
Dottorato di Ricerca in Informatica
Università di Bologna, Padova

Settore scientifico disciplinare: INF/01

Ciclo XXI

Design and Performance Evaluation of
Network-on-Chip Communication

Protocols and Architectures

Nicola Concer

March 2008

Coordinatore: Relatore:

Prof. Simone Martini Dott. Luciano Bononi

Abstract

The scale down of transistor technology allows microelectronics manufacturers such

as Intel and Ibm to build always more sophisticated systems on a single microchip.

The classical interconnection solutions based on shared buses or direct connections

between the modules of the chip are becoming obsolete as they struggle to sustain

the increasing tight bandwidth and latency constraints that these systems demand.

The most promising solution for the future chip interconnects are the Networks

on Chip (NoC). NoCs are network composed by routers and channels used to inter-

connect the different components installed on the single microchip.

Examples of advanced processors based on NoC interconnects are the Ibm Cell

processor, composed by eight CPUs that is installed on the Sony Playstation III and

the Intel Teraflops project composed by 80 independent (simple) microprocessors.

On chip integration is becoming popular not only in the Chip Multi Processor

(CMP) research area but also in the wider and more heterogeneous world of Systems

on Chip (SoC). SoC comprehend all the electronic devices that surround us such as

cell-phones, smart-phones, house embedded systems, automotive systems, set-top

boxes etc. . .

SoC manufacturers such as ST Microelectronics , Samsung, Philips and

also Universities such as Bologna University, M.I.T., Berkeley and more are all

proposing proprietary frameworks based on NoC interconnects. These frameworks

help engineers in the switch of design methodology and speed up the development

of new NoC-based systems on chip.

iii

In this Thesis we propose an introduction of CMP and SoC interconnection

networks. Then focusing on SoC systems we propose:

• a detailed analysis based on simulation of the Spidergon NoC, a ST Micro-

electronics solution for SoC interconnects. The Spidergon NoC differs from

many classical solutions inherited from the parallel computing world. Here we

propose a detailed analysis of this NoC topology and routing algorithms. Fur-

thermore we propose aEqualized a new routing algorithm designed to optimize

the use of the resources of the network while also increasing its performance;

• a methodology flow based on modified publicly available tools that combined

can be used to design, model and analyze any kind of System on Chip;

• a detailed analysis of a ST Microelectronics -proprietary transport-level

protocol that the author of this Thesis helped developing;

• a simulation-based comprehensive comparison of different network interface

designs proposed by the author and the researchers at AST lab, in order to

integrate shared-memory and message-passing based components on a single

System on Chip;

• a powerful and flexible solution to address the time closure exception issue in

the design of synchronous Networks on Chip. Our solution is based on relay

stations repeaters and allows to reduce the power and area demands of NoC

interconnects while also reducing its buffer needs;

• a solution to simplify the design of the NoC by also increasing their perfor-

mance and reducing their power and area consumption. We propose to replace

complex and slow virtual channel-based routers with multiple and flexible

small Multi Plane ones. This solution allows us to reduce the area and power

dissipation of any NoC while also increasing its performance especially when

the resources are reduced.

iv

This Thesis has been written in collaboration with the Advanced System Tech-

nology laboratory in Grenoble France, and the Computer Science Department at

Columbia University in the city of New York.

From this work the author published [BCG+07,BC06,CPC08] and submitted for

reviw [NMLb,NMLa,MNL09,CSB09]:

• L.Bononi, N.Concer Simulation and Analysis of Network on Chip Architec-

tures: Ring, Spidergon and 2D Mesh The Proceedings of the 9-th IEEE Con-

ference on Design, Automation and Test in Europe (DATE 2006), 6-10 March

2006 ICM, Munich, Germany. (ACM DL);

• L.Bononi, N.Concer, M.Grammatikakis NoC Topologies Exploration based on

Mapping and Simulation Models The Proceedings of the 10th Euromicro Con-

ference on Digital System Design Architectures, Methods and Tools (DSD

2007);

• N. Concer, M. Petracca, and L.P. Carloni Distributed Flit-Buffer Flow Control

for Networks-on-Chip The Proceedings of the Sixth International Conference

on Hardware/Software Codesign & System Synthesis (CODES+ISSS), 2008;

• N.Concer, S.Iamundo and L.Bononi aEqualized a novel routing Algorithm for

Spidergon NoC The Proceedings of the 12-th IEEE Conference on Design,

Automation and Test in Europe (DATE 2009), April 2009 ICM, Nice, France.

(ACM DL);

• L. Bononi, N. Concer, and M.D. Grammatikakis, “System-Level Tools for NoC-

based multicore sesign” in Embedded Multicore Architectures. Ed. G. Ko-

rnaros, Chapter 6, CRC Press (Taylor and Francis Group), 40 pages, 2009,

to appear.;

• M.Petracca, N.Concer and L.P.Carloni Multi-Planes vs. Virtual Channel: a

Comparative Analysis ”submitted for conference publication”;

v

• N.Concer, M.Petracca and L.P.Carloni Wire Pipelining on Synchronous NoC

”submitted for journal publication”;

vi

Contents

Abstract iii

List of Figures xi

I Networks on Chip 1

1 Introduction 2

1.1 Design Challenges . 7

1.1.1 Protocol Design . 7

1.1.2 Architecture Analysis . 9

1.1.3 Simulation . 10

1.2 Contributions of the Thesis . 10

1.3 Thesis Plan . 11

2 Networks On Chip 13

2.1 Architectures . 13

2.1.1 Topologies . 13

2.1.2 Network Interfaces . 16

2.1.3 Routers . 18

2.1.4 Channels . 19

2.1.5 Virtual Channels . 19

vii

2.2 Protocols Design . 21

2.2.1 Routing . 21

2.2.2 Deadlock Handling . 23

2.2.3 Mapping . 25

II Network Topologies 27

3 The Spidergon NoC 29

3.1 Basic Spidergon Routing Algorithms 30

3.2 Spidergon Analysis . 33

3.2.1 Virtual Channel Selection Algorithms 33

3.2.2 Routing Algorithms . 39

3.3 The aEqualized Routing Algorithm 43

3.3.1 Routing Algorithms Characterization 44

3.3.2 aEqualized Algorithm . 45

3.3.3 System Level Analysis . 48

3.4 NoC Comparison . 52

3.5 Conclusions . 61

4 Task Mapping 63

4.1 Synthetic Traffic Models . 66

4.2 Graph Theoretical Analysis . 66

4.2.1 Generating Synthetic Graphs using Tgff 68

4.3 Task Mapping for SoC . 70

4.3.1 Quality Metrics for Application Embedding 70

4.3.2 The Scotch Partitioning Tool 73

4.4 The OMNeT++ Simulation Framework 77

4.5 A Case Study . 78

viii

4.5.1 Application Task Graphs . 78

4.5.2 Prospective NoC Topology Models 80

4.5.3 The Spidergon Network on Chip 80

4.5.4 Task Graph Embedding Analysis 82

4.5.5 Simulation Models for the Proposed NoC Topologies 84

4.5.6 Mpeg4 a Realistic Scenario . 89

4.6 Conclusions and Extensions . 94

III Transport Protocols for NoC 97

5 Data Transfer Protocols 99

5.1 Introduction . 99

5.2 Message-Dependent Deadlock . 103

5.3 Credit Based (CB) Protocol . 105

5.4 Connection Then Credits (CTC) Protocol 108

5.5 Analysis and Simulation . 111

5.6 Conclusions . 114

6 Network Interface Enhancement 115

6.1 Network Plug Switch . 115

6.1.1 Simulation and Analysis . 118

IV Communication Issues 127

7 Communication Link Systems 129

7.1 Overview . 129

7.2 Basic NoC Components . 131

7.3 Wire Pipelining & Flow Control . 133

7.4 Area Occupation Analysis . 137

ix

7.5 System-Level Simulations . 139

7.5.1 Bandwidth Analysis . 141

7.5.2 Latency Analysis . 143

7.6 Conclusions . 150

8 Link Management 152

8.1 Introduction . 152

8.2 Related Work . 155

8.3 Multi-Plane Partitioning of a NoC . 156

8.4 Model-Based Comparative Analysis 158

8.4.1 Area Model . 158

8.4.2 Power Model . 160

8.4.3 Delay Model . 161

8.5 Synthesis-Based Comparative Analysis 162

8.6 System-Level Simulations . 165

8.7 Conclusions . 168

9 Conclusions 170

References 172

x

List of Figures

1.1 Improvement in the semiconductor technology leads a scale down of

the components on a chip. 3

1.2 Examples of communication structures in Systems-on-Chip. a) tra-

ditional bus-based communication, b) dedicated point-to-point links,

c) a chip area network. 4

1.3 ISO-OSI Reference Model. 5

2.1 NoC Architectures: (a) Spin, (b) 2D Mesh, (c) Torus, (d) Folded

Torus, (e) Spidergon /Octagon and (f) Butterfly Fat Tree. 14

2.2 Concentrated Mesh NoC . 16

2.3 Logic representation of a Network Interface 17

2.4 Logic representation of a classical input-queued router. 18

2.5 Example of performance improvement given by VC: a packet is for-

warded even if another packet is blocked on another VC. 20

2.6 Example of (a) minimal deterministic, (b) minimal adaptive, (c) non

minimal adaptive routing. 22

2.7 A Spidergon NoC and the channel dependency graph of its clock-wise

ring channels. 24

3.1 The Spidergon Network on Chip . 29

3.2 The Spidergon Network on Chip . 32

xi

3.3 Channel dependency graph (a) and average queue occupation (b) for

Single Deadline algorithm. 34

3.4 Channel dependency graph (a) and average queue occupation (b) for

Multiple Deadline algorithm. 36

3.5 Channel dependency graph (a) and average queue occupation (b) for

Distance Based Deadline algorithm. 38

3.6 Average packet latency comparison for single and multiple deadline

and distance based VC selection algorithm 39

3.7 Eight nodes Spidergon (a) and relative channel dependency graph (b)

of the aLast routing algorithm with the single deadline VC selection

algorithm. 40

3.8 Throughput on a Spidergon NoC comparing for different routing al-

gorithms (a) under uniform traffic pattern and (b) under non uniform

traffic pattern. 41

3.9 Round trip time on a Spidergon NoC with 8 Initiator and 4 Targets. . 43

3.10 Routing behavior towards node zero using aFirst (a) and aLast (b) . 44

3.11 The Routing aEqualized data-flow considering a single hot spot. Nodes

in green are tagged as aLast and those in magenta are tagged as aFirst 46

3.12 The Routing aEqualized data-flow considering three hotspots 47

3.13 A drawback of the aEqualized routing algorithm: hotspot should not

be connected to aFirst-tagged nodes 47

3.14 Standard node router with 2 virtual channels on the CW and CCW

(left and right) links and one on the Across and NI ones (up and down) 48

3.15 Average packet latency of a 24-nodes Spidergon with three hotspot

Storage Elements . 49

3.16 Number of required Across bidirectional links on a Spidergon NoC

with respect to the size of the network 50

3.17 Spidergon router with three links towards to the Network Interface . 51

xii

3.18 Average packet latency of a 24-nodes Spidergon with one (a), two (b)

and three (c) hotspots using three independent NI channels 51

3.19 NoC topologies: IPs connected to numbered nodes on (a) Spidergon,

(b) Ring, (c) (m ∗ n) 2D Mesh. 52

3.20 (a) Network Diameter ND and (b) Average Network Distance, vs.

number of nodes N in Ring, ideal and real 2D Mesh and Spidergon

NoCs. 54

3.21 Model of a Spidergon STNoC node 55

3.22 Analytical and simulation-based average network distances (hops). . . 56

3.23 Average (a) throughput and (b) latency on a single hot spot traffic

pattern. 57

3.24 Average (a) throughput and (b) latency on a double hot spot traffic

pattern. 59

3.25 Average (a) throughput and (b) latency on a homogeneous traffic

pattern. 60

4.1 Our design space exploration approach for system-level NoC selection. 64

4.2 Metis visualization of the Spidergon NoC layout. 67

4.3 Source file for Scotch partitioning tool. 74

4.4 Target file for Scotch partitioning tool. 75

4.5 Application models for: (a) 2-rooted forest (SRF) , (b) 2-rooted tree

(SRT), (c) 2-node 2-rooted forest(MRF) application task graphs. . . . 78

4.6 The Mpeg4 decoder task graph. 79

4.7 The Spidergon topology translates to simple, low-cost VLSI imple-

mentation. 81

4.8 Edge Dilation for: (a) 2-rooted and (b) 4-rooted forest, (c) 2 node-

disjoint and (d) 4 node-disjoint trees, (e) 2 node-disjoint 2-routed and

(f) 4 node-disjoint 4-routed forests in function of the network size. . . 83

xiii

4.9 Edge expansion for 12-node Mpeg4 for different topologies (target

graphs). 84

4.10 Maximum throughput as a function of the network size for: (a) 2-

rooted forest (b) 4-rooted forest (SRF) , (c) 2-rooted tree (d) 4-rooted

tree (SRT), (e) 2-node 2-rooted forest and (f) 4-node 2-rooted forest

(MRF) and different NoC topologies. 86

4.11 Amount of memory required by each interconnect. 89

4.12 Task execution time (a) and average path length (b) for Mpeg4 traffic

on the considered NoC architectures. 89

4.13 Average throughput on router’s output port for (a) Spidergon, (b)

Ring, (c) Mesh and (d) unbuffered Crossbar architecture. 92

4.14 Network RTT in function of Initiators’ offered load. 93

4.15 Future work:dynamic scheduling of tasks. 94

5.1 Message-dependent deadlock in a shared-memory request-response

paradigm. 100

5.2 Message dependency in shared memory (a) and message passing (b)

communication paradigms. 103

5.3 The MP Video Object Plane Decoder (Vopd) task graph. 106

5.4 Network Interface implementations: (a) credit based and (b) CTC. . 106

5.5 The CTC transaction-definition procedure: (a) a the consumer NI

receives multiple P Req, (b) the consumer selects one requests and

generates the relative P Ack, (c) the selected producer NI starts

sending the flits. 109

5.6 Message latency as function of (a) the injection rate and (b) the

number of credits associated to a P Ack packet. 111

5.7 NoC Throughput as function of the message size when K = 32. . . . 112

xiv

5.8 Breakdown of the aggregate number of input and output queues in

the NoC NIs for the Vopd application. 113

6.1 A node using a NPS module to interconnect a PE, SE and CTC

module to the underlying router. 116

6.2 Possible Node setting: (1) NPS node with two CTC I/O channels and

two routers with no VNs, (2) NPS node with two CTC I/O channels

and one router with two VNs, (3) NPS node with one CTC I/O

channel and one router with two VNs, (4) NPS node with one CTC

I/O channel and two router with no VNs, (5) NPS node restricted to

the MS traffic and independent network from CTC traffic, (6) system

with no NPS, MS traffic traveling on two independent networks , (7)

system based on two NPS nodes, one switching MS traffic and one

switching CTC traffic, (8) system based on four independent physical

networks CTC node with two I/O channels, (9) NPS node restricted

to the MS traffic and double independent networks from CTC traffic. 117

6.3 The (a) traffic pattern used to test the contention between P Data

and P Ack packets on the (b) output port of node three. 118

6.4 Throughput of P Data flit received the the CTC PEs nodes in the

different scenarios and with respect to the varying max packet size

and credit counter. 120

6.5 Test1: throughput comparison of the considered scenarios using their

best performing configurations. 121

6.6 Performance degradation adding Master/Slave traffic to the “no noise”

best setting. 122

6.7 Throughput of P Data flit received the the CTC PEs nodes when

“noisy” Master/Slave traffic is used with respect to the different sce-

narios to the varying max packet size and credit counter. 124

xv

6.8 Test1: throughput comparison of the considered scenarios using their

best performing configurations. 125

6.9 Performance degradation adding Master/Slave traffic to the ”noisy”

best setting. 126

7.1 Alternative ways to pipeline NoC channels. 130

7.2 NoC components: (a) router; (b) FF-repeater; (c) RS-repeater. . . . 131

7.3 Application task graphs: (a) 4-Rooted Tree Forest (4RTF), (b) MPEG4

decoder, (c) VOPD decoder, and (d) random uniform traffic (URT). . 137

7.4 NoC topology examples: (a) a 8-node Spidergon and (b) a 3 × 3 2D

Mesh. 139

7.5 Results with Spidergon supporting the 4RTF traffic: (a) average

bandwidth and (b) breakdown of channel total storage. 141

7.6 Comparing RS-repeaters with Ack/Nack vs FF-repeaters with Credit

Based: Round trip time for Spidergon with (a) 4RTF, (b) MPEG4,

and 2D Mesh with (e) 4RTF, (f) MPEG4. Average packet latency for

Spidergon with (c) VOPD, (d) URT and 2D Mesh with (g) VOPD,

(h) URT. 143

7.7 RS-repeaters with ack/nack vs FF-repeaters with credit based: break-

down of channel total storage required to obtain the minimal latency

in a non-saturated NoC for: Spidergon with (a) 4RTF, (b) MPEG4,

(c) VOPD, (d) URT, and 2D Mesh with (e) 4RTF, (f) MPEG4, (g)

VOPD, (h) URT. 145

7.8 Round trip time of a Spidergon NoC with MPEG4 and various sce-

nario of repeaters’ random deployments, with: (a) channel storage is

set to S = 8, (b) Q = 6 for FF-systems and Q = 2 for RS-systems,

(c) Q = 6 for both FF- and RS-systems, (d) Q changes depending on

the value of K. 147

xvi

7.9 Average packet latency of a Spidergon NoC with URT and various

scenario of repeaters’ random deployments, with: (a) channel storage

is set to S = 8, (b) Q = 6 for FF-systems and Q = 2 for RS-systems,

(c) Q = 6 for both FF- and RS-systems, (d) Q changes depending on

the value of K. 148

7.10 Round Trip Time of a “fat” Relay Station in function of S. 150

8.1 A standard NoC (left) and a Multi-Plane NoC for p = 2 (right). . . . 153

8.2 Block diagrams of a VC router (left) and the simpler router used in

the MP NoC (right). 154

8.3 Throughput (a) and Latency (b) with Q = 2 under Uniform traffic. . 166

8.4 Throughput (a) and Latency (b) with Q = 2 under Uniform traffic. . 167

xvii

Part I

Networks on Chip

1

Chapter 1

Introduction

Introduction

This thesis addresses the analysis and design of algorithms and protocols for Network

on Chip (NoC) interconnection systems. We propose to investigate the following

research issues: (i) Architecture analysis: we intend to evaluate the main NoC

architectures proposed in Literature such as 2D Matrix, Ring, Crossbar and the

novel Spidergon NoC to understand their main characteristic and the cases where

they constitute the best choice. (ii) protocol design: investigation and proposal of

novel transport and routing algorithms for the Spidergon Network on Chip. (iii)

Network design: investigate the major issues in the actual NoC implementation and

interconnection. The analysis and the characterization of protocols and architectures

for NoC systems that we propose throughout this Thesis have been obtained through

computer-based simulation.

According to the International Technology Roadmap for Semiconductors projec-

tions, by the end of this decade complex systems, called Multi Processor System-on-

Chip (MPSoC), will contain billions of transistors running at a frequency of many

GHz [GDvM+03,BM02].

As depicted in Figure 1.1 the technology of semiconductors keeps on scaling down

allowing more and more components to be installed within the same area of a chip.

As a consequence complex systems that once required many microchip for being

Chapter 1. Introduction 3

Figure 1.1: Improvement in the semiconductor technology leads a scale down of

the components on a chip.

built, now can be installed on a single microchip containing all the logic of the system

and the interconnection channels connecting them. Examples of these capabilities

are the recent eight-cores IBM’s Cell processor installed on the Sony’s Playstation

III [KPP06] and the more futuristic eighty cores Intel’s Teraflop [H+07] processors.

A central and key element in future complex MPSoC is the global On-Chip

Communication Architecture (OCCA) or On Chip Interconnect (OCIN): the infras-

tructure that interconnects the components of a MPSoC and provides the means

necessary for distributed computation among different processing elements [DT04].

The natural evolution of the bus-based solution reported in Figure 1.2(a) and

the poorly scalable point to point networks seen in Figure 1.2 (b) are the new

generation architectures called Network on-Chip (NoC) represented in Figure 1.2 (c)

[MB06,DT01,HJK+00,NTIJ04].

Examples of innovative NoC architectures include the Lip6 Spin [AAZ03], the

M.I.T. Raw [T+02], the Vtt (and various Universities) Eclipse [For02] and Nos-

trum [GRK+05], Philips’s Æthereal NoC [GDvM+03], Stanford/Bologna Univer-

sities’ Netchip [BM02, JMBM04] and ST Microelectronics ’ Spidergon NoC

[CLM+04,MRG+04,CGL+08,BC06].

NoC are packet-switched communication networks derived from the parallel com-

puting domain. They are based on a well-defined protocol stack similar to the

ISO/OSI seen in the network on computers.

A layered-stack approach to the design of the on-chip inter-core communications

can be defined accordingly with the communication-based methodology that will

4 Chapter 1. Introduction

Figure 1.2: Examples of communication structures in Systems-on-Chip. a) tradi-

tional bus-based communication, b) dedicated point-to-point links, c) a chip area

network.

be conceived for the system. Exploiting the lesson learned by telecommunication

community, the global on-chip communication is decomposed into layers similar to

the ISO-OSI Reference Model (see Figure 1.3). The protocol stack enables different

services, providing to the programmer an abstraction of the communication frame-

work. Layers interact through well-defined interfaces and they hide the low level

details [DT01,MB06].

• The Physical layer: refers to all that concerns the electric details of wires,

the circuits and techniques to drive information (drivers, repeaters, layout. . .);

• Data link: ensures a reliable transfer despite of the physical unreliability and

deals with medium access control for sharing a common channel resource, with

contention-based access;

• Network level: handles issues related to the topology and the consequent

routing scheme;

• Transport layer manages the end-to-end services and the packet segmentation/re-

assembly.

• Upper levels can be viewed merged up to the Application as a sort of adap-

tation layer that implements (in HW or through part of an OS) services and

Chapter 1. Introduction 5

Figure 1.3: ISO-OSI Reference Model.

exposes the NoC infrastructure according to a Message Passing (MP) pro-

gramming paradigm.

Despite the similarity discussed above, it is clear that the micro-network in the

single chip domain differs from the wide-area networks under many different aspects:

• spatial locality of modules of the system: NoC components are installed on the

same microchip so distances are minimal and predictable while the uniformity

of the channels grant relatively reliable communications;

• reduced non-determinism of the on-chip traffic: as we will see NoC systems are

divided in two main classes depending on the knowledge about the traffic they

have to support. For all purpose NoC the traffic can vary depending on the

application that is currently running. SoC networks instead are characterized

by well known traffic patterns that are known at design time. The NoC then

can be designed to exactly match the requirement of the application;

• energy and power constraints: NoC systems are designed to support either AC

or battery-powered systems. Controlling and minimizing the need of power is

a vital aspect especially for portable systems such as phones and multimedia

devices that will heavily relay on NoC interconnects;

6 Chapter 1. Introduction

• need of low cost and low complexity solutions: NoC interconnects will be

extensively used in many commercial-oriented electronic devices. The mini-

mization of costs of all sort is an important aspect of for the development of

these systems;

• reusability: by providing standard Network Interfaces the same network can

be used to interconnect heterogeneous components that implement different

tasks or algorithms and that are designed by third party companies.Examples

of such standard interfaces are Open Core Protocol (OCP) [OI], Virtual Com-

ponent Interface (VCI) used in the Spin and Proteo [STAN04] NoCs Advanced

eXtensible Interface (AXI) [AA] and Device Transaction Level (DTL) [PS];

Depending on the knowledge at design time about the traffic that a network

will have to support we distinguish two main families of Network on Chip: possible

solutions.

• Chip Multi Processor: (CMP) are networks designed to support any kind

of traffic. At the network’s design time no knowledge about the traffic is

available. CMP hence are built to offer best effort services. Quality of ser-

vices (QoSs) capabilities can be granted by differentiating the traffic into

classes of priorities [GDvM+03] each one assigned to a specific virtual channel

(VC)1 [TS04,GDvM+03] or by providing guaranteed service levels on dedicated

connection [TJ05]. CMP systems are mainly composed by similar components

grouped such as sets of processors and memories. This allows the use of reg-

ular topologies often borrowed from the parallel computing world such as 2D

Mesh, Torus, Ring etc. . . [DT04,MB06,DYN03];

• System on Chip: (SoC) are systems integrating heterogeneous components,

often developed by third party companies at the purpose of building an appli-

cation specific systems. In SoC often the traffic patterns are known since the

design time hence the interconnection networks can be build to exactly match

1see Section 2.1.5

Chapter 1. Introduction 7

the application requirement [BJM+05, JBMM04, SCK07, Pin08]. In SoC for

embedded applications designers use standard industrial CAD-tool flows for

the synthesis of a platform-specific NoC and must cope with an increasing

number of timing-closure exceptions due the differences in size across its het-

erogeneous processing cores. This problem becomes particularly hard when

using nanometer technology processes [P+07] as the impact of global inter-

connect wires raises exponentially the number of wire exceptions, i.e. timing-

closure violations due to the delay of a global wire exceeding the target clock

period (the clock at which the system is deigned to run) Tclk [CSV02,HMH01].

The research results discussed in this Thesis will be mainly focused on System

on Chip architectures.

1.1 Design Challenges

1.1.1 Protocol Design

The paradigm for interconnection systems based on Networks on Chip requires the

design of new communication protocols. Despite NoC can be seen as a special

case of a parallel computing architecture, these systems are characterized by tight

constraints on the complexity of the adopted algorithms (because they have to be

implemented electronically) and the available resources. For these reasons most of

the well known parallel computing algorithms and protocols for parallel architectures

appear excessively expensive or impossible to implement in a real NoC microchip.

More specifically, beside many others not related with the computer science field,

NoC interconnect require the development of new algorithms and protocols to solve

the following issues:

• Routing: Routers are implemented as embedded circuits into the NoC in-

terconnect. For this reason they have to be simple, fast and their buffer

requirements have to be reduced to the minimal. For these reasons routers

often adopt a forwarding scheme called wormhole [DYN03,DT04]. Wormhole

8 Chapter 1. Introduction

allows a deep pipeline and a reduced buffering cost. Packets are divided into

basic units called flits; the queues in each node have the flit granularity and

the physical node-to-node links are managed by a flow control that works on

a flit per flit basis;

• Deadlock: is an important issue that has to be solved by smart solutions.

Parallel computing systems address the deadlock problem by adopting complex

solutions based on Virtual Channels (VC) [DYN03,PD01]. Although still valid

for the NoC domain, these techniques are expensive to realize so should be

reduced to the minimum indispensable;

• Mapping and resource allocation: A major challenge for predicting per-

formance and scalability of a particular NoC architecture relies on precise

specification of real application traffic requirements arising from current and

future applications as well as the scaling of existing applications. In example,

it has been estimated that SoC performance varies by up to 250% depending

on NoC design, and up to 600% depending on communication traffic [LRD01],

while NoC power dissipation can be reduced by more than 60% by using ap-

propriate mapping algorithms [HM03].

• Data sharing: often solving the deadlock problem at network level does not

completely address the problem of circular dependencies among the resources

of a system. Considering the Transport or higher layers of the ISO/OSI stack

presented in Figure 1.3 in fact, a new kind of deadlock, called Protocol or

message-dependent Deadlock [SP03a, D.K97]) can arise. Protocol deadlock

happens when Processing Elements (PEs) and Storage Elements (SEs) share

the same communication channels to send they relative messages. In example

in the shared memory paradigm PEs send request messages to SEs which in

turn replay by sending data or acknowledgements packets. If both the request

and the replay messages share the same NoC channels and the network does

not use a specific flow control protocol to guarantee that the sent messages will

be accepted on the peer side, the system may fall in a deadlocked situation

Chapter 1. Introduction 9

generated by the additional dependencies between input and output channels

of the SE nodes. In Chapter 5 we will present the solution we proposed to

address this issue;

• System Synchronization: NoC can be implemented as synchronous, mesochronous

or asynchronous systems. In the first case all the component of the system

work following the same clock signal. In the mesochronous case each compo-

nent work at the same frequency but possibly with different phases while in

the third case there are no restrictions upon the frequency of any component.

In this Thesis we consider only synchronous cases. Here the shared clock must

be set so that the messages exchanged throughout the channel of the NoC

have enough time to traverse the link and be correctly delivered. This is a dif-

ficult property that by the shrinking of technology and the increase of working

frequency requires ad-hoc solution to be guaranteed. In Chapter 7 we will

discuss this problematic in detail and propose a solution to it.

1.1.2 Architecture Analysis

The most frequently used on-chip interconnection architecture is the shared medium

arbitrated bus, where all communication devices share the same transmission medium.

The advantages of the shared-bus architectures are simple topology, low area cost,

and extensibility. However, for a relatively long bus line signals may not respect

the tight synchronism constraints [MB06]. Moreover, every additional IP block con-

nected to the bus causes increased propagation delay and eventually it could exceed

the targeted clock period. This, in practice, limits the number of IP blocks that can

be connected to a bus and thereby limits the system scalability [MB06,DT01].

To overcome the above-mentioned problems, several research groups have ad-

vocated the use of a communication-centric approach to integrate IPs in complex

SoCs. The Network on Chip upon which the SoC relies has to maximize the par-

allelism of the system while minimizing the complexity of the routers, the resource

requirements (buffers) and the overall system area and power consumption. In Lit-

10 Chapter 1. Introduction

erature we can find many different solutions. One of the purpose of this Thesis it to

investigate the proposed solutions in order to understand the main characteristics

that make a NoC topology be preferable upon the others.

1.1.3 Simulation

NoC systems are relatively small systems (up to 64 nodes) that have to support

highly predictable traffic bursts. Evaluating such a systems then does not require a

powerful and number crunching distributed simulation. What is important instead

is the flexibility of the model that has to permit the rapid and “easy” integration

of new algorithms and protocols in order to test their effective performance. This

tool then has to support different NoC topology, Routing, QoS and transport-layer

algorithms as well as different traffic patterns and injection loads;

1.2 Contributions of the Thesis

Network on Chip are a relatively new concept. Research in this area is still at the

beginning as many issues are still open and many tools are required to better explore

design and analyze these new concept [GIP+07,JZH].

The work we have been focused on this Thesis has covered multiple aspects that

can be reassumed in the following propositions:

• a detailed analysis based on simulation of the Spidergon NoC, a ST Micro-

electronics solution for SoC interconnects. The Spidergon NoC differs from

many classical solutions inherited from the parallel computing world. Here we

propose a detailed analysis of this NoC topology and routing algorithms. Fur-

thermore we propose aEqualized a new routing algorithm designed to optimize

the use of the resources of the network while also increasing its performance;

• a methodology flow based on modified publicly available tools that combined

can be used to design, model and analyze any kind of System on Chip;

Chapter 1. Introduction 11

• a detailed analysis of a ST Microelectronics -proprietary transport-level

protocol that the author of this Thesis helped developing;

• a simulation-based comprehensive comparison of different network interface

designs proposed by the author and the researchers at AST lab, in order to

integrate shared-memory and message-passing based components on a single

System on Chip;

• a powerful and flexible solution to address the time closure exception issue in

the design of synchronous Networks on Chip. Our solution is based on relay

stations repeaters and allows to reduce the power and area demands of NoC

interconnects while also reducing its buffer needs;

• a solution to simplify the design of the NoC by also increasing their perfor-

mance and reduce their power and area consumption. We propose to replace

complex and slow virtual channel-based routers with multiple and flexible

small Multi Plane ones. This solution allows us to reduce the area and power

dissipation of any NoC while also increasing its performance especially when

the resources are reduced.

1.3 Thesis Plan

This Thesis is divided in three main parts. In Part I we analyze the Spidergon net-

work on chip comparing it to a number of different other NoC in particular:

Chapter 2: we discuss the general aspect characterizing the Network on Chip do-

main emphasizing the aspects critical to this Thesis;

Chapter 3: we analyze in detail the Spidergon which we will discuss throughout the

whole Thesis. We also present the aEqualized routing algorithm, a proposal we

made to enhance the use of the network channels reducing costs and improving

performances;

12 Chapter 1. Introduction

Chapter 4: we present the design flow we adopt throughout the Thesis. We describe

the tools we have either developed or adopted in order to perform the analysis

proposed in this work.

In the the Part II of this Thesis we discuss the issue of data streaming support

for Network on Chip. We present the analysis we obtained in developing protocols

and architectures proposed by ST Microelectronics researcher with who we

collaborated throughout our Ph.D. program. In particular:

Chapter 5: We discuss and analyze the Ctc transport protocol,used to regulate

the flow of data between two peers in a message passing environment. Ctc is

a transport-lever protocol developed by ST Microelectronics in collabo-

ration with the author of this Thesis;

Chapter 6: We discuss and analyze different architectures proposed to combine

shared memory and message passing components on the same Network on

Chip.

In Part III we discuss and analyze the proposals we made in order to solve the

issues related to the Signal Propagation Delay and to improve the performance of

the system by also reducing power and area consumption. In particular:

Chapter 7: We describe the Time Closure Exception issue and we propose a solution

based on the use of Relay Stations on the channel. We consider system-level

and register-transfer lever (RTL) analysis used to compare both performance

and actual chip-area of the proposed solution;

Chapter 8: We propose a new approach based on Multi Planes (MP) used to

improve performance while reducing area and power consumption on a NoC.

We propose to replace Virtual Channels (VC) with MPs and we show that this

solution achieves better performance especially when resources are limited.

Chapter 2

Networks On Chip

Network on Chip are a special case of parallel computing systems characterized by

the tight constraints such as resource availability, area and power consumption and

cost of the NoC architecture.

Many of the currently adopted architectures and protocols derive directly from

the distributed computing research area from which NoC are a special case. Never-

theless new and NoC-specific solutions are currently being published.

2.1 Architectures

2.1.1 Topologies

A key point on the NoC performance is the interconnect topology. A NoC topology

should be regular and simple so to allow the use of simple and efficient routing

algorithms. Simplicity in fact is directly bounded to the maximum frequency a

circuit can run.

Guerrier and Greiner proposed a generic interconnect template called Spin (Scal-

able, Programmable, Integrated Network) for on-chip packet switched interconnec-

tions, where a fat-tree architecture is used to interconnect IP blocks [AAZ03].

In this fat tree, every node has four children and the parent is replicated four times

at any level of the tree. Figure 2.1(a) shows the basic Spin architecture with N =

16 nodes, representing the number of functional IP blocks in the system. The size

14 Chapter 2. Networks On Chip

Figure 2.1: NoC Architectures: (a) Spin, (b) 2D Mesh, (c) Torus, (d) Folded Torus,

(e) Spidergon /Octagon and (f) Butterfly Fat Tree.

of the network grows as (NlogN)/8. The functional IP blocks reside at the leaves

and the switches reside at the vertices. In this architecture, the number of switches

converges to S = 3N/4 where N is the system size in terms of number of functional

IPs.

Kumar et al. proposed a mesh-based interconnect architecture called Cliché

(Chip-Level Integration of Communicating Heterogeneous Elements) [KJM+02]. This

architecture consists of an m × n mesh of switches interconnecting computational

resources (IPs) placed along with the switches, as shown in Figure 2.1(b) in the par-

ticular case of 16 functional IP blocks. Every switch, except those at the edges, is

connected to four neighboring switches and one IP block. In this case, the number of

switches is equal to the number of IPs. IPs and the switches are connected through

communication channels. A channel consists of two unidirectional links between two

switches or between a switch and a resource.

Dally and Towles [DT04, DT01] proposed a 2D torus as an NoC architecture,

shown in Figure 2.1(c). The Torus architecture is basically the same as a regular

mesh but the switches at the edges are connected to the switches at the opposite

edge through wrap-around channels. Every switch has five ports, one connected

Chapter 2. Networks On Chip 15

to the local resource and the others connected to the closest neighboring switches.

Again, the number of switches is S = N . The long end-around connections can

yield excessive delays. However, this can be avoided by folding the torus, as shown

in Figure 2.1(d).

ST Microelectronics proposed Octagon [KO] and its evolution for NoC

Spidergon [CGL+08,CLM+04,BCG+07,MRG+04]. Spidergon has a regular and

point-to-point topology which is symmetric with vertex- and edge-transitivity.

Thanks to this symmetry all nodes have a global knowledge of the network, allowing

for simple routing and scheduling decisions. Thus, the router hardware implemen-

tation is simple and routing decisions are fast. Figure 2.1(e) shows a special case

of Spidergon/Octagon NoC with 8 nodes and 12 bidirectional links. Each node is

associated with a processing element and a switch. Communication between any

pair of nodes takes at most N/4 hops.

Pande Grecu and Ivanov proposed an interconnect template following a Butterfly

Fat-Tree (BFT) [GPIS04] architecture, as shown in Figure 2.1(f). In our network,

the IPs are placed at the leaves and switches placed at the vertices. A pair of coor-

dinates is used to label each node, (l, p), where l denotes a nodes level and p denotes

its position within that level. In general, at the lowest level, there are N functional

IPs with addresses ranging from 0 to (N−1). The pair (0, N) denotes the locations

of IPs at that lowest level. Each switch, denoted by S(l, p), has four child ports and

two parent ports. The IPs are connected to N = 4 switches at the first level. In the

jth level of the tree, there are N = 2j + 1 switches.

The number of switches in the butterfly fat tree architecture converges to a con-

stant independent of the number of levels. If we consider a 4-ary tree, as shown in

Figure 2.1(f), with four down links corresponding to child ports and two up links

corresponding to parent ports, then the total number of switches in level j = 1 is

N/4. At each subsequent level, the number of required switches reduces by a factor

of 2. In this way, the total number of switches approaches S = N/2 , as N grows

arbitrarily large [GPIS04].

Balfour and Dally present a very comprehensive analysis of NoC topologies and

16 Chapter 2. Networks On Chip

Figure 2.2: Concentrated Mesh NoC

architectures in [BD06a]. They propose the Concentrated Mesh (CMesh) reported

in Figure 2.2, which is a mesh whose nodes are grouped in sets of 4 and the links on

the borders are connected with mode distant set of nodes in a way similar to Torus.

The authors discuss also the idea of duplicating certain NoC topologies, such as

Mesh and CMesh, to improve the system performance. An extensive analysis of NoC

architectures is presented also by Pande et al. and Jayasimha et al. in [PG+05,JZH].

Literature proposes also many other hybrid solutions where the NoC is built

ad-hoc rather than on a fixed topology. This NoC require a previous knowledge of

the flow of data that the NoC will have to handle. Examples of tools generating

ad-hoc networks are Xpipes from University of Bologna and Standford [JBMM04,

JMBM04], Cosi [Pin08] from Berkeley University and the work of Srinivasan et

al. [SCK07].

2.1.2 Network Interfaces

As depicted in Figure 2.3 cores are attached to a NoC through a device called Net-

work Interface (NI). NIs hide the lower network implementation details decoupling

the communication from communication issues handling the former and leaving the

latter to the connected cores.

Chapter 2. Networks On Chip 17

Figure 2.3: Logic representation of a Network Interface

The use of NIs allow (i) the reuse of architecture independent designs, (ii) the

implementation of feature-specic sockets, and (iii) the simplication of system veri-

cation and testing.

To maximize the reusability NIs usually offer a standardized core interface im-

plementing a set of API defined by industrial standards such as Open Core Protocol

(OPC) [OI], Advanced eXtensible Interface (AXI) [AA], CoreConnect [IC], Virtual

Component Interface (VCI) [cis], Device Transaction Level (DTL) [PS], etc. . .

NIs provide a set of communication services such as address decoding and map-

ping, packetization and de-packetization of the core’s messages, packet reordering,

request-reply matching and in case of prioritized services, NIs negotiate with the

underlying routers for the use of the priority-specific services.

In order to guarantee a correct flow of data, beside the low level flow control,

NIs usually implement an end-to-end flow control that assures the availability of

buffering space on the NI side for the messages that will enter the network.

18 Chapter 2. Networks On Chip

Figure 2.4: Logic representation of a classical input-queued router.

2.1.3 Routers

Routers are the main components of a NoC. In the NoC domain router design

and architecture vary depending on the topology, the services and special features

supported by the network architecture. Figure 2.4 depicts the classical router scheme

[Dal90,PD01]: a router is composed by input buffers one for each port, a crossbar

connecting all the input to all the outputs and the control logic that implements the

routing and channel arbitration functions.

The main logic function implemented by routers is the routing algorithm. A

routing function can be computed either by the source node (source routing) or

by the router itself. In the first case the router needs only to read the packet

header while in the distributed case each router will compute the packet’s next hop

by computing a routing function or reading a routing table [DT04, DYN03]. In

Section 2.2.1 we cover in detail this important issue.

Routing is a vast research area common in all the distributed system research

fields. Together with routing another important and vast research area tries to

address the problem of resource deadlock that in Section 2.2.2 we discuss in more

Chapter 2. Networks On Chip 19

detail.

Other important research areas that affect the design of the routers are the

broadcasting and multicasting of streams of data [GRK+05], traffic priorities and

express channels [KPKJ08, OM06b], flow controls [CPC08, SP03a] and adaptive-

ness [SP03a].

2.1.4 Channels

Channels interconnect the routers in order to form a network. They are characterized

by their width and length. The width of a wire also called phit is the amount of data

that it can transport in one clock cycle (or the number of data wires the channel

is composed of) and it is measured in bit. Usually a phit corresponds to a flit

(flow-control-unit) which is the smallest element of data that routers and NIs can

handle.

The channel length is the distance that it has to cover to connect two routers.

One main issue of a channel is that the delay taken by a flit to traverse it is a

quadratical function of the wire length. A classical solution to this problem consists

of segmenting the channel through buffers or couples of inverters so that the delay

becomes a linear function.

Still, considering synchronous systems, the shrink of transistor technology and

the relative increase of the clock frequency has made the wire delay a very important

issue. The channel traversal delays of long wires in fact could hamper the synchro-

nism of the system crating reliability issues of the system. In Chapter 7 we better

explain this issue and propose a solution to it.

2.1.5 Virtual Channels

Virtual Channels (VC) are logical abstractions of a physical link. As depicted in

Figure 2.5, each input and output channel of a router is provided of multiple input

and output buffers that compete to access to the shared channel.

20 Chapter 2. Networks On Chip

Figure 2.5: Example of performance improvement given by VC: a packet is for-

warded even if another packet is blocked on another VC.

When VC are installed on a router, the routing function must be enriched by a

virtual channel selection function that selects the next VC to use once the output

port has been decided. In [LBBP94,LZL00] authors propose a comparison of differ-

ent VC selection functions. In [DT04] authors discuss about the flit forwarding rule

that on each cycle selects the flit to forward among the active VCs. In this Thesis

we use the Winner take all [DT04] policy as the solution when no priority classes

are defined.

Thanks to their flexibility virtual chennels can be used for a number of reasons:

deadlock avoidance VCs abstraction increases the number of options available to

a routing function. Since each VC is independent from the others the VC

selection function can be used to slect VC in a way that avoids the generation

of circular dependencies and hence deadlock;

optimizing wire utilization Letting several logical channels share the physical

wires, the wire utilization can be greatly increased. Advantages include re-

duced leakage power and wire routing congestion;

improving performance VCs can generally be used to increase the performance

of a system by minimizing the frequency of stalls. In [AP95] Pinkston et

al. propose an efficient deadlock recovery adaptive routing algorithm that

maximises the performance of the system. A similar approach is proposed by

Duato in [DYN03] where the author propose an important theorem stating

that a routing algorithm can be considered deadlock free as long as it always

Chapter 2. Networks On Chip 21

provides a deterministic deadlock free virtual lane (concatenation of VCs) that

a deadlocked packet can use to recover from the stall;

differentiated services VCs can be associated to different QoS services. The NI

is in charge of negotiating the VC to use with the underlaying router. Once a

packet is directed along a given priority queue it’s up to the router to select

the VC with the highest priority and forward its flits;

In [VSD97] authors argue that while VC can help on increasing performance,

their complex implementation can reduce the router clock frequency reducing the

real benefits of this solution. In [Peh01b] Peh and Dally show that a router with up

to 4 VCs can run at frequencies similar to those of a classical VC-free whormhole

router.

In Chapter 8 we compare the VC system with the Multi Plane approach and

notice that VC are an interesting solution only when the queues of the routers are

not set to their minimum.

2.2 Protocols Design

2.2.1 Routing

Routing packets along an interconnection network is a well known problem of the

parallel computing systems. Literature offers many different algorithms suited for

almost any kind of architecture proposed so far [MB06,CGL+08].

Routing algorithms can be subdivided into source or distributed routing func-

tions. In the first case a source node computes the whole path of a packet through

the NoC. In the latter the source node just forwards the packet to the connected

router that will compute the first step and leaving to the following routers the burden

of computing the following path.

A routing function can be either minimal or not. In the first case each hop

performed by a packet takes it always closer to its final destination. In the case

22 Chapter 2. Networks On Chip

(a) (b) (c)

Figure 2.6: Example of (a) minimal deterministic, (b) minimal adaptive, (c) non

minimal adaptive routing.

of non minimal routing a packet can be forwarded in any direction. Non minimal

routing are useful for developing fault-tolerant algorithms.

Finally routing algorithms can be classified in deterministic, adaptive and obliv-

ious [DT04,DYN03].

In the NoC domain deterministic algorithms are usually preferred because they

are simple to implement and their behavior is easily predictable: given a source and

a destination node, a deterministic routing algorithm computes (through a look-up

table or a mathematical equation) the exact path towards the packets destination

node. Figure 2.6 (a) shows an example of minimal deterministic routing algorithm:

given a source S and a destination D the routing function returns only one single

path connecting them.

Figure 2.6 (b) shows the result of a minimal adaptive routing algorithm. Adap-

tive routing algorithms compute the path of a given message considering the source

and destination nodes address and also some information relative to the status of

the network. Because of their nature these kind of algorithms can easily fall in

a deadlock state but can greatly improve the performance of the system as they

manage to evenly distribute the traffic along all the channels interconnecting two

peers.

Figure 2.6 (c)shows the result of a non minimal adaptive routing algorithm.

Chapter 2. Networks On Chip 23

These algorithms are difficult to predict and the greater degree of freedom can

easily degenerate in deadlocks. Non minimal algorithms can be used in complex

NoC systems featuring a certain degree of fault tolerance.

2.2.2 Deadlock Handling

Circular dependencies among shared resources like the channels of a Network on

Chip is a serious issue that may block the functioning of the system. The adoption

of the wormhole [DYN03] flow control scheme empathizes even more this problem

as it allows a packet to be stored along multiple channels increasing the probability

of packet stalls. In literature there are many algorithms that address this prob-

lem. Algorithms are usually classified as deadlock avoidance and deadlock recovery

techniques.

Deadlock avoidance algorithms usually introduce some kind of restriction on the

routing algorithm in order to avoid the formation of circular dependencies. A

classical example is the Dimension Order (also called XY) routing algorithm

for the Mesh topology. Given a source s and a destination node d a packet

is first forwarded along the horizontal direction (X) and only when the packet

reaches the column of the destination d it is forwarded along the Y direction

towards d.

Deadlock avoidance algorithms are often used in SoC domain as their behavior

is simply predictable, they are easy to implement and to test. Moreover they

require much less resources than any other kind of algorithm;

Deadlock recovery algorithms allow the unrestricted use of the resources of the

system with the purpose of maximizing the systems performance [DT04].

These algorithms rely on some mechanism that detects a possible deadlock

to the protocol and a deadlock recovery mechanism that resolves the stalled

state. In Literature there are many proposals of deadlock detection techniques.

Usually they are based on timers that detect the possible blocking of the sys-

tem. An important algorithm of this kind is Disha [AP95] which following

24 Chapter 2. Networks On Chip

the Duato’s theorem for the deadlock avoidance of adaptive routing [DYN03]

functions. In particular Duato’s theorem allows routers to exploit all the re-

sources of the NoC. In case of a deadlock detection the blocked packets are

moved on specialized virtual channels in order to be forwarded using a dead-

lock free routing algorithm. The Disha algorithm is of special interest because

it avoids the dropping of the blocked packets (fact extremely depreciable in

the NoC domain) and also offers many improving possibilities which we think

are worth to study.

(a) (b)

Figure 2.7: A Spidergon NoC and the channel dependency graph of its clock-wise

ring channels.

A Channel Dependency Draph is a technique proposed by Duato [DYN03] that

allows the study of the dependencies inside a network and find possible deadlocks.

In a CDG nodes represent the channels of the system under analysis while edges

represent the dependency between two adjacent virtual channels.

Figure 2.7(b) shows the CDG of the Spidergon circular dependency on the clock-

wise ring channels highlighted in Figure 2.7(a). A single channel between nodeA

and nodeB is named chA,B and in case of multiple VCs we distinguish between

the channels using the indexes i.e.: ch(A,B)0 and ch(A,B)1. In particular considering

node0 and node1 of Figure 2.7(a) the arc between ch0,1 and ch1,2 in the CDG of

Figure 2.7(b) indicates that according to the aFirst routing algorithm implemented

Chapter 2. Networks On Chip 25

by the routers, a packet traveling on ch0,1 can be forwarded by the node1 towards

node2 through the channel ch1,2. As each node nodei can forward a packet along

the ring channels towards the nodei+1, Spidergon shows a circular dependency on

its ring channels that must be solved to prevent deadlock.

2.2.3 Mapping

The problem of mapping Processing Elements and Storage Elements and in general

any resource on a generic Network on Chip is a complex and delicate problem. In

[LRD01,HM03] authors demonstrate that the performance of a system may vary up

to the 250%.

The mapping problem is usually seen a the special case of graph embedding

problem between a source graph GS and a target graph GT . An application is

seen as a Task Graph [PR96,BCG+07]: a weighted graph that allows representing

a parallel application as a directed graph. In a task graph, nodes represent the

independent entities that characterize the parallel application, while edges between

two nodes represent the communication between these two entities. Edges can have a

weight representing the bandwidth of the communication. A target graph represents

the NoC architecture; a node in the GT represents a node in the NoC while an edge

represents a channel on the network.

Literature offers many algorithms and tools to solve this problem. In particular

the Xpipe framework [JMBM04] of the Deis department of the Bologna University

and the Scotch tool [PR96] of the University of Bordeaux represent two powerful

systems to address this problem. Other algorithms considering also some quality of

service constraints have been proposed by Pinto [Pin08] and Murali [MM04b].

The choice of the algorithm to choose or the tool to adopt depends on many

factors such as the architecture we want to use or the information we have about

the application to map (i.e. throughput and latency constrains). In the optic of

our research activity we chose to adopt the Scotch [PR96,BCG+07] partitioning

tool. Chapter 4 discusses the mapping issues in detail and here we show our analysis

results .

26 Chapter 2. Networks On Chip

Part II

Network Topologies

27

28

Chapter 3

The Spidergon NoC

This Section describes the regular and point-to-point topology of the Spidergon NoC

[CGL+08,CLM+04,BCG+07,MRG+04]. In contrast to multistage networks, point-

to-point ones connect each computing resource to a router element. Regular topolo-

gies, i.e. symmetric networks with vertex- and edge-transitivity, offer the advantage

that all nodes have a global knowledge of the network, allowing for simple routing

and scheduling decisions. Thus, the router hardware implementation is simple and

routing decisions are fast. Another key advantage of a regular topology is its simple

and efficient VLSI layout using existing design methodology that exploits uniformity

and provides predictability in individual wire lengths and path delays.

The Spidergon network shown in Figure 3.1 connects a generic even number

of nodes N = 2n, with n = 1, 2, 3... as a bi-directional ring in both clockwise,

Figure 3.1: The Spidergon Network on Chip

30 Chapter 3. The Spidergon NoC

and anti-clockwise directions with in addition a cross connection for each couple of

nodes. By a formal definition, each nodei, with 0 ≤ i < N , is connected by three

unidirectional links to other three nodes with the following rules:

• clockwise connection, i.e. nodei to node node(i+1) mod N ;

• anti-clockwise connection, i.e. nodei to node(i−1) mod N ;

• cross connection, i.e. nodei to node(i+n) mod N .

3.1 Basic Spidergon Routing Algorithms

The routing strategy determines the route from source to destination. Besides mini-

mizing the number of steps, the routing scheme, especially in the NoC domain, must

be simple to implement to allow an efficient router design, both in terms of reduced

area cost and higher working frequency.

The Spidergon NoC routing adopts the wormhole switching technique. The

switching strategy refers to how a packet traverses the route. While with virtual

cut-through and store- forward switching strategy, flow control is per packet (router

must allocate buffering resources for an entire packet), with wormhole routing a

packet is further subdivided into flits (flow control units), with each flit having its

unique flow control. Thus, the rest of the packet flits must follow the same path

reserved for the header. Wormhole routing was indicated as the good choice for the

NoC domain, even if it is more susceptible to deadlock than virtual cut through

under heavy network load: this is because wormhole drastically reduces the amount

of network buffering (queues with the flit granularity instead of packet) and allows

for a deep pipelined packet communication.

Within the Spidergon NoC framework it has been proposed a deterministic,

shortest-path network routing algorithm called Across First (aFirst)NoC [CGL+08]:

the relevant implementation on the on-chip routers is expected to be simple without

posing the need for expensive routing tables.

Chapter 3. The Spidergon NoC 31

The choice of a deterministic routing avoids costly flit reordering at packet re-

ception: the routing path of any packet does not depend on the route of any other

packet, i.e. the communication path is completely determined (a priori) by the

source and destination addresses. The packet routing decisions are carried out us-

ing only local information available at each network node; in addition, the routing

algorithm is local, i.e. identical (or symmetric) for all router nodes, as described

below.

Each router has a unique address ri in the network, 0 ≤ i < N , where N is the

network size. Since the routing algorithm is local, and the NoC topology is vertex-

and edge-transitive, we may describe the routing algorithm at any node. When

a router receives a first flit (the header) of a new packet, the forwarding path is

calculated. The algorithm compares the address of the current router (curr) to the

address of the target router (dest) stored in the header flit, i.e. the router connected

to the desired resource. If the two addresses match, then flits are routed to the

local output port of the router, i.e. to the desired resource through its network

interface. Otherwise, a clockwise, anti-clockwise, or cross output communication

port is selected depending on the relative distance of the two nodes, as follows.

if (dest = curr)

route packet to the NI direction;

//(packet is consumed by the local computing resource)

else

if dest curr mod N = {1, 2, 3 . d}

route packet to clockwise (Right-R) direction;

if dest curr mod N = {N-1, N-2, N-3 . N-d}

route packet to anticlockwise (Left-L) direction;

if dest curr mod N = {d+1, d+2, . N-d-1}

route packet to cross (Across-A) direction;

32 Chapter 3. The Spidergon NoC

Figure 3.2: The Spidergon Network on Chip

Figure 3.2 shows the routing paths in a Spidergon NoC with N = 12, considering

the node0 as starting point; the clockwise direction is indicated with R (right),

the anti-clockwise with L (left) and the cross connection with A (across). Due to

the symmetry of the topology, the routing scheme is showed only for half of the

all possible destination nodes. The idea is to move along the ring, in the proper

direction, to reach nodes which are close of the source node (not far from d hops),

otherwise to use the cross link to be in part of the network that is far away.

Notice that the described routing algorithm of the Spidergon NoC implies that

the cross communication port is selected at most once, and always in the beginning

of each packets route. Moreover it can be observed that when the packet starts to

move in the ring, it follows the same direction (right or left) for the entire path.

The previous two properties can be exploited to optimize the routing scheme,

further reducing the relative implementation: there will be two steps, one at packet

injection, requiring the same complexity of the presented first basic scheme, and the

other during the packet path, being extremely simple and fast.

According to the first description of the routing scheme the packet header has

Chapter 3. The Spidergon NoC 33

to carry the identifier of the destination node (dest), which amounts to log2(N) bits

(configuration with N nodes).

3.2 Spidergon Analysis

In this section we present and analyze the state of the art algorithms and protocols

that have been proposed for the Spidergon NoC and that we use throughout all the

Thesis.

3.2.1 Virtual Channel Selection Algorithms

To the best of out knowledge the Spidergon NoC can support the following three al-

gorithms for the selection of the virtual channels. These algorithms are independent

from the chosen routing algorithm and are relative to the VC installed on the ring

connection of the NoC. The across connection in fact does not have virtual channels

as the routing algorithm does not need them.

Single Deadline

Single Deadline algorithm defines a particular node of the network as deadline. The

choice of the VC to use depends on whether a packet has to pass through this pre-

defined deadline-node or not. Given a Source and a Destination node the VC is

selected through the function:

if (Current_Node_ID > Destination_ID)

use VC 0

else

use VC 1

Figure 3.3(a) shows the channel dependency graph1 for this VC selection al-

gorithm where bright nodes represent V C0 and dark nodes represent V C1 . The

1see Section 2.2.2

34 Chapter 3. The Spidergon NoC

(a)

(b)

Figure 3.3: Channel dependency graph (a) and average queue occupation (b) for

Single Deadline algorithm.

Chapter 3. The Spidergon NoC 35

graph is relative to a 8-node Spidergon NoC adopting the aFirst routing algorithm

described in the previous Section.

As it is clear from the CGD of Figure 3.3(a), virtual channels add more nodes

in the channels dependency graphs. When provided of VCs the routing algorithm

decides the direction of each dependency-edge while the VC selection algorithm

selects which VC an arrow has to reach.

Figure 3.3(b) depicts the average queue length of each VC in the considered

eight-node Spidergon with uniform traffic pattern scenario. Each rectangle in the

bar-diagram indicates the usage of a specific queue among the two VCs installed on

the right (R) and left (L) and the single queue installed on the across (A) channels.

From Figure 3.3(b) it is clear that the Single Deadline algorithm is a very simple

solution that poorly exploits the given resources. In particular it is clear that packets

travel always along one single virtual channel and switch to the other only when

they reach the deadline node0. Although very simple to implement, this algorithm

actually wastes most of the resource installed of the network.

Multiple Deadline

Multiple Deadline algorithm is an enhancement of the Single Deadline algorithm

seen before. Multiple Deadline uses N predefined deadlines nodes. The reason to

use more deadlines is to achieve a better utilization of the resources of the system.

The function implemented by the algorithm is the following:

If (Current_Q > Destination_Q)

use VC 0

else

use VC 1

Where ND is the Network Diameter and CurrentQ and DestinatinQ are defined

as:

CurrentQ = Currentid mod ND

36 Chapter 3. The Spidergon NoC

(a)

(b)

Figure 3.4: Channel dependency graph (a) and average queue occupation (b) for

Multiple Deadline algorithm.

DestinationQ = Destinationid mod ND

Figure 3.4(a) shows the channel dependency graph for the Multiple Deadline VC

selection algorithm. The graph is relative to a 8-node Spidergon NoC adopting the

aFirst routing algorithm described previously with four deadlines on nodes node0,

node2, node4 and node6.

Figure 3.4(a) shows that by defining more deadlines nodes the dependencies

among the channels are more variegate. As it is clear from the average queue

utilization diagram of Figure 3.4(b) improves the use of the different VC. As in the

Chapter 3. The Spidergon NoC 37

case of Single Deadline also this algorithm does not exploit all the VC of the system.

Distance Based Deadline

Distance Based Deadline selects a VC on the Distance (D) between the current node

and the packet destination. It tries to use the networks VCs like a highway exit lane:

if (Distance > 1)

use VC 0

else

use VC 1

Figure 3.5(a) shows the channel dependency graph for the Distance Based Dead-

line VC selection algorithm. As for the previous algorithms, the graphs is relative

to a 8-node Spidergon NoC adopting the aFirst routing.

Figure 3.5(a) shows that by following this different approach and considering

the packet distance to the destination rather than fixed deadlines, under a uniform

traffic pattern the dependencies among the channels are more variegate. As it is

clear from the average queue utilization diagram of Figure 3.5(b), this algorithm

greatly improves the usage of the storage installed on the channels exploiting all the

virtual channels of the system.

Virtual Channel Selection Algorithms Comparison

Figure 3.6 compares the three presented algorithm showing the average packet la-

tency of ton a Spidergon network with uniform traffic pattern. From the chart it is

clear that the distance-based algorithm outperforms the others. As we already dis-

cussed in fact this algorithm is capable of explaining in a even way all the resources

installed on the network on chip.

From now on unless differently stated all the simulation results will be using the

distance-based VC selection algorithm.

38 Chapter 3. The Spidergon NoC

(a)

(b)

Figure 3.5: Channel dependency graph (a) and average queue occupation (b) for

Distance Based Deadline algorithm.

Chapter 3. The Spidergon NoC 39

(a)

Figure 3.6: Average packet latency comparison for single and multiple deadline

and distance based VC selection algorithm

3.2.2 Routing Algorithms

Routing algorithms are one of the main research area we are interested in. They

heavily influence the performance of the system, the resource requirements and

finally costs.

In the NoC domain routing algorithms should be simple but at the same time

fast, efficient and reliable. In our research and analysis activity we studied a number

of solutions that will be presented in the following pages.

aLast routing algorithm

Across Last, (aLast) is a deterministic source routing and minimal algorithm de-

rived form the aFirst algorithm described in Section 3.1. As the name suggests the

algorithm allows a packet to use the across channels only as last path step in the

network (Across Last = aLast).

As depicted in Figure 3.7(a) ALast forwards packets along the ring channels

40 Chapter 3. The Spidergon NoC

(a) (b)

Figure 3.7: Eight nodes Spidergon (a) and relative channel dependency graph (b)

of the aLast routing algorithm with the single deadline VC selection algorithm.

towards the node in front of the final Target destination, only then it performs the

Across step to the packet destination. As aFirst requires two virtual channels on

the ring links to break the dependency formed by the packets on the peripherals

links. In Figure 3.7(b) is depicted the channel dependency graph for this algorithm

using the single deadline VC selection algorithm in a network with 8 nodes.

Restricted path routing algorithms

ZeroFirst (ZF) and ZeroLast (ZL) routing algorithms address the deadlock problem

in a different than the algorithms seen so far. ZF and ZL in fact do not use any

virtual channel on the ring connections. Instead they break the circular dependency

on the peripheral links by not allowing packets to pass through a specific node (the

node zero). This node can still send and receive packets, and in the case of ZeroFirst

it can still forward packets coming from the Across channel. The only restriction is

that it can not be an intermediate node in a packet path along the ring channels.

Packets that normally should pass through the node zero are forwarded by the source

router to a non minimal path along a direction that depends on the used algorithm:

• ZeroFirst, if the packet node will pass the node zero: o after performing an

Chapter 3. The Spidergon NoC 41

(a) (b)

Figure 3.8: Throughput on a Spidergon NoC comparing for different routing algo-

rithms (a) under uniform traffic pattern and (b) under non uniform traffic pattern.

across step: it is forwarded on the ring channel in the direction of the packet’s

destination o to reach its destination without passing through the across link:

it is forwarded along the across channel in order to reach the closest node on

the destination side of the ring.

• ZeroLast if the packet node will pass through the node zero: o to reach its

destination: it is forwarded along the ring in the opposite direction with respect

to the packet destination. In this way the packet will reach a node facing its

destination and will perform an across step. o to reach the node in front of

its destination: the packet will be forwarded along the ring channel in the

direction of its destination.

ZeroFirst and ZeroLast then are source routing [DYN03] algorithms that have

also to require some logic indicating if a packet will or will not pass not through the

node zero during its path toward its destination.

If the path does not include the node zero ZF and ZL algorithms act like normal

distributed routing algorithms while if the does the packet is forwarded along a

different path. The following routers will treat the redirected packet as a normal

one, no further actions will be required.

42 Chapter 3. The Spidergon NoC

As reported in Figure 3.8(a) ZL and ZF compared to AF and AL perform poorly

in the case of uniform traffic patterns with many SEs. The reason is mainly due to

the packet redirection caused by the restriction imposed by the two algorithms. ZF

and ZL in fact can force packet to follow non minimal paths. This will increase the

traffic on the network, augmenting the channel contentions and hence decreasing

the overall system performance.

ZeroFirst and ZeroLast behave well in cases where packets are not forced to pass

through the zero node because the application does not require it. This happens

often in real scenarios where few SE elements collect the traffic of more PEs. In

Figure 3.8(b) for example is depicted the ZF and AF performance on an Mpeg4

decoder scenario (see Figure 4.6 on Section 4.5). The two algorithms behave very

similarly. AF is slightly better thanks to its virtual channels that allow a better

traffic flow. VCs benefits anyway are much more visible on bigger networks where

many and different packet flows follow the same path to reach different destina-

tions. For small application such as Mpeg4 the Zero algorithms permit to reduce

the Spidergon buffer requirements and hence the size and the cost of the NoC.

The Double algorithm

The Double algorithm adopts the previously defined aFirst and aLast algorithms

depending on the kind of the packet to be transmitted. More precisely we call

DoubleFL (First-Last) the algorithm adopting the aFirst algorithm for the request

packets and aLast for the replies. DoubleLF (Last First) instead is the dual case .

The use of different algorithms for different kinds of packets might be useful to

reduce channel contention on a given application mapping. Thanks to the different

virtual networks used by requests and replies there is not the need to use also two

virtual channels on the across link. Using aFirst and aLast together for a single

packet kind in fact would provoke the across channels to generate new circular

dependencies in the algorithm channel dependency graph and then deadlock.

As depicted in Figure 3.9 in a scenario with a given mapping, an uniform traffic

and the same number of PEs and SE the two Double algorithms may be helpful

Chapter 3. The Spidergon NoC 43

(a)

Figure 3.9: Round trip time on a Spidergon NoC with 8 Initiator and 4 Targets.

to improve the system performance. In this particular case for example DoubleFL

performs much better than the other algorithms. The choice of the right algorithm

to use anyway has to be done very carefully because as shown in the Figure 3.9

DoubleFL algorithm instead performs worse than the other minimal algorithm (not

considering ZeroFirst and ZeroLast).

3.3 The aEqualized Routing Algorithm

We propose the Across Equalized (aEqualized) algorithm: a routing algorithm that

optimally exploits the resources of the system reducing the area and power demands

of the NoC.

Our algorithm is thought for networks where a small number of nodes attract

most of the network traffic behaving as hotspots. In the multi core SoC domain

this requirement is a common situation: a number of Processing Elements (PEs)

are often connected to a small number of Storage Elements (SEs) forming a tree of

connections with the SEs as roots [HG07,KKS05a].

44 Chapter 3. The Spidergon NoC

3.3.1 Routing Algorithms Characterization

(a) (b)

Figure 3.10: Routing behavior towards node zero using aFirst (a) and aLast (b)

The routing algorithms described so far are simple to implement and can actually

solve the routing issue. A major drawback of these two algorithms is that the across

channels are under-utilized as they can be used only once and only as first or last

step.

Figure 3.10 considers a single SE towards which each PE communicates. In

the aFirst (a) case, PE’s packets travel essentially through the ring channels so that

SE’s ring channels must support the traffic generated by (N−2)
2

PEs. The SE’s across

input channel instead is used only by the node set in front of the target (node 8

of Figure 3.10). On the other hand, the reply packets traveling from SE to the PE

nodes on the opposite side of the ring can only use the hotspot’s across channel to

reach their destination.

In the case of the aLast algorithm (Figure 3.10(b)) the SE’s across channel is

over-loaded as it receives the packets generated by the (N−1)
2

nodes on the opposite

half of the NoC. Channels on the ring instead receive the traffic of only (N)
4

nodes

each. SE-generated packets instead pass through the ring channels and they may

use the across link as last step to get to their final destination.

Chapter 3. The Spidergon NoC 45

3.3.2 aEqualized Algorithm

The aEqualized algorithm requires the traffic pattern of the NoC to be known at

design time and uses these knowledge to re-redistribute the load of the NoC channels

so that all resources are better utilized.

This algorithm combines the aFirst and aLast algorithms seen in Section 3.1.

More specifically an aEqualized network is composed by routers implementing either

aFirst (tagged as “aFirst”) or aLast (tagged as “aLast”) routing algorithm.

The choice of the tag to use depends on the adopted traffic pattern and the

position of the hotspot nodes on the network. Restricting the use of only one of the

two algorithms per node allows us to avoid additional channel dependencies caused

by the across channels and hence new potential deadlock situations.

To explain the tagging operation we start from the simple example shown in

Figure 3.11, that assumes a single hotspot placed on node 0. In Figure 3.11 nodes

in green (bright) are tagged as aLast, nodes in magenta (dark) are tagged aFirst

and those in white are the hotspots. The node’s tagging operation is made by the

following steps:

• initially set all nodes as “aLast” so that the hotspot node receives data origi-

nated from:

– (N/2)− 1 nodes on the across channel;

– (N/4) nodes on each ring channel;

• define M = (N − 1) and R = (M mod 3)

• in function of the remainder R tag the φ nodes on the clockwise and counter

clockwise side of the hotspot node as aFirst and the remaining λ nodes as

aLast in such a way that:

– R = 0: φ = M/3 and λ = M/3;

– R = 1: φ = M/3 and λ = M/3 + 1;

– R = 2: φ = M/3 + 1 and λ = M/3;

46 Chapter 3. The Spidergon NoC

Figure 3.11: The Routing aEqualized data-flow considering a single hot spot.

Nodes in green are tagged as aLast and those in magenta are tagged as aFirst

• tag all the Storage Elements as “aFirst” (the reason will be clear later)

• note that 2 ∗ φ + λ + 1 = N

For sake of clarity in Figure 3.11 and in the following, only λ− N
4

nodes are ac-

tually tagged as aFirst and hence colored in magenta. These nodes are those whose

behavior is actually changed by the aEqualized algorithm. In fact because of their

distance from the hotspot, the other nodes will communicate with the SE through

the Clockwise or Counter Clockwise link independently from the implemented algo-

rithm.

By tagging the nodes in the proposed way we define three sets of nodes each

one communicating with the hotspot node through a different SE’s input channel.

The three sets have a size that differs at maximum of one node depending on the

network size N .

Figure 3.12 depicts a more complex example where more SEs are inserted. It’s

clear that by considering a uniform traffic directed to the SE nodes, when the net-

work size is not multiple of three the traffic equalization will result less balanced.

As a consequence of the tagging restrictions imposed by the aEqualized algo-

rithm, request and reply packets exchanged between any PE - SE pair follow the

Chapter 3. The Spidergon NoC 47

Figure 3.12: The Routing aEqualized data-flow considering three hotspots

same path but in a opposite direction. This characteristic allows to better exploit

the channels of the network and also allows to reduce the number of across link

actually used bye the packets traversing the Spidergon NoC.

A main drawback for this algorithm is that it imposes some restriction on the

mapping of the devices on the network: aFirst nodes should not be used as last

step to reach a destination through the across channel as the router won’t have the

right to use the requested link. Hence a storage element should not be placed on

a node connected to an aFirst-tagged router by the across link. Figure 3.13 shows

an example: two SE-hotspot nodes (nodes 0 and 8) are placed on the same across

channel and each hotspot is tagged as “aFirst”.

Figure 3.13: A drawback of the aEqualized routing algorithm: hotspot should not

be connected to aFirst-tagged nodes

48 Chapter 3. The Spidergon NoC

Figure 3.14: Standard node router with 2 virtual channels on the CW and CCW

(left and right) links and one on the Across and NI ones (up and down)

Let’s consider a communication between node 10 and node 0. Node 10 is tagged

as “aLast” so it would forward its packets in the counter clockwise direction towards

node 8 that is supposed to forward them to node 0. Node 8 though is tagged as

“aFirst” so it does not have the right to use the across channel as last step. Instead

it would forward the packets also in the counter clockwise direction towards node 7

breaking, in this way, the minimal path requirement.

3.3.3 System Level Analysis

The Spidergon architecture has been modeled and configured with synchronous in-

terconnected routers. Each router was provided with two virtual channels on the

clockwise and counter clockwise channels and was linked to a single external IP

through a network interface layer as depicted in Figure 3.14.

Depending on the simulated scenario, each IP acted either as a processing ele-

ment (PE) or as storage element (SE). PEs (also called initiators) generate request

packets directed to the SEs selected in a random way with a uniform probability

distribution. SE nodes receive the requests packets from the PE and send back

response packet modeling a shared memory system. All PEs/SEs are provided with

infinite FIFO output queues that temporarily store the produced packets once the

underlying NoC is not able to absorb them at a sufficient rate.

We compared the considered scenarios by measuring the packet latency metric

Chapter 3. The Spidergon NoC 49

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 0.02 0.04 0.06 0.08 0.1 0.12

Pa
ck

et
 L

at
en

cy
 (c

yc
le

s)

Injection Rate (flit/cycle)

aEqualized
aFirst
aLast

Figure 3.15: Average packet latency of a 24-nodes Spidergon with three hotspot

Storage Elements

that is the average time (in clock cycles) taken by a packet to enter the network,

traverse it and reach its final destination.

Graphs in Figure 3.15 show the average packet latency on a Spidergon NoC with

24 nodes with three hotspots addressed randomly by the PEs. The three algorithms

perform in a similar way and only aLast performs slightly worse than the others.

The benefits given by the traffic equalization on the hotspots’ channels are hidden

by the bottleneck present at the hotspots’ Network Interface channel. Here packets

are blocked by the great amount of data contending the same shared resource: the

channel towards the NI device.

The main improvement introduced by aEqualized algorithm is not on the per-

formance side but rather on the resource requirements side. We consider a physical

link as required if there are packets passing through it. In SoC environment traffic

patterns are usually fixed and well known so that in the final physical design the not

used links and router ports can be not implemented saving costs, area and power

consumption.

Considering all the connections as bidirectional we noted that in all experiments

all the ring channels have been used either to send request or reply packets. The

50 Chapter 3. The Spidergon NoC

Figure 3.16: Number of required Across bidirectional links on a Spidergon NoC

with respect to the size of the network

number of required Across channels instead depends on the selected routing algo-

rithm and on the number of SEs in the network.

Figure 3.16 reports the number of bidirectional across links actually used by

the packets with respect to the size of the network and the number of hotspots. By

granting essentially the same performance as aFirst and aLast, aEqualized algorithm

uses up to 60% less across channels than the other two algorithms (network with

26 nodes). This improvement is due to the fact that request and reply packets pass

through the same path in the opposite direction. AFirst and aLast algorithms in-

stead essentially use all the across channels of the network either to forward request

(aFirst) or reply (aLast) packets. By adopting a uniform traffic pattern, considering

also the ring channels of the NoC, the aEqualized algorithm allows a reduction of

the required bidirectional connections by up to 13% by maintaining similar perfor-

mances.

A veritable bottleneck in the Spidergon architecture is the single link connecting

the router to the node’s Network Interface. The hotspot node is the target collect-

ing a large amount of traffic and its NI channel is the single connection handling all

the incoming data. Figure 3.17 shows a variation on the architecture of the Spider-

gon node that we investigate to improve the performance of the network. Here a

Chapter 3. The Spidergon NoC 51

Figure 3.17: Spidergon router with three links towards to the Network Interface

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Pa
ck

et
 L

at
en

cy
 (c

yc
le

s)

Injection Rate (flit/cycle)

aEqualized
aFirst
aLast

(a)

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0.05 0.1 0.15 0.2 0.25 0.3

Pa
ck

et
 L

at
en

cy
 (c

yc
le

s)

Injection Rate (flit/cycle)

aEqualized
aFirst
aLast

(b)

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0.05 0.1 0.15 0.2 0.25 0.3
Pa

ck
et

 L
at

en
cy

 (c
yc

le
s)

Injection Rate (flit/cycle)

aEqualized
aFirst
aLast

(c)

Figure 3.18: Average packet latency of a 24-nodes Spidergon with one (a), two (b)

and three (c) hotspots using three independent NI channels

node is provided with three independent physical links each one directed towards the

Node’s NI. Each NI channel is dedicated to a single and pre-defined input channel in

order to remove the contentions towards the Network Interface. Packets generated

by the NI and directed to the underlying router instead are placed in one of the

three randomly selected NI output queues.

Graphs in Figure 3.18 show average packet latency measured with the proposed

router improvement on a 24-nodes Spidergon with one, two and three targets and a

random uniform traffic pattern.

Once removed the NI bottleneck, aEqualized clearly outperforms the other two

routing algorithms while also reducing the required physical links. The worst per-

forming algorithm is aFirst as only the nodes facing the hotspots can use the across

channel and the NI links dedicated to it. The rest of the traffic reaches the hotspots

52 Chapter 3. The Spidergon NoC

Figure 3.19: NoC topologies: IPs connected to numbered nodes on (a) Spidergon,

(b) Ring, (c) (m ∗ n) 2D Mesh.

through the two ring-related channels. ALast has an variable performance as the

hotspots across channels may be overloaded of traffic. AEqualized algorithm instead

optimizes the use of all three new NI channels sensibly improving the performance

of the system.

Simulations with one, two and three hotspots and different network sizes of 8 up

to 30 nodes confirm the reported results. Relative graph though are not reported

for space limitations.

3.4 NoC Comparison

In the paper [BCG+07] presented at the DATE conference in 2006 we proposed a

comparison between the well known Ring and 2D Mesh architectures [DYN03] and

the new Spidergon NoC .

In this study we analyzed three scenarios: single and double hot spots and the

uniform traffic patterns.

The Mesh NoC used a Dimension Order (called also XY algorithm [DYN03])

routing algorithm where at first, flits are forwarded towards their destination initially

along the X direction (the horizontal link) until the column of the target node is

reached. Then, flits are forwarded along the Y direction (vertical link) up to the

target node.

Chapter 3. The Spidergon NoC 53

In Ring, the routing strategy is straightforward, i.e. clockwise or counterclock-

wise direction is selected depending on the shortest path while in Spidergon we

adopted the aFirst routing algorithm described previously in this chapter. It is to

be noted that the Mesh routing algorithm resolves also the deadlock problem by

limiting the path selection choices. Ring and Spidergon instead require VCs.

A significant worst case index, named the Network Diameter (ND) is defined as

the maximum shortest path length between any pair of nodes in the topology. The

average network distance E[D] is defined as the average path length of all different

paths in the network. By assuming a NoC of N nodes we have:

• in a Ring topology:

ND = floor(N/2)

E[D] = N/4

• in (m ∗ n) 2D Mesh:

ND = (m + n− 2)

E[D] = (m + n)/3

• in Spidergon :

ND = ceiling(N/4)

E[D] =

 (2x2 + 4x + 1)/N if N ∼ 4x

(2x2 + 2x− 1)/N if N = 4x + 2

Under the worst case analysis assumptions, the network diameter of real 2D Mesh

topologies with N nodes shows quite unpredictable fluctuations between the ideal

(
√

N ∗
√

N mesh values and the Ring diameter values, as shown in Figure 3.20(a).

The analysis shows that the Spidergon NoC has lower ND than regular 2D

Meshes at least up to 40-45 nodes (and after, depending on the value of N, see

Figure 3.20(a)).

In Figure 3.20(b), we show the analysis results for the average network distance

E[D] for Ring, ideal and real 2D Meshes, and Spidergon . It results that Spider-

gon outperforms Ring, and works on the middle of the value range of the real mesh

implementations.

54 Chapter 3. The Spidergon NoC

(a) (b)

Figure 3.20: (a) Network Diameter ND and (b) Average Network Distance, vs.

number of nodes N in Ring, ideal and real 2D Mesh and Spidergon NoCs.

Ideal mesh behavior is obtained by real Meshes only under specific N values

(that is when N = m ∗ n and m ∼ n). These results are quite indicative of the

difference that may exist between theory results in ideal cases and real scenarios, for

Mesh topologies. Results in Figures 3.20 show that Spidergon is expected to have

competitive and linear behavior, on the average and worst case scenarios, due to node

symmetry and regular topology with respect to real Ring and Mesh topologies.

In the following we will investigate the NoC support for communication under

the routing strategies that we discussed previously

The modeling and simulation of the NoC architectures have been performed with

the OMNeT++ simulation framework [SVE07]. OMNeT++ is a public source,

and flexible simulation environment with strong GUI support that allows a fast and

high-level simulation environment for NoC exploration topologies.

The node model for the Spidergon NoC is shown in Figure 3.21. Each node has

an external network interface to connect the IP to the NoC.

The external IP can act as a packet source and/or as a packet destination (sink)

depending on the simulated scenario. Packet sources adopt a exponential inter-

arrival distribution of constant size packets (6 flits in our simulations), with variable

parameter λ. The first (head) flit of a packet is sent to the routing mechanism of

Chapter 3. The Spidergon NoC 55

Figure 3.21: Model of a Spidergon STNoC node

the node, and then transferred on the output queue of the target channel (if room).

Once the head flit has been processed by the routing element of a node, a switching

mechanism is defined to forward all immediately following packet-flits to the buffers

of outgoing links of the target path to the destination node. Application packets

are consumed from the IP memory in a FIFO order.

The scheme in Figure 3.21 refers to Spidergon nodes. On the other hand, Ring

and Mesh nodes considered in this analysis have been defined with the same node

architecture, excepted the number of links, the cumulative buffers sizes, and the

routing policies.

Specifically, Ring nodes have clockwise and counterclockwise links only, and Mesh

nodes may have from 2 up to 4 links, by including N, S, W and E direction links.

Incoming links have a one-flit buffer, while outgoing links have a pair of output

buffers (used both for virtual channel management and deadlock avoidance) in Ring

and Spidergon topologies, and one single buffer in Mesh topologies. All output

buffers may contain up to three-flits.

Experiments have been performed by modifying the overall buffer capacity of

nodes and buffer symmetry depending on the expected link usage. Results indicated

56 Chapter 3. The Spidergon NoC

Figure 3.22: Analytical and simulation-based average network distances (hops).

that small buffer tuning have some marginal impact on the peak performances. In

the following we will illustrate and comment the results obtained in three basic

scenarios: the single and double hot-spot target scenario, and the homogeneous

sources and destinations scenario.

The first set of data shown is related to the validation of the simulation and

analytical model. Figure 3.22 shows the analytically estimated average distance

E[D] and the simulation-based value obtained. Despite some differences in the data,

due to stochastic variability, the figure confirms that Ring has the worst average

performances, while Spidergon and 2D Mesh topologies work close to each other in

the range from 8 to 32 nodes.

Single Hot-Spot Scenario

Figure 3.23(a) shows the throughput index of the NoC architecture as a function of

the injection rate parameter of the source nodes when hot-spot target is present in

the system (that is, one single destination node for all packets). Destination nodes

have been taken in different points on the Mesh topology (in symmetric Ring and

Spidergon this would not have difference).

The result from Figure 3.23(a) is that the throughput index presents no differ-

ences with respect to the implemented topology when one single target destination is

Chapter 3. The Spidergon NoC 57

(a)

 0

 200

 400

 600

 800

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6

L
a
t
e
n
c
y

(
c
y
c
l
e
s
)

Injection rate (flit/cycle/source node)

Ring, 1 dest, 7sources
Ring, 1 dest, 23 sources

Spidergon, 1 dest, 7 sources
Spidergon, 1 dest, 23 sources

2D Mesh, 1 dest, 7 sources
2D Mesh, 1 dest, 23 sources

(b)

Figure 3.23: Average (a) throughput and (b) latency on a single hot spot traffic

pattern.

adopted for all communications. The only difference is given by varying the number

of source nodes. When all the sources homogeneously increase the injection rate,

this translates to linear absorption from the (single) destination node, up to the des-

tination node saturation is obtained. This means that the most significant system

bottleneck under hot-spot traffic destination scenarios is the destination node, and

not the NoC architecture and the channel buffering resources.

This result is quite different from the interpretation that can be obtained by

assuming a uniform load distribution among many sources and many destinations.

This does not mean that the NoC architecture is irrelevant, because the NoC archi-

tecture behaves better when parallel local communication is present. On the other

hand, in todays common SoCs scenarios, when the system memory is external, the

behavior obtained with different NoC topologies would converge to the behavior

shown in Figure 3.23(a).

In other words, the scalable and symmetric architecture of Spidergon would give

the same advantages of more complex solutions, like 2D Mesh, under the hot-spot

communication viewpoint. In addition, Spidergon can outperform ring or a complex

bus hierarchy when multiprocessors are presents (these data have been obtained and

were not included in this paper due to space limitations).

58 Chapter 3. The Spidergon NoC

Moreover, Spidergon introduces a degree of scalability and flexibility that would

not be found in current bus architectures. For this reason, Spidergon appears as

the good trade-off solution for obtaining the same Figure 3.22: analytical and

simulation-based average network distances (hops) Figure 3.23(a): NoC through-

put, one hot-spot destination node system (that is, one single destination node for

all packets). Destination nodes have been taken in different points on the Mesh

topology (in symmetric Ring and Spidergon this would not have difference). The

result from Figure 3.23(a) is that the throughput index presents no differences with

respect to the implemented topology when one single target destination is adopted

for all communications. The only difference is given by varying the number of source

nodes.

When all the sources homogeneously increase the injection rate, this translates

to linear absorption from the (single) destination node, up to the destination node

saturation is obtained. This means that the most significant system bottleneck un-

der hot-spot traffic destination scenarios is the destination node, and not the NoC

architecture and the channel buffering resources. This result is quite different from

the interpretation that can be obtained by assuming a uniform load distribution

among many sources and many destinations. This does not mean that the NoC

architecture is irrelevant, because the NoC architecture behaves better when par-

allel local communication is present. On the other hand, in todays common SoCs

scenarios, when the system memory is external, the behavior obtained with different

NoC topologies would converge to the behavior shown in Figure 3.23(a).

In other words, the scalable and symmetric architecture of Spidergon would give

the same advantages of more complex solutions, like 2D Mesh, under the hot-spot

communication viewpoint. In addition, Spidergon can outperform ring or a complex

bus hierarchy when multiprocessors are presents (these data have been obtained and

were not included in this paper due to space limitations).

Moreover, Spidergon introduces a degree of scalability and flexibility that would

not be found in current bus architectures. For this reason, Spidergon appears as

the good trade-off solution for obtaining the same performances of more complex

Chapter 3. The Spidergon NoC 59

(a) (b)

Figure 3.24: Average (a) throughput and (b) latency on a double hot spot traffic

pattern.

architectures, under common scenarios in current SoCs.

Figure 3.23(b) shows the average latency obtained by Spidergon, 2D Mesh and

Ring topologies under one single hot-spot destination node, as a function of the

number of nodes N and the injection rate parameter of multiple source nodes. Data

show that the latency sharply increases when the target node saturation is obtained,

with little differences due to the NoC topology adopted. By assuming an homoge-

neous injection rate, the latency increases early when the number of source nodes

increases, as expected.

Double Hot-Spot Scenario

Simulations have been performed by considering a pair of hot-spot target scenarios,

and by allocating the targets in different positions inside the NoC topologies. For 2D

Mesh, scenario A is with 2 targets on the opposite corners (nodes 1 and N), scenario

B is with one target in the corner (node 1) and the second one in the middle (node

5 with 2 ∗ 4 = 8 Mesh and node 14 with 4 ∗ 6 = 24 Mesh), and scenario 3 is with

both targets in the middle (nodes 5 and 6 with 2 ∗ 4 = 8 Mesh, and nodes 14 and

15 with 4 ∗ 6 = 24 Mesh). In Ring and Spidergon, scenario A is with two targets in

opposition (North-South position) on the ring, and scenario B is with two targets in

60 Chapter 3. The Spidergon NoC

(a) (b)

Figure 3.25: Average (a) throughput and (b) latency on a homogeneous traffic

pattern.

North and West positions on the ring. The results reported in Figure 3.24 (a) and

(b) basically confirm the system behavior and conclusions discussed for one hot-spot

target.

Homogeneous Sources/Destinations Scenario

Figure 3.25(a) shows the throughput results with respect to the NoC topology and

the number of nodes, under homogeneous scenarios with uniform distribution of

sources and destinations. Specifically, all the nodes behave like sources and can be

addressed as destination for packets, with uniform probability distribution. When

all node sources increase the injection rate, this translates to linear absorption from

all the destination nodes, up to the set of destination nodes and/or the network

become saturated. This performance index illustrates that Spidergon and 2D Mesh

topologies outperform Ring, and scale better when the number of nodes is low.

Under this scenario, 2D Mesh shows a better throughput than Spidergon only with

many nodes and when the local injection rate of all source nodes is greater than

0.3 flits/cycle. On the other hand this scenario is hardly obtained in real systems,

and this does not constitutes a good motivation to prefer the adoption of 2D Mesh

in favor of the Spidergon topology. As expected, the bottleneck emerging in this

Chapter 3. The Spidergon NoC 61

scenario is basically given by the communication infrastructure. This is confirmed

also by the worst performances obtained by the Ring topology.

Figure 3.25(b) illustrates the average latency obtained by Spidergon, 2D Mesh

and Ring topologies under homogeneous source and destination distribution sce-

narios. All the nodes behave like sources and can be addressed as destination for

packets with uniform probability distribution. Latency is shown as a function of the

number of nodes N, and the injection rate parameter of multiple source nodes.

Data show that the latency sharply increases when the network saturation is

obtained, with some differences due to the different saturation properties of the

NoC topology adopted. By assuming an homogeneous injection rate, Ring topology

saturates first, and the latency generally increases early when the number of sys-

tem nodes increases, accordingly with the throughput results obtained for the same

scenarios. patterns originated by common applications, and analysis of routing pro-

tocols and additional NoC topologies.

3.5 Conclusions

We presented a novel routing algorithm called Across Equalized or aEqualized for the

Spidergon Network on Chip. AEqualized balances the traffic on the input channels

of the network’s hotspots by assigning to each router either the aLast or aFirst

routing algorithm. This “tagging” operation depends on the position of each single

node with respect to the hotspots of the network.

Considering the standard implementation of a Spidergon router: with four ports

(NI, Across, Clockwise and Counter Clockwise), in our case study, this algorithm

essentially maintains the performances of the other two algorithms by reducing the

number required across links by up to 60% and the general required connection by

a 13%.

Considering an enriched version of the routers with three ports towards the

network interface this algorithm sensibly improves the performance of the system

by maintaining the reduced amount of links and buffers.

62 Chapter 3. The Spidergon NoC

In our future work we plan analyze the aEqualized routing algorithm under more

realistic traffic patterns and to improve the enriched routers channels assignment

policy.

We also illustrated the modeling and simulation-based analysis of low degree

topologies (Ring, 2D Mesh and Spidergon) focusing the on-chip domain require-

ments and overcoming the classical parallel computing and networking results. To

the best of our knowledge, this is the first work considering irregular mesh topolo-

gies, whose analysis is motivated since regular meshes cannot be always assumed

as realistic topologies in SoCs. On the other hand, the first deep analysis of the

novel Spidergon topology is presented, resulting in a good compromise among the

well-known topologies. This has been demonstrated by analyzing Spidergon char-

acteristics with respect to real 2D Mesh and Ring topologies, and by considering

common hot- spot communication scenarios that characterize current SoC architec-

tures. This analysis has shown that Spidergon can be considered a good solution

under the system design, the ease of implementation and management viewpoint,

with performance and scalability results that are in line with other more complex

solutions under most common assumptions and scenarios. Future work will include

the extension of the analysis and simulation with more NoC nodes, specific traffic

patterns originated by common applications, and analysis of routing protocols and

additional NoC topologies

Chapter 4

Task Mapping

Network-on-chip (NoC) provides a high performance, scalable and power-efficient

communication infrastructure to either Chip Multi-Processor (CMP) and System

on Chip (SoC) systems [NTIJ04]. A NoC usually consists of a packet-switched

on-chip micro-network, foreseen as the natural evolution of traditional bus-based

solutions, such as Amba AXI [amb], and Ibm’s Core Connect [IC]. Innovative

NoC architectures include the Lip6 SPIN [AAZ03], the M.I.T. Raw [MT02], the

Vtt (and various Universities) Eclipse [For02] and Nostrum [GRK+05], Philips’

Æthereal NoC [GDvM+03], and Stanford/Uni-Bologna’s Netchip [BM02,JMBM04].

These architectures are based on direct point-to-point topologies, in particular

Meshes, tori and fat trees offering simple and efficient routing algorithms based on

small area, high frequency routers.

A major challenge for predicting performance and scalability of a particular NoC

architecture relies on precise specification of real application traffic requirements

arising from current and future applications, or scaling of existing applications.

For example, it has been estimated that SoC performance varies by up to 250%

depending on NoC design, and up to 600% depending on communication traffic

[LRD01], while NoC power dissipation can be reduced by more than 60% by using

appropriate mapping algorithms [HM03].

Future MPSoC applications require scalable NoC topologies to interconnect the

IP cores. We have developed new tools for NoC design space exploration and effi-

64 Chapter 4. Task Mapping

Figure 4.1: Our design space exploration approach for system-level NoC selection.

cient NoC topology selection by examining theoretical graph properties, as well as

application mapping through task graph partitioning. These tools are derived by

extending existing tools in parallel processing, graph theory and graphical visualiza-

tion to NoC domain. Besides enabling efficient NoC topology selection, our methods

and tools are important for the design of efficient multi-core systems.

Our NoC design space exploration approach is explained in Figure 4.1. We con-

sider both theoretical metrics, e.g. number of nodes and edges, diameter, average

distance, bisection width, connectivity, maximum cut and spectra, as well as em-

bedding quality metrics for mapping various applications onto NoC resources, such

as computing, storage and FPGA elements.

The mapping algorithm of the partitioning tool obtains an assignment of ap-

plication components onto the NoC topology depending on abstract requirements

formulated as static or dynamic (runtime) constraints on application behavior com-

ponents and existing NoC architectural and topological properties.

Chapter 4. Task Mapping 65

Previous papers have studied application embedding onto conventional symmet-

ric NoC topologies. Hu and Marculescu examined mapping of a heterogeneous

16-core task graph representing a multimedia application onto a Mesh NoC topol-

ogy [HM03], while Murali and De Michelli used a customized tool (called Sunmap)

to map a heterogeneous 12-core task graph representing a video object plane de-

coder and a 6-core DSP filter application onto a Mesh or torus NoC topology using

different routing algorithms [MM04a,MM04b].

Related Work: The proprietary Sunmap tool, proposed by Stanford and

Bologna University, performs NoC topology exploration by minimizing area and

power consumption requirements and maximizing performance characteristics for

different routing algorithms. Alike our approach shown in Figure 4.1, the Xpipes

compiler can eventually extract efficient synthesizable SystemC code for all net-

work components, i.e. routers, links, network interfaces and interconnect, at the

cycle- and bit-accurate level. Our study generalizes previous studies by consider-

ing a plethora of theoretical topological metrics, as well as application patterns for

measuring embedding quality metrics. It focuses on conventional NoC topologies,

e.g. Mesh and torus, as well as practical, low-cost circulants : a family of graphs

offerings small network size granularity and good sustained performance for realistic

network sizes (usually below 64 nodes).

In Section 4.2 we describe the tools we used to study different NoC architectures

in order to understand their topological properties. In Section 4.1 we describe traffic

patterns used in our analysis. In particular, we focus on the Tgff tool used for

generating synthetic application task graphs in our simulations.

In Section 4.3, we describe the problem of application task graph mapping. We

define the adopted metrics to rate the quality of a given mapping and describe the

Scotch partitioning tool used to map a given task graph onto the considered

network on chip.

In Section 4.4 we describe OMNeT++ , the simulation framework we used to

obtain out system-level simulations.

In Section 4.5, we report a case-study consisting of task generation, mapping

66 Chapter 4. Task Mapping

analysis, and bit- and cycle-accurate system-level NoC simulation for a set of syn-

thetic tree-based task graphs, as well as for a more realistic Mpeg4 encoder appli-

cation.

Finally, in Section 4.6, we draw conclusions and consider interesting ramifications

of our work.

4.1 Synthetic Traffic Models

Applications are often represented as task graphs, thus expressing the necessary

communication and synchronization patterns for realizing a particular computation.

Task graphs are basic IP blocks with clear, unambiguous and self-contained

functionality interacting together to form a NoC application.

Task graph embedding is also used by the operating system for reconfiguring

faulty networks, i.e. providing fault-free virtual sub-graphs in “injured” physical

system graphs to maintain network performance (bandwidth and latency) in the

presence of a limited number of faults.

Vertices (or nodes) represent computation, while links represent communication.

A node numbering scheme in directed acyclic graphs (DAGs) takes into account

precedence levels. For example, an initial node is labelled node 0, while an interior

node is labelled j, if its highest ranking parent is labelled j − 1.

Undirected and directed acyclic task graphs represent parallelism at both coarse

and fine grain. Examples of coarse grain parallelism are inter-process communi-

cations, control and data dependencies and pipelining. Fine grain parallelism is

common in multimedia processing, e.g. in data parallel prefix operations and loop

optimizations.

4.2 Graph Theoretical Analysis

In order to explore inherent symmetry and topological properties in alternative

Chapter 4. Task Mapping 67

Figure 4.2: Metis visualization of the Spidergon NoC layout.

constant degree NoC topologies (especially chordal rings) we have considered

exploring theoretical knowledge by combining together several available open-source

and free packages. The eventual goal is to support NoC selection at system-level

using an array of customized design tools.

More specifically, this approach is based on several steps. After nauty and

metis analyze automorphisms as explained below, neato can display the graph

so that and graph properties and topologically-equivalent vertices are shown; two

vertices are equivalent (identical display attributes), if there is a vertex-to-vertex

bijection preserving adjacency. From these graphs we can observe scalability issues,

e.g. concerning bisection width.

• Karypis’ and Kumar’s metis provides an extremely fast, multilevel graph

partitioning embedding heuristic that can also extract topological metrics,

e.g. diameter, average distance, in/out-degree, and bisection width [KK97].

Concerning edge bisection, for small graphs, (N < 40) nodes, a custom-coded

version of Lukes’s exponential-time dynamic programming approach to parti-

tioning provides an exact bisection if one exists [Luk75]. For larger graphs,

metis partitioning is used to approximate a near-minimum bisection width;

• McKay’s nauty computes the automorphisms in the set of adjacency-preserving

vertex-to-vertex mappings. nauty also determines the orbits that partition

68 Chapter 4. Task Mapping

graph vertices into equivalence classes, thus providing symmetry and topolog-

ical metrics [McK];

• AT&T’s neato is used for visualizing undirected graphs based on spring-

relaxation and controlling the layout, while supporting a variety of output

formats, such as PostScript and Gif [Nor].

These properties can help discover NoC topologies with:

• small, constant network extendibility;

• small diameter for less than 100 nodes;

• large edge bisection width that scales;

• efficient (wire balanced) point-to-point routing without pre-processing;

• efficient intensive communication algorithms, e.g. broadcast, scatter and gather;

• good fault tolerance;

• efficient VLSI layout with short, mostly local (small chordal links) wires;

4.2.1 Generating Synthetic Graphs using Tgff

In 1998, Dick and Rhodes originally developed Task Graphs For Free (Tgff) as

a C++ software package that facilitates standardized pseudo-random benchmarks

for scheduling, allocation and especially hardware-software co-synthesis [DRW98].

Tgff provides a flexible, general-purpose environment with a highly configurable

random graph generator for creating multiple sets of synthetic, pseudo-random di-

rected acyclic graphs (DAGs) and associated resource parameters that model specific

application behavior. DAGs may be exported into postscript, VCG graphical visu-

alization or text format for importing them into mapping or simulation frameworks;

notice that VCG is a useful graph display tool that provides color and zoom [VCG].

Tgff users defines a source (*.tgffopt) file that determines the number of task

graphs, the minimum size of each such graph, and the type of nodes and edges

Chapter 4. Task Mapping 69

through a set of parameterized commands and database specifications.

For example, random trees are constructed recursively using series-parallel chains,

i.e. at least one root node is connected to multiple chains of sequentially linked

nodes.

Ranges for the number of chains, length of each chain and number of root nodes

are set by the user using Tgff commands. Notice that chains may also rejoin with

a given probability by connecting an extra (sink) node to the end of each chain.

Tgff includes many other support features, such as:

• Indirect reference to task data; task attribute information is provided through

references to processing element tables for node types or transmission tables

for communication edge types.

• user-defined graph attributes: generating statistics for node or edge perfor-

mance, power consumption, or reliability characteristics;

• real-time processing through an association of tasks to periods and deadlines;

• multi-rate task graphs: tasks exchange data at different rates either instanta-

neously or using queues;

• multi-level hierarchical task graphs, where each task is actually a task graph;

this is possible by interpreting task-graph 1 as the first task in task-graph

0, task-graph 2 as the second task in task-graph 0, etc; there are certain

restrictions.

Application graph structures are generated using Tgff in several research and

development projects. For example, Tgff is being used for application task graph

generation in heterogeneous embedded systems, hardware software co-design, par-

allel and distributed systems and real-time or general-purpose operating systems.

Within the NoC domain, Tgff is commonly used in energy-aware application

mapping, hw/sw partitioning, synthesis optimization, dynamic voltage scaling and

power management. In this respect, all tree-like benchmarks (see Section 4.5) have

70 Chapter 4. Task Mapping

been generated using our customized version of the Tgff package. Since these task

graphs are deterministic, we had to modify Tgff to avoid recursive constructions

and impose lower bounds on the number of tasks.

4.3 Task Mapping for SoC

A mapping algorithm selects the most appropriate assignment of tasks onto the

nodes of a given NoC architecture. In complex, realistic situations, all combinations

of task assignments must be considered. In most cases, a near-optimal solution

that approximately minimizes a cost function is computed in reasonable time using

heuristic algorithms. The heuristic takes into account the type of tasks, the num-

ber and type of connected nodes, and related constraints, e.g. possibly required

architecture, operating system, memory latency and bandwidth, or total required

memory for all tasks assigned to the same node.

After the mapping algorithm obtains a near optimal allocation pattern for the

given task graph, the operating system can initiate automated task allocation onto

the actual NoC topology nodes.

4.3.1 Quality Metrics for Application Embedding

Static or dynamic mapping is a network transformation technique based on graph

partitioning; a mapping is static if it is computed prior to application execution,

and is never modified afterwards. Graph partitioning decomposes a target graph

into clusters for a broad range of applications, such as VLSI layout or parallel

programming.

More specifically, given a graph G(n, m) with n weighted vertices and m weighted

edges, graph partitioning refers to the problem of dividing the vertices into p cluster

sets, so that the sum of the vertex weights in each set is as close as possible (balanced

total computation load), and the sum of the weights of all edges crossing between

sets is minimized (minimal total communication load).

Chapter 4. Task Mapping 71

Unfortunately, even in the simple case where edge and vertex weights are uni-

form and p = 2, graph partitioning onto an arbitrary NoC topology is NP-complete

[GJS76]. Hence, in general, there is no known, efficient algorithm to solve this prob-

lem, and it is unlikely that such an algorithm exists. Thus, we resort to heuristics

that partially compromise certain constraints, such as balancing the communica-

tion load, or (more typically) using approximate communication load minimization

constraints, i.e. maximizing locality and look ahead time by statically mapping

intensive inter-process communication to nearby tasks. These constraints are of-

ten specified in an abstract way through a cost function, which may also consider

more complex constraints, such as minimizing the total communication load among

all NoC components, e.g. for optimizing total power consumption during data ex-

changes. Although this function is is clearly application dependent, it is usually

expressed as a weighted sum of terms representing load on different NoC topology

nodes and communication links, considering also user-defined optimality criteria,

e.g. in respect to architecture, such as shortest-path routing, such as number or

speed of processing elements, communication links, and storage elements.

Graph partitioning heuristics are usually based on recursive bisection using ei-

ther global (inertial or spectral) partitioning methods or local (Kernighan-Lin) re-

finement techniques. Results of global methods can be fed on local techniques, which

often leads to significant improvements in performance and robustness. Thus, with

bipartitioning, the graph is partitioned into two halves recursively, until a desired

number of sets is reached; notice that quadrisection and octasection algorithms may

achieve better results.

Popular global partitioning methods are classified into inertial (based on 1-d, 2-d

or 3-d geometrical representation) or spectral (using Eigenvectors of the Laplacian

of the connectivity graph). For a long time, the Kernighan-Lin algorithm has been

the only efficient local heuristic and is still widely used in several applications with

some modifications, such as Fiduccia and Mattheyses [FM82].

Graph embedding optimally assigns data and application tasks (IPs) to NoC

resources, e.g. RISC/DSP processors, FPGAs or memory, thus forming a generic

72 Chapter 4. Task Mapping

binding framework between SoC application and NoC architectural topology. Graph

embedding also helps map existing applications onto a new NoC topology by porting

(with little additional programming overhead) existing strategies from common NoC

topologies. Embedding algorithms are usually based on graph partitioning.

Mathematically, an embedding of a source graph GS onto a given target graph GT

is an injective function from the vertex set of GS to the vertex set of GT . Performance

metrics for evaluating the embedding quality of a partitioning algorithm includes

application-specific embedding quality and platform-specific performance metrics,

such as time for executing the selected mapping time.

Common graph-theoretic application-specific embedding quality metrics are listed

below.

• Edge dilation: of an edge of GS is defined as the length of the path in

GT onto which an edge of GS is mapped. The dilation of the embedding is

defined as the maximum edge dilation of GT . Similarly, we define average and

minimum dilation metrics. These metrics measure latency overhead during

point-to-point communication in the target graph GT . A low dilation is usually

beneficial, since most communication devices are located nearby, and hence the

probability of higher application throughput increases;

• Edge Expansion: refers to a weighted-edge graph GS. It multiplies each

edge dilation with its corresponding edge weight. The edge expansion of the

embedding is defined as the maximum edge expansion of GT . Similarly, we

define average and minimum edge expansion metrics;

• Edge Congestion: is the maximum number of edges of GS mapped on a

single edge in GT . This metric measures edge contention in global intensive

communication;

• Node Congestion: is the maximum number of paths containing any node

in GT where every path represents an edge in GS. This metric is a measure

of node contention during global intensive communication. A mapping with

Chapter 4. Task Mapping 73

high congestion causes many paths to traverse through a single node, thus

increasing the probability of a network traffic bottleneck due to poor load

balancing;

• Node Expansion: also called load factor or compression ratio, is the ratio of

the number of nodes in GT to the number of nodes in GS. Similarly, maximum

node expansion represents the maximum number of nodes of GS assigned to

any node of GT ;

• Number of Cut Edges: i.e. edges incident to vertices of different parti-

tions. Cut edges represent extra (inter-module) communication required by

the mapping. This metric is used for comparing target graphs with identical

number of edges, the smaller metric the better.

In the following Sections we will examine dilation, expansion and congestion

metrics for a number of traffic patterns interesting to the SoC domain, as well as

for mapping interesting communication patterns arising from real applications onto

Spidergon and other prospective NoC topologies. Thus, many algorithms originally

developed for common Mesh and torus topologies may be emulated on the Spidergon

. Furthermore, since embedding of common application graphs, e.g. binary trees on

Mesh, has already been investigated, we can derive embedding of these graphs onto

Spidergon through composition.

4.3.2 The Scotch Partitioning Tool

The Scotch project (1994-2001) at Université Bordeaux I - LaBRI focuses on li-

braries for statically mapping any possibly-weighted source graph onto any possibly-

weighted target graph, or even onto disconnected sub-graphs of a given target

graph [PR96]. Scotch maps graphs in linear time to the number of edges in the

source graph, and logarithmic time to the number of vertices in the target graph.

Scotch has two forms of license: private version licensed for commercial appli-

cations, and public version available for academic research. The academic distribu-

tion consists of a Unix executable along with library documentation, sample graphs

74 Chapter 4. Task Mapping

0

8 24

0 100

6 2 5 4

5 6 6 7 2 3 1 0

7 2 5 4

2 2 5 4

4 6 3 1 0 6 7 2

3 2 4 5

1 2 4 5

0 2 4 5

Figure 4.3: Source file for Scotch partitioning tool.

and free access to source code. Scotch builds and validates source and target

graphs and then displays obtained mappings in colorful graphs [PR96]. It easily

interfaces to other partitioning or theoretical graph analysis programs, e.g. Metis

or Nauty, due to standardized vertex/edge labeling formats.

Scotch operates by taking as input a source file (.src) that represents the

application task graph to be mapped. Figure 4.3 shows a snapshot of a sample

source file.

The first three lines of the file represent some configuration info such as file

version number, number of vertex and edges and other file-related options.

From the fourth line onwards, the source file represents the communication task

graph, where the first entry column represents the considered node’s id, the second

the number of destinations, and then the list of destination ids. For example the

third line in Figure 4.3 says that node 6 communicates with two destinations: nodes

5 and 4. In case of different communication bandwidth next to each destination id

there is the traffic bandwidth between the source and the specific destination.

Geometry files have a .xyz extension and hold the coordinates of the vertices

Chapter 4. Task Mapping 75

8

5 5

6 0

7 1

2 3

4 2

3 4

1 7

0 6

S Strat=b{job=t,map=t,poli=S,

strat=m{asc=f{type=b,move=80,

pass=-1,bal=0.005},

low=h{pass=10},type=h,vert=80,rat=0.7}x}

M Processors 8/8 (1)

M Target min=1 max=1 avg=1 dlt=0 maxmoy=1

M Neighbors min=2 max=6 sum=24

M CommDilat=1.666667 (20)

M CommExpan=1.666667 (20)

M CommCutSz=1.000000 (12)

M CommDelta=1.000000

M CommLoad[0]=0.000000

M CommLoad[1]=0.500000

M CommLoad[2]=0.333333

M CommLoad[3]=0.166667

Figure 4.4: Target file for Scotch partitioning tool.

of their associated graph. They are used by visualization programs to compute

graphical representations of mapping results.

76 Chapter 4. Task Mapping

Target files are the result of a mapping computation in Scotch . Figure 4.4

shows the result of such a mapping. The first element states the number of nodes

mapped. The following two columns are the pairs:

< architecture node id, application node id >

Scotch then generates the metrics relative to the mapping that we discussed

above. We have modified the Tgff package for graph generation to adopt Scotch for-

mat for defining application-source graphs so that:

• Source graphs (*.src) are generated either by the user or through the Tgff tool

(see Section 4.2.1);

• Geometry files (*.xyz) are generated either by the user i.e. Spidergon NoC or

by the Scotch partitioning tool for common graphs, such as Mesh or Torus;

• Target NoC topology graphs (*.tgt) are generated automatically from corre-

sponding source graphs using the Scotch partitioning tool.

Mapping algorithms for simple application graphs, such as rings or trees have

been studied extensively in parallel processing, especially for direct networks, such as

hypercubes and meshes [Lei06]. For general graphs several mapping algorithms exist,

e.g. Kerninghan-Lin algorithm for VLSI layout, or simulated annealing techniques.

Simulated annealing first defines an initial mapping based on the routing func-

tion, e.g. shortest-path, dimension-order or non-minimal path. Then, this algorithm

always accepts injection of new disturbances that reduce an appropriately defined

cost function that measures the relative cost of the embedding, while it accepts only

with a decreasing probability the injection of new disturbances that increase the

relative cost function. Scotch features extremely efficient multi-level partitioning

methods based on recursive graph bipartitioning [PR96]. More specifically, initial

and redefined bipartitions use:

• Fiduccia-Mattheyses heuristics that handle weighted graphs;

Chapter 4. Task Mapping 77

• randomized and backtracking methods;

• greedy graph-growing heuristics;

• a greedy strategy derived from Gibbs, Poole, and Stockmeyer algorithm;

• a greedy refinement algorithm designed to balance vertex loads.

Scotch application developers can select the best partitioning heuristic for

each application domain by changing partitioning parameters.

4.4 The OMNeT++ Simulation Framework

OMNeT++ is an object-oriented modular discrete event network simulator [Knu91].

The source code is freely available for the academic community, while it requires a

license for commercial use. OMNeT++ offers a number of libraries and tools that

allow a user to rapidly develop complex simulation projects providing:

• a graphical tool to define the simulator skeleton: this allows the user to easily

define the different agents acting in the environment to be simulated as well

as delineating the relations and hierarchies existing among them;

• a library for automatic handling of inter-process signaling and messaging;

• a library implementing the most important, commonly used statistical proba-

bility distribution functions;

• an interesting graphical user interface, that allows the user inspect and interact

with the simulation at run-time by allowing hip/her to modify parameters,

inspect objects or plot run-time graphs;

• a number of tools that collect, analyze and plot the simulation results, and

• many freely developed models for wired/wireless network communication pro-

tocols like TCP-IP, IEEEE 802.11 or ad hoc routing protocols.

78 Chapter 4. Task Mapping

(a) (b) (c)

Figure 4.5: Application models for: (a) 2-rooted forest (SRF) , (b) 2-rooted tree

(SRT), (c) 2-node 2-rooted forest(MRF) application task graphs.

In contrast to an already existing SystemC model, the OMNeT++ model hides

many low-level details relative to NoC implementation in order to concentrate on

understanding the effects caused by major issues like core mapping, routing algo-

rithm selection and communication buffer sizing of the router and network interface

nodes. Of course, we do not completely ignore details on these resources (espe-

cially the router), but rather treat them as constant parameters that also influence

network performance.

4.5 A Case Study

In this case study, we consider embedding application task graphs onto several

prospective NoC topologies.

First we describe the traffic patterns that we intend to use then we describe the

NoC we analyzed and the result of embedding the considered applications onto the

considered NoC.

Finally we present the OMNeT++ based simulation results of a selected subset

of the considered applications and NoC.

4.5.1 Application Task Graphs

Any application can be modeled using a directed or undirected task graph. In

our study, we consider three classes of tree-like benchmarks obtained through the

Chapter 4. Task Mapping 79

sram
2

vu au
med
cpu

rast

idct

bab

sram
1

risc

sd
ram

ups
amp

adsp

190
0.5 60

40
600

40
250

500 175 32
670

910
0.5

Figure 4.6: The Mpeg4 decoder task graph.

Tgff package. Each task graph had subset of nodes acting as traffic generators

(initiators) and the remaining nodes acted as sink (target):

• Single multi-Rooted Forest: (SRF) the target sub-set of nodes is addressed

by all the initiator nodes (Figure 4.5(a));

• Multiple node-disjoint Single-Rooted Trees: (SRT) initiator nodes are

partitioned in subsets each set then communicates to one single target node

(Figure 4.5(b));

• Multiple node-disjoint Multi-Rooted Forests: (MRF) is the combination

of the first two traffic patterns: initiator and target nodes are slit in disjoint

sets. Each set of initiator communicate with a single set of target nodes

(Figure 4.5(c)).

We also considered a real 12-node Mpeg4 task graph (shown in Figure 4.6).

All the considered task graphs, with the exception of the Mpeg one, are undi-

rected with unit node weights, and all have unit edge weights and scale with the

NoC size. Hence the number of tasks always equals the network size, which ranges

from 8 to 64 with step 4.

80 Chapter 4. Task Mapping

4.5.2 Prospective NoC Topology Models

The choice of NoC topology has a significant impact on MPSoC price and perfor-

mance. The bottleneck in sharing resources efficiently is not the number of routers,

but wire density which limits system interconnection, affects power dissipation, and

increases both wire propagation delay and RC delay for driving the wires. Thus,

in this study, we focus on regular, low-dimensional, point-to-point packet-switched

topologies with few short, fat and mostly local wires.

As target NoC topology models we have considered low-cost, constant degree

NoC topologies, such as single-dimensinal Array, Ring, 2-D Mesh and the Spidergon

NoC.

We also considered the Crossbar architecture to have a comparison with the

classical bus-based architectures. A large Crossbar is prohibitively expensive (in

terms of number of links), but optimal solution in terms of embedding quality metrics

(with unity edge dilation) for all patterns. Modern Crossbars connect IP blocks

with various data widths, clock rates. and socket or bus standards, e.g. OCP, and

AMBA AHB or AXI. Although system throughput, latency and scalability problems

can be resolved by implementing the Crossbar as a multistage network based on

smaller Crossbars and resorting to complex pipelining, segmentation and arbitration,

a relatively simple, low-cost alternative is the unbuffered Crossbar switch. Thus, we

also compare performance of the unbuffered Crossbar relative to ring, 2-d Mesh and

Spidergon.

Although multistage networks with multiple layers of routers have nice topolog-

ical properties, e.g. symmetry, small degree and diameter and large bisection, they

have small network extendibility, many long wires and large wire area, thus they are

not appropriate for NoC realization.

4.5.3 The Spidergon Network on Chip

Spidergon is a state-of-the-art low-cost on-chip interconnect developed by ST Mi-

croelectronics [CGL+08]. It is based on three basic components: a standardized

Chapter 4. Task Mapping 81

Figure 4.7: The Spidergon topology translates to simple, low-cost VLSI implemen-

tation.

network interface (NI), a worm-hole router, and a physical communication link.

Spidergon generalizes the ST Microelectronics’ circuit-switched ST Octagon NoC

topology defined as a cartesian product of basic octagons with a computing resource

connected to each node. Spidergon is based on a simple bidirectional ring, with extra

cross links from each node to its diagonally opposite neighbor. It is a chordal ring

that belongs to the family of undirected k-circulant graphs, i.e. it is represented as

a graph G(N ; s1; s2; ...; sk), where N is the set of nodes, and 0 ≤ si ≤ |N |, where si

is an undirected edge between any node l and node (l + si)mod|N |.

Thus, more formally, Spidergon is a vertex-symmetric 3-circulant graph with

an even number of nodes |N | = 2n, where n = 1, ..., k = 2, s1 = 1 and s2 =

(l + n)mod|N |.

Chordal rings are circulant graphs with s1 = 1, while double loop networks are

chordal rings with k = {2, 4, 5, 9, 15, 16, 17}. Since early 1980s with the design of

Illiac IV, these families have been proposed as simple alternatives to parallel in-

terconnects, in terms of asymptotic graph optimality, i.e. minimum diameter for a

given number of nodes and constant degree, see Moore graphs [E.W]. These theo-

retical studies ignore important design aspects, e.g. temporal and spatial locality,

latency hiding and worm-hole routing, and NoC-related constraints.

The total number of edges in Spidergon is 3N
2

, while the network diameter is

dN
4
e. For realistic NoC configurations with up to 60 nodes, Spidergon has a smaller

diameter and number of edges than fat-tree or Mesh topologies, leading to latency

reduction for small packets. For example, the diameter of a 4x5 Mesh with 31 bi-

directional edges is 7, while that of a 20-node Spidergon with 30 bi-directional edges

and less wiring complexity is only 5.

As shown in Fig. 4.7, Spidergon has a practical low-cost, short wire VLSI lay-

out implementation with a single crossing. Notice that VLSI area relates to edge

bisection, while the longest wire affects NoC latency.

82 Chapter 4. Task Mapping

In this article we considered the Across-First (aFirst) Spidergon routing algo-

rithm . It is a symmetric algorithm and since the topology is vertex-transitive it can

be described at any node. For any arriving packet, the algorithm selects the cross

communication port at most once, always at the beginning of each packet route.

Thus, only packets arriving from a network resource interface need to be consid-

ered for routing. All other packets maintain their sense of direction (clockwise, or

anti-clockwise) until they reach their destination.

AFirst can be made deadlock-free by using virtual channels that break cycles

in the channel dependency graph [Dal90,DA93,DYN03]. Furthermore, optimized,

load-balanced virtual channel allocation based on static or dynamic datelines (points

swapping of virtual circuits occurs) may provide efficient use of network buffer space,

thus improving performance by avoiding head-of-line blocking, reducing network

contention, decreasing communication latency and increasing network bandwidth

[CGL+08].

4.5.4 Task Graph Embedding Analysis

Through Scotch partitioning, we have mapped the application graphs described

in Section 4.5.1 onto several low-cost NoC topologies (represented with *.tgt target

files) using different partitioning heuristics. Scotch partitioning was tested with

common examples. We have considered only shortest-path and avoided multi-path

routing due to the high cost of packet reordering. Notice that Scotch can plot

actual mapping data using 2-d color graphical representation; this enhances the

automated task allocation phase with a nice, user-friendly GUI.

In Figure 4.8 we compare edge dilation for embedding the previously described

master-slave tree-like benchmarks, i.e. single multi-rooted forests, multiple node-

disjoint single-rooted trees and multiple node-disjoint multi-rooted forests, onto our

candidate NoC topologies using the efficient default strategy in the Scotch parti-

tioning tool; notice however that Scotch mapping is not always optimal, even if

theoretically possible.

By examining these figures, we make the following remarks and comparisons.

Chapter 4. Task Mapping 83

(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Edge Dilation for: (a) 2-rooted and (b) 4-rooted forest, (c) 2 node-

disjoint and (d) 4 node-disjoint trees, (e) 2 node-disjoint 2-routed and (f) 4 node-

disjoint 4-routed forests in function of the network size.

• Ring is the NoC topology with the largest edge dilation;

• For master-slave trees, Spidergon is competitive compared to 2-d Mesh for

N ≤ 32. Moreover, for node-disjoint trees or forests, Spidergon is competitive

to Mesh for larger network sizes (e.g. up to 52 nodes), especially when the

number of node-disjoint trees or forests increases, i.e. when the degree of

84 Chapter 4. Task Mapping

multiprogramming increases. This effect arises from the difficulty to realize

several independent one-to-many or many-to-many communication patterns

on constant degree topologies;

• Notice that Mesh deteriorates for 44 and 52 nodes due to its irregularity. This

effect would be much more profound if we had considered network sizes that

are multiples of 2 (instead of 4), especially sizes of 14, 22, 26,. . . 58 and 62

nodes.

Figure 4.9 shows our results for edge expansion normalized to the best result,

obtained from embedding the Mpeg4 source graph onto candidate NoC topologies

using the Scotch partitioning tool.

We notice that the Crossbar has the smallest edge expansion so this value is used

as reference for the normalization. This is an expected result since in a Crossbar

every node is connected to the others through a single channel. Spidergon and Mesh

have a very similar edge expansion (where Spidergon has slightly better value) while

the Ring topology has the highest value of all.

Figure 4.9: Edge expansion for 12-node Mpeg4 for different topologies (target

graphs).

Finally the NoC mapping considered so far have been obtained in seconds on a

Pentium IV with 2GB of Ram memory and running Linux.

4.5.5 Simulation Models for the Proposed NoC Topologies

In the NoC domain, IPs are usually connected to the underlying interconnect through

a network interface (NI) which provides connection management and data packeti-

zation (and de-packetization) facilities.

Each packet is split into data units called flits (flow control units). The size of

buffer queues for channels is a multiple of the flit data unit, and packet forwarding is

performed using flit-by-flit routing. The switching strategy adopted in our models is

Chapter 4. Task Mapping 85

worm-hole routing. In worm-hole, the head flit of a packet is actively routed towards

the destination by following forward indications of routers, while subsequent flits are

passively switched by pre-configured switching functions to the output queue of the

channel belonging to the path opened by the head flit. When buffer space is available

on the input queue of the channel of the next switch in the path, a flit of the packet

is forwarded.

In the NoC domain, flit-based worm-hole is generally preferred to virtual cut-

through or packet-based circuit switching because its pipelined nature facilitates

flow control and end-to-end performance, with small packet size overhead and buffer

space. However, due to the distributed and finite buffer space and possible circular

waiting, complex routing deadlock conditions may arise.

The considered Mesh architecture resolves this point through a deadlock avoid-

ing routing algorithm called Dimension Order (or XY algorithm) that limits path

selection [DYN03]. At first, flits are forwarded towards their destination initially

along the X direction (the horizontal link) until the column of the target node is

reached. Then, flits are forwarded along the Y direction (vertical link) up to the

target node, usually asynchronously.

The bidirectional Ring architecture deals with message-dependent deadlock us-

ing virtual channels (VC) [Dal90]; this technique maximizes link utilization and

allows for improved performance through smart static VC allocation or dynamic

VC scheduling. VCs are implemented using multiple output queues and respective

buffers for each physical link. A number of VC selection policies exists in the liter-

ature [MB06]; we adopt the Winner Takes All algorithm for VC selection and flit

forwarding [DT04].

In this article, we also consider an unbuffered Crossbar. Each node in this

Crossbar is directly connected to all others, i.e. without any intermediate nodes.

Thus, we model an unbuffered (packet-switched) full Crossbar switch with round

robin allocation of input channels to output ones. The key for this interconnect is

channel arbitration. In particular, when a first flit is received, the arbiter checks if

the requested output channel is free. If this is true, the input channel is associated

86 Chapter 4. Task Mapping

(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Maximum throughput as a function of the network size for: (a) 2-

rooted forest (b) 4-rooted forest (SRF) , (c) 2-rooted tree (d) 4-rooted tree (SRT),

(e) 2-node 2-rooted forest and (f) 4-node 2-rooted forest (MRF) and different NoC

topologies.

to the output one until the whole packet is transmitted, otherwise the flit remains

in the input register (blocking the relative input channel) until the arbiter assigns

the requested channel.

Chapter 4. Task Mapping 87

Finally to avoid the protocol deadlock [SP03b,HG07] caused by the dependency

between the targets input and output channels, we configured the network’s router

with two Virtual Networks (VN) [BCH95]: one for requests and one for replies

packets. Flits to forward are selected from VNs in a round robin way, and the

respective VC in ring is selected with the Winner Takes All algorithm [DT04],

where flits of a single packet are sent until either the packet stalls or is completely

transmitted.

In our experiments, all target input buffers and initiators’ output buffers are

assumed to be infinite: this allows us to focus on network performance by including

deadlock avoidance schemes, but avoiding packet loss due to external devices from

playing a bias role in network analysis. However, finite buffers can be treated using

the same methodology.

We have modeled the Crossbar, Ring, Mesh and Spidergon architectures using a

number of synchronous (shared clock) network routers, with each router connected

to a network interface (NI) through which external IPs with compatible protocols

can be connected [Hwa01].

In our model, depending on the simulated scenario, each IP acts either as a pro-

cessing (PE), or as a storage element (SE). Traffic sources (called initiators) generate

packet requests directed to target nodes (SEs) according to their configuration. All

routers forward incoming flits according to the previously defined path computation

algorithm, provided that the following router has enough room to store them. Oth-

erwise, flits are temporarily stored in the channel output queues. Since Crossbar

has no intermediate buffers, flits remain in the infinite output buffer of the initiator,

until they can be injected into the network.

According to the application type (e.g. Mpeg4) storage elements receive request

packets and generate instantaneously the respective reply packets to be forwarded

to the initiator. All studied architectures have been modeled using similar routing

techniques and PE/SE components are always adapted to specific architecture needs.

Figure 4.10 represents the average throughput of replies for all initiators. For

each experiment, the offered load is the initiators’ maximum injection rate. In the

88 Chapter 4. Task Mapping

simulation test bench, requests and replies have the same packet length (5 flits),

while for each request corresponds exactly one reply.

Due to traffic uniformity, the reply throughput at each initiator increases when

augmenting the real injection rate, until the node saturates. After this point, the

router is insensitive to the offered load, but continues to work at the maximum

possible rate. Thus, the throughput remains constant (at a maximum point), while

the initiators’ output queue sizes (assumed as infinite) actually diverge to infinity

very quickly.

By examining the graphs in Figure 4.10 we draw the following observations:

• As expected, the Ring performs generally worse than all studied NoC topolo-

gies;

• The Spidergon behaves better than Mesh for small networks (up to 16 nodes)

and remains competitive for larger network sizes in all considered traffic pat-

terns. However, notice that Scotch considers all minimal paths between

any two nodes, while the OMNeT++ model uses only the subset of minimal

paths defined by the XY routing algorithm. Use of a specific routing algorithm

with the Scotch mapping tool is an interesting future task;

• For the 4-rooted forest, Mesh outperforms Spidergon in larger networks only

for regular Mesh shapes (32, 36, 48, 52 nodes);

• Under 2 and 4 node-disjoint tree patterns, all considered architectures saturate

at the same point;

• In the 2- and 4-rooted tree cases, considering the total amount of injected flits

per cycle generated by all initiators, we obtain two constant values: 2 and 4

flit/cycle which is exactly what the two and four storage elements can absorb

from the network. In this case, the bottleneck is given by the SEs and not by

the architectures which operates under the saturation threshold;

• Crossbar has the best performance in all studied cases, with a smooth and

seamless decreasing throughput.

Chapter 4. Task Mapping 89

Figure 4.11: Amount of memory required by each interconnect.

200 220 240 260 280

crossbar

mesh

ring

spidergon

Execu&on Time (thousand cycles)

(a) (b)

Figure 4.12: Task execution time (a) and average path length (b) for Mpeg4 traffic

on the considered NoC architectures.

4.5.6 Mpeg4 a Realistic Scenario

In addition to the previous synthetic task graph embedding scenarios, we examined

performance of bidirectional Ring, Mesh, Spidergon and unbuffered Crossbar archi-

tectures for a real Mpeg4 application modeled by using the task graph illustrated

in Figure 4.6. In order to compare these topologies, we set up a transfer-speed test

where all architectures are mandated to transfer a fixed amount of Mpeg4 packets.

Initiators generate requests for SEs (according to the task graph in Figure 4.6), and

SEs reply with an instantaneous response message for each received request. Re-

90 Chapter 4. Task Mapping

quests and replies have have a length of 4 flits. In addition, notice that some PEs

have a generation rate that heavily differs from others.

In our modeling approach, we have chosen to assign to each intermediate buffer

a constant size of three flits. As shown in Figure 4.11, the buffer memory in Mesh

and Spidergon is comparable (and lower than ring), and Spidergon buffer allocation

becomes lower than Mesh when the network size increases. The XY routing algo-

rithm used in the Meshe NoC, and Across-first routing used in Spidergon have the

advantage of avoiding deadlock without requiring virtual channels. Ring topology

uses two virtual channels for each physical channel in the circular links, to avoid

deadlock hence Ring has an high need of buffer space. Notice that the Crossbar

architecture does not use network buffering hence in Figure 4.11 its columns are

always zero. The Crossbar in fact uses buffering only on the Network Interface, and

as for the other architectures, this buffering is not considered in the computation.

We analyzed the application delay measured as the number of elapsed network

cycles from the injection of the first request packet of the load to the delivery of the

last reply packet of the same load. In our simulator, the packet size is measured in

flits; this unit relaxes the need to know the actual bit-size of a flit.

Furthermore, since we focus on topological constraints rather than real system

dimensioning, we assume that each channel is able to transmit one flit per clock

cycle. As proposed in [KKS05b], in order to define a flit injection rate for each

different PE of the Mpeg4 task graph, in the transfer speed test we use as reference

the highest demanding PE (called UPS-AMP device, see Figure 4.6). All remaining

nodes inject flits in a proportional rate with respect to the UPS-AMP device. These

rates are reported in tabular form in Table 4.1.

From Figure 4.12 (a), we observe that Ring and Spidergon have the best perfor-

mance while, quite surprisingly, Mesh and Crossbar perform worse than expected.

The explanation can be obtained by considering the allocated buffer size for the

12-node architectures shown in Figure 4.11: Mesh and unbuffered Crossbar have

less buffer memory, i.e. 204 flits for Mesh and 0 for Crossbar vs. 288 flits for

Ring and 216 for Spidergon. To summarize results, by computing the percentage

Chapter 4. Task Mapping 91

Offered Load (Mb/sec) % w.r. UPS % w.r. Tot

VU 190.0 12.03 5.48%

AU 0.5 0.03 0.01%

MED 100.0 6.33 2.98%

RAST 640.0 40.51 18.47%

IDCT 250.0 15.82 7.21%

ADSP 0.5 0.03 0.01%

UPS 1580 100.0 45.59%

BAB 205.0 12.97 5.91%

RISC 500.0 31.65 14.43%

Tot 3466.0 219.37 100.00%

Table 4.1: Initiators average injection rate and relative ratio with respect to the

UPS-AMP node.

difference between the data transfer performance reported in the first histogram

of Figure 4.12 (a), we conclude that for near optimal Mpeg4 mapping scenarios,

Spidergon is faster than Ring by 0.6%, faster than Mesh by 3.3% and faster than

unbuffered Crossbar by 3.2%. Next, we obtain more detailed insights on the steady

state performance metrics and resource utilization of the proposed architectures, for

the considered scenarios.

In the second histogram of Figure 4.12 (b) we illustrate the average path length

of flits (and its standard deviation) obtained with the Mpeg4 mapping in the data

transfer experiments. Ring forces some packets to follow longer paths than other

topologies, but in this way it effectively uses its buffer space more efficiently. Except

for unbuffered Crossbar (which saturates soon). Spidergon provides a good tradeoff

among proposed topologies, resulting in shorter and more uniform paths.

In the analysis of node throughput reported in Figure 4.13, we observe that in

all topologies the most congested links are those connected to the busiest nodes

(SDRAM, UPS-AMP, and RAST of Figure 4.6). Despite the higher number of

92 Chapter 4. Task Mapping

(a) (b)

(c) (d)

Figure 4.13: Average throughput on router’s output port for (a) Spidergon, (b)

Ring, (c) Mesh and (d) unbuffered Crossbar architecture.

channels that the Mesh disposes, Spidergon and Mesh actually forward packets

along the same number of links. The Mesh XY routing algorithm does not exploit all

paths this architecture provides, while Spidergon provides better channel balancing.

Because of its shape, the Ring exploits much more its channels. In the Crossbar the

busiest channels are those toward the SDRAM and SRAM2 nodes, the two veritable

network hot spots, and the UPS-AMP node which generates more than the 45% of

the network traffic.

The absence of intermediate buffers makes the Crossbar architecture very sen-

Chapter 4. Task Mapping 93

(a)

Figure 4.14: Network RTT in function of Initiators’ offered load.

sitive to realistic unbalanced traffic. In particular, Crossbars may show end-to-end

source blocking behavior since a packet addressed to SDRAM may have to wait in

the output queue of the initiator, while buffered multi-hop paths could allow ini-

tiators to inject more packets into the network (if buffer space is available in the

path), thus facilitating an emptying behavior of source-queue packets addressed to

different targets.

Figure 4.14 shows the average network round trip time (RTT), i.e. the average

time required for sending a request packet and obtaining its respective reply packet

from the network (only network time is computed, i.e. the time in the infinite queue

of the initiator is excluded). Note that in the following figures, the UPS-AMP node

injection rate is taken as reference and reported on the X axis, while the injection rate

for other nodes can be computed proportionally following Table 4.1. The average

injection rate of the initiators (total offered load) can be obtained by multiplying

this value by a constant factor (percentage of total initiator load) which is 2.1937

for the Mpeg4 scenario. For all the topologies, the RTT time slowly increases until

congestion starts (rate below 0.6flits/cycle).

The UPS-AMP network congestion appears for a UPS-AMP injection rate be-

tween 0.6 and 0.7 flits/cycle. When the path used by the UPS-AMP saturates and

becomes insensitive to the offered load (around 0.7 flits/cycle), other initiators using

different paths may still augment their input ratio, increasing network congestion

94 Chapter 4. Task Mapping

Figure 4.15: Future work:dynamic scheduling of tasks.

and average network RTT. Crossbar has the lowest RTT thanks to the absence of

intermediate hops. Spidergon has an average RTT similar to Mesh and Ring while

having shorter paths. This indicates that Spidergon channel buffers are in general

better exploited.

4.6 Conclusions and Extensions

In this article we presented the methodology and tools we use to perform high-level

analysis of NoC architectures.

In particular we presented Tgff , an open-source tool that allows to generate

complex application task graph. Then we discussed about Scotch , an embedding

and partitioning tool used to map the generated task graph onto a selected NoC.

Finally, we presented OMNeT++ and out cycle-accurate high-level NoC simu-

lator. Here we discussed a case-study considering three theoretical task graphs and

Chapter 4. Task Mapping 95

a real Mpeg4 decoder.

Future related work will focus on improving:

• the Scotch partitioning tool to consider also non-minimal paths or imple-

ment complex cost functions, e.g. for optimizing system power consumption

by minimizing total edge dilation;

• our OMNeT++ model to consider runtime task migration and reconfigu-

ration, or optimize buffer size at the routers or at the incoming or outgoing

network interface.

96 Chapter 4. Task Mapping

Part III

Transport Protocols for NoC

97

98

Chapter 5

Data Transfer Protocols

5.1 Introduction

Networks-on-Chip (NoC) have been proposed to address the increasing impact of

communication on multi-core systems-on-chip (SoC) [BM02,DT01,HJK+00]. With

the NoC paradigm various on-chip cores (processors, memories...) exchange data by

accessing a network of optimized links and routers through network interfaces (NI)

as shown in Fig. 5.1. The NIs decouple the design of the cores from the design of the

network, implement the NoC communication protocols, and improve performance

by providing elasticity between inter-core communication tasks and intra-core com-

putation tasks thanks to their storage capabilities: as shown in Fig. 5.1 input and

output queues are used to temporarily store the incoming and outgoing messages.

While messages are the units of transfer from the network clients (processors and

memories) to the networks, in the network interface a single message is typically

broken down into a sequence of small packets for routing purposes; packets may be

further segmented in flow control digits (flit) for more efficient allocation of network

resources such as link bandwidths and queue capacities [DT04,DYN03].

The correct operations of a network requires to efficiently handle deadlock situ-

ations which may arise due to the circular dependencies on the network resources

that are generated by in-flight messages. A variety of methods has been proposed

in the literature to either avoid or recover from deadlock [DT04, AP95]. Most of

100 Chapter 5. Data Transfer Protocols

Deadlock‐Free
NoC

R1 R0

req

rep NI 1

Loadi

Processor A

req

rep

NI 2

Memory B

req

rep NI 0

Memory A

req

rep

NI 3
Loadj

Processor B

Figure 5.1: Message-dependent deadlock in a shared-memory request-response

paradigm.

these protocols assume the consumption assumption where the packets of a message

traversing the network are always consumed by the destination core once they reach

its corresponding network interface [SP03a]. However, deadlock may be caused also

by dependencies that are external to the network, i.e. dependencies that are internal

to a core. In fact, in real SoC systems and multiprocessor systems a core typically

generates new messages in response to the reception of a previous message. These

dependencies between messages can generate a different type of deadlock that is com-

monly referred as message-dependent (or protocol) deadlock [D.K97,SP03a,HGR07].

Message-dependent deadlock occurs at a level of abstraction that is higher than the

routing-level deadlock, which is addressed by deadlock-free routing algorithms such

as dimension-order routing [DT04,DYN03]. 1

Figure 5.1 shows a simple example of a message-dependent deadlock that may

occur due to the dependence between the messages that are received by (sent from)

a memory core. The network interface NI 0 receives packets for a memory load

1We focus on addressing message-dependent deadlock while assuming the use of a deadlock-

free routing algorithm. Notice that message-dependent deadlock is different from application-level

deadlock which is out of the scope of this paper.

Chapter 5. Data Transfer Protocols 101

(or store) request message addressed to Memory A and in reply sends packets with

a response message that includes the requested data (or the acknowledgment of a

store operation). Since the input and output queues of NI 0 have necessarily limited

storage capacity, a long sequence of requests may cause a backpressure effect into

the NoC. For instance, the packets of a series of load request messages Loadi from

Processor A may not be fully stored within NI 0 and, instead, may have to wait

for several clock cycles in the East queue of Router 0. Then, let’s assume that

Processor B sends a series of load request messages Loadj to Memory B. Even if

Memory B can immediately serve a first subset of these requests, the packets of

the corresponding response messages will not be able to reach Processor B because

they will be blocked as they attempt to access the East Queue of Router 0. On

the other hand, when Memory A will be finally able to serve the request messages

Loadi, the packets of its response messages will not be able to reach Processor A

because they will be blocked as they attempt to access the West Queue of Router 1,

which are occupied by some of the packets of the load request messages Loadj. In

summary, even if the NoC uses a deadlock-free routing algorithm, the dependencies

across the messages inside the memory cores cause a circular dependency involving

NI 0, Router 0, Router 1, and NI 1 which leads to a deadlock.

Related Work. Various solutions for message-dependent deadlock have been

proposed in the literature. Dielissen et al. solve this problem by guaranteeing suf-

ficient storage space for each possible pair of communicating elements [DRKR03].

Anjan et al., instead, add timers into the router’s output ports to detect dead-

lock occurrences and move the blocked packets into specialized queues to guarantee

progress [AP95]. Song et al. propose a protocol-recovery protocol motivated by the

observation that in practice message-dependent deadlocks occur very infrequently

even when network resources are scarce [SP03a]. These three approaches, however,

are meant for parallel computing systems and are not expected to scale well to NoC

applications.

The message-dependent deadlock problem in NoC for shared-memory architec-

tures has been addressed by introducing two physically-separated networks for the

102 Chapter 5. Data Transfer Protocols

two message types (load and store requests) [MM05] or two logically-separated net-

work (virtual networks) [CGL+08]. These solutions may be difficult to scale to

future multicore SoCs where the increasing number of heterogeneous cores and mes-

sage types is likely to grow, thus leading to more complex dependencies among

packets.

The Æthereal [GRK+05] and Faust [DBL05] NoCs use credit-based (CB)

end-to-end flow control protocols. Similar to the credit-based flow control mecha-

nisms that operate at the link level between a pair of interconnected routers [DT04,

DYN03], a CB end-to-end flow control protocol uses credits to inform a sender NI

about the current storage capacity of the queue in the receiving NI. As discussed

in Section 5.3, the sender NI keeps track of this capacity with a credit counter

that is initialized with a value equal to the size of the corresponding queue and is

dynamically updated to track the number of available packet slots in the queue.

Hence, the sender continuously transmits only a subset of the message packets that

is guaranteed to eventually arrive inside the NI, thus avoiding a message-dependent

deadlock. Notice that for a given SoC a core that may send messages to N different

cores needs N credit counters while if it can receive messages from M different cores

it needs M different queues.

Contributions. We build on the CB approach to develop Connection then

Credits (CTC), an end-to-end flow control protocol that allow us to handle the

message-dependent deadlock while simplifying the design of the network interface,

which is based on the same micro-architecture regardless of the number of communi-

cations that its core may require. This micro-architecture uses a single credit counter

together with an output queue for sending all the possible outgoing messages and a

single pair of data-request queues that is shared across all possible incoming mes-

sages. On the other hand, as explained in Section 5.4, CTC requires the completion

of a handshake procedure between any pair of cores that want to communicate be-

fore the actual message transfer starts. This procedure is used to initialize the credit

counter in the sender NI based on the current available space in the data queue of

the receiver NI. While this necessarily adds a latency overhead to the transfer of

Chapter 5. Data Transfer Protocols 103

re
q

re
p NI

Processor

re
q

re
p NI

Memory

NOC

(a)

NOC

re
q

re
p NI

Prod./Cons.

re
q

re
p NI

Prod./Cons.

(b)

Figure 5.2: Message dependency in shared memory (a) and message passing (b)

communication paradigms.

the message, the penalty in performance is limited when large messages need to be

transferred as it is shown by the simulation results that we report in Section 5.5.

5.2 Message-Dependent Deadlock

There are two main communication paradigms for exchanging data among the pro-

cessing cores of a system-on-chip and they are associated to two corresponding pro-

gramming models: shared memory and message passing.

In a shared-memory paradigm the processing cores communicate via data vari-

ables that are defined in the same logical memory space and are physically stored

in one or more memory cores. As shown in Figure 5.2(a), a processor accesses a

memory through either a load or a store request by specifying the memory address

and the size of the data block to be transferred. In the case of a load request the

addressed memory replies by sending the values of the requested block of data (typ-

ically a cache line) to the processor, which saves them in its local cache memory. In

the case of a store request the memory receives new values for a block of addresses,

which typically correspond to a line in the processor’s local cache, and it replies by

generating a short Ack message to confirm their correct delivery. Shared memory

is the most used paradigm in current multi-core SoCs.

In the message passing paradigm, which is illustrated in Figure 5.2 (b), the

processing cores communicate by sending/receiving data that are pushed directly

from a core to another (peer-to-peer communication): the sending and receiving

104 Chapter 5. Data Transfer Protocols

cores are commonly referred as the producer and consumer, respectively. By having

dedicated logical addressing space for each processing core and providing direct com-

munication among their physical local memories, message passing avoids the issues

of shared-memory coherency and consistency [HP06], thus potentially reducing the

communication latency of each data transfer. This paradigm is particularly suited

for data-flow and stream processing applications that consist of chains of processing

cores such as the video processing pipeline [HGR07].

The correct implementation of shared memory and message passing paradigms

in a system-on-chip require an underlying NoC with communication protocols that

guarantee the correct transfer of each message and, particularly, the absence of

deadlocks. As discussed in the Introduction, even if the NoC relies on deadlock-free

routing algorithms, message-dependent deadlock may arise due the dependencies

among the messages “inside a core”, which are shown in Figure 5.2: e.g. the de-

pendence between a load request and response in a memory for the shared memory

paradigm and the causality dependency between the consumption and production

of data in a core for the message passing paradigm. For both paradigms, the de-

pendencies between pairs of messages may get combined, thus leading to message

dependency chains [PS01]. Indeed, the causality relations among pairs of messages

can be modeled as a partial order relation ≺ over the set of all possible messages that

are transferred in the network. Message dependency chains depend on the chosen

communication paradigm and the characteristic of the given application [HGR07].

As for routing-dependent deadlock, the message-dependent deadlock problem can

be addressed with either avoidance or recovery strategies. The relative advantages

of the various techniques based on these two approaches depend on how frequently

deadlocks occur and how efficiently (in terms of resource cost and utilization) mes-

sages can be routed while guarding against deadlocks [SP03a].

The introduction of a Virtual Network (VN) for each type of message transfer

guarantees the solution of the message-dependent deadlock by satisfying the con-

sumption assumption [SP03a,CGL+08]: the input and output queue of each router

and each NI in the network is replicated and assigned to a single specific message

Chapter 5. Data Transfer Protocols 105

class (e.g. two classes in case of memory request and response messages). This

solution “cuts” the causality dependency between messages in the network at the

cost of a higher buffer requirement and more complex router and NI design.

Stream processing applications implemented with a pipeline of processing cores,

where each core produces data for the next consumer core, lead to a dependency

chain of message requests request1 ≺ · · · ≺ requestn where n is the number of cores

in the pipeline. For example, Figure 5.3 shows the task graph of the Video Object

Plane Decoder (Vopd) application that can be implemented by mapping each of

the tasks on a distinct processing core. The resulting pipeline has 12 stages and,

therefore, it leads to 12 different types of request messages if all the communications

are implemented by peer-to-peer message passing. Multi-core SoCs for embedded

products simultaneously support an increasing number of applications such as the

Vopd. This translates into the presence of complex communication patterns among

the cores, which simultaneously run multiple threads of computation to implement

the multiple tasks of the various applications. The implementation of the commu-

nication requirements among these cores with a NoC requires new solutions for the

message-dependent protocol. In fact, a solution based on virtual networks does not

scale as the number of distinct message types that travel on the network continues to

grow. Furthermore, the length of the dependency chains depends on the given appli-

cation and is difficult to predict. Similarly, as the number of processing and memory

cores continues to grow also for multi-core SoCs that are based on a shared-memory

architecture, the implementation of cache-coherent protocols becomes harder and

scaling the number of virtual channels becomes impractical.

5.3 Credit Based (CB) Protocol

A different approach to the solution of the message-dependent deadlock is based

on the use of an end-to-end flow control protocol that guarantees that a sender NI

does not ever inject more packets in the network than the number of packets that

the corresponding receiver NI can eject. The Credit Based (CB) end-to-end flow

106 Chapter 5. Data Transfer Protocols

stripe
mem

vld
run le
dec

inv
scan

acdc
pred

iquan
t

idct

ups
amp

arm

vop
rec

pad
vop
mem

70 362 362

362 49

16 357

27

353

300

500 313

313
94

16

Figure 5.3: The MP Video Object Plane Decoder (Vopd) task graph.

Input Arbiter

O
ut
pu

t Q
. n

In
pu

t Q
. 0

In
pu

t Q
. n

Output
Arbiter

O
ut
pu

t Q
. 0

Credits

(a)

D
at
a
Q
.

Re
q
Q
.

Req. Arbiter

O
ut
 Q
. P_Ack/

P_Req
Output
Arbiter

(b)

Figure 5.4: Network Interface implementations: (a) credit based and (b) CTC.

control protocol is a simple implementation of this idea that is used in [DBL05]

and [GRK+05]. With a CB protocol, the sender NI maintains a detailed knowledge

of the number of packet slots that the receiver NI has still available through the

exchange of peer-to-peer transmission credits. A credit can be associated to either

a packet or to a packet flit depending on the desired level of granularity. What is

important is the guarantee that no fragment of a message can remain blocked in the

network due to the lack of space in the NI input queue, with the potential risk of

causing a deadlock situation. Hence, the sender NI can continue to inject flits in the

network only if it has still enough credits as proofs that the receiver NI will eject

these flits. Dually, the receiver NI must send a credit back to the sender NI for each

Chapter 5. Data Transfer Protocols 107

flit that its core has consumed, thereby generating an empty slot in its input queue.

Generally a single consumer core can be addressed by multiple producers. Also

a producer can address multiple consumers and for each of these the producer

needs a separated credit counter. In fact, differently from credit-based flow con-

trol mechanisms that operate at the link level between a pair of interconnected

routers [DT04,DYN03], here peer cores may be separated by multiple hops in the

network. Also all packets generated by the peer cores arrive at the same NI’s input

port. Figure 5.4 (a) shows the simplest way to address this issue. Each NI is pro-

vided with multiple and independent input and output queues and credit counters:

one for each possible sender NI (input queue) and receiver NI (output queue and

credit counter) that may communicate with this NI. A generic NI nd, upon the re-

ception of a flit from NI ns, saves the incoming data into the sth input queue. When

a flit is read from the sth input queue, an end-to-end credit is sent back to ns. In

turn, ns updates the dth credit counter upon the reception of a credit.

When a NI forwards a message to the connected core it generally removes a

multiple flits from its input queue. Hence during a single clock period multiple

credits may be generated. To avoid this issue a single end-to-end credit message can

convey more that one single credit per packet. The amount of credits K associated

to a single credit-message is a fixed parameter of the system. Note that the size

Qin of each input queue must be set accordingly to K. In particular considering the

set of peers Pc = {ni . . . nj} that can possibly communicate with nc, the nc’s input

queues should be sized as:

Qc = Max(K + RTT (nc, ni), i ∈ Pc) (5.1)

where RTT is the round-trip time function, which depends on the distance between

the NIs.

The choice of which queue must be used is made by the Input Arbiter. On the

output side, instead, the Output Arbiter selects the queue that is used to forward

the flit or to send a credit. The selection of the input and output queues is made

on packet basis to avoid the delivering/reception of flits of different packets, e.g.

according to a round robin policy.

108 Chapter 5. Data Transfer Protocols

Note that the CB end-to-end flow control protocol differs from the virtual net-

work approach for a number of reasons: first in VN all the queues, including those

in the routers must be replicated while in the CB protocol only the queues of the

NI must be replicated. Moreover using VN the number of queues per channel de-

pends on the message-dependencies that, in turn, depend on the given application.

Instead, for the CB protocol this number varies with the number of producer cores

addressing each single consumer core.

5.4 Connection Then Credits (CTC) Protocol

Adding a dedicated input and output queue for each possible source/destination of

messages, as required by the CB flow control protocol, forces engineers to design a

specific network interface and relative arbiters for each node of the network. This

is the case particularly for multi-mode SoCs where the same core can be addressed

by different other cores depending on the mode selected by the user.

As an alternative to CB, we present the Connection Then Credits (CTC) flow

control protocol. CTC rationalizes and simplifies the design of NIs while guarantee-

ing the absence of message-dependent deadlock.

CTC regulates the exchange of messages between two peer NIs by first introduc-

ing a handshake procedure called Connection. A CTC-message is a fixed amount

of data to be exchanged between the two NIs. As shown in Figure 5.4 (b) a CTC

NI is composed by only two input queues and one single output queue indepen-

dently from the number of possible peers that can require a connection with this

NI. The first queue, called the data-queue is used for storing incoming data flits.

The request-queue instead is used for the incoming transactions requests. When a

producer NI ns needs to initiate a connection towards a consumer peer NI nd, it

first sends a request packet2 called P Req (packet-request) to nd to signal its re-

quest to communicate. A P Req packet also indicates the total size of the message

2Note that P Req and P Ack are actually messages composed by one single packet. When

referring to these two messages we use the two words without distinction.

Chapter 5. Data Transfer Protocols 109

R

Req. Arbiter

N 1

2‐>1p_req
0‐>1p_req

D
at
a
Q
.

Re
q
Q
.

(a)

Req. Arbiter

N 1

1‐>0p_ack

R

D
at
a
Q
. 2

Re
q
Q
.

(b)

R

Req. Arbiter

N 1

0‐>1data

D
at
a
Q
. 2

Re
q
Q
.

(c)

Figure 5.5: The CTC transaction-definition procedure: (a) a the consumer NI

receives multiple P Req, (b) the consumer selects one requests and generates the

relative P Ack, (c) the selected producer NI starts sending the flits.

to be delivered and some additional information that can be used by the NI (i.e.

for priority decisions). Upon the reception of a P Req, nd stores the request in

the request-queue together with the other requests previously received and not yet

processed. When the core associated to nd is available for processing a new request

(i.e., the data queue has enough free space to accept a new message) it generates

an acknowledge packet called P Ack that is forwarded to the source of the given

request. A P Ack is similar to the credit packet in the CB flow control. The differ-

ence is that the first P Ack sent by nd actually initializes the output credit counter

of ns so that it can generate and send a specific amount of data. Upon the reception

of credits the producer first generates a header flit used to open a path along the

routers of the NoC, then it forwards the data flits and decreases the CTC-counter

by one unit for each sent data-flit.

Figure 5.5 shows an example of the CTC protocol operations: at first two pro-

ducer NIs, n0 and n2, address the consumer NI n1 with two P Req messages in-

dicating the size of the transaction they want to initiate. In Figure 5.5 (b) n1

selects the peer n0 to initiate the connections while it stores the other request in

the request-queue. Then, N1 generates a P Ack message to initialize n0’s credit

110 Chapter 5. Data Transfer Protocols

counter. Finally, Figure 5.5 (c) shows the data-packet generated by n0 that reach

the data-queue of n1.

The NI frees a number of flits in one single clock whenever it forwards a message

to the connected core. Hence, as for the CB case, a single P Ack conveys K credits

per single message. Differently from the CB flow control, however, once a P Req is

accepted, the consumer NI generates a chain of consecutive P Ack packets so that

the producer’s credit counter is initialized with the maximum amount of credits

that its consumer can offer. Instead, recall that in the CB protocol the credit

counters are initialized at start up time. In both end-to-end flow controls each

time the consumer frees K slots in the input data-queue, it continues to generate

a new P Ack message until the sent credits are sufficient to store all the flits of

the requested transition (whose size was specified in the P Req message). Finally,

to avoid throughput degradation, data-input queue should be sized accordingly to

Equation 5.1 as function of the number of credits per P Ack and the maximum

round trip time between the consumer NI and the producer addressing it.

To guarantee the consumption assumption of P Req messages, the request-

queue must be sized accordingly to the maximum number of requests that a NI can

receive. For this reason each CTC producer is limited to have one single outstanding

P Req at time. Hence the length of the request-queue must be equal to the number

of producers addressing the given NI.

CTC defines three message dependencies:

P Req→ P Ack: the request-queue is sized accordingly to the number of possible

producer-peers addressing the given NI. CTC limits each node to have at most

one outstanding P Req at time. Hence the consumption of all injected P Req

is guaranteed.

P Ack→data: P Ack packets are always consumed by a network interface that

updates the output credit counter and then deletes them.

data→ P Ack: the credit mechanism ensures that no more data-flits than those

allowed by the output credit counter can ever been injected. Hence all data

Chapter 5. Data Transfer Protocols 111

 60
 80

 100
 120
 140
 160
 180
 200
 220
 240

 0.1 0.2 0.3 0.4 0.5 0.6

M
es

sa
ge

 L
at

en
cy

 (c
yc

le
s)

Offered Load (flit/cycle)

 CB
 CTC

(a)

 40
 50
 60
 70
 80
 90

 100
 110
 120

 0 5 10 15 20 25 30 35

M
es

sa
ge

 L
at

en
cy

 (c
yc

le
s)

Credits per P_Ack

 CB
 CTC

(b)

Figure 5.6: Message latency as function of (a) the injection rate and (b) the number

of credits associated to a P Ack packet.

flits injected in the NoC will, eventually, be consumed by their addressed NI.

Thanks to the CTC protocol design, these three dependencies are independent

from the applications that is run by the cores, which, therefore, can be considered

protocol-deadlock free.

5.5 Analysis and Simulation

To analyze the characteristics of the CTC protocol and compare the performance

of a CTC-based NoC versus a CB-based NoC we developed a C++ system-level

simulator that allows us to model various NoC topologies, routing and flow-control

protocols as well as the traffic scenarios injected by various types of cores. We use

the simulator to compare the two end-to-end protocols for the case of the Vopd

application whose task graph is shown in Figure 5.3.

In the CB-based NoC the NI of each core has a number of input queues equal

to the number of incoming streams (see Figure 5.3). For both the CTC-based and

the CB-based NoC, the size of each data input queue is set uniformly based on

Equation 5.1 and no virtual channels are used.

112 Chapter 5. Data Transfer Protocols

0
0.1
0.2
0.3
0.4
0.5
0.6

8 16 32 64 Th
ro
ug
hp

ut
 (fl

it
/c
yc
le
)

Message Size (flits)

CB CTC

Figure 5.7: NoC Throughput as function of the message size when K = 32.

Figure 5.6 (a) shows the average peer-to-peer message latency as function of

the average offered load when K is fixed to 32 credits (results are similar for the

other credits values). As expected, the CTC protocol gives a higher latency due to

the handshake procedure. Nevertheless, the difference between the two protocols

remains under 10% up to the saturation point, which is around 0.4.

Figure 5.6 (b) shows the average peer-to-peer latency as function of the number

of credits K per P Ack packet when the offered load is lower than the saturation

threshold. Clearly, by increasing the value of K the performance of the system also

improves: PEs can inject more flits per P Ack thus reducing the number of control

packets (credits and headers). Conversely, increasing K also requires bigger input

queues that must support the additional amount of flits received per P Ack sent.

Figure 5.7 reports the throughput comparison as function of the message size.

As expected, the performance of the CTC-based NoC increases with the messages

size because it reduces the rate of connections-per-flits that must be set up. The

throughput of the CB-based NoC, instead, decreases as the size of each message

increases because this effectively augments the number of times in which a P Ack

packet preempts the data packet. Therefore, CTC represents a valid proposition

for message-passing applications such as video stream processing that present large

inter-core message transfers.

Finally, we analyze the amount of storage used by the two alternative flow control

protocols. As discussed in Section 5.3, for avoiding throughput degradation, both

Chapter 5. Data Transfer Protocols 113

0

20

40

CB CTC

N
um

. o
f Q

ue
ue

s Input Output

Figure 5.8: Breakdown of the aggregate number of input and output queues in the

NoC NIs for the Vopd application.

CB-based and CTC-based NoCs need to size their input data-queues accordingly

to the maximum round-trip time between the two communicating cores. For a CB-

based NoC each input queue must be sized accordingly to Equation 5.1. For a CTC-

based NoC, instead, only the data-queue must have this size while the request-queue

must be as large as the number of distinct producer cores that can send message to

its core. Notice that in order to provide a single interface design for each possible

core, this number can be over-estimated without a major loss of area because the

request-queue has a negligible size compared to the data-queue. Figure 5.8 shows the

breakdown of the aggregate number of data-queues used in the network interfaces

for the two approaches to support the Vopd application (where only the nodes with

incident arrows are actually instantiated with input queues). The CTC-based NoC

uses a total of 22 data queues, including both input and output, while the CB-based

NoC needs 30 data queues. Assuming that the length of each data queue is the same

in the two NoCs, CTC allows to save up to 35% of storage space for this particular

case study. This translates directly in a reduction in area occupation and is expected

to lead also to a reduction in overall NoC power dissipation.

114 Chapter 5. Data Transfer Protocols

5.6 Conclusions

Message-dependent deadlock is a destructive event that, even if rare [SP03a], must

be properly addressed to guarantee the correct behavior of a network. The credit

based (CB) end-to-end flow control protocol solves this problem by using multiple

dedicated input queues and output registers in the network interfaces. This in-

creases the complexity of the network interface design. Further, since the number

of these queues depends on the number of distinct communications that its partic-

ular core may have, the same network may present interfaces that have different

micro-architectural structures.

We proposed the Connection Then Credits (CTC) end-to-end flow control proto-

col as an area-efficient solution to the message-dependent problem that is character-

ized by a simpler and more modular network interface architecture. CTC-supporting

network interfaces use one single input data queue and one output credit counter.

Hence, the overall number of queues per network interface remains equal to two,

the total amount of storage is reduced and the overall network-interface design be-

comes independent from the communication requirement of the particular core, thus

increasing its reusability. On the other hand, any new communication between a

pair of peer nodes requires the preliminary completion of a handshake procedure

to initialize the output credit counter on the producer side (after the connection

has been established CTC works in a way similar to the original Credit Based flow

protocol). This procedure necessarily increases the latency of a message transfer

and it also reduces the network throughput for small messages.

In summary, the choice between CB versus CTC may be seen as a case of typical

“performance versus area” tradeoff. From this perspective, experimental results

show that for a video processing application the latency penalty remains under 10%

while the savings in terms of the overall area occupation of the network interfaces

reaches 35%. Therefore, we believe that CTC is an effective solution of the message-

dependent deadlock problem for throughput-driven stream processing applications.

Chapter 6

Network Interface Enhancement

A further development of the Spidergon architecture comprehends the capabili-

ties’ enhancement of each Network Interface. More specifically each NI should be

capable to support not only one single communication paradigm (shared memory

or message passing) at a time both of them at once. This fact implies that a net-

work interface should be capable of supporting a PE (initiator) core connected on

the same NI together with a SE (target) and also a message passing (called also

streaming or CTC) core.

This kind of improvement induces a number of new issues related to arbitration,

channel contention, and in a particular way connectivity.

6.1 Network Plug Switch

The solution proposed by the AST research Lab relies on a new network module,

called Network Plug Switch (NPS).

As depicted in Figure 6.1 a NPS is a middleware module to be placed in be-

tween a Spidergon router and the PE/SE/CTC modules installed on a node. The

optimal arbitration of the channels depends on the application to support. For our

analysis we used a round robin policy similar to the one adopted in the standard

Spidergon routers.

116 Chapter 6. Network Interface Enhancement

Figure 6.1: A node using a NPS module to interconnect a PE, SE and CTC module

to the underlying router.

Integrating the PE/SE/CTC cores on a single node introduces also an issue on

the protocol deadlock1 problem.

Protocol-deadlock-free CTC traffic in fact is to be mixed with the shared memory

traffic generated by the PE/SE cores that instead may generate ciclic dependencies.

As described in Section 5.2 in fact in absence of a specific end-to-end flow control,

Request packets traveling from an initiator towards a target and the Replay ones

going in the opposite direction should travel on different and independent queues.

To archive this we must either introduce separate and independent networks or

integrating the queues in a single network and split them in a number of virtual

networks (VN).

A NPS node can be designed using a number of possible configurations. Fig-

ure 6.2 depicts those that in our point of view represent the most interesting and

worth to be analyzed. In particular as shown in setting S1 to S4 a NPS node can

be configured using a single NPS module interconnecting all the cores. Then this

configuration can use one single router with two virtual networks, as in the case of

scenarios S3 and S4, or can be enhanced by using two separated routers as in the

case of S1 and S4. Moreover an additional channel can be added for the CTC node

as in the scenario S1 and S2

1see Section 5.2

Chapter 6. Network Interface Enhancement 117

(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

Figure 6.2: Possible Node setting: (1) NPS node with two CTC I/O channels and

two routers with no VNs, (2) NPS node with two CTC I/O channels and one router

with two VNs, (3) NPS node with one CTC I/O channel and one router with two

VNs, (4) NPS node with one CTC I/O channel and two router with no VNs, (5)

NPS node restricted to the MS traffic and independent network from CTC traffic,

(6) system with no NPS, MS traffic traveling on two independent networks , (7)

system based on two NPS nodes, one switching MS traffic and one switching CTC

traffic, (8) system based on four independent physical networks CTC node with two

I/O channels, (9) NPS node restricted to the MS traffic and double independent

networks from CTC traffic.

Scenarios S5, S7 and S9 use the NPS module to interconnect only the Mas-

ter/Slave cores while the CTC core is connected to the NoC with virtual networks

(S5), an additional NPS module (S7) or two separated routers (S9).

Scenarios S6 and S8 instead do not use a NPS module at all and hence they can

be used as reference configurations.

118 Chapter 6. Network Interface Enhancement

6.1.1 Simulation and Analysis

(a) (b)

Figure 6.3: The (a) traffic pattern used to test the contention between P Data and

P Ack packets on the (b) output port of node three.

CTC protocol together with the NPS module requires a deep study to understand

the role of each system parameter and to understand the difference between each

possible scenario described in Figure 6.2.

Our study is first based on a simple traffic model shown in Figure 6.3(a): a

stream of data between the node 0 the node 3 and the node 6. This model allows

us to emphasize the critical point of node three represented in Figure 6.3(b). Here

in fact the CTC protocol is more sensitive to the system parameters because of

the contention between the P Ack and the P Data messages to control the output

channels.

Our analysis is composed of four tests each one analyzing a single aspect of the

given scenarios. In all tests the simulation parameters are those reported in the

Table 6.1.1;

Chapter 6. Network Interface Enhancement 119

CTC inj.rate Stream Len. Credit per P Ack Input Q.Size

1.0 flit/producer 64 flit Parametic Min.: 8 or 12 flits

Routing Algo. MS Req. Size MS Rep. Size MS inj.rate

Zero AFirst L:1 flit L:10 flit Parametic

S:10 flit S:1 flit

Table 6.1: Simulation parameters

The minimal queue size indicated in the table is function of the round trip time

between the stream source and destination. In the considered case the distance

between two peers is always two hops; when the NPS module is used the RTT = 12

clock otherwise RTT = 8 clock.

Test 1:“no noise” CTC parameter Analysis

The Max Packet Size (MPS) and the Credit Size (K) of the CTC protocol are two key

parameters. The MPS varies between 0 and 16 with zero indicating no restrictions

(as well as 16). The credit size K indicates how much a credit counter is to be

incremented upon the reception of a P Ack message.

To have a first understanding of the effects of these parameters we run a number

of simulations varying each time one of the two parameters. The 3D graphs in

Figure 6.4. reports the throughput of P Data flits measured on the sink node 6.

Figure 6.4 reveals that there is not a specific couple < MPS, CreditV alue >

that is optimal for all configurations.

In scenarios S1, S8 and S9, where the CTC module is separated from the MS

ones and is provided with two independent channels connected (directly or through

a NPS) to two disjoint routers, the best configurations are obtained setting MPS to

the maximum value: zero (no restriction). In these cases, as long as the input queue

is correctly sized, the value of K is not relevant. P Ack packets in fact travel on

a network different form the one used by the P REQ packets and can be delivered

120 Chapter 6. Network Interface Enhancement

(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

Figure 6.4: Throughput of P Data flit received the the CTC PEs nodes in the dif-

ferent scenarios and with respect to the varying max packet size and credit counter.

in a minimal delay. Hence at node three the contention shown in Figure6.3(b) is

avoided simply because packets do not share any queue or channel.

In the other scenarios the maximum throughput is obtained by setting big K

values (hence big input queues) while MPS ranges between ten and twelve flits. In

these scenarios in fact P Ack messages have to compete with P Data ones to obtain

the access to a channel toward/from the CTC module. Small packet sizes generate

an high number of headers, while big ones generate a “starvation” side effect on the

CTC module. Small value of K instead generate a high number of P Ack decreasing

the system performance.

Table 6.1.1 summarizes the best configurations and their throughput measured

on each PE involved in the data stream. Figure 6.5 reports a comparison histogram

Chapter 6. Network Interface Enhancement 121

scenario credit max packet size throughput difference %

1 * 0 0.8311 5.2%

2 11 11 0.7457 16.1%

3 11 11 0.7457 16.1%

4 11 11 0.7457 16.1%

5 11 0 0.7713 12.0%

6 11 0 0.7713 12.0%

7 10 10 0.7196 17.9%

8 *(1) 0 0.8768 0.0%

9 *(1) 0 0.8768 0.0%

Table 6.2: Best performing configurations for the no-noise (no MS traffic) test

and their difference from the best performing scenario. The value in parenthesis

indicates the value used in the following tests.

Figure 6.5: Test1: throughput comparison of the considered scenarios using their

best performing configurations.

of the measured throughput. As expected scenarios with four dedicated routers have

the best performance (scenarios S8 and S9).

122 Chapter 6. Network Interface Enhancement

In absence of Master/Slave traffic we notice that the NPS module introduces

a 5% of throughput degradation. The use of two separated channels for the CTC

nodes gives a 10% improvement when also two routers are used (scenarios S8 and

S9).

In the case of one single router, using two channels for the CTC node (scenario

S7) the additional channels do not improve the performance of the system as the

contention between CTC messages is simply moved from the CTC node to the

underlying router.

Test 2: “no noise” CTC resistance to MS traffic

Figure 6.6: Performance degradation adding Master/Slave traffic to the “no noise”

best setting.

Figure 6.6 reports the throughput degradation measured when adding Mas-

ter/Slave traffic to the scenarios of Figure 6.2 configured with the “no noise” best

setting of Test 1. The Master/Slave is generated by each node of the NoC following

a random uniform distribution.

Chapter 6. Network Interface Enhancement 123

As expected in the cases where CTC traffic travels along disjoint channels the

performance are not affected by the noise-traffic. Among these, the cases where CTC

control messages travel along different networks have again the highest throughput.

In line with the previous test, when only one router is used performances are

reduced by a a 10%. When also a CTC-dedicated NPS is added another 5% is lost.

Considering scenarios S1 through S4, as expected the cases with one single

router are very sensitive to the M/S noise-traffic. Adding the CTC channels brings

small improvements. It’s interesting to note the difference of performance between

scenarios S1 and S4. Scenario S4 adopting only one CTC channel performs better

than S1, the case with two CTC channels.

In the previous pages we showed the benefits of an additional channel for the

CTC protocol. This poor performance of S1 versus S4 is to be due to its <

MPS, CreditV alue > configuration. In case of M/S traffic hence the best con-

figurations seen in Test 1 must be revised.

Test 3: “noisy” CTC parameter Analysis

Test 3 is similar to Test 1: we varied the combination < MPS, CreditV alue >

ranging from 0 to 16. In Test 3 we added a fixed noise traffic whose injection rate

is of 0.2 flit/cycle on each node. Figure 6.7 shows the throughput measured in all

the considered scenarios.

Table 6.1.1 summarizes the best setting found for the < MPS, CreditV alue >

couple when noise traffic is added while Figure 6.8 graphically reproduces the dif-

ferent performances.

We notice that the difference between the best and worst scenario now grows

up to 75%. As expected the best scenarios are those who have four independent

networks so that the Master/Slave and CTC traffic are orthogonal. The worst case

is S3 when CTC and MS traffic are mixed in a single physical network.

Results for scenarios S5..S9 are essentially the same of those in Test 2. Scenarios

S1..S4 instead are those sensitive to the MS traffic.

124 Chapter 6. Network Interface Enhancement

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.7: Throughput of P Data flit received the the CTC PEs nodes when

“noisy” Master/Slave traffic is used with respect to the different scenarios to the

varying max packet size and credit counter.

Considering scenarios S1 and S4 we notice that the throughput difference is

around 7%. This quantifies the gain offered by the additional CTC channel. Sce-

narios S2 an S3 show that reducing the number of routers available to the system

can degrade the performance by up to 40%.

Test 4: ”noisy” CTC resistance to MS traffic

Figure 6.9 shows the loss of performance of the considered scenarios when we use

the < MPS,CreditV alue > configuration obtained from Test 3 and reported in

Table 6.1.1.

As in Test 2 scenarios S5 through S9 are orthogonal to MS traffic and their

Chapter 6. Network Interface Enhancement 125

scenario credit max packet size throughput difference %

1 12 13 0.5405 38.4%

2 12 13 0.2486 71.6%

3 6 13 0.2187 75.1%

4 12 14 0.4830 44.9%

5 12 0 0.7714 12.0%

6 12 0 0.7714 12.0%

7 11 11 0.7357 16.1%

8 *(1) 0 0.8768 0.0%

9 *(1) 0 0.8768 0.0%

Table 6.3: Best performing configurations for the noisy (with MS traffic) test and

their difference from the best performing scenario. The value in parenthesis indicates

the value used in the following tests.

Figure 6.8: Test1: throughput comparison of the considered scenarios using their

best performing configurations.

126 Chapter 6. Network Interface Enhancement

Figure 6.9: Performance degradation adding Master/Slave traffic to the ”noisy”

best setting.

difference of throughput is due to the different number of routers, CTC channels

and NPS modules.

Scenarios S2 and S3 are particularly sensitive to the noise because of the single

router used to handle the two different traffics.

Finally Scenario S1 performs better than scenario S4 confirming that in Test 2

the reason that made it perform worse than scenario 4 was the bad < MPS, CreditV alue >

setting (in Test 2 scenario used an unrestricted packet size whereas in Test 4 is has

a finite and fixed value).

Part IV

Communication Issues

127

128

Chapter 7

Communication Link Systems

7.1 Overview

In the case of SoCs for embedded applications designers use standard industrial

CAD-tool flows for the synthesis of a platform-specific NoC and must cope with an

increasing number of timing-closure exceptions due the differences in size across its

heterogeneous processing cores. This problem becomes particularly hard when using

nanometer technology processes [P+07] as the impact of global interconnect wires

raises exponentially the number of wire exceptions, i.e. timing-closure violations due

to the delay of a global wire exceeding the target clock period Tclk [CSV02,HMH01].

A method to fix wire exceptions is wire pipelining, i.e. the insertion of sequential

elements (or clocked buffers) to pipeline long wires in shorter segments whose delays

meet Tclk [CMSSV99,Coc02,LPP04,LZKC02,Sch02].

By providing one or more extra clock periods to traverse long distances, wire

pipelining trade-offs latency for throughput. As proposed by Jalabert et al. [JBMM04],

the use of latency-insensitive protocols [CMSSV99] in NoC design allows channels to

be pipelined to an arbitrary degree, thus decoupling Tclk from the worst-case channel

delay.

Latency-insensitive protocols are implemented using relay stations, clocked re-

peaters of unit latency and twofold storage capacity. Relay stations can be used

instead of regular flip-flops to enable arbitrary wire pipelining between two routers

130 Chapter 7. Communication Link Systems

Figure 7.1: Alternative ways to pipeline NoC channels.

in a NoC (Figure 7.1). Further, when combined with flit-buffer flow control meth-

ods [DT04], relay stations can store flits in the presence of persistent congestion

because they actively process the flow-control signals. Hence, their use effectively

increases the total storage capacity of the channel, thereby opening the way for

interesting design optimizations.

We study in detail the interaction between wire pipelining and NoC flow-control

methods and we propose distributed flit-buffer flow control as a technique that com-

bines the simplest form of ack/nack protocol with the distribution of relay stations

on the NoC channels for both buffering and wire pipeline purposes. We show how

this approach provides NoC designers with both better options to optimize per-

formance/area trade-offs and precious flexibility to complete efficiently the NoC

physical design stage.

Pullini et al. studied the interaction between wire pipelining and flow-control

focusing on providing fault-tolerant communication on the NoC channels, a goal

that is outside the scope of this paper [PABB05]. Hu et al. proposed an algorithm

for optimal buffer sizing in packet-switched or virtual-cut-through NoCs [HOM06].

Ogras et al. proposed a technique to improve the performance of a Mesh NoC

by incrementally inserting additional long pipelined channels [OM06b]. Methods

to optimally size queues in on-chip global communication channels are presented

in [LK03,CXSP04].

Chapter 7. Communication Link Systems 131

(a) (b) (c)

Figure 7.2: NoC components: (a) router; (b) FF-repeater; (c) RS-repeater.

7.2 Basic NoC Components

We summarize here the main characteristics of the three basic NoC components

used in the rest of the paper.

The router is the key component of a packet-switched NoC. Figure 7.2(a) shows

the basic structure of a router implementing a XY -routing algorithm supported by

wormhole flow-control. Solid lines show the data plane while dashed lines show the

control plane. A crossbar switch separates the input from the output part. Each

input port is equipped with a look-ahead routing module and a by-passable queue of

size Q and parallelism W (flit width). Each output port has W output registers to

store the forwarded flit and an arbiter to allocate the port among competing input

worms. With look-ahead routing each router pre-computes the output port for the

next downstream router: the information is carried in the worm head-flit, which can

now be forwarded directly to the output port (if available). This leads to better

performance by reducing the router critical path and allowing the routing task to be

executed in parallel to arbitration. Without congestion a flit traverses the router in

one clock cycle. In case of congestion, the flits of a worm that loses the arbitration

are temporarily stored in the queue. When the queue gets filled, back-pressure is

triggered according to the given low-level flow-control mechanism.

An FF-repeater is the simplest type of channel repeater (Figure 7.2(b)). It

consists of a number of flip-flops (FF) equal to the flit width W plus two FFs: one

for the void signal distinguishing valid flits from void ones and one for the stop

132 Chapter 7. Communication Link Systems

signal carrying back-pressure information backward on the channel. At each clock

cycle a FF-repeater samples a new flit and makes it available on the output ports

without processing the void/stop signals. Thus, each flit spends exactly one cycle

on each FF-repeater without the possibility of being stored. Hence, in the case of a

persistent congestion the flits of a worm end up being stored in the router queues

while the channel FF-repeaters are empty. The overall channel latency is equal to

the number of channel repeaters K.

An RS-repeater is a more complex repeater based on the relay station (RS)

circuit that was first proposed for latency-insensitive design [CMSSV99]. Relay

stations are used implement a latency-insensitive protocol, but when used in NoC

design enable also a distributed implementation of flow control.

Figure 7.2(c) shows the structure of a relay station: it consist of a battery of

W main FFs in parallel with W auxiliary FFs plus one FF for the void signal, one

additional FF that is used both to sample the stop signal and to implement the

two-state finite-state machine governing the flow-control mechanism.

At each clock cycle a RS-repeater samples a new flit into its main flip-flops to

make it available on its output port. However, if it samples also the asserted stop in

value then it goes in a stalling state to: (a) keep the present flit on the main FF

(to make it available again on the output port in the next cycle), and, (b) sample

any newly-arrived valid flit in the auxiliary FF while asserting stop out so that the

upstream node will be stalled too. Hence, in the case of a persistent congestion a

channel of K RS-repeaters contains 2 ·K flits.

In Section 7.4 we study in detail the effective ratio between the area of an NoC

based on RS-repeater and an equivalent NoC based on FF-repeater as a function of

the flit width W . Meanwhile, as a rule of thumb we assume that this ratio is equal

to two.

Chapter 7. Communication Link Systems 133

7.3 Wire Pipelining & Flow Control

Flow-control methods can be classified based on their granularity of channel band-

width allocation and of buffer allocation [DT04]. The basic unit of bandwidth and

storage allocation is a flit (flow control digit). Packets are divided in sequences of

flits. Differently from packets, flits carry no routing and sequencing information.

Flit-buffer flow control allocates both bandwidth and buffers in units of flits. This

has three advantages: it (a) reduces the storage required for correct operation of

a router, (b) provides stiffer back-pressure from a point of congestion back to the

source of a flit stream, and (c) enables more efficient use of storage. Since these

advantages match well the characteristics of on-chip communication, flit-buffer flow

control methods are seen as a promising solution for NoC, where typically the size

of a flit matches the parallelism of a channel. The two main high-level flow-control

methods are wormhole flow control and virtual-channel flow control.

These need to be supported by one of three main low-level flow control mecha-

nisms that provides buffer management and back-pressure, namely: on/off, credit-

based and ack/nack [DT04]. In our analysis we focus on the combination of wormhole

flow control with each of these low-level mechanisms.

Besides allocating the NoC bandwidth and storage resources, flow-control meth-

ods should provide good performance by guaranteeing a high bandwidth for the

transmission of a stream of flits in the presence of possible intervals of stalling cy-

cles caused by congestion in the downstream nodes. The choice of the flow-control

strategy has consequences on the design of the network components and, particu-

larly, on the size of the flit-buffering queues in the routers. If we want to avoid

dropping flits, the correct operation of a particular flow-control method sets a con-

straint on the minimum size Qmin of Q. Once this constraint is met, raising the

value of Q leads generally to better performance. This, however, varies depending

on the network traffic as discussed in Section 7.5. Also, in practice, raising it beyond

a certain value leads to diminishing returns.

134 Chapter 7. Communication Link Systems

On/Off

is a simple flow-control mechanism that minimizes the amount of back-pressure

signaling in exchange for larger queue size. The upstream node has a single-bit state

register that switches between on and off states based on the last back-pressure signal

received from the downstream node. The latter sends an off signal back whenever

the number of free slots in its flit-buffering queue goes below a threshold Foff and

sends an on signal whenever it goes above a threshold Fon.

Hence the minimum size Qmin depends on the number of flits that can be received

during the time Trt from the instant when an off signal leaves the downstream node

until the instant when the downstream node has received the last flit transmitted

by the upstream node before stalling due to the processing and reception of signal

off. In a synchronous NoC, if the latency of the channel is K clock cycles, then

Trt = (2 + 2 ·K) · Tclk. Hence, for protocol correctness, Qmin = 2 + 2 ·K.

However to obtain a maximum sustainable bandwidth to optimize the bandwidth

we must consider also the dual case when the downstream node sends an on signal

upstream to resume transmission. In this case at least Trt cycles must pass by before

a new flit arrives downstream. Meanwhile, in order to have sufficient flits to forward

to the next hop, the downstream queue must be able to contain as many additional

flits for a total size

Qmin = 2 + 4 ·K.

Credit Based

is a flow control mechanism where the upstream node has a counter to track the

number of available free slots in the downstream queue. The counter state is decre-

mented whenever a flit is transmitted and incremented whenever a credit signal

arrives from the downstream node, which in turns sends the credit whenever it

has succeeded in forwarding a flit from its queue to the next hop. With respect to

on/off, credit-based flow control requires more “back-pressure signaling”, but smaller

queues. Specifically, for protocol correctness, a Qmin = 1 is enough. However, such

Chapter 7. Communication Link Systems 135

Rep. On/Off Credit Based Ack/Nack

type Qmin S Qmin S Qmin S

FF 2 + 4K 2 + 5K 2 + 2K 2 + 3K 1 + 2K 1 + 3K

RS 2 2 + 2K 2 2 + 2K 1 1 + 2K

Table 7.1: Queue size and channel total storage per flow-control/repeater type.

small size leads to the insertion of void flits (bubbles) at every hop because only one

credit is available on each channel at any given time. Hence, only one flit can be

forwarded per each round-trip of this credit and the higher is the value of K > 1 the

lower the performance. To avoid bubble insertion the queue must be sized based on

the round-trip latency. Tcrt = (2 + 2 ·K) · Tclk, which leads to Qmin = 2 · (1 + K).

Ack/Nack

does not require any state in the upstream node to indicate buffer availability in

the downstream node. Instead flits are optimistically sent whenever they become

available: if the downstream node has a slot available in the queue it accepts the flit

by sending an ack signal, otherwise it drops it and sends a nack signal. Ack/nack

flow control mechanism is traditionally considered inefficient both in terms of storage

(it requires that each transmitted flit be held waiting for an acknowledgement) and

bandwidth (due to the potential retransmissions) [DT04].

Further, since it is based on acknowledging the reception of each specific flit, it

works well for a channel of unit latency. But, if the channel contains K FF-repeaters

it becomes suboptimal with respect to credit-based, where an acknowledgment de-

notes the successful forwarding of a generic flit. t Still, ack/nack was effectively

used to implement fault-tolerant Go-Back-N protocols [PABB05] with routers hav-

ing output queues of size Qmin = 1 + (2 ·K).

What are the best combinations?

The first row of Table 7.1 summarizes the requirements on the queue size for the

three flow control methods as well as the corresponding values for the channel total

136 Chapter 7. Communication Link Systems

storage S. The value of S is obtained by adding the queue size and the amount of

storage provided by the channel repeaters, which is independent from the flow control

method. In the case of a channel containing K FF-repeaters, each repeater provides

storage for one flit, thus resulting in K flit buffers distributed on the channel. For

FF-repeaters, the credit-based flow control method is the best choice in terms of

sustainable bandwidth per unit of storage.

The second row of Table 7.1 shows the corresponding numbers for the case when

the repeaters are implemented as relay stations. Since a RS-repeater can store up

to two flits, the distributed storage on a channel of K RS-repeaters is equal to

2 · K. But, the fact that a relay station contains the logic implementing the low-

level flow control mechanism makes it possible to reduce the size of the downstream

queue to a minimum value that is always as if K = 0. In particular, (Qmin = 1) is

sufficient when combining RS-repeaters with the ack/nack flow control mechanism.

Ack/nack signalling naturally matches the stop in/stop out signalling proposed for

latency-insensitive protocols [CMSSV99] and, indeed, we will show that it is the

best design choice when using RS-repeaters.

In summary, independently from the chosen flow-control mechanism, for any

value of K > 0 the value of the channel total storage S that is needed for a correct

behavior when using RS-repeaters is always smaller than the value needed when using

FF-repeaters.

This result, which is reached with an analytical model based on the rule of thumb

that the RS-repeater area is twice the flip-flop area, is validated by our experiments

with the semi-custom design of many channel subsystems for various flit widths

(Section 7.4). While queue sizes larger than Qmin generally benefit the network

performance, the optimal size depends on the network topology and application

traffic [CXSP04,HOM06]. Still, as shown by the system-level experiments of Sec-

tion 7.5, the ability of working with a lower Qmin gives an important advantage to

a NoC that employs RS-repeaters instead of FF-repeaters.

Chapter 7. Communication Link Systems 137

(a)

W FF RS RS/FF

16 735 2348 3.19

32 1390 4100 2.95

64 2699 6514 2.41

128 5318 13903 2.61

256 10557 21316 2.02

512 21034 37599 1.79

(b)

W K = 1 K = 2 K = 3

RS FF ratio RS FF ratio RS FF ratio

16 29k 34k 0.84 38k 43k 0.88 48k 54k 0.89

32 42k 52k 0.81 58k 66k 0.89 75k 84k 0.89

64 66k 88k 0.75 92k 116k 0.80 118k 159k 0.74

128 123k 151k 0.81 178k 217k 0.82 234k 296k 0.79

256 203k 284k 0.72 288k 408k 0.71 374k 531k 0.70

512 363k 545k 0.67 513k 788k 0.65 664k 1006k 0.66

Table 7.2: Area [um2] as function of W : (a) FF-repeater vs. RS-repeater and (b)

FF-system vs. RS-system.

(a) (b) (c) (d)

Figure 7.3: Application task graphs: (a) 4-Rooted Tree Forest (4RTF), (b) MPEG4

decoder, (c) VOPD decoder, and (d) random uniform traffic (URT).

7.4 Area Occupation Analysis

We completed VHDL parameterized designs for the NoC components presented in

Section 7.2 and synthesized many versions of them with a 90nm industrial standard-

cell library.

Table 7.2(a) reports the area occupation of a RS-repeater versus a FF-repeater as

function of the flit width W varying from 16 to 512 bits. The target clock frequency

was set equal to 2Ghz and met by all repeaters under all configurations. Each

output port was loaded with a wire capacitance that was previously characterized

by considering an optimally-buffered wire implemented in an intermediate metal

level.

Generally the higher is the flit width the lower is the ratio of the RS-repeater

area over the FF-repeater area. The ratio goes from 3.19 (for W = 16) to 1.79 (for

138 Chapter 7. Communication Link Systems

W = 512). This is not surprising since the additional overhead due to the flow-

control logic becomes less important with respect to the fact that a RS-repeater has

twice the number of FFs as an equivalent FF-repeater 1.

Still, based on these results one may think that the rule of thumb of considering

this ratio equal to two is justified only for channel with large width.

Before drawing this conclusion, let’s consider what happens when the repeaters

are instanced as part of a long channel in a NoC.

We instanced a 5×5-port version of the router of Table. 7.2 (a) and we connected

four of its five output ports to as many long repeated channels (while we assume

that the fifth port is used for the local connection). This subsystem corresponds

exactly to one “tile” of a 2D-Mesh NoC and, therefore, its area is a good estimate

of the overall NoC area.

For instance, in a 4 × 4 mesh the subsystem would account for 1
16

of the NoC

area.

Indeed, we considered two subsystems:

• RS-subsystem: a router plus 4 channels pipelined using RSs.

• FF-subsystem: a router plus 4 channels pipelined using FFs.

However, for both subsystems we used the same router implementing ack/nack

flow control. This is advantageous for the FF-subsystem since a credit-based router

would have a larger area than an equivalent ack/nack router because it needs an

additional counter at each output to store status information on the outstanding

credits.

1 The fact that for very-high values of W , i.e. 512 bits, the ratio goes below two can be

explained as follows: both RS- and FF-repeaters are equipped with an array of output buffers to

drive the wire load capacitance. The auxiliary FFs inside the RS-repeater, instead, do not need

them because they are directly connected to the local multiplexers. Therefore, for high-values of W

the area of the main FFs and the buffer dominates the area of a RS-repeater and it is comparable

to the area of an equivalent FF-repeater.

Chapter 7. Communication Link Systems 139

(a) (b)

Figure 7.4: NoC topology examples: (a) a 8-node Spidergon and (b) a 3 × 3 2D

Mesh.

Table 7.2(b) reports the area occupation of a RS-subsystem versus a FF-subsystem

as function of the flit width W , which varies from 16 to 512, and the number K of

repeaters on each channel, which varies from 1 to 3. The input queues of the router

are set to the minimum value Qmin, i.e. 1 for the RS-subsystem and 2+2 ·K for the

FF-subsystem. As the value of W grows, the area ratio approaches the theoretical

limit of 2
3
, which is obtained from the analytical model by dividing the corresponding

values of S from Figure 7.1. In conclusion, under every condition the RS-subsystem

is always significantly smaller than the FF-subsystem.

7.5 System-Level Simulations

For our system-level simulations we considered two NoC topologies (Figure 7.4): a

2D Mesh, which broadly represents a class of NoCs that have been proposed for

various general-purpose chip multiprocessors and Spidergon, an NoC architecture

aimed at SoC for embedded applications [CLM+04]. Spidergon is a bidirectional

ring with an even number of nodes enriched by “across” bidirectional channels be-

tween opposite nodes.

We built an event-driven simulator with detailed models of the parameterized

NoC components (routers, FF-repeaters, RS-repeaters) and high-level models We

built detailed models from the parameterized NoC components (routers, FF-repeaters,

140 Chapter 7. Communication Link Systems

RS-repeaters) in the Omnet++ event-driven network simulator [OMN] and we

combined them with high-level abstractions of the processing elements (PE) and

memory elements (ME) that are on the chip. Each node in both the 2D Mesh and

Spidergon contains either a PE or an ME attached to the local port of the router

via a network interface that performs the operations of fragmenting packets into flits

(and vice versa).

The 2D Mesh uses 5× 5 router implementing the well-known XY -routing algo-

rithm [DT04], while Spidergon uses 4×4 routers implementing a discrete minimal

routing algorithm that forwards the incoming flits along the across channels if their

destination is “closer” to the opposite half of the ring, and sends them along the

ring otherwise. Wormhole flow control is used in both NoCs.

We simulated the two NoCs with four different traffic patterns taken from the

literature (Figure 7.3):

1. the 4-Rooted Tree Forest (4RTF) models a scenario where 4 MEs are uniformly

shared as communication targets by 8 PEs: Each PE initiates a communication

by sending either a load or a store request to a given ME that replies with either

data or an acknowledgement. This is a typical scenario in many embedded

applications where a shared memory bank becomes a central hot spot of the

NoC [BCG+07];

2. a central memory hot spot is present also in the MPEG decoder SoC where

various PEs exchange data by means of three memories (SDRAM, SRAM1

and SRAM2) [BJM+05];

3. PEs in the Video Object Plane Decoder (VOPD) SoC, instead, exchange data

via point-to-point communication [BJM+05]. In this case, as in the following,

a communication initiated by a PE is not followed by a reply from the target

node;

4. in the uniform random traffic (URT) case, each node is a PE that communi-

cates with every other PE in the system.

Chapter 7. Communication Link Systems 141

In this work we compare the different systems using the following performance

metrics:

• packet latency: time taken by a packet to enter the network, traverse it, and

reach the destination;

• round-trip time: time elapsed from the transmission of a request packet and

the reception of the corresponding replay packet;

• bandwidth: number of flits reaching a node per time unit.

7.5.1 Bandwidth Analysis

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 5 10 15 20 25 30 35 40 45 50

T
h

ro
u

g
h

p
u

t
(f

lit
/c

y
c
le

)

S

Ack/Nack 1 RS
Ack/Nack 5 RS

Ack/Nack 10 RS
CB 1 FF
CB 5 FF

CB 10 FF

(a) (b)

Figure 7.5: Results with Spidergon supporting the 4RTF traffic: (a) average band-

width and (b) breakdown of channel total storage.

We report experimental results only for the 12-node Spidergon NoC supporting

the 4RFT traffic pattern because the results for the other topology/traffic combi-

nations are similar. Figure 7.5(a) shows the average bandwidth as function of the

channel total storage S. Each PE has a fixed injection rate that is higher than what

the NoC can sustain if the router queue sizes are kept at the minimum value Qmin.

From this graph it is clear that the amount of storage available on a channel signif-

icantly influences the system performance: as the storage increases, more flits can

142 Chapter 7. Communication Link Systems

be stored in the routers’ queues reducing the channel contentions (with wormhole

switching single packets are stored along multiple routers). Hence, the saturation

threshold is raised and the performance of the NoC improved.

The bar diagram of Figure 7.5(b) reports the breakdown of the channel total

storage that is required to obtain maximum bandwidth in a non-saturated NoC as

function of the number K of channel repeaters. In particular, the sequence of points

on the x-axis corresponds to 20 different design scenarios for K that varies from 1 to

10. For each value of K there are two bars: one corresponding to the RS-repeaters

and one corresponding to the FF-repeaters. In each design scenario K repeaters are

uniformly distributed on each NoC channel. Each bar includes up to three compo-

nents:

• the blue (dark) part is the amount of storage provided by the repeaters, i.e.

K for FF-repeaters and to 2 ·K for RS-repeaters;

• the yellow (light) part is the size Qmin of the router’s input queues that is nec-

essary to correctly support the given flow control, as explained in Section 7.3.

This is always 1 for a RS-system and it is equal to 2+(2 ·K) for a FF-system;

• the green (grey) part is the additional amount of storage Qadd that queues

must have to reach the maximum bandwidth. Notice how for FF-systems

under the analyzed traffic scenario, Qadd is lower than zero indicating that the

maximum bandwidth can be reached with less storage than the one provided

to satisfy the Qmin optimization constraint. In other words, the network can

tolerate the insertion of a certain amount of bubbles per hop. Since bubbles

increase the worm length, the worm can lock more channels during the time

it passes through the NoC. Still, when the storage is high enough, the impact

of those bubbles on the channel occupation is reduced.

In all the scenarios the RS-system reaches the maximum bandwidth using an

amount of storage smaller than the corresponding FF-system, with an improvement

Chapter 7. Communication Link Systems 143

that goes from 40% in case of small values of K down to 15% for K equal to ten.

Notice, however, that for the foreseeable future it is expected that wire pipelining

will be limited to the insertion of few repeaters, i.e. less than 5, even in large chips.

7.5.2 Latency Analysis

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30 35 40 45 50

R
o

u
n

d
 T

ri
p

 T
im

e
 (

c
y
c
le

s
)

S

Ack/Nack 1 RS
Ack/Nack 5 RS

Ack/Nack 10 RS
CB 1 FF
CB 5 FF

CB 10 FF

(a) (b)

 0

 10

 20

 30

 40

 50

 0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 P
ac

ke
t L

at
en

cy
 (

cy
cl

es
)

S

Ack/Nack 1 RS
Ack/Nack 5 RS

Ack/Nack 10 RS
CB 1 FF
CB 5 FF

CB 10 FF

(c)

(d) (e) (f)

(g)

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45 50

A
v
e
ra

g
e
 P

a
c
k
e
t
L
a
te

n
c
y
 (

c
y
c
le

s
)

S

Ack/Nack 1 RS
Ack/Nack 5 RS

Ack/Nack 10 RS
CB 1 FF
CB 5 FF

CB 10 FF

(h)

Figure 7.6: Comparing RS-repeaters with Ack/Nack vs FF-repeaters with Credit

Based: Round trip time for Spidergon with (a) 4RTF, (b) MPEG4, and 2D Mesh

with (e) 4RTF, (f) MPEG4. Average packet latency for Spidergon with (c) VOPD,

(d) URT and 2D Mesh with (g) VOPD, (h) URT.

The charts in Figure 7.6 compare the RS-system and the FF-system with respect

144 Chapter 7. Communication Link Systems

to the round-trip delay or packet latency for Spidergon and Mesh in function of the

considered traffic patterns as we vary the channel total storage S.

As a theoretical exercise we let vary S up to 50 flit slots, but the curves reach a

minimal latency value much earlier than that. The RS-system performs better than

the corresponding FF-system for a given S and requires a smaller value of S to meet

a given maximum latency constraint. In Figure 7.6(a), for instance, when K = 5

the RS-system does not exceed a latency of 17 cycles using 35% less storage than

the FF-system, while for a fixed S = 17 it delivers 12% less latency. Further, for

the case FF-repeaters if the queues have size Q < Qmin then the credit-based flow

control creates many bubbles that increase dramatically the average NoC latency.

Next, we measured the channel total storage Sdelay that is required to stay within

10% of the above-mentioned minimal latency. This value depends on the specific

NoC, the application task graph, the PEs’ injection rate, and the number of repeaters

K. The bar diagrams in Figure 7.7 report Sdelay for all design combinations. Gener-

ally, higher values of S are needed than for bandwidth optimization (Figure 7.5(b)).

Again, RS-systems shows better performance than corresponding FF-systems, e.g.

requiring up to 30% less storage in the case of Spidergon/4RTF. Reaching the mini-

mal latency with a lower storage amount indicates that the given resources are better

exploited. Indeed, this is the case for the RS-system where the storage deployed on

the NoC can be used also to buffer the flits traversing the channels.

Experiments with Non-Uniform Repeater Deployment

In the previous experiments we made the simplifying assumption that K repeaters

are uniformly distributed on each NoC channel. This is useful to gain an understand-

ing of the various aspects of the problem. In real SoC designs, however, repeaters

will likely be inserted only on some long channels. Since at this time we do not have

access to a complete design of a real SoC, we created a case study based on a 12-

node Spidergon NoC with URT. We then randomly distributed a total of Ktot = 18

repeaters along the channels, with the constraint of having at most Kmax = 2 re-

peaters on a single channel. Specifically, for each of the following experiments we

Chapter 7. Communication Link Systems 145

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 7.7: RS-repeaters with ack/nack vs FF-repeaters with credit based: break-

down of channel total storage required to obtain the minimal latency in a non-

saturated NoC for: Spidergon with (a) 4RTF, (b) MPEG4, (c) VOPD, (d) URT,

and 2D Mesh with (e) 4RTF, (f) MPEG4, (g) VOPD, (h) URT.

set Ktot = 9 and Kmax = 2, before generating 15 distinct random configurations.

Figure 7.8(a) shows the results obtained when each channel has a fixed amount of

storage S = 8 slots, which are distributed between the repeaters and the downstream

queue depending on its value of K and the type of repeater. In all these scenarios

the RS-systems slightly outperforms the FF-system. The cases where the difference

between the two systems is more evident are when repeaters are deployed along the

busiest channels. In these cases in fact flip flop use the available storage as repeater

146 Chapter 7. Communication Link Systems

while relay stations use the memory slots also as storage buffers.

Here we set Q = 6 in the FF case and Q = 2 in the RS case. In this case FF

systems outperformed the RS-based in a significant way. As seen also in FF in fact

had the advantage to have a deep queues even in the cases where the channels did

not need them.

Figure 7.8(b) considers the case where all routers, regardless of the number of

repeaters on the channels, have the same fixed input queue set to Q = 2 for RS

systems and Q = 6 for FF ones. In this case, the FF-systems outperform the RS-

systems significantly at the price of 200% additional queue size. Indeed, as seen for

the analysis of Figure 7.6(b), FF-systems sensitively improve their performance as

Q increases that is right the case where channels are not segmented by any signal

repeater.

In Figure 7.8(c) all routers have the same input queues of 6 flits. Here the RS-

systems clearly outperforms the FF-systems as they can use the RS-repeaters also as

buffering unit. The RS-system area, however, is bigger by K flit slots. Figure 7.8(d)

considers the case where each router has all input queues set as Qmin, the minimal

queue defined by Table 7.1. For RS we chose Q = 2 as this setting gave better

performance than the simple minimal queue. Here it is clear that RS outperforms

again FF-based systems while requiring a reduced amount of storage S.

Finally, in Figure 7.8(d), the routers’ queues are set at the minimum value, i.e.

Qmin = 2 + (2 ·K) for FF-systems and Qmin = 2 for RS-systems.

Here the RS-systems clearly outperform the FF-systems, which are very sensitive

to small values of Q as shown by Figure 7.6, While RS-systems behave essentially

like in Figure 7.8(b) (in fact the setting is the same), FF-systems have a major per-

formance degradation due to the reduction of the queue to the functional minimum.

Finally, the bar diagrams in Figure 7.9 report the results of a similar experiment

as in Figure 7.8 but using the URT application instead of MPEG4. The trends are

the same, but the difference of performance between FF- and RS-systems are more

marked. The reason is that packets have a longer average path length (2.09 hops

Chapter 7. Communication Link Systems 147

(a) (b)

(c) (d)

Figure 7.8: Round trip time of a Spidergon NoC with MPEG4 and various scenario

of repeaters’ random deployments, with: (a) channel storage is set to S = 8, (b)

Q = 6 for FF-systems and Q = 2 for RS-systems, (c) Q = 6 for both FF- and

RS-systems, (d) Q changes depending on the value of K.

with respect to 1.17 hops) in the URT pattern, thus enhancing the impact of channel

pipelining.

We define the latency speed-up as:

LS =
LFF

LRS

We estimate the ratio of the area of a FF-subsystem and RS-subsystem as

AR =

∑
0≤i<C Qi(Ki) + Ki∑

0≤i<C QRS + (2×Ki)

148 Chapter 7. Communication Link Systems

(a) (b)

(c) (d)

Figure 7.9: Average packet latency of a Spidergon NoC with URT and various

scenario of repeaters’ random deployments, with: (a) channel storage is set to S = 8,

(b) Q = 6 for FF-systems and Q = 2 for RS-systems, (c) Q = 6 for both FF- and

RS-systems, (d) Q changes depending on the value of K.

where C is the number of channels in the network, Ki is the number of repeaters

on the i−th channel, Qi(Ki) is the router queue size as function of the FF-repeaters

deployed on the channel and QRS is the size of the router queues in a RS-system.

Table 7.3 reports the results on latency speedup and area savings obtained by

using RS-repeaters instead of FF-repeaters for various queue sizes: specifically we

vary QRS between 1 and 3 for a RS-system while we consider QFF ∈ [1, 2, 4, 6, Qmin]

for the corresponding FF-system. Recall that Qmin depends on the number K of

repeaters segmenting the channel feeding the queue. First, notice how for low values

of Q ∈ [1, 2] the latency speedup is huge (higher than 100×) with relatively minor

Chapter 7. Communication Link Systems 149

QRS

QFF 1 2 3

LS AR LS AR LS AR

1 258.73 0.75 412.45 0.50 518.18 0.38

2 151.67 1.25 219.41 0.83 298.15 0.63

4 7.83 2.25 11.46 1.50 16.03 1.13

6 0.41 3.25 0.67 2.17 0.84 1.63

Qmin 0.93 1.75 1.55 1.17 1.87 0.88

Table 7.3: Packet latency speed-up and area gain of RS-systems vs. FF-systems

for Spidergon with URT as function of the router input queue size Q.

area penalty (and indeed with a 25% gain when QRS = 1 and QFF = 2). This

confirms again the bad consequences of having queues with size Q < Qmin in an

FF-system, as explained in Section 7.2. For QFF = 4, the RS-system outperforms

always the FF-system both in terms of penalty and area occupation. Instead, for

QFF = 6, the FF-system has better performance than any RS-system but at much

higher costs in terms of area. Finally for QFF = Qmin, we have that a RS-system

with QRS = 1 is 8% slower while being 75% smaller. Also, it is enough to set QRS = 2

to obtain both a gain of 55% in performance and 17% in area. In conclusion, to use

RS-repeaters (a) often leads to a gain in both area and performance while (b) a loss

in either figure is always accompanied by a major gain in the other.

“Fat” Relay Stations

In our final experiment we use “fat” RSs, which are obtained by replacing the main

and auxiliary FFs with queues that in case of back-pressure can store more than

two flits. For a fixed channel total storage S, if K fat RSs provide BRS units of

flit buffering each, the size of the downstream queue is reduced to B = S − (K ∗
BRS). The experimental results in Figure 7.10 confirm the theoretical result given

in [CXSP04]: when using RS-repeaters, the particular distribution of flit buffering on

the channel does not really affect the performance. In other words, comparing this

result with the previous experiments shows that the critical performance efficiency

is obtained by using RS-repeaters that are flow-control-aware, while increasing their

size beyond the minimum BRS = 2 doesn’t have a big impact. In fact, keeping

150 Chapter 7. Communication Link Systems

the size of the router queue to a small value and distributing minimum-size RS-

repeater is the strategy that will provide the highest flexibility from a physical

design perspective. However, once the number of RS-repeaters that are necessary

for wire pipelining a given channel is determined, designers do have the freedom to

decide whether and where to add flit buffering.

 0

 20

 40

 60

 80

 100

 120

 140

 5 10 15 20 25 30 35 40 45 50

R
ou

nd
 T

rip
 T

im
e

(c
yc

le
s)

S

3 RS 2 Buffer
3 RS 3 Buffer
3 RS 4 Buffer
3 RS 5 Buffer
3 RS 6 Buffer

Figure 7.10: Round Trip Time of a “fat” Relay Station in function of S.

7.6 Conclusions

Given the particular constraints imposed by nanometer technologies, we propose

distributed flit-buffer flow control for NoC design as a method that combines the

simplest form of ack/nack protocol with the distribution of relay stations on the

channels. Relay stations act both as clocked repeaters to pipeline the channels and

as flit buffers to enable a distributed implementation of flow control. Consequently,

they provide precious flexibility during the physical design of the NoC by allowing

designers to use smaller routers and to manage long wires better. Experimental

results, including semicustom implementations and system-level simulations, show

Chapter 7. Communication Link Systems 151

that across many scenarios:

• for an equivalent amount of storage capacity a RS-based NoC performs better

than a FF-based NoC;

• a RS-based NoC needs less storage capacity to deliver the same performance

as a FF-based NoC.

Future work includes the study of the proposed approach in combination with

virtual-channel flow control.

Chapter 8

Link Management

8.1 Introduction

Packet-switched networks-on-chip (NoC) have been proposed as an alternative so-

lution to standard bus-based interconnects to address the global communication

demands of future chip-multiprocessors (CMP) and system-on-chip (SoC) [BM02,

DT01,GvMPW02,HJK+00]. While these communication demands continue to grow

as more cores are integrated on a chip, the on-chip power-dissipation budget is ex-

pected to remain very limited due to packaging constraints. Hence, the challenge is

not only to design NoCs that can deliver high-bandwidth at low latency for inter-

core communication, but also to make sure that this is done in a very power-efficient

way [O+07].

In a packet-switched NoC the network nodes are connected by optimized point-

to-point communication channels that are organized in a regular topology and shared

by multiple packets flowing from one processing core to another [MB06]. A NoC

node is either a network interface, which is used by a processing cores to inject/eject

packets to/from the network, or a router. Network interfaces and routers implement

the packet routing and flow-control protocols. In the route to their destinations

packets need to compete for NoC resources (e.g. channel bandwidth and router

buffers) on a hop-by-hop basis.

Many NoCs proposed in the literature rely on worm-hole (WH) flow control, a

Chapter 8. Link Management 153

Figure 8.1: A standard NoC (left) and a Multi-Plane NoC for p = 2 (right).

mechanism to allocate these resources in units of flits (flow-control digits) rather

than packets. A packet is decomposed in a sequence of flits and when the head

flit arrives at a node, it must acquire three resources before it can be forwarded

to the next node along its route: a virtual channel that holds the state needed to

coordinate the handling of the flits for the entire packet, one flit buffer and one

flit of channel bandwidth [DT04]. The subsequent body flits only need to acquire

the last two resources while the last body flit (the tail) releases the virtual channel.

By associating several virtual channels (channel state plus flit buffers) with a single

physical channel, virtual channel (VC) flow control avoids the blocking problem

(caused by the fact that a channel is owned by a packet, but buffers are allocated

on a flit-by-flit basis) and optimizes the use of the channel bandwidth. Peh and

Dally showed that a VC router can deliver 25-40% throughput improvement over a

wormhole router [PD01].

Both WH and VC flow controls are appealing for NoC design because they

require less buffering space in the routers than packet-buffer flow control methods.

Indeed, in comparison with macro-level networks, NoCs must be designed while

keeping in mind that, in a chip, buffers are generally more expensive resources than

wires, both in terms of area and, to a certain degree, power. VC flow control aims

at improving performance by investing in more flit buffering space to better exploit

the available channel bandwidth. After noticing that the packet energy/delay in an

154 Chapter 8. Link Management

Figure 8.2: Block diagrams of a VC router (left) and the simpler router used in

the MP NoC (right).

NoC is dominated largely by contention at intermediate routers (thus resulting in

a high router-to-channel energy/delay ratio) Kumar et al. have recently proposed

Express Virtual Channels (EVCs) [KPKJ07]. This is a novel flow control and router

microarchitecture design that allows packets to virtually bypass the entire pipeline of

intermediate routers along pre-defined virtual express paths between pairs of nodes

and, therefore, to approach the energy/delay of a dedicated wire interconnect.

Contributions. Instead of building NoCs with complex VC routers, we propose

the Multi-Plane (MP) approach to NoC design. We start from a standard NoC and

we split it into a number p of parallel sub-networks (the planes) such that the

aggregated point-to-point channel parallelism and router buffering capacity remains

constant. Fig. 8.1 shows an example of a MP NoC with p = 2 where the standard

network (both router and wires) are split into two parallel and independent network

planes. In the sequel, we study the cases of MP NoCs with p = 2 and p = 4 and

we compare them with a single plane NoC without VCs as well as single-plan NoCs

with two and four VCs. We present a complete comparative analysis that includes:

(a) the application of analytical models for router area and delay, (b) the use of

the power/performance Orion simulator [WZPM02], (c) the register-transfer level

(RTL) design, logic synthesis and technology mapping of various routers, and (d)

an extensive set of system-level simulations. Combined our results show that MP

NoCs represent a simple and effective alternative to virtual channels for low-power

NoC design.

Chapter 8. Link Management 155

8.2 Related Work

Balfour and Dally presented a comprehensive comparative analysis of NoC topolo-

gies and architectures in [BD06b], where they also discuss the idea of duplicating

certain NoC topologies, such as Mesh and CMesh, to improve the system perfor-

mance. Our work differs from this analysis because instead of duplicating the NoC

we actually divide it in a number of sub-networks while keeping the overall amount

of wire and buffering resources constant. For NoCs, Kumar et al. presented the

full-custom design of a VC router that can deliver a single-cycle no-load latency at

3.6GHz clock frequency while achieving a peak switching data rate of 4.6Tbits/s per

node [KKS+07]. Ogras et al. extended the VC concept by adding extra physical

long-range links [OM06a]. Matsutani et al. proposed slow-silent VCs to reduce both

static and dynamic power consumption caused by VCs [MKWA08]: while relying

on voltage and frequency scaling to reduce dynamic power leakage, they also use

a power-gating technique to reduce the standby power of the VCs when they are

not active. They show that 58.2% of total power is saved by using slow-silent VCs

under the assumption of Uniform traffic and four VCs at 45 million flits per second

per core.

In the RAW processor four separate and independent NoCs are used: two NoCs

are statically routed and two are dynamically routed [TKM+02]. The reason for

implementing physically separated networks and using different routing schemes

is to accommodate different types of traffic in general purpose systems. In our

approach we do not build heterogeneous networks. Instead, we partition a single

NoC in multiple ones to achieve power efficiency and area advantages by simplifying

the router design.

Noh et al. proposed a multi-planes-based design for a VC-enabled router [NNJC06]:

the internal crossbar switch is replaced with a number of parallel crossbars (planes)

that increase the flit transfer rate between input and output queues. The result of

this design is a router with a simpler hardware design that performs better than

a single-plane router with a larger number of VCs. Differently from our approach,

156 Chapter 8. Link Management

Terms Definitions

B flit width of single-plane NoC

Q size of router input buffer

p number of physical channels

v number of virtual channels

b flit size of a plane in multi-plane NoC (= B
p)

Table 8.1: NoC parameters used in our comparative study.

they mantain the flit-width constant as they scale the number of additional lanes.

In summary, to the best of our knowledge this is the first article that proposes

multi-plane partitioning for NoC design.

8.3 Multi-Plane Partitioning of a NoC

Fig. 8.2(left) shows the block diagram of a classic 5-port VC router that can be used

in a 2-D Mesh network. Each input/output port is connected to a physical channel

that as a data parallelism of B bits which matches the flit size. For a VC router

supporting v virtual channels, each input port is equipped with: (1) a routing logic

block that determines the destination port for each packet based on the information

contained in the head flit and the specific routing algorithm (e.g. XY routing); (2)

a set of v queue buffers, and (3) a VC control block that holds the state needed to

coordinate the handling of the flits of the various packets. Each queue buffer has a

size Q corresponding to the number of incoming flit that can be stored when they

cannot be forwarded because the destination port is busy forwarding another packet.

Every output port is equipped with an output arbiter that manages the allocation

of the port across the multiple packets arriving at the input ports by scheduling the

forwarding order among these. Typically NoC routers do not have buffers on the

output ports. If VC flow control is used (i.e. v > 1), the output arbiter manages

the allocation of every VC associated to that output, while a VC allocator block

arbitrates the matching between input and output VCs. The packet forwarding

happens over a switching fabric that connects every input to every output port.

Chapter 8. Link Management 157

This is configured dynamically on the basis of the input routing and the output

arbitration. Thank to the limited number of ports, the switching fabric of an NoC

router is typically realized as a crossbar, a structure that has also the advantage of

being regular, thus simplifying the layout.

The basic idea of our proposed multi-plane approach to NoC design is to partition

the resource of a traditional NoC in p parallel simpler sub-networks (the planes) that

do not use VC flow control and such that the aggregated point-to-point channel

parallelism and router buffering capacity remains constant. Hence, for each physical

channel in the original NoC having a bit parallelism B, the p-plane MP NoC will have

p independent physical sub-channels with parallelism b = B/p. The p independent

channels are part of p parallel meshes, each containing a simpler router.

In this scenario, the processing unit (PU) in each core is connected to p routers,

one per plane, through a network interface (NI). For instance, Fig. 8.1 (right) shows

the interface of a PU with the multi-plane NoC, for p = 2. The NI manages the

PU access to the NoC in terms of reading/writing data from/to the memories,

sending/receiving the packets, and handling the back-pressure received from the

NoC in case of congestion. The PU generates/consumes the actual data transfer

requests. When a PU needs to transmit a packet, its NI chooses which plane to use

based on a simple allocation policy. The packet is forwarded towards the destination

over the assigned plane. More than one packet can be sent simultaneously, each on

a different plane. In the same way more packets can be received at the same time on

different planes. However, the length of a packet, i.e. the number of flits, is inversely

proportional to the number of planes due to the reduction of the flit width.

While the idea of MP NoCs can be applied to various NoC topologies, we focus

on 2-D Meshes with dimensional (XY) routing [DT04] because they lead to simple

and efficient VLSI implementations. For the same reason, each router in a MP NoC

implements a simpler worm-hole (WH) flow control mechanism. Fig. 8.2(right)

shows the block diagram of the router of a p-plane MP NoC. Essentially, this can

be seen as a simplification of the previous VC router where WH flow control is used

instead of VC flow control (in the sequel we denote this design choice by setting the

158 Chapter 8. Link Management

parameter v = 1) and where each input port has a single queue buffer of size Q and

width b.

Fig. 8.1 summarizes all the most important NoC parameters that are used in the

following comparative analysis.

8.4 Model-Based Comparative Analysis

In this section we present a comparative analysis of a MP NoC with respect to tra-

ditional single-plane NoCs from the perspectives of area occupation, maximum logic

delay, and power dissipation. Since the number of channel wires remains constant

across the various NoC designs that we consider, we focus on analyzing the impact

of the various router designs as we vary the parameters b, v and Q of Table 8.1.

This analysis is based on the analytical model for router delay proposed in [Peh01a]

and those for area and power used in the Orion tool [WZPM02].

8.4.1 Area Model

Following the modeling approach used for Orion, we approximate the area of the

entire router as the sum of the area of the input buffers (Areabuffer) plus the area

of the crossbar (Areaxbar), while considering the area of the arbitration and routing

logic negligible. In particular, assuming that the channel bit parallelism (the phit

width) is equal to the flit width B, and that a buffer is able to store Q flits, we have:

Arearouter = #ports · Areabuffer + Areaxbar

If we implement the buffer as a register file of SRAM cells, we have:

Areabuffer = lengthbitline · lengthwordline

and if we consider two bitlines per bit and a wordline per buffer location:

lengthbitline = Q · (heightmemorycell + 2 · pitch)

Chapter 8. Link Management 159

lengthwordline = B · (widthmemorycell + 4 · pitch)

Similarly, considering the implementation of the crossbar as a matrix of horizon-

tal and vertical wires using pass transistors at the junction point between an input

and output, we have:

Areaxbar = lengthinline ∗ lengthoutline

with:

lengthinline = #ports ·B · (widthxbarcell + pitch)

lengthoutline = #ports ·B · (heightxbarcell + pitch)

In summary:

Arearouter = α ·B + β ·B2

where α, β include all the parameters depending on the technology and on the

design, i.e. cell sizes, wire pitch, buffer depth and number of ports.

According to this model the total area of the router depends quadratically on

the flit size B (due to the crossbar layout). This relation remains valid as we

scale the technology process (assuming classic CMOS scaling). The number n of

ports in a router mainly depends on the NoC topology (it is five for a regular 2-D

Mesh). The buffer depth Q can be dimensioned as a trade off of power/area versus

performance, i.e. the deeper the buffer the better the performance of the network,

but the higher the overhead in terms of power dissipation and area. The value of

B must be dimensioned to guarantee the target line rate on the router-to-router

channels. Recall that the line rate is the amount of data transferred in a clock cycle,

i.e. L = B · fclk, where fclk is the frequency of the clock at which the NoC operates.

We saw that the dependency of the router area is quadratic with respect to B.

To reduce B means to reduce the line rate, with a degradation of the overall NoC

capacity of transferring data.

160 Chapter 8. Link Management

1 plane w/ sizeflit = B p planes w/ sizeflit = B/p

Areaxbar M ·B2 M · p · (B
p
)2

Areabuffer N ·B N · p · B
p

Table 8.2: Router area occupation as a function of the number of planes and flit

size.

As explained in Section 8.3 in our approach each router with flit size B of a

single-plane NoC is replaced with p parallel and independent routers, each with flit

size b. Table 8.2 reports the analytical formulas to characterize the area occupation

of a router as a function of the number of planes and flit size. Comparing the set

of p routers of the p-plane NoC with a router of the single-plane NoC, we note that

the aggregate line rate, i.e. the number of wires, of the two NoCs is the same. The

area due to the buffer remains the same, but the crossbar area is reduced by a factor

p2/p = p (Table 8.2).

8.4.2 Power Model

We used the accurate model that is available in Orion also for estimating the router

power dissipation. This model breaks down the power dissipation along the main

router components: the switching activity of the buffers and the crossbar, and the

leakage (static power), which becomes increasingly more important with the scaling

to nanometer technology processes.

Table 8.3 collects the power dissipation values obtained using Orion for a 5 × 5

router with B = 256, which we take as our reference design, for different values of

input storage Q. The dissipation of a router in case of multiple planes is obtained

by multiplying the power dissipation of the single router times the number of planes

p. We considered NoC with p = {1, 2, 4} and compared it with a single plane NoC

with two and four virtual channels (p = 1, v = {2, 4}). In addition we report data

for three different technology processes: 100, 70 and 50nm. This analysis shows

that adding more planes gives an overall power saving while using VCs leads to an

Chapter 8. Link Management 161

Q 2 4 8 16 32

Tech [nm] 100 70 50 100 70 50 100 70 50 100 70 50 100 70 50

p = 1 1 1 1 1 1

p = 2 0.68 0.74 0.84 0.68 0.75 0.85 0.69 0.76 0.86 0.71 0.77 0.87 0.74 0.81 0.90

p = 4 0.68 0.62 0.77 0.68 0.63 0.78 0.69 0.65 0.80 0.71 0.68 0.83 0.74 0.73 0.87

p = 1, v = 2 N/A 1.50 1.53 1.62 1.43 1.52 1.59 1.45 1.48 1.54 1.40 1.42 1.45

p = 1, v = 4 N/A N/A 1.48 1.52 1.59 1.46 1.48 1.53 1.41 1.42 1.45

Table 8.3: Power dissipation ratio (w.r.t. 1-plane WH reference NoC) for different

values of p, v and different technologies, with B = 256.

higher power consumption.

8.4.3 Delay Model

Li-Shiuan Peh has proposed an accurate hierarchical model for estimating the critical

path delay for WH and VC routers and comparing the two architectures [Peh01a].

The critical path of each main block of a router is modeled as a sequence of logic

gates and measured as a multiple of the basic delay of an inverter feeding 4 other

inverters (the fanout-of-4 unit τ4). Following Peh’s method we quantify the advan-

tages of having a MP NoC with small-flit VC-free routers over a traditional NoC

with large-flit VC routers under the assumption of using XY-dimensional look-ahead

routing [M.G96]. In particular, the latter allows computing the routing destination

one hop in advance, thus removing the routing logic from the critical path. We also

assume that routers have zero-load latency of one clock cycle.

In a 5× 5 WH router, the allocation of the switching fabric is performed in 9τ4.

Regarding the crossbar traversal, the time needed by the data to propagate from the

input to the output grows accordingly to the size of the crossbar itself, depending

on the flit-size (Section 8.4.1). In a 5× 5 VC router, the allocation of the switching

fabric is performed in 12τ4 if v = 2 or 15τ4 if v = 4. However, this stage follows the

VC allocation, that takes 14τ4 if v = 2 or 18τ4 if v = 4. Since the wire delay, which

accounts for the main part of the propagation time in the crossbar, is difficult to

model, we follow Peh’s approach [Peh01a] and assume that the crossbar traversal is

162 Chapter 8. Link Management

about 20τ4 for any flit-size.

In summary, a WH router has a critical path of 29τ4. Using 2 VCs, makes the

critical path grow up to 46τ4, with a maximum clock frequency reduction of roughly

37%. Using VC leads to a clock frequency reduction of 45% (critical path 53τ4) with

respect to the WH router.

Notice that this analysis is conservative for two reasons:

• using MP logically results in an shorter critical path even without considering

VCs (but just large-flit WH routers) because a WH router crossbar traversal

decreases with the area reduction of the crossbar itself;

• the lower is the crossbar traversal time, the higher is the weighted advantage

of using simple and fast logic for arbitration, i.e. WH as opposed to VC.

8.5 Synthesis-Based Comparative Analysis

We validated the model-based comparative analysis of the previous section with a

set of experiments based on the logic synthesis and technology mapping of a set of

routers (and small NoCs) that we obtained by varying the values of the parameters

of Table 8.1. In order to derive the RTL designs we took advantage of the NoC

Emulator (NoCem) [Ope]. In particular, the NoCem router is the combination

of a simple buffer-less switching fabric equipped with arbitration and a bidirectional

channel for each port, containing the storage and the logic needed to manage VC

flow control and buffer accesses. We performed two series of synthesis experiments

using Synopsys Design Compiler and a 90nm standard-cell library:

1. we synthesized the channel/buffering logic and the switching fabric separately

and then we combined 2.5 channels (because of bidirectionality) with the

switching fabric to estimate the router’s area and power;

2. we synthesized a 2 × 2 Mesh of routers and divided the measured values by

four.

Chapter 8. Link Management 163

Q 2 4 8 16 32

p = 1 1 1 1 1 1

p = 2 1.05 1.06 1.04 1.05 1.06

p = 4 1.19 1.14 1.11 1.12 1.12

p = 1, v = 2 N/A 1.37 1.22 1.13 1.07

p = 1, v = 4 N/A N/A 1.62 1.37 1.21

Table 8.4: Area occupation ratio (w.r.t. 1-plane 256-bit reference NoC) for differ-

ent values of p and v, with B = 256.

We cross-checked the two series of experiments to confirm that they returned the

same trends. The experimental results for area, power and delay are presented next.

Area. Table 8.4 reports the are occupation of our reference design, i.e. 5 × 5

router with B = 256, for different values of input storage Q. We considered a p-

plane NoC and multiply the area of a router with flit size B/p by the number of

planes. We considered NoC with p = 1, 2, 4 and compared it with a single plane NoC

with two and four virtual channels (p = 1, v = {2, 4}). The VC allocation algorithm

implemented in the router is a simple round-robin, which offers the smallest possible

area occupation. Since we used static allocation of buffers to VCs with input storage

capacity Q for a VC-router, the storage capacity per single VC is QV C = Q/v. This

gives a more fair comparison because all the NoC have the same number of physical

I/O wires and the same amount of storage resources, i.e. the total number of flip-

flops in the input buffers. On the other hand, this does not allow us to apply all the

values of Q to the VC-routers because a size of at least QV C = 2 is needed per each

VC buffer.

The results do not completely validate our previous analysis based on the Orion

area model (Section 8.4.1). The main reason is that an RTL-designed crossbar is

generally synthesized as a collection of multiplexers, and it scales linearly with B,

even though no layout has been taken into account. In particular, the use of p > 1

164 Chapter 8. Link Management

Q 2 4 8 16 32

p = 1 0.52 0.53 0.52 0.52 0.52

p = 2 0.59 0.57 0.56 0.56 0.56

p = 4 0.70 0.68 0.66 0.64 0.63

p = 1, v = 2 N/A 0.73 0.64 0.60 0.56

p = 1, v = 4 N/A N/A 0.88 0.71 0.64

Table 8.5: Area occupation ratio (w.r.t. 1-plane 256-bit reference NoC) for differ-

ent values of p and v, with B = 128.

planes gives a disadvantage in terms of area consumption. Meanwhile, it is not

possible to neglect the area contribution due to the management of the VCs, which

has a noticeable impact particularly for small values of Q. Indeed, when the amount

of storage that is possible to reserve at each input router is small (Q < 8), it is

convenient to organize this storage on a multi-plane fashion instead of sharing it

among multiple VCs. Table 8.5 shows the same trends for a 128-bit NoC.

Power. The reports of the logic synthesis tool present power dissipation trends

similar to those for the area occupation discussed above. Specifically, in most cases

the use of multiple planes increases the power consumption of the overall system

by less than 15%. The use of VCs, instead, leads to an increment of more than

30% in terms of power dissipation for low values of Q. This increment decreases

when Q grows. Hence, these results confirm the trend about the use of VCs: they

help improving the NoC performance at the price of higher power dissipation of the

NoC. On the other hand, the results disagree with the estimations obtained through

the Orion model, which suggest that the use of more planes is effective from the

power-dissipation viewpoint.

Delay. Through the synthesis of the RTL NoCem router we also collected data

about the critical path for all the proposed configurations. The critical path of a

router depends inversely on B and v. In the MP NoC configurations reducing B by

a factor of p = {2, 4} leads to a delay improvement of 1− 10%. Further, a MP NoC

with p = 2 planes can run at a clock frequency that is 15-25% higher than an NoC

Chapter 8. Link Management 165

with v = 2 VCs while a MP NoC with p = 4 planes can run at a clock frequency

that is up to 25-35% faster than an NoC with v = 4 VCs. These results generally

confirm the speedup trends estimated by the analytical model of Section 8.4.3.

8.6 System-Level Simulations

We developed an event-driven simulator including detailed models of the parame-

terized NoC components, such as routers, NIs and high-level models for the PUs

that are the sources of network traffic. Each NI is connected to one or more routers

depending on the number of NoC planes. The flit width of the single-plane base

configuration is set to B = 256 bits.

We analyzed the multi-plane approach under the Uniform, Tornado, Transpose

and 4-HotSpot traffic patterns. In Uniform traffic each PU chooses a randomly peer

and sends a packet of a fixed size. In Tornado traffic each 〈x, y〉 node exchange

packets only with 〈x + (dk/2e − 1)%k, y〉 node where k is the number of nodes in

the x dimension in our experiments. For Transpose traffic in a 2D Mesh instead

each 〈x, y〉 node communicates only with the node 〈y, x〉. Finally, 4-HotSpot (4HS)

defines four nodes who are uniformly selected by all the other nodes as destinations

for their traffic.

Fig. 8.3 (a) shows the throughput per node measured assuming p = {1, 2, 4, 8}
under Uniform traffic. By partitioning a NoC in multiple planes we increase the

parallelism of the system so that each NI can send and receive more than one

(smaller) flit per clock period. Different packets assigned to different planes can

be processed in parallel during a single period. With a high number of planes, i.e.

p = 8, we reach a 17% improvement of the maximum throughput. The result for

other traffic patterns are similar as shown in the first row of Table 8.6.

The improvement of throughput comes at the expense of latency: using p multi-

ple planes, each NI has a channel width b that is p times narrower than the original

system. As a consequence, each packet traveling on a multi-plane network is made of

166 Chapter 8. Link Management

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Normalized Injection Rate

 1 MP 2 Q
 2 MP 2 Q
 4 MP 2 Q
 8 MP 2 Q

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

La
te

nc
y

(c
yc

le
s)

Normalized Injection Rate

 1 MP 2 Q
 2 MP 2 Q
 4 MP 2 Q
 8 MP 2 Q

(b)

Figure 8.3: Throughput (a) and Latency (b) with Q = 2 under Uniform traffic.

p times more flits than in the single-plane NoC, e.g. a packet of 1 Kbit is composed

by 4 flits when b = 256 bits or 8 flits when b = 128 bits.

Fig. 8.3 (b) shows the latency measured under Uniform traffic pattern. Notice

that under different injection rates the reference NoC with p = 1 has a latency lower

than the MP NoCs only for low traffic loads. As the average load increase, the MP

NoC can handle better the higher traffic volume, thus reducing the overall system

latency and raising its maximum throughput. We obtained the same trends with

the other traffic patterns but we omit the plots for brevity.

Table 8.6 reports the maximum throughput achieved by the MP NoCs as func-

tion of the input buffer size Q and the number of planes p, for all the proposed

traffic patterns. Generally duplicating the number of planes delivers a throughput

improvement. We also notice an improvement for small values of Q, i.e. shorter than

the packet length, which we set to 1Kbit, i.e. 4 flit of 256 bit. Indeed, when the

router input buffers are small and the injection rate is high, packets can wait in the

NI output channel blocking all the following packets that are generated by the same

NI. A MP NoC instead parallelizes the traffic on multiple independent networks thus

reducing the Head-of-Line blocking. As Q increases, this effect is reduced, because

more packets can be stored in the larger router’s buffers. This is confirmed by the

results of Table 8.6 for Uniform and 4-HotSpot. Instead, Transpose and Tornado

Chapter 8. Link Management 167

Traffic Uniform Transpose Tornado Hotspot

p 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

Q = 2 0.38 0.41 0.43 0.45 0.45 0.48 0.50 0.50 0.44 0.47 0.48 0.49 0.29 0.31 0.32 0.32

Q = 4 0.43 0.44 0.45 0.45 0.47 0.50 0.51 0.52 0.44 0.47 0.48 0.49 0.30 0.32 0.32 0.33

Q = 8 0.47 0.50 0.48 0.47 0.47 0.50 0.51 0.52 0.44 0.47 0.48 0.49 0.32 0.33 0.33 0.33

Q = 16 0.52 0.53 0.54 0.50 0.47 0.50 0.51 0.52 0.44 0.47 0.48 0.49 0.34 0.35 0.34 0.34

Q = 32 0.54 0.57 0.57 0.56 0.47 0.50 0.51 0.52 0.44 0.47 0.48 0.49 0.36 0.36 0.36 0.34

Table 8.6: Normalized throughput as function of Q and p under various traffic

patterns.

100.00 105.00 110.00 115.00 120.00 125.00 130.00

p = 1

p = 2

p = 4

p = 1, v = 2

p = 1, v = 4

Throughput (Gbit/sec)

(a)

0 0.5 1 1.5 2

p = 1

p = 2

p = 4

p = 1, v = 2

p = 1, v = 4

Power Dissipa,on Ra,o

(b)

0 0.5 1 1.5 2

p = 1

p = 2

p = 4

p = 1, v = 2

p = 1, v = 4

Normalized Area (nm)

(c)

Figure 8.4: Throughput (a) and Latency (b) with Q = 2 under Uniform traffic.

are less sensitive to the variations of Q and do not present an improvement of the

throughput. Finally, these results suggest that an improvement is always guarantee

by splitting an NoC in a 2-plane NoC.

Finally we compared the MP NoC approach with respect to NoCs with virtual

channels from a performance viewpoint by using the performance gain reported in

168 Chapter 8. Link Management

the literature for the latter.

Graph in Figure 8.4 compare throughput and power and area consumption of

MP and VC networks when Q = 8 slots with 50nm technology. As Figure 8.4(a)

shows, MP can actually improve the performance of a system. Nevertheless VC-

approach can achieve a higher improvement in line with [PD01] where, Peh shows

how an NoCs with four virtual channels (v = 4) gives a throughput improvement of

up to 40% with respect to a WH NoC. As depicted in Figures (b) and (c) this higher

improvement comes at the price of a wider area and increased power consumption.

Hence Multi-Planes can be a energy and cost efficient approach to improve the

performance of the system when the SoC is characterized by tight power and area

constraints.

8.7 Conclusions

We proposed multi-plane (MP) networks-on-chip as a power-efficient communication

infrastructure for multi-core architectures and a possible alternative solution to NoCs

based on the use of virtual channels (VC) routers.

First we showed that, independently from the input buffer size, partitioning a

single-plane NoC without virtual channels into a MP NoC with small VC-free routers

offers important advantages in terms of both throughput and power dissipation with

limited loss in terms of latency. From an area occupation viewpoint, we showed that

the results depend mainly on the design style of the router switching fabric: if this

is implemented as a crossbar the smaller routers in the MP NoC have combined

smaller area than the bigger router in the single-plane NoC, while they may be

slightly worse if implemented through the logic synthesis of standard cells.

NoCs with VC routers provide higher throughput gains than equivalent MP

NoCs but they also have larger power dissipation. Indeed, part of this performance

loss can be recovered by trading power dissipation for clock frequency and running

the MP NoC with a higher rate frequency because its critical path has a delay that

is up to 25-35% smaller. Finally, the MP approach saves area with respect to using

Chapter 8. Link Management 169

VCs and is well suited for small sized input buffers, i.e. area occupation critical

applications.

Future work includes investigating the implementation of traffic distribution poli-

cies in the network interface, the combination of heterogeneous routing algorithms

across the planes, and the optimization of the MP NoC layout organization.

Chapter 9

Conclusions

In this Thesis we considered the analysis and simulation of protocols and architec-

tures for Networks on Chip.

In Chapter 2 we introduced the Networks on Chip main characteristics and

explained motivations making NoC a promising solution for future System on Chip

interconnects.

In Chapter 3 we analyzed in detail the Spidergon NoC architecture. We compared

it with two classic solutions such as 2D Mesh and Ring and the Crossbar-based Bus

used in former Systems on Chip. Simulation-based test reported in this chapter

show that the Spidergon NoC is a good tradeoff between cost and performance. In

particular when used to support hot spot traffic, the Spidergon architecture can

offers performances similar to those of the more expensive 2D Mesh and Crossbar

interconnect. In this chapter we also introduced the aEqualized routing algorithm

for the Spidergon NoC. AEqualized grants similar performances as the classical

aLast and aFirst algorithms but reducing the resources actually used by the system

by up to 15%.

In Chapter 4 we discussed the methodology and tools that we used to model and

simulate the NoC systems considered in this Thesis. In particular we introduced

the Scotch partitioning tool used to perform the mapping of a given application

on the NoC, Metis, Nauty and Neato used to analyze the mathematical properties

of the NoC topologies and finally OMNeT++ used to model and simulate a given

Chapter 9. Conclusions 171

application on a specific NoC architecture.

In Chapter 5 and 6 we discussed the message dependent deadlock and proposed

the Ctc end-to-end flow control to solve it. Ctc is a cost-efficient solution devel-

oped in collaboration with the ST Microelectronics research lab of Grenoble.

We compared it to the well known end-to-end version of Credit Based (CB) flow

control and we demonstrated that it can reach similar performances as CB with

slightly higher delay but sensitively reduced implementation costs. Ctc hence is an

interesting solution for the cost-constraint SoC wold.

In Chapter 7: we described the Time Closure Exception issue that can be trig-

gered when long-linked NoC run at high clock frequencies. Here we proposed a

pipelined-based solution based on the use of Relay Stations. We considered system-

level and register-transfer lever (RTL) analysis used to compare both performance

and actual chip-area of the proposed solution. Results indicate that RS-based

pipeline is both energy and area efficient and also can grant better throughput

and latency performances.

Finally in Chapter 8 we discussed a Multi-Plane (MP) approach as an alternative

to virtual channels. A Multi-Plane based NoC is composed my a set of parallel

networks supported by simple and very fast routers. We compared our approach

with a VC-based NoC whose data parallelism is equal to the sum of the one of the

MPs system. Simulation-based analysis indicate that our MP approach actually

improves the performance of a NoC in terms of throughput and latency. The VC-

based approach does actually grant better improvements at the cost of a much higher

area and power consumption. Hence MP-based NoC are an interesting cost effective

solution of NoC systems.

In conclusion this Thesis has produced a total of four published papers all in

major international conferences and a book chapter of a well known scientific editor.

At the time of typing other two conference-papers and two journal articles are in

phase of review for eventual publication.

References

[AA] AMBA-AXI.

[AAZ03] A. Greiner L. Mortiez A. Adriahantenaina, H. Charlery and C.A. Ze-

ferino. SPIN: A scalable, packet switched, on-chip micro-network.

In Design, Automation and Test in Europe (DATE’05), page 20070,

Washington, DC, USA, 2003. IEEE Computer Society.

[amb] Website. Amba Bus, Arm.

[AP95] K. V. Anjan and T. M. Pinkston. DISHA: a deadlock recovery scheme

for fully adaptive routing. In IPPS ’95: Proceedings of the 9th Interna-

tional Symposium on Parallel Processing, pages 537–543, Washington,

DC, USA, 1995. IEEE Computer Society.

[BC06] L. Bononi and N. Concer. Simulation and analysis of network on chip

architectures: ring, spidergon and 2d mesh. In Design, Automation

and Test in Europe (DATE’06), pages 154–159, 2006.

[BCG+07] L. Bononi, N. Concer, M. Grammatikakis, M. Coppola, and R. Lo-

catelli. Noc topologies exploration based on mapping and simulation

models. In DSD ’07: Proceedings of the 10th Euromicro Conference on

Digital System Design Architectures, Methods and Tools, pages 543–

546, 2007.

[BCH95] J. C. Bermond, F. Comellas, and D. F. Hsu. Distributed loop computer

networks: A survey. J. Parallel Distrib. Comput., 24(1):2–10, 1995.

References 173

[BD06a] J. Balfour and W. J. Dally. Design tradeoffs for tiled CMP on-chip

networks. In ACM/IEEE (SC—05) Conf. Supercomputing, pages 187–

198, 2006.

[BD06b] J. Balfour and W. J. Dally. Design tradeoffs for tiled CMP on-chip

networks. pages 187–198, 2006.

[BJM+05] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou,

L. Benini, and G. De Micheli. NoC synthesis flow for customized

domain specific multiprocessor systems-on-chip. IEEE Trans. on Par-

allel and Distributed Systems, 16(2):113–129, February 2005.

[BM02] L. Benini and G. De Micheli. Networks on chip: A new SoC paradigm.

IEEE Computer, 49(2/3):70–71, January 2002.

[CGL+08] M. Coppola, M. D. Grammatikakis, R. Locatelli, G. Maruccia, and

L. Pieralisi. Design of Cost-Efficient Interconnect Processing Units:

Spidergon STNoC. CRC Press, Inc., Boca Raton, FL, USA, 2008.

[cis] Virtual component interface standard.

[CLM+04] M. Coppola, R. Locatelli, G. Maruccia, L. Pieralisi, and A. Scandurra.

Spidergon: A NoC modeling paradigm. In Proc. 2004 International

Symposium on System-on-Chip, page 15, November 2004.

[CMSSV99] L. P. Carloni, K. L. McMillan, A. Saldanha, and A. L. Sangiovanni-

Vincentelli. A methodology for “correct-by-construction” latency in-

sensitive design. In Proc. Intl. Conf. on Computer-Aided Design, pages

309–315, San Jose, CA, November 1999. IEEE.

[Coc02] P. Cocchini. Concurrent flip-flop and repeater insertion for high-

performance integrated circuits. In Proc. Intl. Conf. on Computer-

Aided Design, pages 268–273, 2002.

174 References

[CPC08] N. Concer, M. Petracca, and L.P. Carloni. Distributed flit-buffer flow

control for networks-on-chip. In The Proceedings of the Sixth Interna-

tional Conference on Hardware/Software Codesign & System Synthesis

(CODES+ISSS), page 6, September 2008.

[CSB09] N. Concer, S.Iamundo, and L. Bononi. aEqualized a novel routing

algorithm for Spidergon NoC. In Design, Automation and Test in

Europe (DATE’06), 2009.

[CSV02] L. P. Carloni and A. L. Sangiovanni-Vincentelli. Coping with latency

in SoC design. IEEE Micro, 22(5):24–35, September/October 2002.

[CXSP04] V. Chandra, A. Xu, H. Schmit, and L. Pileggi. An interconnect channel

design methodology for high performance integrated circuits. In Conf.

on Design, Automation and Test in Europe, pages 21138–21143, 2004.

[DA93] W. J. Dally and H. Aoki. Deadlock-free adaptive routing in multi-

computer networks using virtual channels. IEEE Trans. on Parallel

and Distributed Systems, 4(4):466–475, 1993.

[Dal90] W. J. Dally. Virtual-channel flow control. In in Proc. Int. Symp.

Comp. Arch., pages 60–68, Seattle, Washington, May 1990.

[DBL05] Y. Durand, C. Bernard, and D. Lattard. FAUST : On-chip distributed

architecture for a 4G baseband modem SoC, in. In Proceedings of

Design and Reuse IP-SOC, pages 51–55, 2005.

[D.K97] H. D.Kubiatowicz. Integrathed Shared Memory and Message Pass-

ing Communications in the Alewire Multiprocessor. PhD thesis, Mas-

sachusetts Institute of Technology. Boston, 1997.

[DRKR03] J. Dielissen, A. Rdulescu, Goossens K, and E. Rijpkema. Concepts

and implementation of the philips network-on-chip. In In IP-Based

SoC Design, 2003.

References 175

[DRW98] R.P. Dick, D.L. Rhodes, and W. Wayne. TGFF: task graphs for free.

In CODES/CASHE ’98: Proceedings of the 6th international workshop

on Hardware/software codesign, pages 97–101, Washington, DC, USA,

1998. IEEE Computer Society.

[DT01] W. J. Dally and B. Towles. Route packets, not wires: On-chip inter-

connection networks. In Proceedings of the Design Automation Con-

ference, pages 684–689, June 2001.

[DT04] W. J. Dally and B. Towles. Principles and Practices of Interconnection

Networks. Morgan Kaufmann Publishers, San Mateo, CA, 2004.

[DYN03] Jose’ Duato, Sudhakar Yalamanchili, and Lionel Ni. Interconnection

Networks. An Engineering Approach. Morgan Kaufmann Publishers,

San Mateo, CA, 2003.

[E.W] E.Weisstein. Moore Graphs. http://mathworld.wolfram.com/

MooreGraph.html.

[FM82] C.M. Fiduccia and R.M. Mattheyses. A linear time heuristic for im-

proving network partitions. In in Proc. Int. Conf. Design Automation,

pages 175–181, Washington, DC, USA, 1982. IEEE Computer Society.

[For02] M. Forsell. A scalable high-performance computing solution for net-

works on chips. IEEE Micro, 22(5):46–55, 2002.

[GDvM+03] K. Goossens, J. Dielissen, J. van Meerbergen, P. Poplavko,

A. Rădulescu, E. Rijpkema, E. Waterlander, and P. Wielage. Guar-

anteeing the quality of services in networks on chip. pages 61–82,

2003.

[GIP+07] C Grecu, A Ivanov, P Pande, A Jantsch, E Salminen, U Ogras, and

R Marculescu. An initiative towards open network-on-chip bench-

marks. In Proceedings of the The First International Symposium on

Networks-on-Chips (NOCS), 2007.

http://mathworld.wolfram.com/MooreGraph.html
http://mathworld.wolfram.com/MooreGraph.html

176 References

[GJS76] M. Garey, D. Johnson, and L. Stockmeyer. Some simplified np-

complete graph problems. Theoretical Computer Science, 1:237–267,

1976.

[GPIS04] C. Grecu, P.P. Pande, A. Ivanov, and R. Saleh. Structured intercon-

nect architecture: a solution for the non-scalability of bus based SoCs.

In 14th ACM Great Lakes symposium on VLSI, (GLSVLSI ’04), pages

192–195, April 2004.

[GRK+05] O. P. Gangwal, A. Rădulescu, K.Goossens, S. González Pestana, and

E. Rijpkema. Building predictable systems on chip: An analysis of

guaranteed communication in the Æthereal network on chip. In Pe-

ter van der Stok, editor, Dynamic and Robust Streaming In And Be-

tween Connected Consumer-Electronics Devices, volume 3 of Philips

Research Book Series, chapter 1, pages 1–36. Springer, 2005.

[GvMPW02] K. Goossens, J. van Meerbergen, A. Peeters, and P. Wielage. Networks

on silicon: Combining best-effort and guaranteed services. In Conf.

on Design, Automation and Test in Europe, 2002.

[H+07] Y. Hoskote et al. A 5-GHz mesh interconnect for a teraflops processor.

IEEE Micro, 27(5):51–61, Sept.-Oct. 2007.

[HG07] A. Hansson and K. Goossens. Trade-offs in the configuration of a

network on chip for multiple use-cases. In Proceedings of the The

First International Symposium on Networks-on-Chips (NOCS), pages

233–242, May 2007.

[HGR07] A. Hansson, K. Goossens, and A. Rădulescu. Avoiding message-

dependent deadlock in network-based systems on chip. IEEE Trans-

actions on Very Large Scale Integration (VLSI) Systems, 2007:Article

ID 95859, 10 pages, 2007. Hindawi Publishing Corporation.

References 177

[HJK+00] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Oberg, M. Mill-

berg, and D. Lindqvist. Network on chip: An architecture for billion

transistor era. In 18th IEEE NorChip Conference, November 2000.

[HM03] J. Hu and R. Marculescu. Exploiting the routing flexibility for en-

ergy/performance aware mapping of regular NoC architectures. In

Design, Automation and Test in Europe (DATE’03), 2003.

[HMH01] R. Ho, K. W. Mai, and M. A. Horowitz. The future of wires. Proceed-

ings of the IEEE, 89(4):490–504, April 2001.

[HOM06] J. Hu, U.Y. Ogras, and R. Marculescu. System-level buffer allocation

for application-specific networks-on-chip router design. IEEE Trans.

on Computers, 25(12):2919–2933, December 2006.

[HP06] John L. Hennessy and David A. Patterson. Computer Architecture: A

Quantitative Approach. Morgan Kaufmann, 2006.

[Hwa01] F. K. Hwang. A complementary survey on double-loop networks. The-

oretical Computer Science, 263(1-2):211–229, 2001.

[IC] IBM-CoreConnect.

[JBMM04] A. Jalabert, L. Benini, S. Murali, and G. De Micheli. ×pipesCompiler:

a tool for instantiating application-specific NoCs. In Conf. on Design,

Automation and Test in Europe, February 2004.

[JMBM04] A. Jalabert, S. Murali, L. Benini, and G. De Micheli. xpipesCompiler:

A tool for instantiating application specific Networks on Chip. In in

Proc. Design, Automation and Test in Europe Conf., Paris, France,

2004.

[JZH] D. Jayasimha, B. Zafar, and Y. Hoskote. On-chip interconnec-

tion networks: Why they are different and how to compare them.

blogs.intel.com.

178 References

[KJM+02] A. Kumar, A. Jantsch, M. Millberg, J. Oberg, J.P Soininen, M. Forsell,

K. Tiensyrja, and A. Hemani. A network on chip architecture and

design methodology. In in Proc. Symp. VLSI, page 117, Washington,

DC, USA, 2002. IEEE Computer Society.

[KK97] G. Karypis and V. Kumar. Metis: a software package for partitioning

unstructured graphs, meshes, and computing fill-reducing orderings of

sparse matrices (version 3.0.3). Technical report, University of Min-

nesota, Dept. Comp. Sci. and Army HPC Research Center, November

1997.

[KKS05a] M. Kim, D. Kim, and G. E. Sobelman. MPEG-4 performance analysis

for CDMA network on chip. In Proceedings, International Conference

on Communications Circuits and Systems, pages 493–496, Hong Kong

China, 2005.

[KKS05b] M. Kim, D. Kim, and G. E. Sobelman. MPEG-4 performance analysis

for cdma network on chip. In in Proc. Int. Conf. Comm. Circ. and

Syst., pages 493–496, Hong Kong China, 2005.

[KKS+07] A. Kumar, P. Kundu, A. Singh, L.-S. Peh, and N. Jha. A 4.6Tbits/s

3.6GHz single-cycle noc router with a novel switch allocator in 65nm

CMOS. In International Conference on Computer Design (ICCD),

October 2007.

[Knu91] D. E. Knuth. The Art of Computer Systems Performance Analysis.

Wiley Computer Publishing, 1991.

[KO] Karim and Faraydon O. Octagonal interconnection network for linking

processing nodes on an SOC device and method of operating same. US

Patent 7218616.

[KPKJ07] A. Kumar, L.S. Peh, P. Kundu, and N. K. Jha. Express virtual chan-

References 179

nels: towards the ideal interconnection fabric. In International Sym-

posium on Computer Architecture, pages 150–161, 2007.

[KPKJ08] A. Kumar, L.S. Peh, P. Kundu, and N. K. Jha. Toward ideal on-chip

communication using express virtual channels. IEEE Micro, 28(1):80–

90, 2008.

[KPP06] M. Kistler, M. Perrone, and F. Petrini. Cell multiprocessor communi-

cation network: Built for speed. IEEE Micro, 26(3):10–23, May/June

2006.

[LBBP94] Y.W. Lu, K. K. Bagchi, J. B. Burr, and A. M. Peterson. A com-

parison of different wormhole routing schemes. In MASCOTS ’94:

Proceedings of the Second International Workshop on Modeling, Anal-

ysis, and Simulation On Computer and Telecommunication Systems,

pages 323–328, Washington, DC, USA, 1994. IEEE Computer Society.

[Lei06] T. F. Leighton. Introduction to Parallel Algorithms and Architectures:

Algorithms and VLSI. Morgan Kaufmann Publishers Inc., San Fran-

cisco, CA, USA, 2006.

[LK03] R. Lu and C.K. Koh. Performance optimization of latency insensitive

systems through buffer queue sizing of communication channels. In

Proc. Intl. Conf. on Computer-Aided Design, page 227, 2003.

[LPP04] X. Liu, Y. Peng, and M. C. Papaefthymiou. Practical repeater inser-

tion for low power: what repeater library do we need? In Proceedings

of the Design Automation Conference, pages 30–35, 2004.

[LRD01] K. Lahiri, A. Raghunathan, and S. Dey. Evaluation of the traffic

performance characteristics of system-on-chip communication archi-

tectures. In in Proc. Int. Conf. VLSI Design, pages 29–35, 2001.

[Luk75] J.A. Lukes. Combinatorial solution to the partitioning of general

graphs. IBM Journal of Research and Development, 19:170–180, 1975.

180 References

[LZKC02] R. Lu, G. Zhong, C.K. Koh, and J.Y. Chao. Flip-flop and repeater

insertion for early interconnect planning. In Conf. on Design, Au-

tomation and Test in Europe, March 2002.

[LZL00] X. Liu, S. Zhang, and T J. Li. A cost-effective load balanced adap-

tive routing scheme for mesh-connected networks. In MASCOTS ’00:

Proceedings of the 8th International Symposium on Modeling, Analy-

sis and Simulation of Computer and Telecommunication Systems, page

532, Washington, DC, USA, 2000. IEEE Computer Society.

[MB06] G. De Micheli and L. Benini. Networks on Chips: Technology and

Tools (Systems on Silicon). Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 2006.

[McK] B. McKay. Nauty users guide (version 1.5). Technical report, Aus-

tralian National University, Dept. Comp. Sci.

[M.G96] M.Galles. Scalable pipelined interconnect for distributed endpoint

routing. 1996.

[MKWA08] H. Matsutani, M. Koibuchi, D. Wang, and H. Amano. Adding slow-

silent virtual channels for low-power on-chip networks. In Proceed-

ings of the The First International Symposium on Networks-on-Chips,

pages 23–32, April 2008.

[MM04a] S. Murali and G. De Micheli. Bandwidth-constrained mapping of cores

onto noc architectures. In DATE ’04: Proceedings of the conference

on Design, automation and test in Europe, page 20896, Washington,

DC, USA, 2004. IEEE Computer Society.

[MM04b] S. Murali and G. De Micheli. SUNMAP: a tool for automatic topol-

ogy selection and generation for NoCs. In in Proc. Int. Conf. Design

Automation, pages 914–919, New York, NY, USA, 2004. ACM.

References 181

[MM05] S. Murali and G. De Micheli. An application-specific design method-

ology for STbus crossbar generation. In DATE ’05: Proceedings of the

conference on Design, Automation and Test in Europe, pages 1176–

1181, Washington, DC, USA, 2005. IEEE Computer Society.

[MNL09] M.Petracca, N.Concer, and L.P.Carloni. Multi-planes vs. virtual chan-

nel: a comparative analysis. In submitted for conference publication,

2009.

[MRG+04] M.Coppola, R.Locatelli, G.Maruccia, L.Pieralisi, and A.Scandurra.

Networks on chip: A new paradigm for systems on chip design. In

System-on-Chip, 2004. Proceedings. 2004 International Symposium

on, page 15, Washington, DC, USA, 2004. IEEE Computer Society.

[MT02] J. Miller et al. M. Taylor, J. Kim. The raw microprocessor: A com-

putational fabric for software circuits and general purpose programs,

2002.

[NMLa] N.Concer, M.Grammatikakis, and L.Bononi. High level tools for NoC

study and simulation. submitted for journal publication.

[NMLb] N.Concer, M.Petracca, and L.P.Carloni. Wire pipelining on syn-

chronous noc. submitted for journal publication.

[NNJC06] S. Noh, V.-D. Ngo, H. Jao, and H.-W. Choi. Multiplane virtual channel

router for network-on-chip design. pages 348–351, Oct 2006.

[Nor] S.C. North. NEATO user’s guide. Technical Report 59113-921014-

14TM, AT&T Bell Laboratories, Murray Hill, NJ, USA, October.

[NTIJ04] J. Nurmi, H. Tenhunen, J. Isoaho, and A. Jantsch. Interconnect-

Centric Design for Advanced SOC and NOC. Springer, New York,

NY, USA, 2004.

182 References

[O+07] J.D. Owens et al. Research challenges for on-chip interconnection

networks. IEEE Micro, 27(5):96–108, Sept.-Oct. 2007.

[OI] OCP-IP.

[OM06a] U. Y. Ogras and R. Marculescu. It’s a small world after all’: NoC

performance optimization via long-range link insertion. IEEE Trans.

on Very Large Scale Integration Systems, 14(7):693–706, July 2006.

[OM06b] U. Y. Ogras and Radu Marculescu. It’s a small world after all: Noc

performance optimization via long-range link insertion. IEEE Transac-

tions on Very Large Scale Integration (VLSI) Systems, 14(7):693–706,

July 2006.

[OMN] OMNeT++ discrete event simulation system. available online at

http://www.omnetpp.org/.

[Ope] Website. www.opencores.org/.

[P+07] A. Pullini et al. Bringing NoCs to 65nm. IEEE Micro, 27(5):75–85,

2007.

[PABB05] A. Pullini, F. Angiolini, D. Bertozzi, and L. Benini. Fault tolerance

overhead in network-on-chip flow control schemes. In SBCCI ’05: Pro-

ceedings of the 18th annual symposium on Integrated circuits and sys-

tem design, pages 224–229, 2005.

[PD01] L.S. Peh and W. J. Dally. A delay model for router microarchitectures.

IEEE Micro, 21:26–34, 2001.

[Peh01a] L.-S. Peh. Flow Control and Micro-Architectural Mechanisms for Ex-

tending the Performance of Interconnection Networks. PhD thesis,

Stanford University, 2001.

www.opencores.org/

References 183

[Peh01b] Li-Shiuan Peh. Flow Control and Micro-Architectural Mechanisms for

Extending the Performance of Interconnection Networks. PhD thesis,

Stanford University, August 2001.

[PG+05] P.P.Pande, C. Grecu, , M.Jones, A.Ivanov, and R.Saleh. Performance

evaluation and design trade-offs for network-on-chip interconnect ar-

chitectures. IEEE Trans. on Computers, Dec 2005.

[Pin08] A. Pinto. A platform-based approach to communication synthesis for

embedded systems. May 2008.

[PR96] F. Pellegrini and J. Roman. SCOTCH: A software package for static

mapping by dual recursive bi-partitioning of process and architecture

graphs. In in Proc. Int. Conf. on High Perf. Computing and Network-

ing, pages 493–498, London, UK, 1996. Springer-Verlag.

[PS] Device Transaction Level (DTL) Protocol Specification

PHILIPS Semiconductors.

[PS01] Timothy M. Pinkston and Jeonghee Shin. Trends toward on-chip net-

worked microsystems. Intl. J. High Performance Computing and Net-

working, 3(1):3–18, 2001.

[Sch02] L. Scheffer. Methodologies and tools for pipelined on-chip intercon-

nect. In Proc. Intl. Conf. on Computer Design, pages 152–157, October

2002.

[SCK07] K. Srinivasan, K. S. Chatha, and G. Konjevod. Application specific

network-on-chip design with guaranteed quality approximation algo-

rithms. In Proceedings of the Design Automation Conference, pages

184–190, 2007.

[SP03a] Y. H. Song and T. M. Pinkston. A progressive approach to han-

dling message-dependent deadlock in parallel computer systems. IEEE

Trans. on Parallel and Distributed Systems, 14(3):259–275, 2003.

184 References

[SP03b] Y. H. Song and T. M. Pinkston. A progressive approach to han-

dling message-dependent deadlock in parallel computer systems. IEEE

Trans. Parallel Distrib. Syst., 14(3):259–275, 2003.

[STAN04] D. Siguenza-Tortosa, T. Ahonen, and J. Nurmi. Issues in the de-

velopment of a practical noc: the proteo concept. Integr. VLSI J.,

38(1):95–105, 2004.

[SVE07] Y. A. Sekercioglu, A. Varga, and G. K. Egan. Parallel simulation made

easy with omnet++. In Proceedings of the 15th European Simulation

Symposium (ESS’03), pages 493–499, October 2007.

[T+02] Michael Taylor et al. The raw microprocessor: A computational fab-

ric for software circuits and general-purpose programs. IEEE Micro,

22(2):25–35, March/April 2002.

[TJ05] T.Bjerregaard and J.Sparso. A scheduling discipline for latency and

bandwidth guarantees in asynchronous network-on-chip. In In Pro-

ceedings of the 11th International Symposium on Advanced Research

in Asynchronous Circuits and Systems, 2005.

[TKM+02] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Green-

wald, H. Hoffman, P. Johnson, J. Lee, W. Lee, A. Ma, A. Saraf,

M. Seneski, N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe,

and A. Agarwal. The Raw microprocessor: A computational fabric for

software circuits and general purpose programs. IEEE Micro, 22(2),

Mar-Apr 2002.

[TS04] T.Felicijan and S.Fourber. An asynchronous on-chip network router

with quality-of-service (qos) support. In In Proceedings IEEE Inter-

national SOC Conference, 2004.

[VCG] VCG user manual. http://rw4.cs.uni-sb.de/users/sander/html/

gsvcg1.html.

http://rw4.cs.uni-sb.de/users/sander/html/gsvcg1.html
http://rw4.cs.uni-sb.de/users/sander/html/gsvcg1.html

References 185

[VSD97] A.S. Vaidya, A. Sivasubramaniam, and C. R. Das. Performance ben-

efits of virtual channels and adaptive routing: an application-driven

study. In ICS ’97: Proceedings of the 11th international conference on

Supercomputing, pages 140–147, New York, NY, USA, 1997. ACM.

[WZPM02] H.S. Wang, X. Zhu, L.-S. Peh, and S. Malik. Orion: A power-

performance simulator for interconnection networks. In IEEE/ACM

Intl. Symp. on Microarchitecture (MICRO-35), November 2002.

	Abstract
	List of Figures
	I Networks on Chip
	Introduction
	Design Challenges
	Protocol Design
	Architecture Analysis
	Simulation

	Contributions of the Thesis
	Thesis Plan

	Networks On Chip
	Architectures
	Topologies
	Network Interfaces
	Routers
	Channels
	Virtual Channels

	Protocols Design
	Routing
	Deadlock Handling
	Mapping

	II Network Topologies
	The Spidergon NoC
	Basic Spidergon Routing Algorithms
	Spidergon Analysis
	Virtual Channel Selection Algorithms
	Routing Algorithms

	The aEqualized Routing Algorithm
	Routing Algorithms Characterization
	aEqualized Algorithm
	System Level Analysis

	NoC Comparison
	Conclusions

	Task Mapping
	Synthetic Traffic Models
	Graph Theoretical Analysis
	Generating Synthetic Graphs using Tgff

	Task Mapping for SoC
	Quality Metrics for Application Embedding
	The Scotch Partitioning Tool

	The OMNeT++ Simulation Framework
	A Case Study
	Application Task Graphs
	Prospective NoC Topology Models
	The Spidergon Network on Chip
	Task Graph Embedding Analysis
	Simulation Models for the Proposed NoC Topologies
	Mpeg4 a Realistic Scenario

	Conclusions and Extensions

	III Transport Protocols for NoC
	Data Transfer Protocols
	Introduction
	Message-Dependent Deadlock
	Credit Based (CB) Protocol
	Connection Then Credits (CTC) Protocol
	Analysis and Simulation
	Conclusions

	Network Interface Enhancement
	Network Plug Switch
	Simulation and Analysis

	IV Communication Issues
	Communication Link Systems
	Overview
	Basic NoC Components
	Wire Pipelining & Flow Control
	Area Occupation Analysis
	System-Level Simulations
	Bandwidth Analysis
	Latency Analysis

	Conclusions

	Link Management
	Introduction
	Related Work
	Multi-Plane Partitioning of a NoC
	Model-Based Comparative Analysis
	Area Model
	Power Model
	Delay Model

	Synthesis-Based Comparative Analysis
	System-Level Simulations
	Conclusions

	Conclusions
	References

