
Dottorato di Ricerca in Informatica
Università di Bologna, Padova

Settore scientifico disciplinare di afferenza: INF/01

Self-Organizing Mechanisms for Task
Allocation in a Knowledge-Based

Economy

Andrea Marcozzi

Marzo 2009

Coordinatore: Relatore: Tutore:

Prof. Simone Martini Prof. Edoardo Mollona Prof. Özalp Babaoğlu

Abstract

A prevalent claim is that we are in knowledge economy. When we talk about knowl-

edge economy, we generally mean the concept of “Knowledge-based economy” indi-

cating the use of knowledge and technologies to produce economic benefits. Hence

knowledge is both tool and raw material (people’s skill) for producing some kind of

product or service. In this kind of environment economic organization is undergo-

ing several changes. For example authority relations are less important, legal and

ownership-based definitions of the boundaries of the firm are becoming irrelevant

and there are only few constraints on the set of coordination mechanisms. Hence

what characterises a knowledge economy is the growing importance of human capi-

tal in productive processes (Foss, 2005 [31]) and the increasing knowledge intensity

of jobs (Hodgson, 1999 [44]). Economic processes are also highly intertwined with

social processes: they are likely to be informal and reciprocal rather than formal and

negotiated. Another important point is also the problem of the division of labor: as

economic activity becomes mainly intellectual and requires the integration of spe-

cific and idiosyncratic skills, the task of dividing the job and assigning it to the most

appropriate individuals becomes arduous, a “supervisory problem” (Hogdson, 1999

[44]) emerges and traditional hierarchical control may result increasingly ineffective.

Not only specificity of know how makes it awkward to monitor the execution of

tasks, more importantly, top-down integration of skills may be difficult because ‘the

nominal supervisors will not know the best way of doing the job – or even the pre-

cise purpose of the specialist job itself – and the worker will know better’ (Hogdson,

iii

1999 [44]). We, therefore, expect that the organization of the economic activity of

specialists should be, at least partially, self-organized.

The aim of this thesis is to bridge studies from computer science and in particular

from Peer-to-Peer Networks (P2P) to organization theories. We think that the P2P

paradigm well fits with organization problems related to all those situation in which

a central authority is not possible. We believe that P2P Networks show a number

of characteristics similar to firms working in a knowledge-based economy and hence

that the methodology used for studying P2P Networks can be applied to organization

studies.

Three are the main characteristics we think P2P have in common with firms

involved in knowledge economy:

• Decentralization: in a pure P2P system every peer is an equal participant,

there is no central authority governing the actions of the single peers;

• Cost of ownership: P2P computing implies shared ownership reducing the cost

of owing the systems and the content, and the cost of maintaining them;

• Self-Organization: it refers to the process in a system leading to the emergence

of global order within the system without the presence of another system

dictating this order.

These characteristics are present also in the kind of firm that we try to address

and that’ why we have shifted the techniques we adopted for studies in computer

science (Marcozzi et al., 2005 [59] Hales et al., 2007 [39]) to management science.

iv

Contents

Abstract iii

List of Figures ix

1 Introduction 1

1.1 Research Context: the Knowledge Based Economy 1

1.2 The Task Allocation problem . 2

1.3 Research Questions . 3

1.4 Thesis Plan . 5

2 Literature Review 7

2.1 The Knowledge-Based Economy . 7

2.1.1 Hierarchy and Market . 9

2.2 Specialisation, Communication and Coordination 10

2.3 The Problem of Adaptation . 11

2.4 Hierarchical and Decentralized Structures in Problem-Solving 12

2.4.1 Teamwork and decentralized decision making 14

2.5 Staffing the Twenty-first-century Organizations 15

2.6 Peer-to-Peer Networks . 16

2.6.1 P2P characteristics . 18

2.6.2 Peer-production . 20

v

2.7 Network Organization . 23

2.8 Complex Systems . 25

3 Methodology: Computer Simulation in social and managerial sci-

ences 27

3.1 Simulation in social science . 27

3.2 The economy as a Complex Adaptive System 31

3.3 Agent-Based Computational Economics 32

3.4 Theory Development with Simulation 34

3.4.1 Finding an intriguing research question 35

3.4.2 Choose a Simulation Approach 35

3.4.3 Create the computational representation 35

3.4.4 Experiment to Build Novel Theory 36

3.4.5 Validate with Empirical Data 36

4 The FirmNet Model 38

4.1 Introduction to FirmNet . 38

4.1.1 The Task . 39

4.1.2 The Agents . 39

4.1.3 The Network . 41

4.2 The Simulation model . 41

4.2.1 FirmNet in Peersim . 45

4.3 Model Evolution . 46

vi

5 Hierarchy vs. Market 47

5.1 Introduction . 47

5.2 Model Overview . 48

5.3 The Hierarchical model . 50

5.3.1 Interaction phase . 52

5.3.2 Network Evolution phase . 52

5.4 The Self-Organizing model . 52

5.4.1 Interaction phase . 53

5.4.2 Network Evolution phase: CSLAC 54

5.4.3 Network Evolution phase: CSLAC2 55

5.5 Experimental configuration . 56

5.6 Experimental Results . 57

5.6.1 Static Environment . 58

5.6.2 Dynamic environment . 62

5.7 Conclusion . 68

6 Self-Organizing mechanisms for task allocation 75

6.1 Model Overview . 75

6.1.1 Interaction phase . 76

6.1.2 Network Evolution phase . 76

6.1.3 Imitation phase . 78

6.2 Experimental settings . 78

6.2.1 Randomized Service 1: results 80

6.2.2 Randomized Service 2: results 83

6.3 Structural Analysis . 85

6.4 Conclusion . 86

vii

7 Introducing Learning to FirmNet 88

7.1 Introduction . 88

7.2 Learning in FirmNet . 89

7.3 Experimental setting . 91

7.3.1 Learning . 92

7.3.2 No Learning . 93

7.3.3 Evolutionary Learning . 98

7.3.4 Lower degree attachment . 100

7.3.5 Wealth performances . 108

7.4 Conclusion . 114

8 Discussion 116

Bibliography 121

References 121

A The Peersim System 133

A.1 Introduction . 133

A.1.1 Peersim Design Goals . 134

A.1.2 Peersim Architecture . 134

A.1.3 FirmNet Implementation Issue 135

B The Newscast Protocol 137

B.1 Introduction . 137

viii

List of Figures

4.1 Structure of a Task. A task is bundle of three jobs. Each job requires

a skill. 39

4.2 Example of how the firm is modeled in our system. Green nodes are

NTs: they are designated a priori and never change over the time. . 42

4.3 Example of the way NT bargains with its neighbors for the completion

of the task (Interaction phase). Node f is busy and cannot accept

the job; node d refuses the job because its β is greater than NT’s α.

Node g has the same skill as node c but it will not get the job: node

c is selected because it has a lower β. 44

4.4 Layered architectural model of FirmNet in Peersim. 45

4.5 Evolution of the FirmNet model . 46

5.1 Interaction phase pseudo-code: the code on the top is executed in

the Self-Organizing model; the one on the bottom in the Hierarchical

model. We can note how the only difference is that in the HI model,

when a NT asks to a neighbor to provide its skill, no bargaining takes

place. 51

5.2 Hierarchical algorithm: Pct (percentage of completed tasks) in dif-

ferent periods. Static environment. Networks with undirected links

and uniform degree over all nodes. Each curve indicates results with

different periods for the execution of the “network evolution phase”. 59

ix

5.3 Hierarchical algorithm: Wealth in different periods. Static environ-

ment. Networks with undirected links and uniform degree over all

nodes. Each curve indicates results with different periods for the

execution of the “network evolution phase”. 59

5.4 CSLAC algorithm: Pct (percentage of completed tasks) in different

periods. Static environment. Networks with undirected links and uni-

form degree over all nodes. Each curve indicates results with different

periods for the execution of the “network evolution phase”. 60

5.5 CSLAC algorithm: Wealth in different periods. Static environment.

Networks with undirected links and uniform degree over all nodes.

Each curve indicates results with different periods for the execution

of the “network evolution phase”. 60

5.6 CSLAC2: Percentage of completed task in different periods. Static

environment. Networks with undirected links and uniform degree

over all nodes. Each curve indicates results with different periods for

the execution of the “network evolution phase”. 61

5.7 CSLAC2: Wealth in different periods. Static environment. Networks

with undirected links and uniform degree over all nodes. Each curve

indicates results with different periods for the execution of the “net-

work evolution phase”. 61

5.8 Resume: Percentage of completed task in different periods. Static

environment. Networks with undirected links and uniform degree

over all nodes. Each curve indicates results with different “network

evolution phase” algorithms. Note that the Hierarchical approach

outperforms the self-organzing approaches over most of the chart. . . 63

x

5.9 Resume: Wealth in different periods.Static environment. Networks

with undirected links and uniform degree over all nodes. Each curve

indicates results with different “network evolution phase” algorithms.

Note that the self-organized approaches outperform the Hierarchical

organization when the degree increases above about five. 63

5.10 Hierarchical algorithm: Pct in different periods. Dynamic environ-

ment: here manager nodes receive randomly generated tasks over

time rather than the same tasks (as previously). The hierarchical

organization does less well than previously. 64

5.11 Hierarchical algorithm: Wealth in different periods. Dynamic envi-

ronment: here manager nodes receive randomly generated tasks over

time rather than the same tasks (as previously). The hierarchical

organization does less well than previously. 65

5.12 CSLAC algorithm: Pct in different periods. Dynamic environment:

here manager nodes receive randomly generated tasks over time rather

than the same tasks. Each curve indicates results with different pe-

riods for the execution of the “network evolution phase”. 65

5.13 CSLAC algorithm: Wealth in different periods. Dynamic environ-

ment: here manager nodes receive randomly generated tasks over

time rather than the same tasks. Each curve indicates results with

different periods for the execution of the “network evolution phase”. 66

5.14 CSLAC2: Percentage of completed task in different periods. Dynamic

environment: here manager nodes receive randomly generated tasks

over time rather than the same tasks. Each curve indicates results

with different periods for the execution of the “network evolution

phase” . 66

xi

5.15 CSLAC2: Wealth in different periods. Dynamic environment: here

manager nodes receive randomly generated tasks over time rather

than the same tasks. Each curve indicates results with different pe-

riods for the execution of the “network evolution phase” 67

5.16 Resume: Percentage of completed task in different periods. Dynamic

environment: here manager nodes receive randomly generated tasks

over time rather than the same tasks. The hierarchical organization

does less well than previously. The self-organising peer protocols do

better when the degree is more than about ten. Essentially, since

tasks are random over time manager nodes (NT) in the network are

less able to benefit from hierarchy because they cannot predict which

other nodes to recruit. 68

5.17 Resume: Wealth in different periods. Dynamic environment: here

manager nodes receive randomly generated tasks over time rather

than the same tasks. Hierarchy again performs poorly due to the

requirement to give payoff to all nodes even when they are not pro-

ductive. 69

5.18 Snapshot of the network for the dynamic task environment with de-

gree 10. Gray nodes are managers (NT), black nodes are employees

(NS). CSLAC1 tends to create separate clusters and several discon-

nected nodes. 70

5.19 Snapshot of the network for the dynamic task environment with de-

gree 10. Gray nodes are managers (NT), black nodes are employees

(NS). CSLAC2 tends to keep clusters connected. 71

6.1 Pseudo code of the Interaction phase. 76

xii

6.2 Percentage of completed tasks (Pct). Randomized Service 1. Env1,

here each NT in the Network receive the same task. Each task has

also the same prestige. The random node for the Network evolution

phase is given by Newscast. Mechanism T6 always gives best results.

Everyone gives good results when degree is 20. 81

6.3 Percentage of completed tasks. Randomized Service 1. Env2, here

different NTs receive different task. Every 20 cycles each NT receives

a new task different from the previous one. Each task has the same

prestige. Mechanism T6 always gives best results. Everyone gives

good results when degree is 20. 82

6.4 Percentage of completed tasks. Randomized Service 1. Env3, here

different NTs receive different task. Every 20 cycles each NT receives

a new task different from the previous one. To each task is associated

a different amount of prestige and every 20 cycles also the payoff

changes. Mechanism T6 always gives best results. Everyone gives

good results when degree is 20 . 82

6.5 Percentage of completed tasks. Randomized Service 2. “Env1, here

each NT in the Network receive the same task. Each task has also the

same prestige. Mechanisms T6 gives good results which are similar

than the case with Randomized Service 1. All the other mechanisms

give worse results than the same with RS1 83

6.6 Percentage of completed tasks. Randomized Service 2. “Env2, here

different NTs receive different task. Every 20 cycles each NT receives

a new task different from the previous one. Each task has the same

prestige. Mechanisms T6 gives good results which are similar than

the case with Randomized Service 1. All the other mechanisms give

worse results than the same with RS1. 84

xiii

6.7 Percentage of completed tasks. Randomized Service 2. Env3, here

different NTs receive different task. Every 20 cycles each NT receives

a new task different from the previous one. To each task is associated

a different amount of prestige and every 20 cycles also the payoff

changes. Mechanisms T6 gives good results which are similar than

the case with Randomized Service 1. All the other mechanisms give

worse results than the same with RS1 84

6.8 Closeness centrality calculated on the network at the end of the sim-

ulation with “Env2. Network degree is 5. a) Randomized Service 1.

b) Randomized Service 2. Every 20 cycles each NT receives a new

task different from the previous one. Each task has the same prestige.

Mechanism T6 gives the highest values. 85

7.1 Interaction phase with the learning mechanism: node “*” learn the

skill; node “+” passes the job to its neighbor who will make a link to

the NT. 91

7.2 Percentage of completed tasks with “Env1: here each NT in the Net-

work receive the same task. Each task has also the same prestige.

NSs which don’t have the right skill may learn the skill or pass the

job according to their strategies (γ, δ). 93

7.3 Percentage of completed tasks with “Env2: here each NT in the Net-

work receive a different task which changes over the time (every 20

cycles). Each task has also the same prestige. NSs which don’t have

the right skill may learn the skill or pass the job according to their

strategies (γ, δ). 94

xiv

7.4 Percentage of completed tasks with “Env3: here each NT in the Net-

work receive a different task which changes over the time (every 20

cycles); also the prestige assigned to each task changes every 20 cy-

cles. NSs which don’t have the right skill may learn the skill or pass

the job according to their strategies (γ, δ). 94

7.5 Percentage of completed tasks with “Env1: the lines in this plot show

the six SO mechanisms and the two HI mechanisms. In no one of

these learning attitude or passing attitude are considered. 96

7.6 Percentage of completed tasks with “Env2: the lines in this plot show

the six SO mechanisms and the two HI mechanisms. In no one of

these learning attitude or passing attitude are considered. 97

7.7 Percentage of completed tasks with “Env3: the lines in this plot show

the six SO mechanisms and the two HI mechanisms. In no one of

these learning attitude or passing attitude are considered. 98

7.8 Percentage of completed tasks in “Env1. The lines in this plot repre-

sents the Pct obtained with the six rewiring mechanisms. Here each

NS may learn a skill or may pass a job to its neighbors. Nodes are

paid according to the individual reward policy. 101

7.9 Percentage of completed tasks in “Env2. The lines in this plot repre-

sents the Pct obtained with the six rewiring mechanisms. Here each

NS may learn a skill or may pass a job to its neighbors. Nodes are

paid according to the individual reward policy. 101

7.10 Percentage of completed tasks in “Env3. The lines in this plot repre-

sents the Pct obtained with the six rewiring mechanisms. Here each

NS may learn a skill or may pass a job to its neighbors. Nodes are

paid according to the individual reward policy. 102

xv

7.11 Percentage of completed tasks in “Env1. The lines in this plot repre-

sents the Pct obtained with the six rewiring mechanisms. Here each

NS may learn a skill or may pass a job to its neighbors. Nodes are

paid according to the group reward policy. 102

7.12 Percentage of completed tasks in “Env2”. The lines in this plot rep-

resents the Pct obtained with the six rewiring mechanisms. Here each

NS may learn a skill or may pass a job to its neighbors. Nodes are

paid according to the group reward policy. 103

7.13 Percentage of completed tasks in “Env3. The lines in this plot repre-

sents the Pct obtained with the six rewiring mechanisms. Here each

NS may learn a skill or may pass a job to its neighbors. Nodes are

paid according to the group reward policy. 103

7.14 Percentage of completed tasks in “Env1. This figure represents what

happens for each single rewiring mechanisms, comparing the Pct ob-

tained when “no evolution” takes place, when “evolution” takes place,

in this last case with both individual and group reward policy. . . . 104

7.15 Percentage of completed tasks in “Env2. This figure represents what

happens for each single rewiring mechanisms, comparing the Pct ob-

tained when “no evolution” takes place, when “evolution” takes place,

in this last case with both individual and group reward policy. . . . 105

7.16 Percentage of completed tasks in “Env3. This figure represents what

happens for each single rewiring mechanisms, comparing the Pct ob-

tained when “no evolution” takes place, when “evolution” takes place,

in this last case with both individual and group reward policy. . . . 106

xvi

7.17 Percentage of completed tasks (Pct). The figure shows the perfor-

mance of mechanisms T6 and T7 in three different task environment

(Env1, top – Env2, center – Env3, bottom). In each plot are indi-

cated behaviors of the two mechanisms with “individual reward” and

“group reward” policy. 109

7.18 Wealth in Env1. Comparison of the average wealth of NS (top) and

the average wealth of NT (bottom) with the T6 and T7 mechanisms.

Here an “individual reward policy” has been used. 110

7.19 Wealth in Env2. Comparison of the average wealth of NS (top) and

the average wealth of NT (bottom) with the T6 and T7 mechanisms.

Here an “individual reward policy” has been used. 110

7.20 Wealth in Env3. Comparison of the average wealth of NS (top) and

the average wealth of NT (bottom) with the T6 and T7 mechanisms.

Here an “individual reward policy” has been used. 111

7.21 Wealth in Env1. Comparison of the average wealth of NS (top) and

the average wealth of NT (bottom) with the T6 and T7 mechanisms.

Here a “group reward policy” has been used. 112

7.22 Wealth in Env2. Comparison of the average wealth of NS (top) and

the average wealth of NT (bottom) with the T6 and T7 mechanisms.

Here a “group reward policy” has been used. 112

7.23 Wealth in Env3. Comparison of the average wealth of NS (top) and

the average wealth of NT (bottom) with the T6 and T7 mechanisms.

Here a “group reward policy” has been used. 113

B.1 The gossip paradigm. 137

xvii

B.2 A Newscast exchange between node A (active) and B. Each node has

its own 5 descriptor elements view depicted inside the ellipses. A de-

scriptor is a node-ID, timestamp pair. After the state exchange node

A has received the node B view and viceversa; then each partecipant

merges the received view with its own. The result is depicted under

the empty arrow: each node has selected the “freshest” descriptors

at random and has discarded the others (those inside the ellipse) to

obtain new 5 element view. Note that in this basic example, each

node sends its entire view; however, the view can be purged by “old”

descriptors before sending. 138

xviii

Chapter 1

Introduction

In this chapter we give a brief definition of what is the context and the subject of

our research and what are the questions that we think are interestingly related to

them.

1.1 Research Context: the Knowledge Based Econ-

omy

Knowledge-based economy is a term that refers to the use of knowledge for the

production of economic benefits. Firms give great reliance on intellectual capabilities

than on physical material and the final product or service is often something which is

a mix of different expertise held by different individuals. This kind of economy is also

characterized by knowledge intensity, technology and economic processes intertwined

with social processes, all things that make traditional forms of organization based

on hierarchy or market increasingly ineffective.

Some scholars argue that today’s global economy is in transition from the classi-

cal industrial economy to the knowledge-based economy and that this transition

requires that the rules that determined success in the industrial economy need

rewriting in an interconnected, globalized economy where knowledge resources such

2 Chapter 1. Introduction

as know-how, expertise and creativity are as critical as other economic resources

(Cascio and Aguinis, 2008 [16]).

1.2 The Task Allocation problem

Now that we have briefly introduced the context of our research, we will focus on the

subject of this thesis which is the “Task Allocation” problem. The problem of task

allocation in a firm refers to the necessity of assigning resources (human of natural)

to particular activities which must be done in the firm, maximizing the number of

task executed and minimizing the costs related to this allocation. The process of

task allocation is determined by two components: task components and team compo-

nents. Task components refers to the complexity of the task like the number of skills

that are necessary for the completion of the task, the interdependence between the

different parts of the task and the way in which task change over time (task variety)

(Wood, 1986 [100]). Team components refers to the attribute of the team members

such as expertise and motivation (Wilke and Meertens, 1994 [96]) and social compo-

nents like coordination (Wilke and Meertens, 1994 [96]). Self-Organizing processes

of task allocation have been studied within biology, for instances how ants allocate

tasks on the basis on local interactions (Gordon, 2001 [36]). This problem has also

been studied in the field on computer science, for example methods for resource

allocation in optimizing microcode compilers (Mueller et al, 1984 [71]) or resource

allocation in service oriented grids (Batista and Fonseca, 2007 [4]) or methods for

the allocation of mobile code bringing ideas from managerial sciences (Bredin et al.,

1998 [9]). In managerial sciences, the problem of task allocation studied through

the adoption of self-managing teams has already been studied by Zoethout (2006

[103]). He developed a computer simulation model and one on the main aims of his

work was to study the influence of task variety on the performances of two groups

in the system: specialists and generalists. He found that although no variety leads

to specialization and high variety leads to generalization, in general performance is

better when variety is low. Moreover, in case of no variety, specialists outperforms

Chapter 1. Introduction 3

generalists. In our work we aim at studying the problem of task allocation in a

situation in which jobs are intellectual and vary rapidly (high dynamism). For this

purpose we designed a simulation model with which we test different mechanisms

for coordinating the diverse skills involved in the firm (we describe the model in

details in chapter 4).

1.3 Research Questions

As firms’ job becomes knowledge oriented and know-how and expertise play an

increasingly critical role in the production of the final goods, the problem of coor-

dinating employees bearing specific skills becomes arduous. A firm may increases

its coordination flexibility either by recruiting employees which will be deployed

and redeployed to different task over the time, or hiring temporary workers which

will be involved temporarily on some specific task. The former method is certainly

sustainable by a large firm using a central hierarchy as organization form, while

it is not applicable in firms where hierarchy is not possible. It is arduous for a

large firm with large groups of specialists having different interests to achieve a

collective good: members may be tempted to benefit from the common good with-

out contributing when the gain for collaborating is less than the cost. Glance and

Huberman (1994 [35]) showed that fluid organizations display levels of cooperation

that are higher than those found in groups that either are unorganized or have a

fixed social structure and although their results are based on the assumption of hi-

erarchical structures inside the groups, they can be generalized to less constrained

forms of social networks. Moreover, Cascio and Aguinis (2008 [16]) argues that the

twenty-first-century organization is undergoing radical transformation mainly due

to the spread of new technologies, particularly the Internet and that this heavy de-

pendence on technology, the reliance on “good” intellectual capital and the sourcing

and retaining talent at various organization levels from global labor market, are

some of the main aspects characterizing the new organization. Even though not

all organizations display such characteristics, one of the fundamental question that

4 Chapter 1. Introduction

they rise as a group is how should firms go about recruiting workers.

In this thesis we present a simulation model called FirmNet with which we try

to better understand the dynamics occurring in a knowledge-based economy and

which is the best form of organization that can help deploying skills. With our

model (see chapter 4), basically we have tested two different forms of organization:

“hierarchy” and “quasi-market”. The firm is structured as a network of agents. In

the model representing hierarchy, tasks are organized and coordinated through the

authority of the project managers which have the ability to select specialists to put

in some team basing the choice on their skill. In the model representing a quasi-

market, which we called self-organizing (SO), the firm have a number of project

managers holding a task to be completed; both managers and specialists move in

the network auto-forming teams on the basis of some criteria which we will see in

the next chapters.

In both models we designed the task as a bundle composed of three jobs labeled

by a number (see figure 4.1). Due to this simplification, the project manager agents

actually know which are the skills needed. In a knowledge-based economy it is

not always possible for managers to exactly know which are the needed skills for

a certain task; furthermore, once a certain specialist has been recruited, managers

cannot always verify if the skill is the appropriate one or if the specialist is doing a

good work (Hodgson, 1999 [44]).

Based on this, the research questions that we pose are:

• When hierarchical means of coordination may result ineffective, how firms

coordinate the dynamic deployment of skills?

• What influences individuals to join specific groups? Is it based on the wealth

or prestige of the group, on the ability (skill) required by the group, on the

dimension of the group or on a mix of some of these things?

• How can the Network’s structure influence the firm’s performance?

Chapter 1. Introduction 5

Some hypotheses concerning these questions have been produced with the Firm-

Net model (chapter 4).

1.4 Thesis Plan

We have introduced the “knowledge economy” indicating its characteristics. We

have seen that traditional form of organization based on hierarchy or market, are

increasingly ineffective. Our aim is to crumble the hierarchy moving from a vertical

form of organization to a horizontal one. We attempt to bring ideas from computer

science and in particular from P2P networks to experiment new plausible forms of

organization. The chapters of this thesis are organized as follows.

In chapter two we first propose the review of some literature related to orga-

nization theory and in particular we indicate the characteristics and problems of

the organizations working in the knowledge-based economy; then we overview some

literature related to P2P networks and P2P computing, plus an introduction on the

concept of “Peer-production”; finally we make a synthesis of the first two sections

indicating which are the concepts of the P2P which can be used for organization

purposes and we propose some kind of hybrids that will be discussed over the whole

thesis.

In chapter three we describe the methodology adopted for the research we con-

ducted giving an overview of some literature related to social simulation and agent-

based modeling.

In chapter four we start introducing the basics of our conceptual model on which

our simulation experiments are based. In particular we describe the technical details

of the basic model and we indicate the different versions we developed.

In chapter five we start with the first work we did with our model: here we

compare a hierarchical form of organization with a self-organizing one. We first

describe the model and the experiments we have done, then we give some results an

comments.

6 Chapter 1. Introduction

In chapter six we study more in details the self-organizing model proposed in

chapter five. Here we propose six different version of the rewiring mechanism that

characterizes such model. We also propose some analysis on the structure of the

network.

In chapter seven we introduce the concept of learning to our model. Here we

give nodes the ability to learn skills and eventually to pass jobs. We also test two

different reward policies: “individual reward” and “group reward”.

Finally in chapter eight we conclude our discussion highlighting the crucial points

of our work and delineating some possible future work.

Chapter 2

Literature Review

In this chapter we first propose the review of some literature related to the character-

istics and problems of the organizations working in the knowledge-based economy;

then we overview some literature related to P2P networks and P2P computing, plus

an introduction on the concept of “Peer-production”; finally we make a synthesis

of the first two sections indicating which are the concepts of the P2P which can be

used for organization purposes and we propose some kind of hybrids that will be

discussed over the whole thesis.

2.1 The Knowledge-Based Economy

When we talk about knowledge economy, we generally mean the concept of “Knowledge-

Based Economy” indicating the use of knowledge and technologies to produce eco-

nomic benefits. Hence knowledge is both tool and raw material (people’s know-how,

skill) for producing some kind of product or service. In this kind of environment

economic organization is undergoing several changes. For example authority rela-

tions are less important, legal and ownership-based definitions of the boundaries of

the firm are becoming irrelevant and there are only few constraints on the set of

coordination mechanisms. Hence what characterises a knowledge economy is the

growing importance of human capital in productive processes (Foss, 2005 [31]) and

the increasing knowledge intensity of jobs (Hodgson, 1999 [44]). Economic processes

8 Chapter 2. Literature Review

are also highly intertwined with social processes; they are likely to be informal and

reciprocal rather than formal and negotiated. Another important point is also the

problem of the division of labor: as economic activity becomes mainly intellectual

and requires the integration of specific and idiosyncratic skills, the task of divid-

ing the job and assigning it to the most appropriate individual becomes arduous,

a “supervisory problem” (Hogdson, 1999 [44]) emerges and traditional hierarchical

control may result increasingly ineffective. Not only specificity of know how makes

it awkward to monitor the execution of tasks, more importantly, top-down integra-

tion of skills may be difficult because ‘the nominal supervisors will not know the

best way of doing the job – or even the precise purpose of the specialist job itself –

and the worker will know better’ (Hogdson, 1999 [44]). We, therefore, expect that

the organization of the economic activity of specialists should be, at least partially,

self-organized. Beginning with the studies of Leavitt (1951 [54]), the analysis of

the distribution of information in problem solving has stimulated a large body of

literature centered on the problem of comparing performances of hierarchical versus

decentralized organizational structures. Skill integration could emerge bottom-up

and organization theory ought to address how individual decision-making routines

and incentives forge the emergence of self-organized adaptive structures.

In this scenario the classical types of organization like hierarchy and market

may sometimes result ineffective and new ways of organizing and deploying skills

are emerging. The so called “Peer-production” is very popular today and is giving

many examples of how production based on cooperation among people on a given

project, can give incredible results. Typical examples are the “Linux” [109] operating

system and the free encyclopedia called “Wikipedia” [110]. Yochai Benkler (2006

[6]) argues that Peer-production refers to a phenomenon of large-scale cooperation

among people on a given project or problem. What typifies “peer-production” is

that it represents an alternative model of organizing people, alternative to firms

and markets. Rather than responding to managerial commands, or to prices, peer

producers use social motivation and communication to organize their efforts. Hence

social motivations can be a powerful engine able to create good connections among

Chapter 2. Literature Review 9

people interested in certain problems, which can, in some scenarios, outperform the

classical “vertical organization” approach.

2.1.1 Hierarchy and Market

For decades our common understanding of the organization of economic production

has been that individuals order their productive activities either as employees in

firms, following the directions of managers (hierarchy), or as individuals in markets,

following price signals. Since we are in a knowledge economy, as long as the jobs

become more knowledge-oriented, these classical form of organization may result

ineffective.

Hierarchy uses authority to create and coordinate horizontal and vertical division

of labor. Adler (2001 [1]) suggests that when specialized units are told to cooperate

in task that typically encouter unanticipated problems requiring novel solutions

(this is typical of the knowledge economy), the hierarchical form gives higher-level

managers few levels with which to ensure that the participating unit will collaborate.

By their nonroutine nature, such tasks cannot be preprogrammed, and the creative

collaboration they require cannot be simply programmed. Hierarchy hence results

weak and firms have to look for other models.

Knowledge is a “public good” and hence the market/price mode forces a trade-off

between production and allocation. On the one hand, production of new knowledge

would be optimized by establishing strong intellectual “property rights” that cre-

ate incentives to generate knowledge. On the other hand, not only are such rights

difficult to enforce, but more fundamentally, they block social optimal allocation.

Adler (2001 [1]) argues that allocation of knowledge would be optimized by allowing

free access because the marginal cost of supplying another consumer with the same

knowledge is close to zero.

Knowledge-based jobs are also leading to increasingly incomplete employment

contracts. It is not possible to state in a contract all the duties of an employer and

an employee: this happens in particular when the job is an intellectual job and the

10 Chapter 2. Literature Review

“supervisory problem” emerges. When the job is very specific, the employer cannot

check if the employee is actually working well or if he really has the required skill

(perhaps he doesn’t even know which are the required skills for a certain job); on the

other hand the employee could be less protected due to the lacks in the employment

contract. Benkler (2002 [7]) argues that where agents, effort or resources cannot be

specified, they cannot be accurately priced or managed, he also states that human

creativity is a difficult resource to specify for efficient contracting or management.

In such context “reciprocity” between employer and employee, becomes an alter-

native to authority: employer instead of using authority on employees, have to coop-

erate with them. This new form of organization is more similar to Peer-production.

Hodgson (1999 [44]) suggests that the lack of managerial control on knowledge-

based jobs, especially when knowledge is tacit and cannot be codified impairs and

bounds the appliance of traditional employment contracts. The nature of the con-

tracts should evolve along with the evolution of the distribution of bargaining power.

2.2 Specialisation, Communication and Coordi-

nation

Grounding on Hayek’s argument (1945 [41]) that information possessed by individ-

uals can be used only with the active cooperation, Kim and Mauborgne (1998 [50])

highlight the challenge that firms face in knowledge-based activities to obtain active

cooperation of different actors each holding a piece of information. Thus, human

resource management and the nature of employment relationships are particularly

sensitive topics when organizations need to coordinate a number of specialists bear-

ing specific know how. The structure of incentives in which a professional is em-

bedded forges his motivation to coordinate with other agents. If, on the one hand,

firms provide a context in which, shared coding scheme, languages and norms make

it easier to exchange knowledge; on the other hand, in their study in communities

of practice, Brown and Duguid (2001 [8]) recommend that, to address inertia of

knowledge, researchers should go beyond explanations that take the cultural unity

Chapter 2. Literature Review 11

of the firm for granted. Shared practices define differences in identities and demar-

cate the extent to which knowledge spreads. Knowledge leaks in the direction of

shared practice but communities sharing practices may stand across different orga-

nizations. Specialists in different disciplines to the extent to which they embrace

distinct practices, they define different communities with distinct identities and spe-

cific knowledge. Knowledge is sticky when it moves among different communities

of practice. Thus, the more distinct are the disciplines of specialists within an or-

ganization and the more specific is their knowledge, the more difficult we expect

to be for individuals to join different communities of practice, to assess each others

abilities and to coordinate to complete tasks.

2.3 The Problem of Adaptation

The endeavour of coordinating skills within organizations becomes arduous when

the environment is turbulent. As Wright and Snell (1998 [101]) suggest, firms may

increase their coordination flexibility by either nurturing a wide repertoire of spe-

cialists with different skills, which are deployed and redeployed to different uses, or

hiring temporary workers with specific skills to be used for a specific project. Bru-

soni, Prencipe and Pavitt (2001 [11]) suggest that firms in the knowledge economy

may have an incentive to have an increasing number of specialists of technological

disciplines in-house and Moch and Morse (1977 [65]), and Haveman (1993 [42]) pro-

pose that this is especially true, in turbulent environments, when in-house availabil-

ity of diverse specialists, better helps to face change because specific skills provide

access to cutting-edge knowledge and novel solutions to organizational problems.

On the other hand, Matusik and Hill (1998 [63]) suggest that pressures to change

tend to blur organizational boundaries and push firms to hire contingent workers

to allow rapid inflow of public knowledge. Davis-Blake and Uzzi (1993 [22]) found

both a negative correlation between jobs requiring firm-specific training and the use

of temporary workers, and a negative correlation between size and the use of tempo-

rary workers. They explained their results with the hypothesis that large firms can

12 Chapter 2. Literature Review

reallocate employers within the organisation, as changes in the environment require

the completion of novel tasks, rather than trying to hire a temporary worker that

needs to be embedded in firm-specific work context. The problem, however, is to

understand how firms should govern the reallocation of skills within the organization

and the extent to which the problem of skill allocation ought to be decentralized.

2.4 Hierarchical and Decentralized Structures in

Problem-Solving

An important body of literature in organizational studies has addressed the choice

between hierarchical versus decentralized organizational structures in problem-solving.

A first thread of contributions in this area sprung off from experiments conducted

by Leavitt on the effects of different communication patterns on group performance

(1951 [54]). Along similar lines, Cohen (1962 [18]), adopting the same experimental

setting used by Leavitt, analyzed how continued practice in two different commu-

nication structures effected problem-solving activity. Cohen compared, the wheel,

the more hierarchical structure, within which all agents exchange information with

a central agent, with the circle, in which each agent communicates with neighbours,

and found that wheels took shorter times and made fewer errors. In general, this

tradition of studies was focused on the differences, not only in efficiency, but also in

satisfaction and in organization produced in different communication networks. For

example, in a later study, Cohen et al. (1969 [21]) found that once centralized groups

are embedded within larger and complex organizations, they perform poorer than

decentralized structures because members react against constraints of centralized

structures and create links to members external to the subgroup thereby employing

more messages and time for longer routings of answers. Cohen et al. (1962 [19])

had also demonstrated that circle group that had prior experience in less satisfying

centralized structure, such as wheels, were more satisfied and performed better than

those groups that had been circle throughout. Another perspective centred on the

structure of information and communication flow is to associate appropriateness of

Chapter 2. Literature Review 13

a decision-making structure to a particular kind of problem or task environment.

In this light, Sah and Stiglitz (1986 [83]) confronted performance of hierarchies and

polyarchies in decision-making by considering probability with which a good project

is likely to be approved in an organization. They build their argument upon the

relative advantages of systems of successive filters provided by screening mechanisms

in hierarchies and the higher number of chances given to projects in less hierarchi-

cal decision-making structure such as polyarchies. In their study, polyarchies are

preferred if prevalence of good projects is expected whereas adoption of hierarchies

should shelter organizations when quality of projects is uncertain. On the other

hand, the filters imposed to information flow may inhibit innovation in hierarchies

(Burns and Stalker, 1961 [13]). Malone (1987 [56]) compares production, coordina-

tion and vulnerability costs of organizational structures characterized by different

degrees of decentralization. He suggests that decentralized structures, such as de-

centralized markets, in which all managers interact directly with all task processors,

have large coordination costs but low vulnerability costs, which occur when by an

organization in adapting to a new situation. Thus, it is suggested that decentralized

market structures are preferable in turbulent task environments. However, given the

variety of dimensions that may characterize task environments and decision-making

contexts, relevant literature offers a repertoire of different suggestions concerning

the selection of hierarchical and decentralized structures. More recently, for exam-

ple, Carley (1992 [14]), considering hierarchies and teams, these latter representing

decentralized organizational structures without chain of command, suggested that

teams learn faster and outperform hierarchies in problem-solving but hierarchies’

performances depend less on turnover of employees, on time pressures (Lin and

Carley, 1997 [55]) and biases in task environment (Carley and Lin, 1997 [15]), and

Masuch and LaPotin (1989 [62]), articulating the garbage can metaphor (Cohen,

March and Olsen, 1972 [20]), propose that hierarchy improve organizational perfor-

mances only when commitments of organizational members is low.

14 Chapter 2. Literature Review

2.4.1 Teamwork and decentralized decision making

An area of literature in organizational theory has specifically addressed teams as

the solution of decentralization problem in complex decision-making (Marschak and

Radner, 1972 [61]). A number of studies have explored the relationship between

team structure and performances (Hoegl and Gemuenden, 2001 [43]). These studies

have investigated, for example, the relationship between intra-team incentives and

teams productivity (Dickinson and Isaac, 1998 [24]; Natter et al. 2001 [72]), the

problems of coordinating expertise of specialists within a team (Faraj and Sproull,

2000 [29]) and the extent to which a team ought to be self-managed (Kirkman and

Rosen, 1999 [51]; Wageman, 2001 [93]). The view that we propose in this thesis,

however, is less concerned with the internal structure of teams than with the na-

ture of team formation processes and the mechanisms through which team structure

adapt to changing needs of a dynamic environment. Organization may use author-

ity to assign skills to tasks but, as the complexity of task and the specialization

of expertise involved increases, along with the size of the organization, rationality

of decision-makers may be bounded in efficiently assigning skills to tasks. Contri-

butions that address dynamics of team formation are mainly in the area of game

theoretic approach to coalition formation (Hart and Kurz, 1983 [40]; Rapoport and

Kahan, 1984 [76]; Seidmann and Winter, 1998 [86]). These contributions, however,

do not consider the role that behavioural decision-making rules, such as imitation

of successful colleagues, and position within a network of professional relationships

have in moulding the structure of emergent teams. Decision to join a team may de-

pend on our expectations concerning the effect that joining a particular team has on

own reward but, within organizations, patterns of interactions influence individual

decision-making (Ibarra, 1992 [52]) and expectations are formed on information ex-

changed with colleagues that are part of my neighborhood in, formal and informal,

organizational networks. In this respect, the effectiveness of an organization in exe-

cuting a variety of tasks, requiring different skills, may depend on the structure and

the dynamics of the inner network embedding professionals holding specific know

how. Along these lines, Glance and Huberman (1994 [35]) address the dynamics of

Chapter 2. Literature Review 15

intraorganizational network evolution and describe advantages of teams character-

ized by fluid boundaries in organizing collective action towards cooperation.

2.5 Staffing the Twenty-first-century Organizations

The nowadays organization, is facing major changes. Cascio and Aguinis (2008 [16])

argues that the twenty-first-century organization is undergoing radical transforma-

tion mainly due to the spread of new technologies, particularly the Internet, and

that this transformation is nothing less than a new industrial revolution. Every-

one in the organization can access informations instantaneously and more and more

people are using mobile technologies to work on the go or at home. This means

that the new organization must adapt itself to management via Web and must be

devoted to constant change: organized around networks, not rigid hierarchy. In-

tellectual capital will be critical to business success. For example the advantage of

bringing breakthrough products to market first, will be shorter than ever because

technology will let competitors match them almost instantly. Thus firms must en-

dow with best talents. In their paper, Cascio and Aguinis (2008 [16]), argue that

the current staffing methods are ineffective; they believe that improvement in the

ability to forecast job performances lies in more careful specification of the domain

of performances, together with increased effort to demonstrate correspondence be-

tween predictors and the wide range of elements of the performances domain. They

call this performances domain “in situ performance”: it is the specification of the

broad range of effects – situational, contextual, strategic and environmental – that

may affect individual, team, or organizational performances. The current staffing

model is too simplistic, with it, context rarely matters, performances are consid-

ered isolated from context and it has not shown major improvements in its ability

to predict performances. The staffing model they propose, involves an expanded

view of the predictors of performaces. They propose two guiding principles for the

development of the new staffing method.

The first is that predictors of in situ performances should consider the preminent

16 Chapter 2. Literature Review

role of time. If we consider group works, we know that most of of them function

over an extended period of time. Unfortunately, much research on staffing in group

works has focused on short-term group within a narrow time frame (McGrath et

al, 2000 [64]; Williams and O’Reilly, 1998 [97]). McGrath et al. (2000 [64]) noted

that groups are inherently dynamic systems operating via processes that unforld

over time, with those processes dependent both on group’s past history and in its

anticipated future. Hence measurement that takes place over short periods of time,

as in the current staffing method, is likely to result in thin slice of behavior that are

not representative. Measurement should take place over extended periods of time.

A second guiding principle is related to the context. The selection environment

must emulate the work environment. This principle involves creating a context

with all of its complexity and situational, contextual, strategic and environmental

constraints.

What Cascio and Aguinis (2008 [16]) propose with their paper, is a novel staffing

model in which the measurement of present in situ performances should predict the

measurement of future in situ performances. This is because the current staffing

model uses individual knowledge, skills, ability and other individual characteris-

tics assumed to underly certain predictors to make predictions about future jobs

performances that is also assumed to be determined by the same characteristics.

2.6 Peer-to-Peer Networks

Open peer-to-peer (P2P) overlay networks have become very popular for file shar-

ing applications and they have emerged as an important paradigm for distributed

computing, due to their potential for the involvement of millions of peers in the pro-

cess of sharing and collaboration. They organize a large set of participants (peers),

in a logical network on top of a physical topology. Due to its good features, this

paradigm is now applied to a wide spectrum of distributed applications. One of the

most interesting features of P2P networks is their ability for direct resource sharing

among dynamic, decentralized client peers. Scalability is also central in P2P appli-

Chapter 2. Literature Review 17

cations and it relies both on an even distribution of the load between peers and the

ability to react to system dynamics.

The P2P approach differs from the client-server in that no distinction is made

between client and server machines: all the nodes in the network are both client

and server so they must both serve some resource or service and can ask for them.

Between the main feature of P2P networks we find that they are totally decentral-

ized so there is no central and trusted authority which controls the system. For a

given application to provide a service, a subset of nodes may be elected to act as

servers, to which nodes can forward requests. When designing this kind of system

it is possible to define local rules to be followed by each peer and the formation of

global behavior on large scale should only appear as an emergent behavior obtained

from local interactions between peers.

Three main classes of P2P applications have emerged: parallelizable, content

and file management, and collaborative.

Parallelizable. Parallelizable P2P applications split large task into smaller

sub-pieces that can execute in parallel over a number of independent peer nodes.

Most implementations of this model have focused on compute-intensive applications.

The general idea behind these applications is that idle cycles from any computer

connected to the Internet can be leverage to solve difficult problems that require ex-

treme amounts of computation. Most often, the same task is performed on each peer

using different sets of parameters. Examples of implementations include searching

for extraterrestrial life (SETI@Home, 2001 [106]), studying computational ways to

design new anti-HIV drugs based on molecular structure (FightAIDS@Home [107]),

developing more accurate climate models of specific regions in Africa (AfricanCli-

mate@Home [108]).

Content and file management. Content and file management P2P applica-

tions focus on storing information on and retrieving information from various peers

in the network. The model that popularized this class of application is the content

exchange model. Applications like Napster and Gnutella (Ripeanu et al., 2002 [78])

18 Chapter 2. Literature Review

allow peers to search for and download files, primarily music files, that other peers

have made available. They focus on using otherwise unused storage space as a server

for users.

Collaborative. Collaborative P2P applications allow users to collaborate, in

real time, without relying on a central server to collect and relay information. Instant

messaging is one subclass of this class of application. Services such as Yahoo! ([111]),

Skype ([113]), and Jabber ([112]) instant messaging have become popular among a

wide variety of computer users (Strom, 2001 [90]). Similarly, shared applications

that allow people (e.g., business colleagues) to interact while viewing and editing

the same information simultaneously, yet possibly thousands of miles apart, are also

emerging. Examples include distributed Power Point (Rice and Mahon, 2000 [77]).

Games are a final type of collaborative P2P application. P2P games are hosted

on all peer computers and updates are distributed to all peers without requiring a

central server.

2.6.1 P2P characteristics

Peer-to-peer systems have several interesting characteristics which we believe can

be found also in new forms of organization like Peer-production:

• Decentralization: In a fully decentralized system, every peer is an equal partic-

ipant. This makes the implementation of the P2P models difficult in practice

because there is no centralized server with a global view of all the peers in

the network or the files they provide. This is the reason why many P2P file

systems are built as hybrid approaches as in the case of Napster [114], where

there is a centralized directory of the files but the nodes download files di-

rectly from their peers. One way to categorize the autonomy of a P2P system

is through the pure P2P versus hybrid P2P distinction. This categorization

has a direct effect on the self-organization and scalability of a system, as the

purest systems are loosely coupled to any infrastructure.

Chapter 2. Literature Review 19

• Scalability: An immediate benefit of decentralization is improved scalability.

Scalability is limited by factors such as the amount of centralized operations

(e.g, synchronization and coordination) that needs to be performed. Recent

P2P systems, represented by CAN, Chord, PAST and Pastry (Stoica et al,

2001 [89] and Rowstron, 2001 [82]), dictate a consistent mapping between an

object key and hosting node. Therefore, an object can always be retrieved as

long as the hosting nodes can be reached. Nodes in these systems compose an

overlay network. Each node only maintains information about a small number

of other nodes in the system. This limits the amount of state that needs to be

maintained, and hence increases scalability.

• Cost of ownership: One of the premises of P2P computing is shared ownership.

Shared ownership reduces the cost of owing the systems and the content, and

the cost of maintaining them. This is applicable to all classes of P2P sys-

tems. Also the elimination of centralized computers for storing information

also provides reduced ownership and maintenance costs.

• Performance: P2P systems aim to improve performance by aggregating dis-

tributed storage capacity and computing cycles of devices spread across a

network. Because of the decentralized nature of these models, performance is

influenced by three types of resources: processing, storage, and networking.

In particular, networking delays can be significant in wide area networks.

• Fault-resiliance: One of the primary design goals of a P2P system is to avoid

a central point of failure. Although most P2P systems (pure P2P) already

do this, they nevertheless are faced with failures commonly associated with

systems spanning multiple hosts and networks: disconnections /unreachability,

partitions, and node failures. Pure P2P systems without centralized control

are able to resist to these problems.

• Self-organization: In P2P systems, self-organization is needed because of scal-

ability, fault resilience, intermittent connection of resources, and the cost of

20 Chapter 2. Literature Review

ownership. P2P systems can scale unpredictably in terms of the number of

systems, number of users, and the load. It is very hard to predict any one of

them, requiring frequent re-configuration of centralized system. There are a

number of academic systems and products that address self-organization. In

Pastry, self-organization is handled through protocols for node arrivals and

departures based on a fault-tolerant overlay network (Druschel and Rowstron,

2001 [26]). Client requests are guaranteed to be routed in less than log16N

steps on average. Also, file replicas are distributed and storage is randomizes

for load balancing.

2.6.2 Peer-production

Now that we have seen the main characteristics of P2P systems, we introduce a novel

form of organization which takes inspiration from P2P. It is called “Peer-production”

(Benkler 2002 [7]). By “Peer-production”, we indicate a form of production of goods

and services entirely based on auto-organized communities of voluntary individuals

with the aim to pursue a common goal. It takes inspiration from the more famous

concept of peer-to-peer networks (just described above) in which all the nodes in

the network are peer and hence have the same power. For example the idea behind

some P2P applications like SETI@Home (see previous section), is the same that

is behind the Linux project: in both cases a “big task” is split into many “small

subtasks” which are executed by many voluntaries using their own resources (CPU

power in the first case and programming skills in the second case).

Actually Peer-production is often a mix of hierarchy and self-organization where

expert members of the community give the guidelines for the production. Generally

in these communities individuals work for free and they generally do this for social

motivations like becoming popular or passion for a certain topic. Typical example

of Peer-production are given by “Linux” [109] and “Wikipedia” [110]. Of course

this kind of production cannot be applied on every kind of product of service. It’s

important that individuals working on a certain project can do this in a small

time and with a limited effort of resources. This is why it is generally applied to

Chapter 2. Literature Review 21

knowledge-based services or goods for which common tools are enough. Anybody

can contribute to Wikipedia spending their free time at home, they just need a PC

and an internet connection.

It is also important that tasks can easily be divided into little pieces such that

many people can work on them in a reasonably small time. Nowadays billions

of people around the world can contribute and cooperate to realize any kind of

product which requires creativity a personal computer and an internet connection.

Now production costs, for certain kind of activities, are very low and anybody can

produce or exchange several kind of goods or services (like newspapers) without the

need of market-based or firm-based models (Tapscott and Williams, 2007 [91]).

This may sound like a threat for companies but in some cases it can be an

opportunity for firms ready to take advantage of such creative power constituted by

millions of enthusiastic people in their business areas.

The main characteristics of the products and services realized through peer pro-

duction are (Benkler, 2002 [7]):

• no hierarchy, no market: the quantity of the goods realized with peer produc-

tion cannot be decided neither by an authority (as in the hierarchy), nor by

price (as in the market). It is decided by the spontaneous encounter between

tasks and skills;

• individuals involved in a peer community must hold the production means

(the same happens in the market);

• the final product is a “common good” with a public open license.

These characteristics are perfectly respected by the Open Source communities.

In recent year we have seen how the main benefit of the peer production have been

given to the Open source community. Von Krogh and von Hippel (2003 [92]) have

shown how these communities have benefited greatly from the advent of the Internet,

which has enabled members to interact and share resources extensively. The most

22 Chapter 2. Literature Review

famous example is the Linux operating system which has gained lot of popularity

through the years and millions of buyers and users worldwide.

However for such kind of projects the main ingredients are the creativity and

the passion of the thousand of people daily working on them. Many are the reasons

why they decide to contribute for free, as make experience on important projects

and establish contacts which other developers. On the other hand there are firms

like IBM and Intel having employee working on open source projects, meaning that

not everybody is really involved for free.

Three are the main conditions that must be respected to allow peer production

(Tapscott and Williams, 2007 [91]):

• the object to be produced must be information-oriented;

• tasks must be divisible into small independent parts such that individuals can

participate contributing with minimal time effort;

• costs relating the integrations of the produced parts and for their reviews must

be minimal.

Beside of this, an other important aspect of the peer production is that commu-

nities must be endowed of a system for peer reviews for controlling the quality of the

product and leaders able to govern and handle the interactions between members

and merge heterogenous contents produced by them.

Peer production hence, provides a framework, within which individuals who have

the best information available about their own fit for a task can self-identify for the

task (Benkler 2002 [7]). This provides an information gain over firms and markets,

but only if the system develops some mechanism to filter out mistaken judgments

agents make about themselves. This is why practically all successful peer produc-

tion systems have a robust mechanism for peer review or statistical weeding out of

contributions from agents who misjudge themselves.

Chapter 2. Literature Review 23

We believe that the mechanisms which are behind the peer production can be de-

rived from the mechanisms behind P2P networks. Both firms and P2P networks are

complex adaptive systems (CAS) and we think that common methods for organizing

both exists.

2.7 Network Organization

Previously we have indicated how the increasingly knowledge intensity of jobs and

high dynamism of task require a more fluid form of organization. Within a firm it is

necessary that employees can encounter, cooperate and share their skills in order to

achieve some particular task. In order to permit this, an infrastructure that allows

individual to find each other is necessary. In large firms often happens that the

knowledge is already in the firm but the head of the unit of the firm that needs such

knowledge or skill doesn’t know about that. That’s why some kind of infrastructure

is needed for making tasks match with skills; firms need to recreate a situation

similar to what happen with peer-production (Tapscott and Williams, 2006 [91]).

Since relationships between peoples can be considered as links in a network and

since in the knowledge economy a central authority that leads the individuals is not

always possible, the structure of a P2P network seems to fit appropriately.

Network Organization is one of the names that have been coined to indicate a

kind of organization process that do not conform to traditional definition of markets

or hierarchies. In the early 1980’s a dichotomous view of economic organization saw

market on one hand and hierarchy on the other; such dichotomous view was quiet

explicit in the transaction cost economics. Oliver Williamson (1991 [99]) asserted

that the alternative to pure markets and hierarchies can be interpreted as interme-

diate or hybrid forms combining elements of markets and hierarchies and also that

pure types tend to prevail on mixed forms (Williamson, 1985 [98]). After this, lot of

sociological research on these two point was done, trying to understand if network

organization can be consider a mix of the two just cited approaches, or something

different. Podolny and Page (1998, [80]) argues that from a purely structural per-

24 Chapter 2. Literature Review

spective every form of organization is a network and markets and hierarchies are

two manifestations of the broad type. When considered as a form of governance,

instead, the network form can be characterized as a collection of actors that pursue

repeated, enduring exchange relations with one another lacking a legitimate organi-

zational authority that can arbitrate and resolve disputes that arise among actors

(as in hierarchies). In a pure market, relations are episodic and ending after the

transaction.

Although this definition of network organization (Podolny and Page, 1998 [80])

excludes employment relations, a number of scholars have argued that network form

of organization can be characterized by a “distinct ethic”. The buyer tries to work

with the seller to address the bugs in the sellers performances instead of moving

to another seller and Powell (1990 [81]) argues that reciprocity is a guiding prin-

ciple underlying network organization. Something similar happens nowadays with

Peer-production principle: what Peer-production does (Benkler, 2002 [7]) is to pro-

vide a framework within which individuals who have the best information available

about their own fit for a task, can self-identify for the task. In a knowledge economy

context, this gives advantages to Peer-production respect to hierarchies and markets

but implies a mechanism for “peer-review” for individuals who misjudge themselves.

It’s interesting to note how some of the P2P characteristics that we have seen in

the previous section can be found also in the network organization. Self-organization

for example is fundamental in those contexts where an authority (manager) able to

allocate tasks to employees is not present or is not possible: in this case specialists

(who better know what they are able to do) must be able to continusly adapt the

structure of the firm in order to cope with dynamic tasks.

Previous work have shown that protocol previously designed for P2P networks

can be applied also for social systems (Marcozzi and Hales, 2008 [60]), so in this

work we try to go ahed modeling the firm as a P2P network in which specialists are

the nodes and the relations between them are the links.

Chapter 2. Literature Review 25

2.8 Complex Systems

Many different phenomena fall into the definition of complex system, all have in

common some defining key aspects, even though it is not easy to give a formal

definition of what a complex system is, complex systems are usually defined as a set

of interconnected simple entities that are able to produce some kind of higher level

properties.

Such properties, exhibiting global features even though they are obtained through

simple local interactions, are usually referred to as emergent properties. Since com-

plex system are usually formed by a large number of simple entities and since interac-

tions among such entities are often guided, at least in part, by stochastic decisions,

in general it is very hard to predict the behavior of a complex system, hence to

explicitly guide it to the desired emergent properties.

An important characteristic of complex system is given by adaptivity. Typi-

cally, complex systems show high degree of adaptation to environmental changes.

Intuitively, being formed by a large number of interconnected simple entities and

showing very low hierarchical structures (even no hierarchy at all), complex systems

are robust to the loss of some of their basic components . Moreover adaptivity is

often achieved thanks to the system’s nature itself and through the propagation on

a global scale of small local reactions to environmental changes.

A big help in understanding how complex systems work, and a great source of

inspiration to define new design techniques and models as well, is given by the large

number of examples of complex systems present in nature. Typical examples are

those of social insects (many “stupid” ants building large and structured nests), im-

mune system (many immune cells adapting to various antigens and their mutations),

or even human artifacts, as stock market or even human society as a whole!

P2P networks and firms clearly fall into the definition of complex systems, this

explains why a trend to draw inspiration from complex system studied and analyzed

in different disciplines such as biology and sociology has been growing stronger and

stronger and has led to a plethora of bio-inspired and socio-inspired mechanism to

26 Chapter 2. Literature Review

solve various problems in P2P networks (Jelasity et al., 2005 [47, 48]; Babaoglu et

al., 2005 [5]).

Chapter 3

Methodology: Computer Simulation in

social and managerial sciences

Nowadays, computer simulation is becoming very popular and is gaining acceptance

from the community of social and economic scientists. In this chapter we try to

understand what value a computer simulation model can add to a research design:

we first give an overview of computer simulation in social sciences, the we discuss

on how economy can be considered Complex Adaptive System, finally we describe

the roadmap we followed to develop our research.

3.1 Simulation in social science

Computer simulation introduces a new way of thinking about social and economic

processes, related to the emergence of complex behavior from the interaction of

actors performing relatively simple actions (Simon, 1996 [87]). This concept is gen-

erally indicated as “complexity theory” which is becoming very popular in several

disciplines as physics, biology and computer science. It is an increasingly signifi-

cant methodological approach to theory development in the literature focused on

strategy and organizations, indeed several important research (Coehen et al., 1972

[20]; March, 1991 [57]; Burgelman and Mittman, 1994 [12]; Gavetti et al., 2005 [33])

have used simulation as their primary method. Simulation is a particular type of

modeling: a model is built which is a simplification of a some structure or system.

28 Chapter 3. Methodology: Computer Simulation in social and managerial sciences

This simplification is less detailed and less complex than the original structure. Af-

ter the model is realized, experiments with it are executed: simulation involves that

the researcher using it gives inputs and, while the simulation runs, observes outputs.

In general, a simulation experiment entails the formalization of a theory, thus a

computer simulation can be used as a theoretical laboratory to manipulate a deduc-

tion process and to explore emerging behavior of complex systems when analytical

tools cannot cope with the complexity of a system. Davis et al. (2007 [23]) propose

that simulation can be adopted for “theory development” when simple theory exists

(Rudolph and Repenning, 2002 [79]). By simple theory is meant undeveloped theory

that has only a few constructs and related propositions with modest empirical or

analytical grounding such that the propositions are in all likelihood correct but are

currently limited by weak conceptualization of constructs and/or rough underlying

theoretical logic. Simple theory also includes basic processes that may be known like

competition, imitation (this is our case), but have interactions that are only vaguely

understood. Thus, simple theory contrasts with well-developed theory. From these

perspectives, computer simulation can be a powerful method for sharply specifying

and extending extant theory in useful ways.

In addition to theory development, computer simulation can have several uses;

one can be that of observing a particular phenomenon. For example we can make a

model representing laborers working in a steel mill to obtain a better understanding

of their behaviors. Another interesting use of simulation is for prediction: we can

develop a model that faithfully reproduces the dynamics of some behavior during

the passing of time and thus use the model to predict what will happen (Gilbert

and Troitzsch, 2005 [34]). A third use of simulation is to develop tools to substi-

tute human capabilities as the building of “expert systems” that can be used by

non-expert to carry out diagnoses which would otherwise require human experts.

In addition, simulation can clearly reveal the outcomes of the interactions among

multiple underlying organizational and strategic processes, especially as they unfold

over time (Repenning, 2002 [75]).

There are several possible approaches for computer simulation in social sciences;

Chapter 3. Methodology: Computer Simulation in social and managerial sciences 29

the most famous are: System Dynamics (SD), Agent-Based Modeling (ABM). Sys-

tem dynamics, which is connected to the work of Forrester (1961 [30]), is a powerful

methodology and computer simulation modeling technique for framing, understand-

ing, and discussing complex issues and problems. The basis of the method is the

recognition that the structure of any system – the many circular, interlocking, some-

times time-delayed relationships among its components – is often just as important

in determining its behavior as the individual components themselves. It deals with

internal feedback loops and time delays that affect the behavior and the structure

of the entire system. Agent-Based modeling, simulates actions and interactions of

autonomous individual entities and build on the hypothesis that the behaviour of

social systems can be modelled and understood as evolving out of interacting but au-

tonomous learning agents (Epstein and Axtell, 1996 [28]; Axelrod, 1997 [2]; Axtell,

1999 [3]).

Independently of the approach adopted, research work employing computer sim-

ulation has frequently been regarded, in social sciences, as influenced by an au-

tonomous logic in respect to mainstream research. Interestingly, computer simula-

tion has not always gained lot of success from researchers: some of them suggest that

simulations are only “toy models” of actual phenomena, in that they either replicate

the obvious or strip away so much realism that they are simply too inaccurate to

yeld valid theoretical insights (Chattoe, 1998 [17]). Two are the main consideration

on which those researchers base their perplexities (Mollona, 2008 [70]). First, very

often, the system of symbols, whose behavior is simulated by computers, is not en-

tirely represented as a mathematical model but takes the appearance of a number

of strings of programming code; these strings, which may be very numerous, embed

the algorithms that both describe the social behaviours under study and a number

of rules that direct the computer in executing the code. This program may be hard

to communicate to readers who are not necessarily skilled in programming. Thus,

replicating experiments can be a problem. Second consideration is that a computer

simulation produces results by the means of numerical rather than analytical so-

lution. Obviously, this is true because often we use computer simulation for the

30 Chapter 3. Methodology: Computer Simulation in social and managerial sciences

very reason that the phenomenon under study is so complex that cannot receive an

analytical treatment. The problem with numerical solutions is that each simulation

produces a result that depends on the specific calibration of the parameters that

we used for that simulation. We should run an infinite number of simulations (as

infinite are the values that we could use to calibrate parameters) to obtain the entire

possible repertoire of behaviours that a model could produce. This fact may induce

to think that any conclusion extracted from a simulation experiment is of limited

value.

Davis et al. (2007 [23]) suggests that the controversy surrounding the value of

computer simulation for theory development, partially arises from a lack of clarity

about the methods and its related link to theory development. They argue that

there is a limited understanding about when to use simulation (when it is a use-

ful methodology), how to select the most appropriate simulation approach, how to

perform simulation experiments and which are the relevant criteria for evaluating

simulation research. Most scholars (Dubin, 1976 [27]; Priem and Butler, 2001 [74])

agree that theory has four elements: constructs, propositions that link those con-

structs together, logical arguments that explain the underlying theoretical rationale

for the proposition, and assumptions that define the scope of boundary conditions

of the theory. Consistent with these views, Davis et al. (2007 [23]) define theory as

consisting of constructs linking together by propositions that have an underlying,

coherent logic and related assumptions. In light of this, they developed a roadmap

for how to use simulation to develop theory (see section 3.4).

We believe that computer simulation helps rigorously to deduce consequences

from modelled assumptions when complexity of modeling makes difficult to obtain

closed-form solutions. In addition, simulation allows looking at unfolding organisa-

tional and social processes, capturing the behavioural characteristics in transitory

states. This approach has the advantage of creating an appropriate setting to con-

duct controlled experiments. Thus, simulation studies assist the discernment among

groundless assertions and assertions that are true only within certain boundaries and

given specific assumptions, and help researchers to identify missing variables and to

Chapter 3. Methodology: Computer Simulation in social and managerial sciences 31

elicit hidden assumptions thereby supporting testing of internal consistency (Lan-

gley 1999, [53]), robustness and generality of a theory. In addition, simulation, by

illustrating non-obvious implications of a theory, sets the grounds for the theory de-

velopment. Hence, our ultimate aim is to develop hypotheses and theories that can

then be applied to real world phenomena and data. We use the computer model at

this stage to help us generate and test, in a rigorous and deductive way, candidate

ideas.

3.2 The economy as a Complex Adaptive System

The economy in general is a system where a large number of agents interact and

the interaction of these agents leads to the formation of complexity. That’s why

the economy may be considered as a complex adaptive system (CAS). The same

applies to organization science, which studies the interaction of individuals or groups

of individuals involved in some particular task within a company. As we know,

economics deals with a microlevel and a macrolevel: Microeconomics takes as its

starting point the behavior of individual agents whereas macroeconomics theorizes

about relations between aggregate magnitudes. Bruun (2006 [10]) suggest that while

traditionally macroeconomics and microeconomics where apparently impossible to

combine, complexity science now offers a way out to this situation. Rather than

starting with either a single isolated agent or aggregate magnitudes, complexity

science suggests focusing on the interaction between agents. Recognizing that what

turns large composite systems into systems and not just collections is the interaction

between the parts, it seems apparent to start with the interaction. Schelling (1978

[85]) was among the first to apply a complexity approach to social sciences. He

argued that economic systems are particularly complex because, besides a large

number of locally interacting agents, economic systems are characterized by a lot

of relations that must hold in the aggregate, but does not necessarily hold for each

individual.

Hence we can argue that the economic system can be considered as CAS and

32 Chapter 3. Methodology: Computer Simulation in social and managerial sciences

that complexity arise from three factors:

• the economy is a large composite system;

• economic agents adapt their behavior to the system;

• economics is characterized by a lot of relations that must hold in the aggregate,

but need not hold for the individual agent.

The same factors arise in organization systems where the type of interaction of

lot of different agents determines the kind of organization.

Another interesting aspect of CAS is also that they are at least partially self-

organized: when in chapter 2 we talked about Peer-production, we said that in that

kind of organization, individuals must be able to self-elige for certain task. When

the task is to big and no central authority is possible, individuals involved should

give themselves a kind of organization structure according to their skills and their

preferences. This ability to self-organize in a changing environment is an interesting

characteristic of CAS.

Hence economic and organization systems work in a complex way and it is very

difficult to produce models that perfectly reproduce them without doing some sim-

plifications. That’s why, done these simplifications, it is possible to make computer

models able to represent and study the complexity of economic and organization

systems both in the micro and in the macro, simulating the actions of the agents

involved.

3.3 Agent-Based Computational Economics

Since economics can be seen as a complex adaptive system, it is very difficult to study

the system analytically. Sometimes, doing experiments can also be too expensive

or not feasible. Modeling and simulation complement the traditional empirical and

experimental approaches to research since they provide effective ways for organizing

Chapter 3. Methodology: Computer Simulation in social and managerial sciences 33

existing data, focus experiments through hypothesis generation, identify critical ar-

eas where data are missing, and allow virtual experimentation when real experiments

are impractical or just too expensive. Thus, Agent-Based Modeling (ABM) gives a

big help in understanding the behavior of the system which arise from the interaction

of a large number of agents. Basically researchers try to understand economic and

organizational processes by synthetically reproducing them on a computer model.

The model is generally built bottom-up starting from simple components assembled

into a working system. This model is composed of a number of agents having some

specific behavior and interacting, generating some complex dynamics in the system.

No general assumptions are needed on what will happen to the global system, this

will “emerge” after the interactions of the agents.

Several are the reasons why computer simulation is very used for these studies

(Gilbert and Troitzsch, 2005 [34]):

• programming languages are more expressive and less abstract;

• programs deal more easily with parallel processes and processes without a

well-defined order of actions;

• programs are often modular, so that major changes can be made in one part

without the need to change other parts of the program;

• it is easy to build simulation systems that include heterogeneous agents for

example, to simulate people with different perspectives on their social worlds,

different stocks of knowledge, different capabilities and so on.

The ABM approach is able to capture types of complex, dynamic, interactive

processes so important in the social world. One important characteristic of ABM, is

the potential asynchrony of the interactions among agents and between agents and

their environments. In ABM agents typically do not simultaneously perform ac-

tions at constant time-steps, their actions follow discrete-event cues or a sequential

schedule of interaction cohabitation of agents with different environmental experi-

ences. Each agent is a software program comprising both data and behavioral rules

34 Chapter 3. Methodology: Computer Simulation in social and managerial sciences

(processes) that act on this data. Thus, ABM represents dynamic systems in a man-

ner permitting the systems to evolve over time through agent interactions, with a

minimum of a-priori assumptions. Macroscopic system behaviors are then observed

as emergent properties (emergent behavior). Moreover, the richness of detail one

can take into account in ABM makes this methodology very appealing for the sim-

ulation of biological and social systems, where the behavior and the heterogeneity

of the interacting components are not safely reducible to some stylized or simple

mechanism.

As we said, the ABM methodology follows a bottom-up approach and focuses on

the interaction between many heterogenous interacting agents, which might produce

a statistical equilibrium rather than a natural one as the mainstream approach

assumes. The bottom-up approach models individual behavior according to simple

behavioural rules; agents are allowed to have local interaction and to change the

individual rule (through adaptation) as well as the interaction nodes (Gallegati and

Richiardi, 2008 [32]). In ABM, aggregate outcomes (the whole) are computed as

the sum of individual characteristics (its parts). However, aggregate behavior can

often be recognized as distinct from the behaviour of the comprising agents, leading

to the discovery of emergent properties. In this sense, the whole is more than -

and different from - the sum of its parts. It might even be the case that the whole

appears to act as if it followed a distinct logic, with its own goals and means, as in

the example of a cartel of firms that act in order to influence the market price of a

good. From the outside, the “whole” appears not different from a new agent type

(e.g. a family, a firm). A new entity is born; the computational experiment has been

successful in “growing” artificial societies from the bottom up (Epstein and Axtell,

1996 [28]).

3.4 Theory Development with Simulation

Davis et al. (2007 [23]) proposed a roadmap for developing theories with simulation.

In this section we indicate the points of such roadmap and then map our work on

Chapter 3. Methodology: Computer Simulation in social and managerial sciences 35

it.

3.4.1 Finding an intriguing research question

As we know, studies that develop theory should start with a good research question

that reflects deep understanding of the extant literature and relates to a substantial

theoretical issue (Weick, 1989 [95]). Research questions can originate from many

sources. An example is given by March (1991, [57]) which relied on complexity theory

from biological and computer sciences to conceptualize a research question that

examined the trade-off between the exploration and the possibility of exploitations

of old certainties. The main question related to our work, relates the studying

of the more appropriate form of organization to adopt when hierarchical means of

coordination may result ineffective as in the case of the knowledge-based economy.

3.4.2 Choose a Simulation Approach

Assumed that simulation is the best way to proceed for our research, the next step

is to select the more appropriate simulation approach. In our studies we decided

to adopt the ABM methodology. This choice is based on the fact that in our work

we try to bridge the P2P network world to the organization theory world adopting

some mechanism related to the organization of P2P network. Our idea is to model

a firm operating in a knowledge-based economy, as a P2P network in which each

node represents an individual working in the firm. Since the testbed we decided to

adopt (Peersim) has been developed with ABM techniques, we used ABM also for

the models we developed.

3.4.3 Create the computational representation

The computational representation involves building algorithms with programming

languages, that captures the step-by-step theoretical logic underlying the simple

theory. In other word, the software code should embody the theoretical logic. The

36 Chapter 3. Methodology: Computer Simulation in social and managerial sciences

algorithms should consist of a series of steps for modifying construct values in ac-

cordance with the underlying theoretical logic of the simple theory. The agents we

described in our work, follow a simple step by step logic which is described in chapter

4.

3.4.4 Experiment to Build Novel Theory

Experimentation is at the heart of the value of simulation methods for developing

theory. Effective experimentation builds new theory by revealing fresh theoretical

relationships and novel theoretical logic. There are several approaches to effective

experimentation. A common one is varying the value of constructs that were held

constant in the initial simple theory. A second one can be varying assumptions;

this is particularly used when fundamentally different processes may reasonably

exist. Experiments focus in revealing their possible distinct effects. A third one

is adding new features to the computational representation. Additional complexity

is particularly useful when researchers want to explore the interactions of multiple

processes that are well-known alone but not in combination and when greater realism

is desired.

Some of these approaches have been used in our experimental settings which we

propose in chapters 5, 6, 7.

3.4.5 Validate with Empirical Data

A final step is validation. It involves comparison of the obtained results with empiri-

cal data. If the results of the simulation match the empirical evidence, the simulation

is validated for that empirical context. There is however some debate over the value

of validation. Some scholars argue that the central purpose of theory development

through simulation is creating interesting theory and so they diminish the value of

validation (Weick, 1989 [95]). Davis et al. (2007 [23]) suggest that the importance

of validation depends on the source of the simple theory. For example if the theory

is based primarily on empirical evidences, then validation is less important because

Chapter 3. Methodology: Computer Simulation in social and managerial sciences 37

the theory already has some external validity. In contrast, if theory is based primar-

ily on non-empirical argument or on evidence from other disciplines (e.g. computer

science), then validation is more important.

Hence, relating to our work, validation with empirical data should be done.

However the main intent of this work, was to develop hypothesis. We think that

empirical validation should be subject for future work.

Chapter 4

The FirmNet Model

Modeling and simulation constitute a fundamental element of the research design.

We used an agent-based model to simulate interaction among professionals hold-

ing specific expertise and project managers, which receive from clients tasks to be

performed. In this chapter we describes the core of our simulation model and we

indicate all the variants that we will propose in the next chapters.

4.1 Introduction to FirmNet

In our model firms are represented indirectly as a network of agents that receive tasks

from clients and offer to professional a reward in exchange of their collaboration.

The FirmNet model (Mollona and Marcozzi, 2008 [68], [66], [67]) should be viewed as

an “artificial society” type model (i.e. similar to the SugarScape model of Epstein

& Axtell, 1996 [28]) that allows to express formally (computationally) a number

of hypotheses about potential processes that may occur in organizations but in a

stylised and executable manner such that experiments can be performed to deduce

the consequences of those hypotheses when they are combined in complex, adaptive

systems (CAS). We therefore purposefully present a simplified model in which we

hope to capture the kinds of complex dynamics in which we are interested. In the

next sections we will describe the basic elements of our model.

Chapter 4. The FirmNet Model 39

!

J
1

!

J
2

!

J
3

Task

Figure 4.1: Structure of a Task. A task is bundle of three jobs. Each job requires

a skill.

4.1.1 The Task

Lot of research has been done on the area of tasks and task allocation (Hunt, 1976

[45]; Steiner, 1972 [88]; Weick, 1979 [94]). In our work a “task” is an object which

requires a set of skills to be performed. Theories indicate that a task can be split

up into task actions. We modeled it as a bundle of three jobs, each requiring a

particular skill (see figure 4.1). To complete a task of three jobs, three agents

must provide their skill. Since we are in a knowledge economy, a skill refers to a

particular knowledge or know-how of an agent. To each task is bounded a payoff

which indicates the reward (R) that the agents involved in the completion of the

task will share. If for example the reward for a certain task is 3 (R = 3), this means

that R for each single job is Rj = 1 (we will see later how Rj is shared among the

agents).

4.1.2 The Agents

In our simulation model, the firm is modeled as a P2P network. Each node of the

network is an agent performing some specific action. We distinguish two kind of

agents:

• node-task agents (NT): these agents play the role of project managers, have

direct contacts with clients and receive a certain Task to be completed. They

have the duty of aggregating employees able to work on the specific tasks. In

addition they also have a personal skill which can be used for one of the jobs

composing their task, or can be supplied to another NT as normal NS do.

Each NT has a parameter α which indicates the percentage of Rj that the

40 Chapter 4. The FirmNet Model

NT is willing to share with the NS performing the single job. For example, if

Rj = 1 and α = 0.3, this means that NT is wiling to pay a maximum of 0.3

(this is calculated as Rj × α = 0.3) to the NS providing the skill, keeping the

remaining 0.7 for itself. If a NT is linked to more than one NS with the same

task, it will chose the one with lower β.

• node-skill agents (NS): these agents hold a certain skill (S) that they use to

perform some job. They are considered employees of the firm. Each NS has a

parameter β which indicates the minimum reward that the NS wants to accept

a job (also called acceptance threshold). This parameter, can be considered

as motivation: the lower it is, the more motivated the agent is. For example,

β = 0.4 indicates that NS wants a minimum payoff of 0.4 in order to provide

the skill; if NT offers 0.3, the skill will not be provided.

Both NT and NS have also a “busy” flag which is set to true when the node is

using its skill for a certain job. When a node is busy, it cannot accept a call for

a job from a NT and cannot move. After a node gets busy, it will be free again

after the single job or after the entire task is completed (it depends by the model’s

version we are using); however, every nodes resets its busy flag to zero every time

new tasks are assigned to NTs. The task flag T indicates if the node is a NT or a

NS. Table 4.1 shows the node’s state.

Hence in our basic model to complete a task, it is necessary to complete three

jobs, each requiring a different skill and NT agents need to form a team attracting

NS agents, which hold the required skill. Thus, the difference between NT and NS

agents is that NT agents arbitrage, on behalf of the firm, the relationship between

skills and clients. Hence, the model simulates an organizational network in which

teams arise having certain skills.

Chapter 4. The FirmNet Model 41

Table 4.1: Node’s state

Parameter Value

Task flag T ∈ {0, 1}
Skill type S ∈ {1, 2, 3, 4, 5}
View size d ∈ {3, 5, 10, 20}
Utility U ∈ R

Busy flag busy ∈ {0, 1}
Commission (NT) α ∈ {0 . . . 1}
Accept Threshold (NS) β ∈ {0 . . . 1}

4.1.3 The Network

As we said the firm is modeled as a P2P network in which each node has a maximum

number of links (view size, d). Each link is bidirectional; a connection of a node a

to another node b implies a connection of node b to node a. Links are undirected so

the entire network can be considered as an undirected graph where each vertex is a

node and each edge is a link. All the nodes in the network are NSs; some nodes are

NTs, these latter are designated a priori with a random function. Figure 4.2 shows

an example of how the firm is represented and of how tasks are assigned. Green

nodes are NTs.

4.2 The Simulation model

We developed different versions of our simulation model with the aim to explore dif-

ferent individual behavior and then develop a number of hypotheses about potential

process that may occur in an organization.

We performed simulations using PeerSim [105], an agent-based platform for test-

ing P2P protocols developed at the Department of Computer Science of the Univer-

sity of Bologna (see appendix A). Peersim is a P2P protocol testbed developed with

Java and the simulation scheme is cycle driven. Peersim has been previously adopted

42 Chapter 4. The FirmNet Model

1

2

5

3

2

1

2

5

2

3

4

 1 2 3

 1 4 5

 2 3 4

Figure 4.2: Example of how the firm is modeled in our system. Green nodes are

NTs: they are designated a priori and never change over the time.

for testing protocols for P2P networks, but we found that it can be a good testbed

also for organizational strategies. In our model the firm is a network composed of

1000 nodes; in this network we distinguish 250 NT and 750 NS. In all the simulation

experiments we run 500 cycles. At cycle 0, with a random function NTs are desig-

nated. Every node has an uniform probability to become NT; once a node becomes

NT, it will be NT for the rest of the simulation. Every 20 cycles the managers (NTs)

receive a task to be completed. In the simulation environment we distinguish two

main phases: an Interaction phase and a Network Evolution phase. The first

is the one in which NTs try to complete the task asking their neighbors to provide

their skills; the second (also named rewiring phase) is the one in which the network

evolves according to some particular mechanisms1 forming teams of specialists. In

the Interaction phase managers receive the tasks according to some particular task

environment2. Their aim is to complete as many tasks as possible. To achieve this

they start looking for employees among their immediate neighbors. If they find a

node with the right skill which is not busy, they make an offer to him for a certain

1The different mechanism that we implemented will be described in the next chapters and

constitute the main differences between the different steps toward which we moved our model.
2In each chapter we describe the task environment that we use.

Chapter 4. The FirmNet Model 43

margin α (commission); if this offer is greater than the node’s acceptance threshold

(β), the job will be assigned and the node will get the appropriate payoff (figure 4.3

shows a typical example). The payoff that NS will get, is always equal to its β: of

course in order to accept a job, α must be greater than or equal to β but at the end

the NT will pay the minimum amount. Following this line, if a NT is connected to

two or more NS bearing the same skill, it will assign the job to the one with lowest

β.

In the Network Evolution phase (rewiring) the network evolves according to some

rules. When the interaction phase takes place, NTs not always succeed in completing

all their tasks and this is due to the fact that their neighbors are not always able (for

the reasons seen above) or are not enough to complete the task currently held. For

this reason the network and hence the teams must be reorganized in order to be more

efficient in the next interaction round. With our work we developed several different

ways for organizing the network. First we tested and compared some Hierarchical

mechanism and some Self-Organizing mechanisms. Then we investigated more on

different Self-Organizing mechanisms. In general what happens with all the rewiring

mechanisms we developed, is that periodically a certain node i selects a random

node j to which eventually establish a bidirectional connection. The random node is

provided by a peer sampling service implemented by the Newscast protocol (Jelasity

et. al., 2002 [46]). To better understand how this process of node selection takes

place, In the next subsection we give a description of the architecture of our model

within Peersim.

Another phase which is in general present in our model is the Imitation phase.

With this phase, periodically nodes imitate strategies of better performing nodes. In

general by better performing nodes, we mean nodes having an higher accumulated

payoff (or prestige). More details on this phase will be given in the next chapters,

when it will be used.

44 Chapter 4. The FirmNet Model

2 3 5

1

3
3

5
2

5

a
b

c

d
e

a.

!

" = 0.6
b.

!

" = 0.4
c.

!

" = 0.5
d.

!

" = 0.7
e.

!

" = 0.4
f.

!

" = 0.4
f.

!

" = 0.6

2

f
ok

ok

ok

no

no

 busy = true

busy = false

!

" >#

5

g

no

Figure 4.3: Example of the way NT bargains with its neighbors for the completion

of the task (Interaction phase). Node f is busy and cannot accept the job; node d

refuses the job because its β is greater than NT’s α. Node g has the same skill as

node c but it will not get the job: node c is selected because it has a lower β.

Chapter 4. The FirmNet Model 45

Figure 4.4: Layered architectural model of FirmNet in Peersim.

4.2.1 FirmNet in Peersim

Given the cycle driven nature of Peersim and its high modularity with respect to the

nodes’ protocols, we decided to implement FirmNet as a three-layer architecture,

looking at the random peer sampling (Newscast), the Network Evolution phase

(FirmNet network), and the Interaction phase (application) as three different and

distinct layers, as shown in figure 4.4. The lower layer, providing randomly sampled

peers to the rewiring mechanism, is implemented using the Newscast protocol (a

deeper description of Newscast is given in appendix B). The Network Evolution

layer (rewiring) is defined on top of the Newscast layer. It manages the topology

and performs the rewiring mechanism (described in the next chapters), accessing to

the Newscast layer when a random peer is needed and accessing to the application

layer for retrieving informations on such node. The Interaction layer (application)

is the one which carries the Interaction phase where NTs try to complete the task

asking their neighbors obtained accessing the FirmNet network on the underlying

layer.

To exploit the modularity in the 3 level architecture of FirmNet, the only thing

to take care of is the implementation of the methods used to interface different

layers, namely Network Evolution would need a getRandomNeighbor() method to

access the random sampling layer view and a getINFO() method to get the needed

informations on the selected node for rewiring purposes. Finally since the applica-

46 Chapter 4. The FirmNet Model

HI vs SO SO (T1 … T6)
(structural analysis)

 rewirinmechanisms)

SO + Learning Learning – Group Reward
Learning – Individual Reward

Figure 4.5: Evolution of the FirmNet model

tion layer does not manage any topology but relies on the one defined by Network

Evolution it needs a getNeighbor() method to access the Network Evolution layer

(FirmNet network) node view.

4.3 Model Evolution

So far in this chapter we have described the core of our model. We developed several

hypothesis and for doing this our model has evolved over the time.

In all the version of our model that we developed, the task is composed of

three jobs as in figure 4.1, while the number of possible skills changed from 5 to 9.

The main evolutions related to our model are four and are indicated in figure 4.5.

The first thing that we did (Mollona and Marcozzi 2008, [68]) was to compare a

Hierarchical model with a quasi-market based model (we called it Self Organizing) –

see chapter 5; then we focused more on the SO model developing six different versions

of the rewiring phase and performing some structural network analysis (Mollona and

Marcozzi, 2008 [66, 67]) – see chapter 6; after this we decided to introduce some

learning mechanisms to our SO model and finally we compared two different SO

models in which we compared a “group reward” policy with an “individual reward”

policy (Mollona and Marcozzi, submitted [69]) – see chapter 7. All these works will

be described in the next chapters.

Chapter 5

Hierarchy vs. Market

In this chapter we highlight the early work we did with the FirmNet model (Mollona

and Marcozzi, 2008 [68]). We begin describing the general model and the motiva-

tions, then we describe the “hierarchical” and “self-organizing” models and finally

we indicate the experiments we conducted and analyze the main results. The last

section points on the conclusions and future steps.

5.1 Introduction

Grounding on the analysis of decentralized decision-making, an area of literature

in organizational theory has emerged which addresses teams as the solution of de-

centralization problem in complex decision-making (Marschak and Radner, 1972

[61]). Zoethout (2006 [103]) proposed a multi-agent simulation model to explore

how different types of task variety cause workgroups to change their task allocation

accordingly. Within this area, we address two problems. First, we analyse how

firms, which operates by the means of teams of specialists, adapt to dynamic task

environments. Second, we compare hierarchical control with a market-based mech-

anism and investigate dynamics of self-organization of a firm’s skills partition into

teams. The firm we represent is a consultancy firm providing professional service.

In this kind of firm we can distinguish at least a number of team leaders, or project

managers, that have contact with clients and are responsible for the completion of

48 Chapter 5. Hierarchy vs. Market

tasks. In addition, a number of other professionals, holding specific skills, are linked

to the organization with employment relationships which may include market-like

incentives (the basic technical details of our model are described in chapter 4). Our

focal firm operates using a team-based organization. We compare the impact of two

idealtypes of organisations on the focal firm’s performances, these latter calculated

as profits accumulated and percentage of completed tasks. First type of organiza-

tion adopts traditional hierarchy and employment relationship which gives the firm

the authority to direct professionals where they are needed in different teams. How-

ever, such a solution implies that employed professionals are paid independently of

the demand for the skill which they have. In the second idealtype of organization,

professionals are not employed but work on a margin-per-consultancy basis. Bound-

aries of teams are permeable and informal interaction is likely to take place among

members within the same team and across teams. Such a solution is probably more

flexible but entails opposite incentives. For example, the firm favours skills travel-

ling among teams in order to match skills to tasks. On the other hand, such a free

movements of skills within the organization may also creates competition among

project managers for skills hold by professionals. To explore different performances

of the two idealtypes, we designed an artificial organization, the FirmNet proposing

two models, a Hierarchical model (HI) and a Self-Orfanizing model (SO). We expect

that in a knowledge-economy the organization of the economic activity of special-

ists should be, at least partially, self-organized; we used the performances of the HI

model as a benchmark for the SO one.

5.2 Model Overview

In this work we used an agent-based model to simulate interaction among profes-

sionals holding specific expertise and project managers, which receive from clients

tasks to be performed. In the previous chapter we have seen the core of our model

describing the state of the agents, the task and how managers allocate tasks.

As we said, in our model firms are represented indirectly as a network of agents

Chapter 5. Hierarchy vs. Market 49

that receive tasks from clients and offer to professional a reward in exchange of their

collaboration. The first thing that we did, was to compare a hierarchical form of

organization with a quasi-market form of organization, trying to understand which

are the conditions that make one perform better than the other one. For this purpose

we implemented two different models: a hierarchical model (HI) and a marlek-based

model (we called it self-organizing, SO) in order to understand which one of the two

decision making processes performs better in some specific environment.

As already seen in chapter 4, we have two kind of agents: the node-skill agents

(NS) and the node-task agents (NT). These agents are nodes in a Peer-to-Peer Net-

work; they all hold a certain skill (S) that they use to perform some task. Agents

NT, in addition, play the role of project managers, have direct contacts with clients

and receive a certain Task to be completed. To complete a task, it is necessary to

complete three jobs (see figure 4.1), each requiring a different skill and NT agents

need to form a team attracting NS agents, which hold the required skill. Thus, the

difference between NT and NS agents is that NT agents arbitrage, on behalf of the

firm, the relationship between skills and clients. Hence, the model simulates an or-

ganizational network in which teams arise having certain skills. In both models the

designed organization network is a Peer-to-Peer Network in which each node has a

maximum number of links (network degree). Each link is bidirectional; a connection

of a node a to another node b implies a connection of node b to node a. Links are

undirected so the entire network can be considered as an undirected graph where

each vertex is a node and each edge is a link.

In both models we can distinguish two phases: an Interaction phase and a Net-

work Evolution phase. The first is the one in which NT try to complete the task, also

asking its neighbors; the second is the one in which the network evolves according to

a self-organizing or a hierarchical algorithm, forming teams of specialists. However

the main differences between the HI and the SO model are the following: in HI all

the NS agents periodically receive a fixed wage even though their skill is not used

for any job and once they are asked for working on a certain job, they cannot refuse

unless they are busy (already working on another task); in SO instead, a NS will

50 Chapter 5. Hierarchy vs. Market

accept a call for a job only if not busy and if the margin α (commission) it will

receive from NT is greater than its own satisfaction threshold β; moreover, NS will

not receive a fixed salary at a fixed period, but only the commission paid by the NT

after the entire task is completed. NT will receive its payoff only when the task is

completed.

So with these two models we try to develop a number of hypotheses about

potential process that may occur in an organization. We do this computationally

using computer simulation. As we said in our model firms are represented as Peer-

to-Peer networks and we performed simulation using PeerSim [105]. The simulation

time is divided into cycles. The network is composed of 1000 nodes (agents) and

at cycle 0 the 25% of the them receive a task to be completed; so we have 25% of

NT and 75% of NS. The tasks are produced selecting at random three values from

a set of five elements (J ∈ {1, 2, 3, 4, 5}); the receiving nodes will then act as a

project manager (NT) and will start looking for employees among their immediate

neighbors (this is the interaction phase). After this, with a certain probability the

Network Evolution phase takes place. Basically the nodes invoking this phase select

a random node in the network and then, according to some rules, some rewiring

action takes place (changing of the links). In the HI model, only NTs perform this

phase and the selection is made on the entire network. In the SO model this phase

can be performed by anybody and the selection is made only on a portion of the

network (via a peer sampling service). As we said in the HI model, only NTs invoke

this phase searching for NS with the right skill; in SO this phase can be invoked by

anybody: we implemented two different mechanisms of selection and rewiring called

CSLAC and CSLAC2 which will be described in sections 5.4.2 and 5.4.3.

5.3 The Hierarchical model

As said in the previous section, both the hierarchical and the self-organiziging model

are made of two phase. In this section we describe the interaction phase and the

network evolution phase of the HI model.

Chapter 5. Hierarchy vs. Market 51

Figure 5.1: Interaction phase pseudo-code: the code on the top is executed in the

Self-Organizing model; the one on the bottom in the Hierarchical model. We can

note how the only difference is that in the HI model, when a NT asks to a neighbor

to provide its skill, no bargaining takes place.

52 Chapter 5. Hierarchy vs. Market

5.3.1 Interaction phase

Periodically NTs receive a task to be completed: they first look among their immedi-

ate neighbors for NSs able to work on such task; if the task is completed the NT will

get the appropriate payoff; if the task is not completed, with a certain probability

the network evolution phase takes place. In this model payoffs are fixed, hence the

nominal reward of each job is not shared among NT and NSs. Every 20 cycles all

NSs get a fixed wage even though they did not participate in any task completion.

On the other hand, NTs will get a fixed payoff only if they complete the assigned

task; if not after 20 cycle they receive a new task. Figure 5.1 shows the pseudo-code

of this algorithm.

5.3.2 Network Evolution phase

The evolution of the network is handled by the NT agents which can select the

appropriate NS. This happens periodically with probability 0.9. Since a NS can

refuse a link only if it is busy, NT agents decide who must join their team. When

a NT performs this phase, it select a random NS from the entire network1: if this

node is not busy and its skill is needed by NT, it will drop all its links and will

link to NT. Since NSs every 20 cycles get a fixed wage, they cannot refuse to join a

certain team, unless they are ‘busy’.

5.4 The Self-Organizing model

Also in the SO model we have an interaction phase and a network evolution phase but

for this model we developed two different evolution phase (sections 5.4.2, 5.4.3) in

order to test different possible behaviors of the agents. Basically the characteristics

of the two algorithms are the following:

1The random node is provided by a peer sampling service. In the HI model, the random node

is selected from the whole network (global view).

Chapter 5. Hierarchy vs. Market 53

• CSLAC2: all the nodes behave in the same way. When node a selects node

b, it will link to him and to its neighborhood only if it is richer (Ub > Ua).

Node b cannot refuse. Some rules for imitation are applied (more details will

be given later);

• CSLAC2: NTs and NSs behave in different ways. NTs have a preferential for

NSs holding a skill that can be used in its current task; NSs have a preferential

for NTs. A node receiving a request for a link can refuse. Also here some rules

for imitation are applied (more details will be given later).

5.4.1 Interaction phase

Periodically NT receive a task to be completed. To achieve this they start looking for

employees among their immediate neighbors. If they find a node with the right skill

which is not busy, they make an offer to him for a certain margin α (commission); if

this offer is greater than the node’s acceptance threshold (β), the job will be assigned

and the node will get the margin payoff only when the entire task gets completed.

Figure 5.1 shows the pseudo-code of this algorithm.

In force of this, here NTs have less chances of completing tasks than in the HI

model, but here the firm has less costs due to the fact that wage is not fixed but is

paid only if tasks are completed.

Execution and Bargaining

The NT nodes define which task they need to complete; assesses which skills are

needed and assesses which skills are available. If more than one NS with same skill

is available, select the one with lowest β.

2The name CSLAC stands for Competitive-SLAC. This algorithm is based on the SLAC algo-

rithm (Selfish Link and behaviour Adaptation to produce Cooperation) proposed by Hales (2002

[37])

54 Chapter 5. Hierarchy vs. Market

5.4.2 Network Evolution phase: CSLAC

The CSLAC algorithm is an evolution of the SLAC algorithm proposed by Hales

(2002 [37]) and than further developed and adapted to networks (Marcozzi et al,

2005 [59]; Hales and Arteconi, 2006 [38]). SLAC (Selfish Link-based Adaptation for

Cooperation) has the ability to produce high levels of cooperation in P2P networks

while performing some tasks. It specifies how nodes update their strategies (in our

case the α and β values) and links under the assumption that they are involved in

some on-going interaction with neighbors from which they can derive utility mea-

sures. At each cycle of the simulation task, with a certain probability, the SLAC

algorithm is invoked. It is executed by each node: it periodically compares its own

utility (say Ui) with the utility of another node (say Uj) randomly chosen from the

network3. Suppose node i has an utility greater than j (Ui > Uj): in this case j

copies node i’s α and β values; j drops all its links and moves to i’s neighborhood

(copies all i’s links and adds a link to i itself). As already seen, each node has a

maximum view size (d): if a new node has to be added in an already full view, a

randomly selected node is discarded to make place for the new node. The rewiring

operations are symmetric: if node i makes a link to node j then node j makes a link

to i; if node i drops a link to j, the link from j to i is dropped as well.

The CSLAC (Competitive-SLAC) algorithm is very similar to the original SLAC.

The rewiring step is carried in the same way as in SLAC. The wiring action takes

place only if selected nodes are not busy. The difference is in the coping of the

strategies phase. While in SLAC the losing node copies the winner’s one without

taking into account its values, here the losing node before coping the winners β

checks if some of the winner’s neighbors has its same skill: if this happens and this

node also has a smaller β than its own, it will copy this value minus a 0.1 constant.

The rationale behind this, is to create competition between NS agents. If a certain

3The random node is provided by a peer sampling service (Newscast). In the SO model the

node is selected from a portion of the network. This limited view depends on the network degree:

the higher the degree, the greater the view. Degree 20 gives a global view of the network.

Chapter 5. Hierarchy vs. Market 55

NS is going to join a new community, it will go in competition with the other nodes

having its same skill by lowering its own accept threshold (β). Next cycle it will

have more chances to get the job.

5.4.3 Network Evolution phase: CSLAC2

Now we propose a new mechanism based on the own needs of each agent. Every

node can perform this phase. The key point is that there is always a preference for

NSs to wire to NTs and for NTs to wire to NSs. Periodically a node i selects a

random node j through the peer sampling service implemented by Newscast (same

as in CSLAC). Assessment to decide how to wire is based on the following criteria:

• for NT: 1) wire to node holding the skill desired; 2) node with high degree;

• for NS: 1) wire to NT; 2) node with high degree;

The wiring action takes place only if selected nodes are not busy. Thus we have

four cases of matching (the expression X–>Y indicates that X selects Y). In this

model this phase is composed of two steps: rewiring in which nodes make new links;

imitation in which nodes copy the strategies (α and β) of the counterpart. We must

point out that the rewiring step and the imitation step are executed consecutively,

meaning that if rewiring takes place, also imitation is done.

Rewiring step

Table 5.1 shows the rules used in the rewiring step. We have four cases, one for each

type of possible connections. In addition to the selected node, the rewiring may

involve also its neighbors, as in SLAC. As we said each node can have a maximum

of d links (network degree) and the idea behind this step is to maximize the number

of links for each node. When a node x selects a node y, it first asses whether to

wire to it according to the criteria described above, then it can chose its new links

among a list of N nodes, where N is given by the sum of x’s link plus y’s links. The

basic idea is that x will first link to all these nodes, and suddenly then will drop D

56 Chapter 5. Hierarchy vs. Market

links in order to respect the limit of d links. The D nodes to be dropped are chosen

with the degree criteria, which selects nodes with low degree.

Imitation step

Also in the imitation step we have four cases: they are indicated in table 5.2. As in

CSLAC when a node joins a new new neighborhood, it looks for other nodes with

its same skill; if someone is found, with a lower β too, it will copy its β minus a 0.1

constant.

5.5 Experimental configuration

We performed several experiments with both the models we have mentioned above.

Simulations were carried on Peersim ([105]), an open source P2P systems simulator

platform, using the Newscast protocol (Jelasity et al., 2002 [46]) for the management

of the overlay topology. We use this protocol to implement a service (peer sampling

service) to pick a random node which is used in the Network Evolution phase.

The time is divided in cycles and in each cycle each node performs the specific

actions described in the previous sections. In each experiment we checked how

the algorithms adopted influence the Percentage of completed tasks (Pct) and the

Wealth of the Firm.

The configuration we adopted in the experiments is the following:

• Network size (N): 1000;

• Network degree: d ∈ {3, 5, 10, 20};

• Rewiring period: c ∈ {1, 15, 30, 60};

• Initial network topology: random;

• Skill initialization: all the nodes were initialized with a random skill taken

from a set of 5 elements (Si ∈ {1, 2, 3, 4, 5, });

Chapter 5. Hierarchy vs. Market 57

• α and β initialization: a random value between 0 and 1 (these parameter are

present only in the SO model);

• Payoffs: in the SO model the reward given by each job is 1 (3 for the total

task); in the HI model the reward for NT is 1.80 and the wage for NS is 0.40

(also here 3 for the total task but fixed margins for the NS) .

For each configuration we performed 10 different run and we took the average of

the results. In the simulation experiments we tested effectiveness of the two individ-

ual decision-making. We tested the two models in two different task environments,

a static one in which the same task arrives every 20 cycles and a dynamic one in

which tasks change every 20 cycles.. We also varied the rewiring period, performing

rewiring actions with probability of 0.9 every 1 cycle, 15 cycles, 30 cycles and 60

cycles. In addition, we varied network degree.

The parameters indicated in this section are those adopted for each model. We

performed different set of experiment for each different evolutionary algorithm. Ta-

ble 5.3 resumes the characteristics of each algorithm.

5.6 Experimental Results

We performed a large number of experiments with our models trying to work out

which one performs better in some situation, investigating both in a dynamic en-

vironment (in which NTs periodically substitutes their tasks with a new different

one) and a static environment (in which each NT has a different task; periodically

each task is replaced with a new one identical to the previous one). We adopted

two measures for evaluating them: the percentage of completed tasks (Pct) calcu-

lated as the ratio between the number of tasks completed and the number of tasks

injected and the firm wealth (wealth) calculated as the total income of the firm

minus the total costs (payoffs given to NSs). We performed experiments with dif-

ferent network degree values (maximum number of links of each node: d3, d5, d10,

d20). We found that hierarchy outperforms self-organizing in terms of percentage

58 Chapter 5. Hierarchy vs. Market

of task completed. As the size of intra-organizational networks increases (this latter

measured as the ”degree”), SO algorithm improves. The wealth created under hi-

erarchical mechanism is higher than SO only for low network degree. When degree

of intraorganizational network increases, SO algorithm produces significantly more

profits. The clear argument that emerges from the simulation experiments is that

the selection of a hierarchal or a market-based mechanism of control entails the trade

off between reliability and costs. At a cheaper price SO gives the same good perfor-

maces as HI but only when the organisational environment keeps a high frequence

of interactions together with a large number of links at the same time. Hence, it is

clear that the efficiency of the market-based model depends on the structure of the

network that can be formed, for example, when the network degree is high.

5.6.1 Static Environment

In this section we give an illustration of the results obtained with the static envi-

ronment: here nodes task (NT) receive a particular task at the beginning of the

simulation and such task never changes over the time (every 20 cycles they receive

a new task which is identical to the original one). Here different NTs have different

task.

Figures 5.2 and 5.3 indicate respectively the Pct and the Wealth of the firm with

different rewiring periods with the Hierarchical model. We can note how better

results are obtained when c = 1 (actually, this happens in all the experiments we

have done).

Figures 5.4 and 5.5 indicate respectively the Pct and the Wealth of the firm with

different rewiring periods with the CSLAC algorithm. Also here we can note how

better results are obtained when c = 1.

Figures 5.6 and 5.7 indicate respectively the Pct and the Wealth of the firm with

different rewiring periods with the CSLAC2 algorithm. Also here we can note how

better results are obtained when c = 1.

Chapter 5. Hierarchy vs. Market 59

92
94 94 95

60

67

75

86

47

57

69

84

38

48

66

81

0

10

20

30

40

50

60

70

80

90

100

d3 d5 d10 d20

degree

P
ct

c1
c15
c30
c60

Figure 5.2: Hierarchical algorithm: Pct (percentage of completed tasks) in dif-

ferent periods. Static environment. Networks with undirected links and uniform

degree over all nodes. Each curve indicates results with different periods for the

execution of the “network evolution phase”.

-1000

0

1000

2000

3000

4000

5000

6000

7000

d3 d5 d10 d20

degree

W
e
a
th

c1
c15
c30
c60

Figure 5.3: Hierarchical algorithm: Wealth in different periods. Static environ-

ment. Networks with undirected links and uniform degree over all nodes. Each curve

indicates results with different periods for the execution of the “network evolution

phase”.

60 Chapter 5. Hierarchy vs. Market

9

25

68

80

7

16

52

69

11

36

54

7

21

39

5
30

10

20

30

40

50

60

70

80

90

100

d3 d5 d10 d20
Network Degree

P
ct

c1

c15

c30

c60

Figure 5.4: CSLAC algorithm: Pct (percentage of completed tasks) in different

periods. Static environment. Networks with undirected links and uniform degree

over all nodes. Each curve indicates results with different periods for the execution

of the “network evolution phase”.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

d3 d5 d10 d20degree

W
e
a
lt
h

c1

c15

c30

c60

Figure 5.5: CSLAC algorithm: Wealth in different periods. Static environment.

Networks with undirected links and uniform degree over all nodes. Each curve

indicates results with different periods for the execution of the “network evolution

phase”.

Chapter 5. Hierarchy vs. Market 61

8

26

80

100

17

62

92

13

42

75

9

30

64

6
4
3

0

25

50

75

100

d3 d5 d10 d20Degree

P
ct c1

c15
c30
c60

Figure 5.6: CSLAC2: Percentage of completed task in different periods. Static

environment. Networks with undirected links and uniform degree over all nodes.

Each curve indicates results with different periods for the execution of the “network

evolution phase”.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

d3 d5 d10 d20degree

W
e
a
lt
h

c1

c15

c30

c60

Figure 5.7: CSLAC2: Wealth in different periods. Static environment. Networks

with undirected links and uniform degree over all nodes. Each curve indicates results

with different periods for the execution of the “network evolution phase”.

62 Chapter 5. Hierarchy vs. Market

Discussion

The first thing that it is possible to note from those figures is that the more often the

evolution phase takes place, the better results we get. We can also note that firm

Pct and firm Wealth increases as the size of the intra-organizational firm (degree)

increases. A high degree means that nodes have a large number of neighbors which

gives to NTs more chances to find skills for the task. Moreover, in the SO model,

a large network degree indicates that during the Network Evolution phase, the peer

sampling service has a larger view from which to pick the random node; in particular

degree 20 gives approximately a view of the whole network (Jelasity et al. 2003,

[46]). In figures 5.8 and 5.9 we grouped the results obtained with the three rewiring

algorithms but only those obtained for c = 1. We can note how in general the

hierarchy gives better results than the two self-organizing mechanism in terms of

Pct. Interestingly we found that CSLAC2 gives better results than CSLAC and

that it performs even better than the hierarchy when the network degree is 20.

While in CSLAC nodes prefer making new links with nodes having high utility

(selected nodes cannot refute a link) in CSLAC2, new links are made in a more

accurate way: for example when a NT selects a NS, it will try to link to him only

if it has the right skill. We believe that these more accurate rules are the reason

why CSLAC2 performs better than CSLAC. With CSLAC2 we gave to the nodes a

greater intelligence: they can decide to wire or not to nodes basing on their individual

preferences. This opportunity makes them perform better. In terms of firm wealth,

we can note how hierarchy is costly. Of course also here CSLAC2 performs better

than CSLAC for the same reasons mentioned before.

5.6.2 Dynamic environment

This section contains the results obtained with the dynamic environment. Here NTs

every 20 cycles receive a new task which is different from the previous one.

Figures 5.10 and 5.11 indicate respectively the Pct and the Wealth of the firm

Chapter 5. Hierarchy vs. Market 63

92
94 94

25

80

8

22

75

96

95

68

9

0

10

20

30

40

50

60

70

80

90

100

d3 d5 d10 d20
Network Degree

P
ct

Hierarchical

CSLAC

CSLAC2

Figure 5.8: Resume: Percentage of completed task in different periods. Static

environment. Networks with undirected links and uniform degree over all nodes.

Each curve indicates results with different “network evolution phase” algorithms.

Note that the Hierarchical approach outperforms the self-organzing approaches over

most of the chart.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

d3 d5 d10 d20
degree

W
e
a
lt
h

Hierarchical

CSLAC

CSLAC2

Figure 5.9: Resume: Wealth in different periods.Static environment. Networks

with undirected links and uniform degree over all nodes. Each curve indicates

results with different “network evolution phase” algorithms. Note that the self-

organized approaches outperform the Hierarchical organization when the degree in-

creases above about five.

64 Chapter 5. Hierarchy vs. Market

71
75

82

88

53

59

65

79

32

42

54

66

28

38

49

59

0

10

20

30

40

50

60

70

80

90

100

d3 d5 d10 d20

degree

P
ct

c1
c15
c30
c60

Figure 5.10: Hierarchical algorithm: Pct in different periods. Dynamic environ-

ment: here manager nodes receive randomly generated tasks over time rather than

the same tasks (as previously). The hierarchical organization does less well than

previously.

with different rewiring periods with the Hierarchical model. Also here we can note

how better results are obtained when c = 1.

Figures 5.12 and 5.13 indicate respectively the Pct and the Wealth of the firm

with different rewiring periods with the CSLAC algorithm. Also here we can note

how better results are obtained when c = 1.

Figures 5.14 and 5.15 indicate respectively the Pct and the Wealth of the firm

with different rewiring periods with the CSLAC2 algorithm. Also here we can note

how better results are obtained when c = 1.

Discussion

The first thing that it is possible to note from those figures is that the more often

the evolution phase takes place, the better results we get. Also in the dynamic task

environment, high degree entails better results. In figures 5.16 and 5.17 we grouped

the results obtained with the four evolutionary algorithms but only in the case in

which c = 1.

Chapter 5. Hierarchy vs. Market 65

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

6000

d3 d5 d10 d20

degree

W
e
a
lt
h

c1
c15
c30
c60

Figure 5.11: Hierarchical algorithm: Wealth in different periods. Dynamic en-

vironment: here manager nodes receive randomly generated tasks over time rather

than the same tasks (as previously). The hierarchical organization does less well

than previously.

9

24

63

76

15

47

63

10

31

49

6

18

29

6
4
30

10

20

30

40

50

60

70

80

90

100

d3 d5 d10 d20
Network degree

P
ct

c1

c15

c30

c60

Figure 5.12: CSLAC algorithm: Pct in different periods. Dynamic environment:

here manager nodes receive randomly generated tasks over time rather than the

same tasks. Each curve indicates results with different periods for the execution of

the “network evolution phase”.

66 Chapter 5. Hierarchy vs. Market

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

d3 d5 d10 d20
degree

W
e
a
lt
h

c1
c15
c30
c60

Figure 5.13: CSLAC algorithm: Wealth in different periods. Dynamic environ-

ment: here manager nodes receive randomly generated tasks over time rather than

the same tasks. Each curve indicates results with different periods for the execution

of the “network evolution phase”.

8

26

79

100

19

62

92

3

12

40

73

8

30

62

6

20

10

20

30

40

50

60

70

80

90

100

d3 d5 d10 d20

Degree

P
ct

c1

c15

c30

c60

Figure 5.14: CSLAC2: Percentage of completed task in different periods. Dynamic

environment: here manager nodes receive randomly generated tasks over time rather

than the same tasks. Each curve indicates results with different periods for the

execution of the “network evolution phase”

Chapter 5. Hierarchy vs. Market 67

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

d3 d5 d10 d20
degree

W
e
a
lt
h

c1
c15
c30
c60

Figure 5.15: CSLAC2: Wealth in different periods. Dynamic environment: here

manager nodes receive randomly generated tasks over time rather than the same

tasks. Each curve indicates results with different periods for the execution of the

“network evolution phase”

We can note how in terms of Pct, here the hierarchy gives worse results than

in the static environment: this means that authority is less effective when the task

rapidly changes. On the other hand CSLAC performs better here, while CSLAC2

gives more or less the same results. We think that in an environment in which tasks

rapidly change (typical of a knowledge economy) a self-organizing method can give

good results even though also here we can note how these good performances are

obtained as the size of intra-organizational networks increases (this latter measured

as the network degree). In terms of firm wealth, we can note that hierarchy costs

much more than SO. Among the two SO algorithms we have seen that CSLAC2

performs better than CSLAC. We think this is due to the fact that CSLAC2 keeps

the network more connected than CSLAC, allowing NTs to have a larger set of NSs

which will compete one another decreasing their acceptance threshold (β). Figures

5.18 and 5.19 show the snapshot of the network at the end of the simulation for

the dynamic environment with network degree 10; we can note how with CSLAC2

(figure 5.19) the network results more connected. As we have seen, CSLAC2 tends

68 Chapter 5. Hierarchy vs. Market

71
75

82

88

9

24

63

76

8

26

79

100

0

10

20

30

40

50

60

70

80

90

100

d3 d5 d10 d20degree

P
ct

Hierarchical
CSLAC
CSLAC2

Figure 5.16: Resume: Percentage of completed task in different periods. Dynamic

environment: here manager nodes receive randomly generated tasks over time rather

than the same tasks. The hierarchical organization does less well than previously.

The self-organising peer protocols do better when the degree is more than about ten.

Essentially, since tasks are random over time manager nodes (NT) in the network

are less able to benefit from hierarchy because they cannot predict which other nodes

to recruit.

to keep as more ties as possible, preferring links with highly connected nodes and

performing less disconnections than CSLAC; in force of this, often also old links are

kept, forming a more interconnected network.

5.7 Conclusion

The work presented in this chapter contributes to the area of studies that is con-

cerned with emergent organizational problems in knowledge economy. In addition

we present an attempt to bridge studies in computer science, dealing with the nature

and the mechanisms of P2P networks evolution and organization. To represent indi-

vidual decision-making of agents embedded in organizational networks, we adapted

an algorithm, the SLAC algorithm, developed to study cooperation in P2P networks.

Chapter 5. Hierarchy vs. Market 69

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

d3 d5 d10 d20
degree

W
e
a
lt
h

Hierarchical

CSLAC

CSLAC2

Figure 5.17: Resume: Wealth in different periods. Dynamic environment: here

manager nodes receive randomly generated tasks over time rather than the same

tasks. Hierarchy again performs poorly due to the requirement to give payoff to all

nodes even when they are not productive.

In this chapter, we explored under what circumstances networks of specialist

may self-organize. In this respect, we believe that the P2P network is a useful

concept to address novel forms of organization in a knowledge economy. On these

lines, we investigated how agents, with individual incentives and decision-making

rules, interact locally and give raise to global organizational structures. We studied

how different individual decision-making rules lead to different emergent network of

skills, with different performances.

However, simulation experiments tease out problems and trade offs in applying

self-organizing mechanisms to the government of a firm’s skill endowment.

Choice between hierarchical and market-based control mechanisms may be a

very subtle endeavour. In our computer simulation experiments, as task environ-

ment becomes dynamic, market-based mechanisms increasingly gain effectiveness.

Deciding which mechanism better suits entails careful evaluation of two aspects.

First, comparing alternative mechanisms requires the evaluation of costs. Cost of

hierachical mechanism depends on salary paid and other costs of labor implied by

70 Chapter 5. Hierarchy vs. Market

Figure 5.18: Snapshot of the network for the dynamic task environment with

degree 10. Gray nodes are managers (NT), black nodes are employees (NS). CSLAC1

tends to create separate clusters and several disconnected nodes.

Chapter 5. Hierarchy vs. Market 71

Figure 5.19: Snapshot of the network for the dynamic task environment with

degree 10. Gray nodes are managers (NT), black nodes are employees (NS). CSLAC2

tends to keep clusters connected.

the employment relationship. Cost of market-based mechanism depends on tools

and infrastructures built in order to create and maintain intra-organizational net-

works. In addition, maintaining large intra-organizational may have the disadvan-

tage of stimulating dysfunctional competition among project-managers for skills of

professionals. Second, performance of market-based mechanisms strongly depend

on network features. Size, stability and communication flows within networks are

key aspects to address in order to evaluate relative desirability of non-hierarchical

control mechanisms.

Simulation experiments also highlighted area for future work. First, we suspect

that presented results change drammatically as the required size for teams changes.

In the simulations, relationship between skills needed to complete a task and size of

a node’s degree is crucial to explain performances of CSLAC algorythim.

Second, the work did not consider team-based learning. We can hypotize that

social capital and shared mental models emerge within a team that makes it easier to

communicate and coordinate, and that creates inertia in inter-groups movements.

72 Chapter 5. Hierarchy vs. Market

Team based learning may generate a force that increases effectiveness of market-

based mechanisms by counteracting erosion of a team’s skill endowment. Team

learning will be studied in chapter 7.

Chapter 5. Hierarchy vs. Market 73

Table 5.1: Rewiring step

Connection Action Response

NT –> NT 1. Do not wire to it Do not take action because

2. Connects to all its neighbors no wiring is asked for

3. Select D using degree criteria

NT –> NS 1. If NS has the required skill A NS node always accepts a

a. Wire wiring from a NT node

b. Connects to the neighborhood

of NS and define D

on the basis of the degree

criteria

2. If NS hasn’t the required skill

a. Copy the neighbourhood of

NS and define D on the

basis of the degree criteria

NS –> NT 1. Always wire 1. If NS holds the required skill

2. Connects to all its neighbors always accept

3. Start dropping D using

the degree criteria 2. Else not accept

NS –> NS 1. Consider the new node Not necessarily the NS that takes action

and its neighbourhood is asking to wire to the selected node (it

2. Explore the list of N nodes may have decided to wire to its neighbor

(own links plus links of the but not to it, on the basis of degree).

new nodes plus the new node) If the acting node is asking for wiring,

3. Select D on the following basis: the responding NS node decides using

a. First take NT the degree criteria.

b. Second use degree criteria

74 Chapter 5. Hierarchy vs. Market

Table 5.2: Imitation step

Type of connection Action

NT –> NT If the linked node is richer, copy its α

NT –> NS No coping activity

NS –> NT No coping activity

NS –> NS Each cycle search own neighborhood

and sets its beta at -0,1 in respect to the

lower beta of a NS node holding the same

skill included in its neighborhood

Table 5.3: Experiments performed

Evolutionary Algorithm Description of the algorithm

Hierarchical NTs decide which NS must join a certain group

basing on the skill

CSLAC Nodes rewire to another node on the basis of the Utility

Nodes bargain the margins and imitate strategies

CSLAC2 Nodes rewire to another node basing first on the kind

of node (NT or NS); second on the degree of the node;

Nodes bargain the margins and imitate strategies

Chapter 6

Self-Organizing mechanisms for task

allocation

In this chapter we focus on the evaluation of six self-organizing mechanisms for

the evolution of the network and the formation of teams. The six mechanisms we

propose, derive from those seen in the previous chapter. The basic model is the

same as before (see chapter 4) but here we articulate more the individual decision

making of each single node and we separate the imitation step from the rewiring

step. We also propose three different task environments (see Mollona and Marcozzi,

2008 [66, 67]).

6.1 Model Overview

In the previous chapter we compared two different decision making processes: we

called them “Hierarchical model” (HI) and “Self-Organizing model” (SO). The aim

was to understand which one of the two performs better in some specific environ-

ment. We found that the HI outperforms the SO, but for high network degree the SO

model gives similar results in terms of completed tasks and better results in terms of

wealth. In this chapter we want to focus on the SO model only, of which we propose

six different versions (we will describe them in details later in this section).

The core of the model is the same we have described in chapter 4. We have

a number of NT which periodically receive some task to be completed according

76 Chapter 6. Self-Organizing mechanisms for task allocation

Figure 6.1: Pseudo code of the Interaction phase.

to some specific task environment (see section 6.2). Hence also here we have an

“interaction phase”, where NTs try to complete the task, and a “network evolution

phase” (rewiring) where nodes move according to some preferences. In addition,

here we have an “imitation phase” which is independent from the other two phases

and in which nodes copy more successful nodes’ α and β values1.

In the next subsections we describe the three phases in details.

6.1.1 Interaction phase

Periodically NTs receive a task to be completed. To achieve this they start looking

for employees among their immediate neighbors. If they find a node with the right

skill which is not busy, they offer him a certain commission (α); if this offer is greater

than the nodes acceptance threshold (β), the job will be assigned and the node will

get its share of prestige; the node manager instead, will get its prestige only when

the entire task is completed. Figure 6.1 shows the pseudo-code of this algorithm.

6.1.2 Network Evolution phase

The network evolution phase is composed of two consecutive steps: a selection step

and a wiring step. In the selection step periodically a node i selects a node j basing

1Actually this phase was present also in the previous model, but it was incorporated in the

evolution phase.

Chapter 6. Self-Organizing mechanisms for task allocation 77

on one of the three following criteria: “prestige” criteria, “degree” criteria and

“skill” criteria. In all these three, periodically a certain node i selects a node j from

a portion of the network (with the usual peer sampling service described in appendix

B): then, if the prestige criteria is applied, the node with lower prestige (wealth) wires

to the one with high prestige (according to ‘closed’ team or ‘open’ team rewiring

mechanism); if the degree criteria is applied, the node with lower degree wires to

the one with higher degree; finally, with the skill criteria, four possibilities may take

place:

• a NT selects a NT: no wiring;

• a NT selects a NS: if NS have a skill needed by NT, the wiring step takes

place, else no wiring action;

• a NS selects a NS: no wiring;

• a NS selects a NT: the NS tries to wire to NT (NT may refuse in case it does

not need that skill).

After the selection, the wiring step takes place: we implemented two different

versions, one called “Closed team rewiring” and one called “Open team rewiring”.

The idea of the closed team rewiring comes from a protocol called SLAC (Hales,

2002 [37]; Marcozzi et. al., 2005 [59]; Hales and Arteconi, 2006 [38]) which aims

to produce cooperation in P2P systems (we have seen it in the previous chapter).

Basically when the rewiring phase takes place, a certain node i selects a node j

from a portion of the network: if some conditions are respected (those stated by

the selection step), node i drops all its links and then connects to j and to all js

neighbors. With this method, only the selected node must cope with the selection

criteria. The idea behind this is that a certain node can work exclusively in one

team. In the open team rewiring mechanism, if the selection criteria is respected

node i links to node j but in this case it does not isolate from its original neighbors;

it will keep the links to those nodes respecting the selection criteria and then will

link to the j’s neighbors which will cope with the selection criteria too. Hence, since

78 Chapter 6. Self-Organizing mechanisms for task allocation

for each selection criteria we have two rewiring criteria, in total we have six different

evolution phases which are indicated in table 6.1.

Table 6.1: Network Evolution mechanisms: Prestige, Degree and Skill are the three

selection criteria; Closed team and Open team indicate the type of rewiring

Prestige Degree Skill

Closed Team T1 T2 T3

Open Team T4 T5 T6

6.1.3 Imitation phase

The imitation phase takes place at each cycle with a certain probability (0.9) and

is independent from the interaction phase and the network evolution phase. When

executed by a NS, if it is connected to a NT, it check if such NT is linked to other

NSs with its same skill: in this case NS lower its β of a 0.1 constant, in order to

be more competitive. When executed by a NT, say i, it selects a random NT, say

j (using the usual peer sampling service). If the prestige of j is greater than the

prestige of i, then i copies its α.

6.2 Experimental settings

We performed several experiments with all the versions we have mentioned above.

Simulations were carried on Peersim [105] (see appendix A), using the Newscast

protocol (Jelasity et al., 2003 [46] – see appendix B) for the management of the

overlay topology. Newscast is a protocol that builds and maintains a continuously

changing random graph. The generated topology is very stable and provides robust

connectivity. We use this protocol to implement a service to pick a random node

which is used in the Network Evolution phase. Hence we have two networks evolving

Chapter 6. Self-Organizing mechanisms for task allocation 79

in parallel: one which evolves following the Newscast protocol (random network) and

one which evolves following one of the six network evolution mechanisms described

in section 6.1.2 . In our simulations the time is divided in cycles and in each cycle

each node performs the specific actions described in the previous sections. In each

experiment we checked how the described algorithms influence the Percentage of

completed tasks (Pct). At cycle zero our network and the network provided by

Newscast are identical; then our network evolves according to the network evolution

mechanism. With this mechanism periodically a certain node selects a random node

and we implemented two different ways of doing this which we called Randomized

Service 1 and 2:

• Randomized Service 1 – RS1 – (Newscast view): node a selects a random

node among the Newscast instance of its neighborhood. Doing this means

that node a picks the random node from a network which is different from

the network of nodes composing its actual working team (FirmNet view); the

random node is picked from the Newscast layer of the system architecture (see

figure 4.4); RS1 is the peer sampling service the we have used so far;

• Randomized Service 2 – RS2 – (FirmNet view): node a selects a random

node among its current neighborhood. This means that the node wants to

strengthen the links with one of the individuals working in its team and its

links; the random node is picked from the FirmNet layer of the system archi-

tecture (see figure 4.4).

The main difference between these two mechanism is that with the second

method if node a is isolated, it has no chances of finding a random node and then

to recover from this situation; on the other hand with Newscast, node a will find a

random node because Newscast keeps the network connected. The idea behind these

two different selection methods is that with RS1 we want to mimic a situation in

which the new component / components of a certain team are selected from a kind

of social network which is different from that one representing the current team;

80 Chapter 6. Self-Organizing mechanisms for task allocation

with RS2 instead we want that the selection is made according to the acquaintances

inside the team. The configuration we adopted in the experiments is the following:

• Network size (N): 1000;

• Network degree: d ∈ {3, 5, 10, 20};

• Rewiring probability: 0.9 every cycle; - Initial network topology: random; -

Skill initialization: all the nodes were initialized with a random skill taken

from a set of 5 elements (Si ∈ {1, 2, 3, 4, 5})

• α and β initialization: a random value between 0 and 1;

• Payoffs: in some experiments the reward given by the entire task is 3 (1 for

each job); in some experiments each task has a different total value (25% with

3 – 25% with 6 – 25% with 9 – 25% with 12).

Moreover we tested each configuration in three different task environment:

- Env1: same task to each NT; every 20 cycles the task is replaced with a new

one identical to the previous one; same payoff to each task (static task environment);

- Env2: different task to each NT; every 20 cycles the task is replaced with a

new different one; same payoff to each task (dynamic task environment);

- Env3: different task to each NT; different payoff to each task; every 20 cy-

cles the task and the payoff are replaced with new different ones (dynamic task

environment).

Hence we tested a totally static environment and two dynamic environments. In

the next two subsection we respectively give the results obtained with the random-

ized service 1 and 2 on these three mentioned cases.

6.2.1 Randomized Service 1: results

Figure 6.2 indicates the Percentage of Completed Tasks in “Env1”, (static environ-

ment). We can note how all the mechanism give optimum results when degree is

20. The T6 algorithm always gives better results than the others, even when degree

Chapter 6. Self-Organizing mechanisms for task allocation 81

Figure 6.2: Percentage of completed tasks (Pct). Randomized Service 1. Env1,

here each NT in the Network receive the same task. Each task has also the same

prestige. The random node for the Network evolution phase is given by Newscast.

Mechanism T6 always gives best results. Everyone gives good results when degree

is 20.

is very low. Also T5 gives good results: this means that choosing the open team

rewiring is good when the node selection criteria is based on skill and degree; on the

other hand we can see how such criteria gives bad results when the selection criteria

is based on the prestige. As the size of the intra-organisational networks increases

(the network degree), all the algorithms improve. Figures 6.3 and 6.4 show similar

results than figure 6.2. We can note how all the mechanisms behave in a similar

way than in Env1 but T1 which performs worse, indicating that these algorithms

are quite robust even when there is a high task dynamism. With all these experi-

ments we have seen that T6 performs much better than the others. We think this is

due to the fact that T6 gives incentives to keep the network as much connected as

possible and gives to the nodes more intelligence than the others, allowing NTs to

choose ‘good’ NSs and to have a larger set of NSs which will compete one another

decreasing their acceptance threshold (β).

82 Chapter 6. Self-Organizing mechanisms for task allocation

Figure 6.3: Percentage of completed tasks. Randomized Service 1. Env2, here

different NTs receive different task. Every 20 cycles each NT receives a new task

different from the previous one. Each task has the same prestige. Mechanism T6

always gives best results. Everyone gives good results when degree is 20.

Figure 6.4: Percentage of completed tasks. Randomized Service 1. Env3, here

different NTs receive different task. Every 20 cycles each NT receives a new task

different from the previous one. To each task is associated a different amount of

prestige and every 20 cycles also the payoff changes. Mechanism T6 always gives

best results. Everyone gives good results when degree is 20

Chapter 6. Self-Organizing mechanisms for task allocation 83

Figure 6.5: Percentage of completed tasks. Randomized Service 2. “Env1, here

each NT in the Network receive the same task. Each task has also the same prestige.

Mechanisms T6 gives good results which are similar than the case with Randomized

Service 1. All the other mechanisms give worse results than the same with RS1

6.2.2 Randomized Service 2: results

This section describes the results obtained when the random node used by the

SO algorithms is picked with the Randomized Service 2. This means that each

node when executing one of the six network evolution algorithms (table 6.1) picks

a random node directly from its current view so that the more links a node has,

the more chances it has to join a new neighborhood. Figures 6.5, 6.6 and 6.7 show

similar results even if they relate to different scenarios. We can note how when the

network degree is low, 3 and 5, the performances are very bad. This is because

when the degree is low, nodes may have no neighbors or just few neighbors, hence

the rewiring phase may not take place or may not be able to form a good team.

With the Randomized Service 1, the situation is different because even when a node

has no links, it picks the random correspondent from the Newscast instance of its

neighborhood which is always connected. With degree 10 and 20 the T6 algorithm

gives very good performances, better than the other five algorithms.

84 Chapter 6. Self-Organizing mechanisms for task allocation

Figure 6.6: Percentage of completed tasks. Randomized Service 2. “Env2, here

different NTs receive different task. Every 20 cycles each NT receives a new task

different from the previous one. Each task has the same prestige. Mechanisms T6

gives good results which are similar than the case with Randomized Service 1. All

the other mechanisms give worse results than the same with RS1.

Figure 6.7: Percentage of completed tasks. Randomized Service 2. Env3, here

different NTs receive different task. Every 20 cycles each NT receives a new task

different from the previous one. To each task is associated a different amount of

prestige and every 20 cycles also the payoff changes. Mechanisms T6 gives good

results which are similar than the case with Randomized Service 1. All the other

mechanisms give worse results than the same with RS1

Chapter 6. Self-Organizing mechanisms for task allocation 85

Figure 6.8: Closeness centrality calculated on the network at the end of the sim-

ulation with “Env2. Network degree is 5. a) Randomized Service 1. b) Randomized

Service 2. Every 20 cycles each NT receives a new task different from the previous

one. Each task has the same prestige. Mechanism T6 gives the highest values.

6.3 Structural Analysis

So fa, one of the main findings of our work, has been that the structure of the

network matters. We found that as the network degree increases, performances of

the firm increases. We also noted that the rewiring mechanisms performing better,

are those which tend to keep the network as much connected as possible. Thus we

decided to do some structural analysis on our networks. We calculated the “closeness

centrality every 10 cycles for all our experiments. The results that we obtained are

very similar both with the RS1 and with RS2 . We found that for the first 20 cycles,

values are always quite high but then they start decreasing and stabilize after few

cycles. Figure 6.8 show the results on the network at the end of the simulation

(Env2, degree 5); we can note how with T6, the closeness value is much higher than

with the other algorithms, this is because here nodes never isolate before adding

new links. For all the simulations that we did, we also checked if some “cut vertex

2 appeared during the computation: we found that they never appeared (except for

some isolated cases), meaning that the groups formed by our algorithms are always

well connected.

2A cut vertex is a vertex of a graph such that removal of the vertex causes an increase in the

number of connected components

86 Chapter 6. Self-Organizing mechanisms for task allocation

6.4 Conclusion

From the simulation experiments seen in this chapter, emerge a number of facts

that delineate areas for further investigation. The first fact which is interesting to

highlight is that self-emerging knowledge integration mechanisms originate within

organizations and allow firms to coordinate their skills and respond to environ-

mental demand. In addition, in some circumstances, these knowledge integration

processes are enough robust to respond to a turbulent environment in which a firm

is required to complete tasks that change in regard to both the repertoire of skills

needed and their relevance within the organization. Thus, the complex problem of

integrating specific skills in response to environmental dynamics rather than requir-

ing top down problem-solving abilities to dynamically partition into teams, calls for

the analysis of what organizational context appropriately moulds individual incen-

tives, bridge specialists and convey information. The second fact is that emergence

of integration mechanisms is associated to the structure of intra-organizational so-

cial networks within which individuals interact. As shown in the graphs reporting

simulation experiments, in all our simulations, the higher the connectedness of intra-

organizational social networks, the higher the percentage of task completed by a firm

and, when each node is able to maintain links with other 20 nodes, self-organized

integration mechanisms produce same performances as an hypothetical central au-

thority which has enough authority to impose top down to an individual to move

from one position to another one within an intra-organizational social network. A

third fact is that individual attitudes and mobility within a social network are key

element to produce knowledge integration. In particular, in our work, we compared

two individual attitudes. The first attitude characterizes individuals that are ex-

tremely mobile and easily terminate all previous links to connect to other nodes;

the second attitude characterizes individuals that are willing to make links with

new nodes, without losing the good links with old nodes. In general, simulation

experiments show that the first attitude has worse performance. The fact that a

node makes new links, not necessarily indicates that all the old ones are useless; on

Chapter 6. Self-Organizing mechanisms for task allocation 87

the other hand, it is not always possible to keep old links, sometimes moving may

indicate the physical movement of thousand of kilometers which inhibits a possible

collaboration among past neighbors. However, the model we presented is a very

simplified one: we assume that project managers are able to appropriately associate

task content to skills. This is not always true, mainly if it is about intellectual task.

To cope with this problem, we though of introducing a different categorization of

the skills, developing a version of our model in which managers chose employees on

the base of the category to which their skill belongs. We also gave employees the

ability to learn skills which will be added to those they already have. This process

will be described in the next chapter.

Chapter 7

Introducing Learning to FirmNet

In this chapter we introduce a new version of our FirmNet model (Mollona and

Marcozzi, submitted [69]). Here nodes in the network have the ability to learn some

particular kind of skill. We first give an introduction on this new model highlighting

the motivations, then we describe our model and finally we report the results of the

experiments we conducted.

7.1 Introduction

The model seen in the previous chapters is a very simple one: we assume that project

managers are able to appropriately associate task content to skills. Therefore both

task and skill content is not ambiguous. Yet, in ambiguous task environments, this

may be a strong assumption and project managers may face problems in connecting

task content to required skill and to interpret skill content. In addition, if task

content is particularly innovative, it may be possible that skills are not immediately

available but have to be built. In other words, professionals may hold skills that are

not exactly fit to the need but are sufficiently close to those required. These special-

ists may make an effort to learn how to deploy their skills in order to appropriately

cope with required tasks. However, such dynamic fit between skills and task require

learning both on the part of specialists and project managers. The described learning

process, however, entails a dilemma to deal with. On the one hand, our previous ex-

Chapter 7. Introducing Learning to FirmNet 89

periments (Mollona and Marcozzi, 2008 [68, 66, 67] – see previous chapters) suggest

that for a network of specialists to be able to dynamically respond to evolving tasks

it is required that the nodes of the network are able to frequently rewire and to hold

an high number of connections, on the other hand, the previously described learn-

ing processes require stability and continuity of collaboration with specific nodes.

In general, computer simulation is a useful method to understand dynamical pro-

cess regarding learning (e.g. Carley, 1992 [14]) In this light, the work described in

this chapter addresses the mechanisms and the circumstances that better handle

the dilemma between dynamic plasticity of an intra-organisational network and the

continuity of association among specific nodes required to enact learning processes.

7.2 Learning in FirmNet

The core of our model, remains the same that we have seen in chapter 4. Also here

we have an interaction phase, a network evolution phase and an imitation phase.

Actually some changes have been done to the interaction phase and we will see them

soon. In this new version we also thought of introducing a different categorization

of the single skills. So far we have considered a system where each agent could have

just one single skill and this skill could vary from 1 to 5. Here we enlarged the set of

skills (from 1 to 9) and we considered three different categories in which each skill

can fall (see table 7.1).

Table 7.1: Skills’ categories

Category Skills

A 1 2 3

B 4 5 6

C 7 8 9

90 Chapter 7. Introducing Learning to FirmNet

Hence each skill belongs to a category which can be A, B or C. A category can

be seen as a particular area grouping certain skills. Category A for example can be

a degree in Computer Science and skill 1, 2, 3 can relate respectively to expertise in

programming, network administration, web designing. In real life when a particular

task is too specific, the manager is not always able to identify the more suitable

employee and generally it can assign the job to someone who is only related to that

area and doesn’t have the exact skill. This person of course has more capabilities

to learn the skill than someone that comes from a totally different area.

Coming back to our model, when a NT receives a task, it just knows the cate-

gories of the three skills needed for the task, hence when in the interaction phase

it selects neighbors, it can base its choice only on the category of the skill held by

the NS. Even if the selected node has a skill of the right category, it may not be the

required one; in this case the NS has two possible options:

• NS can decide to learn the skill: after a number of cycles (20) it learns the

skill which is added to those he already holds. During the 20 learning cycles,

the node remains idle and cannot move or accept jobs from other NTs;

• NS can decide not to learn the skill: in this case it may ask (with a certain

probability) one of its neighbors to work on such job.

Figure 7.1 shows an example. Each node decide to learn the skill according to

its “attitude at learning” (γ); if it doesn’t learn, it can decide to pass the job to a

neighbor according to its “attitude at passing” (δ). Both γ and δ are initialized at

random with a value from 0 to 1.

As for the network evolution phase, we use the same 6 mechanisms we have seen

in the previous chapter (see section 6.1.2 and table 6.1). The same happens with

the imitation phase (see section 6.1.3).

Chapter 7. Introducing Learning to FirmNet 91

A3,2 C7

A1
B6

C8

 1 2 8
A, A,C

ok

*

no

+

New Link

*: After 20 cycles learns the skill
+: Asks its neighborhood

Figure 7.1: Interaction phase with the learning mechanism: node “*” learn the

skill; node “+” passes the job to its neighbor who will make a link to the NT.

7.3 Experimental setting

We performed several experiments with this new model, comparing the six rewiring

mechanisms that we indicated in table 6.1. Experiments proposed here have been

done using the “Randomized Service 1” for the selection of the node in the rewiring

phase (this is the usual peer sampling service that we have used in several situations,

see section 6.2). The configuration we adopted for the simulations is indicated in

table 7.2. For each experiment we performed 10 runs and then took the average.

The standard deviation is always very low.

With this configuration we propose five sets of experiments which will be shown

in the next subsections. The first is called ‘Learning’, in which we study the new

Learning model comparing the performances of the six SO mechanisms seen in the

previous chapter (table 6.1); the second is called ‘No Leaning’: here we replicate the

same experiments proposed in chapter 6 comparing the SO model (without learning)

with 2 different HI models, this time using 9 skills in the system instead of 5 as in

chapter 6; the third is called ‘Evolutionary Learning’: the model is the same tested

92 Chapter 7. Introducing Learning to FirmNet

Table 7.2: Basic configuration

Parameter Value

Newtork size 1000

Number of NTs 250

Number of NSs 750

Number of cycles 500

Skill S ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}

Commission (NT) α ∈ {0 . . . 1}

Accept threshold β ∈ {0 . . . 1}

Attitude at learning γ ∈ {0 . . . 1}

Attitude at passing δ ∈ {0 . . . 1}

Learnin time 20 cycles

Task environments Env1, Env2, Env3 (see sec. 6.2)

in ‘Learning’ but here we make the parameters γ and δ evolve according to the

wealth of the nodes; the forth is called ‘Lower degree attachment’: here NSs during

the rewiring phase prefer attaching to NTs with low degree; finally the last set of

experiments is called ‘Wealth performances’ in which we show the average wealth

of NSs and NTs in different situations.

In the last three sets of experiments, we also compare two different reward poli-

cies: individual reward versus group reward.

7.3.1 Learning

The first set of experiments that we did, was directed to compare the behavior of

the six rewiring mechanisms in a situation in which nodes can learn the skill or

pass the job as we described in section 7.2 . Figures 7.2, 7.3, 7.4 show the results

of the simulations in the three environments that we take into consideration (see

Chapter 7. Introducing Learning to FirmNet 93

0

10

20

30

40

50

60

70

80

90

100

d3 d5 d10 d20
degree

P
ct T1

T2
T3
T4
T5
T6

Figure 7.2: Percentage of completed tasks with “Env1: here each NT in the

Network receive the same task. Each task has also the same prestige. NSs which

don’t have the right skill may learn the skill or pass the job according to their

strategies (γ, δ).

section 6.2 for the description of the three task environments). We can note that

also here T6 gives the best performances in all the task environments. In Env1

(static environment), it’s interesting to note how the second one which performs

better is T5 meaning that in an environment in which there is scarcity of resources,

having a well connected network helps even if the choice of the nodes is not based on

the individual preferences. In Env2 and Env3 instead, the second best performing

mechanism is T3, indicating that the accurate choice made by the single nodes is

preferable when the task environment is dynamic.

7.3.2 No Learning

In order to see if this new Learning model performs better, in terms of Pct, than

the classical SO model, we decided to compare the previous results with the same 6

mechanisms without the learning process. For doing this we re-executed the same

94 Chapter 7. Introducing Learning to FirmNet

0

10

20

30

40

50

60

70

80

90

100

d3 d5 d10 d20degree

P
ct

T1
T2
T3
T4
T5
T6

Figure 7.3: Percentage of completed tasks with “Env2: here each NT in the

Network receive a different task which changes over the time (every 20 cycles).

Each task has also the same prestige. NSs which don’t have the right skill may

learn the skill or pass the job according to their strategies (γ, δ).

0

10

20

30

40

50

60

70

80

90

100

d3 d5 d10 d20degree

P
ct

T1
T2
T3
T4
T5
T6

Figure 7.4: Percentage of completed tasks with “Env3: here each NT in the

Network receive a different task which changes over the time (every 20 cycles); also

the prestige assigned to each task changes every 20 cycles. NSs which don’t have

the right skill may learn the skill or pass the job according to their strategies (γ, δ).

Chapter 7. Introducing Learning to FirmNet 95

experiments of the previous chapter but this time with 9 skill in the system. We

also compared them with two “hierarchical approaches”: we called them G1 and

G2. The aim was to use the two Hierarchies as a benchmark for the SO model.

Moreover, since we increased the number of skills in the system from five to nine,

we wanted to see if this change influenced the performances of the hierarchy. In

both hierarchies during the interaction phase NTs ask their immediate neighbors to

provide their skill; they can refuse only if busy. NSs get a fixed wage every 20 cycles,

NTs are paid only when the entire task is completed. A NS gets free again only

when the entire task is completed or every 20 cycles when a new task in assigned and

NS are paid. The difference between the two hierarchies is in the network evolution

phase:

• G1: periodically NTs pick a random node from the entire network and if this

node has the right skill for working on the task and is not busy, a link to him

is made (its the same mechanism we have seen in chapter 5);

• G2: periodically NSs check if their skill is currently needed by the NTs to

whom they are eventually linked; if not they drop the link to them. After this

they make a link to a randomly selected NT in the network. Payment in G2

is the same than in G1: NSs get a fixed wage every 20 cycles, NTs get the

payoff only when the entire task is completed.

Figure 7.5 refers to Env1: surprisingly we find that T1 gives similar results than

T6 meaning that in a situation in which resources are scarce1, basing the rewiring on

the skill doesn’t give much help. Interestingly we can note how the two hierarchical

mechanisms don’t give good results. It seems that when the number of available

skills is high (bigger than 5), hierarchy is not able to manage it. We must point

out that Env1 is different from the “static environment” that we tested in chapter

5: here the task is identical for all the NTs, while in chapter 5 we had different

1When the task is totally static and composed always by the same 3 jobs, a high number of

possible skills (9) leads to a situation of scarce resources because skills are equally distributed in

the system and hence there are not enough skills equal to the 3 requested.

96 Chapter 7. Introducing Learning to FirmNet

0

10

20

30

40

50

60

70

80

90

100

d3 d5 d10 d20degree

P
ct

G1

G2

T1

T2

T3

T4

T5

T6

Figure 7.5: Percentage of completed tasks with “Env1: the lines in this plot show

the six SO mechanisms and the two HI mechanisms. In no one of these learning

attitude or passing attitude are considered.

tasks for different NTs which does not changes over the time. This new situation

creates a scarcity of resources from which the two hierarchies are not able to recover.

Moreover with hierarchical mechanisms, when a NS gets busy, he will be free again

only when the entire task is completed, hence if he is stuck because the NT dosn’t

find the remaining NS, he cannot go working for another NT. Hence skills, which

are not enough, are also idle more often than with the SO mechanisms. On the

other hand, when network degree is high, SO mechanisms performs better because

a certain NSs, with “good” skills, have the possibility to move among different teams

and then satisfy different tasks.

Figure 7.6 refers to task environment Env2: hierarchies performs better than

before but they are not still giving good results. Here the task environment is

dynamic: tasks are different for each NT and continuosly changing every 20 cycles.

Here we don’t have scarcity of resources because the high dynamism of the tasks

makes the most of the skill involved and hence the two hierarchical algorithms

performs better, but worse than HI in previous work with 5 skills (see chapter 5). In

Chapter 7. Introducing Learning to FirmNet 97

0

10

20

30

40

50

60

70

80

90

100

d3 d5 d10 d20degree

P
ct

G1

G2

T1

T2

T3

T4

T5

T6

Figure 7.6: Percentage of completed tasks with “Env2: the lines in this plot show

the six SO mechanisms and the two HI mechanisms. In no one of these learning

attitude or passing attitude are considered.

particular G2 gives good performances: here NSs have the ability to drop the links to

NTs which don’t need their skill. In a dynamic environment is important that NSs

have this ability in order to become always available for other NTs. This particular

feature of G2, limits the idleness of NSs created by hierarchical algorithms. With

G1 instead, NTs have the ability to pick the useful node which are not released

(and then made available for other NTs) when not needed anymore. SO algorithms

performs much better than in Env1: the situation of not scarcity of resources and

the fact that NSs have the possibility to move among different groups and then

satisfy different tasks, more frequently than with HI, are the reasons of these good

performances.

Figure 7.7 represents the results with task environment Env3. We can note that

they are very similar to Env2 meaning that changing the payoff values doesn’t make

a big difference.

Comparing the pictures of the results with learning (section 7.3.1) with those

without learning (section 7.3.2, we can also find that the learning mechanism plus

98 Chapter 7. Introducing Learning to FirmNet

0

10

20

30

40

50

60

70

80

90

100

d3 d5 d10 d20degree

P
ct

G1

G2

T1

T2

T3

T4

T5

T6

Figure 7.7: Percentage of completed tasks with “Env3: the lines in this plot show

the six SO mechanisms and the two HI mechanisms. In no one of these learning

attitude or passing attitude are considered.

the passing mechanism gives some improvements in terms of Pct, hence when the

set of skills is large this new approach may be a good choice.

7.3.3 Evolutionary Learning

A typical behavior is that of imitating the strategies of people performing better.

We already explored this with the rewiring mechanisms T1 and T4 for the teams

formation. In this section we want to explore what happens if nodes copies their

attitude at learning (γ) and passing (δ) according to their wealth. We introduced a

mechanism with which nodes periodically selects a random node (via the usual peer

sampling service) and then copy its γ and δ if the selected node is richer. Hence

in the learning model we analyze in this section, nodes have the ability to learn

a skill, pass a job to a neighbor and imitate (γ) and (δ) values of richer nodes.

We performed experiments adopting two different reward policies: an “individual

reward” policy and a “group reward” policy.

Chapter 7. Introducing Learning to FirmNet 99

• Individual reward: NSs get their reward soon after they complete a job; the

NT will get the payoff only when the entire task is completed; NSs gets busy

when recruited but becomes free again as soon as their single job is completed

(all the SO algorithms that we have seen so far adopt this reward policy).

• Group reward: NSs get their reward only when the entire task is completed;

the same happens to the NTs; NSs gets busy when recruited and will become

free again only when the entire task is completed.

Figures 7.8, 7.9, 7.10 show the results with the “individual reward” policy and

the evolution of γ and δ according to the wealth of the nodes. Figures 7.8 refers

to task environment Env1. As we said before, Env1 represents a situation in which

the resources to allocate are scarce. We can note that here the SO mechanisms are

able to perform better than before because nodes have both the ability to learn new

skills (involving a less scarcity of resources) and the ability to pass the job to their

neighbors. Algorithm T6 is the one which performs better: with it, we give to nodes

a great intelligence, indeed they can decide to make new links on the basis of their

individual needs or preferences.

Figure 7.9 indicate performances of the algorithms in “Env2”. Here the task envi-

ronment is more dynamic: tasks are different for each NT and continuosly changing

every 20 cycles. Here we don’t have scarcity of resources because the high dynamism

of the tasks makes the most of the skills be involved. Our six SO mechanisms, here

perform worse than in Env1: when a node decides to learn a new skill, he becomes

idle for 20 cycles; this may be a problem because every 20 cycles tasks change and

the new task may be of a different kind then the one just learned by the NS, hence

the leaning effort may result useless. Something similar happens with Env3 (figure

7.10) where the task is dynamic and the reward is dynamic too.

Figures 7.11, 7.12, 7.13 show the results with the “group reward” policy and

the evolution of the γ and δ. Something different happens when a “group reward”

policy is adopted. In Env1 (figure 7.21), performances are very similar than with

the individual reward policy; they are a bit better when degree is small (d3, d5): we

100 Chapter 7. Introducing Learning to FirmNet

think that when degree is small, nodes must cooperate more in order to complete

the task (and hence in this case get their payoff), mainly in a situation of scarce

resources. Some experiments have highlighted that in this situations the δ value

generally increases entailing a kind of cooperative behavior of the nodes.

In Env2 (figure 7.12) , results are different: here the dynamic environment favors

the individual reward policy. With the group reward policy, nodes are paid and

become available only when the entire task is completed, hence if a NS is busy and

its NT doesn’t complete the task, it will not be available for other NTs (with the

individual reward, nodes are never busy for long time, they are soon available for

other NTs). In addition the fact that nodes can learn, adds more idleness in the

system, since when a node is learning is idle for 20 cycles. This idleness doesn’t

help in dynamic task environments. Similar results can be seen in Env3 (bottom of

figure 7.13).

We also compared the results obtained when γ and δ don’t evolve with those

obtained when they evolve and individual reward or group reward is applied. Figure

7.14, refers to the results with task environment Env1. In general we note that results

are better when copying of the ‘attitudes’ takes place. Its interesting to note that

often the group reward mechanism gives better results: group reward makes teams

more stable, a node cannot move if it has not been paid, hence in a static task

environment this seems to give better results.

Figures 7.15 and Figure 7.16 show the results related to Env2 and Env3. Here

we can note that in general is the individual reward performing better: in a dynamic

task environment more flexibility is preferred and the constrains given by the group

reward policy (idleness of NSs until the total task is completed) doesn’t help.

7.3.4 Lower degree attachment

An important finding of our previous work (Mollona and Marcozzi, 2008 [67]), is

that if nodes prefer attaching to nodes with high degree (large number of actual

connections), those nodes could benefit from this having for example more possibility

to be recruited if among those links there were some to other NTs. But what happens

Chapter 7. Introducing Learning to FirmNet 101

0

10

20

30

40

50

60

70

80

90

100

d3 d5 d10 d20
degree

P
ct

T1
T2
T3
T4
T5
T6

Figure 7.8: Percentage of completed tasks in “Env1. The lines in this plot repre-

sents the Pct obtained with the six rewiring mechanisms. Here each NS may learn a

skill or may pass a job to its neighbors. Nodes are paid according to the individual

reward policy.

0

10

20

30

40

50

60

70

80

90

100

d3 d5 d10 d20
degree

P
ct

T1
T2
T3
T4
T5
T6

Figure 7.9: Percentage of completed tasks in “Env2. The lines in this plot repre-

sents the Pct obtained with the six rewiring mechanisms. Here each NS may learn a

skill or may pass a job to its neighbors. Nodes are paid according to the individual

reward policy.

102 Chapter 7. Introducing Learning to FirmNet

0

10

20

30

40

50

60

70

80

90

100

d3 d5 d10 d20
degree

P
ct

T1
T2
T3
T4
T5
T6

Figure 7.10: Percentage of completed tasks in “Env3. The lines in this plot repre-

sents the Pct obtained with the six rewiring mechanisms. Here each NS may learn a

skill or may pass a job to its neighbors. Nodes are paid according to the individual

reward policy.

0

10

20

30

40

50

60

70

80

90

100

d3 d5 d10 d20
degree

P
ct

T1
T2
T3
T4
T5
T6

Figure 7.11: Percentage of completed tasks in “Env1. The lines in this plot repre-

sents the Pct obtained with the six rewiring mechanisms. Here each NS may learn

a skill or may pass a job to its neighbors. Nodes are paid according to the group

reward policy.

Chapter 7. Introducing Learning to FirmNet 103

0

10

20

30

40

50

60

70

80

90

100

d3 d5 d10 d20
degree

P
ct

T1
T2
T3
T4
T5
T6

Figure 7.12: Percentage of completed tasks in “Env2”. The lines in this plot

represents the Pct obtained with the six rewiring mechanisms. Here each NS may

learn a skill or may pass a job to its neighbors. Nodes are paid according to the

group reward policy.

0

10

20

30

40

50

60

70

80

90

100

d3 d5 d10 d20
degree

P
ct

T1
T2
T3
T4
T5
T6

Figure 7.13: Percentage of completed tasks in “Env3. The lines in this plot repre-

sents the Pct obtained with the six rewiring mechanisms. Here each NS may learn

a skill or may pass a job to its neighbors. Nodes are paid according to the group

reward policy.

104 Chapter 7. Introducing Learning to FirmNet

Figure 7.14: Percentage of completed tasks in “Env1. This figure represents what

happens for each single rewiring mechanisms, comparing the Pct obtained when “no

evolution” takes place, when “evolution” takes place, in this last case with both

individual and group reward policy.

Chapter 7. Introducing Learning to FirmNet 105

Figure 7.15: Percentage of completed tasks in “Env2. This figure represents what

happens for each single rewiring mechanisms, comparing the Pct obtained when “no

evolution” takes place, when “evolution” takes place, in this last case with both

individual and group reward policy.

106 Chapter 7. Introducing Learning to FirmNet

Figure 7.16: Percentage of completed tasks in “Env3. This figure represents what

happens for each single rewiring mechanisms, comparing the Pct obtained when “no

evolution” takes place, when “evolution” takes place, in this last case with both

individual and group reward policy.

Chapter 7. Introducing Learning to FirmNet 107

if NSs decide to link to NTs with low degree? In theory this may be a good move

because if a NS links to a NT with low degree, the NS will have more chances to be

recruited and NTs with scarce links will have more chances to complete the task.

We implemented a new mechanism called T7 in which NSs have the ability to select

a random NT (with the peer sampling service) and if this NT has a degree smaller

than the degree of the NT to which it is currently linked, NS will drop the current

NT and will connect the the new NT.

Experiments have shown results different from what we expected: figure 7.17

compares the performances of T6 and T7 with different reward policies (IR, GR)

in the three task environments (Env1, Env2 and Env3). In Env1 (top of figure

7.17) we note that T6 gives good results both with the group reward and individual

reward policy. We think that T7 gives worse performances because the algorithm

is too simple: in T7, NS just link to NTs with low degree but they don’t know

anything about the real needs of the NT; on the other hand, with T6 nodes have

more advantages and more intelligence, hence they are more able to adapt the

structure of the network to the task environment. What is interesting from Env1

is the difference of Pct between T7 with IR and T7 with GR. T7 with GR gives

better results in particular with d10: we think this may be due to the fact that

with IR, nodes are free to move as soon as they have completed their job, hence

it may happen that a NS who has just completed a job moves to another NT only

because this second NT has a lower degree; this second NT may not actually need

such NS and the previous NT will not be able to complete the same task anymore

during the next round. On the other hand with GR, nodes have less chances to

move toward ‘wrong’ NTs, because they will result busy during all the time needed

for the completion of the entire task.

In Env2 and Env3 (center and bottom of figure 7.17), results are similar to Env1

but we note that there is not much difference between T7-GR and T7-IR: we think

this is due to the fact that in Env1, if a NT needs a certain NS, it will need its

forever, so if it leaves for linking to a NT which doesn’t need it, this decreases the

global performances; in Env2 and Env3 instead, a NTs don’t need certain skills

108 Chapter 7. Introducing Learning to FirmNet

forever, hence moving after providing the skill, is not always a problem.

7.3.5 Wealth performances

The last set of results that we show, relates to the performances of the nodes in

terms of Wealth. We measured for mechanisms T6 and T7 the average wealth of

NTs and NSs in all the three task environments and with both individual and group

reward policies.

Figure 7.18 shows the average wealth of T6 and T7 with IR in task environment

Env1. Interestingly we can note that with mechanism T6, the average wealth of NTs

increases as the size of the intra-organizational network increases (degree), while the

average wealth of NSs increases until degree 10 and decreases when degree is 20. This

trade-off is more evident when task environment becomes dynamic as in figures 7.19

and 7.20. When degree is 20, the Newscast protocol (which is the one providing

the peer sample in the network evolution phase), gives a view of the whole network;

this global view, plus the high number of links for NTs, gives NTs the possibility

to be linked to the highest possible number of “good” NSs. This thing, for NTs

means that they have a lot of neighbors among which to choose the cheapest NS for

the completion of the task; for NSs means that they have lot of competitors with

which to compete for a job, hence they have to lower their β which results with

an average lower wealth for NSs. Another interesting thing is that in all the three

task environments, the average NSs wealth is higher with T7 than with T6 when

degree is 3 and 20. Even though linking with NTs with low degree doesn’t improve

global Pct (for the reasons we explained above – section 7.3.4), this seems to be a

good move for the NSs wealth: when degree is very low, NSs are linked to only very

few NTs and hence there are more probability not to be useful for their task (and

hence not be paid), hence the T7 mechanism helps them to free themselves more

easily then with T6; when degree is 20, the fact that NSs links to NTs with less

links than before, put them is a situation with less competition, which on one hand

disadvantages NTs (in terms of number of task completed) but on the other hand

advantages the NSs (in terms of wealth).

Chapter 7. Introducing Learning to FirmNet 109
ENV1

ENV2

ENV3

Figure 7.17: Percentage of completed tasks (Pct). The figure shows the perfor-

mance of mechanisms T6 and T7 in three different task environment (Env1, top

– Env2, center – Env3, bottom). In each plot are indicated behaviors of the two

mechanisms with “individual reward” and “group reward” policy.

110 Chapter 7. Introducing Learning to FirmNet

Figure 7.18: Wealth in Env1. Comparison of the average wealth of NS (top)

and the average wealth of NT (bottom) with the T6 and T7 mechanisms. Here an

“individual reward policy” has been used.

Figure 7.19: Wealth in Env2. Comparison of the average wealth of NS (top)

and the average wealth of NT (bottom) with the T6 and T7 mechanisms. Here an

“individual reward policy” has been used.

Chapter 7. Introducing Learning to FirmNet 111

Figure 7.20: Wealth in Env3. Comparison of the average wealth of NS (top)

and the average wealth of NT (bottom) with the T6 and T7 mechanisms. Here an

“individual reward policy” has been used.

Figures 7.21, 7.22 and 7.23, indicates the same experiments we have just de-

scribed, but in a situation in which a group reward policy is adopted. Also here the

more interesting results are given by the NSs wealth. We can note that in general

also here NS using the T6 mechanism increase their average wealth when degree

grows from 3 to 10, but it decrease with degree 20. We think that also here applies

the same reason we gave for the IR policy. Interestingly, only in Env1 (figure 7.21)

when degree is 3 and 20, we have that the average NSs’ wealth is greater with T7

than T6. This doesn’t happen with Env2 (figure 7.22) and Env3 (figure 7.23): with

GR policy, nodes involved in task can move only when entire task is completed.

Hence here there is less movement which could help NSs earn more; in particular,

when the task environment is dynamic a larger number of nodes can be involved in

the completion of tasks and then become idle.

112 Chapter 7. Introducing Learning to FirmNet

Figure 7.21: Wealth in Env1. Comparison of the average wealth of NS (top) and

the average wealth of NT (bottom) with the T6 and T7 mechanisms. Here a “group

reward policy” has been used.

Figure 7.22: Wealth in Env2. Comparison of the average wealth of NS (top) and

the average wealth of NT (bottom) with the T6 and T7 mechanisms. Here a “group

reward policy” has been used.

Chapter 7. Introducing Learning to FirmNet 113

Figure 7.23: Wealth in Env3. Comparison of the average wealth of NS (top) and

the average wealth of NT (bottom) with the T6 and T7 mechanisms. Here a “group

reward policy” has been used.

114 Chapter 7. Introducing Learning to FirmNet

7.4 Conclusion

The work presented in this thesis contributes to the area of studies that is concerned

with the issue of coordination and skills allocation in knowledge-based production

processes. In addition, our paper presents an attempt to bridge studies in computer

science, dealing with the nature and the mechanisms of P2P networks evolution, to

organization studies. To represent individual decision-making of agents embedded

in organizational networks, we adapted an algorithm, the SLAC algorithm (Hales,

2002 [37]; Marcozzi et. al., 2005 [59]; Hales and Arteconi, 2006 [38]), developed

to study cooperation in P2P networks. In this respect, we believe that the P2P

network is a useful concept to address novel forms of organization in a knowledge

economy. We presented a model of an organization as a network of specialists, en-

dowed with idiosyncratic skills, and ‘product managers’, that maintain a contact

with external clients and receive tasks to be completed from these latter. Special-

ists and product managers are peers, because they cannot adopt any hierarchical

mechanisms to regulate their interactions. We explored under what circumstances

this organization, without hierarchical authority, successfully self-organizes to com-

plete tasks. In particular, we investigated how global network structures able to

complete tasks can emerge from local interaction. Simulation experiments teased

out problems in applying self-organizing mechanisms to the government of a firms

skill endowment. In our computer simulation experiments, we found that as task

environment becomes dynamic, market-based mechanisms substitute for hierarchi-

cal control to increasingly gain effectiveness. Yet, we found that effectiveness of

market-based mechanisms depend on assumptions concerning individual incentives,

on the ability of specialists to learn contiguous skills and on three aspects of organ-

isational morphology: (1) connectivity of individual nodes within the organisation

network, (2) reward policies and (3) fluidity of teams boundaries. In particular, we

mention six key findings emerging from our study. First, for a sufficient degree of

connectivity (by degree we refer to the number of connection maintained by each

node), self-organizing mechanisms prevail over hierarchical mechanisms of control.

Chapter 7. Introducing Learning to FirmNet 115

Second, ability of specialists to extend their know-how to learn contiguous skills

increases performances of the network as the repertoire of diverse skills required to

complete incoming tasks gets larger. Third, performances of the network greatly

improve as we assume that product managers are able to search within the network

specialists bearing specific skills. In this case, fluidity of teams boundaries increases

performances of the network. Fourth, when nodes have individual incentives that

suggest them to connect to other nodes that are simply richer of more connected,

performances of the network decrease. In this case, rigidity of teams boundaries im-

proves performances of the network. Fifth, group-based reward mechanisms abate

networks performances when content of tasks to be completed changes dynamically

but the value attached to each task remains stable. Finally, for low or high degree

of nodes connectivity, a problem of diverging incentives emerges between specialists

and product managers. Specialists may have an incentive to search connection to

product managers that are scarcely connected to find structural holes in the network

and exploit bargaining power. When specialists are able to exploit structural holes,

they increase their personal wealth at the cost of decreasing the ability of the firm

to complete tasks.

Chapter 8

Discussion

In this thesis we proposed a novel approach to study the problem of task allocation

in firms working in a knowledge based economy. Our work contributes to the stud-

ies in organization theory and the aim was to study some plausible self-organizing

mechanism through computer simulation, developing hypothesis which can be tested

with future research. We designed different approaches to our problem, approaches

which have been experimented with the FirmNet model (Mollona and Marcozzi, 2008

[68, 66, 67]; Mollona and Marcozzi, submitted [69]). Given the increasing knowledge

intesity of jobs, the role of firms as integrators of know-how and skill, becomes cru-

cial but as economic activity becomes mainly intellectual the traditional hierarchical

control may result ineffective (Hodgson, 1999 [44]). Sometimes managers in a firm

may not be able to assign the right skill to a particular job and individuals must be

able to self-elige for jobs leading to an auto-formation of team. Given this particular

nature of firms in a knowledge economy, we decided to draw inspiration from Peer-

to-Peer networks to design companies. In particular we looked at gossiping, using

it directly to have a peer selection mechanism (Newscast). We considered this as

a network of acquaintances which is independent from the network of links related

to the teams in the firm. P2P networks are decentralized, have shared ownership

reducing costs of owing the system and are self-organized leading to the emergence

of global order without the presence of a central authority. In our opinion these

characteristics can be found also in knowledge-based firms, that’s why we designed

Chapter 8. Discussion 117

our FirmNet model looking at P2P networks.

An important help in understanding the dynamics underlying the emergence of

teams, came from the study of social modeling through the means of computational

sociology modelling and simulations techniques, especially from the tag systems,

the translation of which in an explicit network topology lead initially to the SLAC

protocol (Hales, 2002 [37]; Marcozzi et al. 2005, [59]). SLAC is the protocol from

which we took inspiration for developing the mechanism we described over the thesis,

mechanism which we adopted for the organization of the individuals in the firm. We

developed an agent-based model using Peersim, a P2P network simulator [105]. We

started with a model describing a basic situation and then we incrementally added

components and variables to articulate more the scenario of our investigation.

The first step that we did was to compare two different approaches: a hierar-

chical one versus a marked-based one (we called this self-organizing, SO). The SO

approaches also included some evolutionary routines with which nodes were coping

the strategies of those performing better. The idea was to understand the bound-

aries of the applicability of authority in an environment in which skills are mainly

intellectual. We found that hierarchy gives better results in terms of tasks completed

than the market-based mechanism but its structure has more costs. Moreover we

found that as the environment of the task becomes more dynamic, percentage of

task completed decreases showing similar results as the SO approach. Hence our

first finding was that a stable environment matches the best with a centralized form

of organization while a dynamic environment demands an organization with high

individual autonomy.

From this first work we also noted that the structure of the network matters and

that very clustered networks perform better. Following this line we focused more

on the self-organizing approach, articulating more the mechanisms related to the

movement of the nodes in the network for the formation of teams. We tested six

different mechanism divided in two categories: “closed team rewiring” and “open

team rewiring”. In the first, all the rewiring mechanisms implied that a node who

wants to join a team has to leave the old one; the second permitted to a node to

118 Chapter 8. Discussion

stay in different teams. Here we also tested three different task environments: static

with static task payoff, dynamic with static task payoff and dynamic with variable

task payoff. We found that in general the “open” approach gives better results; this

indicates that keeping old good ties creates a good starting point when a new team

must be assembled for a new task.

Basing on the fact that in a knowledge economy the nominal supervisor is not

always able to connect skills with jobs and that the needed skills are not always

available and hence must be built, we introduced another version of our model in

which some learning mechanisms are present. We also increased the number of skills

available in the system, finding that even in a static environment, when the range

of skills increases and hence the organization process becomes more arduous, a hi-

erarchical approach results less effective than a self-organizing one. We gave to the

nodes the ability to learn the skill needed by the manager or to pass the job to one

of its neighbors. We found that these mechanisms enhance the performances of the

firm respect to the cases in which such possibilities were not taken into account.

We also tested the same approach introducing some kind of “strategies” evolution,

letting nodes copy the attitudes at learning the job and attitude at passing the job of

the nodes with higher wealth. We also introduced a novel rewiring mechanism with

which employees tend to make new ties with managers linked only to few neighbors.

Until this point we said that having a large number of links is a good thing. We

found that highly clustered networks gives better results than low clustered ones

and that employees may have a preference for connecting to managers with high

degree. What happens if employees try to link to managers with only few links? We

found that this is too simple and is able to give some advantages only to the single

specialist adopting it (in terms of wealth); in terms of completed task the firm per-

forms worse. Finally we compared “individual” and “group” reward policies finding

that in general group reward gives better results when the task environment is static.

We are aware that the contribution presented in this work and summed up

above, has lot of limitations leaving open questions and suggesting directions the

Chapter 8. Discussion 119

work should be brought on. First of all we did not consider any kind of costs

related to the connection between the individuals in the firm. We argued that in

general the more clustered the network is and the more links a nodes have, the

better results can be obtained. But what happens if maintaining links implies a

cost? We assumed that since the skills are intellectual, communications between

specialist take place mainly over electronic devices like the internet which implies

very low costs. Sometimes those communications may need higher costs like for

example traveling. We think that this point must be investigated.

Another point that we did not take into account is the honesty of the individuals:

we said that links are made according to some particular rules, like for example

making a link to a rich node, or to a node with high degree or to a node with a

certain skill. But what happens if agents lie and declare a fake information? How

can the system (firm) react to this fault?

In this work we also did not take into account the problem of specialists turnover.

The problem of turnover has been widely studied both in organization sciences

(Dineen and Noe, 2003 [25]; Marks et al., 2001 [58]; Zoethout et al., 2007 [104])

and in computer sciences (Rhea et al., 2004). Nodes in the network may suddenly

leave and be replaced by others bearing different skills. We expect that dynamic

task environments should not suffer of this turnover while static task environments

could see a massive worsening of performances. We think that to comprehend the

process of adaptation of teams and newcomers, computer simulation may be a good

tool.

Finally, in this work we have always considered a situation in which project

managers were defined a priori and never changed over the time, implying a kind of

authority which decided who has to be manager. Novel forms of organization (Ben-

kler, 2006 [7]), propose that in some cases also project managers should be defined

at run-time, according to some feature of the individual which may be its current

capabilities or its current position in the network (its centrality). In this respect

we are working on a model bearing inspiration from the literature on SuperPeer

networks (Yang and Garcia-Molina, 2003 [102]; Jesi et al., 2007 [49]). In this new

120 Chapter 8. Discussion

model, tasks may be initially assigned at random with uniform probability (as in our

model) to a certain number of nodes in the network (these nodes called SuperPeer,

SP). Then the more task a SP has completed, the more probability it has to receive

a new task in the next round. Anyway the number of SPs receiving a task in each

round is fixed. When new tasks are generated, if there are some busy SPs (because

the task is not completed yet), they will be assigned to random nodes in the network

(non SP) which will then have the probability to become SP (completing tasks). The

development of this new model is still at an early stage, but we think that it can

well represent new organizational needs related to the Knowledge-Based Economy.

References

[1] Adler, P. S. (2001), “Market, Hierarchy, and Trust: The Knowledge Economy

and the Future of Capitalism”; Organization Science, 12(2): 215-234.

[2] Axelrod, R. (1997) “The complexity of cooperation: Agent-based models of

competition and collaboration”. Princeton, NJ: Princeton University Press.

[3] Axtell, R. L. (1999), “The Emergence of Firms in a Population of Agents”;

Working paper 99-03-019, Santa Fe Institute: Santa Fe, New Mexico.

[4] Batista, D.M., da Fonseca, N. L. S. (2007) “A Brief Survey on Resource Al-

location in Service Oriented Grids”, in Proc. of Globecom Workshops, 2007

IEEE.

[5] Babaoglu, O., Geoffrey Canright, Andreas Deutsch, Gianni Di Caro, Frederick

Ducatelle, Luca Gambardella, Niloy Ganguly, Mark Jelasity, Roberto Monte-

manni and Alberto Montresor (2005) “Design Patterns from Biology for Dis-

tributed Computing”.Proceedings of the European Conference on Complex Sys-

tems 2005, Paris.

[6] Benkler, Y. (2006) “The Wealth of Networks”. Free book available at

http://www.benkler.org/

[7] Benkler, Y. (2002) “Coases Penguin, or, Linux and The Nature of the Firm”.

Available at http://www.benkler.org/

[8] Brown, J. S. and P. Duguid (2001), “Knowledge and organization: A social-

practice perspective”, Organization Science, 12(2): 198-213.

122 References

[9] Bredin, J., Kots, D. and Rus, D. (1998) Market-based Resource Control for

Mobile Agents. In Proceedings of “Autonomous Agents” Copyright 1998 by

Association of Computing Machinery (ACM), pp. 197-204

[10] Bruun, C. (2006) “Advances in Artificial Economics” Springer 2006, ISBN

3540372474, pages 294.

[11] Brusoni, S., Prencipe, A. and K. Pavit (2001), “Knowledge specialization, or-

ganizational coupling, and the boundaries of the firm: why do firms know more

than they make?”; Administrative Science Quarterly, 46: 597-621.

[12] Burgeelman, R. A. and Mittman, B. S. (1994) “An intraorganizational eco-

logical perspective on managerial risk behaviour, performance, and survival:

individual, organizational, and environmental effects”. In J. A. C. Baum and

J. V. Singh (Eds.), Evolutionary dynamics of organizations. Oxford University

Press

[13] Burns, T. and G. M. Stalker (1961), “Management of Innovation”, London:

Tavistock Publications.

[14] Carley, K. M. (1992), “Organizational Learning and Personnel Turnover”, Or-

ganization Science, 3(1): 20-46.

[15] Carley, K. M. and Z. Lin (1997), “A Theoretical Study of Organizational Per-

formance under Information Distortion”, Management Science, 43(7): 976-997.

[16] Cascio, Wayne F. and Aguinis, Herman(2008) “Staffing Twenty-first-century

Organizations”. The Academy of Management Annals, 2:1,133 – 165

[17] Chattoe, E. (1998) “Just how (un)realistic are evolutionary algorithms as rep-

resentations of social processes?”. Jounal of artificial social sciences simulation,

1(3): 2.1 – 2.36.

[18] Cohen, A. M. (1962), “Changing Small-Group Communication Networks”, Ad-

ministrative Science Quarterly, 6(4): 443-462.

References 123

[19] Cohen. A. M., Bennis, W. G. and G. H. Wolkon (1962), “The Effects of Changes

in Communication Networks on the Behaviors of Problem-Solving Groups”,

Sociometry, 25(2): 177-196.

[20] Cohen, M. D., March, J. G and J. P. Olsen (1972), “A Garbage Can Model of

Organizational Choice”, Administrative Science Quarterly, 17(1): 1-25.

[21] Cohen, A. M., Robinson, E. L. and J. L. Edwards (1969), “Experiments in

Organizational Embeddedness” , Administrative Science Quarterly, 14(2): 208-

221, Laboratory Studies of Experimental Organizations.

[22] Davis-Blake, A. and B. Uzzi (1993), “Determinants of Employment External-

ization: A Study of Temporary Workers and Independent Contractors”; Ad-

ministrative Science Quarterly, 38(2): 195-223.

[23] Davis J. P., Eisenhardt K. M and Bingham C. B. (2007) “Developing theory

through simulation methods”. Accademy of Management Review. Vol. 32 No.

2, pp. 480 – 499.

[24] Dickinson, D. L.and R. M. Isaac (1998), “Absolute and relative rewards for

individuals in team production, Managerial and Decision Economics”, 19(4/5),

Laboratory Methods in Economics: 299-310.

[25] Dineen, B.R. and Noe, R.A. (2003) “The impact of team fluidity and its im-

plications for human resource management research and parctice”, Research in

Personnel and Human Resource Management, 22, 1 – 37.

[26] Druschel. P. and Rowstron, A. (2001). “PAST: A Large-Scale, Persistent Peer-

to-Peer Storage Utility” . The Legion Vision of a Worldwide Virtual HotOS

VIII, Schloss Elmau, Germany, May 2001.

[27] Dubin, R. (1976) “theory building in applied areas”. In M. Dunette (Ed.),

Handbook if industrial and organizational psychology: 17 – 40.

124 References

[28] Epstein, J. M. and R. Axtell (1996), Growing Artificial Societies: Social Science

from the Bottom Up. MIT Press and Brookings Institution Press: Cambridge,

Massachusetts, and Brookings Press: Washington, D.C.

[29] Faraj, S. and L. Sproull, (2000) “Coordinating expertise in software develop-

ments teams”, Management Science, 46(12): 1554-1568.

[30] Forrester, J. W. (1961). “Industrial dynamics”. Cambridge, MA: The MIT

Press.

[31] Foss, N. (2005), “Strategy, Economic Organization, and the Knowledge Econ-

omy”. The coordination of firms and resources. Oxford University Press.

[32] Gallegati M. and Richiardi M. (2008), “Agent-based Modelling in Economics

and Complexity”, in Meyer B. (ed.), ‘Encyclopedia of Complexity and System

Science’, Springer, forthcoming.

[33] Gavetti, G., Levinthal, D., and Rivkin, J. W. (2005). “Strategy making in novel

and complex worlds: The power of analogy”. Strategic Management Journal,

26, 691712.

[34] Gilbert, N. and Troitzsch, K. G. (2005). “Simulation for the social scientist”

(Second ed.). Milton Keynes: Open University Press.

[35] Glance, N. S., Hogg, T. and B. A. Huberman (1994), “Training and Turnover

in the Evolution of Organizations”, Organization Science, 8(1): 84-96.

[36] Gordon, D. M. (2001) “Task Allocation in Ant Colonies”, in Segel, L. A. and

Cohen, I. R. (eds.), Design Principles for Immune System and Other Distributed

Autonomous System, Oxford Univ. Press.

[37] Hales, D. (2002), “Evolving Specialisation, Altruism and Group-Level Opti-

misation Using Tags”. In Sichman, J. S., Bousquet, F. Davidsson, P. (Eds)

Multi-Agent-Based Simulation II. Lecture Notes in Artificial Intelligence 2581,

pp.26-35 Springer.

References 125

[38] Hales, D. and S. Arteconi (2006), “SLACER: A self-organizing protocol for

coordination in peer-to- peer networks”. IEEE Intelligent Systems, 21(2):29-

35.

[39] Hales, D.; Marcozzi, A.; Cortese, G. (2007) “Towards Cooperative, Self-

Organised Replica Management”. Short paper. In proc. 1st IEEE International

Conference on Self-Adaptive and Self-Organizing Systems (SASO). Boston, MA

(USA).

[40] Hart, S. and M. Kurz (1983), “Endogenous formation of coalitions”, Economet-

rica, 51(4): 1047-1064.

[41] Hayek, F. A. (1945), “The use of knowledge in society”, The American Eco-

nomic Review, 35(4): 519-530.

[42] Haveman, H. A. (1993), “Organizational size and change: diversification in the

savings and loan industry after deregulation”; Administrative Science Quar-

terly, 38: 20-50.

[43] Hoegl, M. and H. G. Gemuenden (2001), “Teamwork quality and the success

of innovative projects: A theoretical concept and empirical evidence”, Organi-

zation Science, 12(4): 435-449.

[44] Hodgson, G. M. (1999) “Economics & Utopia”; London, Routledge.

[45] Hunt, R. G. (1976) “On the work itself: Observations Concerning Relations

between Tasks and Organization Processes”. In E.J. Miller (ed.) Task and Or-

ganization, Tavistock Institute of Human Relations, London.

[46] Jelasity, M. and M. van Steen (2002), “Large-Scale Newscast Computing on

the Internet”. Internal Report IR-503, Vrije Universiteit Amsterdam.

[47] Jelasity, M and Babaoglu, O. (2005) “T-Man: Gossip-based Overlay Topol-

ogy Management” In Proceedings of Engineering Self-Organising Applications

(ESOA05).

126 References

[48] Jelasity, M., Montresor, A. and Babaoglu, O. (2005) “Gossip-based aggregation

in large dynamic networks”. ACM Transaction Computer systems. Vol. 23:219–

252. ACM Press.

[49] Jesi, G. P., Montresor, A. and Babaoglu, O. (2007) “Proximity-aware Superpeer

Overlay Topologies”. IEEE Transactions on Network and Service Management

(TNSM). Number 2, Vol. 4, pp. 74 – 83.

[50] Kim, W. C. and R. Mauborgne (1998), “Procedural justice, strategic decision

making, and the knowledge economy”, Strategic Management Journal, 19(4):

323-338.

[51] Kirkman, B. L. and B: Rosen (1999), “Beyond self-management: Antecedents

and consequences of team empowerment”. The Academy of Management Jour-

nal, 42(1): 58-74.

[52] Ibarra, H. (1992), “Structural alignments, individual strategies, and managerial

action: Elements toward a network theory of getting things done, in Network

and Organizations. Structures, Form, and Action”, Nohria, N. and R. G. Eccles

(eds.), Harvard Business School Press, Boston, MA.

[53] Langley, A. (1999). “Strategies for theorizing from process data”. Academy of

Management Review, 24(4).

[54] Leavitt, H. J. (1951), “Some Effects of Certain Communication Patterns on

Group Performance”, Journal of Abnormal and Social Psychology, 46: 38-50.

[55] Lin. Z. and K. M. Carley (1997), “Organizational Response: The Cost Perfor-

mance Tradeoff”, Management Science, 43(2): 217-234.

[56] Malone, T. W. (1987), Modeling Coordination in Organizations and Markets,

Management Science, 33(10): 1317-1332.

[57] March, J. G. (1991) “Exploration and Exploitation in Organizational Learn-

ing”, Organization Science, vol 2: pp. 71–87.

References 127

[58] Marks, M.A, Mathieu, J.E. and Zaccaro, S.J. (2001), “A temporarly based

framework and taxonomy of team precesses”, Academy of Management Review,

26 (3), 356 – 376.

[59] Marcozzi, A.; Hales, D.; Jesi, G.; Arteconi, S.; Babaoglu, O. (2005) “Tag-

Based Cooperation in Peer-to-Peer Networks with Newscast”. Full paper. In

Self-Organization and Autonomic Informatics (I), Volume 135 Frontiers in Ar-

tificial Intelligence and Applications, Edited by: H. Czap, R. Unland, C. Branki

and H. Tianfield, IOS Press, Netherlands.

[60] Marcozzi, A.; Hales, D. (2008) “Emergent Social Rationality in a Peer-to-Peer

System”. Advances in Complex Systems (ACS), Volume No. 11, Issue No. 04.

September 2008. World Scientific Press

[61] Marschak and Radner (1972), “Economic Theory of Teams”. New Haven, Lon-

don, U.K.

[62] M. Masuch and P. LaPotin (1989), Beyond Garbage Cans: An Al Model of

Organizational Choice, Administrative Science Quarterly, 34(1): 38-67.

[63] Matusik, S. F. and C. W. L. Hill (1998), “The utilization of contingent work,

knowledge creation and competitive advantage”, Academy of Management Re-

view, 23, 4: 680-697.

[64] McGrath, J. E., Arrow, H., and Berdahl, J.L. (2000) “The study of groups:

Past, Present and Future”, Personality and social psychology revie, 4, 95 – 105.

[65] Moch, M. K. and E. V. Morse (1977), “Size, centralization and organizational

adoption of innovation”; American Sociological Review, 42: 716-725.

[66] Mollona, E. and Marcozzi, A. (2008) “Prestige and Search for Glory. Individual

Incentives and Self Emerging Coordination Mechanisms in Knowledge Integra-

tion Processes”. In proc. of EURAM 2008. Ljubljana, Slovenia.

128 References

[67] Mollona, E and Marcozzi, A. (2008) “Self-Emerging Coordination Mechanisms

for Knowledge Integration Processes”. In proc. of ESSA 2008. Brescia, Italy

[68] Mollona, E. and Marcozzi. A. (2008) “FirmNet: The Scope of Firms and the

Allocation of Task in a Knowledge-Based Economy”. Journal of Computational

and Mathematical Organization Theory (CMOT), Springer. December 2008.

[69] Mollona, E. and Marcozzi. A. (submitted) “Skill Integration in Dynamic

Task Environments: Decentralised Decision-Making, Organizational Morphol-

ogy and Self-Organising Partitioning of Specialised Skills”. Submitted to the

EURAM 2009 Conference.

[70] Mollona E. (2008) “Computer simulation in social sciences”. Journal of Manage

Governance; Vol. 12, No 2.

[71] Mueller, R.A., Duda, M. R., O’Haire, S. M. (1984) “A survey of resource al-

location methods in optimizing microcode compilers”, ACM SIGMICRO, Vol.

15, Issue 4, pp. 285 – 295.

[72] Natter, M., A. Mild, M. Feurstein, G. Drffner and A. Taudes (2001), “The

effect of incentive schemes and organizational arrangements on the new product

development process”, Management Science, 47(8): 1029-1045.

[73] Ouchi, W. G. (1979) “A Conceptual Framework for the Design of Organiza-

tional Control Mechanisms”, Management Science, 25(9): 833-848.

[74] Priem, R. L. and Butler, J. E. (2001) “Is the resource-based ‘view’ a useful per-

spective for strategic management research?. Academy of Management Reviw,

26: 22 –41.

[75] Repenning, N. (2002) “A simulation-based approach to understanding the dy-

namics of innovation implementation”. Organization Science, 13: 109 – 127.

[76] Rapoport, A and J. P. Kahan (1984), “Coalition formation in a five-person

market game”, Management Science, 30(3): 326- 343.

References 129

[77] W. Rice, and Mahon B.(2000). “Peer Networking”. Deutsche Banc Alex. Brown

White Paper.

[78] M. Ripeanu; I. Foster and A. Iamnitchi (2002) “Mapping the Gnutella Network:

Properties of Large-Scale Peer-to-Peer Systems and Implications for System

Design”. IEEE Internet Computing, 6(1), February 2002.

[79] Rudolph, J., and Repenning, N. (2002) “Disaster dynamics: Understanding the

role of quantity in organizational collapse”. Administrative Science Quarterly,

47(1), 1 – 30.

[80] Podolny, J.M. and Page, K.L. (1998) “Netork forms of Organization”. Annual

review of sociology, Vol. 24: 57 –76.

[81] Powell, W. W. (1990). “Neither market nor hierarchy: Network forms of orga-

nization”. In Organizational Behavior, 12, 295-336

[82] Rowstron, A.I.T. and Druschel, P. (2001) “Pastry: Scalable, decentralized ob-

ject location, and routing for large-scale peer-to-peer systems”. In Midd leware

01: Proceedings of the IFIP/ACM International Conference on Distributed Sys-

tems Platforms Heidelberg, pages 329-350, London, UK, 2001. Springer-Verlag.

[83] Sah, R. K. and J. E. Stiglitz (1986), The Architecture of Economic Systems:

Hierarchies and Polyarchies, The American Economic Review, 76(4): 716-727.

[84] Saxberg, B. O. and J. W. Slocum (1968), “The Management of scientific man-

power”, Management Science, 14(8): B473-B489.

[85] Schelling, T.C. (1978). “Micromotives and Macrobehaviour”. W.W.Norton and

Company

[86] Seidmann, D. J. and E. Winter (1998), “A theory of gradual coalition forma-

tion”, The Review of Economic Studies, 65(4): 793-815.

130 References

[87] Simon, H.A. (1996). “The patterned matter that is mind”. In D.M. Steier and

T.M. Mitchell (Eds.), Mind matters: A tribute to Allen Newell (Chapter 11).

Mahwah, NJ: Erlbaum

[88] Steiner, I.D. (1972) “Group process and productivity”. New York and London:

Ac. Press Inc.

[89] Stoica, I., Morris, R., Karger, D., Kaashoek, F. and Balakrishnan, H. (2001).

“Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications”.

Proceedings of the SIGCOMM, pp 149-160.

[90] Strom, D. (2001). “Businesses Embrace Instant Messaging”. January

2001 enterprise.cnet.com/enterprise/09534-7-440339534-7-4403317.html.9534-

7-4403317.html.

[91] Tapscott, D. and Williams, A. D. (2007) “Wikinomics (La collaborazione di

massa che sta cambiando il mondo)”. Rizzoli Editore.

[92] Von Krogh, G. (2003) Open-Source Software Development. In MIT Sloan Man-

agement Review, vol. 44, no. 3

[93] Wageman, R. (2001), “How leaders foster self-managing team effectiveness:

Design choices versus hands-on coaching”, Organization Science, 12(5): 559-

577.

[94] Weick, K. E.(1979) “The social psicology of Organizing”. 2nd ed., New York:

McGraw-Hill.

[95] Weick, K. E. (1989) “Theory construction as disciplined imagination”, Academy

of Management Review, 14: 516 – 531.

[96] Wilke, H. A. M. and Meertens, R. W. (1994) “Group Performance”, London

(etc.): Routledge.

References 131

[97] williams, K. Y., and O’Reilly, C.A.III. (1998) “Demography and diversity in

organizations: A review of 40 years of research”, Research in Organizational

Behavior, 20, 77 -. 140.

[98] Williamson, Oliver E. (1985) “The Economic Institution of Capitalism: Firms,

Markets, Relational Contracting”. The free press, New York.

[99] Williamson, Oliver E. (1991) “The Logic of Economic Organization”, 1991, in

Williamson and Winter, editors, Nature of the Firm.

[100] Wood, R. E. (1986) “Task complexity: definition of the construct”, Organiza-

tional Behavior and Human Decision Processes, 37, 60 – 82.

[101] Wright, P. W, and S. A. Snell (1998), “Toward a unifying framework for

exploring fit and flexibility in strategic human resource management”, The

Academy of Management Review, 23(4): 756-772.

[102] Yang, B. and Garcia-Molina, H. (2003) “Designing a Super-peer Network”.

IEEE International Conference on Data Engineering (ICDE’03).

[103] Zoethout, K. (2006) “Self-Organising Processes of Task Allocation”, PhD The-

sis, Rijksuniversiteit Groningen.

[104] Zoethout, K., Jager, W, and Molleman, E., (2007), “Newcomers in Self-

Organising Task Groups: a Pilot Study”, Advancing Social Simulation: The

First World Congress, Tokyo, Springer-Verlag.

[105] http://peersim.sourceforge.net.

[106] SETI@Home – http://setiathome.berkeley.edu/ – Last visited November 2008.

[107] FightAIDS@Home – http://www.worldcommunitygrid.org/ – Last visited

November 2008.

[108] AfricanClimate@Home – http://www.worldcommunitygrid.org/ – Last visited

November 2008.

132 References

[109] Linux – http://www.linux.org – Last visited December 2008.

[110] Wikipedia – http://www.wikipedia.org – Last visited December 2008.

[111] Yahoo! – http://www.yahoo.com – Last visited November 2008.

[112] Jabber – http://www.jabber.org – Last visited November 2008.

[113] Skype – http://www.skype.com – Last visited November 2008.

[114] Napster – http://www.napster.com – Last visited November 2008.

[115] Kazaa – http://www.kazaa.com – Last visited November 2008.

[116] Kazaa – http://www.planet-lab.org – Last visited November 2008.

Appendix A

The Peersim System

Peersim is a P2P networks simulator developed at the Department of Computer

Science at the University of Bologna. It is written in Java and it is highly modular.

We implemented our FirmNet model in Peersim. This appendix gives an overview

of it’s features.

A.1 Introduction

Evaluating the performance of P2P protocols is a complex task. One of the main

problems for their evaluation, is the extremely large scale that they may reach. P2P

networks involving hundred of thousands of peers (or more) are not uncommon (e.g.,

about 5 millions machines are reported to be connected to the Kazaa/Fasttrack [115]

network). In addition P2P systems are highly dynamic environments; they are in a

continuous state of flux, with new nodes joining and leaving (or crashing).

These properties are very challenging to deal with. Evaluating a new protocol

in a real environment, especially in its early stages of development, is not feasible.

Distributed planetary-scale open platforms (e.g., Planet-Lab [116]) to develop and

deploy network services are available, but these solutions do not include more than

about 500 (at the time of writing) nodes. Thus, for large-scale systems, a scalable

simulation test bed is mandatory.

134 Appendix A. The Peersim System

The Peersim P2P simulator [105] has been developed with the aim to deal with

the previously stated issues. Its first goals are: extreme scalability and support for

dynamism. It is a GPL open-source Java based software project. In the following,

we provide a brief description of its characteristics.

A.1.1 Peersim Design Goals

The Peersim simulator is inspired by mainly two objectives:

• High scalability: P2P networks may be composed by millions of nodes. This re-

sult can be achieved only with a careful design of the data structures involved,

trying to avoid (when possible) any overhead. But the memory footprint is

not the only problem: the simulator engine must be also efficient.

• Support for dynamism: the simulator must manage nodes joining and leaving

the network at any time; this feature has tightly relations with the engine

memory management sub-system.

Another important requirement is the modular or component inspired architec-

ture. Every entity in the simulation (such as protocols and the environment related

objects) must be easily replaceable with similar type entities.

The Peersim extreme performances can be reached only accepting some relaxing

assumptions about the simulation details. For example, the overhead introduced by

the low level communication protocol stack (e.g., TCP or UDP) in not taken into

account because of the huge additional memory and CPU time requirements needed

to accomplish this task.

A.1.2 Peersim Architecture

As previously stated, Peersim is inspired by a modular and very configurable paradigm,

trying to limit any unnecessary overhead. The simulator main component is the

Configurator entity targeted to read configuration files. A configuration file is a

plain ASCII text file, basically composed by key-value pairs. The Configurator is

Appendix A. The Peersim System 135

the only not interchangeable simulation component. All the other entities can be

easily customized.

In a Peersim simulation, the following three distinct kind of elements can be

present: protocols, dynamics and observers. Each of them is implemented by a Java

class specified in the configuration file. The network in the simulation is represented

by a collection of nodes and each node can hold one or more protocols. The com-

munication between node protocols is based on method calls. To provide a specific

kind of service, each component must implement a specific interface. For example

a protocol has to implement at least the Protocol or CDProtocol interface to run

on Peersim.

Peersim has an utility class package to perform statistic computations or to

provide some starting topology configuration based on well know models (such as:

random-graph, lattice, BA-Graph,. . .).

The Simulator engine is the component that performs the computation; it has to

run the component execution according to the configuration file instructions. At the

time of writing, Peersim can perform simulation according to the following execution

models:

• Cycle based: at each step, all nodes are selected in a random fashion and each

node protocol is invoked in turn;

• Event based: a support for concurrency is provided. A set of events (messages)

are scheduled in time and node protocols are run according to the time message

delivery order.

This thesis work is based on the first simulation model.

A.1.3 FirmNet Implementation Issue

An implementation issue of our model consists in the interleaving of the applica-

tion level related operations and the rewiring periodically performed in FirmNet.

Since the application is performed continuously while the Network Evolution phase

136 Appendix A. The Peersim System

(rewiring) takes place periodically, application level operations (Interaction phase)

are defined on a per-cycle basis, while rewiring operations will be performed at every

simulation cycle. The easiest way to achieve this is to force rewiring not to be exe-

cuted at any cycle, but only at regular intervals and to be idle the rest of the time.

Defining a fixed period of execution though implicitly defines a strong synchronism

among nodes, with all of them executing the rewiring at regular intervals and at the

same time. To get around this we defined a probability of execution rather than

a period of execution in rewiring so that at each cycle the rewiring phase can be

executed with some given probability. This simple mechanism destroys the syn-

chronicity between nodes maintaining the average period of execution of rewiring.

An N cycles synchronous period can be redefined in an asynchronous way just by

defining a probability of execution per cycle equal to 1/N , so to obtain the result of

having each node executing, on average, a reproduction step every N cycles. The

parameter describing the probability for each node to rewire at each cycle is called

rewiring probability .

Through these different synchronization models we are modelling the notion

that informations updates for some application tasks might be instantaneous and

asynchronous, for example, neighbor nodes might provide requested resources im-

mediately in some application tasks.

Appendix B

The Newscast Protocol

B.1 Introduction

Newscast [46] is a gossip-based topology manager protocol. Its aim is to continoulsy

rewire the (logical) connections between hosts. The rewiring process is designed in

such a way that the resulting overlay is very close to a random graph. The generated

topology is thus very stable and provides robust connectivity. This protocol has been

used successfully to implement several P2P protocols, including broadcast [46] and

aggregation [48].

As in any large P2P system, a node only knows about a small fixed set of other

nodes (due to scalability issues), called neighbours. In Newscast, the neighbourhood

is represented by a partial, fixed c size view of node descriptors composed by a node

address and a logical time-stamp (e.g., the descriptor creation time).

Referring to the usual gossip scheme (see Figure B.1), the protocol behaviour

while(TRUE) do

wait(∆t);

neighbour = SELECTPEER();

SENDSTATE(neighbour);

n state = RECEIVESTATE();

my state.UPDATE(n state);

while(TRUE) do

n state = RECEIVESTATE();

SENDSTATE(n state.sender);

my state.UPDATE(n state);

(a) Active Thread (b) Passive Thread

Figure B.1: The gossip paradigm.

138 Appendix B. The Newscast Protocol

F/5 D/5 O/5 I/5 J/4

C/5 E/5 B/5 W/4 H/4 A/6

A/6 E/5 C/5 I/5 O/5 F/5 D/5 H/4 W/4 J/4B/5

Node B

Update

C/5 E/5 B/5 W/4 H/4

F/5 D/5 O/5 I/5 J/4 B/6

B/6 E/5 C/5 I/5 O/5 F/5 D/5 H/4 W/4 J/4

Node A

Update

State Exchange

Figure B.2: A Newscast exchange between node A (active) and B. Each node has

its own 5 descriptor elements view depicted inside the ellipses. A descriptor is a

node-ID, timestamp pair. After the state exchange node A has received the node B

view and viceversa; then each partecipant merges the received view with its own.

The result is depicted under the empty arrow: each node has selected the “freshest”

descriptors at random and has discarded the others (those inside the ellipse) to

obtain new 5 element view. Note that in this basic example, each node sends its

entire view; however, the view can be purged by “old” descriptors before sending.

performs the following actions: selects first a neighbour from the local view, ex-

changes the view with the neighbour, then both participants update their actual

view according to the received view. The data actually sent over the network by

any Newscast node is represented by the node’s own descriptor plus its local view.

In Newscast, the neighbour selection process is performed in a random fashion

by the SELECTPEER() method. The UPDATE() method is the Newscast core

behaviour. It merges (
⋃

operation) a received view (sent by a node using SEND-

STATE()) with the current peer view in a temporary view list. Finally, Newscast

trims this list to obtain the new c size view. The node descriptors discarded are

chosen from the most “old” ones, according to the descriptor time-stamp. This

approach changes continuously the node descriptors hold in each node view; this

implies a continuous rewiring of the graph defined by the set of all node views. This

behaviour is shown in Figure B.2.

Appendix B. The Newscast Protocol 139

Even though the system is not synchronous, we find it convenient to describe the

gossip-scheme execution as a sequence of consecutive real time intervals of length ∆

(see the “wait” statement in pseudo-code in Figure B.1), called cycles or rounds.

The protocol always tends to inject new informations in the system and allows

an automatic elimination of old node descriptors using the aging approach. This

feature is particularly desirable to remove crashed node descriptors and thus to

repair the overlay with minor efforts. In addition, the protocol does not require any

clock synchronization, but only that the timestamp of node descriptors in each view

are mutually consistent.

The topology generated by Newscast has a low diameter and it is close to a

random graph having out-degree c. Experimental results proved that a small 20

elements partial view is already sufficient for a very stable and robust connectivity,

regardless of the network size.

Newscast is also cheap in terms of network communication. The traffic generated

by the protocol involves the exchange a few hundred bytes per cycle for each peer

and is estimated in [46].

A protocol such as Newscast provides a service to pick random nodes from the

whole network and we can call it Randomizer Service (or peer sampling service).

The chance to extract a fresh new node, selected at random from the whole network,

is a high desiderable source of information for P2P protocols. We can consider

such a service as a building block for many P2P protocols. In this vision, the cost

effectiveness of Newscast is very useful, because the Randomizer Service has to be

always-on and run by all peers involved in the overlay.

Such a randomizer service can also be a key component during the initialization

phase (bootstrap) for any higher level protocol in order to fill its view at the begin-

ning. We use Newscast both as a randomizer service (peer sampling service) and as

a bootstrap facility in the Peersim implementation of the FirmNet model. Indeed,

at cycle 0 of our simulations, the FirmNet network is identical to the Newscast net-

work; then the former evolves according to the rewiring mechanisms described over

the whole thesis and the latter evolves according to the Newscast protocol described

140 Appendix B. The Newscast Protocol

in this chapter.

	Abstract
	List of Figures
	Introduction
	Research Context: the Knowledge Based Economy
	The Task Allocation problem
	Research Questions
	Thesis Plan

	Literature Review
	The Knowledge-Based Economy
	Hierarchy and Market

	Specialisation, Communication and Coordination
	The Problem of Adaptation
	Hierarchical and Decentralized Structures in Problem-Solving
	Teamwork and decentralized decision making

	Staffing the Twenty-first-century Organizations
	Peer-to-Peer Networks
	P2P characteristics
	Peer-production

	Network Organization
	Complex Systems

	Methodology: Computer Simulation in social and managerial sciences
	Simulation in social science
	The economy as a Complex Adaptive System
	Agent-Based Computational Economics
	Theory Development with Simulation
	Finding an intriguing research question
	Choose a Simulation Approach
	Create the computational representation
	Experiment to Build Novel Theory
	Validate with Empirical Data

	The FirmNet Model
	Introduction to FirmNet
	The Task
	The Agents
	The Network

	The Simulation model
	FirmNet in Peersim

	Model Evolution

	Hierarchy vs. Market
	Introduction
	Model Overview
	The Hierarchical model
	Interaction phase
	Network Evolution phase

	The Self-Organizing model
	Interaction phase
	Network Evolution phase: CSLAC
	Network Evolution phase: CSLAC2

	Experimental configuration
	Experimental Results
	Static Environment
	Dynamic environment

	Conclusion

	Self-Organizing mechanisms for task allocation
	Model Overview
	Interaction phase
	Network Evolution phase
	Imitation phase

	Experimental settings
	Randomized Service 1: results
	Randomized Service 2: results

	Structural Analysis
	Conclusion

	Introducing Learning to FirmNet
	Introduction
	Learning in FirmNet
	Experimental setting
	Learning
	No Learning
	Evolutionary Learning
	Lower degree attachment
	Wealth performances

	Conclusion

	Discussion
	Bibliography
	References
	The Peersim System
	Introduction
	Peersim Design Goals
	Peersim Architecture
	FirmNet Implementation Issue

	The Newscast Protocol
	Introduction

