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Abstract

In the present work, the multi-objective optimization by genetic algorithms

is investigated and applied to heat transfer problems. Firstly, the work aims

to compare different reproduction processes employed by genetic algorithms

and two new promising processes are suggested. Secondly, in this work two

heat transfer problems are studied under the multi-objective point of view.

Specifically, the two cases studied are the wavy fins and the corrugated wall

channel. Both these cases have already been studied by a single objective

optimizer. Therefore, this work aims to extend the previous works in a more

comprehensive study.
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Nomenclature

µ Dynamic viscosity

ρ Fluid density

x Decision vector

y Objective vector

C Generational distance

c Specific heat

D Density function

F Spread vector parameter

f Fitness function

h Heat transfer coefficient

K Convergence vector parameter

k Thermal conductivity

N Population size

Nu Nusselt number

P Parent population
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p Pressure

Pr Prandtl number

Q Children population

R Raw fitness function

Re Reynolds number

S Strength function

X Parameter space

Y Objective space
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Chapter 1

Introduction

Almost all engineering problems involve the simultaneous optimization of

several and often conflicting objectives. In the case of single-objective opti-

mization, the optimal solution is usually clearly defined. On the contrary,

the solution of a multi-objective optimization problem consists on a set of

trade-off alternatives, generally known as Pareto-optimal solutions. These

solutions are optimal in the wider sense that no other solutions in the search

space are superior to them when all objectives are considered.

This work aims to show the basic principles of multiobjective optimization.

Moreover, since on author’s opinion multiobjective genetic algorithms are not

enough mature for industrial applications unless a large amount of computa-

tional resources is available, an analysis of promising reproduction processes

employed by genetic algorithms and an improvement of them is presented

since it is still an open issue in the research field. Finally, two problems in-

volving the heat transfer are analyzed by means of the techniques developed

by the author. Specifically, the multiobjective approach will help both to

understand the physics of the problem considered or to identify particular

geometries interesting from the application point of view.

1



2 Chapter 1. Introduction

In this chapter, the principles of multi-objective optimization are outlined

by means of the formal definitions of its basic concepts. In the following, tra-

ditional approaches are discussed highlighting their drawbacks. Afterwards,

a general description of evolutionary algorithms is presented. Finally, sec-

tion 1.4 sketches the scopes of the present work and gives an overview of the

remaining chapters.

1.1 Multi-objective optimization

1.1.1 Basic concepts and terminology

Multi-objective optimization problems are common in all the engineering

fields. For example, consider the design of a complex heat exchanger device

where a fluid cools heated solid surfaces. Usually the heat transfer rate is to

be maximized, while the coolant power-pump is to be minimized. Moreover,

both the cost of the device and its volume are to be minimized. These tar-

gets are clearly conflicting since an improvement of the heat transfer rate is

accompanied by an increase of the pressure loss.

In general, a multi-objective optimization problem can be formally formu-

lated as follows1.

To describe a multi-objective optimization problem let us consider a vector

function f which maps a vector variable x of parameters to a vector y of

objectives. Formally, the problem of optimizing y can be written as

min/max y = f (x ) = (f1(x )), f2(x)), . . . , fn(x ))) (1.1)

subject to g (x) = (g1 (x ) , g2 (x) , . . . , gs (x )) ≤ 0 (1.2)

where x = (x1, x2, . . . , xm) ∈ X (1.3)

y = (y1, y2, . . . , yn) ∈ Y (1.4)

1The definitions and terms presented here correspond to mathematical formulations

widespread in multi-objective literature, see, e.g., [36].
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and g (x ) indicates the constraints that the system is subject to and deter-

mines the set of feasible solutions, x is called the decision vector, X is the

parameter space, y is the objective vector, and Y is the objective space.

A set of decision vectors constitutes a solution to a multi-criteria optimiza-

tion problem if it agrees with the concept of Pareto optimum that was for-

mulated by Vilfredo Pareto[23] and it constitutes the background of multi-

objective optimization. Such a criterion states that a set of solutions of a

multi-objective optimization problem consists of all decision vectors for which

the components of the corresponding objective vectors cannot all improve si-

multaneously. In order to explain the concept of Pareto optimality, let us

assume, without loss of generality, a maximization problem and let us con-

sider two decision vectors a , b ∈ X. Then, a is said to dominate b (according

to Zitzler and Thiele[30], written a ≻ b) if and only if

∀i ∈ 1,2, . . . , n ∶ fi (a) ≥ fi (b) ∧

∃j ∈ 1,2, . . . , n ∶ fj (a) > fj (b) (1.5)

All decision vectors which are not dominated by any other decision vector

of a given set are called non-dominated regarding to this set. Whereas, all

decision vectors that are non-dominated within the entire search space are

denoted as Pareto optimal and they constitute the so called Pareto-optimal

set. The corresponding objectives instead constitute the Pareto-optimal front

in the objective space. In order to illustrate these concepts, let us consider

the following multi-criteria optimization problem:

minf1 (x) = (x
2

1 + x
2

2) − 2x1 − 2x2 (1.6)

max f2 (x) = −((x
2

1 + x
2

2) + 2x1 + 2x2) (1.7)

subject to the following constraints

x1, x2 ∈ [−π,π] (1.8)
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Figure 1.1: Objective example space.(⋅) Feasible region, (●) Pareto-

optimal front.



Chapter 1. Introduction 5

In such a problem, both the minimum of function f1 and the maximum of

function f2 are solutions of the problem. However, these two points do not

coincide in the parameter space and therefore, both the two corresponding

decision vectors are of interest. Moreover, between the f1 minimum and

f2 maximum, a set of intermediate points can be found. All these points

have the basic characteristic that none of the objectives can be improved

without prejudicing the other. For example, let us consider the minimum of

function f1. In the objective space this point has the coordinates f1 = −2 and

f2 = −6, a point with a higher value of f2 can be found but the corresponding

value of f1 becomes inevitably higher since we are moving far away from the

minimum of f1. What makes a multi-objective optimization difficult to solve

is the common situation when the individual optima corresponding to the

distinct objective functions are sufficiently different. Then, the objectives

are conflicting and they have to be optimized simultaneously. This simple

example highlights that the single-objective optimality notion is not sufficient

to solve such a problem. Instead, the notion of Pareto-optimality allows to

define a set of solutions for a multi-objective problem. Figure 1.1 shows the

objective space of this example and it highlights the Pareto-optimal front. It

can be easily seen that the individuals belonging to the Pareto-front dominate

all the other points in the objective space.

1.2 Traditional approaches

Classical methods for generating the Pareto-optimal front are typically based

on the idea that the objective functions can be translated into a single ob-

jective function to be optimized. Such a function, for example, can result

form a weighted summation of all the objective functions. Another way that

can be employed to detect the Pareto front is to consider just a function to

be optimized whereas the others can be handled as constraints that have to
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be subsequently varied. These two methods are explained in the following

together with their drawbacks.

1.2.1 Weighting method

The multi-criteria problem is converted into a single-objectives case by means

of a linear combination of the objectives:

optimize y = f (x) = w1f1 (x ) +w2f2 (x) + ⋅ ⋅ ⋅ +wkfk (x) (1.9)

subject to g (x) = (g1 (x ) , g2 (x) , . . . , gs (x )) ≤ 0 (1.10)

wi are known as weights and are typically normalized such that ∑wi = 1.

The solution of the problem can be achieved by means of a certain number

of different weight combinations.

The main drawback of this technique is that it’s not able to detect all solu-

tions in the case of non-convex Pareto-fronts(see [36] for details).

1.2.2 Constraint method

In this method, one objective is optimized as usual whereas the other k − 1

objectives are handled as constraints to be progressively changed. Formally,

the problem can be reformulated as:

maximize y = f (x ) = fh (x ) (1.11)

subject to ei (x) = fi (x) ≥ εi, (1 ≤ i ≤ k, i ≠ h) (1.12)

The lower bounds, εi are the parameters that are varied by the optimizer in

order to find multiple Pareto-optimal solutions. The main disadvantage of

this method is that the values of the constraints εi must be known beforehand.

As shown in figure 1.2, the function f1 is to be maximized whereas function

f2 is handled as a constraint. However, if the value of f2 fixed as a constraint

is grater than f2,max, the technique is not able to find any feasible solution.

Therefore, f2,max must be known in advantage but this is not always possible.
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Figure 1.2: Example of the constraint method.

1.3 Evolutionary Algorithms

Evolutionary Algorithms (EA’s) are a class of optimization technique which

is inspired by natural evolution of species. In this section, ES’s are briefly

introduced with the aim to highlight their fundamentals that are based on

Natural Selection2.

Evolutionary Algorithms are an invaluable tool for the optimization and

specifically they are successfully employed when:

∎ the objective functions have several local optima;

∎ no information about objective functions’ derivatives are available;

∎ the optimization problem involves more than one objective function.

A generic EA starts from a population of candidate solutions (individuals)

for a given problem. Individuals’ objectives are evaluated and a quality per-

formance is assigned to them. This measure is typically known as fitness and

its definition depends on the algorithm considered. In some cases, objectives

values are also referred to as fitness since in single-objective optimization the

2For further details on Natural Selection, the reader is referred to [12].
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best elements of a population will be the individuals with better objective

function value. In multi-objective optimization, the fitness in general will

not coincide with the value of any of the objectives. Once the quality of

the individuals is assigned, better elements are chosen in order to reproduce,

once again the selection and the concept of better individuals depends on the

specific algorithm employed. Regarding to the reproduction, offspring can

be generated by means of two type of operations. The former is known as

crossover. The latter is called mutations. In nature, the crossover is the pro-

cess by which parents’ genes are passed to their offspring and in an EA, the

operation of generation of offspring from parents is therefore called crossover.

The term mutations refers to a random change in an individual genes and

they are employed to search unexplored zones of the search space. The pro-

cesses of quality-evaluation, selection, and reproduction generate a new and

improved population. This procedure continues until a stopping criteria is

satisfied.

The generic EA above exposed highlights the key features of multi-objective

optimization. In fact, the definition of better individuals must be addressed

by means of the fitness function definition. In general, the individual fitness

is typically defined as its degree of domination (i.e. non-dominated solutions

have fitness equal to zero, individuals dominated by one solution have fitness

equal to one, and so on). However, more complex definitions are provided

in order to discriminate between equally ranked individuals. In addition to

this, the following question arises:

∎ How better individuals are handled from one generation to another?

This question is answered by means of the elitism and this key feature is

briefly exposed in the next subsection.



Chapter 1. Introduction 9

1.3.1 Elitism

Elitism is the strategy by which a certain number of best solutions are copied

from the actual population into the population of the successive generation.

In single objective optimization, De Jong[14] found that elitism can improve

the performance of a single objective genetic algorithm on unimodal func-

tions. On the contrary, in multimodal functions it may cause a premature

convergence to a local optimum.

In multi-objective optimization, elitism plays a fundamental role and it has

widely demonstrated that it improves the optimization performances[36]3.

However, the incorporation of elitism in a multi-objective algorithm is more

complex than in single objective optimization. specifically, instead of one

best individual, there is an elite set whose size can be considerable compared

to the population. This fact, involves two questions which must be answered

in a genetic algorithm definition:

∎ Which individuals are kept and for how long are retained in the elite

set?

∎ How are elite members reinserted into the population?

In general, two main approaches can be found in literature. One strategy is

to copy a certain number of non-dominated solutions to the new population.

Another strategy consists on copying non-dominated solutions to an exter-

nal population. Thereafter, at each generation a certain percentage of the

population is filled up or replaced by members of the external population

3It is worth noting that premature convergence of a genetic algorithm is also important

in multi-objective optimization. However, this can be handled by employing appropriate

mating schemes and/or reproduction operators.
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1.4 Overview

The present document is organized as follows: in chapter 2 the basis of the

genetic algorithm employed are highlighted, in chapter 3 the multi-objective

differential evolution is described and several reproduction processes are eval-

uated. In chapters 4 and 5 two basic problems involving the heat transfer

are studied. Specifically, the cases of wavy fins and corrugated channels are

analyzed from a multi-objective point of view. Finally, brief conclusions are

enlisted in chapter 6.



Chapter 2

Multi-Objective Genetic

Algorithms

In the present chapter, a description of a multi-objective genetic algorithms

is presented: the Non-dominated Sorting Genetic Algorithm II (NSGA-II).

This algorithm represents the state of the art in multi-objective optimiza-

tion. In the present chapter the main framework of the algorithm is described

whereas, the following chapter deals with the reproduction processes found

in literature or suggested by the author.

It is worth noting that in literature other interesting multi-objective genetic

algorithms can be found such as the Strength of Pareto Evolutionary Algo-

rithm 2 (SPEA2). In fact, this algorithm has been successfully used by the

author to a case where the heat transfer was involved[6]. However, since this

document aims to highlight the differences between promising reproduction

methods, the main framework of the genetic algorithm was kept the same for

all the cases tested. Moreover, the NSGA-II was chosen since almost all the

reproduction methods found in literature were proposed on the basis of the

NSGA-II.

11
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2.1 Non-dominated Sorting

Genetic Algorithm II

The NSGA-II is an elitist multi-objective genetic algorithm developed by Deb

et al.[21]. The NSGAII starts from an initial population P0 of N individuals.

Once all the elements are evaluated, the population is sorted on the basis

of the non-domination level of its individuals. Thereafter, each solution is

assigned a fitness or rank equal to its non-domination level (1 is the best,

2 is the next level and so on). Thus, minimization of fitness is assumed.

At first, the usual binary tournament selection, recombination and mutation

operators are used to create a children population Q0 of size N . Since elitism

is introduced by comparing current population with previous-found best non-

dominated solutions, the procedure is different after the initial generation and

it is enlisted in the following:

∎ combine parent with children population:

Rt = Pt ∪Qt; (2.1)

∎ sort the individuals in Rt according to their non-domination level;

∎ set the next-generation parent population Pt+1 to an empty archive;

∎ fill Pt+1 with non-dominated individuals of population Pt according also

to their crowding distance (cfr sec. 2.1.1). If there are more individ-

uals than required in the last front than select from it less crowded

individuals (the size of Pt+1 is equal to N);

∎ generate offspring population Qt+1 from Pt+1

∎ end if a stopping criteria is satisfied otherwise return to step 1.
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2.1.1 Crowding distance assignment

Along with convergence to the Pareto-optimal set, it is also desired that an

evolutionary algorithm maintains a good spread of solutions in the obtained

set of solutions. To this aim, when the algorithm is required to chose a certain

maximum number of solutions in a front, it must be able to discriminate

too crowded elements from poorly crowded solutions. Therefore, to get an

estimate of the density of solutions surrounding a particular individual in

the population, the average distance of two points in the front on either side

of the point of interest along each of the objective is calculated. Such a

quantity, labelled as idist and called crowding-distance, serves as an estimate

of the size of the largest cuboid enclosing the point i without including any

other point in the front (see Fig. 2.1). In order to compute the crowding

Figure 2.1: Crowding distance computation.

distance of an individual i, it is required to sort the population according the

distance from i in each the objective function value and in their ascending

order. Thereafter, for each objective function, the boundary solutions (i.e.

solutions with smallest and largest function values) are assigned an infinite

value. All other intermediate solutions are assigned a distance value equal

to the absolute difference in the function values of two adjacent solutions.
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This calculation is continued with the other objective functions. The overall

crowding distance value of a solution is computed as the sum of its distances

calculated for each objective.



Chapter 3

Multi-Objective Differential

Evolution

The Differential Evolution (DE) is a population based optimization algorithm

that showed important advantages in single objective optimization since it

demonstrated to have globally and locally correlated step-sizes. Specifically,

the step-sizes self-adapt over time in relation to the location of the popu-

lation of individuals in the search space, resulting in an extremely efficient

search. Moreover, DE has demonstrated to be invariant under a rotation of

the decision space[25]. Therefore, it can manage problems influenced by non-

separable parameters. It is worth noting that many real-world problems have

such parameter interactions. As a result, DE is an ideal choice for optimizing

engineering problems. In the last decade, researchers has successfully applied

DE to multi-objective problems [1, 2, 28, 22, 34, 35], but the application of

the DE scheme in these cases was the same of the one typically employed in

single-objective optimization.

More recently, some researchers proposed different variants of the original DE

leveraging aspects of the multiobjective domain[17][33]. Specifically Iorio and

Li proposed three variants of the DE and identified the best performance al-

15
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gorithm as a scheme where the DE computation was given by two terms:

the former controls the convergence and the latter influences the spread of

the population. The DE parameter setting was fixed and resulting from con-

siderations found in literature and related to single-objective optimization.

Zamuda et al. modified DE by considering control parameters that adapt at

each step by means of information provided by parents that take part in the

generation process.

In this work, an analysis of the effect of different fixed parameters settings

has been performed. Moreover, it has been considered a procedure with self-

adapting parameters similar to that of Zamuda et al. and it was compared

with previous cases. In addition to this, a comparison with other repro-

duction techniques has been performed. Specifically, it has been employed

the Directional Crossover[24] and two new crossover schemes, called Fitness-

Based crossover, has been suggested and used alone either within the scheme

of Iorio and Li.

3.1 Directional Information incorporated

within a Multiobjective Differential

Evolution Algorithm

The idea of incorporating directional information within differential evolution

in a multiobjective genetic algorithm was introduced by Iorio and Li in 2006.

In their paper, three type of Differential Evolution Algorithm was tested

with the NSGA-II as evolutionary algorithm[21]. In the best performing

scheme (NSDE-DCS), the DE calculation was composed by two terms: the

former controls the convergence and the latter influences the spread of the

population. Specifically, the generation of offspring were done by means the

following steps:
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1. i = 1;

2. If there exists an r1 and r2 such that the ranks of xr1 and xr2 are equal,

and r1 ≠ r2 ≠ i, where r1, r2 ∈ {1,2, . . . ,N}, select xr1 and xr2 for the

DE calculation. If there exists an r3 such that the rank of xr3 is less

than the rank of xi, and r3 ≠ r1 ≠ r2 ≠ i, where r3 ∈ {1,2, . . . ,N}, select

r3 for the DE calculation.

3. Generate offspring ui as

ui = xi +K ⋅ (xr3 − xi) + F ⋅ (xr1 − xr2) ; (3.1)

4. i = i + 1;

5. Repeat from step 2 until i = N .

where the rank of an individual corresponds to its level of dominance (i.e.

non-dominated individuals have rank equal to one and so on). The K-

term generates convergence vectors which point towards regions where better

ranked individuals are located. Whereas, the F -term is a differential spread

vector, and should contribute to the generation of offspring which are spread

out across a non-dominated front. K and F are scaling factors responsible

for the magnitude of convergence vectors and spread vectors respectively. In

their paper, Iorio and Li suggested values of K = 0.4 and F = 0.8. Such val-

ues are fixed and resulted from considerations found in literature and related

to single-objective optimization[25]. therefore, a sensitivity analysis of the

effects of these parameters is mandatory is order to asses the performance of

this crossover.



18 Chapter 3. Multi-Objective Differential Evolution

3.2 Multiobjective Differential Evolution

with Self-Adaption

In 2007, Zamuda et al.[33] introduced the concept of self-adaption of the

of two factors employed during the reproduction process of the Differen-

tial Evolution Multiobjective Algorithm(DEMO)[11]. The first factor is an

amplification term that controls the differential computation, whereas, the

latter controls the selection procedure of the variable to be mutated. For

each individual i in the current population G, the vector vi,G+1 is created as

follows:

vi,G+1 = xr1,G + Fi,G+1 ⋅ (xr2,G − xr3,G) (3.2)

where i ≠ r1 ≠ r2 ≠ r3, and the amplification factor Fi,G+1 is computed as

follows

Fi,G+1 = ⟨FG⟩ieτN(0,1) (3.3)

where τ is a learning factor and it is equal to 1/8√2D, D being a dimension

of the problem. N (0,1) is a random number with a Gauss distribution. The

⟨FG⟩i denotes averaging the parameter F of the individuals chosen:

⟨FG⟩i = Fi,G + Fr1,G + Fr2,G +Fr3,G

4
(3.4)

Similarly, a parameter CRi,G+1 is computed by means of the follwing rela-

tions:

CRi,G+1 = ⟨CRG⟩ieτN(0,1) (3.5)

⟨CRG⟩i = CRi,G +CRr1,G +CRr2,G +CRr3,G

4
(3.6)

The i-th offspring ui,G+1 is computed by

ui,j,G+1 = { vi,j,G+1 if rand(0,1) ≤ CRi,G+1

xi,j,G otherwise
(3.7)
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where j ∈ [1,D] denotes the j-th parameter, and rand(0,1) ∈ [0,1] denotes

an uniformly distributed random number. Zamuda et al. bounded the pa-

rameters F and CR as

0.1 ≤ F ≤ 0.9 (3.8)

1/24 ≤ CR ≤ 0.3 (3.9)

Their initialization was F = 0.5 and CR = 0.3.

3.3 Directional Crossover

The basic idea that lies beneath the Directional Crossover (DC) consists

in the concept that offspring should be guided toward the Pareto frontier

considering information about objectives. Specifically, at each generation

and each individual i, two elements x i1 and x i2 are selected and the offspring

is generated as:

x = x i + S ⋅ sign(F − F1) ⋅ (x i − x i1) +
+T ⋅ sign(F − F2) ⋅ (x i − x i2) (3.10)

where T and S are random numbers between 0 and 1, F = F⃗i × F⃗i, F1 =

F⃗i × F⃗i1 and F2 = F⃗i × F⃗i2. Moreover, F⃗j is a vector whose components are

the objectives of the individual j. For further details about the meaning of

Eq. 3.10, the reader is referred to [24], however it is worth to note that in

this way, global information about the objectives landscape is retained and

employed in the generation step. Individuals x i1 and x i2 can be selected by

means of any selection scheme and in the this work a tournament selection

scheme has been chosen.
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3.4 Fitness-Based Crossover

In this section, the Fitness-Based Crossover (FBC) developed by the author

is exposed. The basic concept consists in the idea that, during the reproduc-

tion process, populations should migrate towards regions poorly populated.

In fact, individuals belonging to areas with high population density shares

with more individuals the available resources and therefore, such individuals

should be penalized in the generation process. A similar concept was used in

the niching techniques named fitness sharing [4]. Moreover, we aim to guide

the reproduction process to generate individuals as close the Pareto front as

possible. Before showing how offspring are generated, the concept of fitness

of an individual as described by Zitzler et al.[31] is explained. In order to

compute the fitness, three values for each individual i must be first calcu-

lated: the strength S(i), the raw fitness R(i) and the density D(i). Firstly,

Zitzler et al. define the strength of the i-th individual S(i) as the number of

solutions it dominates:

S(i) = {j ∣ j ∈ P t + P̄ t ∧ i ≻ j} (3.11)

where ∣ ⋅ ∣ indicates the cardinality of the set, + stands for the multiset union

and the symbol ≻ corresponds to the Pareto dominance relation. Once the

strength is evaluated, the value of the raw fitness of the individual i can be

computed as the sum of the strengths of its dominators:

R(i) = ∑
j∈Pt+P̄t,j≻i

S(j) (3.12)

In order to illustrate how the strength and the raw fitness assignments work,

in figure 3.1 these values are reported close to each element of a population.

The problem depicted consists in maximizing both the cost function F1 and

the cost function F2. Since elements lying near the Pareto front should be

more probably preferred during reproduction, then elements with lower raw

fitness values will be chosen with a higher probability than individuals with
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Figure 3.1: Strength S(i) and Raw R(i) fitness assignment. Both objec-

tives F1 and F2 are to be maximized. Points are plotted with S(i)/R(i)
near the i-th individual.

higher values of R (i). However, further information must be also included

in order to discriminate between individuals with the same values of R. This

can be done including informations about individual density in the objective

space to the raw fitness value. The density estimation technique provided

Zitzler et al. is an adaption of the k-th nearest neighbor method [29]. Specif-

ically, for each element i the distance between it and all the other individuals

in the objective space is stored in a list. After having sorted this list in as-

cending order, the k-th distance σk
i is chosen. The value of k is equal to the

square root of the sample size:

k =
√

2N (3.13)

where N is the population size. The density of the i-th individual is then

defined by the following relation

D(i) = 1

σk
i + 2

(3.14)
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Finally, the fitness value of the i-th individual can be computed as:

f(i) = R(i) +D(i) (3.15)

From the basic concepts above outlined, the genetic operator described in

the following has been formulated:

1. Select elements i 1 and i 2 with fitness functions values fi1 and fi2 re-

spectively.

2. From the two individuals selected, set p
1

as the parent with the lower

value of the fitness function (labelled as f1) whereas, set p2 as the

parent with the higher value of the fitness function (labelled as f2).

3. Compute offspring as follows

o1 = λ(f2

f1

p1 + f1

f2

p2) (3.16)

o2 = λ(f2

f1

p
1
− f1

f2

p
2
) (3.17)

where λ is a random number between 0 and 1.

It can be seen that the FBC is able to reproduce towards areas poorly popu-

lated. In fact, for two parents with equal ranks (i.e. with equal raw fitness),

the individual with higher density value is penalized with respect to the other

one since the resulting offspring are nearer to p1 than p2 as depicted in figure

3.2. Moreover, in the case that two individuals with different ranks repro-

duce, the crossover generate offspring that will be mainly in the direction of

the less dominated parent.

3.5 Fitness-Based Differential Evolution

The Fitness-Based Differential Evolution (FB-DE) conjugate the Fitness-

Based crossover with the differential evolutionary scheme of Iorio and Li
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Figure 3.2: Offsprings o⃗1 and o⃗2 generated by two parents P⃗1 and P⃗2 in

the case of f1 lower than f2.

[17]. Specifically, the FB-DE crossover steps are equal to those enumerated

in section 3.1, except for equation 3.1 that is replaced with the following

relations in order to create two offspring u1 and u2:

u1 =K (fr3

fi

x i + fi

fr3

x r3) +F (x r1 − x r2) (3.18)

u2 =K (fr3

fi

x i − fi

fr3

x r3) +F (x r1 − x r2) (3.19)

Similarly to the NSDE-DCS, each offspring is constituted by a convergence

vector (controlled by parameter K) and by a spread vector ( controlled by

parameter F ).

3.6 Performance assessment

A set of solutions generated by a multiobjective evolutionary algorithm must

be evaluated using at least two performance measures. In fact, a solution

set can rapidly converge to the Pareto optimal set but, on the other hand,

the coverage of the front can be poor (see Fig. 3.3). Up to now, a large

number of metrics has been suggested and an interesting comparative study

was performed by Zitzler et al.[3].

In the performance assessment, we employed the metrics suggested by Iorio
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Figure 3.3: Metrics performance. Example of a solution set that poorly

covers the Pareto front (C(P ∗, P (t)) > C(P (t), P ∗))
and Li[17] for the convergence evaluation and briefly recalled in the following.

Given a target set of points P ∗ and the population at each generation P (t),
the smallest normalized Euclidean distance to P ∗ for each point i in P (t) is

di =
∣P ∗∣

min
j=1

¿ÁÁÀM

∑
k=1

(Fk,i − F ∗k,j)2 (3.20)

where M is the number of objectives involved and Fk,i is the k-th objective

of the i-th individual. Therefore, the convergence metric can be calculated

as

C (P (t), P ∗) = 1∣P (t)∣
∣P (t)∣

∑
i=1

di (3.21)

Eq.3.21 is also referred to as generational distance. Iorio and Li used the

generational distance since it can be also used for the assessment of the

Pareto optimal front coverage. This can be done by swapping the reference

set P ∗ with the set P (t) and the related equations are:

di =
∣P (t)∣

min
j=1

¿ÁÁÀM

∑
k=1

(F ∗k,i − Fk,j)2 (3.22)

C (P ∗, P (t)) = 1∣P ∗∣
∣P ∗∣

∑
i=1

di (3.23)



Chapter 3. Multi-Objective Differential Evolution 25

With the metric C (P ∗, P (t)), the distance of the solutions in the Pareto

optimal set P ∗ to a non dominated set P (t) can be measured. Figure 3.3

depicts how the two metrics work in the case of a population that is near the

Pareto front but badly covers it. The optimization of a multiobjective prob-

lem will be acceptable only if both the two metrics tends to zero. However,

it is worth noting that the two metrics becomes zero if they exactly match

the reference set, but this condition is almost impossible.

Another characteristic that a multi-objective algorithm must satisfy is obvi-

ously the robustness. We may regard to robustness as the effective capability

of the algorithm to reach the optimal Pareto front within a maximum number

of generations. Therefore, if an algorithm is robust, the two metrics previ-

ously described have to be almost zero at the end of the simulation.

To evaluate the performance of the algorithm employed in this work, for each

of the two generational distances, the mean and the standard deviation are

computed. Specifically, for each test case and for each algorithm, 25 runs are

performed and the statistics are calculated on the resulting data. Moreover,

to assess the robustness performance, the last values of the mean histories of

the metrics are also provided.

3.7 Experiments

The DE schemes previously exposed have been tested on four rotated test

problems developed by Iorio and Li[18] in order to compare performances

of the algorithms considered. Aiming to limit differences between the opti-

mization procedures only to the generation process, all the procedures have

been used in the NSGA-II[21] framework. However, the original DEMOwSA

employed the SPEA2 algorithm[31]. In order to avoid confusion between the

original DEMOwSA and the current configuration, the self-adaption proce-

dure employed here is referred to as NSDEwSA.
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3.7.1 R1 test case

Problem R1 is characterized by a valley in objective f2. The Pareto-optimal

set is situated along the length of this valley as well, and when the problem is

subject to a rotation the valley can trap a non-rotationally invariant search

from progressing along it. The function f1 is linear and f2 is non-linear. The

R1 problem is described as follows

f1 (y) = y1 (3.24)

f2 (y) = g (y) ⋅ h (f1 (y) , g (y)) (3.25)

h (f1 (y) , g (y)) = exp(−f1 (y)
g (y) ) (3.26)

g (y) = 1 + 10 (m − 1) + m

∑
i=2

[y2

i − 10cos (4πyi)] (3.27)

y =Rx ,−0.3 ≤ xi ≤ 0.3, for i = 1,2, . . . ,m (3.28)

∣f1∣ ≤ 0.3 (3.29)

where R is a rotation matrix. Specifically, a uniformly distributed random

rotation is used to introduce parameter interdependencies into a problem by

rotating the parameter vector x . This transformation does not change the

objective landscape of the problem domain since it is an isometry transfor-

mation, therefore, it preserves distances between points and angles. Figure

3.4 shows the Pareto-optimal front of problem R1.

3.7.2 R2 test case

Problem R2 is similar to the ZTD3 problem[21], and has a Pareto optimal

front which is not continuous. R2 represents a difficulty to an optimization

algorithm because it has to locate a number of discontinuous Pareto-optimal

fronts, and maintain solutions in each of those fronts. When R2 is rotated an

optimization algorithm which only searches independently along the princi-

ple coordinate axes will generate non-dominated solutions which skew away
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Figure 3.4: Pareto-optimal front of R1 problem.

significantly from the Pareto-optimal front. The reason for this behavior is

that perturbed solutions have to travel quite far along the principle coordi-

nate axes before an independent perturbation can generate a solution which

dominates the current non-dominated set. The function f1 is linear and f2

is non-linear.

f1 (y) = y1 (3.30)

f2 (y) = g (y) ⋅ h (f1 (y) , g (y)) (3.31)

h (f1 (y) , g (y)) = 1.0 + exp(−f1 (y)
g (y) )

+ (f1 (y) + 1.0

g (y) ) sin (5πf1 (y)) (3.32)

g (y) = 1 + 10 (m − 1) + m

∑
i=2

[y2

i − 10cos (πyi)] (3.33)

y =Rx ,−1.0 ≤ xi ≤ 1.0, for i = 1,2, . . . ,m (3.34)

∣f1∣ ≤ 1.0 (3.35)

where R is uniformly distributed random rotation matrix. In figure 3.5 the

Pareto-optimal front of problem R2 is depicted.
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Figure 3.5: Optimal front of R2 problem.

3.7.3 R3 test case

In test case R3, decision space variables increment at a regular interval,

evaluate with non-regular intervals in the objective space making it hard to

find a uniform distribution along the Pareto-optimal front. Problem R3 is

similar to the ZTD6 problem[21]. f1 and f2 are non-linear functions. The

following relations describe the R3 test case.

f1 (y) = 1.0 − exp(2.0y1)sin6 (6πy1) /9.0 (3.36)

f2 (y) = g (y) ⋅ h (f1 (y) , g (y)) (3.37)

h (f1 (y) , g (y)) = 1.0 − exp(f1 (y)
g (y) )

2

(3.38)

g (y) = 1 + 10 (m − 1) + m

∑
i=2

[y2

i − 10cos (πyi)] (3.39)

y =Rx ,−1.0 ≤ xi ≤ 1.0, for i = 1,2, . . . ,m (3.40)

0.3 ≤ f1 ≤ 1.0 (3.41)

Figure 3.6 shows the Pareto-optimal front of the R3 test case.
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Figure 3.6: Optimal front of R3 problem.

3.7.4 R4 test case

Problem R4 is based on the Schwefel function[21], where local front is located

far from the global minimum. Points are easily trapped by this deceptive

front. R4 is difficult, and objective f2 is characterized by a number of valleys,

including the highly deceptive valleys far from the true Pareto-optimal front.

These valleys correspond to the modalities generated by function g (y). Each

of these valleys can trap points in a sub-optimal non-dominated front.

f1 (y) = y1 (3.42)

f2 (y) = g (y) ⋅ h (f1 (y) , g (y)) (3.43)

h (f1 (y) , g (y)) = exp(−f1 (y)
g (y) ) (3.44)

g (y) = 1 + 0.015578 (m − 1) + m

∑
i=2

[y2

i − 0.25(yisin(32.0
√∣yi∣))] (3.45)

y =Rx ,−1.0 ≤ xi ≤ 1.0, for i = 1,2, . . . ,m (3.46)

∣f1∣ ≤ 1.0 (3.47)

In figure 3.7 the Pareto-optimal front of problem R4 is depicted.

3.7.5 Results
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Figure 3.7: Optimal front of R4 problem.

Table 3.1: R1 test case, NSDE-DCS(K ∈ [0.2,0.8],F = 0.8).

C (P,P ∗) C (P ∗, P )
µ σ t = 300 µ σ t = 300

K = 0.2 6.7330 15.6211 0.2819 2.5036 5.7349 0.3009

K = 0.25 6.2051 14.9554 0.4694 2.2261 5.2216 0.3675

K = 0.3 5.4523 14.0844 0.4460 1.8047 4.8026 0.2467

K = 0.35 4.7786 13.9632 0.0485 1.5495 4.8266 0.0711

K = 0.4 4.6866 13.2385 0.4295 1.5407 4.4296 0.2382

K = 0.45 4.2981 13.1422 0.2350 1.3478 4.1984 0.1376

K = 0.5 3.9433 12.7422 0.0918 1.1730 4.1709 0.0374

K = 0.55 3.7042 12.3530 0.1015 1.1644 3.9794 0.0704

K = 0.6 3.8811 12.2421 0.2700 1.2891 3.8834 0.2565

K = 0.65 3.9037 12.7062 0.0980 1.2911 4.3210 0.1035

K = 0.7 3.7082 12.3721 0.1840 1.2545 4.2227 0.1098

K = 0.75 3.7478 12.4476 0.1748 1.4078 4.3956 0.1852

K = 0.8 4.1164 12.4342 0.5294 1.5656 4.5033 0.3297
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Table 3.2: R2 test case, NSDE-DCS(K ∈ [0.2,0.8],F = 0.8).

C (P,P ∗) C (P ∗, P )
µ σ t = 300 µ σ t = 300

K = 0.2 8.7835 26.4037 0.0066 3.7442 9.4755 0.9354

K = 0.25 7.8083 25.0597 0.0066 3.6233 9.1037 1.1408

K = 0.3 6.5936 23.0856 0.0066 2.6802 7.8621 0.7303

K = 0.35 6.1601 22.4660 0.0065 2.5807 7.1522 0.8842

K = 0.4 5.7934 21.8310 0.0066 2.2544 6.8276 0.6789

K = 0.45 5.4270 21.3832 0.0066 2.3978 6.7948 0.9355

K = 0.5 5.1210 20.7892 0.0065 2.2943 6.4482 0.9354

K = 0.55 5.0155 20.7638 0.0066 2.4280 6.4557 1.1408

K = 0.6 4.9671 20.5871 0.0065 2.4053 6.1576 1.1405

K = 0.65 4.8201 20.2092 0.0066 2.1995 6.3439 0.8839

K = 0.7 4.7930 20.3403 0.0066 2.2242 6.7029 0.8843

K = 0.75 4.8040 20.2180 0.0065 2.3160 6.6728 0.9354

K = 0.8 5.0437 20.8894 0.0065 2.2593 7.2011 0.6790

Table 3.3: R3 test case, NSDE-DCS(K ∈ [0.2,0.8],F = 0.8).

C (P,P ∗) C (P ∗, P )
µ σ t = 300 µ σ t = 300

K = 0.2 0.1342 0.0821 0.0195 0.9220 0.6485 0.0727

K = 0.25 0.1338 0.0865 0.0104 0.9283 0.7037 0.0194

K = 0.3 0.1290 0.0883 0.0097 0.8798 0.6986 0.0187

K = 0.35 0.1228 0.0881 0.0095 0.8352 0.6950 0.0187

K = 0.4 0.1242 0.0895 0.0092 0.8514 0.6975 0.0182

K = 0.45 0.1206 0.0841 0.0106 0.8078 0.6601 0.0200

K = 0.5 0.1211 0.0855 0.0162 0.8079 0.6584 0.0672

K = 0.55 0.1121 0.0911 0.0088 0.7368 0.6993 0.0179

K = 0.6 0.1097 0.0905 0.0090 0.7286 0.6947 0.0180

K = 0.65 0.1155 0.0896 0.0091 0.7825 0.6968 0.0182

K = 0.7 0.1193 0.0849 0.0158 0.8036 0.6641 0.0662

K = 0.75 0.1216 0.0829 0.0225 0.8338 0.6531 0.1146

K = 0.8 0.1213 0.0858 0.0183 0.8207 0.6732 0.0719
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Table 3.4: R4 test case, NSDE-DCS(K ∈ [0.2,0.8],F = 0.8).

C (P,P ∗) C (P ∗, P )
µ σ t = 300 µ σ t = 300

K = 0.2 0.0803 0.2521 0.0123 0.0473 0.1082 0.0136

K = 0.25 0.0733 0.2375 0.0125 0.0432 0.0982 0.0138

K = 0.3 0.0668 0.2277 0.0122 0.0398 0.0937 0.0135

K = 0.35 0.0623 0.2201 0.0122 0.0369 0.0849 0.0136

K = 0.4 0.0594 0.2140 0.0122 0.0350 0.0828 0.0136

K = 0.45 0.0560 0.2062 0.0121 0.0338 0.0798 0.0135

K = 0.5 0.0549 0.2064 0.0121 0.0334 0.0795 0.0135

K = 0.55 0.0541 0.2030 0.0121 0.0330 0.0765 0.0134

K = 0.6 0.0529 0.2027 0.0121 0.0322 0.0770 0.0134

K = 0.65 0.0528 0.1993 0.0121 0.0323 0.0764 0.0135

K = 0.7 0.0539 0.2044 0.0121 0.0327 0.0784 0.0135

K = 0.75 0.0555 0.2077 0.0120 0.0341 0.0816 0.0135

K = 0.8 0.0571 0.2098 0.0120 0.0352 0.0809 0.0134

Table 3.5: R1 test case, NSDE-DCS(K = 0.4, F ∈ [0.5,1.1]).
C (P,P ∗) C (P ∗, P )

µ σ t = 300 µ σ t = 300

F = 0.5 2.0261 9.7081 0.0242 0.8432 3.4214 0.2666

F = 0.55 2.2631 10.1888 0.0227 0.8695 3.6195 0.1805

F = 0.6 2.6035 10.8217 0.0097 0.9191 3.6714 0.1061

F = 0.65 2.9662 11.4562 0.0509 0.9736 3.8292 0.0553

F = 0.7 3.6378 12.3148 0.1509 1.2680 4.1103 0.1861

F = 0.75 4.0204 13.0216 0.0457 1.3001 4.4476 0.0290

F = 0.8 4.5694 13.5330 0.1296 1.5294 4.5482 0.1546

F = 0.85 5.4123 14.2094 0.2713 1.8086 4.7451 0.2523

F = 0.9 5.4206 14.4633 0.1876 1.6607 4.5413 0.1519

F = 0.95 6.6948 14.9699 0.8701 2.4590 4.8384 0.6926

F = 1 6.5413 14.7900 0.7929 1.9997 4.6881 0.3044

F = 1.05 7.2939 15.6223 0.6907 2.3849 5.0012 0.4225

F = 1.1 7.6971 15.9375 0.5405 2.5908 4.9727 0.5075
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Table 3.6: R2 test case, NSDE-DCS(K = 0.4, F ∈ [0.5,1.1]).
C (P,P ∗) C (P ∗, P )

µ σ t = 300 µ σ t = 300

F = 0.5 3.0514 16.1872 0.0126 2.0805 5.7608 1.2386

F = 0.55 3.2672 16.6975 0.0069 2.0365 5.4545 1.1689

F = 0.6 3.7457 17.9934 0.0067 2.1376 6.0887 1.0540

F = 0.65 4.0725 18.5655 0.0067 2.2252 6.2126 1.0583

F = 0.7 4.7282 19.9705 0.0065 2.2964 6.5828 0.9355

F = 0.75 5.2167 20.8979 0.0066 2.5837 6.6372 1.1816

F = 0.8 5.5819 21.5312 0.0065 2.4272 6.7250 0.9353

F = 0.85 6.1783 22.6765 0.0066 2.5595 7.0596 0.9357

F = 0.9 6.5032 23.1246 0.0069 2.3513 7.2378 0.5666

F = 0.95 7.6617 24.6580 0.0071 2.9483 7.6980 0.7513

F = 1 8.0205 25.3231 0.0071 3.0552 7.8755 0.6955

F = 1.05 9.2900 25.4965 0.6990 3.7656 7.7575 1.1755

F = 1.1 9.3010 26.7166 0.0081 3.1543 8.2380 0.2678

Table 3.7: R3 test case, NSDE-DCS(K = 0.4, F ∈ [0.5,1.1]).
C (P,P ∗) C (P ∗, P )

µ σ t = 300 µ σ t = 300

F = 0.5 0.0395 0.0713 0.0087 0.2116 0.4728 0.0186

F = 0.55 0.0438 0.0752 0.0083 0.2504 0.5101 0.0188

F = 0.6 0.0533 0.0809 0.0083 0.3201 0.5693 0.0186

F = 0.65 0.0642 0.0862 0.0084 0.4080 0.6272 0.0182

F = 0.7 0.0816 0.0904 0.0086 0.5277 0.6695 0.0181

F = 0.75 0.0984 0.0936 0.0087 0.6581 0.7116 0.0180

F = 0.8 0.1259 0.0889 0.0093 0.8693 0.7007 0.0183

F = 0.85 0.1496 0.0757 0.0287 1.0429 0.6076 0.1401

F = 0.9 0.1544 0.0717 0.0273 1.0660 0.5904 0.0710

F = 0.95 0.1795 0.0535 0.0808 1.2805 0.4409 0.3522

F = 1 0.1859 0.0480 0.0985 1.3473 0.3884 0.5057

F = 1.05 0.1982 0.0401 0.1302 1.4560 0.2871 0.7034

F = 1.1 0.1964 0.0402 0.1402 1.4485 0.2607 0.8983
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Table 3.8: R4 test case, NSDE-DCS(K = 0.4, F ∈ [0.5,1.1]).
C (P,P ∗) C (P ∗, P )

µ σ t = 300 µ σ t = 300

F = 0.5 0.0352 0.1592 0.0117 0.0248 0.0655 0.0136

F = 0.55 0.0372 0.1647 0.0119 0.0254 0.0685 0.0137

F = 0.6 0.0407 0.1732 0.0115 0.0271 0.0707 0.0132

F = 0.65 0.0441 0.1820 0.0117 0.0286 0.0746 0.0133

F = 0.7 0.0482 0.1903 0.0116 0.0302 0.0741 0.0133

F = 0.75 0.0533 0.2011 0.0119 0.0328 0.0800 0.0133

F = 0.8 0.0580 0.2093 0.0120 0.0348 0.0805 0.0134

F = 0.85 0.0630 0.2195 0.0125 0.0373 0.0834 0.0138

F = 0.9 0.0713 0.2373 0.0129 0.0402 0.0848 0.0141

F = 0.95 0.0757 0.2402 0.0135 0.0434 0.0900 0.0147

F = 1 0.0848 0.2581 0.0136 0.0472 0.0936 0.0149

F = 1.05 0.0892 0.2689 0.0142 0.0477 0.0923 0.0151

F = 1.1 0.0938 0.2793 0.0149 0.0495 0.0944 0.0157

Table 3.9: R1 test case, NSDE-FB(K ∈ [0.2,8], F = 0.6).

C (P,P ∗) C (P ∗, P )
µ σ t = 300 µ σ t = 300

K = 0.2 5.7168 8.3850 3.1666 0.2643 2.1347 0.1169

K = 0.25 5.1658 8.7859 1.1489 0.2496 2.1413 0.0872

K = 0.3 3.7785 9.0765 0.6732 0.2513 2.1429 0.1000

K = 0.35 3.5380 9.1101 0.3069 0.2386 2.0795 0.0855

K = 0.4 2.8081 9.1069 0.1055 0.2234 2.0241 0.0727

K = 0.45 2.7775 9.1684 0.1357 0.2172 1.9859 0.0648

K = 0.5 2.6923 9.5998 0.0670 0.2181 2.1040 0.0580

K = 0.55 2.5565 9.5839 0.0709 0.2133 2.1177 0.0556

K = 0.6 2.5029 9.7026 0.0403 0.2020 2.1133 0.0374

K = 0.65 2.3528 9.5418 0.0412 0.1876 1.9143 0.0377

K = 0.7 2.6705 10.2523 0.0285 0.1929 2.1333 0.0275

K = 0.75 2.5188 9.9678 0.0285 0.1817 2.0331 0.0256

K = 0.8 2.5507 10.1276 0.0171 0.1795 2.0239 0.0180
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Table 3.10: R2 test case, NSDE-FB(K ∈ [0.2,8], F = 0.6).

C (P,P ∗) C (P ∗, P )
µ σ t = 300 µ σ t = 300

K = 0.2 13.9635 14.7472 1.4663 0.6018 3.6554 0.0974

K = 0.25 10.8887 16.0953 0.2538 0.5733 3.9676 0.0791

K = 0.3 7.0711 15.8544 0.0439 0.4871 3.8390 0.0435

K = 0.35 5.2257 15.7588 0.0530 0.4374 3.8057 0.0459

K = 0.4 4.4424 15.7082 0.0355 0.4104 3.8302 0.0366

K = 0.45 4.4524 16.4564 0.0238 0.3994 3.9507 0.0266

K = 0.5 4.1875 16.6140 0.0209 0.3970 4.2003 0.0246

K = 0.55 3.9992 16.8057 0.0214 0.3692 3.9981 0.0246

K = 0.6 4.0634 17.0609 0.0185 0.3526 3.7828 0.0220

K = 0.65 3.7982 16.9240 0.0162 0.3548 3.9704 0.0200

K = 0.7 3.9897 17.3611 0.0114 0.3433 3.9074 0.0164

K = 0.75 3.8969 17.5378 0.0104 0.3232 3.6787 0.0153

K = 0.8 3.9467 17.6460 0.0087 0.3411 4.0216 0.0142

Table 3.11: R3 test case, NSDE-FB(K ∈ [0.2,8], F = 0.6).

C (P,P ∗) C (P ∗, P )
µ σ t = 300 µ σ t = 300

K = 0.2 0.0910 0.0437 0.0788 0.1916 0.1050 0.1716

K = 0.25 0.0940 0.0472 0.0778 0.1718 0.1089 0.1461

K = 0.3 0.0971 0.0495 0.0766 0.1665 0.1123 0.1333

K = 0.35 0.1015 0.0518 0.0732 0.1532 0.1168 0.1135

K = 0.4 0.1005 0.0532 0.0648 0.1417 0.1208 0.0932

K = 0.45 0.0989 0.0549 0.0585 0.1368 0.1252 0.0814

K = 0.5 0.0995 0.0591 0.0535 0.1418 0.1320 0.0752

K = 0.55 0.0915 0.0581 0.0449 0.1309 0.1305 0.0604

K = 0.6 0.0941 0.0599 0.0406 0.1396 0.1393 0.0569

K = 0.65 0.0960 0.0605 0.0402 0.1419 0.1396 0.0551

K = 0.7 0.0959 0.0639 0.0338 0.1491 0.1517 0.0466

K = 0.75 0.0967 0.0627 0.0331 0.1549 0.1556 0.0457

K = 0.8 0.1029 0.0623 0.0360 0.1598 0.1534 0.0503
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Table 3.12: R4 test case, NSDE-FB(K ∈ [0.2,8], F = 0.6).

C (P,P ∗) C (P ∗, P )
µ σ t = 300 µ σ t = 300

K = 0.2 0.0408 0.1551 0.0125 0.0345 0.0616 0.0178

K = 0.25 0.0396 0.1611 0.0130 0.0296 0.0605 0.0158

K = 0.3 0.0383 0.1607 0.0123 0.0272 0.0604 0.0145

K = 0.35 0.0396 0.1649 0.0125 0.0268 0.0590 0.0142

K = 0.4 0.0400 0.1701 0.0123 0.0268 0.0602 0.0143

K = 0.45 0.0394 0.1703 0.0121 0.0268 0.0616 0.0142

K = 0.5 0.0391 0.1750 0.0116 0.0247 0.0611 0.0137

K = 0.55 0.0394 0.1764 0.0117 0.0245 0.0615 0.0135

K = 0.6 0.0421 0.1855 0.0117 0.0253 0.0628 0.0134

K = 0.65 0.0430 0.1883 0.0118 0.0258 0.0657 0.0134

K = 0.7 0.0437 0.1949 0.0117 0.0253 0.0664 0.0133

K = 0.75 0.0451 0.1984 0.0117 0.0260 0.0649 0.0133

K = 0.8 0.0454 0.2005 0.0115 0.0254 0.0645 0.0132

Table 3.13: R1 test case, NSDE-FB(K = 0.6, F ∈ [0.4,1]).
C (P,P ∗) C (P ∗, P )

µ σ t = 300 µ σ t = 300

F = 0.4 2.1230 8.2040 0.1095 0.2287 2.1060 0.0723

F = 0.45 2.1840 8.6365 0.0862 0.2233 2.1401 0.0619

F = 0.5 2.1872 8.8506 0.0804 0.2095 1.9941 0.0594

F = 0.55 2.4016 9.2966 0.0645 0.2057 2.0208 0.0515

F = 0.6 2.6311 9.8009 0.0681 0.2096 2.1459 0.0511

F = 0.65 2.6127 9.9969 0.0312 0.1874 2.0037 0.0291

F = 0.7 2.6740 10.2788 0.0160 0.1857 2.2015 0.0161

F = 0.75 2.9275 10.5640 0.0057 0.1788 2.1268 0.0067

F = 0.8 2.9893 10.7879 0.0022 0.1730 2.0264 0.0033

F = 0.85 3.3713 11.3007 0.0022 0.1769 2.0872 0.0033

F = 0.9 3.3973 11.0299 0.0022 0.1697 1.9867 0.0033

F = 0.95 3.8732 11.3708 0.1362 0.1910 2.1414 0.0104

F = 1 3.9056 11.7658 0.0026 0.1770 1.9601 0.0035
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Table 3.14: R2 test case, NSDE-FB(K = 0.6, F ∈ [0.4,1]).
C (P,P ∗) C (P ∗, P )

µ σ t = 300 µ σ t = 300

F = 0.4 3.3025 14.4045 0.0361 0.3911 3.8048 0.0359

F = 0.45 3.3836 15.0769 0.0294 0.3706 3.8460 0.0309

F = 0.5 3.4360 15.4162 0.0311 0.3815 4.0567 0.0320

F = 0.55 3.6166 15.9994 0.0217 0.3699 4.0205 0.0249

F = 0.6 3.7779 16.7219 0.0146 0.3434 3.8100 0.0191

F = 0.65 3.9876 17.2713 0.0135 0.3490 3.9209 0.0182

F = 0.7 4.3981 17.9771 0.0086 0.3532 3.9301 0.0142

F = 0.75 4.8385 19.0057 0.0075 0.3679 4.0981 0.0131

F = 0.8 5.3287 19.9263 0.0066 0.3647 3.8808 0.0125

F = 0.85 5.4343 20.1920 0.0066 0.3748 4.0662 0.0123

F = 0.9 5.4312 20.5329 0.0066 0.3560 3.7363 0.0123

F = 0.95 5.6537 20.6825 0.0070 0.3714 3.8296 0.0126

F = 1 6.6094 22.1664 0.0077 0.3779 3.6687 0.0130

Table 3.15: R3 test case, NSDE-FB(K = 0.6, F ∈ [0.4,1]).
C (P,P ∗) C (P ∗, P )

µ σ t = 300 µ σ t = 300

F = 0.4 0.0903 0.0531 0.0508 0.1241 0.1214 0.0732

F = 0.45 0.0893 0.0557 0.0478 0.1251 0.1271 0.0651

F = 0.5 0.0971 0.0546 0.0508 0.1360 0.1266 0.0727

F = 0.55 0.0968 0.0581 0.0463 0.1375 0.1306 0.0644

F = 0.6 0.0981 0.0595 0.0450 0.1469 0.1397 0.0616

F = 0.65 0.1006 0.0604 0.0432 0.1485 0.1438 0.0567

F = 0.7 0.1072 0.0603 0.0423 0.1618 0.1435 0.0575

F = 0.75 0.1050 0.0603 0.0352 0.1583 0.1442 0.0512

F = 0.8 0.1185 0.0584 0.0427 0.1797 0.1482 0.0611

F = 0.85 0.1177 0.0591 0.0424 0.1856 0.1518 0.0567

F = 0.9 0.1283 0.0567 0.0476 0.1998 0.1504 0.0670

F = 0.95 0.1341 0.0541 0.0542 0.2098 0.1458 0.0718

F = 1 0.1345 0.0541 0.0536 0.2168 0.1504 0.0737
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Table 3.16: R4 test case, NSDE-FB(K = 0.4, F ∈ [0.4,1]).
C (P,P ∗) C (P ∗, P )

µ σ t = 300 µ σ t = 300

F = 0.4 0.0369 0.1586 0.0125 0.0259 0.0566 0.0142

F = 0.45 0.0380 0.1637 0.0123 0.0262 0.0567 0.0146

F = 0.5 0.0374 0.1645 0.0121 0.0243 0.0558 0.0138

F = 0.55 0.0404 0.1774 0.0122 0.0257 0.0604 0.0138

F = 0.6 0.0427 0.1866 0.0119 0.0261 0.0646 0.0135

F = 0.65 0.0454 0.1978 0.0117 0.0266 0.0648 0.0135

F = 0.7 0.0480 0.2077 0.0116 0.0271 0.0685 0.0133

F = 0.75 0.0498 0.2166 0.0117 0.0269 0.0687 0.0133

F = 0.8 0.0533 0.2253 0.0117 0.0286 0.0721 0.0132

F = 0.85 0.0581 0.2452 0.0119 0.0299 0.0773 0.0133

F = 0.9 0.0590 0.2417 0.0121 0.0307 0.0747 0.0134

F = 0.95 0.0671 0.2700 0.0124 0.0334 0.0812 0.0137

F = 1 0.0713 0.2856 0.0128 0.0347 0.0865 0.0140
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Table 3.17: R1 test case.

C (P,P ∗) C (P ∗, P )
µ σ t = 300 µ σ t = 300

FB 2.4911 9.6598 0.0130 0.1776 1.9513 0.0136

DIR 4.4178 8.8670 1.3186 0.1844 2.0600 0.0253

NSDEwSA 9.5052 17.1937 0.3989 3.7528 6.4780 0.5275

NSDE-DCS 1.8127 9.1876 0.0242 0.7821 3.1994 0.2705

NSDE-FB 3.7395 12.2289 0.0020 0.1688 2.1821 0.0031

Table 3.18: R2 test case.

C (P,P ∗) C (P ∗, P )
µ σ t = 300 µ σ t = 300

FB 4.5442 18.5590 0.0097 0.3988 3.6440 0.0149

DIR 5.9082 16.4762 0.0145 0.4197 4.0826 0.0213

NSDEwSA 8.4487 25.6996 0.0065 4.3173 9.4732 1.475378

NSDE-DCS 2.7975 15.4704 0.0143 1.8967 4.9974 1.189710

NSDE-FB 5.9085 22.1947 0.0067 0.3715 3.6335 0.012502

In this work, first a comparison of the performances of the reproduction

scheme proposed by Iorio and Li[17] has been carried out. In fact, their

crossover is influenced by two parameters. The former controls the con-

vergence speed towards the Pareto-optimal front (parameter K), the latter

controls the population spread (parameter F ). Iorio and Li suggested the

parameters setting of K = 0.4 and F = 0.8. This configuration was based on

considerations found in literature and therefore in author’s opinion, there is

a lack in the analysis of the effects of different values of such parameters.

In the analysis conducted here, one of the two parameters has been assumed

to be fixed, the other is let to vary near the setting employed in [17].
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Table 3.19: R3 test case.

C (P,P ∗) C (P ∗, P )
µ σ t = 300 µ σ t = 300

FB 0.1418 0.0542 0.0678 0.2637 0.1838 0.0985

DIR 0.0575 0.0602 0.0188 0.1224 0.1739 0.0297

NSDEwSA 0.0774 0.0909 0.0094 0.4911 0.6642 0.0180

NSDE-DCS 0.0378 0.0688 0.0085 0.2061 0.4622 0.0188

NSDE-FB 0.1158 0.0681 0.0247 0.2354 0.1947 0.0367

Table 3.20: R4 test case.

C (P,P ∗) C (P ∗, P )
µ σ t = 300 µ σ t = 300

FB 0.0678 0.2882 0.0130 0.0334 0.0745 0.0139

DIR 0.0474 0.1772 1.3186 0.0294 0.0587 0.0186

NSDEwSA 0.0680 0.2250 0.3989 0.0446 0.1024 0.0143

NSDE-DCS 0.0334 0.1538 0.0242 0.0244 0.0628 0.0155

NSDE-FB 0.0704 0.2698 0.0020 0.0357 0.0855 0.0136
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Figure 3.8: R1 test case. (∎) Fitness-Based Crossover, (▼) Directional

Crossover, (▲) NSDEwSA, (⧫) NSDE-DCS, (●) NSDE-FB
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Figure 3.9: R2 test case. (∎) Fitness-Based Crossover, (▼) Directional

Crossover, (▲) NSDEwSA, (⧫) NSDE-DCS, (●) NSDE-FB
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Figure 3.10: R3 test case. (∎) Fitness-Based Crossover, (▼) Directional

Crossover, (▲) NSDEwSA, (⧫) NSDE-DCS, (●) NSDE-FB
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Figure 3.11: R4 test case. (∎) Fitness-Based Crossover, (▼) Directional

Crossover, (▲) NSDEwSA, (⧫) NSDE-DCS, (●) NSDE-FB

Tables 3.1, 3.2, 3.3 and 3.4 report the simulation results about the effects of

different values of the parameter K for the test cases previously described.

It can be seen that larger values of K allows to obtain a faster convergence

toward the Pareto-front with an increased robustness. Specifically, a pa-

rameter setting of about K = 0.6 allows the best performances in terms of

convergence speed, population spread and robustness of the solutions.

Tables 3.5, 3.6, 3.7 and 3.8 report the simulation results regarding the effect

of different values of the population spread parameter F . It can be deduced

that a small value of F allows a fast convergence and a better population

spread. However, the lowest values of the metrics employed at generation

t = 300 can be found for a value of F not too small. Therefore, a population

spread parameter of F = 0.55 allows best performance in terms of conver-

gence speed, population spread and robustness of the solutions.

Similarly to the previous comparison, we performed several tests to detect

the best performances of the NSDE-FB algorithm. Tables 3.9, 3.10, 3.11 and

3.12 report the simulation results about the effect of different values of pa-

rameter K for the Iorio and Li[18] test cases. It can be seen that the optimal

value of K is equal to 0.65. In fact, such a value of the convergence vector
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parameter allows a good balance of performances expressed by the metrics

considered.

Tables 3.13, 3.14, 3.15 and 3.16 report the simulation results regarding the

effect of the spread vector parameter F . Specifically, a setting of F = 0.55

allows the best performance of the algorithm.

It is worth noting that a variation of F in NSDE-DCS and in NSDE-FB af-

fect not only the population spread measure, but also the convergence speed

of the algorithms and their robustness. This is due to the fact that well dis-

tributed populations detect faster the Pareto-optimal front since the decision

space is searched more efficiently.

Finally, a comparison between different methodologies has been carried out

on the rotated test problems previously described.

Considering the Fitness-Based crossover, it can be seen from figure 3.10 that

it is unable to correctly solve the R3 problem.

Within the NSGA-II framework, the Directional crossover performs well in

all the test cases except for the R1 problem where its convergence speed is

unable to be less than 100 before the maximum allowed generations. Also in

the R2 problem, Directional crossover performs worse than the others algo-

rithms.

Similarly, also NSDEwSA is unable to correctly solve the R1 test case, and in

the R3 problem, NSDEwSA is unable to successfully cover the Pareto front.

NSDE-DCS has a behavior similar to NSDEwSA in the R2 case, whereas in

the other problems, it exhibits good performances.

Finally, NSDE-FB shows outstanding performances in almost all the test

cases, except for R3 problem where it converges slowly toward the Pareto-

optimal solution. However, by increasing the maximum number of genera-

tions, the NSDE-FB is expected correctly solve also the R3 problem since its

performance metrics are not constant in the last generations. Therefore, this

scheme will be employed in the application showed in the next chapters.
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Chapter 4

Multi-objective optimization of

longitudinal wavy fins

In many engineering fields, finned dissipators are an invaluable tool to re-

move heat in particular where high fluxes must be transferred. A typical

use of such a heat exchanger can be found in the electronic industry where

components must be cooled in order to ensure both performance and reliabil-

ity. Moreover, the temperature of an electronic component must be lowered

considering also the exigence of reducing the energy consumption of cooling

fans and reducing the volume of the device. For example, the former exi-

gence is connected with the customer requirement of long battery endurance.

Whereas, the latter exigence is related to the weight and to the volume of the

device. In recent years in fact, the electronic industry has developed smaller

and smaller components and the heat dissipators for them must consequently

be scaled. Another reason that lead to the reduction of the finned dissipator

volume is the necessity of lowering the amount of material used in the device.

In fact, as reported by the LCA Committee of the Japanese aluminum indus-

try [26] and recalled by Bar-Choen and Iyengar [13], the estimated amount

of aluminium used for cooling electronic devices was of about 10 Million-kg

45
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in 2001. Although, we have focused only in the electronic field so far, similar

considerations can be easily made in all fields were heat dissipators play a

fundamental role.

The problem of the optimization of longitudinal fins has been studied by

many researchers in the last century [15, 16, 5, 20]. In particular several fin

profiles have been suggested and undulated fins have shown the best perfor-

mances in terms of heat transfer [19, 10]. However, the optimum fin shape

has been solved only partially. In fact, a criterion for detecting the optimal

geometry has been proposed by Fabbri [7, 8] where a genetic algorithm has

been employed to detect the geometry that ensures the highest heat transfer.

However, as just pointed out the optimum geometry itself may not be use-

full since limits in the hydraulic resistance or in the volume of the fins may

also arise. Although, the genetic algorithm previously used can be employed

considering constraints in the hydraulic resistance, the value of such limits

is typically unknown a priori. Hence, a different approach should be used

and in this case multi-objective optimization techniques are suitable methods

since their application together with genetic algorithms permits to detect

rapidly the set of solutions that optimize all the objectives of interest.

Although, these techniques have been developed since the mid-1980s, their

usage in the heat transfer field is recent and not common. In particular,

Hilbert et al. [32] performed a multi-objective shape design optimization of

a tube bank heat exchanger whereas, Nobile et al. [27] studied convective

periodic channels.

In the present work, the optimization of heat transfer through finned dissipa-

tors by means of the multi-objective genetic algorithm described in previous

chapters is investigated. The two objectives considered here are the max-

imization of the heat transfer and, at the same time, the minimization of

the hydraulic resistance. Since the two objectives are conflicting, the re-

sult of the genetic algorithm is a set of optimal solutions each of them lying
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on the Pareto front trade-off curve. The same methodology is then applied

considering different constraints in the volume of the fins.

4.1 Governing Equations and Dimensioning

Criteria

Let us consider a conduit composed by a finned plate opposite to a flat sur-

face, both of them infinitely long and wide. The flat surface is thermally

insulated while a constant heat flux q′′ is applied to the finned plate bottom.

The coolant flows in the conduit parallel to the fins. All conduit fins are

identical and the sections orthogonal to the flow direction have two symme-

try axes (see Fig. 4.1). Since the present work considers an optimization

y

x

z

flat surface

e

portion
q"

fluid flow

a

b

d

finned plate

Figure 4.1: Finned Conduit

technique that employs a large number of individuals in order to correctly

solve the problem, the simplicity of the model is mandatory. In fact, for

the test cases considered a population of 100 individuals that reproduces

for 100 generations have to be considered in order to detect the real Pareto
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front. Therefore, a total number of 10000 cost functions evaluations is re-

quired. For such a large number of individuals, the usage of time consuming

solvers is not allowed in order to obtain results within a reasonable time. For

this reason, in the present work we introduce the following hypotheses and

considerations:

∎ the fluid flow is laminar and incompressible;

∎ the system is in steady state;

∎ velocity and temperature are fully developed;

∎ fluid and solid properties are uniform and fluid independent;

∎ natural convection is negligible in regard to the forced convection;

∎ viscous dissipation is negligible.

The heat transfer performance of the system can be studied considering only

a portion of it which is delimited by the finned plate bottom, the top flat

surface, and two symmetry axes (see Fig. 4.2). Let us choose an orthogonal

coordinate system where the x axis is parallel to the streamwise direction,

the y axis is perpendicular to the flat plate while the z direction is parallel

to it. As shown in Fig. 4.2, let a be the fin height, b the fin base thickness,

e the distance between the two symmetry axes, and d the distance between

the fin base and the flat surface.

Under such conditions, only the x component u of the fluid velocity is non

zero and it can be determined solving the corresponding component of the

momentum equation:

∂2u

∂y2
+ ∂

2u

∂z2
=

1

µ

∂p

∂x
(4.1)

where µ is the dynamic viscosity and p the pressure. Two kind of bound-

ary conditions are needed to solve equation (4.1). The former is the no-slip
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Figure 4.2: Computational Domain.

condition considered at the walls(i.e., u = 0). The latter consists of the

zero velocity partial derivative at the symmetry axes along the normal direc-

tion(i.e., ∂u
∂n
= 0).

Since the applied heat flux is uniform and the thermal profile is fully devel-

oped, the temperatures of the fluid and the solid change linearly with the x

coordinate. The conductive heat flux is constant and can be neglected in an

overall energy balance. Therefore the temperature distribution in the coolant

is described by the following relationship:

ρcpu
∂Tc

∂x
= kc [∂2Tc

∂y2
+ ∂

2Tc

∂z2
] (4.2)

where ρ is the density, cp the specific heat, and kc the thermal conductivity

of the coolant.

The temperature distribution inside the finned plate is instead described by

the Laplace equation:

∂2Tf

∂y2
+ ∂

2Tf

∂z2
= 0 (4.3)
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Equations (4.2) and (4.3) must be integrated imposing the following bound-

ary conditions:

∎ on the contact surface, the temperature is the same in the solid and in

the fluid;

∎ on the contact surface, the heat flux in the normal direction is the same

in the solid and in the fluid;

∎ on the symmetry axes and on the insulated wall, the heat flux in the

normal direction must be zero;

∎ on the finned plate bottom surface, the heat flux must be equal to q′′

and parallel to the y direction.

Lastly, the value of the temperature in one point of the section is needed.

Equations (4.1),(4.2) and (4.3) are here solved numerically by means of the

finite element code previously used and tested by Fabbri [7].

In order to evaluate the heat-transfer performance of the finned conduit some

definitions are given here. For the system described, the following global heat

transfer coefficient can be defined as

h =
q′′

Tmax − Tb

(4.4)

where Tmax is the maximum temperature on the surface on which q′′ is im-

posed and Tb is the bulk temperature of the fluid. The temperatures Tmax

and Tb must be calculated at the same value of the x coordinate. Moreover,

it is possible to define an equivalent Nusselt number:

Nue =
2hd

kc

(4.5)

which corresponds to the Nusselt number which would be calculated if the

same heat flux q′′ were dissipated through a flat surface with zero thickness

at the distance d from the insulated surface.
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Moreover, the normalized hydraulic resistance is considered in the optimiza-

tion:

ζ =
−dp/dx
wt/e /12µ

d3
(4.6)

which indicates how many times the hydraulic resistance per unit of length

and width of the conduit increases due to the presence of the fins.

The computational domain geometry is described by the parameters a, b, d,

e and the fin profile function g(y). Taking d as reference length, we obtain

the following dimensionless variables:

α =
a

d
; β =

b

d
; ε =

e

d
; φ (η) = g (y)

d
; η =

y

d
(4.7)

Let us assign a polynomial form to the profile function φ:

φ (η) = n

∑
i=0

ψiη
i (4.8)

the function φ (η) is univocally determined by the n + 1 parameters ψi or,

alternatively, by n+1 values of φ in equidistant points on the η axis, namely:

φi = φ( i
n
α) (4.9)

Since changes in φi induce in φ (η) variations of more comparable entity

then do changes in ψi, the first ones are preferable as fin profile describing

parameters instead of the latter ones. Moreover, the average half-width of

the fin φ̄ results

φ̄ =
n

∑
i=0

ψi (φ0, . . . , φn)
i + 1

αi (4.10)

Hence, we can express the average thickness of the finned plate σ̄ as:

σ̄ = β + αφ̄
ε

(4.11)

This parameter is representative of the volume and the weight of the finned

plate.
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From these definitions, the optimization of a finned plate can be addressed

aiming to maximize the Nusselt number and, at the same time, minimizing

the hydraulic resistance or minimizing the entropy generated. Moreover, the

average thickness can be constrained to an established value σ̄0 in order to

limit the volume of the fins. To this aim the parameters ε and φi can be

reproduced by means of opportune genetic operations whereas, the value of

β can be forced to assume the value

β = σ̄0 − α
ε
φ̄ (4.12)

In this way, β can be negative or too small. If that occurs, φi can be resized

or the parameter combination can be rejected by assigning a null value to

the Nusselt number and an infinite value to the hydraulic resistance.

4.2 Results

The NSGA-II algorithm with the differential evolutionary reproduction op-

erators described in previous chapters (NSDE-FB) has been employed to

optimize the geometry previously studied by Fabbri [8]. Only three values

of the polynomial order n of the fin profile function have been studied here,

namely

n = 0, 2, 4. (4.13)

The parameters set up of the algorithm used to optimize the fins is listed

below:

∎ population size, N = 100;

∎ maximum number of generation, tmax = 100.

For the finite element method, a grid with 20 × 80 elements (21 × 81 nodes)

has been used. More finer grids have been tested without finding any sig-

nificant variation in Nue. In the test cases, a grid of 35 × 80 elements has
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caused changes in Nue of less than 0.5% whereas, a grid of 20 × 110 elements

produced alterations in Nue of less than 0.7%. Moreover, the normalized fin

height α has been considered equal to 0.75 and the thermal conductivity

ratio γ equal to 300. Such a value of γ corresponds to the case of a copper

finned plate cooled by water. The remaining geometrical parameters has

been allowed to vary between the following values:

0.001 ⩽ β ⩽ 0.2; (4.14)

0.05 ⩽ ε ⩽ 0.6; (4.15)

0.001 ⩽ φi ⩽ ε. (4.16)
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Table 4.1: Geometries that ensure a reduction of about 20% of the hydraulic resistance of maximum heat

transfer geometries.

α n σ̄ β ε φ0 φ1 φ2 φ3 φ4 Nue ζ ∆Nue (%) ∆ζ (%))

0.75 0 0.256 0.0861 0.2085 0.0472 - - - - 57.66 12.31 4.1 23

0.75 2 0.322 0.1304 0.2036 0.0815 0.0272 0.1225 - - 77.46 15.50 5.8 24

0.75 4 0.276 0.1043 0.1958 0.0915 0.0375 0.0322 0.0254 0.1426 82.93 16.00 4.7 20

0.75 0 0.200 0.0710 0.1923 0.0331 - - - - 56.03 11.96 4.5 22

0.75 2 0.200 0.0380 0.1982 0.0751 0.0191 0.1055 - - 72.50 14.31 5.6 23

0.75 4 0.200 0.0472 0.1978 0.0943 0.0337 0.0350 0.0152 0.1405 79.97 15.17 6.7 23

0.75 0 0.100 0.0244 0.1805 0.0182 - - - - 48.80 10.83 4 21

0.75 2 0.100 0.0144 0.1874 0.0371 0.0118 0.04 - - 52.70 11.04 5 23

0.75 4 0.100 0.0158 0.1855 0.0469 0.0129 0.0143 0.0103 0.0903 59.74 12.37 5.3 22
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Figure 4.3: Pareto fronts of the unconstrained cases.(◯) rectangular fins,

(∎) parabolic fins, (△) 4-th order fins.

4.2.1 Optimization without constraints

Fig. 4.3 shows the Pareto fronts related to the three cases here analyzed.

It can be seen that for all the polynomial orders considered, the maximum

Nusselt number agrees with data reported by Fabbri [8]. Moreover, all the

cases tested has detected the Pareto front in much fewer generations than

tmax. Specifically, the 4 − th polynomial order has been the most complex

case to solve since the resulting number of variables was equal to seven. In

that case, the Pareto front has been detected and well sampled within 40

generations. Whereas, the rectangular fin shape and the parabolic fin profile

have been solved within 20 and 30 generations respectively. The analysis has

been limited to the detection of the maximum Nusselt number since Fabbri

[8] demonstrated that those geometries that maximize the fin efficiency also

maximize Nue. Therefore, the fin efficiency has not been considered here.

A first important consideration that can be made on the basis of the present

results concerns with global optimum geometries. In fact, it can be clearly
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seen that there are profiles that provide good performance in terms of heat

exchange but, at the same time, are also able to provide a sensible reduction

of the hydraulic resistance. In Table 4.1, profiles that provide the maximum

heat transfer with a reduction of the hydraulic resistance of at least the 20%

are listed. Parameters on the left of the vertical line have been imposed, while

those on the right have been found by the genetic optimization algorithm.

For all the unconstrained geometries, the Nusselt number decrease ranges

between 4.1% and 5.8% whereas, the ζ has a reduction that ranges between

20% and 24%.

If it is of interest the maximum heat transfer, Fabbri [8] pointed out that

optimum geometries are based on a compromise between two exigencies. The

first consists in having, in the cavities between the fins, velocities which are

comparable with those at fin tip or higher. In fact, higher velocity near the fin

tip causes higher thermal gradients in this region, which would lower the bulk

temperature without enhancing the heat transfer from the plate base and the

lateral surface on the fin. The second exigence consists in maintaining the

maximum velocity as close to the dissipator as possible in order to relatively

increase the thermal gradient. As a consequence of the first exigence, fins

cannot be too closely spaced, for the second one they cannot be too sparse.

When dealing with Pareto optimal solutions, the balance between the two

exigencies progressively change. In particular, since here we are interested in

minimizing the hydraulic resistance, the individuals belonging to the Pareto

front exhibit the tendency of having larger cavities between the fins as the

parameter ζ decreases. This can be deduced from Fig. 4.6 where four cases

belonging to the Pareto front of n = 4 are depicted. From this figure, it can

be seen that the fin spacing progressively decreases as the Nusselt number

increases. Also the fin profile changes since the fin tip tends to extend toward

the center of the channel between the fins. In fact, higher order profiles that

maximize the Nusselt number force the maximum velocity to occur between



Chapter 4. Multi-objective optimization of longitudinal wavy fins 57

the fins. Such a behavior induces higher thermal gradients near the finned

plate base and the fin lateral surface. At low hydraulic resistance, the fin

tips are thinner and the maximum velocity progressively occurs at higher

values of the normalized coordinate η (see Fig. 4.4). As consequence of

having thinner fin tips and larger cavities, the performance of wavy fins are

not much different from those obtained with rectangular fins and the Pareto

fronts overlap at low ζ . In other words, if a designer is interested in cases

where the constraint imposed in ζ is particularly stringent, the employment

of corrugated fins is not usefull to improve the heat transfer coefficient. Such

an effect can be clearly seen in Fig. 4.3 where the curves related to the

geometries analyzed here overlap if ζ < 6. Moreover, parabolic and 4-th

order fins provide similar performance if ζ ≲ 10. This is of fundamental

role if also manufacturing exigencies are taken into account since rectangular

fins are easier to realize. On the other hand, complex fin profiles are more

expensive to realize than rectangular devices but the manufacturing cost of

these complex fins can be easily gained thanks to lower usage costs.

4.2.2 Optimization with constrained volume

In practice, in the optimization of a particular geometry, some constraints

may also arise. In the application presented here, a typical constraint can

be the solid volume of the device. In the present analysis, we set up two

different values of the average thickness of the finned plate, namely σ̄0 = 0.2

and σ̄0 = 0.1.

Fig.s 4.7 and 4.8 show the Pareto fronts for the two limits considered and

for the three geometries optimized here. In all cases the constraint entail a

reduction of the heat transfer as already pointed out by Fabbri [8]. However,

the same consideration of the unconstrained study can be sentenced here.

In fact, in all cases there are geometries that provide good performances in

terms of heat transfer and, at the same time, provide a significant reduction
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Figure 4.4: Velocity distribution in the transversal section for n = 2,

α = 0.75. Curves are drawn every 10% of the maximum velocity.

of the parameter ζ (see Table 4.1). Moreover, in all cases, constrained and

unconstrained, the three Pareto fronts overlap when Nue is lower than 40.

4.3 Conclusions

In the present chapter, the multi-objective approach was applied to the op-

timization of the heat transfer through finned heat dissipator cooled by lam-

inar flow. In particular, the optimal geometry of wavy fins described by

polynomial functions was studied and the parameter combinations that aim

to maximize the heat transfer and, at the same time, aim to minimize the

hydraulic resistance were searched. The results are a set of solutions lying

on a curve called Pareto front and the analysis of this curve allowed to find

geometries where the Nusselt number is slightly reduced but the hydraulic

resistance is appreciably lower than the one computed in the best heat ex-
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Figure 4.5: Temperature distribution in the transversal section for n = 4,

α = 0.75. Curves are drawn every 10% of the difference between the

maximum and the minimum temperature.
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Figure 4.6: Optimum geometries for n = 4.
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Figure 4.7: Pareto fronts in case of constrained solid volume σ̄0 = 0.2.(◯)

rectangular fins, (∎) parabolic fins, (△) 4-th order fins.
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Figure 4.8: Pareto fronts in case of constrained solid volume σ̄0 = 0.1.(◯)

rectangular fins, (∎) parabolic fins, (△) 4-th order fins.
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Figure 4.9: Optimum geometries for n = 4 with a constrained solid vol-

ume σ̄0 = 0.1.
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changer profile. Moreover, if the hydraulic resistance is limited to a particular

stringent value, the adoption of wavy fins do not improve the heat transfer

of the device here analyzed.

In the present chapter also the effect of a constrained solid volume of the

fins was studied. The main effect, as expected, consists in a reduction of

the heat transfer. As in the unconstrained case, there are geometries that

provide a great reduction of the hydraulic resistance without reducing the

heat transfer. It must also be remarked that the present analysis has been

limited to cases where the fluid flow has been considered laminar and fully

developed. Therefore, the results presented here can be usefully employed

only in cases where the entrance region is short in respect to the total length

and where the Reynolds number is low.



Chapter 5

Multi-objective optimization of

corrugated wall channels

As pointed out in the previous chapter, high performance heat exchangers are

commonly required and the adoption of complex geometries is a typical way

to increase the thermal characteristics of the overall devices. Specifically,

complex shape configurations are employed to increase the heat exchange

surface maintaining at the same time reduced volume and weight of the dis-

sipator. Moreover, the heat transfer is influenced by the velocity field caused

by the particular geometry employed.

Instead of wavy fins studied in chapter 4, another solution frequently em-

ployed consists on the usage of wavy wall surfaces, and typical configura-

tions are V-shaped or sinusoidal corrugations. Only recently the interest has

been focused to other kind of heat exchange surface profiles. Specifically,

Fabbri[9] demonstrated that a fifth-order polynomial profile performs better

than a sinusoidal corrugation. Nobile et al.[27] performed simulations on a

wavy channel composed by two surfaces described by a NURBS parameteri-

zation. Moreover, in the paper of Nobile et al. an extensive literature review

concerning the shape optimization of convective problems can be found and

63
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from it two relevant remarks follow. The first is that most of the problems

concerning with heat exchange were optimized with problem-specific algo-

rithms and a lack of generality and robustness can arise from the methods

used. The second remark is relative to the fact that, in all works they cited,

it was considered a single-objective optimization task, whereas conflicting

objectives can all play a fundamental role in the problem studied. As men-

tioned, in a heat exchanger, it is important to maximize the heat transfer

but, at the same time, it is also of fundamental role to minimize the pres-

sure drop. To adjust these remarks, Nobile et al. used a multiobjective

commercial optimizer. In the work published by Fabbri[9] both of the above

remarks can be formulated and in particular, the wavy wall heat exchanger

were optimized by only maximizing the Nusselt number whereas the pres-

sure drop was handled as a single value constraint instead as an objective to

minimized. Similar considerations but formulated in more general terms are

exposed also in the first chapter of this work where traditional methods are

enlisted together their drawbacks.

In the present chapter, the heat transfer from a corrugated wall channel de-

scribed by a fifth order polynomial profile is studied under a multiobjective

point of view by means of the multiobjective differential evolution. Such

a methodology allows to fix all remarks pointed out by other researchers

since the same code employed by Fabbri has been used for consistency with

previous works.

5.1 Governing equations and mathematical

model

A channel composed by two parallel flat walls has been assumed. The upper

wall is a zero thickness thermally insulated surface whereas, the lower wall

is corrugated and crossed by a heat flux q′′ which is uniformly imposed on
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Figure 5.1: Wavy channel geometry.

its external surface (see Fig.5.1). The thickness of the corrugated wall is

a periodic function f of the longitudinal coordinate x whose period is l.

Between the two walls, a coolant fluid passes through in laminar flow in the

x direction.

The following hypotheses have been introduced:

1. the system is in steady state;

2. the velocity and temperature profile are fully developed;

3. the fluid is incompressible and its properties are uniform;

4. the viscous dissipation within the fluid is negligible.

Due to the homogeneity in the normal direction to plane (x, y), the heat

transfer performance of the channel can be studied by only determining the

distribution of the velocity and the temperature on plane (x, y). Moreover,

due to the periodicity of the channel shape, the study can be limited to a

portion whose length is equal to l.

The velocity distribution must satisfy the mass balance and the momentum

equations, which for a steady-state incompressible flow can be reduced to the
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following form:

∂u

∂x
+ ∂v
∂y
= 0 (5.1)

ρ(∂u2

∂x
+ ∂uv
∂y
) = −∂p

∂x
+ µ(∂2u

∂x2
+ ∂

2u

∂y2
) (5.2)

ρ(∂vu
∂x
+ ∂v

2

∂y
) = −∂p

∂y
+ µ(∂2v

∂x2
+ ∂

2v

∂y2
) (5.3)

where ρ and µ are the density and the dynamic viscosity of the fluid, re-

spectively, u and v are the velocity components in the x− and y− direction,

respectively, and p is the sum of the pressure and the gravity potential con-

tribution.

The temperature distribution in the fluid must satisfy the following energy

balance equation:

ρc(∂tfu
∂x
+ ∂tfv

∂y
) = k (∂2tf

∂x2
+ ∂

2tf

∂y2
) (5.4)

where c and k are the specific heat and the thermal conductivity of the fluid,

respectively, and tf is the fluid temperature. In the solid the Laplace equation

holds:

(∂2ts

∂x2
+ ∂

2ts

∂y2
) = 0 (5.5)

ts being the solid temperature.

Equations 5.1-5.5 can be solved numerically by means of the control volume

finite element code previously tested and employed by Fabbri[9]. Moreover,

the channel performances have been evaluated considering the same param-

eters described by Fabbri for consistency with previous works. Specifically,

Fabbri compared the wavy channel performances with those of a reference

channel composed by an insulated flat surface and a flat surface crossed by a

uniform heat flux equal to q′′. To this aim, let us suppose that the inlet bulk

temperature is the same for both channels. Under this condition, let tb0(x)
be the bulk temperature and let us suppose that the temperature distribution
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on the external surface of the corrugated wall ts(x,0) occurs on the surface

of the reference channel. In this case, the local heat transfer coefficient in

the reference channel would be:

hx =
q′′

ts(x,0) − tb(x) . (5.6)

The local Nusselt number would then result

Nux =
hx2d

k
(5.7)

where d is the distance between the external surfaces of the channel. Refer-

ring to dimensionless entities, Nux can be calculated as follows

Nux =
RePr

L

1

Ts(x,0) − Tb(x) (5.8)

where Re and Pr are the Reynolds and Prandtl numbers respectively and

they are calculated as

Re =
ρw02d

µ
(5.9)

Pr =
µc

kf

(5.10)

being w0 the average velocity. Moreover, in eq. 5.8, the dimensionless tem-

peratures have been normalized as

Ts =
ts

∆t
(5.11)

Tb =
tb

∆t
(5.12)

where ∆t is the coolant fluid bulk temperature drop which is the same in the

reference and the corrugated channel. Lastly, L is the normalized period:

L =
l

d
(5.13)

An equivalent Nusselt number for the corrugated channel can then be defined

as the average of Nux:

Nue =
1

L
∫

L

0

Nuxdx (5.14)



68 Chapter 5. Multi-objective optimization of corrugated wall channels

1 1.5 2 2.5 3 3.5 4 4.5
5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

A
4

A
3

A
2

A
1

B
4

B
3

B
2

B
1

Figure 5.2: Polynomial profile Pareto front. (●) unconstrained case; (◾)
constrained case: f̄ = 0.2.

Such an equivalent Nusselt number corresponds to the average Nusselt num-

ber which would be calculated for the reference channel if on its heat flux

crossed surface occurs the same temperature distribution as on the corru-

gated channel, for given heat flux and inlet bulk temperature. Moreover, it

depends on the channel geometry, the Reynolds number, the Prandtl num-

ber, and on the ratio γ between the thermal conductivity of the solid and

that of the fluid. Moreover, the normalized pressure P has been defined as:

P =
p

∆p0

(5.15)

where ∆p0 is the pressure drop in a portion of the reference channel whose

length is equal to l.

5.2 Results

The in-house code previously developed Fabbri[9] has been utilized in the

NSDE-FB multiobjective algorithm described in chapter 3 to determine the

corrugation profiles that provide the best efficiency in terms of both the heat

transfer and the pressure drop.
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(a) A1 stream lines.

(b) A2 stream lines.

(c) A3 stream lines.

Figure 5.3: Unconstrained case stream lines.
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(a) A1 temperature isocurves.

(b) A2 temperature isocurves.

(c) A3 temperature isocurves.

Figure 5.4: Unconstrained case temperature isocurves.
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(a) B1 stream lines.

(b) B2 stream lines.

(c) B3 stream lines.

Figure 5.5: Constrained case stream lines(f̄ = 0.2).
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(a) B1 temperature isocurves.

(b) B2 temperature isocurves.

(c) B3 temperature isocurves.

Figure 5.6: Constrained case temperature isocurves(f̄ = 0.2).
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For the corrugation profile f(x), a fifth-order polynomial profile as in Fabbri

has been adopted for consistency with his previous works. The function and

its first derivative assume the same value in x = 0 and x = l. Moreover, the

corrugation profile is univocally determined by four variables and the values

fi assumed by f(x) in the first four of six equidistant points between 0 and

l have been assumed.

Constraints have been considered for the minimum and maximum values of

f(x), and the corrugated wall volume. Specifically, to prevent the channel

from being too narrow and the corrugated wall from being too thick, the

following constraints have been imposed:

max f(x), ⩽ 0.4 (5.16)

min f(x), ⩾ 0.1 (5.17)

Moreover, the analysis has been limited to the case where L is equal to 1, γ

to 500, and Reynolds and Prandtl numbers equal to 500 and 5 respectively.

Figure 5.2 reports the Pareto front relative to the polynomial interpolation.

Considering the geometry that maximizes the Nusselt number (labelled with

A1, see Fig. 5.3(a) and Fig. 5.4(a)), the corrugation profile is composed by

two peaks alternated by two cavities. Near the peaks the heat is directly

transferred to the main flow due to conduction, so that the isothermal lines

are denser. In the cavities, the heat removed from the wall is transferred

to the main flow through eddies. This convective heat transfer mechanism

causes a reduction of the heat transfer coefficient with respect to the case of

a maximum thickness flat wall channel.

By analyzing the geometries lying on the Pareto front (from A1 to A3, see

Fig. 5.3 and Fig. 5.4), it can be seen that the two peaks y-coordinates remain

at the same level and they progressively decrease causing a reduction of both

the Nusselt number and the pressure drop. Specifically, the Nusselt number

is lower due to the reduction of the local heat transfer coefficient since the
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isothermal curves are less dense than the case of maximum heat transferred.

Whereas, the pressure drop decreases since the main flow is less accelerated.

Moreover, it can be seen that the bottom of the first cavity changes its

position whereas, the y-coordinate of the second cavity bottom remains equal

to the lower limit causing a reduction of the strength of the vortex in the first

cavity. Such a behavior was expected since, in the case of maximum Nue, a

strong vortex is present in the first cavity whereas two smaller vortices appear

in the latter one. The changes in the vortical structures cause a reduction of

both the heat transferred and the pressure drop.

Similar considerations can be formulated analyzing the Pareto-front of those

geometries with a constrained solid volume(labelled as B1, B2, and B3, see

Fig. 5.5 and Fig. 5.6).

5.3 Conclusions

In the present chapter, the heat transfer from a wavy channel cooled by a

laminar flow under conditions of forced convection and imposed heat flux

was investigated. Specifically, a multiobjective optimization of a fifth order

corrugation profile aiming to maximize the heat transfer and to minimize the

pressure drop simultaneously was performed. Moreover, the optimization

process considered two different cases: the former related to the case of a

profile function constrained in its minimum and maximum values; the latter

took into account also a constrained solid volume.

The simulations performed allowed to detect the Pareto fronts for the two

cases and the analysis of the shape configurations on these fronts was carried

out. In fact, the evaluation of the Pareto front geometries allowed to detect

the main heat transfer mechanisms as well as the principal causes of pressure

drop.

Finally, some considerations can be made comparing the Pareto fronts of
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the way fins studied in the previous chapter and the Pareto front of a wavy

channel. Although the two problems are different, it is worth noting that in

the wavy channel the Nusselt number is a linear function of the normalized

pressure drop. Therefore, it is not possible to identify geometries that provide

a high reduction of the pressure drop but, at the same time, provide a small

reduction of the Nusselt number as done for the wavy fins in the previous

chapter.
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Chapter 6

Conclusions

In the present work, the multi-objective optimization by genetic algorithms

was investigated and applied to heat transfer problems. However, the direct

application of genetic algorithms to the cases of interest was not a practical

way due to a large amount of computational resources required. To ad-

dress this issue, an intensive study on the reproduction processes employed

by genetic algorithms was carried out since it was identified that this area

could significantly improve. The analysis performed considered several re-

production methodologies available in literature and aimed to identify the

more promising one. Moreover, on the basis of the results obtained, two new

crossover techniques were suggested and compared with the available opera-

tors. Specifically, one of the two operators revealed to significantly improve

the performances of a multiobjective algorithm in almost all the test cases

analyzed.

From the application point of view, two problems where the heat transfer

is involved were studied.

In the first case, the optimal geometries of wavy fins described by polyno-

mial functions were investigated. Specifically, the parameter combinations

that aim to maximize the heat transfer and, at the same time, aim to mini-

77
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mize the hydraulic resistance. The result of this study consists in the Pareto

front and two main considerations derive from its analysis:

∎ The Pareto front trend highlights that exist some geometries which

allow to reduce the hydraulic resistance with a Nusselt number slightly

reduced if compared with the best heat exchanger profile.

∎ The adoption of wavy fins do not always improve the heat transfer.

Specifically, this is evident when the hydraulic resistance is limited to

a stringent value.

In the latter case, the optimal profile shapes of corrugated wall channels

were investigated. In this application, a linear Pareto front was detected and

therefore, it was not possible to identify geometries that provide a reduction

of the pressure drop but, at the same time, provide a small reduction of the

Nusselt number as obtained in the wavy fins case.

In both the application analyzed, the multi-objective approach revealed to

be an invaluable tool in order to identify the main heat transfer mechanisms

as well as the principal causes of pressure drop.

Finally, it is worth noting that part of this work has been recently pub-

lished by the author in the following article:

D. Copiello; G. Fabbri. Multi-objective genetic optimization of the heat

transfer from longitudinal wavy fins. International Journal of Heat and Mass

Transfer, 53:1167-1176, 2009.

On the contrary, the chapter that analyzes the corrugated channel relates

to a study that is still in progress. Future works will focus on more complex

corrugation profiles as well as the study of the entrance region effects.
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[23] Vilfredo Pareto. Cours D’économie politique, volume I and II. F. Rouge,

1896.

[24] C. Poloni; A. Giurgevich; L. Onesti; V. Pediroda. Hybridization of

a multi-objective genetic algorithm, a neural network and a classical

optimizer for a complex design problem in fluid dynamics. Computer

Methods in App. Mech. and Eng., 186:403–402, 2000.

[25] K. Price. Differential evolution. 1999.



82 Chapter 6. Conclusions

[26] LCA (Life Cycle Assessment Committee Report). Sumary of inventory

data. Technical report, Japan Aluminium Association, 1999.

[27] E. Nobile; F. Pinto; G. Rizzetto. Geometric parametrization and multi-

objective shape optimization of convective periodic channels. Numerical

Heat Transfer, Part B, (50):425–453, 2006.

[28] H.A. Abbass; R. Sarker. The pareto differential evolution algorithm.

Int. J. on Artifcial Intelligence Tools, 11:531–552, 2002.

[29] B.W. Silverman. Density estimation for statistics and data analysis.

London: Chapman and Hall, 1986.

[30] E. Zitzler; L. Thiele. Multiobjective evolutionary algorithms: A compar-

ative case study and the strength pareto approach. IEEE Transactions

on Evolutionary Computation, 3(4):257–271, November 1999.

[31] E. Zitzler; M. Laumanns; L. Thiele. Spea2: Improving the strength

pareto evolutionary algorithm. Technical Report 103, Computer Engi-

neering and Networks Laboratory, ETH Zurich, May 2001.

[32] R. Hilbert; G. Janiga; R. Baron; D. Thévenin. Multi-objective shape
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