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Abstract

A single picture provides a largely incomplete represémadf the scene one is look-
ing at. Usually it reproduces only a limited spatial portimithe scene according to
the standpoint and the viewing angle, besides it contaihsinstantaneous informa-
tion. Thus very little can be understood on the geometricatture of the scene, the
position and orientation of the observer with respect tertaining also hard to guess.
When multiple views, taken from fiierent positions in space and time, observe the
same scene, then a much deeper knowledge is potentiallgvatiteé. Understanding
inter-views relations enables construction of a collectiepresentation by fusing the
information contained in every single image.

Visual reconstruction methods confront with the formidalaind still unanswered,
challenge of delivering a comprehensive representatiostratture, motion and ap-
pearance of a scene from visual information. Multi-viewwakreconstruction deals
with the inference of relations among multiple views andékploitation of revealed
connections to attain the best possible representatiois tibsis investigates novel
methods and applications in the field of visual reconstamcfrom multiple views.
Three main threads of research have been pursued: densetgieamconstruction,
camera pose reconstruction, sparse geometric reconstroétdeformable surfaces.

Dense geometric reconstruction aims at delivering the aigpee of a scene at ev-
ery single point. The construction of a large panoramic ienlagm a set of traditional
pictures has been extensively studied in the context of @nmagsaicing techniques.
An original algorithm for sequential registration suit@lfbr real-time applications has
been conceived. The integration of the algorithm into aalisurveillance system has
lead to robust andfcient motion detection with Pan-Tilt-Zoom cameras. MoV
an evaluation methodology for quantitatively assessirj@mparing image mosaic-
ing algorithms has been devised and made available to thencaoity.

Camera pose reconstruction deals with the recovery of tineatrajectory across
an image sequence. A novel mosaic-based pose reconstralgarithm has been con-
ceived that exploit image-mosaics and traditional podenesibn algorithms to deliver
more accurate estimates. An innovative markerless visased human-machine inter-
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face has also been proposed, so as to allow a user to intdthet gaming applications
by moving a hand held consumer grade camera in unstructakéeements.

Finally, sparse geometric reconstruction refers to themgdation of the coarse ge-
ometry of an object at few preset points. In this thesis, aowative shape reconstruc-
tion algorithm for deformable objects has been designeddperation with the Solar
Impulse project[56] allowed to deploy the algorithm in aywehallenging real-world
scenario, i.e. the accurate measurements of airplane wafgsmations.



Chapter 1

Introduction

An individual picture provides a largely incomplete remetsation of the scene one is
looking at. Usually it reproduces only a limited spatial fomm of the scene depending
on the viewing angle and the position of the observer. Theiapamount of visi-
ble scene can be, to some extent, traded with the level ofl;dieta a full mountain
landscape can be grabbed from far away at the cost of missiaggfiain details of
trees, bushes and skiers, whilst zooomed in snapshotsyeesaall features but lack
mountain peaks and valleys.

The amount of tonal information that can be recorded is styeestricted by the
dynamic range of traditional imaging devices, think of aebout picture of a bright
morning light panorama or a dark snapshot of a dimly lit indemvironment. The dy-
namic range may be adapted to the lighting conditions at bgrnfiguring exposure
settings properly, nonetheless the photometric richessrefil scene greatly exceeds
the capability of nowadays CCD sensors.

As the temporal dimension is concerned, only instantan@dosmation can be
recorded, any movement is frozen inside a picture, none eaknbwn about what
happens inside the scene immediately after or before theishaken. Leaving the
shutter open for a while does not usually help since lettirgcamera integrating over
time yields blurred regions where non stationary procesdasplace.

Moreover, since projective geometry admits marfjedent shapes to exhibit iden-
tical projections, very little can be inferred on the 3D getrital structure of a generic
scene from a single view, unless specific prior assumpticmasade. Because of that,
position and orientation of an observer with respect to tems remain also hard to
guess.

Visual reconstruction methods confront with the formigalaind still unanswered,
challenge of delivering a comprehensive representatiostratture, motion and ap-
pearance of a scene from visual information. Nonethelgsattdor special cases
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where single view metrology approaches obtained remaekadsiults, a comprehen-
sive reconstruction of a given scene is out of reach for sivigw algorithms. It is
well understood that visual reconstruction approachasnglon multiple views may
provide answers to that demanding calls.

1.1 Reconstruction from multiple views

The concept underpinning multiple views reconstructiggoethms is the extraction
and combination of information coming from several ovepliag views, i.e. taken
from multiple locations and ffierent instants. When information contained into sin-
gle views are properly fused together, the collective retrmigtion is superior to that
possibly attainable by analysing every single image irttiaily.

Visual reconstruction can be ideally split up in many braascdepending on the
aspect of a scene it aims at retrieving:

e geometric reconstruction it refers to the computation of the 3D structure of
a scene. This area can be further subdivided in sparse oe decsnstruction.
Sparse reconstruction encompasses a vast number of afgekhwon as “shape
from X", where X stands for the visual cues employed to penfoeconstruction,
i.e. motion, shading, defocus, ... These methods usualtyes the 3D shape of
an object by triangulating rays passing through corresjmgngbints in several
calibrated images, namely images whose positions withesp each other
is known. Sparsity refers to the fact the geometric strgcisiknown only at a
finite number of points, the structure in between to be imf@with the use of ad-
ditional constraints, usually reinforcing continuity onsothness. An example
of sparse shape reconstruction is retrieval of a triangdlatesh model of a de-
formable surface depicted in Fig.1L.1. Conversely, densensruction attempts

Figure 1.1: 2 frames taken from a sequence of 18 portraying an airplardehautlined with
the backprojection (green line) of the retrieved 3D strietf its wings.

at delivering the 3D shape at every point in the scene, sustrig¢ion typically



INTRODUCTION 5

coming along with appearance information such as colorighbress. It is usu-
ally deployed in simpler geometric scenarios and some sepitative family of
algorithms are image mosaicing and two-view dense sterduitivzely, a dense
reconstruction of the appearance of a scene may be obtaynashitbining sev-
eral images taken fromfierent viewpoints and properly stitched together so that
common parts of the scene overlap in the final picture, ugaaibbed mosaic

(see Fig[1.R).

el

Figure 1.2: (Top) 8 frames from a sequence of 680 captured by a hand-heiém@. (Bottom)
All 680 frames combined in a mosaics with much greater fielded.

e photometric reconstruction, it aims at recovering the photometric content of
a scene that might be lost due to limited dynamic range ofrtieging device
or unfavorable lighting conditions. Along the same linecamstruction takes
place by composing many snapshots taken with variable expagttings, each
of them capturing a dierent range of radiance. The combination of several over-
lapping ranges allow to extend the collective dynamic rateging to images
with typical range resolution of 16 or 24 bits per channel.

e camera pose reconstructions usually referred to as calibration and sometimes
is included in sparse geometric reconstruction algoritamsan early phase. It
addresses the problem of recovering the relative positimhagientation of set
of images with respect to a given coordinate frame. For exantpe recon-
struction of the motion trajectory of an object throughostguence can be ac-
complished by comparing a reference view of the object inei¢$ position with
all the frames of the sequence. The displacements of camepg structures
across the sequence hint at the trajectory the camera hawddl The knowl-
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edge of the position of the camera with respect to the scéygets a variety
of applications; among the most popular stands AugmenteditR€AR). An
example of Augmented Reality is displayed in Hig.] 1.3) wH&kértual objects
are realistically rendered as they were laying on top of tih@sgase counter
according to the reconstructed pose of the camera.
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Figure 1.3: 3 frames from a sequence of 420 captured by a hand held cambeaaccurate
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retrieval of camera motion allows the virtual objects toligtally lay at the same places in
every frame.

Every visual reconstruction algorithm, irrespective o ttiass it belongs to, re-
quires some kind of relations to be established among thef setalyzed images. In
order to accomplish this task two key steps are invarialdg@nt: image matching and
image registration. The former step refers to the deteeti@mhmatching of salient fea-
tures (points, areas or structures) among images. Theifidatibn of corresponding
features in multiple views hints at the presence of spatbalal or temporal relation
among the set of images. Image registration is concerndédgtquantitative compu-
tation of the inter-images relations given a set of corresjgny salient features. Both
image matching and registration are very active fields efassh and some of the most
relevant achievements will be discussed respectively apti 2.1 and chapter?2.2.

This thesis investigates on novel methods and applicatiotise field of recon-
struction from multiple views. Three main threads diredteel investigation: dense
geometric reconstruction in the context of image mosaieing its applications, mo-
tion trajectory recovery applied to mixed reality and visieased human-machine in-
terfaces, sparse structure and motion reconstructiondfmrohable surfaces. All the
algorithms conceived have been tested on both syntheticeahdnage sequences, and
data sets have been made available for researchers actire=same field.

1.2 Fields of application

Visual reconstruction encompasses a wide number of cosicielgtas and algorithms
enabling established as well as emerging technologies ppiitations. Dense geo-
metric reconstruction, in the form of image mosaicing, hiasaaly made an impact
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into the digital photography market with the continual esle of new products which
allow a handful of photos or even video stream from an haddsmerato be stitched
together into a wide field mosaic. Interactive 360 mosaioiginely used to illustrate
and promote holiday resorts, museums, historical and afebieal sites. Recently im-
age mosaics have found application in visual surveillagstess that deliver motion
detection using pan-tilt-zoom cameras, as discussed iptetid. On the other hand,
dense two-view stereo reconstruction has become a caonerfdr robust navigation
of unmanned vehicle and robots and will probably hit the raaskon.

Sparse geometric reconstruction is making its way insiaerercial software for
vision-based shape computation tailored for architeceargineers studios. On a more
precompetitive stage of development, a pair of applicatiaddressing non contact
shape retrieval of complex deformable surfaces in unctett@nvironment such as
airplane wings and boat sails are described in chapter 6.

Camera motion reconstruction has become a valuable toeigoal dfects tech-
nology such as match moving, namely the insertion of virtlcts into real footage.
Automatic computation of the correct position, scale, miation and motion in relation
to the photographed objects in the scene greatly simplifidspeed up match moving
tasks. The same functionality has found useful applicatiormixed or augmented
reality, se¢ 5]1, and human machine interface, refer fods.gdming related applica-
tions. Another fertile field of application is automaticestig, landing and docking of
unmanned vehicles.

1.3 Structure of the thesis

This thesis is subdivided into three main parts focusingiffieigent aspects of visual re-
construction. As mentioned before, any multiple views &lgeconstruction approach
builds on top of two pillars: an image matching method toritifie relations among the
set of images and image registration algorithms to numigriappraise them. For this
reason, chaptél 2 is devoted to the presentation of preighd algorithms dealing
with image matching and image registration.

As far as research activities are concerned, dense steugtconstruction has been
investigated first during this thesis work. In particulae flocus has been on the de-
manding problem of reconstructing the appearance of a $hemegh image mosaicing
in the context of visual surveillance. Basically, givenesal shots taken by a pan-tilt-
zoom (PTZ) camera, a mosaicing algorithm aims at the gaoaraf a unique image
of higher resolution and field of view, called mosaic. A vissarveillance based on a
PTZ camera can then use a mosaic as reference image (i.egrbank) so as to rely
on standard and well established motion detection teclesigeveloped for the static
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camera scenario. Other than the unknown motion of the camogrer dificulties such
as changes in lighting, exposure, independently movingabjand optical distortions
compete to render this problem a hard one. Moreover, thenubeicontext of visual
surveillance imposes real-time computation requiremdntshaptefB an original al-
gorithm for real-time image mosaicing is detailed with dalion tests accomplished
on real image sequences taken by a PTZ surveillance cameras.

It soon became clear that both visual inspection and ottaisstal measures,
such as residual fitting error, were not discriminant ndel#é indicators of the qual-
ity of a mosaicing algorithm. Nonetheless, to the best of lmowledge, no estab-
lished or widely employed data sets, performance metrievaluation methodologies
have been proposed in literature to quantitatively apprthie performance of mo-
saicing algorithms. Such a shortage is very detrimentahédevelopment of this
research field, for it hinders the objective assessment amgparison of dierent pro-
posals meanwhile complicating communications and cofkaions €forts among re-
searchers. ChaptEt 4 addresses this issue and describegasairof an evaluation
methodology for image mosaicing algorithms comprehensfvstandard data sets,
performance metrics and comparison procedure. The melibgpdbhas been made
available to the scientific community through a publicly essible website.

Camera pose reconstruction has been the second field ofigatén. This topic
is concerned with the determination of the position and thentation of a camera
with respect to a given scene. When a scene or parts of it candwened flat, several
theoretical analogies arise with image mosaicing techesguhereas in place of the
appearance of the scene the focus is on the position of theraambserving it. In this
context, two applications that would greatly benefit frontoaatic pose estimation
have been examinated: Augmented Reality and Human-Madhiegaces (HMI). In
chaptef 5.1l an original use of mosaics in a AR context is ppegpthe point is to show
how image mosaicing can boost the performance of estallislamar pose estimation
algorithms. Chaptér 5.2 deals with the introduction ofaisbased pose estimation in
the field of interfaces for gaming applications. Two videmgs, built on top of the
camera-based interface have been developed .

The third and last research direction has been sparse geéomeeonstruction of
deformable objects. Here the scope is to estimate a lowstiioral geometrical rep-
resentation, for instance a triangulated mesh, of the 3z tire of a flexible surface
such as journals, cloths, flags and so on. While the piecedasmar assumption about
the structure of the object is usually a reasonable appatim in this case too, the
capability of the object to deform introduces a whole newifamf projection ambi-
guities. While the theoretical implications have been esieely studied, real-world
demonstrations have been much less compelling being tinoitdy to reconstruction
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of sheet of papers and napkins. Chapter 6 reports on a neiehvibased method for
measuring airplane wings deformations using a single canBath synthetic and real
images have been employed to assess the performance ofiibesva algorithm.

The last chaptdil7 summarizes achievementes and lessans conclusions and
traces future directions and foreseeable developmentacrahces.

1.4 Summary of contributions

The principal contributions and the scientific resultsgimis of peer-reviewed publica-
tions on international conferences and journals and urighdd tech reports, originated
from the research activities carried out during the PhD seis as follows:

Chapter 3: Real-time mosaicing for visual surveillance

e An original near real-time registration algorithm for thenstruction of globally
coherent image mosaics apt to detect motion in visual silamee systems.

¢ Afast and exact histogram specification algorithm for hamgabhotometric reg-
istration of diterently exposed images during the construction of imageainss

1. P. Azzari. General purpose real-time image mosaicingrde. of ICVSS 20Q7
July 2007.

2. A. Bevilacqua and P. Azzari. A high performance exactgsim specification
algorithm. InProc. of ICIAP 2007pages 501-512, September 2007.

3. A. Bevilacqua and P. Azzari. A fast and reliable image rigisg technique
with application to wide area motion detection. Rroc. of ICIAR 2007 pages
501-512, August 2007.

4. A.Bevilacqua and P. Azzari. High-quality real time motibetection using PTZ
cameras. IProc. of Intl. Conf. on AVSS 200pages 23, November 2006.

5. P. Azzariand A. Bevilacqua. Joint spatial and tonal noakgnment for motion
detection with PTZ camera. Proc. of ICIAR 2006pages 764-775, September
2006 (oral).

Chapter 4: Evaluation methodology for image mosaicing algathms

e A comprehensive evaluation methodology for image mosgieigorithms de-
signed to objectively compare and rank approaches withirsg &nd, until then,
inordinate research field. Evaluation procedures and @étédhave been released
for public use through freely accesible webpages.
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1. P. Azzari, L. Di Stefano, S. Mattoccia. An evaluation noetblogy for image
mosaicing algorithms. IRroc. of Intl. Conf. on ACIVS 200®ages. , October
2008 (oral).

Chapter 5: Camera pose reconstruction and its applications

¢ Original usage of image mosaics for the enhancement of acgand steadiness
of pose estimation algorithms. The approach has been siatbgsntegrated
into an existing augmented reality system aimed at aerdizahmaintenaince.

e An innovative vision-based interface for videogames desigfor easier and
more pleasant gaming experience.

¢ Two original gaming applications built on top of the interéshave been devel-
oped.

1. P. Azzari, L. Di Stefano. Vision-based markerless ganmiterface. InProc. of
Intl. Conf. on Image Analysis and Processi@g09 (submitted).

2. P. Azzari, Robust image registration using linear anddeptic programming.
Tech report, CV Lab, University of Bologna, Italy, 2008.

3. P. Azzari, Image registration using SVM regression. Tesgort, CV Lab,
University of Bologna, Italy, 2008.

4. P. Azzari, L. Di Stefano, F. Tombari, S. Mattoccia. Matkes augmented reality
using image mosaics. Broc. of ICISP 2008pages , July 2008 (oral).

Chapter 6: 3D reconstruction of deformable surfaces

e Thorough design and test of a monocular measurement systewirfg defor-
mations. Full and precise 3D reconstruction of the shapeligated regardless
of the position or deformations of the analyzed surface.

1. K. Startchev, P. Azzari, P. Lagger, A. Varol, and P. Fuadedrbased measure-
ments of deformable surfaces. Journal of Machine Vision and Applications
(in preparation).

2. P. Azzari, P. Fua and P. Lagger, Video-based measuremiwiag deforma-
tions. Tech report, CV Lab, Ecole Polytechnique Federabbaune, Switzerland,
2008.



Chapter 2

Theoretical background

A reasoning process dealing with more than one view requiirgtyy to reveal and
guantify the relationships subsisting among the set of #sagg hand. Visual recon-
struction from multiple view algorithms make no exceptitor, they always build on
top of reliable image matching and registration techniq&asce these techniques are
essential and unfailing, the present chapter is devotetlustrate the concepts and
algorithms mostly recurring in the remainder of the thesis.

2.1 Image matching with keypoint correspondences

Image matching is a research area mainly concerned withishewkry of connections
among a set of images. In its wider meaning, the nature of stichections could refer
to relationships as diverse as geometric, photometriqyteat and so on. For example,
a pair of partially overlapping images could be surely castame kind of geometric
relationships for they are both observing the same scermphpfrom slight diferent
viewpoint or with diferent cameras. If the latter is the case, photometric ogighiips
among corresponding pixels could probably hold sin¢kedént cameras usually have
different responses to incoming radiance. Moreover, tempaledlons can be revealed
when dynamic events are observed in multiple images, fdaitg, the amount of
daylight could hint at the time and the order pictures haventiaken.

Although several methods have been conceived to revealimsge connections
the concept of salient features extraction is widespreadtufe extraction is most of
the time inevitable since using an entire image as an obsemva difficult or impos-
sible due the high dimensionality (typically the order ofunred thousand pixels).
Nonetheless salient features could be anything ranging froints, lines, curves to
textures, image structures, blobs and so on.

11
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In this section only keypoints-based image matching algjors are treated. The
ultimate goal of such class of algorithms is to deliver a $eétn@age point correspon-
dences; & X, wherex; in R? are the keypoints detected in one image &rid R? are
those detected in a second image.

Three performance figures are important for image matchiggyighms based on
keypoints:

¢ repeatability refers to the ability to select the same points of a scendiiarént
images independently of the changes in viewpoint, lightiogle and so on.

o distinctivenessis concerned with the discriminative power of the desauipti
different points should always exhibit very diverse descripsorthat mismatch
probability is minimized.

e accuracy pertains to the precise localization of a keypoints insideraage,
subpixel methods have become common in order to increafm peance.

Ideally, the best image matching algorithm is the one that diiscriminative descrip-
tors that can be matched with high reliability and accurastyvieen frames, while also
finding a large number of features per frame.

Inside the class of keypoints-based image matching algostthe focus will be
on the three most popular and representative feature éxtsacsed nowadays in com-
puter vision: the Harris corner detector, the Kanade-Lti@anasi tracker (KLT), and
the Scale-Invariant Feature Transform (SIFT). The terntufeaextractor is used to
describe the combination of a feature detector, or keypalatector, and a feature de-
scriptor. Detectors are used to find keypoints in an imager afhich a descriptor is
created that describes the local neighborhood around tiispcAn overview of the
state of the art in feature extractors is given by Mikolajcand Schmid[[10]. A fea-
ture tracker establish correspondence among keypoirgsteetin dfferent images by
comparing their respective descriptors. A keypoints-tasege matching algorithm
is the ensemble of a feature extractor and a feature tracker.

2.1.1 Harris corner detector

The Harris corner detector, named after the authors thaepted it in the first place
[5], is one of the most widely used and established keypdataators. Harris keypoints
or corners, sometimes also referred to as interest poirgsieage features character-
ized by high intensity changes in two orthogonal directiofisr instance, if a square
object is presentin the image then its four corners are lysusty good interest points.
A formal statement of corners requires the introductiorefiiarris local structure
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matrix C which is defined as
2 p
23r(5) ZZe&E
al dl a1)2
YirES Tr(5)
wherel is the image at hand ar}}’é, 9 jts partial derivativesRis a (2xd+ 1) x (2xd +

ay
1) neighboring image region arouiid y), wg (o) is a Gaussian kernel with standard

C=wg (o) * (2.1)

deviationo- and * denotes convolution.

Let 13 > A, be the two eigenvalues of the matx SinceC is symmetric and
positive semi-definite, botly andA, are non-negative. The values of these eigenvalues
directly admit some useful interpretations:

¢ in a uniform and homogeneous regian,= A, = 0.

¢ at the location of a step edgé, > 1, = 0. The corresponding eigenvector for
A1 is associated with the direction that is orthogonal to thgeed

¢ at the location of a cornef; > 1, > 0. The larger are the values @f and
Az, the higher are the contrasts of the edges orthogonal toitbetidns of the
corresponding eigenvectors.

Given the previous definition, the Harris corner detectocpeds as follows:
1. for each image poir(k, y):

e construct the local structure mati(x, y)

e compute the response to the “cornerness” filtdefined at each pixel co-
ordinateqx, y) defined as

r(x,y) = det(C (x,y)) — k(tracg(C (x, ))?; (2.2)
wherek is an adjustable constant.

2. perform a non-maximal suppression on the “cornernesst firesponse to sup-
press weak corners around the stronger ones.

3. threshold the residual response according to a threshblét.

Altogether, the Harris corner detector requires three taddil parameters to be
specified: the constait the radiusd, of the neighbourhood region for suppressing
weak corners, and the threshold vatueDifferent configurations of such parameters
may yield very diverse outcomes, nonetheless this is oltektope of this section,
for further investigation please refer to the original w{k

The descriptor associated to each detected corner is pightige intensity neigh-
borhood around the interest point. The matching phase @naglished by comparing
the descriptors using the? norm, a low score, originated by similar image patches,
signaling probably correspondent pair of corners.
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Figure 2.1: Two test images showing the keypoints detected by the Haetector.

2.1.2 Lucas-Kanade-Tomasi feature tracker

The Kanade-Lucas-Tomasi (KLT) corner detecior [9] is altcositemporary to Harris
proposal and shares many concepts with it. For instanc&ltheletector relies on the
local structure matrixC defined in Eq[Z]1

The KLT feature detector consists of these steps:

1. for each image poif(, y):

e construct the local structure mati@around(x, y).
e compute the smallest eigenvalug, of the matrixCx 1 (X, Y);

o if 12 > Amin, Save(X, Y) into a potential corner list,.
2. sortL in decreasing order of,
3. scan the sorted list from top to bottom and select pointiserist in sequence.

Points that fall inside the neighborhood R of any selectdédtp@re removed. The
output produced by the KLT corner detector is a list of copw@nts that hava, > Amin
and the neighborhod®of these points do not overlap. Similarly to Harris detedtoe
KLT algorithm admits two parameters:

¢ threshold valuednn, on the second eigenvalug, and
¢ a neighborhood window radiws

Indeed, results are very similar to the Harris techniqueyagbe noticed by comparing
figured 2.1 and2]2.

Like Harris, the KLT descriptor consists of a neighboringage patch and point
correspondences are established according to the ciaoretaiore among patches. A
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Figure 2.2: Two test images showing the keypoints detected by the KL&dlet.

novel matching algorithm, introduced later by Lucas and &) uses a gradient de-
scent method to iteratively align image intensity patchs#sgian &ine warping model

[2,[11].

2.1.3 Scale Invariant Feature Transform

The SIFT (Scale Invariant Feature Transform) keypoint detglescriptor was pro-
posed by Lowe in 1999 [7,18]. The SIFT features are featur¢éovecthat represent
local image measurements, which have been reported to baantto image trans-
lation, scaling and rotation and partially invariant to egas in illumination and local
image deformations.

The SIFT detector locates keypoints as follows (see Figie 2

e the input imagel (x,y), is convolved with a number of Gaussian filters whose
standard deviationry, o, ...} differ by a fixed scale factor. The convolutions
yield a small number of smoothed images, denotefi®y (x,y) , G, (X,Y) ; ...}

¢ adjacent smoothed images are pairwise subtracted to ym@&l (Difference-of-
Gaussian) images, according to

Do (%Y) = Gop,y (X Y) = Gyy (X Y) (2.3)

e smoothed images from Step 1 are subsampled and the prodadstep 2 is
repeated on the subsampled images, yielding a number of Ba@eis over the
scale space.

e each pointin these DoG images is examined. A keypoint is ethal a location
where the point is a local minimum or maximum of its 8 neightsan the same
scale and of its 9 neighbours on the scales above and below.
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Figure 2.3: The DoG image pyramid used by the SIFT detector to locatediaym

The surrounding intensity and gradient information aroaadh keypoint are en-
coded in the SIFT descriptor. The neighborhood region atdbe keypoint is subdi-
vided in a regular grid of 4 4 cells. Image gradients are computed within each cell
and classified into 8 orientations (see Eig.2.4), givingrllescriptor of 128 elements
long for each keypoint.

Unlike Harris and KLT, SIFT keypoints are not always locagtaorner points as
may be noticed in fid. 215. Nonetheless, SIFT keypoints hawes high repeatability
and distinctiveness in some of the most challenging commpigasn applications such
as wide-baseline stereo and multi-view reconstruction.

The matching phase is accomplished by computing the eaclidestance between
normalized feature descriptors, with the addition comstrihat the nearest neighbor
must be sfliciently closer than the second closest neighbor. The id#assfrom the
observation that false matches caused by noise ought taaltiple noisy matches at
similar distances [8].

2.2 Planar image registration

A pair of corresponding image poimts < x; are projections in two images of the same
pre-image poini;. A set of corresponding image points < xI fori =1,2,...,n,
detected in a pair of images, hints at the fact that the vieesedated to some extent.
The explicitation and quantification of the subsisting tielas is demanded to image
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Image gradients Keypoint descriptor

Figure 2.4: This figure shows a simplified example of &2 descriptor array computed from
an 8x 8 window of image gradient vectors. The SIFT detector regubint (8] works on 16< 16
windows of image gradient vectors, giving descriptors & &&ments in length.

registration algorithms. In this section a number of cotsepgarding the geometry
of two views are treated, in particular registration of irmagf planar structures is
emphasized, for it is a useful approximation in many circiameses and oftentimes
used throughout the thesis. The extension to an a arbittanper of views has been
treated by iteratively applying two views algorithms to #tiing pair of images.

Hereinafter, it is assumed that an image paigt[u, V] is projection of a 3D space
pointX = [X, Y, Z] imaged by the camera according to the perspective projeatiatrix
P:

&

KX=PX=K[ R t|XwithK = Vo (2.4)

o O R
o™ o
H

whereX = [u,v, 1] andX = [X,Y,Z, 1] are the homogeneous representatiox ahd
X respectively. In Eq.[2]4 is an arbitrary scale factorR(t), called the extrinsic
parameters, is the rotation and translation which rel&esvorld coordinate system to
the camera coordinate systekjs called the camera internal matrix, witliy(vo) the
coordinates of the principal point, andg the scale factors in the andv axes,c the
parameter describing the skewness of the two image axes.

In the general case of an arbitrary scene observed by twesyigmaracterized by
projection matrices® and P’, a corresponding image pair & X) is linked by the
fundamental matri¥

XTFX=0 (2.5)

Since a valid fundamental matrix is a<33 matrix of with rank 2, any image points
in one image is put in correspondence with a line in the secoade, depending on
the 3D structure of the imaged scene. Such ambiguity carmeblved from image
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Figure 2.5: (Top) Two test images taken from slightly rotated viewpsin{Bottom) Detected
SIFT keypoints inside the right image are marked with yelldsis. Colored lines connects
keypoints found in the right image and their correspondmegtions in the left image. Three
cases are shown: unmatched keypoints (i.e. on the midd)e feiEmatched keypoints (on the
pair of chimney-pots) and correct matches.

correspondences alone and gives raise to a whole familyliof peojection matrices
P andP’ satisfying Eq.25. Hence little can be inferred unlessrpaigsumption are
made either on relative position of the cameras or structutiee scene.

Assuming the observed scene, or part of it, has a planartsteugreatly simplifies
theory and calculations. Even though it may seem a stronigajppation, the planarity
assumption is acceptable in many scenarios and has beely afgdied. As far as this
thesis is concerned such a simplification holds for:

e dense structure reconstruction through image mosaicingSince this topic is
mainly concerned with the creation of a wide angle imageh sscin panorama
photography or in wide area surveillance, the presencembstl flat scenes,
i.e. scene in which relative depth is negligible with reggedhe distance from
the camera, is quite common. Moreover, the case of pureditingt cameras,
for instance PTZ cameras, observing arbitrary scenes,visrged by the same
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geometry relations as in the former case.

e pose reconstruction A large number of objects in real life are flat or contains
flat parts. This is all the more true when thinking at objest®¥aing piecewise
flat, as a polyhedral mesh of small polygons joint togethelne $maller the
polygons the more precise the approximation.

e sparse structure reconstruction of deformable objectsAs before objects can
be thought of being composed of flat parts connected by jahes let them
flex. The piecewise flat model, for example a triangulatedhnéslids even
for many deformable objects. Additional smoothness cairgs are needed to
handle deformation degrees of freedom properly.

Planar image registration, a subset of the multiple viewstegtion area, applies
to the cases where geometric relations link views, or pathefm, that portray flat
regions. The most general type of relation among keypomits g < x) belonging to
corresponding flat regions infierent images is modeled by a homographic relation as

X = HX (2.6)
whereH is a 3x 3 matrix of rank 3, called homography, defined as

hy hy hs
H= h4 h5 he (2 . 7)
hy hg ho

It may be shown that the geometric relations in any of the abmntioned cases
can be castinto an homography estimation problem. Duevadtsield of applications
many algorithms have been conceived for computing a honpbgragiven a set of
correspondence pairs, for hinstance homogeneous and ageraous DLT, Sampson
approximation and so on, as illustrated|in [6]. Every metHaters from each other
for the criterium used for the estimation bf, namely the type of distana#to be
minimized. Nonetheless, all the algorithms perform a L&agtare (LS) minimization
of an errore that may be expressed in the following form

N
e= > d(x,x)? (2.8)
i=0

whered can be in principle any linear or non linear function of thé&miown entries of
matrixH.

As a final remark, it is worth pointing out that standard LS nogks are very sen-
sitive to data, i.e. corresponding point coordinatéBected by non gaussian noise,
hereinafter “outliers”. For example, inaccurate locat@fncorresponding points or
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false matching are usually randomly distributed and mayiheaffect the solution
dragging the LS estimation ¢i well away from the true one. Two main approaches
may be adopted to estimate parameters of a mathematical momtiea set of observed
data which contains outliers. The first approach adopt aticitdqitering stage to sift
data before the LS estimation, for example RANSAC (RANdomfpe Consensus)
[4] is a popular outlier removal approach. The second amtroelies on the use of sta-
tistically robust distance functions. Both approachesHhasen successfully applied,
the choice depending on on the context and the noise presyatidrting the data, for
further investigation refer to [6] 1].

Throughout the thesis, an enhanced version of the origiddFAC algorithm,
suggested in ]3], is used. The former method considers mamyom data subsets,
each containing the minimum number of samples required nopete the model pa-
rameters exactly, and select the parameter set which hér¢fest number of compat-
ible data. Eventually the model parameters are refined asirag large amount of data
as possible, namely every compatible point correspondence

The innovative part consists in iterating the process bypgishe estimated ho-
mography to bootstrap a new search for point correspondeiite search procedure
proceeds as follows: given an interest poinin the first image, a match is sought in
a search window centered on the expected poskioa ng in the second imageH
is the identity matrix at first iteration). Because the skdscnow guided, there is a
probability of fixing false matches established at the presistep augmenting the total
number of valid correspondences. The new set of inliersasnagsed to refine the es-
timate of H. The estimation and guided matching stages aeated until the number
of valid correspodences stabilizes.
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Chapter 3
Real-time image mosaicing

Image mosaicing is stirring up a lot of interests in the rese@ommunity either for
its scientific significance as well as for the potential imations in real world appli-
cations; indeed, automatic image alignment and stitchin@y to several higher level
image processing tasks.

Next section presents a real-time mosaicing algorithmlgiggat constructing high
quality seams-free panoramic images. The proposed digoperforms a fully auto-
matic spatial and tonal registration by exploiting keypgsicorrespondences and his-
togram matching techniques. Remarkably, the approachmate®ly on a priori as-
sumption, with all the required information extracted fréime image set. A rich set
of image sequences has been collected to test the algonttmssess its stability and
flexibility. In addition, the approach has been succesgfategrated in a visual surveil-
lance system in which the mosaic is used as background torperhotion detection
and tracking with a Pan Tilt Zoom (PTZ) camera.

The second next section investigates further on the probfexocurate tonal align-
ment of a set of spatially registered images. Aside beingyeelement of any image
mosaicing algorithm, tonal alignment can be regarded aaralstlone topic as long as
principled handling and processing offérently exposed images calls for photometric
normalization.

3.1 On-line image mosaicing for visual surveillance

Image mosaicing is a popular method fdfeetively increasing the field of view of a
camera by allowing several views of the same scene to be c@ubito a single image,
called a mosaic. Stitching together multiple images takemfdiferent viewpoints al-

lows to create large field-of-view pictures, up to 360 degraeith consumer-grade

23
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camera and without introducing the undesirable lens dediom usually accompany-
ing wide-angle lenses.

Properly handling multiple images taken affeient locations, instants and light
conditions requires mosaicing methods to be robust witheeisto viewpoint and illu-
mination changes, scene multimodality (i.e. waving tremkteedges), moving objects,
imaging device noise and so on. Other camera related aspettas varying intrinsics
(focal length, principal point location) should not degeaignificantly the performance
of the system. Finally, inherently real time applicatiosigch as visual surveillance, re-
quire the method to perform on line at acquisition rate. Enguconsistent geometric
and photometric reconstruction of the scene by continyocsibining pictures in
real-time in a mosaic is a challenging goal.

The next sections describe a real-time image mosaicingnigel devised to con-
struct high quality mosaics from video sequencégring all the above mentioned
desired properties. Spatial and tonal consistence is \aathiey exploiting an origi-
nal dual geometric registration scheme, illustrated irtise@.1.2 , and a fast pho-
tometric registration stage, introduced in secfion 3.h@ farther detailed in section
[4]. Furthermore, the algorithm has been conceived to bepbetely image based
No prior information, such as camera calibration (focabkbn distortion cofficients),
scene geometry or feedback signals coming from the imagnged (partilt angular
movements, exposure settings), is necessary for the mwshébuilt. Instead all the
required information is automatically extracted from theges, yielding a hardware
independent and general purpose algorithm.

The quality of the attained mosaics has been initially wedlify visual inspection.
Although human perceived quality is a largely subjectivéigator, it seemed to be
correct since only qualitative applications such as digiteotography, photomontage
and so on were initially envisioned.

However, as we addressed the adoption of mosaics withinisualsurveillance
domain, we begun to rely on overall system performance agatiative quality met-
ric. The idea of mosaic-based motion detection connectsthvé attempts to improve
motion detection systems developed by researchers in $hgdars. Some proposed
solutions involved the use of PTZ cameras to widen the sedw@yea. Despite of the
many available methods for backgroundfeiience, none of them can be trivially ex-
tended to work with hinged PTZ cameras. Mosaic-based maligbaction consists in
the use of traditional background subtraction techniquea panoramic background
image built by means of a mosaicing algorithm.

This section is composed as follows. Seclion 3.1.1 pro\adesverview of the state

of the art in the image mosaicing research field. Se¢fiorP2léscribes the proposed
algorithm for real-time image mosaicing, detailing botlatg and tonal alignment
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phases along with image blending and warping steps. Mdsssed motion detection,
using moving cameras is examined in Secfion 3.1.3. Expetmheesults on real se-
guences are reported in Sectlon 3.1.4, followed by conafuidemarks and possible
directions for future research on this topic in Secfion®.1.

3.1.1 Previous work
Image mosaicing algorithms

During the last decades a considerable number of scientifiksnaddressed the broad
topic of image registration (for a comprehensive survegréd [45]). In their diver-
sity, published methods share a lot of theoretical and teehaspects. According to
the adopted image matching techniques, the algorithms eaodrsely classified into
two main families: direct methods and feature-based methad long as the number
of frames simultaneously combined is considered, two &rthtegories may be recog-
nized: sequential methods and global registration methodgle these super classes,
methods can be further distinguished according to the pedfgeometrical and photo-
metric model, treatment of independently moving objeaH;&libration capabilities
and so on. A first simple dichotomic taxonomy is proposed ketdghlight the two
main diferent image matching approaches:

e Direct methods. These algorithms usually attempt at iterlgt estimating the
transformation parameters by minimizing an error functiased on pixelwise
brightness dferences in overlapping areas|[L1] 39,(41,/26] 35, 42]. Tharadv
tage of direct methods is highly accurate registration aggmstruction, due to
the exploitation of information associated with every &ngixel. Image forma-
tion process non idealities, such as illumination charii®526], lens distortions
[36,[42] and vignetting, can be accounted for in the pixedwésror function.
The main drawback of this class of methods is the high contipuata cost due
to the non-linear parametrization of the error functionkjolu call usually for
complex iterative algorithms. Moreover, an initial guess the parameters is
required to avoid local minima. Since direct methods arallgincompatible
with real time constraints, they often find application iridbaregistration pro-
cesses, where maximum accuracy is the goal. Furthermase tigorithms are
sensitive to moving objects in the scene and their presermgeaause serious
performance degradatian [11.139] 42].

e Feature-based methods. As opposed to using all the avajlatdls, these meth-
ods establish feature correspondences among images tgibeered[[5] 44, 19,
1,[12,[17]. Many dierent features have been used in the literature, including
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regions, lines and keypoints. Recently, keypoints gatharéarge agreement
among researchers, becoming the de facto standard for iregggtration pur-
poses ([31, 40,13]). After being detected in one image, keypa@re searched
in a second image based on descriptor similarity. Unlikeaimethods, feature
based methods admit linear error functions and hence sohithay be found
in closed form. By selecting appropriate featufés [9, 17se methods can be
very robust to illumination changes, image rotations armhziog. Furthermore,
moving objects in the scene are tolerate as long as apptefiliaring schemes,
such as RANSACI]S5, 1], or robust error functions, are deploteedeal with
incompatible keypoints.

As far as the registration problem is concerned, two clasbafgorithms may be

distinguished as well:

¢ Global registration methods compute the best alignmeningnseveral images

by simultaneously minimizing the misregistration betwedinthe overlapping

pairs of images [11, 39, 41, 26,136,/42, 9,[12, 17]. Globalstegiion algorithms

deliver the most consistent geometric reconstruction @ve lheen proposed in
conjunction with both direct11,_39, 36,142] and featuredxhapproaches][9,
12,[17]. The joint optimization is usually computationalyensive, moreover
these methods require all the images to be known in advanoeupdate to the

image set requires the computation to start over again ghering out even the
possibility of performing on-line, although slowly.

Sequential algorithms allow the construction of a mosaicdmytinuously com-
bining new images as soon as they become available. Everynmeye is aligned
with the previous one (Frame to Frame registration) or withrhosaic built thus
far (Frame to Mosaic registration). Intuitively, alignmeof pair of images is
simpler a problem than multiple view alignment, thus yielgla faster computa-
tion that holds the potential for real-time operation. Murer, these algorithms
can usually handle an indefinitely high number of images arabsdhot need to
know all images in advance. Nonetheless, pairwise regjistrés only locally
optimal since past frames are not explicitly taken into actpmoreover the
sequential combination of images may lead to visual atsface to error ac-
cumulation. The next section hosts a quick overview of setjalemosaicing
algorithms, usually devised in combination with real tinpplications, such as
motion detection.
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Sequential mosaicing for motion detection

Motion segmentation of video sequences is widely recoghimebeing the first layer
of many video processing applications such as video uarai#, tréfic monitoring and
human activity understanding. Among the possible ways &ecting motion, back-
ground subtraction can provide the most accurate segnmmtgtmoving objects, but
requires the use of a stationary camera. Moving masks aracted by threshold-
ing the absolute dierence between a reference image (referred to as backgranhd
the current frame. Also, background maintenance activdie envisioned in order to
keep the background up-to-date in presence of illuminatftanges and a potentially
dynamic environment.

In the last few years, several approaches have been proposetkr to use back-
ground subtraction with hinged pan-tilt-zoom cameras lyimg on a mosaic of the
background scene. One of the heaviest drawback of backdsuiraction algorithms
for PTZ cameras is the computational cost needed to builchaaidtain high quality
mosaics in real time. Therefore, some approaches enacytmaoid subtraction of-
fline [2] or propose batch surveillance applications [38]tefatively, real time per-
formances have been obtained by simplifying the geometadehfrom projective to
rigid 2D [44] or dfine [41], thus limiting the fields of application to contextswhich
objects are far away from the camera.

The problem of error propagation when registering seqakiyta large number
of images in a sequential fashion is still an open issue. Saatleors dealt with it
by exploiting specific informations regarding camera sigifas, 27,29 7], such as
pantilt angles, or supplement the camera with additional sens@. compasses and
gyroscopes.

3.1.2 Proposed image mosaicing method

The proposed method belongs to the class of sequentiatéebsised algorithms. Hence,
feature detection and matching is a very critical stagetHeralgorithm must be able
to work fast and reliably even in cluttered gaddynamic environments. The accuracy
of the detected feature correspondences is for the ovgsiéirm performance.

As regards feature detection and matching, several appesaincluding the Kanade-
Lucas-Tomasi tracker (KLT)[40], Harris corners[25] and thore recent Scale Invari-
ant Feature Transform (SIFT)[31], have been tested. Whifd 8emonstrated much
better performance compared to KLT and Harris in terms ofistiiiess to large inter-
frame deformations, i.e. translation, rotation, scaleilndhination changes, its com-
putational cost greatly exceeded real-time constraintsigtheless, when processing a
continuous video stream, fiitrences among subsequent frames are deemed to be small.
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Such consideration, along with a much lower computatiooal,dead the choice over
KLT and Harris methods, with KLT finally preferred becauseaahore stable imple-

mentation[[14]. Moreover, a fast initial guess, based onaspttorrelation approach
[46], is computed to assist the KLT tracker inffiiult situations, namely in case of
large camera shifts. The phase correlation guess servesase estimation of the
camera movement and to initialize the feature tracker. @usdiution allows handling

large camera displacements using small search areasingraatditional benefits in

terms of robustness and performance.

Geometric alignment

A mosaic is a compound image built through properly commpsfaligning), a high
number of frames and warping them into a common referencelotaie system, both
spatial and tonal. The result consists of a single image afeatgr resolution and
spatial extent that represent a dense reconstruction ctitheture and the appearance
of the scene. Usually mosaicing techniques are concerntbdowilection of frames
which do not exhibit parallaxfBects. Such requirement allows seamless stitching to be
accomplished without requiring to recovery the underly@iystructure of the scene.
Such requirements is known to be satisfied if images are takeither one of these
two settings:

e an arbitrary scene acquired with a purely rotating camenar@tation is allowed
in place, i.e. about its optical center, no translationsadioeved (to the author’s
knowledge this is the case of most PTZ-based surveillangkcagions).

e a planar scene taken from arbitrary locations.

If images are also optically corrected, i.e. as they weraii@ed using an ideal pin
hole camera, the most general relationship between cameépy keypoint < X)
belonging to any pair of images is described by homograptyixat Eq.[2.7.

Given a sequence &f views{lg, 1, ..., In-1}, the construction of a mosaic requires
the computation of a set & — 1 pairwise transformatiorid; ; that link all the views
together. Assuming each image is a node in a graph and edghsmographies link-
ing two frames, mosaicing algorithms aim at computing thenbgraphies belonging
to a spanning tree. While global registration algorithmsipate all the transforma-
tions simultaneously, sequential mosaicing consists jiiaging the graph one edge at
atime.

Sequential algorithms usually proceeds in chronologicdeoby determining a
chain of N — 1 pairwise homographies among images taken at subseqstanis
Hereinafterframe to framdgF2F), orpairwisealignment, is defined as the estimation
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of a homographyH;_1 linking a pair of temporally adjacent frames. Once the ho-
mography chain is computed, the transformatiyn linking an imagd; taken at time
i with respect to another imade at time j > i may be found by concatenating the
transformations in between such as:
j
Hij= [ ] Hikr 3.1
k=i+1
By defining the reference coordinate syste@gwhere the mosaic will be compose,
visualization matrice®); linking each image local coordinate wily may be computed
as i
Q =Ro[ [Hewkie[0.N-1] (3.2)
k=1
A mosaic can be constructed by projecting all frarhesith i € 0,..,N — 1 onto the
common reference using the visualization matriQes
Sequential algorithm may also explore the graph by comgutia transformations
between a reference frame, usually the first, and all sulesgguages. This approach
is known as Frame-To-Reference (F2R). Instead of a chaiegarterate spanning tree
with one root and\ — 1 leaves describes the link topology; a sef\of 1 pairwise
homographies connecting the root with all the leaves is agath Assumindg to be
the first frame, the transformatidt j linking an imagel; taken at time with respect
to another imagé; at timej > i may be found by:

Hij = HgiHoj (3.3
GivenRy, the visualization matrice®; can be simply computed as
Q = RoHo; (3.4)

Both kind of approaches have advantages and drawbacks.eRmframe regis-
tration benefits from the fact thatfferences among temporally adjacent frames are
meant to be small both in viewpoints and lighting conditiomsnce keypoints corre-
spondences are more reliable and the alignmentis usugtyaccurate. On the other
hand since the construction of the mosaic requires all tiedgpaphies to be multi-
plied in a chronological order, small estimation errorgyagate along the homography
chain and fect all subsequent visualization matrices. As the numb&aofes grows,
the amount of accumulated error leads to considerable ignsaént. This &ect is
particularly noticeable when the sequence moves back atidtfinthe same location
in the scene. When passing from the same location, framestrteehe overlapping
exhibit a displacement due to the accumulated error, ystefitrred to as drift error.

On the other hand, Frame-To-Reference registration ddesfier from drift error
since a single estimated homography is required to compteiaualization matrix.
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Indeed, in case of long sequences it may happen that, at soimg @ given frame
do not share any overlapping areas with the reference imad@nmit impossible to
establish correspondences and compute the registratigulatilg the mosaic with
every new image and computing the registration between tsain built so far and
the current image usually solves this issue; this variakb@vn as Frame-To-Mosaic
registration (F2M). Nonetheless, long sequences stile masious problem since fair
tonal diferences may arise between the mosaic and a given frame amthedss,
thwarting the keypoints matching process and, sometiraadirg the algorithm to fail
and drop the frame.

Our proposed algorithm tries to get the best from both apgresby performing a
dual registration stage. At first, a frame-to-frame registn between a current frame
It and the previous onk_; is performed. The quality of the computed homography
H::-1 is then assessed according to a test involving two perfocmanicators:

e a normalized SSD-based similarity measure computed witienoverlapping
areas of the previous franig; and the current frame warped according to the
computed homograpHhy’ = Hys_1l;.

o the residual erroe of the LS estimation of homograph;_1, as defined in Eq.
2.8.

If the test is passed, the computed homography is used tdifidéme region of the
mosaicB; corresponding to the current frame and a further F2M regfisim step is
performed betweeh and the the mosaic regidd. In theory, the homographil, ,

computed during the second step should be an identity matrjxractice, it is always

’

slightly differentH,, ; = Is«s + € and its deviatiore helps keeping the current frame
consistent with the rest of the mosaic. If the test is notg@dssnly the F2M registration
step is performed. If it fails too, the frame is skipped.

The visualization matrixQ;, relating an arbitrary framég to the reference frame

Ro, is computed by alternatively multiplying F2F and F2M régition matrices:

Q =Ro[ [ He kM1 i €[0.N=1] (3.5)
k=1

The dual registration can be thought as an improved vergitred-rame-to-Mosaic
approach to which it return in case the first F2F registratidgls. On the other hand,
when F2F step succeeds the benefits from both the approaehetained. Reliable
registration with respect to the previous frame is deliddrng F2F registration, cancel-
lation of the drift error is enabled by F2M alignment. Moreaovas will be detailed
in the next section, tonal registration performed afterRRBE alignment bring the cur-
rent frame in the photometric reference of the mosaic, thkér facilitating the F2M
keypoints matching step.
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Even though no theoretical analysis on the drift error réiduchas been accom-
plished, substantial experiments have proved that our stagk registration method
is efective in bounding the amount of accumulated error and eediquasi globally
consistent mosaics. Moreover, real-time requirementfudfited since the algorithm
is computationally equivalent to two fast sequential regison steps.

Photometric alignment

Tonal misalignments commonly occur when taking multipletymies with a moving
camera. If not properly handled, the resulting panoramieexhibit seams that do not
correspond to any physical structure of the scene, evemththwe images are blended
in overlapping regions. These color gradients mfigat further processing involving
the mosaic. For example, in a typical visual surveillancgtey, the motion detector
based on background subtraction may erroneously intetfpese artifacts as moving
objects, thus generating false alarms. As a consequenceprehensive mosaicing
techniqgue must deal with the problem of photometric misatignts. Tonal misalig-
nents are mostly due to:

e automatic camera exposure adjustments, i.e. changestiestime, auto-white
balance, auto gain control and so on;

e environmental illumination changes, e.g. daytime, clouds

Many methods have tackled the problem of exposure norntiglizaf overlapping
frames, with most of them not explicitly modeling the phydiphenomena that make
corresponding pixels exhibitfierent brightness. The works in[42,9,17] address the
problem using spatially-varying weighting functions,alnown as feathering tech-
nigues, and a clever placement of color discontinuitiesittimize the visual impact,
for instance along true color gradients. The seminal pralpiog Burt et al. [10] on
image blending using multiresolution splines have beerelyidmployed. The idea is
using a set of frequency-adaptive weighting functions leating a band-pass pyramid
representation of the image and making the transition widtfunction of the pyramid
level. Quite a few other methods followed on the track, anythey tend to conceal
tonal misalignments rather than correcting them and théteeare visually compelling
as long as the photometricftéirence between images is moderate.

Indeed, larger misalignments call forfidgirent and more principled approaches.
The method in[[11] yield remarkable results by approxinmtime camera nonlinear
comparametric functionvith a linear piecewise function. The algorithm ultimately
yield an Intensity Mapping Function (IMF) that maps everygbbrightness of a given
image to the corresponding value of the tonal reference.m#ie drawback regards
the high computational cost of such estimation, that makessuited to real-time
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processing. Another approach consists in the estimatiarsivfglenigh dynamic range
(HDR) radiance map built from a set offtéirently exposed images [26,] 30, 22]. This
approach models the underlying photometric process atabias an explicit treatment
of saturated, both bright and dark, pixels. Once again tipesposals are too time
consuming and their integration into real-time systemafisdsible, at least nowadays.

Besides time performance considerations, our preferabididate method ought
to be resistant to other issues, for example spatial registr inaccuracies, arising
from small alignment errors, and the presence of movingatbjie the scene. These
further considerations prompted us to exploit an histogbased approach, that allows
to partly overcome the above mentioned problems. The hiatogpecification (HS)
technique is a histogram-based approach that aims atoramsiy a cumulative distri-
butionH; of a random variable into the cumulative distributidp of another random
variable by finding a continuous remapping function (§e¢ f@dfurther details). As-
suming a given image and its tonal reference as two randoiables, the remapping
of the brightness value of each pixels of the image accoritige computed function
results in the given image histogram matching the tonaleefee one. In this context,
the remapping function is naméatensity Mapping functionlf the image at hand and
its reference are properly spatially aligned, identicatdgrams yields photometric
alignment. Unfortunately, exact histogram specificatioldh only for continuous ran-
dom variables whereas pixel brightness is not. Nonethetess/ algorithms, such as
[13,/23], have been conceived to approach theoretical prénces. A more in-depth
presentation of related concepts and topics is postporthe toext sectiop 31 2.

Anyway, a typical IMF for gray scale images is a discrete fiorcconsisting of 256
pair of corresponding pixel brightnesas ( u,) derived from the cumulative histogram
H; andH; of a given image and its tonal reference as follows:

Uy = Hy (H1(wy)) (3.6)

A specific photometric registration method relying on thgtdgram specification
technique is part of the proposed mosaicing approach. Bihis normalization step is
performed prior to stitch a new frame into the mosaic, jushagyeometric registration
step aligns the images into a common spatial coordinateefraBased on HS, the
method is fast and simple; moreover it does not require thresto remain completely
static and is tolerant against moving objects and smalliapaggistration errors. In
fact, the presence of few moving objects often does not #ieoverall cumulative
histograms hence impacting negligibly on the photomeétgstration stage.

Although the method has been conceived to work with grayesozdges, its practi-
cal generalization to color imagery has been accomplisiigchbhsforming images into
a luminance-chrominance color space, such as YUV space,pbdorm histogram
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specification on the intensity channel, apply the IMF andgfarm back. Perform-
ing histogram specification independently on each charfreRGGB color image may
cause tonal artifacts such as the introduction of color labsgent from both source and
target color schemes, as might be seen in[Eig. 3.1. Testgrobably originates from
the use of Bayer color filter array, which is a popular fornwatdigital acquisition of
color images, and might have a smalléieet when using full color CCD camera (3
independent photo receptors per pixel, one for each RGBrefanMore details on
the histogram specification topic and a fast implementadfche algorithm are given
inside [4].

A principled extension of histogram specification to colorages has been at-
tempted in[[38,32], conversely a biologically inspired eggzh that handles the corre-
lation between color channels and their perceptually naformity is still to come.

Figure 3.1: Independent histogram specification on each channel of @& €vdlor space. Un-
expected hues appear due to inaccurate correction of peatermisalignment.

Image warping and blending

Every new framd; is combined into the mosaic by warping it according to the vi-
sualization matrixQ; computed by the geometric alignment stage. Image warping is
accomplished using the backward transformation, namelgdoh destination pixel its
corresponding source pixels color is queried. In this waiyhee holes nor overlaps
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can appear in the warped image, and inside the mosaic angtyrdi he backward ap-
proach requires the inverse of the visualization magixo be computed, anyway the
matrix Q;l always exists since homographies are non singular lineastormations.

Several diferent interpolation methods have been investigated antorggtsug-
gested in literature. In the experiments, bilinear intéapon has been chosen as it has
empirically proved to fier the best tradébbetween accuracy and computational cost
with respect to higher order methods (e.g. cubic interpmiqt Conversely, nearest
neighbor interpolation exhibits too much visual artifactherwise it would be attrac-
tive due to its speed. Photometric registration, accometisthrough a simple pix-
elwise Look-Up Table (LUT) recoloring using the computedANs performed prior
image warping.

Although geometric and photometric registration shouletaach frame into the
spatial and tonal reference of the mosaic, seamless stifatsually calls for an addi-
tional blending stage in order to conceal small residudfiaats. Blending techniques
consist of a filtering process inside the overlapping areagally attained by means
of weighting functions that reinforce smoothness or carntinamong adjacent pixels
or regions([39]_10]. Oferent approaches may encompass temporal filtering schemes
such as mean, mode or median of the distribution of oventappixels [6], or also
the exponential update rule. Statistical approaches nibdaolor distribution at each
pixel using parametri¢ [28] or non parametric mixture of ggian [18].

Since the proposed algorithm usually leave faint residuifhats, a simple and
fast blending method based on modal filtering has been peeferin practice, the
mode of the intensity distribution of each pixel is cons@tkthe representative sample
and selected to appear into the mosaic image. Assumingipteelsities beingféected
by gaussian noise, this approach is close to a maximumHiketi estimation, anyway
it empirically proved to be robust with respect to small iggaments and undetected
foreground objects.

In presence of moving objects detected by the backgrounulasiion algorithm
(more on that in the following section), a selective updaienabled in order to use the
computed masks as filters to prevent the update of parts cdimosrrently occluded
by foreground objects. Obviously, when a new frame obsemsgen areas of the
mosaic, no previous information to perform backgrounddiion is available, hence
pixels belonging to new areas are assigned to the mosatlglire

3.1.3 Motion detection

A reliable background mosaic permits to directly extenduke of a standard back-
ground subtraction algorithm for stationary cameras, f@neple the work presented
in [6], to moving PTZ cameras. Although the explanation @& toncepts underpin-
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ning background subtraction algorithms is outside of tlgpewf this section, standard
methods basically compare the current frameith a reference imagB, i.e. a pre-
viously computed background. Moving “blobs”, or aggregatpixels, are identified
by thresholding the result of the comparison. A moving PTiheen does not admit
the equivalent of a reference image for it is allowed to clesitgviewpoint over time.
While recording all possible portions of observable scemag mot be practical, com-
bining all the views in a single representation can be acdishgd by constructing a
mosaic of the scene. Indeed, standard background subtradtorithms can still be
employed as long as a prior step trim the portion of the ctulyresisible scene, the
backgroundB, from the mosaic and feed it to the motion segmentation dhgar

Although, in principle the mosaicing algorithm may be usedefor the creation
of the background mosaic during a bootstrap sequence andeti@nused, this is not
recommended. As a matter of fact, for the background suiiiraend maintenance
operations to be performedhieiently, the current visualization matr@;, linking the
current image to the mosaic should always be kept up-to-dadethis reason regis-
tration is performed at every new frame even though the brackgl mosaic is already
in place. This way, the current visualization mat@xholds the position of the frame
inside the mosaic image, or, equivalently, the locatiorhefd¢orresponding regids.

After the portion of the currently visible backgrouBghas been indexed, the align-
ment with the actual framg is easily accomplished by backprojectiBgusing the
inverse of the current visualization matx_;.

As a final remark, the exploitation of color images permita¢bieve considerable
improvements in terms of shadow removal and reduction ofoedlage, i.e. whereas
different color tuples map to similar gray level values, alttiorggjuiring an increased
demand of computational resources. In particular, perifogrbackground subtraction
in a different color space, such as HSVYE, Cy, permits to reveal moving shadows
and to discard them when detecting motion| [15, 16]. Shad@amshave very a detri-
mental €fect, especially in outdoor environments, causing defdonatof the shapes
of moving objects that lead to degraded results of furthecessing tasks such as
tracking or object recognition.

3.1.4 Experiments

Extensive experiments using several video sequencesredgtom real world scenes
have been accomplished in order to evaluate the qualityeafithsaics generated by the
proposed algorithm. Since no standard evaluation metlggialor sequence dataset
are available, quality assessment is mostly delegatedtmbinspection. Nonetheless
the integration within a visual surveillance system alldowgonsider the overall sys-
tem performance, namely the computed motion masks, as aatodof the mosaics



36 CHAPTER 3

quality as well.

To this purpose this section is subdivided into two partse fitst part focuses on
the visually perceived quality of the mosaics; despite §aisubjective indicator it pro-
vides substantial insights as long as inherently “qualdtapplications are targeted,
such as digital photography, photomontage, post produdiects and so on. The
second part is concerned with motion segmentation usingzaseiveillance camera
and aims at assessing the performance of the algorithm lgiriteg the quality of the
motion masks delivered by the overall system.

A considerable number of image sequences have been useadlotd this section,
all of them being dierent for many specific aspects such as length, environitiant,
mination, moving objects and so on. Though, the resoluB@0x 240 pixels, and the
processing hardware, an AMD 2000 MHz, is the same for all efrthFor this reason,
time performance delivered by the mosaicing algorithm aitecstable, irrespectively
of the specific sequence, and fluctuates in the range eflBdrames per second (FPS)
for gray scale images and-59 frames per second for color RGB images. Such pro-
cessing speed allows the motion detection system to pedidaquately smooth and to
deliver the expected people tracking and alarm signalingtfanalities.

Image mosaicing results

Four image sequences have been selected to illustratesihal guality of the attained
mosaics. All the sequences consists of several hundredaroét and have been ac-
quired by moving a camera around without particular caree firist pair of sequences
require spatial alignment only, the second pair tonal atignt as well. In Figure_3.2
two mosaics, attained by processing the first pair of outdiomgm) and indoor (bottom)
sequences, are shown.

The first outdoor sequence DCOURT1 (Fighre 3.2 top) consis@&B0 stills and
has been acquired by manually scanning the scene from lefgiband back many
times. The scene exhibit objects at a variable distance thentamera; e.g. a close
wall of a building on the left, a farther gate and a paved ga@rd. The wide field
of view and the structured scene (hedges and trees) may siretsmall alignment
errors. Nonetheless the mosaic does not exhibit any visithiiacts or seams, all the
structures being properly aligned and uniformly colored.

The second sequence DLABL (Figlre]3.2 bottom) is 820 franteg&nd portrays
an indoor environment with very close objects. The smallasise between the ob-
server and the surroundings makes the assumption of qaaseéne hardly fulfilled,
leading parallax fects to hinder motion parameter estimation. Nonethelagsnb-
saic does not contain any blur or discontinuity and the textdi the scene is sharp and
in-focus everywhere.
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Figure 3.2: Two examples of mosaic built from long sequences acquiredabgomly pan-
ning the camera back and forth across the scene. (Top) Mreaicsequence DCOURT1 (680
frames). (Bottom) Mosaic from sequence DLAB (820 frames).

The second pair of sequences is more challenging. Aside the complex camera
motion trajectory, as may be realized by the irregular shagie¢he attained mosaic,
considerable illumination changes have taken place dihi@gcquisition. In fact, the
scope is to highlight the visual quality improvements thepmsed mosaic delivers by
explicitly compensating illumination changes.

The first sequence, DCOURT2, has been acquired at 12.5 fhsawgmote con-
trolled Axis PTZ network camera pointing toward the samedoat scene as is se-
guence DCOURT1, but taken from dldirent point of view. Several exposure changes
occur along the sequence due to the automatic light compensaechanism embed-
ded in the camera firmware. An example of a sudden photomedriation may be
appraised by looking at Fig._3.3 where in a matter of few franhe image becomes
highly saturated.

As shown in Fig.[3}# (top), although the proposed spatialsteagion algorithm
manages to preserve the consistence of the geometriastaetcross the whole scene,
many visually unpleasant seams show up due to the consldematal misalignment
among frames. Conversely, all the artifacts are eliminbteenabling the photometric
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Figure 3.3: Department courtyard (DCOURT?2) sequence: pair of tempoedljacent frames
with strong photometric variations.

registration and a smooth and sharp reconstruction isrddaas can be seeninin Fig.
3.4 (bottom).

The last sequence, DLAB1, deals with an indoor highly strred environment.
As before, the sequence has been acquired by manually gpandhtilting, using a
Sony TRV 900 camcorder hinged on a tripod. Spot lights spagaaks the scene cause
sudden exposure compensation every time the camera dipamtits at them. The
effect of uncorrected photometric changes, shown in [Eig. 8y%) @eriously degrade
the quality of the mosaic. However, when tonal registrai®performed, most of
the color defects disappear and the outcoming mosaic loakhmore pleasant and
realistic (Fig[3.b, bottom).

Motion detection results

Indirect assessment of mosaic quality through the anadf e performance delivered
by a visual surveillance system is the scope of this secfidre motion masks com-
puted by the motion segmentation algorithm have been \Wsirspected, Receiving
Operator Characteristic (ROC) or other statistical inticebeing impractical since no
public data sets equipped with ground truth, for these kirapplications, are available
yet.

All the sequences have been captured with a Sony TRV 900 caercat about 12
frame per second (fps) and 32@40 pixel resolution. The camcorder has been hinged
on a tripod in order to make it rotate roughly about its optaemter. Six challenging
indoor and outdoor sequences have been considered, béiagedt for illumination,
scene structure, and number of moving objects in the scene.

The first sequence DLAB2 is 1121 frames long; it is the seqistguence DLAB1
and consists of a wide field of view capture of the interior of @b. In Fid.3'6, both
the mosaic (top) and the plan of the environment (bottom)repearted. Similarly
to sequence DLABI, close objects and significant depth tianis (near the red door
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Figure 3.4: Department courtyard (DCOURT2) sequence: spatially aligmosaic (top), spa-
tially and tonally aligned mosaic (bottom).

and the wall on both sides) may emphasize slight out-ofezentations giving raise
to disturbing parallax féects. Moreover the vicinity of the moving foreground object
requires fast camera rotation to allow person trackingcadéeading to large interframe
shift typically difficult to handle.

Despite the mentioned fiiculties, the system performed consistently and accu-
rately. Samples of the delivered motion masks are supesetpon the frames in Fig.
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Figure 3.5: Department laboratory (DLAB1) sequence: spatially alfymesaic (top), spatially
and tonally aligned mosaic (bottom).

[B7to ease visual inspection. Detected moving blobs areradhto the real body shape
of the moving person across the entire sequence irrespaiitits position inside the
scene and its distance from the camera.

The second sequence DCOURT3 deals with an outdoor envinutrwith a person
walking in (see Fig[Z318 and Fi@._3.9). The scene structufavisrable since the wall
is perfectly flat, on the other hand reliable feature dedectind matching is flicult
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Figure 3.6: Mosaic created through processing the indoor sequence RL#E®), plan of the
environment and cone of view(bottom).

for the building being poorly textured. Moreover, the proiy of the moving person
cause large interframe displacements stressing furteefIth tracker.

Nonetheless, the initial estimation via phase correlaéffactively supplements
the KLT tracker leading to reliable estimation of the trameiation parameters. As a
result, the detected moving masks reflect the presence pétisen and provide a good
approximation of the real shape, as it might be seen in[E@. Bew false detections
appear from time to time, due to the shadow cast on the wailhdeh

A third and more challenging sequence, DCOURT4, consisisiéi frames and
deals with the large outdoor environment partly visible ig.A3.4. Three walking
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Figure 3.7: Motion detection sample frames from the indoor sequence BR2.A

person roam around randomly (see Fig. B.11) and the camlra their movements.
Several dificulties arise when processing such a sequence. Firstguajh foreground
objects moves slowly because of the distance, LANhittaaused frame drops and
hence the sequence shows a highly variable frame rate ingls@nificant frame lag.
Secondly, the scene exhibit a large range of radiance, thiyeod on the lower right
side being far more darker than the sunlit buildings withie tipper area. As the
camera rotates through the scene, such highly varyingiitlation conditions need to
be compensated to avoid seams in the resulting mosaic.l\fittake moving person
are simultaneously present in the scene. By moving indegrgfydfrom the camera
motion, a large number of keypoints detected on the objemtsines motion outliers
possibly degrading RANSAC performance.

Nonetheless, the motion detector performs steadily, cbgss of the lighting con-
dition and the distance of the moving objects. The achievedimg masks adhere to
the silhouette of moving objects, although often signadtsp their cast shadows (see
Fig.[311).

The next two sequences focus on the benefits deriving froor pobcessing. The
most remarkable advantage, as long as motion segmentaijuitations are con-
cerned, is the ability to remove shadows using intensityvaticity color spaces. In
fact, a color mosaic can trigger the use dfelient color spaces to get a significant im-
provement of the motion detection outcomes. An exampleeirtiprovement granted
by performing background subtraction in thlJV space compared to gray scale is
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Figure 3.8: Mosaic created through processing the outdoor sequencdJRTO (top), plan of
the environment and cone of view(bottom).

shown in FigureE3.12 and 3113.

In rows of Figure$ 3.12 and_3113 one can see three framesctedray two se-
guences showing the output of the motion detection refgtdrthe same environments
(DLAB1 and DCOURT1, respectively) depicted in Figlirel 3.2 #ways, the detected
moving masks have been superimposed to the frames to eagisuhkinspection. In
the top row, the quality of the detected masks using conoeatigray scale frames is
presented. In the bottom row, it is shown the improvemerndgid by exploiting color
information.

In the samples depicted in Figure 3.12, a person enters thra emd casts his
shadow on the wall behind (left), conversely the shadowrisoreed when using chro-
maticity (right). In the second set of samples depicted guFé{3.1B a walking person
is moving around in a sunlit courtyard. Being an outdoor s¢éme shadow is yet more
highlighted compared to the indoor one. Although it is deaisible in the gray level
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Figure 3.10: Mosaic created through processing the outdoor sequence JRT .

sequence (left), it has been completely removed in the cwler(right).

The last sequence shows the impact of accurate tonal aligrondoth background
subtraction and tracking performance of the visual suiamile system. Fid_3.14
shows a couple of frames referring to the same environmepisd in Figl34 and
highlights the motion masks; objects identities, computedhe tracking algorithm,
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Figure 3.12: Three gray scale (top) and color (bottom) sequences of fraees each, coming
from DLAB sequence showing shadow suppression using calagery.

are visualized by means offtirent colors. Moreover, motion segmentation informa-
tion are superimposed along with the trajectory followedhms/ moving object during
the last 20 frames.

Due to unhandled illumination changes, sample frames olefteolumn of Fig[ 3.1k
depicts highly inaccurate motion masks yielding to pertdrimotion trajectory. On the
contrary, photometric correction allows to deliver rel@mmotion masks and accurate
trajectories accordingly. As an example Hig._3.14, middfg lshows a large artifact
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Figure 3.13: Three gray scale (top) and color (bottom) sequences of fraeees each, coming
from DCOURT sequence showing shadow suppression usingictémery.

in the middle of the image, which yield the system to dete& imsgle moving mask

instead of two. In this case, a potential detection errokexfby the tracking algorithm

that recognize the two persons despite the single detechs#t.nBesides, on the top
right side of the left image a big false alarm is triggeredn@sely, on the middle-

right, motion masks are detected with a quality comparabthdt of background sub-
traction with stationary camera. Such a quality enablaabigl objects tracking in the

whole field of view, independently of the camera movements.

3.1.5 Summary and future work

An automatic, real time and general purpose image mosadtgayithm has been con-
ceived. The proposed method performs consistently in a wadge of real world
contexts, e.g. indoor and outdoor scenes, by deploying plicéxspatial and tonal
registration procedure. In addition the system is compléteage-based and it does
not rely on any a priori assumption regarding scene or camera

The dual alignment stage permits to bound the drift errawaltg the construction
of quasi globally consistent mosaics, without resortingdmputational demanding
global adjustment procedures. The use of fast featureplesumented by a phase cor-
relation based bootstrap, permits to handle large and aoagaimera motions while
preserving real-time computation. The accuracy and thie pigcessing speed make
the algorithm suitable for integration in visual surveilte systems performing on-line
motion detection using backgroundfgrence. Experiments with several challenging
real-world video sequences have shown thiedaiveness of the proposed approach for
both visual and quantitative purposes.

As for future works, the system may be improved by addingine-earning of



REAL-TIME IMAGE MOSAICING a7

Figure 3.14: Department Courtyard (DCOURT?2) motion detection and tragkample frames:
with (right) and without (left) joint spatial and tonal afiment.

optical properties (focal length, principal point and lelistortions) of the imaging de-
vice. The correction of optical non-idealities would leadat complete independence
from the imaging device and would considerably enhance $mdtial and tonal align-
ment. In addition, a faster implementation of SIFT featwrébprovide more reliable
feature correspondences, and a more accurate stitchiogdégly.
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3.2 Afastand exact histogram specification method

Histogram specification methods aims at finding a functiai thansforms a source
image so as to match a target distribution with the highessibte degree of accu-
racy. Many approaches privilege exact specification byapty multi-valued order-
ing functions but incur in computationally expensive impintations. Aside com-
putational complexity, histogram specification algorithoan be rated according to
image distortion and accuracy of reproduction of the tahggtbgram, i.e. histogram
matching.

Topic of this section is a fast algorithm, based on histogspetification, that de-
liver exact matching to a given target histogram indepetideri the source image
meanwhile introducing negligible image distortion. Theaglicity of the method en-
ables fast computation making the algorithm suitable faf tiene applications, such
as sequential image mosaicing.

3.2.1 Introduction

Histogram modeling techniques provide sophisticated outiior manipulating colors
and contrast of an image by altering individual pixel sucht the intensity histogram
assumes a desired shape [[34, 20]). Histogram specifidatzmasic histogram model-
ing technique that transform one histogram into anothebgnmemapping pixel bright-
ness values according to a computed Intensity Mapping lam@MF). Although his-
togram modeling operators may encompass the use of conlexistogram spec-
ification employs a simple monotonic, non-parametric magpihich re-assigns the
intensity values of pixels in the input image such that thgpouimage exhibits as a
similar histogram as possible to a given target distributiteally, target and output
image histograms should be as similar as possible.

Although in a theoretical continuous case a mapping funcfielding a desired
Probability Distribution Function (PDF) exists, in the cliste domain of pixel bright-
ness values only approximated IMF can usually be determiApgroximated IMFs
produce quasi exact histogram matching by introducing kvedlvn histogram artifacts
such as gaps and overfull bins, but preserve image striscture

Classic algorithms|[([34, 20]), relying on approximted IMBsave been used for a
wide range of tasks where visual evaluation is crucial, dubém preserving as much
the image structures as possible. On the other hand, héstogrtifacts can have very
detrimental €ects for subsequent image processing operations such ge fionsion,
invisible watermarking, image normalization and image aitiag.

Recent researches in the field of histogram specificationldthso diverse ap-
proaches aiming at lower histogram distortions, by slightbdifying the image struc-
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ture. Quasi exact and exact specification has been achiguwedloiting multi-valued
IMF capable of mapping pixels according to diverse featurespixel brightness, aver-
age neighborhood brightness, thus allowing to diministolgimm distortions. Though,
the determination and the mapping using multi valued IMRiegcomputationally ex-
pensive algorithms.

This section presents a novel approach for fast and exaoignésn specification.
The conceived method delivers exact histogram matchingwaleige introducing low
image distortion and allowing for fast computation. Themzovelty is the use of one-
to-many (OTM) relations among source and target pixelsibnigss instead of standard
one-to-one mapping. This yields a quick and flexible remagpblicy able to prevent
any histogram distortion.

3.2.2 Related work

Histogram specification[([34, 20]) may be regarded as a gdination of histogram
equalization ([34,37]). Classic implementations of higton equalization rely on the
fact that transforming a Random Variable (RV) by its Cumutbistribution Function
(CDF) results in a uniform distribution ([20]). Histogramexification is performed by
using the source CDF to map the source histogram to a unifagvand then using the
inverse of the target CDF to make the uniform histogram toagpce the target one.

By modeling pixel brightness as a discrete R¢haracterized by a PDp; that
describes the spatial frequency of its gray levels, it cashmsvn that the R\R = C,(r)
is uniformlydistributed in [Q1], whereC, (r) = f_roo pr(v)dvis the monotonically non-
decreasing CDF of. Besides, leZ = C,(2), zandZ being RVs andC, the CDF of
z, then one can forc® = Z, hencez = C;1(2) = C;}(C(r)), as long aR andZ
are uniform. Then, it turns out th&, andC;?! are the equalizing and the reshaping
function, respectively. Apart from normalization detailéstogram specification is
performed by replacing source image grayleveith r’: r — r’ = C;1(C(r)).

While, in the continuous case, a function capable of trarisigthe PDF of a target
image to a source image exists, in a discrete domain the seshkem usually admits
only approximated solutions. This is due to discrete CDRsghrot exactly invertible,
for they are staircase functions and therefore invertitllempixels take distinct values
only. Since the number of pixels in an image is usually carsilly larger than the
number of graylevels, the distinct value case is unlikelgdour.

Classic specification algorithm [34,120], implemented adoa to the above de-
scribed theoretical framework, discriminate pixels adawg to their brightness value,
thus leading to quasi exact histogram matching, with thiveleld histogram féected
by artifacts such as holes and overfull bins. Despite produbistogram distortion,
these algorithms are fast and introduce low distortion aigm structures, for pixels
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showing the same graylevel in the original image being mdpp® the same target
graylevel. Fig:3.75 shows an example of the distortifeaing a histogram delivered
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Figure 3.15: An image histogram (left), a target histogram (middle) ahd dutcome after
classical specification (right)

by classic histogram specification algorithms.

Histogram distortion artifacts, i.e. gaps and overfullhiriginates when the
derivatives of corresponding ranks of source and targetsG&hibit diferent values.
In this cases both matching ambiguities and overassigrsveentld arise. In practi-
cal cases, gaps and overfull bins are emphasized in caseutledmage histogram is
composed by few large bins. For these reason, the auth@4,37] propose to reduce
this efect by preprocessing the source image adding a small ambuniform noise,
so as to avoid large bins. While these approaches are ligglyaduce an output im-
age whose histogram is more similar to the target one, treoraly added noise may
potentially reduce the overall image quality by degradimgge structures. Nonethe-
less, these methods grant an improvement in terms of hatognatching compared
to classic methods, and the unstructured noise may be dilteydfurther processing
procedures.

Several other attempts have been accomplished to impretagham matching by
exploiting methodological techniques. For instance, titha@rs of [43] reformulate the
histogram specification problem as an optimization problétawever, exact match-
ing is still attained at the expense of noisy images, as niot¢84]. Moreover, this
method introduces structured noise patterns, i.e. how@tdines inside uniform ar-
eas, due to the row-wise order of evaluation of equivalexelpi As a matter of fact,
such patterns, although sometimes visually negligible; m&lead further image pro-
cessing methods (e.g. edge detectors), whereas noisyntiiges be mistaken for real
scene structure. The use of multi-valued IMF has been preddsy th work of Hall
[24], where the histogram approximation has been improyefditther discriminating
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pixels according to the local average of the 4-connecteghfieirhood. Recently, this
work has been refined by other authors. For instance, Eraetiah [19] proposed
two novel neighborhood based metrics to separate pixeltssaiine graylevel, e.g. the
8-connected average and the brigther-than-neighbord.cinle this approach per-
mits to dtectively split larger bins into smaller ones, exact histmgmatching is not
always secured. Coltuc et al._[13] further improve the tadfgproaches by combining
different metrics, using a variable length bank filtering apghoavith the purpose of
discriminatingeachpixel of the image. Uniquely indexing every single frame aimts
at obtainig invertible CDFs, thus making the exact solutmexist, as it happens in the
continuous case. Leaving the computational complexith@fhethod apart, the choice
of the filters plays a key role in the indexing process, Thétglio discriminate every
single pixels can be attained by analyzing image propeirigde large windows cen-
tered on each pixels. On the other hand, features extracedregions far away from
the given pixel may provide loosely correlated informati@ften, the right filter size
is strictly dependent on image peculiarities and it mustdrefully chosen to prevent
the computational cost to diverge. Nonetheless, the wqykrted in [13] represents
the state-of-the-art for exact histogram specificationnoes.

3.2.3 The method

Histogram specification methods can be classified accotdirmpmputational com-
plexity, image distortion and accuracy in reproducing #wget histogram. The pro-
posed method yields histograms perfectly matching a t&B&t meanwhile introduc-
ing low image distortions.

Approaches

According to theory in Sectidn 3.2.2, histogram specifarais generally accomplished
through a mapping between order statistics, where eactealkawhithe source distribu-
tion is mapped to the correspondingly ranked element ofdlget distribution. Thus
letf :[0,N—-1]x[0,M - 1] — [0, D — 1] be a scalar function representing an image
with dimensionE = N x M and depttD, wheref(p) denotes the graylevel of a pixel
p. In this setting, the discrete PCHK (i.e. the normalized histogram) and the COF
of the imagef (-) can be computed as follows:
E :
mw=é;;mm»aum={1““m‘x 37)

0, otherwise

Ci(0) = ) Hi(y) (38)
y=0
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The ideal output of a histogram specification algorithm israageg : [0, N — 1] x
[0,M - 1] — [0,D - 1] with a normalized histograrfly that exactly matches the
target PDFH;. Given these definitions, each bin of the output histograrstrnaunt
N x M x Hq(i) pixels, wheré € [0..D — 1] represents the bin index.

Fig.[3.I6 outlines graphically, using only 4 gray levels thay gray levels are
remapped to perform histogram specification by the algmstidescribed in 20, 19,
13] and our proposal. The first rows refer to the source imageshow the distribution
of the 4 gray levels (left) with the corresponding histogr@ight). The second rows
show the target distribution (and related histogram), svitile arrows from first to
second rows describe the re-mapping procedure (e.g. ifBEi§(a) 0 mapsto 0, 1 to
2, 2to 3 and 3 to 3). Finally, the third rows show in red (darddpc the approximation
errors. For example, the third row of F[g.3l16(a) shows tiray level 1 is mapped
erroneously in gray level 2 instead that partly in 0, 1 and 2.

LER

(a) Classical (b) Eramian et al.

0 1 2 3

0 1 2 3

T

(c) Coltuc et al. (d) Our method

0 1 2 3

JONUIID¢

EER LER

11

m

Figure 3.16: Histogram specification mappings methods and approximagroors. Classical
(a), Eramian et al. (b), Coltuc et al. (c), our method (d)

Fig.[316(a) depicts the classic histogram specificatigorithm. It requires to
compute a simple IMF in the form of a Look-Up-Table (LUT) wiosntries refer to
the D distinct pairsg < x; wherex; is a source gray level an(fj is a target gray level.
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Hence D represents the dynamic range of the implicit ordering fiomdbased on gray
levels only. In order to perform histogram specificationhegcaylevelx is replaced
with the target graylevel’ according to:

X =D-C:Y(Cs (%)) (3.9)

whereC; andCs are the CDF of the target and the source histogram, respictithis
method is simply a graylevel remapping, only global histmgrinformation and the
pixel graylevel are considered. The more source and taigttgnams are dierent,
the more gaps and overfull bins are likely to appear. In facye diference in pixels
count of corresponding bins, through the computed mappiray, cause assignment
problems. The issue is originated from the staircase natitiee discrete CDF and
the coarse quantization step= 1/D given by discriminating pixels only on the basis
of brightness values. As highlighted in Fig. 3.16(a), thisghem may lead to gross
approximation errors and poorly matching histograms.

An attractive improvement arises from discriminating féxXeaving the same gray
level, taking into account some properties of image neighdod. For example, au-
thors in [19] introduce the neighborhood voting metriadefined as a function of the
number of pixels in thexxmsquare neighborhood mask centered on a pixel whose gray
value is strictly less than the pixel brightness. Formeglyiealent pixels can be further
distinguished irm x m classes according to the metric. Thus the dynamic rangesof th
ordering function based on brightness and metfjcamounts aD, = D - (mx m).

This grants a finer quantization step = 1/D,. In practice, equal gray level pixels
may be discriminated into additional x m bins, thus reducing the staircaséeet of
the CDF and yielding a better approximation of the desirstbigiram (Figl_3.116(b)).

Along the same line, another proposal by the same autho&3)fconcerns an
algorithm relying on a metri@ defined as then x m neighbor average brightness
around each pixel, approximated to the nearest integer.lgBiyn equivalent pixels
can potentially be further subdivided ihclasses, thus resulting in a dynamic range of
Ds=D-D.

In principle, several metric, or features, may be added eath bin consists, at
most, of a single pixel. An interesting example is the worlCmjtuc [13] that combines
K average neighborhood metmg, k € [0..K — 1] computed on image neighbors of
increasing size, thus yielding a dynamic ramdg = [y Dm. As one can see in
Fig.[3.16(c), the gquantization step decreases and theghistoconverges significantly

to the target one.
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Description of the algorithm

The proposed algorithm has been primarily designed to reetdfinition of histogram
specification, namely the generation of an image whosedrato perfectly matches
a given target histogram, independently of the source im&jece each bim in the
output image must be populated with exadly Hr (i) pixels, itis likely to happen that
pixels having the same source graylevel shall be spreadteretit target gray levels.
Nonetheless, the case of indistinguishable pixels mayrogespective of the dynamic
range of the conceived ordering function.

Therefore, standard IMF, namely bijective relation, hasrb@bandoned in favor of
the concept of one-to-mamglationship A one-to-many relationship holds the poten-
tial to handle indistinguishable source pixels by exgljcihodeling their mapping to
multiple target graylevels. In place of fixed one-to-oneespondences < X, given
by a conventional IMF, one-to-many relations allow to assigyiven source pixel many
target values inside an admissible range- (xI X, ) Final gray level assignment
is drawn randomly inside every admissible range, althoutgueng exact histogram
matching. Moreover, the proposed method deliver exactifspetoon with any order-
ing function; the use of other metrics, in addition to theghthess value,féect only
the size of the admissible ranges.

Pixels are first ordered according to a given ordering mgtigtding several classes
of equivalence;, i € [0..Dy—-1], e.g. defined by individual brightness values. Nonethe-
less, as mentioned in the previous section, a class of pigelbe further split into sub-
classes according to other properties, e.g. neighbortnggk average. Moreftérent
properties yield more subclasses, thus producing a finertadion step.

After equivalence classes have been computed, each ssibdesequentially as-
signed to target gray level bir, j € [0..D — 1] so that each of them hawex Hr (i)
items. A sparse matriMp,,«xp stores the one-to-many mapping, in which row rep-
resent source image class and the columns denote targagraist graylevels. Each
matrix entryM(c;, b;) contains the amount of source pixels inside a ctagisat must
be remapped to the gray levst

[ myp 0 0 0O 0
Mo M1 O 0 0
0 my mpe O 0
0 0 mg; O 0 (3.10)
0 0 myy my3 0
O 0 0 0 . mop |

Histogram matching is attained by imposing that each taygt level (column entry)



REAL-TIME IMAGE MOSAICING 55

is assignedE x Hr (i) source pixels or, equivalently, by requiring each columsum
up toE x Hr (i) pixels

Du-1
S(b) = >\ M(c.bj) = Ex Hr(j), Vj € [0.D - 1] (3.11)
¢=0

As many other approaches, this method may introduce stetpattern noise in case
gray level assignments follow the order of the evaluatiothefinput pixels (e.g. typ-
ically row-wise). However, although the visudtect can be noticed only for quite
untextured and largely uniform images, this always alteesdignals in a systematic
way, possibly misleading further image processing algorg@. This &ect has been
significantly alleviated with the introduction of randomisys for shifling gray level
b; inside a given admissible range before establishing the &issignment. Being
computed ffline, random strings avoid to add misleading signal pattertise output
image while preserving computationdfieiency.

3.2.4 Experimental results

Extensive experiments have been carried out using stamtages widely employed
for benchmark evaluations. In addition, challenging insagave been considered in
order to stress the considered methods and emphasize themeibf the dierent
strategies adopted. The target machine is a AMD Athlon 208uipped with 512
MB RAM.

Three quantitative performance indicators have been dersil, thus allowing
even small dierences to be highlighted. In particular, comparisons heaen per-
formed according to computing speed and contrast enhamtefdewever, as stated
at the beginning, a poor histogram matching cad further image processing steps
even when it is not perceivable. To this purpose, two digtorindicators measure to
which extent the histogram and the image structure have &léaned by the specifica-
tion process.

The experiments have been accomplished over the most forgsentative meth-
ods in literature and results have been compared with theome of the proposed
approach. The names of authors in the Tables refer to theoaeitescribed in the
respective papers. In particular, Coltlic|[13] is the onlythmd achieving an exact
matching histogram, and it is the most direct competitoraibindicators. Finally, for
one image we include the shapes of the original and specifséagnams, using all the
methods implemented.
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Performance Indicators

In this section the performance indicators used to asseks@mpare the histogram
specification methods are detailed:

e computational speed
Often the time needed to obtain the specified histogram idinettly measurable
since the elapsed time is too short. Therefore we have cadhé number of
specifications performed in a given amount of time, that exékperiments has
been fixed to 10 seconds. In this way we can derive the numbearafions per
secondsS that is our figure of merit.

¢ histogram distortion
This indicator gives a measure of thffextiveness to achieve a specified his-
togram by comparing output and target histogramsand K respectively, by
using the Kolmogorov-Smirnov distance defined in[Eq.13.12:

Dis(H. K) = max( h -k [),i €[0..D] (3.12)

whereh; andk; represents th#” bin of the histograms.

e image distortion
Among the possible indicators to measure image distortiethave chosen the
one implemented by authors [n [19], in order to better allafiract comparison.
The image distortion between imagés andG,, whose size ifN x M has been
measured according to the following indicator.

1 Gi(i, ) )2
= — Hij

A= ( L
E (i,j)€[0,M—1]x[0,N~1] G, )

(3.13)

Here,ujj = %Zi,j g;gﬁ is the mean ratio. The indicator gives a measure of the

standard deviation of local changes in terms of contrast.

Results

As the images for benchmarks we use some synthetic imagesBrodatz textures
collection [8], besides the well known Baboon and Boat (Bi@.d). They are 512512

in size but d72 (64& 640). From left to right we show the original images, those
specified using our algorithm to match as target PDF respgt linear, Gaussian and
logarithmic distribution (shown in the last row of Figlird3). We do not show images
achieved with the other approaches, since tliiedinces are not visually perceptible.
Rather, they can be assessed through analyzing TablesE3233 column by column.
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(a) Original (b) Linear (c) Gaussian (d) Log

Figure 3.17: Brodatz d72 (top), Baboon (middle) and Boat (bottom) hisagspecified using
the proposed method with synthetic target histograms.

Table 3.1: Histogram specification results for image d72, 64640, single channel

Method  Speed Distortion Match Dks[107%]

Lin Gau Log Lin Gau Log

Classic 56.58 .023 .244 147 4.07 4.15 4.39
Eram, 1.88 .024 559 .198 .743 975 1.04
Eramy 1.05 .024 .701 .203 .067 .059 .107
Coltuc 0.20 .024 .741 .210 .000 .000 .000
Ours 4291 .024 .741 210 .000 .000 .000

At a glance, we can see how the performance delivered by thymoped approach
is identical to Coltuc, but for speed. In fact, the algorithlways performs far better
than all the other ones (more that one order of magnitudeg iian two as Coltuc is
concerned) but the classic, whose speed is slightly highethe opposite, Coltuc is
the slowest one.

As for image and histogram distortion indicators, resulthi tables show they are
inversely proportional, as might be expected: the lowerhiseogram distortion, the
higher the image distortion. As far as image distortion isa@ned, the best values are
achieved using classic approaches, although in the lirisitaition case performance
are very close for every algorithm and image. On the conttheystandard algorithm
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Table 3.2: Histogram specification results for Boat, 52512, single channel

Method  Speed Distortion Match Dgs[1072]

Lin Gau Log Lin Gau Log

Classic 87.32 .009 .203 .090 215 2.04 205
Eram, 299 .009 .226 .098 .490 421 .638
Eramy 156 .009 .250 .099 .027 .026 .028
Coltuc 0.36 .009 .249 .103 .000 .000 .000
Ours 7114 009 .249 .103 .000 .000 .000

Table 3.3: Histogram specification results for Baboon, 54812, single channel

Method  Speed Distortion Match Dgs[1072]

Lin Gau Log Lin Gau Log

Classic 88.82 .010 1.08 .324 .766 .788 .786
Eram, 299 .010 109 .339 .134 .204 .198
Eramy 156 .010 1.11 .345 .013 .013 .014
Coltuc 035 .011 112 .346 .000 .000 .000
Ours 67.45 .011 112 .346 .000 .000 .000

shows the worst histogram distortion .

Coltuc and the proposed method deliver the same image tilist@nd are the only
algorithms to produce perfectly matching histogramsvi¢h no histogram distortion
at all. As for histogram distortion, the best algorithm amauasi-exact methods
is Eramian, that always shares with Coltuc and the proposedcomparable image
distortion for allimages. However, in any case, it nevechezero histogram distortion.

3.2.5 Conclusion

A novel method to perform a fast and exact histogram spetidicayiven a source
image and a target histogram has been detailed. Usuallyimapetween source and
target histograms is described via analytic functions ok istatistics computed on the
distribution of pixels brightness. However, histograntatisons artifacts such as gaps
and overfull bins prevent to achieve exact histogram mathi

Additional features, such as neighborhood average brigistnhave been intro-
duced to discriminate among pixel having same brightndegsasince indexing uniquely
every single pixels would lead to exact histogram matchifigough, these methods
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Figure 3.18: Comparison between source (left column) and specified dnisitos using five
different specification methods: from top to bottom, ClassiEgdm,, Eram;, ours (Coltuc’s is
identical and it has not been reported), anledlent target histograms: from left to right, linear,
gaussian and logarithmic.

call for computationally expensive implementations.

Our approach achieves exact matching by replacing the atdmadapping function
with the concept of one-to-many relationship. This enabdespread undistinguish-
able pixels, i.e. having same brightness, to diverse témggittness values and avoids
histogram distortion artifacts.

Established performance indicators have been used tosapsakity and computa-
tional cost of the conceived algorithm. Results confirm thatproposed method runs
more than two order of magnitude faster than the exact methdanore than one order
faster if compared with other quasi-exact approaches. §gesdup has been achieved
while maintaining comparable image distortion.
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Chapter 4

Evaluation methodology for
Image mosaicing algorithms

As soon as image mosaicing has been recognized as a keynuilitick of many
computer vision applications, the need for a principled aidkspread methodology
allowing to assess and compare the performance deliverdifieyent approaches has
become of primary importance. Indeed, several image mioggadgorithms claim-
ing to advance the state of the art have been proposed intrgears. Though, im-
provements can be sometimes recognized without quanéitidences, a quantitative
methodology for comparing flerent algorithms is essential as this discipline evolves.

What algorithm is the best? How to ascertain its primacy? féwer such ques-
tions, this section proposes a comprehensive evaluatidhatelogy including stan-
dard data sets, ground-truth information and performaneteics. Aside the explana-
tion of the key components, the performance of three vagiaia well-known mosaic-
ing algorithm are evaluated according to the proposed ndetbgy.

4.1 Introdution and related work

Image mosaicing represents a popular way of achieving aedaene reconstruction
by composing several overlapping views of the same scenimktcan be regarded
as a special case of scene reconstruction when the imagepatially related by a
planar collineation (homography) or subclasses of thissfiamation (&inity, simi-
larity, translation). As pointed out in sectibn 3]1.2, tassumption holds when images
exhibit no parallax ffects, i.e. when the scene is approximately planar or the game
purely rotates about its optical center. In these circuntgs, knowledge of the planar
geometric transformations among images permits to reamiss dense model of the
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scene, known also as mosaic or panorama.

Several mosaicing algorithms aimed at advancing the sfatiee-art have been
proposed in literature. Some innovations such as the tggatderence proposed by
Shawney [[1B], the global geometric consistency propose8tym [15] or the re-
cent automatic panorama recognition presented by Brawnclg&rly provide sharp
improvements over the existing state of the art. Howevés,ithnot always the case
and due to the lack of a reference test bed it is often veficdlt, or even impossible,
to evaluate and compareidirent mosaicing algorithms. Moreover, only visual inspec-
tions or problem specific metrics have been used so far fdopeance assessment.
The adoption of metrics based on human perception arisgstfre fact that in the past
mosaics have been mostly used in computer graphic appltsatiimed to a human
audience, such as publicity, photomontage, spefietts.

Nowadays mosaicing algorithms are employed not only to ggaeisually pleas-
ant pictures but also serve as key building blocks for mamgpgter vision applica-
tions, such as e.g. motion detection and trackingl[3, 9],aivelsased localization [10],
resolution enhancement [6], augmented reality [1]. In stednarios, visually similar
mosaics can be characterized bffelient levels of numerical accuracy and hence have
a different impact on the addressed computer vision applications

We believe that in these settings a proper reference testrimbdvaluation method-
ology is needed, so as to allow for quantitative performaagsessment. Moreover,
algorithms are becoming so accurate that human based fierceyetrics will soon be
unable to meaningfully distinguish mosaics obtained wiffedent algorithms (e.g. the
mosaics in the left column of F[g.4.1 look identical but thayned out very dferent
in terms of accuracy of reconstruction of the original sceee Fidg.4.12).

Inspired by the renowned work of Scharstein 1[14] and the mecent work by
Baker [2], respectively in the field of stereo matching andaap flow, this section
proposes an evaluation methodology for mosaicing algmstthat allows for princi-
pled quantitative discussion about performances and septe a useful tool for other
researchers. The proposed methodology enables to rateasaiaimg algorithm based
solely on the output yielded on standard data sets, andftinererespectively of any
knowledge on its theoretical foundations or implementatibo this purpose, we have
conceived a framework consisting of data sets and toolshfeir treation, ground-
truth information and performance metrics. As a case sthéymethodology has been
applied to the comparison and ranking of three variants oel-known mosaicing
algorithm that produce high quality, as well as visuallyigegrnible results.

To the best of our knowledge, there exists no other similgiop@mance evaluation

framework in the field of image mosaicing. The issue of penf@ance evaluation is ad-
dressed in two well known references [[4] 16] that are thanaugveys of the literature



EVALUATION METHODOLOGY FOR IMAGE MOSAICING ALGORITHMS 67

in the field of planar image registration. Although coveringiide range of algorithms
and applications, the suggested performance indicatotaip®nly to specific classes
of methods, e.g. keypoints-based algorithms, and may neidely applicable.

An on-line version of our results, along with the data setbground-truth used in
this work, can be found ahttp://www.vision.deis.unibo.it/MosPerf. This
web page includes also an online form that allows reseasdedownload the data
sets and then submit their own results for evaluation.

4.2 Evaluation methodology

Quantitative evaluation has been usually achieved by tzlng errors statistics among
registered images of the input sequence. This corresportids adoption, within a mo-

saicing framework, of performance metrics borrowed froraga registration theory.
Examples of such performance indicators can be found’in_6%,These indicators

require a set of corresponding control points to be avalabb as to compute error
statistics, e.g. the mean square distance, between theideg and the predictions
yielded by the algorithm at hand. However, this approadfessi from at least four

major drawbacks:

e comparison among fferent algorithms is impossible unless the very same set of
control points is used. To the best of our knowledge sucheaeate test bed has
not been proposed so far.

e an algorithm cannot be evaluated based solely on its oigimak the registration
transformations need to be available to compute errostitati

e any set of control points can be exactly fit using &isiently highly parameter-
ized registration model (overfitting), thus defying thetistics

¢ algorithm accuracy and noisé@cting the data are coupled, error statistics can
take large values even in case of good fitting only becauseisfyrmeasure-
ments.

Instead, the proposed quantitative evaluation methogalelies on the computa-
tion of error statistics obtained by comparing the mosastdgd by a given algorithm,
on a reference data set (i.e. a sequence of images to beedtitmpether), to the cor-
responding ground-truth mosaic (i.e. the mosaic that whaldbtained by exactly
stitching together the images of the reference data setjhdbest of our knowledge
there exists no work proposing a quantitative evaluatiothogology for mosaicing
algorithms based on comparison with ground-truth inforomat
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The approach outlined in this section holds the potentiallimw for fair and in-

formed quantitative evaluation of algorithms based sodglytheir outputs. This is a
very important point: since the comparison is taken to a dridével of abstraction.

The proposed framework does not require the algorithmseaastrol points nor ho-

mographic registration models. We only assume that theofdlgn” accepts several

images as input for creating a composite image, no mattethehé be a software

running on a laptop, an hardware implementation or just keskphotographer. As a

matter of fact, a crucial ingredient in our proposal is thaikability of reference data
sets with accurate ground truth. How to obtain such dataisEe is addressed in the
next section.

4.2.1 Generation of data sets with ground truth

We focus here on the method used to collect data sets witmdrtruth and defer the
selection of specific data sets to Secfiod 4.3. The data setrgtion problem can be
approached from two main directions:

e acquisition of real measurements using alternative metttoat ensure a much
higher degree of precision compared to th@dmlable by the techniques under
assessment. For example, authorslinl [14] used structigietkd obtain highly
reliable ground truth. Indeed, the advantage of this methdide generation of
data sets consisting of real-world data and real challen@esthe other hand
care must be taken to ensure that the ground-truth methedlly accurate and
unbiased. Moreover, the controllability of the test bediemment remains an
importantissue. Is it manageable to collect several daseeseh of them isolat-
ing a single peculiar aspect such aetient degree of optical distortion fi#irent
light conditions while maintaining everything else roughbnstant?

creation of synthetic data that bear good resemblance wihimagery, for
example by rendering detailed scenes using a computer igsaghvironment.
From this vantage point, the computed imagery will alwaysbmehow syn-
thetic but the controllability is complete. Unfortunatetyeneral purpose ren-
derers such as PoY[112] have been mostly conceived for cangphics ap-
plications and some computer vision aspects are not easiyeddable in this
framework. Are radiosity and photon mapping algorithmdlyeimportant if
non ideal optical lenses need still to be simulated with datugostprocessing
stage? Not to mention non linear camera response functisensor noise.

In the end, both approaches are interesting on their own ande tweaked to

emphasize dierent challenges that a mosaicing algorithm must be abladkie.
Nonetheless, there is a third intermediate way envisioneauthors in [[2], through
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which they claimed to obtain “realistic synthetic imagenging image interpolation
techniques and computer graphics tools. Along the sams,liwe have developed
a software component, called Virtual Camera (VC) that gatesrphotorealistic syn-
thetic images using a mixture of real and precomputed inédion. By exploiting the
geometry of projective planes, the VC approach retains dattrollability and realism
while being easy to implement and computationally cheap.

Controllability descends from the fact that VC simulates ¢feometric image for-
mation process of today imaging devices taking into accoimé¢rnal parameters, pose
and position, sensor size and resolution, focal length am$a noise. Simplicity
comes from the fact that the actual scene is just a plane.dbgis not represent a loss
of generality since the constraint of lack of parallax regdito properly apply planar
registration techniques is naturally enforced in this walge realism comes from the
fact that a real picture is used to texture the planar scamedd by the VC. In this way
realistic noise is naturally embedded in the framework a@eldnnot to be simulated
using synthetic statistical distributions.

Hence, VC is a fully configurable renderer able to generategs of a realistic
planar virtual scene. Moreover, any virtual frame can béya®ated by just defining
a simple homographM, as explained in the remainder of this section. Denotin®a 2
point asx = [u,v] and a P point asX = [X, Y, Z], Eq.[2.4 relates al3 point X and its
projection on the imagg.

Since the scene model is a plane, we can assume, withoutflgeserality, that
it is located orZ = 0 of the world coordinate system. Denoting ifecolumn of the
rotation matrixR by r;, from eq[Z.4 follows

X
X
S| Vv =K[r1 rr I3 t] Z =K[r1 ) t] Y (41)
1 1 1

By still using X to denote a point on the scene plane, even thoGgh [X, Y] since
Z is always equal to O, a scene poitand its image projectiox are related by a
homographyH given by

K=HXwithH=K|[ r r, t] (4.2)

Hence, to collect a data sets sequence, a reference imaggallyi chosen (i.e. a
satellite or aerial image) and then a list of VC parametemns, for each snapshot, is
computed. These parameters encode the desired trajeatbigtarnals of the camera.
In this manner, dferent positions and orientations are used to generatesthgldtion
and panning sequences of the actual datasets. Every snapshe sequence is just
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the projection of the scene onto the virtual camera sensmrding to EqC4.P2 and the
VC parameters.

The ground truth mosaic is simply generated by cutting-pasting the portion of
the reference image that has been viewed by the VC duringetipgesice (i.e. a pixel
of the reference image belongs to the ground-truth mosé#ibés been projected in at
least one snapshot of the data set). Due to its simpliciiyabproach ensures that the
ground truth is completely unbiased and does not favor ange&igable method.

Several issues must be careful considered in order to gener@aningful data
sets. The most important is the pixelatiofieet. The pixelation #ect is known in
computer graphic as the artifact that causes individualgix be visible to the eye,
mostly because the image has a lower resolution than theumeidibeing displayed
on. In these scenario the pixelatiofiext can occur because the camera is too slanted
or gets too close to the scene plane, so that texture projeguires oversampling.
To avoid this undesirable artifact, a minimum distance anthaimum rotation of the
VC with respect to the scene, given the texture resolutiomeatimated beforehand
and used as thresholds.

A very similar workaround has been adopted to avoid strodgfprmed mosaics
that would require image oversampling during the recortitn stage. All the images
comprising a sequence are taken so that they are compligmthe aforementioned
threshold.

4.2.2 Data normalization

Some relevant issues concerning the normalization of theeded mosaics must be
properly taken into account, in order to be able to compdferdint algorithms based
solely on their outputs.

Registering a sequence Mfviews amounts at finding the x N pairwise transfor-
mationH; ; that links each view to another. As discussed in Seétio@3uking graph
theory this can be seen as a view-graph with images beingsrarttbtransformations
being edges connecting nodes. In this settings, we wouldiprvdth a hugeKy com-
plete graph and a terrific computational cost. However, mbte transformations are
not independent since to be compatible they must fulfill tvedition that a composite
transformation computed by concatenation around any ayc¢he view-graph is equal
to the identity.

Thus only a subset of\(- 1) transformations touring an arbitrary maximal cycle is
required to completely describe the problem. In additimgesthe view order is unim-
portant, an arbitrary order can be induced in the sequettaining a transformation
chainC where the individual transformations could be written ia thrm H;_1; with
i € [1..N — 1]. For this reason, two registration algorith®sA” are equivalent if their
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transformation chaing, C" are the same:
Hi-i=H_y;, i €[1.N-1] (4.3)

Once the homography cha is known, the creation of the mosaic requires to
fix a coordinate frame, refereed to here as the reprojectiondinate system (RCS),
through the choice of a rendering matRy applied to a reference framg. OnceRy
has been fixed, the visualization matrié@sthrough which every image reprojects in
the RCS takes the form

Q =Ro[ [Hjwjie[0.N-1] (4.4)
j=1

The reference frame is not special, for the very same mosaild de obtained by
selecting any other framig in the sequence and computing the visualization matrices
Qi accordingly.

The RCS is usually chosen as the coordinate system of oneeimale sequence,
so that the rendering matrix would be the identity for thadg®. In other cases, the
choice may be driven by another criterion, e.g. minimum glatistortion of the
panorama. The rendering matii (typically a translation and a scale change, but,
in principle, even a homography) links the RCS to an arbjtraference image of the
sequence.

When comparing two panoramas built from the compositionnodiges warped
according to homography chains, one can try to compare sgoraling pixels of the
two images. For these reason it can be stated that, two natist algorithmsA, A
produce equivalent mosaics if the corresponding visutidimanatrices are all the same

Q=Ro[ [Hi-j=Ro[ [Hixi =QuieL.N-1] (4.5)
j=1 j=1

Since we cannot expect the rendering matril@e,sR;) chosen by dferent algo-
rithms to be the same, the resulting mosaics will exhibifedent corresponding pixels
even if homography chains are identical, and thus conttiadithe definition of equiv-
alent registration algorithms. In other terms, the conoéptjuivalent registration does
not imply the concept of equivalent visualization excepttfe casd?y = RO

Therefore, since we want to appraise the registration dhipeof mosaicing al-
gorithms by analysing the delivered mosaics, a major issugetdealt with before
the computation of the performance metrics is normalizatibthe panoramas. This
amounts at filtering out the visualizatioffects due to dferent choices of the render-
ing matrix Ry so that all panoramas will lay in the same RCS even thouglinailiy
built in different rendering coordinate systems. By doing that, theiréntadiscrep-
ancies between the panoramas will be due to registratiatimacies, i.e. dierent
registration matrices along the homography chains.



72 CHAPTER 4

This is the reason why &Ry default rendering matrix and a corresponding reference
frame, i.e. the first of the sequence, are specified for exsgpyence of our data sets. By
imposing these two additional constraints, it is ensuratidhy algorithm will render in
the same RCS as that of the ground-truth mosaic. Thus, sieggound-truth mosaics
and those generated by the algorithms are normalized, peafce metrics based on
the comparison of corresponding pixels become appropriate

Finally, it is worth pointing out that since the frames fongidata set sequences
are generated according to known homograpies (i.e. by(Ed), #is also possibile
to render a panorama using these known trasformation®Ranthy. Such an image
would not be &ected by registration errors, for the homography chaindeiactly
known, and hence fier from the ground truth mosaic only because of tfieats of
the resampling and interpolation processes. The perfarenaretrics associated with
the panoramas rendered using the known transformatiohbevileported in Section
[4.3, as they can be seen as upper bounds on the performaainalaitt by mosaicing
algorithms.

4.2.3 Performance metrics

As mentioned in the previous section, provided that datgpeoperly normalized, dif-
ferent algorithms can be assessed and ranked based onplkeletise comparison
between the generated and the ground truth mosaics. Dgribhérmosaic under eval-
uation asl¢c and the ground truth ds, the following performance metrics have been
defined:

1. Average of the intensity distances. It amounts to the M8& intensities of
corresponding pixels

1 1 2
MSE= — (Zy) Dy =1 (Zy) (Me(x.y) ~ mr(x.y)) (4.6)
where(mc(X%, y), mr(X, y)) are corresponding pixels Ig, |+ andM is the number
of pixel belonging to the region of overlap between the twagms. Pixels not
shared by both images are neglected.

2. Average of the geometric distances. It amounts to the MiStheodistances
between corresponding control pointd ) I+

=T DD = = "0 ¥) - ey @7)

whereL is the number of correspondences. Corresponding contirtig@! ,y"T) -
(X..Y,) are obtained by matching KLT keypoints, located over an approxi-
mately regular grid, betwedr andlc.
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Method PT PR LP

MSE | Mis | ecst | Time| MSE| Mis | eet |Time| MSE | Mis | st | Time

SR-KLT {/226.980.0920.098 1.17|/54.712.6860.561 1.49| 606.47|1.2030.23§ 3.34
SR-Harrig|231.6710.6450.143 1.14|51.251.4310.471 1.45|| 756.49|1.9750.43§ 3.22
SR-SIFT ||279.802.3950.38126.41)|48.711.6480.363 9.72||1106.232.9820.67554.62

ISR-GT [22367 0 |o.093 [l47.89 0 [0.304 | 536.71

0 |o.129

Table 4.1: Experimental results on sequences PT, PR and LP.

3. Number of misplaced pixels. It is the sum of missing andingl&nt pixels nor-
malized with respect tdl

. 1 1
Mis = S (R+P) = 15 > ((xy) € me A (xy) ¢ mn)+
o) (4.8)
D ((xy) e mr A (xY) ¢ )
(xy)
Since Mis is often a very small number, it has been scaled Byriltabled 4.1
and4.2 of next section.

4.3 Experimental results

This section aims at comparing three mosaicing algorithmtke basis of the proposed
methodology.

The algorithms are iterative variants of the well known Direinear Transform
(DLT) registration algorithm[[7]. The DLT algorithm estires the spatial transforma-
tion occurring between two images (pairwise registratigerforming a linear regres-
sion on a set of corresponding points. The transformatiothetie an over-parameterized
9 dof homography and the system is solved using SingulaeMa&composition (SVD).
Robust estimation is obtained performing outliers removish the RANSAC algo-
rithm. The mosaicing algorithm is an iterated applicatibthds registration algorithm
along pair of frames of the sequence. Sequential concateraftn pairwise registra-
tions amounts at finding the transformation that relatesntheiew to the reference
one and thus to the RCS.

The three algorithms fier in the features detection and tracking methods employed

to determine the set of corresponding points. The first twordhms, referred to as
SR-Harris and SR-KLT (SR stands for Sequential Registmiti@ly on respectively the
Harris and the KLT detector for features extraction. Botjpoathms match detected
features by means of the KLT tracker. Since this kind of tesickffers from large
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Method PTEx LPEx

MSE | Mis | es | Time | MSE | Mis | eq | Time
SR-KLT | 466.43] 2.277] 0.390| 4.99 || 715.48]1.774] 0.378| 8.77
SR-Harris|| 574.55| 1.988| 0.490| 4.84 || 850.88 | 3.333| 0.538| 8.69
SR-SIFT || 895.75| 7.883| 0.791| 143.63|| 1279.22| 5.636| 0.741| 89.86

SR-GT [/ 21823] 0 |[0.096] | 52047 o |o.119] |

Table 4.2: Experimental results on extended sequences PTEx and LPEXx.

shift, its robustness has been increased with a coarsal igitess by means of a phase
correlation step. The third algorithm, referred to as SRTSUses the SIFT detection
and tracking implementation described lin [8]. The threm@afgms share the same
simple blending method; a simple pixelwise average of ceddwes within overlapping
areas has been chosen (see Seffion]|3.1.2ffereint approaches).

Each test sequence consists of a collection of views, a remdeatrix and a ref-
erence frame to which the supplied rendering matrix mustgpied to identify the
rendering coordinate system. According to the image foiomanodel described in
Sectiorf4.2]1 the focus has been on sequences with spatiigniments only., for the
recovery of the spatial structure is the primary concern of§inmosaicing algorithms
known in literature.

The five sequenc&are:

e Pure Translation (PT): it consists of 9 frames acquired &ydlating on the right
and keeping the optical axis of the virtual camera orthobtnihe scene plane.
Adjacent frames overlap by a 309%50% of their area and small vertical mis-
alignments have been added.

e Pure Rotation (PR): it is composed of 9 frames acquired atirg the virtual
camera around th¥é axis ¢ pointing toward the observer). Adjacent frames are
spaced by 4 degrees and overlap is about 80%.

e Looping Path (LP): it consists of 18 frames, acquired by mg¥he virtual cam-
era on a loop by means of translations, abovedh¥éplane parallel to the scene,
so that the last frame roughly overlaps the first frame.

e Pure Translation Extended (PTEX) and Looping Path Exte(ideEx) are longer
sequences (36 and 37 frames respectively) that extend PPRiiy including,
respectively, repeated panning and looping.

limages used by the virtual camera are courtesy of NASA Eadpteatory[[11]
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Figure 4.1: Mosaics generated from sequence Pure Translation. Froto fogttom: SR-KLT,
SR-Harris and SR-SIFT.

Two important remarks are worth to be emphasized:

¢ all the sequences do not feature illumination changes;ishés design choice
taken to focus on the geometrical part of the mosaicing pratddy decoupling
it from photometric aspects.

¢ some of the sequences exhibit basic camera motions and nugbé considered
as representative of real world sequence. This is anotlsgmiehoice taken to
dissect possible camera motion into several primitivestaratudy the perfor-
mance of the algorithms on them independently.

Table[4.1 and Tablge4.2 report for each algorithm and for eaguence the per-
formance metrics MSE, Mises: and the execution time. SR-GT, reported in the last
row of each table, refers to a pseudo-algorithm that compiteemosaic based on the
known transformations used by VC to generate the data setsedeh performance
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Figure 4.2: Sum of Squared Dierences maps computed by subtracting generated mosaics and
the ground truth. From top to bottom: truth SR-KLT, SR-Hsuahd SR-SIFT.

metric the best performing algorithm is highlighted in Halzk.

Tabled 411 an4l2 show clearly that on the whole dataset, tv exception of
sequence PR for which all the algorithms perform very closeR-GT, SR-KLT is the
best performing algorithm. Tables show also that overatkHaarris outperforms SR-
SIFT. Notably, on the PR sequence SR-SIFT takes advantaitgerotation invariant
features. This clear ranking is impressive if compared todimilar appearance of
the three mosaics reported in Figlirel4.1. On the contraeyS®HD (Sum of Squared
Differences) maps depicted in Figlire 4.2 (whose average vaheNsSE performance
metric) allow to appreciate the localfférences between the mosaics.

An interesting remark stems from pairwise comparison ofogormance of SR-
KLT, SR-Harris and SR-SIFT on short and extended sequeesg PTEx and LP
vs LPEX). Even though the framed portion of the scene is aukiatly the same for
both pairs, all the metrics agree on the fact that the lorfieesequence the worst the
mosaic, no matter the algorithm or the sequence. Such isiagaaccuracy is known
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as drift error and manifest itself as tlwmping path problenf3], named after the fact it
is visually emphasized in looping path sequences (thattajence that loops back so
that the pair ofimages overlap after several frames). Hewas pointed out by Tables
4.7 and4.P the drift accumulation is an inherent drawbadegtiential algorithms, not
depending on the sequence. Conversely, SR-GT exhibits posdp behavior since
the average of several corresponding pixels corrupted $ammpling noise is a good
estimate of the noise-free value. This suggests that tlamggng error is normally
distributed.

As a final remark, it is worth highlighting that the most sbisquality indicator
when dealing with geometric misalignments only, as it isease, is.s. However, this
not always applies since in the general case photometritggisoccur as well. Under
these circumstances, even a perfect spatial alignmgnt={ 0) could yield mosaics
showing significant color dierences compared to the ground truth. In general, the
MSE measure, which senses both geometric and photomdtgimant errors, is a
more appropriate choice. These experiments show that M8mtonically related
to the “exact’et estimator, thus empirically validating the MSE metric asualdy
measure of the mosaic.

Conclusions

Image mosaicing techniques have a long history, evaluatiethodologies for their
comparison have not. Throughout this section a completkiatitan methodology
including data sets, ground-truth information and perfance metrics have been de-
vised. The proposed data sets comprises 5 synthetic tessees created by means of
a fully configurable virtual camera. Simple pixelwise penfiance metrics such as the
MSE have been employed to favor fairness and simplicity. défenition of a default
visualization matrix and a reference frame is a simple ptaooeaimed at filtering out
differences among mosaics visualized ifietient rendering coordinates system.

Afterwards, three variants of a known algorithm have beetumted and compared
according to the proposed methodology. Despite the fatthiese approaches gener-
ates very good as well as visually similar results the evadngrocedure clearly shows
that the KLT-based algorithm performs better.

In conclusion, we are firmly convinced that a widely accemadntitative evalu-
ation procedure is of utter importance as a branch of a diseimoves from its pio-
neering works to maturity. The purpose of this work has bedrghlight this shortage
and to propose an evaluation methodology that we hope Wéllveor principled dis-
cussion about algorithm performances and represent altiseftor other researchers.
Further information concerning the proposed evaluatiotho@ology can be found at
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the web sitéhttp://www.vision.deis.unibo.it/MosPerf.

Future developments are directed toward the creation oé uallenging datasets
featuring spatial as well as tonal misalignments, in themagitt of reduce the gap to syn-
thetic realistic sequences. Moreover, the evaluation afnsophisticated algorithms,
both through in-house development and direct collabamatith authors, is envisioned
and promoted by the, currently under construction, on-iw&uation service hosted
on the site.
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Chapter 5

Camera pose reconstruction

Camera pose reconstruction addresses the problem of raugptlee position and ori-

entation, the pose, of a camera with respect to a given $patiedinate. Visual pose
reconstruction algorithms determine camera pose by @lyiy on information ex-

tracted from images. The camera pose reconstruction fraagénanalysis in its gen-
eral statement can be a tough problem, nonetheless a cagfld assumptions may
be employed without harming generality too much. In paféiglassuming previously
calibrated cameras and presence of flat objects in the sseealistic in many scenar-
ios. In this settings, pose reconstruction can be cast lmaakbmography estimation
problem, as anticipated in chapfér 2.

In the next sections, two original applications, buildingtbe concepts and algo-
rithms of camera pose reconstruction, are illustrated.fifstesection is concerned with
the proposal of an innovative use of image mosaics to boegigiformance of known
pose reconstruction algorithms. An augmented reality (8§&tem, exploiting such
mosaic-based pose reconstruction technique, has beeenapted to demonstrate the
improvements compared to conceptional approaches. Theesmad AR system has
been able to deliver real time, stable and realistic rendesf virtual objects and ani-
mations in several videos of real scenes.

The second section focuses on a novel human-machine icgéeréancept for gam-
ing applications based on visual camera pose reconstructiothis context, a user
interacts with the application by moving a hand held camiéi@ commands inferred
from the reconstructed camera movements being conveyegbastd the videogame.
Such a way of interacting ought to be practical and intuiisdong as 3D commands
need to be naturally imparted to applications or electrapigliances. A proof of con-
cept game has been also developed to demonstrate fegsibititeéfectiveness of the
conceived vision-based interface.

81
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5.1 Markerless augmented reality using image mosaics

Augmented reality aims at delivering spatially cohereffdimation to a user moving
in a known environment. Accurate and reliable pose estonas the key to success.
Many approaches track reference objects into the scens bt @anvironment becomes
larger more objects need to be tracked. leading to computty intensive methods.
Instead, we propose an original approach that is suitallerfeironment where big
planar structures are present. Several images of copléjects, or zoomed-in pic-
tures of big planar structure, are composed into a largeaeée object using image
mosaicing techniques, so that the pose reconstructiorigrmois simplified to that of
finding the pose from a single plane. Experimental resultsvsthe dfectiveness of
this approach on two interesting case studies, i.e. aetisahgervicing and cultural
heritage.

5.1.1 Introduction and related work

Augmented reality techniques convey information that ithisemantically and spa-
tially coherent with the observed scene. Information issghby augmenting the scene
captured through a camera with graphical objects that apeply aligned with the
3D structure of the scene and often contextually close taiffeg needs. In this sec-
tion we mainly focus on structural coherence, nonethelessiple demonstration of
contextual awareness is given in the experimental resedtsos.

The capability to deliver spatially coherent informatioratuser moving in a known
environment is enabled by accurate and reliable pose reaatisn algorithms. Such
algorithms try to compute the pose of the observer with retsjpehe world the user is
moving in by establishing correspondences among objetasidel in the scene. Based
on these correspondences, both the information to be gispkand the structure of the
scene is estimated.

Most of the algorithms described in literature can be thoofm terms of a binary
taxonomy: those that rely on absolute information [22, $8fh as known models, and
those based on chained transformationsl[23, 25]. The foseek to find camera poses
that correctly reproject some fixed features of a givenrBodel into the  images.
They do not sffer from estimation drift but often lack precision, whichulis in jitter.
The latter do not exploit a priori information but match irgst points between images.
Since correspondences between adjacent frames can bed@catisely, usually these
algorithms do not jitter but instead fer from drift or even loss of track.

Pose estimation algorithms represent the world as a ciglteof reference objects,
usually modeled asi3meshes, associated with appearance models, such asioallect
of key frames or image patches related to each vertex. Ngweigaf large environ-
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ments is handled using several objects spread across the, stethat many of them
are visible even though the user moves widely inside therenmient. Many algo-
rithms are known to estimate the pose very quickly using glsinobject and a single
image [22]18]. However, in presence of several objectsptse of the observer is
optimized together with the relative position of the visilobjects typically using tem-
poral coherence constraints, i.e. objects projectiondfiergnt images are expected
to confirm the same pose. As the environment grows larger ss tte number of
required objects, thus yielding to computationally infeeslgorithms.

To reduce the complexity Simon et &l. [23] and Uematsu el2&]] §onsiders only
planar reference objects. In this settings they can explutih temporal and spatial
coherence in the estimation, i.e. homographies betweeplean be computed inde-
pendently and deployed as additional constraints. Thigl@s constructing at each
frames a unified projective space and mapping all the plangmat space according to
computed homographies. The pose is subsequently caldulateg correspondences
between the space and image projections.

Nonetheless when several planar reference objects areafdanar, the unified
projective space can be profitably built in advance usingyemaosaicing techniques.
As the cluster of objects becomes larger, using a mosaic@Esasgnce model instead
of a single shot, taken from larger distance or with shodeaflength, becomes more
and more useful. In fact, the mosaic approach allows to mmimienty of details that
a single shot would miss.

We propose a practical approach that is suitable for enment where big planar
structures are present. By mosaicing images of severahoapbbjects, or zoomed-in
pictures of a big flat structure, during a training stage, thpast of the computation
required to recovery the pose is shifteff-line. At run-time, the algorithm simply
determines the pose with respect to a unique large refedsjeet using approaches,
such asl[22, 18, 24], that are known to be fast and robust. fidiably diminishes the
on-line computational requirements and increases theacgof the estimated pose.

5.1.2 Methodology

The method is split up into two distinct stages. The first camdgarded as a training
phase and is performedfdine. It deals with the definition of a large planar referenc
object together with the construction of its appearanceehd®. a mosaic of images
that portray the planar structure. Several keypoints anaeted from the appearance
model using the SIFT features detecior|[15]. Metric measerds can be easily in-
troduced in this framework by specifying the real world piosi of at least four non
collinear points within the planar objects and computing thetric to projective ho-
mography accordingly.
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The second stage performs on-line and addresses the éstiraathe pose of the
observer at a given instant using a set of points correspmedebetween the visible
scene and the constructed appearance model. This stagagasses a feature tracker,
that establishes keypoint matches, and may deploy any gtise¢ion algorithm based
on point correspondences. The projection of virtual olsjexeasily accomplished once
the pose is known.

Construction of the appearance model

The first stage concerns the construction of the large neéerebject and its appearance
model from a collection of pictures using a mosaicing alpni. The idea of using
mosaics in augmented reality applications is not a novelitgelf. For instance, Dehais
et al. [5] use mosaics to augment the scene with virtual etdhjgdowever, with their
system the user is allowed to rotate only and both the trgiand the testing sequence
must be captured from the same vantage point. The approagosed by Liu et
al. [14] is also based on image mosaicing, but it requiresciadumarkers and the
viewpoint is again allowed to rotate only. Instead, our rodttelies on natural markers
present in the scene and allows for arbitrary motion as lang sifficient portion of
the model is visible to the observer.

During a training stage the construction of the appearancéeimusing several
views of a roughly planar structure in the scene is carrietd dine transformations
among the views are homographies as long as the observegtsidplanar. The
algorithm we use to mosaic images can be regarded as arviteratsion of the pair-
wise DLT method described in [L0] and evaluated in ChdpteFram each pair of
views a set of point correspondences is established ana#tdilbmographi; ; in the
least square sense is fit; then the procedure is repeated f@irs and visualization
matricesQ; are computed. The rendering coordinate systems onto winiagés are
composed into the mosaic turns out to be the common progespiace computed by
[25], provided that all patterns are coplanar.

Instead of building a mosaic, one might also capture the &iptdnar structure
with a single shot taken from a larger distance or with a grddcal length and then
use such a shot as the appearance model. Indeed, this chpioentially preferable
when, given the resolution of the acquisition device, ofsjace as small as they can be
captured by a single shot without losing too much infornmatim fact, in such a case
objects are already registered with respect to each otligia&ing a picture is quicker
than building a mosaic. Indeed, in any application scentéigomore appropriate ap-
proach should be identified carefully. In the experimereauits section, a comparison
between the two approaches, in twéfdient case studies, is presented.

Finally, given the appearance model, the SIFT feature tlatextracts a set of
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keypointsx; from it. Extracted features that appear in the model but dbelong to the
planar reference object are discarded using a homograpbgdtRANSAC algorithm
(see Sectioh 2]12).

Pose estimation

Pose estimation from point correspondences, for caliiraéeneras, has been exten-
sively studied in literature. For an intuitive visualizati of the geometry of planar
pose estimation problem, Fig,_5.1 may be of help. Keypoints (u;, v;), located on
the camera imaging sensor (bottom left plane), are in or@tocorrespondence with
points X; standing on a flat reference object (upper right plane). nitloa assumed,
without loss of generality, that the reference object lay$hez = 0 plane of the world
coordinate frame, so that all 3D poifspossess third null coordinate. The set of cor-
responding 2D-3D pointsx(, X;), of which X, X are just the homogeneous notations,
are related by projective equations involving the integahera matrix K, the rotation
matrix R and the translation vector t

s=A[R t|X (5.1)

Both R and t can be retrieved up to a scalar valpeovided that enough corresponding
pairs ;, Xj) are available and the camera is internally calibrated.
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Figure 5.1: Geometry of pose estimation from 2D-3D correspondenceasigm

Nonetheless, two well known algorithms, addressing thblpra from very diverse
points of view, have been employed to emphasize flexibilitgt efectiveness of our



86 CHAPTER 5

proposal. The first algorithm has been illustrated by Sintosl.e[24], and has been
considered for long the classical photogrammetric fortiaita In practice, they solve
for the unknown pose by minimizing the following objectiverttion:

N
_ Rlxi + 1\ [ szi +1y 5
2ilE- ) (5 ) &2

whereR! is thei™ row of matrixR andt is a 3x 1 vector. This computation minimizes
the error distance among projections in the image spacelabe pf the sequential
estimation proposed in their paper, we compute the posecbffeame with respect to
our appearance model thus avoiding potential estimatiftissues.

Theoretically, an equivalent reformulation of the probleonsists in estimating
(R, t) that relates the known reference poiKtswith the corresponding{ so that:

X =RX +t (5.3)

whereX; = (X;,Y;,Z) and X/ = (X,Y,Z|) are expressed in an object-centered and
camera-centered reference frame respectively. From idigpoint, the second algo-
rithm, proposed by Schweighofer et al. [22], aims at miningzan object space error
by means of the line-of-sight projection matkix This algorithm yields the best results
according to a recent analysis of the state-of-the-artezhout in [18].

Once the pose is retrieved it is then possible to proj&nddels in the image
according to R, t) and the known camera intrinsics.

5.1.3 Experimental results

This section reports the performance of the pose estimalgarithms, presented in
Section[5.1P, in two dierent case studies. Performance are measured in terms of
estimation steadiness and smoothness. Under this pevgpéiee most stable the esti-
mated pose over time the better the algorithm. In the folhmwive plot the recovered
position of the camera center coordinaB¥s= (0%, 0, 0%) expressed in the object-
centered frame. Both algorithms are run twice on each segueith diferent appear-
ance models; the first time using a single image (Eig. 5.2 the)second time using a
mosaic (Fig[ 5.2 bottom). All the frames used to build the sisdlo not belong to the
test sequences.

The two test sequences have been acquired by a freely mobseer using a
consumer grade web camera, a Logitech Quick Cam Sphere. deégalence is about
600 frames long and images have a resolution of*6480 pixels.
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Figure 5.2: Small (top) and large (bottom) appearance models.

Aeronautical servicing

The first case study is drawn from a collaborative researofegt called ARIS (Aug-
mented Reality to Increase Safety) that addresses thecapph of Augmented Real-
ity into the field of aeronautical servicing. The ultimatenadf the project is to equip
engineers with see-through goggles by which a context@system will act as a vir-
tual assistant providing information on the maintenan@egdure in real-time using
augmented reality. The sequence portraits the inside othpitoof a plane. Useful
information in this context concerns the position of the triogortant switches and
leverages as well as instructions on how to operate thenmepsogefer to Fid.54 for
some examples).

In the upper row of Fig.513 the position @° according to the pose estimated
using a small appearance model is reported. While the poserisct most of the
time, the peaks in the plots denote that the estimatidiesifrom jitter. Notably, both
pose estimation methods arfexted by these peaks approximately in the same way.
Conversely, the plots in the lower row of Fig.b.3 show thahew using the mosaic
as appearance model, the estimated pose exhibits a muctirentrend and jitter is
almost completely eliminated, with the exception of soneases on thecomponent.

It is also worth noticing the proposed approach yields aeuand convincing video
augmentation also in presence of significant image brigistebanges, as shown by

Fig[54.
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Figure 5.3: Recovered camera center coordinates using small (top)aage (bottom) appear-
ance models: Schweighofer et al. (violet), Simon et al.gpliLeft to right: 0F, OF, OS.

Figure 5.4: Augmented cockpit sequence samples.

Cultural heritage

The second case study concerns an advanced context-awgadgr delivering infor-
mation to visitors of museums or archaeological sites, bgme®f Augmented Reality.
The considered sequence has been acquired at the ArchmeblMgseum in Bologna
and displays a showcase with Etruscan jewellery. Fig] 5divshthat the pose of
the observer with respect to the showcase is accurateigvett, as vouched by the
coloured outlines superimposed on the borders of the sheBesides, additional con-
text aware information is conveyed by highlighting the @bjinat is likely to be the
most important for the user given his position and orieotati

As before, the estimation using a small appearance modailtis good but sfiers
from jitter (as it can be seen in the upper row of Eig.5.5). Wising the mosaic (lower
row of Fig[5.5), jitter mostly disappears and, unlike poad experiment, the pose is
smoother even when there are no macroscopic estimation erro
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Figure 5.5: Recovered camera center coordinates using small (top)aage (bottom) appear-
ance models: Schweighofer et al. (violet), Simon et al.gpliLeft to right: O, OF, OS.

Figure 5.6: Augmented samples from jewellery sequence.

5.1.4 Conclusions

In this section we have described an approach to augmerabty that is suitable to
environments where large planar objects are presentakhsfenodeling the reference
objects using a single image or a set of independent imageqrepose to build a
mosaic by registering together several detailed views.pkse is then estimated from
the correspondences between the actual frame and the appeanodel of the refer-
ence planar object using known pose estimation algoritfirgeriments demonstrate
that two very diferent pose estimation algorithms largely benefit from thappsed
approach. In this sense our proposal can be thought as apesging step able to im-
prove the computational performance and accuracy of any @stimation algorithms.
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5.2 Vision-based markerless gaming interface

This section discusses a novel human machine interfaceafoimg applications based
on computer vision. The key idea is to allow the user to irdeveth the game by
simply moving a hand-held consumer grade camera. Detecfioatural features in
the incoming video stream avoids instrumenting the scetie aytical markers while
preserving real-time computation and accuracy. A prottjideogame developed as
proof-of-concept of the camera-based gaming interfacésis presented. Thanks to
recent advances in real-time extraction and matching afrabfeatures from images
on mobile platforms, our proposal holds the potential tobdma new generation of
camera-controlled videogames for hand-held mobile device

5.2.1 Introduction

The ever increasing pervasiveness of computer systemsumiveryday environment
calls for novel mechanisms of human-computer interactiomerfaces to computer-
ized equipment need to be straightforward afiéative, the ability to interact using
inexpensive tools being highly regarded.

In the last decades, keyboard and mouse have become themeafades for trans-
ferring information and commands to computerized equigmknsome applications
involving 3D information, such as visualization, compwgames and control of robots,
other interfaces based on remote controller [19], joystaikd wands can improve the
communication capabilities despite being sometimes intfwal or limited.

Wearable and handheld devices, such as datagloves, “baakd8] and haptics,
are designed to be more user friendly, helping untrainedsusegerforming complex
tasks. On the other hand, the high cost and cumbersome hardimidt the field of
usability of these solutions.

In daily life, however, vision and hearing are the main chesithrough which hu-
mans gather information about their surroundings. Theegthe design of new inter-
faces that allow computerized equipment to communicate mimans by understand-
ing visual and auditive input may conjugatéestiveness, naturalness antbadable
prices.

Vision based interfaces hold the potential to communicétte@omputerized equip-
ment at a distance and the machine can be taught to recogmizeact to human-like
feedbacks. Despite many advances have been recently cemctie field of human
gesture, motion and behavior understanding [11] 26, 12fineers have been mostly
focusing on marker-based tracking systems for vision-dbdmenan-computer inter-
action applications. The gaming industry is recently simgad growing interest for
vision based interfaces, with many proof of concepts dewdcso far([8[ 27,12, 20].
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As a matter of fact, visual markers can be reliably trackgcafdow computational
costs, although game boafdantrollers must be instrumented with them.

Conversely, our proposal deals with a novel vision-basexiigg interface able to
deliver position and orientation of the player by simplyngsa hand-held consumer
grade camera and without requiring any visual marker. Tlgpgsed approach is
straightforward since the movement of the camera directigdiates into 3D com-
mands to the game and requires no instrumentation of thecemaent. It is also very
effective since camera pose is estimated with millimetric igten. Finally, it is cheap
since it relies on widely available low-cost cameras.

5.2.2 Related work

Recent works in literature show that, to some extent, humarawiour understand-
ing using imaging devices is attainable. Harville and all][@onceived a robust
algorithm for 3D person tracking and activity recognitiomhe work by Viola and
Jones[[25] paved the way for sound automatic face detectleard and al. [[12]
demonstrated reliable tracking of deformable objects@sence of occlusion and clut-
tered environments. These outstanding achievements hap@dd the work of Lu
[17,[16] on vision-based game interfaces controlled raspdyg by head and hands
movements. Head, face and body position tracking for coermames was also suc-
cessfully demonstrated in the work of Freeman et al. [7]. Eoav, despite being very
flexible and natural interfaces from a human perspectiweutiderlying technology is
still computational too intensive to guarantee short leggime and smooth operations.
Moreover precise handling and maneuvering tasks demangetid® and reconstruc-
tion accuracy that, in some cases, current algorithms maglaliver.

Tracking of optical markers has rapidly emerged as a fastandrate alternative
for conveying simplified information to computer systemdth8ugh complex human
behaviours cannot be captured, location and orientatiftminmation can be robustly
retrieved in a wide variety of environmental conditions amébw computational cost.
Examples of videogames built on top of optical marker traskeave been growing
steadily in recent years. Cho et al.l [2] described an augmdergality shoot-em-up
game in which players aim at virtual opponents rendered canaegboard filled with
optical markers. Oda et al.[ [20] developed a racing game evheers steer their
virtual cars using controllers stuck with markers monitbvéth cameras. Govil and
al. [g] designed a marker-based golf ball tracker used ts@etd and direction of a
virtual ball in a golf simulator. By exploiting the implemtion of a marker tracker
for portable devices, Wagner and colleagues [27] develgpedugmented Reality
(AR) game where multiple players are allowed to interaatgsiamera-equipped PDA
devices.
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Nonetheless, recent advances in the field of object redogrshowed that accu-
rate pose estimation and tracking can be achieved witheutdled of specific visual
markers, but instead using keypoints extracted from textareas [15]. In particular,
the SURF (Speeded Up Robust Features) algorithm [1] relsmhaccuracy and low
computational cost for robust keypoints extraction andkirzg.

Therefore we propose to deploy a camera pose estimationagpbased on nat-
ural keypoints correspondences as a novel human-machearéaice for gaming pur-
poses. It is worth pointing out that camera pose estimatgingunatural keypoints
on mobile phones has been recently demonstrated by Wagakr|@€]. Hence, our
proposal holds the potential for development of new cangergrolled gaming appli-
cations for hand-held mobile devices such as phones and POi¥sremainder of the
section describes the camera pose estimation algorithenrimstof its key components
and present a prototype videogame, dubbed Black Hole, aigzdlso far as proof-of-
concept of our proposed approach.

5.2.3 Markerless pose estimation

The interface consists essentially of an automatic camesa pstimation algorithm
for scenes in which flat objects are present, thereforeihignithe types of suitable
scenes. In this case, however, the limitation is slight;esithe requirements is that a
plane be visible, even if partially occluded, in the scen&isTs common in indoor
environments, where a textured ceiling or ground plane isllis visible. Outdoors,
even rough ground (grass, roads or pavements), provideaals@ceptable reference
for the system.

The pose recovery algorithm is largely inspired by the cantracker illustrated by
Simon et al. [[24], for it delivers accurate estimation at kmenputational cost. How-
ever, diferently from the original formulation, pose recovery isfpemed every time
with respect to a reference frame (pose detection) insttadsing from the composi-
tion of multiple pairwise registration (pose tracking) amgsubsequent frames. Hence,
pose detection tolerates failures since each frame is gseddndependently; besides
it does not stfer from the dead reckoning issue typical of pairwise contpmsi On
the other hand, pose detection requires a reference objbetknown beforehand, i.e.
the object with respect to which the pose is continuouslymated. Moreover, pose
jittering may arise since temporal correlation is usually reinforced. In the rest of
this section the solutions to these two problems are adelles®d described.

Using natural keypoints instead of markers makes the imsniation of the scene
not needed anymore since any flat object can be a suitablkenete Just before start-
ing a gaming session a brand new natural reference is leauthiesfly by simply taking
a snapshot of a textured planar object and extracting a vetk@ypoints descriptors.
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The corresponding points of the reference keypoint setearched within every new
incoming frame and pairs of matching keypoints are likelpéodetected even in case
of large pose and illuminations changes, as shown il Eig.IBcorrect keypoints pairs
can be easily detected and discarded using a RANSAC-baseddraphy estimation
step [10]. The remaining corresponding pairs are linkedheygeometric relationships
explained in Section 5.1.2, hence they are fed to a pose astimalgorithm, for ex-
ample the one described [n]24], in order to obtain a reli@stémation of the position
and orientation of the camera with respect to the referebgect Diferently from
the mosaic-based approach described in SeLfidn 5.1, heeegstimation relies on a
single-image description of the reference object. Thisahis tightly connected with
the intended application; since gaming interfaces havestassimple and practical
as possible, acquisition of a single snapshot is quickereastr than that of multiple
views or a video.

Figure 5.7: Tracking SURF keypoints in few snapshots taken froffedent viewpoints: correct
(green) and incorrect (red) corresponding pairs.

Nonetheless, delivered poses still exhibit an excelleotiey with camera posi-
tion usually estimated in the range of few millimeters frdme true one. Nonetheless,
since this approach does not exploit the temporal contirafithe camera trajectory,
the sequence of estimated poses usually exhibit jiffects. This problem manifests
as small vibrations among subsequent estimations, sucbrdisuities being quite no-
ticeable by a human observer and tending to degrade the gaxperience. In order
to mitigate this &ect a pose smoothing technique has been adopted. The adopted
approach, described in [21], consists in linking every nesepwith those computed
during a previous time window by exploiting a Support Ved®agression scheme as a
temporal regularization term.

Natural keypoint correspondences and pose smoothing rhakednceived pose
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estimation algorithm fast, robust and practical, thus jgliog accurate and jitter-free
estimations without the need for fiducial markers placedalbss the scene.

5.2.4 Gaming application

A prototype videogames has been developed using as intetiacvision-based pose
estimation algorithm described previously. In additiagwyfthird-party libraries have
been integrated for a number of specialized tasks, in pdatic

e OpenGL (Open Graphics Library)|[9], a portable and intévaceD and 3D
graphics library adopted for fast visualization and remdgr

e OpenCV (Open Computer Vision)|[4], a collection of computision functions
used for video capturing, keypoints detection and numkojgémization.

e Tokamak[[13], an open-source real-time physics engine fegeatcurate simu-
lation of dynamics of rigid body, gravity, friction and so.on

The typical hardware configuration used to run the gamesistsnsf a single laptop
PC powered by an Intel Core 2 CPU, equipped with 4 GB RAM andinmWindows
XP. The video camera is a Logitech Quick Cam Sphere grablitay sequences at
640x 480 resolution. The game has been developed+ir Gsing Microsoft Visual
Studio 2005. Using this setting the frame rate ranges betv@eagnd 10 frames per
second (FPS), keypoints extraction being the major batkwof the system. Although
quite far from real-time processing, the system is respenshough to allow for a
satisfactory gaming experience. By reducing the camer@uten to 320x 240 the
frame rate increase to 9 - 15 FPS without severely penaleicgracy.

Black Hole

Black Hole is a puzzle game inspired by the dark atmosphe®tasfWars. The goal is
to steer a R2D2-like ball through a Death Star maze till trépemt avoiding the holes
spread along the path. The user can slant and rotate the mamrewing a webcam
held in his hand. Gravityféect allows the user to control the ball by moving the maze;
friction and collision against maze walls and floor are atsplemented in order to add
realism. Every time the user loses a ball, by letting it falbihole, it obtains a number
of points commensurate to the distance from the startingtpdifter three lost balls
the game ends and the final score is the sum of the points eldttins far.
Figure[5.2.4 shows the starting and ending screens of Blaik tdgether with
some screenshots taken during a gaming session. Figlredw® some images taken
by the webcam hand-held by the player and the correspondimg gcreen, the refer-
ence object being a textured picture printed on a paper sinédalying on the desktop.
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CONGRATULATION! You woN!

PPRESS RETURN KEY TO START PRESS RETURN KEY TO T_THE GAME.

Black Hole starting screen (left) and game ending (right).

The image pairs, screenshot and camera frame, show how #im@onaze is tilted
according to the instantaneous orientation of the hand-¢ahera with respect to the
reference object.

Feedback and observations

The game has been on show for few weeks in our laboratory raachkas been played
by some colleagues from other labs that gently providedifaeklk and suggestions.
First of all, only a picture of a person pointing the camerahe reference pattern
laying on the table has been required by anybody to staringaye games. Such a
limited amount of training information hints at the ease s& @nd naturalness of the
conceived interface. Most of the players manage to get tetiteof the game, this
suggesting also good intuitiveness and friendliness. @mwther hand several persons
expressed concerns about th&idulty of keeping the reference object always in sight
during the gaming session. Even though occasional poseagin failure does not
necessarily ruin the game experience, it might be annoyspgaally during fast and
critical phases. Another set of complains concerns theorespeness of the gameplay
which is mainly accountable to the high computational doat the system incur when
highly textured areas generate a large amount of keypoints.

5.2.5 Conclusions and future work

The ubiquitous presence of computerized equipments irydagrenvironment calls for
conception and design of natural and easy-to-use humahingiaterfaces. Practical,
straightforward and inexpensive are the keywords for thx geeneration of interaction
paradigms. Videogames are a challenging test ground sasteadsponse and high
accuracy are also required. Vision-based interfaces hadpbtential to fulfill this

expectations. A vision-based approach based on trackingatdeatures has been
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Figure 5.8: In the left column, 4 snapshots depict the maze, tiltedfiiecént ways, according to
the orientation of the camera with respect to the referebggcocomputed in each frame (right
column).

conceived as an interface for gaming applications. Thegseg approach allows the
user to interact with a videogame by simply moving a webcaimtjmg toward a planar
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textured object present in the scene. According to the faeldbeceived by several
users, the interface is intuitive, fast, responsive artimately, enjoyable.

As for future directions of works, pose estimation from rftai-surfaces or larger-
than-a-single frame object would prove useful to increhsegbssibility for the user to
move around. Moreover, as for thefitiulty of keeping the reference object always in
sight, we wish to investigate on the possibility of enablaigp a mixed-reality mode,
in which the user would see the virtual objects of the gamesoposed to actual
video stream coming from the camera.

Eventually, the proposed approach is particularly suiteeitable gaming applica-
tions on hand held devices such as phones and PDA, for thenagesimply point the
integrated camera toward a textured plane and play by mdkimgevice in his hand.
Therefore, in the near feature we plan to port our gamimgfexte on a state-of-the-art
hand held device.
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Chapter 6

3D reconstruction of deformable
surfaces

This chapter investigates sparse geometric reconstruafiobjects using a set of im-
ages. Diferently from conventional structure from motion algoriththat usually deal
with rigid objects, an innovative method for fast shapeiegal of deformable objects
relying on a single camera is detailed.

The shape reconstruction problem is tackled by describdef@mable object with
a tesselated surface, for instance a triangulated mesh avdtfficient level of detail,
i.e. number of triangles. Assuming the region of objectdesa triangle as being flat,
the geometric reconstruction of the whole mesh amountsmapating the homography
between each triangle of the model and its correspondiriggtion in a given image.
The extension to deformable objects requires to propertgictains each homography
considering that every triangle is connected to othersiaie mesh, and any solution
must maintain continuity across the mesh. Moreover, snmiogttonstraints must be
included to prevent unrealistic deformations to produgg ikelyhood estimates.

A re-parametrization of the problem in terms of the verteardinates of the trian-
gulated model has been envisioned, thus permitting to §peantinuity and smooth-
ing constraints in an elegant and concise formulation. Teased framework admits
also a fast iterative linear solver, based on projectiondist boosting the computation
performance of the algorithm. The algorithm recovers thepstof a deformable sur-
face using 3D-2D correspondences computed from naturaireexhus not requiring
any instrumentation of the scene.

Thanks to a ongoing collaboration between the Ecole Pdiyiigcie Federal of
Lausanne and Solar Impulse SA [6], the conceived approazbden tested in a chal-
lenging real scenario. Solar Impulse is an ambitious pt@jesed at realizing the first,
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solar propelled, airplane able to trip around the world withexploiting fossil energy.
Since the wings of Solarimpulse will be both very long andyMéaght, they must be
monitored accurately both for safety ani@ency. The proposed algorithm has been
deployedfor for measuring wing deformations of the Solgmlitee scaled model proto-
type. Performance assessment using both synthetic andateais reported in the last
section of the chapter.

6.1 Shape recovery of non-rigid objects

Experimental determination and measurement of wing dedtioms is of fundamental
importance for the analysis of structural dynamics in theggace industry. Knowing
the way wings deform during flight could provide valuableoimhation for testing the
validity of finite elements analysis and for improving thesidg and manufacturing
process.

Present methods of measuring wing deformations usualailéng instrumentation
of the aircraft, i.e. a set of accelerometers or strain gaptpered all over the aircraft.
Despite being accurate, such methods are invasive and imiignce the dynamics
and, eventually, the measurements (i.e. added mass dusrienmentation). Moreover,
these sensors can only measure deformations, along a dingdtion, at a few preset
locations and are flicult to move once the wing is constructed.

Since vision-based approaches are known to provide derssumnents through
non-contact sensing, some works based on imaging devigesiezn attempted. The
work by Ryall and al.[[14] shows how three dimensional modemascillating wing
section can be recovered by tracking visual markers studk dfiowever it requires
special hardware, i.e. synchronized strobe lights and canaad performsfé-line.
Recently, Barrows |3] has proposed a multiple-camera sy$e on-line reconstruc-
tion of a wing inside a wind tunnel. Both the approaches nequimbersome hardware
and the instrumentation of the aircraft, making them exjverend impractical for the
acquisition of measurements during the flight.

This section describes a vision-based on-line approacméasuring wing defor-
mations that relies on a single camera and on “natural msltkiee. textured areas
underneath the wings. By requiring just a single camera, rtiéthod is a cheap and
practical way of evaluating the behavior of wings in realditions.

To validate this technique and demonstrate that it can béogeg in a realistic
aeronautical context, a complete pipeline designed to unedlke deformations of So-
larimpulse’s [6] scaled model wings has been put in placds Bhan interesting test
case because the wings of Solarimpulse will be both very &omthvery light. As a re-
sult, they are bound to deform noticeably in flight and it Wil important to verify that
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they behave as expected. Experiments shows that measuseacenracy up to few
millimeters can be achieved monitoring a 4-meters wide rhofithe Solar Impulse
with a consumer grade camera.

6.1.1 Related work

Monocular 3D shape recovery of deformable surfaces is knmwine an ill-posed
problem even when there isféigient texture for structure-from-motion and template-
matching approaches to béextive. A priori knowledge of deformation models is
required to solve ambiguities and make the problem tragtabl

Structure-from-motion methods rely on feature pointskealcthrough a sequence
to retrieve the deformed shape of a surfage [9, 15]. Howélrerunderlying linearity
assumptions of these methods limit their applicability teosth deformations. The
use of more generally applicable constraints have beercate@][18, 16], even though
additional assumptions, that may not apply, are required.

Statistical learning approaches have therefore becom#ractave alternative that
takes advantage of observed training data. Linear appesachave been applied to
faces[[4/_1D] as well as to general non-rigid surfaces [1@&weler, they impose the
same restrictive smoothness constraints as before. Meretaining the model of
highly deformable surfaces represented by meshes with mentices, and therefore
many degrees of freedom, requires a number of training ebemtipat quickly becomes
intractable.

Another class of approaches solve this problem by intradyai physical model
that can infer the shape of untextured surface portions fremest of the surfacgTl2,
11]. Due to the high dimensionality of such representatiomsdal analysis [15] was
proposed to model the deformations as linear combinatibme®des. Some knowledge
about the surface material must be assumed since the defonmzodel is defined in
terms of physical parameters. Moreover the complexity asmtlimearity of the true
physics make physically-based approaches an accuratexaption only in case of
small deformations.

Since one can reasonably assume that aircraft wings are ofiadaterial whose
mechanical property can be known and expected deformadieseant to be small,
physical models become a suitable choice in this contextebicer, a similar approach
[15] has been integrated into a software package desigmaddel the deformations of
sails from video sequences and to measure visually therature. Delivered to Team
Alinghi, it supports the design team by monitoring the bebieof the spinnaker under
real sailing conditions, providing valuable informatidnsmprove its design.

Since sails act very much like wings, both may be treated am#ndeformable
surfaces and the approach we propose for measuring wingndafions is largely in-
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spired by the works of Salzmann and Pilet/[16, 15].

6.2 Deformable shape recovery

We represent a surface as a 3D triangulated mestMWF), where \=(v, ..., , ) is
the vector of vertices and F is the list of facets. The pasitiba vertexy; is specified
by its 3D coordinate$x, yi,z). The overall shape is therefore controlled by a state
vectorS, that is the vector of alk, y andz coordinates. We assume we are given a set
of 3D to 2D correspondences between surface points and itoeggons.

We assume that a mesh deforms to minimize the objectiveitmct

€(S) = Apep (S) + &c (S) (6.1)

whereec is a data term that takes point correspondences into agaguista smooth-
ness term that tends to preserve the regularity of the mashiais a constant.

6.2.1 Dataterm

In this section, we formulate the computation of the 3D mesthex coordinates given
the data term in terms of solving a linear system. To this psepve express all world
coordinates in the camera referential for simplicity anthaiit loss of generality. Let
Xi be a 3D point whose coordinates are expressed in the canferantal. Since

we use a single camera and assume its internal parametegsktoolvn, we write its

perspective projection as:

Ui

1 Xi
Vi |= EA[I?:X?: | 0]{ 1 ] (6.2)
1
whereA is the internal parameter matrix akda scale factor. I¥; lies on the facet of

a triangulated mesh, it can be conveniently expressed asghted sum of the facet
vertices, so thaf(6l.2) can be rewritten as

Ui

1
Vil= EA (@Vig + biviz + GV 3) (6.3)
1

wherev; 1<<3 are the 3-D coordinate vectors of the vertices amdy(, ¢;) the barycen-
tric coordinates o0k;.

Let’'s assume that we are given a listroSuch 3-D to 2-D correspondences for
points lying inside the mesh facets. As pointed outby [11&\ 1<i<3 coordinates of
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the vertices can be computed by solving
aiTy biTy Ty 0
0 a,-T,- bjTj CjTj 0 -0 (6.4)

Ve,
aT 0 bT 0 T, O

with

whereA; represents the last row of matmxandayys its first two rows.

6.2.2 Smoothness term

Previous work by Salzmann et dl. |16] demonstrates thatdieyporrespondences do
not provide enough independent equations for the probldme wolved uniquely. Two
kind of smoothness terms have been used to prevent the &stinad unrealistically
deformed shapes:

¢ stifftness matrix, it carries information about the physical prtips of the surface
material. Physical properties are expressed by coupliagitbplacements of
neighboring vertices of the mesh. A popular algorithm fr@@hHas been used
to generate a system of equations given a triangulated nmesfes additional
parameters such as mass and thickness.

¢ inextensibility constraints, they model a kind of trianafiidn that can be thought
of as a polyhedron made of metal plates whose edges have églacad by
hinges. Length variations of the edges are discouragedghradding penalties
to the overall energy function.

6.2.3 Optimization strategy

Differently from the approach inl[7] we chose to implement inesitality constraints
exactly. Since such constraints are quadratic, they do not & linear formulation
[16]. For that reason an iterative optimization has beerceived.

The idea is to minimize

[IMX]| subject taC(X) =0, (6.5)

whereX is ann x 1 vector andC(X) anmx 1 vector of constraints.
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At each iteration, given the curreKtstate, findd X such that

CX+dX)=0 = AdX=-C(X), (6.6)
= dX=-AC(X)+ (I -AAdZ ,

whereA is them x n Jacobian matrix o€, A" its n x n pseudo-inverse, ariZ an
arbitraryn x 1 vector. In generaln < nandA’ can be computed as limoA(AA +
61)~1, which involves inverting am x m matrix and exists even A" itself is non
invertible.
Let P = | — ATA be the projector onto the kernel &fand letdXy = —A'C(X) be the
minimum norm solution of Eq. 616. We chood2 by minimizing

[IM(X + dX, + Pd2)]| , (6.7)
or, equivalently, solving in the least square sense
MPdZ = -M(X +dXp) . (6.8)

In this setting, matrixM consists of two parts, the first comes from the data term
while the second is made of physical relations encoded irstiffeess matrix. The
functional C represents the nonlinear inextensibilitystoaints.

Since the optimization criterion M weights all the datalfaigross outliers generate
large residuals that could bias the solution. To give orglee milder impact on the
solution, we reformulated the original problem in a rewégghleast squares fashion:

| WMX]|| subjecttaC (X) =0 (6.9)

where W is a diagonal weighting matrix. The main diagonal aé\the vector L whose
codficients are computed as follows:

Li = —exp% (6.10)

whered, =|| F; || is the norm of the®™ residuals anddc = MX - b. d = L3idis
the average of the norm of the residuals. In this settingsetveighted least squares

solution is given by
WM(X+dXy + Pd2) || (6.11)

6.3 Detailed approach

The proposed approach entails the accurate calibratidreaftaging device, the pres-
ence of a 3D model of the object in its rest position and thebdity of establishing
correspondences between that model and a given image. Tdle wbproach is split
in two main stages:
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¢ Offline phase, it consists of camera calibration and generafitiee 3D model
in its rest, i.e. undeformed, position

e Online phase, it aims at retrieving pose and deformatioregthe actual image
and the rest model

6.3.1 CfHine phase

A 3D model of an object in its rest position is composed of tadg a pointwise model
consisting a cloud of point¥; that lie on its surface and a geometric model in the form
of a triangulated mesh that approximates its hull. The pdg® model is necessary
to detect and establish correspondences between the abjgct given image. The
geometric model represents a piecewise planar approximatithe true object shape
and embeds also the concept of joints, i.e. lines along wiielshape is allowed to
deform. For the algorithm to perform consistently, the twaodels have to be spatially
aligned, registered pointwise and geometric models wiltddéed hereinafter, just, 3D
model of the object.

The construction of the pointwise model is performed usingtfalis [13], a structure-
from-motion software. Given multiple pictures of the sambjsct taken from dferent
viewpoints, the algorithm is able to generate a sparse aé@® points that reproject
consistently in all the views. In detail, the standard restarction process take place
as follow:

¢ a set of retroreflective markers, manually placed all oversttene, are automat-
ically detected in every pictures and correspondencessiableshed based on
appearance and geometric constraints

e a reference object, shipped together with the softwaresésl uo retrieve an
initial estimate of the pose for every single pictures.

e a bundle adjustment solver [2, 5] performs a non linear mization of the re-
projection error across the whole set of correspondeneddigg accurate poses
and structure

However, the standard procesdteved from many drawbacks and a revisioned proce-
dure has been devised to improve reliability and flexihility

Detailed insights concerning the characterization of tadggmance of the stan-
dard approach and the improvements obtained using the madifethod are reported
in [].

Finally, each poin; belonging to the pointwise model is linked with a vector of
all the SIFT descriptors computed in each image in which ftesped. This step is
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fundamental to enable subsequent keypoints matching katitee pointwise model
and a given image.

The geometric model is a triangulated mesk-(M F), where \=(vy, ..., W, ) IS
the vector of vertices and F is the list of facets, that regmesthe aircraft in its rest
position. The wings have been manually measured and thedaties roughly follows
the joints between distinct parts of the real plane. Thelmpoof the vertices and the
facets underwent many changes, the final arrangement magypbecéated in Fig._613,
top.

In order to deliver a set of 3D points expressed in terms ofdsntric coordinates
with respect to the facet of the mesh, pointwise and geometoidels must be regis-
tered into the same coordinate frame. A useful initial giesbtained by aligning the
eigenvectors of the Principal Component Analysis (PCA)degosition of the points
cloud and the vertices of the mesh. The underlying idea isthieacloud of points is
uniformly distributed across the aircraft, an assumptiohso far from reality given
the symmetry of the texture underneath the wings. Registraiccuracy is improved
by deploying a subsequent refinement using the algorithmqgsed in[[17]. This al-
gorithm performs a robust registration of 3D point data tdangle mesh in presence
of outliers and changes in scale. After the registratiomtsavhose distance from the
nearest facet is above an acceptance threshold are martetiiess and removed from
the pointwise model. Inliers are converted in barycentoiordinates with respect to
the closest facet.

6.3.2 Online phase

The scope of the online phase is, given an imgge retrieve pose and deformations
of the considered object. The mathematical procedure ptedén sectiof 612, devised
for such goal, requires a 3D model of the object in its resitjppsand a set of 2D-3D
correspondences. The former requirementis fulfilled bjquering the steps described
in the previous section. The generation of 2D-3D correspands is accomplished as
follows:

¢ a set of keypoints; is extracted from imagke

¢ the set of keypoints; is matched with the descriptors stored in the pointwise
model (see Figuie §.2)

e the matching between keypoints and descriptors of pointX; belonging to
the pointwise model naturally defines 2D-3D correspondemekating image
projections and 3D pointg < X;.
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Figure 6.1: 3D reconstruction from multiple views. Boxes are camerdsterspots are recon-
structed 3d points.

The set of 2D-3D correspondences are then fed to the algariifhe vertex coordi-
nates of the rest model are the parameters of the state \#ttat are to be optimized
given the data term, i.e. the 2D-3D correspondences, andnfo®thness and con-
tinuity constraints. After optimization, the computedtstaectorS contains all the
coordinates of the vertices and represents the sparsesteqction of the deformed
object observed in imagke(see Figuré 6]3). Object deformations are defined as the
difference between the estimated state veStaand the vector of coordinates in the
rest positiors.

6.4 Results

6.4.1 Simulations

Synthetic tests have been conducted to evaluate the permerof the algorithm in
a controlled environment and to see how it degradesféareint amounts of noise af-
fects the data. The idea has been to create synthetic 2D-8Bspondences using
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Figure 6.2: Keypoints matching. Correspondences between the imagéharn8D model are
highlighted with red circles.

realistic generative models. As far as 3D points belonginipé pointwise model are
conceerned, triangulated mesh describing the aircraftbéas deformed designed and
deformed by applying a twisting deformation creating a giaegle between the two
wingtips. Then, a set of 3D points randomly spread over tlaadulated mesh have
been generated. By projecting the 3D points on virtual casmeandomly spread in the
scene, 2D correspondences have been generated. Moreosentainty in the match-
ing process is accounted for by adding gaussian noise to e@uprojections. The
impact of the number and positions of points located on thetfahas been analyzed.

The graph in Fig[[6l4 reports on theaxis the Root Mean Square (RMS) of the
difference between the true and the estimated twisting angthedhaxis the standard
deviation of the noise applied to the projections. RMS valuave been computed on
1000 trials per number of points.

Remarkably, the algorithm yields high quality reconstias with realistic amount
of noise, i.e. around 1 pixel. Hence accurate wing deforonatcan be measured using
the proposed vision-based approach. Two other facts ewhdigefirst is the more the
correspondences the more precise the reconstructioretoad is that uniformly dis-
tributed points are better than scattered ones. Both ewvédeare quite straightforward,
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Figure 6.3: Deformed geometric model (top), 2D-3D correspondence®ifoed lines in the
middle), reprojected geometric model on the image (bottom)

perhaps the second remark becomes more interesting whieg tiwit 3 uniform points
are better than 5 scattered ones, hence highlighting theriaace of the location aside
the mere count.
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Figure 6.4: Twisting angle RMS error with dierent numbers of points per facet: 3 on uniformly
spread (red) and 3 (green), 4 (blue), 5 (yellow) scatteréatfo

6.4.2 Experiments

A wings measurement system for diagnostic and validatiopgaes requires on-site
guantitative performance evaluation. To accomplish thgktwe decided to obtain
ground truth data and compare the attained results to it.hBwtcould ground truth

data could be generated?

Two methods, an Optical Motion Capture (OMC) system and ac8ired Light
Scanner (SLS), accredited of very high accuracy, have besdnated by assessing the
delivered reconstruction in a simple and controllable acien The test bed consisted
of a stif beam whose steepness could be carefully set. Since evegytiais precisely
measured, the geometry of any points in the scenario coulcabefully computed
beforehand and used as ground truth for comparing the methith an accuracy of
about 0.2 mm, the OMC exhibited the highest level of accurpeyforming an order
of magnitude better than the vision-based approach.

Both the OMC and the video-based system have been then eepioya more
relevant setup: measuring wing deformations of the Solaulse 4 meter wingspan
model. OMC reconstruction has been considered as groutiddata, and the estima-
tion yielded by the video-based approach have been compatiedespect to ground
truth.

Qualitative and quantitative results are presented. @tigk results concern the
reprojections of the geometric model of the aircraft ontgfctures from which shape
has been recovered. As shown in Hig.]6.5 (right), we askedowaple to shake the
wings during the acquisition to procure deformations. Ass@&D-3D correspondences
have been detected using keypoints matching then the @aiiioin procedure jointly
determined the deformed model, green mesh (Eid. 6.5), ameatincorrect matches,
drawn respectively with green and red lines. The recovdragehas been reprojected
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inside every picture (green mesh) and most of the time itégipely aligned with the
contour of the aircraft (see Fid._6.6). Fif. 6.5 reports thigude of the left (red)
and right (blue) wingtip computed in each frame of Eigl 6.6witspect to a constant
ground plane passing through the body of the aircraft. Asbeanoted the trends are
visually compatible with the deformations (upward then daward) applied by the two
persons in the pictures.

Figure 6.5: Wingtips altitude chart (left), estimated mesh reprotifright).

Video-based 3D reconstruction has been compared with grouuth shape by
computing the distance between corresponding points. TW8 Brror was found to
be in the order of 2.5mm. Since the model is 4 meters wide,@afiens dictate the
measured error to turn to-34 cm and a & of twist deviation when coping with the
real 60 meters wingspan prototype.

6.4.3 Conclusions and future work

The proposed algorithm has shown potential for accuradgwering the shape of
large deformable surfaces such as aircraft wings. This enaimportant achievement
since it may be used for accurate, cheap and non contact nreezext of aircraft wings
deformations during flight.

A quantitative validation process using the Solarimputs#esd model attests that
an error in the order of 2 mm over a 4 meter wingspan model haxs telivered by the
system. This error translates on a deviation of about 0.Begedfecting the twisting
angle.

Nevertheless, there is still room for improvements by irdéigg improved physically-
based deformation models, integrating over time and efglicepresenting uncer-
tainty in the equations. This is what we will endeavor to dthie future. Furthermore,
the use of additional cameras should provide a further asg®f accuracy.
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Figure 6.6: Estimated mesh reprojection in few samples of a video sexuen
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Chapter 7

Closing words

7.1 Summary

This thesis has investigated the problem of combining mfttion contained in multi-
ple, overlapping views of a scene for visual reconstrugtiemposes. Within this broad
problem, three major topics have been addressed: densesg@mneconstruction ,
camera pose reconstruction, sparse geometric reconstroétdeformable surfaces.

Dense geometric reconstructionlmage mosaicing, the combination of several over-
lapping images into a collective view, has been the priddipll of investigation. In
this context, a robust and fast sequential image mosaidgayithm has been con-
ceived. By deploying novel spatial and tonal alignment apphes, the proposed
method performs consistently in a wide range of real worlehsatios, e.g. indoor
and outdoor scenes.

An original dual geometric alignment stage permits to botieddrift error allow-
ing the construction of quasi globally consistent mosaidghout resorting to com-
putational demanding global adjustment procedures. Taefifast features, supple-
mented by a phase correlation based bootstrap, allows faling large and complex
camera motions while preserving real-time computationagt fonal alignment stage,
based on histogram specification, has been conceived in todeliver exact his-
togram matching and limited image distortion. Replacimmdard mapping functions
with one-to-many mapping relationships has been key todaki@itogram distortion
artifacts without incurring in computationally intensiveplementations.

Moreover, the mosaicing algorithm does not rely on any arpiidormation re-
garding scene or camera, thus resulting in a practical axiligemage-based solution.
Accuracy, fast processing and flexibility have enabledgragon into a video surveil-
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lance system for on-line motion detection using a PTZ cantexsensive experiments
with several challenging photographs and surveillanceiseces have shown the ef-
fectiveness of the proposed approach.

As far as principled performance assessment of mosaiogugiiims is concerned,
to the best of our knowledge, no established evaluationdvenrk exists in literature,
albeit a widely accepted quantitative evaluation procedsrhighly desirable for a
discipline moving from its pioneering works to maturity.i$ssue has been addressed
by devising a comprehensive evaluation methodology inolydata sets, ground-truth
information and performance metrics. Thgeetiveness of the proposed methodology
has been demonstrated by evaluating and ranking threethlgerthat produce visually
indistinguishable results.

Camera pose reconstruction.An original use of image mosaics in conjunction with
standard pose reconstruction algorithms has been propd$edidea is to model the
reference object, i.e. the object with respect to which theeps estimated, with a mo-
saic built dfline from several detailed images. Standard pose recotistidfoom pla-

nar object algorithms can then compute the pose betweerea fyjame and the mosaic.
Experiments, using two fferent pose estimation algorithms, have demonstrated con-
siderable improvements in estimation accuracy. The mdsased pose reconstruction
approach has been successfully integrated into a realAungenented Reality system
under developmentin our Laboratory.

Moreover, a markerless vision-based approach based orah&gatures tracking
has been conceived as a novel interface for gaming apjplitati The proposed ap-
proach allows the user to interact with a videogame by sinmpbwing a webcam
pointing towards any planar textured object present in ttems. The only require-
ments being a consumer grade camera, the proposed interfaeetical, inexpensive
and, according to the feedback received by several uséutjia and enjoyable.

Sparse reconstruction of deformable shaped robust vision-based approach for ac-
curate shape recovery of deformable surfaces from a sirghei@ has been devised.
Building on previous work in literature, the proposed mettaaldresses the problem
of obtaining highly accurate measurements of large and tongeformable objects,
such as aircraft wings. State-of-the-art keypoints matghéchniques have been de-
ployed for non invasive, accurate and reliable sensing. ghsticated modelization
of the problem allows for dealing with reconstruction amiiiigs, stemming from sin-
gle view analysis, by introducing smoothness and congreonstraints in a concise
way. A iterative linear LS estimation algorithm, based oajgction kernels, delivers
accurate results and fast computation.
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A quantitative validation, using the Solarlmpulse 4-metergspan scaled model,
has reported reconstruction errors in the order of 2 mm coedda ground truth data,
thus making it possible to foresee deployment of the metboddcurate, cheap and
non contact measurement of aircraft wings deformations.

7.2 Future directions

This final section discusses some possible avenues foeftegearch and applications
stemming from results and insights achieved in the courdbefioctorate and dis-
cussed throughout this thesis.

Evaluation methodology for image mosaicing algorithm.For long time, image mo-
saics have been assessed subjectively via visual inspefriitcqualitative applications
such as digital photography, photomontage and post primhefects, have been con-
sidered as the most important targets of such technologye fast development in
theoretical understanding, algorithms and processingeptas rapidly raised the bar
of mosaics quality to a level human eyes cannot discrimioaygeld decisive insights.
Moreover, nowadays mosaicing algorithms are employed nbt to generate visu-
ally pleasant pictures but also serve as key building blaksany computer vision
applications, such as e.g. motion detection and trackirggaic-based localization,
resolution enhancement, augmented reality. Finallyphysteaches that the introduc-
tion of widespread accepted quantitative benchmarksiaigrbrought decisive ben-
efits to the research within discipline, by facilitating aommication, collaboration and
dissemination among researchers dealing with similalehgés.

For these reasons, we hold a firm conviction that a widely @tecequantitative
evaluation procedure is of utter importance for image noisgito moves from its
pioneering works to maturity. The purpose of the evaluati@thodology described
in chaptef#is to provide the image mosaicing community \&itomprehensive tool
that, we hope, will allow for principled discussion abowg@ithms and performances
among researchers and professionals. Data sets, rankidgsrgher information on
the evaluation methodology can be freely accessed at theiteth tp: //www.vision.deis.unibo.it/MosPerf
All the researchers operating in the image mosaicing fieldseartily invited to use
the methodology for evaluating their own algorithms, aslwslto suggest insights,
corrections, additional datasets or everything that canalh improving our current
proposal. The invitation is extended to companies devetppommercial image mo-
saicing softwares, for they may gather useful insights taluating their commercial
products, such asl[5] 8,110,[5,3] L4] 11], according to thpgeed methodology. Re-
markably, no disclosure of any kind of technical detail isthed since just the mosaics
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obtained on the reference data sets are required for theagiaal to take place.

Vision-based interface for portable device gamesThe ubiquitous presence of com-
puterized equipments in everyday environment calls foception and design of natu-
ral and easy-to-use human-machine interfaces. Praatcaightforward and inexpen-
sive are the keywords for the next generation of interagbaradigms. Videogames
are a challenging test ground since fast response and higigay are also required.
Vision-based interfaces, as the one described in chla@ensld the potential to fulfill
this expectation.

In particular, the segment of intelligent hand held devisesh smart-phones|[2],
PDA or consoles (Nintendo DS][7], Play Station Portabl€ J1&Jay see in the near
future an ever-increasing penetration of vision basedfexte. Indeed, the proposed
approach is particularly suited to enable gaming appboation hand held devices,
for the user may simply point the integrated camera towaekauted plane and play
by moving the device in his hand. Moreover, recent demotistraof camera pose
reconstruction using natural keypoints on mobile phonksval for envisioning the
deployment of camera-based games, such as Black Hole, oybedy’s portable de-
vices. Whatever the actual vidleogame, the proposed huntarfséce method may be
employed as a general purpose middleware to deliver poseiiation, concerning the
hand held device, to the game logic.

Video-based metric measurement of dynamic sceneVision-based reconstruction
approaches are known to recovery the geometric structane fine analysis of multi-
ple views of the same subject. Several applications haeadyr hit the market, e.qg.
ImageModeler([4], PhotoModeler [113], Boujoul [1], Austsa[B]. However, existing
products are mainly intended for static scenes or dedidatsgecific functions, i.e.
image stabilization, super resolution. Moreover, thelatbidlity of a number of images
may not be easily ensured in any given scenario.

The video-based measurement algorithm for deformablasesfdescribed in chap-
ter[@ holds the potential to pave the way a new generation airate non invasive
tools for geometric reconstruction of complex, static onayic, objects from single
pictures, provided that a rest position model is availaBléhough the rest model has
still to be constructed with traditional methods, once @vailable shape reconstruction
can be attained on-line from a single image and deformaljéxtsbor dynamic scenes
can be handled seamlessly.
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