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“If you try and take a cat apart to see how it works,
the first thing you have on your hands
is a non-working cat.”

Douglas Adams






Preface

HIs work mainly concerns warping techniques for the ma-

nipulation of signals. Our approach on this topic will be
guided by theoretical issues rather than experimental ones. So,
we will not dedicate much space to explain what warping is in
a practical sense. In order to compensate the excess of theory
which will be experienced by the reader in the this work, here
we want to introduce some basic concepts behind frequency
warping in an easy way.

Generically, a signal is described as a measurable quantity
which is able to vary through time and over space. Although
warping could be applied on any kind of signals, as an example
we consider those signals which are intrinsically perceived by
human visual observation, i.e. images. As a signal has to be
measured, the visual information related to a subject which
produces an image can be stored in many ways, determining a
different kind of measure. In modern electronic sensor devices
are employed, in traditional cameras light was stored by a chem-
ical reaction and in humans the storage process is devolved upon
biological sensors. Referring to humans, the measurement is not
completely carried out by the eyes, since the light information
is reported to the brain which makes some further elaborations
before memorizing it in synapses.

Since signals concern the transport of information, or rather
the communication through time and space, before the inven-
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Figure 1: Escher’s lithograph “Print Gallery” (1956). M. C. Escher
“Prentententoonstelling” © 2003 Cordon Art-Baarn-Holland. All rights
reserved.

tion of cameras humans have developed alternative methods
to store and communicate images beyond the time and place
where they were living. Of course we are talking about figura-
tive art. The measurement performed by a man and reported
on a painting or any other kind of figurative representation
shows the importance of the way the perceived information is
weighted according to specific patterns which are enclosed in
the measurement instrument. Figurative art taught that, since
there is not a single way to represent reality, then there is not a
single way to observe reality. Works of art are always affected
by a kind of signal processing, including simple filtering oper-
ations or complicated non-linear effects. Furthermore, we can
notice that during the last centuries, figurative art deliberately
abandoned the aim of giving a faithful representation of reality
and expressed the willing of going beyond what can be directly
experienced by human senses.




Figure 2: Warping Grid used by Escher to draw the “Print Gallery”.

In this background, we consider the work of M. C. Escher. In
his prints he took advantage of some concepts akin to mathemat-
ics, like self-reference, infinite and recursive processes. In par-
ticular, recursion is the main concept in his print titled the “Print
Gallery”, which is reported in figure 1. An accurate description
of the mathematical structure of this work can be found in [1].
The print have been drawn starting from an unwarped image,
representing a man observing a print which illustrates himself
watching the same print recursively (this recursion is called
Droste effect). On this image, a warping have bee applied
according to grid which is shown in figure 2. The new warped
image is created by making the tales of a square grid built on
the original image correspond to the tales on the new grid. The
performed operation is more than a deformation, since the grid
is designed such that it contains a progressive scaling operation
which makes the recursive spaces reconnect together. But apart
from the scaling, we want to focus on the global effect that the
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author’s point of view has given to the content. Thanks to the
grid, the tales of the image have been re-weighted according
to a new sampling, so that some details which were not visible
and recognizable in the original version have been increased in
importance. A very interesting consideration to be done is that
trough the warping operation there is no increase in the global
information contained in the picture. Instead, the way the space
of observation (the square frame) is split among the various part
of the image has been modified.

It is quite intuitive that the problem of recovering the orig-
inal image, which has been treated in [1], is actually the same
problem as drawing the warping image. In fact, one can assume
that the image in figure 1 is the original one, and then draw a
new image through a grid which nullify the effect of the grid in
figure 2.

Through this example, we have already illustrated some of
the basic properties and concepts behind the warping technique.
Possible aims of such an operation can be easily imagine by
comparison with the shown example. For instance, one could
need to exalt some parts of a signal despite to others in order
to perform an accurate feature extraction. This approach can
be categorized as a direct application of a warping technique,
since the starting point is the unmodified signal. Otherwise,
it could be necessary to remove the effects of an acquisition
process which weights non-uniformly the different parts of the
incoming signal. This approach would be labeled as an inverse
use of a warping technique, since the starting point is an already
warped signal. As we suggested before, there is an intrinsic
duality between the direct and the inverse approach.

The possibility of recovering the original signal by the war-
ped one, that is the capability of define an inverse unwarping
which exactly inverts the direct one, is a very important issue
when dealing with warping technique from a mathematical
point of view. Invertibility is the major problem which will be
considered in this work. Furthermore we will cope with the way
the warping operation should to be designed, which means, by
comparison with the Escher’s print example, what kind of curves
should compose the grid in figure 2.

We finally report other hints suggested from Escher’s litho-
graph. Although these consists in conceptual observations ra-
ther than mathematical ones, they reveal to make sense in
hindsight. We notice that the center of 1 was left unpainted. We




also learn from [1] that the unwarped picture used by Escher was
not complete, since the unpainted spot gives rise to an empty
spiral. These observations can be translated to our perspective
in the following metaphorical meaning. When warping a signal
from a finite-dimensional domain to another finite-dimensional
one (i.e. a domain having an upper limited resolution), some
information is necessarily discarded. Maybe a perfect recon-
struction could be achieved anyway, but it involves something
more than merely inverting the steps employed for warping.
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Introduction

URING the last years the relevance of time-frequency trans-
D formations has widely grown in signal processing. These
techniques are commonly addressed to give a new representa-
tion of a source signal. A time-frequency transformation could
be adaptively defined in order to match the way the information
is recorded in the source signal. Alternatively, it could be
designed to obtain a sparse representation for compression or
denoising applications. In some cases the two purposes could
match, i.e. the sparse representation also conveys some of the
source characteristics and implements a feature extraction. So,
the ability of generating a flexible tiling of the time-frequency
plane is a major issue. Many transformations have been intro-
duced in order to accomplish this task, including the short time
Fourier transform, the wavelet transform, filter banks and all
their variations and mutual combination addressed to generalize
their intrinsic characteristics [2,3]. Nevertheless, such transfor-
mations have some restrictive properties which make them not
suitable in some applications. In particular, some requirements,
like fast computation and orthogonality, limit the degrees of
freedom in choosing the proper time-frequency representation.

In order to approach the aim of an arbitrary time-frequency
tiling, the application of a preliminary invertible transformation
to reshape the frequency axis can be considered [4, 5]. This
transformation is referred as frequency warping. The feature
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defining how the frequency axis is reshaped is the frequency
warping map.

The application of frequency warping as a way for general-
izing existing time-frequency transforms has been introduced
some years ago in [6-8]. However, from a mathematical point
of view it has been previously modeled in many ways.

In [9, 10] frequency warping has been described as a non-
stationary resampling in time of the input signal performed by
sampling the outputs of an all-pass filter chain. The result-
ing transformation, close to the Laguerre transform, suffers of
strong limitations in terms of allowed frequency maps. In fact,
Laguerre maps are obtained by considering the composition
between a sigmoidal function, actually the arctangent function,
and its inverse multiplied by a scale parameter. This param-
eter represents the only degree of freedom and might not be
sufficient as a design parameter in many applications. Later,
frequency warping has been modeled as a projection on a set
of frequency and amplitude modulated functions [11], but as far
as applications are concerned, it was not taken advantage of this
model and only Laguerre functions were applied.

From a computational point of view, frequency warping can
be modeled as the composition of an inverse Fourier transform
and a warped Fourier transform, which can be can be computed
by a nonuniform Fourier transform [12-15]. This approach is
more general since it allows to design the warping map in an ar-
bitrary way, potentially perfectly suited to the target application.
However, being based on discrete-frequency operations, it could
suffer from inaccuracy.

Moreover, it would be desirable to define frequency warping
as an orthogonal operator, so that, if a further orthogonal trans-
formation is applied in cascade, the whole one would still be
orthogonal. However, as an intrinsic feature, frequency warping
always returns a redundant representation of the source signal.
For this reason, the requirement of making it be orthogonal can
not be fulfilled. Nevertheless, if proper defined, it can still be
accurately inverted by applying the adjoint operator of the direct
transform. This property makes frequency warping belong to
the class of frames [16,17].

In this work we deal with the problem of defining frequency
warping transforms such that the frequency map can be de-
signed in a flexible way, like by a piecewise approach, and the
property of being inverted by the adjoint operator is satisfied up




to a predetermined accuracy. In particular, we focus on how the
features of the frequency warping maps affect the reconstruction
accuracy, so that designing rules can be inferred for getting an
optimal design. Arbitrary maps could have singularities, hence,
for the sake of generality, non-smooth functions are considered.

Our ultimate goal is to introduce a mathematical model
and a fast and accurate computation algorithm for frequency
warping transforms referred to non-smooth frequency map.
This result is obtained by extending the modeling based on
nonuniform Fourier transform by the introduction of an alias-
ing suppression technique [18-20].

The work is organized in three parts. PartIis dedicated to the
introductions of target operators and transforms. In particular
chapter 1 has a strict and rigid mathematical approach, while
chapter 2 focuses on more practical issues. In this part there is
no original contribution but the point of view and the mathe-
matical setting, which is actually the base for successive further
developments.

Part II represents the core of the core of the entire work. Ba-
sically, it concerns the computational model for a practical use of
the operators which have been theoretically introduced in part I.
More precisely, an original contribution for the computation of
nonuniform Fourier transform is given in chapter 3 which is
complementary to the factorization of the aliasing operator in
chapter 4, both involved in the modeling of frequency warping.
Moreover, a analytical characterization of frequency warping in
terms of reconstruction accuracy is given in chapter 5. Most of
the contents of this part represents an original and innovative
contribution.

Part III presents refers to the field of ultrasonic waves prop-
agation, where frequency warping has been efliciently applied
as it perfectly matches the physical behavior of dispersive mode
propagation. Chapter 6 explains how the mathematical model
is transposed over the physical problem and gives some details
about the experimental setup. Although the application of
frequency warping on this topic is still in a preliminary stage,
it reveals to be very promising and innovative.

The entire work, considered from a global perspective, con-
cerns a wide range of problems and therefore employs a lot
of mathematics. Although an effort has been done in order
to uniform the notation and the conventions about the repre-
sentation of signals and operators, the work is not completely
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homogeneous. Moreover, it has been tried to limit the interde-
pendencies among the different parts and chapters, nevertheless
they maintain a certain degree of correlation. So it is strongly
recommended to approach the reading in a linear fashion from
the beginning to the end.
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CHAPTER

1

Fourier and Warping
Operators

His chapter will present the notation which will be used in

the rest of the work. More in details, we will refer to either
time-continuous and time-discrete signals and we will provide
definitions for mathematical operators applied to both of them.
In particular, we will mainly deal with time-frequency operators,
so a major space will be dedicated to fixing the notation and
the conventions about the Fourier transform. Finally we will
introduce the frequency warping operator, which will be the
starting point for the further developments of the rest of the
work.

Both Fourier and warping operator will be presented in
the continuous-time, discrete-time continuous-frequency and
discrete-time discrete-frequency cases. A particular attention
will be dedicated to invertibility and reconstruction accuracy.
In this framework we will recall the sampling theorem and the
duality between time and frequency domains. As a conclusion,
we will introduce a additive decomposition of the time-discrete
frequency warping operator in its frequency sampled approxi-
mation and an aliasing term. Both these operators will be deeply
discussed in next chapters.

As a convention, signals will be represented in lowercase
italic letters, while operators will be represented by boldface up-
percase letters. We deliberately introduce an ambiguity between
the representation of the operators and their kernels.



CHAPTER 1. FOURIER AND WARPING OPERATORS

1.1 Fourier Operators

We start by reviewing the Fourier transform and its main prop-
erties, which are supposed to be well-known to the reader. So,
the purpose of this section is to present an approach based on
operators for the derivation and description of Fourier trans-
forms. This may be useful to suggest a comparison to linear
algebra, which will be deeply exploited in this work. Moreover,
this short summary on Fourier transforms may serve as an
exercise to get acquire familiarity with the operators approach.

From a practical point of view, we first introduce the contin-
uous Fourier transform, then we derive the Fourier transform
for discrete-time signals and finally the discrete transform in
both time and frequency. The aim is to maintain a reference
to the continuous operator in the definition of the discrete
transforms, so that, when warping will be applied, the derivation
to discrete case will be straightforward.

1.1.1  Continuous-Time Operators

In order to illustrate this representation, we start by considering
the Fourier F transform applied on a continuous signal s:

F:2(R) > L2(R), s(8) = 3(/) = [ s(t)e ™/t
s0, the operator kernel is simply given by:
F(f,t) = e 7>/,

In compact operator notation the Fourier transform is repre-
sented by:
s=Fs

The adjoint operator will be represented by the ¥ subscript:

F' :LZ(R) — LZ(R), §(f) — [FTS](t) _ fRSA(f)e_jszdf

and the operator kernel is obtained by complex conjugating F.
The Fourier operator is unitary, i.e. its inverse operator is given
by the adjoint one:

F—l _ FT

which is easily verified by considering:

[FTF](t,T): /e—j2ntfej2nrf:fe—jZH(t—T)fzs(t_T)
R

R
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that, in compact notation, is:
F'F=1

where I is the identity operator.

1.1.2  Nyquist Theorem Revisited

Now we want to consider discrete-time signals. In order to do
this, we first introduce the sampling operator D (where D stays
for Delta):

D :I3(R) > 2(Z), s(t) = [Ds](n) = f £)8(t—n)

whose kernel is simply given by:

D(n,t)=8(t-n).

In order to transform a discrete-time signal, the Fourier operator
has to be sampled as well, so that we should consider:

[ED'](¢, f) = fRe—jsz(;(t_n)dt: -

Now we suppose that the considered signal is band-limited, with
bandwidth equal to 1/2, then the sampling operation does not
cause a loss in information. Sampling just cause a periodic
repetition in the frequency domain. Let us show this well-
known property by the operator notation. The sampling can be
represented in the frequency domain as:

FD'Ds
where the operator D'D can be explicitly computed:

[D'D](t,7) = > 8(t-n)d(r-n)=06(t-1) > 8(t-n)

nez nez

which is actually a diagonal operator whose diagonal is given
by a Dirac comb. We remind that the Dirac comb can be
equivalently represented by its Fourier series:

z 6(t— 71) _ Z eermt

nez neZ
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so we get:
[ED'Ds](f) = fR eI S it (1)t
nez
- ZfRe-ﬂm(f-”s(t)dt: S §(f - n).
nez nez

We can introduce the periodic repetition operator R such that:
R: L (R) » L™ (R), §(8) = [Rs](f) = [ () L o(¢~f+n)
Z

whose kernel is represented by:

R(f,§) =) 0(§=f+n).

nez

This equivalence can be finally set:
FD'D = RF

which means that in order to invert the sampling operation
we must be able to invert the periodic repetition. Normally
periodic repetition is not an invertible operation, unless the
considered signal is band-limited. In particular we are interested
in baseband signals, so we just suppose that the input signal
has non-zero amplitude only in the interval [-%, % ]. By this
hypothesis, we can invert the periodic repetition by windowing
the spectrum with a rectangular filter H:

H(f,§) = 6(f - O[H(§+1/2) - H(E-1/2)]

where H is the Heaviside function. So, in case of baseband band-
limited signals, the operator:

F'HFD'D

behaves like an identity operator. In order to specify this result,
we first consider:

[F'HF](t,7) = fRejz”ft[H(f+l/2)—H(f_l/z)]e—ﬂﬂfrdf
= /%eﬂﬂf(f—f)df

Y

sinc(t — 1)
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and then define the resulting operator as:
S(t, 7) = sinc(t - 1)

so that, the global operation performed on the input signal s can
be represented as:
SD'D.

Now we notice that SD' can be written as an interpolator:
SD'(t,n) = f sinc(t — 1)8(7—n)dt = sinc(t — n).
R

It results that this inversion procedure gives as output the input
signal samples interpolated by a sinc function, so it recovers the
original signal if the signal could actually be expressed as a linear
combination of shifted sinc functions. Finally we consider this
equality:
SD'DS = F'HRHF.

Since HRH is equal to H, we conclude that:

SD'DS = 8. (1)

which means that, given a generic signal, the subspace identified
by S can be recovered after sampling by applying SD*.

1.1.3 Discrete-Time Fourier Operators

After having explained how to pass from continuous to discrete
domain, we can deal with discrete-time signals. So, from this
point forward, s will represent a sequence in £2(Z). The Fourier
transform has to be redefined for the new input domain. In
particular, it could be desirable to define such that the inverse
operator is equal to the transpose one.

Let us apply a sampling on both sides of equation (1.1):

DSD'DS = DS

which tells us that the subspace identified by DS is invariant
respect to the application of DSD'. Since we consider as input
¢*(Z), which is generated by DS, the operator to evaluate is
DSD':

[DSD'](m, n) = fRS(t—n)fRsinc(t—T)(S(T—m)det
/Ré‘(t—n)sinc(t—m)dt

sinc(n — m)
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which means that DSD" is equal to the identity operator respect
to £2(Z):
DSD' =1

therefore the Fourier operator and its adjoint can be put after D:
DSF'FD' = 1.

The direct Fourier transform for discrete-time signals can be
defined as follows:

FD': ¢2(Z) - L®(R), s(n) = $(f) = %s(n)e‘jz’mf (1.2)

whose kernel is merely given by:
[ED'](f.n) = e ™/
The inverse operator can be defined by:
[FD']™' = DSF' = DF'H

such that:
[FDT]_I : LZ(R) — fz(Z), §(f) — 5(71) = Alg(f)ejZandt

where the interval [0, 1] has been equivalently considered rather
than [-%, % ].

We point out that, in the inverse operator, the purpose of
operator DS after operator F' is to reduce a Dirac comb of this

kind:

> s(n)d(t-n)

neZ
whose energy is infinite, to a finite energy sequence trough
substituting the Dirac impulses by Kronecker symbols. So the
Fourier transform of a sequence is intrinsically periodic, the
windowing operation performed by operator H accomplishes
only computational needs. For this reason, we prefer to rep-
resent the Fourier transform of a discrete-time signal and its
inverse by the operator described above.

Nevertheless, it could be convenient as well to define the

Fourier transform so that the inverse operator is given by its
adjoint. In order to do this, we consider:

DF'HFD' = DFFHHFD' = [DF'H][HFD']
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and since H' = H, we could set:
HFD': ¢*(Z) - L*([0,1)), s(n) = 3(f) = Y, s(n)e 2™ dt

nez

(1.3)
as an alternative definition of Fourier transform. The kernel is
obviously the same as in the previous definition, since operator
H only affects the codomain. Independently on the adopted

definition, the discrete-time operator will be referred as Fp.
From a practical point of view, considering the entire fre-
quency axis as output domain rather than a single period, does
not imply substantial differences. Instead, from a theoretical
point of view, it will have important implications when fre-
quency warping will be applied. In fact, when an operator is
applied on the frequency domain, even if the axis is restricted
to a single period, the periodicity has to be taken into account
for rightly modeling the effects of the considered operator and
potentially for designing it according to some optimality criteria.

1.1.4 Discrete Fourier Operator

Now we want to introduce discrete operators in both time
and frequency domains. The approach which will be followed
is quite the same as the one used to introduce discrete-time
operators.

In time domain we considered a sampling step equal to 1.
Because of it, the frequency domain period is equal to 1 as well.
So, it is quite evident that in the frequency domain we must
consider a sampling step smaller than 1. Moreover, in order to
maintain periodicity, the sampling step must be contained in the
period an integer number of times. Therefore we will assume
that the sampling step is equal to 1/N, or rather the period is
sampled in N different points. The sampling operator has to
modified so that it performs this task and will be represented
as Dy:

Dy : L®(R) - £ (R),
() = D)) = [ $(HO(f - k/N)df
whose kernel is given by:

Dy (k. f) = 8(f - k/N).
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Now, we apply this sampling operator on the left of the Fourier
operator and on the right of the adjoint one:

DSF'D{,DFD". (1.4)
The operator D}, D, roughly behaves like the operator D' D, that

18:

[DYDyI(f,§) = 3 8(f - k/N)6(§- k/N)

keZ

= 8(f - &) Y 8(f ~ K/N)

keZ

again, the Dirac comb can be represented by:

S 8(f-k/N)=NY e /N

keZ keZ

so that, from F'D{ D F we get:

tpt 2 2nfkN ,~j2

[F'DD\F](t,7) = /Rej ﬂftNg%e] nfkN ~j2nfz
=N f 2 (mTHkN) - N SN §(t— T+ kN).
kez. IR keZ.
The resulting operator performs a repetition with step equal
to N, In order to complete the chain (1.4), we still miss the
D' operator on the right and the DS operator on the left. By
applying DT we get:

[F'D{, D FD"](¢,n)

fRNzé‘(t—T+kN)6(T—n)dT

keZ

N> 8(t-n+kN)
keZ

while by applying [DS](m, t) = sinc(t — m) on the right we get:
[DSF'D{,DFD"|(m,n) =

fsinc(t—m)N > 8(t-n+kN)dt= N sinc(n-m-kN)
R keZ keZ

where the sinc functions, being sampled on integer values, be-
haves like Kronecker symbols. The obtained operator represents
a discrete periodic repetition which will be referred as Ry:

-1 1yt +
Ry = N"'DSF'D{,DFD'.
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As expected, the sampling in the frequency domain causes
a periodic repetition in discrete time domain. In order to avoid
loss in information, the following operator should maintain the
input signal unchanged:

HxyRy

where Hy is suitable rectangular discrete-time window of length
equal to N. So, the following statement is surely satisfied:

HNRNHNS = HNS

and we infer that the signal must be time-limited to an interval
equal or smaller than N samples.

By considering as input domain the space generated by Hy;,
we can now define the discrete Fourier transform as:

DyFDT:RY - °(Z), s(n) — 3(k) = Z S(n)e_ﬂ””k/N

neZy

where Zy is a set of N consecutive integers. The inverse trans-
form is expressed by:

[DyFD']™' = N"'DSF'D}; = N"'DF'HD};
and it acts on the discrete Fourier transformed signal § as fol-
lows:
[DNEDT] ™ : 2°(Z) - RN,

§(k) = s(n) = N7" 3 3(k)el>m N,
keZyn

Here, the set Zy is not necessarily the same set used in the direct
transform. A standard choice is to consider for both the sets:

Zy ={0,1,...,N -1}

but, as said before, other choices are allowed.
Again, we could redefine the direct Fourier operator such
that the output domain is limited in frequency, i.e. RN:

DNHFDJr ‘RN - RN, s(n) — §(k) = z S(n)e—jznnk/N

neLy

whose inverse is represented by its adjoint multiplied by the
constant being the input dimension:

[DyHFD']' [DyHED'] = NIy
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where Iy is the identity operator for a R,

The discrete Fourier transform operator will be represented
as Fp,p, either if the codomain is the entire frequency axis or a
single period.

1.2 Frequency Warping Operators

In this section we introduce the warping operators. The pre-
sentation follows the flow which has been used for the Fourier
operators. So, we start from the continuous case, then introduce
the sampling of the time axis and finally derive the the sampling
of both time and frequency axis. Preliminarily, the warping of a
generic axis as an intrinsic transformation will be considered,
then it will be transposed to the frequency axis. Even if the
warping is performed in the frequency domain, the frequency
warping operator is defined so that it acts in the time-domain.
So, the introduced deformation is not directly observable and
recognizable in the time-domain.

1.2.1 Unitary Operators

Roughly speaking, a unitary operator is an operator such that
its inverse is given by the adjoint one. Unitariness is always
a desirable property for an operator, since it carries out some
advantages which can be very important in signal processing.
More in details, an operator U is said to be unitary the following
three condition are satisfied:

o Linearity.
Given two constants a, b € R and two functions or vectors
sy and sy, linearity is satisfied if:

Ulas; + bsy] = aUs; + bUs,
o Suriectivity.

This property, also said non-singularity, ensures that no
input function is transformed in the 0 function:

Us=0 < 5s=0
o Isometry.
This property consists in preserving distances:

[Usll = ]
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Linearity is normally satisfied for most of the operators which
are used in time-frequency analysis. An example of operator
which does not verify the surjectivity property is a filter, which
by definition nullify all the information carried by specified
functions or vectors. Examples of transformations which fulfill
the isometry property are the time-shift, the frequency-shift or
modulation and the scaling.
By considering the isometry property, for |Us| we get:

|Us| = [Us]"[Us] = s"UTUs
so that, the isometry is satisfied if and only if:
Ut=u' (15)

which is the property announced at the beginning. We remind
that in the previous section, when we defined the Fourier op-
erators, we always provided a definition satisfying the unitary
property. As far as warping is concerned, we will attempt to the
same as for Fourier operators.

Since the norm of s is given by the square root of the scalar
product between s and itself, it follows that the scalar product
between two functions or vectors s; and s, is invariant respect
to the application of a unitary operator:

[Us1]'[Us,] = s/ U'Us, = sfs,.

This formulation suggests the way a unitary operator can be
used. Let us suppose to have another unitary operator, for
example the Fourier operator F. The composed operator FU is
still unitary, since:

[FU]'[FU] = U'F'FU=U'U=1L

So, the analysis performed by F can be modified through the
application of U, which could be applied either to the right
F or to left of the input function or vector. The first option
would involve a modification on the operator F, so it may be
not completely painless. Therefore, it should be much more
convenient to apply it preliminarily on the input signal. We point
out that, if the considered operator performs for example a shift
towards left and we want to obtain such a modification on the
bases vectors, the transformation to be applied on the signal is
the inverse one, or rather the adjoint one, In fact, if we force U
to act on F rows from the right, we get:

FUs = [[FU]"]"s = [UTF']"s. (1.6)

13
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1.2.2 Continuous Warping Operator

Here we want to introduce the concept of deformation of a
continuous function. Intuitively, to get a deformation of a
function one has to introduce a deformation on its axis. This
means that we must set a function w, such that it maps the old
axis x to the new axis w(x):

w:R->R, xe~w(x).

In previous sections we often focused on invertibility. To get an
invertible warping operator, the function w must be an invertible
function, that is:

1

Ww>0 ae. = 3Iw, wlw(x))=x (1.7)

where W represents the first derivative of w while w™' represents

the functional inverse. Starting from w, we introduce the trans-
formation which substitutes the axis x of an input function s(w)
by w(x). This is actually the composition of s and w:

Ws = [sow](x) =s(w(x)).
The kernel of this operator can be described as follows:

W(x,y) = 8(w(x) - y)

in fact:
[Ws](x) = fR S(w(x) - y)s(y)dy = w(s(x)).

This operator is candidate to become the warping operator. To
be elected, it must be linear, surjective and isometric. The first
property is straightforward:

Wlas; + bs;] = aWs; + bWs,  a,beR.

Surjectivity is guaranteed by (1.7). In fact, being s equal to 0
only on certain intervals or points, it is transformed in the zero
function only if the composition with w makes s(w(x)) return
the only the zero values of s(x). This is impossible, since w(x),
having positive derivative, maps x onto itself.

To verify the isometry property, we apply the adjoint opera-
tor in order to recover the identity:

[W'WI(z7) = [ 8(z=w(x))o(w(x) - y)dx
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then we should set the following integration variable change:

w(x)=¢ = w(x)dx=d& = dx = o (g))df (1.8)

which gives:

(W'W](z, y)

L8G90y ——
1

= ——0(z—-y).

w12 )

So, the isometry property is not verified, but this negative result
suggest us how to modify the expression of W. The integral
should contain a factor equal to w(x), so that, by posing w(x) =
& w(x)dx would be simply substituted by d¢. Therefore we set:

W L2(R) > L(R), s(y) v [Ws](x) = /(x)s(w(x))
whose kernel is:
W(x,y) = Vw(x)d(w(x) - y).

Now the isometry property is easily verified:

IWs[? = [ (st (w(x)dx = [ (dg = [s]?

where the above substitution (1.8) has been used.

Now we want to focus on the inverse operator W™, As we
verified, it can be expressed by the adjoint operator. Anyway,
we did not take advantage of the functional inverse w™!, which
could serve as a mapping function as well. So we consider:

W(z,x) = \/w(2)0(w(2) - )

which, combined with W, gives:

[WW)(z.») = [ \/w(@)in(x)0(w™(2) - x)(w(x) - y)dx

= VW (@) (w ()8 (w(w ™ (2)) - )
=8(z-y)

where we exploited (1.8) for the expression of w-!. Finally we
obtained the identity operator, which means that:

w(w “('S))

W=wW=w

15
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1.2.3 Continuous Frequency Warping Operator

Now we want to apply the continuous warping operator W
in order to get a deformation of the frequency axis through
an operator to be used in the time-domain. So, basically, the
operator has to be applied between a Fourier transform and an
inverse Fourier transform. This operator will be referred as Wk,
where the subscript points that the warping is executed in the
transformed domain. We get:

Wg = F'WE.

Before going on computing its kernel, we introduce the interme-
diate operator Fy:
Fw = WF

whose kernel is given by:
Fu(fot) = [ VR(DS(w(f) - e de
= w(f)e Nt

Fy is still a unitary operator, being the composition of unitary
operators. So, Wk is represented as:

Wr = F'Fy.

having the following kernel:

We(t, 1) = fR\/Wf)e—jlﬂw(f)rejznﬂdf
= w( f)e/rSt=w(Nn)
= [ Vaper g

and the operator can be formally defined as:

We: L*(R) > L*(R), s(7) = [Wes](t) =

:/Rs(r)fR\/Wf)ejZ”(ﬁ_w(f)T)dde.

We point out that this operator, involving continuous operation,
can not be analytically computed for a generic signal s, since, on
the other hand, not even the continuous Fourier transform of a
generic signal can be analytically performed.
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We underline that Wk is still a unitary operator. Another
thing to be taken into account is the shape to be given to the
warping function w. Since we normally deal with real input
signals, it may be required that the output is real as well. So, this
requirement must be imposed on the shape of w. Intuitively, be-
ing the Fourier transformed of a real signal symmetric respect to
the origin, we should impose that this symmetry is maintained
after the application of frequency warping. In a simpler fashion,
we can impose that the real part and the imaginary part of the
operator Fy kernel are even and odd respectively:

Fw(f,t) = Fw"(=f,1)
We—jznw(f)t _ \/meﬂﬂw(—f)[

which is verified if:

w(f) = -w(=f). (19)

that is, w must be an odd function in order to make Wg trans-
form a real signal in a real signal. Since w is also an increasing
function, it follows that the origin of the frequency axis is a fixed
point of the w map, that is w(0) = 0.

1.2.4 Discrete-Time Frequency Warping

For discrete-time signals, the procedure to be used to obtain the
corresponding frequency warping operator is the same as for
the continuous time case. The warping operator has to be put
between a Fourier transform and an inverse Fourier transform.

As far as the Fourier transform of a discrete-time signal is
concerned, we can choose between definition (1.2) and (1.3). In
order to maintain the entire frequency axis as codomain, we
choose the first definition, so that:

Wiep = DSFFWEFD' = DSWD'

is the target operator. The subscript gp stays to represent that
W is enclosed between a Fourier transform and a passage to a
sampled domain.

Obviously, the warping map w has to be properly redefined
in order to adapt to the periodicity of the Fourier transform of
discrete-time signal. More precisely, we require the operator
DS on the right not to cause loss of information, or rather, we

17
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want WrD to give as output a sequence of Dirac impulses. To
get this result, the warping map has to be defined as a function
respecting conditions (1.7) and (1.9) and in addition, it must
preserve periodicity. So, the effect of WFD' is:

[WED's](f) =\/w(f) Y s(n)e 2N

neLn

and we must impose:
[WED's](f) = [WED's](f+k) keZ

which can be rewritten as:

/W(f)e—jZTtnw(f) _ /w(f+ k)e—j2rmw(f+k)'

We remind that a complex exponential is a periodic function
whose period is equal to j27, so we set:

w(f)=w(f+k)+n, k,ngeZ

which also satisfies the equivalence of the square root factors.
From the above equation, we derive:

w(k +1) —w(k) = ngy — ng

with 19 = 0 since w(0) = 0. Moreover, limited to the interval
[0,1], w has to be an invertible map, so for sure we have w(1) = 1.
Then it follows:

w(f+k)=k+w(f) keZ.

We also remind the property (1.9), which causes:
w(f) =-w(=f)=-w(-f+1)+1
where, by posing f =1/2, we get:
w(1/2) = -w(-1/2+1)+1 = w(1/2)=1/2.

Finally, we conclude that in the discrete-time case, the warping
map is designed such that it has an infinite number of fixed
points in (k, k) with k € Z. In addition, if the resulting operator
transforms real signals into real signals, than the map also has
fixed points in (k+1/2, k+1/2) with k € Z and, if considered in
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the interval [k, k + 1], it is antisymmetrical respect to the point
k+1/2.
Now we can give the formal definition of Wgp:

Wep : £2(Z) > €2(Z), s(n) = [Weps](m) =

- Y s(n) fol\/meﬂn(mf—mv(f))df

nez

where the kernel of Wgp can be actually considered as a matrix
of infinite dimension:

Wep (m, n) :/01\/W(f)eﬂ”(mf_"w(f))df. (1.10)

Again, we point out that the obtained operator is unitary,
since it can be inverted by the adjoint operator. Although
having discrete input and output, the operator Wgp can not be
practically used. This is due to two facts:

o the computation of Wgp entries requires the calculation
of an integral;

« input and output can not be infinite-dimensional.

The second issue can be solved by limiting the input and the
output domain in a proper way, trying to preserve the unitary
property. Instead, the first issue has to be solved by finding an al-
gorithm to compute the matrix entries with discrete operations.

As a concluding remark, we show that the operator Wgp can
be synthetically represented as a discrete-time warped Fourier
transform Fwp = WFp and an adjoint discrete-time Fourier
transform (the inverse operator should be preferred to the ad-
joint one, since it is independent on the bivalence introduced
for the definition of Fp). So, it results:

Wep = Fp Fyp.

The operator Fyp, being the composition of the unitary opera-
tors W and Fp, is still unitary:

Fwp 'Fwp =L

19
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1.2.5 Frequency Warping Transform

As a first step, the domain of the operator Wgp has to be
limited. To do this, we exploit the operator Hy, which has
been previously introduced. The usage of this operator will be
deliberately done with a subtle ambiguity. In some cases, Hy
just turns to 0 the input samples which are indexed outside of
a specified interval of consecutive integers, so it behaves like a
singular transformation from ¢2(Z) to itself. In other cases, Hy
has the role of limiting the domain to the interval of consecutive
integers specified before, so it behaves like a transformation
from ¢%(Z) to RY. So, the adopted behavior will be clear time
to time by the context.
Now we introduce the following operator:

WipHy : RY — €(Z), s(n) = [WpHys](m) =

- S(H)/Ol\/mejmmf—nw(f))df

neLn

where Zy is a suitable set of N consecutive integers. This
operator presents a significant difference in comparison to the
operators introduced so far. In fact, previously, we always
provided a definition for the operators such that the inverse
transform is equal to the adjoint one. In this case, dealing with a
rectangular matrix of dimension co x N, the inverse matrix does
not exist. Nevertheless, thanks to the unitary property of Wep,
we have:

[(WepHy ] [WepHy ] = HyW], WepHy = IHy = Iy.

The above modification is painless, since it does not alter the
property of perfectly recovering the input signal starting from
the transformed one by the application of the adjoint operator.
We point out that this relationship is not commutative, that is:

[(WepHy | [WepHy " = WepHyW # 1

since, because of Hy;, the degrees of freedom are decreased from
oo to N, that is [WepHy]" is a singular not invertible operator.

So, for a finite computation, the inputlength must be limited.
This is quite intuitive, since frequency warping is a time-variant
transformation (time-variance is easily deduced by noting that
in the frequency domain Wpp is equal to W and not to a
diagonal operator).
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We must introduce a further modification in order to cope
with the infinite output length. As it has been done on the
domain, we limit the codomain by applying an operator Hy
on the left. The windowing matrix Hy, is built like Hy, but it
may refer to a suitable set of consecutive integers whose length
is equal to M. For the moment, there is no need to put any
constraint on M. So, we set:

Wun = HyWepHy = HyDSFF'WED Hy

where the subscript yn means that W has been enclosed be-
tween a Fourier transform, a sampling and finally a truncation
toa M x N matrix. Formally, the operator is represented by:

Wy : RY > RY, s(n) > [Wyns](m) =

=y s(n)/ol\/W(f SN df me Ty

nezn

Unfortunately, independently on the chosen value of M, the
operator Wy loses the property of being inverted by its adjoint
operator. In order to represent this loss, we define:

Eyn = WeppHy - Wy

which represents the complement matrix to Wy respect to
matrix WegpHy. It has the meaning of error operator which
occurs when matrix WepHy is substituted by Wyy. So, the
composition of Wy and its adjoint gives:

Wi Wy =Iy - E} yEun.

which, as said before, differs from the identity. Nevertheless,
in the next chapters it will be shown how this operator can be
used with a sufficient degree of precision. For the moment we
do not deal with this problem and assume Wy to be the target
operator to be modeled.

1.2.6 Sampled Frequency Warping Transform

The entries of matrix Wy are equal to the entries of matrix
Wep limited to the rectangle given by the cartesian product Z s x
Zn. So, from a practical point of view, the new operator does not
differ from the previous one in a significant manner. Instead,
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from a conceptual point of view, the new operator allows some
advantages. Being finite-dimensional, it may be possible to
model the continuous integral by a discrete procedure.

Retracing the way Fourier operators were introduced, we
first considered continuous operators, the we sampled the time
axis and finally we sampled the frequency axis. So, now we in-
troduce a sampling on the frequency axis of frequency warping
operator as well. It is pretty obvious that this operation can not
be painless. Since warping was originally defined on a contin-
uous axis, sampling will probably alter the unitary property of
warping. Nevertheless, as we said before about with regard to the
application of operators Hy, we will cope with reconstruction
problem in the next chapters.

Let us consider the following:

DSF'D!, D, WED'

which is operator Wgp on which a sampling in frequency has
been applied. Intuitively, the sampling should produce a peri-
odic repetition in time. To demonstrate this, we try to force the
presence of operator Rj;. So, we evaluate the dual relationship
of (1.1):

RHR =R

which means that a periodic space is invariant respect to the
restriction to subspace H followed by periodic repetition. So RH
behaves like an identity operator respect to a periodic input. It
same can be rewritten in the following way:

RH = FD'DSF'.

Since the operator WFD produces a periodic output, RH can be
applied to it without any effects:

DSF'D},D, WED' = DSF'D{ D, [RH]WED'
= DSF'D{,D,,[FD'DSF' [WED'
= [DSF'D!, D, FD'|[DSF'WED']
= MRyWgp.

By applying of a limiter Hy; and Hy on the left and on the
right respectively, we can formally define the sampled frequency
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warping transform:
Wy : RY - RM, s(n) = [Wyns](m) =

M-1
Z s(n)M™ Z W(k/M)ejz’T(Mk/M_"W(k/M)) meZy.
k=0

nezn

whose matrix has the following entries:

M-1 '
WMN(m,n) :M—l Z /W(k/M)eﬂn(mk/M—nw(k/M))'
k=0

As done for Wgp, we introduce a synthetical representation
by exploiting FI)M p and the discrete warped Fourier transform
Fp,wp = DyyWFD':

Wy = MT'Fy pFp, wp.

Now we are interested in establishing a relationship between
Wy and Wy, We consider:

WMN = HMRMVVFDHN
HyRyu[Wan +Eun]
Wyn + HyRyEyn

which shows that the two operators differ for an aliasing contri-
bution which will be referred as A:

AMN = HMRMEMN- (1.11)

Since the computation of WMN is done by discrete opera-
tions, if we have a mathematical model for E,;y, than we can
compute A yy,or rather Wy, by a discrete operations.

1.3 Conclusions

This chapter was dedicated to the introduction of basically math-
ematical concepts and models which will be developed in the
rest of the work. More in details, we first reviewed the Fourier
transform and its variants together with some well-known con-
cepts like Nyquist theorem and time-frequency duality, then we
introduced the warping operator.
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Warping has been first presented as an intrinsic unitary
transformation, then its application to the frequency axis has
been considered. Finally, its truncated discrete-time variant has
been detected and its relationship with approximated frequency
sampled version has been identified.










CHAPTER

2
The Frequency Warping
Matrix

HAPTER 1 was dedicated to the introduction of the mathe-

matical formalism and notation to describe the frequency
warping operators. Starting from the Fourier transform, we
followed a bottom-up approach, so that the global purpose of
the introduction of new operators was probably lost. Anyway,
giving a application-oriented description of frequency warping
was not the main target of chapter 1.

Instead, here we want to deal with more practical issues
related to frequency warping. First of all, we want to give an
example about how to build a frequency warping map. Then we
want to focus on the frequency warping kernel, in particular in
the time-discrete case, so that we will actually deal with a matrix.
For instance, important features of the warping matrix could be
the existence of a sparsity pattern and the decay of its entries
along rows or columns. Moreover we are interested in observing
the relationships we set between the various frequency warping
operators which were previously presented.

Finally, we will cope with the problem of choosing the di-
mensions of the warping matrix, or rather choosing the number
of rows when the number of columns is given. As we previously
considered, the truncation of the warping matrix to a finite
dimensional matrix affects the property of being inverted by its
adjoint one, which was the guideline for the derivation of all the
operators. Therefore, truncation has to be performed carefully.
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2.1 A Frequency Warping Map Example

We will deal here with discrete-time operators only. In order to
make the reading easier, we recall the fundamental relationships
which were obtained in chapter 1. In discrete-time spaces, the
frequency warping operator was defined as a matrix of infinite
dimensions whose entries are given by:

1 .
WFD(m’n):./o Vw(f) e =g f mon e Z.

The frequency map has to be defined in the fundamental period
[0,1) and then extended to the rest of the frequency axis accord-
ing to:
w(f+k)=k+w(f) keZ

which means that the frequency deviation w( f) - f isa periodic
function. Even if frequency warping is formally defined by a
map, dealing with a differential representation, as the frequency
deviation is, could be more intuitive.

An example of frequency warping map, represented on a
single frequency period, is given by:

w(f):i(2f3—3f2+5f) Felo.1) (21)

whose frequency deviation A(f) = w(f) — f has been depicted
in Fig. 2.1. 'The warping map w(f) is represented in the inset
picture. As we said before, the frequency deviation can be
perceived in a better way, while the warping map may result
to be really close to the identity map w(f) = f. Although the
deviation is really small, it affects the frequency warping matrix
in a significant way, as it will be shown later, so the considered
example can not be considered as a particular or pathological
case.

Warping map (2.1) has not been designed according to ap-
plication requirements, it just has a demonstrative purpose and
will be used as a reference case in the rest of the work.

For the moment, we can do some observations. If considered
only on [0,1), the function (2.1) would be smooth. In chapter
1 we stressed on the fact that the frequency warping map ha
to be considered on the entire frequency axis, and we forced
the representation of the presented operators in order to always
highlight the dependency by the deformation of the entire fre-
quency axis. So, by extending (2.1) on the rest of the frequency
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AMf)=w(f)-f=1QF -3f2+5()-f
w(f)
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Figure 2.1: Frequency deviation A(f) of the warping map w(f) (inset
picture) in the fundamental period [0,1). Considered on the entire axis,
this map has an singularities on integer values of f.

-0.03

axis by applying the proper periodic repetition, it turns out that
its second derivative has an infinite number of discontinuities
on f =k, k € Z, so it belongs to C. This property does not have
any relevance for the present discussion, but it will turn out to be
fundamental. If the periodicity of the frequency axis had been
neglected in the modeling of the operators, this property could
have passed unnoticed.

The map (2.1) has been described by a whole expression,
but, when extended to the entire frequency axis, it has to be
considered as a piecewise map. So, the design procedure is
actually performed in a piecewise way. This suggests that we can
obtain maps having similar properties, as far as smoothness is
concerned, by employing any piecewise design procedure. For
instance, the period can be split in intervals whose border points
behaves as nodes, then on each interval the map is described
as a polynomial. This procedure allows to easily approximate
any target warping map. On the other hand, one could attempt
to design smooth maps. Such a design would intuitively be
more difficult, since global conditions have to be satisfied rather
than local ones. Nevertheless, smooth maps have some other
advantages which will be shown later.
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2.2 Sparsity of a Warping Matrix

Now we try to heuristically understand the operation behind
frequency warping. According to the way operator Wgp was
decomposed, a time-limited discrete sequence is first trans-
formed in the frequency domain, then its spectrum is reshaped
according to a warping function w and multiplied to an orthog-
onalizing factor #” and finally transformed back in the time-
domain. The factor #", representing an amplitude modulation,
i.e. a convolution in the time-domain, necessarily causes a
duration enlargement, so that the original time-limited input
signal is potentially enlarged to the entire time-axis. This simple
consideration explains the reason why it is not allowed to trun-
cate the frequency warping matrix rows without compromising
the unitary property.

Nevertheless, the amplitude modulation, acting in the same
fashion on each column of Wgp independently on #, does not
characterize the structure of the warping matrix in a significant
way. Instead, the reshaping of frequency axis carries major
effects. Since the spectrum is represented as a series of complex
exponentials, the reshaping acts as a frequency modulation.
Moreover, the modulating function is proportional to #, so this
affects in a time-variant manner the warping matrix.

We remind that these considerations are intended to under-
stand how to limit WgpHy to its rows indexed in a set Zy; of
M consecutive integers, according to the set Zy by with the
columns have been limited. For clarity, we set:

Zy=A{n,n +1,...,n.}
where n; stays for left and n, stays for right, and:
Zy={me,myg+1,...,mp}

where m; stays for top and m,, stays for bottom. The column axis,
indexed by n, goes from left to right, while the row axis, indexed
by m, goes from top to bottom. Given Zy, Zy must be chosen
so that only the significant entries of WgpH y are discarded.

In order to evaluate an upper bound for m; and a lower
bound for m;, we have to consider the line spectrum of the kernel
of Fyp, i.e. the line spectrum of an amplitude and frequency
modulated set of periodic functions. By substituting w( f) in the
complex exponential by its linear approximation in f € [0,1):

w(f) =w(fo) +w(fo) - (f = fo) =w(fo)f +p
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where p,, is an arbitrary phase contribution, it results:

Fwp (fo, 1) = - /w(f)e—jlﬂn(w(fo)fw) - fo.

The effective carrier of the frequency modulation is represented
by nw(fo). By neglecting the effects of the phase contribution
and of the amplitude modulation, which causes only a further
n—constant duration enlargement, we get:

WFD(m, l’l,f())

12

f e fmi ()f g ¢

0

fl gi2nm=mi ())f g ¢

0

12

12

sinc(m - [nw(fo)])

where we deliberately made abuse of notation, since Wgp could
not depend on fj and the sinc function stays for the Kronecker
symbol. Anyway, the result tells us how to determine the
bounds of the interval where energy should be concentrated.
For minimizing and maximizing the position of the impulse
[nw(fy)], we must distinguish three different cases for n; and
ny:

e ny<0andn, <0:
my < —|nj|maxw  my, > —|n, | minw
e n;<0andn, >0:

my < —|n;lmaxw my, > |n,| maxw

e n;>0andn, >0:

my < |n;minw  my > |n,| maxw.

More generally, we can state that significant entries of Wgp
are enclosed between two lines whose slopes are n max# and
nminw. In Fig. 2.2, the sparsity pattern of the warping operator
Wep relative to the warping function (2.1) has been represented.
Since maxw is equal to 5/4, for N = 128, the minimum re-
quirement for the output length is M = 160. The influence of
the minimum of the derivative is also shown. This figure also
represents a choice for Zy which will be commonly adopted in
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Sparsity pattern of a warping matrix Wgp
-160 T T T T

£ of nminw

321

64f

96~
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-128 -96 -64 -32 0 32 64 96 128

Figure 2.2: Entries of a warping matrix Wgp having absolute value
larger than 0.1 have been represented. The most significant entries are
enclosed between two lines whose slopes are the maximum and the
minimum of w.

rest of the work. It consists in taking Zy and consequently Zy
in a quasi-symmetrical fashion:

Zy = {-N/2,...,N/2-1} (2.2)
Zy = {-M/2,...,M[2-1}. (2.3)

According to the previous constraints, we must consider:
N .
M>2 > max w (2.4)

where M has been forced to be even.

According to the given constraints, the truncated warping
operator Wy should be close to be perfectly inverted by its
adjoint:

Wi Wy =~ Iy
since we assume that the error matrix does not give a significant

contribution:
E}LVINEMN ~ ON .

where Oy represents the null matrix. A quantitative evaluation
of the error will be treated in next chapters.
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2.3 Time-Frequency Sampling

Now we want to describe frequency warping by its behavior in
time and frequency. More in details, we want to analyze the way
the time-frequency representation of a signal is changed by this
transformation.

We remind that a time-frequency analysis is characterized by
its basis vectors. The basis vectors of frequency warping, being
represented by a matrix, are given by the matrix rows. So, we
should study their time-frequency behavior in order to trace the
curves representing their paths on the time-frequency plane.

We point now that for the sparsity characterization we fo-
cused on the matrix columns rather than on the matrix rows.
To correctly perform this target change, we recall a generale
property of the unitary operators and a particular property of
the warping operator.

The first property, which is reported in (1.6) for a generic
unitary operator, particularized for frequency warping becomes:

Weps = FyWFps = F [FEW']s
which means that s, a apart from Fp' on the left, is analyzed

by means of unwarped complex exponential. Equivalently we
could have written:

Wips = FyWFEps = [W'Fp]"[Fps].

which means that the spectrum of s is analyzed by means of
unwarped complex exponential. In both representations, an
unwarping takes place instead of a warping, since operator W
is adjoint.

The second property consists in the possibility of represent-
ing the adjoint warping operator, or rather the inverse one, by
exploiting the inverse map w™":

W (z,x) = \/w(2)0(w™' (2) -

Finally, it is clear that we must model the columns of Wep
as we did for its rows provided that w is substituted by w™!

1 .
WFDT(n,M,f) ~ /0 ejZnnE—mwl(f)de

. / RO OVT:
0

12

sinc(n — mw=(f))
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Time-frequency plane
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Figure 2.3: Sampling of the time-frequency plane referred to a discrete
time signal due to frequency warping. The shaping of each tile is related
to the derivative of the inverse of the warping map.

So, the curves representing the basis vectors are generated by the
points (n, f) nullifying the argument of the sinc:

n=mw(f).

Of course n is considered as a continuous time variable. Rather
than representing a basis vector by a curve, it is preferable to
represent the correspondence area occupied by the basis vector
on the time-frequency plane. By supposing that the curve is
centered respect to the covered area, the m—tile is delimited by:

[(m - %)w L, (m+%)w].
The sampling of the time-frequency plane induced by (2.1) is
represented in Fig. 2.3. By standard sampling, the plane would

be covered by rectangular tiles having area equal to 1 (dashed
lines). The area of the reshaped tiles is still equal to 1, in fact:

[ =w (= w7 @) w7 0) =0

since w™!, being a warping map, has the same property as w.
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2.4 Smooth vs. non-Smooth Maps

Till now we just gave the schematic representation of a frequency
warping matrix. The analysis which brought to Fig. 2.3 was done
in a qualitative manner, so we just got a rough binary description
in terms significant or not significant entry value. Here we want
to focus on the matrix coeflicients decay.

Besides, we are interested in comparing the frequency warp-
ing matrix Wgp, or rather its truncation Wy, to its approxi-
mated version Wy, which has been shown to be affected by
time aliasing because of the sampling process performed in the
frequency domain. This aliasing effect has been modeled by an
aliasing operator A yn:

Wy = Wan + Aun.

In Fig. 2.4 we represented the warping matrix Wy and
the aliasing matrix Ay referred to the warping map (2.1) for
N = 2% and M = 2N. Since maxw was shown to be 5/4,
M, according to previously obtained constraints, is properly
selected and guarantees that most of the frequency warping
matrix energy has been enclosed in Wy

By observing the decay of Wy coeflicients over m, we infer
that the non truncated matrix Wgp may have a slow decay.
The relationship between the warping map properties and the
decay will be investigated later. Nevertheless, we notice that the
discarded coefficients of Eyn produce a very regular aliasing
matrix. As a consequence, the aliasing operator Ay should
have a small rank, which means that it may be described by few
basis vectors, or, equivalently, Ay may be computed in a fast
manner.

The reason why we are interested in efficiently computing
A N in order to compensate the difference between Wy and
W ynis that aliasing causes a decrease in accuracy when the
inverse warping is performed by the adjoint operator:

Is = Wy Warns| > s = Wiy Wans|
that is:
Wy Wiy = In| > [Wh Wy — In].

where | - | represents the euclidian and the spectral norm for a
vector and a matrix respectively.
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This relationship can be heuristically demonstrated as fol-
lows. For the left side we have:

HWI\/INWMN + W;rv[NAMN + A}L\/INWMN + A}L\/INAMN - INH

= |E)nEnn + WipyAuy + Ay Wiy + Al yAuy|
while for the right side we have:
| B}y Ern |-

We should find a lower bound for the left side, so the norm of
the sum of the operators can not be substituted by the sum of the
norms. Nevertheless we suppose that this substitution is allowed
and we focus on WIVI Ay and discard the other operators. The
inequality becomes:

W nHuRMEny| = [[Wh N RuJEmn] > [E} Emy]

The relationship intuitively beholds since the left side consists in
the product of the periodic repetition of Wy and the decaying
operator Ery, while the right side is the product between two
decaying operators. Despite of the heuristic demonstration, this
result will be proven with experimental measurements in next
chapters.

If the warping function w is smooth, matrix Eyy decays
exponentially, so the aliasing effect is negligible and the recon-
struction error is negligible as well. Furthermore, it follows that
the error decreases quickly as M increases, so that a proper
setting of M can make the reconstruction error comparable to
machine error.

For non-smooth warping functions, the error is not neg-
ligible, so aliasing cancelation has to be considered in order
to compensate the decrease in reconstruction accuracy. As we
said before, non-smooth warping maps allow a piecewise design
which can better match shaping specifications. In the following
chapters we will illustrate how to fast compute both Wy and
Ay in case of non-smooth maps, so that the target operator
W is fast computed as well.

2.5 Conclusions

In this chapter we illustrated the features of the frequency warp-
ing matrix. We mainly focused on the role of the warping
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Figure 2.4: Absolute values of the warping matrix Wy entries (a),
where the sparsity pattern shown in Fig. 2.2 can be observed, and
absolute values of the aliasing matrix Ay entries (b).
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map in determining the time-duration characteristics and the
way the time-frequency plane is sampled. In this framework,
we were able to detect the constraints for correctly truncating
the warping matrix and to illustrate the connection between
required time-frequency specifications and warping map de-
sign. Moreover, we showed how the map smoothness can affect
the importance of aliasing in the computation of the frequency
warping operator.
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CHAPTER

3

Nonuniform Fast
Fourier Transform

HE first part of this work was dedicated to present and settle

the warping transforms we are dealing with. Starting from
the continuous case, we redefined Fourier and warping opera-
tors in case of discrete-time axis. The discrete-time frequency
warping was identified as the target operator to be modeled for
the achievement of a feasible implementation. At this aim, two
major problems were detected, consisting in the computation of
a continuous integral and non-finite dimensions of the resulting
operator. This last issue was solved by properly truncating the
warping matrix, while the first one was overcome by decom-
posing the operator in two additive terms, one representing
the frequency sampled discrete frequency warping operator and
the other one representing time aliasing occurring because of
the sampling in frequency. Moreover, the frequency sampled
operator was described as the composition of a nonuniform
and scaled discrete Fourier transform and an inverse ordinary
discrete Fourier transform. Fast algorithms for the discrete
Fourier transform are widely known, while algorithms for the
nonuniform one deserve a deep insight.

Here we first recall some algorithms which have been pre-
sented in literature, then we introduce an original contribu-
tion [21] which will be shown to be optimum in case of dense
sampling of the frequency axis (output length larger then input
length), as it occurs for frequency warping.
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3.1 Introduction to NUFFT

The Discrete Fourier Transform (DFT) is known to be a fun-
damental transformation in most fields of signal processing.
It is very efliciently computed since algorithms which yields
O(Nlog N) rather than O(N?) operations have been found.
However, many applications are based on the computation of
Fourier coefficients of nonuniformly sampled frequencies. This
occurs when frequency warping techniques are introduced [18]
or when directional analysis techniques are applied on two di-
mensional signals, like the polar Fourier Transform, the Radon
Transform and the Contourlet Transform [22]. In such cases
the transformation is referred as Nonuniform Fourier Trans-
form and its fast implementation as Nonuniform Fast Fourier
Transform (NUFFT).

In previous works [12, 14, 15] NUFFT is implemented by
means of interpolation, i.e. each nonuniform Fourier coeflicient
is obtained by interpolating the Discrete Fourier coefficients
in the neighborhood of the considered nonuniform frequency.
In order to improve the performances, an oversampled DFT
is employed, where the oversampling factor is generally taken
equal to 2. Moreover, the input signal is previously scaled by a
suitable scaling vector. In [14], the interpolator is obtained by a
least square approximation with respect to the oversampled DFT
basis. A significant improvement is obtained in [12], where first
a bell-shaped interpolator is chosen and then the scaling vector
is obtained by imposing a minimization on the approximation
error. Finally in [15], scaling is considered as if it were applied to
the oversampled DFT basis, although it is actually applied on the
input signal. Then a least square interpolator is computed. The
optimization of the scaling vector is an untractable problem and
so itis chosen according to [12], resulting in a slight performance
improvement.

Here we introduce a different approach. Each nonuniform
Fourier exponential in the interval between two contiguous
uniform Fourier frequencies is approximated by a small set of
orthogonal vectors, obtained by a singular value decomposition
(SVD). Only a single set of orthogonal vectors is needed. In
facts, every nonuniform Fourier exponential can be obtained
by modulating a nonuniform Fourier exponential of a single
interval. So, first the input signal is scaled according to a small
set of vectors. Second, the scaled versions of the input signal are
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2 Modified Power Map w(f) = (2f)?/2, p =1/3

ol i i
0 12
f /

Figure 3.1: Warping map for frequency warping purposes: a constant-
Q splitting by octaves (horizontal axis) is converted to a constant-Q
splitting with higher frequency resolution (vertical axis). Frequency
warping introduces a redundant representation of a signal, where the
redundancy factor is given by the maximum slope of the warping map.
The map has been modified around the origin in order to have a finite
maximum slope, nevertheless the resulting density is very high.

Fourier transformed. Finally, the Fourier coeflicients referred
to the same frequency are linearly combined. This operation
will be referred as interpolation in analogy with the interpolation
techniques, although this term is inappropriate.

By doing so, interpolation coefficients result to be real, al-
lowing a saving of an half of the total amount of multiplications.
The resulting computational complexity is O(Nlog N). It will
be shown that this approach is optimum when the number
of output samples is higher enough than the number of input
samples, i.e. when the nonuniform frequency set is sufficiently
dense. In NUFFT applications this situation is common. For
example in frequency warping the density is given by the maxi-
mum slope of the frequency map. Some useful frequency maps,
as the one depicted in fig. 3.1, introduce a very high density.

As an exception, the notation employed in this chapter is
completely uncorrelated from the rest of the work. Variables
and operators will be defined when needed. Nevertheless, the
description of the proposed algorithm will take advantage of the
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previously introduced operator notation.

3.2 Problem Statement

Given a discrete signal x,,, n =0, ..., N — 1, we wish to compute
the following transformation:

N-1
X(k) = xpe 2 AIN 6 oe [0, N). (31)

n=0

for k = 0...,K — 1, where K is the cardinality of the set of
nonuniform frequencies fi. 7is a shift parameter which changes
the indexing of the Fourier exponentials. As particular cases f
could include uniform frequencies 0, ..., N — 1. The number of
output samples K to number of input samples N ratio will be
referred as the density of the NUFFT:

PN (3:2)
which will be employed in order to make considerations on
computational complexity. The density p can also be intended
as the number of different NUFFTs which must be computed
for the same input signal. The spectra of nonuniform Fourier
exponentials of a particular nonuniform frequency map are
depicted in fig. 3.2.

Without loss of generality, in this work we will consider the
parameter shift 7 equal to N/2:

N-1 ,
X(k) =), xye 2P NIDLIN . e [0, N) (3.3)
n=0

since solutions to problem (3.1) are obtained through element
by element product between X and e/27(*~N/2) k| The assump-
tion (3.3) is equivalent to consider the input signal indexed in
-N/2,...,N/2 - 1. In fact, signals originated by windowing
operation and images have -N/2,...,N/2 — 1 as natural in-
dexing. Moreover, it will be show that this choice allows a
computational cost reduction, since in (3.3) the exponentials are
nearly symmetric respect to n = N /2.
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Spectra of nonuniform Fourier exponentials.
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Figure 3.2: Spectra of nonuniform Fourier exponentials. Nonuniform
frequencies fi, k = 0,...,K — 1, are obtained by uniformly sampling
a nonlinear function such that fy = 0 and fx = 1. Spectra decay
slowly since periodic repetition of a nonuniform Fourier exponential
have discontinuities.

3.3 Interpolation Approach

The interpolation approach is based on the on the calculation of
an oversampled FFT Y of the input signal scaled by a suitable
vector ¢,:

N-1
Yi= Y caxge M iz, M1 (3.4)
n=0

where M = mN and m € N is the oversampling factor. Generally
m is taken equal to 2, since taking m > 2 does not increase per-
formances significantly. Then, the frequency axis is considered
as a collection of M intervals [i —1/M,i), i = 0,...,M -1,
and nonuniform Fourier exponentials of the i-th interval are
approximated by linearly combining L FFT coefficients in the
neighborhood of Y;:

L/2-1

X(fi)= 2 Yiug(fi/m=(i+1)) fieli-1/m,i). (35)

I=—L/2

This formulation is valid for even values of L, but can be easily
extended to odd values.
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Clearly, (3.5) is an interpolation formula. So, the interpo-
lating function ¢ must be chosen in some way. A possible
approach [12] consists in choosing an appropriate interpolating
continuous function and then finding ¢, so that the approxima-
tion error is minimized. By doing so, ¢ is obtained from a finite-
support bell-like function ¥ by periodic repetition and phase
modulation:

oo

p(f) = 3 e MITINMy(f-iM)  G6)
and it follows:
L/2 )
5;1 = [L/z l/,(f)eﬂﬂf(ﬂ—(N—l)/Z)/Mdf (.7)

Eventually, the scaling vector can be chosen in order to make
the error result null on the oversampled Fourier frequencies
0,..., M - L It follows:

L2 .
C;l _ Z ll/(1)6,12711(11—(N—1)/2)/M‘ (3.8)
1=-1/2

Finally v must be chosen according to time-frequency consid-
erations. It has been shown that the Kaiser-Bessel window is a
good choice for the function y.

From an algebraic point of view, the interpolator could be
obtained as follows [15]. The scaling vector in (3.4) is associated
with the complex exponentials rather than with the input signal.
So, the set of the amplitude modulated Fourier exponentials
cpe J2mnGED/mN -~ 3 LJ2 - 1, acts as a basis for
the approximation space of nonuniform Fourier exponentials
in [i — 1/m,i). Then the interpolator is obtained by a least
square approach with respect to this space. The scaling vector
should be chosen in order to minimize the approximation error.
Unfortunately, an optimization over the scaling coeflicients ¢,
is an untractable problem, so ¢, are obtained by (3.7) or (3.8)
according to a specified window ¢. For Kaiser-Bessel window,
this algebraic approach leads to slightly different coefficients and
slightly better performances. In fig. 3.3 some scaled exponentials
corresponding to an optimized Kaiser-Bessel interpolator are
represented.
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Kaiser-Bessel scaled Fourier exponentials
T T T

-128 -64 0 64 127

Figure 3.3: Kaiser-Bessel scaled Fourier exponentials for N = 23, real
part (solid line) and imaginary part (dotted line). In interpolation
approaches, they act as basis vectors for the approximation space of
nonuniform Fourier exponentials with f; € [0,1/2).

3.4 SVD-based Proposed Algorithm

According to the algebraic approach described in the previous
section, further improvements can be achieved only by focusing
on the choice of basis vectors. In fact, thanks to scaling vector
and to oversampled FFT, basis vectors of fig. 3.3 become less
regular by gaining discontinuities on the interval edges and have
slowly decaying spectra. As a consequence, the space gener-
ated by this basis achieves a better approximation of nonuni-
form Fourier exponentials, which precisely have slowly decaying
spectra, as depicted in fig. 3.2. So, in order to obtain an optimum
approximation, we want to find an optimum basis.

In the present section we will use a matrix notation. Taken
a generic operator A, the adjoint and the transpose operators
will be represented by AT and A’ respectively. The meaning of
subscripts and superscripts will be specified at any time they are
used. A vector of generic size N will be indexed in 0,... N -
1. Indexes which are not included in 0,..., N — 1 are to be
intended as mody. The symbols &, 6; 82, . . ., will denote shifted
impulsive column vectors of suitable size.
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First, we define the following unitary operators:
T=[d 82 o ON-1 0] (3.9)
R=[0n-1 On2 - & o] (3.10)

which represent circular shift and time-reversing respectively.
Now we consider the [N x K] matrix E whose columns are
nonuniform Fourier exponentials. The elements E(#, k) of this
matrix are given by:

E(n, k) = " (=NIDfIN (3.1m)

Thanks to the considered time indexing, the real part of the
columns of E is symmetric and the imaginary part is antisym-
metric with respect to n = N/2, apart for n = 0:

E=ZE" + j28,0) J[E]

where 8,0 is a two-dimensional impulsive [ N x N'| matrix and
Z is defined as follows:

Z=TR-= [80 6N—1 62 81] (3.12)

The operator Z acts as a complex conjugation only if it is applied
to the Fourier transform of a real vector, so F'E is real if
J[E(0,-)] = 0, where F represents the Fourier transform. In
order to deal with a real matrix rather than with a complex one,
we introduce the following operator:

E=E- j8§,0,J[E]. (3.13)

By defining the row vector D = jJ[E(0, -)] of size K, the column
vector X of size K representing the NUFFT (3.3) of the input
signal x results:

X=E'x=E'x+D'x,. (3.14)

Now, the nonuniform frequency set is partitioned in 2N
subsets corresponding to contiguous frequency intervals:

e l1/2,1/2+1/2) 1=0,...,2N -1 (3.15)

whose cardinalities are K;. Then, the set of nonuniform Fourier
exponentials corresponding to each interval is considered:

Ey(n, k) = el (NN (3.16)
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Inverse Fourier Transforms of nonuniform Fourier exponentials

0 255

Figure 3.4: Entries of the matrix F' Eg. When nonuniform frequency f;
tends to o, the matrix column tends to be an impulse. The columns are
very correlated, so the rank of the matrix is small.

It is worth to note that E;, for even /, could be obtained by
modulating the column vectors of a nonuniform Fourier matrix
referred to a suitable set of frequencies f; € [0,1/2), which will
be represented as E; . For odd I, E; could be obtained in the
same way from a nonuniform Fourier matrix whose frequencies
refer to fy € [-1/2,0), which could be also obtained by con-
jugating a suitable matrix E; y. Modulation can be converted in
circular shift by passing in the Fourier domain, so, by some some
calculations, it follows:

E = (-1)'FT'F'E, [=2i (3.17)
E = (-1)'FTF'Ej(R [=2i-1 (3.18)

where the formulation (3.14) has been exploited in order to deal
with the real matrixes F'E; . In general, each matrix E;  refers
to randomly distributed frequencies in [0,1/2). In order to find
a single basis for the column vectors of all matrixes E; o, we
can equally consider a generic matrix Ey which ideally has as
column vectors every possible nonuniform Fourier exponentials
in [0,1/2). In practice, it suffices to consider a finite set of
nonuniform frequencies which densely cover the whole [0,1/2)
interval. This matrix has very correlated column vectors, as
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depicted in fig. 3.4, so its rank results to be small for a certain
precision. As a consequence, a singular value decomposition
can be introduced, i.e. F'Ey = USV’. The singular values
decay exponentially, so we could consider a reduced number L
of singular values and neglect the others:

F'Ey~U;S, V) (3.19)

where Uy and Vi, are constituted by the first L columns of U
and V respectively and S; is a square matrix constituted by
the first L rows and columns of S. The column vectors of Uy
represent an optimum basis for all the matrixes Eg ;. Then, the
decomposition is extended to E; in the following way:

E ~FT'U.P, 1=2i (3.20)
E ~FT'ZUP, 1=2i-1 (3.21)

where each P; is a real [K; x L] matrix which linearly combine
the column vectors of Uy, in order to obtain the best approxi-
mation of E; . Since Uy has orthogonal columns, P; are simply
obtained by computing:

P, = (T'F'E)'U;,  1=2i (3.22)
P, = (ZT'F'E)'U, 1=2i-1 (3.23)

The column vectors of each E; are approximated by linearly
combining the columns of FT~'Ur or FT'ZU; through the
rows of the matrix P;. In order to compute (3.14), we must
calculate the scalar products between x and the columns of
FT U, and FTZ U in an efficient way. With some algebra,
it has been found that first, x must be scaled by the Fourier
antitrasformed vectors of Uy, W = F'U;:

X = diag(x)W (3.24)

where diag(x) is a matrix having x as main diagonal. The
columns of W corresponding to the first 6 singular values are
depicted in fig. 3.5. Then, the Fourier transforms of the column
vectors of X produce the needed N x L scalar products:

Q=FX (3.25)

Each row of Q will be pointed by Q;. Finally we obtain that
X = Elx is given by the product between a [K; x L] matrix
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SVD-approach basis vectors

0.1

0.05

-0.05F

-128 -64 0 64 127

Figure 3.5: Fourier Transforms of the first 6 orthogonal vectors Uy, real
part (solid line) and imaginary part (dotted line). These vectors have
the same role which vectors depicted in fig. 3.3 play in the conventional
approach.

and a column vector of size L:

(1) i Yy

X0 P,Q; [=2i (3.26)

XD 2pQ, 1=2i-1 (3.27)
Summarizing, the algorithm consists in precomputing inter-
polation coefficients (3.22)-(3.23), computing L scaling (3.24),
calculating N x L scalar products (3.25) and interpolating them

(3.26)-(3.27). It is worth to note that the term interpolation is
only used in analogy with the conventional technique.

3.5 Performances

The computational cost of both interpolation and SVD-based
approaches is given by three terms, cost of scaling, cost of
Fourier transforms and cost of interpolation. In terms of real
multiplication, for the presented algorithm it results:

Kevd = 2LN + 4LNlog, N + 2LNp (3.28)

where p represents the NUFFT density (3.2). The first additive
term derives from (3.24), where L element-by-element products
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between a real and a complex vector of size N are computed, i.e.
2LN real multiplications. The second term derives from (3.25),
where L Fourier transforms of vectors of size N are computed.
Each Fourier transform needs 4Nlog, N real multiplications.
Finally, the third term derives from (3.26)-(3.27) where K = pN
scalar products between a real and a complex vector of size L
are computed, or, equally, L complex scaling of a real vector of
size pN. The cost of D'x, (3.14) can be neglected. Through
analogous considerations, for interpolation techniques it results:

Kint = N + 8N log, N + 4LNp). (3.29)

The factor A > 1 is an effective parameter which takes into
account that, for the same value of L, SVD-based approach has
better performances, as depicted in fig. 3.6. For useful values of
L, A is nearly equal to 1,4. As far as memory requirements are
concerned, in terms of real numbers for the SVD-approach it
results:

Usva =LN+LNp+ Np (3.30)

where terms correspond to the complex vectors W to the real
interpolation coefficients P; and to the vector D respectively.
Only LN real coeflicients are necessary for the vectors W, since
they are the Fourier transforms of the real vectors Uy . Similarly,
for interpolation approach it results:

Yint = N+ 2LNpA. (3.31)

A fair comparison between the two approaches is quite hard.
Sufficient conditions for SVD-approach to be less expensive than
interpolation approach are:

p>log, N = Kywd <Kint (3-32)
p>1 = Usvd < Uint (3-33)

In worst cases, when p =~ 1, the proposed method would consist
in more multiplications because of the computation of L Fourier
transforms. Nevertheless, the algorithm has a serial structure,
since each basis vector requires the computation of a scaling, a
fast Fourier transform and its contribution to the interpolation,
which is actually another scaling. Moreover, it does not involve
complex multiplications in the scaling and interpolation compu-
tation. Furthermore, since the algorithm is based on orthogonal
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Approximation error vs size L of the interpolator
T T T T T T

=n) —=a— Interpolation

—a8— SVD

2 4 & 8 10 12 14 16
Figure 3.6: Comparison between the approximation errors given by the
proposed SVD-based and the interpolation algorithm versus the size of
the interpolator. The maximum of the euclidian norm of the error have
been measured.

projections, the size of the interpolator L can be increased by
simply adding basis vectors. Finally, the fast Fourier transform,
being a very common operation, is generally optimized and
efficiently managed. For these reasons, the comparison have
been focused only on the approximation error respect to the size
L of the interpolator employed to approximate each nonuniform
Fourier exponential, represented in fig. 3.6. In fig. 3.7 we have
compared the approximation errors for a generic matrix Eg, i.e. a
matrix with nonuniform frequencies in [0,1/2) for interpolator
size L equal to 8. The error given by SVD-based approach is
3 orders of magnitude lower than error given by interpolation
approach, in coherence with values represented in fig. 3.6.

3.6 Conclusions

In this chapter we presented a novel approach for the compu-
tation of the Nonuniform Fourier Transform based on Singular
Value Decomposition. The proposed algorithm has quasi-linear
complexity. In comparison with the conventional interpolation
approach, our proposed approach has been shown to have a
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Figure 3.7: Comparison between the approximation errors of the matrix
E, given by the interpolation approach (a) and the proposed SVD-based
approach (b), for size L of the interpolator equal to 8.
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higher computational cost for the calculation of the projection
components, but a lower cost for interpolating them. Moreover,
this algorithm provides advantages in terms of computational
structure, being based on Fast Fourier Transforms and real
multiplications.
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CHAPTER

4

Factorization of the
Aliasing Matrix

HE present chapter is the core of the entire work. In fact,

the issues which are going to be treated occupy a major rel-
evance in terms of importance originality and innovation of the
obtained results. Basically, the content of this chapter completes
the analytical characterization of the frequency warping matrix
in order to make a fast computation achievable. Although it
configures as a completion, it involves a lot of mathematical
modeling effort and carries many implications on the nature
of the operator under consideration which goes beyond simple
computational issues. From the following analysis, as well as a
factorization for the aliasing matrix which is necessary to cor-
rectly describe the frequency warping operator by compensating
the effects of having sampled the frequency axis, useful hints for
the warping map design strategy are also obtained. Moreover,
the present model acts a starting point for further investigations,
like the quantitative characterization of reconstruction accuracy,
which is treated in the next chapter.

The results which are illustrated here are a detailed explana-
tion of some previously obtained preliminaries results [19, 20].
The notation is consistent with the one described in chapter 1,
although some letters will be reassigned to other operators for
fulfill representation necessities.
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4.1 Problem Statement and Methodology

The purpose of this chapter is to model the operator Ayn
involved, together with WMN, in the computation of operator
W umn, as they were introduced in chapter 1. The investigation is
limited to the case of non-smooth maps only, since it has been
previously shown that the usefulness of aliasing compensation
is not significant in case of smooth maps. The interest in non-
smooth maps is based on the ease in designing suitable warping
maps.

The aim of this investigation is to achieve the ability of
compute the aliasing operator by means of the warping map
features only, without explicitly calculate the difference between
Wy and Wy, Moreover, it would be desirable to obtain a
fast algorithm for computing the output of Ay with a linear
complexity.

The methodology can be briefly described as follows. We
exploit the fact that aliasing is equivalently obtained as the
periodic repetition along columns of operator Eyy. When
M is properly set, Eyn has a regular behavior since it mainly
depends on the singularities of the warping map only. In fact,
singularities consisting in steps in the frequency domain, i.e. fast
variations, can be equivalently described in the time domain by
considering large time indexes, like in matrix E )y, which will
be also referred as tails matrix, since it contains the discarded
tails of Wgp. So, after having determined a model for Epy, a
model for Ay can be easily obtained as well.

As far as the fast computation is concerned, since the model
for Ayn turns out to be a factorization like a singular value
decomposition with a fast decaying internal kernel, a linear
complexity is easily obtained by properly truncating the kernel.
Moreover, the kernel is the only factor sensibly depending on the
characteristics of the warping map, so the obtained algorithm is
very efficient and allows a simple computational architecture.

Before going through the mathematical modeling, which is
full of complex demonstrations, we propose a heuristic approach
to the problem. This constitutes an attempt to trace out the path
which inspired the further deep mathematical insight, in order
to present it just as formalization of some simple intuitions.

To get some further simplifications in notation, here we
neglect the subscript pn on operators Wy, Exny and Ay
This would generate an ambiguity between W, representing




4.2. HEURISTIC MODEL OF THE TAILS MATRIX

the native axis warping, and Wy, representing the frequency
warping. Antway the first one is not needed here. Letters S, D
and U, introduced in chapter 1, are reassigned to new operators.

4.2 Heuristic Model of the Tails Matrix

Before describing the mathematical modeling of the aliasing
matrix, let us make some heuristic considerations about the
warping matrix decay.

As a case study, we still consider the non-smooth warping
map w in (2.1). As we observed before, w € C!, maxw = 5/4
and there is only one singularity placed in f = 0 within the
fundamental interval [0,1). In Fig. 4.1 we plotted some columns
of the warping matrix in a wide temporal range in both semilog
(Fig. 4.1(a)) and loglog axis (Fig. 4.1(b)). Independently on n,
each column converges to the same asymptote. In loglog axis,
for w € C', the asymptote is given by a line whose slope is —2
(see Section 4.3.1).

Now we suppose to be able to determine the intercept of
the asymptote in Fig. 4.1(b). We can imagine to subtract the
asymptote and define a residual matrix G,. Some of its columns
have been depicted in Fig. 4.2(a). The decay is shown to be pro-
portional to lines having slope equal to —3 but having different
intercepts. Again, we can subtract the asymptotes and obtain a
new matrix which will be referred as G and shown in Fig. 4.2(b)
for some columns. In general, we define:

—i

! m

G;(m,n) = Wgp(m, n) ;C,,n DK
where the generic subscript I means that asymptotes from m™~
till m~" have been subtracted and the normalization to M/2
has been introduced in order to obtain well-scaled values for
coefficients {; ,. This process could be iterated for I — oo.
However, as it will be demonstrated in Section 4.4.2, after some
iterations, matrix G; converges to 0 in (Z\Zy) x Zy, where Zy
and Zy are settled according to the quasi-symmetrical choice
(2.2)-(2.3). This means that the columns of E(, n) can be repre-
sented as a linear combination of m~' when the coefficients {; ,
are known. Then, when periodic repetition can be analytically
computed, aliasing can be represented as a linear combination
of analytically known vectors.

1
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|Wep(m,n)| n=8,32,128
T T

Figure 4.1: Absolute value of warping matrix columns for n = 8, 32,128.
The decay for m — oo is proportional to 72 and the asymptote is the
same for every n.
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Figure 4.2: Absolute value of the sequences resulting by iteratively
subtracting the asymptote from matrix Wgp. Asymptotes o< m~2 and
o< m~3 are eliminated in (a) and (b) respectively.
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x107° Cin 1=2,4,6
25 T

05 I I I I I I I
-128 -96 -64 -32 0 32 64 96 128

x107° Cin =357
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Figure 4.3: Entries E(m, n) are obtained as a series of negative powers
m~" whose coefficients {; ,, represented in linear (a) and semilog axis
(b), are roughly given by positive powers of n.
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In order to complete the description of the warping matrix
tails for m — oo, its behavior respect to n has to be characterized.
In Fig. 4.3 we depicted the coefficients (; , for N = 2% and
M = 2N in linear axis and loglog axis. The coefficients are clearly
proportional to . In the next Section we will show how they
are represented as a series of n, k = 0,..., i.

So, the basic idea which will be developed in the following
sections is to make the dependency of Eyy(m, n) on negative
powers of m and positive powers of n arise, in order to verify
that the observations which have been done on the considered
example are systematic and therefore characterize the aliasing
matrix in an intrinsic manner. Moreover, the identification of
the coeflicients of these series is a major issue and will require
most of the efforts.

4.3 Modeling of the Aliasing Matrix

In chapter 2, it was pointed out that the maximum of the warping
map derivative is the parameter mainly affecting the duration
in time of the warping matrix columns, i.e. influencing the
truncation of the warping matrix. Nevertheless, it is not an
exhaustive parameter to characterize the aliasing matrix. In
fact, it was previously shown that the differentiability order of
the warping map affects the behavior of the warping matrix for
m — oo, hence it affects the aliasing matrix as well.

Let us suppose that w € C? with a single singularity in
¢ € [0,1). An infinite number of singularities are obviously
located in & + k, k € Z. In this Section, we neglect the fact that
an additional singularity should be placed in 1 — & to maintain
the odd symmetry of the warping map respect to 1/2. Multiple
singularities will be treated in Section 4.4.3. We assume that Zy
and Zy are chosen according to (2.2) and (2.3) respectively and
M is settled by (2.4).

According to equation (1.11), in order to evaluate A we first
have to evaluate E which is actually equal to Wgp for m ¢ Zy
and n ¢ Zy. We refer to equation (1.10), which represents
the inverse Fourier transform of the set of periodic functions
Fwp (f,n) whose differentiability class can be easily demon-
strated to be C”~! because of the factor \/w( f):

weC’ = FwypelC'l (4.1)
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If M respects the constraint (2.4), E depends only on fast vari-
ations of Fwp. Being a set of piecewise-smooth functions,
fast variations are entirely concentrated in the singularity point
located in é.

In the following paragraphs, we will first investigate the
dependency of E(m, n) on m, then we will focus on the de-
pendency on n, and finally we will show how to compute A by
periodically repeating E along columns.

4.3.1  Dependency of Tails on the Row Index

Without loss of generality, we consider [£ —1/2,& +1/2) as the
fundamental interval and, for convenience, we set:

¢u(f) =Fwp(f, n).

By doing so, the function ¢,, is smooth in both [& - 1/2, &) and
(& &+1/2). In these two intervals, we express ¢, by its Taylor
series centered in £~ and & respectively, so it holds:

S U= Dpig, ) fele12.9
¢n(f): i i .
DR D pine) felein)

Accordingto (4.1),fori=0,...,0-1¢,(&7) = ¢, (&) = . (&).
For i > o, in order to unify the representation, we can take
advantage of the step Heaviside function H:

-5 Lo+ 5 LD, e

H(f—f)Z(f & [D'¢4(8) = D'¢pu(E7)] (42)

i=o

where D'¢,, is the Euler’s notation for the higher order deriva-
tives of ¢,. Since we are interested in evaluating E(m, n),
the behavior of the inverse Fourier transform [Fp'¢,](m) for
large values of m has to be modeled only. For computational
purposes, we introduce a more suitable function ¢, (f) such
that its inverse Fourier transform is asymptotically the same as
for ¢,:
[Fo'gu](m) = [Eo' @ )(m) m ¢ Zus.
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Table 4.1: Analytic expression of functions y; (f) fori = 0,..., 3 in the
fundamental period [0,1).

vo(f) H(f)-f-

w(f) HUf-%f-%f-%

va(f)  H()%f =% f> —Vaf* = Yo f

vs(f)  H()% [P = Yo f* = Yo f> = You f2 + Yoo

Each function ¢, contributes to fast variations only through
the step function, so the first two summations in (4.2) can be
neglected and only the behavior of the last term is reproduced
in ¢,,(f). Let us define:

()= 5 xS - ©

where y; . () represents the step in D'¢,,:
Xin(§) = D'¢4(§7) = D'¢(§7) (4:3)

and y;(f) are defined for f € [0,1) so that their periodization
results to belong to C'™":

)f'l i+

vi(f) = me Y fe[0D). (4.9)

The first term in (4.4) represents a function whose i-th derivative
is the Heaviside function H( f), so that the whole set {y; } ;e can
represent functions having discontinuities on each derivatives.
In the second term, coefficients p; ; are calculated by imposing
yi(0) = y;(1) to make the functions periodic and zero-mean,
and it can easily proved that they are recursively related by:

D'y; =i
and, by doing so, one gets:
D" yi(f) =o(f) -1 (45)

Table 4.1 reports the expressions of the functions plotted in
Fig. 4.4, where we depicted the periodization of functions y; for
i =0,...,3 in the interval [-1,1]. As i increases, the presence
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Figure 4.4: Periodization of functions y;, i = 0,...,3 used for repre-

senting the singularities contained in functions ¢,. The interval [-1,1]
is considered as domain in order to highlight the behavior around the
singularity in f = 0.

of the singularity becomes less evident and the function tends to
resemble a sine or a cosine. . A detailed explanation about how
to find the coefficients p;  is given in Appendix 4.A.1.

The function ¢, has been built so that D?¢,, has the same
steps as DP¢,,. In fact, for D?¢,, we get:

Dgu()= 3 un(OWicg(f -
then, by evaluating D¢, (¢7) = DPg,(&7), we get:
D0 (E) = DPgu(E) = 3 i ()[Wi-p(0) ~ ¥icp ()]
where ;5 (07) = yi-p(17) = 8(i - p) (see (4.5)), so:

Digo,,(f+) - Digon(f_) = Xi,n(g)'

The behavior of E(m, n) can be inferred by studying Fp' ¢,
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hence, thanks to linearity, by studying Fp y,:

[Ep"yi(- = &)](m) = ™" [Ep"yi](m)
&2 (= jamm) "V [Ep" D™y ] (m)
= 28 (= j2nm) "D [Bp' (8 - 1)](m)
= P~ jamm) (D (1~ 6(m))
where we exploited the translation in frequency theorem, the
differentiation in frequency theorem (guaranteed by the peri-

odicity of y;) and (4.5). The impulse &(m) implies [Fp'v;](0)
to be 0. Finally:

E(m,n) ~ ei2mmé i Xi,n(ﬁ)(—jan)_(i“) mé¢Zy. (4.6)

As we predicted in Section 4.2, E(m, n) entries have been ex-
pressed as linear combinations of negative powers of .

4.3.2 Dependency of Tails on the Column Index

To obtain the coeflicients y; , in (4.6), the derivatives Di¢n in
(4.3) have to be computed. It can be proven by induction (see
Appendix 4.A.2) that the i-th derivative is:

D'¢u(f) = e ) ZI: ik () (=2mmi () (47)
k=0

where «; j is factorized as follows:

Qx|
aik(f) = 2 Bra (Hyra (i) (4.8)
1=1
Bk.1 is given by:
k+1
_ A m Prolom € Z_ m=1
fus= O TIO 0™ puan {507
and |Qy| represents the cardinality of the set of all possible
sequences [pr.s1  Pkia ---  Priks+1] such that
k+1

> Prtm - m = k. (4.9)
m=1
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A formal demonstration of these statements is reported in Ap-
pendix 4.A.3. In Table 4.2 we gave closed expressions of 8 ; and
yi1 for k =0,...,3. As a convention, f  is defined as the only
function among f; containing the k + 1 degree derivative:

Br1 = (Dw) #D*w, (4.10)
With the above positions, according to (4.7), we have:

o for 0 = 0 coefficients y;, are given by D'¢,(¢%) -
D'¢,(&). In the resulting summation, factors e™/27($)
and (—j27n) can be extracted.

Kin(§) = PO 57 (— jamn)*

k=0

(@i,ik (ENGW(EN ~ @ik (E)W(EDN)S). (41

o for o > 0 we can exploit the factorization (4.8):

Kon(E) = O S i)t

k=0
[

P Bicka (E) = Bicka (§7))yika (i), (4.12)

I=1

In (4.12) the summation over k has been considered from 0
to i — o rather than from 0 to i since the function containing
the maximum derivative degree ;_x; = (Dw) %Dl is
continue for k > i — 0.

It is worth to note that, according to (4.6) and (4.12), when
o > 0 all the information about the warping map, apart from
w(&) and w(¢) is enclosed in f3x;. This means that most of the
algorithm structure does not depend on the particular shape of
the warping maps.

4.3.3 Periodic Repetition of Tails

Now equation (1.11) can be applied to obtain an expression for
A. Since coefficients y; , do not depend on m, the summation
in (1.11) is applied directly on m~(+1) g/27ms,

eerr(m—kM)E ]27rkME

- ]27rmE
=0 (m—kM)H'l I;) m kM i+1
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Table 4.2: Expressions of . ; and y; ; for k =0,... 3.

kL Bis Vi (i)

0,1 (Dw)" 1

L1 (Dw) *D*w Vi

2,1 (Dw) "D’w Yia (2i° - 3i% + 1)

2,2 (Dw) " (D*w)®  w(i* -4 +4i* - i)

3,1  (Dw) *D'w Vou (i* — 4 + 5i% - 2i)

3,2 (Dw) *D*wD’w  %a(2i° - 15i* + 37i° - 36i* + 12i)

3,3 (Dw) " (D*w)®  Vas(i® —124° +52i* — 99i° + 82i” — 24i)

and if the following condition is satisfied:
MEeN (4.13)

then e /2™M¢ = 1, k e 7Z and the term e/27("=kM¢ can be
factored out. Equation (4.13) simply means that the singularity
must be placed on one of the M points on which the frequency
axis is sampled for the computation of Wy n. It is not a
restrictive hypothesis, but it has to be taken into account when
the warping map is designed. Moreover, since:

L ()i
(z-k)-G+D) i1 Tz k
((z)zncot(nz)—%z%})ﬁ |z|£%
therefore:
1 )
- CD b (myan).

fard (m — kM)i+1 Mi+1j!

Finally A can be represented by:

o0 1V (it
Amn) =5 (L 2D i ),

(4.14)
which completely describes the analytical modeling of aliasing.
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4.4 Fast Warping Transforms

In the present Section we deal with the problem of compactly
calculating the analytical description which has been previously
introduced. Moreover, we cope with the problem of performing
the multiplication to the matrix A in a fast way, since, according
to equation (4.14), a summation of infinite terms is still needed.
Furthermore, in case & € (0,1/2), we will take into account the
symmetrical singularity placed in —& which is needed for the odd
symmetry of the warping map.

4.4.1 Matrix Representation of Aliasing

The results summarized in equations (4.6), (4.14) and (4.11),
(4.12) can be arranged in a compact and efficient matrix repre-
sentation. The coefficients y; ,, apart from the complex expo-
nential and other factors involving #, can be seen as difference
between the products of a row vector having «; ;_ as entries and
a column vector having the powers of n as entries. At this aim,
we first introduce a matrix K whose generic entry is:

. ) Xk k<i . _
K(i, k) _{0 otherwise bk=0,1,...

Then, three different contributions are considered: V,N, D. The

first matrix contains all the powers of # normalized to N/2

so that its entries turn out to be nearly independent on the

dimension of the problem:

nk

(N/2)

The other (diagonal) matrixes are introduced to compensate this
normalization and account for the powers of —j27mw:

V(k,n)= neZyn,k=0,1,...

N = diag[(-jzN)*]  k=0,1,...
D = diag[w*] k=0,1,...

and have to be multiplied on the left of V. By doing so, the
dependance of coefficients y on &, apart from the complex
exponential factor, is entirely enclosed in matrixes K and D,
which, when evaluated in £* and &7, will be referred as K+ and
D;+, K¢~ and D¢ respectively. As for (4.11) and (4.12), the case
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0 > 0 is only a particular case of the case o = 0 where can refer
to a single matrix Dy since w(&~) = w(&"). So, we have:

e foro=0:
X = KE+DE+ - Kf—Df—

e foro>0:
X = [Kg - K- |Dg.

We point out that the first o lower diagonals of X starting from
the main diagonal are null. Finally we define:

Q = diag[e 72D ] neZy

so that y;, can be calculated as XNVQ. It is worth to point
out that the input is indexed in Zy according to the choice we
previously made on the input signal (2.2).

Once y;,, is computed, equation (4.6) has to be considered
for the computation of E and equation (4.14) for the computation
of A. As far as E is concerned, we define:

m—(i+1)

Y(m, i) =1 (M)2)-GD
0 otherwise

mELM 01,

together with the following diagonal matrixes to be multiplied
on the right and on the left of Y respectively:

M = diag[(-jzM)~(*D]  i=0,1,...
P = diag[e/*™™] melZ
so that for E we get the compact expression:
E = PYMXNVQ.

In a similar way, for the operator A we define:

G

Sy DCOm[M) € Zay, i=0,1,...

U(m,i) =

so that it results:
A = PUMXNVQ (4.15)

where P has to be restricted to Zy and the output is clearly
indexed in Zy as well. In Fig. 4.5 some columns of matrix U
for M = 2° have been depicted.
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U(m,i) i=0,2,4,6

I I I I I
—-256 -192 -128 -64 0 64 128 192 256

o 4

I I I I
—-256 -192 -128 -64 0 64 128 192 256

Figure 4.5: Basis vectors U(m, i), i =0,...,7 used to represent the
columns of the aliasing matrix A for M = 2°.

It is worth to note that P and Q are diagonal matrixes which
perform a scaling action on both input and output signals, while
matrixes M and N act only as a scaling on matrix X. Moreover,
matrices Y, Uand V do not depend on the warping map and can
be precomputed.

4.4.2 Fast Computation

The computation of A by the decomposition (4.15) still requires
an infinite number of operations, since the matrix X has infinite
dimensions. However, if the absolute values of MXN entries
decrease rapidly as the indexes i and k increase, then a finite
computation is possible for any prescribed accuracy. In order to
verify this condition, let us consider the following product:

MKDN =K - diag|[M]diag[DN]' = K-J

where - is the element by element product, the diag operator
returns a column vector containing the main diagonal when
applied on a matrix, and J is:

(= jmN)*

J(i, k) = [diag[M]diag[DN]'] (i, k) = (Cjrd)
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As before, when ¢ = 0, Jz+ and J;_ represent J evaluated in &*
and & respectively. When o > 0 we will refer to J; instead.
According to (2.4), M > N max w, so that:

5, k) <1 ixk

and the ratio
M

J(f) = r N ()

represents a sort of redundancy normalized to slope of the map
in f. Now we introduce the matrix

(4.16)

S=Kg Jo —Ke Je
whose entries are either real or imaginary:

oy R[S k)] i-k=21+1
S(l’k)_{ﬁ[S(i,k)] Y leZ. (4.17)

Since K is a lower triangular matrix, it can be shown that S(i, k)
decreases rapidly as i and k increase. When ¢ = 0, the main
diagonal decays exponentially, while, when ¢ > 0, since there
are ¢ null diagonals starting from the main one, the behavior of
S(i+ 0,1) is evaluated instead. Moreover, among the functions
Bs,1> the only one containing the o + 1-th derivative is f,,; (see
equation (4.10)). So, we get:

o for o =0:
S(i, i) o aio(&Y) _ aio(E7) o 1
’ MJi(E) MJ(E)  MJED)IE)])
o foro >0

“i+a,o(£+) - “i+a,o(£+) o
M”“]i(f)
You(i+a) o+t

o MU+l]i(f) o Ma+1]i(£)

S(i+o0,i) o<

where y,1(i + 0) can be expressed in a closed form:

- k
=7+1),H(HI) (4.18)

75



76 CHAPTER 4. FACTORIZATION OF ALIASING

S(i+a+k,i) k=0,2,46
10° : : :

Figure 4.6: Odd diagonals of matrix S referred to the warping map of
Fig. 2.1 with N = 2% and M = 2N. The decay is exponential as both i
and k increases.

as described in Appendix 4.A.4. The first non-zero diagonal
has an exponential decay, since it is expressed as the product
between a polynomial and a negative exponential. Moreover,
the greater is the distance from the main diagonal, the greater
the matrix is scaled by an increasing power of M. Non-zero
diagonals of S referred to the warping map (2.1) are represented
in Fig. 4.6.

Thanks to these considerations, matrix S can be properly
truncated to a K x K matrix with D non-zero diagonals:

. n_|S(i+o,k) k<i<k+D i,k<K
Sx.p(i,k) = { 0 otherwise.

and the approximated aliasing matrix A, p can be defined as:
Ak,p = PUkSk,pVkQ

where the subscript K on V represents the truncation to the first
K rows:
| V(k,n) k<K
Vic(k, n) = { 0 otherwise.
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P = diag[e/2™¢] M xM
Uk

Sk.p
KxK

k
ﬂVK = Wiy o
Q-= diag[e*jZH"W(f.)]

M x K

NxN

Figure 4.7: Schematic structure of matrix Ak, p factorization. The total
amount of multiplications is < K(M + N + D), with K < N, so the
resulting algorithm is fast.

while the subscript K on U represents the truncation to the
columns indexed between ¢ and 0 + K - 1:

N JU(m,i+0o) i<K
Uk (m, i) = {0 otherwise.

A schematization of the factorization of A, p has been depicted
in Fig. 4.7. Finally, we define the approximated truncated warp-
ing matrix:

WK’D = W - AK)D.

4.4.3 Multiple singularities

In Section 4.3 we analyzed the case of w € C? with only one sin-
gularity. This restrictive hypothesis was intended to simplify the
mathematical modeling process. If the warping map is designed
in a piecewise way, there could be more than one singularity and
the resulting map may have different differentiability orders in
the neighborhood of each singularity. Nevertheless, the aliasing
operator depends on the singularity in a linear way, so the effects
of multiple singularities superimpose linearly.
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We remind that the warping map w(f) has to be an odd
function in order to guarantee that a real signal is transformed
into a real signal. If we suppose to have L singularities ;, I =
1,...,L,& € (0,1/2) generating the aliasing matrixes A(%), then
each singularity must have a corresponding dual singularity in
1 - & or equivalently in —&, generating A(~%), which can be
shown to be equal to A(®D*. So, the effect of each singularity
in & € (0,1/2) is given by:

A L A - 29{[A(El)].

If present, the singularities in 0 and 1/2 do not have any dual
singularities and generate the aliasing matrixes A(®) and A(/2)
respectively. So, by superimposing the effects of all potential
singularities, it results:

L
A=A L A0/2) zzg{[A(fz)]
1=1

For A(®) and A(/?) some simplifications occur. If £ = 0,
both P and Q are equal to the identity matrix since w(0) = 0,
and therefore can be neglected. If & = 1/2, since w(1/2) = 1/2,
matrixes P and Q just cause a sign inversion on odd indexed
input and output entries. In both cases, for the output to be real,
S must have real entries as well. Moreover, the differentiability
orders 0p and 03/, must be odd, since D’y must be an odd
function to have a step on & = 0 or £ = 1/2. Therefore, from
equation (4.17), it follows that even diagonals of S are null.

4.5 Performances

In order to evaluate the accuracy of the proposed algorithm we
must introduce a measure of the reconstruction error. As done
before, the measure is assumed to be the spectral norm of the
reconstruction error matrix, i.e. the maximum its eigenvalue.
Therefore, we first consider the error in the ideal case, which is
given by operator W itself:

ew = [W'W -Iy| = [E'E].

As the worst case, we consider the error given by operator W,
which means no aliasing compensation:

e = [WW —1Iy|.
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Then, we consider the error in approximating the ideal operator
Wiw:
€Wkp = HW};,DWK’D - WTWH

which is intended to check the convergence of the representation
introduced for A. This parameter is lower limited by 0 and upper
limited by ey, = |[WW - WIW|| = ey

0

IN

EWkp S Evy-

Here we will show that it is not required to make ew, , reach
its lower limit. In fact, in order to evaluate performances, we
introduce the error ew,

EWkp = lelr()DWK,D - INH

such that
EW < Ewgp S Ew-

For both ew, , and ew, ,, the upper limit ey ~ ey is obtained
for K = 0 and/or D = 0 (no aliasing compensation), while the
lower limit is theoretically reached for K, D — oo. Nevertheless,
since S entries decrease exponentially, we expect that ew, , and
ewy, decrease exponentially as well. In particular, ew, , reaches
the target value ey for values of K and D much smaller than N:

ewep = Wk pWkp - WW+ WW-1Iy|

< Wik oWk - WW[+ [W'W - Ty|
< Ewgp T EW (4.19)
~ max| ew, , €w |. (4.20)

Thus, the truncation of S turns the complexity from O(N?)
to O(N), like in a truncated Singular Value Decomposition. In
fact, the matrix-vector multiplication involving Vg, Sk, p and
Uk requires K- N, K- D and K - M multiplications respectively,
while the scaling by P and Q is computed by M + N multiplica-
tions, hence about K - (N + M + D) multiplications are needed.

In order to evaluate the accuracy of the proposed algorithm,
we numerically computed the spectral norms ew, , and ew, ,
for the frequency warping map (2.1) which belong to C', with
maxw = 5/4 for N = 2% and M = 2N.

In Fig. 4.9 we plotted ew, , respect to K and for increasing
values of of D. As expected, it decreases exponentially as K
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eweo = Wk pWip - WW|

17 I I I I I

0 10 20 30 40 50 60

Figure 4.8: Approximation error in representing W'W by W p. The
decrease along D direction is fast, so that small value is required, while
a large value of K could be required.

increases till the lower bound corresponding to each value of
D is reached. By evaluating the behavior of S, it turns out
that, in order to obtain a prescribed accuracy, the value of K
depends essentially on the normalized redundancy J (4.16) while
the value of D mainly depends on M. In order to represent the
operator W'W with a double precision accuracy, a considerable
value of K would be needed. Nevertheless, since D has a
negligible effect on computational cost and K is not affected on
N, the complexity is still linear even for large value of K.

From a computational point of view, the target of the pro-
posed model is to compensate aliasing so that the lower bound
ew is reached. In Fig. 4.9 we plotted ew, ,, the upper bound
&y, the lower bound ew and the newly introduced upper bound
(4.19). So, the error estimation (4.20) is verified to be accurate.
In order to reach ew, first D has to be set by imposing ew, , < ew
for K — oo, then K is chosen by imposing the same condition
by fixing D to the previously set value. An analytical estimation
of minimum required K and D would be useful, but this is out
of the scope of this paper. In this example by taking K = 14 and
D =1 the requirement is satisfied. Since only the main diagonal
is needed, Sk ; is easily obtained by 41 (4.10) and yj; (4.18).
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B ewen = Wi p Wi —In|
10 : : :

0 2 4 6 8 10 12 14 16 18 20

Figure 4.9: Error ew, |, relative to warping map of Fig. 2.1, with N = 28
and M = 2N. By considering a small value of K respect to N and D =1
the lower limit ey is reached. Curves obtained for different D overlaps.

The gain in reconstruction accuracy obtained by aliasing
cancelation, the ratio ey /ew, can be considerably large. In
the considered case the reconstruction error can be decreased
by more than 3 degree of magnitudes. Although, the gain in
accuracy is strongly dependent on N, M and ¢ and a detailed
study for the estimation of these bounds can be found in the
following chapter.

4.6 Conclusions

In this chapter the definition of a mathematical model for the
accurate and fast calculation of the aliasing matrix involved in
the computation of frequency warping has been treated.

A computational model of the aliasing operator in case of ar-
bitrary shaped non-smooth warping maps has been introduced
starting from some experimental observations and a heuristic
model. This approach has been shown to be effective since, by
applying some proper truncations, it carries a linear complexity
without compromising reconstruction accuracy.
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Appendix 4.A Mathematical Proofs

4.A.1  Expressions of functions y;

In order to derive the expression of y;, we start by deriving
equation (4.4):

i-1) i+l
Dyi(f) = H() (f =3 Pk
f(l l) i
:H(f)(l sz+lk+1 k+1)f

which still matches the definition of y;_; by considering:

pik=(k+Dpiiin k=0,....i
By iteratively applying k times this equation to (4.4) we get:
i+1 1

WD =H S S s G2

where the second subscript has been omitted being equal to o.
Now we impose the functions y; to be periodic, i.e. y;(0) =

vi(1):

1 Z P1+1 k _
so that for p; we have:
1 & pisk
Pi= o (k+1)!

which, starting from po = 1, generates the following sequence:
1,1/2, 1/12, 0, -1/720, 0, 1/30240, 0, —1/1209600, .. .

to be used in (4.21) to generate y; functions.

4.A.2  Factorization of D' (/),,

The factorization (4.7) will be demonstrated to be true by in-
duction. To simplify the notation, we set y = —j2mwnw. First we
verify it is true for i = 0:

¢n = aO,OenH = Qo0 = (DW)%
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Then, we suppose it is true for i — 1:

i-1
D¢, =et aiy,ioi-k (Dp)*
k=0

and try to verify it implies that the factorization is true for i. By
deriving the factorization of D'"'¢,, we get:

i—1 i-1

Dpe* Y aiy ik (Dp)* +e*D Y ajoy i1k (Dp)*
k=0 k=0

and we try to express it as a polynomial in Dy. For the first term
we have:

i
ety ai_yi—k(nDp)*
k=1

while for the second term:

i1
e z[D“i—l,i—l—k(Dﬂ)k + i,k k(Dp) D] =
k=0
i-1
e Z [D‘Xi—l,i—l—k + (X,‘_l,l’_l_kkDZW(DW)_l] (D‘Ll)k
k=0

so that D'¢,, has been expressed as a polynomial in Dy with
power from 0 to i, as it was required. Then we impose the
expression of coeflicients «; ;_x. The coefficient of (Du)’ is:

®i0 = ®i-1,0 = Q0= Qg0 = (DW)1/2
while the coefficient of (D)’

aii=Daj_y1. (4.22)
The rest of the coeflicients are given in differential form:

Xik — Ki-1,k =
Dati_y oy + &y i1 (i — k) D*w(Dw) ™. (4.23)

4.A.3 Expressions of coefficients «; ;

We will first demonstrate by induction that « can be factorize as
in (4.8). For k = 0 the factorization is true since a; o = (Dw)"/2.
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Then we suppose it is true for k —1 and try to verify that it is true
for k by exploiting equation (4.23):

@ik~ ik = . DPreriyr-1(i—1)
1e| Q1]

+ Y D*w(Dw) " Brori (i = k) yroni (i - 1).

1€[Qpi]

D*w(Dw) ™ Bi_1,; is demonstrated to be a subset of Df_y ;:

1 _
DBy, = (5 _Pk,l,l) D*w(Dw) ™' Bii+

k+1
(DW) %—Pk,t,lD H (me)Pk,I,m

m=2

then we can collect the two summations in one and represents
(X,‘,k — ‘Xi—l,k as:

ik =ik = 20 Bt (Hyei(i) =y (i-1)]

Le| Q|

which makes the representation (4.8) feasible.

The constraint (4.9) is obtained as follows. Starting from a
generic sequence py_;.., € Qx_1, a sequence pi. € QO can be
generated by the following rule. If the derivative is applied to
D™w, then the following sequence is added to pj_;,. m:

-0(m)+d6(m+1)
so that equation (4.9) becomes:

k+1

Y (Pt —8(m) +8(m+1))-m=k+1.

m=1

In order to obtain the actual expressions of f and y, one has
to proceed iteratively. The set of B ; is obtained by deriving
Bk —1,1, eliminating multiplicative coefficients and collecting
multiple terms, while y is given in a differential form, so finite
difference equations have to be solved.

As an example, we solve the case k = 1. We have:

ﬁl,l = DZW(DM/)_I/2
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and y;,; which is given in differential form:

yoa(i) = yia(i-1) = - (21—1)

From this equation and from the initial condition (4.22) we get
y1(0) = 0, so:

y11(i)

Zl: 2n—1

Nl'—'

Successive cases can be solved with the same approach.

4.A.4 Closed expression of polynomial yy

The iterative equation to be solved in order to find yy ; is simpler
than in the general case since it does not involve the term (i —
k) - yio11(i —1). So we have:

Vi (1) = yea(i=1) = ppa(i-1) k>1 (4.24)

while the condition (4.22) gives:

yin(i) = pica(i=1) =y1.1(1) = % (4.25)
which, substituted in (4.24) evaluated for k = i, gives:
yia(i-1)=0
that implies:
Yea(k—i)=0 i=1...,k-1

which can be demonstrated by induction. In fact, it is true for
i =1, then, rewriting equation (4.24), if it is true for i

Yia(k=i)=yi(k=(i+1) =y ((k-1) —i)  (4.26)

the first and the last term are null, so even the second is null.
Equation (4.24) implies that y 1 (i) is a polynomial of degree
k+1. In facts, y; (i) is a polynomial of degree 2 and (4.24) repre-
sents a finite difference on function yy ;. yi 1 is an approximation
of the integral of y,_; 1, hence yy ; isa polynomial of degree equal
to degree of yj_;; plus 1. In order to determine a polynomial of
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degree k+1we need at least k+2 points. k points are given by the
zerosin i = 0,..., k —1, and another point is given by (4.25), so
we need an additional points. A second condition can be found
by considering equation (4.26) for i = k:

Yra(=1) = (-1)*! %

So, a general expression for y;; is obtained by considering
a polynomial having zeros in 0,1,...,k — 1, multiplied for a
first degree polynomial having a zero in x and having X as a
normalizing constant:

2i—x k2l
N i
Yk,l(l) X 1|:o| (i-1)

then, by imposing the two additional conditions, we obtain:

{(Zk—x)k! =X {x: k-1
Q+x)kl =X 7 X = (k+1)!

and finally we get:

—k+1kd

Vir(7) 2(k+1 ! H(

from which follows (4.18).










CHAPTER

5

Frame Bounds
Estimation

ARPING has been introduced in this work in the frame-
Wwork of unitary operators. This point of view has led
the derivation of a time-discrete frequency warping operator as
an infinite-dimensional matrix, which, despite of being unitary,
could not be used in a practical sense. For these reason, we
introduced some finite-dimensional variants which, in order to
maintain the capability of recovering the original signal from
the transformed one by the application of their adjoints, must
produce a redundant output, i.e. a transformed output signal
longer than the input one.

Unitary property is a characteristic of square operators, since
neither the direct transformation nor the adjoint one can be sin-
gular. So, the rectangular operators which have been described
in this work can not be categorized as unitary. Instead, they
must be considered in the framework of frames [16,17]. In this
theory, the property of being unitary is replaced by the property
of being a tight frame. The frame refers to the fact that, if we
consider the adjoint operator composed with the direct one, its
maximum and minimum eigenvalues are positive, so that all
the eigenvalues are enclosed in the frame determined by the
minimum and the maximum one, called frame bounds. The
tight property takes place when the frame bounds collapse on
the same value, so that all the eigenvalues have the same value.
Therefore, frame bounds are related to reconstruction accuracy.
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Since we deal with operators which are not perfectly inverted
by their adjoints, we are now interested in estimating the recon-
struction error, or rather, according to the concepts above, the
frame bounds.

5.1 Discrete Frames

A complete treatment of frames is out of the scope of this work.
Here, we will limit our analysis to discrete frames and to basic
concepts which are useful for the evaluation of performances of
the considered operators.

We start by considering the eigenvectors and corresponding
eigenvalues of the operator W', Wy y. Eigenvalues, ordered
from the larger to the smaller, will be denoted by:

A0) A1’ e AN—I
while eigenvectors will be denoted by:

Vo> V15 .. o5 VN-1
such that:
+
WMNWMNVi = A,’V,’

or equivalently:
det[WIVINWMN - A,’IN] =0.

The considered operator is square, so, in order to be invert-
ible, its eigenvalues must be strictly positive and limited. When
this condition is satisfied by the maximum and the minimum
eigenvalues, it is necessarily satisfied by all the eigenvalues, so
we just refer to Ay_; and Ay, which are called frame bounds and
conventionally represented by A and B respectively:

A= min Ai :AN—I

B=max; =1,
and Wy is a frame when both A and B are positive and limited:

0< A<
0< B < oo.




5.1. DISCRETE FRAMES

The frame is said to be tight when the ratio B/A is equal to 1, so
that W;rv[NWMN is equal to Ay or equivalently BIy.

Now we want to show the effect of having B/A # 1 on
the reconstruction error. Let us suppose to have a generic
normalized eigenvector v; as input vector. By transforming
through Wy and reconstructing by W1 we get:

lvi = Aivil = (1= Ai)vil| = L= Ail[vi]| = 1= Ai.

Obviously the relative error is constant, so the error could be
removed by a scaling. Let us consider a generic input obtained
as linear combination of the eigenvectors, so that its norm is
equal to 1. We suppose that the output is scaled by a value in the
interval [B™', A™'], in particular we choose as value the bounds
B7'and A™!. For B™" we have:

N-1 N-1
Z av; = B_l Z ai/livi
i=0 i=0

so that, by exploiting eigenvectors orthogonality, the quadratic

error is:
N-1

> aill- B[ (5.1)

i=0
The error in the direction of the eigenvector vy, being Ay = B, is

null, while in the direction of Ay_; the error is maximum. Then
the worst case arises when a; = dy_; and the maximum error is:

) 1 2 ’
rr}lax[; a;j|ll-B ™Ay ] =[1-A/B|.
If the scaling factor is A™!, the worst case gives:
N-1 &
max| > aj[1-A7'A[*| =[1-B/A
% Li=o
It can be easily verified that:
B/A-1>1-A/B

so the error B/A — 1 is assumed as worst reconstruction error
given by a generic frame when the scaling factor is chosen in
[B™', A™']. This means that the reconstruction error is upper
limited when an estimation of frame bounds can be performed.

91



92

CHAPTER 5. FRAME BOUNDS
5.2 Frame Bounds in Frequency Warping

In the case of frequency warping, there is no need of scaling the
output, since for M — oo the eigenvalues tends to 1, and we
surely have:

A<l B>1
so the maximum error is given by:
max{l1-A,B-1}

so, we are not interested in estimating both the frame bounds,
but the single one which largely differs from 1.

In chapter 2 we heuristically demonstrated that, in case of
non-smooth warping maps, the reconstruction accuracy given
by operator Wy and its frequency sampled variant Wy
may differ in a significant manner. This preliminary result was
confirmed by the example we provided in order to evaluate the
performances of the aliasing factorization algorithm. Neverthe-
less, that example was referred to a single warping map and was
considered for a single value of N and M. It would be desirable
to be able to foresee the error given by Wy and Wun starting
from the input parameters N and M and the warping map only.
Then we would be able to compare the two performances in
a parameterized form and evaluate the intrinsic advantage of
aliasing compensation.

For instance, in figure 5.1 we depicted a set of warping
maps corresponding to the same specifications. The slope of
the frequency deviation w(f) — f in the first half of the band
has to be equal to 6/5, the second half is settled so that the
global smoothness results to be equal to a preassigned value o.
In figure 5.2 we plotted matrix Wy (a) and matrix Wy (b)
corresponding to the map 5.1 with o = 1for N = 2% and M = 2N.

Hence, here we try to estimate:

ew(M,N) = |[W}, Wyy -1y (5.2)
ew(M,N) = Wi Way - Iy (5.3)

where, respect to the same error variables defined in chapter 4,
we pointed out a dependency on M and N.




5.3. ERROR ESTIMATION

wo(f)=f0=0 wo(f)-foo=1
0.1 0.1
0 0
01 0.5 1 01 05 1
f f
wo(f)—fro=2 wo(f)—f0=3
0.1 0.1
0 0
01, 05 1 01y 05 1
f f

Figure 5.1: Frequency deviation, i.e. w(f)— f, of the warping maps used
in the for evaluating the performances of the frame bounds estimation.
The warping maps are obtained in a piecewise way: in the interval
[0,1/4] they are equal to a line of slope 6/5, in the interval [1/4,1/2]
they are polynomials of odd powers giving o continuous derivatives on
the singularity point 1/4.

5.3 Error Estimation

The estimation procedure take advantage of the tails matrix and
aliasing model which was developed in chapter 4.

As far as (5.2) is concerned, we recall that ew is equal to
HERINEMNH and that Eyy can be factorized by (4.15). With
proper hypothesis when multiple singularities are considered,
we reduce to the following:

ew = [VISTYTYSV|

then S is substituted by the o-th lower diagonal, Y'Y, which is
analytically computable and proportional to M, is substituted
by the o-th entry of the main diagonal and the effect of V is
represented by a factor N. Finally we get:

p(M/N) N

~ . . 2
Ew = m20+2(20 +1) M20+ A (5.4)

where A is the differential value between &* and &~ of 8,1 (4.10):

A=Bei(&E) - Bor(&)
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while p is the maximum of the polynomial y,,; (4.18) corre-
sponding to 5,,; multiplied for a negative exponential having
] (4.16) as base:

p = max [J(§) ™" 7yeu () (55)

which corresponds to the square maximum of the o-th lower
diagonal of S (see fig. 5.3). The expression (5.4) has to be
slightly modified in the case 0 = 0. A quasi-exact analytical
solution will be provided for p, by assuming that the variable x
is continuous, although, being a vector index, would be discrete.
So we compute the maximum by calculating the value nullifying
the first derivative:

Dysi(x) = yoa(x)log]

The polynomial y,,, has degree equal to o +1and gets an even or
odd symmetry if shifted back by (6—-1)/2. It follows that y, ; (x +
(0 = 1)/2) has either even or odd powers and its derivative can
be approximated by:

g-1 g-1\"" g-1\°
D XxX+—|~D|x+— =(oc+1)[x+——
y"’l( 2 ) ( 2 ) ( )( 2 )
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and finally we get the following approximated solution:

o+l o-1
X~ -—
log] 2

We point out that, representing a positive index, one has to
prevent this solution to become smaller than 0.
In order to estimate ey, we take advantage of equation (1.11):

ey = 2| Wiy Aun| = 2] ALy Wary Wi Aun] 2.

For ¢ > 0 the product Wy W, can be safely substituted by its
main diagonal, whose shape can be analytically derived starting
from the warping map. Then the model (4.15) is substituted and
it turns out:

ey = 2|VisTUTcusy| /2 (5.6)

where diag(C) = diag(WxyW71,y). Then only an estimation
for diag(UTCU) is needed to trace the estimation of ey, back to
the form (5.4). Matrix C has only N max Dw significant values,
so that it actually selects the central values of U columns, that is
U(m, k) with m € Z{n maxpw]- The o-th entry of diag(U'CU)
results to be the energy of U(m, o) with m € Zjy max pw]> Which
behaves like a constant in case o is odd and like m in case o is
even. So energies are proportional to M2m°d2(o+1).

1/2
o L(p(M/N) KN A2 (5.7)
w5 7720+2 M2(o+1+mod; (o+1)) ’ >7

In case o is odd « is exactly proportional to N according to values
of D¥{(0). In case ¢ is even « is roughly proportional to N* but
has to be numerically computed.

The estimations (5.4) and (5.7) have been obtained by im-
posing the convergence to the exact values for M tending to
co. So, apart from a possible lack in accuracy for M close
to N max Dw, these estimations describe the analytical depen-
dency of the frame bounds on the design variables N, M and
0. Moreover, they allow to evaluate the advantage obtained
by using the aliasing free frequency warping operator rather
than the frequency sampled one. Finally, the solution of (s.5)
allows to estimate the required K to make the computation of
the aliasing matrix A )y converge.
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5.4 Experimental Results

To evaluate performances, we consider frequency maps whose
frequency deviations are depicted in fig. 5.1. They have a single
singularities in & = 1/4 (a singularity in £ = —1/4 is also present)
with different degrees of smoothness:

of fel0.1/4]

W, = o .
U(f) 1+Zai(f_l)2i+lf€[1/4)1/2]

2 & 2

Coeflicients a; are obtained by imposing the first o derivatives
to be null on &. N has been fixed to 2® and the redundancy M/N
varies from its lower allowed value max Dw = 6/5, which is the
same for all the considered maps, to the very large value 2°, to
be able to check the asymptotic behavior.

Estimation results are shown in fig. 5.4 for Wy and Wy
respectively. The second case is shown to be very accurate while
the first case is a bit inaccurate for small M but still converges
for large M. As we predicted when the approximation (5.6) has
been done, the model completely fails for Wy when o = 0.
The considered maps represent a bad case in the sense that
the slope of w on the singularity is equal to the maximum
slope. Having a smaller slope on the singularity improves the
estimation accuracy.

As a concluding remark, we can state that gain obtained
by aliasing compensation is proved by the fact the following
approximated relationship holds:

SW ~ Swl/z

which was also heuristically foreseen in chapter 2.

5.5 Conclusions

We dealt with the problem of frame bounds estimation for
frequency warping operators of non-smooth warping maps.
We gave estimations formulas for both the aliasing affected
and the aliasing free form of the frequency warping operator.
The estimations are proven to be effective and can be used for
designing warping operators satisfying specific requirements in
reconstruction accuracy.
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Figure 5.4: Error norm estimations (solid line) and computed error
norms (diamonds) of the frequency sampled warping operator (a) and
of the truncated warping operators (b) for ¢ = 0,...,4. Computed
norms obviously saturates to a lower computational limit.
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Ultrasonic Guided
Waves Characterization

UIDED Waves (GWs) have characteristic dispersive time-

frequency representations (TFRs). Unfortunately, any TFR
is subjected to the time-frequency uncertainty principle. This,
in general, limits the capability of TFRs to characterize multiple,
closely spaced guided modes from a time transient measure-
ment, over a wide frequency range. To overcome this limitation,
we present here a new warped frequency transform (WFT) that
in force of a more flexible tiling of the time frequency domain
presents enhanced modes extraction capabilities. Such tiling
is chosen to match the dispersive spectro-temporal structure
of the waveguide by selecting an appropriate map of the time
frequency plane. The proposed transformation is fast, invertible,
and covariant to group delay shifts. In particular, in this chapter
we describe design and calculation strategies for maps tailored
to Lamb waves propagating in an aluminium plate. Time-
transient guided wave propagation events obtained both artifi-
cially and experimentally are considered. The results show that
the proposed WFT limits interference patterns which appears
with others TFRs and produces a sparse representation of the
Lamb waves pattern that can be suitable for identification and
characterization purposes.
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6.1 Introduction to Guided Waves

Guided Waves (GWSs) are mechanical-stress waves that can
propagate along solids of finite dimension (waveguides). In a
certain waveguide (a plate, a rod, a rail) one or more stress GWs
can propagate at a given excitation frequency. Each of these
waves has a characteristic dispersive behavior based on which its
speed of propagation depends on the frequency. The represen-
tation of the wave’s speed versus frequency is generally referred
as dispersion curves. From a practical point of view, dispersion
generates nonstationary signals as a function of time (time-
waveforms) if the waveguide is excited by a force with multiple
frequency content. These signals, in fact, change their shape
while propagating since the several excited waves components
have different speed. Characterization of the dispersion curves
from time-transient measurements is vital to all the GWs based
applications that are becoming nowadays a common practice in
the industry for nondestructive evaluation, material characteri-
zation, acoustic focusing and advanced material design.

As proposed in [23] dispersion curves can be obtained by
processing multiple time-waveforms, acquired at equally spaced
positions along the waveguide, by using the two-dimensional
Fourier transform (2D-FT). However, this technique needs mul-
tiple signals from closely-spaced locations. This drawback limits
the practicality of the 2D-FT procedure for industrial applica-
tions.

GWs dispersion curves can be also extracted from a single
recorded time-waveform. This step is in general attempted by
means of time-frequency representations (TFRs) [24].

Unfortunately, any TFR is subjected to the time-frequency
(TF) uncertainty principle [25] that limits the capability of dis-
tinguishing multiple, closely spaced guided modes. In fact each
TFR decomposes the TF plane in atoms whose resolution is
bounded by ArAr > 1, where Ay is time duration and Ap
spectral or frequency bandwidth.

The various TF plane decomposition strategies (tilings) char-
acterize the different transforms. For example in Fig. 6.1(a)
and 6.1(b) are depicted the tilings of the Short-Time Frequency
Transform (STFT), with constant shape atoms in the TF plane,
and those of the Wavelet transform (WT), characterized by a
multiscale resolution. Processing a time waveform via a TFR
produces a complex coefficient for each atom of the TF plane.
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Figure 6.1: Tiling of the TF plane for the STFT (a), and for the WT (b).
The superimposed thicker continuous lines represent sample dispersion
curves for the waveguide studied in Section 6.3 projected in the TF
plane considering a distance source-receiver of 50 mm. The dashed line
corresponds to only one of the modes projected in TF plane considering
a path length of 100 mm from the source to the receiver.
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The squared values of these coefficients are generally represented
in contour maps. These maps for the STFT and the WT are
known as spectrogram and scalogram, respectively. In Fig. 6.1(a)
and 6.1(b) the predicted multimodal and dispersive behaviour
of the guided waves studied in Section are superimposed as a
thicker lines. As it can be seen from Fig. 6.1(a) and 6.1(b) neither
the fixed STFT resolution nor the Wavelet multiscale resolution
are suited to finely estimate the dispersion curves because of
their atoms are poorly correlated to the complex behavior of
guided waves. In particular, they generate interference patterns
in the TF plane when more than one mode exists in a TF atom.

As suggested by different authors [26] [27] the readability
of spectrograms and scalograms can be enhanced by means of
the reassignment method that improves the TFR resolution by
concentrating the atom’s energy at its center of gravity. However
this technique is particularly sensitive to the presence of noise
and multi-component interferences.

More flexible TFRs can be obtained with either Wavelet
Packet [28] or Chirplet [29] [30] transforms which are able to
adapt the spectro-temporal resolution to the characteristics of
the acquired time-waveform. Yet, these procedures still have
two major shortcomings: (i) they cannot track fast non-linear
frequency modulations; (ii) they are not group delay shift covari-
ant. This latter drawback in particular, requires, to set a proper
time-frequency tiling, knowledge of the distance traveled by the
guided waves. In other words, if this distance is unknown or if
unexpected reflections atoms’ are present whitin the signal, the
resolution may be inadequate (see Fig. 6.2).

Other strategies to extract the dispersion curves contemplate
the TF energy distributions, such as the Wigner Ville distribu-
tion [31]. These transforms are superior to correlation-based
methods (such as the STFT), but their applications are limited
by the existence of cross-term interference. In addition, their
computational cost is onerous.

With the intention to overcome some of the highlighted
problems of TFRs, we implemented a new Warped Frequency
Transform (WFT) with enhanced capabilities. The proposed
WEFT is fast, invertible and covariant to group velocity shifts.
The key point of the proposed WFT is its tiling, composed by
non-linearly frequency modulated atoms, designed to match the
spectro-temporal structure of the different guided waves. Such
tiling is obtained by selecting an appropriate warping map to
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Figure 6.2: The slope of Chirplet atoms axes can be set either manually
or with automated procedures (matching pursuits algorithms [30]). This
degree of freedom can be effectively exploited for guided waves analysis.
However, some problems arise: i) Case I represents the poor correlation
we may have between a chirplet atom and the mode time-frequency
behavior; ii) Case II shows that the correct slope for a dispersive
mode at a given distance is ever more inadequate when the distance
traveled increases; iii) adaptive automated procedures could overcome
this problem but are unable to handle situations like Case III in which
different slopes must be selected to discriminate the modes.

reshape the frequency axis. The map can be designed once the
dispersion curves for the considered waveguide can be predicted
for the frequency range of interest. The capabilities of the WFT
in comparison with other TFRs are shown here considering
an application on guided waves propagating in an isotropic
aluminum plate.

6.2 Dispersion-matched Warpograms

6.2.1  Group Delay Shifts Covariance

The group delay is defined as the derivative of signal’s phase
response and it is a measure of time delay introduced in each
sinusoidal component. TFRs are classified as Group Delay Shifts
Covariant (GDSC) when the TFR of a signal s which undergoes
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a change 7(f) in the group delay (s — s, ) corresponds to the
TFR of the original signal shifted by 7(f):

Fsdisp = Sdisp(f) = e_ﬂﬂf S S(f) (6.1)

TFR[saisp)(t. f) = TER[S)(t - (f). ) (62)

It was shown in [32] that a GDSC representation can be obtained
by warping a signal and then analyzing it by a TFR of the Cohen
class, such as the Short-Time Frequency Transform (STFT), if:

dw (f)
K——7—= = 6.
g " () (6.3)
where K is an arbitrary constant. Therefore, it is possible to
design a GDSC TFR, appropriate for a given dispersive system,
by setting the derivative of the inverse warping map w™'( f).

6.2.2 Application to Stress Guided Waves

If cg(f) is the dispersive group velocity relation for the mode
we want to analyze, the group delay we must consider is 7(f) =
D/cg(f), where D is the distance traveled by the acoustic wave
from the actuator. Therefore, in our approach, the warping map
is designed according to the dispersive relation:

dw™'(f) 1

PTG (6.4

and the constant K is assumed so that w(0.5) = 0.5. Next,
a GDSC time frequency representation (TFRyy), that we call
warpogram, is obtained with the following transformation:

TFRy[saiep)(t. f) = STET[Wsaisp 1(tKeg(£)sw™ ()

(6.5)
Generally speaking, first the signal is warped in frequency,
then a Short-Time Fourier Transform is performed (alternative
TFRs can be considered at this point), and finally the warped
axes are reparametrized to provide the correct time-frequency
alignment. It is worth to notice that the compensation of
the dispersive effects acts independently from the distance D,
which, in facts, does not appear in (6.4), i.e. the formula used
for map design.
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Figure 6.3: Lamb waves dispersion curves for an aluminum 2.54 mm -

thick plate. (a) group velocity cg(f), (b) wavelength A(f).
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6.2.3 Group Velocity Dispersion Curves

The analysis method formulated in (6.5) is based on the group
velocity dispersion curve cg(f) of a particular guided wave.
Such curve can be predicted for the considered waveguide by
using analytical, semi-analytical or pure numerical formulations
[33,34]. In particular, for a given frequency in input, the wave
equation formulated as in [33] provides the wavelengths, i.e. the
phase velocity, and the group velocity of all the existing guided
waves. For example, in Fig. 6.3(a) and (b) are represented the
dispersion curves in terms of group velocity cg(f) and wave-
length A(f), respectively, for the Lamb waves existing in the
[0+2] MHz frequency range for a h = 2.54 mm thick aluminium
plate (Young modulus E = 69 GPa, Poisson’s coefficient, v =
0.33, density p = 2700 kg/m’). These curves were obtained
by using the semi-analytical Finite Element (SAFE) formulation
proposed in [33].

As clearly shown, in the considered frequency range, up to
six waves can exist, namely the fundamental A, and Sy waves,
and four higher order waves. Below 600 kHz only the two
fundamental waves can propagate.
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curve (dashed line of Fig. 6.4).
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6.2.4 Warping maps and Warpograms

The predicted c,(f) branches are used to design the warping
maps according to Eq. (6.4). In Fig. 6.4, where these maps for
the Ag and S, are plotted, it can be seen that just a slight bending
of the frequency axis is required.

In Fig. 6.5(a) the tiling of the time-frequency plane shaped
according to the warping map for the Sy wave (continuous line
in Fig. 6.4), is presented. It is worth noting how the atoms
inclination varies in frequency following closely the mode dis-
persive behavior. This guarantees to the warpogram enhanced
sparsify if compared to the others TFRs. In addition, the atoms
change their shape versus time in agreement to the dispersive
properties of the mode as clearly visible in Fig. 6.5(a) for a
distance source-receiver of 50 mm (continuous line) and 100
mm (dashed line). This allows to the warpogram the desired
group covariant property. Similar considerations can be drawn
on the tiling built on the Ay mode warping map (dashed line in
Fig. 6.4) shown in Fig. 6.5(b).

A case study on the signal s;;,, represented in Fig. 6.6(a)
and Fig. 6.7(a), is proposed. This signal was generated syntheti-
cally by imposing the group delay shift of the modes depicted
in Fig. 6.1 to a Dirac Delta. In Fig. 6.6 are shown the steps
used to obtain the Warpogram of s4;,, tuned on the Sy mode.
The warping effect can be clearly seen in Fig. 6.6(b). Roughly
speaking, a guided wave whitin a signal is approximatively re-
converted into the incipient pulse (i.e. the Dirac Delta) at a
distance from the origin which is proportional to the distance
traveled by the mode, thus compensating the mode dispersive
behavior. For instance, the two delta in Fig. 6.6(b) correspond
to the Sy mode at 100 mm distance (continuous line in Fig. 6.1)
and at 200 mm distance (dashed line in Fig. 6.1), respectively.
This important effect can be also fruitfully exploited for defect
localization procedures [35]. Processing the signal Ws;,, with
the STFT yields the Fig. 6.6(c) that is next converted to the
warpogram of Fig. 6.6(d) by reparametrizing the axes to provide
the corred time frequency alignment. As it can be seen from Fig.
6.6(d) the WFT produces a sparse representation of the acquired
signals. It is worth to notice that the mode acquired repeatedly is
sparsely represented in both cases (as warpograms are GDSC).
Similar considerations can be made for the Warpogram tuned
on the mode Ay, for the dispersive signal s4;;,, in Fig. 6.7(d).
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Figure 6.6: Warpogram calculation steps as described in Section 6.2.4.
The depicted Warpogram is calibrated to extract the Sy mode from the
synthetic signal of Fig. 6.1.
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Figure 6.7: Warpogram calculation steps as described in Section 6.2.4.
The depicted Warpogram is calibrated to extract the Ao mode from the
synthetic signal of Fig. 6.1.
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6.3 Numerical and Experimental Results

6.3.1 Finite Element simulation results

A transient Finite Element analysis with a commercial soft-
ware is carried out to simulate Lamb waves propagating in an
isotropic plate. The effectiveness of conventional finite element
packages for modeling elastic waves propagating in structural
components has been shown in the past [36].

The three dimensional wave propagation problem is reduced
to a bidimensional one by assuming a plane strain condition. An
isotropic aluminum plate of length 1220 mm and thickness 2.54
mm has been considered. The aluminum properties have been
taken as those used in section 6.2.3. Lamb waves were excited
by imposing an inclined concentrated unitary force P(t), acting
on the left hand edge of the plate.

The force has been shaped in time as a triangular window
with total duration equal to 0.7 us to excite consistent Lamb
waves up to 1.5 MHz. In order to satisfy the requirements for
simulation accuracy, the integration time step was set equal to
0.02 ps and the plate was discretized by using linear 4-node
plate elements of dimension 0.25 x 0.254 mm [36]. In Fig.
6.8 the out-of-plane displacement u(t), occurring at a point
on the top side of the plate located at 150 mm away from the
left edge, is represented. This time-waveform is next used to
test the suitability of the WFT in comparison with other TFRs.
For example, the spectrogram and the scalogram of the time-
waveform u(t) are shown in Fig. 6.9(a) and 6.9(b), respectively.
As it can be seen from these figures, the finite time-frequency
resolution produces interference patterns and limits the capa-
bility of distinguishing closely spaced Lamb modes.

This is particular evident for both TFRs at about 700 kHz
where the fundamental Ay and S, modes cross each other.
In addition, it can be seen that the scalogram presents lower
capability to distinguish the energy content of different waves
at very low frequency due to its poor time resolution.

In order to extract the energy content of the S mode from
the signal u(t) via the proposed WFT, first the warping map
must be set. Next, the application of Eq. (6.5) gives the war-
pogram tuned on the Sy mode as represented in Fig. 6.9(c). It
can be seen from this figure that the Sy mode is well captured all
over the excited frequency range, while the Ay mode, as desired,
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Figure 6.8: Time-waveform u(t) extracted for further TFR post-
processing.

is barely visible. Similarly, shaping the map on the dispersion
curve of the Ay mode and applying the proposed GDSC TFR,
yields the warpogram of Fig. 6.9(d). Also the Ay mode is well
defined in this plot, even if in this case the presence of the Sy
mode is still consistent. This is true in particular in the frequency
range where both the Ay and Sy modes have low dispersive
behavior, for which the maps designed via Eq. (6.4) present
similar aspects.

6.3.2 Experimental results

Experimental tests were carried out to generate and detect Lamb
wave propagating in an aluminum plate 2.54 mm thick. A Q-
switched Nd:YAG pulsed laser operating at 1064 nm with an 8
ns pulse duration was used to excite the plate. The laser beam,
through conventional optics, was focused to deliver a 30 x 0.5
mm line normally to the plate surface. The line source was
created to effectively generate directional and broadband guided
waves propagating perpendicular to the line with minimum
geometrical spreading. To enhance the signal-to-noise ratio,
ablative generation conditions were produced by applying a
layer of water to the plate irradiated area [37], [38]. A broadband
surface-bonded piezoelectric sensor (PWAS) of d = 14 mm
diameter was used to detect the propagating Lamb waves 300
mm away from the illuminated spot. The ultrasonic signals were
amplified by using Panametrics pre-amp set at 40 dB connected
to an oscilloscope and sampled at 20 MHz. In Fig. 6.11(a) and
6.11(b) the spectrogram and the scalogram of the experimental
signal are shown, respectively. Instead, in Fig. 6.11(c) and
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(d) Warpogram of u(t) calibrated on the A9 mode

Figure 6.9: Spectrogram, scalogram and warpograms of the experimen-
tal signal u(t).
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Figure 6.10: Experimental signal e(t).

6.11(d) the warpograms tuned on the S, and A, group velocity
dispersion curves are presented.

It can be seen from Fig. 6.11(c) and 6.11(d), where the
theoretical SAFE dispersion curves are overlapped with the
contour maps obtained from both the Sy and A, warpogram,
the benefit of the proposed WFT. In fact, as it can be seen by
comparing them with Fig. 6.11(a) and 6.11(b), classical TFRs
barely reveal the presence of the fundamental modes, while
warpograms clearly extract the energy content of both S and A,
modes. For characterization purposes, where the extraction of
the dispersion modes is crucial, the sparse representation of the
WET limiting the interference patterns can yield to consistent
results in a broaded frequency range if compared to others TFRs.
The appealing energy mode extraction over a wide frequency
range, as the one obtained in Fig. 6.9(c) and 6.9(d) for the
numerical signal, is here partially lost due to the finite dimension
of the adopted sensor. In fact, due to the wavelength tuning
effect the sensor output is maximum when the sensor diameter
d equals an odd multiple of half the Lamb wave wavelength
A/2 and minimum when it equals an even multiple of the half
wavelength [39]. Some energy maxima emerges in the TF
plane since several Lamb modes, each with its own different
wavelength, coexist at the same time. Fig. 6.11(c) and 6.11(d)
show the remarkable fact that, at 250 kHz, the amplitude of the
Ay mode goes through zero, while that of the Sy is close to its
peak. At this frequency, in fact, as it can be seen in Fig. 6.3(b)
the Ay mode has a wavelength around 8 mm while the Sp mode
approximately 22 mm.
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Figure 6.11: Spectrogram, scalogram and warpograms of the experi-
mental signal e(t).
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6.4 Conclusions

In this chapter we presented a new TFR matched to the time-
frequency structures of Lamb waves. The new tool efficiently
represents the different GWs with non-linearly frequency mod-
ulated atoms. An application to propagating GWs in a single
layer isotropic aluminum plate was presented to show the po-
tential of the proposed procedure. Transient events obtained
from both dedicated finite element (FEM) simulations and ex-
perimentally were considered to prove the reliability of the new
tool. The main difference from the experimental numerical and
FEM based signals was due to the effect of a finite dimension
transducer, revealing the so called wavelength tuning effect in
the experimental signals.

In general, the results showed that: i) the WFT produces a
sparser representation of a particular guided wave pattern that
can be suitable for identification and characterization purposes;
ii) the energy peaks extraction is a simpler task and can be per-
formed to obtain reliable mode representation; iii) the quality
of the energy peaks extraction is independent on the distance
waves source - waves receiver, thanks to the group velocity
covariant property. In conclusion the WFT thanks to its suitable
time-frequency support can be considered a powerful tool for
the analysis of dispersive systems.










Conclusions

REQUENCY warping has been presented in this work in the
Fframework of time—frequency transformations. First, oper-
ators related to frequency warping have been recalled focusing
on the problems of perfect reconstruction and flexible design.
Then, some computational issues have been treated, such as the
definition of a mathematical model for the accurate and fast
calculation of the considered transforms. Finally, a promising
application of frequency warping on ultrasonic waves propaga-
tion has been presented.

More in details, we accurately introduced frequency warping
starting from continuous Fourier operators and then perform-
ing sampling operations on time and frequency axis. By doing
so, frequency warping operators for discrete-time signals have
been identified as well. The design procedure has been guided
by the attempt to make them satisfy the unitary property. Never-
theless, it turned out that this unitary property is not feasible for
a practical use, so new operators belonging to the class of frames
have been considered.

As far as the computation is concerned, we presented an
algorithm for the fast calculation of nonuniform Fourier trans-
form, which is directly employed in the calculation of the fre-
quency sampled frequency warping, and an algorithm for the
fast calculation of compensating the aliasing which occurs in
the frequency sampled frequency warping because of the sam-

123



124

CONCLUSIONS

pling operation. This algorithm has been theoretically and
experimentally shown to be effective in eliminating aliasing and
increasing the reconstruction accuracy.

Finally, a possible innovative application of warped time-
frequency techniques has been shown. In particular, we focused
on the capability of frequency warping analysis techniques to
match the physical characteristics of the propagation of guided
waves. In fact, through the employment of frequency warping
a sparser representation of guided wave patterns have been
obtained, which can be usefully exploited for features extraction
and propagation characterization.
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