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Abstract

A single picture provides a largely incomplete representation of the scene one is look-

ing at. Usually it reproduces only a limited spatial portionof the scene according to

the standpoint and the viewing angle, besides it contains only instantaneous informa-

tion. Thus very little can be understood on the geometrical structure of the scene, the

position and orientation of the observer with respect to it remaining also hard to guess.

When multiple views, taken from different positions in space and time, observe the

same scene, then a much deeper knowledge is potentially achievable. Understanding

inter-views relations enables construction of a collective representation by fusing the

information contained in every single image.

Visual reconstruction methods confront with the formidable, and still unanswered,

challenge of delivering a comprehensive representation ofstructure, motion and ap-

pearance of a scene from visual information. Multi-view visual reconstruction deals

with the inference of relations among multiple views and theexploitation of revealed

connections to attain the best possible representation. This thesis investigates novel

methods and applications in the field of visual reconstruction from multiple views.

Three main threads of research have been pursued: dense geometric reconstruction,

camera pose reconstruction, sparse geometric reconstruction of deformable surfaces.

Dense geometric reconstruction aims at delivering the appearance of a scene at ev-

ery single point. The construction of a large panoramic image from a set of traditional

pictures has been extensively studied in the context of image mosaicing techniques.

An original algorithm for sequential registration suitable for real-time applications has

been conceived. The integration of the algorithm into a visual surveillance system has

lead to robust and efficient motion detection with Pan-Tilt-Zoom cameras. Moreover,

an evaluation methodology for quantitatively assessing and comparing image mosaic-

ing algorithms has been devised and made available to the community.

Camera pose reconstruction deals with the recovery of the camera trajectory across

an image sequence. A novel mosaic-based pose reconstruction algorithm has been con-

ceived that exploit image-mosaics and traditional pose estimation algorithms to deliver

more accurate estimates. An innovative markerless vision-based human-machine inter-
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face has also been proposed, so as to allow a user to interact with a gaming applications

by moving a hand held consumer grade camera in unstructured environments.

Finally, sparse geometric reconstruction refers to the computation of the coarse ge-

ometry of an object at few preset points. In this thesis, an innovative shape reconstruc-

tion algorithm for deformable objects has been designed. A cooperation with the Solar

Impulse project [56] allowed to deploy the algorithm in a very challenging real-world

scenario, i.e. the accurate measurements of airplane wingsdeformations.



Chapter 1

Introduction

An individual picture provides a largely incomplete representation of the scene one is

looking at. Usually it reproduces only a limited spatial portion of the scene depending

on the viewing angle and the position of the observer. The spatial amount of visi-

ble scene can be, to some extent, traded with the level of detail; i.e. a full mountain

landscape can be grabbed from far away at the cost of missing fine grain details of

trees, bushes and skiers, whilst zooomed in snapshots preserve small features but lack

mountain peaks and valleys.

The amount of tonal information that can be recorded is severely restricted by the

dynamic range of traditional imaging devices, think of a washed out picture of a bright

morning light panorama or a dark snapshot of a dimly lit indoor environment. The dy-

namic range may be adapted to the lighting conditions at handby configuring exposure

settings properly, nonetheless the photometric richess ofa real scene greatly exceeds

the capability of nowadays CCD sensors.

As the temporal dimension is concerned, only instantaneousinformation can be

recorded, any movement is frozen inside a picture, none can be known about what

happens inside the scene immediately after or before the shot is taken. Leaving the

shutter open for a while does not usually help since letting the camera integrating over

time yields blurred regions where non stationary processestake place.

Moreover, since projective geometry admits many different shapes to exhibit iden-

tical projections, very little can be inferred on the 3D geometrical structure of a generic

scene from a single view, unless specific prior assumptions are made. Because of that,

position and orientation of an observer with respect to the scene remain also hard to

guess.

Visual reconstruction methods confront with the formidable, and still unanswered,

challenge of delivering a comprehensive representation ofstructure, motion and ap-

pearance of a scene from visual information. Nonetheless, apart for special cases
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where single view metrology approaches obtained remarkable results, a comprehen-

sive reconstruction of a given scene is out of reach for single-view algorithms. It is

well understood that visual reconstruction approaches relying on multiple views may

provide answers to that demanding calls.

1.1 Reconstruction from multiple views

The concept underpinning multiple views reconstruction algorithms is the extraction

and combination of information coming from several overlapping views, i.e. taken

from multiple locations and different instants. When information contained into sin-

gle views are properly fused together, the collective reconstruction is superior to that

possibly attainable by analysing every single image individually.

Visual reconstruction can be ideally split up in many branches depending on the

aspect of a scene it aims at retrieving:

• geometric reconstruction, it refers to the computation of the 3D structure of

a scene. This area can be further subdivided in sparse or dense reconstruction.

Sparse reconstruction encompasses a vast number of algorithms knwon as “shape

from X”, where X stands for the visual cues employed to perform reconstruction,

i.e. motion, shading, defocus, ... These methods usually recover the 3D shape of

an object by triangulating rays passing through corresponding points in several

calibrated images, namely images whose positions with respect to each other

is known. Sparsity refers to the fact the geometric structure is known only at a

finite number of points, the structure in between to be inferred with the use of ad-

ditional constraints, usually reinforcing continuity or smoothness. An example

of sparse shape reconstruction is retrieval of a triangulated mesh model of a de-

formable surface depicted in Fig. 1.1. Conversely, dense reconstruction attempts

Figure 1.1: 2 frames taken from a sequence of 18 portraying an airplane model outlined with

the backprojection (green line) of the retrieved 3D structure of its wings.

at delivering the 3D shape at every point in the scene, such description typically
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coming along with appearance information such as color or brightness. It is usu-

ally deployed in simpler geometric scenarios and some representative family of

algorithms are image mosaicing and two-view dense stereo. Intuitively, a dense

reconstruction of the appearance of a scene may be obtained by combining sev-

eral images taken from different viewpoints and properly stitched together so that

common parts of the scene overlap in the final picture, usually dubbed mosaic

(see Fig. 1.2).

Figure 1.2: (Top) 8 frames from a sequence of 680 captured by a hand-held camera. (Bottom)

All 680 frames combined in a mosaics with much greater field ofview.

• photometric reconstruction, it aims at recovering the photometric content of

a scene that might be lost due to limited dynamic range of the imaging device

or unfavorable lighting conditions. Along the same line, reconstruction takes

place by composing many snapshots taken with variable exposure settings, each

of them capturing a different range of radiance. The combination of several over-

lapping ranges allow to extend the collective dynamic range, leading to images

with typical range resolution of 16 or 24 bits per channel.

• camera pose reconstructionis usually referred to as calibration and sometimes

is included in sparse geometric reconstruction algorithmsas an early phase. It

addresses the problem of recovering the relative position and orientation of set

of images with respect to a given coordinate frame. For example, the recon-

struction of the motion trajectory of an object throughout asequence can be ac-

complished by comparing a reference view of the object in itsrest position with

all the frames of the sequence. The displacements of corresponding structures

across the sequence hint at the trajectory the camera has followed. The knowl-
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edge of the position of the camera with respect to the scene triggers a variety

of applications; among the most popular stands Augmented Reality (AR). An

example of Augmented Reality is displayed in Fig. 1.3) where3 virtual objects

are realistically rendered as they were laying on top of the showcase counter

according to the reconstructed pose of the camera.

Figure 1.3: 3 frames from a sequence of 420 captured by a hand held camera.The accurate

retrieval of camera motion allows the virtual objects to realistically lay at the same places in

every frame.

Every visual reconstruction algorithm, irrespective of the class it belongs to, re-

quires some kind of relations to be established among the setof analyzed images. In

order to accomplish this task two key steps are invariably present: image matching and

image registration. The former step refers to the detectionand matching of salient fea-

tures (points, areas or structures) among images. The identification of corresponding

features in multiple views hints at the presence of spatial,tonal or temporal relation

among the set of images. Image registration is concerned with the quantitative compu-

tation of the inter-images relations given a set of corresponding salient features. Both

image matching and registration are very active fields of research and some of the most

relevant achievements will be discussed respectively in chapter 2.1 and chapter 2.2.

This thesis investigates on novel methods and applicationsin the field of recon-

struction from multiple views. Three main threads directedthe investigation: dense

geometric reconstruction in the context of image mosaicingand its applications, mo-

tion trajectory recovery applied to mixed reality and vision-based human-machine in-

terfaces, sparse structure and motion reconstruction for deformable surfaces. All the

algorithms conceived have been tested on both synthetic andreal image sequences, and

data sets have been made available for researchers active inthe same field.

1.2 Fields of application

Visual reconstruction encompasses a wide number of concepts, ideas and algorithms

enabling established as well as emerging technologies and applications. Dense geo-

metric reconstruction, in the form of image mosaicing, has already made an impact
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into the digital photography market with the continual release of new products which

allow a handful of photos or even video stream from an hand-held camera to be stitched

together into a wide field mosaic. Interactive 360 mosaic is routinely used to illustrate

and promote holiday resorts, museums, historical and archeological sites. Recently im-

age mosaics have found application in visual surveillance systems that deliver motion

detection using pan-tilt-zoom cameras, as discussed in chapter 3. On the other hand,

dense two-view stereo reconstruction has become a cornerstone for robust navigation

of unmanned vehicle and robots and will probably hit the market soon.

Sparse geometric reconstruction is making its way inside commercial software for

vision-based shape computation tailored for architect andengineers studios. On a more

precompetitive stage of development, a pair of applications addressing non contact

shape retrieval of complex deformable surfaces in uncontrolled environment such as

airplane wings and boat sails are described in chapter 6.

Camera motion reconstruction has become a valuable tool forvisual effects tech-

nology such as match moving, namely the insertion of virtualobjects into real footage.

Automatic computation of the correct position, scale, orientation and motion in relation

to the photographed objects in the scene greatly simplifies and speed up match moving

tasks. The same functionality has found useful applications in mixed or augmented

reality, see 5.1, and human machine interface, refer to 5.2 for gaming related applica-

tions. Another fertile field of application is automatic steering, landing and docking of

unmanned vehicles.

1.3 Structure of the thesis

This thesis is subdivided into three main parts focusing on different aspects of visual re-

construction. As mentioned before, any multiple views visual reconstruction approach

builds on top of two pillars: an image matching method to infer the relations among the

set of images and image registration algorithms to numerically appraise them. For this

reason, chapter 2 is devoted to the presentation of principles and algorithms dealing

with image matching and image registration.

As far as research activities are concerned, dense structure reconstruction has been

investigated first during this thesis work. In particular the focus has been on the de-

manding problem of reconstructing the appearance of a scenethrough image mosaicing

in the context of visual surveillance. Basically, given several shots taken by a pan-tilt-

zoom (PTZ) camera, a mosaicing algorithm aims at the generation of a unique image

of higher resolution and field of view, called mosaic. A visual surveillance based on a

PTZ camera can then use a mosaic as reference image (i.e. background) so as to rely

on standard and well established motion detection techniques developed for the static
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camera scenario. Other than the unknown motion of the camera, other difficulties such

as changes in lighting, exposure, independently moving objects and optical distortions

compete to render this problem a hard one. Moreover, the use in the context of visual

surveillance imposes real-time computation requirements. In chapter 3 an original al-

gorithm for real-time image mosaicing is detailed with validation tests accomplished

on real image sequences taken by a PTZ surveillance cameras.

It soon became clear that both visual inspection and other statistical measures,

such as residual fitting error, were not discriminant nor reliable indicators of the qual-

ity of a mosaicing algorithm. Nonetheless, to the best of ourknowledge, no estab-

lished or widely employed data sets, performance metrics orevaluation methodologies

have been proposed in literature to quantitatively appraise the performance of mo-

saicing algorithms. Such a shortage is very detrimental to the development of this

research field, for it hinders the objective assessment and comparison of different pro-

posals meanwhile complicating communications and collaborations efforts among re-

searchers. Chapter 4 addresses this issue and describes a proposal of an evaluation

methodology for image mosaicing algorithms comprehensiveof standard data sets,

performance metrics and comparison procedure. The methodology has been made

available to the scientific community through a publicly accessible website.

Camera pose reconstruction has been the second field of investigation. This topic

is concerned with the determination of the position and the orientation of a camera

with respect to a given scene. When a scene or parts of it can beassumed flat, several

theoretical analogies arise with image mosaicing techniques whereas in place of the

appearance of the scene the focus is on the position of the cameras observing it. In this

context, two applications that would greatly benefit from automatic pose estimation

have been examinated: Augmented Reality and Human-MachineInterfaces (HMI). In

chapter 5.1 an original use of mosaics in a AR context is proposed; the point is to show

how image mosaicing can boost the performance of established planar pose estimation

algorithms. Chapter 5.2 deals with the introduction of vision-based pose estimation in

the field of interfaces for gaming applications. Two videogames, built on top of the

camera-based interface have been developed .

The third and last research direction has been sparse geometric reconstruction of

deformable objects. Here the scope is to estimate a low-dimensional geometrical rep-

resentation, for instance a triangulated mesh, of the 3D structure of a flexible surface

such as journals, cloths, flags and so on. While the piecewiseplanar assumption about

the structure of the object is usually a reasonable approximation in this case too, the

capability of the object to deform introduces a whole new family of projection ambi-

guities. While the theoretical implications have been extensively studied, real-world

demonstrations have been much less compelling being limited only to reconstruction
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of sheet of papers and napkins. Chapter 6 reports on a novel vision-based method for

measuring airplane wings deformations using a single camera. Both synthetic and real

images have been employed to assess the performance of the conceived algorithm.

The last chapter 7 summarizes achievementes and lessons, draws conclusions and

traces future directions and foreseeable developments andadvances.

1.4 Summary of contributions

The principal contributions and the scientific results, in terms of peer-reviewed publica-

tions on international conferences and journals and unpublished tech reports, originated

from the research activities carried out during the PhD course is as follows:

Chapter 3: Real-time mosaicing for visual surveillance

• An original near real-time registration algorithm for the construction of globally

coherent image mosaics apt to detect motion in visual surveillance systems.

• A fast and exact histogram specification algorithm for handling photometric reg-

istration of differently exposed images during the construction of image mosaics.

1. P. Azzari. General purpose real-time image mosaicing. InProc. of ICVSS 2007,

July 2007.

2. A. Bevilacqua and P. Azzari. A high performance exact histogram specification

algorithm. InProc. of ICIAP 2007, pages 501-512, September 2007.

3. A. Bevilacqua and P. Azzari. A fast and reliable image mosaicing technique

with application to wide area motion detection. InProc. of ICIAR 2007, pages

501-512, August 2007.

4. A. Bevilacqua and P. Azzari. High-quality real time motion detection using PTZ

cameras. InProc. of Intl. Conf. on AVSS 2006, pages 23, November 2006.

5. P. Azzari and A. Bevilacqua. Joint spatial and tonal mosaic alignment for motion

detection with PTZ camera. InProc. of ICIAR 2006, pages 764-775, September

2006 (oral).

Chapter 4: Evaluation methodology for image mosaicing algorithms

• A comprehensive evaluation methodology for image mosaicing algorithms de-

signed to objectively compare and rank approaches within a busy and, until then,

inordinate research field. Evaluation procedures and data sets have been released

for public use through freely accesible webpages.
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1. P. Azzari, L. Di Stefano, S. Mattoccia. An evaluation methodology for image

mosaicing algorithms. InProc. of Intl. Conf. on ACIVS 2008, pages. , October

2008 (oral).

Chapter 5: Camera pose reconstruction and its applications

• Original usage of image mosaics for the enhancement of accuracy and steadiness

of pose estimation algorithms. The approach has been successfully integrated

into an existing augmented reality system aimed at aereonautical maintenaince.

• An innovative vision-based interface for videogames designed for easier and

more pleasant gaming experience.

• Two original gaming applications built on top of the interface have been devel-

oped.

1. P. Azzari, L. Di Stefano. Vision-based markerless gaminginterface. InProc. of

Intl. Conf. on Image Analysis and Processing, 2009 (submitted).

2. P. Azzari, Robust image registration using linear and quadratic programming.

Tech report, CV Lab, University of Bologna, Italy, 2008.

3. P. Azzari, Image registration using SVM regression. Techreport, CV Lab,

University of Bologna, Italy, 2008.

4. P. Azzari, L. Di Stefano, F. Tombari, S. Mattoccia. Markerless augmented reality

using image mosaics. InProc. of ICISP 2008, pages , July 2008 (oral).

Chapter 6: 3D reconstruction of deformable surfaces

• Thorough design and test of a monocular measurement system for wing defor-

mations. Full and precise 3D reconstruction of the shape is delivered regardless

of the position or deformations of the analyzed surface.

1. K. Startchev, P. Azzari, P. Lagger, A. Varol, and P. Fua. Video-based measure-

ments of deformable surfaces. InJournal of Machine Vision and Applications,

(in preparation).

2. P. Azzari, P. Fua and P. Lagger, Video-based measurementsof wing deforma-

tions. Tech report, CV Lab, Ecole Polytechnique Federal Lausanne, Switzerland,

2008.



Chapter 2

Theoretical background

A reasoning process dealing with more than one view requiresfirstly to reveal and

quantify the relationships subsisting among the set of images at hand. Visual recon-

struction from multiple view algorithms make no exception,for they always build on

top of reliable image matching and registration techniques. Since these techniques are

essential and unfailing, the present chapter is devoted to illustrate the concepts and

algorithms mostly recurring in the remainder of the thesis.

2.1 Image matching with keypoint correspondences

Image matching is a research area mainly concerned with the discovery of connections

among a set of images. In its wider meaning, the nature of suchconnections could refer

to relationships as diverse as geometric, photometric, temporal and so on. For example,

a pair of partially overlapping images could be surely cast in some kind of geometric

relationships for they are both observing the same scene probably from slight different

viewpoint or with different cameras. If the latter is the case, photometric relationships

among corresponding pixels could probably hold since different cameras usually have

different responses to incoming radiance. Moreover, temporal relations can be revealed

when dynamic events are observed in multiple images, for instance, the amount of

daylight could hint at the time and the order pictures have been taken.

Although several methods have been conceived to reveal inter-image connections

the concept of salient features extraction is widespread. Feature extraction is most of

the time inevitable since using an entire image as an observation is difficult or impos-

sible due the high dimensionality (typically the order of a hundred thousand pixels).

Nonetheless salient features could be anything ranging from points, lines, curves to

textures, image structures, blobs and so on.

11



12 CHAPTER 2

In this section only keypoints-based image matching algorithms are treated. The

ultimate goal of such class of algorithms is to deliver a set of image point correspon-

dencesxi ↔ x
′

i , wherexi in R2 are the keypoints detected in one image andx
′

i in R2 are

those detected in a second image.

Three performance figures are important for image matching algorithms based on

keypoints:

• repeatability refers to the ability to select the same points of a scene in different

images independently of the changes in viewpoint, lighting, scale and so on.

• distinctivenessis concerned with the discriminative power of the description;

different points should always exhibit very diverse descriptors so that mismatch

probability is minimized.

• accuracy pertains to the precise localization of a keypoints inside an image,

subpixel methods have become common in order to increase performance.

Ideally, the best image matching algorithm is the one that find discriminative descrip-

tors that can be matched with high reliability and accuracy between frames, while also

finding a large number of features per frame.

Inside the class of keypoints-based image matching algorithms the focus will be

on the three most popular and representative feature extractors used nowadays in com-

puter vision: the Harris corner detector, the Kanade-Lucas-Tomasi tracker (KLT), and

the Scale-Invariant Feature Transform (SIFT). The term feature extractor is used to

describe the combination of a feature detector, or keypoints detector, and a feature de-

scriptor. Detectors are used to find keypoints in an image, after which a descriptor is

created that describes the local neighborhood around the points. An overview of the

state of the art in feature extractors is given by Mikolajczyk and Schmid [10]. A fea-

ture tracker establish correspondence among keypoints detected in different images by

comparing their respective descriptors. A keypoints-based image matching algorithm

is the ensemble of a feature extractor and a feature tracker.

2.1.1 Harris corner detector

The Harris corner detector, named after the authors that presented it in the first place

[5], is one of the most widely used and established keypoint detectors. Harris keypoints

or corners, sometimes also referred to as interest points, are image features character-

ized by high intensity changes in two orthogonal directions. For instance, if a square

object is present in the image then its four corners are usually very good interest points.

A formal statement of corners requires the introduction of the Harris local structure
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matrixC which is defined as

C = wG (σ) ∗



∑∑
R

(
∂I
∂x

)2 ∑∑
R
∂I
∂x
∂I
∂y∑∑

R
∂I
∂x
∂I
∂y

∑∑
R

(
∂I
∂y

)2

 (2.1)

whereI is the image at hand and∂I
∂x ,
∂I
∂y its partial derivatives,R is a (2×d+1)× (2×d+

1) neighboring image region around(x, y), wG (σ) is a Gaussian kernel with standard

deviationσ and * denotes convolution.

Let λ1 ≥ λ2 be the two eigenvalues of the matrixC. SinceC is symmetric and

positive semi-definite, bothλ1 andλ2 are non-negative. The values of these eigenvalues

directly admit some useful interpretations:

• in a uniform and homogeneous region,λ1 = λ2 = 0.

• at the location of a step edge,λ1 > λ2 = 0. The corresponding eigenvector for

λ1 is associated with the direction that is orthogonal to the edge.

• at the location of a corner,λ1 ≥ λ2 > 0. The larger are the values ofλ1 and

λ2, the higher are the contrasts of the edges orthogonal to the directions of the

corresponding eigenvectors.

Given the previous definition, the Harris corner detector proceeds as follows:

1. for each image point(x, y):

• construct the local structure matrix(x, y)

• compute the response to the “cornerness” filterr defined at each pixel co-

ordinates(x, y) defined as

r (x, y) = det(C (x, y)) − k (trace(C (x, y))2 ; (2.2)

wherek is an adjustable constant.

2. perform a non-maximal suppression on the “cornerness” filter r response to sup-

press weak corners around the stronger ones.

3. threshold the residual response according to a thresholdvaluet.

Altogether, the Harris corner detector requires three additional parameters to be

specified: the constantk, the radiusd, of the neighbourhood region for suppressing

weak corners, and the threshold valuet. Different configurations of such parameters

may yield very diverse outcomes, nonetheless this is out of the scope of this section,

for further investigation please refer to the original work[5].

The descriptor associated to each detected corner is just the image intensity neigh-

borhood around the interest point. The matching phase is accomplished by comparing

the descriptors using theL2 norm, a low score, originated by similar image patches,

signaling probably correspondent pair of corners.
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Figure 2.1: Two test images showing the keypoints detected by the Harrisdetector.

2.1.2 Lucas-Kanade-Tomasi feature tracker

The Kanade-Lucas-Tomasi (KLT) corner detector [9] is almost contemporary to Harris

proposal and shares many concepts with it. For instance, theKLT detector relies on the

local structure matrixC defined in Eq. 2.1

The KLT feature detector consists of these steps:

1. for each image point(x, y):

• construct the local structure matrixC around(x, y).

• compute the smallest eigenvalue,λ2, of the matrixCKLT (x, y);

• if λ2 > λmin, save(x, y) into a potential corner list,L.

2. sortL in decreasing order ofλ2

3. scan the sorted list from top to bottom and select points inthe list in sequence.

Points that fall inside the neighborhood R of any selected points are removed. The

output produced by the KLT corner detector is a list of cornerpoints that haveλ2 > λmin

and the neighborhoodRof these points do not overlap. Similarly to Harris detector, the

KLT algorithm admits two parameters:

• threshold value,λmin, on the second eigenvalueλ2, and

• a neighborhood window radiusd.

Indeed, results are very similar to the Harris technique, asmay be noticed by comparing

figures 2.1 and 2.2.

Like Harris, the KLT descriptor consists of a neighboring image patch and point

correspondences are established according to the correlation score among patches. A
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Figure 2.2: Two test images showing the keypoints detected by the KLT detector.

novel matching algorithm, introduced later by Lucas and Kanade, uses a gradient de-

scent method to iteratively align image intensity patches using an affine warping model

[2, 11].

2.1.3 Scale Invariant Feature Transform

The SIFT (Scale Invariant Feature Transform) keypoint detector/descriptor was pro-

posed by Lowe in 1999 [7, 8]. The SIFT features are feature vectors that represent

local image measurements, which have been reported to be invariant to image trans-

lation, scaling and rotation and partially invariant to changes in illumination and local

image deformations.

The SIFT detector locates keypoints as follows (see Figure 2.3):

• the input image,I (x, y), is convolved with a number of Gaussian filters whose

standard deviations{σ1, σ2, ...} differ by a fixed scale factor. The convolutions

yield a small number of smoothed images, denoted by
{
Gσ1 (x, y) ,Gσ2 (x, y) ; ...

}

• adjacent smoothed images are pairwise subtracted to yield DoG (Difference-of-

Gaussian) images, according to

Dσ j (x, y) = Gσ j+1 (x, y) −Gσ j (x, y) (2.3)

• smoothed images from Step 1 are subsampled and the procedurein Step 2 is

repeated on the subsampled images, yielding a number of DoG images over the

scale space.

• each point in these DoG images is examined. A keypoint is marked at a location

where the point is a local minimum or maximum of its 8 neighbours on the same

scale and of its 9 neighbours on the scales above and below.
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Figure 2.3: The DoG image pyramid used by the SIFT detector to locate keypoints.

The surrounding intensity and gradient information aroundeach keypoint are en-

coded in the SIFT descriptor. The neighborhood region around the keypoint is subdi-

vided in a regular grid of 4× 4 cells. Image gradients are computed within each cell

and classified into 8 orientations (see Fig.2.4), giving a SIFT descriptor of 128 elements

long for each keypoint.

Unlike Harris and KLT, SIFT keypoints are not always locatedat corner points as

may be noticed in fig. 2.5. Nonetheless, SIFT keypoints have shown high repeatability

and distinctiveness in some of the most challenging computer vision applications such

as wide-baseline stereo and multi-view reconstruction.

The matching phase is accomplished by computing the euclidean distance between

normalized feature descriptors, with the addition constraint that the nearest neighbor

must be sufficiently closer than the second closest neighbor. The idea stems from the

observation that false matches caused by noise ought to havemultiple noisy matches at

similar distances [8].

2.2 Planar image registration

A pair of corresponding image pointsxi ↔ x
′

i are projections in two images of the same

pre-image pointXi . A set of corresponding image pointsxi ↔ x
′

i for i = 1, 2, ..., n,

detected in a pair of images, hints at the fact that the views are related to some extent.

The explicitation and quantification of the subsisting relations is demanded to image
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Figure 2.4: This figure shows a simplified example of a 2× 2 descriptor array computed from

an 8× 8 window of image gradient vectors. The SIFT detector reported in [8] works on 16× 16

windows of image gradient vectors, giving descriptors of 128 elements in length.

registration algorithms. In this section a number of concepts regarding the geometry

of two views are treated, in particular registration of images of planar structures is

emphasized, for it is a useful approximation in many circumstances and oftentimes

used throughout the thesis. The extension to an a arbitrary number of views has been

treated by iteratively applying two views algorithms to a shifting pair of images.

Hereinafter, it is assumed that an image pointx = [u, v] is projection of a 3D space

pointX = [X,Y,Z] imaged by the camera according to the perspective projection matrix

P:

s̃x = PX̃ = K
[

R t
]
X̃ with K =



α c u0

0 β v0

0 0 1


(2.4)

wherex̃ = [u, v, 1] and X̃ = [X,Y,Z, 1] are the homogeneous representation ofx and

X respectively. In Eq. 2.4s is an arbitrary scale factor; (R, t), called the extrinsic

parameters, is the rotation and translation which relates the world coordinate system to

the camera coordinate system;K is called the camera internal matrix, with (u0, v0) the

coordinates of the principal point,α andβ the scale factors in theu andv axes,c the

parameter describing the skewness of the two image axes.

In the general case of an arbitrary scene observed by two views, characterized by

projection matricesP and P
′

, a corresponding image pairx ↔ x
′

) is linked by the

fundamental matrixF

x̃
′TFx̃ = 0 (2.5)

Since a valid fundamental matrix is a 3× 3 matrix of with rank 2, any image points

in one image is put in correspondence with a line in the secondimage, depending on

the 3D structure of the imaged scene. Such ambiguity cannot be solved from image
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Figure 2.5: (Top) Two test images taken from slightly rotated viewpoints. (Bottom) Detected

SIFT keypoints inside the right image are marked with yellowdots. Colored lines connects

keypoints found in the right image and their corresponding locations in the left image. Three

cases are shown: unmatched keypoints (i.e. on the middle left), mismatched keypoints (on the

pair of chimney-pots) and correct matches.

correspondences alone and gives raise to a whole family of valid projection matrices

P andP
′

satisfying Eq. 2.5. Hence little can be inferred unless prior assumption are

made either on relative position of the cameras or structureor the scene.

Assuming the observed scene, or part of it, has a planar structure greatly simplifies

theory and calculations. Even though it may seem a strong approximation, the planarity

assumption is acceptable in many scenarios and has been widely applied. As far as this

thesis is concerned such a simplification holds for:

• dense structure reconstruction through image mosaicing. Since this topic is

mainly concerned with the creation of a wide angle image, such as in panorama

photography or in wide area surveillance, the presence of almost flat scenes,

i.e. scene in which relative depth is negligible with respect to the distance from

the camera, is quite common. Moreover, the case of purely rotating cameras,

for instance PTZ cameras, observing arbitrary scenes, is governed by the same
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geometry relations as in the former case.

• pose reconstruction. A large number of objects in real life are flat or contains

flat parts. This is all the more true when thinking at objects as being piecewise

flat, as a polyhedral mesh of small polygons joint together. The smaller the

polygons the more precise the approximation.

• sparse structure reconstruction of deformable objects. As before objects can

be thought of being composed of flat parts connected by jointsthat let them

flex. The piecewise flat model, for example a triangulated mesh, holds even

for many deformable objects. Additional smoothness constraints are needed to

handle deformation degrees of freedom properly.

Planar image registration, a subset of the multiple view registration area, applies

to the cases where geometric relations link views, or part ofthem, that portray flat

regions. The most general type of relation among keypoints pairsx↔ x
′

) belonging to

corresponding flat regions in different images is modeled by a homographic relation as

s̃x = Hx̃
′

(2.6)

whereH is a 3× 3 matrix of rank 3, called homography, defined as

H =



h1 h2 h3

h4 h5 h6

h7 h8 h9


(2.7)

It may be shown that the geometric relations in any of the abovementioned cases

can be cast into an homography estimation problem. Due to itsvast field of applications

many algorithms have been conceived for computing a homography given a set of

correspondence pairs, for hinstance homogeneous and inhomogeneous DLT, Sampson

approximation and so on, as illustrated in [6]. Every methoddiffers from each other

for the criterium used for the estimation ofH, namely the type of distanced to be

minimized. Nonetheless, all the algorithms perform a LeastSquare (LS) minimization

of an errore that may be expressed in the following form

e=
N∑

i=0

d(xi, x
′

i )
2 (2.8)

whered can be in principle any linear or non linear function of the unknown entries of

matrix H.

As a final remark, it is worth pointing out that standard LS methods are very sen-

sitive to data, i.e. corresponding point coordinates, affected by non gaussian noise,

hereinafter “outliers”. For example, inaccurate locationof corresponding points or
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false matching are usually randomly distributed and may heavily affect the solution

dragging the LS estimation ofH well away from the true one. Two main approaches

may be adopted to estimate parameters of a mathematical model from a set of observed

data which contains outliers. The first approach adopt an explicit filtering stage to sift

data before the LS estimation, for example RANSAC (RANdom SAmple Consensus)

[4] is a popular outlier removal approach. The second approach relies on the use of sta-

tistically robust distance functions. Both approaches have been successfully applied,

the choice depending on on the context and the noise presumably affecting the data, for

further investigation refer to [6, 1].

Throughout the thesis, an enhanced version of the original RANSAC algorithm,

suggested in [3], is used. The former method considers many random data subsets,

each containing the minimum number of samples required to compute the model pa-

rameters exactly, and select the parameter set which has thelargest number of compat-

ible data. Eventually the model parameters are refined usingan as large amount of data

as possible, namely every compatible point correspondence.

The innovative part consists in iterating the process by using the estimated ho-

mography to bootstrap a new search for point correspondences. The search procedure

proceeds as follows: given an interest pointxi in the first image, a match is sought in

a search window centered on the expected positionxi = Hxi
i in the second image (H

is the identity matrix at first iteration). Because the search is now guided, there is a

probability of fixing false matches established at the previous step augmenting the total

number of valid correspondences. The new set of inliers is again used to refine the es-

timate of H. The estimation and guided matching stages are repeated until the number

of valid correspodences stabilizes.
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Chapter 3

Real-time image mosaicing

Image mosaicing is stirring up a lot of interests in the research community either for

its scientific significance as well as for the potential implications in real world appli-

cations; indeed, automatic image alignment and stitching is key to several higher level

image processing tasks.

Next section presents a real-time mosaicing algorithm capable of constructing high

quality seams-free panoramic images. The proposed algorithm performs a fully auto-

matic spatial and tonal registration by exploiting keypoints correspondences and his-

togram matching techniques. Remarkably, the approach doesnot rely on a priori as-

sumption, with all the required information extracted fromthe image set. A rich set

of image sequences has been collected to test the algorithm and assess its stability and

flexibility. In addition, the approach has been successfully integrated in a visual surveil-

lance system in which the mosaic is used as background to perform motion detection

and tracking with a Pan Tilt Zoom (PTZ) camera.

The second next section investigates further on the problemof accurate tonal align-

ment of a set of spatially registered images. Aside being a key element of any image

mosaicing algorithm, tonal alignment can be regarded as a stand alone topic as long as

principled handling and processing of differently exposed images calls for photometric

normalization.

3.1 On-line image mosaicing for visual surveillance

Image mosaicing is a popular method for effectively increasing the field of view of a

camera by allowing several views of the same scene to be combined into a single image,

called a mosaic. Stitching together multiple images taken from different viewpoints al-

lows to create large field-of-view pictures, up to 360 degrees, with consumer-grade

23
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camera and without introducing the undesirable lens deformation usually accompany-

ing wide-angle lenses.

Properly handling multiple images taken at different locations, instants and light

conditions requires mosaicing methods to be robust with respect to viewpoint and illu-

mination changes, scene multimodality (i.e. waving trees and hedges), moving objects,

imaging device noise and so on. Other camera related aspectssuch as varying intrinsics

(focal length, principal point location) should not degrade significantly the performance

of the system. Finally, inherently real time applications,such as visual surveillance, re-

quire the method to perform on line at acquisition rate. Ensuring consistent geometric

and photometric reconstruction of the scene by continuously combining pictures in

real-time in a mosaic is a challenging goal.

The next sections describe a real-time image mosaicing technique devised to con-

struct high quality mosaics from video sequences offering all the above mentioned

desired properties. Spatial and tonal consistence is achieved by exploiting an origi-

nal dual geometric registration scheme, illustrated in section 3.1.2 , and a fast pho-

tometric registration stage, introduced in section 3.1.2 and further detailed in section

[4]. Furthermore, the algorithm has been conceived to be completely image based.

No prior information, such as camera calibration (focal length, distortion coefficients),

scene geometry or feedback signals coming from the imaging device (pan/tilt angular

movements, exposure settings), is necessary for the mosaicto be built. Instead all the

required information is automatically extracted from the images, yielding a hardware

independent and general purpose algorithm.

The quality of the attained mosaics has been initially verified by visual inspection.

Although human perceived quality is a largely subjective indicator, it seemed to be

correct since only qualitative applications such as digital photography, photomontage

and so on were initially envisioned.

However, as we addressed the adoption of mosaics within the visual surveillance

domain, we begun to rely on overall system performance as a quantitative quality met-

ric. The idea of mosaic-based motion detection connects with the attempts to improve

motion detection systems developed by researchers in the last years. Some proposed

solutions involved the use of PTZ cameras to widen the surveyed area. Despite of the

many available methods for background difference, none of them can be trivially ex-

tended to work with hinged PTZ cameras. Mosaic-based motiondetection consists in

the use of traditional background subtraction techniques on a panoramic background

image built by means of a mosaicing algorithm.

This section is composed as follows. Section 3.1.1 providesan overview of the state

of the art in the image mosaicing research field. Section 3.1.2 describes the proposed

algorithm for real-time image mosaicing, detailing both spatial and tonal alignment
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phases along with image blending and warping steps. Mosaic-based motion detection,

using moving cameras is examined in Section 3.1.3. Experimental results on real se-

quences are reported in Section 3.1.4, followed by concluding remarks and possible

directions for future research on this topic in Section 3.1.5.

3.1.1 Previous work

Image mosaicing algorithms

During the last decades a considerable number of scientific works addressed the broad

topic of image registration (for a comprehensive survey refer to [45]). In their diver-

sity, published methods share a lot of theoretical and technical aspects. According to

the adopted image matching techniques, the algorithms can be coarsely classified into

two main families: direct methods and feature-based methods. As long as the number

of frames simultaneously combined is considered, two further categories may be recog-

nized: sequential methods and global registration methods. Inside these super classes,

methods can be further distinguished according to the preferred geometrical and photo-

metric model, treatment of independently moving objects, self-calibration capabilities

and so on. A first simple dichotomic taxonomy is proposed hereto highlight the two

main different image matching approaches:

• Direct methods. These algorithms usually attempt at iteratively estimating the

transformation parameters by minimizing an error functionbased on pixelwise

brightness differences in overlapping areas [11, 39, 41, 26, 36, 42]. The advan-

tage of direct methods is highly accurate registration and reconstruction, due to

the exploitation of information associated with every single pixel. Image forma-

tion process non idealities, such as illumination changes [11, 26], lens distortions

[36, 42] and vignetting, can be accounted for in the pixelwise error function.

The main drawback of this class of methods is the high computational cost due

to the non-linear parametrization of the error functions, which call usually for

complex iterative algorithms. Moreover, an initial guess for the parameters is

required to avoid local minima. Since direct methods are usually incompatible

with real time constraints, they often find application in batch registration pro-

cesses, where maximum accuracy is the goal. Furthermore these algorithms are

sensitive to moving objects in the scene and their presence may cause serious

performance degradation [11, 39, 42].

• Feature-based methods. As opposed to using all the available pixels, these meth-

ods establish feature correspondences among images to be registered [5, 44, 9,

1, 12, 17]. Many different features have been used in the literature, including
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regions, lines and keypoints. Recently, keypoints gathered a large agreement

among researchers, becoming the de facto standard for imageregistration pur-

poses ([31, 40, 3]). After being detected in one image, keypoints are searched

in a second image based on descriptor similarity. Unlike direct methods, feature

based methods admit linear error functions and hence solutions may be found

in closed form. By selecting appropriate features [9, 17], these methods can be

very robust to illumination changes, image rotations and zooming. Furthermore,

moving objects in the scene are tolerate as long as appropriate filtering schemes,

such as RANSAC [5, 1], or robust error functions, are deployed to deal with

incompatible keypoints.

As far as the registration problem is concerned, two classesof algorithms may be

distinguished as well:

• Global registration methods compute the best alignment among several images

by simultaneously minimizing the misregistration betweenall the overlapping

pairs of images [11, 39, 41, 26, 36, 42, 9, 12, 17]. Global registration algorithms

deliver the most consistent geometric reconstruction and have been proposed in

conjunction with both direct [11, 39, 36, 42] and feature-based approaches [9,

12, 17]. The joint optimization is usually computationallyintensive, moreover

these methods require all the images to be known in advance. Any update to the

image set requires the computation to start over again, hence ruling out even the

possibility of performing on-line, although slowly.

• Sequential algorithms allow the construction of a mosaic bycontinuously com-

bining new images as soon as they become available. Every newimage is aligned

with the previous one (Frame to Frame registration) or with the mosaic built thus

far (Frame to Mosaic registration). Intuitively, alignment of pair of images is

simpler a problem than multiple view alignment, thus yielding a faster computa-

tion that holds the potential for real-time operation. Moreover, these algorithms

can usually handle an indefinitely high number of images and does not need to

know all images in advance. Nonetheless, pairwise registration is only locally

optimal since past frames are not explicitly taken into account, moreover the

sequential combination of images may lead to visual artifacts due to error ac-

cumulation. The next section hosts a quick overview of sequential mosaicing

algorithms, usually devised in combination with real time applications, such as

motion detection.
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Sequential mosaicing for motion detection

Motion segmentation of video sequences is widely recognized as being the first layer

of many video processing applications such as video urveillance, traffic monitoring and

human activity understanding. Among the possible ways for detecting motion, back-

ground subtraction can provide the most accurate segmentation of moving objects, but

requires the use of a stationary camera. Moving masks are extracted by threshold-

ing the absolute difference between a reference image (referred to as background) and

the current frame. Also, background maintenance activities are envisioned in order to

keep the background up-to-date in presence of illuminationchanges and a potentially

dynamic environment.

In the last few years, several approaches have been proposedin order to use back-

ground subtraction with hinged pan-tilt-zoom cameras by relying on a mosaic of the

background scene. One of the heaviest drawback of background subtraction algorithms

for PTZ cameras is the computational cost needed to build andmaintain high quality

mosaics in real time. Therefore, some approaches enact background subtraction of-

fline [2] or propose batch surveillance applications [38]. Alternatively, real time per-

formances have been obtained by simplifying the geometric model from projective to

rigid 2D [44] or affine [41], thus limiting the fields of application to contexts in which

objects are far away from the camera.

The problem of error propagation when registering sequentially a large number

of images in a sequential fashion is still an open issue. Someauthors dealt with it

by exploiting specific informations regarding camera signals [35, 27, 29, 7], such as

pan/tilt angles, or supplement the camera with additional sensors, i.e. compasses and

gyroscopes.

3.1.2 Proposed image mosaicing method

The proposed method belongs to the class of sequential feature-based algorithms. Hence,

feature detection and matching is a very critical stage, forthe algorithm must be able

to work fast and reliably even in cluttered and/or dynamic environments. The accuracy

of the detected feature correspondences is for the overall system performance.

As regards feature detection and matching, several approaches, including the Kanade-

Lucas-Tomasi tracker (KLT) [40], Harris corners [25] and the more recent Scale Invari-

ant Feature Transform (SIFT) [31], have been tested. While SIFT demonstrated much

better performance compared to KLT and Harris in terms of robustness to large inter-

frame deformations, i.e. translation, rotation, scale andillumination changes, its com-

putational cost greatly exceeded real-time constraints. Nonetheless, when processing a

continuous video stream, differences among subsequent frames are deemed to be small.
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Such consideration, along with a much lower computational cost, lead the choice over

KLT and Harris methods, with KLT finally preferred because ofa more stable imple-

mentation [14]. Moreover, a fast initial guess, based on a phase-correlation approach

[46], is computed to assist the KLT tracker in difficult situations, namely in case of

large camera shifts. The phase correlation guess serves as acoarse estimation of the

camera movement and to initialize the feature tracker. Sucha solution allows handling

large camera displacements using small search areas, granting additional benefits in

terms of robustness and performance.

Geometric alignment

A mosaic is a compound image built through properly composing, (aligning), a high

number of frames and warping them into a common reference coordinate system, both

spatial and tonal. The result consists of a single image of a greater resolution and

spatial extent that represent a dense reconstruction of thestructure and the appearance

of the scene. Usually mosaicing techniques are concerned with collection of frames

which do not exhibit parallax effects. Such requirement allows seamless stitching to be

accomplished without requiring to recovery the underlying3D structure of the scene.

Such requirements is known to be satisfied if images are takenin either one of these

two settings:

• an arbitrary scene acquired with a purely rotating camera, any rotation is allowed

in place, i.e. about its optical center, no translations areallowed (to the author’s

knowledge this is the case of most PTZ-based surveillance applications).

• a planar scene taken from arbitrary locations.

If images are also optically corrected, i.e. as they were acquired using an ideal pin

hole camera, the most general relationship between corresponding keypointsx ↔ x
′

)

belonging to any pair of images is described by homography matrix of Eq. 2.7.

Given a sequence ofN views{I0, I1, ..., IN−1}, the construction of a mosaic requires

the computation of a set ofN − 1 pairwise transformationsHi, j that link all the views

together. Assuming each image is a node in a graph and edges are homographies link-

ing two frames, mosaicing algorithms aim at computing the homographies belonging

to a spanning tree. While global registration algorithms compute all the transforma-

tions simultaneously, sequential mosaicing consists in exploring the graph one edge at

a time.

Sequential algorithms usually proceeds in chronological order by determining a

chain of N − 1 pairwise homographies among images taken at subsequent instants.

Hereinafter,frame to frame(F2F), orpairwisealignment, is defined as the estimation
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of a homographyHt,t−1 linking a pair of temporally adjacent frames. Once the ho-

mography chain is computed, the transformationHi, j linking an imageI i taken at time

i with respect to another imageI j at time j > i may be found by concatenating the

transformations in between such as:

Hi, j =

j∏

k=i+1

Hk,k−1 (3.1)

By defining the reference coordinate systemR0 where the mosaic will be composed,N

visualization matricesQi linking each image local coordinate withR0 may be computed

as

Qi = R0

i∏

k=1

Hk−1,k, i ∈ [0..N − 1] (3.2)

A mosaic can be constructed by projecting all framesI i with i ∈ 0, ..,N − 1 onto the

common reference using the visualization matricesQi .

Sequential algorithm may also explore the graph by computing the transformations

between a reference frame, usually the first, and all subsequent images. This approach

is known as Frame-To-Reference (F2R). Instead of a chain, a degenerate spanning tree

with one root andN − 1 leaves describes the link topology; a set ofN − 1 pairwise

homographies connecting the root with all the leaves is computed. AssumingI0 to be

the first frame, the transformationHi, j linking an imageI i taken at timei with respect

to another imageI j at time j > i may be found by:

Hi, j = H−1
0,i H0, j (3.3)

GivenR0, the visualization matricesQi can be simply computed as

Qi = R0H0,i (3.4)

Both kind of approaches have advantages and drawbacks. Frame-to-frame regis-

tration benefits from the fact that differences among temporally adjacent frames are

meant to be small both in viewpoints and lighting conditions, hence keypoints corre-

spondences are more reliable and the alignment is usually highly accurate. On the other

hand since the construction of the mosaic requires all the homographies to be multi-

plied in a chronological order, small estimation errors propagate along the homography

chain and affect all subsequent visualization matrices. As the number offrames grows,

the amount of accumulated error leads to considerable misalignment. This effect is

particularly noticeable when the sequence moves back and forth to the same location

in the scene. When passing from the same location, frames meant to be overlapping

exhibit a displacement due to the accumulated error, usually referred to as drift error.

On the other hand, Frame-To-Reference registration does not suffer from drift error

since a single estimated homography is required to compute any visualization matrix.
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Indeed, in case of long sequences it may happen that, at some point, a given frame

do not share any overlapping areas with the reference image making it impossible to

establish correspondences and compute the registration. Updating the mosaic with

every new image and computing the registration between the mosaic built so far and

the current image usually solves this issue; this variant isknown as Frame-To-Mosaic

registration (F2M). Nonetheless, long sequences still pose serious problem since fair

tonal differences may arise between the mosaic and a given frame as the time pass,

thwarting the keypoints matching process and, sometimes, leading the algorithm to fail

and drop the frame.

Our proposed algorithm tries to get the best from both approaches by performing a

dual registration stage. At first, a frame-to-frame registration between a current frame

I t and the previous oneI t−1 is performed. The quality of the computed homography

Ht,t−1 is then assessed according to a test involving two performance indicators:

• a normalized SSD-based similarity measure computed withinthe overlapping

areas of the previous frameI t−1 and the current frame warped according to the

computed homographyIW
t = Ht,t−1I t.

• the residual errore of the LS estimation of homographyHt,t−1, as defined in Eq.

2.8.

If the test is passed, the computed homography is used to identify the region of the

mosaicBt corresponding to the current frame and a further F2M registration step is

performed betweenI t and the the mosaic regionBt. In theory, the homographyH
′

t,t−1

computed during the second step should be an identity matrix. In practice, it is always

slightly differentH
′

t,t−1 = I3×3 + ε and its deviationε helps keeping the current frame

consistent with the rest of the mosaic. If the test is not passed, only the F2M registration

step is performed. If it fails too, the frame is skipped.

The visualization matrixQi , relating an arbitrary frameI i to the reference frame

R0, is computed by alternatively multiplying F2F and F2M registration matrices:

Qi = R0

i∏

k=1

H
′

k−1,kHk−1,k, i ∈ [0..N − 1] (3.5)

The dual registration can be thought as an improved version of the Frame-to-Mosaic

approach to which it return in case the first F2F registrationfails. On the other hand,

when F2F step succeeds the benefits from both the approaches are retained. Reliable

registration with respect to the previous frame is delivered by F2F registration, cancel-

lation of the drift error is enabled by F2M alignment. Moreover, as will be detailed

in the next section, tonal registration performed after theF2F alignment bring the cur-

rent frame in the photometric reference of the mosaic, thus further facilitating the F2M

keypoints matching step.
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Even though no theoretical analysis on the drift error reduction has been accom-

plished, substantial experiments have proved that our dualstage registration method

is effective in bounding the amount of accumulated error and delivers quasi globally

consistent mosaics. Moreover, real-time requirements arefulfilled since the algorithm

is computationally equivalent to two fast sequential registration steps.

Photometric alignment

Tonal misalignments commonly occur when taking multiple pictures with a moving

camera. If not properly handled, the resulting panorama will exhibit seams that do not

correspond to any physical structure of the scene, even though the images are blended

in overlapping regions. These color gradients may affect further processing involving

the mosaic. For example, in a typical visual surveillance system, the motion detector

based on background subtraction may erroneously interpretthese artifacts as moving

objects, thus generating false alarms. As a consequence, a comprehensive mosaicing

technique must deal with the problem of photometric misalignments. Tonal misalig-

nents are mostly due to:

• automatic camera exposure adjustments, i.e. changes in shutter time, auto-white

balance, auto gain control and so on;

• environmental illumination changes, e.g. daytime, clouds.

Many methods have tackled the problem of exposure normalization of overlapping

frames, with most of them not explicitly modeling the physical phenomena that make

corresponding pixels exhibit different brightness. The works in [42, 9, 17] address the

problem using spatially-varying weighting functions, also known as feathering tech-

niques, and a clever placement of color discontinuities to minimize the visual impact,

for instance along true color gradients. The seminal proposal by Burt et al. [10] on

image blending using multiresolution splines have been widely employed. The idea is

using a set of frequency-adaptive weighting functions by creating a band-pass pyramid

representation of the image and making the transition widths a function of the pyramid

level. Quite a few other methods followed on the track, anyway they tend to conceal

tonal misalignments rather than correcting them and the results are visually compelling

as long as the photometric difference between images is moderate.

Indeed, larger misalignments call for different and more principled approaches.

The method in [11] yield remarkable results by approximating the camera nonlinear

comparametric functionwith a linear piecewise function. The algorithm ultimately

yield an Intensity Mapping Function (IMF) that maps every pixel brightness of a given

image to the corresponding value of the tonal reference. Themain drawback regards

the high computational cost of such estimation, that makes it unsuited to real-time
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processing. Another approach consists in the estimation ofa singlehigh dynamic range

(HDR) radiance map built from a set of differently exposed images [26, 30, 22]. This

approach models the underlying photometric process and includes an explicit treatment

of saturated, both bright and dark, pixels. Once again theseproposals are too time

consuming and their integration into real-time systems is infeasible, at least nowadays.

Besides time performance considerations, our preferable candidate method ought

to be resistant to other issues, for example spatial registration inaccuracies, arising

from small alignment errors, and the presence of moving objects in the scene. These

further considerations prompted us to exploit an histogram-based approach, that allows

to partly overcome the above mentioned problems. The histogram specification (HS)

technique is a histogram-based approach that aims at transforming a cumulative distri-

butionH1 of a random variable into the cumulative distributionH2 of another random

variable by finding a continuous remapping function (see [21] for further details). As-

suming a given image and its tonal reference as two random variables, the remapping

of the brightness value of each pixels of the image accordingto the computed function

results in the given image histogram matching the tonal reference one. In this context,

the remapping function is namedIntensity Mapping function. If the image at hand and

its reference are properly spatially aligned, identical histograms yields photometric

alignment. Unfortunately, exact histogram specification holds only for continuous ran-

dom variables whereas pixel brightness is not. Nonethelessmany algorithms, such as

[13, 23], have been conceived to approach theoretical performances. A more in-depth

presentation of related concepts and topics is postponed tothe next section 3.2.

Anyway, a typical IMF for gray scale images is a discrete function consisting of 256

pair of corresponding pixel brightness (u1, u2) derived from the cumulative histogram

H1 andH2 of a given image and its tonal reference as follows:

u2 = H−1
2 (H1(u1)) (3.6)

A specific photometric registration method relying on the histogram specification

technique is part of the proposed mosaicing approach. This color normalization step is

performed prior to stitch a new frame into the mosaic, just asthe geometric registration

step aligns the images into a common spatial coordinate frame. Based on HS, the

method is fast and simple; moreover it does not require the scene to remain completely

static and is tolerant against moving objects and small spatial registration errors. In

fact, the presence of few moving objects often does not alterthe overall cumulative

histograms hence impacting negligibly on the photometric registration stage.

Although the method has been conceived to work with gray scale images, its practi-

cal generalization to color imagery has been accomplished by transforming images into

a luminance-chrominance color space, such as YUV space, then perform histogram
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specification on the intensity channel, apply the IMF and transform back. Perform-

ing histogram specification independently on each channel of a RGB color image may

cause tonal artifacts such as the introduction of color huesabsent from both source and

target color schemes, as might be seen in Fig. 3.1. This effect probably originates from

the use of Bayer color filter array, which is a popular format for digital acquisition of

color images, and might have a smaller effect when using full color CCD camera (3

independent photo receptors per pixel, one for each RGB channel). More details on

the histogram specification topic and a fast implementationof the algorithm are given

inside [4].

A principled extension of histogram specification to color images has been at-

tempted in [33, 32], conversely a biologically inspired approach that handles the corre-

lation between color channels and their perceptually non uniformity is still to come.

Figure 3.1: Independent histogram specification on each channel of the RGB color space. Un-

expected hues appear due to inaccurate correction of photometric misalignment.

Image warping and blending

Every new frameI i is combined into the mosaic by warping it according to the vi-

sualization matrixQi computed by the geometric alignment stage. Image warping is

accomplished using the backward transformation, namely for each destination pixel its

corresponding source pixels color is queried. In this way neither holes nor overlaps



34 CHAPTER 3

can appear in the warped image, and inside the mosaic accordingly. The backward ap-

proach requires the inverse of the visualization matrixQi to be computed, anyway the

matrix Q−1
i always exists since homographies are non singular linear transformations.

Several different interpolation methods have been investigated among those sug-

gested in literature. In the experiments, bilinear interpolation has been chosen as it has

empirically proved to offer the best tradeoff between accuracy and computational cost

with respect to higher order methods (e.g. cubic interpolation). Conversely, nearest

neighbor interpolation exhibits too much visual artifacts, otherwise it would be attrac-

tive due to its speed. Photometric registration, accomplished through a simple pix-

elwise Look-Up Table (LUT) recoloring using the computed IMF, is performed prior

image warping.

Although geometric and photometric registration should take each frame into the

spatial and tonal reference of the mosaic, seamless stitching usually calls for an addi-

tional blending stage in order to conceal small residual artifacts. Blending techniques

consist of a filtering process inside the overlapping areas,usually attained by means

of weighting functions that reinforce smoothness or continuity among adjacent pixels

or regions [39, 10]. Different approaches may encompass temporal filtering schemes

such as mean, mode or median of the distribution of overlapping pixels [6], or also

the exponential update rule. Statistical approaches modelthe color distribution at each

pixel using parametric [28] or non parametric mixture of gaussian [18].

Since the proposed algorithm usually leave faint residual artifacts, a simple and

fast blending method based on modal filtering has been preferred. In practice, the

mode of the intensity distribution of each pixel is considered the representative sample

and selected to appear into the mosaic image. Assuming pixelintensities being affected

by gaussian noise, this approach is close to a maximum likelihood estimation, anyway

it empirically proved to be robust with respect to small misalignments and undetected

foreground objects.

In presence of moving objects detected by the background subtraction algorithm

(more on that in the following section), a selective update is enabled in order to use the

computed masks as filters to prevent the update of parts of mosaic currently occluded

by foreground objects. Obviously, when a new frame observesunseen areas of the

mosaic, no previous information to perform background subtraction is available, hence

pixels belonging to new areas are assigned to the mosaic directly.

3.1.3 Motion detection

A reliable background mosaic permits to directly extend theuse of a standard back-

ground subtraction algorithm for stationary cameras, for example the work presented

in [6], to moving PTZ cameras. Although the explanation of the concepts underpin-
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ning background subtraction algorithms is outside of the scope of this section, standard

methods basically compare the current frameI i with a reference imageB, i.e. a pre-

viously computed background. Moving “blobs”, or aggregateof pixels, are identified

by thresholding the result of the comparison. A moving PTZ camera does not admit

the equivalent of a reference image for it is allowed to change its viewpoint over time.

While recording all possible portions of observable scene may not be practical, com-

bining all the views in a single representation can be accomplished by constructing a

mosaic of the scene. Indeed, standard background subtraction algorithms can still be

employed as long as a prior step trim the portion of the currently visible scene, the

backgroundB, from the mosaic and feed it to the motion segmentation algorithm.

Although, in principle the mosaicing algorithm may be used once for the creation

of the background mosaic during a bootstrap sequence and then left unused, this is not

recommended. As a matter of fact, for the background subtraction and maintenance

operations to be performed efficiently, the current visualization matrixQi , linking the

current image to the mosaic should always be kept up-to-date. For this reason regis-

tration is performed at every new frame even though the background mosaic is already

in place. This way, the current visualization matrixQi holds the position of the frame

inside the mosaic image, or, equivalently, the location of the corresponding regionBi.

After the portion of the currently visible backgroundBt has been indexed, the align-

ment with the actual frameI i is easily accomplished by backprojectingBi using the

inverse of the current visualization matrixQi−1.

As a final remark, the exploitation of color images permits toachieve considerable

improvements in terms of shadow removal and reduction of camouflage, i.e. whereas

different color tuples map to similar gray level values, although requiring an increased

demand of computational resources. In particular, performing background subtraction

in a different color space, such as HSV orYCrCb, permits to reveal moving shadows

and to discard them when detecting motion [15, 16]. Shadows can have very a detri-

mental effect, especially in outdoor environments, causing deformations of the shapes

of moving objects that lead to degraded results of further processing tasks such as

tracking or object recognition.

3.1.4 Experiments

Extensive experiments using several video sequences captured from real world scenes

have been accomplished in order to evaluate the quality of the mosaics generated by the

proposed algorithm. Since no standard evaluation methodology nor sequence dataset

are available, quality assessment is mostly delegated to visual inspection. Nonetheless

the integration within a visual surveillance system allowsto consider the overall sys-

tem performance, namely the computed motion masks, as an indicator of the mosaics
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quality as well.

To this purpose this section is subdivided into two parts. The first part focuses on

the visually perceived quality of the mosaics; despite being a subjective indicator it pro-

vides substantial insights as long as inherently “qualitative” applications are targeted,

such as digital photography, photomontage, post production effects and so on. The

second part is concerned with motion segmentation using a PTZ surveillance camera

and aims at assessing the performance of the algorithm by examining the quality of the

motion masks delivered by the overall system.

A considerable number of image sequences have been used throughout this section,

all of them being different for many specific aspects such as length, environment,illu-

mination, moving objects and so on. Though, the resolution,320× 240 pixels, and the

processing hardware, an AMD 2000 MHz, is the same for all of them. For this reason,

time performance delivered by the mosaicing algorithm are quite stable, irrespectively

of the specific sequence, and fluctuates in the range of 10−15 frames per second (FPS)

for gray scale images and 5− 9 frames per second for color RGB images. Such pro-

cessing speed allows the motion detection system to performadequately smooth and to

deliver the expected people tracking and alarm signaling functionalities.

Image mosaicing results

Four image sequences have been selected to illustrate the visual quality of the attained

mosaics. All the sequences consists of several hundreds of frames and have been ac-

quired by moving a camera around without particular care. The first pair of sequences

require spatial alignment only, the second pair tonal alignment as well. In Figure 3.2

two mosaics, attained by processing the first pair of outdoor(top) and indoor (bottom)

sequences, are shown.

The first outdoor sequence DCOURT1 (Figure 3.2 top) consistsof 680 stills and

has been acquired by manually scanning the scene from left toright and back many

times. The scene exhibit objects at a variable distance fromthe camera; e.g. a close

wall of a building on the left, a farther gate and a paved courtyard. The wide field

of view and the structured scene (hedges and trees) may emphasize small alignment

errors. Nonetheless the mosaic does not exhibit any visibleartifacts or seams, all the

structures being properly aligned and uniformly colored.

The second sequence DLAB1 (Figure 3.2 bottom) is 820 frames long and portrays

an indoor environment with very close objects. The small distance between the ob-

server and the surroundings makes the assumption of quasi-flat scene hardly fulfilled,

leading parallax effects to hinder motion parameter estimation. Nonetheless, the mo-

saic does not contain any blur or discontinuity and the texture of the scene is sharp and

in-focus everywhere.
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Figure 3.2: Two examples of mosaic built from long sequences acquired byrandomly pan-

ning the camera back and forth across the scene. (Top) Mosaicfrom sequence DCOURT1 (680

frames). (Bottom) Mosaic from sequence DLAB (820 frames).

The second pair of sequences is more challenging. Aside the more complex camera

motion trajectory, as may be realized by the irregular shapes of the attained mosaic,

considerable illumination changes have taken place duringthe acquisition. In fact, the

scope is to highlight the visual quality improvements the proposed mosaic delivers by

explicitly compensating illumination changes.

The first sequence, DCOURT2, has been acquired at 12.5 fps with a remote con-

trolled Axis PTZ network camera pointing toward the same outdoor scene as is se-

quence DCOURT1, but taken from a different point of view. Several exposure changes

occur along the sequence due to the automatic light compensation mechanism embed-

ded in the camera firmware. An example of a sudden photometricvariation may be

appraised by looking at Fig. 3.3 where in a matter of few frames the image becomes

highly saturated.

As shown in Fig. 3.4 (top), although the proposed spatial registration algorithm

manages to preserve the consistence of the geometric structures across the whole scene,

many visually unpleasant seams show up due to the considerable tonal misalignment

among frames. Conversely, all the artifacts are eliminatedby enabling the photometric
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Figure 3.3: Department courtyard (DCOURT2) sequence: pair of temporally adjacent frames

with strong photometric variations.

registration and a smooth and sharp reconstruction is obtained, as can be seen in in Fig.

3.4 (bottom).

The last sequence, DLAB1, deals with an indoor highly structured environment.

As before, the sequence has been acquired by manually panning and tilting, using a

Sony TRV 900 camcorder hinged on a tripod. Spot lights spreadacross the scene cause

sudden exposure compensation every time the camera directly points at them. The

effect of uncorrected photometric changes, shown in Fig. 3.5 (top) seriously degrade

the quality of the mosaic. However, when tonal registrationis performed, most of

the color defects disappear and the outcoming mosaic looks much more pleasant and

realistic (Fig. 3.5, bottom).

Motion detection results

Indirect assessment of mosaic quality through the analysisof the performance delivered

by a visual surveillance system is the scope of this section.The motion masks com-

puted by the motion segmentation algorithm have been visually inspected, Receiving

Operator Characteristic (ROC) or other statistical indicators being impractical since no

public data sets equipped with ground truth, for these kind of applications, are available

yet.

All the sequences have been captured with a Sony TRV 900 camcorder at about 12

frame per second (fps) and 320×240 pixel resolution. The camcorder has been hinged

on a tripod in order to make it rotate roughly about its optical center. Six challenging

indoor and outdoor sequences have been considered, being different for illumination,

scene structure, and number of moving objects in the scene.

The first sequence DLAB2 is 1121 frames long; it is the sequel of sequence DLAB1

and consists of a wide field of view capture of the interior of our lab. In Fig.3.6, both

the mosaic (top) and the plan of the environment (bottom) arereported. Similarly

to sequence DLAB1, close objects and significant depth variations (near the red door
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Figure 3.4: Department courtyard (DCOURT2) sequence: spatially aligned mosaic (top), spa-

tially and tonally aligned mosaic (bottom).

and the wall on both sides) may emphasize slight out-of-center rotations giving raise

to disturbing parallax effects. Moreover the vicinity of the moving foreground object

requires fast camera rotation to allow person tracking, hence leading to large interframe

shift typically difficult to handle.

Despite the mentioned difficulties, the system performed consistently and accu-

rately. Samples of the delivered motion masks are superimposed on the frames in Fig.
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Figure 3.5: Department laboratory (DLAB1) sequence: spatially aligned mosaic (top), spatially

and tonally aligned mosaic (bottom).

3.7 to ease visual inspection. Detected moving blobs are adherent to the real body shape

of the moving person across the entire sequence irrespective of its position inside the

scene and its distance from the camera.

The second sequence DCOURT3 deals with an outdoor environment with a person

walking in (see Fig. 3.8 and Fig. 3.9). The scene structure isfavorable since the wall

is perfectly flat, on the other hand reliable feature detection and matching is difficult
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Figure 3.6: Mosaic created through processing the indoor sequence DLAB2 (top), plan of the

environment and cone of view(bottom).

for the building being poorly textured. Moreover, the proximity of the moving person

cause large interframe displacements stressing further the KLT tracker.

Nonetheless, the initial estimation via phase correlationeffectively supplements

the KLT tracker leading to reliable estimation of the transformation parameters. As a

result, the detected moving masks reflect the presence of theperson and provide a good

approximation of the real shape, as it might be seen in Fig. 3.9. Few false detections

appear from time to time, due to the shadow cast on the wall behind.

A third and more challenging sequence, DCOURT4, consists of1457 frames and

deals with the large outdoor environment partly visible in Fig. 3.4. Three walking
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Figure 3.7: Motion detection sample frames from the indoor sequence DLAB2.

person roam around randomly (see Fig. 3.11) and the camera follow their movements.

Several difficulties arise when processing such a sequence. Firstly, although foreground

objects moves slowly because of the distance, LAN traffic caused frame drops and

hence the sequence shows a highly variable frame rate including significant frame lag.

Secondly, the scene exhibit a large range of radiance, the courtyard on the lower right

side being far more darker than the sunlit buildings within the upper area. As the

camera rotates through the scene, such highly varying illumination conditions need to

be compensated to avoid seams in the resulting mosaic. Finally, three moving person

are simultaneously present in the scene. By moving independently from the camera

motion, a large number of keypoints detected on the objects becomes motion outliers

possibly degrading RANSAC performance.

Nonetheless, the motion detector performs steadily, regardless of the lighting con-

dition and the distance of the moving objects. The achieved moving masks adhere to

the silhouette of moving objects, although often signalingalso their cast shadows (see

Fig. 3.11).

The next two sequences focus on the benefits deriving from color processing. The

most remarkable advantage, as long as motion segmentation applications are con-

cerned, is the ability to remove shadows using intensity-cromaticity color spaces. In

fact, a color mosaic can trigger the use of different color spaces to get a significant im-

provement of the motion detection outcomes. An example of the improvement granted

by performing background subtraction in theHUV space compared to gray scale is
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Figure 3.8: Mosaic created through processing the outdoor sequence DCOURT3 (top), plan of

the environment and cone of view(bottom).

shown in Figures 3.12 and 3.13.

In rows of Figures 3.12 and 3.13 one can see three frames extracted by two se-

quences showing the output of the motion detection referring to the same environments

(DLAB1 and DCOURT1, respectively) depicted in Figure 3.2. As always, the detected

moving masks have been superimposed to the frames to ease thevisual inspection. In

the top row, the quality of the detected masks using conventional gray scale frames is

presented. In the bottom row, it is shown the improvement yielded by exploiting color

information.

In the samples depicted in Figure 3.12, a person enters the room and casts his

shadow on the wall behind (left), conversely the shadow is removed when using chro-

maticity (right). In the second set of samples depicted in Figure 3.13 a walking person

is moving around in a sunlit courtyard. Being an outdoor scene, the shadow is yet more

highlighted compared to the indoor one. Although it is clearly visible in the gray level
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Figure 3.9: Motion detection sample frames from the outdoor sequence DCOURT3.

Figure 3.10: Mosaic created through processing the outdoor sequence DCOURT4.

sequence (left), it has been completely removed in the colorone (right).

The last sequence shows the impact of accurate tonal alignment on both background

subtraction and tracking performance of the visual surveillance system. Fig. 3.14

shows a couple of frames referring to the same environments depicted in Fig. 3.4 and

highlights the motion masks; objects identities, computedby the tracking algorithm,
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Figure 3.11: Motion detection sample frames from the outdoor sequence DCOURT4.

Figure 3.12: Three gray scale (top) and color (bottom) sequences of threeframes each, coming

from DLAB sequence showing shadow suppression using color imagery.

are visualized by means of different colors. Moreover, motion segmentation informa-

tion are superimposed along with the trajectory followed bythe moving object during

the last 20 frames.

Due to unhandled illumination changes, sample frames on theleft column of Fig. 3.14

depicts highly inaccurate motion masks yielding to perturbed motion trajectory. On the

contrary, photometric correction allows to deliver reliable motion masks and accurate

trajectories accordingly. As an example Fig. 3.14, middle left, shows a large artifact
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Figure 3.13: Three gray scale (top) and color (bottom) sequences of threeframes each, coming

from DCOURT sequence showing shadow suppression using color imagery.

in the middle of the image, which yield the system to detect one insgle moving mask

instead of two. In this case, a potential detection error is fixed by the tracking algorithm

that recognize the two persons despite the single detected mask. Besides, on the top

right side of the left image a big false alarm is triggered. Conversely, on the middle-

right, motion masks are detected with a quality comparable to that of background sub-

traction with stationary camera. Such a quality enables reliably objects tracking in the

whole field of view, independently of the camera movements.

3.1.5 Summary and future work

An automatic, real time and general purpose image mosaicingalgorithm has been con-

ceived. The proposed method performs consistently in a widerange of real world

contexts, e.g. indoor and outdoor scenes, by deploying an explicit spatial and tonal

registration procedure. In addition the system is completely image-based and it does

not rely on any a priori assumption regarding scene or camera.

The dual alignment stage permits to bound the drift error allowing the construction

of quasi globally consistent mosaics, without resorting tocomputational demanding

global adjustment procedures. The use of fast features, supplemented by a phase cor-

relation based bootstrap, permits to handle large and complex camera motions while

preserving real-time computation. The accuracy and the high processing speed make

the algorithm suitable for integration in visual surveillance systems performing on-line

motion detection using background difference. Experiments with several challenging

real-world video sequences have shown the effectiveness of the proposed approach for

both visual and quantitative purposes.

As for future works, the system may be improved by adding on-line learning of



REAL-TIME IMAGE MOSAICING 47

Figure 3.14: Department Courtyard (DCOURT2) motion detection and tracking sample frames:

with (right) and without (left) joint spatial and tonal alignment.

optical properties (focal length, principal point and lensdistortions) of the imaging de-

vice. The correction of optical non-idealities would lead to a complete independence

from the imaging device and would considerably enhance bothspatial and tonal align-

ment. In addition, a faster implementation of SIFT featureswill provide more reliable

feature correspondences, and a more accurate stitching accordingly.
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3.2 A fast and exact histogram specification method

Histogram specification methods aims at finding a function that transforms a source

image so as to match a target distribution with the highest possible degree of accu-

racy. Many approaches privilege exact specification by exploiting multi-valued order-

ing functions but incur in computationally expensive implementations. Aside com-

putational complexity, histogram specification algorithms can be rated according to

image distortion and accuracy of reproduction of the targethistogram, i.e. histogram

matching.

Topic of this section is a fast algorithm, based on histogramspecification, that de-

liver exact matching to a given target histogram independently of the source image

meanwhile introducing negligible image distortion. The simplicity of the method en-

ables fast computation making the algorithm suitable for real time applications, such

as sequential image mosaicing.

3.2.1 Introduction

Histogram modeling techniques provide sophisticated methods for manipulating colors

and contrast of an image by altering individual pixel such that the intensity histogram

assumes a desired shape ([34, 20]). Histogram specificationis a basic histogram model-

ing technique that transform one histogram into another oneby remapping pixel bright-

ness values according to a computed Intensity Mapping Function (IMF). Although his-

togram modeling operators may encompass the use of complex IMF, histogram spec-

ification employs a simple monotonic, non-parametric mapping which re-assigns the

intensity values of pixels in the input image such that the output image exhibits as a

similar histogram as possible to a given target distribution. Ideally, target and output

image histograms should be as similar as possible.

Although in a theoretical continuous case a mapping function yielding a desired

Probability Distribution Function (PDF) exists, in the discrete domain of pixel bright-

ness values only approximated IMF can usually be determined. Approximated IMFs

produce quasi exact histogram matching by introducing wellknown histogram artifacts

such as gaps and overfull bins, but preserve image structures.

Classic algorithms ([34, 20]), relying on approximted IMFs, have been used for a

wide range of tasks where visual evaluation is crucial, due to them preserving as much

the image structures as possible. On the other hand, histogram artifacts can have very

detrimental effects for subsequent image processing operations such as image fusion,

invisible watermarking, image normalization and image mosaicing.

Recent researches in the field of histogram specification hasled to diverse ap-

proaches aiming at lower histogram distortions, by slightly modifying the image struc-
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ture. Quasi exact and exact specification has been achieved by exploiting multi-valued

IMF capable of mapping pixels according to diverse features, i.e. pixel brightness, aver-

age neighborhood brightness, thus allowing to diminish histogram distortions. Though,

the determination and the mapping using multi valued IMF require computationally ex-

pensive algorithms.

This section presents a novel approach for fast and exact histogram specification.

The conceived method delivers exact histogram matching meanwhile introducing low

image distortion and allowing for fast computation. The main novelty is the use of one-

to-many (OTM) relations among source and target pixels brightness instead of standard

one-to-one mapping. This yields a quick and flexible remapping policy able to prevent

any histogram distortion.

3.2.2 Related work

Histogram specification ([34, 20]) may be regarded as a generalization of histogram

equalization ([34, 37]). Classic implementations of histogram equalization rely on the

fact that transforming a Random Variable (RV) by its Cumulative Distribution Function

(CDF) results in a uniform distribution ([20]). Histogram specification is performed by

using the source CDF to map the source histogram to a uniform one and then using the

inverse of the target CDF to make the uniform histogram to reproduce the target one.

By modeling pixel brightness as a discrete RVr characterized by a PDFpr that

describes the spatial frequency of its gray levels, it can beshown that the RVR= Cr (r)

is uniformlydistributed in [0, 1], whereCr (r) =
∫ r

−∞
pr (v)dv is the monotonically non-

decreasing CDF ofr. Besides, letZ = Cz(z), z andZ being RVs andCz the CDF of

z, then one can forceR = Z, hencez = C−1
z (Z) = C−1

z (Cr (r)), as long asR andZ

are uniform. Then, it turns out thatCr andC−1
z are the equalizing and the reshaping

function, respectively. Apart from normalization details, histogram specification is

performed by replacing source image graylevelr with r ′: r → r ′ = C−1
z (Cr (r)).

While, in the continuous case, a function capable of transferring the PDF of a target

image to a source image exists, in a discrete domain the same problem usually admits

only approximated solutions. This is due to discrete CDFs being not exactly invertible,

for they are staircase functions and therefore invertible when pixels take distinct values

only. Since the number of pixels in an image is usually considerably larger than the

number of graylevels, the distinct value case is unlikely tooccur.

Classic specification algorithm [34, 20], implemented according to the above de-

scribed theoretical framework, discriminate pixels according to their brightness value,

thus leading to quasi exact histogram matching, with the delivered histogram affected

by artifacts such as holes and overfull bins. Despite producing histogram distortion,

these algorithms are fast and introduce low distortion of image structures, for pixels
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showing the same graylevel in the original image being mapped into the same target

graylevel. Fig. 3.15 shows an example of the distortion affecting a histogram delivered

Figure 3.15: An image histogram (left), a target histogram (middle) and the outcome after

classical specification (right)

by classic histogram specification algorithms.

Histogram distortion artifacts, i.e. gaps and overfull bins, originates when the

derivatives of corresponding ranks of source and target CDFs exhibit different values.

In this cases both matching ambiguities and overassignments could arise. In practi-

cal cases, gaps and overfull bins are emphasized in case the source image histogram is

composed by few large bins. For these reason, the authors of [34, 37] propose to reduce

this effect by preprocessing the source image adding a small amount of uniform noise,

so as to avoid large bins. While these approaches are likely to produce an output im-

age whose histogram is more similar to the target one, the randomly added noise may

potentially reduce the overall image quality by degrading image structures. Nonethe-

less, these methods grant an improvement in terms of histogram matching compared

to classic methods, and the unstructured noise may be filtered by further processing

procedures.

Several other attempts have been accomplished to improve histogram matching by

exploiting methodological techniques. For instance, the authors of [43] reformulate the

histogram specification problem as an optimization problem. However, exact match-

ing is still attained at the expense of noisy images, as notedin [34]. Moreover, this

method introduces structured noise patterns, i.e. horizontal lines inside uniform ar-

eas, due to the row-wise order of evaluation of equivalent pixels. As a matter of fact,

such patterns, although sometimes visually negligible, may mislead further image pro-

cessing methods (e.g. edge detectors), whereas noisy linesmight be mistaken for real

scene structure. The use of multi-valued IMF has been pioneered by th work of Hall

[24], where the histogram approximation has been improved by further discriminating
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pixels according to the local average of the 4-connected neighborhood. Recently, this

work has been refined by other authors. For instance, Eramianet al. [19] proposed

two novel neighborhood based metrics to separate pixels with same graylevel, e.g. the

8-connected average and the brigther-than-neighbors count. While this approach per-

mits to effectively split larger bins into smaller ones, exact histogram matching is not

always secured. Coltuc et al. [13] further improve the latter approaches by combining

different metrics, using a variable length bank filtering approach, with the purpose of

discriminatingeachpixel of the image. Uniquely indexing every single frame amounts

at obtainig invertible CDFs, thus making the exact solutionto exist, as it happens in the

continuous case. Leaving the computational complexity of the method apart, the choice

of the filters plays a key role in the indexing process, The ability to discriminate every

single pixels can be attained by analyzing image propertiesinside large windows cen-

tered on each pixels. On the other hand, features extracted from regions far away from

the given pixel may provide loosely correlated information. Often, the right filter size

is strictly dependent on image peculiarities and it must be carefully chosen to prevent

the computational cost to diverge. Nonetheless, the work reported in [13] represents

the state-of-the-art for exact histogram specification methods.

3.2.3 The method

Histogram specification methods can be classified accordingto computational com-

plexity, image distortion and accuracy in reproducing the target histogram. The pro-

posed method yields histograms perfectly matching a targetPDF meanwhile introduc-

ing low image distortions.

Approaches

According to theory in Section 3.2.2, histogram specification is generally accomplished

through a mapping between order statistics, where each element of the source distribu-

tion is mapped to the correspondingly ranked element of the target distribution. Thus

let f : [0,N − 1] × [0,M − 1] → [0,D − 1] be a scalar function representing an image

with dimensionE = N × M and depthD, where f (p) denotes the graylevel of a pixel

p. In this setting, the discrete PDFH f (i.e. the normalized histogram) and the CDFC f

of the imagef (·) can be computed as follows:

H f (x) =
1
E

E∑

p=0

S( f (p)),S( f (p)) =


1 , if f (p) = x

0 , otherwise
(3.7)

C f (x) =
x∑

y=0

H f (y) (3.8)
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The ideal output of a histogram specification algorithm is animageg : [0,N − 1] ×

[0,M − 1] → [0,D − 1] with a normalized histogramHg that exactly matches the

target PDFHt. Given these definitions, each bin of the output histogram must count

N × M × Ht(i) pixels, wherei ∈ [0..D − 1] represents the bin index.

Fig. 3.16 outlines graphically, using only 4 gray levels, the way gray levels are

remapped to perform histogram specification by the algorithms described in [20, 19,

13] and our proposal. The first rows refer to the source image and show the distribution

of the 4 gray levels (left) with the corresponding histogram(right). The second rows

show the target distribution (and related histogram), while the arrows from first to

second rows describe the re-mapping procedure (e.g. in Fig.3.16(a) 0 maps to 0, 1 to

2, 2 to 3 and 3 to 3). Finally, the third rows show in red (dark) color the approximation

errors. For example, the third row of Fig. 3.16(a) shows thatgray level 1 is mapped

erroneously in gray level 2 instead that partly in 0, 1 and 2.

(a) Classical (b) Eramian et al.

(c) Coltuc et al. (d) Our method

Figure 3.16: Histogram specification mappings methods and approximation errors. Classical

(a), Eramian et al. (b), Coltuc et al. (c), our method (d)

Fig. 3.16(a) depicts the classic histogram specification algorithm. It requires to

compute a simple IMF in the form of a Look-Up-Table (LUT) whose entries refer to

theD distinct pairsxi ↔ x
′

i wherexi is a source gray level andx
′

i is a target gray level.
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Hence,D represents the dynamic range of the implicit ordering function based on gray

levels only. In order to perform histogram specification each graylevelx is replaced

with the target graylevelx′ according to:

x′ = D ·C−1
T (CS

( x
D

)
) (3.9)

whereCt andCs are the CDF of the target and the source histogram, respectively. This

method is simply a graylevel remapping, only global histogram information and the

pixel graylevel are considered. The more source and target histograms are different,

the more gaps and overfull bins are likely to appear. In fact,large difference in pixels

count of corresponding bins, through the computed mapping,may cause assignment

problems. The issue is originated from the staircase natureof the discrete CDF and

the coarse quantization stepε = 1/D given by discriminating pixels only on the basis

of brightness values. As highlighted in Fig. 3.16(a), this problem may lead to gross

approximation errors and poorly matching histograms.

An attractive improvement arises from discriminating pixels having the same gray

level, taking into account some properties of image neighborhood. For example, au-

thors in [19] introduce the neighborhood voting metricα, defined as a function of the

number of pixels in them×msquare neighborhoodmask centered on a pixel whose gray

value is strictly less than the pixel brightness. Formerly equivalent pixels can be further

distinguished inm×m classes according to the metric. Thus the dynamic range of the

ordering function based on brightness and metricmα amounts atDα = D · (m×m).

This grants a finer quantization stepεα = 1/Dα. In practice, equal gray level pixels

may be discriminated into additionalm×m bins, thus reducing the staircase effect of

the CDF and yielding a better approximation of the desired histogram (Fig. 3.16(b)).

Along the same line, another proposal by the same authors of [19] concerns an

algorithm relying on a metricβ defined as them × m neighbor average brightness

around each pixel, approximated to the nearest integer. Similarly, equivalent pixels

can potentially be further subdivided inD classes, thus resulting in a dynamic range of

Dβ = D · D.

In principle, several metric, or features, may be added until each bin consists, at

most, of a single pixel. An interesting example is the work byColtuc [13] that combines

K average neighborhood metricmk, k ∈ [0..K − 1] computed on image neighbors of

increasing size, thus yielding a dynamic rangeDM =
∏K−1

k=0 Dmk. As one can see in

Fig. 3.16(c), the quantization step decreases and the histogram converges significantly

to the target one.
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Description of the algorithm

The proposed algorithm has been primarily designed to meet the definition of histogram

specification, namely the generation of an image whose histogram perfectly matches

a given target histogram, independently of the source image. Since each bini in the

output image must be populated with exactlyE×HT(i) pixels, it is likely to happen that

pixels having the same source graylevel shall be spread to different target gray levels.

Nonetheless, the case of indistinguishable pixels may occur irrespective of the dynamic

range of the conceived ordering function.

Therefore, standard IMF, namely bijective relation, has been abandoned in favor of

the concept of one-to-manyrelationship. A one-to-many relationship holds the poten-

tial to handle indistinguishable source pixels by explicitly modeling their mapping to

multiple target graylevels. In place of fixed one-to-one correspondencesxi ↔ x
′

i , given

by a conventional IMF, one-to-many relations allow to assign a given source pixel many

target values inside an admissible rangexi ↔
(
x
′

i , x
′′

i , ...
)
. Final gray level assignment

is drawn randomly inside every admissible range, although ensuring exact histogram

matching. Moreover, the proposed method deliver exact specification with any order-

ing function; the use of other metrics, in addition to the brightness value, affect only

the size of the admissible ranges.

Pixels are first ordered according to a given ordering metric, yielding several classes

of equivalenceci , i ∈ [0..DM−1], e.g. defined by individual brightness values. Nonethe-

less, as mentioned in the previous section, a class of pixelscan be further split into sub-

classes according to other properties, e.g. neighbor brightness average. More different

properties yield more subclasses, thus producing a finer quantization step.

After equivalence classes have been computed, each subclass ci is sequentially as-

signed to target gray level binsb j, j ∈ [0..D − 1] so that each of them haveE × HT(i)

items. A sparse matrixMDM×D stores the one-to-many mapping, in which row rep-

resent source image class and the columns denote target histogram graylevels. Each

matrix entryM(ci , b j) contains the amount of source pixels inside a classci that must

be remapped to the gray levelb j :



m0,0 0 0 0 . . . 0

m1,0 m1,1 0 0 . . . 0

0 m2,1 m2,2 0 . . . 0

0 0 m3,2 0 . . . 0

0 0 m4,2 m4,3 . . . 0

. . . . . . . . . . . . . . . . . .

0 0 0 0
. . . mDM ,D



(3.10)

Histogram matching is attained by imposing that each targetgray level (column entry)
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is assignedE × HT(i) source pixels or, equivalently, by requiring each column to sum

up toE × HT (i) pixels

S(b j) =
DM−1∑

ci=0

M(ci , b j) = E × HT ( j), ∀ j ∈ [0..D − 1] (3.11)

As many other approaches, this method may introduce structured pattern noise in case

gray level assignments follow the order of the evaluation ofthe input pixels (e.g. typ-

ically row-wise). However, although the visual effect can be noticed only for quite

untextured and largely uniform images, this always alters the signals in a systematic

way, possibly misleading further image processing algorithms. This effect has been

significantly alleviated with the introduction of random strings for shuffling gray level

b j inside a given admissible range before establishing the final assignment. Being

computed offline, random strings avoid to add misleading signal patternsto the output

image while preserving computational efficiency.

3.2.4 Experimental results

Extensive experiments have been carried out using standardimages widely employed

for benchmark evaluations. In addition, challenging images have been considered in

order to stress the considered methods and emphasize the outcome of the different

strategies adopted. The target machine is a AMD Athlon 2000+ equipped with 512

MB RAM.

Three quantitative performance indicators have been considered, thus allowing

even small differences to be highlighted. In particular, comparisons havebeen per-

formed according to computing speed and contrast enhancement. However, as stated

at the beginning, a poor histogram matching can affect further image processing steps

even when it is not perceivable. To this purpose, two distortion indicators measure to

which extent the histogram and the image structure have beenaltered by the specifica-

tion process.

The experiments have been accomplished over the most four representative meth-

ods in literature and results have been compared with the outcome of the proposed

approach. The names of authors in the Tables refer to the methods described in the

respective papers. In particular, Coltuc [13] is the only method achieving an exact

matching histogram, and it is the most direct competitor forall indicators. Finally, for

one image we include the shapes of the original and specified histograms, using all the

methods implemented.
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Performance Indicators

In this section the performance indicators used to assess and compare the histogram

specification methods are detailed:

• computational speed

Often the time needed to obtain the specified histogram is notdirectly measurable

since the elapsed time is too short. Therefore we have computed the number of

specifications performed in a given amount of time, that in the experiments has

been fixed to 10 seconds. In this way we can derive the number ofiterations per

secondS that is our figure of merit.

• histogram distortion

This indicator gives a measure of the effectiveness to achieve a specified his-

togram by comparing output and target histograms,H and K respectively, by

using the Kolmogorov-Smirnov distance defined in Eq. 3.12:

DKS(H,K) = max
i

(| ĥi − k̂i |), i ∈ [0..D] (3.12)

whereĥi andk̂i represents theith bin of the histograms.

• image distortion

Among the possible indicators to measure image distortion we have chosen the

one implemented by authors in [19], in order to better allow adirect comparison.

The image distortion between imagesG1 andG2, whose size isN × M has been

measured according to the following indicator.

∆ =
1
E

∑

(i, j)∈[0,M−1]×[0,N−1]

(
G1(i, j)
G2(i, j)

− µi j

)2

(3.13)

Here,µi j =
1
E

∑
i, j

G1(i, j)
G2(i, j) is the mean ratio. The indicator gives a measure of the

standard deviation of local changes in terms of contrast.

Results

As the images for benchmarks we use some synthetic images from Brodatz textures

collection [8], besides the well known Baboon and Boat (Fig.3.17). They are 512×512

in size but d72 (640× 640). From left to right we show the original images, those

specified using our algorithm to match as target PDF respectively a linear, Gaussian and

logarithmic distribution (shown in the last row of Figure 3.17). We do not show images

achieved with the other approaches, since the differences are not visually perceptible.

Rather, they can be assessed through analyzing Tables 3.2 3.1 3.3, column by column.
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(a) Original (b) Linear (c) Gaussian (d) Log

Figure 3.17: Brodatz d72 (top), Baboon (middle) and Boat (bottom) histogram specified using

the proposed method with synthetic target histograms.

Table 3.1: Histogram specification results for image d72, 640× 640, single channel

Method Speed Distortion∆ MatchDKS[10−2]

Lin Gau Log Lin Gau Log

Classic 56.58 .023 .244 .147 4.07 4.15 4.39

Eramα 1.88 .024 .559 .198 .743 .975 1.04

Eramβ 1.05 .024 .701 .203 .067 .059 .107

Coltuc 0.20 .024 .741 .210 .000 .000 .000

Ours 42.91 .024 .741 .210 .000 .000 .000

At a glance, we can see how the performance delivered by the proposed approach

is identical to Coltuc, but for speed. In fact, the algorithmalways performs far better

than all the other ones (more that one order of magnitude, more than two as Coltuc is

concerned) but the classic, whose speed is slightly higher.At the opposite, Coltuc is

the slowest one.

As for image and histogram distortion indicators, results in the tables show they are

inversely proportional, as might be expected: the lower thehistogram distortion, the

higher the image distortion. As far as image distortion is concerned, the best values are

achieved using classic approaches, although in the linear distribution case performance

are very close for every algorithm and image. On the contrary, the standard algorithm
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Table 3.2: Histogram specification results for Boat, 512× 512, single channel

Method Speed Distortion∆ MatchDKS[10−2]

Lin Gau Log Lin Gau Log

Classic 87.32 .009 .203 .090 2.15 2.04 2.05

Eramα 2.99 .009 .226 .098 .490 .421 .638

Eramβ 1.56 .009 .250 .099 .027 .026 .028

Coltuc 0.36 .009 .249 .103 .000 .000 .000

Ours 71.14 .009 .249 .103 .000 .000 .000

Table 3.3: Histogram specification results for Baboon, 512× 512, single channel

Method Speed Distortion∆ MatchDKS[10−2]

Lin Gau Log Lin Gau Log

Classic 88.82 .010 1.08 .324 .766 .788 .786

Eramα 2.99 .010 1.09 .339 .134 .204 .198

Eramβ 1.56 .010 1.11 .345 .013 .013 .014

Coltuc 0.35 .011 1.12 .346 .000 .000 .000

Ours 67.45 .011 1.12 .346 .000 .000 .000

shows the worst histogram distortion .

Coltuc and the proposed method deliver the same image distortion and are the only

algorithms to produce perfectly matching histograms, i.e.with no histogram distortion

at all. As for histogram distortion, the best algorithm among quasi-exact methods

is Eramian, that always shares with Coltuc and the proposed one comparable image

distortion for all images. However, in any case, it never reach zero histogram distortion.

3.2.5 Conclusion

A novel method to perform a fast and exact histogram specification given a source

image and a target histogram has been detailed. Usually, mapping between source and

target histograms is described via analytic functions or rank statistics computed on the

distribution of pixels brightness. However, histogram distortions artifacts such as gaps

and overfull bins prevent to achieve exact histogram matching.

Additional features, such as neighborhood average brightness, have been intro-

duced to discriminate among pixel having same brightness values, since indexing uniquely

every single pixels would lead to exact histogram matching.Though, these methods
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(a) Original (b) Linear (c) Gaussian (d) Log

Figure 3.18: Comparison between source (left column) and specified histograms using five

different specification methods: from top to bottom, Classical,Eramα, Eramβ, ours (Coltuc’s is

identical and it has not been reported), and different target histograms: from left to right, linear,

gaussian and logarithmic.

call for computationally expensive implementations.

Our approach achieves exact matching by replacing the standard mapping function

with the concept of one-to-many relationship. This enablesto spread undistinguish-

able pixels, i.e. having same brightness, to diverse targetbrightness values and avoids

histogram distortion artifacts.

Established performance indicators have been used to assess quality and computa-

tional cost of the conceived algorithm. Results confirm thatthe proposed method runs

more than two order of magnitude faster than the exact methodand more than one order

faster if compared with other quasi-exact approaches. Thisspeedup has been achieved

while maintaining comparable image distortion.
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Chapter 4

Evaluation methodology for

image mosaicing algorithms

As soon as image mosaicing has been recognized as a key building block of many

computer vision applications, the need for a principled andwidespread methodology

allowing to assess and compare the performance delivered bydifferent approaches has

become of primary importance. Indeed, several image mosaicing algorithms claim-

ing to advance the state of the art have been proposed in recent years. Though, im-

provements can be sometimes recognized without quantitative evidences, a quantitative

methodology for comparing different algorithms is essential as this discipline evolves.

What algorithm is the best? How to ascertain its primacy? To answer such ques-

tions, this section proposes a comprehensive evaluation methodology including stan-

dard data sets, ground-truth information and performance metrics. Aside the explana-

tion of the key components, the performance of three variants of a well-known mosaic-

ing algorithm are evaluated according to the proposed methodology.

4.1 Introdution and related work

Image mosaicing represents a popular way of achieving a dense scene reconstruction

by composing several overlapping views of the same scene matter. It can be regarded

as a special case of scene reconstruction when the images arespatially related by a

planar collineation (homography) or subclasses of this transformation (affinity, simi-

larity, translation). As pointed out in section 3.1.2, thisassumption holds when images

exhibit no parallax effects, i.e. when the scene is approximately planar or the camera

purely rotates about its optical center. In these circumstances, knowledge of the planar

geometric transformations among images permits to reconstruct a dense model of the

65
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scene, known also as mosaic or panorama.

Several mosaicing algorithms aimed at advancing the state-of-the-art have been

proposed in literature. Some innovations such as the topology inference proposed by

Shawney [13], the global geometric consistency proposed byShum [15] or the re-

cent automatic panorama recognition presented by Brown [5]clearly provide sharp

improvements over the existing state of the art. However, this is not always the case

and due to the lack of a reference test bed it is often very difficult, or even impossible,

to evaluate and compare different mosaicing algorithms. Moreover, only visual inspec-

tions or problem specific metrics have been used so far for performance assessment.

The adoption of metrics based on human perception arises from the fact that in the past

mosaics have been mostly used in computer graphic applications aimed to a human

audience, such as publicity, photomontage, special effects.

Nowadays mosaicing algorithms are employed not only to generate visually pleas-

ant pictures but also serve as key building blocks for many computer vision applica-

tions, such as e.g. motion detection and tracking [3, 9], mosaic-based localization [10],

resolution enhancement [6], augmented reality [1]. In suchscenarios, visually similar

mosaics can be characterized by different levels of numerical accuracy and hence have

a different impact on the addressed computer vision applications.

We believe that in these settings a proper reference test bedand evaluation method-

ology is needed, so as to allow for quantitative performanceassessment. Moreover,

algorithms are becoming so accurate that human based perception metrics will soon be

unable to meaningfully distinguish mosaics obtained with different algorithms (e.g. the

mosaics in the left column of Fig.4.1 look identical but theyturned out very different

in terms of accuracy of reconstruction of the original scene, see Fig.4.2).

Inspired by the renowned work of Scharstein [14] and the morerecent work by

Baker [2], respectively in the field of stereo matching and optical flow, this section

proposes an evaluation methodology for mosaicing algorithms that allows for princi-

pled quantitative discussion about performances and represents a useful tool for other

researchers. The proposed methodology enables to rate any mosaicing algorithm based

solely on the output yielded on standard data sets, and therefore irrespectively of any

knowledge on its theoretical foundations or implementation. To this purpose, we have

conceived a framework consisting of data sets and tools for their creation, ground-

truth information and performance metrics. As a case study,the methodology has been

applied to the comparison and ranking of three variants of a well-known mosaicing

algorithm that produce high quality, as well as visually indiscernible results.

To the best of our knowledge, there exists no other similar performance evaluation

framework in the field of image mosaicing. The issue of performance evaluation is ad-

dressed in two well known references [4, 16] that are thorough surveys of the literature
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in the field of planar image registration. Although coveringa wide range of algorithms

and applications, the suggested performance indicators pertain only to specific classes

of methods, e.g. keypoints-based algorithms, and may not bewidely applicable.

An on-line version of our results, along with the data sets with ground-truth used in

this work, can be found at:http://www.vision.deis.unibo.it/MosPerf. This

web page includes also an online form that allows researchers to download the data

sets and then submit their own results for evaluation.

4.2 Evaluation methodology

Quantitative evaluation has been usually achieved by calculating errors statistics among

registered images of the input sequence. This corresponds to the adoption, within a mo-

saicing framework, of performance metrics borrowed from image registration theory.

Examples of such performance indicators can be found in [4, 16] These indicators

require a set of corresponding control points to be available, so as to compute error

statistics, e.g. the mean square distance, between the image data and the predictions

yielded by the algorithm at hand. However, this approach suffers from at least four

major drawbacks:

• comparison among different algorithms is impossible unless the very same set of

control points is used. To the best of our knowledge such a reference test bed has

not been proposed so far.

• an algorithm cannot be evaluated based solely on its output,since the registration

transformations need to be available to compute error statistics.

• any set of control points can be exactly fit using a sufficiently highly parameter-

ized registration model (overfitting), thus defying these statistics

• algorithm accuracy and noise affecting the data are coupled, error statistics can

take large values even in case of good fitting only because of noisy measure-

ments.

Instead, the proposed quantitative evaluation methodology relies on the computa-

tion of error statistics obtained by comparing the mosaic yielded by a given algorithm,

on a reference data set (i.e. a sequence of images to be stitched together), to the cor-

responding ground-truth mosaic (i.e. the mosaic that wouldbe obtained by exactly

stitching together the images of the reference data set). Tothe best of our knowledge

there exists no work proposing a quantitative evaluation methodology for mosaicing

algorithms based on comparison with ground-truth information.

http://www.vision.deis.unibo.it/MosPerf
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The approach outlined in this section holds the potential toallow for fair and in-

formed quantitative evaluation of algorithms based solelyon their outputs. This is a

very important point: since the comparison is taken to a higher level of abstraction.

The proposed framework does not require the algorithms to use control points nor ho-

mographic registration models. We only assume that the ”algorithm” accepts several

images as input for creating a composite image, no matter whether it be a software

running on a laptop, an hardware implementation or just a skilled photographer. As a

matter of fact, a crucial ingredient in our proposal is the availability of reference data

sets with accurate ground truth. How to obtain such data? Theissue is addressed in the

next section.

4.2.1 Generation of data sets with ground truth

We focus here on the method used to collect data sets with ground-truth and defer the

selection of specific data sets to Section 4.3. The data sets generation problem can be

approached from two main directions:

• acquisition of real measurements using alternative methods that ensure a much

higher degree of precision compared to that affordable by the techniques under

assessment. For example, authors in [14] used structured-light to obtain highly

reliable ground truth. Indeed, the advantage of this methodis the generation of

data sets consisting of real-world data and real challenges. On the other hand

care must be taken to ensure that the ground-truth method is really accurate and

unbiased. Moreover, the controllability of the test bed environment remains an

important issue. Is it manageable to collect several data sets each of them isolat-

ing a single peculiar aspect such as different degree of optical distortion, different

light conditions while maintaining everything else roughly constant?

• creation of synthetic data that bear good resemblance with real imagery, for

example by rendering detailed scenes using a computer graphics environment.

From this vantage point, the computed imagery will always besomehow syn-

thetic but the controllability is complete. Unfortunately, general purpose ren-

derers such as PoV [12] have been mostly conceived for computer graphics ap-

plications and some computer vision aspects are not easily embeddable in this

framework. Are radiosity and photon mapping algorithms really important if

non ideal optical lenses need still to be simulated with a custom postprocessing

stage? Not to mention non linear camera response function orsensor noise.

In the end, both approaches are interesting on their own and can be tweaked to

emphasize different challenges that a mosaicing algorithm must be able to tackle.

Nonetheless, there is a third intermediate way envisioned by authors in [2], through
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which they claimed to obtain “realistic synthetic imagery”using image interpolation

techniques and computer graphics tools. Along the same lines, we have developed

a software component, called Virtual Camera (VC) that generates photorealistic syn-

thetic images using a mixture of real and precomputed information. By exploiting the

geometry of projective planes, the VC approach retains bothcontrollability and realism

while being easy to implement and computationally cheap.

Controllability descends from the fact that VC simulates the geometric image for-

mation process of today imaging devices taking into accounts internal parameters, pose

and position, sensor size and resolution, focal length and sensor noise. Simplicity

comes from the fact that the actual scene is just a plane. Thisdoes not represent a loss

of generality since the constraint of lack of parallax required to properly apply planar

registration techniques is naturally enforced in this way.The realism comes from the

fact that a real picture is used to texture the planar scene framed by the VC. In this way

realistic noise is naturally embedded in the framework and need not to be simulated

using synthetic statistical distributions.

Hence, VC is a fully configurable renderer able to generate images of a realistic

planar virtual scene. Moreover, any virtual frame can be easily created by just defining

a simple homographyH, as explained in the remainder of this section. Denoting a 2D

point asx = [u, v] and a 3D point asX = [X,Y,Z], Eq. 2.4 relates a 3D point X and its

projection on the imagex.

Since the scene model is a plane, we can assume, without loss of generality, that

it is located onZ = 0 of the world coordinate system. Denoting theith column of the

rotation matrixR by r i , from eq. 2.4 follows
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(4.1)

By still using X to denote a point on the scene plane, even thoughX = [X,Y] since

Z is always equal to 0, a scene pointX and its image projectionx are related by a

homographyH given by

s̃x = HX̃ with H = K
[

r1 r2 t
]

(4.2)

Hence, to collect a data sets sequence, a reference image is initially chosen (i.e. a

satellite or aerial image) and then a list of VC parameters, one for each snapshot, is

computed. These parameters encode the desired trajectory and internals of the camera.

In this manner, different positions and orientations are used to generate the translation

and panning sequences of the actual datasets. Every snapshot of the sequence is just
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the projection of the scene onto the virtual camera sensor according to Eq. 4.2 and the

VC parameters.

The ground truth mosaic is simply generated by cutting-and-pasting the portion of

the reference image that has been viewed by the VC during the sequence (i.e. a pixel

of the reference image belongs to the ground-truth mosaic ifit has been projected in at

least one snapshot of the data set). Due to its simplicity, this approach ensures that the

ground truth is completely unbiased and does not favor any conceivable method.

Several issues must be careful considered in order to generate meaningful data

sets. The most important is the pixelation effect. The pixelation effect is known in

computer graphic as the artifact that causes individual pixel to be visible to the eye,

mostly because the image has a lower resolution than the medium is being displayed

on. In these scenario the pixelation effect can occur because the camera is too slanted

or gets too close to the scene plane, so that texture projection requires oversampling.

To avoid this undesirable artifact, a minimum distance and amaximum rotation of the

VC with respect to the scene, given the texture resolution, are estimated beforehand

and used as thresholds.

A very similar workaround has been adopted to avoid stronglydeformed mosaics

that would require image oversampling during the reconstruction stage. All the images

comprising a sequence are taken so that they are compliant with the aforementioned

threshold.

4.2.2 Data normalization

Some relevant issues concerning the normalization of the delivered mosaics must be

properly taken into account, in order to be able to compare different algorithms based

solely on their outputs.

Registering a sequence ofN views amounts at finding theN × N pairwise transfor-

mationHi, j that links each view to another. As discussed in Section 3.1.2, using graph

theory this can be seen as a view-graph with images being nodes and transformations

being edges connecting nodes. In this settings, we would endup with a hugeKN com-

plete graph and a terrific computational cost. However, mostof the transformations are

not independent since to be compatible they must fulfill the condition that a composite

transformation computed by concatenation around any cyclein the view-graph is equal

to the identity.

Thus only a subset of (N−1) transformations touring an arbitrary maximal cycle is

required to completely describe the problem. In addition, since the view order is unim-

portant, an arbitrary order can be induced in the sequence, obtaining a transformation

chainC where the individual transformations could be written in the formHi−1,i with

i ∈ [1..N − 1]. For this reason, two registration algorithmsA,A
′

are equivalent if their
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transformation chainsC,C
′

are the same:

Hi−1,i = H
′

i−1,i , i ∈ [1..N − 1] (4.3)

Once the homography chainC is known, the creation of the mosaic requires to

fix a coordinate frame, refereed to here as the reprojection coordinate system (RCS),

through the choice of a rendering matrixR0 applied to a reference frameI0. OnceR0

has been fixed, the visualization matricesQi through which every image reprojects in

the RCS takes the form

Qi = R0

i∏

j=1

H j−1, j, i ∈ [0..N − 1] (4.4)

The reference frame is not special, for the very same mosaic could be obtained by

selecting any other frameI i in the sequence and computing the visualization matrices

Qi accordingly.

The RCS is usually chosen as the coordinate system of one image in the sequence,

so that the rendering matrix would be the identity for that image. In other cases, the

choice may be driven by another criterion, e.g. minimum global distortion of the

panorama. The rendering matrixR0 (typically a translation and a scale change, but,

in principle, even a homography) links the RCS to an arbitrary reference image of the

sequence.

When comparing two panoramas built from the composition of images warped

according to homography chains, one can try to compare corresponding pixels of the

two images. For these reason it can be stated that, two registration algorithmsA,A
′

produce equivalent mosaics if the corresponding visualization matrices are all the same

Qi = R0

i∏

j=1

H j−1, j = R
′

0

i∏

j=1

H j−1, j
′

= Q
′

i , i ∈ [1..N − 1] (4.5)

Since we cannot expect the rendering matricesR0,R
′

0 chosen by different algo-

rithms to be the same, the resulting mosaics will exhibit different corresponding pixels

even if homography chains are identical, and thus contradicting the definition of equiv-

alent registration algorithms. In other terms, the conceptof equivalent registration does

not imply the concept of equivalent visualization except for the caseR0 = R
′

0

Therefore, since we want to appraise the registration capabilities of mosaicing al-

gorithms by analysing the delivered mosaics, a major issue to be dealt with before

the computation of the performance metrics is normalization of the panoramas. This

amounts at filtering out the visualization effects due to different choices of the render-

ing matrixR0 so that all panoramas will lay in the same RCS even though originally

built in different rendering coordinate systems. By doing that, the remaining discrep-

ancies between the panoramas will be due to registration inaccuracies, i.e. different

registration matrices along the homography chains.
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This is the reason why anR0 default rendering matrix and a corresponding reference

frame, i.e. the first of the sequence, are specified for every sequence of our data sets. By

imposing these two additional constraints, it is ensured that any algorithm will render in

the same RCS as that of the ground-truth mosaic. Thus, since the ground-truth mosaics

and those generated by the algorithms are normalized, performance metrics based on

the comparison of corresponding pixels become appropriate.

Finally, it is worth pointing out that since the frames forming data set sequences

are generated according to known homograpies (i.e. by Eq. 4.2), it is also possibile

to render a panorama using these known trasformations andR0, I0. Such an image

would not be affected by registration errors, for the homography chain being exactly

known, and hence differ from the ground truth mosaic only because of the effects of

the resampling and interpolation processes. The performance metrics associated with

the panoramas rendered using the known transformations will be reported in Section

4.3, as they can be seen as upper bounds on the performance attainable by mosaicing

algorithms.

4.2.3 Performance metrics

As mentioned in the previous section, provided that data areproperly normalized, dif-

ferent algorithms can be assessed and ranked based on directpixelwise comparison

between the generated and the ground truth mosaics. Denoting the mosaic under eval-

uation asIC and the ground truth asIT , the following performance metrics have been

defined:

1. Average of the intensity distances. It amounts to the MSE over intensities of

corresponding pixels

MSE=
1
M

∑

(x,y)

Dxy =
1
M

∑

(x,y)

(
mC(x, y) −mT(x, y)

)2 (4.6)

where
(
mC(x, y),mT(x, y)

)
are corresponding pixels inIC, IT andM is the number

of pixel belonging to the region of overlap between the two images. Pixels not

shared by both images are neglected.

2. Average of the geometric distances. It amounts to the MSE of the distances

between corresponding control points inIC, IT

εest=
1
L

∑

i

Di =
1
L

∑

i

∥∥∥(xi
C, y

i
C) − (xi

T , y
i
T)

∥∥∥2
(4.7)

whereL is the number of correspondences. Corresponding control points (xi
T , y

i
T)→

(xi
C, y

i
C) are obtained by matchingL KLT keypoints, located over an approxi-

mately regular grid, betweenIT andIC.
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Method PT PR LP

MSE Mis εest Time MSE Mis εest Time MSE Mis εest Time

SR-KLT 226.980.0920.098 1.17 54.712.6860.561 1.49 606.47 1.2030.238 3.34

SR-Harris 231.670.6450.143 1.14 51.251.4310.471 1.45 756.49 1.9750.436 3.22

SR-SIFT 279.802.3950.38126.41 48.711.6480.363 9.72 1106.232.9820.67554.62

SR-GT 223.62 0 0.093 47.85 0 0.306 536.71 0 0.120

Table 4.1: Experimental results on sequences PT, PR and LP.

3. Number of misplaced pixels. It is the sum of missing and redundant pixels nor-

malized with respect toN

Mis =
1
N

(R+ P) =
1
N

(∑

(x,y)

(
(x, y) ∈ mC ∧ (x, y) < mT

)
+

∑

(x,y)

(
(x, y) ∈ mT ∧ (x, y) < mC

)) (4.8)

Since Mis is often a very small number, it has been scaled by 103 in tables 4.1

and 4.2 of next section.

4.3 Experimental results

This section aims at comparing three mosaicing algorithms on the basis of the proposed

methodology.

The algorithms are iterative variants of the well known Direct Linear Transform

(DLT) registration algorithm [7]. The DLT algorithm estimates the spatial transforma-

tion occurring between two images (pairwise registration)performing a linear regres-

sion on a set of corresponding points. The transformation model is an over-parameterized

9 dof homographyand the system is solved using Singular Value Decomposition (SVD).

Robust estimation is obtained performing outliers removalwith the RANSAC algo-

rithm. The mosaicing algorithm is an iterated application of this registration algorithm

along pair of frames of the sequence. Sequential concatenation of n pairwise registra-

tions amounts at finding the transformation that relates thenth view to the reference

one and thus to the RCS.

The three algorithms differ in the features detection and tracking methods employed

to determine the set of corresponding points. The first two algorithms, referred to as

SR-Harris and SR-KLT (SR stands for Sequential Registration), rely on respectively the

Harris and the KLT detector for features extraction. Both algorithms match detected

features by means of the KLT tracker. Since this kind of tracker suffers from large
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Method PTEx LPEx

MSE Mis εest Time MSE Mis εest Time

SR-KLT 466.43 2.277 0.390 4.99 715.48 1.774 0.378 8.77

SR-Harris 574.55 1.988 0.490 4.84 850.88 3.333 0.538 8.69

SR-SIFT 895.75 7.883 0.791 143.63 1279.22 5.636 0.741 89.86

SR-GT 218.23 0 0.096 520.47 0 0.119

Table 4.2: Experimental results on extended sequences PTEx and LPEx.

shift, its robustness has been increased with a coarse initial guess by means of a phase

correlation step. The third algorithm, referred to as SR-SIFT, uses the SIFT detection

and tracking implementation described in [8]. The three algorithms share the same

simple blending method; a simple pixelwise average of colorvalues within overlapping

areas has been chosen (see Section 3.1.2 for different approaches).

Each test sequence consists of a collection of views, a rendering matrix and a ref-

erence frame to which the supplied rendering matrix must be applied to identify the

rendering coordinate system. According to the image formation model described in

Section 4.2.1 the focus has been on sequences with spatial misalignments only., for the

recovery of the spatial structure is the primary concern of most mosaicing algorithms

known in literature.

The five sequences1 are:

• Pure Translation (PT): it consists of 9 frames acquired by translating on the right

and keeping the optical axis of the virtual camera orthogonal to the scene plane.

Adjacent frames overlap by a 30%− 50% of their area and small vertical mis-

alignments have been added.

• Pure Rotation (PR): it is composed of 9 frames acquired by rotating the virtual

camera around theY axis (Z pointing toward the observer). Adjacent frames are

spaced by 4 degrees and overlap is about 80%.

• Looping Path (LP): it consists of 18 frames, acquired by moving the virtual cam-

era on a loop by means of translations, above theX,Y plane parallel to the scene,

so that the last frame roughly overlaps the first frame.

• Pure Translation Extended (PTEx) and Looping Path Extended(LPEx) are longer

sequences (36 and 37 frames respectively) that extend PT andPR by including,

respectively, repeated panning and looping.

1Images used by the virtual camera are courtesy of NASA Earth Observatory [11]
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Figure 4.1: Mosaics generated from sequence Pure Translation. From topto bottom: SR-KLT,

SR-Harris and SR-SIFT.

Two important remarks are worth to be emphasized:

• all the sequences do not feature illumination changes; thisis a design choice

taken to focus on the geometrical part of the mosaicing problem by decoupling

it from photometric aspects.

• some of the sequences exhibit basic camera motions and mightnot be considered

as representative of real world sequence. This is another design choice taken to

dissect possible camera motion into several primitives andto study the perfor-

mance of the algorithms on them independently.

Table 4.1 and Table 4.2 report for each algorithm and for eachsequence the per-

formance metrics MSE, Mis,εest and the execution time. SR-GT, reported in the last

row of each table, refers to a pseudo-algorithm that composes the mosaic based on the

known transformations used by VC to generate the data sets. For each performance
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Figure 4.2: Sum of Squared Differences maps computed by subtracting generated mosaics and

the ground truth. From top to bottom: truth SR-KLT, SR-Harris and SR-SIFT.

metric the best performing algorithm is highlighted in boldface.

Tables 4.1 and 4.2 show clearly that on the whole dataset, with the exception of

sequence PR for which all the algorithms perform very close to SR-GT, SR-KLT is the

best performing algorithm. Tables show also that overall, SR-Harris outperforms SR-

SIFT. Notably, on the PR sequence SR-SIFT takes advantage ofits rotation invariant

features. This clear ranking is impressive if compared to the similar appearance of

the three mosaics reported in Figure 4.1. On the contrary, the SSD (Sum of Squared

Differences) maps depicted in Figure 4.2 (whose average value isthe MSE performance

metric) allow to appreciate the local differences between the mosaics.

An interesting remark stems from pairwise comparison of theperformance of SR-

KLT, SR-Harris and SR-SIFT on short and extended sequences (PT vs PTEx and LP

vs LPEx). Even though the framed portion of the scene is substantially the same for

both pairs, all the metrics agree on the fact that the longer the sequence the worst the

mosaic, no matter the algorithm or the sequence. Such increasing inaccuracy is known
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as drift error and manifest itself as thelooping path problem[3], named after the fact it

is visually emphasized in looping path sequences (that is, sequence that loops back so

that the pair of images overlap after several frames). However, as pointed out by Tables

4.1 and 4.2 the drift accumulation is an inherent drawback ofsequential algorithms, not

depending on the sequence. Conversely, SR-GT exhibits an opposite behavior since

the average of several corresponding pixels corrupted by resampling noise is a good

estimate of the noise-free value. This suggests that the resampling error is normally

distributed.

As a final remark, it is worth highlighting that the most suitable quality indicator

when dealing with geometric misalignments only, as it is ourcase, isεest. However, this

not always applies since in the general case photometric changes occur as well. Under

these circumstances, even a perfect spatial alignment (εest = 0) could yield mosaics

showing significant color differences compared to the ground truth. In general, the

MSE measure, which senses both geometric and photometric alignment errors, is a

more appropriate choice. These experiments show that MSE ismonotonically related

to the “exact”εest estimator, thus empirically validating the MSE metric as a quality

measure of the mosaic.

Conclusions

Image mosaicing techniques have a long history, evaluationmethodologies for their

comparison have not. Throughout this section a complete evaluation methodology

including data sets, ground-truth information and performance metrics have been de-

vised. The proposed data sets comprises 5 synthetic test sequences created by means of

a fully configurable virtual camera. Simple pixelwise performance metrics such as the

MSE have been employed to favor fairness and simplicity. Thedefinition of a default

visualization matrix and a reference frame is a simple procedure aimed at filtering out

differences among mosaics visualized in different rendering coordinates system.

Afterwards, three variants of a known algorithm have been evaluated and compared

according to the proposed methodology. Despite the fact that these approaches gener-

ates very good as well as visually similar results the evaluation procedure clearly shows

that the KLT-based algorithm performs better.

In conclusion, we are firmly convinced that a widely acceptedquantitative evalu-

ation procedure is of utter importance as a branch of a discipline moves from its pio-

neering works to maturity. The purpose of this work has been to highlight this shortage

and to propose an evaluation methodology that we hope will allow for principled dis-

cussion about algorithm performances and represent a useful tool for other researchers.

Further information concerning the proposed evaluation methodology can be found at
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the web sitehttp://www.vision.deis.unibo.it/MosPerf.

Future developments are directed toward the creation of more challenging datasets

featuring spatial as well as tonal misalignments, in the attempt of reduce the gap to syn-

thetic realistic sequences. Moreover, the evaluation of more sophisticated algorithms,

both through in-house development and direct collaboration with authors, is envisioned

and promoted by the, currently under construction, on-lineevaluation service hosted

on the site.

http://www.vision.deis.unibo.it/MosPerf
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Chapter 5

Camera pose reconstruction

Camera pose reconstruction addresses the problem of recovering the position and ori-

entation, the pose, of a camera with respect to a given spatial coordinate. Visual pose

reconstruction algorithms determine camera pose by relying only on information ex-

tracted from images. The camera pose reconstruction from image analysis in its gen-

eral statement can be a tough problem, nonetheless a couple useful assumptions may

be employed without harming generality too much. In particular, assuming previously

calibrated cameras and presence of flat objects in the scene is realistic in many scenar-

ios. In this settings, pose reconstruction can be cast back to a homography estimation

problem, as anticipated in chapter 2.

In the next sections, two original applications, building on the concepts and algo-

rithms of camera pose reconstruction, are illustrated. Thefirst section is concerned with

the proposal of an innovative use of image mosaics to boost the performance of known

pose reconstruction algorithms. An augmented reality (AR)system, exploiting such

mosaic-based pose reconstruction technique, has been implemented to demonstrate the

improvements compared to conceptional approaches. The conceived AR system has

been able to deliver real time, stable and realistic rendering of virtual objects and ani-

mations in several videos of real scenes.

The second section focuses on a novel human-machine interface concept for gam-

ing applications based on visual camera pose reconstruction. In this context, a user

interacts with the application by moving a hand held camera,the commands inferred

from the reconstructed camera movements being conveyed as input to the videogame.

Such a way of interacting ought to be practical and intuitiveas long as 3D commands

need to be naturally imparted to applications or electronicappliances. A proof of con-

cept game has been also developed to demonstrate feasibility and effectiveness of the

conceived vision-based interface.
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5.1 Markerless augmented reality using image mosaics

Augmented reality aims at delivering spatially coherent information to a user moving

in a known environment. Accurate and reliable pose estimation is the key to success.

Many approaches track reference objects into the scene but as the environment becomes

larger more objects need to be tracked. leading to computationally intensive methods.

Instead, we propose an original approach that is suitable for environment where big

planar structures are present. Several images of coplanar objects, or zoomed-in pic-

tures of big planar structure, are composed into a large reference object using image

mosaicing techniques, so that the pose reconstruction problem is simplified to that of

finding the pose from a single plane. Experimental results show the effectiveness of

this approach on two interesting case studies, i.e. aeronautical servicing and cultural

heritage.

5.1.1 Introduction and related work

Augmented reality techniques convey information that is both semantically and spa-

tially coherent with the observed scene. Information is shown by augmenting the scene

captured through a camera with graphical objects that are properly aligned with the

3D structure of the scene and often contextually close to theuser needs. In this sec-

tion we mainly focus on structural coherence, nonetheless asimple demonstration of

contextual awareness is given in the experimental results section.

The capability to deliver spatially coherent information to a user moving in a known

environment is enabled by accurate and reliable pose reconstruction algorithms. Such

algorithms try to compute the pose of the observer with respect to the world the user is

moving in by establishing correspondences among objects detected in the scene. Based

on these correspondences, both the information to be displayed and the structure of the

scene is estimated.

Most of the algorithms described in literature can be thought of in terms of a binary

taxonomy: those that rely on absolute information [22, 18],such as known models, and

those based on chained transformations [23, 25]. The formerseek to find camera poses

that correctly reproject some fixed features of a given 3D model into the 2D images.

They do not suffer from estimation drift but often lack precision, which results in jitter.

The latter do not exploit a priori information but match interest points between images.

Since correspondences between adjacent frames can be located precisely, usually these

algorithms do not jitter but instead suffer from drift or even loss of track.

Pose estimation algorithms represent the world as a collection of reference objects,

usually modeled as 3D meshes, associated with appearance models, such as collection

of key frames or image patches related to each vertex. Navigation of large environ-



CAMERA POSE RECONSTRUCTION 83

ments is handled using several objects spread across the scene, so that many of them

are visible even though the user moves widely inside the environment. Many algo-

rithms are known to estimate the pose very quickly using a single object and a single

image [22, 18]. However, in presence of several objects, thepose of the observer is

optimized together with the relative position of the visible objects typically using tem-

poral coherence constraints, i.e. objects projections in different images are expected

to confirm the same pose. As the environment grows larger so does the number of

required objects, thus yielding to computationally intensive algorithms.

To reduce the complexity Simon et al. [23] and Uematsu et al. [25] considers only

planar reference objects. In this settings they can exploitboth temporal and spatial

coherence in the estimation, i.e. homographies between planes can be computed inde-

pendently and deployed as additional constraints. This involves constructing at each

frames a unified projective space and mapping all the planes to that space according to

computed homographies. The pose is subsequently calculated using correspondences

between the space and image projections.

Nonetheless when several planar reference objects are alsocoplanar, the unified

projective space can be profitably built in advance using image mosaicing techniques.

As the cluster of objects becomes larger, using a mosaic as appearance model instead

of a single shot, taken from larger distance or with shorter focal length, becomes more

and more useful. In fact, the mosaic approach allows to maintain plenty of details that

a single shot would miss.

We propose a practical approach that is suitable for environment where big planar

structures are present. By mosaicing images of several coplanar objects, or zoomed-in

pictures of a big flat structure, during a training stage, most part of the computation

required to recovery the pose is shifted off-line. At run-time, the algorithm simply

determines the pose with respect to a unique large referenceobject using approaches,

such as [22, 18, 24], that are known to be fast and robust. Thisnotably diminishes the

on-line computational requirements and increases the accuracy of the estimated pose.

5.1.2 Methodology

The method is split up into two distinct stages. The first can be regarded as a training

phase and is performed off-line. It deals with the definition of a large planar reference

object together with the construction of its appearance model, i.e. a mosaic of images

that portray the planar structure. Several keypoints are extracted from the appearance

model using the SIFT features detector [15]. Metric measurements can be easily in-

troduced in this framework by specifying the real world position of at least four non

collinear points within the planar objects and computing the metric to projective ho-

mography accordingly.
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The second stage performs on-line and addresses the estimation of the pose of the

observer at a given instant using a set of points correspondences between the visible

scene and the constructed appearance model. This stage encompasses a feature tracker,

that establishes keypoint matches, and may deploy any pose estimation algorithm based

on point correspondences. The projection of virtual objects is easily accomplished once

the pose is known.

Construction of the appearance model

The first stage concerns the construction of the large reference object and its appearance

model from a collection of pictures using a mosaicing algorithm. The idea of using

mosaics in augmented reality applications is not a novelty in itself. For instance, Dehais

et al. [5] use mosaics to augment the scene with virtual objects. However, with their

system the user is allowed to rotate only and both the training and the testing sequence

must be captured from the same vantage point. The approach proposed by Liu et

al. [14] is also based on image mosaicing, but it requires fiducial markers and the

viewpoint is again allowed to rotate only. Instead, our method relies on natural markers

present in the scene and allows for arbitrary motion as long as a sufficient portion of

the model is visible to the observer.

During a training stage the construction of the appearance model using several

views of a roughly planar structure in the scene is carried out. The transformations

among the views are homographies as long as the observed subject is planar. The

algorithm we use to mosaic images can be regarded as an iterative version of the pair-

wise DLT method described in [10] and evaluated in Chapter 4.From each pair of

views a set of point correspondences is established and the best homographyHi, j in the

least square sense is fit; then the procedure is repeated for all pairs and visualization

matricesQi are computed. The rendering coordinate systems onto which images are

composed into the mosaic turns out to be the common projective space computed by

[25], provided that all patterns are coplanar.

Instead of building a mosaic, one might also capture the whole planar structure

with a single shot taken from a larger distance or with a shorter focal length and then

use such a shot as the appearance model. Indeed, this choice is potentially preferable

when, given the resolution of the acquisition device, objects are as small as they can be

captured by a single shot without losing too much information. In fact, in such a case

objects are already registered with respect to each other and taking a picture is quicker

than building a mosaic. Indeed, in any application scenariothe more appropriate ap-

proach should be identified carefully. In the experimental results section, a comparison

between the two approaches, in two different case studies, is presented.

Finally, given the appearance model, the SIFT feature detector extracts a set of
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keypointsxi from it. Extracted features that appear in the model but do not belong to the

planar reference object are discarded using a homography-based RANSAC algorithm

(see Section 2.2).

Pose estimation

Pose estimation from point correspondences, for calibrated cameras, has been exten-

sively studied in literature. For an intuitive visualization of the geometry of planar

pose estimation problem, Fig. 5.1 may be of help. Keypointsxi = (ui , vi), located on

the camera imaging sensor (bottom left plane), are in one-to-one correspondence with

pointsXi standing on a flat reference object (upper right plane). It can be assumed,

without loss of generality, that the reference object lays on thez= 0 plane of the world

coordinate frame, so that all 3D pointsXi possess third null coordinate. The set of cor-

responding 2D-3D points (xi ,Xi), of which x̃, X̃ are just the homogeneous notations,

are related by projective equations involving the internalcamera matrix K, the rotation

matrix R and the translation vector t

s̃x = A
[

R t
]
X̃ (5.1)

Both R and t can be retrieved up to a scalar valuesprovided that enough corresponding

pairs (xi ,Xi) are available and the camera is internally calibrated.

Figure 5.1: Geometry of pose estimation from 2D-3D correspondences problem.

Nonetheless, two well known algorithms, addressing the problem from very diverse

points of view, have been employed to emphasize flexibility and effectiveness of our
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proposal. The first algorithm has been illustrated by Simon et al. [24], and has been

considered for long the classical photogrammetric formulation. In practice, they solve

for the unknown pose by minimizing the following objective function:

N∑

i

‖

(
ûi −

R1Xi + tx

R3Xi + tz

)
,

(
v̂i −

R2Xi + ty
R3Xi + tz

)
‖2 (5.2)

whereRi is theith row of matrixRandt is a 3× 1 vector. This computation minimizes

the error distance among projections in the image space. In place of the sequential

estimation proposed in their paper, we compute the pose of each frame with respect to

our appearance model thus avoiding potential estimation drift issues.

Theoretically, an equivalent reformulation of the problemconsists in estimating

(R, t) that relates the known reference pointsXi with the correspondingX
′

i so that:

X
′

i = RXi + t (5.3)

whereXi = (Xi ,Yi ,Zi) andX
′

i =
(
X
′

i ,Y
′

i ,Z
′

i

)
are expressed in an object-centered and

camera-centered reference frame respectively. From this viewpoint, the second algo-

rithm, proposed by Schweighofer et al. [22], aims at minimizing an object space error

by means of the line-of-sight projection matrix̂Vi . This algorithm yields the best results

according to a recent analysis of the state-of-the-art carried out in [18].

Once the pose is retrieved it is then possible to project 3D models in the image

according to (R, t) and the known camera intrinsics.

5.1.3 Experimental results

This section reports the performance of the pose estimationalgorithms, presented in

Section 5.1.2, in two different case studies. Performance are measured in terms of

estimation steadiness and smoothness. Under this perspective, the most stable the esti-

mated pose over time the better the algorithm. In the following we plot the recovered

position of the camera center coordinatesOC =
(
OC

X,O
C
Y,O

C
Z

)
expressed in the object-

centered frame. Both algorithms are run twice on each sequence with different appear-

ance models; the first time using a single image (Fig. 5.2 top), the second time using a

mosaic (Fig. 5.2 bottom). All the frames used to build the models do not belong to the

test sequences.

The two test sequences have been acquired by a freely moving observer using a

consumer grade web camera, a Logitech Quick Cam Sphere. Eachsequence is about

600 frames long and images have a resolution of 640× 480 pixels.
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Figure 5.2: Small (top) and large (bottom) appearance models.

Aeronautical servicing

The first case study is drawn from a collaborative research project called ARIS (Aug-

mented Reality to Increase Safety) that addresses the application of Augmented Real-

ity into the field of aeronautical servicing. The ultimate aim of the project is to equip

engineers with see-through goggles by which a context-aware system will act as a vir-

tual assistant providing information on the maintenance procedure in real-time using

augmented reality. The sequence portraits the inside of a cockpit of a plane. Useful

information in this context concerns the position of the most important switches and

leverages as well as instructions on how to operate them properly (refer to Fig.5.4 for

some examples).

In the upper row of Fig.5.3 the position ofOC according to the pose estimated

using a small appearance model is reported. While the pose iscorrect most of the

time, the peaks in the plots denote that the estimation suffers from jitter. Notably, both

pose estimation methods are affected by these peaks approximately in the same way.

Conversely, the plots in the lower row of Fig.5.3 show that, when using the mosaic

as appearance model, the estimated pose exhibits a much smoother trend and jitter is

almost completely eliminated, with the exception of some creases on thezcomponent.

It is also worth noticing the proposed approach yields accurate and convincing video

augmentation also in presence of significant image brightness changes, as shown by

Fig.5.4.
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Figure 5.3: Recovered camera center coordinates using small (top) and large (bottom) appear-

ance models: Schweighofer et al. (violet), Simon et al. (blue). Left to right:OC
X, OC

Y, OC
Z .

Figure 5.4: Augmented cockpit sequence samples.

Cultural heritage

The second case study concerns an advanced context-aware system for delivering infor-

mation to visitors of museums or archaeological sites, by means of Augmented Reality.

The considered sequence has been acquired at the Archaeological Museum in Bologna

and displays a showcase with Etruscan jewellery. Fig. 5.6 shows that the pose of

the observer with respect to the showcase is accurately retrieved, as vouched by the

coloured outlines superimposed on the borders of the shelves. Besides, additional con-

text aware information is conveyed by highlighting the object that is likely to be the

most important for the user given his position and orientation.

As before, the estimation using a small appearance model is quite good but suffers

from jitter (as it can be seen in the upper row of Fig.5.5). When using the mosaic (lower

row of Fig.5.5), jitter mostly disappears and, unlike previous experiment, the pose is

smoother even when there are no macroscopic estimation error.
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Figure 5.5: Recovered camera center coordinates using small (top) and large (bottom) appear-

ance models: Schweighofer et al. (violet), Simon et al. (blue). Left to right:OC
X, OC

Y, OC
Z .

Figure 5.6: Augmented samples from jewellery sequence.

5.1.4 Conclusions

In this section we have described an approach to augmented reality that is suitable to

environments where large planar objects are present. Instead of modeling the reference

objects using a single image or a set of independent images, we propose to build a

mosaic by registering together several detailed views. Thepose is then estimated from

the correspondences between the actual frame and the appearance model of the refer-

ence planar object using known pose estimation algorithms.Experiments demonstrate

that two very different pose estimation algorithms largely benefit from the proposed

approach. In this sense our proposal can be thought as a preprocessing step able to im-

prove the computational performance and accuracy of any pose estimation algorithms.
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5.2 Vision-based markerless gaming interface

This section discusses a novel human machine interface for gaming applications based

on computer vision. The key idea is to allow the user to interact with the game by

simply moving a hand-held consumer grade camera. Detectionof natural features in

the incoming video stream avoids instrumenting the scene with optical markers while

preserving real-time computation and accuracy. A prototype videogame developed as

proof-of-concept of the camera-based gaming interface is also presented. Thanks to

recent advances in real-time extraction and matching of natural features from images

on mobile platforms, our proposal holds the potential to enable a new generation of

camera-controlled videogames for hand-held mobile devices.

5.2.1 Introduction

The ever increasing pervasiveness of computer systems intoour everyday environment

calls for novel mechanisms of human-computer interaction.Interfaces to computer-

ized equipment need to be straightforward and effective, the ability to interact using

inexpensive tools being highly regarded.

In the last decades, keyboard and mouse have become the main interfaces for trans-

ferring information and commands to computerized equipment. In some applications

involving 3D information, such as visualization, computergames and control of robots,

other interfaces based on remote controller [19], joysticks and wands can improve the

communication capabilities despite being sometimes impractical or limited.

Wearable and handheld devices, such as datagloves, “backpacks” [3] and haptics,

are designed to be more user friendly, helping untrained users in performing complex

tasks. On the other hand, the high cost and cumbersome hardware limit the field of

usability of these solutions.

In daily life, however, vision and hearing are the main channels through which hu-

mans gather information about their surroundings. Therefore, the design of new inter-

faces that allow computerized equipment to communicate with humans by understand-

ing visual and auditive input may conjugate effectiveness, naturalness and affordable

prices.

Vision based interfaces hold the potential to communicate with computerized equip-

ment at a distance and the machine can be taught to recognize and react to human-like

feedbacks. Despite many advances have been recently reached in the field of human

gesture, motion and behavior understanding [11, 26, 12], engineers have been mostly

focusing on marker-based tracking systems for vision-based human-computer inter-

action applications. The gaming industry is recently showing a growing interest for

vision based interfaces, with many proof of concepts developed so far [8, 27, 2, 20].
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As a matter of fact, visual markers can be reliably tracked [6] at low computational

costs, although game boards/controllers must be instrumented with them.

Conversely, our proposal deals with a novel vision-based gaming interface able to

deliver position and orientation of the player by simply using a hand-held consumer

grade camera and without requiring any visual marker. The proposed approach is

straightforward since the movement of the camera directly translates into 3D com-

mands to the game and requires no instrumentation of the environment. It is also very

effective since camera pose is estimated with millimetric precision. Finally, it is cheap

since it relies on widely available low-cost cameras.

5.2.2 Related work

Recent works in literature show that, to some extent, human behaviour understand-

ing using imaging devices is attainable. Harville and al. [11] conceived a robust

algorithm for 3D person tracking and activity recognition.The work by Viola and

Jones [26] paved the way for sound automatic face detection.Isard and al. [12]

demonstrated reliable tracking of deformable objects in presence of occlusion and clut-

tered environments. These outstanding achievements have inspired the work of Lu

[17, 16] on vision-based game interfaces controlled respectively by head and hands

movements. Head, face and body position tracking for computer games was also suc-

cessfully demonstrated in the work of Freeman et al. [7]. However, despite being very

flexible and natural interfaces from a human perspective, the underlying technology is

still computational too intensive to guarantee short latency time and smooth operations.

Moreover precise handling and maneuvering tasks demand a detection and reconstruc-

tion accuracy that, in some cases, current algorithms may not deliver.

Tracking of optical markers has rapidly emerged as a fast andaccurate alternative

for conveying simplified information to computer systems. Although complex human

behaviours cannot be captured, location and orientation information can be robustly

retrieved in a wide variety of environmental conditions andat low computational cost.

Examples of videogames built on top of optical marker trackers have been growing

steadily in recent years. Cho et al. [2] described an augmented reality shoot-em-up

game in which players aim at virtual opponents rendered on a game board filled with

optical markers. Oda et al. [20] developed a racing game where users steer their

virtual cars using controllers stuck with markers monitored with cameras. Govil and

al. [8] designed a marker-based golf ball tracker used to setspeed and direction of a

virtual ball in a golf simulator. By exploiting the implementation of a marker tracker

for portable devices, Wagner and colleagues [27] developedan Augmented Reality

(AR) game where multiple players are allowed to interact using camera-equipped PDA

devices.
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Nonetheless, recent advances in the field of object recognition showed that accu-

rate pose estimation and tracking can be achieved without the need of specific visual

markers, but instead using keypoints extracted from textured areas [15]. In particular,

the SURF (Speeded Up Robust Features) algorithm [1] reconciled accuracy and low

computational cost for robust keypoints extraction and tracking.

Therefore we propose to deploy a camera pose estimation approach based on nat-

ural keypoints correspondences as a novel human-machine interface for gaming pur-

poses. It is worth pointing out that camera pose estimation using natural keypoints

on mobile phones has been recently demonstrated by Wagner etal. [28]. Hence, our

proposal holds the potential for development of new camera-controlled gaming appli-

cations for hand-held mobile devices such as phones and PDAs. The remainder of the

section describes the camera pose estimation algorithm in terms of its key components

and present a prototype videogame, dubbed Black Hole, developed so far as proof-of-

concept of our proposed approach.

5.2.3 Markerless pose estimation

The interface consists essentially of an automatic camera pose estimation algorithm

for scenes in which flat objects are present, therefore limiting the types of suitable

scenes. In this case, however, the limitation is slight, since the requirements is that a

plane be visible, even if partially occluded, in the scene. This is common in indoor

environments, where a textured ceiling or ground plane is usually visible. Outdoors,

even rough ground (grass, roads or pavements), provide alsoan acceptable reference

for the system.

The pose recovery algorithm is largely inspired by the camera tracker illustrated by

Simon et al. [24], for it delivers accurate estimation at lowcomputational cost. How-

ever, differently from the original formulation, pose recovery is performed every time

with respect to a reference frame (pose detection) instead of arising from the composi-

tion of multiple pairwise registration (pose tracking) among subsequent frames. Hence,

pose detection tolerates failures since each frame is processed independently; besides

it does not suffer from the dead reckoning issue typical of pairwise composition. On

the other hand, pose detection requires a reference object to be known beforehand, i.e.

the object with respect to which the pose is continuously computed. Moreover, pose

jittering may arise since temporal correlation is usually not reinforced. In the rest of

this section the solutions to these two problems are addressed and described.

Using natural keypoints instead of markers makes the instrumentation of the scene

not needed anymore since any flat object can be a suitable reference. Just before start-

ing a gaming session a brand new natural reference is learnt on-the-fly by simply taking

a snapshot of a textured planar object and extracting a vector of keypoints descriptors.
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The corresponding points of the reference keypoint set are searched within every new

incoming frame and pairs of matching keypoints are likely tobe detected even in case

of large pose and illuminations changes, as shown in Fig. 5.7. Incorrect keypoints pairs

can be easily detected and discarded using a RANSAC-based homography estimation

step [10]. The remaining corresponding pairs are linked by the geometric relationships

explained in Section 5.1.2, hence they are fed to a pose estimation algorithm, for ex-

ample the one described in [24], in order to obtain a reliableestimation of the position

and orientation of the camera with respect to the reference object. Differently from

the mosaic-based approach described in Section 5.1, here pose estimation relies on a

single-image description of the reference object. This choice is tightly connected with

the intended application; since gaming interfaces have to be as simple and practical

as possible, acquisition of a single snapshot is quicker andeasier than that of multiple

views or a video.

Figure 5.7: Tracking SURF keypoints in few snapshots taken from different viewpoints: correct

(green) and incorrect (red) corresponding pairs.

Nonetheless, delivered poses still exhibit an excellent accuracy with camera posi-

tion usually estimated in the range of few millimeters from the true one. Nonetheless,

since this approach does not exploit the temporal continuity of the camera trajectory,

the sequence of estimated poses usually exhibit jitter effects. This problem manifests

as small vibrations among subsequent estimations, such discontinuities being quite no-

ticeable by a human observer and tending to degrade the gaming experience. In order

to mitigate this effect a pose smoothing technique has been adopted. The adopted

approach, described in [21], consists in linking every new pose with those computed

during a previous time window by exploiting a Support VectorRegression scheme as a

temporal regularization term.

Natural keypoint correspondences and pose smoothing make the conceived pose
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estimation algorithm fast, robust and practical, thus providing accurate and jitter-free

estimations without the need for fiducial markers placed allacross the scene.

5.2.4 Gaming application

A prototype videogames has been developed using as interface the vision-based pose

estimation algorithm described previously. In addition, few third-party libraries have

been integrated for a number of specialized tasks, in particular:

• OpenGL (Open Graphics Library) [9], a portable and interactive 2D and 3D

graphics library adopted for fast visualization and rendering.

• OpenCV (Open Computer Vision) [4], a collection of computervision functions

used for video capturing, keypoints detection and numerical optimization.

• Tokamak [13], an open-source real-time physics engine usedfor accurate simu-

lation of dynamics of rigid body, gravity, friction and so on.

The typical hardware configuration used to run the games consists of a single laptop

PC powered by an Intel Core 2 CPU, equipped with 4 GB RAM and running Windows

XP. The video camera is a Logitech Quick Cam Sphere grabbing color sequences at

640× 480 resolution. The game has been developed in C++ using Microsoft Visual

Studio 2005. Using this setting the frame rate ranges between 6 and 10 frames per

second (FPS), keypoints extraction being the major bottleneck of the system. Although

quite far from real-time processing, the system is responsive enough to allow for a

satisfactory gaming experience. By reducing the camera resolution to 320× 240 the

frame rate increase to 9 - 15 FPS without severely penalizingaccuracy.

Black Hole

Black Hole is a puzzle game inspired by the dark atmosphere ofStar Wars. The goal is

to steer a R2D2-like ball through a Death Star maze till the endpoint avoiding the holes

spread along the path. The user can slant and rotate the maze by moving a webcam

held in his hand. Gravity effect allows the user to control the ball by moving the maze;

friction and collision against maze walls and floor are also implemented in order to add

realism. Every time the user loses a ball, by letting it fall in a hole, it obtains a number

of points commensurate to the distance from the starting point. After three lost balls

the game ends and the final score is the sum of the points obtained thus far.

Figure 5.2.4 shows the starting and ending screens of Black Hole together with

some screenshots taken during a gaming session. Figure 5.8 shows some images taken

by the webcam hand-held by the player and the corresponding game screen, the refer-

ence object being a textured picture printed on a paper sheetand laying on the desktop.
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Black Hole starting screen (left) and game ending (right).

The image pairs, screenshot and camera frame, show how the floating maze is tilted

according to the instantaneous orientation of the hand-held camera with respect to the

reference object.

Feedback and observations

The game has been on show for few weeks in our laboratory roomsand has been played

by some colleagues from other labs that gently provided feedbacks and suggestions.

First of all, only a picture of a person pointing the camera tothe reference pattern

laying on the table has been required by anybody to start playing the games. Such a

limited amount of training information hints at the ease of use and naturalness of the

conceived interface. Most of the players manage to get to theend of the game, this

suggesting also good intuitiveness and friendliness. On the other hand several persons

expressed concerns about the difficulty of keeping the reference object always in sight

during the gaming session. Even though occasional pose estimation failure does not

necessarily ruin the game experience, it might be annoying especially during fast and

critical phases. Another set of complains concerns the responsiveness of the gameplay

which is mainly accountable to the high computational cost that the system incur when

highly textured areas generate a large amount of keypoints.

5.2.5 Conclusions and future work

The ubiquitous presence of computerized equipments in everyday environment calls for

conception and design of natural and easy-to-use human-machine interfaces. Practical,

straightforward and inexpensive are the keywords for the next generation of interaction

paradigms. Videogames are a challenging test ground since fast response and high

accuracy are also required. Vision-based interfaces hold the potential to fulfill this

expectations. A vision-based approach based on tracking natural features has been
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Figure 5.8: In the left column, 4 snapshots depict the maze, tilted in different ways, according to

the orientation of the camera with respect to the reference object computed in each frame (right

column).

conceived as an interface for gaming applications. The proposed approach allows the

user to interact with a videogame by simply moving a webcam pointing toward a planar
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textured object present in the scene. According to the feedback received by several

users, the interface is intuitive, fast, responsive and, ultimately, enjoyable.

As for future directions of works, pose estimation from non-flat surfaces or larger-

than-a-single frame object would prove useful to increase the possibility for the user to

move around. Moreover, as for the difficulty of keeping the reference object always in

sight, we wish to investigate on the possibility of enablingalso a mixed-reality mode,

in which the user would see the virtual objects of the game superimposed to actual

video stream coming from the camera.

Eventually, the proposed approach is particularly suited to enable gaming applica-

tions on hand held devices such as phones and PDA, for the usermay simply point the

integrated camera toward a textured plane and play by movingthe device in his hand.

Therefore, in the near feature we plan to port our gamimg interface on a state-of-the-art

hand held device.
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Chapter 6

3D reconstruction of deformable

surfaces

This chapter investigates sparse geometric reconstruction of objects using a set of im-

ages. Differently from conventional structure from motion algorithms that usually deal

with rigid objects, an innovative method for fast shape retrieval of deformable objects

relying on a single camera is detailed.

The shape reconstruction problem is tackled by describing adeformable object with

a tesselated surface, for instance a triangulated mesh, with a sufficient level of detail,

i.e. number of triangles. Assuming the region of object inside a triangle as being flat,

the geometric reconstruction of the whole mesh amounts at computing the homography

between each triangle of the model and its corresponding projection in a given image.

The extension to deformable objects requires to properly constrains each homography

considering that every triangle is connected to others inside the mesh, and any solution

must maintain continuity across the mesh. Moreover, smoothing constraints must be

included to prevent unrealistic deformations to produce high likelyhood estimates.

A re-parametrization of the problem in terms of the vertex coordinates of the trian-

gulated model has been envisioned, thus permitting to specify continuity and smooth-

ing constraints in an elegant and concise formulation. The devised framework admits

also a fast iterative linear solver, based on projection kernels, boosting the computation

performance of the algorithm. The algorithm recovers the shape of a deformable sur-

face using 3D-2D correspondences computed from natural texture, thus not requiring

any instrumentation of the scene.

Thanks to a ongoing collaboration between the Ecole Polytechnique Federal of

Lausanne and Solar Impulse SA [6], the conceived approach has been tested in a chal-

lenging real scenario. Solar Impulse is an ambitious project aimed at realizing the first,

103



104 CHAPTER 6

solar propelled, airplane able to trip around the world without exploiting fossil energy.

Since the wings of SolarImpulse will be both very long and very light, they must be

monitored accurately both for safety and efficiency. The proposed algorithm has been

deployedfor for measuring wing deformations of the SolarImpulse scaled model proto-

type. Performance assessment using both synthetic and realdata is reported in the last

section of the chapter.

6.1 Shape recovery of non-rigid objects

Experimental determination and measurement of wing deformations is of fundamental

importance for the analysis of structural dynamics in the aerospace industry. Knowing

the way wings deform during flight could provide valuable information for testing the

validity of finite elements analysis and for improving the design and manufacturing

process.

Present methods of measuring wing deformations usually entail the instrumentation

of the aircraft, i.e. a set of accelerometers or strain gauges placed all over the aircraft.

Despite being accurate, such methods are invasive and mightinfluence the dynamics

and, eventually, the measurements (i.e. added mass due to instrumentation). Moreover,

these sensors can only measure deformations, along a singledirection, at a few preset

locations and are difficult to move once the wing is constructed.

Since vision-based approaches are known to provide dense measurements through

non-contact sensing, some works based on imaging devices have been attempted. The

work by Ryall and al. [14] shows how three dimensional modes of an oscillating wing

section can be recovered by tracking visual markers stuck onit. However it requires

special hardware, i.e. synchronized strobe lights and camera, and performs off-line.

Recently, Barrows [3] has proposed a multiple-camera system for on-line reconstruc-

tion of a wing inside a wind tunnel. Both the approaches require cumbersome hardware

and the instrumentation of the aircraft, making them expensive and impractical for the

acquisition of measurements during the flight.

This section describes a vision-based on-line approach formeasuring wing defor-

mations that relies on a single camera and on “natural markers”, i.e. textured areas

underneath the wings. By requiring just a single camera, this method is a cheap and

practical way of evaluating the behavior of wings in real conditions.

To validate this technique and demonstrate that it can be deployed in a realistic

aeronautical context, a complete pipeline designed to measure the deformations of So-

larImpulse’s [6] scaled model wings has been put in place. This is an interesting test

case because the wings of SolarImpulse will be both very longand very light. As a re-

sult, they are bound to deform noticeably in flight and it willbe important to verify that



3D RECONSTRUCTION OF DEFORMABLE SURFACES 105

they behave as expected. Experiments shows that measurements accuracy up to few

millimeters can be achieved monitoring a 4-meters wide model of the Solar Impulse

with a consumer grade camera.

6.1.1 Related work

Monocular 3D shape recovery of deformable surfaces is knownto be an ill-posed

problem even when there is sufficient texture for structure-from-motion and template-

matching approaches to be effective. A priori knowledge of deformation models is

required to solve ambiguities and make the problem tractable.

Structure-from-motion methods rely on feature points tracked through a sequence

to retrieve the deformed shape of a surface [9, 15]. However,the underlying linearity

assumptions of these methods limit their applicability to smooth deformations. The

use of more generally applicable constraints have been advocated [18, 16], even though

additional assumptions, that may not apply, are required.

Statistical learning approaches have therefore become an attractive alternative that

takes advantage of observed training data. Linear approaches have been applied to

faces [4, 10] as well as to general non-rigid surfaces [16]. However, they impose the

same restrictive smoothness constraints as before. Moreover, training the model of

highly deformable surfaces represented by meshes with manyvertices, and therefore

many degrees of freedom, requires a number of training examples that quickly becomes

intractable.

Another class of approaches solve this problem by introducing a physical model

that can infer the shape of untextured surface portions fromthe rest of the surface [12,

11]. Due to the high dimensionality of such representations, modal analysis [15] was

proposed to model the deformations as linear combinations of modes. Some knowledge

about the surface material must be assumed since the deformation model is defined in

terms of physical parameters. Moreover the complexity and non-linearity of the true

physics make physically-based approaches an accurate approximation only in case of

small deformations.

Since one can reasonably assume that aircraft wings are madeof material whose

mechanical property can be known and expected deformationsare meant to be small,

physical models become a suitable choice in this context. Moreover, a similar approach

[15] has been integrated into a software package designed tomodel the deformations of

sails from video sequences and to measure visually their curvature. Delivered to Team

Alinghi, it supports the design team by monitoring the behavior of the spinnaker under

real sailing conditions, providing valuable informationsto improve its design.

Since sails act very much like wings, both may be treated as smooth deformable

surfaces and the approach we propose for measuring wing deformations is largely in-
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spired by the works of Salzmann and Pilet [16, 15].

6.2 Deformable shape recovery

We represent a surface as a 3D triangulated mesh M=(V, F), where V=
(
v1, ..., vNV

)
is

the vector of vertices and F is the list of facets. The position of a vertexvi is specified

by its 3D coordinates(xi , yi , zi). The overall shape is therefore controlled by a state

vectorS, that is the vector of allx, y andz coordinates. We assume we are given a set

of 3D to 2D correspondences between surface points and imagelocations.

We assume that a mesh deforms to minimize the objective function

ε(S) = λDεD (S) + εC (S) (6.1)

whereεC is a data term that takes point correspondences into account, εD is a smooth-

ness term that tends to preserve the regularity of the mesh, andλD is a constant.

6.2.1 Data term

In this section, we formulate the computation of the 3D mesh vertex coordinates given

the data term in terms of solving a linear system. To this purpose we express all world

coordinates in the camera referential for simplicity and without loss of generality. Let

Xi be a 3D point whose coordinates are expressed in the camera referential. Since

we use a single camera and assume its internal parameters to be known, we write its

perspective projection as:



ui

vi

1


=

1
ki

A [I3×3 | 0]


xi

1

 (6.2)

whereA is the internal parameter matrix andki a scale factor. IfXi lies on the facet of

a triangulated mesh, it can be conveniently expressed as a weighted sum of the facet

vertices, so that (6.2) can be rewritten as



ui

vi

1


=

1
ki

A
(
aivi,1 + bivi,2 + civi,3

)
(6.3)

wherevi,1≤i≤3 are the 3-D coordinate vectors of the vertices and (ai , bi, ci) the barycen-

tric coordinates ofXi .

Let’s assume that we are given a list ofn such 3-D to 2-D correspondences for

points lying inside the mesh facets. As pointed out by [16], thevi,1≤i≤3 coordinates of
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the vertices can be computed by solving



a1T1 b1T1 c1T1 0 . . . . . .

. . . . . . . . . . . . . . . . . .

0 a jT j b jT j c jT j 0 . . .

. . . . . . . . . . . . . . . . . .

alT l 0 blT l 0 clT l 0

. . . . . . . . . . . . . . . . . .





v1

. . .

vnv


= 0 (6.4)

with

T j = A2×3 −


u jA3

v jA3



whereA3 represents the last row of matrixA anda2×3 its first two rows.

6.2.2 Smoothness term

Previous work by Salzmann et al. [16] demonstrates that keypoint correspondences do

not provide enough independent equations for the problem tobe solved uniquely. Two

kind of smoothness terms have been used to prevent the estimation of unrealistically

deformed shapes:

• stiffness matrix, it carries information about the physical properties of the surface

material. Physical properties are expressed by coupling the displacements of

neighboring vertices of the mesh. A popular algorithm from [8] has been used

to generate a system of equations given a triangulated mesh and few additional

parameters such as mass and thickness.

• inextensibility constraints, they model a kind of triangulation that can be thought

of as a polyhedron made of metal plates whose edges have been replaced by

hinges. Length variations of the edges are discouraged through adding penalties

to the overall energy function.

6.2.3 Optimization strategy

Differently from the approach in [7] we chose to implement inextensibility constraints

exactly. Since such constraints are quadratic, they do not fit in a linear formulation

[16]. For that reason an iterative optimization has been conceived.

The idea is to minimize

||MX|| subject toC(X) = 0 , (6.5)

whereX is ann× 1 vector andC(X) anm× 1 vector of constraints.
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At each iteration, given the currentX state, finddX such that

C(X + dX) = 0 ⇒ AdX= −C(X) , (6.6)

⇒ dX = −A†C(X) + (I − A†A)dZ ,

whereA is them× n Jacobian matrix ofC, A† its n× n pseudo-inverse, anddZ an

arbitraryn× 1 vector. In general,m < n andA† can be computed as limδ→0At(AAt +

δI )−1, which involves inverting anm× m matrix and exists even ifAAt itself is non

invertible.

Let P = I − A†A be the projector onto the kernel ofA and letdX0 = −A†C(X) be the

minimum norm solution of Eq. 6.6. We choosedZ by minimizing

||M(X + dX0 + PdZ)|| , (6.7)

or, equivalently, solving in the least square sense

MPdZ= −M(X + dX0) . (6.8)

In this setting, matrixM consists of two parts, the first comes from the data term

while the second is made of physical relations encoded in thestiffness matrix. The

functional C represents the nonlinear inextensibility constraints.

Since the optimization criterion M weights all the data fairly, gross outliers generate

large residuals that could bias the solution. To give outliers a milder impact on the

solution, we reformulated the original problem in a reweighted least squares fashion:

‖WMX ‖ subject toC (X) = 0 (6.9)

where W is a diagonal weighting matrix. The main diagonal of Wis the vector L whose

coefficients are computed as follows:

Li = − exp
di

d̂
(6.10)

wheredi =‖ Fi ‖ is the norm of theith residuals andF = MX − b. d̂ = 1
N

∑
i di is

the average of the norm of the residuals. In this settings thereweighted least squares

solution is given by

‖WM (X + dX0 + PdZ) ‖ (6.11)

6.3 Detailed approach

The proposed approach entails the accurate calibration of the imaging device, the pres-

ence of a 3D model of the object in its rest position and the capability of establishing

correspondences between that model and a given image. The whole approach is split

in two main stages:
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• Offline phase, it consists of camera calibration and generationof the 3D model

in its rest, i.e. undeformed, position

• Online phase, it aims at retrieving pose and deformations given the actual image

and the rest model

6.3.1 Offline phase

A 3D model of an object in its rest position is composed of two parts: a pointwise model

consisting a cloud of pointsXi that lie on its surface and a geometric model in the form

of a triangulated mesh that approximates its hull. The pointwise model is necessary

to detect and establish correspondences between the objectand a given image. The

geometric model represents a piecewise planar approximation of the true object shape

and embeds also the concept of joints, i.e. lines along whichthe shape is allowed to

deform. For the algorithm to perform consistently, the two models have to be spatially

aligned, registered pointwise and geometric models will becalled hereinafter, just, 3D

model of the object.

The construction of the pointwise model is performed using Australis [13], a structure-

from-motion software. Given multiple pictures of the same subject taken from different

viewpoints, the algorithm is able to generate a sparse cloudof 3D points that reproject

consistently in all the views. In detail, the standard reconstruction process take place

as follow:

• a set of retroreflective markers, manually placed all over the scene, are automat-

ically detected in every pictures and correspondences are established based on

appearance and geometric constraints

• a reference object, shipped together with the software, is used to retrieve an

initial estimate of the pose for every single pictures.

• a bundle adjustment solver [2, 5] performs a non linear minimization of the re-

projection error across the whole set of correspondences yielding accurate poses

and structure

However, the standard process suffered from many drawbacks and a revisioned proce-

dure has been devised to improve reliability and flexibility.

Detailed insights concerning the characterization of the performance of the stan-

dard approach and the improvements obtained using the modified method are reported

in [1].

Finally, each pointXi belonging to the pointwise model is linked with a vector of

all the SIFT descriptors computed in each image in which it appeared. This step is



110 CHAPTER 6

fundamental to enable subsequent keypoints matching between the pointwise model

and a given image.

The geometric model is a triangulated mesh M=(V, F), where V=
(
v1, ..., vNV

)
is

the vector of vertices and F is the list of facets, that represents the aircraft in its rest

position. The wings have been manually measured and the tesselation roughly follows

the joints between distinct parts of the real plane. The topology of the vertices and the

facets underwent many changes, the final arrangement may be appreciated in Fig. 6.3,

top.

In order to deliver a set of 3D points expressed in terms of barycentric coordinates

with respect to the facet of the mesh, pointwise and geometric models must be regis-

tered into the same coordinate frame. A useful initial guessis obtained by aligning the

eigenvectors of the Principal Component Analysis (PCA) decomposition of the points

cloud and the vertices of the mesh. The underlying idea is that the cloud of points is

uniformly distributed across the aircraft, an assumption not so far from reality given

the symmetry of the texture underneath the wings. Registration accuracy is improved

by deploying a subsequent refinement using the algorithm proposed in [17]. This al-

gorithm performs a robust registration of 3D point data to a triangle mesh in presence

of outliers and changes in scale. After the registration, points whose distance from the

nearest facet is above an acceptance threshold are marked asoutliers and removed from

the pointwise model. Inliers are converted in barycentric coordinates with respect to

the closest facet.

6.3.2 Online phase

The scope of the online phase is, given an imageI , to retrieve pose and deformations

of the considered object. The mathematical procedure presented in section 6.2, devised

for such goal, requires a 3D model of the object in its rest position and a set of 2D-3D

correspondences. The former requirement is fulfilled by performing the steps described

in the previous section. The generation of 2D-3D correspondences is accomplished as

follows:

• a set of keypointsxi is extracted from imageI

• the set of keypointsxi is matched with the descriptors stored in the pointwise

model (see Figure 6.2)

• the matching between keypointsxi and descriptors of pointsXi belonging to

the pointwise model naturally defines 2D-3D correspondences relating image

projections and 3D pointsxi ↔ Xi .
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Figure 6.1: 3D reconstruction from multiple views. Boxes are cameras, white spots are recon-

structed 3d points.

The set of 2D-3D correspondences are then fed to the algorithm. The vertex coordi-

nates of the rest model are the parameters of the state vectorS that are to be optimized

given the data term, i.e. the 2D-3D correspondences, and thesmoothness and con-

tinuity constraints. After optimization, the computed state vectorS
′

contains all the

coordinates of the vertices and represents the sparse reconstruction of the deformed

object observed in imageI (see Figure 6.3). Object deformations are defined as the

difference between the estimated state vectorS
′

and the vector of coordinates in the

rest positionS.

6.4 Results

6.4.1 Simulations

Synthetic tests have been conducted to evaluate the performance of the algorithm in

a controlled environment and to see how it degrades as different amounts of noise af-

fects the data. The idea has been to create synthetic 2D-3D correspondences using
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Figure 6.2: Keypoints matching. Correspondences between the image andthe 3D model are

highlighted with red circles.

realistic generative models. As far as 3D points belonging to the pointwise model are

conceerned, triangulated mesh describing the aircraft hasbeen deformed designed and

deformed by applying a twisting deformation creating a given angle between the two

wingtips. Then, a set of 3D points randomly spread over the triangulated mesh have

been generated. By projecting the 3D points on virtual cameras randomly spread in the

scene, 2D correspondences have been generated. Moreover, uncertainty in the match-

ing process is accounted for by adding gaussian noise to computed projections. The

impact of the number and positions of points located on the facets has been analyzed.

The graph in Fig. 6.4 reports on theY axis the Root Mean Square (RMS) of the

difference between the true and the estimated twisting angle, ontheX axis the standard

deviation of the noise applied to the projections. RMS values have been computed on

1000 trials per number of points.

Remarkably, the algorithm yields high quality reconstructions with realistic amount

of noise, i.e. around 1 pixel. Hence accurate wing deformations can be measured using

the proposed vision-based approach. Two other facts emerged; the first is the more the

correspondences the more precise the reconstruction, the second is that uniformly dis-

tributed points are better than scattered ones. Both evidences are quite straightforward,



3D RECONSTRUCTION OF DEFORMABLE SURFACES 113

Figure 6.3: Deformed geometric model (top), 2D-3D correspondences (coloured lines in the

middle), reprojected geometric model on the image (bottom)

perhaps the second remark becomes more interesting when noting that 3 uniform points

are better than 5 scattered ones, hence highlighting the importance of the location aside

the mere count.
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Figure 6.4: Twisting angle RMS error with different numbers of points per facet: 3 on uniformly

spread (red) and 3 (green), 4 (blue), 5 (yellow) scattered points.

6.4.2 Experiments

A wings measurement system for diagnostic and validation purposes requires on-site

quantitative performance evaluation. To accomplish this task we decided to obtain

ground truth data and compare the attained results to it. Buthow could ground truth

data could be generated?

Two methods, an Optical Motion Capture (OMC) system and a Structured Light

Scanner (SLS), accredited of very high accuracy, have been evaluated by assessing the

delivered reconstruction in a simple and controllable scenario. The test bed consisted

of a stiff beam whose steepness could be carefully set. Since everything was precisely

measured, the geometry of any points in the scenario could becarefully computed

beforehand and used as ground truth for comparing the methods. With an accuracy of

about 0.2 mm, the OMC exhibited the highest level of accuracy, performing an order

of magnitude better than the vision-based approach.

Both the OMC and the video-based system have been then deployed in a more

relevant setup: measuring wing deformations of the Solar Impulse 4 meter wingspan

model. OMC reconstruction has been considered as ground truth data, and the estima-

tion yielded by the video-based approach have been comparedwith respect to ground

truth.

Qualitative and quantitative results are presented. Qualitative results concern the

reprojections of the geometric model of the aircraft onto the pictures from which shape

has been recovered. As shown in Fig. 6.5 (right), we asked twopeople to shake the

wings during the acquisition to procure deformations. A setof 2D-3D correspondences

have been detected using keypoints matching then the optimization procedure jointly

determined the deformed model, green mesh (Fig. 6.5), and correct/incorrect matches,

drawn respectively with green and red lines. The recovered shape has been reprojected
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inside every picture (green mesh) and most of the time it is precisely aligned with the

contour of the aircraft (see Fig. 6.6). Fig. 6.5 reports the altitude of the left (red)

and right (blue) wingtip computed in each frame of Fig 6.6 with respect to a constant

ground plane passing through the body of the aircraft. As canbe noted the trends are

visually compatible with the deformations (upward then downward) applied by the two

persons in the pictures.

Figure 6.5: Wingtips altitude chart (left), estimated mesh reprojection (right).

Video-based 3D reconstruction has been compared with ground truth shape by

computing the distance between corresponding points. The RMS error was found to

be in the order of 2.5mm. Since the model is 4 meters wide, expectations dictate the

measured error to turn to 3− 4 cm and a 0.5 of twist deviation when coping with the

real 60 meters wingspan prototype.

6.4.3 Conclusions and future work

The proposed algorithm has shown potential for accurately recovering the shape of

large deformable surfaces such as aircraft wings. This is a very important achievement

since it may be used for accurate, cheap and non contact measurement of aircraft wings

deformations during flight.

A quantitative validation process using the SolarImpulse scaled model attests that

an error in the order of 2 mm over a 4 meter wingspan model has been delivered by the

system. This error translates on a deviation of about 0.5 degree affecting the twisting

angle.

Nevertheless, there is still room for improvements by integrating improved physically-

based deformation models, integrating over time and explicitly representing uncer-

tainty in the equations. This is what we will endeavor to do inthe future. Furthermore,

the use of additional cameras should provide a further increase of accuracy.
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Figure 6.6: Estimated mesh reprojection in few samples of a video sequence.
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Chapter 7

Closing words

7.1 Summary

This thesis has investigated the problem of combining information contained in multi-

ple, overlapping views of a scene for visual reconstructionpurposes. Within this broad

problem, three major topics have been addressed: dense geometric reconstruction ,

camera pose reconstruction, sparse geometric reconstruction of deformable surfaces.

Dense geometric reconstruction.Image mosaicing, the combination of several over-

lapping images into a collective view, has been the principal field of investigation. In

this context, a robust and fast sequential image mosaicing algorithm has been con-

ceived. By deploying novel spatial and tonal alignment approaches, the proposed

method performs consistently in a wide range of real world scenarios, e.g. indoor

and outdoor scenes.

An original dual geometric alignment stage permits to boundthe drift error allow-

ing the construction of quasi globally consistent mosaics,without resorting to com-

putational demanding global adjustment procedures. The use of fast features, supple-

mented by a phase correlation based bootstrap, allows for handling large and complex

camera motions while preserving real-time computation. A fast tonal alignment stage,

based on histogram specification, has been conceived in order to deliver exact his-

togram matching and limited image distortion. Replacing standard mapping functions

with one-to-many mapping relationships has been key to avoid histogram distortion

artifacts without incurring in computationally intensiveimplementations.

Moreover, the mosaicing algorithm does not rely on any a priori information re-

garding scene or camera, thus resulting in a practical and flexible image-based solution.

Accuracy, fast processing and flexibility have enabled integration into a video surveil-
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lance system for on-line motion detection using a PTZ camera. Extensive experiments

with several challenging photographs and surveillance sequences have shown the ef-

fectiveness of the proposed approach.

As far as principled performance assessment of mosaicing algorithms is concerned,

to the best of our knowledge, no established evaluation framework exists in literature,

albeit a widely accepted quantitative evaluation procedure is highly desirable for a

discipline moving from its pioneering works to maturity. This issue has been addressed

by devising a comprehensive evaluation methodology including data sets, ground-truth

information and performance metrics. The effectiveness of the proposed methodology

has been demonstrated by evaluating and ranking three algorithms that produce visually

indistinguishable results.

Camera pose reconstruction.An original use of image mosaics in conjunction with

standard pose reconstruction algorithms has been proposed. The idea is to model the

reference object, i.e. the object with respect to which the pose is estimated, with a mo-

saic built offline from several detailed images. Standard pose reconstruction from pla-

nar object algorithms can then compute the pose between a given frame and the mosaic.

Experiments, using two different pose estimation algorithms, have demonstrated con-

siderable improvements in estimation accuracy. The mosaic-based pose reconstruction

approach has been successfully integrated into a real-timeAugmented Reality system

under development in our Laboratory.

Moreover, a markerless vision-based approach based on natural features tracking

has been conceived as a novel interface for gaming applications. The proposed ap-

proach allows the user to interact with a videogame by simplymoving a webcam

pointing towards any planar textured object present in the scene. The only require-

ments being a consumer grade camera, the proposed interfaceis practical, inexpensive

and, according to the feedback received by several users, intuitive and enjoyable.

Sparse reconstruction of deformable shapes.A robust vision-based approach for ac-

curate shape recovery of deformable surfaces from a single camera has been devised.

Building on previous work in literature, the proposed method addresses the problem

of obtaining highly accurate measurements of large and complex deformable objects,

such as aircraft wings. State-of-the-art keypoints matching techniques have been de-

ployed for non invasive, accurate and reliable sensing. A sophisticated modelization

of the problem allows for dealing with reconstruction ambiguities, stemming from sin-

gle view analysis, by introducing smoothness and continuity constraints in a concise

way. A iterative linear LS estimation algorithm, based on projection kernels, delivers

accurate results and fast computation.
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A quantitative validation, using the SolarImpulse 4-meterwingspan scaled model,

has reported reconstruction errors in the order of 2 mm compared to ground truth data,

thus making it possible to foresee deployment of the method for accurate, cheap and

non contact measurement of aircraft wings deformations.

7.2 Future directions

This final section discusses some possible avenues for future research and applications

stemming from results and insights achieved in the course ofthe doctorate and dis-

cussed throughout this thesis.

Evaluation methodology for image mosaicing algorithm.For long time, image mo-

saics have been assessed subjectively via visual inspection, for qualitative applications

such as digital photography, photomontage and post production effects, have been con-

sidered as the most important targets of such technology. The fast development in

theoretical understanding, algorithms and processing power has rapidly raised the bar

of mosaics quality to a level human eyes cannot discriminateor yield decisive insights.

Moreover, nowadays mosaicing algorithms are employed not only to generate visu-

ally pleasant pictures but also serve as key building blocksof many computer vision

applications, such as e.g. motion detection and tracking, mosaic-based localization,

resolution enhancement, augmented reality. Finally, history teaches that the introduc-

tion of widespread accepted quantitative benchmarks invariably brought decisive ben-

efits to the research within discipline, by facilitating communication, collaboration and

dissemination among researchers dealing with similar challenges.

For these reasons, we hold a firm conviction that a widely accepted quantitative

evaluation procedure is of utter importance for image mosaicing to moves from its

pioneering works to maturity. The purpose of the evaluationmethodology described

in chapter 4is to provide the image mosaicing community witha comprehensive tool

that, we hope, will allow for principled discussion about algorithms and performances

among researchers and professionals. Data sets, rankings and further information on

the evaluation methodology can be freely accessed at the websitehttp://www.vision.deis.unibo.it/MosPerf.

All the researchers operating in the image mosaicing fields are heartily invited to use

the methodology for evaluating their own algorithms, as well as to suggest insights,

corrections, additional datasets or everything that couldhelp improving our current

proposal. The invitation is extended to companies developing commercial image mo-

saicing softwares, for they may gather useful insights by evaluating their commercial

products, such as [6, 8, 10, 5, 3, 14, 11], according to the proposed methodology. Re-

markably, no disclosure of any kind of technical detail is needed since just the mosaics

http://www.vision.deis.unibo.it/MosPerf
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obtained on the reference data sets are required for the evaluation to take place.

Vision-based interface for portable device games.The ubiquitous presence of com-

puterized equipments in everyday environment calls for conception and design of natu-

ral and easy-to-use human-machine interfaces. Practical,straightforward and inexpen-

sive are the keywords for the next generation of interactionparadigms. Videogames

are a challenging test ground since fast response and high accuracy are also required.

Vision-based interfaces, as the one described in chapter 5.2, hold the potential to fulfill

this expectation.

In particular, the segment of intelligent hand held devices, such smart-phones [2],

PDA or consoles (Nintendo DS [7], Play Station Portable [12]), may see in the near

future an ever-increasing penetration of vision based interface. Indeed, the proposed

approach is particularly suited to enable gaming applications on hand held devices,

for the user may simply point the integrated camera toward a textured plane and play

by moving the device in his hand. Moreover, recent demonstration of camera pose

reconstruction using natural keypoints on mobile phones allows for envisioning the

deployment of camera-based games, such as Black Hole, on everybody’s portable de-

vices. Whatever the actual videogame, the proposed human-interface method may be

employed as a general purpose middleware to deliver pose information, concerning the

hand held device, to the game logic.

Video-based metric measurement of dynamic scene.Vision-based reconstruction

approaches are known to recovery the geometric structure from the analysis of multi-

ple views of the same subject. Several applications have already hit the market, e.g.

ImageModeler [4], PhotoModeler [13], Boujou [1], Australis [9]. However, existing

products are mainly intended for static scenes or dedicatedto specific functions, i.e.

image stabilization, super resolution. Moreover, the availability of a number of images

may not be easily ensured in any given scenario.

The video-based measurement algorithm for deformable surfaces described in chap-

ter 6 holds the potential to pave the way a new generation of accurate non invasive

tools for geometric reconstruction of complex, static or dynamic, objects from single

pictures, provided that a rest position model is available.Although the rest model has

still to be constructed with traditional methods, once it isavailable shape reconstruction

can be attained on-line from a single image and deformable objects or dynamic scenes

can be handled seamlessly.
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