− f ) = −w(− f + 1) + 1
where, by posing f = 1/2, we get:

w(1/2) = −w(−1/2 + 1) + 1 ⇒ w(1/2) = 1/2.
Finally, we conclude that in the discrete-time case, the warping
map is designed such that it has an in�nite number of �xed
points in (k , k)with k ∈ Z. In addition, if the resulting operator
transforms real signals into real signals, than the map also has
�xed points in (k+ 1/2, k+ 1/2)with k ∈ Z and, if considered in
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the interval [k , k + 1], it is antisymmetrical respect to the point
k + 1/2.

Now we can give the formal de�nition ofWFD :

WFD ∶ ℓ
2(Z) → ℓ2(Z), s(n)↦ [WFDs](m) =

= ∑
n∈Z

s(n)∫ 1

0

√
ẇ( f )e j2π(m f−nw( f))d f

where the kernel ofWFD can be actually considered as a matrix
of in�nite dimension:

WFD(m, n) = ∫ 1

0

√
ẇ( f )e j2π(m f−nw( f))d f . (1.10)

Again, we point out that the obtained operator is unitary,
since it can be inverted by the adjoint operator. Although
having discrete input and output, the operator WFD can not be
practically used. �is is due to two facts:

• the computation of WFD entries requires the calculation
of an integral;

• input and output can not be in�nite-dimensional.

�e second issue can be solved by limiting the input and the
output domain in a proper way, trying to preserve the unitary
property. Instead, the �rst issue has to be solved by �nding an al-
gorithm to compute the matrix entries with discrete operations.

As a concluding remark, we show that the operatorWFD can
be synthetically represented as a discrete-time warped Fourier
transform FWD = WFD and an adjoint discrete-time Fourier
transform (the inverse operator should be preferred to the ad-
joint one, since it is independent on the bivalence introduced
for the de�nition of FD). So, it results:

WFD = FD
†FWD .

�e operator FWD , being the composition of the unitary opera-
torsW and FD , is still unitary:

FWD
†FWD = I.
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1.2.5 Frequency Warping Transform

As a �rst step, the domain of the operator WFD has to be
limited. To do this, we exploit the operator HN , which has
been previously introduced. �e usage of this operator will be
deliberately done with a subtle ambiguity. In some cases, HN

just turns to 0 the input samples which are indexed outside of
a speci�ed interval of consecutive integers, so it behaves like a
singular transformation from ℓ2(Z) to itself. In other cases,HN

has the role of limiting the domain to the interval of consecutive
integers speci�ed before, so it behaves like a transformation
from ℓ2(Z) to R

N . So, the adopted behavior will be clear time
to time by the context.

Now we introduce the following operator:

WFDHN ∶ R
N → ℓ2(Z), s(n)↦ [WFDHN s](m) =
= ∑

n∈ZN

s(n)∫ 1

0

√
ẇ( f )e j2π(m f−nw( f))d f

where ZN is a suitable set of N consecutive integers. �is
operator presents a signi�cant di�erence in comparison to the
operators introduced so far. In fact, previously, we always
provided a de�nition for the operators such that the inverse
transform is equal to the adjoint one. In this case, dealing with a
rectangularmatrix of dimension∞×N , the inverse matrix does
not exist. Nevertheless, thanks to the unitary property ofWFD ,
we have:

[WFDHN]†[WFDHN] = HNW
†
FDWFDHN = IHN = IN .

�e above modi�cation is painless, since it does not alter the
property of perfectly recovering the input signal starting from
the transformed one by the application of the adjoint operator.
We point out that this relationship is not commutative, that is:

[WFDHN][WFDHN]† =WFDHNW
†
FD ≠ I

since, because ofHN , the degrees of freedom are decreased from
∞ to N , that is [WFDHN]† is a singular not invertible operator.

So, for a �nite computation, the input lengthmust be limited.
�is is quite intuitive, since frequency warping is a time-variant
transformation (time-variance is easily deduced by noting that
in the frequency domain WFD is equal to W and not to a
diagonal operator).
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We must introduce a further modi�cation in order to cope
with the in�nite output length. As it has been done on the
domain, we limit the codomain by applying an operator HM

on the le�. �e windowing matrix HM is built like HN , but it
may refer to a suitable set of consecutive integers whose length
is equal to M. For the moment, there is no need to put any
constraint on M. So, we set:

WMN = HMWFDHN = HMDSF†WFD†HN

where the subscript MN means that W has been enclosed be-
tween a Fourier transform, a sampling and �nally a truncation
to a M × N matrix. Formally, the operator is represented by:

WMN ∶ R
N → R

M , s(n)↦ [WMN s](m) =
= ∑

n∈ZN

s(n)∫ 1

0

√
ẇ( f )e j2π(m f−nw( f))d f m ∈ ZM .

Unfortunately, independently on the chosen value ofM, the
operatorWMN loses the property of being inverted by its adjoint
operator. In order to represent this loss, we de�ne:

EMN =WFDHN −WMN

which represents the complement matrix to WMN respect to
matrix WFDHN . It has the meaning of error operator which
occurs when matrix WFDHN is substituted by WMN . So, the
composition ofWMN and its adjoint gives:

W†
MNWMN = IN − E†

MNEMN .

which, as said before, di�ers from the identity. Nevertheless,
in the next chapters it will be shown how this operator can be
used with a su�cient degree of precision. For the moment we
do not deal with this problem and assumeWMN to be the target
operator to be modeled.

1.2.6 Sampled Frequency Warping Transform

�e entries of matrix WMN are equal to the entries of matrix
WFD limited to the rectangle given by the cartesian productZM×
ZN . So, froma practical point of view, the new operator does not
di�er from the previous one in a signi�cant manner. Instead,
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from a conceptual point of view, the new operator allows some
advantages. Being �nite-dimensional, it may be possible to
model the continuous integral by a discrete procedure.

Retracing the way Fourier operators were introduced, we
�rst considered continuous operators, the we sampled the time
axis and �nally we sampled the frequency axis. So, now we in-
troduce a sampling on the frequency axis of frequency warping
operator as well. It is pretty obvious that this operation can not
be painless. Since warping was originally de�ned on a contin-
uous axis, sampling will probably alter the unitary property of
warping. Nevertheless, aswe said before aboutwith regard to the
application of operators HM , we will cope with reconstruction
problem in the next chapters.

Let us consider the following:

DSF†D†
MDMWFD†

which is operator WFD on which a sampling in frequency has
been applied. Intuitively, the sampling should produce a peri-
odic repetition in time. To demonstrate this, we try to force the
presence of operator RM . So, we evaluate the dual relationship
of (1.1):

RHR = R
which means that a periodic space is invariant respect to the
restriction to subspaceH followed by periodic repetition. SoRH
behaves like an identity operator respect to a periodic input. It
same can be rewritten in the following way:

RH = FD†DSF† .

Since the operatorWFD produces a periodic output, RH can be
applied to it without any e�ects:

DSF†D†
MDMWFD† = DSF†D†

MDM[RH]WFD†

= DSF†D†
MDM[FD†DSF†]WFD†

= [DSF†D†
MDMFD

†][DSF†WFD†]
= MRMWFD .

By applying of a limiter HM and HN on the le� and on the
right respectively, we can formally de�ne the sampled frequency
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warping transform:

W̃MN ∶ R
N → R

M , s(n)↦ [W̃MN s](m) =
∑
n∈ZN

s(n)M−1 M−1∑
k=0

√
ẇ(k/M)e j2π(mk/M−nw(k/M)) m ∈ ZM .

whose matrix has the following entries:

W̃MN(m, n) = M−1 M−1∑
k=0

√
ẇ(k/M)e j2π(mk/M−nw(k/M)) .

As done forWFD , we introduce a synthetical representation
by exploiting F†DMD and the discrete warped Fourier transform

FDMWD = DMWFD† :

W̃MN = M−1F†DMDFDMWD .

Nowwe are interested in establishing a relationship between
W̃MN andWMN . We consider:

W̃MN = HMRMWFDHN

= HMRM[WMN + EMN]
= WMN +HMRMEMN

which shows that the two operators di�er for an aliasing contri-
bution which will be referred as A:

AMN = HMRMEMN . (1.11)

Since the computation of W̃MN is done by discrete opera-
tions, if we have a mathematical model for EMN , than we can
compute AMN ,or rather WMN , by a discrete operations.

1.3 Conclusions

�is chapterwas dedicated to the introduction of basicallymath-
ematical concepts and models which will be developed in the
rest of the work. More in details, we �rst reviewed the Fourier
transform and its variants together with some well-known con-
cepts like Nyquist theorem and time-frequency duality, then we
introduced the warping operator.
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Warping has been �rst presented as an intrinsic unitary
transformation, then its application to the frequency axis has
been considered. Finally, its truncated discrete-time variant has
been detected and its relationship with approximated frequency
sampled version has been identi�ed.







Chapter

2
�e Frequency Warping

Matrix

Chapter 1 was dedicated to the introduction of the mathe-
matical formalism and notation to describe the frequency

warping operators. Starting from the Fourier transform, we
followed a bottom–up approach, so that the global purpose of
the introduction of new operators was probably lost. Anyway,
giving a application–oriented description of frequency warping
was not the main target of chapter 1.

Instead, here we want to deal with more practical issues
related to frequency warping. First of all, we want to give an
example about how to build a frequency warping map. �en we
want to focus on the frequency warping kernel, in particular in
the time–discrete case, so thatwewill actually deal with amatrix.
For instance, important features of the warping matrix could be
the existence of a sparsity pattern and the decay of its entries
along rows or columns. Moreover we are interested in observing
the relationships we set between the various frequency warping
operators which were previously presented.

Finally, we will cope with the problem of choosing the di-
mensions of the warping matrix, or rather choosing the number
of rows when the number of columns is given. As we previously
considered, the truncation of the warping matrix to a �nite
dimensional matrix a�ects the property of being inverted by its
adjoint one, which was the guideline for the derivation of all the
operators. �erefore, truncation has to be performed carefully.

27
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2.1 A FrequencyWarping Map Example

We will deal here with discrete-time operators only. In order to
make the reading easier, we recall the fundamental relationships
which were obtained in chapter 1. In discrete-time spaces, the
frequency warping operator was de�ned as a matrix of in�nite
dimensions whose entries are given by:

WFD(m, n) = ∫ 1

0

√
ẇ( f ) e j2π(m f−nw( f))d f m, n ∈ Z.

�e frequency map has to be de�ned in the fundamental period[0, 1) and then extended to the rest of the frequency axis accord-
ing to:

w( f + k) = k +w( f ) k ∈ Z

whichmeans that the frequency deviation w( f )− f is a periodic
function. Even if frequency warping is formally de�ned by a
map, dealing with a di�erential representation, as the frequency
deviation is, could be more intuitive.

An example of frequency warping map, represented on a
single frequency period, is given by:

w( f ) = 1

4
(2 f 3 − 3 f 2 + 5 f ) f ∈ [0, 1) (2.1)

whose frequency deviation ∆( f ) = w( f ) − f has been depicted
in Fig. 2.1. �e warping map w( f ) is represented in the inset
picture. As we said before, the frequency deviation can be
perceived in a better way, while the warping map may result
to be really close to the identity map w( f ) = f . Although the
deviation is really small, it a�ects the frequency warping matrix
in a signi�cant way, as it will be shown later, so the considered
example can not be considered as a particular or pathological
case.

Warping map (2.1) has not been designed according to ap-
plication requirements, it just has a demonstrative purpose and
will be used as a reference case in the rest of the work.

For themoment, we cando someobservations. If considered
only on [0, 1), the function (2.1) would be smooth. In chapter
1 we stressed on the fact that the frequency warping map ha
to be considered on the entire frequency axis, and we forced
the representation of the presented operators in order to always
highlight the dependency by the deformation of the entire fre-
quency axis. So, by extending (2.1) on the rest of the frequency
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Figure 2.1: Frequency deviation ∆( f ) of the warping map w( f ) (inset
picture) in the fundamental period [0, 1). Considered on the entire axis,
this map has an singularities on integer values of f .

axis by applying the proper periodic repetition, it turns out that
its second derivative has an in�nite number of discontinuities
on f = k, k ∈ Z, so it belongs to C 1. �is property does not have
any relevance for the present discussion, but it will turn out to be
fundamental. If the periodicity of the frequency axis had been
neglected in the modeling of the operators, this property could
have passed unnoticed.

�e map (2.1) has been described by a whole expression,
but, when extended to the entire frequency axis, it has to be
considered as a piecewise map. So, the design procedure is
actually performed in a piecewise way. �is suggests that we can
obtain maps having similar properties, as far as smoothness is
concerned, by employing any piecewise design procedure. For
instance, the period can be split in intervals whose border points
behaves as nodes, then on each interval the map is described
as a polynomial. �is procedure allows to easily approximate
any target warping map. On the other hand, one could attempt
to design smooth maps. Such a design would intuitively be
more di�cult, since global conditions have to be satis�ed rather
than local ones. Nevertheless, smooth maps have some other
advantages which will be shown later.
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2.2 Sparsity of a Warping Matrix

Now we try to heuristically understand the operation behind
frequency warping. According to the way operator WFD was
decomposed, a time-limited discrete sequence is �rst trans-
formed in the frequency domain, then its spectrum is reshaped
according to a warping function w and multiplied to an orthog-
onalizing factor ẇ 1⁄2 and �nally transformed back in the time-
domain. �e factor ẇ 1⁄2 , representing an amplitude modulation,
i.e. a convolution in the time-domain, necessarily causes a
duration enlargement, so that the original time-limited input
signal is potentially enlarged to the entire time-axis. �is simple
consideration explains the reason why it is not allowed to trun-
cate the frequency warping matrix rows without compromising
the unitary property.

Nevertheless, the amplitude modulation, acting in the same
fashion on each column of WFD independently on n, does not
characterize the structure of the warping matrix in a signi�cant
way. Instead, the reshaping of frequency axis carries major
e�ects. Since the spectrum is represented as a series of complex
exponentials, the reshaping acts as a frequency modulation.
Moreover, the modulating function is proportional to n, so this
a�ects in a time-variant manner the warping matrix.

We remind that these considerations are intended to under-
stand how to limit WFDHN to its rows indexed in a set ZM of
M consecutive integers, according to the set ZN by with the
columns have been limited. For clarity, we set:

ZN = {n l , n l + 1, . . . , nr}
where n l stays for le� and nr stays for right, and:

ZM = {mt ,md + 1, . . . ,mb}
wheremt stays for top andmb stays for bottom. �e column axis,
indexed by n, goes from le� to right, while the row axis, indexed
by m, goes from top to bottom. Given ZN , ZM must be chosen
so that only the signi�cant entries ofWFDHN are discarded.

In order to evaluate an upper bound for mt and a lower
bound formb we have to consider the line spectrum of the kernel
of FWD , i.e. the line spectrum of an amplitude and frequency
modulated set of periodic functions. By substituting w( f ) in the
complex exponential by its linear approximation in f0 ∈ [0, 1):

w( f ) ≃ w( f0) + ẇ( f0) ⋅ ( f − f0) = ẇ( f0) f + ρ
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where ρn is an arbitrary phase contribution, it results:

FWD( f0 , n) ≃√ẇ( f )e− j2πn(ẇ( f0) f+ρ) f → f0 .

�e e�ective carrier of the frequency modulation is represented
by nẇ( f0). By neglecting the e�ects of the phase contribution
and of the amplitude modulation, which causes only a further
n−constant duration enlargement, we get:

WFD(m, n, f0) ≃ ∫ 1

0
e j2πm f−nẇ( f0) f d f

≃ ∫
1

0
e j2π(m−nẇ ( f0)) f d f

≃ sinc(m − ⌈nẇ( f0)⌉)
where we deliberately made abuse of notation, sinceWFD could
not depend on f0 and the sinc function stays for the Kronecker
symbol. Anyway, the result tells us how to determine the
bounds of the interval where energy should be concentrated.
For minimizing and maximizing the position of the impulse
⌈nẇ( f0)⌉, we must distinguish three di�erent cases for n l and
nr :

• n l < 0 and nr < 0:
mt < −∣n l ∣max ẇ mb > −∣nr ∣min ẇ

• n l < 0 and nr > 0:
mt < −∣n l ∣max ẇ mb > ∣nr ∣max ẇ

• n l > 0 and nr > 0:
mt < ∣n l ∣min ẇ mb > ∣nr ∣max ẇ.

More generally, we can state that signi�cant entries of WFD

are enclosed between two lines whose slopes are nmax ẇ and
nmin ẇ. In Fig. 2.2, the sparsity pattern of the warping operator
WFD relative to the warping function (2.1) has been represented.
Since max ẇ is equal to 5/4, for N = 128, the minimum re-
quirement for the output length is M = 160. �e in�uence of
the minimum of the derivative is also shown. �is �gure also
represents a choice for ZN which will be commonly adopted in
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Figure 2.2: Entries of a warping matrix WFD having absolute value
larger than 0.1 have been represented. �e most signi�cant entries are
enclosed between two lines whose slopes are the maximum and the
minimum of ẇ.

rest of the work. It consists in taking ZN and consequently ZM

in a quasi-symmetrical fashion:

ZN = {−N/2, . . . ,N/2− 1} (2.2)

ZM = {−M/2, . . . ,M/2− 1}. (2.3)

According to the previous constraints, we must consider:

M > 2 ⌈N
2
max ẇ⌉ (2.4)

whereM has been forced to be even.
According to the given constraints, the truncated warping

operator WMN should be close to be perfectly inverted by its
adjoint:

W†
MNWMN ≃ IN

since we assume that the error matrix does not give a signi�cant
contribution:

E†
MNEMN ≃ ON .

whereON represents the nullmatrix. A quantitative evaluation
of the error will be treated in next chapters.
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2.3 Time-Frequency Sampling

Now we want to describe frequency warping by its behavior in
time and frequency. More in details, we want to analyze the way
the time-frequency representation of a signal is changed by this
transformation.

We remind that a time-frequency analysis is characterized by
its basis vectors. �e basis vectors of frequency warping, being
represented by a matrix, are given by the matrix rows. So, we
should study their time-frequency behavior in order to trace the
curves representing their paths on the time-frequency plane.

We point now that for the sparsity characterization we fo-
cused on the matrix columns rather than on the matrix rows.
To correctly perform this target change, we recall a generale
property of the unitary operators and a particular property of
the warping operator.

�e �rst property, which is reported in (1.6) for a generic
unitary operator, particularized for frequencywarping becomes:

WFDs = F†DWFDs = F†D[F†DW†]†s
which means that s, a apart from FD

† on the le�, is analyzed
by means of unwarped complex exponential. Equivalently we
could have written:

WFDs = F†DWFDs = [W†FD]†[FDs].
which means that the spectrum of s is analyzed by means of
unwarped complex exponential. In both representations, an
unwarping takes place instead of a warping, since operator W
is adjoint.

�e second property consists in the possibility of represent-
ing the adjoint warping operator, or rather the inverse one, by
exploiting the inverse map w−1 :

W−1(z, x) =√ẇ−1(z)δ(w−1(z) − y).
Finally, it is clear that we must model the columns of WFD

as we did for its rows provided that w is substituted by w−1 :

WFD
†(n,m, f ) ≃ ∫ 1

0
e j2πnξ−m

˙w−1 ( f )ξdξ

≃ ∫
1

0
e j2π(n−m

˙w−1 ( f )) f dξ

≃ sinc(n −mẇ−1( f ))
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Figure 2.3: Sampling of the time-frequency plane referred to a discrete
time signal due to frequency warping. �e shaping of each tile is related
to the derivative of the inverse of the warping map.

So, the curves representing the basis vectors are generated by the
points (n, f ) nullifying the argument of the sinc:

n = mẇ−1( f ).
Of course n is considered as a continuous time variable. Rather
than representing a basis vector by a curve, it is preferable to
represent the correspondence area occupied by the basis vector
on the time-frequency plane. By supposing that the curve is
centered respect to the covered area, the m−tile is delimited by:

[(m − 1⁄2)ẇ−1 , (m + 1⁄2)ẇ−1].
�e sampling of the time-frequency plane induced by (2.1) is

represented in Fig. 2.3. By standard sampling, the plane would
be covered by rectangular tiles having area equal to 1 (dashed
lines). �e area of the reshaped tiles is still equal to 1, in fact:

∫
1

0
ẇ−1( f )d f = w−1( f )∣1

0
= w−1(1) −w−1(0) = 0

since w−1 , being a warping map, has the same property as w.
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2.4 Smooth vs. non-Smooth Maps

Till nowwe just gave the schematic representation of a frequency
warping matrix. �e analysis which brought to Fig. 2.3 was done
in a qualitativemanner, sowe just got a rough binary description
in terms signi�cant or not signi�cant entry value. Here we want
to focus on the matrix coe�cients decay.

Besides, we are interested in comparing the frequency warp-
ing matrix WFD , or rather its truncation WMN , to its approxi-
mated version W̃MN , which has been shown to be a�ected by
time aliasing because of the sampling process performed in the
frequency domain. �is aliasing e�ect has been modeled by an
aliasing operator AMN :

W̃MN =WMN +AMN .

In Fig. 2.4 we represented the warping matrix WMN and
the aliasing matrix AMN referred to the warping map (2.1) for
N = 28 and M = 2N . Since max ẇ was shown to be 5/4,
M, according to previously obtained constraints, is properly
selected and guarantees that most of the frequency warping
matrix energy has been enclosed inWMN .

By observing the decay ofWMN coe�cients overm, we infer
that the non truncated matrix WFD may have a slow decay.
�e relationship between the warping map properties and the
decay will be investigated later. Nevertheless, we notice that the
discarded coe�cients of EMN produce a very regular aliasing
matrix. As a consequence, the aliasing operator AMN should
have a small rank, which means that it may be described by few
basis vectors, or, equivalently, AMN may be computed in a fast
manner.

�e reason why we are interested in e�ciently computing
AMN in order to compensate the di�erence between WMN and
W̃MN is that aliasing causes a decrease in accuracy when the
inverse warping is performed by the adjoint operator:

∥s − W̃†
MNW̃MN s∥ ≥ ∥s −W†

MNWMN s∥
that is:

∥W̃†
MNW̃MN − IN∥ ≥ ∥W†

MNWMN − IN∥.
where ∥ ⋅ ∥ represents the euclidian and the spectral norm for a
vector and a matrix respectively.
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�is relationship can be heuristically demonstrated as fol-
lows. For the le� side we have:

∥W†
MNWMN +W

†
MNAMN +A

†
MNWMN +A

†
MNAMN − IN∥

= ∥E†
MNEMN +W

†
MNAMN +A

†
MNWMN +A

†
MNAMN∥

while for the right side we have:

∥E†
MNEMN∥.

We should �nd a lower bound for the le� side, so the norm of
the sum of the operators can not be substituted by the sum of the
norms. Nevertheless we suppose that this substitution is allowed
andwe focus onW†

MNAMN and discard the other operators. �e
inequality becomes:

∥W†
MNHMRMEMN∥ = ∥[W†

MNRM]EMN∥ ≥ ∥E†
MNEMN∥

�e relationship intuitively beholds since the le� side consists in
the product of the periodic repetition ofWMN and the decaying
operator EMN , while the right side is the product between two
decaying operators. Despite of the heuristic demonstration, this
result will be proven with experimental measurements in next
chapters.

If the warping function w is smooth, matrix EMN decays
exponentially, so the aliasing e�ect is negligible and the recon-
struction error is negligible as well. Furthermore, it follows that
the error decreases quickly as M increases, so that a proper
setting of M can make the reconstruction error comparable to
machine error.

For non-smooth warping functions, the error is not neg-
ligible, so aliasing cancelation has to be considered in order
to compensate the decrease in reconstruction accuracy. As we
said before, non-smooth warpingmaps allow a piecewise design
which can better match shaping speci�cations. In the following
chapters we will illustrate how to fast compute both W̃MN and
AMN in case of non-smooth maps, so that the target operator
WMN is fast computed as well.

2.5 Conclusions

In this chapter we illustrated the features of the frequency warp-
ing matrix. We mainly focused on the role of the warping
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Figure 2.4: Absolute values of the warping matrix WMN entries (a),
where the sparsity pattern shown in Fig. 2.2 can be observed, and
absolute values of the aliasing matrix AMN entries (b).
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map in determining the time-duration characteristics and the
way the time-frequency plane is sampled. In this framework,
we were able to detect the constraints for correctly truncating
the warping matrix and to illustrate the connection between
required time-frequency speci�cations and warping map de-
sign. Moreover, we showed how the map smoothness can a�ect
the importance of aliasing in the computation of the frequency
warping operator.
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The �rst part of this work was dedicated to present and settle
the warping transforms we are dealing with. Starting from

the continuous case, we rede�ned Fourier and warping opera-
tors in case of discrete-time axis. �e discrete-time frequency
warping was identi�ed as the target operator to be modeled for
the achievement of a feasible implementation. At this aim, two
major problems were detected, consisting in the computation of
a continuous integral and non-�nite dimensions of the resulting
operator. �is last issue was solved by properly truncating the
warping matrix, while the �rst one was overcome by decom-
posing the operator in two additive terms, one representing
the frequency sampled discrete frequency warping operator and
the other one representing time aliasing occurring because of
the sampling in frequency. Moreover, the frequency sampled
operator was described as the composition of a nonuniform
and scaled discrete Fourier transform and an inverse ordinary
discrete Fourier transform. Fast algorithms for the discrete
Fourier transform are widely known, while algorithms for the
nonuniform one deserve a deep insight.

Here we �rst recall some algorithms which have been pre-
sented in literature, then we introduce an original contribu-
tion [21] which will be shown to be optimum in case of dense
sampling of the frequency axis (output length larger then input
length), as it occurs for frequency warping.

43
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3.1 Introduction to NUFFT

�e Discrete Fourier Transform (DFT) is known to be a fun-
damental transformation in most �elds of signal processing.
It is very e�ciently computed since algorithms which yields
O(N logN) rather than O(N 2) operations have been found.
However, many applications are based on the computation of
Fourier coe�cients of nonuniformly sampled frequencies. �is
occurs when frequency warping techniques are introduced [18]
or when directional analysis techniques are applied on two di-
mensional signals, like the polar Fourier Transform, the Radon
Transform and the Contourlet Transform [22]. In such cases
the transformation is referred as Nonuniform Fourier Trans-
form and its fast implementation as Nonuniform Fast Fourier
Transform (NUFFT).

In previous works [12, 14, 15] NUFFT is implemented by
means of interpolation, i.e. each nonuniform Fourier coe�cient
is obtained by interpolating the Discrete Fourier coe�cients
in the neighborhood of the considered nonuniform frequency.
In order to improve the performances, an oversampled DFT
is employed, where the oversampling factor is generally taken
equal to 2. Moreover, the input signal is previously scaled by a
suitable scaling vector. In [14], the interpolator is obtained by a
least square approximationwith respect to the oversampledDFT
basis. A signi�cant improvement is obtained in [12], where �rst
a bell-shaped interpolator is chosen and then the scaling vector
is obtained by imposing a minimization on the approximation
error. Finally in [15], scaling is considered as if it were applied to
the oversampled DFT basis, although it is actually applied on the
input signal. �en a least square interpolator is computed. �e
optimization of the scaling vector is an untractable problem and
so it is chosen according to [12], resulting in a slight performance
improvement.

Here we introduce a di�erent approach. Each nonuniform
Fourier exponential in the interval between two contiguous
uniform Fourier frequencies is approximated by a small set of
orthogonal vectors, obtained by a singular value decomposition
(SVD). Only a single set of orthogonal vectors is needed. In
facts, every nonuniform Fourier exponential can be obtained
by modulating a nonuniform Fourier exponential of a single
interval. So, �rst the input signal is scaled according to a small
set of vectors. Second, the scaled versions of the input signal are
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Modi�ed Power Map w( f ) = (2 f )p/2, p = 1/3
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Figure 3.1: Warping map for frequency warping purposes: a constant-
Q splitting by octaves (horizontal axis) is converted to a constant-Q
splitting with higher frequency resolution (vertical axis). Frequency
warping introduces a redundant representation of a signal, where the
redundancy factor is given by the maximum slope of the warping map.
�e map has been modi�ed around the origin in order to have a �nite
maximum slope, nevertheless the resulting density is very high.

Fourier transformed. Finally, the Fourier coe�cients referred
to the same frequency are linearly combined. �is operation
will be referred as interpolation in analogywith the interpolation
techniques, although this term is inappropriate.

By doing so, interpolation coe�cients result to be real, al-
lowing a saving of an half of the total amount of multiplications.
�e resulting computational complexity is O(N logN). It will
be shown that this approach is optimum when the number
of output samples is higher enough than the number of input
samples, i.e. when the nonuniform frequency set is su�ciently
dense. In NUFFT applications this situation is common. For
example in frequency warping the density is given by the maxi-
mum slope of the frequency map. Some useful frequency maps,
as the one depicted in �g. 3.1, introduce a very high density.

As an exception, the notation employed in this chapter is
completely uncorrelated from the rest of the work. Variables
and operators will be de�ned when needed. Nevertheless, the
description of the proposed algorithm will take advantage of the
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previously introduced operator notation.

3.2 Problem Statement

Given a discrete signal xn , n = 0, . . . ,N − 1, we wish to compute
the following transformation:

X(k) = N−1

∑
n=0

xne
− j2π(n−τ) fk /N fk ∈ [0,N). (3.1)

for k = 0 . . . ,K − 1, where K is the cardinality of the set of
nonuniform frequencies fk . τ is a shi� parameter which changes
the indexing of the Fourier exponentials. As particular cases fk
could include uniform frequencies 0, . . . ,N − 1. �e number of
output samples K to number of input samples N ratio will be
referred as the density of the NUFFT:

ρ = K

N
(3.2)

which will be employed in order to make considerations on
computational complexity. �e density ρ can also be intended
as the number of di�erent NUFFTs which must be computed
for the same input signal. �e spectra of nonuniform Fourier
exponentials of a particular nonuniform frequency map are
depicted in �g. 3.2.

Without loss of generality, in this work we will consider the
parameter shi� τ equal to N/2:

X(k) = N−1

∑
n=0

xne
− j2π(n−N/2) fk /N fk ∈ [0,N) (3.3)

since solutions to problem (3.1) are obtained through element
by element product between Xk and e j2π(τ−N/2) fk . �e assump-
tion (3.3) is equivalent to consider the input signal indexed in
−N/2, . . . ,N/2 − 1. In fact, signals originated by windowing
operation and images have −N/2, . . . ,N/2 − 1 as natural in-
dexing. Moreover, it will be show that this choice allows a
computational cost reduction, since in (3.3) the exponentials are
nearly symmetric respect to n = N/2.
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Figure 3.2: Spectra of nonuniform Fourier exponentials. Nonuniform
frequencies fk , k = 0, . . . ,K − 1, are obtained by uniformly sampling
a nonlinear function such that f0 = 0 and fK = 1. Spectra decay
slowly since periodic repetition of a nonuniform Fourier exponential
have discontinuities.

3.3 Interpolation Approach

�e interpolation approach is based on the on the calculation of
an oversampled FFT Y of the input signal scaled by a suitable
vector cn :

Yi =
N−1

∑
n=0

cnxne
− j2πni/M i = 0, . . . ,M − 1 (3.4)

whereM = mN andm ∈ N is the oversampling factor. Generally
m is taken equal to 2, since taking m > 2 does not increase per-
formances signi�cantly. �en, the frequency axis is considered
as a collection of M intervals [i − 1/M , i), i = 0, . . . ,M − 1,
and nonuniform Fourier exponentials of the i-th interval are
approximated by linearly combining L FFT coe�cients in the
neighborhood of Yi :

X( fk) = L/2−1

∑
l=−L/2

Yi+lϕ( fk/m − (i + l)) fk ∈ [i − 1/m, i). (3.5)
�is formulation is valid for even values of L, but can be easily
extended to odd values.
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Clearly, (3.5) is an interpolation formula. So, the interpo-
lating function ϕ must be chosen in some way. A possible
approach [12] consists in choosing an appropriate interpolating
continuous function and then �nding cn so that the approxima-
tion error is minimized. By doing so, ϕ is obtained from a �nite-
support bell-like function ψ by periodic repetition and phase
modulation:

ϕ( f ) = ∞

∑
i=−∞

e− jπ( f−iM)(N−1)/Mψ( f − iM) (3.6)

and it follows:

c−1n = ∫
L/2

−L/2
ψ( f )e j2π f(n−(N−1)/2)/Md f (3.7)

Eventually, the scaling vector can be chosen in order to make
the error result null on the oversampled Fourier frequencies
0, . . . ,M − 1. It follows:

c−1n =
L/2

∑
l=−L/2

ψ(l)e j2πl(n−(N−1)/2)/M . (3.8)

Finally ψ must be chosen according to time-frequency consid-
erations. It has been shown that the Kaiser-Bessel window is a
good choice for the function ψ.

From an algebraic point of view, the interpolator could be
obtained as follows [15]. �e scaling vector in (3.4) is associated
with the complex exponentials rather than with the input signal.
So, the set of the amplitude modulated Fourier exponentials
cne
− j2πn(i+l)/mN , l = −L/2, . . . , L/2 − 1, acts as a basis for

the approximation space of nonuniform Fourier exponentials
in [i − 1/m, i). �en the interpolator is obtained by a least
square approach with respect to this space. �e scaling vector
should be chosen in order to minimize the approximation error.
Unfortunately, an optimization over the scaling coe�cients cn
is an untractable problem, so cn are obtained by (3.7) or (3.8)
according to a speci�ed window ϕ. For Kaiser-Bessel window,
this algebraic approach leads to slightly di�erent coe�cients and
slightly better performances. In �g. 3.3 some scaled exponentials
corresponding to an optimized Kaiser-Bessel interpolator are
represented.
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Figure 3.3: Kaiser-Bessel scaled Fourier exponentials for N = 28 , real
part (solid line) and imaginary part (dotted line). In interpolation
approaches, they act as basis vectors for the approximation space of
nonuniform Fourier exponentials with fk ∈ [0, 1/2).

3.4 SVD-based Proposed Algorithm

According to the algebraic approach described in the previous
section, further improvements can be achieved only by focusing
on the choice of basis vectors. In fact, thanks to scaling vector
and to oversampled FFT, basis vectors of �g. 3.3 become less
regular by gaining discontinuities on the interval edges and have
slowly decaying spectra. As a consequence, the space gener-
ated by this basis achieves a better approximation of nonuni-
formFourier exponentials, which precisely have slowly decaying
spectra, as depicted in �g. 3.2. So, in order to obtain an optimum
approximation, we want to �nd an optimum basis.

In the present section we will use a matrix notation. Taken
a generic operator A, the adjoint and the transpose operators
will be represented by A† and A′ respectively. �e meaning of
subscripts and superscripts will be speci�ed at any time they are
used. A vector of generic size N will be indexed in 0, . . . N −
1. Indexes which are not included in 0, . . . , N − 1 are to be
intended asmodN . �e symbols δ0 , δ1 δ2 , . . ., will denote shi�ed
impulsive column vectors of suitable size.
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First, we de�ne the following unitary operators:

T = [δ1 δ2 ⋯ δN−1 δ0] (3.9)

R = [δN−1 δN−2 ⋯ δ1 δ0] (3.10)

which represent circular shi� and time-reversing respectively.
Now we consider the [N × K] matrix E whose columns are
nonuniform Fourier exponentials. �e elements E(n, k) of this
matrix are given by:

E(n, k) = e j2π(n−N/2) fk /N . (3.11)

�anks to the considered time indexing, the real part of the
columns of E is symmetric and the imaginary part is antisym-
metric with respect to n = N/2, apart for n = 0:

E = ZE∗ + j2δ0δ
′
0 I[E]

where δ0δ
′
0 is a two-dimensional impulsive [N ×N]matrix and

Z is de�ned as follows:

Z = TR = [δ0 δN−1 ⋯ δ2 δ1]. (3.12)

�e operator Z acts as a complex conjugation only if it is applied
to the Fourier transform of a real vector, so F†E is real if
I[E(0, ⋅)] = 0, where F represents the Fourier transform. In
order to deal with a real matrix rather than with a complex one,
we introduce the following operator:

Ẽ = E − jδ0δ
′
0 I[E]. (3.13)

By de�ning the row vectorD = jI[E(0, ⋅)] of size K, the column
vector X of size K representing the NUFFT (3.3) of the input
signal x results:

X = E†x = Ẽ†x +D†x0 . (3.14)

Now, the nonuniform frequency set is partitioned in 2N
subsets corresponding to contiguous frequency intervals:

f
(l)
k ∈ [l/2, l/2+ 1/2) l = 0, . . . , 2N − 1 (3.15)

whose cardinalities are K l . �en, the set of nonuniform Fourier
exponentials corresponding to each interval is considered:

El (n, k) = e j2π(n−N/2) f (l)k
/N (3.16)
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Figure 3.4: Entries of the matrix F†Ẽ0 . When nonuniform frequency fk
tends to 0, the matrix column tends to be an impulse. �e columns are
very correlated, so the rank of the matrix is small.

It is worth to note that El , for even l , could be obtained by
modulating the column vectors of a nonuniform Fourier matrix
referred to a suitable set of frequencies fk ∈ [0, 1/2), which will
be represented as El ,0 . For odd l , El could be obtained in the
same way from a nonuniform Fourier matrix whose frequencies
refer to fk ∈ [−1/2, 0), which could be also obtained by con-
jugating a suitable matrix El ,0 . Modulation can be converted in
circular shi� by passing in the Fourier domain, so, by some some
calculations, it follows:

Ẽl = (−1)iFT−iF†Ẽl ,0 l = 2i (3.17)

Ẽl = (−1)iFT−iF†Ẽ∗l ,0R l = 2i − 1. (3.18)

where the formulation (3.14) has been exploited in order to deal
with the real matrixes F†Ẽl ,0 . In general, each matrix Ẽl ,0 refers
to randomly distributed frequencies in [0, 1/2). In order to �nd
a single basis for the column vectors of all matrixes Ẽl ,0 , we
can equally consider a generic matrix E0 which ideally has as
columnvectors every possible nonuniformFourier exponentials
in [0, 1/2). In practice, it su�ces to consider a �nite set of
nonuniform frequencies which densely cover the whole [0, 1/2)
interval. �is matrix has very correlated column vectors, as
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depicted in �g. 3.4, so its rank results to be small for a certain
precision. As a consequence, a singular value decomposition
can be introduced, i.e. F†Ẽ0 = USV′. �e singular values
decay exponentially, so we could consider a reduced number L
of singular values and neglect the others:

F†Ẽ0 ≃ ULSLV
′
L (3.19)

where UL and VL are constituted by the �rst L columns of U
and V respectively and SL is a square matrix constituted by
the �rst L rows and columns of S. �e column vectors of UL

represent an optimum basis for all the matrixes Ẽ0, l . �en, the
decomposition is extended to Ẽl in the following way:

Ẽl ≃ FT−iULP
′
l l = 2i (3.20)

Ẽl ≃ FT−iZULP
′
l l = 2i − 1 (3.21)

where each Pl is a real [K l × L]matrix which linearly combine
the column vectors of UL in order to obtain the best approxi-
mation of Ẽl ,0 . Since UL has orthogonal columns, Pl are simply
obtained by computing:

Pl = (TiF†Ẽl )′UL l = 2i (3.22)

Pl = (ZTiF†Ẽl )′UL l = 2i − 1. (3.23)

�e column vectors of each Ẽl are approximated by linearly
combining the columns of FT−iUL or FT−iZUL through the
rows of the matrix Pl . In order to compute (3.14), we must
calculate the scalar products between x and the columns of
FT−iUL and FT−iZUL in an e�cient way. With some algebra,
it has been found that �rst, x must be scaled by the Fourier
antitrasformed vectors of UL ,W = F†UL :

X = diag(x)W (3.24)

where diag(x) is a matrix having x as main diagonal. �e
columns of W corresponding to the �rst 6 singular values are
depicted in �g. 3.5. �en, the Fourier transforms of the column
vectors of X produce the needed N × L scalar products:

Q = FX (3.25)

Each row of Q will be pointed by Qi . Finally we obtain that
X̃(l) = Ẽ†

l x is given by the product between a [K l × L] matrix
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and a column vector of size L:

X̃(l) ≃ PlQ
†
i l = 2i (3.26)

X̃(l) ≃ PlQ
′
−i l = 2i − 1 (3.27)

Summarizing, the algorithm consists in precomputing inter-
polation coe�cients (3.22)-(3.23), computing L scaling (3.24),
calculating N × L scalar products (3.25) and interpolating them
(3.26)-(3.27). It is worth to note that the term interpolation is
only used in analogy with the conventional technique.

3.5 Performances

�e computational cost of both interpolation and SVD-based
approaches is given by three terms, cost of scaling, cost of
Fourier transforms and cost of interpolation. In terms of real
multiplication, for the presented algorithm it results:

κsvd = 2LN + 4LN log2 N + 2LNρ (3.28)

where ρ represents the NUFFT density (3.2). �e �rst additive
term derives from (3.24), where L element-by-element products
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between a real and a complex vector of size N are computed, i.e.
2LN real multiplications. �e second term derives from (3.25),
where L Fourier transforms of vectors of size N are computed.
Each Fourier transform needs 4N log2 N real multiplications.
Finally, the third term derives from (3.26)-(3.27) where K = ρN
scalar products between a real and a complex vector of size L
are computed, or, equally, L complex scaling of a real vector of
size ρN . �e cost of D†x0 (3.14) can be neglected. �rough
analogous considerations, for interpolation techniques it results:

κint = N + 8N log2 N + 4LNρλ. (3.29)

�e factor λ > 1 is an e�ective parameter which takes into
account that, for the same value of L, SVD-based approach has
better performances, as depicted in �g. 3.6. For useful values of
L, λ is nearly equal to 1, 4. As far as memory requirements are
concerned, in terms of real numbers for the SVD-approach it
results:

µsvd = LN + LNρ + Nρ (3.30)

where terms correspond to the complex vectors W to the real
interpolation coe�cients Pl and to the vector D respectively.
Only LN real coe�cients are necessary for the vectorsW, since
they are the Fourier transforms of the real vectorsUL . Similarly,
for interpolation approach it results:

µint = N + 2LNρλ. (3.31)

A fair comparison between the two approaches is quite hard.
Su�cient conditions for SVD-approach to be less expensive than
interpolation approach are:

ρ > log2 N ⇒ κsvd < κint (3.32)

ρ > 1 ⇒ µsvd < µint (3.33)

In worst cases, when ρ ≈ 1, the proposed method would consist
inmoremultiplications because of the computation of L Fourier
transforms. Nevertheless, the algorithm has a serial structure,
since each basis vector requires the computation of a scaling, a
fast Fourier transform and its contribution to the interpolation,
which is actually another scaling. Moreover, it does not involve
complexmultiplications in the scaling and interpolation compu-
tation. Furthermore, since the algorithm is based on orthogonal
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projections, the size of the interpolator L can be increased by
simply adding basis vectors. Finally, the fast Fourier transform,
being a very common operation, is generally optimized and
e�ciently managed. For these reasons, the comparison have
been focused only on the approximation error respect to the size
L of the interpolator employed to approximate each nonuniform
Fourier exponential, represented in �g. 3.6. In �g. 3.7 we have
compared the approximation errors for a genericmatrixE0 , i.e. a
matrix with nonuniform frequencies in [0, 1/2) for interpolator
size L equal to 8. �e error given by SVD-based approach is
3 orders of magnitude lower than error given by interpolation
approach, in coherence with values represented in �g. 3.6.

3.6 Conclusions

In this chapter we presented a novel approach for the compu-
tation of the Nonuniform Fourier Transform based on Singular
Value Decomposition. �e proposed algorithm has quasi-linear
complexity. In comparison with the conventional interpolation
approach, our proposed approach has been shown to have a
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higher computational cost for the calculation of the projection
components, but a lower cost for interpolating them. Moreover,
this algorithm provides advantages in terms of computational
structure, being based on Fast Fourier Transforms and real
multiplications.





Chapter

4
Factorization of the

Aliasing Matrix

The present chapter is the core of the entire work. In fact,
the issues which are going to be treated occupy a major rel-

evance in terms of importance originality and innovation of the
obtained results. Basically, the content of this chapter completes
the analytical characterization of the frequency warping matrix
in order to make a fast computation achievable. Although it
con�gures as a completion, it involves a lot of mathematical
modeling e�ort and carries many implications on the nature
of the operator under consideration which goes beyond simple
computational issues. From the following analysis, as well as a
factorization for the aliasing matrix which is necessary to cor-
rectly describe the frequencywarping operator by compensating
the e�ects of having sampled the frequency axis, useful hints for
the warping map design strategy are also obtained. Moreover,
the present model acts a starting point for further investigations,
like the quantitative characterization of reconstruction accuracy,
which is treated in the next chapter.

�e results which are illustrated here are a detailed explana-
tion of some previously obtained preliminaries results [19, 20].
�e notation is consistent with the one described in chapter 1,
although some letters will be reassigned to other operators for
ful�ll representation necessities.

59
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4.1 Problem Statement and Methodology

�e purpose of this chapter is to model the operator AMN

involved, together with W̃MN , in the computation of operator
WMN , as they were introduced in chapter 1. �e investigation is
limited to the case of non-smooth maps only, since it has been
previously shown that the usefulness of aliasing compensation
is not signi�cant in case of smooth maps. �e interest in non-
smooth maps is based on the ease in designing suitable warping
maps.

�e aim of this investigation is to achieve the ability of
compute the aliasing operator by means of the warping map
features only, without explicitly calculate the di�erence between
W̃MN and WMN . Moreover, it would be desirable to obtain a
fast algorithm for computing the output of AMN with a linear
complexity.

�e methodology can be brie�y described as follows. We
exploit the fact that aliasing is equivalently obtained as the
periodic repetition along columns of operator EMN . When
M is properly set, EMN has a regular behavior since it mainly
depends on the singularities of the warping map only. In fact,
singularities consisting in steps in the frequency domain, i.e. fast
variations, can be equivalently described in the time domain by
considering large time indexes, like in matrix EMN , which will
be also referred as tails matrix, since it contains the discarded
tails of WFD . So, a�er having determined a model for EMN , a
model for AMN can be easily obtained as well.

As far as the fast computation is concerned, since the model
for AMN turns out to be a factorization like a singular value
decomposition with a fast decaying internal kernel, a linear
complexity is easily obtained by properly truncating the kernel.
Moreover, the kernel is the only factor sensibly depending on the
characteristics of the warping map, so the obtained algorithm is
very e�cient and allows a simple computational architecture.

Before going through the mathematical modeling, which is
full of complex demonstrations, we propose a heuristic approach
to the problem. �is constitutes an attempt to trace out the path
which inspired the further deep mathematical insight, in order
to present it just as formalization of some simple intuitions.

To get some further simpli�cations in notation, here we
neglect the subscript MN on operators WMN , EMN and AMN .
�is would generate an ambiguity between W, representing
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the native axis warping, and WMN , representing the frequency
warping. Antway the �rst one is not needed here. Letters S, D
and U, introduced in chapter 1, are reassigned to new operators.

4.2 Heuristic Model of the Tails Matrix

Before describing the mathematical modeling of the aliasing
matrix, let us make some heuristic considerations about the
warping matrix decay.

As a case study, we still consider the non–smooth warping
map w in (2.1). As we observed before, w ∈ C 1, max ẇ = 5/4
and there is only one singularity placed in f = 0 within the
fundamental interval [0, 1). In Fig. 4.1 we plotted some columns
of the warping matrix in a wide temporal range in both semilog
(Fig. 4.1(a)) and loglog axis (Fig. 4.1(b)). Independently on n,
each column converges to the same asymptote. In loglog axis,
for w ∈ C 1, the asymptote is given by a line whose slope is −2
(see Section 4.3.1).

Now we suppose to be able to determine the intercept of
the asymptote in Fig. 4.1(b). We can imagine to subtract the
asymptote and de�ne a residual matrix G2 . Some of its columns
have been depicted in Fig. 4.2(a). �e decay is shown to be pro-
portional to lines having slope equal to −3 but having di�erent
intercepts. Again, we can subtract the asymptotes and obtain a
newmatrix whichwill be referred asG3 and shown in Fig. 4.2(b)
for some columns. In general, we de�ne:

Gl (m, n) =WFD(m, n) − l

∑
i=1

ζ i ,n
m−i(M/2)−i

where the generic subscript l means that asymptotes from m−1

till m−l have been subtracted and the normalization to M/2
has been introduced in order to obtain well-scaled values for
coe�cients ζ i ,n . �is process could be iterated for l → ∞.
However, as it will be demonstrated in Section 4.4.2, a�er some
iterations, matrixGl converges to 0 in (Z∖ZM)×ZN , whereZN

and ZM are settled according to the quasi-symmetrical choice
(2.2)-(2.3).�ismeans that the columns ofE(m, n) can be repre-
sented as a linear combination of m−i when the coe�cients ζ i ,n
are known. �en, when periodic repetition can be analytically
computed, aliasing can be represented as a linear combination
of analytically known vectors.
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Figure 4.1: Absolute value of warping matrix columns for n = 8, 32, 128.
�e decay for m →∞ is proportional to m−2 and the asymptote is the
same for every n.
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Figure 4.2: Absolute value of the sequences resulting by iteratively
subtracting the asymptote from matrixWFD . Asymptotes∝ m−2 and
∝ m−3 are eliminated in (a) and (b) respectively.
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Figure 4.3: Entries E(m, n) are obtained as a series of negative powers
m−i whose coe�cients ζ i ,n , represented in linear (a) and semilog axis
(b), are roughly given by positive powers of n.



4.3. Modeling of the AliasingMatrix 65

In order to complete the description of the warping matrix
tails form →∞, its behavior respect to n has to be characterized.
In Fig. 4.3 we depicted the coe�cients ζ i ,n for N = 28 and
M = 2N in linear axis and loglog axis. �e coe�cients are clearly
proportional to n i . In the next Section we will show how they
are represented as a series of nk , k = 0, . . . , i.

So, the basic idea which will be developed in the following
sections is to make the dependency of EMN(m, n) on negative
powers of m and positive powers of n arise, in order to verify
that the observations which have been done on the considered
example are systematic and therefore characterize the aliasing
matrix in an intrinsic manner. Moreover, the identi�cation of
the coe�cients of these series is a major issue and will require
most of the e�orts.

4.3 Modeling of the Aliasing Matrix

In chapter 2, it was pointed out that themaximumof thewarping
map derivative is the parameter mainly a�ecting the duration
in time of the warping matrix columns, i.e. in�uencing the
truncation of the warping matrix. Nevertheless, it is not an
exhaustive parameter to characterize the aliasing matrix. In
fact, it was previously shown that the di�erentiability order of
the warping map a�ects the behavior of the warping matrix for
m →∞, hence it a�ects the aliasing matrix as well.

Let us suppose that w ∈ Cσ with a single singularity in
ξ ∈ [0, 1). An in�nite number of singularities are obviously
located in ξ + k, k ∈ Z. In this Section, we neglect the fact that
an additional singularity should be placed in 1 − ξ to maintain
the odd symmetry of the warping map respect to 1/2. Multiple
singularities will be treated in Section 4.4.3. We assume that ZN

and ZM are chosen according to (2.2) and (2.3) respectively and
M is settled by (2.4).

According to equation (1.11), in order to evaluate A we �rst
have to evaluate E which is actually equal to WFD for m ∉ ZM

and n ∉ ZN . We refer to equation (1.10), which represents
the inverse Fourier transform of the set of periodic functions
FWD( f , n) whose di�erentiability class can be easily demon-

strated to be Cσ−1 because of the factor√ẇ( f ):
w ∈ Cσ ⇒ FWD ∈ Cσ−1 . (4.1)
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If M respects the constraint (2.4), E depends only on fast vari-
ations of FWD . Being a set of piecewise-smooth functions,
fast variations are entirely concentrated in the singularity point
located in ξ.

In the following paragraphs, we will �rst investigate the
dependency of E(m, n) on m, then we will focus on the de-
pendency on n, and �nally we will show how to compute A by
periodically repeating E along columns.

4.3.1 Dependency of Tails on the Row Index

Without loss of generality, we consider [ξ − 1/2, ξ + 1/2) as the
fundamental interval and, for convenience, we set:

ϕn( f ) = FWD( f , n).
By doing so, the function ϕn is smooth in both [ξ − 1/2, ξ) and(ξ, ξ + 1/2). In these two intervals, we express ϕn by its Taylor
series centered in ξ− and ξ+ respectively, so it holds:

ϕn( f ) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∞

∑
i=0

( f − ξ)i
i!

D iϕn(ξ−) f ∈ [ξ − 1/2, ξ)
∞

∑
i=0

( f − ξ)i
i!

D iϕn(ξ+) f ∈ (ξ, ξ + 1/2) .

According to (4.1), for i = 0, . . . , σ−1 ϕn(ξ−) = ϕn(ξ+) = ϕn(ξ).
For i ≥ σ , in order to unify the representation, we can take
advantage of the step Heaviside function H:

ϕn( f ) = σ−1

∑
i=0

( f − ξ)i
i!

D iϕn(ξ)+ ∞∑
i=σ

( f − ξ)i
i!

D iϕn(ξ−)+
H( f − ξ) ∞∑

i=σ

( f − ξ)i
i!

[D iϕn(ξ+) − D iϕn(ξ−)] (4.2)

where D iϕn is the Euler’s notation for the higher order deriva-
tives of ϕn . Since we are interested in evaluating E(m, n),
the behavior of the inverse Fourier transform [FD

†ϕn](m) for
large values of m has to be modeled only. For computational
purposes, we introduce a more suitable function φn( f ) such
that its inverse Fourier transform is asymptotically the same as
for ϕn : [FD

†φn](m) = [FD
†ϕn](m) m ∉ ZM .
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Table 4.1: Analytic expression of functions ψ i( f ) for i = 0, . . . , 3 in the
fundamental period [0, 1).

ψ0( f ) H( f ) − f − 1⁄2

ψ1( f ) H( f ) f − 1⁄2 f 2 − 1⁄2 f − 1⁄2

ψ2( f ) H( f )1⁄2 f 2 − 1⁄6 f 3 − 1⁄4 f 2 − 1⁄12 f

ψ3( f ) H( f )1⁄6 f 3 − 1⁄24 f 4 − 1⁄12 f 3 − 1⁄24 f 2 + 1⁄720

Each function ϕn contributes to fast variations only through
the step function, so the �rst two summations in (4.2) can be
neglected and only the behavior of the last term is reproduced
in φn( f ). Let us de�ne:

φn( f ) = ∞∑
i=σ

χ i ,n(ξ)ψi( f − ξ)
where χ i ,n(ξ) represents the step in D iϕn :

χ i ,n(ξ) = D iϕn(ξ+) − D iϕn(ξ−) (4.3)

and ψi( f ) are de�ned for f ∈ [0, 1) so that their periodization
results to belong to C i−1:

ψi( f ) = H( f ) f i
i!
−

i+1

∑
k=0

ρ i+1,k f
k f ∈ [0, 1). (4.4)

�e �rst term in (4.4) represents a functionwhose i-th derivative
is theHeaviside functionH( f ), so that thewhole set {ψi}i∈N can
represent functions having discontinuities on each derivatives.
In the second term, coe�cients ρ i ,k are calculated by imposing
ψi(0) = ψi(1) to make the functions periodic and zero-mean,
and it can easily proved that they are recursively related by:

D iψi = ψi−1

and, by doing so, one gets:

D i+1ψi( f ) = δ( f )− 1. (4.5)

Table 4.1 reports the expressions of the functions plotted in
Fig. 4.4, where we depicted the periodization of functions ψi for
i = 0, . . . , 3 in the interval [−1, 1]. As i increases, the presence
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Figure 4.4: Periodization of functions ψ i , i = 0, . . . , 3 used for repre-
senting the singularities contained in functions ϕn . �e interval [−1, 1]
is considered as domain in order to highlight the behavior around the
singularity in f = 0.

of the singularity becomes less evident and the function tends to
resemble a sine or a cosine. . A detailed explanation about how
to �nd the coe�cients ρ i ,k is given in Appendix 4.A.1.

�e function φn has been built so that Dpφn has the same
steps as Dpϕn . In fact, for Dpφn we get:

Dpφn( f ) = ∞∑
i=σ

χ i ,n(ξ)ψi−p( f − ξ)
then, by evaluating Dpφn(ξ+) − Dpφn(ξ−), we get:
Dpφn(ξ+) − Dpφn(ξ−) = ∞∑

i=σ

χ i ,n(ξ)[ψi−p(0+) − ψi−p(1−)]
where ψi−p(0+) − ψi−p(1−) = δ(i − p) (see (4.5)), so:

D iφn(ξ+) − D iφn(ξ−) = χ i ,n(ξ).
�e behavior of E(m, n) can be inferred by studying FD

†φn ,
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hence, thanks to linearity, by studying FD
†ψn :

[FD
†ψi(⋅ − ξ)](m) = e j2πmξ[FD

†ψi](m)
= e j2πmξ(− j2πm)−(i+1)[FD

†D i+1ψi](m)
= e j2πmξ(− j2πm)−(i+1)[FD

†(δ − 1)](m)
= e j2πmξ(− j2πm)−(i+1)(1 − δ(m))

where we exploited the translation in frequency theorem, the
di�erentiation in frequency theorem (guaranteed by the peri-
odicity of ψi) and (4.5). �e impulse δ(m) implies [FD

†ψi](0)
to be 0. Finally:

E(m, n) ≃ e j2πmξ
∞

∑
i=σ

χ i ,n(ξ)(− j2πm)−(i+1) m ∉ ZM . (4.6)

As we predicted in Section 4.2, E(m, n) entries have been ex-
pressed as linear combinations of negative powers of m.

4.3.2 Dependency of Tails on the Column Index

To obtain the coe�cients χ i ,n in (4.6), the derivatives D iϕn in
(4.3) have to be computed. It can be proven by induction (see
Appendix 4.A.2) that the i-th derivative is:

D iϕn( f ) = e− j2πnw( f) i

∑
k=0

αi , i−k( f )(− j2πnẇ( f ))k (4.7)

where αi ,k is factorized as follows:

αi ,k( f ) = ∣Ωk ∣

∑
l=1

βk , l ( f )γk , l (i). (4.8)

βk , l is given by:

βk , l = (Dw)1⁄2 k+1

∏
m=1

(Dmw)pk , l ,m pk , l ,m { ∈ Z− m = 1
∈ Z+ m > 1

and ∣Ωk ∣ represents the cardinality of the set of all possible
sequences [pk , l ,1 pk , l ,1 . . . pk , l ,k+1] such that:

k+1

∑
m=1

pk , l ,m ⋅m = k . (4.9)
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A formal demonstration of these statements is reported in Ap-
pendix 4.A.3. In Table 4.2 we gave closed expressions of βk , l and
γk , l for k = 0, . . . , 3. As a convention, βk ,1 is de�ned as the only
function among βk , l containing the k + 1 degree derivative:

βk ,1 = (Dw)−1⁄2Dk+1w. (4.10)

With the above positions, according to (4.7), we have:

• for σ = 0 coe�cients χ i ,n are given by D iϕn(ξ+) −
D iϕn(ξ−). In the resulting summation, factors e− j2πnw(ξ)

and (− j2πn) can be extracted.

χ i ,n(ξ) = e− j2πnw(ξ) i

∑
k=0

(− j2πn)k
(αi , i−k(ξ+)(ẇ(ξ+))k − αi , i−k(ξ−)(ẇ(ξ−))k). (4.11)

• for σ > 0 we can exploit the factorization (4.8):

χ i ,n(ξ) = e− j2πnw(ξ) i−σ

∑
k=0

(− j2πnẇ(ξ))k
∣Ωk ∣

∑
l=1

(βi−k , l (ξ+) − βi−k , l (ξ−))γi−k , l (i). (4.12)

In (4.12) the summation over k has been considered from 0
to i − σ rather than from 0 to i since the function containing
the maximum derivative degree βi−k ,1 = (Dw)−1⁄2D i−k+1w is
continue for k > i − σ .

It is worth to note that, according to (4.6) and (4.12), when
σ > 0 all the information about the warping map, apart from
w(ξ) and ẇ(ξ) is enclosed in βk , l . �is means that most of the
algorithm structure does not depend on the particular shape of
the warping maps.

4.3.3 Periodic Repetition of Tails

Now equation (1.11) can be applied to obtain an expression for
A. Since coe�cients χ i ,n do not depend on m, the summation
in (1.11) is applied directly on m−(i+1)e j2πmξ :

∑
k≠0

e j2π(m−kM)ξ(m − kM)i+1 = e j2πmξ ∑
k≠0

e− j2πkMξ

(m − kM)i+1
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Table 4.2: Expressions of βk , l and γk , l for k = 0, . . . 3.

k, l βk , l γk , l (i)

0, 1 (Dw)1⁄2 1

1, 1 (Dw)−1⁄2D2w 1⁄2 i2

2, 1 (Dw)−1⁄2D3w 1⁄12(2i3 − 3i2 + i)

2, 2 (Dw)−3⁄2(D2w)2 1⁄8(i4 − 4i3 + 4i2 − i)

3, 1 (Dw)−1⁄2D4w 1⁄24(i4 − 4i3 + 5i2 − 2i)

3, 2 (Dw)−3⁄2D2wD3w 1⁄24(2i5 − 15i4 + 37i3 − 36i2 + 12i)

3, 3 (Dw)−5⁄2(D2w)3 1⁄48(i6 − 12i5 + 52i4 − 99i3 + 82i2 − 24i)

and if the following condition is satis�ed:

Mξ ∈ N (4.13)

then e− j2πkMξ = 1, k ∈ Z and the term e j2π(m−kM)ξ can be
factored out. Equation (4.13) simply means that the singularity
must be placed on one of the M points on which the frequency
axis is sampled for the computation of WM ,N . It is not a
restrictive hypothesis, but it has to be taken into account when
the warping map is designed. Moreover, since:

1(z − k)−(i+1) = (−1)
i

i!
D i

z

1

z − k

ζ(z) = π cot(πz)− 1

z
= ∑

k≠0

1

z − k
∣z∣ ≤ 1

2

therefore:

∑
k≠0

1(m − kM)i+1 = (−1)
i

M i+1 i!
D i ζ(m/M).

Finally A can be represented by:

A(m, n) ≃ e j2πmξ
∞

∑
i=σ

χ i ,n(ξ)(−1)i
i!

(− j2π)i+1
M i+1

D i ζ(m/M).
(4.14)

which completely describes the analytical modeling of aliasing.



72 Chapter 4. Factorization of Aliasing

4.4 Fast Warping Transforms

In the present Section we deal with the problem of compactly
calculating the analytical description which has been previously
introduced. Moreover, we cope with the problem of performing
the multiplication to the matrix A in a fast way, since, according
to equation (4.14), a summation of in�nite terms is still needed.
Furthermore, in case ξ ∈ (0, 1/2), we will take into account the
symmetrical singularity placed in−ξwhich is needed for the odd
symmetry of the warping map.

4.4.1 Matrix Representation of Aliasing

�e results summarized in equations (4.6), (4.14) and (4.11),
(4.12) can be arranged in a compact and e�cient matrix repre-
sentation. �e coe�cients χ i ,n , apart from the complex expo-
nential and other factors involving ẇ, can be seen as di�erence
between the products of a row vector having αi , i−k as entries and
a column vector having the powers of n as entries. At this aim,
we �rst introduce a matrix K whose generic entry is:

K(i , k) = { αi , i−k k ≤ i
0 otherwise

i , k = 0, 1, . . .

�en, three di�erent contributions are considered: V,N,D. �e
�rst matrix contains all the powers of n normalized to N/2
so that its entries turn out to be nearly independent on the
dimension of the problem:

V(k , n) = nk

(N/2)k n ∈ ZN , k = 0, 1, . . .

�e other (diagonal) matrixes are introduced to compensate this
normalization and account for the powers of − j2πẇ:

N = diag[(− jπN)k] k = 0, 1, . . .
D = diag[ẇk] k = 0, 1, . . .

and have to be multiplied on the le� of V. By doing so, the
dependance of coe�cients χ on ξ, apart from the complex
exponential factor, is entirely enclosed in matrixes K and D,
which, when evaluated in ξ+ and ξ−, will be referred as Kξ+ and
Dξ+ , Kξ− and Dξ− respectively. As for (4.11) and (4.12), the case



4.4. FastWarping Transforms 73

σ > 0 is only a particular case of the case σ = 0 where can refer
to a single matrix Dξ since ẇ(ξ−) = ẇ(ξ+). So, we have:

• for σ = 0:
X = Kξ+Dξ+ −Kξ−Dξ−

• for σ > 0:
X = [Kξ+ −Kξ−]Dξ .

We point out that the �rst σ lower diagonals of X starting from
the main diagonal are null. Finally we de�ne:

Q = diag[e− j2πnw(ξ)] n ∈ ZN

so that χ i ,n can be calculated as XNVQ. It is worth to point
out that the input is indexed in ZN according to the choice we
previously made on the input signal (2.2).

Once χ i ,n is computed, equation (4.6) has to be considered
for the computation ofE and equation (4.14) for the computation
of A. As far as E is concerned, we de�ne:

Y(m, i) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
m−(i+1)(M/2)−(i+1) m ∉ ZM

0 otherwise

i = 0, 1, . . .

together with the following diagonal matrixes to be multiplied
on the right and on the le� of Y respectively:

M = diag[(− jπM)−(i+1)] i = 0, 1, . . .
P = diag[e j2πmξ] m ∈ Z

so that for E we get the compact expression:

E = PYMXNVQ.

In a similar way, for the operator A we de�ne:

U(m, i) = (−1)i
2i+1 i!

D iζ(m/M) m ∈ ZM , i = 0, 1, . . .

so that it results:
A = PUMXNVQ (4.15)

where P has to be restricted to ZM and the output is clearly
indexed in ZM as well. In Fig. 4.5 some columns of matrix U

for M = 29 have been depicted.
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Figure 4.5: Basis vectors U(m, i), i = 0, . . . , 7 used to represent the
columns of the aliasing matrix A for M = 29 .

It is worth to note that P andQ are diagonal matrixes which
perform a scaling action on both input and output signals, while
matrixes M and N act only as a scaling on matrix X. Moreover,
matrices Y,U andV do not depend on the warping map and can
be precomputed.

4.4.2 Fast Computation

�e computation of A by the decomposition (4.15) still requires
an in�nite number of operations, since the matrix X has in�nite
dimensions. However, if the absolute values of MXN entries
decrease rapidly as the indexes i and k increase, then a �nite
computation is possible for any prescribed accuracy. In order to
verify this condition, let us consider the following product:

MKDN = K ⋅ diag[M]diag[DN]′ = K ⋅ J
where ⋅ is the element by element product, the diag operator
returns a column vector containing the main diagonal when
applied on a matrix, and J is:

J(i , k) = [diag[M]diag[DN]′](i , k) = (− jπNẇ)k(− jπM)i+1
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As before, when σ = 0, Jξ+ and Jξ− represent J evaluated in ξ+

and ξ− respectively. When σ > 0 we will refer to Jξ instead.
According to (2.4), M > Nmax ẇ, so that:

∣J(i , k)∣ < 1 i ≥ k
and the ratio

J( f ) = M

Nẇ( f ) > 1 (4.16)

represents a sort of redundancy normalized to slope of the map
in f . Now we introduce the matrix

S = Kξ+ ⋅ Jξ+ −Kξ− ⋅ Jξ−

whose entries are either real or imaginary:

S(i , k) = {R[S(i , k)] i − k = 2l + 1
I[S(i , k)] i − k = 2l l ∈ Z. (4.17)

SinceK is a lower triangular matrix, it can be shown that S(i , k)
decreases rapidly as i and k increase. When σ = 0, the main
diagonal decays exponentially, while, when σ > 0, since there
are σ null diagonals starting from the main one, the behavior of
S(i + σ , i) is evaluated instead. Moreover, among the functions
βσ , l , the only one containing the σ + 1-th derivative is βσ ,1 (see
equation (4.10)). So, we get:

• for σ = 0:

S(i , i)∝ αi ,0(ξ+)
MJ i(ξ+) − αi ,0(ξ−)

MJ i(ξ−) ∝ 1

M[J(ξ+)J(ξ−)]i
• for σ > 0

S(i + σ , i)∝ αi+σ ,σ(ξ+) − αi+σ ,σ(ξ+)
Mσ+1 J i(ξ) ∝

∝

γσ ,1(i + σ)
Mσ+1 J i(ξ) ∝ iσ+1

Mσ+1 J i(ξ)
where γσ ,1(i + σ) can be expressed in a closed form:

γk ,1(i + k) = 2i + k + 1

2(k + 1)!
k

∏
l=1

(i + l) (4.18)



76 Chapter 4. Factorization of Aliasing

0 5 10 15 20 25 30 35 40
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

S(i + σ + k , i) k = 0, 2, 4, 6

i

k = 0

k = 2

k = 4

k = 6

Figure 4.6: Odd diagonals of matrix S referred to the warping map of
Fig. 2.1 with N = 28 and M = 2N . �e decay is exponential as both i
and k increases.

as described in Appendix 4.A.4. �e �rst non-zero diagonal
has an exponential decay, since it is expressed as the product
between a polynomial and a negative exponential. Moreover,
the greater is the distance from the main diagonal, the greater
the matrix is scaled by an increasing power of M. Non-zero
diagonals of S referred to the warping map (2.1) are represented
in Fig. 4.6.

�anks to these considerations, matrix S can be properly
truncated to a K × K matrix with D non-zero diagonals:

SK ,D(i , k) = { S(i + σ , k) k ≤ i < k + D i , k < K
0 otherwise.

and the approximated aliasing matrix AK ,D can be de�ned as:

AK ,D = PUKSK ,DVKQ

where the subscript K onV represents the truncation to the �rst
K rows:

VK(k , n) = {V(k , n) k < K
0 otherwise.
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P = diag[e j2πmξ i ] M ×M

UK

M × K

SK ,D
K × K

VK = nk

(N/2)k
K × N

Q = diag[e− j2πnw(ξ i )]

N × N

Figure 4.7: Schematic structure of matrix AK ,D factorization. �e total
amount of multiplications is∝ K(M + N + D), with K ≪ N , so the
resulting algorithm is fast.

while the subscript K on U represents the truncation to the
columns indexed between σ and σ + K − 1:

UK(m, i) = {U(m, i + σ) i < K
0 otherwise.

A schematization of the factorization ofAK ,D has been depicted
in Fig. 4.7. Finally, we de�ne the approximated truncated warp-
ing matrix:

WK ,D = W̃ −AK ,D .

4.4.3 Multiple singularities

In Section 4.3 we analyzed the case of w ∈ Cσ with only one sin-
gularity. �is restrictive hypothesis was intended to simplify the
mathematical modeling process. If the warping map is designed
in a piecewise way, there could bemore than one singularity and
the resulting map may have di�erent di�erentiability orders in
the neighborhood of each singularity. Nevertheless, the aliasing
operator depends on the singularity in a linear way, so the e�ects
of multiple singularities superimpose linearly.
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We remind that the warping map w( f ) has to be an odd
function in order to guarantee that a real signal is transformed
into a real signal. If we suppose to have L singularities ξ l , l =
1, . . . , L, ξ l ∈ (0, 1/2) generating the aliasingmatrixesA(ξ l ), then
each singularity must have a corresponding dual singularity in
1 − ξ l or equivalently in −ξ l generating A(−ξ l), which can be
shown to be equal to A(ξ l)∗. So, the e�ect of each singularity
in ξ l ∈ (0, 1/2) is given by:

A(ξ l) +A(−ξ l) = 2R[A(ξ l)].
If present, the singularities in 0 and 1/2 do not have any dual
singularities and generate the aliasing matrixes A(0) and A(1/2)

respectively. So, by superimposing the e�ects of all potential
singularities, it results:

A = A(0) +A(1/2) +
L

∑
l=1

2R[A(ξ l)]
For A(0) and A(1/2) some simpli�cations occur. If ξ = 0,

both P and Q are equal to the identity matrix since w(0) = 0,
and therefore can be neglected. If ξ = 1/2, since w(1/2) = 1/2,
matrixes P and Q just cause a sign inversion on odd indexed
input and output entries. In both cases, for the output to be real,
S must have real entries as well. Moreover, the di�erentiability
orders σ0 and σ1/2 must be odd, since Dσ+1w must be an odd
function to have a step on ξ = 0 or ξ = 1/2. �erefore, from
equation (4.17), it follows that even diagonals of S are null.

4.5 Performances

In order to evaluate the accuracy of the proposed algorithm we
must introduce a measure of the reconstruction error. As done
before, the measure is assumed to be the spectral norm of the
reconstruction error matrix, i.e. the maximum its eigenvalue.
�erefore, we �rst consider the error in the ideal case, which is
given by operatorW itself:

εW = ∥W†W − IN∥ = ∥E†E∥.
As the worst case, we consider the error given by operator W̃,
which means no aliasing compensation:

εW̃ = ∥W̃†W̃ − IN∥.
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�en, we consider the error in approximating the ideal operator
W†W:

єWK ,D
= ∥W†

K ,DWK ,D −W
†W∥

which is intended to check the convergence of the representation
introduced forA. �is parameter is lower limited by 0 and upper
limited by єW̃ = ∥W̃†W̃ −W†W∥ ≃ εW̃:

0 ≤ єWK ,D
≤ єW̃ .

Here we will show that it is not required to make єWK ,D
reach

its lower limit. In fact, in order to evaluate performances, we
introduce the error εWK ,D

:

εWK ,D
= ∥W†

K ,DWK ,D − IN∥.
such that

εW ≤ εWK ,D
≤ εW̃ .

For both єWK ,D
and εWK ,D

, the upper limit єW̃ ≃ εW̃ is obtained
for K = 0 and/or D = 0 (no aliasing compensation), while the
lower limit is theoretically reached for K ,D →∞. Nevertheless,
since S entries decrease exponentially, we expect that єWK ,D

and
εWK ,D

decrease exponentially as well. In particular, εWK ,D
reaches

the target value εW for values of K and Dmuch smaller than N :

εWK ,D
= ∥W†

K ,DWK ,D −W
†W +W†W − IN∥

≤ ∥W†
K ,DWK ,D −W

†W∥ + ∥W†W − IN∥
≤ єWK ,D

+ εW (4.19)

≃ max[ єWK ,D
, εW ]. (4.20)

�us, the truncation of S turns the complexity from O(N 2)
to O(N), like in a truncated Singular Value Decomposition. In
fact, the matrix-vector multiplication involving VK , SK ,D and
UK requires K ⋅ N , K ⋅ D and K ⋅M multiplications respectively,
while the scaling by P and Q is computed by M + N multiplica-
tions, hence about K ⋅ (N +M + D)multiplications are needed.

In order to evaluate the accuracy of the proposed algorithm,
we numerically computed the spectral norms єWK ,D

and εWK ,D

for the frequency warping map (2.1) which belong to C 1 , with
max ẇ = 5/4 for N = 28 and M = 2N .

In Fig. 4.9 we plotted єWK ,D
respect to K and for increasing

values of of D. As expected, it decreases exponentially as K
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Figure 4.8: Approximation error in representing W†W by WK ,D . �e
decrease along D direction is fast, so that small value is required, while
a large value of K could be required.

increases till the lower bound corresponding to each value of
D is reached. By evaluating the behavior of S, it turns out
that, in order to obtain a prescribed accuracy, the value of K
depends essentially on the normalized redundancy J (4.16) while
the value of D mainly depends on M. In order to represent the
operatorW†Wwith a double precision accuracy, a considerable
value of K would be needed. Nevertheless, since D has a
negligible e�ect on computational cost and K is not a�ected on
N , the complexity is still linear even for large value of K.

From a computational point of view, the target of the pro-
posed model is to compensate aliasing so that the lower bound
εW is reached. In Fig. 4.9 we plotted εWK ,D

, the upper bound
εW , the lower bound εW and the newly introduced upper bound
(4.19). So, the error estimation (4.20) is veri�ed to be accurate.
In order to reach εW , �rstD has to be set by imposing єWK ,D

< εW
for K → ∞, then K is chosen by imposing the same condition
by �xing D to the previously set value. An analytical estimation
of minimum required K and D would be useful, but this is out
of the scope of this paper. In this example by taking K = 14 and
D = 1 the requirement is satis�ed. Since only the main diagonal
is needed, SK ,1 is easily obtained by βk ,1 (4.10) and γk ,1 (4.18).



4.6. Conclusions 81

0 2 4 6 8 10 12 14 16 18 20
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

εWK ,D
= ∥W†

K ,DWK ,D − IN∥

K

εW

εW̃

εWK ,D

єWK ,D

εW + єWK ,D

Figure 4.9: Error εWK ,D
relative to warping map of Fig. 2.1, with N = 28

and M = 2N . By considering a small value of K respect to N and D = 1
the lower limit εW is reached. Curves obtained for di�erent D overlaps.

�e gain in reconstruction accuracy obtained by aliasing
cancelation, the ratio εW̃/εW, can be considerably large. In
the considered case the reconstruction error can be decreased
by more than 3 degree of magnitudes. Although, the gain in
accuracy is strongly dependent on N , M and σ and a detailed
study for the estimation of these bounds can be found in the
following chapter.

4.6 Conclusions

In this chapter the de�nition of a mathematical model for the
accurate and fast calculation of the aliasing matrix involved in
the computation of frequency warping has been treated.

A computational model of the aliasing operator in case of ar-
bitrary shaped non–smooth warping maps has been introduced
starting from some experimental observations and a heuristic
model. �is approach has been shown to be e�ective since, by
applying some proper truncations, it carries a linear complexity
without compromising reconstruction accuracy.
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Appendix 4.A Mathematical Proofs

4.A.1 Expressions of functions ψi

In order to derive the expression of ψi , we start by deriving
equation (4.4):

Dψi( f ) = H( f ) f (i−1)(i − 1)! −
i+1

∑
k=1

ρ i+1,kk f
k−1

= H( f ) f (i−1)(i − 1)! −
i

∑
k=0

ρ i+1,k+1(k + 1) f k
which still matches the de�nition of ψi−1 by considering:

ρ i ,k = (k + 1)ρ i+1,k+1 k = 0, . . . , i
By iteratively applying k times this equation to (4.4) we get:

ψi( f ) = H( f ) 1
i!
f i −

i+1

∑
k=0

1

k!
f kρ i+1−k (4.21)

where the second subscript has been omitted being equal to 0.
Now we impose the functions ψi to be periodic, i.e. ψi(0) =
ψi(1):

1

i!
−

i+1

∑
k=1

ρ i+1−k
k!
= 0

so that for ρ i we have:

ρ i = 1

i!
−

i

∑
k=1

ρ i−k(k + 1)!
which, starting from ρ0 = 1, generates the following sequence:

1, 1/2, 1/12, 0, −1/720, 0, 1/30240, 0, −1/1209600, . . .
to be used in (4.21) to generate ψi functions.

4.A.2 Factorization of Di
f ϕn

�e factorization (4.7) will be demonstrated to be true by in-
duction. To simplify the notation, we set µ = − j2πnw. First we
verify it is true for i = 0:

ϕn = α0,0e
nµ ⇒ α0,0 = (Dw) 1

2 .
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�en, we suppose it is true for i − 1:

D i−1ϕn = eµ
i−1

∑
k=0

αi−1, i−1−k(Dµ)k
and try to verify it implies that the factorization is true for i. By
deriving the factorization of D i−1ϕn we get:

Dµeµ
i−1

∑
k=0

αi−1, i−1−k(Dµ)k + eµD i−1

∑
k=0

αi−1, i−1−k(Dµ)k
and we try to express it as a polynomial in Dµ. For the �rst term
we have:

enµ
i

∑
k=1

αi−1, i−k(nDµ)k
while for the second term:

eµ
i−1

∑
k=0

[Dαi−1, i−1−k(Dµ)k + αi−1, i−1−k k(Dµ)k−1D2µ] =
eµ

i−1

∑
k=0

[Dαi−1, i−1−k + αi−1, i−1−k kD
2w(Dw)−1] (Dµ)k

so that D iϕn has been expressed as a polynomial in Dµ with
power from 0 to i, as it was required. �en we impose the
expression of coe�cients αi , i−k . �e coe�cient of (Dµ)i is:

αi ,0 = αi−1,0 ⇒ αi ,0 = α0,0 = (Dw)1/2
while the coe�cient of (Dµ)i :

αi , i = Dαi−1, i−1 . (4.22)

�e rest of the coe�cients are given in di�erential form:

αi ,k − αi−1,k =
Dαi−1,k−1 + αi−1,k−1(i − k)D2w(Dw)−1 . (4.23)

4.A.3 Expressions of coe�cients αi,k

Wewill �rst demonstrate by induction that α can be factorize as
in (4.8). For k = 0 the factorization is true since αi ,0 = (Dw)1/2.
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�en we suppose it is true for k− 1 and try to verify that it is true
for k by exploiting equation (4.23):

αi ,k − αi−1,k = ∑
l∈∣Ωk−1 ∣

Dβk−1, lγk−1, l (i − 1)
+ ∑

l∈∣Ωk−1 ∣

D2w(Dw)−1βk−1, l (i − k)γk−1, l (i − 1).
D2w(Dw)−1βk−1, l is demonstrated to be a subset of Dβk−1, l :

Dβk , l = ( 1
2
− pk , l ,1)D2w(Dw)−1βk , l+

(Dw) 1
2
−pk , l ,1D

k+1

∏
m=2

(Dmw)pk , l ,m
then we can collect the two summations in one and represents
αi ,k − αi−1,k as:

αi ,k − αi−1,k = ∑
l∈∣Ωk ∣

βk , l ( f )[γk , l (i)− γk , l (i − 1)]
which makes the representation (4.8) feasible.

�e constraint (4.9) is obtained as follows. Starting from a
generic sequence pk−1,⋅,m ∈ Ωk−1 , a sequence pk ,⋅ ∈ Ωk can be
generated by the following rule. If the derivative is applied to
Dmw, then the following sequence is added to pk−1,⋅,m :

−δ(m)+ δ(m + 1)
so that equation (4.9) becomes:

k+1

∑
m=1

(pk , l ,m − δ(m)+ δ(m + 1)) ⋅m = k + 1.
In order to obtain the actual expressions of β and γ, one has

to proceed iteratively. �e set of βk , l is obtained by deriving
βk − 1, l , eliminating multiplicative coe�cients and collecting
multiple terms, while γ is given in a di�erential form, so �nite
di�erence equations have to be solved.

As an example, we solve the case k = 1. We have:

β1,1 = D2w(Dw)−1/2
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and γ1,1 which is given in di�erential form:

γ1,1(i)− γ1,1(i − 1) = 1

2
(2i − 1).

From this equation and from the initial condition (4.22) we get
γ1(0) = 0, so:

γ1,1(i) = 1

2

i

∑
n=1

(2n − 1) = 1

2
i2 .

Successive cases can be solved with the same approach.

4.A.4 Closed expression of polynomial γk,1

�e iterative equation to be solved in order to �nd γk ,1 is simpler
than in the general case since it does not involve the term (i −
k) ⋅ γk−1,1(i − 1). So we have:

γk ,1(i)− γk ,1(i − 1) = γk−1,1(i − 1) k > 1 (4.24)

while the condition (4.22) gives:

γi ,1(i) = γi−1,1(i − 1) = γ1,1(1) = 1

2
(4.25)

which, substituted in (4.24) evaluated for k = i, gives:
γi ,1(i − 1) = 0

that implies:

γk ,1(k − i) = 0 i = 1, . . . , k − 1
which can be demonstrated by induction. In fact, it is true for
i = 1, then, rewriting equation (4.24), if it is true for i:

γk ,1(k − i)− γk ,1(k − (i + 1)) = γk−1,1((k − 1) − i) (4.26)

the �rst and the last term are null, so even the second is null.
Equation (4.24) implies that γk ,1(i) is a polynomial of degree

k+ 1. In facts, γ1(i) is a polynomial of degree 2 and (4.24) repre-
sents a �nite di�erence on function γk ,1 . γk ,1 is an approximation
of the integral of γk−1,1 , hence γk ,1 is a polynomial of degree equal
to degree of γk−1,1 plus 1. In order to determine a polynomial of
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degree k+1 we need at least k+2 points. k points are given by the
zeros in i = 0, . . . , k − 1, and another point is given by (4.25), so
we need an additional points. A second condition can be found
by considering equation (4.26) for i = k:

γk ,1(−1) = (−1)k+1 1
2
.

So, a general expression for γi ,1 is obtained by considering
a polynomial having zeros in 0, 1, . . . , k − 1, multiplied for a
�rst degree polynomial having a zero in x and having X as a
normalizing constant:

γk ,1(i) = 2i − x

2X

k−1

∏
l=0

(i − l)
then, by imposing the two additional conditions, we obtain:

{ (2k − x)k! = X(2 + x)k! = X
⇒ { x = k − 1

X = (k + 1)!
and �nally we get:

γk ,1(i) = 2i − k + 1

2(k + 1)!
k−1

∏
l=0

(i − l)
from which follows (4.18).







Chapter

5
Frame Bounds

Estimation

Warping has been introduced in this work in the frame-
work of unitary operators. �is point of view has led

the derivation of a time-discrete frequency warping operator as
an in�nite-dimensional matrix, which, despite of being unitary,
could not be used in a practical sense. For these reason, we
introduced some �nite-dimensional variants which, in order to
maintain the capability of recovering the original signal from
the transformed one by the application of their adjoints, must
produce a redundant output, i.e. a transformed output signal
longer than the input one.

Unitary property is a characteristic of square operators, since
neither the direct transformation nor the adjoint one can be sin-
gular. So, the rectangular operators which have been described
in this work can not be categorized as unitary. Instead, they
must be considered in the framework of frames [16, 17]. In this
theory, the property of being unitary is replaced by the property
of being a tight frame. �e frame refers to the fact that, if we
consider the adjoint operator composed with the direct one, its
maximum and minimum eigenvalues are positive, so that all
the eigenvalues are enclosed in the frame determined by the
minimum and the maximum one, called frame bounds. �e
tight property takes place when the frame bounds collapse on
the same value, so that all the eigenvalues have the same value.
�erefore, frame bounds are related to reconstruction accuracy.
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Sincewe deal with operatorswhich are not perfectly inverted
by their adjoints, we are now interested in estimating the recon-
struction error, or rather, according to the concepts above, the
frame bounds.

5.1 Discrete Frames

A complete treatment of frames is out of the scope of this work.
Here, we will limit our analysis to discrete frames and to basic
concepts which are useful for the evaluation of performances of
the considered operators.

We start by considering the eigenvectors and corresponding
eigenvalues of the operator W†

MNWMN . Eigenvalues, ordered
from the larger to the smaller, will be denoted by:

λ0 , λ1 , . . . , λN−1

while eigenvectors will be denoted by:

v0 , v1 , . . . , vN−1

such that:

W†
MNWMNv i = λiv i

or equivalently:

det[W†
MNWMN − λiIN] = 0.

�e considered operator is square, so, in order to be invert-
ible, its eigenvalues must be strictly positive and limited. When
this condition is satis�ed by the maximum and the minimum
eigenvalues, it is necessarily satis�ed by all the eigenvalues, so
we just refer to λN−1 and λ0, which are called frame bounds and
conventionally represented by A and B respectively:

A= min λi = λN−1
B = max λi = λ0

andWMN is a framewhen both A and B are positive and limited:

0 < A <∞
0 < B <∞.
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�e frame is said to be tight when the ratio B/A is equal to 1, so
thatW†

MNWMN is equal to AIN or equivalently BIN .
Now we want to show the e�ect of having B/A ≠ 1 on

the reconstruction error. Let us suppose to have a generic
normalized eigenvector v i as input vector. By transforming
throughWMN and reconstructing byW†

MN we get:

∥v i − λiv i∥ = ∥(1 − λi)v i∥ = ∣1 − λi ∣∥v i∥ = ∣1 − λi ∣.
Obviously the relative error is constant, so the error could be
removed by a scaling. Let us consider a generic input obtained
as linear combination of the eigenvectors, so that its norm is
equal to 1. We suppose that the output is scaled by a value in the
interval [B−1 ,A−1], in particular we choose as value the bounds
B−1 and A−1 . For B−1 we have:

N−1

∑
i=0

a iv i ↦ B−1
N−1

∑
i=0

a iλiv i

so that, by exploiting eigenvectors orthogonality, the quadratic
error is:

N−1

∑
i=0

a2i ∣1 − B−1λi ∣2 . (5.1)

�e error in the direction of the eigenvector v0, being λ0 = B, is
null, while in the direction of λN−1 the error is maximum. �en
the worst case arises when a i = δN−1 and the maximum error is:

max
a i

[N−1∑
i=0

a2i ∣1 − B−1λi ∣2]
1⁄2

= ∣1 − A/B∣.
If the scaling factor is A−1 , the worst case gives:

max
a i

[N−1∑
i=0

a2i ∣1 − A−1λi ∣2]
1⁄2

= ∣1 − B/A∣.
It can be easily veri�ed that:

B/A− 1 ≥ 1 − A/B
so the error B/A − 1 is assumed as worst reconstruction error
given by a generic frame when the scaling factor is chosen in[B−1 ,A−1]. �is means that the reconstruction error is upper
limited when an estimation of frame bounds can be performed.
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5.2 Frame Bounds in FrequencyWarping

In the case of frequency warping, there is no need of scaling the
output, since for M → ∞ the eigenvalues tends to 1, and we
surely have:

A < 1 B > 1

so the maximum error is given by:

max{1 − A, B − 1}
so, we are not interested in estimating both the frame bounds,
but the single one which largely di�ers from 1.

In chapter 2 we heuristically demonstrated that, in case of
non-smooth warping maps, the reconstruction accuracy given
by operator WMN and its frequency sampled variant W̃MN

may di�er in a signi�cant manner. �is preliminary result was
con�rmed by the example we provided in order to evaluate the
performances of the aliasing factorization algorithm. Neverthe-
less, that example was referred to a single warping map and was
considered for a single value of N and M. It would be desirable
to be able to foresee the error given byWMN and W̃MN starting
from the input parameters N and M and the warping map only.
�en we would be able to compare the two performances in
a parameterized form and evaluate the intrinsic advantage of
aliasing compensation.

For instance, in �gure 5.1 we depicted a set of warping
maps corresponding to the same speci�cations. �e slope of
the frequency deviation w( f ) − f in the �rst half of the band
has to be equal to 6/5, the second half is settled so that the
global smoothness results to be equal to a preassigned value σ .
In �gure 5.2 we plotted matrix WMN (a) and matrix W̃MN (b)
corresponding to the map 5.1 with σ = 1 for N = 28 andM = 2N .

Hence, here we try to estimate:

εW(M ,N) = ∥W†
MNWMN − IN∥ (5.2)

εW̃(M ,N) = ∥W̃†
MNW̃MN − IN∥ (5.3)

where, respect to the same error variables de�ned in chapter 4,
we pointed out a dependency on M and N .
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Figure 5.1: Frequency deviation, i.e. w( f )− f , of thewarpingmaps used
in the for evaluating the performances of the frame bounds estimation.
�e warping maps are obtained in a piecewise way: in the interval
[0, 1/4] they are equal to a line of slope 6/5, in the interval [1/4, 1/2]
they are polynomials of odd powers giving σ continuous derivatives on
the singularity point 1/4.

5.3 Error Estimation

�e estimation procedure take advantage of the tails matrix and
aliasing model which was developed in chapter 4.

As far as (5.2) is concerned, we recall that εW is equal to∥E†
MNEMN∥ and that EMN can be factorized by (4.15). With

proper hypothesis when multiple singularities are considered,
we reduce to the following:

εW = ∥V†S†Y†YSV∥
then S is substituted by the σ-th lower diagonal, Y†Y, which is
analytically computable and proportional to M, is substituted
by the σ-th entry of the main diagonal and the e�ect of V is
represented by a factor N . Finally we get:

εW ≃ ρ(M/N)
π2σ+2(2σ + 1) ⋅ N

M2σ+1
⋅ ∆2 (5.4)

where ∆ is the di�erential value between ξ+ and ξ− of βσ ,1 (4.10):

∆ = βσ ,1(ξ+) − βσ ,1(ξ−)
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(a) Absolute value of the entries of a truncated warping matrix
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(b) Absolute value of the entries of an aliasing-a�ected warping matrix

Figure 5.2: Addressed warping operators are depicted, aliasing free (a)
and aliasing a�ected (b). Although the two operators are almost equal,
the presence of aliasing in (b) can cause a considerable di�erence in
frame bounds
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Figure 5.3: Absolute value of matrix S entries for σ = 1, N = 28 andM =
2N . Most of the energy is concentrated along the σ-th lower diagonal.

while ρ is the maximum of the polynomial γσ ,1 (4.18) corre-
sponding to βσ ,1 multiplied for a negative exponential having
J (4.16) as base:

ρ = max
x
[J(ξ)−x+σγσ ,1(x)]2 (5.5)

which corresponds to the square maximum of the σ-th lower
diagonal of S (see �g. 5.3). �e expression (5.4) has to be
slightly modi�ed in the case σ = 0. A quasi-exact analytical
solution will be provided for ρ, by assuming that the variable x
is continuous, although, being a vector index, would be discrete.
So we compute the maximum by calculating the value nullifying
the �rst derivative:

Dγσ ,1(x) = γσ ,1(x) log J
�e polynomial γσ ,1 has degree equal to σ +1 and gets an even or
odd symmetry if shi�ed back by (σ−1)/2. It follows that γσ ,1(x+(σ − 1)/2) has either even or odd powers and its derivative can
be approximated by:

Dγk ,1 (x + σ − 1

2
) ≃ D (x + σ − 1

2
)σ+1 = (σ + 1)(x + σ − 1

2
)σ
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and �nally we get the following approximated solution:

x ≃ σ + 1

log J
−

σ − 1

2
.

We point out that, representing a positive index, one has to
prevent this solution to become smaller than 0.

In order to estimate εW̃ we take advantage of equation (1.11):

εW̃ ≃ 2∥W†
MNAMN∥ = 2∥A†

MNWMNW
†
MNAMN∥1/2 .

For σ > 0 the productWMNW
†
MN can be safely substituted by its

main diagonal, whose shape can be analytically derived starting
from the warping map. �en the model (4.15) is substituted and
it turns out:

εW̃ ≃ 2∥V†S†U†CUSV∥1/2 (5.6)

where diag(C) = diag(WMNW
†
MN). �en only an estimation

for diag(U†CU) is needed to trace the estimation of εW̃ back to
the form (5.4). Matrix C has only NmaxDw signi�cant values,
so that it actually selects the central values of U columns, that is
U(m, k) with m ∈ Z⌈N max Dw⌉ . �e σ-th entry of diag(U†CU)
results to be the energy of U(m, σ)with m ∈ Z⌈N max Dw⌉ , which
behaves like a constant in case σ is odd and like m in case σ is
even. So energies are proportional to M2mod2(σ+1):

εW̃ ≃ 1

2
( ρ(M/N)

π2σ+2
⋅

κN

M2(σ+1+mod2(σ+1))
⋅ ∆2)1/2 . (5.7)

In case σ is odd κ is exactly proportional toN according to values
of Dkζ(0). In case σ is even κ is roughly proportional to N 3 but
has to be numerically computed.

�e estimations (5.4) and (5.7) have been obtained by im-
posing the convergence to the exact values for M tending to
∞. So, apart from a possible lack in accuracy for M close
to NmaxDw, these estimations describe the analytical depen-
dency of the frame bounds on the design variables N , M and
σ . Moreover, they allow to evaluate the advantage obtained
by using the aliasing free frequency warping operator rather
than the frequency sampled one. Finally, the solution of (5.5)
allows to estimate the required K to make the computation of
the aliasing matrix AMN converge.
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5.4 Experimental Results

To evaluate performances, we consider frequency maps whose
frequency deviations are depicted in �g. 5.1. �ey have a single
singularities in ξ = 1/4 (a singularity in ξ = −1/4 is also present)
with di�erent degrees of smoothness:

wσ( f ) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

6

5
f f ∈ [0, 1/4]

1

2
+

σ

∑
i=0

a i( f − 1

2
)2i+1 f ∈ [1/4, 1/2] .

Coe�cients a i are obtained by imposing the �rst σ derivatives
to be null on ξ. N has been �xed to 28 and the redundancy M/N
varies from its lower allowed value maxDw = 6/5, which is the
same for all the considered maps, to the very large value 25, to
be able to check the asymptotic behavior.

Estimation results are shown in �g. 5.4 for W̃MN and WMN

respectively. �e second case is shown to be very accurate while
the �rst case is a bit inaccurate for small M but still converges
for large M. As we predicted when the approximation (5.6) has
been done, the model completely fails for W̃MN when σ = 0.
�e considered maps represent a bad case in the sense that
the slope of w on the singularity is equal to the maximum
slope. Having a smaller slope on the singularity improves the
estimation accuracy.

As a concluding remark, we can state that gain obtained
by aliasing compensation is proved by the fact the following
approximated relationship holds:

εW̃ ∼ εW 1/2

which was also heuristically foreseen in chapter 2.

5.5 Conclusions

We dealt with the problem of frame bounds estimation for
frequency warping operators of non-smooth warping maps.
We gave estimations formulas for both the aliasing a�ected
and the aliasing free form of the frequency warping operator.
�e estimations are proven to be e�ective and can be used for
designing warping operators satisfying speci�c requirements in
reconstruction accuracy.



98 Chapter 5. Frame Bounds

0 1 2 3 4 5
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 

 

estimated

exact

εW̃ = ∥W̃†
MNW̃MN − IN∥

log2M/N
(a)

0 1 2 3 4 5
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 

 

estimated

exact

εW = ∥W†
MNWMN − IN∥

log2M/N
(b)

Figure 5.4: Error norm estimations (solid line) and computed error
norms (diamonds) of the frequency sampled warping operator (a) and
of the truncated warping operators (b) for σ = 0, . . . , 4. Computed
norms obviously saturates to a lower computational limit.
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Chapter

6
Ultrasonic Guided

Waves Characterization

Guided Waves (GWs) have characteristic dispersive time-
frequency representations (TFRs). Unfortunately, any TFR

is subjected to the time-frequency uncertainty principle. �is,
in general, limits the capability of TFRs to characterize multiple,
closely spaced guided modes from a time transient measure-
ment, over a wide frequency range. To overcome this limitation,
we present here a new warped frequency transform (WFT) that
in force of a more �exible tiling of the time frequency domain
presents enhanced modes extraction capabilities. Such tiling
is chosen to match the dispersive spectro-temporal structure
of the waveguide by selecting an appropriate map of the time
frequency plane. �e proposed transformation is fast, invertible,
and covariant to group delay shi�s. In particular, in this chapter
we describe design and calculation strategies for maps tailored
to Lamb waves propagating in an aluminium plate. Time-
transient guided wave propagation events obtained both arti�-
cially and experimentally are considered. �e results show that
the proposed WFT limits interference patterns which appears
with others TFRs and produces a sparse representation of the
Lamb waves pattern that can be suitable for identi�cation and
characterization purposes.
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6.1 Introduction to Guided Waves

Guided Waves (GWs) are mechanical-stress waves that can
propagate along solids of �nite dimension (waveguides). In a
certain waveguide (a plate, a rod, a rail) one or more stress GWs
can propagate at a given excitation frequency. Each of these
waves has a characteristic dispersive behavior based onwhich its
speed of propagation depends on the frequency. �e represen-
tation of the wave’s speed versus frequency is generally referred
as dispersion curves. From a practical point of view, dispersion
generates nonstationary signals as a function of time (time-
waveforms) if the waveguide is excited by a force with multiple
frequency content. �ese signals, in fact, change their shape
while propagating since the several excited waves components
have di�erent speed. Characterization of the dispersion curves
from time-transient measurements is vital to all the GWs based
applications that are becoming nowadays a common practice in
the industry for nondestructive evaluation, material characteri-
zation, acoustic focusing and advanced material design.

As proposed in [23] dispersion curves can be obtained by
processing multiple time-waveforms, acquired at equally spaced
positions along the waveguide, by using the two-dimensional
Fourier transform (2D-FT). However, this technique needsmul-
tiple signals from closely-spaced locations. �is drawback limits
the practicality of the 2D-FT procedure for industrial applica-
tions.

GWs dispersion curves can be also extracted from a single
recorded time-waveform. �is step is in general attempted by
means of time-frequency representations (TFRs) [24].

Unfortunately, any TFR is subjected to the time-frequency
(TF) uncertainty principle [25] that limits the capability of dis-
tinguishing multiple, closely spaced guided modes. In fact each
TFR decomposes the TF plane in atoms whose resolution is
bounded by ∆T∆F ≥ 1, where ∆T is time duration and ∆F

spectral or frequency bandwidth.
�e various TF plane decomposition strategies (tilings) char-

acterize the di�erent transforms. For example in Fig. 6.1(a)
and 6.1(b) are depicted the tilings of the Short-Time Frequency
Transform (STFT), with constant shape atoms in the TF plane,
and those of the Wavelet transform (WT), characterized by a
multiscale resolution. Processing a time waveform via a TFR
produces a complex coe�cient for each atom of the TF plane.
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Figure 6.1: Tiling of the TF plane for the STFT (a), and for the WT (b).
�e superimposed thicker continuous lines represent sample dispersion
curves for the waveguide studied in Section 6.3 projected in the TF
plane considering a distance source-receiver of 50 mm.�e dashed line
corresponds to only one of themodes projected in TF plane considering
a path length of 100 mm from the source to the receiver.
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�e squared values of these coe�cients are generally represented
in contour maps. �ese maps for the STFT and the WT are
known as spectrogram and scalogram, respectively. In Fig. 6.1(a)
and 6.1(b) the predicted multimodal and dispersive behaviour
of the guided waves studied in Section are superimposed as a
thicker lines. As it can be seen fromFig. 6.1(a) and 6.1(b) neither
the �xed STFT resolution nor the Wavelet multiscale resolution
are suited to �nely estimate the dispersion curves because of
their atoms are poorly correlated to the complex behavior of
guided waves. In particular, they generate interference patterns
in the TF plane when more than one mode exists in a TF atom.

As suggested by di�erent authors [26] [27] the readability
of spectrograms and scalograms can be enhanced by means of
the reassignment method that improves the TFR resolution by
concentrating the atom’s energy at its center of gravity. However
this technique is particularly sensitive to the presence of noise
and multi-component interferences.

More �exible TFRs can be obtained with either Wavelet
Packet [28] or Chirplet [29] [30] transforms which are able to
adapt the spectro-temporal resolution to the characteristics of
the acquired time-waveform. Yet, these procedures still have
two major shortcomings: (i) they cannot track fast non-linear
frequencymodulations; (ii) they are not group delay shi� covari-
ant. �is latter drawback in particular, requires, to set a proper
time-frequency tiling, knowledge of the distance traveled by the
guided waves. In other words, if this distance is unknown or if
unexpected re�ections atoms’ are present whitin the signal, the
resolution may be inadequate (see Fig. 6.2).

Other strategies to extract the dispersion curves contemplate
the TF energy distributions, such as the Wigner Ville distribu-
tion [31]. �ese transforms are superior to correlation-based
methods (such as the STFT), but their applications are limited
by the existence of cross-term interference. In addition, their
computational cost is onerous.

With the intention to overcome some of the highlighted
problems of TFRs, we implemented a new Warped Frequency
Transform (WFT) with enhanced capabilities. �e proposed
WFT is fast, invertible and covariant to group velocity shi�s.
�e key point of the proposed WFT is its tiling, composed by
non-linearly frequencymodulated atoms, designed tomatch the
spectro-temporal structure of the di�erent guided waves. Such
tiling is obtained by selecting an appropriate warping map to
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Figure 6.2: �e slope of Chirplet atoms axes can be set either manually
or with automated procedures (matching pursuits algorithms [30]). �is
degree of freedom can be e�ectively exploited for guided waves analysis.
However, some problems arise: i) Case I represents the poor correlation
we may have between a chirplet atom and the mode time-frequency
behavior; ii) Case II shows that the correct slope for a dispersive
mode at a given distance is ever more inadequate when the distance
traveled increases; iii) adaptive automated procedures could overcome
this problem but are unable to handle situations like Case III in which
di�erent slopes must be selected to discriminate the modes.

reshape the frequency axis. �e map can be designed once the
dispersion curves for the consideredwaveguide can be predicted
for the frequency range of interest. �e capabilities of the WFT
in comparison with other TFRs are shown here considering
an application on guided waves propagating in an isotropic
aluminum plate.

6.2 Dispersion-matchedWarpograms

6.2.1 Group Delay Shi�s Covariance

�e group delay is de�ned as the derivative of signal’s phase
response and it is a measure of time delay introduced in each
sinusoidal component. TFRs are classi�ed as GroupDelay Shi�s
Covariant (GDSC) when the TFR of a signal s which undergoes
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a change τ( f ) in the group delay (s → sd isp) corresponds to the
TFR of the original signal shi�ed by τ( f ):

Fsd isp = Sd isp( f ) = e− j2π ∫ τ( f )d f
⋅ S( f ) (6.1)

TFR[sd isp](t, f ) = TFR[s](t − τ( f ), f ) (6.2)

It was shown in [32] that a GDSC representation can be obtained
by warping a signal and then analyzing it by a TFR of the Cohen
class, such as the Short-Time Frequency Transform (STFT), if:

K
dw−1( f )

d f
= τ( f ) (6.3)

where K is an arbitrary constant. �erefore, it is possible to
design a GDSC TFR, appropriate for a given dispersive system,
by setting the derivative of the inverse warping map w−1( f ).
6.2.2 Application to Stress Guided Waves

If cg( f ) is the dispersive group velocity relation for the mode
we want to analyze, the group delay we must consider is τ( f ) =
D/cg( f ), where D is the distance traveled by the acoustic wave
from the actuator. �erefore, in our approach, the warping map
is designed according to the dispersive relation:

K
dw−1( f )

d f
= 1

cg( f ) (6.4)

and the constant K is assumed so that w(0.5) = 0.5. Next,
a GDSC time frequency representation (TFRW), that we call
warpogram, is obtained with the following transformation:

TFRW[sd isp](t, f ) = STFT[Wsd isp ](tKcg( f ),w−1( f ))
(6.5)

Generally speaking, �rst the signal is warped in frequency,
then a Short-Time Fourier Transform is performed (alternative
TFRs can be considered at this point), and �nally the warped
axes are reparametrized to provide the correct time-frequency
alignment. It is worth to notice that the compensation of
the dispersive e�ects acts independently from the distance D,
which, in facts, does not appear in (6.4), i.e. the formula used
for map design.
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Figure 6.3: Lamb waves dispersion curves for an aluminum 2.54 mm -
thick plate. (a) group velocity cg( f ), (b) wavelength λ( f ).
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Figure 6.4: Warping maps designed according to (6.4): by using the S0
mode cg( f ) (continuous line) and A0 mode cg( f ) (dashed line).

6.2.3 Group Velocity Dispersion Curves

�e analysis method formulated in (6.5) is based on the group
velocity dispersion curve cg( f ) of a particular guided wave.
Such curve can be predicted for the considered waveguide by
using analytical, semi-analytical or pure numerical formulations
[33, 34]. In particular, for a given frequency in input, the wave
equation formulated as in [33] provides the wavelengths, i.e. the
phase velocity, and the group velocity of all the existing guided
waves. For example, in Fig. 6.3(a) and (b) are represented the
dispersion curves in terms of group velocity cg( f ) and wave-
length λ( f ), respectively, for the Lamb waves existing in the[0÷2]MHz frequency range for a h = 2.54mm thick aluminium
plate (Young modulus E = 69 GPa, Poisson’s coe�cient, ν =
0.33, density ρ = 2700 kg/m3). �ese curves were obtained
by using the semi-analytical Finite Element (SAFE) formulation
proposed in [33].

As clearly shown, in the considered frequency range, up to
six waves can exist, namely the fundamental A0 and S0 waves,
and four higher order waves. Below 600 kHz only the two
fundamental waves can propagate.
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Figure 6.5: Tiling of the time-frequency plane produced by using
the warping map designed on the S0 group velocity dispersion curve
(continuous line of Fig. 6.4) and on the A0 group velocity dispersion
curve (dashed line of Fig. 6.4).
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6.2.4 Warping maps andWarpograms

�e predicted cg( f ) branches are used to design the warping
maps according to Eq. (6.4). In Fig. 6.4, where these maps for
the A0 and S0 are plotted, it can be seen that just a slight bending
of the frequency axis is required.

In Fig. 6.5(a) the tiling of the time-frequency plane shaped
according to the warping map for the S0 wave (continuous line
in Fig. 6.4), is presented. It is worth noting how the atoms
inclination varies in frequency following closely the mode dis-
persive behavior. �is guarantees to the warpogram enhanced
sparsify if compared to the others TFRs. In addition, the atoms
change their shape versus time in agreement to the dispersive
properties of the mode as clearly visible in Fig. 6.5(a) for a
distance source-receiver of 50 mm (continuous line) and 100
mm (dashed line). �is allows to the warpogram the desired
group covariant property. Similar considerations can be drawn
on the tiling built on the A0 mode warping map (dashed line in
Fig. 6.4) shown in Fig. 6.5(b).

A case study on the signal sd isp , represented in Fig. 6.6(a)
and Fig. 6.7(a), is proposed. �is signal was generated syntheti-
cally by imposing the group delay shi� of the modes depicted
in Fig. 6.1 to a Dirac Delta. In Fig. 6.6 are shown the steps
used to obtain the Warpogram of sd isp tuned on the S0 mode.
�e warping e�ect can be clearly seen in Fig. 6.6(b). Roughly
speaking, a guided wave whitin a signal is approximatively re-
converted into the incipient pulse (i.e. the Dirac Delta) at a
distance from the origin which is proportional to the distance
traveled by the mode, thus compensating the mode dispersive
behavior. For instance, the two delta in Fig. 6.6(b) correspond
to the S0 mode at 100 mm distance (continuous line in Fig. 6.1)
and at 200 mm distance (dashed line in Fig. 6.1), respectively.
�is important e�ect can be also fruitfully exploited for defect
localization procedures [35]. Processing the signalWsd isp with
the STFT yields the Fig. 6.6(c) that is next converted to the
warpogramof Fig. 6.6(d) by reparametrizing the axes to provide
the corred time frequency alignment. As it can be seen fromFig.
6.6(d) theWFTproduces a sparse representation of the acquired
signals. It is worth to notice that themode acquired repeatedly is
sparsely represented in both cases (as warpograms are GDSC).
Similar considerations can be made for the Warpogram tuned
on the mode A0, for the dispersive signal sd isp , in Fig. 6.7(d).
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(c) Spectrogram of the warped signal:STFT(W sd i sp )
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(d) Warpogram: STFT(Wsd i sp )(tKcg( f ),w
−1( f ))

Figure 6.6: Warpogram calculation steps as described in Section 6.2.4.
�e depicted Warpogram is calibrated to extract the S0 mode from the
synthetic signal of Fig. 6.1.
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(c) Spectrogram of the warped signal: STFT(Wsd i sp )
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(d) Warpogram: STFT(Wsd i sp )(tKcg( f ),w
−1( f ))

Figure 6.7: Warpogram calculation steps as described in Section 6.2.4.
�e depicted Warpogram is calibrated to extract the A0 mode from the
synthetic signal of Fig. 6.1.
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6.3 Numerical and Experimental Results

6.3.1 Finite Element simulation results

A transient Finite Element analysis with a commercial so�-
ware is carried out to simulate Lamb waves propagating in an
isotropic plate. �e e�ectiveness of conventional �nite element
packages for modeling elastic waves propagating in structural
components has been shown in the past [36].

�e three dimensional wave propagation problem is reduced
to a bidimensional one by assuming a plane strain condition. An
isotropic aluminum plate of length 1220 mm and thickness 2.54
mm has been considered. �e aluminum properties have been
taken as those used in section 6.2.3. Lamb waves were excited
by imposing an inclined concentrated unitary force P(t), acting
on the le� hand edge of the plate.

�e force has been shaped in time as a triangular window
with total duration equal to 0.7 µs to excite consistent Lamb
waves up to 1.5 MHz. In order to satisfy the requirements for
simulation accuracy, the integration time step was set equal to
0.02 µs and the plate was discretized by using linear 4-node
plate elements of dimension 0.25 × 0.254 mm [36]. In Fig.
6.8 the out-of-plane displacement u(t), occurring at a point
on the top side of the plate located at 150 mm away from the
le� edge, is represented. �is time-waveform is next used to
test the suitability of the WFT in comparison with other TFRs.
For example, the spectrogram and the scalogram of the time-
waveform u(t) are shown in Fig. 6.9(a) and 6.9(b), respectively.
As it can be seen from these �gures, the �nite time-frequency
resolution produces interference patterns and limits the capa-
bility of distinguishing closely spaced Lamb modes.

�is is particular evident for both TFRs at about 700 kHz
where the fundamental A0 and S0 modes cross each other.
In addition, it can be seen that the scalogram presents lower
capability to distinguish the energy content of di�erent waves
at very low frequency due to its poor time resolution.

In order to extract the energy content of the S0 mode from
the signal u(t) via the proposed WFT, �rst the warping map
must be set. Next, the application of Eq. (6.5) gives the war-
pogram tuned on the S0 mode as represented in Fig. 6.9(c). It
can be seen from this �gure that the S0 mode is well captured all
over the excited frequency range, while the A0 mode, as desired,



116 Chapter 6. Ultrasonic GuidedWaves

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10

0.2

0.1

0

0.1

0.2

Time

Figure 6.8: Time-waveform u(t) extracted for further TFR post-
processing.

is barely visible. Similarly, shaping the map on the dispersion
curve of the A0 mode and applying the proposed GDSC TFR,
yields the warpogram of Fig. 6.9(d). Also the A0 mode is well
de�ned in this plot, even if in this case the presence of the S0
mode is still consistent. �is is true in particular in the frequency
range where both the A0 and S0 modes have low dispersive
behavior, for which the maps designed via Eq. (6.4) present
similar aspects.

6.3.2 Experimental results

Experimental tests were carried out to generate and detect Lamb
wave propagating in an aluminum plate 2.54 mm thick. A Q-
switched Nd:YAG pulsed laser operating at 1064 nm with an 8
ns pulse duration was used to excite the plate. �e laser beam,
through conventional optics, was focused to deliver a 30 × 0.5
mm line normally to the plate surface. �e line source was
created to e�ectively generate directional and broadband guided
waves propagating perpendicular to the line with minimum
geometrical spreading. To enhance the signal-to-noise ratio,
ablative generation conditions were produced by applying a
layer of water to the plate irradiated area [37], [38]. A broadband
surface-bonded piezoelectric sensor (PWAS) of d = 14 mm
diameter was used to detect the propagating Lamb waves 300
mm away from the illuminated spot. �e ultrasonic signals were
ampli�ed by using Panametrics pre-amp set at 40 dB connected
to an oscilloscope and sampled at 20 MHz. In Fig. 6.11(a) and
6.11(b) the spectrogram and the scalogram of the experimental
signal are shown, respectively. Instead, in Fig. 6.11(c) and
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(b) Scalogram of u(t)
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(c) Warpogram of u(t) calibrated on the S0 mode
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(d) Warpogram of u(t) calibrated on the A0 mode

Figure 6.9: Spectrogram, scalogramandwarpograms of the experimen-
tal signal u(t).
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Figure 6.10: Experimental signal e(t).

6.11(d) the warpograms tuned on the S0 and A0 group velocity
dispersion curves are presented.

It can be seen from Fig. 6.11(c) and 6.11(d), where the
theoretical SAFE dispersion curves are overlapped with the
contour maps obtained from both the S0 and A0 warpogram,
the bene�t of the proposed WFT. In fact, as it can be seen by
comparing them with Fig. 6.11(a) and 6.11(b), classical TFRs
barely reveal the presence of the fundamental modes, while
warpograms clearly extract the energy content of both S0 andA0

modes. For characterization purposes, where the extraction of
the dispersion modes is crucial, the sparse representation of the
WFT limiting the interference patterns can yield to consistent
results in a broaded frequency range if compared to others TFRs.
�e appealing energy mode extraction over a wide frequency
range, as the one obtained in Fig. 6.9(c) and 6.9(d) for the
numerical signal, is here partially lost due to the �nite dimension
of the adopted sensor. In fact, due to the wavelength tuning
e�ect the sensor output is maximum when the sensor diameter
d equals an odd multiple of half the Lamb wave wavelength
λ/2 and minimum when it equals an even multiple of the half
wavelength [39]. Some energy maxima emerges in the TF
plane since several Lamb modes, each with its own di�erent
wavelength, coexist at the same time. Fig. 6.11(c) and 6.11(d)
show the remarkable fact that, at 250 kHz, the amplitude of the
A0 mode goes through zero, while that of the S0 is close to its
peak. At this frequency, in fact, as it can be seen in Fig. 6.3(b)
the A0 mode has a wavelength around 8 mmwhile the S0 mode
approximately 22 mm.
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(b) Scalogram of e(t)
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(c) Warpogram of e(t) calibrated on the S0 mode
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(d) Warpogram of e(t) calibrated on the A0 mode

Figure 6.11: Spectrogram, scalogram and warpograms of the experi-
mental signal e(t).
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6.4 Conclusions

In this chapter we presented a new TFR matched to the time-
frequency structures of Lamb waves. �e new tool e�ciently
represents the di�erent GWs with non-linearly frequency mod-
ulated atoms. An application to propagating GWs in a single
layer isotropic aluminum plate was presented to show the po-
tential of the proposed procedure. Transient events obtained
from both dedicated �nite element (FEM) simulations and ex-
perimentally were considered to prove the reliability of the new
tool. �e main di�erence from the experimental numerical and
FEM based signals was due to the e�ect of a �nite dimension
transducer, revealing the so called wavelength tuning e�ect in
the experimental signals.

In general, the results showed that: i) the WFT produces a
sparser representation of a particular guided wave pattern that
can be suitable for identi�cation and characterization purposes;
ii) the energy peaks extraction is a simpler task and can be per-
formed to obtain reliable mode representation; iii) the quality
of the energy peaks extraction is independent on the distance
waves source - waves receiver, thanks to the group velocity
covariant property. In conclusion theWFT thanks to its suitable
time-frequency support can be considered a powerful tool for
the analysis of dispersive systems.







Conclusions

Frequency warping has been presented in this work in the
framework of time–frequency transformations. First, oper-

ators related to frequency warping have been recalled focusing
on the problems of perfect reconstruction and �exible design.
�en, some computational issues have been treated, such as the
de�nition of a mathematical model for the accurate and fast
calculation of the considered transforms. Finally, a promising
application of frequency warping on ultrasonic waves propaga-
tion has been presented.

More in details, we accurately introduced frequencywarping
starting from continuous Fourier operators and then perform-
ing sampling operations on time and frequency axis. By doing
so, frequency warping operators for discrete-time signals have
been identi�ed as well. �e design procedure has been guided
by the attempt tomake them satisfy the unitary property. Never-
theless, it turned out that this unitary property is not feasible for
a practical use, so new operators belonging to the class of frames
have been considered.

As far as the computation is concerned, we presented an
algorithm for the fast calculation of nonuniform Fourier trans-
form, which is directly employed in the calculation of the fre-
quency sampled frequency warping, and an algorithm for the
fast calculation of compensating the aliasing which occurs in
the frequency sampled frequency warping because of the sam-
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pling operation. �is algorithm has been theoretically and
experimentally shown to be e�ective in eliminating aliasing and
increasing the reconstruction accuracy.

Finally, a possible innovative application of warped time-
frequency techniques has been shown. In particular, we focused
on the capability of frequency warping analysis techniques to
match the physical characteristics of the propagation of guided
waves. In fact, through the employment of frequency warping
a sparser representation of guided wave patterns have been
obtained, which can be usefully exploited for features extraction
and propagation characterization.
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