

 Esame finale anno 2024

in cotutela con University of Luxembourg - Universitè du Luxembourg

DOTTORATO DI RICERCA IN

LAW, SCIENCE AND TECHNOLOGY

Ciclo 36

Settore Concorsuale: 09/H1 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI

Settore Scientifico Disciplinare: ING-INF/05 - SISTEMI DI ELABORAZIONE DELLE
INFORMAZIONI

ARGUMENTATION FOR LEGAL REASONING: META-MODELS, TECHNOLOGY

AND BEYOND

Presentata da: Giuseppe Pisano

Coordinatore Dottorato Supervisore

Monica Palmirani Andrea Omicini

Supervisore

 Leon Van Der Torre

 Co-supervisore

Giovanni Sartor

Roberta Calegari

ii

Abstract

This thesis presents a comprehensive exploration of argumentation in the context
of legal reasoning, bridging the gap between formal argumentation theory and its
technological applications. Central to this work is the enhancement of the ASPIC+

framework, integrating structured meta-argumentation to address limitations in
reasoning about rules, conflicts, and preferences, including the concept of the bur-
den of persuasion. This advancement expands the framework’s applicability in
legal reasoning and beyond.

A pivotal aspect of this research is the development of the Arg2P framework, a
robust and versatile environment integrating theoretical advancements in argumen-
tation. The framework marks a significant stride in realising practical, logic-based
environments for argumentation in intelligent systems, demonstrating a marked
focus on user-friendliness and technical maturity, crucial for bridging theoretical
innovation with functional application.

The thesis also delves into the realm of machine learning (ML), illustrating the
integration of structured argumentation with automated machine learning (Au-
toML). This integration is aimed at enhancing the transparency and control in
the development of ML systems by offering a symbolic interface for incorporating
expertise in ML, exemplifying the convergence of traditional symbolic AI methods
with data-driven ML approaches.

This work significantly contributes to argumentation theory and legal AI, pro-
viding a nuanced understanding of meta-argumentation and its practical applica-
tions. The enhancements to ASPIC+, coupled with the Arg2P framework, present
new avenues for legal analysis and decision-making. The integration with ML
further highlights the potential of structured argumentation in contemporary AI,
paving the way for more robust and ethically sound AI systems across various
domains.

iii

iv

Acknowledgements

The work has been supported by the “CompuLaw” project, funded by the Euro-
pean Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (Grant Agreement No. 833647).

v

vi

Contents

1 Introduction 1

2 Background 9
2.1 Argumentation . 10

2.1.1 Meta-Argumentation . 14
2.2 Argumentation Technologies . 18

2.2.1 Abstract argumentation . 19
2.2.2 Structured argumentation 20

2.3 Automated Machine Learning . 22
2.3.1 Towards Human-centered AutoML Approaches 24

3 A Meta-Argumentation Framework 27
3.1 Reasoning with Rules . 30
3.2 Reasoning with Conflicts . 33
3.3 Reasoning with Preferences . 40
3.4 Mixing Everything Together . 49
3.5 Reasoning with Burden of Persuasion 54

3.5.1 Object-level argumentation 55
3.5.2 Meta-level argumentation 58
3.5.3 Burden of persuasion as meta-argumentation 60

4 Optimising the Argumentation Resolution Process 77
4.1 Structured Reasoning . 78
4.2 Distributed Reasoning . 81

4.2.1 The master-slave actor model 85
4.3 Meta Burden of Persuasion . 88

5 Towards a General Argumentation Technology: Arg2P 93
5.1 Components & Requirements . 96

5.1.1 The argumentation pipeline 98
5.1.2 Requirements . 100

CONTENTS vii

CONTENTS

5.2 The Arg2P technology . 101
5.2.1 Arg2P as a 2P-Kt extension 103

5.3 An Arg2P Instance: ASPIC and more 108
5.3.1 Engine interface . 109
5.3.2 Language Parser . 111
5.3.3 Core modules . 114
5.3.4 Deontic rules and conflicts 117
5.3.5 Burden of Persuasion . 119
5.3.6 The parallel library . 119

6 Legal Reasoning 123
6.1 Meta-Argumentation for Interpretative Reasoning 124
6.2 Computable Law via Arg2P . 136

6.2.1 Autonomous cars & Legal Reasoning 138
6.2.2 More on legal reasoning . 143
6.2.3 Arg2P for Conformity Assessment of EU Regulations 145

7 Beyond symbolic AI: Argumentation for ML 157
7.1 Problem Formulation . 160
7.2 HAMLET . 171

7.2.1 Generation of Problem Graph and Search Space 172
7.2.2 Exploration of a Constrained Search Space 173
7.2.3 Knowledge Augmentation through Rule Recommendation . 175

7.3 Experimental Evaluation . 177
7.3.1 Effectiveness . 179
7.3.2 Efficiency . 182

8 Conclusions 185

Bibliography 191

viii CONTENTS

List of Figures

3.1 Conflict-based Argumentation framework from Example 2 on the
left, Equivalent framework on the right. 40

3.2 Argumentation framework from Example 3 46

3.3 Argumentation framework from Example 4 52

3.4 Object and meta level graphs from Example 5 64

3.5 Argumentation graph (object- and meta- level) from Example 6 . . 72

3.6 Argumentation graph (object- and meta- level) from Example 7 . . 73

4.1 Argumentation graph for arguments from Example 8, in which
nodes are arguments and edges are attacks between arguments. . . 80

4.2 Master-slave interaction for argument evaluation. 84

4.3 Staged evaluation of Example 7 . 92

5.1 The argumentation pipeline. 98

5.2 The Arg2P architecture. 103

5.3 Arg2P in tuProlog. 104

5.4 The ASPIC+ libraries for Arg2P. 108

5.5 Deontic square of compatibility relation 118

5.6 Arg2P Meta-BoP evaluation . 120

6.1 Conflict-based Argumentation frameworks from Example 13 130

6.2 Argumentation framework from Example 14. 132

6.3 Argumentation framework from Example 15 with no priorities over
available interpretations. Arguments A0, . . . , A10 – unconflicted
premises and axioms – are omitted for space reasons. 133

6.4 Argumentation framework from Example 15 with literal preferred
over other interpretations. Arguments A0, . . . , A10 – unconflicted
premises and axioms –, and attacks from PCA14 to A13, A15, A17
are omitted for space reasons. 135

6.5 Example 1 grounded argumentation graph in Arg2P IDE 139

6.6 Example 2 bp labelling in Arg2P IDE 141

LIST OF FIGURES ix

LIST OF FIGURES

6.7 Example 3 bp labelling in Arg2P IDE 143
6.8 Base example . 150
6.9 Conformity example . 153

7.1 Integrating HAMLET with the CRISP-DM process model. 160
7.2 Examples of the pipeline domain ΛP4 and pipeline instance λP4 , for

the sake of visualization we omit the third dimension representing
the domain of the Decision Tree. Green (or red) circles represent
valid (or invalid) sub-regions of the search space; Normalization is
not allowed in the pipeline. The rectangle represents a zoom in the
domain of the Binarizer algorithm. 164

7.3 Examples of Problem Graphs. Green nodes are valid arguments,
red ones are refuted. Arrows are attacks. 167

7.4 A subset of rules from the LogicalKB. 171
7.5 Results assessing the effectiveness of HAMLET w.r.t. the baseline. . 180
7.6 Results assessing the performance of HAMLET through the opti-

mization time. 180
7.7 Comparison of the best pipeline instances characterized by opti-

mization time and (balanced) accuracy, bigger circles represent set-
tings that dominate the others. 180

7.8 Results assessing the performance of HAMLET w.r.t. Auto-sklearn
[Feurer et al., 2019] and H2O [LeDell and Poirier, 2020]. 182

7.9 Computational time of the argumentation and AutoML processes. . 183

x LIST OF FIGURES

Listings

4.1 Structured argumentation, Arg-tuProlog answer query algorithm for
grounded semantic (pseudo-code). 79

4.2 Evaluate predicate with both parallel conditions evaluation and
parallel attackers . 83

5.1 Arg2P library. 103
5.2 Arg2P flag. 104
5.3 Arg2P solver. 105
5.4 An AbstractMode library. 115
5.5 Arg2P solver. 116
5.6 2P-Kt solver. 116
5.7 Query evaluation. 117
5.8 Arg2P parallel solver. 121
6.1 Example 1 theory . 138
6.2 Arguments from Listing 6.1 . 138
6.3 Example 2 theory . 140
6.4 Arguments from Listing 6.1 and 6.3 140
6.5 Example 3 theory . 142
6.6 Arguments from Listing 6.1, 6.3 and 6.5 143
6.7 Directive 2016/800 Prolog transposition 148
6.8 Directive 2016/800’s Polish transposition in Prolog 149
6.9 User facts . 149
6.10 Rebuttal function integration . 150
6.11 Conformity between directives and national laws check 151

LISTINGS xi

LISTINGS

xii LISTINGS

Chapter 1

Introduction

In today’s technological panorama, characterised by rapid evolution and interdis-

ciplinary integration, this thesis presents a work at the intersection of formal argu-

mentation, machine learning (ML) and legal reasoning. These fields come together

to address some of the most pressing challenges and opportunities in the current

technological panorama. Formal argumentation provides a structured approach to

dissecting and constructing logical arguments, a cornerstone in AI development.

Meanwhile, ML introduces a layer of predictive and adaptive capabilities, essen-

tial for navigating vast data landscapes and offering insights beyond the reach of

traditional methods. Legal reasoning, with its intricate balance of logic, ethics,

and practicality, offers a rich domain for applying and testing these technologies.

The thesis is predominantly focused on argumentation from both theoretical

and technological perspectives, with the main objectives of advancing our under-

standing of argumentation in AI and offering practical tools and frameworks for

its application, particularly in the context of legal reasoning. Nonetheless, toward

the end, a crucial segue is made to bridge the gap between traditional, symbolic AI

methods and the newer, data-driven approaches of ML. This convergence points

towards a future where the rigour and clarity of symbolic methods, and argumen-

tation in particular, help in the development of ML systems, paving the way for

more robust, versatile, and ethically sound AI systems in legal and other domains.

The journey starts in the domain of meta-argumentation, a relatively unex-

plored yet pivotal aspect of argumentation theory, warranting a deeper exploration

CHAPTER 1. INTRODUCTION 1

due to its far-reaching implications in the entire artificial intelligence area— and

legal reasoning in particular. At its core, meta-argumentation involves the anal-

ysis and construction of arguments about arguments—a higher-order level of rea-

soning that addresses the interaction, composition, and evaluation of arguments

themselves. This facet of argumentation theory opens the door to a nuanced un-

derstanding of how arguments conflict, complement, or supersede one another in

complex reasoning scenarios.

Historically, the field of argumentation has seen various frameworks developed

to structure and analyse arguments, such as ASPIC+, ABA, and DeLP. These

frameworks provide structured approaches to constructing and evaluating argu-

ments, with each bringing its unique strengths and methodologies to the table.

Despite their individual merits, these approaches often regard rules, conflicts, and

preferences as given, without delving deeply into the meta-level discourse about

these elements. In real-world adversarial debates, however, the rules themselves,

the nature of conflicts, and the basis of preferences are often the subjects of con-

tention and debate. A meta-argumentative approach seeks to address these higher-

level concerns by providing frameworks and tools to argue about the components

of argumentation frameworks themselves. Such an approach is vital in domains

where arguments are not only about reaching a conclusion but also about contest-

ing the foundational elements that lead to those conclusions.

Despite its importance, meta-argumentation has not received widespread at-

tention in academic discourse. This oversight presents a notable gap in the study

and application of structured argumentation, particularly in complex, real-world

scenarios where the underlying rules and preferences are as critical as the argu-

ments they support. For instance, in a legal context, not only the arguments

presented in a case matter, but also the interpretation and validity of the laws and

precedents that underpin these arguments.

This thesis endeavours to fill this gap by focusing on structured meta-

argumentation within the ASPIC+ framework. The ASPIC+ framework stands as

a cornerstone in the domain of structured argumentation, providing a systematic

approach to constructing and evaluating arguments based on a set of premises and

inferential rules. This framework is known for its structured methodology, offering

a clear and logical process for argument formulation and assessment. However,

2 CHAPTER 1. INTRODUCTION

despite its strengths, ASPIC+ exhibits certain limitations, particularly when it

comes to reasoning about its own foundational elements. This involves, for exam-

ple, debating the validity of a rule within a given argumentative context, assessing

whether there is an inherent conflict between two propositions, or determining the

relative strength or preference of competing arguments. We aim at enhancing the

framework’s ability to represent and reason about the fundamental elements of ar-

gumentation, such as the validity of rules, the nature of conflicts, and the basis of

preferences. The thesis also provides a simple yet powerful extension for allowing

to reason about a concept quite important in the legal area, i.e., Burden of Persua-

sion. The aspiration is to develop a comprehensive framework that encapsulates

these elements, thereby elevating the discourse in structured argumentation and

broadening its applicability and relevance in both academic and practical realms.

In enhancing the ASPIC+ framework within the scope of this thesis, a fun-

damental decision is made to ensure compatibility with Dung’s seminal abstract

argumentation semantics. This strategic choice, far from being merely conserva-

tive, is rooted in several critical considerations that align with both the overarching

goals of our research and the broader field of argumentation theory.

First and foremost, adhering to Dung’s semantics ensures a continuity of theo-

retical foundations crucial for the integrity and coherence of argumentation studies.

Dung’s framework, established in 1995, has since become a universally-recognised

base in argumentation theory. Its well-established semantics offers a robust and

reliable foundation, upon which further advancements, such as those proposed in

this thesis, can be built. This compatibility is not merely a matter of convenience;

it is a strategic choice that allows the enhanced ASPIC+ framework to be readily

integrated into and compared with the existing body of work in the field.

Secondly, Dung’s semantics are valued for their flexibility, a characteristic cru-

cial in a field as diverse as argumentation theory. The ability to apply concepts

across various domains and scenarios is a testament to the versatility of Dung’s

framework. By maintaining compatibility with these semantics, our enhanced

framework inherits this adaptability, allowing it to be effectively employed in meta-

argumentative contexts. This flexibility opens the door to multifaceted applica-

tions without necessitating extensive modifications or adaptations.

The decision to maintain compatibility with Dung’s semantics also has practical

CHAPTER 1. INTRODUCTION 3

and academic implications. In the academic realm, it ensures that our contribu-

tions are grounded in a widely accepted paradigm, facilitating broader acceptance

and application. From a practical standpoint, the flexibility afforded by Dung’s

semantics means our framework can be applied to a range of real-world scenarios,

enhancing its relevance and utility. The overall goal is to ensure that the advance-

ments made in this thesis are not only theoretically sound and innovative but also

practically applicable and relevant within the established traditions and future

directions of argumentation theory. This approach exemplifies a balanced pursuit

of innovation while respecting and building upon the foundational work that has

shaped the field.

Until now, the discussion has primarily concentrated on theoretical advance-

ments. However, it is fundamental not to overlook the technological perspective

that plays a crucial role in this discourse. Thomas Edison famously once stated,

“Vision without execution is just hallucination”. Applying this perspective to the

technological advancements in the Argumentation field reveals a somewhat dis-

heartening reality. Despite the numerous and varied formal contributions made

over the years, the resulting technologies have often struggled to match the rapid

pace of innovation in this area. While the term “hallucination” might seem overly

harsh, it is fair to say that the concept of a logic-based, technically mature envi-

ronment for argumentation in intelligent systems has, until now, largely remained

an elusive dream.

To balance this focus, there has been a marked focus on developing a stable

and user-friendly framework capable of integrating all the formal contributions

amassed during the course of this doctoral research. This emphasis aims at trans-

forming the vision of advanced argumentation technologies into a tangible and

practical reality, bridging the gap between theoretical innovation and functional

application. By presenting the Arg2P framework, the thesis addresses the gap

identified in the technological landscape of argumentation technologies. Designed

to be neutral with respect to the underlying argumentation theory, Arg2P offers

a versatile and flexible environment for integrating new theoretical contributions.

The framework is tailored to fit advanced application scenarios in intelligent sys-

tems, including pervasive intelligent systems and the Internet of Things (IoT).

It embodies key features of micro-intelligence, such as customisation of inference

4 CHAPTER 1. INTRODUCTION

methods, situational awareness, and the capability to operate effectively at the

micro-level across various contexts and architectures, and it is developed in line

with current software engineering standards. Its modular architecture promotes

system openness and ease of extension, aligning with the requirements of continu-

ous integration and continuous delivery (CI/CD) practices. This design approach

ensures that Arg2P is not just technically robust but also adaptable and scalable,

meeting the evolving demands of modern intelligent systems.

There have been many issues to consider while trying to bridge the gap between

the formal theoretical results in argumentation theory and their practical applica-

tions. Indeed, Argumentation, while rich in academic exploration and theoretical

complexity, often grapples with practical implementation challenges, particularly

in the integration of formal systems into everyday technological applications. The

intricate nature of formal argumentation, with its web of premises, conclusions,

and rebuttals, poses significant computational challenges. These challenges are

heightened by the need to integrate these formal systems into contemporary tech-

nological environments, which are diverse and ubiquitous. The primary challenge,

therefore, is to develop a compromise that allows the rigorous results of argumen-

tation theory to be effectively and efficiently applied in practical scenarios. To

address this, the thesis explores the modification of argumentation mechanisms to

meet the requirements of real-world applications. This includes examining how

the resolution process can be distributed and potentially simplified without com-

promising the theoretical integrity of the arguments. A key focus is on developing

algorithms that are both theoretically sound and practically viable, capable of

operating within the constraints of real-world computational environments.

As we transition from the more technical aspects of this thesis to its applica-

tion in legal reasoning, it becomes evident that the innovations and advancements

made in structured meta-argumentation and the Arg2P framework have signifi-

cant implications in the legal domain. The journey from theoretical constructs

and algorithmic developments to practical implementations is crucial, especially

when considering that legal reasoning stands as one of the primary goals of this

research. The intricate balance between theoretical rigour and practical applica-

bility is of paramount importance in the legal field, where the precision and clarity

of argumentation models directly impact the effectiveness and fairness of legal

CHAPTER 1. INTRODUCTION 5

outcomes.

The application of the presented argumentation techniques in legal AI is not

merely an extension of their technical capabilities but a vital test of their rele-

vance and efficacy in real-world scenarios. Legal reasoning requires a framework

that not only supports complex argumentative structures but also aligns with the

nuanced and often intricate nature of legal discourse. The enhancements made

in the ASPIC+ framework, particularly in areas such as the burden of persuasion

and conflict resolution, along with the adaptability and robustness of the Arg2P

technology, offer new avenues for legal analysis and decision-making. These ad-

vancements provide the tools necessary for addressing the unique challenges of

legal argumentation, including the interpretation of laws, evaluation of evidence,

and resolution of disputes.

In essence, the transition to the application of these technologies in legal AI

symbolises a crucial phase in this thesis. It underscores the practical significance

of the research, demonstrating how theoretical models and technological innova-

tions can converge to enhance the field of legal reasoning. Indeed, the formal

advancements in the meta-argumentation model have shown a profound connec-

tion with legal reasoning. Chapter 6 illustrates how the meta-model facilitates

nuanced analysis and interpretation of legal texts, especially focusing on legal in-

terpretation. By applying the meta-model to interpretive challenges commonly

faced in legal practice, such as conflicting precedents or ambiguous statutory lan-

guage, the model demonstrates its capability to provide clarity and structure in

complex interpretive tasks.

Following the focus on legal interpretation, the thesis shifts to illustrate the

integration of our Arg2P technology into legal reasoning processes, showcasing the

adaptability of our approach in handling the dynamic and multifaceted nature of

legal problems. Through examples and case studies, the thesis demonstrates how

Arg2P technology can help analyse representing and dealing with legal knowledge,

enhancing the depth and clarity of traditional legal analysis and offering innovative

solutions to longstanding legal challenges.

As we progress into the final chapters of the thesis, a pivotal shift in focus

emerges, transitioning from the realms of pure symbolic AI to the burgeoning field

of machine learning. This shift is reflective of a broader trend in the AI landscape,

6 CHAPTER 1. INTRODUCTION

where the emphasis is increasingly on the integration and application of ML tech-

niques. While symbolic AI, with its roots in logic, has laid a solid foundation, the

advent of ML brings forth new paradigms, challenges, and opportunities, partic-

ularly in domains as critical as legal AI. Indeed, the evolution from symbolic AI

to ML signifies a significant departure in approach and methodology. Symbolic

AI, characterised by rule-based systems and logical reasoning, excels in scenarios

where clear, well-defined rules and structured data prevail. However, the emer-

gence of ML has opened new avenues for handling complex, unstructured data,

learning from patterns, and making predictions, areas where traditional symbolic

methods may falter. This transition is not just a technical progression but also

a conceptual shift, demanding a reevaluation of existing frameworks and the de-

velopment of new paradigms that can effectively harness the power of ML while

addressing its inherent challenges.

In the legal domain, this shift is particularly consequential. The application of

ML in legal settings offers promising avenues for predictive analysis, case outcome

forecasting, and processing vast amounts of legal data. However, it also raises crit-

ical ethical considerations, such as bias, transparency, and accountability. These

ethical concerns are not just peripheral issues but are central to the integrity and

fairness of legal AI systems. Dealing with these issues involves documenting how

data is sourced, how models are selected and trained, and how decisions are made.

Such transparency is particularly vital in the legal field, where the reasons behind

a decision can be as important as the decision itself. On top of that, these exact

concerns have been raised also at a regulatory level with the European Union’s AI

Act, which stresses the safety, transparency, and accountability of all AI systems.

In the depicted context, automated machine learning (AutoML) has been in-

troduced to automate the end-to-end process of applying machine learning to real-

world problems. In a typical machine learning application, several steps are in-

volved, including data preprocessing, model selection, and hyperparameter tuning.

These steps are often complex and require significant domain expertise, making

them extremely challenging. AutoML aims at simplifying these processes, making

machine learning more accessible and efficient. Chapter 7 proposes a new approach

to AutoML based on Structured Argumentation to provide Data Scientists with a

symbolic interface for incorporating their expertise and navigate the development

CHAPTER 1. INTRODUCTION 7

of ML systems in a manner that is both transparent and under control. By weaving

argumentation techniques into the fabric of ML systems, developers and users are

equipped with deeper insights into the reasoning processes of these systems. This

integration ensures that the decision-making mechanisms of ML systems adhere to

developers’ desiderata, thus leading to an enhanced reliability and trustworthiness

of the produced ML applications. The model is implemented by exploiting Arg2P

as the core argumentation technology, thereby offering a tangible demonstration

not just of the versatility and effectiveness of this innovative argumentation tech-

nology, but also of the vast potential inherent in the integration of argumentation

and ML.

In conclusion, this thesis provides several significant contributions to the fields

of argumentation theory and legal AI, articulated across its chapters. Chapter

3 focuses on enhancing the ASPIC+ framework, introducing structured meta-

argumentation to address its limitations in reasoning about rules, conflicts, and

preferences. This is further enriched by integrating the concept of the burden of

persuasion in the model, thereby expanding the framework’s applicability in legal

reasoning. Chapter 4 transitions into the practical applications of these theo-

retical advancements by introducing novel argumentation mechanisms to improve

efficiency in real-world environments, and Chapter 5 showcases the development of

a new argumentation technology, the Arg2P framework. Chapter 6 demonstrates

the practical feasibility and adaptability of the newly introduced formal models

and technology in the legal AI area. Finally, Chapter 7 moves the shift towards

machine learning and proposes the use of structured argumentation as a tool to

help AutoML development, highlighting its potential to bring transparency and

control to ML processes.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Background

This thesis is anchored on the exploration of two intertwined domains: formal

argumentation and the technological reifications of formal argumentation mod-

els. The background chapter is aimed at laying a solid foundation in these areas,

providing the reader with the fundamental notions essential for a comprehensive

understanding of these fields. Each section within this chapter is dedicated to one

of these subjects.

The first section delves into the domain of formal argumentation. Here, we give

the fundamental notions of both abstract and structured argumentation frame-

works, with a special focus on the ASPIC+ framework and on meta-argumentation

models. The section aims to elucidate the principles and mechanisms underlying

formal argumentation, setting the stage for subsequent discussions on their prac-

tical applications and technological embodiments.

In the second section, we transition from theoretical frameworks to the tech-

nological reifications of formal argumentation models. This part of the chapter

focuses on how theoretical constructs in argumentation have been concretized and

implemented in various technologies.

The final section introduces the concept of automated machine learning (Au-

toML). This segment serves as a primer to AutoML, outlining its fundamental

principles, methodologies, and its role in the field of machine learning. The inclu-

sion of AutoML in this background chapter is strategic, as it prepares the ground

for its significant involvement in later chapters, especially in relation to structured

CHAPTER 2. BACKGROUND 9

2.1. ARGUMENTATION

argumentation.

2.1 Argumentation

Logic is defined as the abstract study of statements, sentences and deductive argu-

ments [Paulson, 2018]. From its birth, it has been developed and improved widely,

now including a variety of formalisms and technologies.

Argumentation is a well-known formal tool for handling conflicting information

(e.g., opinions and empirical data). In abstract argumentation [Dung, 1995a], a

scenario (e.g., a legal case) can be represented by a directed graph. Each node

represents an argument, and each edge denotes an attack by one argument on

another. Each argument is regarded as atomic. There is no internal structure to

an argument. Also, there is no specification of what is an argument or an attack. A

graph can then be analyzed to determine which arguments are acceptable according

to some general criteria (i.e., semantics) [Baroni et al., 2011a].

Let us start by defining a generic argumentation framework. This introduction

has two purposes: (i) to give the reader with no knowledge in the formal argu-

mentation field an idea of its main concepts and notions, (ii) to serve as a basis

for the analysis contained in next chapters. For a more complete introduction we

invite the reader to consult the vast amount of available literature on the argument

[Baroni et al., 2018, Besnard et al., 2014b].

We first introduce the notion of argumentation framework and semantics ac-

cording to Dung’s original work [Dung, 1995b].

Definition 1 (Argumentation framework). An argumentation framework AF is a

tuple < A,⇝>, where A is a set of arguments and ⇝ is a binary relation (attack

relation) over A× A. We write X ⇝ Y for (X, Y) ∈⇝.

The semantics – i.e., the way we use to give meaning to a framework – for an

argumentation framework is defined as follows .

Definition 2 (Semantics). Let < A,⇝> be an AF and S ⊆ A. S is conflict free

iff there are no A,B ∈ S such that A⇝ B. For any X ∈ A, X is acceptable with

respect to S ⊆ A iff ∀Y ∈ A, Y ⇝ X implies that ∃Z ∈ S s.t. Z ⇝ Y . Then:

10 CHAPTER 2. BACKGROUND

2.1. ARGUMENTATION

• S is an admissible extension iff X ∈ S implies that X is acceptable w.r.t. S;

• S is a complete extension iff X ∈ S whenever X is acceptable w.r.t. S;

• S is the grounded extension iff S is the set-inclusion minimal complete ex-

tension;

• S is a stable extension iff attacks every argument that does not belong in it;

A labelling-based definition of original Dung’s semantics has also been provided

[Baroni et al., 2011b]. Accordingly, each argument is associated with one label

which is either IN, OUT, or UND—respectively meaning that the argument is either

accepted, rejected, or undecided. Given a labelling for a framework, a IN, OUT, UND

labelling for the statements claimed by the arguments in the graph can be also

derived.

A way to link abstract argumentation and logical formalisms has been advanced

in the field of structured argumentation [Besnard et al., 2014b], where we assume

a formal logical language for representing knowledge (i.e., a LogicalKB) and for

specifying how arguments and conflicts (i.e., attacks) can be derived from that

knowledge. In the structured approach, the premises and claims of the argument

are made explicit, and the relationship between them is formally defined through

rules internal to the formalism. We can build the notion of attack as a binary

relation over structured arguments that denotes when one argument is in conflict

with another (e.g., contradictory claims or premises). One of the main frameworks

for structured argumentation is ASPIC+[Modgil and Prakken, 2014a]. In this for-

malism, arguments are built with two kinds of inference rules: strict rules, whose

premises guarantee their conclusion, and defeasible rules, whose premises only cre-

ate a presumption in favor of their conclusion. Then conflicts between arguments

can arise from both inconsistencies in the LogicalKB and the defeasibility of the

reasoning steps in an argument (i.e., a defeasible rule used in reaching a certain

conclusion from a set of premises can also be attacked).

Let us introduce the main definitions of the ASPIC+ framework.

We start with the Argumentation system, i.e., the structure containing all the

elements that give to a derived framework its shape.

CHAPTER 2. BACKGROUND 11

2.1. ARGUMENTATION

Definition 3 (Argumentation system). An argumentation system is a quadruple

AS=< L,R, n,▷ > where:

• L is a logical language;

• R = Rs ∪ Rd is a set of rules. Rd is a set of defeasible rules in the form

ϕ0, ..., ϕn ⇒ ϕ, Rs is a set of strict rules in the form ϕ0, . . . , ϕn → ϕ, where

ϕ0, . . . , ϕn, ϕ are well-formed formulae in the L language;

• n is a naming function of the form n : R 7→ L

• ▷ is a non-symmetrical conflict relation over L × L. We write ϕ ▷ ψ for

(ϕ, ψ) ∈ ▷.

Then we have a Knowledge base containing both the axioms and the defeasible

premises at the base of every argument built in the structured framework.

Definition 4 (Knowledge base). A knowledge base for an AS=< L,R, n,▷ > is a

set K ⊆ L consisting of two disjoint subsets Ks (the axioms) and Kp (the ordinary

premises).

The union of an Argumentation System and a Knowledge Base produces an

Argumentation Theory .

Definition 5 (Argumentation theory). An argumentation theory is a tuple AT=<

AS,K > where AS is an argumentation system and K is a knowledge base in AS.

Given an argumentation theory, by chaining rules from the theory

we can construct arguments, as specified in the following definition; cf.

[Caminada and Amgoud, 2007a, Modgil and Prakken, 2014b, Vreeswijk, 1997a].

Definition 6 (Argument). Starting from an argumentation theory AT=<

AS,K >, an argument A is any structure obtained by applying the following steps

a finite number of times

1. ϕ if ϕ ∈ K with:

• Prem(A)={ϕ},

12 CHAPTER 2. BACKGROUND

2.1. ARGUMENTATION

• Conc(A)=ϕ,

• Sub(A)={ϕ},

• DefRules(A)=∅,

• TopRule(A)=undefined

2. A1, . . . , An ⇒ ψ if A1, . . . , An are arguments s.t. ∃ a rule r =

Conc(A1), . . . , Conc(An)⇒ ψ ∈ Rd.

• Prem(A)=Prem(A1) ∪ . . . ∪ Prem(An),

• Conc(A)=ψ,

• Sub(A)=Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A},

• TopRule(A)=r,

• DefRules(A)=DefRules(A1) ∪ . . . ∪DefRules(An) ∪ {r}

3. A1, . . . , An → ψ if A1, . . . , An are arguments s.t. ∃ a rule r =

Conc(A1), . . . , Conc(An)→ ψ ∈ Rs.

• Prem(A)=Prem(A1) ∪ . . . ∪ Prem(An),

• Conc(A)=ψ,

• Sub(A)=Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A},

• TopRule(A)=r,

• DefRules(A)=DefRules(A1) ∪ . . . ∪DefRules(An)

Given an argument A we write:

• Prem(A), for the set of ordinary premises from Kp used in the argument;

• Conc(A), for the conclusion of the argument;

• Sub(A), for the set of arguments supporting A’s conclusion;

• DefRules(A), for the set of rules in Rd used to build the argument;

• TopRule(A), for the rule from R used in A’s last inference step.

CHAPTER 2. BACKGROUND 13

2.1. ARGUMENTATION

The first condition deals with arguments generated using the knowledge base

K. Using the second and third ones we can recursively apply rules from R on the

generated arguments to generate new arguments.

We can produce attacks starting from arguments using the notion of conflict

for an argumentation language L:

Definition 7 (Direct attack). An argument A directly attacks an argument B iff

A directly undercuts, directly undermines or directly rebuts B where:

• A directly undercuts B iff Conc(A)▷ n(TopRule(B));

• A directly rebuts argument B iff Conc(A)▷Conc(B) and TopRule(B) ∈ Rd;

• A directly undermines argument B iff B ∈ Kp and Conc(A)▷B

Definition 8 (Attack). We say that argument A attacks argument B if A directly

attacks B′ ∈ Sub(B).

Then we can build an abstract argumentation framework as:

Definition 9 (Abstract argumentation framework). Let AT be an argumentation

theory < AS,K >. An abstract argumentation framework defined by AT , is a

tuple < A,⇝> where:

• A is the set of all arguments constructed from AT according to Definition 6;

• for any arguments X and Y ∈ A, X ⇝ Y iff X attacks Y

2.1.1 Meta-Argumentation

Modgil & Bench-Capon [Modgil and Bench-Capon, 2011] introduce the notion of

meta-level argumentation frameworks. The arguments of meta-level argumen-

tation frameworks make claims about object-level abstract argumentation frame-

works according to the theory of such frameworks, for example, “A is in a preferred

extension of AF” or “argument A in AF defeats argument B in AF”. Constraints

are formulated on the attacks of the meta-level framework to ensure that such

statements are correct with respect to the object level. For example, “y defeats x”

attacks “x is justified”. This allows the formalisation of Dung’s theory of abstract

14 CHAPTER 2. BACKGROUND

2.1. ARGUMENTATION

argumentation frameworks in meta-level argumentation frameworks that have the

same semantics as Dung’s original frameworks. Moreover, Modgil & Bench-Capon

show that the same approach can be used to formalise variants of Dung-style argu-

mentation frameworks, such as preference- and value based AFs and extended AFs.

In a similar way, Boella & al. [Boella et al., 2009b] develop a general methodology

for instantiating Dung’s original argumentation frameworks starting from extended

argumentation frameworks through a flattening technique—comparably to what

is done in [Gabbay, 2009]. The resulting framework operates on meta-arguments,

for example in the form “argument A is accepted” while remaining in the formal

framework of Dung’s argumentation theory. While these approaches are theoreti-

cally very interesting, they do not specify the structure of arguments at the object

level and therefore seem less suitable for knowledge representation.

Moving beyond abstract argumentation, [Olivieri et al., 2021] introduces a

variant of defeasible logic, Defeasible Meta-Logic, to represent defeasible meta-

theories, by proposing algorithms to compute the (meta-)extensions of such theo-

ries, and by proving their computational complexity.

Wooldridge & al. [Wooldridge et al., 2005] develop a completely different ap-

proach for dealing with the meta-argumentative nature of argument systems. The

work proposes a hierarchical first-order meta-logic, producing a three tiers argu-

ment system. Level 0 contains statements on the object domain, level 1 introduces

the notion of arguments and acceptability, while level 2 is used to reason on the

structure of arguments and their relations. This formalism – because of the re-

quired hierarchical representation –, although enabling a clear separation between

meta- and object- level concepts, could result in decreased flexibility in the for-

malisation of the knowledge in the system.

A similar line of work based on the idea of using a multi-level argumen-

tation system is available in the work from Müller & al. [Müller et al., 2013,

Ogunniye et al., 2018]. In particular, the first formalisation of meta-

argumentation synthesising bimodal graphs, structured argumentation, and argu-

ment schemes in a unique framework is presented in [Müller et al., 2013]. There,

a formal definition of the meta-ASPIC framework is provided as a model for rep-

resenting object arguments.

We now recall the main definitions of bimodal graphs as introduced by Müller

CHAPTER 2. BACKGROUND 15

2.1. ARGUMENTATION

& al. [Müller et al., 2013] as they will be used in the next chapters. Bimodal

graphs make it possible to capture scenarios where arguments are categorised in

multiple levels—two in our case, the object and the meta level. Accordingly, a

bimodal graph is composed of two components: an argumentation graph for the

meta level and an argumentation graph for the object level, along with a relation

of support that originates from the meta level and targets attacks and arguments

on the object level. Every object-level argument and every object-level attack is

supported by at least one meta-level argument. Meta-level arguments can only

attack meta-level arguments, and object-level arguments can only attack object-

level arguments.

Definition 10 (Bimodal argumentation graph). A bimodal argumentation

graph is a tuple ⟨AO,AM ,RO,RM ,SA,SR⟩ where

1. AO is the set of object-level arguments

2. AM is the set of meta-level arguments

3. RO ⊆ AO ×AO represents the set of object-level attacks

4. RM ⊆ AM ×AM represents the set of meta-level attacks

5. SA ⊆ AM×AO represents the set of supports from meta-level arguments into

object-level arguments

6. SR ⊆ AM×RO represents the set of supports from meta-level arguments into

object-level attacks

7. AO ∩ AM = ∅

8. ∀A ∈ AO ∃ B ∈ AM : (B,A) ∈ SA

9. ∀R ∈ RO ∃ B ∈ AM : (B,R) ∈ SR

The object-level argument graph is represented by the couple (AO,RO), while

the meta-level argument graph is represented by the couple (AM ,RM). The two

distinct components are connected by the support relations represented by SA
and SR. These supports are the only structural interaction between the meta and

16 CHAPTER 2. BACKGROUND

2.1. ARGUMENTATION

the object levels. Condition (8) above ensures that every object-level argument is

supported by at least one meta-level argument, whereas condition (9) ensures that

every object-level attack is supported by at least one meta-level argument.

Perspectives of the object-level graph can be defined as:

Definition 11 (Perspective). Let G = ⟨AO,AM ,RO,RM ,SA,SR⟩ be a bimodal

argumentation graph and let LS be a labelling semantics. A tuple ⟨A′
O,R′

O⟩ is an

LS-perspective of G if ∃ l ∈ LS(⟨AM ,RM⟩) such that

• A′
O = { A|∃B ∈ AM s.t. l(B) = IN, (B,A) ∈ SA}

• R′
O = { R|∃B ∈ AM s.t. l(B) = IN, (B,R) ∈ SR}

Consequently, an object argument may occur in one perspective and not in another

according to the results yielded by the meta-level argumentation graph. Under this

setting, the role of conditions (8) and (9) becomes clear: every element in a lower

level must be relevant w.r.t. the meta-level argumentation process—i.e. we can

not have arguments that in no case can be part of a perspective.

Along the same line, bimodal graphs are exploited in [Ogunniye et al., 2018]

for dealing with arguments sources’ trust. In [Ogunniye et al., 2018] ASPIC+ is

used instead of meta-ASPIC at the object level and on a set of meta-predicates

related to the object level arguments and the schemes in the meta level. Both

[Müller et al., 2013] and [Ogunniye et al., 2018] use critical questions as the source

of attacks at the meta level.

An interesting connection could be drowned with the multi-sorted argumenta-

tion networks proposed in [Rienstra et al., 2011], and their reification in the modal

fibring approach from [Barringer et al., 2012]. The main idea of their work is to

allow different parts of a framework – called cells – to be evaluated under dif-

ferent semantics. In a nutshell, a set of arguments is a multi-sorted extension

only if it is the union of the extensions computed on the qualified arguments –

i.e., argument not defeated and defended from attacks coming from other cells

– of the single cells composing the framework. The modal fibring approach from

[Barringer et al., 2012] allows every cell to be represented as a separate argumenta-

tion framework, with possibility modality used to express inter-cell attacks within

these frameworks. Their work could appear similar to the bimodal approach in

CHAPTER 2. BACKGROUND 17

2.2. ARGUMENTATION TECHNOLOGIES

the way different graphs are used to derive the final results, but there is an impor-

tant difference to consider: the nature of the relation used to connect the different

graphs. Bimodal graphs exploit a support relation to model the dependency of

an N-level argument on an N+1-level argument, while multi-sorted networks are

based on inter-cell attacks.

In the context of meta-argumentation, there is long line of work dealing

with argumentation frameworks that allow for arguments about preferences. In

[Prakken and Sartor, 1996] conflicts between mutually rebutting arguments are

decided by preferences, which are established by arguments included in the same

argumentation framework. A fix-point semantics is used to compute extensions

including preference arguments.

Reasoning about preferences has been recently modelled by introducing a

preference-based attack against attacks [Modgil and Prakken, 2010]. Dung & al.

[Dung et al., 2019] expands this idea, by having a framework that includes attack

arguments, as well as preference attack arguments against attacks. In this way,

the framework obtained can be evaluated by using standard Dung semantics.

Despite all this interesting work, a widely acknowledged meta-argumentation

framework has not yet been defined.

2.2 Argumentation Technologies

In the ever-evolving landscape of technology and innovation, a crucial transition

occurs when we move from the realm of theoretical argumentation to the tangible

realm of technological reifications. This section aims to bridge the gap between

abstract ideas and their practical manifestations in the world of technology.

Theoretical argumentation lays the groundwork, providing a solid foundation

of concepts, theories, and principles, offering a lens through which we can under-

stand potential technological advancements, foresee challenges, and imagine future

possibilities.

However, the true impact of these ideas is only felt when we step into the world

of technological reifications. This is where theory meets practice, where ideas are

transformed into concrete applications that shape our daily lives. Technological

reifications embody the practical implementation of theoretical concepts, turning

18 CHAPTER 2. BACKGROUND

2.2. ARGUMENTATION TECHNOLOGIES

abstract notions into real-world solutions and innovations.

In this section, we will explore how theoretical concepts have been reified in

various technological advancements.

2.2.1 Abstract argumentation

The recent landscape of computational argumentation dates back to Dung’s foun-

dational work on abstract argumentation theory [Dung, 1995a]. Most of the re-

search efforts in the area have dwelled in the development of technologies based

on the original Dung’s work. Among the others, notable examples are Argu-

Lab [Podlaszewski et al., 2011] – exposing a direct implementation of labelling

algorithms and aimed at the application in the context of MAS –, ASPARTIX

[Dvorák et al., 2020] – based on an answer set programming (ASP) encoding of

the argumentation problem –, ConArg [Bistarelli and Santini, 2011] – a constraint-

based framework –, and µ-toksia [Niskanen and Järvisalo, 2020]—based on SAT-

solver and winner of the last ICCMA competition. Generally speaking, this strand

of works focuses on the issues of complexity and efficiency intrinsic to argumen-

tation theory. Recently, the International Competition on Computational Models

of Argumentation (ICCMA)1 has contributed to increase the general interest in

those sorts of problems.

However, the abstract argumentation perspective is strongly biased towards

a view wherein the overall aim of argumentation is about deciding the status of

some claim and providing a justification for it, where the nature of “justification”

is often tailored to some logical reasoning process. Generally speaking, argumen-

tation is seen there as a somewhat one-sided process in which a single party merely

presents a reasoned justification to a given claim. In many applications scenar-

ios this can be enough, as for instance in decision-support or explanation-driven

systems [Bench-Capon et al., 1993]. However, a generally-acknowledged objection

to these sorts of approaches is that they totally fail to embrace the dialectical

nature of argumentation as a full-fledged discourse and debate, which mostly fits

real-world application scenarios—such as the legal ones. There, argumentation

is seldom a matter of a single party defending a claim: instead, it is usually an

1http://argumentationcompetition.org

CHAPTER 2. BACKGROUND 19

http://argumentationcompetition.org

2.2. ARGUMENTATION TECHNOLOGIES

informed exchange of ideas and positions involving many different contributors.

It is then perhaps surprising that the significant computational exploitation of

well-established models for dialogue within philosophical, rhetorical, and linguis-

tic analyses is just a relatively-recent phenomenon.

Although originally explored to a limited extent as a means for interacting with

expert systems, the significant factor motivating nowadays the computational use

of dialogue methods in argumentation can be found in supporting MAS applica-

tions, where the structured argumentation approach [Besnard et al., 2014c] seems

to be most appropriate [Kok et al., 2012]. Indeed, abstract argumentation pro-

vides for a formal model that can hardly be separated from the data structures

– that is, their representation and their interaction with the surrounding context

– in real contexts. In fact, the application scenario heavily affects the dialogue

and its outcome. Abstract models – and related tools – remain however inter-

esting from the foundational perspective: efficient solvers can be exploited and

integrated into structured contexts where the dialogue-based interaction of the

argumentative process plays a more visible role.

2.2.2 Structured argumentation

In the field of structured argumentation, technological developments have not

grown as fast as theoretical ones. Different models and approaches can be

found, and a standard has not emerged yet. Moreover, technology reification

is often neither up-to-date nor easily reachable. In general, works in this area

can be categorised based on two main features: (i) their operation – namely,

Dung’s reduction or structural reasoning – and (ii) their reference model—

namely, DeLP [Garćıa and Simari, 2004], Carneades [Gordon et al., 2007], ABA

[Toni, 2014], and ASPIC [Modgil and Prakken, 2014a]. Dung’s reduction labels

those systems performing a mapping from the structured knowledge to an ab-

stract framework in order to decide the admissibility of the arguments. On the

other hand, structural reasoning tools do not exploit Dung’s model: instead, they

implement other algorithms to set the state of the arguments. In the following we

briefly highlight the main features of each category.

20 CHAPTER 2. BACKGROUND

2.2. ARGUMENTATION TECHNOLOGIES

DeLP. DeLP is the oldest one, and comes with a reference implementation2,

also available on the Tweety library.3 However, the tool is quite aged and lays

unmaintained on the website. The DeLP computational model is inherently struc-

tural, but contains many limitations in terms of abstraction, in particular when

compared to the other models. Other interesting extensions have been proposed in

the years [Alsinet et al., 2010, Alsinet et al., 2012], but no mature implementation

has emerged.

Carneades. The Carneades technology exposes an implementation of its model

[Gordon and Walton, 2016] offering both Dung’s abstract reasoning and structural

reasoning.4 From a technological point of view, it is one of the best solutions

that can be found. Written in Go 5 and with a recent implementation (even

though not recently updated), Carneades is distributed as a web application and

allows evaluations both in terms of Dung’s model and according to their structured

evaluator. Carneades represents a very promising technology: yet, further efforts

should be devoted to make it practical and effective within the aforementioned

challenging AI context.

ABA. In the ABA category one can find both systems belonging to the structural

reasoning strand – such as proxdd [Toni, 2013], abagraph [Craven and Toni, 2016]

and grapharg [Craven et al., 2013]6 – and to the abstract reductionist strand—

such as ABAplus7 and [Lehtonen et al., 2017]. ABAplus [Bao et al., 2017] exploits

ASPARTIX as its abstract solver, and offers a pure propositional language to

encode the knowledge: it does not deal with preferences over rules, and it only

supports preferences over assumptions. Structural reasoning tools leverage the

dispute derivations algorithm, an efficient algorithm to avoid the construction

of the entire argumentation graph in the evaluation of the acceptability of an

argument. Overall, it represents a promising framework for AI applications, even

2http://lidia.cs.uns.edu.ar/delp_client/
3http://tweetyproject.org/
4http://carneades.fokus.fraunhofer.de/carneades/
5http://golang.org/
6http://robertcraven.org/proarg/
7http://www-abaplus.doc.ic.ac.uk/

CHAPTER 2. BACKGROUND 21

http://lidia.cs.uns.edu.ar/delp_client/
http://tweetyproject.org/
http://carneades.fokus.fraunhofer.de/carneades/
http://golang.org/
http://robertcraven.org/proarg/
http://www-abaplus.doc.ic.ac.uk/

2.3. AUTOMATED MACHINE LEARNING

though not reified in a ready-to-use technology for AI pervasive MAS—in short,

the tool is just a prototype.

ASPIC. Finally, ASPIC is one of the most flexible frameworks – in terms

of the abstraction it provides – in the structured argumentation area and

for sure the most widely known: it allows for the representation of all the

main argumentation abstractions and provides all the most common semantics

for argument evaluation. A number of works demonstrate how others mod-

els can be reformulated as an ASPIC instantiation [Modgil and Prakken, 2014a,

van Gijzel and Prakken, 2012, Garćıa et al., 2020]. The main implementations

available (Toast) [Snaith and Reed, 2012] is based on an abstract reductionist

approach exploiting Dung-O-Matic8 as its base solver. There have been some

attempts to perform structural reasoning in MAS exploiting ASPIC: among the

others, notable examples are Argue tuProlog [Bryant et al., 2006] and the ASPIC

Argumentation Engine9; yet, the resulting technologies can be classified as just

proofs of concept.

Overall, from a technological perspective, many improvements are required in

order to make existing tools really usable and effective in a distributed environ-

ment, as well as properly documented and easily deployable. For these reasons, a

new trend has recently emerged in the argumentation field, also in relation to ex-

plainability. For instance, [Lehtonen et al., 2020] discusses how a direct declarative

approach based on ASP can be developed, whereas [Caminada and Uebis, 2020] –

implementing [Caminada, 2015] – shows how argument-based entailment can be

brought closer to human intuition, by proposing the use of formal discussion as a

bridge technology.

2.3 Automated Machine Learning

Given a machine learning task to solve, the Data Scientist (DS) collects raw data

in arbitrary formats, builds up knowledge on both the problem and the data,

translates such knowledge into constraints, designs and trains a model, and finally

8http://arg-tech.org/index.php/projects/dung-o-matic/
9http://webspace.science.uu.nl/~prakk101/aspic/

22 CHAPTER 2. BACKGROUND

http://arg-tech.org/index.php/projects/dung-o-matic/
http://webspace.science.uu.nl/~prakk101/aspic/

2.3. AUTOMATED MACHINE LEARNING

deploys the solution. Such a solution consists of a ML pipeline: a sequence of Data

Pre-processing transformations ending with an ML task. The DS instantiates the

pipeline among a large set of algorithms, which, in turn, can potentially have many

hyperparameters. The accuracy of the deployed solution depends on finding both

the best algorithms along with their hyperparameters within an exponential search

space.

Automated machine learning (AutoML) tools assist the DS in finding such an

ML pipeline. They leverage state-of-the-art optimization approaches to smartly

explore huge search spaces of solutions. AutoML has been demonstrated to provide

accurate performance, even in a limited time/iteration budget. In the early days,

only the optimization of the ML task was addressed (but no pre-preprocessing).

Auto-Weka [Kotthoff et al., 2019] formalized the problem as “combined algorithm

selection and hyperparameter optimization”: various ML algorithms and hyper-

parameters are tested over a dataset to find the most performing configuration.

Such optimization was successfully implemented by leveraging Bayesian optimiza-

tion [Frazier, 2018], a sequential strategy for global optimization: until a limit

(budget) of iterations or time is reached, an increasingly accurate model is built

on top of the previously explored configurations.

Recently, AutoML is no longer limited to optimizing just the ML task, but

it also includes Data Pre-processing [Giovanelli et al., 2021b, Quemy, 2019]. In

doing so, Auto-sklearn [Feurer et al., 2019] fixes the arrangement of the trans-

formations a priori, without considering that the most performing arrangement

changes according to the problem and dataset at hand. However, considering sev-

eral arrangements translates into larger search spaces that are not easy to explore.

Several improvements have been made to let AutoML tools explore as many

configurations as possible. Multi-fidelity methods [Falkner et al., 2018] (i.e., the

use of several partial estimations to boost the time-consuming evaluation pro-

cess) have been exploited. Meta-learning leverages the previous performance of

pipeline instances on a wide range of different datasets to provide several recom-

mendations for the dataset at hand, such as promising pipeline instances (possibly

acting as an alternative to Bayesian optimization) and search spaces producing

good performance. Yet, meta-learning per se performs poorly, because it provides

coarse-grained recommendations, while it is beneficial in warm-starting Bayesian

CHAPTER 2. BACKGROUND 23

2.3. AUTOMATED MACHINE LEARNING

optimization (i.e., the suggested pipeline instances are visited at the beginning to

boost the convergence process).

2.3.1 Towards Human-centered AutoML Approaches

As of now, the DS role in AutoML is limited to choosing the dataset to analyze, the

validation technique (e.g., cross validation, hold out), and the metric to optimize

(e.g., accuracy, F1 score). AutoML researchers aim at making ML accessible to a

wider audience; this has been addressed first by improving automation and now

by improving transparency, which also enables human intervention when needed.

Auto-Weka [Kotthoff et al., 2019] and Auto-Sklearn [Feurer et al., 2019] enables

non-expert users to build ML models, but but it is difficult for them to understand

the inner workings of these models. Indeed, as advocated in [Drozdal et al., 2020],

DSs require to understand the process to trust the proposed solutions. This di-

rection, named “Human-centered AutoML”, is pursued by both researchers and

companies.

As to research contributions, we found plenty of visualization wrappers. In

[Drozdal et al., 2020], the authors raise the need of incorporating transparency

into AutoML: after a session interview, they discover that – out of all their

proposed features – model performance metrics and visualizations are the most

important information to DSs when establishing their trust in the proposed so-

lutions. ATMSeer [Wang et al., 2019b] provides different multi-granularity vi-

sualizations to enable users to monitor the AutoML process and analyze the

searched models. PipelineProfiler [Ono et al., 2021] offers interactive visualiza-

tions of the AutoML outputs and enables the reproducibility of the results through

a Jupiter notebook. Other contributions enhance current AutoML techniques

towards easier human-interactions by: (i) supporting ethic and fair constraints

in Bayesian Optimization through a mathematical encoding [Perrone et al., 2021,

Yaghini et al., 2021]; (ii) simplifying the usage of AutoML with symbolic annota-

tions [Peng et al., 2020] and declarative languages [Kraska et al., 2013]; (iii) sup-

porting fast feed-backs from AutoML (i.e., runs that are less time-consuming)

by leveraging well-known mechanisms of the DBMS (e.g., lineage optimization)

[Vartak et al., 2015, Xin et al., 2018]. Recently, MILE [Lee and Macke, 2020] has

24 CHAPTER 2. BACKGROUND

2.3. AUTOMATED MACHINE LEARNING

proposed to perform AutoML analysis with an end-to-end framework that reflect

a DBMS (i.e., a query language + a lineage optimization).

Companies like Google and IBM are the ones most engaged in boosting the

involvement of the human in the loop. Google Vizer [Golovin et al., 2017] and

Google Facets10 are the two main visualization tools. The former reveals details

of the different hyperparameters tried in the optimization [Golovin et al., 2017],

and the latter focuses on analyzing the output and recognizes biased AI (e.g., ML

models that discriminate on sensible attributes such as gender). As to IBM, Au-

toAI [Wang et al., 2020] and AutoDS [Wang et al., 2021b] are the tools developed

within the MIT-IBMWatson AI Lab. Specifically, the former enables non-technical

users to define and customize their business goals as constraints. The latter as-

sists the DS team throughout the CRISP-DM process (e.g., in data collection and

pipeline design [Muller et al., 2019, Wang et al., 2021b] and in the augmentation

of the DS’s knowledge about the dataset features [Drozdal et al., 2020]).

Overall, several studies have been made to understand the proper design of

a Human-centered AutoML tool. In [Pfisterer et al., 2019], the authors overview

the main AutoML issues; while in [Khuat et al., 2022] authors suggest improve-

ments towards the Human-centered shift. In [Gil et al., 2019, Xin et al., 2021,

Crisan and Fiore-Gartland, 2021], interviews with DSs are conducted to reveal

their perception of AutoML as well as their needs and expectations in the

next-generation tools. The main insight is that the future of data science

work will be a collaboration between humans and AI systems, in which both

automation and human expertise are indispensable [Wang et al., 2019a]. To

this end, AutoML should focus on: simplicity, reproducibility, and reliability

[Xin et al., 2021, Crisan and Fiore-Gartland, 2021].

10https://pair-code.github.io/facets/

CHAPTER 2. BACKGROUND 25

https://pair-code.github.io/facets/

2.3. AUTOMATED MACHINE LEARNING

26 CHAPTER 2. BACKGROUND

Chapter 3

A Meta-Argumentation

Framework

Meta-arguments support conclusions about other arguments, their interaction,

their composition or their evaluation. For instance, a meta-argument may con-

clude that other arguments are in conflict or that one of them is preferred over the

other, or it may provide new rules or facts that can be used in building arguments.

Meta-argumentation has received little attention thus far. As discussed in

[Besnard et al., 2014a] there are various approaches to generate argumentation

frameworks (AFs) in terms of accounts of the structure of arguments and their

relations (e.g. ASPIC+, ABA, classical argumentation, DeLP). However, most

of these approaches regard rule sets, specifications of conflicts and preferences as

given. In the reality of adversarial debate, these things can also be argued about.

Hence the importance of meta-argumentation.

In this pivotal chapter of the thesis, we undertake the endeavor to address

this notable gap in the field of structured meta-argumentation. The focus is to

develop and present a comprehensive framework capable of encapsulating and facil-

itating reasoning about the fundamental elements of the ASPIC+ argumentation

framework. Indeed, the ASPIC+ framework provides a structured approach to

constructing and evaluating arguments. However, there exists a lacuna in its abil-

ity to comprehensively represent and reason about certain critical elements. Our

objective is to bridge this gap by expanding its definition in three key areas:

CHAPTER 3. A META-ARGUMENTATION FRAMEWORK 27

• reasoning about the validity of rules of an argumentation theory, namely,

assessing whether a rule should be generally accepted as appropriate to the

argumentation domain;

• reasoning about the conflict function of an argumentation theory, namely,

assessing whether there is a conflict between two propositions in the argumen-

tation language, i.e., whether the arguments concerning those propositions

are incompatible so that accepting one of them entails rejecting the other;

• reasoning about the validity of preferences, namely, assessing whether a pref-

erence should be used while evaluating the relative strength of two competing

arguments.

The result will be a framework that not only aligns with the theoretical un-

derpinnings of the ASPIC model but also enhances its applicability and relevance

in complex argumentation scenarios. This endeavor is not only a contribution

to the academic discourse in the field but also a step towards practical applica-

tions in areas – e.g. legal reasoning – where advanced argumentation models are

indispensable.

The key point of this entire work is whether this can be done while maintaining

the compatibility with traditional argumentation methods and models—namely,

Dung’s semantics [Dung, 1995b]. Indeed, in the process of enhancing and expand-

ing the ASPIC framework, a crucial decision was made to maintain compatibility

with Dung’s seminal abstract argumentation semantics, rather than constructing

an entirely new, ad-hoc mechanism. This choice, while appearing conservative

at first glance, is rooted in several compelling justifications that align with the

overarching goals of our research and the broader field of argumentation theory.

Firstly, by adhering to Dung’s semantics, we ensure a continuity of theoret-

ical foundations that is vital for the integrity and coherence of argumentation

studies. Dung’s framework, with its well-established semantics, offers a solid and

universally recognised basis upon which further developments can be built. This

compatibility is not merely a matter of convenience but a strategic choice that al-

lows our enhanced framework to be readily integrated and compared with existing

models and applications in the field. It ensures that our contributions are grounded

in a widely accepted paradigm, facilitating broader acceptance and application.

28 CHAPTER 3. A META-ARGUMENTATION FRAMEWORK

Secondly, Dung’s semantics provides a high degree of flexibility, making it

adaptable to a variety of contexts and scenarios. This versatility is crucial in ar-

gumentation theory, where the ability to apply concepts across diverse domains is

highly valued. By maintaining compatibility with these semantics, our framework

inherits this flexibility, allowing it to be effectively employed in different fields,

ranging from artificial intelligence to legal reasoning and beyond. It opens the

door to multifaceted applications without necessitating extensive modifications or

adaptations. Moreover, by aligning with Dung’s semantics, we lay a foundation

that is conducive to comparative studies, allowing researchers to systematically

evaluate and contrast our enhanced framework with existing models. This align-

ment not only fosters a deeper understanding of the nuances and implications of

various approaches but also encourages an evolutionary growth in the field, where

new models are built upon and compared with established ones, leading to cumu-

lative progress.

In this work, a key initial step involves demonstrating the effectiveness of the

model within the context of grounded semantics. This choice is not arbitrary; it

is grounded in both practical and theoretical considerations. Grounded semantics

is recognised for its computational efficiency, particularly in real-world scenarios,

being the only argumentation semantics with polynomial complexity. This effi-

ciency makes it an ideal candidate for proving the soundness and applicability of

our model in computational settings.

Furthermore, by focusing exclusively on grounded semantics, we can more

clearly illuminate the core concepts and mechanisms underlying our proposed

model. This focus should allow the readers to delve deeply into the foundational

ideas without the added complexity and distraction of other, more computationally

intensive semantics. The simplicity and clarity provided by this approach facilitate

a better understanding and appreciation of the model’s essential principles.

Successfully proving the model’s efficacy within the domain of grounded se-

mantics is a significant step, providing a strong foundation for further exploration

and development. This approach not only establishes the soundness of the model

but also sets the stage for future investigations into its applicability across other

semantics.

In last section of this chapter, we discuss the model of the burden of persuasion

CHAPTER 3. A META-ARGUMENTATION FRAMEWORK 29

3.1. REASONING WITH RULES

in structured argumentation [Calegari et al., 2021d, Calegari and Sartor, 2020b]

under a meta-argumentative approach, which leads to (i) a clear separation of

concerns in the model, (ii) a simpler and more efficient implementation of the

corresponding argumentation tool, (iii) a natural model extension for reasoning

over the burden of persuasion concepts.

The proposed meta-argumentation framework for the burden of persuasion in-

cludes three ingredients: (i) object-level argumentation – to create arguments from

defeasible and strict rules –, (ii) meta-level argumentation – to create arguments

dealing with abstractions related to the burden concept using argument schemes

(or meta-level rules) –, and (iii) bimodal graphs to define interaction between

the object level and the meta level—following the account in [Müller et al., 2013].

Also in this case, despite the introduction of the multi-layering mechanism, we

adhere to a similar guiding principle: focusing on enhancing the structural as-

pects of the framework, specifically through the addition of a new meta-layer,

rather than devising a new set of semantics as was done in the original work

[Calegari et al., 2021d, Calegari and Sartor, 2020b]. This approach aligns with

the overarching strategy of building upon established foundations to introduce

innovative elements, rather than creating entirely new semantic systems.

3.1 Reasoning with Rules

In this section we introduce the first meta-level feature of our framework, namely,

the possibility to argue about the validity of rules. In this regard, we introduce

two levels of applicability of a rule: i) the general validity of a rule—i.e. if the rule

should be generally accepted as appropriate to the argumentation domain (e.g., in

legal reasoning). Arguing at this level we enable the evaluation of different inter-

pretations of the same legal disposition so to determine the most suitable one; ii)

the contingent applicability of a rule—i.e. if the rule should be applied to the spe-

cific problem, given its general validity. In ASPIC only the second level is covered,

since the application of each rule r can be undercutted by arguments concluding

for the negation ¬n(r) of the rule’s name n(r). The first level is addressed only

implicitly, i.e., by assuming that all rules included in the rule-base can be included

in any argument. We will drop this assumption, requiring that rules are used only

30 CHAPTER 3. A META-ARGUMENTATION FRAMEWORK

3.1. REASONING WITH RULES

if their validity can be established, i.e, we require that any argument using a rule

includes a subargument to the effect that the rule is valid. More exactly, an argu-

ment A using a rule named r must include a subargument for usable(r). It may be

argued that this outcome could also be archived in a standard ASPIC framework

by supplementing the body of each rule r with a predicate usable(r). However, we

believe that taking into a account validity in the argumentation inference is prefer-

able since it avoids redundancy in the representation of rules, and corresponds to

the way in which legal provision are expressed (it is not the case that each legal

provisions includes the proposition that the same provision is valid).

We shall rely for this purpose on the naming function (n(r)) provided by AS-

PIC. More exactly, to deal with the validity of rules we include in the argumen-

tation language the predicate usable(x), with x a formula of the language; the

naming function will be responsible for the connection of x with a rule in R.

Definition 12 (Rules Language). Given a logical language L we define a language

for reasoning with rules Lr as the language Lr = L ∪ {usable(ψ)|ψ ∈ L}.

All Definitions given in Section 2.1 remain valid. We just need to give a new

argument definition – with respect to the one given in [Modgil and Prakken, 2014b]

– enforcing the check on the validity of rules. In simple terms, every argument using

a rule r, must include a subargument having usable(r) as conclusion (condition 2

and 3 of Definition 6).

Definition 13 (Arguments). Starting from an argumentation theory AT=<

AS,K >, an argument A is any structure obtained by applying the following steps

a finite number of times

1. ϕ if ϕ ∈ K with:

• Prem(A)={ϕ},

• Conc(A)=ϕ,

• Sub(A)={ϕ},

• TopRule(A)=undefined,

• DefRules(A)=∅

CHAPTER 3. A META-ARGUMENTATION FRAMEWORK 31

3.1. REASONING WITH RULES

• LDefRules(A)=∅

2. A0, A1, . . . , An ⇒ ϕ if A0, . . . , An are arguments s.t. Conc(A0) = usable(n(r))

and ∃ a rule r = Conc(A1), . . . ,Conc(An)⇒ ϕ ∈ Rd.

• Prem(A)=Prem(A0) ∪ . . . ∪ Prem(An),

• Conc(A)=ϕ,

• Sub(A)=Sub(A0) ∪ . . . ∪ Sub(An) ∪ {A},

• TopRule(A)=r,

• DefRules(A)=DefRules(A0) ∪ . . . ∪ DefRules(An) ∪ {r}

• LDefRules(A)={r}

3. A0, A1, . . . , An → ϕ if A0, . . . , An are arguments s.t. Conc(A0) = usable(n(r))

and ∃ a rule r = Conc(A1), . . . ,Conc(An)→ ϕ ∈ Rs.

• Prem(A)=Prem(A0) ∪ . . . ∪ Prem(An),

• Conc(A)=ϕ,

• Sub(A)=Sub(A0) ∪ . . . ∪ Sub(An) ∪ {A},

• TopRule(A)=r,

• DefRules(A)=DefRules(A0) ∪ . . . ∪ DefRules(An)

• LDefRules(A)=LDefRules(A0) ∪ . . . ∪ LDefRules(An)

As usual, given an argument A we write:

• Prem(A), for the set of ordinary premises from Kp used in the argument;

• Conc(A), for the conclusion of the argument;

• Sub(A), for the set of arguments supporting A’s conclusion;

• DefRules(A), for the set of rules in Rd used to build the argument;

• TopRule(A), for the rule from R used in A’s last inference step;

• LDefRules(A), for the set of rules in Rd used in the last inference step,

32 CHAPTER 3. A META-ARGUMENTATION FRAMEWORK

3.2. REASONING WITH CONFLICTS

Attacks are then defined in the standard way—i.e., Definition 7 and Defini-

tion 8.

The final Argumentation Framework is built using Definition 9 and evaluated

with standard Dung’s semantics (Definition 2). If we put all the usable(r) expres-

sions where r is a rule identifier in Ks we should obtain a framework equivalent to

standard ASPIC w.r.t. Dung’s semantics.

Example 1 (Relation with standard ASPIC). In the following example, we assume

that for every ϕ ∈ L, ϕ ▷ ¬ϕ and ¬ϕ ▷ ϕ. Let us consider the theory where

Kp = {a, c}, Ks = {usable(p), usable(q)} where p : a ⇒ b and q : c ⇒ ¬p, and
arguments:

A0 : usable(p)

A1 : usable(q)

A2 : a

A3 : c

A4 : A0, A2 ⇒ b

A5 : A1, A3 ⇒ ¬p

Since both rules p and q are strictly valid (A0 and A1), we can use them in

combination with the ordinary premises a and c, to derive the statements b and

¬p. In this scenario the classical ASPIC+ rules apply: A5 delivers an undercut-

ting attack against A4, hence b is rejected according to grounded (and all derived)

semantics.

Note that the extension provided in this section does not represent a substan-

tial departure from ASPIC. In fact, the same behaviour (the application of each

rule being conditioned to its validity) could be obtained in the standard ASPIC

framework by expanding the body of each rule r with the additional predicate

usable(r).

3.2 Reasoning with Conflicts

According to Definition 3, the conflict relation is a fixed part of the argumentation

system and attacks between arguments are determined by conflicts between the

conclusion of the attacking argument and a premise, rule name, or conclusion

of the directly attacked argument. The main idea underpinning the extension for

dealing with meta-argumentation is to make the conflict relation dynamic, allowing

CHAPTER 3. A META-ARGUMENTATION FRAMEWORK 33

3.2. REASONING WITH CONFLICTS

arguments to argue for or against the existence of conflicts. In such a way we

define an abstract argumentation framework that – once evaluated according to a

standard Dung’s semantics – produces admissible extensions containing both the

arguments arguing on conflicts and arguments whose admissibility is influenced by

these conflicts.

Let us start providing definitions for an argumentation language L enabling

conflicts between elements of L to be stated, i.e., enabling reasoning with conflicts.

For this purpose we need a language, which includes, for every couple of formulae

ϕ and ψ, the predication of their contrariness, contr(ψ, ϕ). More exactly, the

predicate contr(ψ, ϕ) expresses the idea that ψ is a contrary of ϕ, in the sense that

the claim of ψ entails the rejection of ϕ.

Definition 14 (Conflict-based argumentation language). Given an argumentation

language L we define a argumentation language for reasoning with conflicts Lc as

the smallest argumentation language Lc = L ∪ {contr(ψ, ϕ)|ψ, ϕ ∈ Lc}.

Now let us consider Lc a language as in Definition 14. We can build an argu-

mentation system AS=< Lc, R, n, ∅ > and consequently an argumentation theory

AT=< AS,K >, and use them to build an abstract argumentation framework

AF=< A,⇝> using Definition 9. Note that, since ▷ = ∅, the attack set⇝ in AF

will be empty as well.

Now, let us extend the AF framework so defined to introduce attacks derived

from the conflicts reified in the Lc language. In such a way the status of an attack

is bound to the status of the argument claiming the conflict that generated it.

First, let us define an argument for each potential attack deriving from contr

predicates. Accordingly, attacks could be evaluated w.r.t. the semantics applied

to the framework.

Definition 15 (Conflict-based direct attack argument). A conflict-based direct at-

tack argument X stating that argument W , based on conflict argument W ′, attacks

argument Z, has the form W,W ′ ⇒ att(Z) where:

• Conc(W) = ϕ, Conc(W ′) = contr(ϕ, ψ) and

– n(TopRule(Z)) = ψ and TopRule(Z) ∈ Rd, or

34 CHAPTER 3. A META-ARGUMENTATION FRAMEWORK

3.2. REASONING WITH CONFLICTS

– Conc(Z) = ψ and TopRule(Z) ∈ Rd or

– Conc(Z) = ψ and Z ∈ Kp

• Conc(X) = att(Z)

• Sub(X) = Sub(W) ∪ Sub(W ′) ∪ {X}

Let us write DirectAttack(X) to indicate that X is a direct attack argument.

Thus to construct a direct attack argument W,W ′ ⇒ att(Z) against Z it must

be the case two arguments are available, argument W , and argument W ′, the

latter claiming that the conclusion of W is in conflict with the relevant element

of Z (i.e., the name of Z’s top rule or Z’s conclusion). The status of the direct

attack arguments will depend on the status of both W and W ′.

We leverage direct attack arguments to build the actual attack set of the meta

argumentation framework.

Definition 16 (Conflict-based attack). A direct attack argument W,W ′ ⇒ att(Z)

attacks any argument Z ′ such that Z ∈ Sub(Z ′).

Thus, a direct attack argument W,W ′ ⇒ att(Z) attacks not only its direct

target Z, but also any argument Z ′ of which Z is a subargument. The success of

the attack will depend not only on the status of W , but also on the status of W ′

which asserts that W and Z are in conflict.

These elements are merged together in a Conflict-based Argumentation Frame-

work.

Definition 17 (Conflict-based Argumentation Framework). Given an argumen-

tation theory AT=<< Lc, R, n, ∅ >,K > with Lc being a conflict-based argumen-

tation language, the conflict-based argumentation framework of AT is the tuple

< A1 ∪ A2,⇝> where:

• A1 is the set of all arguments constructed from AT according to Definition 6;

• A2 is the set of all direct attack arguments constructed from AT and A1

according to Definition 15;

• X ⇝ Z iff X attacks Z according to Definition 16

CHAPTER 3. A META-ARGUMENTATION FRAMEWORK 35

3.2. REASONING WITH CONFLICTS

Conflict freeness, acceptability, admissible, complete, grounded extension are

defined as in Definition 2.

The set A2 contains all attack arguments that can be generated by using the

arguments in A1, according to Definition 17. For an attack argument W,W ′ ⇒
att(Z) to be established according to an argumentation semantics, it is necessary

that also W ′ is acceptable, i.e., that it is established that an acceptable conflict

between W and Z exists. Only in this case W will bring an attack against Z.

We now proceed to demonstrate two important properties of the constructed

framework. Intuitively, we would expect that a conflict that has been proven to

exist at the meta-level – i.e. via the conflict-based framework –, indeed exists at

the object level, leading to the same set of attacks and, consecutively, to the same

extension. In other words, what is true according to the conflict-based framework

should remain true when the verified conflicts are applied a priori as in the original

ASPIC+ model. To demonstrate this important property, let us introduce the

notion of an Equivalent Standard AF.

To start, we define a way to construct a standard argumentation framework

on the basis of a conflict-based argumentation framework. The basic idea is that

starting with a conflict-based argumentation framework and an extension of it, we

construct a standard argumentation framework having a corresponding extension

according to the same semantics.

Let us consider a conflict-based argumentation framework CAF=< A,⇝> and

one of its extensions E. To construct the equivalent argumentation framework

EAF , we first remove from A (a) all attack arguments that are supported by

those conflict arguments that are in the extension, and (b) all attack arguments

that are supported by a conflicting argument that is attacked by the extension.

Only attack arguments that are neither included in E nor attacked by it are left in

the EAF ’s arguments set. Accordingly, the EAF ’s attack relation is constructed

using those conflicts claimed by the arguments in E.

Definition 18 (Equivalent Standard AF). Given a conflict based argumentation

framework CAF=< A,⇝> having an extension E according to semantics σ, we

define an equivalent standard argumentation framework EAF=< A′,⇝′> where:

1. A′ = A \B ∪ C where:

36 CHAPTER 3. A META-ARGUMENTATION FRAMEWORK

3.2. REASONING WITH CONFLICTS

(a) B = {a ∈ A | ∃b ∈ E such that Conc(b) = contr(ϕ, ψ) and a is a direct

attack argument of the form W, b⇒ Z};

(b) C = {a ∈ A | ∃b ∈ A such that Conc(b) = contr(ϕ, ψ) and b is attacked

by E and a is a direct attack argument of the form W, b⇒ Z}.

2. ⇝′=⇝|A′×A′ ∪ {(a, b) | a, b ∈ A′ and ∃c ∈ E such that Conc(c) = contr(ϕ, ψ)

and ∃ b′ ∈ Sub(b) s.t. a directly attacks b′ (Definition 7) according to the

conflict ϕ▷ ψ}.

Proposition 1. Consider a finitary CAF=< A,⇝> and its corresponding

EAF=< A′,⇝′> built on the grounded extension E and having grounded extension

E ′. Then E ∩ A′ = E ′.

Proof 1. Let’s consider an argumentation framework CAF =< A,⇝>. We call

the characteristic function of CAF the function F : 2A → 2A such that F (Args) =

{X|∀Y such that Y ⇝ X, then ∃Z ∈ Args such that Z ⇝ Y } where Args ⊆ A.
Let us consider grounded extension as the minimal conflict-free fixed point of the

characteristic function F—i.e. the union of a sequence E0, . . . , En obtained by

iterative application of the F function on the empty set, and where E0 = ∅. We

prove that E ∩ A′ = E ′.

We first prove that E ∩ A′ ⊆ E ′. Suppose a ∈ E ∩ A′. We prove that a ∈ E ′

as follows.

Base case: a has no attackers in A according to ⇝ so a ∈ E1 ∩ A′. Then

there can only be attackers of a in A′ according to ⇝′ if there is a relevant conflict

argument b in E that says that the conclusion of some argument x ∈ A conflicts

with a’s conclusion. But then there exists a direct attack argument x, b ⇒ att(a)

in A, which contradicts that a has no attackers in A. So x ̸∈ A′, so a has no

attackers in A′, so a ∈ E ′.

Induction step: Assume that all arguments in Ei−1 are in E ′. Consider any

a ∈ Ei. Any b ∈ A′ such that b ⇝′ a is such that b ⇝ a or b ̸⇝ a. First, any

such b such that b⇝ a is attacked by Ei−1 according to ⇝. Then by the induction

hypothesis, if b ∈ A′, then b is also attacked’ by E. Next, consider any such b

such that b ̸⇝ a. Then there is a direct attack argument m ∈ A of the form

b,X ′ ⇒ att(a). Then m ⇝ a so there exists an m′ ∈ Ei−1 such that m′ ⇝ m.

CHAPTER 3. A META-ARGUMENTATION FRAMEWORK 37

3.2. REASONING WITH CONFLICTS

Note that m is a direct attack argument, so m is of the form c, Z ⇒ att(b). By

closure of E under subarguments (an easy adaptation of the same result on standard

ASPIC+), c and Z are also in Ei−1. But then by the induction hypothesis c ∈ E ′

and c⇝′ b. So a ∈ E ′.

We next prove that E ′ ⊆ E ∩ A′. Suppose a ∈ E ′. We prove that a ∈ E as

follows.

Base case: a has no attackers in A′ so a ∈ E ′
1. Consider any b ∈ A such that

b ⇝ a. Then b is a direct attack argument of the form c,X ⇒ att(a), with X a

conflict argument that says that the conclusion of argument c ∈ A conflicts with

a’s conclusion. But since a has no attackers in A′, we have that b ̸∈ A′ because of

either condition (1a) or condition (1b) of Definition 18. In the case of (1b), b is

attacked according to ⇝ on X by an argument in E. In the case of (1a), we have

X ∈ E, so, according to condition (2) of Definition 18, we have that c⇝′ a. But

this contradicts that a has no attackers in A′. The two cases together prove that

a ∈ E.
Induction step: Assume that all arguments in E ′

i−1 are in E. Consider any

a ∈ E ′
i. Then all b ∈ A′ such that b ⇝′ a are attacked by E ′

i−1 according to ⇝′.

Then b could be either a regular argument or a direct attack argument of the form

c,X ⇒ att(a). In the latter case, since b ∈ A then, by the induction hypothesis, b

is also attacked by E according to ⇝. In the first case, since b ⇝′ a, there must

exist a direct attack argument m ∈ A of the form b,X ⇒ att(a) such that m⇝ a.

But, by induction hypotheses, b and m are both attacked according to⇝ by E. The

two cases together prove that a ∈ E.
Since E ∩ A′ ⊆ E ′ and E ′ ⊆ E ∩ A′ then E ′ = E ∩ A′.

The second property we want to demonstrate builds on top of what we have

just proven. We have seen that it is possible to move the conflicts in the grounded

extension at the object level without altering the results. However, the resulting

Equivalent Standard AF still contains the meta-level attack arguments that are

not in the extension or attacked by a member of it. The question is whether

there are cases in which the conflict framework can be completely transformed

into a regular argumentation framework. The implication of this finding would

be straightforward: the Conflict-based framework would be a generalisation of a

38 CHAPTER 3. A META-ARGUMENTATION FRAMEWORK

3.2. REASONING WITH CONFLICTS

regular abstract argumentation framework. This is a fundamental property for

every model trying to provide a conservative extension like ours.

The next proposition shows that a Conflict-based Argumentation Framework

is a generalisation of a standard abstract argumentation framework.

Proposition 2. Consider a CAF=< A,⇝> and its corresponding equivalent

EAF=< A′,⇝′> built on the σ extension E. If ∀x ∈ {a ∈ A|Conc(a) =

contr(ϕ, ψ)} we have that either x ∈ E or ∃(d, x) ∈⇝ s.t. d ∈ E, then EAF

is a regular argumentation framework as in Definition 9.

Proof 2. By Definition 18 if all the conflict arguments are either in the extension

or attacked by a member of it, then all the Direct Attack Arguments can be discarded

leaving only the arguments produced using Definition 6. The attack set would then

be given by the set of conflicts claimed by the argument in the extension using

Definition 8. Consequently, the result is a regular argumentation framework as in

Definition 9.

In the general case, however, we cannot have a complete equivalency between

a CAF and a regular framework. Indeed, if an argument for conf(ψ, ϕ) is unde-

cided – neither in the extension nor attacked by one of its members –, then the

uncertainty can be propagated to the attack argument and then to the attacked

argument, thus preventing them to be part of the extension. We could not ob-

tain the same result without considering the Direct Attack Argument, because

the absence of the conflict would potentially allow the attacked argument to be

accepted without considering the potential uncertainty in the state of the conflict.

In other words, a CAF framework is capable of conveying more information on

the state of an attack w.r.t. a standard argumentation framework, thus making

the transformation to a regular framework impossible in the general case.

Example 2 (Partial Transformation). Let us consider the theory where Kp =

{p, q, r,−r} and Ks = {conf(r,−r), conf(−r, r)} and Rd = {r => conf(p, q)}.
Starting from this theory we can build the Conflict-based framework and then the

Equivalent one as shown in Figure 3.1.

CHAPTER 3. A META-ARGUMENTATION FRAMEWORK 39

3.3. REASONING WITH PREFERENCES

Figure 3.1: Conflict-based Argumentation framework from Example 2 on the left,
Equivalent framework on the right.

If we apply Dung’s grounded semantics to the frameworks, in both cases we ob-

tain the extension {A0, A5, A6}. It can be noticed that the Equivalent framework

still contains an attack argument (A7) due to the uncertainty in A3’s evaluation.

Indeed, without knowing if A3 is in the extension or definitely rejected – i.e. at-

tacked by a member of the extension –, it is impossible to decide whether A0 should

attack A1 or not in the Equivalent Standard AF. Consequently, every alteration of

the Equivalent attack set on the basis of this conflict would lead to a possible mod-

ification in the semantics results—i.e. the attack argument A7 with the connected

attacks must be preserved in the Equivalent AF.

3.3 Reasoning with Preferences

The idea behind the extension for dealing with defeasible preferences is simple: for

every argument involving a rule or a premise for which a preference is present in the

framework – i.e. it is available an argument concluding the preference –, we create

a new argument that takes that preference into account. In other words, given

40 CHAPTER 3. A META-ARGUMENTATION FRAMEWORK

3.3. REASONING WITH PREFERENCES

an argument, we will have in the framework one additional argument for every

possible combination of its related preferences. For example, given an argument

A built using the ordinary premise a and the rule r0, and two arguments B and

C concluding respectively sup(a, b) and sup(r0, r1), where sup(a, b) represents the

superiority of a over b, and sup(r0, r1) the one of r0 over r1, then we can build

three additional arguments:

• AB, merging A with the preference claimed by B—sup(a, b);

• AC , merging A with the preference claimed by C—sup(r0, r1);

• AB∧C , merging A with the preferences claimed by both B and C

Let us now imagine a scenario where A attacks – and it is attacked – by a second

argument A: if we do not take any preference into account, the same should apply

also to AB, AC and AB∧C—they are built on A so attack relations are preserved.

However, the idea of the extension is exactly to use the preferences on which the

new arguments are based to determine if it is possible for A to defeat them. Let’s

suppose that A is preferred to A according to the preference sup(r0, r1)—for sake

of simplicity we are not considering the details of the ordering, we just know that

without sup(r0, r1) the two arguments would have equal strength. Accordingly, we

have that:

• A attacks and defeats A—no preferences are involved (this would not always

be the case according to ASPIC+ orderings because also the structure of the

arguments has to be considered);

• A attacks and defeats AB—the preference sup(a, b) is not relevant;

• A attacks but does not defeat AC—A is preferred to A according to the

preference claimed by C;

• A attacks but does not defeat AB∧C—A is preferred to A according to one

of the preferences taken into account (of course there would be cases where

more than a single preference is required to determine the relative strength

of two arguments)

CHAPTER 3. A META-ARGUMENTATION FRAMEWORK 41

3.3. REASONING WITH PREFERENCES

If we evaluate the framework with Dung’s grounded semantics we obtain that A is

included in the final extension and A is not. The reason is simple: A attacks and

it is attacked by A and AB, but, given the preferences, it can not return the attack

from AC and AB∧C . Consequently, A is refuted and all the A-based arguments

are allowed to be included in the extension. More importantly, the final result is

subordinated to the inclusion of the arguments claiming the relevant preferences

– C in the example – in the extension. Let us consider the case in which B is

refuted. The extension would change but the result would not—i.e., also AB and

AB∧C would be refuted, but we would still have a valid defeat from AC to A,

determining the exclusion of the latter. Conversely, in the case of C’s rejection,

both A and A would be excluded from the extension being AC and AB∧C both

refuted.

The work presented in [Dung et al., 2019] differs with the model presented

in this section in two elements that we believe to be important especially, but

not only, for legal reasoning. Firstly, Dung’s model does not allow for the use

of groups of preferences in the comparison of two arguments, thus excluding the

use of most of the orderings introduced in ASPIC+ ([Dung et al., 2019] is based

on the use of a normal ordering only requiring a single preference). Secondly,

albeit both our method and Dung & al. [Dung et al., 2019]’s are based on the

introduction of additional arguments in the framework, we believe that our use of

variations of original arguments – rather than introducing instantiations of attacks

as additional arguments as in [Dung et al., 2019] – helps to maintain a higher

degree of clarity and explicability—features for which standard argumentation

frameworks are known for.

For this purpose we need first to define a preference language, which includes,

for every couple of formulae ϕ and ψ, the predicate sup(ψ, ϕ), expressing the su-

periority of ψ over ϕ (ϕ and ψ can represent rules through the naming function).

Definition 19 (Preference Language). Given an argumentation language L we

define a preference language Lp as the smallest language Lp = L∪{sup(ψ, ϕ)|ψ, ϕ ∈
L}.

We can then define Preference Arguments, i.e. arguments grouping a set of

preferences related to a target argument:

42 CHAPTER 3. A META-ARGUMENTATION FRAMEWORK

3.3. REASONING WITH PREFERENCES

Notation 1 (Defeasible Premises). Given an argument A, we call DefPrem(A)

the set Prem(A) ∩Kp—i.e., the ordinary premises used to build the argument.

Definition 20 (Preference Argument). Let AT be an argumentation theory

< AS,K > based on a preference language, and A a set of arguments con-

structed from AT . Given A ∈ A, the set of its defeasible elements Def(A) is

DefPrem(A) ∪ {n(r)|r ∈ DefRules(A)}. Then, the set of arguments claiming a

preference supporting A is SA = {B ∈ A|Conc(B) = sup(ϕ, ψ) and ϕ ∈ Def(A)}.
For any non empty {A0, . . . , Am} ⊆ SA, the corresponding preference argument B

has the form:

• A0, . . . , Am, Am+1 . . . , An ⇒ ϕ if A = Am+1, . . . , An ⇒ ϕ,

• A0, . . . , Am, Am+1 . . . , An → ϕ if A = Am+1, . . . , An → ϕ,

• A0, . . . , Am ⇒ ϕ if A = ϕ and ϕ ∈ Kp,

• A0, . . . , Am → ϕ if A = ϕ and ϕ ∈ Ks,

where:

• Prem(B)=Prem(A),

• Conc(B)=Conc(A),

• Sub(B)= Sub(A0) ∪ . . . ∪ Sub(An) ∪ {B},

• TopRule(B)=TopRule(A),

• DefRules(B)=DefRules(A),

• LDefRules(B)=LDefRules(A)

We call Pref(B) the set of preferences {Conc(A0), . . . ,Conc(Am)}. For every ar-

gument that it is not a Preference Argument we have Pref(A)=∅. We also call

GenP (A) the set of preference arguments built from argument A.

We can compare arguments (>) using one of the standard ASPIC+ orderings:

Definition 21 (Aspic+ Orderings). Given two arguments A and B, we say that

B is strictly preferred to A (B ≻ A) if either:

CHAPTER 3. A META-ARGUMENTATION FRAMEWORK 43

3.3. REASONING WITH PREFERENCES

• Last Link: DefPrem(A) ◁ DefPrem(B) if both LDefRules(A) and

LDefRules(B) are empty, else LDefRules(A) ◁ LDefRules(B);

• Weakest Link: DefPrem(A) ◁ DefPrem(B) (DefRules(A) ◁ DefRules(B)) if

both DefRules(A) and DefRules(B) (DefPrem(A) and DefPrem(B)) are empty,

else DefPrem(A) ◁ DefPrem(B) and DefRules(A) ◁ DefRules(B)

where X ◁ Y is either:

• Elitist: ∃x ∈ X s.t. ∀y ∈ Y, sup(y, x)

• Democrat: ∀x ∈ X s.t. ∃y ∈ Y, sup(y, x)

We can then build defeat over the attack definition (as specified in Definition 8):

Definition 22 (Direct Defeat). An argument A directly defeats an argument B if:

• A directly rebuts/undermines B, and

– B ≯ A w.r.t. the preferences in Pref(B) or

– it is not the case that Conc(B)▷ Conc(A)

• A directly undercuts B

We can now define our argumentation framework that will be assessable with

Dung’s standard semantics.

Definition 23 (Preference Argumentation Framework). Let AT be an argumen-

tation theory < AS,K >. An abstract argumentation framework defined by AT ,

is a tuple < A,⇝> where:

• A = A′∪A′′ with A′ the set of all arguments constructed from AT according

to Definition 13 and A′′ the set of all arguments constructed from AT and

A′ according to Definition 20;

• for any arguments X and Y ∈ A, X ⇝ Y iff X directly defeats Y ′ ∈ Sub(Y)

(Definition 8 and Definition 22) and ̸ ∃Y ′
p ∈ GenP (Y ′) s.t. Pref(Y ′

p) ⊆
Pref(Y) ∧ Y ′

p > X

44 CHAPTER 3. A META-ARGUMENTATION FRAMEWORK

3.3. REASONING WITH PREFERENCES

Example 3 (Preference Example). In this example we use standard negation as

source for conflicts, i.e., for every ϕ ∈ Lp, ϕ▷¬ϕ and ¬ϕ▷ϕ. Let us take the theory
where Kp = {a, b, c,¬r, sup(p, q), sup(q, h)}, Ks = {usable(p), usable(q), usable(r)}
where p : a⇒ d, q : b⇒ ¬d and r : c⇒ sup(p, g), and arguments (Definition 13):

A0 : usable(p)

A1 : usable(q)

A2 : usable(r)

A3 : a

A4 : b

A5 : c

A6 : sup(p, q)

A7 : sup(q, h)

A8 : A0 , A3 ⇒ d

A9 : A1 , A4 ⇒ ¬d
A10 : A2 , A5 ⇒ sup(p, g)

A11 : ¬r

Starting from these arguments, we can build the following set of Preference

Arguments (Definition 20):

P0A8 : A10 , A0 , A3 ⇒ d

P1A8 : A6 , A0 , A3 ⇒ d

P2A8 : A6 , A10 , A0 , A3 ⇒ d

P0A9 : A7 , A1 , A4 ⇒ ¬d

P0A8, P1A8 and P2A8 represent the link between A8 and its related prefer-

ences: sup(p, g) and sup(p, q). Similarly, P0A9 connects sup(q, h) to A9. The last

step before the evaluation of the framework is to determine attacks (Definition 8)

and defeats (Definition 22). Last-Link Eli (Definition 21) is our selected ordering.

• A11 attacks and defeats A10, P0A8 and P2A8;

• A8 attacks and defeats A9;

• A8 attacks and defeats PA09—sup(q, h) is not relevant;

• A9 attacks and defeats A8;

• A9 attacks and defeats P0A8—sup(p, g) is not relevant;

• A9 attacks and does not defeat P1A8—A8 ≻ A9 according to sup(p, q);

• A9 attacks and does not defeat P2A8—A8 ≻ A9 according to sup(p, q);

CHAPTER 3. A META-ARGUMENTATION FRAMEWORK 45

3.3. REASONING WITH PREFERENCES

Figure 3.2: Argumentation framework from Example 3

• same behaviour in other cases

Figure 3.2 shows the resulting framework evaluated under grounded semantics.

A10 successfully undercuts A10, thus disqualifying the preference sup(p, g) and

the arguments relying on it (P0A8 and P2A8). However, A8 can still use the

preference sup(p, q) to refute A9, and then P0A9. The statement sup(q, h) is not

relevant to the case in exam end does not help A9’s case.

Let us now examine the connection between the Preference-based argumen-

tation framework and standard ASPIC by showing that what is true according

to the preference-based framework remains true when the verified preferences are

applied a priori as in the original ASPIC+ model.

Proposition 3. Given the grounded extension E of the finitary Preference Ar-

gumentation Framework PAF=< A,⇝> built from the argumentation theory

AT=<< Lp, R, n,>,K > with Rs closed under contraposition and Θ the se-

lected ordering, we define the set of valid preferences Pv as {sup(r0, r1)|∃a ∈
Es.t.Conc(a) = sup(r0, r1)}. Using AT we can derive the standard argumenta-

tion framework < A′,⇝′> according to the preferences Pv and the ordering Θ

using standard ASPIC+ definitions. The resulting grounded extension E ′ is such

that E ′ = E ∩ A′.

The full proof follows.

46 CHAPTER 3. A META-ARGUMENTATION FRAMEWORK

3.3. REASONING WITH PREFERENCES

Proposition 3. Let’s consider an argumentation framework PAF =< A,⇝>. We

call the characteristic function of PAF the function F : 2A → 2A such that

F (Args) = {X|∀Y such that Y ⇝ X, then ∃Z ∈ Args such that Z ⇝ Y } where
Args ⊆ A. Let us consider grounded extension as the smallest fixed point of the

characteristic function F—i.e. the union of a sequence E0, . . . , En obtained by

iterative application of the F function on the empty set, and where E0 = ∅. We

prove that E ∩ A′ = E ′.

We first prove that E ∩ A′ ⊆ E ′. Suppose a ∈ E ∩ A′. We prove that a ∈ E ′

as follows.

Base case: a has no defeaters in A according to ⇝ so a ∈ E1 ∩ A′. By

construction, there can only be defeaters of a in A′ according to ⇝′ if there is at

least a defeater of a in A according to ⇝. But that is not the case, so a has no

defeaters in A′, so a ∈ E ′.

Induction step: Assume that all arguments in Ei−1 ∩A′ are in E ′. Take any

a ∈ Ei ∩ A′. Let’s consider any argument b such that b defeats a according to

⇝. We have three cases: b does not exists in A′ since it is a preference argument,

then it can not defeat a according to ⇝′; b exists in A′ but it does not defeat a

according to ⇝′ – that is the case in which exist a set of preferences (represented

by their arguments in A) that are in E and make the attack from b to c invalid;

b exists in A′ and it still defeats a according to ⇝′. Dy definition, we have that

for any argument b such that b⇝ a, it must exist an argument c ∈ Ei−1 such that

c ⇝ b. By induction hypothesis we know that any such c ∈ Ei−1 ∩ A′ is also in

E ′. The questions are whether c is in A′ and if it still defeats b according to ⇝′.

As for the first question, the cases are two: c is a standard argument (built using

Definition 6), then by construction it is also inA′; c is a preference argument, hence

not in A′, but in that case there would exist a standard argument c′ ∈ Ei−1 ∩ A′

having the same defeat relations as c—it would be the original argument on which

the preference argument was built (Definition 20). As for the second question, c

does not defeat b in ⇝′ only if it exists a combination of preferences that makes

the attack from c to b invalid. But that would mean having a preference argument

b′p in A, based on b′ ∈ Sub(p), representing the same combination of preferences.

But in that case would not be possible for c to defeat b′p, conversely it would be

defeated by it (or, in the case of c having a strict top rule, by an argument d built

CHAPTER 3. A META-ARGUMENTATION FRAMEWORK 47

3.3. REASONING WITH PREFERENCES

by the contraposition of c’s top rule, thanks to the closure under contraposition

and the reasonability of the ordering). But this contradicts the fact that c belongs

to Ei−1, hence c does defeat b in ⇝′. The three cases together prove that a ∈ E ′.

We next prove that E ′ ⊆ E ∩ A′. Suppose a ∈ E ′. We prove that a ∈ E ∩ A′

as follows.

Base case: a has no defeaters in A′ so a ∈ E ′
1. Then either a has not

attackers in A′, or it has one or more attackers in A′. As for the first case, let

us suppose that exists an argument b ∈ A s.t. (b, a) ∈⇝. Then, by construction,

the attack would also exists in ⇝′, but this contradicts the fact that a has no

attackers in A′. So a has no attackers in A. We must check the latter case.

Let’s consider an argument b ∈ A′ such that (b, a) ∈⇝ but /∈⇝′. That means

that exists a set of preferences Pa = {sup(p0, p1), . . . , sup(pn−1, pn)}, that makes

a ≻ b. By construction, there must be in E a group of arguments p0, . . . , pn such

that Conc(p0) = sup(p0, p1), . . . ,Conc(pn) = sup(pn−1, pn). Also, we should have

an argument ap ∈ A having the same structure as a but also including p0, . . . , pn

and their subarguments. Since a ≻ b according to Pa, then also ap ≻ b. We must

determine if (ap, b) ∈⇝. There are two cases, either TopRule(b) is defeasible or it

is strict. In the first case, (ap, b) ∈⇝ and (b, ap) /∈⇝. Accordingly, to determine if

a ∈ E, we must find out if ap ∈ E. Since p0, . . . , pn ∈ E and b can not attack ap,

the only arguments we are interested in to determine its state are a’s attackers (b

excluded) since ap has the same structure as a. In the latter case, by contraposition

and reasonability of the ordering [Modgil and Prakken, 2013], we know that must

exists an argument bCp obtained by contraposition of TopRule(b) s.t. bCp > b and

(bCp , b) ∈⇝. By construction, we know that bCp shares all its direct subarguments

with b, with the exception of a and p0, . . . , pn. Since an attack from an argument

in E to one of the common subs would also lead to b’s exclusion from E, and

by Definition 5.5 (b, bCp) ̸∈⇝, also in this case, we must find out if ap is in E.

Assume the existence of an argument c such that (c, a) and (c, ap) ∈⇝. There are

two cases: c defeats a also according to ⇝′, but that contradicts the fact that a

does not have defeaters in ⇝′; or c does not defeat a in ⇝′. We are in the same

situation we were for b, and then we can apply the same steps to find that exists

an argument a′p such that a′p ≻ b and a′p ≻ c. Again, we would need a new a’s

attacker, let’s call it d, to prove that a is not in E. We could iterate the same

48 CHAPTER 3. A META-ARGUMENTATION FRAMEWORK

3.4. MIXING EVERYTHING TOGETHER

process again and again, but since the PAF is finitary, eventually we will not find

a new a’s attackers to test, hence we would have an argument anp that defeats all

a’s defeaters, and it is defeated by none. So, a ∈ E.
Induction step: Assume that all arguments in E ′

i−1 are in E. Consider any

a ∈ E ′
i. Let’s consider any argument b such that b defeats a according to ⇝′. By

definition, such b is defeated by E ′
i−1. Since⇝

′⊆⇝, and, by induction hypothesis,

all arguments in E ′
i−1 are in E, we have that at least one of b’s defeaters (according

to⇝) belongs to E. There is another case to consider: it exists an argument b ∈ A′

such that (b, a) ∈⇝ but /∈⇝′. In this scenario, b could prevent a to be included in

the extension. The proof goes exactly as in the base case: we recursively introduce

a new preference argument anp for every a’s defeater. Eventually, we will be in the

situation where there are no new defeaters to introduce (thanks to the finiteness of

the framework). Then we would have an argument anp that defeats all a’s defeaters

in A, and it is defeated by none. The two cases together prove that a ∈ E.
Since E ∩ A′ ⊆ E ′ and E ′ ⊆ E ∩ A′ then E ′ = E ∩ A′.

3.4 Mixing Everything Together

The introduced mechanism for handling conflicts within our framework presents

an opportunity for further refinement, particularly by considering the insights

gained from the developments made in the area of preferences. By revisiting and

possibly revising the conflict mechanism in light of the advancements in preference

handling, we aim to achieve a more cohesive and intuitive model.

To recap, in ASPIC+, the definition of an argumentation system also includes

the specification of the contrary relation ▷. In our framework, on the contrary,

conflicts have to be supported by arguments. More exactly, for an argument A to

be able to directly attack another argument B, A must claim that its conclusion

collides with (is a contrary to) the conclusion of B.

We can new define the notion of a conflict argument, namely, an argument

that includes a subargument according to which its conclusion ϕ is contrary to a

formula ψ:

Definition 24 (Conflict Argument). Let AT be an argumentation theory <

CHAPTER 3. A META-ARGUMENTATION FRAMEWORK 49

3.4. MIXING EVERYTHING TOGETHER

AS,K > based on a conflict language, and let A a set of arguments constructed

from AT . Given A,A0 ∈ A s.t. Conc(A0) = contr(ϕ, ψ), a conflict argument B

has one of the following forms:

• A0, A1, . . . , An ⇒ ϕ if A = A1, . . . , An ⇒ ϕ,

• A0, A1, . . . , An → ϕ if A = A1, . . . , An → ϕ,

• A0 ⇒ ϕ if A = ϕ and ϕ ∈ Kp,

• A0 → ϕ if A = ϕ and ϕ ∈ Ks,

where:

• Prem(B)=Prem(A),

• Conc(B)=Conc(A),

• Sub(B)=Sub(A0) ∪ . . . ∪ Sub(An) ∪ {B},

• TopRule(B)=TopRule(A),

• DefRules(B)=DefRules(A),

• LDefRules(B)=LDefRules(A)

Conflict arguments are used to generate attacks. In fact, to attack argument

B, an argument A must claim (through a subargument) that its conclusion collides

with B—i.e. A has to be a conflict argument:

Definition 25 (Conflict Attack). Let A1 ∈ Sub(A) and Conc(Ai) = contr(ϕ, ψ),

Then:

• A directly rebuts argument B iff Conc(B) = ψ and TopRule(B) ∈ Rd;

• A directly undermines argument B iff B ∈ Kp and Conc(B) = ψ;

• A directly undercuts argument B iff n(TopRule(B)) = ψ and TopRule(B) ∈
Rd;

50 CHAPTER 3. A META-ARGUMENTATION FRAMEWORK

3.4. MIXING EVERYTHING TOGETHER

A directly attacks B if A directly rebuts, directly undermines or directly undercuts

B.

Based on this notion of an attack (conflict attack) we can build a corresponding

argumentation framework (conflict argumentation framework):

Definition 26 (Conflict Argumentation Framework). Let AT be an argumenta-

tion theory < AS,K > based on a conflict language. An abstract argumentation

framework defined by AT , is a tuple < A,⇝> where:

• A = A′∪A′′ with A′ the set of all arguments constructed from AT according

to Definition 13 and A′′ the set of all arguments constructed from AT and

A′ according to Definition 24;

• for any arguments X and Y ∈ A, X ⇝ Y iff X directly attacks Y ′ ∈ Sub(X)

(Definition 25)

Example 4 (Conflict Example). Let us consider again Example 1. In that case

we make use of the standard definition of negation and undercutting, i.e., an ar-

gument for ¬p directly undercuts the argument having top rule p. Conversely, in

the Conflict-based Framework, the undercutting argument must support the claim

that its conclusion collides with the rule identified by p. This may be the case not

only when the undercutting argument has conclusion ¬p, but also when it has a

different conclusion, let’s take q for example, which is claimed to be in conflict with

p.

Let’s try to reproduce the same result using a Conflict-based Argumentation

Framework. For starters, we replace the ¬p formula with a statement with no

negation operators, namely q.

Accordingly, we build the theory where Kp = {a, c, d}, Ks =

{usable(p), usable(q), usable(r)} where p : a⇒ b, q : c⇒ q and r : d⇒ contr(q, p),

and arguments (Definition 6):

CHAPTER 3. A META-ARGUMENTATION FRAMEWORK 51

3.4. MIXING EVERYTHING TOGETHER

Figure 3.3: Argumentation framework from Example 4

A0 : usable(p)

A1 : usable(q)

A2 : usable(r)

A3 : a

A4 : c

A5 : d

A6 : A0 , A3 ⇒ b

A7 : A1 , A4 ⇒ q

A8 : A2 , A5 ⇒ contr(q, p)

Starting from these arguments, we can build a single Conflict Argument (Def-

inition 24), namely CA7 : A8, A1, A4 ⇒ q. This argument attacks any argument

using the p formula (either as a rule, conclusion or premise), since it supports

conclusion q and it includes the subargument A8 according to which q collides with

p. In our case CA7’s attack is directed against A6, the only argument using the

rule identified by p. As in Example 1, A6 (b) is rejected according to grounded (and

all derived) semantics. It should be noted how the attack is now dependant on the

info available in the argumentation theory: without the premise a it would have

been impossible to derive the conflict relating q and p, and consequently to build

CA7 and its undercutting attack. Moreover, the attack would have been ineffective

also in the case of exclusion of A3 or A8 from the extension.

The presented Conflict-based Argumentation Framework can be analysed w.r.t.

the one introduce in Section 3.2. Indeed, the two models share the same motivating

idea and most of their inner mechanism. In particular, their main difference is in

the definition of Conflict Arguments and Direct Attack Arguments. Their role in

the two frameworks is the same and their definition is also quite similar, if not for

two details: i) their form, i.e., Conflict Arguments share the structure with their

52 CHAPTER 3. A META-ARGUMENTATION FRAMEWORK

3.4. MIXING EVERYTHING TOGETHER

base arguments, while Direct Attack Arguments include their base argument as

a proper subargument; ii) their instantiation, i.e., Conflict Arguments are based

on available conflicts (even if not applicable), while Direct Attack Arguments are

only built if a target is available (they are target specific). In any case, these

differences have an impact only on the size of the framework, but not in their

behaviour, hence we refer the reader to the proofs provided in Section 3.2 w.r.t.

the soundness of the extension under Dung’s grounded semantics.

In this section we revisited the conflict mechanism to make it closer to the one

introduced for preferences, but still a final effort is required in order to join the

work on defeasible conflicts (Section 3.4) and the one on preferences (Section 3.3)

in the same formalism. Indeed, Definition 22 requires a complete knowledge about

the conflict relation in order to correctly identify contrary attacks and make them

independent from preferences. In the presence of dynamic conflicts, having such

kind of knowledge would be impossible since the final conformation of the conflict

relation is known only after the evaluation of the framework. To better visualise

the problem, assume a framework with two arguments claiming a and b, with b

and a being in conflict between them and b ≻ a. In the case both conflicts are

confirmed (b ▷ a and a ▷ b) the preference should be considered while building

the defeat relation, and, consequently, the argument for b should defeat the one

for a, but not vice-versa. The situation changes if, adding new knowledge to

the system, we discover that b ▷ a does not hold anymore—i.e., the argument

concluding contr(b, a) is outside the target extension in the context of a Conflict

Argumentation Framework. In such scenario the preference should be overruled,

allowing a to attack and defeat b.

To cope with this new case we provide a new definition of defeat applicable in

presence of dynamic conflicts:

Definition 27 (Direct Defeat with dynamic preferences). An argument A directly

defeats an argument B if:

• A directly rebuts/undermines B, and

– B ≯ A w.r.t. the preferences in Pref(B) or

– it is not the case that ∃B′ ∈ Sub(B) s.t. Conc(B′) =

contr(Conc(B),Conc(A))

CHAPTER 3. A META-ARGUMENTATION FRAMEWORK 53

3.5. REASONING WITH BURDEN OF PERSUASION

• A directly undercuts B

Intuitively, preferences are taken into account only if the attacked argument

is a potential defeater of the attacking argument—i.e., it exists a conflict argu-

ment relating attacked and attacking arguments between the subarguments of the

former.

At last, we can define our Meta-Argumentation framework as:

Definition 28 (Meta-Argumentation Framework). Let ASm be an argumentation

system < Lcf , R, n, ∅ >, where Lcf is a language based on Definition 12, Defini-

tion 14 and Definition 19, and ATm be an argumentation theory < ASm, K >. An

abstract argumentation framework defined by ATm, is a tuple < A,⇝> where:

• A = A′ ∪ A′′ ∪ A′′′ with

– A′ is the set of all arguments constructed from ATm using Definition 13;

– A′′ is the set of all arguments constructed from ATm and A′ using Def-

inition 24;

– A′′′ is the set of all arguments constructed from ATm and A′′ using

Definition 20

• for any arguments X and Y ∈ A, X ⇝ Y iff X directly defeats Y ′ ∈ Sub(Y)

according to Definition 25 and Definition 27 and ̸ ∃Y ′
p ∈ GenP (Y ′) s.t.

Pref(Y ′
p) ⊆ Pref(Y) ∧ Y ′

p > X

We can evaluate any Meta-argumentation framework using Dung’s grounded

semantics.

3.5 Reasoning with Burden of Persuasion

In this section of the thesis, we turn our attention to the Burden of Persuasion,

a concept deeply embedded in both our formal argumentation model and the

realm of legal reasoning. This concept, fundamental to the legal process, dictates

which party in a dispute must prove their point to a certain standard, shaping the

dynamics of legal argumentation.

54 CHAPTER 3. A META-ARGUMENTATION FRAMEWORK

3.5. REASONING WITH BURDEN OF PERSUASION

We introduce a meta-argumentation framework specifically tailored to address

the Burden of Persuasion. This specialised framework not only embeds the Burden

of Persuasion at its core but also aligns seamlessly with established legal method-

ologies, offering a refined and intricate approach to the evaluation of arguments

within legal contexts. By integrating this concept, our framework bridges the gap

between theoretical argumentation models and practical legal reasoning, ensuring

a more realistic and applicable tool for legal practitioners.

Throughout this section, we will enrich our discussion with practical examples

from the legal field. These examples are carefully chosen to illustrate the efficacy

of our meta-argumentation framework in real-world legal scenarios, demonstrating

how it adeptly handles the complexities and nuances associated with the Burden

of Persuasion in legal disputes. This approach not only provides clarity on the

theoretical aspects of our model but also showcases its direct applicability and

relevance in the legal domain.

For the sake of simplicity we choose to model our meta-argumentation frame-

work by exploiting bimodal graphs, which are often exploited to both define

meta-level concepts and understand the interactions of object-level and meta-

level arguments [Ogunniye et al., 2018, Müller et al., 2013]. Accordingly, Subsec-

tion 3.5.1 presents the object-level argumentation language exploited by our model,

leveraging on an ASPIC+-like argumentation framework [Prakken, 2010]. Then,

the meta-level argumentation language based on the use of argument schemes

[Walton et al., 2008] is introduced in Subsection 3.5.2.

3.5.1 Object-level argumentation

In our analysis, while we utilize the ASPIC++ framework, it’s important to note

that we are adopting a slightly simplified version. This approach concentrates

exclusively on defeasible rules and premises, with strong negation being identified

as the main source of conflicts. The subsequent definitions will further elucidate

this adjusted framework.

Let a literal be an atomic proposition or its negation.

Notation 2. For any literal ϕ, its complement is denoted by ϕ̄. That is, if ϕ is a

proposition p, then ϕ̄ = ¬p, whereas if ϕ is ¬p, then ϕ̄ is p.

CHAPTER 3. A META-ARGUMENTATION FRAMEWORK 55

3.5. REASONING WITH BURDEN OF PERSUASION

Let us also identify burdens of persuasion, i.e., those literals whose proof requires

a convincing argument. We assume that such literals are consistent (it cannot be

the case that there is a burden of persuasion on both ϕ and ϕ̄).

Definition 29 (Burdens of persuasion). Burdens of persuasion are represented by

predicates of the form bp(ϕ), stating the burden is allocated on the literal ϕ.

Literals are put in relation with bp predicates through defeasible rules.

Definition 30 (Defeasible rule). A defeasible rule r has the form:

ρ : ϕ1, ..., ϕn,∼ϕ′
1, ...,∼ϕ′

m ⇒ ψ

with 0 ≤ n,m, and where

• ρ is the unique identifier for r, denoted by N(r);

• each ϕ1, . . . , ϕn, ϕ
′
1, . . . , ϕ

′
m, ψ is a literal or a bp predicate;

• ϕ1, . . . ϕn,∼ϕ′
1, ...,∼ϕ′

m are denoted by Antecedent(r);

• ψ is denoted by Consequent(r);

• ∼ ϕ denotes the weak negation (negation by failure) of ϕ—i.e., ϕ is an ex-

ception that would block the application of the rule whose antecedent includes

∼ϕ.

The unique identifier of a rule can be used as a literal to specify that the named

rule is applicable, and its negation to specify that the rule is inapplicable, dually

[Modgil and Prakken, 2014b].

A superiority relation ≻ is defined over rules: s ≻ r states that rule s prevails

over rule r.

Definition 31 (Superiority relation). A superiority relation ≻ over a set of

rules Rules is a transitive, antireflexive and antisymmetric binary relation over

Rules.

A defeasible theory consists of a set of rules and a superiority relation over the

rules.

56 CHAPTER 3. A META-ARGUMENTATION FRAMEWORK

3.5. REASONING WITH BURDEN OF PERSUASION

Definition 32 (Defeasible theory). A defeasible theory is a tuple ⟨Rules ,≻⟩
where Rules is a set of rules, and ≻ is a superiority relation over Rules.

Given a defeasible theory, we can construct arguments by chaining rules

from the theory [Modgil and Prakken, 2014b, Caminada and Amgoud, 2007b,

Vreeswijk, 1997b].

Definition 33 (Argument). An argument A constructed from a defeasible theory

⟨Rules ,≻⟩ is a finite construct of the form: A : A1, . . . An ⇒r ϕ with 0 ≤ n, where

• A is the argument’s unique identifier;

• A1, . . . , An are arguments constructed from the defeasible theory ⟨Rules ,≻⟩;

• ϕ is the conclusion of the argument, denoted by Conc(A);

• r : Conc(A1), . . . ,Conc(An)⇒ ϕ is the top rule of A, denoted by TopRule(A).

Notation 3. Given an argument A : A1, . . . An ⇒r ϕ as in Definition 33, Sub(A)

denotes the set of subarguments of A, i.e., Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪
{A}. DirectSub(A) denotes the direct subarguments of A, i.e., DirectSub(A) =

{A1, . . . , An}.

Preferences over arguments are defined via a last-link ordering: argument A is

preferred over argument B if the top rule of A is stronger than the top rule of B.

Definition 34 (Preference relation). A preference relation ≻ is a binary rela-

tion over a set of arguments A: argument A is preferred to argument B – denoted

by A ≻ B – iff TopRule(A) ≻ TopRule(B).

Arguments are put in relation with each others according to the attack relation.

Definition 35 (Attack). Argument A attacks argument B iff A undercuts or

rebuts B, where

• A undercuts B (on B’) iff Conc(A) = ¬N(ρ) for some B′ ∈ Sub(B), where ρ

is TopRule(B′)

CHAPTER 3. A META-ARGUMENTATION FRAMEWORK 57

3.5. REASONING WITH BURDEN OF PERSUASION

• A rebuts B (on B’) iff either (i) Conc(A) = ϕ̄ for some B′ ∈ Sub(B) of the

form B′′
1 , ..., B

′′
M ⇒ ϕ and B′ ⊁ A, or (ii) Conc(A) = ϕ for some B′ ∈ Sub(B)

such that ∼ϕ ∈ Antecedent(TopRule(B′))

In short, arguments can be attacked either on a conclusion of a defeasible inference

(rebutting attack) or on a defeasible inference step itself (undercutting attack).

Definition 36 (Argumentation graph). An argumentation graph is a tuple

⟨A,⇝⟩, where A is the set of all arguments, and ⇝ is attack relation over A.

Notation 4. Given an argumentation graph G = ⟨A,⇝⟩, we write AG and ⇝G

to denote the graph’s arguments and attacks, respectively.

Now, let us introduce the notion of the {IN, OUT, UND}-labelling of an argumentation

graph, where each argument in the graph is labelled IN, OUT, or UND, depending on

whether it is accepted, rejected, or undecided, respectively.

Definition 37 (Labelling). Let G be an argumentation graph. An {IN, OUT, UND}-
labelling L of G is a total function AG → {IN, OUT, UND}. L({IN, OUT, UND}, G)
denotes the set of all {IN, OUT, UND}-labellings of G.

A labelling-based semantics prescribes a set of labellings for any argumentation

graph according to some criterion embedded in its definition.

Definition 38 (Labelling-based semantic). Let G be an argumentation graph.

A labelling-based semantics S associates with G a subset of L({IN, OUT, UND}, G),
denoted as LS(G).

3.5.2 Meta-level argumentation

A fundamental aspect to consider when dealing with a multi-level argumen-

tation graph is how the higher-level graphs can be built starting from the

object-level ones. For the purpose, in this work – following the example in

[Ogunniye et al., 2018] – we leverage on argument schemes [Walton et al., 2008].

In short, argumentation schemes are commonly-used patterns of reasoning. They

can be formalised in a rule-like form [Prakken, 2005] where every argument scheme

consists of a set of conditions and a conclusion. If the conditions are met, then

58 CHAPTER 3. A META-ARGUMENTATION FRAMEWORK

3.5. REASONING WITH BURDEN OF PERSUASION

the conclusion holds. Each scheme comes with a set of critical questions (CQ),

identifying possible exceptions to the admissibility of arguments derived from the

schemes.

Definition 39 (Meta-predicate). A meta-predicate PM is a symbol that represents

a property or a relation between object-level arguments. Let be M the set of all

PM .

Definition 40 (Object-relation meta-predicate). An object-relation meta-

predicate OM is a predicate stating the existence of a relation at the object level—

e.g., attacks, preferences, conclusions. Let be O the set of all OM .

Moving from the above definitions we can define an argument scheme as:

Definition 41 (Argument Scheme). An argument scheme s has the form:

s : P1, ..., Pn,∼P ′
1, ...,∼P ′

m ⇒ Q

with 0 ≤ n,m, and where

• each P1, . . . , Pn, P
′
1, . . . , P

′
m ∈M∪O, while Q ∈M

• ∼P denotes weak negation (negation by failure) of P—i.e., P is an exception

that would block the application of the rule whose antecedent includes ∼P

• we denote with CQs the set of critical questions associated to scheme s.

Using argument schemes we can build meta-arguments.

Definition 42 (Meta-Argument). A meta-argument A constructed from a set of

argument schemes S and an object-level argumentation graph G is a finite construct

of the form: A : A1, . . . An ⇒s P with 0 ≤ n, where

• A is the argument’s unique identifier;

• s ∈ S is the scheme used to build the argument;

• A1, . . . , An are arguments constructed from S and G;

• P is the conclusion of the argument, denoted by Conc(A).

CHAPTER 3. A META-ARGUMENTATION FRAMEWORK 59

3.5. REASONING WITH BURDEN OF PERSUASION

CQ(A) denotes the critical questions associated to scheme s. The same notation

introduced for standard arguments in Notation 3 also applies to meta-arguments.

We can now define attacks over meta-arguments, or, meta-attacks.

Definition 43 (Meta-Attack). An argument A attacks argument B (on B′) iff

either (i) Conc(A) = P̄ for some B′ ∈ Sub(B) of the form B′′
1 , ..., B

′′
M ⇒ P , or (ii)

Conc(A) = P for some B′ ∈ Sub(B) such that ∼P ∈ Antecedent(TopRule(B′)).

The same definition of argumentation graph and labellings introduced for standard

argumentation in Definitions 36, 37, 38 also holds for meta-arguments and for the

meta level.

3.5.3 Burden of persuasion as meta-argumentation

Informally, we can say that when we talk about the notion of the burden of persua-

sion concerning an argument, we intuitively argue over that argument according

to a meta-argumentative approach.

Let us consider, for instance, an argument A: if we allocate the burden over it,

we implicitly impose the duty to prove its admissibility on A. Thus, moving the

analysis up to the meta level of the argumentation process, it is like having two

arguments, let them be FBP and SBP , reflecting the burden of persuasion status.

According to this perspective, FBP states that “the burden is not satisfied if A

fails to prove its admissibility” – i.e. A should be rejected or undefined – and, of

course, FBP is not compatible with A being accepted. Alongside, SBP states that

“A is acceptable since it satisfies its burden”. FBP and SBP have a contrasting

conclusion and thus they attack each other.

Analysing the burden from this perspective makes immediately clear that the

notions that the meta model should deal with are:

N1 the notion of the burden itself expressing the possibility for an argument to

be allocated with a burden of persuasion (i.e., burdened argument)

N2 the possibility that this burden is satisfied (that is, a burden met) or not

satisfied

N3 the possibility of making attacks involving burdened arguments ineffective.

60 CHAPTER 3. A META-ARGUMENTATION FRAMEWORK

3.5. REASONING WITH BURDEN OF PERSUASION

The outline of that multi-part evaluation scheme for burdens of persuasion in ar-

gumentation is now visible and can be formally designed. In the following, we

formally define these concepts by exploiting bimodal argument graphs as tech-

niques for expressing the two main levels of the model – meta and object level –

and the relationships between the two.

In particular, we are going to define each set of the bimodal argument graph

tuple ⟨AO,AM ,RO,RM ,SA,SR⟩. With respect to AO and RO, representing re-

spectively the set of object-level arguments and attacks, they are built accordingly

to the argumentation framework discussed in Subsection 3.5.1. Hence, our analysis

focuses on the meta-level graph ⟨AM ,RM⟩ and on the support sets connecting the

two levels (SA and SR).

Meta-level graph

We now proceed to detail all the argumentation schemes used to build arguments

in the meta-level graph. Every scheme comes along with its critical questions. As

we will see in the next sections, all the critical questions have to be interpreted as

kind of “presumptions”: they are believed to be true during the construction and

evaluation of the argumentation framework – i.e., they are not used as possible

attack dimensions –, but their post hoc verification invalidates the entire solution.

Let us first introduce the basic argumentation scheme enabling the definition

and representation of an argument with an allocation of the burden of persua-

sion (i.e., reifying N1). We say that an object-level argument A has the burden

of persuasion on it if exists an object-level argument B such that Conc(B) =

bp(Conc(A)). This notion is modelled through the following argument scheme:

conclusion(A, ϕ), conclusion(B, bp(ϕ))⇒ burdened(A) (S0)

Is argument B provable? (CQS0)

where bp(ϕ) is a predicate stating ϕ is a literal with the allocation of the burden,

conclusion(A, ϕ) is a structural meta-predicate stating that Conc(A) = ϕ holds,

and burdened(A) is a meta-predicate representing the allocation of the burden

CHAPTER 3. A META-ARGUMENTATION FRAMEWORK 61

3.5. REASONING WITH BURDEN OF PERSUASION

on A. Clearly, an argument produced using this scheme only holds if both the

arguments A and B on which the inference is based hold—critical question CQS0.

Analogously, we introduce the scheme S1 representing the absence of such an

allocation:

conclusion(A, ϕ)⇒ ¬burdened(A) (S1)

Is argument A provable? Are arguments concluding bp(ϕ) not provable?(CQS1)

Then, as informally introduced at the beginning of this section, we have two

schemes reflecting the possibility for a burdened argument to meet or not the

burden (N2).

burdened(A) ⇒ bp met(A) (S2)

burdened(A) ⇒ ¬bp met(A) (S3)

Is argument A provable? (CQS2)

Is argument A always refuted or undecided? (CQS3)

where bp met is the meta-predicate stating the burden has been met. It is im-

portant to notice that the two schemes above reach opposite conclusions from the

same grounds—i.e., the presence of the burden on argument A. The discriminating

elements are the critical questions they are accompanied by. In the case of S2, we

have that only if a burden of persuasion on argument A exists, and A is accept-

able (CQS3), then the burden is satisfied. On the other side, the validity of S3 is

bound to the missing admissibility of argument A. We will see in Section 3.5.3 how

the meta-arguments and the associated questions concur to determine the model

results.

Let us now consider attacks between arguments and their relation with the

burden of persuasion allocation. When a burdened argument fails to meet the

burden, the only thing affecting the argument acceptability is the burden itself—

i.e., attacks from other arguments do not influence the status of the burdened

62 CHAPTER 3. A META-ARGUMENTATION FRAMEWORK

3.5. REASONING WITH BURDEN OF PERSUASION

argument, which only depends on its inability to satisfy the burden. The same

applies to attacks issued by an argument that fails to meet the burden: the fail-

ure implies the argument rejection and, as a direct consequence, the inability to

effectively attack other arguments. In order to capture the nuance of discerning

between effective and ineffective object-level attacks w.r.t. the concept of burden

of persuasion (N3), we define the following scheme:

attack(B,A),∼(¬bp met(A)),∼(¬bp met(B))⇒ effectiveAttack(B,A) (S4)

Can we prove arguments A or B do not fail to meet their burden? (CQS4)

where attack is a structural meta-predicate stating an attack relation at the object

level, whereas effectiveAttack is a meta-predicate expressing that an attack should

be taken into consideration according to the burden of persuasion allocation. In

other words, if an object-level attack involves burdened arguments, and one of

these fail to satisfy the burden, then the attack is considered not effective w.r.t.

the allocation of the burden.

The aforementioned schemes can be used to create a meta-level graph con-

taining all the information about constraints related to the burden of persuasion

concept thus leading to a clear separation of concerns, as shown in the following

example.

Example 5 (Base). Let us consider two object-level arguments A and B, conclud-

ing the literals a and bp(a) respectively. Using the schemes in Subsection 3.5.3 we

can build the following meta-level arguments:

• AS0 representing the allocation of the burden on argument A.

• AS1 and BS1 standing for the absence of a burden on arguments A and B

respectively. The scheme used to build those arguments exploits weak negation

in order to cover those scenarios where an argument concluding a bp literal

exists at the object-level, but it is found not acceptable.

• AS2 and AS3 sustaining that (i) A was capable of meeting the burden on it,

(ii) A was not capable of meeting its burden.

CHAPTER 3. A META-ARGUMENTATION FRAMEWORK 63

3.5. REASONING WITH BURDEN OF PERSUASION

The meta-level graph (Figure 3.4) points out the relations actually implicit in the

notion of burden of persuasion over an argument, where, intuitively, we argue over

the consequences of A’s possibly succeeding/failing to meet the burden. At the meta

level, all the possible scenarios can be explored by applying different semantics over

the meta-level graph.

Considering for instance Dung’s preferred semantics [Baroni et al., 2011c], we

can obtain two distinct outcomes: (1) the burden is not satisfied, i.e., argument

AS3 is accepted, and consequently, AS2 is rejected, or (2) we succeed in proving

AS2, i.e., the burden is met and AS3 is rejected (AS0, AS1 are accepted and re-

jected accordingly). Although the example is really simple – only basic schemes for

reasoning on the burden are considered at the meta-level – it clearly demonstrates

the possibility of reasoning over the burdens, since, i.e., it establishes whether or

not there is a burden on a literal ϕ – argument B in the example – and enables the

evaluation of the consequences of a burdened argument to meet or not its burden.

A B

AS0 AS1

AS2 AS3

BS1

object level

meta level

Meta-level arguments:

AS0 :⇒ burdened(A)
AS1 :⇒ ¬burdened(A)
AS2 : AS0 ⇒ bp met(A)
AS3 : AS0 ⇒ ¬bp met(A)
BS1 :⇒ ¬burdened(B)

Object-level arguments:

A :⇒ a
B :⇒ bp(a)

Figure 3.4: Object and meta level graphs from Example 5

Object- and meta-level connection: supporting sets

Let us now define how the meta level and the object level interact. Indeed, it is not

enough to reason on the consequences of the burden of persuasion allocation only

concerning the burdened argument, but the results of the argument satisfying or

not such a burden constraint should affect the entire object-level graph. According

64 CHAPTER 3. A META-ARGUMENTATION FRAMEWORK

3.5. REASONING WITH BURDEN OF PERSUASION

to the standard bimodal graph theory, defining how the object level and the meta

level interact is the role of the argument support relation SA and of the attack

support relation SR, respectively. According to Definition 10, every element at

level n is connected to an argument at level n+ 1 by a support edge in SA or SR,
depending on whether it is either an argument or an attack.

Let us define the support set SA of meta arguments supporting object-level

arguments as:

SA = {(Arg1, Arg2) | Arg1 ∈ AM , Arg2 ∈ AO,

(Conc(Arg1) = bp met(Arg2) ∨ Conc(Arg1) = ¬burdened(Arg2))}

Intuitively, an argument A at the object level is supported by arguments at the

meta level claiming that either the burden on A is satisfied (S2) or there is no

burden allocated on it (S1).

The set SR of meta arguments supporting object-level attacks is defined as:

SR = {(Arg1, (B,A)) | Arg1 ∈ AM , (B,A) ∈ RO,

Conc(Arg1) = effectiveAttack(B,A)}

In other words, an object-level attack is supported by arguments at the meta level

claiming its effectiveness w.r.t. the burden of persuasion allocation (S4).

Equivalence with burden of persuasion semantics

The defined meta-framework can be used to achieve the same results of the original

burden of persuasion labelling semantics [Calegari et al., 2021d].

Let us first introduce the notion of CQ-consistency for a bimodal argumentation

graph G.

Definition 44 (CQ-consistency). Let G = ⟨AO,AM ,RO,RM ,SA,SR⟩ be a bi-

modal argumentation graph, and let LS(G) be a labelling-based semantics. P is

the set of corresponding LS-perspectives. A perspective p ∈ P is CQ-consistent if

every IN argument A in the corresponding meta-level labelling satisfies its critical

questions (CQ(A)).

CHAPTER 3. A META-ARGUMENTATION FRAMEWORK 65

3.5. REASONING WITH BURDEN OF PERSUASION

Before proceeding, let us ground the Critical Questions introduced in Subsec-

tion 3.5.3 within the context of LS-perspectives and labelling based semantics.

CQS0 Given a LS-perspective p and one of its labelling l, is l(B) = IN?

CQS1 Given a LS-perspective p and one of its labelling l, is l(A) = IN? If an

argument B such that Conc(B) = bp(ϕ) does exist, is l(B) ∈ {UND, OUT}?

CQS2 Given a LS-perspective p and one of its labelling l, is l(A) = IN?

CQS2 Given all LS-perspectives p and the set of their labellings L, does ∀l ∈
L, l(A) ∈ {UND, OUT} hold?

CQS3 Given a LS-perspective p and one of its labelling l, are l(A) = IN and l(B) =

IN?

Using this new definition we can introduce the concept of BP-perspective.

Definition 45 (BP-perspective). Let G = ⟨AO,AM ,RO,RM ,SA,SR⟩ be a bimodal

argumentation graph, and P the set of its Lstable-perspectives [Baroni et al., 2011c].

We say that p ∈ P is a BP -perspective of G iff p is CQ-consistent.

Before proceeding, let us recall the main definitions from Calegari and col-

leagues [Calegari et al., 2021d], who, in their work, present a semantics dealing

with the burden of persuasion allocation on members of the argumentation lan-

guage.

Definition 46 (BP-defeat [Calegari et al., 2021d]). Given a set of burdens of

persuasion BurdPers, A bp-defeats B iff there exists a subargument B′ of B such

that:

1. Conc(A) = Conc(B′) and

(a) Conc(A) ̸∈ BurdPers, and B′ ̸≻ A, or

(b) Conc(A) ∈ BurdPers and A ≻ B′.

2. Conc(A) = ¬N(ρ), where ρ is TopRule(B′).

66 CHAPTER 3. A META-ARGUMENTATION FRAMEWORK

3.5. REASONING WITH BURDEN OF PERSUASION

Definition 47 (Grounded BP-labelling [Calegari et al., 2021d]). A grounded BP-

labelling of an argumentation graph G, relative to a set of burdens BurdPers, is

a {IN, OUT, UND}-labelling l s.t. the set of UND arguments is minimal and ∀A ∈ AG

with Conc(A) = ϕ

1. l(A) = IN iff ∀B ∈ AG such that B bp-defeats A : l(B) = OUT

2. l(A) = OUT iff

(a) ϕ ∈ BurdPers and ∃ B ∈ AG s.t. B bp-defeats A and l(B) ̸= OUT

(b) ϕ ̸∈ BurdPers and ∃ B ∈ AG such that B bp-defeats A and l(B) = IN

3. l(A) = UND otherwise.

Proposition 4. If ∄A,B ∈ AO such that both A and B have a burden of persua-

sion on them and A is reachable from B through RO, the results yielded by the

grounded evaluation of G’s BP -perspectives are congruent with the evaluation of

the object-level graph ⟨AO,RO⟩ under the Grounded BP-labelling as in Definition

47 [Calegari et al., 2021d].

Proof. The burden of persuasion semantics acts like the grounded semantics, with

the only difference that the burdened arguments that would have been UND for the

latter are possibly OUT/IN for the former. So, it is a matter of fact that burdened

arguments and arguments connected to them through attack relation can change

their state.

Let us consider an argumentation graph AF ⟨A,⇝⟩, and let LG be the grounded

labelling resulting from the evaluation of AF under a grounded semantics. With

respect to our framework, and in particular, to the bimodal argumentation graph

G = ⟨AO,AM ,RO,RM ,SA,SR⟩, we have, by construction, that every node at the

object level, if not burdened, has an undisputed supporting argument at the meta

level (S1 or S4). As a consequence, the meta level has no influences on no burdened

arguments, and – in the absence of burdened arguments – the evaluation of the

object level graph under the grounded semantics would be equal to LG. It is a

matter of fact that the meta level influences only the burdened arguments’ state.

Accordingly, the extent of this influence and the consequences on the object-level

graph will be considered in the following.

CHAPTER 3. A META-ARGUMENTATION FRAMEWORK 67

3.5. REASONING WITH BURDEN OF PERSUASION

Let us consider a single argument A ∈ A allocated with the burden of per-

suasion, thus having the additional argument B ∈ A stating the burden on A (as

depicted in Figure 3.4). Computing the stable semantics on the meta-level graph

produces the following scenarios:

Stable.a burden on A cannot be proved;

Stable.b burden on A can be proved and the burden is met;

Stable.c burden on A can be proved and the burden is not met.

Accordingly, the stable evaluation of the meta-graph produces three different per-

spectives of the object level:

(i) argument A is supported—it is not burdened;

(ii) argument A is supported—it satisfies the burden;

(iii) argument A is not supported, and then it is excluded from the object-level

graph—it does not meet the burden then it is refuted.

In particular, we have that Stable.a induces (i), Stable.b leads to (ii), while Stable.c

induces (iii). Let LBP be this new object-level labelling (obtained by the meta-

level stable semantics reification at the object level). Also, let us compare LBP with

the initial object-level grounded labelling LG. Then, the following cases can occur

(E is exploited for valid solutions with labelling equivalence, while C is exploited

for solutions to be discarded).

• B is OUT or UND in LG.

E1 If (i) the burden is not allocated and cannot be proven, the meta level

does not influence the object level supporting all unburdened argu-

ments. CQS1 is satisfied and LBP is equivalent to LG.

C1 If (ii) or (iii), in both cases CQS0 is not satisfied—the burden is proved

at the meta level and not at object level.

• B is IN and A is OUT in LG.

68 CHAPTER 3. A META-ARGUMENTATION FRAMEWORK

3.5. REASONING WITH BURDEN OF PERSUASION

C2 If (i) we have an inconsistency on CQS1—the burden is proved at object

level and not at meta level.

C3 If (ii) we have an inconsistency on CQS2 since A is considered IN at

the meta level (supported by the meta-argument) but A is OUT at the

object level.

E2 If (iii) A is not supported, i.e., removed from the object-level graph.

CQS0 and CQS3 are both satisfied. Then, under the grounded seman-

tics, the removal of an OUT argument from a graph is not influent w.r.t.

its evaluation, i.e., LBP is equivalent to LG.
1

• B is IN and A is IN in LG.

C4 If (i), we have an inconsistency on CQS1—the burden is proved at object

level and not at meta level.

E3 If (ii), then CQS0 and CQS2 are both satisfied and LBP is equal to LG.

C5 If (iii) we have an inconsistency because CQS3 is not satisfied.

• B is IN and A is UND in LG.

C6 If (i), we have an inconsistency on CQS1—the burden is proved at object

level and not at meta level.

C7 If (ii), we have an inconsistency since A is considered IN at the meta

level (supported by the meta-argument) but A is UND at the object

level—CQS2 is not satisfied.

E4 If (iii) A is not supported, i.e., is removed from the object level, i.e., it

can be labelled as OUT in LBP (see 1). CQS0 and CQS2 are satisfied.

As made evident by the proof, the reification of the meta level upon the object level

generates multiple solutions: yet, only one solution for each case can be considered

valid w.r.t. critical questions. Moreover, the only valid perspective coincides with

1It can trivially be proved considering that – in the grounded semantics – an OUT argument
does not affect other arguments’ state, i.e., it is irrelevant and can be removed; of course, also the
dual proposition holds, i.e., if LBP build in the meta-frameworks does not consider an argument
it can be labelled as OUT in the grounded bp-labelling

CHAPTER 3. A META-ARGUMENTATION FRAMEWORK 69

3.5. REASONING WITH BURDEN OF PERSUASION

the one generated from the bp-labelling in [Calegari et al., 2021d]—the burdened

argument is labelled OUT in case of indecision (E4). Obviously, the proof can be

generalised to configurations taking into account any number of burdened inde-

pendent arguments—where combinations grow exponentially with the number of

burdened arguments.

Example 6 (Antidiscrimination law). Let us consider a case in which a woman

claims to have been discriminated against in her career on the basis of her sex, as

she was passed over by male colleagues when promotions came available (ev1), and

brings evidence showing that in her company all managerial positions are held by

men (ev3), even though the company’s personnel includes many equally qualified

women, having worked for a long time in the company, and with equal or better

performance (ev2). Assume that this practice is deemed to indicate the existence of

gender-based discrimination (indiciaDiscrim) and that the employer fails to pro-

vide prevailing evidence that the woman was not discriminated against (¬discrim).

It seems that it may be concluded that the woman was indeed discriminated against

on the basis of her sex.

Consider, for instance, the following formalisation of the European nondiscrim-

ination law, that, in case of presumed discrimination, requires prevailing evidence

that no offence was committed—i.e., bp(¬discrim):

e1 : ev1 e2 : ev2 e3 : ev3

er1 : ev1⇒ indiciaDiscrim er2 : ev2⇒ ¬discrim er3 : ev3⇒ discrim

r1 : indiciaDiscrim ⇒ bp(¬discrim)

We can then build the following object-level arguments:

A0 :⇒ ev1 B0 :⇒ ev2 C0 :⇒ ev3

A1 : A0 ⇒ indiciaDiscrim B1 : B0 ⇒ ¬discrim C1 : C0 ⇒ discrim

A2 : A1 ⇒ bp(¬discrim)

and the following meta-level arguments:

70 CHAPTER 3. A META-ARGUMENTATION FRAMEWORK

3.5. REASONING WITH BURDEN OF PERSUASION

A0S1
:⇒ −burdened(A0) B0S1 :⇒ −burdened(B0)

A1S1
:⇒ −burdened(A1) B1S0

:⇒ burdened(B1)

A2S1
:⇒ −burdened(A2) B1S1

:⇒ −burdened(B1)

C0S1
:⇒ −burdened(C0) B1S2

: B1S0
⇒ bp met(B1)

C1S1
:⇒ −burdened(C1) B1S3

: B1S0
⇒ ¬bp met(B1)

C1B1S4
:⇒ effectiveAttack(C1, B1) B1C1S4

:⇒ effectiveAttack(B1, C1)

The resulting graph is depicted in Figure 3.5. In this case, at the object level, since

there are indicia of discrimination (A1), we can infer the allocation of the burden

on non-discrimination (A2). Moreover, we can build both arguments for discrimi-

nation (C1) and non-discrimination (B1), leading to a situation of undecidability.

At the meta level we can apply the rule S1 for every argument at the object

level (A0S1
, A1S1

, A2S1
, B0S1, B1S0

, C0S1
, C1S1

) – where we can establish the absence

of the burden for all of them –, and the rule S4 for every attack (C1B1S4
, B1C1S4

).

By exploiting B1 and A2, we can also apply schema S0, and consequently rules S2

and S3. In a few words, we are concluding the meta argumentative structure given

by the allocation of the burden of persuasion on argument B1.

We can now apply the stable labelling to the meta-level graph, thus obtaining

three distinct results. For clarity reasons, in the following we ignore the arguments

that are acceptable under every solution.

1. IN = {B1S1
, C1B1S4

, B1C1S4
}, OUT = {B1S0

, B1S2
, B1S3

}, UND = {}—i.e., B1 is

not burdened;

2. IN = {B1S0
, B1S2

, C1B1S4
, B1C1S4

}, OUT = {B1S1
, B1S3

}, UND = {}—i.e., B1 is

burdened and the burden is met;

3. IN = {B1S0
, B1S3

}, OUT = {B1S1
, B1S2

, C1B1S4
, B1C1S4

}, UND = {}—i.e., B1 is

burdened and the burden is not met.

Then, the meta-level results can be reified to the object-level perspectives taking

into account the CQ we have to impose on the solutions and the results given

by the perspective evaluation under the grounded semantics. Let us first consider

solutions 1 and 2. They lead to the same perspective on the object-level graph—

the graph remains unchanged w.r.t. the original graph. If we consider the critical

questions attached to the IN arguments, both these solutions are not valid. Indeed,

CHAPTER 3. A META-ARGUMENTATION FRAMEWORK 71

3.5. REASONING WITH BURDEN OF PERSUASION

according to solution 1 the burden is not allocated on argument B1, but this is in

contrast with argument A2’s conclusion (A2 is IN under grounded labelling)—i.e.,

CQS1 is not satisfied. Analogously, solution 2 concludes that B1 is allocated with

the burden and its success to meet the burden, but at the same time, argument B1

is undecided at the object level (B1 is UND under the grounded semantics)—i.e.,

CQS2 is not satisfied.

The only acceptable result is the one given by solution 3. In this case, argument

B1 is not capable to meet the burden – B1S3
is IN – and, consequently, it is rejected

and deleted from the perspective. Indeed, CQS3 is satisfied. As a consequence,

argument C1 is labelled IN. In other words, the argument for non-discrimination

fails and the argument for discrimination is accepted.

A0 A1 A2 B1 C1

B0 C0

C1S1B1C1S4C1B1S4

B1S3

B1S0B1S1

B1S2

A0S1 A1S1 A2S1 C0S1

B0S1

meta level

object level

Figure 3.5: Argumentation graph (object- and meta- level) from Example 6

Let us consider a situation in which one argument A is presented for a claim

ϕ being burdened, and A (or one of its subarguments) is attacked by a coun-

terargument B, of which the conclusion ψ is also burdened. Intuitively, if both

arguments fail to satisfy the burden of persuasion, both of them are to be re-

jected. This is not the case if the inversion of the burden is taken into account

[Calegari et al., 2021d]—i.e., if no convincing argument for ψ is found, then the

attack fails, and the uncertainty on ψ does not affect the status of A. Accordingly,

72 CHAPTER 3. A META-ARGUMENTATION FRAMEWORK

3.5. REASONING WITH BURDEN OF PERSUASION

Figure 3.6: Argumentation graph (object- and meta- level) from Example 7

B is rejected for failing to meet its burden, thus leaving A free to be accepted also

if it was not able to satisfy the burden of persuasion in the beginning.

The proposed model is able to correctly deal with this exception, as we discuss

in the next example adapted from [Calegari et al., 2021d].

Example 7 (Inversion of the burden). Let us consider a case in which a doctor

caused harm to a patient by misdiagnosing his case. Assume that there is no doubt

that the doctor harmed the patient (harm), but it is uncertain whether the doctor

followed the guidelines governing this case. Assume that, under the applicable

law, doctors are liable for any harm suffered by their patients (liable), but they

can avoid liability if they show that they exercised due care in treating the patient

(dueDiligence). Let also assume that a doctor is considered to be diligent if he/she

follows the medical guidelines that govern the case (guidelines). The doctor has to

provide a convincing argument that he/she was diligent (bp(dueDiligence)), and the

patient has to provide a convincing argument for the doctor’s liability (bp(liable)).

We can formalise the case as follows:

f1 : guidelines f2 : ¬guidelines
f3 : harm r1 : ¬guidelines ⇒ ¬dueDiligence
r2 : guidelines ⇒ dueDiligence r3 : harm,∼dueDiligence ⇒ liable

bp1 : bp(dueDiligence) bp2 : bp(liable)

CHAPTER 3. A META-ARGUMENTATION FRAMEWORK 73

3.5. REASONING WITH BURDEN OF PERSUASION

We can then build the following object-level arguments:

A0 :⇒ bp(dueDiligence) A1 :⇒ bp(liable)

A2 :⇒ guidelines A3 :⇒ harm

A4 :⇒ ¬guidelines A5 : A2 ⇒ dueDiligence

A6 : A3 ⇒ liable A7 : A4 ⇒ ¬dueDiligence

According to the original burden semantics, the argument for the doctor’s due

diligence (A5) fails to meet its burden of persuasion. Consequently, following the

inversion principle, it fails to defeat the argument for the doctor’s liability (A6),

which is then able to meet its burden of persuasion.

Let’s now analyse the case under the meta-model perspective. Using argument

schemes defined in Section 3.5 we can build the following meta-arguments:

A0S1
:⇒ −burdened(A0) A1S1

:⇒ −burdened(A1)

A2S1
:⇒ −burdened(A2) A3S1

:⇒ −burdened(A3)

A4S1
:⇒ −burdened(A4) A7S1

:⇒ −burdened(A7)

A2A7S4
:⇒ effectiveAttack(A2, A7) A2A4S4

:⇒ effectiveAttack(A2, A4)

A4A2S4
:⇒ effectiveAttack(A4, A2)

A7A5S4
:⇒ effectiveAttack(A7, A5) A5A7S4

:⇒ effectiveAttack(A5, A7)

A4A5S4
:⇒ effectiveAttack(A4, A5) A5A6S4

:⇒ effectiveAttack(A5, A6)

A5S0
:⇒ burdened(A5) A5S1

:⇒ −burdened(A5)

A5S2
: A5S0

⇒ bp met(A5) A5S3
: A5S0

⇒ ¬bp met(A5)

A6S0
:⇒ burdened(A6) A6S1

:⇒ −burdened(A6)

A6S2
: A6S0

⇒ bp met(A6) A6S3
: A6S0

⇒ ¬bp met(A6)

Connecting the object- and meta-level arguments we obtain the graph in Figure 3.6.

Let us now consider the extensions obtained applying stable semantics to the meta-

level graph:

1. {A6S0
, A6S2

, A5S0
, A5S3

}

2. {A6S0
, A6S3

, A5S0
, A5S3

}

3. {A6S0
, A6S2

, A5S0
, A5S2

, A5A6S4
, A5A7S4

, A7A5S4
, A4A5S4

}

4. {A6S0
, A6S3

, A5S0
, A5S2

, A5A7S4
, A7A5S4

, A4A5S4
}

74 CHAPTER 3. A META-ARGUMENTATION FRAMEWORK

3.5. REASONING WITH BURDEN OF PERSUASION

5. {A6S0
, A6S2

, A5S1
, A5A6S4

, A5A7S4
, A7A5S4

, A4A5S4
}

6. {A6S0
, A6S3

, A5S1
, A5A7S4

, A7A5S4
, A4A5S4

}

7. {A6S1
, A5S0

, A5S2
, A5A6S4

, A5A7S4
, A7A5S4

, A4A5S4
}

8. {A6S1
, A5S1

, A5A6S4
, A5A7S4

, A7A5S4
, A4A5S4

}

9. {A6S1
, A5S0

, A5S3
}

The only extensions that produce a CQ-consistent perspective are the first and the

second, given that all the others violate at least one of the constraints imposed

by the critical questions—e.g. CQS1 for 5, 6, 7, 8, 9 and CQS2 for 3, 4. The first

perspective acts exactly like the original semantics from [Calegari et al., 2021d]—

i.e., the argument for the doctor’s due diligence (A5) fails to meet the burden

(A5S3
), and consequently, the argument for doctor’s liability (A6) is able to satisfy

its own burden (A6S2
). However, the model delivers a second result according to

which both A5 and A6 fail to meet their burden of persuasion (A6S3
and A5S3

). It

is the result that we would have expected in absence of the inversion principle.

The example shows how the meta-argumentation model is able to provide both

a solution that follows the inversion principle and the one not considering it. In

general, when the inversion principle is taken into account the number of burdened

arguments are maximised in the final extension. Accordingly, we can provide a

generalisation of Property 4:

Proposition 5. Given the results yield by the grounded evaluation of G’s BP-

perspectives, the results that maximise the number of burdened arguments in the IN

set are congruent with the evaluation of the object-level graph ⟨AO,RO⟩ under the
grounded-bp semantics as in Definition 47 [Calegari et al., 2021d].

CHAPTER 3. A META-ARGUMENTATION FRAMEWORK 75

3.5. REASONING WITH BURDEN OF PERSUASION

76 CHAPTER 3. A META-ARGUMENTATION FRAMEWORK

Chapter 4

Optimising the Argumentation

Resolution Process

In this chapter, we start to bridge the gap between the formal theoretical results

of argumentation and their practical applications.

Argumentation often grapples with problems of high complexity. This com-

plexity is not merely an academic concern; it has tangible implications in the real

world where decision-making processes and problem-solving strategies hinge on the

efficient and effective resolution of arguments. In practical settings, the intricate

web of premises, conclusions, and rebuttals requires not just understanding, but

also an efficient approach to manage and resolve.

However, the intricate and often computationally intensive nature of formal

argumentation poses a significant challenge. This complexity is heightened by

the need to integrate these formal systems into the fabric of everyday technology,

which is both ubiquitous and varied. Thus, the primary challenge we face is

finding a compromise that allows the rigorous results of argumentation theory to

be effectively and efficiently applied in practice.

Moreover, we cannot overlook the role of today’s pervasive technology. The

ubiquity of computing devices offers a unique platform to implement these algo-

rithms, making the principles of formal argumentation more accessible and appli-

cable than ever before.

As we progress through this chapter, we will explore how the mechanisms

CHAPTER 4. OPTIMISING THE ARGUMENTATION RESOLUTION
PROCESS

77

4.1. STRUCTURED REASONING

of argumentation can be modified to fulfill these requirements, especially by the

distribution of the resolution process. Additionally, we will examine a possible

approximation of the formal burden of persuasion model that was introduced in

the previous chapter. This approximation is not to be intended as a mere simpli-

fication; rather, it is a way to maintain the soundness of argumentation principles

while adapting it for practical use. The goal is to develop algorithms that are

both theoretically sound and practically viable, capable of operating within the

constraints of real-world computational environments.

4.1 Structured Reasoning

In the context of structured argumentation, computation is generally performed

in two distinct steps. First, all the arguments have to be derived from the argu-

mentation theory; then, the labelling on the resulting argumentation graph can be

computed. From the perspective of computational efficiency, the process is highly

expensive. The engine performs an exhaustive search on the knowledge base to

derive the argumentation trees from facts and rules. Intuitively, the computational

cost of the procedure is bound to the number of inference steps to perform—i.e., for

every new node in the argumentation tree, the entire rule base has to be examined

again to verify the existence of another inference step. Consequently, the cost of

the transformation grows both with the rule base dimension and with arguments’

articulation, thus making it difficult to use the procedure when a large set of data

is available. Of course, correct implementations can help to mitigate the efficiency

problems – for instance, exploiting caching or high-performance data structures

– but the procedure is inherently inefficient. As for the labelling algorithm, their

complexity is a well-known problem in the literature – grounded semantic is the

only one having polynomial complexity [Kröll et al., 2017a].

The introduction of a structured reasoning algorithm presents a potential way

to enhance efficiency, as it eliminates the need to construct the entire argumenta-

tion graph when evaluating a single query. The algorithm delivers – in the average

case – a much more efficient way to verify the admissibility of an argument when

compared with the standard graph mode. The argumentation graph needs not be

entirely derived: instead, it can be explored only as required to verify the state of

78 CHAPTER 4. OPTIMISING THE ARGUMENTATION RESOLUTION
PROCESS

4.1. STRUCTURED REASONING

Listing 4.1: Structured argumentation, Arg-tuProlog answer query algorithm for
grounded semantic (pseudo-code).

AnswerQuery(Goal):

A1, ..., An = buildSustainingArguments(Goal)

Res = ∅
for A in A1, ..., An:

Res = Res ∪ Evaluate(A, ∅)

return Res.

Evaluate(A, Chain):

if(∃ B ∈ Attacker(A): Evaluate(B, A ∪ Chain) = IN)

return OUT

if(∃ B ∈ Attacker(A): B ∈ Chain)

return UND

if(∃ B ∈Attacker(A): Evaluate(B, A ∪ Chain) = UND)

return UND

return IN.

the queried claim. In the case of fully-connected graphs, depending on arguments

configuration, it could be necessary to derive all the arguments to have a response,

and in these cases – the worst – the algorithm complexity would be the same as

that of the standard procedure. Nevertheless, in general, this operation mode po-

tentially avoids the evaluation of whole portions of the argumentation graph, thus

hugely increasing the efficiency of the computation.

The algorithm used to evaluate a single claim (or query) according to grounded

semantic is inspired by the DeLP dialectical trees evaluation [Garćıa and Simari, 2004].

Listing 4.1 shows the pseudo-code – AnswerQuery(Goal) – for the answerQuery/4

predicate: given a claim (Goal) as input, the function first builds all the argu-

ments sustaining that claim (buildSustainingArguments(Goal)), and then re-

quires their evaluation via the Evaluate(A, Chain) function. In order to assess

the A1, ..., An status (acceptability or rejection), three conditions are evaluated:

(Cond1) if a conflicting argument labelled as IN exists, then A1 is OUT;

(Cond2) if a cycle in the route from the root to the leaves (Chain) exists, then A1

argument is UND;

(Cond3) if a conflicting argument labelled as UND exists, then also the A1 argument

is UND.

CHAPTER 4. OPTIMISING THE ARGUMENTATION RESOLUTION
PROCESS

79

4.1. STRUCTURED REASONING

Figure 4.1: Argumentation graph for arguments from Example 8, in which nodes are
arguments and edges are attacks between arguments.

If none of the above conditions is met, then the argument can be accepted. Indeed,

the states on which such conditions are not met are only two: there are no conflict-

ing arguments – the argument is a leaf in the dialectical tree – or the conflicting

arguments are all OUT. All arguments A2, ..., An are then evaluated repeating the

same procedure.

Example 8. Let us consider the following argumentation theory and the corre-

sponding arguments (also depicted in Figure 4.1).

r1 : ⇒ a

r2 : a ⇒ b

r3 : ⇒ ¬b
r4 : b ⇒ c

A0 : ⇒r1 a

A1 : A0 ⇒r2 b

A2 : ⇒r3 ¬b
A3 : A1 ⇒r4 c

According to grounded semantic A0 is IN – there are no arguments contending

its claim or undercutting its inferences – while A1, A2 and A3 are UND—A1 and A2

have opposite conclusions and thus attack each other; the conflict is then propagated

to the derived argument A3.

Let us suppose we require the evaluation of claim b through the AnswerQuery(Goal)

function in Listing 4.1. First, the arguments sustaining b are created, in this case

only A1. Then the evaluation conditions on A1 attackers – only A2 in this case

– are assessed. However, A2 admissibility depends, in turn, on A1—as you can

see in Figure 4.1 also A1 attacks A2. There is a cycle in the graph (Cond2), and

no other attackers matching (Cond1). As a consequence, A2 is UND and thus A1

(Cond3). Accordingly, claim b is labelled UND as expected.

80 CHAPTER 4. OPTIMISING THE ARGUMENTATION RESOLUTION
PROCESS

4.2. DISTRIBUTED REASONING

4.2 Distributed Reasoning

In this section, we shift our focus on how to effectively distribute its argumentation

process (evaluation of arguments) so as to enable the exploitation of argumentation

techniques in the context of cooperative argumentation.

A first version of a message-based distributed argumentation algorithm is here

discussed as the basic pillar of a computational model for cooperative argumenta-

tion in MAS. We ignore issues such as agent autonomy and MAS coordination arte-

facts [Oliva et al., 2008, Oliva et al., 2009], and focus instead on the distribution

issues of cooperative argumentation, which enables agent dialogue and defeasible

reasoning in MAS.

The first issue when facing computational issues of cooperative argumenta-

tion is the parallelisation of the argumentation process. Parallelisation needs to

be tackled under two distinct perspective: (i) the algorithmic perspective and (ii)

the data perspective. Under the algorithmic perspective, we try to divide the argu-

ment evaluation (w.r.t. a given semantics) into smaller sub-tasks to be executed in

parallel. Under the data perspective, instead, we try to achieve parallelisation by

splitting the data used by the algorithm—i.e., the argumentation defeasible theory.

Action here is therefore at the data level, looking for possible data partitioning on

which the argumentation process can be run in parallel.

Before going into more details, we introduce the algorithm that served as a

starting point in the parallelisation of the argumentation process. Single-query

evaluation – as introduced in the last section – is precisely the algorithm we are

interested in, given that cooperative argumentation in highly-reactive systems is

often based on a quick debate on some beliefs – those concerning the decision to

be made at that moment – rather than on a complete assessment of all the agents’

knowledge—where a shared agreement is not easily achieved.

Let us now consider the algorithm in Listing 4.1 to analyse the requirements

and implications of its parallelisation. The algorithm structure is simple: the ar-

gument evaluation leverages the evaluation obtained from its attackers—i.e., the

attackers are recursively evaluated using the same algorithm and the result is ex-

ploited to determine the state of the target argument. Intuitively, a first point of

parallelisation can be found in the search and evaluation of the Attackers. In-

CHAPTER 4. OPTIMISING THE ARGUMENTATION RESOLUTION
PROCESS

81

4.2. DISTRIBUTED REASONING

deed, every condition exploited by the algorithm – (Cond1), (Cond2), and (Cond3)

– to evaluate an argument requires one and only one attacker to match the con-

straint. Those conditions directly suggest an OR parallelisation in the search and

evaluation of the attackers. We could evaluate the arguments simultaneously un-

der different branches, and the success in one of the branches would lead to the

success of the entire search.

However, the algorithm exposes another point of parallalisation. The order in

the evaluation of the conditions is essential for the soundness of the algorithm—as

illustrated by the following example.

Example 9. Let us consider argument A and its two attackers B and C. Let it

be the case in which we know B and C’s labelling, IN for the former and UND for

the latter. If we do not respect the order dictated by the algorithm, A’s labelling is

either UND (Cond3) or OUT (Cond1). Of course, the first result would be in contrast

with the original grounded semantic requirements for which every argument having

an IN attacker should be definitively OUT. Conversely, if we respect the evaluation

order, A’s labelling would be OUT in every scenario.

Although the evaluation order is strict, we can evaluate all the conditions

simultaneously and consider the ordering only while providing the labelling for

the target argument (mixing AND and OR parallelisation). In other words, the

three conditions are evaluated in parallel, but the result is given accordingly to the

defined priorities. If (Cond1) is met, the argument is labelled as OUT. Conversely,

even if (Cond2) or (Cond3) are met, one should first verify that (Cond1) does not

hold. Only then the argument can be labelled as UND.

Listing 4.2 contains the version of the algorithm taking into account both points

of parallelisation. The three conditions – (Cond1), (Cond2) and (Cond3) – are eval-

uated at the same time. Then the results of the three sub-tasks are combined to

provide the final solution according to the conditions’ priority. Of course, if we

consider a scenario where only the first condition (Cond1) is required to determine

the status of the argument in input, the parallel evaluation of all the three con-

ditions would lead to a waste of computational resources. However, this problem

is easily mitigated by evaluating the sub-task results as soon as they are individu-

ally available—i.e. in the case we receive a positive result from a single sub-task,

82 CHAPTER 4. OPTIMISING THE ARGUMENTATION RESOLUTION
PROCESS

4.2. DISTRIBUTED REASONING

Listing 4.2: Evaluate predicate with both parallel conditions evaluation and parallel
attackers

Evaluate(A, Chain):

PARALLEL {

Cond1 = PARALLEL { ∃ B ∈ Attacker(A): Evaluate(B, A ∪ Chain) =

IN }

Cond2 = PARALLEL { ∃ B ∈ Attacker(A): B ∈ Chain }

Cond3 = PARALLEL { ∃ B ∈ Attacker(A): Evaluate(B, A ∪ Chain) =

UND }

}

if(Cond1) return OUT

if(Cond2 AND NOT Cond1) return UND

if(Cond3 AND NOT Cond1) return UND

if(NOT Cond1 AND NOT Cond2 AND NOT Cond3) return IN

and it is enough to compute the argument status, we can cut the superfluous

computational branches and return the final solution.

In the first part of our analysis we focused on the parallelisation problem from

a pure computational perspective, by discussing whether the evaluation task could

be split into a group of sub-task to be executed simultaneously. However, there

is another perspective to take into account when parallelising: the one concerning

the data.

Example 10. For example, let us consider a job computing the sum and the

product of a set of numbers. Using the sub-task approach, we could have two

subroutines running in parallel, one computing the sum and the other computing

the product of the numbers. However, leveraging the associativity property of sum

and multiplication, we can split the problem into a series of tasks computing both

sum and product on a subset of the original data. Then the final result would be

the sum and the multiplication of the tasks’ results.

Let us suppose to apply the same principle to the argumentation task. We build

arguments from a base theory according to the relations illustrated in Section 2.1.

The logic theory is, for all intents, the input data of our algorithm (argumentation

task). Now, the question is whether we can effectively split the data into sub-

portions to be evaluated in parallel without affecting the global soundness of the

original algorithm. Let us consider a splitting principle based on rules dependency

CHAPTER 4. OPTIMISING THE ARGUMENTATION RESOLUTION
PROCESS

83

4.2. DISTRIBUTED REASONING

Figure 4.2: Master-slave interaction for argument evaluation.

– i.e., if two rules can be chained, they must stay together –, and the algorithm in

Listing 4.2. According to the algorithm, the search and evaluation of the attackers

are performed in a distinct subtask (concurrent evaluation). Then, we can split the

knowledge concerning attacked and attackers into separate sets, since the subtasks

evaluating an attacker require only the knowledge to infer such an attacker—i.e.,

the Dependency principle must be respected. Indeed, there is no task that needs

to know how to build both an argument and its attackers, since the search is

delegated to another process. In other words, a single subprocess in charge of

evaluating an argument needs only the portion of the theory needed to infer the

argument itself—i.e., the chainable rules concluding the target claim.

84 CHAPTER 4. OPTIMISING THE ARGUMENTATION RESOLUTION
PROCESS

4.2. DISTRIBUTED REASONING

4.2.1 The master-slave actor model

We can now provide a complete and sound mechanism for the admissibility task

in a fully-concurrent way, exploiting the insights from Section 4.2 and applying

them to an actor-based model [Hewitt et al., 1973].

In short, the actor model is based on a set of computational entities – the actors

– communicating each other through messages. The interaction between actors is

the key to computation. Actors are pure reactive entities that only in response to

a message can:

• create new actors;

• send messages to other actors;

• change their internal state through a predefined behaviour.

Actors work in a fully-concurrent way – asynchronous communication and message

passing are fundamental to this end – making the actor model suited to concurrent

applications and scenarios. We choose this model for its simplicity: it presents very

few abstractions making it easy to study both how to model a concurrent system

and its properties. The final goal is to provide a sound model for agents’ coopera-

tive argumentation in MAS, enabling concurrent evaluation of the argumentation

algorithms (focusing on distribution). The actor paradigm is a straightforward

choice for an analysis of this sort.

Since the actor model focuses on actors and their communication, the following

design will review the structure and behaviour of the actors involved. Although a

fully-distributed version of the model is possible, we choose to adopt a master-slave

approach in order to simplify the functioning of the system as much as possible.

Accordingly, two main sorts of actors are conceived in the system: master and

worker. Master actors coordinate the knowledge-base distribution phase, while

the workers hold a portion of the theory, concurring to the evaluation of a claim

through their interaction.

Let us start from the knowledge-base distribution. Since actors are reactive

entities, in order to completely adhere to the actor model the master knowledge

base can be changed from outside the actor system. If the master receives the order

to add a new element to the theory, three possible scenarios can be configured:

CHAPTER 4. OPTIMISING THE ARGUMENTATION RESOLUTION
PROCESS

85

4.2. DISTRIBUTED REASONING

1. none of the workers contains a compatible knowledge base – i.e., it is not

possible to chain the new rule to the knowledge base – and consequently, the

master creates a new worker containing the portion of the theory;

2. one or more workers have a compatible knowledge base, and they add the

element to their kb;

3. a set of workers possess overlapping knowledge bases – i.e. the union set of

workers’ knowledge bases can be used to create a unique inference chain –,

and as a consequence, we merge their knowledge bases and destroy the extra

workers;

Iterating this procedure for all the elements of an input knowledge base, as a result

we should obtain a set of workers each of them containing a portion of the theory

in accordance with the dependency splitting principle.

Once the knowledge has been correctly split between workers, we can proceed

with the actor-based evaluation of an argument. Each actor is responsible for

evaluating those arguments that can be build using its portion of the theory.

When the actor receives an evaluation request, it first checks if attackers exist,

w.r.t. its portion of the knowledge base. Then the actor can: (i) register the

impossibility to evaluate the argument – only if a cycle through the evaluation

chain is detected –, (ii) require the attacker arguments evaluation to all the other

actors. In the latter case, the actor shall answer the original evaluation request

only after receiving a response from others actors. The conditions to match while

evaluating an argument are the same as the original algorithm in Listing 4.1:

• if one counterargument is found admissible, we evaluate the argument as

OUT;

• if any number of actors decide for the argument undecidability with none

advancing its rejection, we mark the argument as UND;

• if all the actors agree that no counterarguments can be provided as accept-

able, we evaluate the argument as IN;

Actors provide their suggestions on the state of the requested argument according

to all the labels of their counterarguments.

86 CHAPTER 4. OPTIMISING THE ARGUMENTATION RESOLUTION
PROCESS

4.2. DISTRIBUTED REASONING

We can describe the interactions between system’s actors through a sequence

diagram. Messages that masters and workers can exchange are represented in

Figure 4.2 with:

• Add, sent from the master to a worker, through which the master sends the

new theory member to be stored in the workers’ kb. The decision on which

is the right worker to send the data to is responsibility of the master that

knows the entire state of the system and how data has been divided;

• RequireEvaluation, sent from outside the system to master to require the

evaluation of a claim;

• Eval, sent from master to all workers to require the evaluation of a claim;

• FindAttacker, sent from a worker to master to require the broadcasting of

a request for counterarguments to all the available workers;

• ExpectedResponses, sent from master to a worker to communicate the num-

ber of expected responses to a request for counterarguments;

• AttackerResponse, sent from a worker to a worker in response to a request

for counterarguments. The message contains the state of the counterargu-

ment obtained through a new FindAttacker evaluation;

• EvalResponse, sent from workers to master to communicate their decision

on a claim. The decision is taken after all the AttackerResponse containing

the state of possible counterarguments have been received.

• EvaluationResponse, message sent from master containing the system de-

cision on the state of a claim;

Note that the Add and RequireEvaluation messages come from outside the actor

system and starts the distribution and evaluation process. This interaction model

implement both the parallelization strategies described in Listing 4.2: the search

for counterarguments is executed concurrently by all the worker nodes, as also the

evaluation on the admissibility of arguments.

CHAPTER 4. OPTIMISING THE ARGUMENTATION RESOLUTION
PROCESS

87

4.3. META BURDEN OF PERSUASION

Example 11. Let us consider again the theory in Example 8. Let us assume a

single MasterActor and the following order in the inclusion of the rules in the

system: r1, r3, r4, r2.1 As for the first three rules, the behaviour is the same.

Since the rules are not chainable, it creates three distinct workers and sends a

single rule to every one of them via the Add message. We now have Worker 1,

Worker 2, and Worker 3 with respectively r1, r3 and r4 in their knowledge bases.

Then the inclusion of rule r2 is required, and both workers 1 and 3 result having

a chainable knowledge base. Rule r2 is, in fact, the missing link in the inference

chain of r1 and r4. As a consequence, the Master stops the two workers, cre-

ates a new one, and then requires to it the inclusion of rules r1, r4 and r2 via

three Add messages. At the end of the distribution phase, we have two workers,

one containing r1, r2, r4, the other just r3. The dependency principle is thus re-

spected. Let us continue the example and require the evaluation of claim b via the

RequireEvaluation message. Consequently, the Master sends an Eval message

to all the actors. Worker 1 succeeds in building an argument (A1) and sends to all

the other Workers – also Worker 1 is included in the list – a FindAttacker mes-

sage requiring attackers evaluation—the broadcasting of the message is done by the

Master actor. The master also communicates the number of responses that are ex-

pected (ExpectedResponses message)—only two in that case. Worker 1 answers

with a AttackerResponse communicating that there are no attacking arguments

according to its knowledge, while Worker 2 sends back a AttackerResponse con-

taining an Und result. Indeed, Worker 2 is able to create a valid counterargument

(A2), but a cycle is detected in the inference chain. According to the evaluation

algorithm, receiving an Und response, Worker 1 can finally label A1 as UND and

communicate it to the master via a EvalResponse message.

4.3 Meta Burden of Persuasion

Despite the benefits of the meta-approach discussed in Section 3.5 – such as clear

separation of concerns, encapsulations of argumentation abstractions and natural-

ness in terms of human thinking – the method is quite inefficient from a compu-

1The order of inclusion affects the steps required to converge, not the final state of the system.

88 CHAPTER 4. OPTIMISING THE ARGUMENTATION RESOLUTION
PROCESS

4.3. META BURDEN OF PERSUASION

tational perspective. Indeed, the meta-level evaluation leads to a stable semantics

computation, with a non-polynomial complexity [Kröll et al., 2017b]. This is why,

from a technological perspective, the model presented in Section 3.5 has been

reified into a more efficient resolution method.

In a nutshell, the proposed approach exploits the stable semantics to explore

the search space at the meta level. Then, in order to identify the final solution,

the grounded assessment of the object level is taken into account—selecting the

acceptable scenario according to the critical questions. The idea behind the tech-

nological refinement is exactly to leverage the information of those arguments to

guide the search—i.e., to exploit the grounded assessment of the object level as

an a priori constraint. Following this idea, the computation algorithm becomes

really simple. The two argumentation levels (object and meta) are collapsed in a

single graph, following [Boella et al., 2009a]. Then, the graph is modified dynam-

ically, leveraging the information on the burdened arguments. In a sense, we have

a multi-stage evaluation that leads to the modification of the graph itself at every

stage.

Let us consider the framework of Example 6. There two arguments exist,

namely B1 and C1, attacking each other. Then, another argument, A2, concludes

the presence of the burden on B1. The grounded evaluation of this framework

would lead to a single extension containing argument A2—i.e., the burden on

B1 has been proved, and we should proceed to verify B1’s compliance with the

constraint. According to the model presented in Section 3.5, the graph should

be used to build the meta-level framework expressing all the possible outcomes

the burden could lead to. Then, the one leading to an object-level perspective

that satisfies all the attached Critical Questions would be the correct one. This

kind of assessment has one major drawback: we already know from the initial

grounded evaluation that B1 does not satisfy its burden; however, through stable

semantics, we explore also the scenarios in which B1’s burden is satisfied, just to

discard them later using the Critical Questions. The main idea of the technological

reification presented in this Section is exactly to use the information generated by

the initial grounded assessment to produce a new graph including all the new

meta-knowledge.

Let us test this approach with the theory in Example 6. We know that B1 has

CHAPTER 4. OPTIMISING THE ARGUMENTATION RESOLUTION
PROCESS

89

4.3. META BURDEN OF PERSUASION

a burden on it, but it has not been able to satisfy it. As in the original model,

we can use this info to build the argument B1S3
using the scheme S3. Intuitively,

this new argument claims that “B1 should be rejected for not being able to defend

itself” and, consequently, it throws a new attack against it. If we add these new

elements to the original framework, we obtain a new framework containing both

object- and meta-arguments on the same level. Its evaluation under grounded

semantics leads to the expected result: B1 is rejected, while C1 and B1S3
are both

accepted.

More generally, what we are doing is to verify the Critical Questions associated

with a meta scheme using the grounded evaluation of the original framework. In

this way, we do not need stable semantics to explore all the possible scenarios,

but, instead, we can directly select the correct one. For instance, in the case of

Example 6, B1S3
satisfies its critical questions, while B1S2

does not. In the case B1

were able to satisfy its burden, then just B1S2
would have been instantiated, and

consequently no new attacks would have been introduced in the framework.

Summing up, given a constraint bp(x), then for every argument A having x as

its conclusion a new argument B can be introduced in the graph. This argument

represents the possibility of A failing/succeeding to meet the burden—expressed

by S3 and S2 in the meta-model. A and B’s interaction is decided according to

the A’s ability to satisfy the burden under the grounded semantics:

i) iff A is OUT or UND, then B is an instance of scheme S3, and consequently an

attack from B to A is introduced;

ii) iff A is IN, then B is an instance of scheme S2, then no attack is introduced.

Basically, through the first evaluation of the graph, the knowledge required to

choose between schemes S3 and S2 is obtained—i.e. the stable semantics evaluation

becomes superfluous.

Let us now apply the new approach to Example 7 to see whether the inversion

principle is supported or not. If we consider the grounded evaluation of the object-

level framework, we obtain two burdened arguments, A5 and A6, both failing to

satisfy the persuasion constraint. According to our algorithm, we can introduce

two meta-arguments based on scheme S3 in the framework, one attacking A5, and

90 CHAPTER 4. OPTIMISING THE ARGUMENTATION RESOLUTION
PROCESS

4.3. META BURDEN OF PERSUASION

the other A6. The evaluation of this framework under grounded semantics would of

course lead to an undesirable result—i.e. both arguments A5 and A6 are rejected.

The enforcement of the inversion mechanism requires a procedural evaluation

of the burdened arguments—i.e., we should first evaluate those arguments whose

acceptability does not depend on burdened arguments not yet evaluated, and then

we apply the algorithm again until all the burdens have been evaluated. For

instance, in Example 7 we should first introduce argument A5S3
in the graph, and

then use the results of this new framework to evaluate the consequences on A6.

Accordingly, the dependencies among burdened arguments are respected—i.e., we

enforce the inversion principle.

More formally, given an argumentation framework AF = ⟨A,⇝⟩ along with

its grounded extension EG, we can define the set of burdens to evaluate Be as

{A0 ∈ EG|Conc(A0) = bp(a) and ∄b ∈ EG s.t.

Conc(b) = bp met(A1) or ¬bp met(A1) with Conc(A1) = a}

Then we can define the reduction RBe of Be as:

{bp(a) ∈ Be | ∄bp(b) ∈ Be s .t . a is reachable from b through ⇝}

In simpler terms, the reduction set contains all the burdens on the arguments whose

status does not depend on other burdened arguments. Then, given an AF and its

grounded extension we can use the reduction set to produce a new framework AF1

containing the meta-arguments for the burdens in the set. We can then recursively

apply the same procedure on AF1 until no elements remain to be evaluated in the

reduction set. Understandably, the procedure requires the absence of cycles in

the burdened arguments in order to derive a partial ordering over the burdens to

evaluate. When all the elements in Be are independent, the reduction set RBe

is the same as Be—i.e., the procedure is a generalisation of the naive algorithm

introduced at the beginning of this section and used in the evaluation of Example

6.

Figure 4.3 shows Example 7’s evaluation steps. The graph on the left is ob-

tained from the initial theory. We can compute the set of burdens ({A0, A1}) and

CHAPTER 4. OPTIMISING THE ARGUMENTATION RESOLUTION
PROCESS

91

4.3. META BURDEN OF PERSUASION

Figure 4.3: Staged evaluation of Example 7

its reduction ({A0}). The new knowledge is used to build the framework in the

middle by adding an instance of scheme S3 relative to argument A5 and its attack.

Again, we compute the set of burdens ({A0}) and its reduction ({A0}), and use

it to instantiate scheme S2 in the graph on the right. Now the set of burdens to

evaluate is empty and we have our final result: argument A5 fails to satisfy its

burden and it is rejected, thus making it possible for A6 to satisfy its burden.

92 CHAPTER 4. OPTIMISING THE ARGUMENTATION RESOLUTION
PROCESS

Chapter 5

Towards a General

Argumentation Technology:

Arg2P

In this chapter, we transition from the theoretical underpinnings and algorithmic

advancements discussed in previous sections to the practical application of these

concepts in contemporary technology. This shift marks a crucial step in our explo-

ration, as we now focus on how the refined models and improved algorithms can

be effectively integrated into real-world technological systems.

The landscape of intelligent systems today is increasingly defined by a blend of

human and artificial agents, computational and physical artifacts, as well as the in-

stitutions and norms that govern their interactions. These socio-technical systems

demand sophisticated social and organizational concepts and techniques, often de-

rived from the fields of agent and multi-agent systems (MAS) [Omicini and Mariani, 2013].

Particularly, agreement technologies [Ossowski, 2012], play a pivotal role in facil-

itating intelligent interactions among autonomous agents, fostering cooperation

and collaborative activities through dialogue, negotiation, and argumentation.

As we delve deeper into the realm of human-centered intelligent systems, we

encounter environments densely populated with agents—both software and hu-

man—capable of understanding, arguing, and reporting through factual assertions

and arguments [Krippendorff, 2004]. A multi-agent system grounded in argumen-

CHAPTER 5. TOWARDS A GENERAL ARGUMENTATION
TECHNOLOGY: ARG2P

93

tation, dialogue, and social judgment becomes an effective foundation for design-

ing systems that are responsive and adaptable to human needs. In such systems,

cooperative argumentation is a key strategy for resolving conflicts and reaching

consensus [Carrera and Iglesias, 2015].

The role of logic-based technologies in this context is significant, especially

in facilitating interaction between humans and agents, and among agents them-

selves. These technologies offer a framework for defeasible reasoning and agent

conversation, with argumentation playing a central role [Andrighetto et al., 2013,

Vasconcelos et al., 2002]. In the legal context, for instance, where agents are re-

quired not just to reach conclusions but also to explain their reasoning processes,

argumentation is particularly relevant [Calegari et al., 2021b]. However, speaking

of logic-based technologies can be tricky here: to the best of our knowledge, a

logic-based technically-mature environment for argumentation in intelligent sys-

tems – both agent-based and accounting for legal aspects – is not available today

[Calegari et al., 2019].

For argumentation tools to be able to meet the aforementioned expectations, a

considerable effort is required from a software engineering perspective. Indeed, the

last decades’ continuous improvement in the design and development of technolo-

gies for human-centred intelligent systems has not been matched by an analogous

improvement of argumentation technologies, where the technological landscape

is nowadays populated by very few systems—and most of them are mere proto-

types [Calegari et al., 2019]. A key problem in existing argumentation technology

is that a widely-acknowledged well-founded computational model for argumenta-

tion is currently missing: this makes it difficult to investigate the convergence

and scalability of argumentation techniques in highly-distributed environments

[Jung et al., 2001, Carrera and Iglesias, 2015]. At the same time, the field has seen

a constant flow of a theoretical contributions [Hulstijn and van der Torre, 2004,

Modgil and Caminada, 2009].

This chapter addresses this gap by presenting the Arg2P1 framework, which

aims to invigorate the field of argumentation technologies. Designed to be neutral

with respect to the underlying argumentation theory, the framework offers a flexi-

ble environment where new theoretical contributions can be seamlessly integrated

1http://arg2p.apice.unibo.it

94 CHAPTER 5. TOWARDS A GENERAL ARGUMENTATION
TECHNOLOGY: ARG2P

http://arg2p.apice.unibo.it

and extended.

In order to fit the most advanced application scenarios for intelligent systems

– such as pervasive intelligent systems, or the Internet of Intelligent Things (IoIT)

[Arsénio et al., 2014] – the Arg2P framework is specifically designed according to

the definition of micro-intelligence [Omicini and Calegari, 2019, Calegari, 2018],

whose key features are (i) customisation of the inference methods to be exploited

opportunistically in an integrated and easily-interchangeable way, (ii) situatedness

– i.e., the awareness and reactiveness to the surrounding environment, such as the

normative context – and, (iii) ability to act at the system micro-level, so as to be

easily injectable in disparate contexts and architectures.

Moreover, based on the notion of ecosystem of logic-based mechanisms as pro-

vided by its technical foundation (tuProlog/2P-Kt [Ciatto et al., 2020]), the de-

sign of Arg2P as a logic-based technology offers a huge advantage, where logic

programming (LP) itself can become the joining link for diverse extensions of

logic (as deduction, abduction, argumentation, just to name a few) while ensur-

ing conceptual integrity of the whole framework. Accordingly, it is designed and

developed so as to meet the requirements of observability, interpretability, explica-

bility, accountability, and trustability. Given the requirement of easy integration

with existing AI techniques, the technological aspect is of paramount importance

in Arg2P, leading to the selection of highly-interoperable languages for the imple-

mentation. Also, Arg2P is based on a modular architecture allowing for system

openness and ease of extension. Finally, the framework is implemented according

to current development practices of continuous integration and continuous deliv-

ery (CI/CD). Overall, Arg-tuProlog advances the state of the art both by offering

novel implementation of legal concepts fully integrated into an inference and argu-

mentation engine – such as the burdens of proof – and by providing a ready-to-use

general purpose argumentation technology for AI applications based on current

software engineering standard practices.

Before diving deeper, let’s rewind and explore the foundational requirements

and the design process that steered the course of the development.

CHAPTER 5. TOWARDS A GENERAL ARGUMENTATION
TECHNOLOGY: ARG2P

95

5.1. COMPONENTS & REQUIREMENTS

5.1 Components & Requirements

In Section 2.1 we have seen one of the possible formal definitions for a structured

argumentation framework. During the years different ways of building an abstract

argumentation framework starting from a logic theory have been proposed—e.g.

ASPIC+ [Modgil and Prakken, 2014a], ABA+ [Toni, 2014]. Moreover, many ex-

tensions to abstract argumentation frameworks have been advanced—e.g. bipolar

argumentation frameworks [Amgoud et al., 2004], that deal also with the notion

of support, or value-based argumentation frameworks [Bench-Capon, 2002], intro-

ducing the notion of value to determine the defeat relation over arguments. The

richness of the theoretical argumentation landscape requires corresponding tech-

nologies the ability to deal with all the different nuances that the process could

require. Accordingly, the first step for the technology design is the identifica-

tion of all the common elements of these models. Those will serve as the main

requirements and first-class entities of the technology final architecture.

As shown in Section 2.1, the argumentation process can be summarised in the

following steps:

1. definition of the argumentation language—i.e., elements allowed in rules;

2. definition of the rules structure—i.e., how the formulae from the language

can be used to build rules;

3. arguments extraction—i.e., how rules can be used to build arguments;

4. attacks extraction—i.e., how to build the attack relation over the extracted

arguments;

5. arguments evaluation—i.e., which semantics could be applied to arguments

to obtain the framework results;

6. statements evaluation—i.e., define how the state of an argument relates to

the statement that is being claimed.

We so obtain a finite process that starting from a language leads to the admissibility

status of the elements in that language. The most relevant feature of the described

96 CHAPTER 5. TOWARDS A GENERAL ARGUMENTATION
TECHNOLOGY: ARG2P

5.1. COMPONENTS & REQUIREMENTS

process is that it is completely generic, and it may be suitable for a broad range

of different models or extensions in the literature.

Let us consider for example the value-based argumentation framework [Bench-Capon, 2002],

where every argument is associated with a value. A preference relation over the

values can be defined and exploited to build the set of valid attacks (defeat)—i.e.

an argument A1 can attack A2 only if the value associated with A2 is not preferred

to A1’s one. We can clearly see how all the steps we define above apply also to

this special case. More important, we can see that only a limited number of these

steps would be impacted by the change w.r.t. the generic procedure we defined:

• arguments extraction, we should now be able to also assign a value to the

constructed arguments;

• attacks extraction, the definition of the attack set should depend upon the

preference relation over arguments’ value.

The rest of the procedure would remain exactly the same. Even though the ex-

ample above refers to a very specific type of argumentation framework, it can be

generalised to a broader set of models and variations sharing the general structure

of the argumentation process.

Accordingly, the main entities involved in this process are:

• Rules, the basic piece of information in the argumentation language repre-

senting an inference from a set of assumptions to a conclusion;

• Graphs, the result of all the possible inferences allowed by the rules. Every

node in the graph represents a single chain of inferences – Argument –, and

edges stand for conflicts between arguments—Attack ;

• Labelled Graphs, the result of the evaluation of a graph under a semantics.

Every node in the graph is associated with a label giving its final status;

• Labelled Statements, the results of the evaluation of a graph under a seman-

tics w.r.t. the claim that arguments advance.

Now, let us introduce the concept of argumentation pipeline that will serve as

architectural reference in the construction of the Arg2P framework.

CHAPTER 5. TOWARDS A GENERAL ARGUMENTATION
TECHNOLOGY: ARG2P

97

5.1. COMPONENTS & REQUIREMENTS

Figure 5.1: The argumentation pipeline.

5.1.1 The argumentation pipeline

Figure 5.1 shows the argumentation pipeline that combines the main entities of the

architecture above discussed. It contains five main building blocks: Rule Extractor,

Arguments Builder, Graph Transformer, Argument Labeller, Statements Labeller.

Rule Extractor. The first block takes as input a textual source and extracts

the corresponding argumentation theory in terms of Rules understandable by other

blocks in the pipeline. This block encapsulates a way of abstracting from the chosen

argumentation language, introducing one more decoupling mechanism. Indeed, all

the blocks in the pipeline have to agree on a common interface and structure for the

primary entities that we identified above. At the same time, we do not want the

final users to be constrained with a predefined language. This is why a translation

block – the Rule Extractor – has been added at the beginning of the pipeline,

enabling users to change the input language with no need for modifications in

other blocks.

Arguments Builder. The second block in the pipeline is responsible for build-

ing arguments and attacks composing the argumentation graph given a set of

argumentation rules. This block – the Arguments Builder – introduces discretion

in the implementation or model kind to be used while building the graph.

Graph Transformer. Let us consider the value-based argumentation frame-

work [Bench-Capon, 2002], where every argument is associated with a value. A

preference relation over the values can be defined and exploited to build the set of

valid attacks (defeat)—i.e. an argument A1 can attack A2 only if the value associ-

ated with A2 is not preferred to A1’s one. In the case at hand, the main difference

with a standard abstract argumentation framework is in the value associated with

every argument and the use of preference between values to build the attack set.

Hence, a mapping from an abstract to a value-based based argumentation frame-

work can be defined according to the following steps:

98 CHAPTER 5. TOWARDS A GENERAL ARGUMENTATION
TECHNOLOGY: ARG2P

5.1. COMPONENTS & REQUIREMENTS

• add a value to every argument in the input framework;

• discard from the attack set those attacks against a preference on values—

e.g., if there is an attack going from A1 to A2, but A2’s value is preferred to

A1’s one, then discard the attack;

This is the main idea behind the Graph Transformer block: to provide an easy

way to define and apply transformations in order to introduce (or remove) informa-

tion from the argumentation graph (thus exploring different application scenarios).

More than one transformation can be applied to the graph so to mix their effects

in a single framework.

Argument Labeller. The block is responsible for applying a labelling semantics

to the input graph and providing a label to every argument in it. Semantics is one

of the most important things in the definition of a model, and it is possible to find

many of them in literature—all giving a different perspective on the input graph.

The Argument Labeller block is then a generalisation of all the possible different

semantics: just changing the block or creating different versions of it enables the

output of previous blocks to assume a completely different meaning.

Statements Labeller. There could be the case – as usually in structured argu-

mentation – where every argument in a framework stands for a single statement

in the input argumentation language. In this case, it is necessary to define how

the evaluation of arguments relates to the one of the statements they are claiming.

Let us consider the following example in which exists two different arguments, A1

and A2, both claiming the statement x. By applying a semantics to the graph we

find out that A1 is IN and A2 is OUT. What should be the correct label for the

statement x? Of course, different strategies are possible – for example to consider

the statement IN if there is at least one IN argument for it – and this final block

in the argumentation pipeline – the Statements Labeller – is responsible for the

application of the chosen strategy.

Pipeline. It is worth highlighting that not all the steps in the pipeline are al-

ways required: yet, considering only sub-portions of the pipeline, a broader range

CHAPTER 5. TOWARDS A GENERAL ARGUMENTATION
TECHNOLOGY: ARG2P

99

5.1. COMPONENTS & REQUIREMENTS

of argumentation scenarios could be modelled. For example, by considering the

Graph Transformer and the Argument Labeller blocks only, we map the abstract

argumentation [Dung, 1995a] where arguments are considered as atomic entities

without an internal structure. Here, a transformation for the graph or the appli-

cation of a semantics to it can be provided. As a further example, we can just

consider a pipeline containing only the last block—the Statements Labeller. In

this case a mechanism for evaluating statements without the need for arguments

can be provided—i.e. the pipeline would be acting as a defeasible logic reasoner

[Nute, 2001].

Summing up, the pipeline represents a generic structure that can be customised

in order to fit the required argumentation model and scenario.

5.1.2 Requirements

We argue that the main goal of a general-purpose argumentation tool is to enable

an easy definition of the above described custom pipelines, thus working just as an

orchestrator for the entire argumentation process. Under this perspective, we could

interpret every step in the pipeline as a different module in the tool, each one with

different responsibilities, yet always referring to a single step in the argumentation

process. It follows that the main requirement of an argumentation technology

should be:

(Req1) enabling an easy definition of new modules;

(Req2) providing a way to define user-specific pipeline using modules;

(Req3) providing a mechanism responsible for the correct execution of the entire

process;

(Req4) providing a common medium on which modules can exchange their input/out-

put data;

(Req5) ensuring the traceability and accountability of the entire process.

The next sections discussed how these requirements have been implemented in

Arg2P according to two main principles: encapsulation and modularity.

100 CHAPTER 5. TOWARDS A GENERAL ARGUMENTATION
TECHNOLOGY: ARG2P

5.2. THE ARG2P TECHNOLOGY

5.2 The Arg2P technology

Given the final aim of our research – that is, to provide a comprehensive and inno-

vative tool for spreading intelligence and argumentation capabilities in nowadays

challenging AI context such as IoIT [Arsénio et al., 2014] – we devote our attention

to computational logic as the foundation for our work. With respect to available

LP languages, Prolog represents the most successful one as a well-defined language

coming with several implementations. For this reason, logic-based technologies are

typically either built on top or as extensions of the Prolog language. However,

existing solutions mostly work as monolithic entities tailored upon specific infer-

ence procedures, unification mechanisms, or knowledge representation techniques.

Instead, considered the ultimate goal of our research, we require a technology sup-

porting and enabling the exploitation of all the manifold contributions from LP.

For this reason we choose to build Arg-tuProlog on the top of tuProlog—and in

particular on 2P-Kt, a reboot of the tuProlog [Denti et al., 2005] project offer-

ing a general, extensible, and interoperable ecosystem for LP and symbolic AI

[Ciatto et al., 2021].

Leveraging on 2P-Kt – and thanks to its architecture (detailed in Section 5.1) –

, the Arg-tuProlog engine offers a neutral ground upon which different technologies

can be integrated for building transparent and explainable systems. The rationale

behind this choice is to enable the incremental addition of novel functionalities to

the engine, possibly targeting other argumentation/conversation strategies, while

supporting as many programming platforms as possible. In the following the main

key technology features, reflecting the desired requirements, are summarised.

Interoperability & portability.. The interoperability requirement is guaran-

teed by the choice of Prolog – tuProlog in particular – as the main technological

foundation of the solver. Indeed, the exploitation of the Prolog paradigm en-

sures the maintenance of the maximum degree of standardisation thanks to the

ISO standard.2 Besides, the Kotlin-based engine of 2P-Kt – devoted to heavy-

interconnected and pervasive contexts – enables the system to run in more dis-

parate environments. Accordingly, the Arg-tuProlog framework natively supports

2https://www.iso.org/standard/21413.html

CHAPTER 5. TOWARDS A GENERAL ARGUMENTATION
TECHNOLOGY: ARG2P

101

5.2. THE ARG2P TECHNOLOGY

interoperability with JVM, JavaScript and Android platforms.

Modularity & customisation.. The entire Arg-tuProlog framework is a col-

lection of tuProlog compatible libraries—thus enforcing system modularity, as dis-

cussed in Section 5.1. 2P-Kt features are exploited to allow external libraries to

be included during the evaluation process. The software organisation through dis-

tinct libraries ensures on the one hand the modularity and separation of concerns

– fundamental pillars of a solid, easily maintainable and extensible technology –;

on the other hand, it offers the simplicity of customisation in presence of domain-

specific requirements. As a consequence, the Arg-tuProlog engine makes it possible

to exploit diverse programming paradigms and technologies for any system compo-

nent. In the current implementation, Arg-tuProlog acts as a meta-interpreter that

accepts theories in a well-defined argumentation language, then, once translated in

Prolog, provides the solutions. Consequently, it would be quite easy – for example

– to add a distinct module exploiting a SAT-solver to compute the labelling over

an entire argumentation graph.

Light-weightness & generality.. In contrast to the current trend of building

highly-specialised systems, the Arg-tuProlog framework places itself as a highly-

general tool to be injected in most disparate environments for the most different

application purposes. As shown in [Calegari et al., 2021a], the MAS community

is gazing for interoperable and general-purpose logic-based technologies: there,

the Arg-tuProlog engine, along with 2P-Kt, provides a technological substrate

supporting agents’ reasoning and conversation via manifold strategies. Moreover,

thanks to the deep customisability of tuProlog, the Arg-tuProlog engine can be

potentially exploited also within constrained systems with strict requirements in

terms of available computational resources and limited memory footprint—as in

the case of the typical IoIT scenarios [Arsénio et al., 2014].

The engine is available as a standalone application (Arg-tuProlog Java IDE),

and as a 2P-Kt library (Kotlin library) [Ciatto et al., 2021, Ciatto et al., 2020].

All the release are available on the Arg-tuProlog GitHub repository.3

3https://github.com/tuProlog/arg2p-kt/releases

102 CHAPTER 5. TOWARDS A GENERAL ARGUMENTATION
TECHNOLOGY: ARG2P

https://github.com/tuProlog/arg2p-kt/releases

5.2. THE ARG2P TECHNOLOGY

Figure 5.2: The Arg2P architecture.

5.2.1 Arg2P as a 2P-Kt extension

Figure 5.2 shows the general architecture behind the Arg2P4 framework and its

main components: Arg2pSolver, Arg2pLibrary, Arg2pFlag, and Theory. The

core concept underpinning the Arg2P technology is the one of Arg2pLibrary –

we could say that everything in the framework is a library – i.e., a collection of

functions and procedures (Theory in Figure 5.2), and of a set of flags (Arg2pFlag).

Then, a Arg2pSolver is composed by one or more Arg2pLibrary. We can then

define the Arg2P framework as a composition of different libraries.

The ratio behind this choice is to meet the flexibility feature (in terms of ease of

extension) in order to guarantee the possibility to encapsulate the many existing

argumentation theories. Designing the framework as a composition of different

libraries – where a library could implement either a single step of the pipeline or

many of them at the same time or the communication medium or also the pipeline

orchestrator – we enforce the flexibility feature decoupling each component from

the others.

In the following we will discuss how the Arg2P technology meets all the re-

quirements discussed in Section 5.1. Figure 5.3 shows how the general architecture

presented in Section 5.1 is reified in the 2P-Kt technology.

The library entity is transposed to the ArgLibrary interface (Listing 5.1) com-

posed of three elements: an alias, the library identifier; the baseContent, the set

of functions and primitives that compose the library; and the baseFlags, a set of

directive that can be used to customise the behavior of the library.

Listing 5.1: Arg2P library.

interface ArgLibrary {

4The sources are available at https://github.com/tuProlog/arg2p-kt

CHAPTER 5. TOWARDS A GENERAL ARGUMENTATION
TECHNOLOGY: ARG2P

103

https://github.com/tuProlog/arg2p-kt

5.2. THE ARG2P TECHNOLOGY

Figure 5.3: Arg2P in tuProlog.

val alias: String

val baseContent: AliasedLibrary

val baseFlags: Iterable <ArgsFlag <*, *>>

}

The baseContent is declared as AliasedLibrary. This is one of the abstractions

available in the 2P-Kt environment to easily declare a plug-in extension for the

base Prolog solver. Every AliasedLibrary contains a list of operators, predicates

and/or functions—encoded in Java, Kotlin or Prolog. Adding a library to a 2P-Kt

solver means adding the content as a static knowledge base—i.e., all the predicates

and functions added to the solver through libraries will be callable during the

solving procedure as declared in the input theory. The use of the AliasedLibrary

primitive as the base of an ArgLibrary allows the tool to meet the requirement

(Req1).

The flag entity is transposed to the ArgsFlag interface (Listing 5.2) represent-

ing a parameter that can be set in order to customise the behavior of a library.

Listing 5.2: Arg2P flag.

interface ArgsFlag <T, G> {

fun predicate (): String

fun default (): T

fun values (): G

104 CHAPTER 5. TOWARDS A GENERAL ARGUMENTATION
TECHNOLOGY: ARG2P

5.2. THE ARG2P TECHNOLOGY

}

Their use recalls the one of C preprocessor directives: according to the chosen

directives, different sections of the original source code will be considered during

the final evaluation. Accordingly, a developer of a library can declare a set of

flags that will be available to end-users in order to dynamically customise the

computation. The structure of every ArgFlag is pretty simple: it contains a

predicate, the identifier of the flag that will be used as the functor of the flag

predicate in the logical theory, a default value and the list of allowed values.

The use of flags to customise the computation, combined with ease of extension

(intrinsic to the use of libraries), allows the tool to meet the second requirement

(Req2).

Libraries are used in the final Arg2P solver in different ways, the distinction is

made clear in the Arg2pSolver interface (Listing 5.3).

Listing 5.3: Arg2P solver.

interface Arg2pSolver {

val loader: ArgLoader

val context: ArgContext

fun staticLibraries (): Iterable <ArgLibrary >

fun dynamicLibraries (): Iterable <ArgLibrary >

}

Two categories of libraries can be identified – static and dynamic – as well as two

additional elements, the ArgLoader and the ArgContext.

The distinction between static and dynamic libraries has been introduced to

cope with private routines and data, enabling – via the dynamic option – the cre-

ation of a new solver with the specified knowledge base loaded. Conversely, Prolog

– so, 2P-Kt – does not offer a native mechanism for encapsulating private routines

and data—thus making it difficult to avoid naming collision in an open develop-

ment scenario. Accordingly, static components are the ones that should always

be loaded in the solver – as in standard 2P-Kt – and their primitives should be

available during all the resolution procedures. For instance, the user operational

interface could be included in the solver as a static library. Conversely, dynamic

components have their own namespace and context, and thus their execution is

CHAPTER 5. TOWARDS A GENERAL ARGUMENTATION
TECHNOLOGY: ARG2P

105

5.2. THE ARG2P TECHNOLOGY

separated from other dynamic libraries, thus enforcing a form of strong encapsula-

tion and information hiding. The framework mechanism for dealing with this form

of dynamic loading of a library is represented by the ArgLoader component. De-

tails of the available implementation of the loader are discussed in Subsection 5.2.1.

The ArgLoader component allows the framework to meet the (Req3) requirement

by providing a mechanism to guarantee the soundness of the logical solver built-in

in the 2P-Kt environment.

Finally, the ArgContext component provides an additional method of commu-

nication than the “function” calls, so that the libraries can really be independent

of each other. The ArgContext represent a common medium enabling the commu-

nication between the libraries, requirement (Req4). Moreover, tracking the data

on this medium would improve the transparency of the entire process, meeting

requirement (Req5). Implementation details on this shared context are discussed

in Subsection 5.2.1.

The Context Library

The general idea behind the context library is to provide a shared medium where

framework components can save their data thus providing a completely indepen-

dent interaction model. For instance, a library implementing the Argument La-

beller module would not need to call directly a Graph Builder component to obtain

a graph (or viceversa), but the data should already be available in its context. The

current Arg2P framework implements the mechanisms through a git-based branch-

ing model.

The context is implemented as a 2P-Kt solver with an empty knowledge base.

It is possible to add, remove, and query the data inside the context through the

following directives:

• context assert(Data), requesting the Data to be added to the context;

• context retract(Data), requesting all the data matchingData to be deleted

from the context. Being the context based on a Prolog solver unification and

variables can be exploited to match more than one entry in the context;

• context check(Data), checking for all the entries in the context matching

106 CHAPTER 5. TOWARDS A GENERAL ARGUMENTATION
TECHNOLOGY: ARG2P

5.2. THE ARG2P TECHNOLOGY

Data. In case of more than one match the results are given via backtracking.

These three directives offer the base functionalities required to a standard cache.

Moreover, some directives have been added to track the evolution of the con-

text over time thus enabling to return to a given point in the context history.

This feature enforces the transparency of the argumentation process for end-users

(Req5)—possibly to easily check the behaviour of the single pipeline components.

W.r.t. the latter, indeed, many argumentation algorithms require a full explo-

ration of the search space to find the right solutions. However, the backtracking

capabilities offered by the base Prolog solver are not enough to deal with the data

in the knowledge base—i.e., asserted data survive backtracking. A branching con-

text is one of the possible solutions to the problem: by branching the context it is

possible to explore the search branch and in case of necessity seamlessly return to

its original state.

The Context library makes available five directives to this purpose:

• context active(Context), returns the identifier of the active context;

• context checkout(Context), requires the activation of the context with the

Context identifier;

• context branch(Context, NewContext), creates a new context identified

by NewContext starting from the one identified by Context. This is easily

done in creating a new 2P-Kt solver with the same knowledge base of the

Context associated solver;

• context check(Context, Data), checking for all the entries in the context

identified by Context matching Data;

• context reset, reset the context history and create a new empty context.

The Loader Library

The last element composing the Arg2P framework is the ArgLoader library, respon-

sible for the loading and execution of dynamic components. The engine offers a

base implementation exploiting 2P-Kt solvers. When the execution of a primitive

in a dynamic library is requested, then:

CHAPTER 5. TOWARDS A GENERAL ARGUMENTATION
TECHNOLOGY: ARG2P

107

5.3. AN ARG2P INSTANCE: ASPIC AND MORE

Figure 5.4: The ASPIC+ libraries for Arg2P.

1. a new 2P-Kt solver is created, containing only the defined static libraries

and the target dynamic library;

2. the primitive is executed by the new solver: by default, the same context is

used inside the new solver;

3. when the execution ends, the newly created solver is discarded and the origi-

nal environment restored; the only side effect concerns the execution context:

if the “dynamic call” has produced changes in the context – e.g. change in

the data, branching of the context –, they will be observable in the caller

environment, too.

A primitive in a dynamic library can be called using the :: operator. For example,

targetlib::targetfunction executes the targetfunction from the targetlib

library using the loader mechanism. There could be cases in which the caller does

not intend the call to affect its state via changes in its context. In that case, the

ArgLoader library offers another operator – ::: – that automatises the branching

of the context when the dynamic call is made. As a result, it is always possible for

the caller to restore its original context and proceed as if the call never happened.

5.3 An Arg2P Instance: ASPIC and more

In this section, a description of the tools currently implemented in the Arg2P

framework is provided.Figure 5.4 shows an Arg2P instantiation for an ASPIC+-

108 CHAPTER 5. TOWARDS A GENERAL ARGUMENTATION
TECHNOLOGY: ARG2P

5.3. AN ARG2P INSTANCE: ASPIC AND MORE

like framework [Modgil and Prakken, 2014a].

The engine is designed in a fully-modular way, as depicted in Figure 5.4. Ev-

ery function inside the framework – e.g., graph building, argument labelling – is

sealed within the corresponding module. From a software engineering perspective,

modularity highly improves the upgradability and flexibility – in terms of feature

addition or maintenance – of the whole system.

One of the distinguishing aspects of the engine is represented by its design,

which aims at providing two distinct ways of use:

1. the graph-based mode providing as output the entire argumentation graph

according to the specified semantics—i.e., the labellings of the entire set of

facts and rules given as input;

2. the query-based mode providing as output the evaluation of a single query

given as input and according to a given semantics—i.e., enabling defeasible

reasoning on arguments starting from certain premises.

While the former mode can be considered as the traditional approach of argumen-

tation tools, the latter makes the engine framework a fit choice for the AI pervasive

scenarios.

In the following, we describe each component in detail.

5.3.1 Engine interface

The Engine Interface module is the main pillar of the framework: it manages

all the interaction with external entities (both software agents and humans) by

providing a set of API to perform operations. Accordingly, the module hides all

the complexity of the framework, but, at the same time, ensures all the custom

semantic features to be set. The module exposes only the two usage predicates –

answerQuery and buildLabelSets – transparently coordinating the core modules.

The predicate buildLabelSets builds the argument labelling and the state-

ment labelling according to the theory. It first builds the argumentation graph,

then evaluates arguments and statements. In particular, IN, OUT, and UND sets are

created by classifying both arguments and statements accordingly to the specified

labelling semantics—respectively, INArg, OUTArg, and UNDArg for arguments and

CHAPTER 5. TOWARDS A GENERAL ARGUMENTATION
TECHNOLOGY: ARG2P

109

5.3. AN ARG2P INSTANCE: ASPIC AND MORE

INFact, OUTFact, and UNDFact for statements. The IN set includes admissible ar-

guments; the OUT set includes the rejected ones; the UND includes those for which

it was not possible to affirm the admissibility or not—possibly due to lack of or

contrasting information. There are three variants for this predicate:

• buildLabelSets/2 – buildLabelSets([-INArg,-OUTArg, -UNDArg],

[-INFact,-OUTFact,-UNDFact]) – returns both the sets of statements and

arguments;

• buildLabelSets/3 – buildLabelSets(-IN, -OUT, -UND) – where the output

sets refer only to the statements clustering;

• buildLabelSets/0, which does not provide any output, but performs the ar-

gumentation graph construction and evaluation in background, and prints

argument and statement sets as plain text.

The predicate answerQuery(+Goal, -Yes, -No, -Und) requests the evaluation

of the given Goal. The output corresponds to the set of facts matching the goal,

distributed in the three sets IN, OUT, and UND always accordingly to the labelling

semantics.

Finally, the engine interface provides flags for customising the resolution pro-

cess:

• argumentLabellingMode(MODE) sets the desired labelling semantics by means

of on-purpose flags: namely, grounded, complete, bp grounded partial,

and bp grounded complete (details in [Baroni et al., 2011b, Calegari and Sartor, 2020a]);

future works will also involve further semantics implementations.

• orderingPrinciple(MODE) sets the strategy for the preference propagation

over arguments: the admissible values are last and weakest;

• orderingComparator(MODE) sets the superiority relation to exploit for argu-

ment ranking: implemented strategies are democrat and elitist, both pre-

sented in [Modgil and Prakken, 2014a], and normal from [Dung and Thang, 2018];

• queryMode, if present, enables the structured evaluation of answerQuery/4,

i.e., exploiting the pseudo-DeLP algorithm (the flag can be enabled only for

grounded semantic);

110 CHAPTER 5. TOWARDS A GENERAL ARGUMENTATION
TECHNOLOGY: ARG2P

5.3. AN ARG2P INSTANCE: ASPIC AND MORE

• autoTransposition,when selected, enables the automatic computation of

the base theory closure under transposition [Caminada and Amgoud, 2007c]

before starting the evaluation process;

• unrestrictedRebut disables the restriction on rebut attack relation: by

default, rebut attack relation is restricted—i.e. arguments having a strict

rule as a top rule cannot be rebutted [Caminada and Amgoud, 2007c]; so, if

the user selects this flag, the restriction does not hold anymore.

Two more flags are introduced in the interface, preparing the engine for future

extensions and customisations:

• graphBuildMode(MODE) sets the argumentation modality of the framework

(for instance, base, argumentation over preferences, meta-argumentation);

currently, according to the above-discussed model, only base can be selected,

but future works will be devoted to new modalities implementation;

• analogously for the statementLabellingMode(MODE) with respect to the

statements labelling step; currently the only implemented modality is base—

i.e. arguments’ labels transfer to their claims;

5.3.2 Language Parser

The Language parser is a support modules, bearing transversal responsibilities

w.r.t. the entire framework: its role is to convert the rules from the argumen-

tation language of the framework to an internal representation more efficiently

exploitable by the engine. Moreover, the exploitation of a distinct internal repre-

sentation enforces the framework flexibility, decoupling the user and the technical

language thus encouraging a continuous evolution of both the language and the

computational mechanisms.

The engine adopts an ASPIC+-like syntax – introduced in [Modgil and Prakken, 2014a]

– and exposes all the main features of this framework.

In the following the language predicates are discussed.

CHAPTER 5. TOWARDS A GENERAL ARGUMENTATION
TECHNOLOGY: ARG2P

111

5.3. AN ARG2P INSTANCE: ASPIC AND MORE

Rules & premises

Strict rules can be expressed exploiting the −> operator, with the notation:

label : premise1 , . . . , premisen −> conclusion.

where label is the identifier (unique name) of a rule and premise1 , . . . , premisen

are the premises that entails the conclusion. Accordingly, axioms take the form:

label : −> conclusion.

(label : [] −> conclusion.) (this form is also permitted)

Defeasible rules are expressed by the => operator:

label : premise1 , . . . , premisen => conclusion.

Accordingly, defeasible premises take the form:

label : => conclusion.

Note that in the case of defeasible rules the rule

label : [] => conclusion.

even if admissible, is not equal to a premise, i.e., can affect differently the ordering

relation over arguments and can be undercut by other rules.

Premises and conclusions can take any form containing compound terms, vari-

ables, and strong negations.

Attack relations

The binary attack relation between arguments – which underpins rebutting and

undermining (rebutting on premises) attacks – can be reached via term negation.

Two types of negations are available:

• −term, to indicate a strong negation (contrary), that captures a notion of

112 CHAPTER 5. TOWARDS A GENERAL ARGUMENTATION
TECHNOLOGY: ARG2P

5.3. AN ARG2P INSTANCE: ASPIC AND MORE

negation as definite falsity—i.e., the strong negation of a formula entails its

intuitionistic negation;

• ∼ (term) to indicate weak negation (negation as failure).

Weak negation is allowed only inside rules premises, representing an exception to

the universal rule. Moreover, strong and weak negations cannot be nested.

Undercut attacks can be expressed exploiting the notation:

label2 : premise1 , . . . , premisen => undercut(label1)

where label1 is the identifier of a defeasible rule in the theory. So, for instance,

let r1 be a rule stating that things that look of a certain colour (let it be red) are

usually of that colour. And let r2 be a rule stating that objects illuminated by

a coloured light (let it be red) look of that colour even if they are of a different

colour. The corresponding knowledge and the undercutting relation between the

two rules can be expressed as:

r1 : look(Object ,Colour) => colour(Object ,Colour).

r2 : illuminated(Object ,Colour) => undercut(r1).

The reason is that there is a counter-argument that can undercut the original

argument by attacking the connection between the claim and the reason.

Is it possible to define custom conflicts through the predicate conflict/2:

conflict([Term1], [Term2]).

Using this syntax will be possible to modify the conflict relation used to in ASPIC+

to define attacks between arguments. For example, using this syntax, strong nega-

tion can be defined as:

conflict([−Term], [Term]).

conflict([Term], [−Term]).

CHAPTER 5. TOWARDS A GENERAL ARGUMENTATION
TECHNOLOGY: ARG2P

113

5.3. AN ARG2P INSTANCE: ASPIC AND MORE

Superiority relation

It is possible to denote preferences by using the following notation:

sup(ruleName1 , ruleName2)

This proposition states that the rule (non-axiom premise) with identifier equal to

ruleName1 is superior to the one with identifier ruleName2 .

5.3.3 Core modules

In addition to the Engine Interface and LanguageParser modules, other mod-

ules depicted in Figure 5.4 bear different responsibilities. The core of the engine

contains the Abstract Reasoner and the Structured Reasoner modules. As men-

tioned above, the engine exposes two distinct operation modes – i.e. graph and

query-based mode. These two modules are responsible for orchestrating these func-

tionalities: the former is held by the Abstract Reasoner module while the latter

by the Structured Reasoner.

These two modules are not designed as monolithic entities but can leverage

on other sub-modules, categorisable in a third group—namely, the algorithmic

group. Each module belonging to this group is focused on a single algorithmic

responsibility. In particular, existing algorithmic modules are:

• Graph Builder builds the argumentation graph starting from a rule-base

encoded with the engine internal representation

• Grounded Labeller, in charge of computing grounded labelling of the argu-

mentation graph, according to Dung’s notions of grounded semantics

• Complete Labeller, in charge of computing complete labelling of the argu-

mentation graph, according to Dung’s notions of complete semantics

• BP Labeller builds the second stage burden of persuasion labelling starting

from the grounded labelling

• Statement Labeller carries out the statements labelling according to labelling

of the arguments.

114 CHAPTER 5. TOWARDS A GENERAL ARGUMENTATION
TECHNOLOGY: ARG2P

5.3. AN ARG2P INSTANCE: ASPIC AND MORE

It follows that, by simply adding or changing a module, the user can completely

change the behaviour of the engine and adapt it to contingent and domain-specific

requirements (such as supporting a new semantic) offering an alternative cus-

tomised implementation for a building block, or supporting a custom argumenta-

tion language.

Let us assume as input a pipeline made of the libraries depicted in Figure 5.4:

then, the steps required to create an Arg2P instance are discussed in the following.

First of all, an ArgLibrary for the Abstract Reasoner module should be created—

representing the pipeline orchestrator. Listing 5.4 shows a possible implementation

in Kotlin.

Listing 5.4: An AbstractMode library.

sealed class AbstractMode : ArgLibrary {

override val alias = "prolog.argumentation.abstract"

override val baseContent: AliasedLibrary

get() = Library.aliased(

alias = this.alias ,

theory = prologTheory

)

override val baseFlags: Iterable <ArgsFlag <*, *>>

get() = listOf(GraphExtension , ArgumentLabellingMode

,

StatementLabellingMode , GraphBuildMode)

}

The implementation contains the library identifier – prolog.argumentation.abstract

–, the list of the flags that the library accepts – e.g. ArgumentLabellingMode

defining the semantics to be applied to the graph, or GraphExtension declaring

the available graph transformations –, and then the implementation is provided

through the AliasedLibrary primitive. For the sake of simplicity, we assume that

the Prolog content is given as raw text through the argTheory variable containing

just a list of clauses using the flags to determine the library to invoke in order to

CHAPTER 5. TOWARDS A GENERAL ARGUMENTATION
TECHNOLOGY: ARG2P

115

5.3. AN ARG2P INSTANCE: ASPIC AND MORE

complete the argumentation process.

The creation of the solver requires the list of the static and dynamic libraries

to be exploited in the resolution procedure—Listing 5.5.

Listing 5.5: Arg2P solver.

fun arg2p(): Arg2pSolver = Arg2pSolver.of(

listOf(EngineInterface),

listOf(

AbstractMode , RuleParser , ArgumentationGraphBuilder ,

...

)

)

In the case at hand, there is only one static library, the EngineInterface. It ex-

poses the main predicate to interact with the framework – buildLabelSets/3 – that

requires for the execution of the entire pipeline: taking the rules in the knowledge

base as input and returning the statements labelling as output—IN, OUT or UND

sets.

The second list contains all the dynamic libraries required by the evaluation.

In the case at hand, we have the AbstractMode library – acting as an orchestrator

of the entire pipeline –, and the RuleParser and ArgumentationGraphBuilder,

respectively responsible for the first and the second steps in the general pipeline.

Once an instance of the Arg2P framework is defined, it is possible to create a

2P-Kt solver to carry on the computation:

Listing 5.6: 2P-Kt solver.

val solver = ClassicSolverFactory.

mutableSolverWithDefaultBuiltins(

otherLibraries = arg2p().to2pLibraries ()

.plus(FlagsBuilder ().create ()),

staticKb = argTheory

)

The arg2p instance is transformed in a list of 2P-Kt libraries through the to2pLibraries

method. Also, a library containing the user defined flags is added to the list5. The

5FlagsBuilder is a utility class that creates a library of flags starting using the data with

116 CHAPTER 5. TOWARDS A GENERAL ARGUMENTATION
TECHNOLOGY: ARG2P

5.3. AN ARG2P INSTANCE: ASPIC AND MORE

theory to be used in the argumentation process is provided to the system through

the argTheory variable.

The final evaluation can so be performed (Listing 5.7):

Listing 5.7: Query evaluation.

val solution = arg2pScope {

solver.solve("buildLabelSets"("StatIn", "StatOut", "

StatUnd")

}. first()

The EngineInterface is the only statically-defined library, thus making the buildLabelSets/3

the only predicate in the global namespace. By requiring its evaluation, we ob-

tain a solution containing a Prolog substitution for the three variables “StatIn”,

“StatOut”, “StatUnd” according to the input theory. Thanks to the Context li-

brary, it is then possible to navigate all the steps in the resolution process through

the directive context checkout/1.

5.3.4 Deontic rules and conflicts

Our deontic extension focuses on basic concepts of deontic reasoning—namely,

obligations, prohibitions, and permissions. Obligations are at the core of our de-

ontic system, and prohibitions are viewed as a by-product of obligations. As stated

in [Riveret et al., 2019], in this context we can say that something is prohibited is

equivalently expressed by stating that its opposite is obligatory. Also, permissions

can be reloaded in terms of obligations: permission to do something expresses

that the opposite is not obligatory. Accordingly, and for the sake of simplicity,

the attention is restricted to a propositional language which is supplemented with

a single deontic operator O which indicates an obligation. Hence, we assume a

language whose literal statements are enhanced with the following definition of

deontic literal statements:

Definition 48 (deontic literal statement). A deontic literal statement is a

statement of the form Oγ or ¬Oγ such that γ is a plain literal statement. Prohi-

bitions and permissions are captured by assuming that a prohibition Fγ is equiva-

which has been fed. In the example, the library is created only with flags’ default values.

CHAPTER 5. TOWARDS A GENERAL ARGUMENTATION
TECHNOLOGY: ARG2P

117

5.3. AN ARG2P INSTANCE: ASPIC AND MORE

Figure 5.5: Deontic square of compatibility relation

lently expressed by the obligation Oγ, and a permission Pγ is syntactically equiv-

alent to ¬Oγ.

Deontic operators extend the semantics of the rule by enabling the defini-

tion of the so-called normative rules, i.e., containing either normative concepts or

deontic operators. The definition of these rules affects and enlarge the conflict

relation of the argumentation framework. According to the deontic semantics,

deontic conflicts have to be considered, too, namely conflicts of the form (γ, γ̄)

or (Oγ,Oγ̄) or (¬Oγ,Oγ) or (Oγ,¬Oγ) as depicted in the deontic square in Fig-

ure 5.5. Detailed formal accounts of the adopted deontic extensions are discussed

in [Riveret et al., 2019]—our model fully adheres to that semantics.

In the language of the framework we have:

• p(term) to indicate permission;

• o(term) to indicate obligation.

Note that we introduced the p functor to lighten the notation, but it perfectly

fits the model discussed in Subsection 5.3.4 since a permission Pγ is syntactically

equivalent to ¬Oγ .

Prohibitions can be defined exploiting strong negation: −p(term). Conse-

quently, a lack of prohibition can be defined as exploiting two strong negations:

−o(−term). This is the only exception to negations nesting prohibition (in general

not allowed by the argumentation language).

118 CHAPTER 5. TOWARDS A GENERAL ARGUMENTATION
TECHNOLOGY: ARG2P

5.3. AN ARG2P INSTANCE: ASPIC AND MORE

5.3.5 Burden of Persuasion

The burden of persuasion on a proposition can be expressed as follows:

bp(term1 , . . . , termn)

The structure of terms reflects the one seen for standard rules: compound terms,

variables and strong negations are therefore allowed.

The algorithm described in Section 4.3 has been tested and implemented in the

Arg2P framework6 [Pisano et al., 2020, Pisano et al., 2021]. Please note that the

equivalence of the optimised procedure with the formal model presented in Chapter

3 has for now only been conjectured, thus remaining still unproved. Figure 5.6

displays the tool in action as it evaluates an example involving a conditional BoP

constraint.

The entire process is based on grounded semantics and reachability checking—

both polynomial complexity [Kröll et al., 2017b]. The algorithm requires m + 1

evaluation stages to end – wherem is the number of connected burdened arguments

–, then the final complexity is polynomial.

5.3.6 The parallel library

The model in Subsection 4.2.1 has been implemented as a library – the Parallel

library – for the Arg2P framework. The goal of the implementation is twofold: i)

provide a mechanism for the concurrent evaluation of a claim by a single Arg2P

instance – actors in execution on a single machine can achieve real parallelisation

thanks to multicore hardware architectures – ii) enable cooperative argumentation

by allowing different Arg2P instances to create a single actor system, thus sharing

their knowledge base or their hardware resources.

Among the available technologies for the implementation we selected Akka7

[Cossentino et al., 2018]. Akka is an open source middleware for programming

concurrent and distributed actor systems based on the original Actor model by

Hewitt [Hewitt et al., 1973]. Build upon the JVM platform, the framework offers

6http://arg2p.apice.unibo.it/
7https://akka.io/

CHAPTER 5. TOWARDS A GENERAL ARGUMENTATION
TECHNOLOGY: ARG2P

119

http://arg2p.apice.unibo.it/
https://akka.io/

5.3. AN ARG2P INSTANCE: ASPIC AND MORE

Figure 5.6: Arg2P Meta-BoP evaluation

an easy way of deploying network distributed systems observant of the original

actor principles—e.g. reactivity, asynchronous communications, absence of states

of shared memory between actors. All these features made the Akka framework

one of the reference technologies in the distributed landscape, with users ranging

from the research to commercial fields.

The final implementation makes use of the Akka Clustering features to enable

the collaboration of different Arg2P instances. In particular, we rely on Cluster

Singletons8 to handle the Master actor lifecycle, and Cluster Sharding9 for Worker

nodes. The Parallel library makes available five directives:

• join(Port), requesting the creation of an actor system on the local machine

exposed on port Port;

• join(Port, Address), to join an actor system on the machine at the given

Address, exposed on port Port;;

8https://doc.akka.io/docs/akka/current/typed/cluster-singleton.html
9https://doc.akka.io/docs/akka/current/typed/cluster-sharding.html

120 CHAPTER 5. TOWARDS A GENERAL ARGUMENTATION
TECHNOLOGY: ARG2P

https://doc.akka.io/docs/akka/current/typed/cluster-singleton.html
https://doc.akka.io/docs/akka/current/typed/cluster-sharding.html

5.3. AN ARG2P INSTANCE: ASPIC AND MORE

• load, requesting the distribution of the rules contained in the knowledge

base of the local instance between all the members of the actor systems

(Figure 4.2);

• reset, requesting the deletion of the data previously distributed in the actor

system via the load directive;

• solve(Goal, In, Out, Und), requesting the evaluation of the Goal claim

to the actor system according to the procedure in Figure 4.2. We have the

set of facts matching the goal distributed in the three sets IN, OUT, and UND

as a result.

All the application scenarios can be modelled by using the directives above. We

achieve parallel evaluation of a claim on a single Arg2P instance in three steps:

(i) creating a local actor system (join(Port)), (ii) distributing the theory be-

tween local actors (load), (iii) requiring the evaluation of a statement through

the solve(Goal, In, Out, Und) directive. At the same time we could have oth-

ers Arg2P instances offering their hardware resources (join(Port, Address)) –

if a node joins the actor systems the Cluster Sharding functionality will be respon-

sible for the fair distribution of Worker actors between all the available nodes –,

or also participating to the resolution if they share their own knowledge (load).

Listing 5.8 shows an example of parallel resolution using a single node.

Listing 5.8: Arg2P parallel solver.

arg2pScope {

ClassicSolverFactory.mutableSolverWithDefaultBuiltins(

otherLibraries = Arg2pSolver.parallel ().

to2pLibraries (),

staticKb = theory

).also {

it.solve(

"join"(2551) and

"load" and

"solve"("query", "In", "Out", "Und")

)

}

CHAPTER 5. TOWARDS A GENERAL ARGUMENTATION
TECHNOLOGY: ARG2P

121

5.3. AN ARG2P INSTANCE: ASPIC AND MORE

}

122 CHAPTER 5. TOWARDS A GENERAL ARGUMENTATION
TECHNOLOGY: ARG2P

Chapter 6

Legal Reasoning

In this chapter, we delve into the application of our formal meta-argumentation

model and the Arg2P technology within the legal domain. This exploration

builds upon the theoretical frameworks established in previous chapters, aiming

to demonstrate the real-world efficacy of these tools in addressing complex legal

issues, thereby bridging the gap between advanced theoretical models and their

tangible impact in the field of legal AI.

We begin by highlighting the application of our formal meta-model in the realm

of legal studies, with a particular focus on legal interpretation. As demonstrated

in the earlier section on the Burden of Persuasion extension, the formal advance-

ments in our model have already shown a profound connection with the legal field.

This section will serve as a prime example of how our theoretical developments

are intricately linked with legal reasoning, further emphasising the relevance and

applicability of our work in the legal AI landscape. We will demonstrate how the

meta-model facilitates nuanced analysis and interpretation of legal texts and prece-

dents. By applying the meta-model to interpretive challenges commonly faced in

legal practice, such as dealing with conflicting precedents or ambiguous statutory

language, we illustrate its ability to provide clarity and structure in complex in-

terpretive tasks.

Following the focus on legal interpretation, we shift to illustrate how the prin-

ciples of defeasible reasoning and formal argumentation, as encapsulated in our

Arg2P technology, align seamlessly with the intricacies of legal reasoning. This

CHAPTER 6. LEGAL REASONING 123

6.1. META-ARGUMENTATION FOR INTERPRETATIVE REASONING

chapter will showcase the adaptability of our approach in handling the dynamic

and multifaceted nature of legal cases.

Central to this chapter are examples and case studies where our model and

technology are applied to real-life legal scenarios. These examples will serve to

highlight the practical utility of our tools in analysing and resolving legal dis-

putes. We will demonstrate how our approach not only matches but also enhances

the depth and clarity of traditional legal analysis, offering innovative solutions to

longstanding legal challenges.

Overall, this chapter serves as a critical link between the theoretical advance-

ments detailed in earlier sections, the practical applications in the field of legal

reasoning, and their broader impact on the legal AI landscape.

6.1 Meta-Argumentation for Interpretative Rea-

soning

In general, Meta-argumentation plays a crucial role in the realm of legal reason-

ing, particularly when it comes to the process of justification. Legal reasoning

is inherently dependent on the robust justification of contested legal statements,

especially in controversial contexts. Firstly, the adequacy of justifying a legal

claim goes beyond merely presenting an argument in its support. In legal rea-

soning, the premises of the argument themselves often require justification. This

recursive need for justification continues until a point is reached where no addi-

tional justification is deemed necessary by the decision-maker. This highlights

the need for a meta-argumentative approach where the validity and soundness of

each layer of the argument are scrutinised and established. Secondly, the rele-

vance of a criticism in legal argumentation is contingent upon its ability to present

a claim that directly conflicts with the premise of the existing argument. Such

criticisms are significant as their acceptance implies the rejection of the origi-

nal argument. However, the perceived incompatibility between the criticism and

the original argument can itself be a subject of debate. This leads to a situa-

tion where the compatibility or incompatibility of arguments becomes a central

issue, requiring a meta-level analysis to resolve. Thirdly, the resolution of con-

124 CHAPTER 6. LEGAL REASONING

6.1. META-ARGUMENTATION FOR INTERPRETATIVE REASONING

flicts between arguments often involves preferences over these arguments. How-

ever, these preferences are not absolute and can be contested. The process of

evaluating and establishing these preferences necessitates a meta-argumentation

approach, where the reasons behind preferring one argument over another are

thoroughly examined and justified. Intuitively, the requirements highlighted in

the realm of legal reasoning and meta-argumentation are fully satisfied by the

model we have presented. However, to elucidate this alignment more comprehen-

sively, we will delve deeper into the specifics, using legal interpretation as our

primary demonstration area. Our work is closely aligned with and expands upon

prior efforts to develop argumentation-based models of interpretation, as seen in

[Rotolo et al., 2015, da Costa Pereira et al., 2017, Walton et al., 2021].

Legal interpretation is a fundamental process in the practice of law, involving

the methodical examination and elucidation of legal texts, such as statutes and

judicial decisions. At the heart of legal interpretation are various interpretative

canons, which are established methods or principles that guide legal practitioners

in understanding and applying the law. While there are numerous canons, focusing

on three primary ones — the literal canon, the purposive canon, and the preceden-

tial interpretation — can provide a clear insight into the core of legal interpretive

practice.

The literal canon dictates that the interpretation of a legal text should be based

primarily on the plain, ordinary meaning of the words used. It operates on the

assumption that the language of the statute conveys the intent of the lawmakers.

Legal practitioners and judges turn to this canon as a starting point, considering

what the text explicitly states. The literal interpretation is especially favoured in

situations where the language is clear and unambiguous, thus leaving little room

for interpretation beyond the words themselves.

The purposive approach, also known as the teleological approach, goes beyond

the mere wording of the text to consider the broader purpose and objectives behind

the law. This canon is particularly useful in cases where a literal interpretation

would lead to an absurd or unjust outcome, or where the intent of the law is

not immediately clear from its language. It involves examining legislative history,

the context surrounding the law’s creation, and the overall goals the law seeks to

achieve. This approach aligns legal interpretation with the broader objectives of

CHAPTER 6. LEGAL REASONING 125

6.1. META-ARGUMENTATION FOR INTERPRETATIVE REASONING

justice and social welfare, ensuring that the application of law harmonises with its

intended purpose.

Precedential interpretation relies heavily on past judicial decisions and inter-

pretations to guide the understanding and application of legal texts. The doctrine

of stare decisis, or the principle of adhering to precedent, plays a critical role here.

Legal professionals look to previous rulings on similar issues as a guide for in-

terpreting current cases. This approach ensures consistency and predictability in

the law, as similar cases are treated in a similar manner. Precedential interpreta-

tion is fundamental in common law systems where past judicial decisions form a

significant part of the legal framework.

Each canon offers a different lens through which the law can be understood

and applied, often complementing each other to achieve a balanced and fair inter-

pretation. Our discussion on legal interpretation will delve into how these canons

are reflected in our formal argumentation model.

Generally speaking, modeling legal interpretation requires a system that can

adeptly handle the complexities inherent in legal reasoning. Such a system needs

to be capable of reasoning about various critical aspects that are central to inter-

preting statutory provisions and judicial rulings:

• the system must be capable of assessing the validity of rules that express

interpretations of statutory provisions or judicial rulings. This involves not

just understanding the rules themselves but also evaluating their legitimacy

and applicability in different legal contexts. The model should be able to

determine whether a particular rule is appropriate and valid for the inter-

pretation of a given legal text;

• legal interpretation often involves conflicting views and interpretations. The

system should be equipped to identify and reason about these conflicts. This

includes recognising when different interpretations are at odds with each

other and understanding the basis of these conflicts, whether they arise from

differing interpretations of the law, conflicting precedents, or divergent ap-

plications of legal principles;

• in cases where there are multiple valid interpretations, the system must be

able to reason about the preferences over these interpretations. This involves

126 CHAPTER 6. LEGAL REASONING

6.1. META-ARGUMENTATION FOR INTERPRETATIVE REASONING

evaluating which interpretation should be given precedence based on legal

principles, precedents, the context of the case, and the objectives of the law.

These requirements are satisfied by the model proposed in Chapter 3. In par-

ticular,

• any argument in which a rule is used will include a sub-argument supporting

the validity of the rule—i.e., the legitimacy and applicability of the interpre-

tation must be proved as well;

• any argument attacking another argument B will include a sub-argument for

the contrariness between (aspects of) the two arguments—i.e., the source of

conflict has to be both understood and agreed upon;

• any argument resisting an attack on the basis of its priority over the at-

tacker, will include a subargument for the existence of the priority—i.e., the

preference efficacy is determined by the context.

In the remainder of this section, we will present three distinct examples that

effectively demonstrate the application of the meta-machinery in the context of

legal interpretation. These examples are specifically chosen to illustrate the prac-

tical utility and effectiveness of our approach in navigating the complexities of

legal reasoning.

Example 12 (Gender Identity). Let us consider a legal example concerning a case

of gender identity. Let us consider the case of Sue. She wants to compete in the

woman’s chess championship but the organisers argue that this would be impossible

because legally she has been assigned the male gender, as proven by her passport.

However, Sue identifies herself as a woman and thinks that she should have the

right to compete in the championship. To decide the case we should first decide on

the existence of a conflict between the concepts of man and woman: are they in

conflict – Sue’s official gender automatically discards her claim of being a woman

–, or can the two concepts coexist according to the principle of self-determination?

To encode the case at hand, the argumentation model should allow conflicts to be

formalised, i.e., a meta-argumentation model is required.

CHAPTER 6. LEGAL REASONING 127

6.1. META-ARGUMENTATION FOR INTERPRETATIVE REASONING

In introducing the case of Sue’s eligibility to participate in a women’s chess

championship based on her gender identity, we venture slightly away from the

direct application of traditional legal interpretative canons. However, this example

remains highly relevant and insightful in showcasing the proficiency of our model

in a complex legal issue intimately connected to interpretation.

This scenario challenges the model to navigate the intricate legal definitions and

terms related to gender identity. While it may not involve the classical interpre-

tation of textual nuances or legislative intent, it presents a real-world application

of how legal texts and policies regarding gender are interpreted and applied. This

exploration into statutory language and its practical implications reflects a key

aspect of legal interpretation.

Furthermore, the case brings to the forefront the challenge of reconciling con-

flicting legal principles: the legal recognition as per official documents versus the

principle of self-determination. This aspect of the case mirrors a common hurdle

in legal interpretation, which involves resolving conflicts between different legal

norms or principles. The model’s capability to manage this conflict exemplifies

its adeptness in interpreting and applying legal principles to specific situations, a

critical skill in legal reasoning.

By examining this case, we aim to demonstrate how our model adeptly ad-

dresses issues that, while not strictly about interpreting legislative text, are deeply

intertwined with the broader challenges of legal interpretation. It provides an

insightful example of the model’s capacity to dissect complex legal arguments,

balance competing principles, and offer reasoned analysis, all integral elements in

the practice of legal interpretation.

In this example we will make use of the parts of the model introduced in

Section 3.2. We use the following abbreviations:

• Champ = Sue can compete in the women’s chess championship

• FWoman = Sue identifies herself as a woman

• PMan = Sue’s passport identifies her as a man

• Aut = Every person has the right to self-determine their gender

128 CHAPTER 6. LEGAL REASONING

6.1. META-ARGUMENTATION FOR INTERPRETATIVE REASONING

• GBin = Every person’s gender is determined by their birth sex, either male

or female

Example 13 (Gender Identity: Formalisation). Let us consider the theory where

Rd = { r1 : PMan,Gbin ⇒ conf(Man,Woman); r2 : PMan ⇒ Man; r3 :

FWoman⇒ Woman; r4 : Woman⇒ Champ } with the following facts Kp = {
FWoman, PMan, GBin, conf(Aut, r1) }, Ks = ∅, Rs = ∅. Accordingly to the

above definitions, we can then build the following arguments:

The attacks areMA0⇝ A6, MA0⇝ A7. If we apply Dung’s grounded seman-

tics to the framework we obtain the extension {A0, A1, A2, A3, A4, A5,MA0}—i.e.

the incompatibility between Sue’s official gender and her perceived identity is con-

firmed (A4), preventing her to compete in the championship.

Sue is not happy with the final decision and decides to appeal claiming that her

right to self-determination has not been taken into due consideration. The case is

evaluated again with the new information: Kp = {Aut}∪Kp. Two new arguments

are obtained:

A8 : Aut

MA1 : A8 , A3 ⇒ att(A4)

The new attacks are MA1 ⇝ A4, MA1 ⇝ MA0. Applying again Dung’s

grounded semantics to the framework we obtain {A0, A1, A2, A3, A5, A6, A7, A8,MA1}—
i.e. the problem on Sue’s identity is resolved discarding the conflict between her

birth and perceived gender (A4), according to the principle of self-determination

(A8). Consequently, she is free to compete in the championship. Indeed, the CAF

was able to integrate the new knowledge and use it to revise the status of the

CHAPTER 6. LEGAL REASONING 129

6.1. META-ARGUMENTATION FOR INTERPRETATIVE REASONING

Figure 6.1: Conflict-based Argumentation frameworks from Example 13

propositional conflicts in the argumentation theory as expected. Both the original

argumentation graph and the revised one are presented in Figure 6.1.

Let us now proceed with an interpretation example making use of the machinery

from Section 3.4 and Section 3.1. Note that in this and in the following examples,

we shall list rules and premises including variables (X, Y, . . .) as a abbreviations

for the set of all their ground instances. In the arguments using such rules, we

shall use the corresponding ground instances.

Example 14 (Interpretation - Indecent exposure). Let us assume that indecent

exposures are prohibited (rule r0). This rule has been interpreted in such a way that

breastfeeding counts as an indecent exposure (rule d1), and that this interpretation

is considered to be valid, having been affirmed in a judicial decision (rule instance

r1(d1)). However, this interpretation has been overruled by a subsequent decision

(d2). The overruling is contrary to d1’s interpretation and indeed rebuts its validity

(rule r2(d1)).

r0 : indecentExposure ⇒ violation

d1 : breastFeeding ⇒ indecentExposure

d2 : ⇒ overruled(decision(d1))

r1(x) : decision(X) ⇒ usable(X)

r2(x) : ⇒ contr(overrruled(decision(X)), usable(X))

Arguments obtained from the knowledge base Kp = breastFeeding,

decision(d1), decision(d2), usable(r0), usable(r1(X)), usable(r2(X)) follow:

130 CHAPTER 6. LEGAL REASONING

6.1. META-ARGUMENTATION FOR INTERPRETATIVE REASONING

A1: breastFeeding

A2 : decision(d1)

A3 : decision(d2)

A4 : usable(r0)

A5 : usable(r1(d1))

A10: A8 ,A1 ⇒ indecentExposure

A11: A9 ⇒
overrruled(decision(d1))

A12: A7 ⇒
contr(overrruled(decision(d1)), usable(d1))

A13: A4 ,A10 ⇒ violation

CA11: A12 ,A9 ⇒
overruled(decision(d1))

A6 : usable(r1(d2))

A7: usable(r2(d1))

A8: A5,A2 ⇒ usable(d1)

A9: A6,A3 ⇒ usable(d2)

Figure 6.2 shows the argumentation graph evaluated with grounded semantics.

Let us shortly examine the arguments. Argument A1-A3 affirm the basic facts

in Kp. Arguments A4-A7 affirm the validity of the rule instances to be used in

subsequent arguments. In particular A6 and A7 conclude for the validity of rules

according to which if a decision is adopted then its content is valid. A8 and A9

use the latter rules for concluding for the validity of the content of d1 and d2.

A10 uses the validity of d1 according to A8 to conclude, using A1 (breastfeeding),

for indecent exposure. A11 uses A7 to conclude that d1 is overruled, while A12

concludes that d1 being overruled collides with its validity. Finally the two latter

arguments are used to build an attack arguments (CA11) according to which d1 is

rebutted by its overruling. As result, no violation is found (A13).

In our previous example, we navigated through a problem involving past de-

cisions and interpretations under the precedential approach, primarily employing

reasoning about rules and conflicts. However, in that scenario, the canon was

not explicitly modeled, and the element of preferences did not play a role. Now,

we turn our attention to a more intricate scenario where competing canons and

preferences are actively involved. This final example will illustrate the depth and

CHAPTER 6. LEGAL REASONING 131

6.1. META-ARGUMENTATION FOR INTERPRETATIVE REASONING

Figure 6.2: Argumentation framework from Example 14.

complexity our model can handle, showcasing its capability to engage with nu-

anced legal interpretation scenarios where multiple interpretative canons intersect

and where preferences play a significant role in determining the outcome.

Example 15. Interpretation - Unfair dismissal

Nino Mezza, who worked as a software engineer for the British company Dif ’s &

Ric, was unfairly dismissed after his complaints for the non-payment of overtime

wages by the company. The tribunal has now to determine the amount of the

compensatory award. The relevant piece of legislation is the Section 123(1) of the

UK Employment Rights Act 1996, that reads: “The amount of the compensatory

award shall be such amount as the tribunal considers just and equitable in all the

circumstances having regard to the loss sustained by the complainant in consequence

of the dismissal”.

The employer argued that the relevant section of the current UK legislation (p)

only allows for the recovery of financial loss (i1) (ordinary meaning of the term

loss). Conversely, the employee argued that an interpretation of this provision in

the light of the original intent would grant him the recovery of losses other than

financial, including also moral losses (i2). Ultimately, to determine whether the

claimant should be compensated not only for his financial losses, but also for his

moral harm, the scope of the term loss has to be determined. In this example we

132 CHAPTER 6. LEGAL REASONING

6.1. META-ARGUMENTATION FOR INTERPRETATIVE REASONING

Figure 6.3: Argumentation framework from Example 15 with no priorities over avail-
able interpretations. Arguments A0, . . . , A10 – unconflicted premises and axioms – are
omitted for space reasons.

will try to determine if the introduced meta-argumentation framework possesses

all the features required to represent and automatically answer the above question

given all the relevant knowledge.

Consider Rd as follows:

p: unfairlyDismissed, loss ⇒ rightToCompensation

i1: financialLoss ⇒ loss

i2: moralLoss ⇒ loss

r(Y,X): provision(X), interpretation(Y,X)

⇒ usable(Y)

c(X,Y,Z): interpretation(X,Z), interpretation(Y,Z), Y ̸= Y ,

⇒ contr(usable(X), usable(Y))

s(X,Y,Z): purposive(X,Z), literal(Y,Z)

⇒ sup(r(X,Z), r(Y, Z))

the following set of ordinary premises Kd:

provision(p1)

interpretation(i1, p)

interpretation(i2, p)

unfairlyDismissed

financialLoss

moralLoss

and Kp = {usable(s(X, Y, Z)), usable(r(X, Y)), usable(c(X, Y, Z)),

usable(p)}.
According to rule r(Y,X) interpretations of legal provisions count as valid rules.

CHAPTER 6. LEGAL REASONING 133

6.1. META-ARGUMENTATION FOR INTERPRETATIVE REASONING

According to rule c(X, Y, Z) different interpretation of the same legal are contrary

one to the other. According to rule s(X, Y, Z), the ascriptions of validity (ac-

cording to rule r(Y,X)) to a purposive interpretation prevail over ascriptions of

validity to a literal interpretation. The knowledge base contains all the relevant

facts: the existence of a main provision (provision(p)), the of available interpre-

tations (interpretation(i1, p) and interpretation(i2, p)), Nino’s unfair dismissal

(unfairlyDismissed) and a proof of the losses he sustained (financialLoss and

moralLoss).

These are the arguments that we can build from the theory:

A0: provision(p)

A1: interpretation(i1, p)

A2: interpretation(i2, p)

A3: unfairlyDismissed

A4: financialLoss

A5: moralLoss

A11 : A9 ,A1 ,A2 ⇒ contr(usable(i1), usable(i2))

A12 : A10 ,A1 ,A2 ⇒ contr(usable(i2), usable(i1))

A13 : A7 ,A0 ,A1 ⇒ usable(i1)

A14 : A8 ,A0 ,A2 ⇒ usable(i2)

A15 : A13 ,A4 ⇒ loss

A16 : A14 ,A5 ⇒ loss

A17 : A0 ,A15 ⇒ rightToCompensation

A18 : A0 ,A16 ⇒ rightToCompensation

CA13 : A11 ,A7 ,A0 ,A1 ⇒ usable(i1)

CA14 : A12 ,A8 ,A0 ,A2 ⇒ usable(i2)

A6: usable(p)

A7: usable(r(i1, p))

A8: usable(r(i2, p))

A9: usable(c(i1, i2, p))

A10: usable(c(i2, i1, p))

Figure 6.3 shows the resulting graph evaluated under grounded semantics (Last-

Link ordering). The arguments standing for the validity of the two competing

interpretations (A13 and A14) attack each other through their respective Conflict

Arguments (CA13 and CA14). Since the knowledge base does not contain any

reason to prefer one interpretation over the other, it is not possible to solve their

conflict and, consequently, the graph remains mostly undetermined.

Let us now add to the system the knowledge on the interpretative canons orig-

134 CHAPTER 6. LEGAL REASONING

6.1. META-ARGUMENTATION FOR INTERPRETATIVE REASONING

Figure 6.4: Argumentation framework from Example 15 with literal preferred over
other interpretations. Arguments A0, . . . , A10 – unconflicted premises and axioms –,
and attacks from PCA14 to A13, A15, A17 are omitted for space reasons.

inating the interpretations, namely a literal approach for i1 and a purposive one

for i2. Accordingly, we can define K ′ = K ∪{literal(i1, p), purposive(i2, p)}. The
arguments that we can build using the new knowledge follow:

A19 : usable(s(i2, i1, p))

A20 : literal(i1, p)

A21 : purposive(i2, p)

A22 : A19 ,A21 ,A20 ⇒ sup(r(i2, p), r(i1, p))

PCA14 : A22 ,A12 ,A8,A0,A2 ⇒ usable(i2)

Figure 6.4 shows the resulting graph evaluated under grounded semantics (Last-

Link ordering). The preference claimed by A22 is used to build a Preference Ar-

gument based on CA14. The resulting argument (PCA14) defeats – without being

defeated – CA13, i.e., the literal interpretation is found invalid for the benefit of

the purposive interpretation of the term loss. As result, Nino is found eligible for

the compensation of all his losses (A18).

In conclusion, the examples presented throughout this section effectively demon-

strate the robustness and versatility of our model. Each scenario, ranging from the

nuanced interpretation of legal definitions to the complex balancing of competing

CHAPTER 6. LEGAL REASONING 135

6.2. COMPUTABLE LAW VIA ARG2P

legal principles, has highlighted the model’s ability to navigate and resolve intricate

legal issues. Indeed, these examples not only illustrate the model’s capacity to en-

gage with and apply various interpretative canons but also showcase its proficiency

in managing preferences and conflicts within legal reasoning. This demonstration

reinforces the model’s potential as a valuable asset in the field of legal AI, proving

its efficacy in tackling the multifaceted challenges of legal reasoning.

6.2 Computable Law via Arg2P

In this section, we aim to provide a comprehensive demonstration of the Arg2P

framework within the context of computable law. The examples we present will

not only showcase the diverse features of the framework that are applicable to

intelligent systems in general, but will also focus specifically on illustrating how

Arg2P effectively meets a range of critical legal requirements.

The general features of the Arg2P framework that will be highlighted include

system transparency and explainability, customization and integration capabilities,

as well as its proficiency in non-monotonic reasoning and defeasibility. These

features are fundamental to intelligent systems, offering enhanced interpretability,

adaptability to various contexts, and the ability to handle changing and conflicting

information.

In addition to these general features, our demonstration will particularly em-

phasize how Arg2P satisfies several key legal requirements in the treatment of legal

knowledge. These requirements, as discussed in [Gordon et al., 2009], include:

• Rules form and strict semantic, ensuring each legal rule is formulated with

precise and unambiguous semantics.

• Support for knowledge defeasibility through conflicts and exclusionary rules,

i.e., the ability to adapt to new information and resolve conflicts between

established rules.

• No contraposition in defeasible rules, i.e., the falseness of the conclusion of

a defeasible rule does not lead to any assumption about the validity of the

rule’s premises.

136 CHAPTER 6. LEGAL REASONING

6.2. COMPUTABLE LAW VIA ARG2P

• Attribution of value over rules through preferences, i.e., prioritizing certain

legal principles or rules over others in cases of conflict or ambiguity.

• Deontic effects, i.e., handling normative concepts such as obligations, per-

missions, and prohibitions.

Furthermore, to provide a more rounded view of the framework’s capabilities

in computable law, we will also consider additional legal requirements such as the

ability of the system to understand and react to the legal context in which it

operates, and ensuring that the framework operates within ethical boundaries and

garners trust from its users, especially in sensitive legal applications.

Through these examples, our goal is to clearly demonstrate the efficacy and

suitability of the Arg2P framework for computable law applications, showcasing

its ability to meet the sophisticated demands of legal reasoning and knowledge

management in intelligent systems.

In this section, we will explore two distinct application areas. Firstly, some

examples in the fields of computable law for autonomous vehicles are discussed to

show the effectiveness of Arg2P in distributing intelligence and reasoning capabili-

ties over AI applications. In this scenario, involving autonomous cars and relative

legal computation, vehicles are capable of communicating with each other and

with the road infrastructure. Cities and roads are suitably enriched with sensors

and virtual traffic signs able to dynamically interact with cars to provide infor-

mation and supervision. Accordingly, self-driving cars need to (i) exhibit some

degree of intelligence for making autonomous decisions; they need to (ii) interact

with the context that surrounds them, (iii) have humans in the loop, (iv) respond

to the legal setting characterising the environment and the society, and (v) offer

explanations when required—e.g., in case of accidents to determine causes and

responsibilities.

Following this, the second area will shift our attention to the use of the Arg2P

framework within the context of criminal justice, showcasing its application and

effectiveness in this complex legal environment.

CHAPTER 6. LEGAL REASONING 137

6.2. COMPUTABLE LAW VIA ARG2P

6.2.1 Autonomous cars & Legal Reasoning

First of all, we consider a very simple scenario in the context of autonomous cars: a

road equipped with two traffic lights, one for the vehicles and one for the pedestri-

ans. The goal of the system is to autonomously manage intersections accordingly

to traffic light indications. A complication should be taken into account, that is:

an authorised vehicle could – during emergencies – ignore traffic light prescriptions.

In that case, other vehicles must leave the way clear for the authorised vehicle.

Listing 6.1 encodes the rules in the Arg2P system, whereas Listing 6.2 encodes

the corresponding arguments.

Listing 6.1: Example 1 theory
r1 : on_road(V), traffic_light(V, red) => o(stop(V)).

r2 : on_road(V), traffic_light(V,green) => p(-stop(V)).

r3 : on_road(V), authorised_vehicle(V), acoustic_signals(V, on), light_signals(V, on)=> emergency(V).

r4 : on_road(V), emergency(V),traffic_light(V, red) => p(-stop(V)).

r5 : on_road(V), emergency(V1), prolog(V \== V1), traffic_light(V, green) => o(stop(V)).

sup(r4 , r1).

sup(r5 , r2).

f0 :-> authorised_vehicle(ambulance).

f1 :-> on_road(car).

f2 :-> on_road(ambulance).

f3 :-> on_road(pedestrian).

f4 :=> acoustic_signals(ambulance , on).

f5 :=> light_signals(ambulance , on).

f6 :=> traffic_light(ambulance , red).

f7 :=> traffic_light(car , red).

f8 :=> traffic_light(pedestrian , green).

Listing 6.2: Arguments from Listing 6.1
A0 : f4 =⇒ acoustic_signals(ambulance , on) A8 : f8 =⇒ traffic_light(pedestrian , green)

A1 : f0 =⇒ authorised_vehicle(ambulance) A9 : A3 ,A6,r1 =⇒ o(stop(ambulance))

A2 : f5 =⇒ light_signals(ambulance , on) A10 : A4,A7,r1 =⇒ o(stop(car))

A3 : f2 =⇒ on_road(ambulance) A11 : A5 ,A8,r2 =⇒ p(-stop(pedestrian))

A4 : f1 =⇒ on_road(car) A12 : A3,A1,A0 ,A2,r3 =⇒ emergency(ambulance)

A5 : f3 =⇒ on_road(pedestrian)] A13 : A5,A12 ,A8 ,r5 =⇒ o(stop(pedestrian))

A6 : f6 =⇒ traffic_light(ambulance , red) A14 : A3,A12 ,A6 ,r4 =⇒ p(-stop(ambulance))

A7 : f7 =⇒ traffic_light(car , red)

Rules r1 and r2 represent fundamental constraints: if the traffic light is red,

road users – e.g. pedestrians, cars, etc. – have to stop; otherwise they can pro-

ceed. Rules r3 and r4 model the concept of a vehicle in an emergency, giving it

permission to proceed even if the light is red. Rule r5 imposes other road users

the obligation to stop if aware of another vehicle in an emergency state.1 Finally,

1The prolog(...) term is a special Arg2P notation that allows using as a premise a Prolog
expression. In this case, it is used to avoid the unification between the variable Z and Y, which

138 CHAPTER 6. LEGAL REASONING

6.2. COMPUTABLE LAW VIA ARG2P

Figure 6.5: Example 1 grounded argumentation graph in Arg2P IDE

two preferences are specified—the first on the rule r4 over r1 and the second on

r5 over r2. These preferences assign a higher priority to emergency situations –

r4 and r5 – over ordinary ones—r1 and r2. Facts from f0 to f8 depict a situation

in which there are three users on road: a car, an ambulance and a pedestrian. The

ambulance has its acoustic and light indicators on—stating an emergency situa-

tion. The traffic light is red both for the ambulance and the car, and green for the

pedestrian.

With respect to permissions and obligations, the only argument that can be

built about the car is A10, declaring the obligation to stop—A10 via r1. For the

pedestrian and the ambulance, the situation is more faceted. In both cases, two

conflicting arguments can be built: one stating the permission to proceed for the

pedestrian and for the ambulance – A11 and A14 respectively – and one stating the

obligation to stop—A13 and A9 respectively. These arguments rebut each other:

yet, taking into account the preferences over r4 and r5, the acceptability of the

arguments stating the obligation to stop for the pedestrian and the permission to

cross for the ambulance can be established (Figure 6.5). Essential to this outcome

is the emergency state of the ambulance (A12): if it were not possible to prove the

would lead to emergency vehicles having the obligation to stop at their own passage.

CHAPTER 6. LEGAL REASONING 139

6.2. COMPUTABLE LAW VIA ARG2P

emergency of the situation – it is required for an authorised vehicle to have both

acoustic and light signals on –, then the vehicle would have to stop (A9) leaving

free the pedestrian to proceed (A11).

Listing 6.3: Example 2 theory
r6 : -stop(V), p(-stop(V)) => legitimate_cross(V).

r7 : -stop(V), o(stop(V)) => -legitimate_cross(V).

r8 : harms(P1 , P2), -careful(P1) => responsible(P1).

r9 : harms(P1 , P2), -careful(P2) => responsible(P2).

r10 : -legitimate_cross(V), user(P, V) => -careful(P).

r11 : high_speed(V), user(P, V) => -careful(P).

r12 : legitimate_cross(V), -high_speed(V), user(P, V) => careful(P).

r13 : witness(X), claim(X, low_speed(V)) => -high_speed(V).

r14 : witness(X), claim(X, high_speed(V)) => high_speed(V).

bp(careful(P)).

f9 :-> user(pino , pedestrian).

f10 :-> user(lisa , ambulance).

f11 :-> -stop(ambulance).

f12 :-> -stop(pedestrian).

f13 :-> harms(lisa , pino).

f14 :-> witness(chris).

f15 :-> witness(john).

f16 :=> claim(chris , low_speed(ambulance)).

f17 :=> claim(john , high_speed(ambulance)).

Listing 6.4: Arguments from Listing 6.1 and 6.3
A0 : f4 =⇒ acoustic_signals(ambulance , on) A19 : A16 ,A2,r13 =⇒ -high_speed(ambulance)

A1 : f0 =⇒ authorised_vehicle(ambulance) A20 : A8 ,A11 ,r1 =⇒ o(stop(ambulance))

A2 : f16 =⇒ claim(chris , low_speed(ambulance)) A21 : A9 ,A12 ,r1 =⇒ o(stop(car))

A3 : f17 =⇒ claim(john , high_speed(ambulance)) A22 : A10 ,A13 ,r2 =⇒ p(-stop(pedestrian))

A4 : f13 =⇒ harms(lisa , pino) A23 : A8,A1 ,A0,A5,r3 =⇒ emergency(ambulance)

A5 : f5 =⇒ light_signals(ambulance , on) A24 : A7,A22 ,r6 =⇒ legitimate_cross(pedestrian)

A6 : f11 =⇒ -stop(ambulance) A25 : A18 ,A14 ,r11 =⇒ -careful(lisa)

A7 : f12 =⇒ -stop(pedestrian) A26 : A6 ,A20 ,r7 =⇒ -legitimate_cross(ambulance)

A8 : f2 =⇒ on_road(ambulance) A27 : A26 ,A14 ,r10 =⇒ -careful(lisa)

A9 : f1 =⇒ on_road(car) A28 : A4,A25 ,r8 =⇒ responsible(lisa)

A10 : f3 =⇒ on_road(pedestrian) A29 : A10 ,A23 ,A13 ,r5 =⇒ o(stop(pedestrian))

A11 : f6 =⇒ traffic_light(ambulance , red) A30 : A8 ,A23 ,A11 ,r4 =⇒ p(-stop(ambulance))

A12 : f7 =⇒ traffic_light(car , red) A31 : A4,A27 ,r8 =⇒ responsible(lisa)

A13 : f8 =⇒ traffic_light(pedestrian , green) A32 : A6,A30 ,r6 =⇒ legitimate_cross(ambulance)

A14 : f10 =⇒ user(lisa , ambulance) A33 : A7,A29 ,r7 =⇒ -legitimate_cross(pedestrian)

A15 : f9 =⇒ user(pino , pedestrian) A34 : A33 ,A15 ,r10 =⇒ -careful(pino)

A16 : f14 =⇒ witness(chris) A35 : A4 ,A34 ,r9 =⇒ responsible(pino)

A17 : f15 =⇒ witness(john) A36 : A32 ,A19 ,A14 ,r12 =⇒ careful(lisa)

A18 : A17 ,A3 ,r14 =⇒ high_speed(ambulance)

The focus in the previous example is on the plane of duties, i.e., automatic

reasoning aimed at defining what is permitted / prohibited in the contingent sit-

uation. Let us take a step further.

The ambulance, driven by Lisa, has permission to move despite the red light

due to an emergency situation; the pedestrian, Pino, has the obligation to stop.

Let us imagine that Pino, despite the prohibition to proceed, keeps on crossing.

140 CHAPTER 6. LEGAL REASONING

6.2. COMPUTABLE LAW VIA ARG2P

Figure 6.6: Example 2 bp labelling in Arg2P IDE

The result has been an accident in which Pino has been harmed by the ambulance,

which failed to see him and has not stopped its run. The purpose here is to find

the responsibilities of the parties in the accident.

For instance, let us suppose the case is under the Italian jurisdiction, so that

the Italian law is to be applied. According to Italian law, responsibility in an

accident is based on the concept of carefulness. Both Lisa and Pino have to prove

that they were careful (i.e., prudent) and acted according to the law. If they fail

to prove such facts, they are considered responsible for the event, i.e., they both

have the burden of persuasion on carefulness.

In the following, we discuss how the Arg2P reasoner enables to deal with that

sort of situation. Listing 6.3 shows a possible representation of these rules in

Arg2P.

Rules r6 and r7 define the concepts of permitted and prohibited crossing: if

a road-user has to stop but doesn’t stop, he has to be considered responsible for

causing accidents and related damages. Rules r8 and r9 encode the notion of

responsibility in an accident, bound to the carefulness of the road-users involved.

Rules r10, r11 and r12 define the carefulness of a subject. Accordingly, a road

user can be considered careful if the crossing is permitted and his/her speed is not

excessive. Otherwise, he/she is considered imprudent. Finally, rules r13 and r14

state the speed of a road user based on the testimonials of any witnesses. The

bp(careful(X)) notation allocates the burden of persuasion on the carefulness of

each party, i.e., it is required to the parties to provide evidence for that. If they

fail to meet the burden, carefulness arguments are rejected. Facts from f9 to f17

contain the available knowledge: both Pino and Lisa did not stop at the crossing

CHAPTER 6. LEGAL REASONING 141

6.2. COMPUTABLE LAW VIA ARG2P

and, consequently, Lisa harmed Pino. There are two witnesses, John and Chris,

the first claiming that the ambulance driven by Lisa was maintaining the proper

speed, and the other claiming that she was proceeding at high speed.

With respect to the grounded semantic, the argument for Pino’s responsibility

(A34 via r9) is accepted – he is guilty of its forbidden crossing (A35 via r10) –

and one argument claiming Lisa’s responsibility is rejected (A31). Indeed, the

argument for Lisa’s uncarefulness (A27 via r10) is based on the premise of Lisa’s

forbidden crossing (A26 via r7) that is defeated by the legitimacy of her action

(A24 via r6 stating the case of emergency). Lisa’s responsibilities in the accident

remain uncertain due to the two contradicting witnesses – rebutting each other

– i.e., the system can derive both Lisa being careful (r12) and not being careful

(r11). So, Lisa’s responsibilities are left undecided. The grounded semantics does

not provide the legally correct answer.

In the case at hand, indeed, a semantic related to the burden of persuasion

needs to be considered. The execution under the bp semantics [Calegari et al., 2021d]

(Figure 6.6) concludes for the responsibility of the ambulance driver in the event.

The uncertainty on Lisa’s carefulness is considered as a failure to meet the burden

of persuasion on the claim careful(lisa). Consequently, the argument support-

ing this claim (A36) is rejected, leaving space for the admissibility of the conflicting

arguments.

Listing 6.5: Example 3 theory
r15 : harms(P1, P2), user(P1 , V), -working(V), manufacturer(M, V), -defect_free(V) => responsible(M).

r16 : tried_to_brake(P), user(P, V), -working(V) => careful(P).

r17 : mechanic(M), claim(M, defect(V)) => -working(V).

r18 : -working(V), new(V) => -defect_free(V).

r19 : production_manager(P), claim(P, test_ok(V)) => defect_free(V).

r20 : test_doc_ok(V) => undercut(r18).

sup(r16 , r11).

bp(defect_free(V)).

f19 :-> manufacturer(demers , ambulance).

f20 :=> tried_to_brake(lisa).

f21 :-> mechanic(paul).

f22 :=> claim(paul , defect(ambulance)).

f23 :-> new(ambulance).

f24 :-> production_manager(mike).

f25 :=> claim(mike , test_ok(ambulance)).

142 CHAPTER 6. LEGAL REASONING

6.2. COMPUTABLE LAW VIA ARG2P

Figure 6.7: Example 3 bp labelling in Arg2P IDE

Listing 6.6: Arguments from Listing 6.1, 6.3 and 6.5
A0 : f4 =⇒ acoustic_signals(ambulance , on) A25 : A16 ,A4,r19 =⇒ defect_free(ambulance)

A1 : f0 =⇒ authorised_vehicle(ambulance) A26 : A24 ,A3 ,r14 =⇒ high_speed(ambulance)

A2 : f16 =⇒ claim(chris , low_speed(ambulance)) A27 : A23 ,A2 ,r13 =⇒ -high_speed(ambulance)

A3 : f17 =⇒ claim(john , high_speed(ambulance)) A28 : A9 ,A5,r17 =⇒ -working(ambulance)

A4 : f25 =⇒ claim(mike , test_ok(ambulance)) A29 : A13 ,A17 ,r1 =⇒ o(stop(ambulance))

A5 : f22 =⇒ claim(paul , defect(ambulance)) A30 : A14 ,A18 ,r1 =⇒ o(stop(car))

A6 : f13 =⇒ harms(lisa , pino) A31 : A15 ,A19 ,r2 =⇒ p(-stop(pedestrian))

A7 : f5 =⇒ light_signals(ambulance , on) A32 : A13 ,A1,A0,A7 ,r3 =⇒ emergency(ambulance)

A8 : f19 =⇒ manufacturer(demers , ambulance) A33 : A11 ,A31 ,r6 =⇒ legitimate_cross(pedestrian)

A9 : f21 =⇒ mechanic(paul) A34 : A26 ,A21 ,r11 =⇒ -careful(lisa)

A10 : f11 =⇒ -stop(ambulance) A35 : A28 ,A12 ,r18 =⇒ -defect_free(ambulance)

A11 : f12 =⇒ -stop(pedestrian) A36 : A10 ,A29 ,r7 =⇒ -legitimate_cross(ambulance)

A12 : f23 =⇒ new(ambulance) A37 : A20 ,A21 ,A28 ,r16 =⇒ careful(lisa)

A13 : f2 =⇒ on_road(ambulance) A38 : A36 ,A21 ,r10 =⇒ -careful(lisa)

A14 : f1 =⇒ on_road(car) A39 : A6,A34 ,r8 =⇒ responsible(lisa)

A15 : f3 =⇒ on_road(pedestrian) A40 : A15 ,A32 ,A19 ,r5 =⇒ o(stop(pedestrian))

A16 : f24 =⇒ production_manager(mike) A41 : A13 ,A32 ,A17 ,r4 =⇒ p(-stop(ambulance))

A17 : f6 =⇒ traffic_light(ambulance , red) A42 : A6 ,A38 ,r8 =⇒ responsible(lisa)

A18 : f7 =⇒ traffic_light(car , red) A43 : A10 ,A41 ,r6 =⇒ legitimate_cross(ambulance)

A19 : f8 =⇒ traffic_light(pedestrian , green) A44 : A11 ,A40 ,r7 =⇒ -legitimate_cross(pedestrian)

A20 : f20 =⇒ tried_to_brake(lisa) A45 : A44 ,A22 ,r10 =⇒ -careful(pino)

A21 : f10 =⇒ user(lisa , ambulance) A46 : A6,A21 ,A28 ,A8,A35 ,r15 =⇒ responsible(demers)

A22 : f9 =⇒ user(pino , pedestrian) A47 : A6,A45 ,r9 =⇒ responsible(pino)

A23 : f14 =⇒ witness(chris) A48 : A43 ,A27 ,A21 ,r12 =⇒ careful(lisa)

A24 : f15 =⇒ witness(john)

6.2.2 More on legal reasoning

Let us extend the above-discussed example in which Lisa, the ambulance driver,

and Pino, the pedestrian, were both considered responsible for the accident on

the basis of the available knowledge. Lisa now declares that she tried to stop the

ambulance, but the brake did not work. The ambulance is then sent to a mechanic,

who states that, even if the ambulance is new, there is a problem with the brake

system. In that case, the manufacturer is called to prove that the ambulance was

not defective when delivered—i.e., the burden of proof on the adequacy of the

vehicle is on the manufacturer.

CHAPTER 6. LEGAL REASONING 143

6.2. COMPUTABLE LAW VIA ARG2P

At this stage, the discovery of a defect in the ambulance would lead to the

discarding of Lisa’s responsibility. Moreover, if the manufacturer fails to meet his

burden, it would share the responsibilities of the accident.

Listing 6.5 shows a possible Arg2P encoding of the knowledge. Rule r15 con-

cludes the responsibility of the manufacturer in the case a malfunctioning is found

on the vehicle and it is proved that there is a defect.

Rule r16 infer the carefulness of the driver if a defect is found on the vehi-

cle (for instance on the brake mechanism). The preference sup(r16, r11) states

that in case of a defect carefulness should be inferred even if high speed has been

detected. Rule r17 states the evidence of a vehicle malfunctioning on the base

of a mechanic declaration. Rules r18, r19 and r20 state the conditions for de-

ducing in which cases the vehicle can be considered defect-free. The statement

bp(defect-free(X)) enforces the obligation for the manufacturer to prove its

adherence to the regulations.

Facts f19–f25 depict the above scenario: Paul the mechanic has found a prob-

lem in the brake system even if the ambulance is new. However, Mike, the produc-

tion officer of the ambulance manufacturer, declares that every vehicle is deeply

tested before the delivery and the vehicle at hand has been tested. Anyway, there

is no trace of documentation.

The results of the evaluation of this scenario according to the bp semantics can

be summarised as follows. On the one hand, Lisa is free from every responsibility in

the accident since her prudence is correctly proved. Arguments A48 and A37 built

on r11 and r16 defeat the A34 built on r11 and consequently the one concluding

her responsibility (A42 via r8) and the burden on carefulness can be considered

satisfied. On the other hand, the manufacturer is found responsible for the accident

(A46). Indeed, arguments built on r18 and r19 – A35 and A25 respectively – rebut

one other leading to a state of uncertainty. Hence, the burden is not satisfied, and

the argument for the defect-free ambulance is rejected. Accordingly, the argument

concluding the manufacturer’s responsibility in the event is accepted.

The examples presented thus far highlight Arg2P as a robust framework capable

of non-monotonic reasoning, which enhances system transparency and supports

extensive customization for diverse legal applications. These instances align with

the specific requirements of legal computation, showcasing Arg2P’s effectiveness

144 CHAPTER 6. LEGAL REASONING

6.2. COMPUTABLE LAW VIA ARG2P

in meeting the complex needs of the legal domain, emphasizing its adaptability

and proficiency in legal reasoning and computational challenges.

Our exploration, especially illustrated in the third example (Subsection 6.2.2),

demonstrates how Arg2P’s non-monotonic reasoning capability is ideally suited

for legal scenarios, where knowledge is often unstable and subject to change. This

adaptability is crucial in legal contexts, allowing for the accommodation of new in-

formation and the adjustment of legal interpretations as needed. Moreover, Arg2P

fulfills several legal-specific requirements as outlined in [Gordon et al., 2009], par-

ticularly in terms of handling legal knowledge. This includes maintaining strict

semantic forms of rules, supporting knowledge defeasibility with mechanisms to

address conflicts, assigning priorities to rules based on preferences, and effectively

managing deontic effects in legal reasoning.

From a different perspective, the intrinsic interpretability of the argumentation

models used in Arg2P, as exemplified in the autonomous driving scenario (Subsec-

tion 6.2.1), contributes significantly to the system’s transparency and explainabil-

ity. This feature is vital in legal systems, where understanding the rationale behind

decisions is crucial for accountability and trust. In scenarios like autonomous driv-

ing, where decisions are made based on sensor data, the ability of Arg2P to provide

clear and understandable decision-making processes is of paramount importance.

Finally, the customizability of the Arg2P framework, as highlighted in Example

6.3, is particularly beneficial in the legal domain. Its modular architecture allows

for seamless integration with other AI techniques and the addition of new seman-

tics, like the one dealing with burden of persuasion [Calegari et al., 2021d]. This

flexibility enables the framework to be tailored to specific legal requirements and

scenarios, such as demonstrating compliance with safety regulations in autonomous

vehicles.

6.2.3 Arg2P for Conformity Assessment of EU Regulations

The CrossJustice project studies the rights of defendants in criminal matters ac-

cording to the laws of several EU Member States and provides a decision support

system, accessible by professionals and citizens alike. The system provides assess-

ments concerning specific cases. Moreover, it determines the level of harmonisation

CHAPTER 6. LEGAL REASONING 145

6.2. COMPUTABLE LAW VIA ARG2P

of national legislations, namely the extent to which national legal frameworks and

regulatory acts linked are in line with the EU acquis and relevant legislative acts

of the European Union.

The aim is to help legal practitioners in their daily activities, through a plat-

form that supports interoperability and communication between the several leg-

islative measures that single Member States have adopted, showing how these laws

interact, and their compliance with the EU directives.

The main target of the project is the creation of a rule-based expert system

grounded on a computable representation of the European directives2 related to

the rights of suspect and accused persons in criminal proceedings and the national

articles concerning the same subject matter. The system shall inform the user of

all the applicable rights according to both European and national acts.

All articles in such Directives and the relevant portions of national transposi-

tions have been represented in Prolog. The legal analysis, carried out by expert

lawyers, has often involved the interpretation of complex legal rules, and the re-

construction of the dependencies between norms. The main advantage of such a

symbolic representation lies in its understandability, both to human programmers

and to legal experts, and on the possibility to trace the reasoning processes.

The relation between directives and national laws presents a high level of com-

plexity. In fact, differently from EU regulations, directives are meant to provide

only a baseline, but each Member State is free to decide how to implement di-

rectives into national laws. As single Member States have a limited discretionary

power in implementing these provisions, they can introduce discrepancies that may

give rise to a wide spectrum of legal issues.

Legal professionals, besides verifying whether a particular right is recognised

under a national jurisdiction, are also interested in the conditions under which that

right is granted, and on the measures available for its protection. The aim of the

system is thus twofold. First, it shall provide an answer regarding the recognition

of such rights and their applicability in the national legal systems. Second, it shall

verify the relation between the directive and the national implementation: it will

identify where differences lie and highlight those cases in which the departure from

2Directive 2016/343, Directive 2010/64, Directive 2016/800, Directive 2016/1919, Directive
2012/13, Directive 2013/48

146 CHAPTER 6. LEGAL REASONING

6.2. COMPUTABLE LAW VIA ARG2P

the directive entails a violation of it.

In this section, we will use an example to demonstrate how the Arg2P tool can

highlight explicit differences between EU and national laws. In particular, it will

focus on the consequences that a different definition given by a national legislator

can have on its applicability, compared to those provided by EU law. It shall also

show a visual representation of the conformity between the national legislation and

the European Directive.

First, let us introduce the facts of the case in example. For simplicity and

clarity’s sake, we will only take into consideration the rules which are relevant to

the case.

One of the points of contention between the Polish national law and the Eu-

ropean Directives concerns the notion of ‘suspect’ (‘podejrzany ’). According to

Polish law, only a person formally charged with a crime during a criminal investi-

gation is granted a status of podejrzany. This charging decision, however, is only

preliminary and not determined by a court. Instead, when an individual has been

arrested or searched but not yet formally charged with a crime, the Polish law

provides a separate name i.e. osoba podejrzana (translated directly as ‘suspected

person’) and does not provide for her the same protection that the podejrzany is

normally provided with. This term osoba podejrzana, is not present in the Polish

translation of the Directive, since from the perspective of EU law an individual in

such condition would fall under the definition of suspect.

The filing of the case with a court is done at a later stage, namely at the end

of the criminal investigation, in the form of indictment which changes the person

status from podejrzany to oskarżony—a party to court proceedings with all rights

available to him or her at this stage of the criminal process.

We shall thus focus on a situation that emphasises this difference between

the national law and EU directive, and showcase how logic programming and

argumentation can lead the user to this conclusion while providing a sufficient

explanation.

In order to demonstrate the full scope of our argumentation framework, we shall

verify whether both the Directive and the Polish law recognise the same rights in an

example case. We shall thus assume that a person has engaged in criminal activity

related to an offence punishable by law, in Poland. During the investigation, the

CHAPTER 6. LEGAL REASONING 147

6.2. COMPUTABLE LAW VIA ARG2P

police deem it necessary to interrogate the accused and therefore informs him/her

of the accusations that have been levelled. The defendant now decides to ask for

the intervention of a legal counsel and interrogates the decision-support system for

his or her rights.

Listing 6.7: Directive 2016/800 Prolog transposition

% r1

has_right(article4_a_iii , PersonId , right_to_information ,

privacy) :-

person_status(PersonId , accused),

user_fact(person_made_aware(PersonId , person_status)).

% r2

has_right(article6_3_a , PersonId , right_to_access_lawyer ,

questioning) :-

person_status(PersonId , accused),

user_fact(proceeding_matter(PersonId , questioning)).

% r3

person_status(PersonId , accused) :-

user_fact(person_made_aware(PersonId , charge)).

Listing 6.7 illustrates the rules that apply in the case at hand, according to the

Directive 2016/800 3.

Rule r1 illustrates the transposition of Article 4, paragraph 1, letter a(iii),

Directive 2016/800. It states that a person has the right to be informed, as soon as

he/she has been made aware of being accused of a crime, of the right to protection

of privacy. Rule r2 presents the transposition of Article 6, paragraph 3, letter a, of

the Directive 2016/800, which states that a person has the right to be assisted by

a lawyer without undue delay after being summoned for questioning. Finally, rule

r3 states that a person who, according to the Directive, has been made aware of

charges against him/her is granted the status of accused. It is important to state

that, nowhere in the Directive, this is explicitly stated. This rule (and a similar

3For the purpose of this case we shall ignore the fact that this Directive applies only to children

148 CHAPTER 6. LEGAL REASONING

6.2. COMPUTABLE LAW VIA ARG2P

one later on) is an explication of the meaning of the term ‘suspect’ (and later on

‘accused’) as used in the context of the EU law.

Listing 6.8: Directive 2016/800’s Polish transposition in Prolog

% r4

has_right(art301 , PersonId , right_to_access_lawyer ,

interrogation) :-

person_status(PersonId , suspect),

user_fact(proceeding_matter(PersonId , interrogation)),

user_fact(person_request_submitted(PersonId ,

defence_counsel)).

% r5

person_status(PersonId , suspect) :-

user_fact(person_made_aware(PersonId , charge)),

\+ user_fact(proceeding_type(PersonId , trial_charge)).

Listing 6.8 represents the transposition of Article 301 of the Polish Code of

Criminal Procedure. This article states that the person who is suspected of having

committed a crime is being interrogated by any authority, and has requested the

presence of his/her defence counsel shall have the right to be assisted by a lawyer

(rule r4). Rule r5 states that a person who has been informed of the charges

against him but has not yet been formally charged in front of a court shall be

granted the status of suspect.

Listing 6.9: User facts

% f1

user_fact(proceeding_matter(nino , interrogation)).

% f2

user_fact(proceeding_matter(nino , questioning)).

% f3

user_fact(person_request_submitted(nino , defence_counsel)).

% f4

user_fact(person_made_aware(nino , charge)).

% f5

user_fact(person_made_aware(nino , person_status)).

CHAPTER 6. LEGAL REASONING 149

6.2. COMPUTABLE LAW VIA ARG2P

A0 : f4 =⇒ user_fact(person_made_aware(nino , charge))

A1 : f5 =⇒ user_fact(person_made_aware(nino , person_status))

A2 : f3 =⇒ user_fact(person_request_submitted(nino , defence_counsel)

)

A3 : f1 =⇒ user_fact(proceeding_matter(nino , interrogation))

A4 : f2 =⇒ user_fact(proceeding_matter(nino , questioning))

A5 : A0,r3 =⇒ person_status(nino , accused)

A6 : A0,r5 =⇒ person_status(nino , suspect)

A7 : A5,A1,r1 =⇒ has_right(article4_a_iii , nino ,

right_to_information , privacy)

A8 : A5,A4,r2 =⇒ has_right(article6_3_a , nino ,

right_to_access_lawyer , questioning)

A9 : A6,A3,A2 ,r4 =⇒ has_right(art301 , nino , right_to_access_lawyer ,

interrogation)

Figure 6.8: Base example

Listing 6.9 illustrates the facts of the case at hand. A person, named nino, has

been called for interrogation (f1) and questioning (f2) by the legal authority, and

has requested the presence of the defence counsel (f3). Furthermore, he has been

made aware of his legal status (f5), and of the charges laid against him (f4).

Incorrect Transposition: diverging implementation

Listing 6.10: Rebuttal function integration

conflict ([person_status(PersonId , suspect)], [person_status(

PersonId , accused)]).

conflict ([person_status(PersonId , accused)], [person_status(

PersonId , suspect)]).

Listing 6.10 illustrates the conflicting relationship that exists between the two

definitions of suspect and accused. It states that a person can be either a suspect

or an accused, but not both at the same time. The user defined conflict can then be

used while determining attacks between arguments. It is also important to notice

how, for the purpose of this example, we exploited a feature of Arg2P allowing

the use standard Prolog rules instead of the ASPIC-based ones. In the specific,

rules in the Polish national law have been considered as defeasible in order to give

priority to the EU rules and have the conflict resolved in favour of the latter.

Figure 6.8 shows the generated arguments on the left, and the visualisation of

150 CHAPTER 6. LEGAL REASONING

6.2. COMPUTABLE LAW VIA ARG2P

the results of the framework evaluation according to grounded semantic, on the

right, on the basis of the facts added as input. Four arguments are of particular

interest to the user: A5, A6, A8 and A9. A5 describes the EU definition of accused,

while A6 the Polish definition of suspect. A8 and A9 represent the right of being

assisted by a lawyer, which the system shows as being recognised by both legal

sources. The presence of the conflict between the two definitions of suspect and

accused applies, and it is represented as an attack-defeat relation between the two

arguments A5 and A6, with a further attack on A9, which is the resulting right

from the argument A6.

As the person is simultaneously an accused, according to the Directive, and

a suspect, according to the Polish law, the two inferred conclusions are in direct

conflict with each other, as illustrated by the arrows in the graph, but the European

definition defeats the Polish one, due to the defeasible nature of the latter4.

The result is not limited to the applicability of a certain rule, but can also

help in understanding the source of the differences (and the conflicts) between the

two legal sources. In our case, the user would be able to verify that the conflict

between EU and Polish law derives from a different definition of the terms accused

and suspect.

The user would furthermore realise that both arguments A5 and A6 are based

on the same argument A0, the fact that the person has been made aware of the

charges laid against him. We should also note the presence of argument A7, the

right to be informed of his right to privacy, which will come into play in the next

example.

Incorrect Transposition: conformity check

Listing 6.11: Conformity between directives and national laws check

generate :

module(Module),

prolog(call_module ([Module , ’facts ’],

4If both the Polish law and the Directive were to be transposed as defeasible norms, no
argument would defeat the other, and the resulting conflict would be unresolved. If both were
to be transposed as strict, no conflict can arise.

CHAPTER 6. LEGAL REASONING 151

6.2. COMPUTABLE LAW VIA ARG2P

with_facts_and_length(has_right(X, Y, Z, U), F, L))

)

=> right(Module , X, Y, Z, U, F, L).

c0 : right(directive , X, PersonId , Right , U, F, L),

~(right(polish , XX , PersonId , Right , UU , FF , LL))

=> -conformity(polish , PersonId , Right).

c1 : right(polish , XX , PersonId , Right , UU , FF , LL),

~(right(directive , X, PersonId , Right , U, F, L))

=> -conformity(polish , PersonId , Right).

c2 : right(directive , X, PersonId , Right , U, F, L),

right(polish , XX, PersonId , Right , UU, FF, LL)

=> conformity(polish , PersonId , Right).

module1 :-> module(’directive ’).

module2 :-> module(’polish ’).

conflict ([right(directive , XX, A, Z, U, F, L)], [right(

polish , X, A, Z, UU , FF , LL)]) :-

\+ conflictFunction(F, FF).

conflict ([right(polish , XX, A, Z, U, F, L)], [right(

directive , X, A, Z, UU , FF , LL)]) :-

\+ conflictFunction(FF , F).

conflictFunction(F, FF) :-

sameFacts(FF , F),

sameFacts(F, FF).

sameFacts ([], _).

sameFacts ([H|T], Facts) :-

member(H, Facts),

sameFacts(T, Facts).

152 CHAPTER 6. LEGAL REASONING

6.2. COMPUTABLE LAW VIA ARG2P

A0 : module1 =⇒ module(directive)

A1 : module2 =⇒ module(polish)

A2 : A0,generate =⇒ right(directive , article4_a_iii , nino ,

right_to_information , privacy , [person_made_aware(nino , person_status),

person_made_aware(nino , charge)], 2)

A3 : A0,generate =⇒ right(directive , article6_3_a , nino ,

right_to_access_lawyer , questioning , [proceeding_matter(nino , questioning

), person_made_aware(nino , charge)], 2)

A4 : A1,generate =⇒ right(polish , art301 , nino , right_to_access_lawyer ,

interrogation , [person_request_submitted(nino , defence_counsel),

proceeding_matter(nino , interrogation), person_made_aware(nino , charge)],

3)

A5 : A3,c0 =⇒ -conformity(polish , nino , right_to_access_lawyer)

A6 : A4,c1 =⇒ -conformity(polish , nino , right_to_access_lawyer)

A7 : A2,c0 =⇒ -conformity(polish , nino , right_to_information)

A8 : A3,A4,c2 =⇒ conformity(polish , nino , right_to_access_lawyer)

Figure 6.9: Conformity example

We shall now illustrate the use of argumentation to verify the conformity be-

tween directives and national laws (Listing 6.11).

The conflict, here, resides in the set of facts exploited by the directive and

by the Polish national law to obtain a right. The system shall verify whether

the facts in the two sets are equal. The variables F and L stand for facts and

length respectively and are populated by the facts that are used by the system for

reaching the goal.

We have also added three new rules: c0 and c1, that verify that the national

law conforms with the Directive; and c2, that verifies the lack of such conformity.

In the example, these rules shall check whether the Polish national law conforms

with the Directive.

Note that in this case the Prolog-like syntax evaluation has not been used. In-

stead, the Prolog code in the modules is evaluated through the rule generate. The

evaluation of the Prolog goal has right is done thanks to the special Arg2P pred-

icate prolog/1 allowing the evaluation of pure Prolog code inside the ASPIC-like

syntax. The results obtained from the deductive reasoning are then exploited to

build the arguments for the predicates right [name of the right]. Argumen-

tation enhances the level of explainability of the system. The rules to be applied

in this case, and the facts that are needed as input, are the same as in Figure 6.8,

with the difference that no source of law shall have priority over the other, thus

all rules are written using the strict syntax.

CHAPTER 6. LEGAL REASONING 153

6.2. COMPUTABLE LAW VIA ARG2P

Figure 6.9 is used to showcase, first of all, with regard to the right to be

informed of his right to privacy, the most basic result that the system can give

when evaluating the conformity of a national source of law with the European

Directive. According to argument A2 the right exists following Article 4(a iii),

and the only inference based on that argument is found in A7, which illustrates

the missing conformity of the Polish law with the Directive, as no similar right was

returned from the Polish law. Both arguments are green as there are no attacks

on any of its inferences.

Figure 6.9 also showcases the conformity evaluation of the system with regard

to the right to be assisted by a lawyer. Both the Directive (A3) and the Polish

law (A4) have returned the same right, although different conditions are needed

to reach that result.

The facts which the system takes into account are only those manually added

by the user. Thus, using the conformity evaluation the system does not take

into consideration the different definitions of suspect and accused by the EU and

Polish legislators, but bases its result on the user facts. The results presented

by the system show that the conditions required by the Directive include that the

proceeding shall be the questioning of the defendant, while the Polish legislator

refers to any interrogation, adding the requirement that the suspect shall explicitly

request the presence of the defence counsel. The fact that the person has been

made aware of the charges laid against him, which in Figure 6.8 was the source of

the conflict between the two legal sources, in this example is the only condition

they have in common, as the different definition of the status of the defendant is

not relevant for the purpose of our conformity evaluation.

To summarise, on the one hand the system finds that the same right is returned

by both the European and Polish modules, on the other hand, neither implemen-

tation contains the same requirements for the right to be guaranteed, therefore

the system cannot decide whether the Polish law has successfully implemented the

Directive.

The graph shows that the European right (A3) is in conflict with the Polish

right (A4), and that both arguments attack the argument for conformity (A8),

as the latter is not a perfect transposition of the former. Both Polish rights also

attack the two arguments for the -conformity, as they are indeed returning the

154 CHAPTER 6. LEGAL REASONING

6.2. COMPUTABLE LAW VIA ARG2P

same right as the Directive. The system thus cannot conclude in one way or the

other, and the arguments remain greyed out.

The user would therefore be provided with the information that, although

the right exists in the Polish legal system, we cannot say whether the right has

been fully implemented in the national legal system, thus an issue of applicability

shall arise. Highlighting such contrasts can provide a better understanding of any

underlining legal concerns that a traditional expert system cannot easily provide.

This feature could be particularly helpful, from a comparative perspective,

in reaching a more uniform interpretation of the European legal source. With

regard to Directives, as that is the object of this discussion, we can take into

consideration the greater impact the judge may have on the proceedings in case

of a negative transposition. Whenever an interpretation issue arises, and is made

clear to the judiciary, the latter can intervene and look more in depth at the

source in order to verify its applicability, as European legislative acts may be

either directly applicable, thus binding in Member States, or they may be subject

to an express implementation act of the national legislator.

CHAPTER 6. LEGAL REASONING 155

6.2. COMPUTABLE LAW VIA ARG2P

156 CHAPTER 6. LEGAL REASONING

Chapter 7

Beyond symbolic AI:

Argumentation for ML

In our previous chapters, we focused on formal argumentation, introducing a new

model and algorithms along with a new technology for argumentation. These

developments have been shown to be effective in modeling and reasoning with

legal concepts. However, there is an important shift occurring in the field of

AI. The traditional, symbolic methods we have been discussing are no longer at

the forefront. Instead, sub-symbolic methods, primarily those based on machine

learning (ML), are emerging as key players. These methods excel in areas where

symbolic approaches have historically struggled.

Yet, these ML methods come with their own set of challenges, particularly in

sensitive domains like law. Their complexity can make them opaque and difficult to

trust, for both specialists and general users. In this context, our traditional, logic-

based symbolic methods retain their relevance, offering clarity and understanding

in these complex systems.

Indeed, in legal settings, the application of machine learning (ML) systems,

particularly in areas such as predictive justice, highlights the need for stringent

ethical standards and clear compliance with legal norms. As we delve deeper into

this context, several key aspects emerge. First, in the legal domain, ML systems

must adhere to ethical guidelines that prevent biases and ensure fairness. This

is critical because ML algorithms can inadvertently perpetuate or even amplify

CHAPTER 7. BEYOND SYMBOLIC AI: ARGUMENTATION FOR ML 157

existing biases present in the data they are trained on. Ethical constraints involve

implementing measures to detect and mitigate such biases, ensuring that the ML

system’s outcomes do not discriminate against any group or individual. Also, it is

essential to have a transparent record of the principles and objectives that guided

the development of an ML system. This clarity is crucial for understanding the

system’s intended purpose and the rationale behind specific design and implemen-

tation choices. In the legal field, where the reasons behind a decision can be as

important as the decision itself, understanding the guiding principles of an ML

system is indispensable. Moreover, transparency throughout the ML development

process helps in identifying and addressing potential issues at various stages—from

data collection and processing to model training and validation. This transparency

is not just about making the system’s mechanisms understandable but also about

documenting the process, including how data is sourced, how models are selected

and trained, and how decisions are made. While the final ML system might still

retain a degree of opacity in its operations, having control over the process – es-

pecially from a data and behaviour standpoint – is crucial. This control involves

understanding the data that feeds into the system, how the system processes this

data, and how it arrives at its conclusions. It is about ensuring that the system

behaves as expected under various circumstances and that any deviations or errors

can be traced and understood.

Linking this to the European Union’s AI Act, these aspects align closely with

the proposed regulations. The AI Act aims to ensure that AI systems are safe

and respect existing laws on fundamental rights and values. It emphasises trans-

parency, accountability, and oversight of high-risk AI systems, including those

used in legal and judicial contexts. The Act requires high-risk AI systems to un-

dergo rigorous testing and certification processes, ensuring that they meet specific

standards of accuracy and robustness.

Our final chapter explores how argumentation can be applied to the devel-

opment of ML systems, but with a different angle from what’s typically seen in

Explainable AI (XAI). Instead of making AI systems more understandable to users,

we aim to use argumentation to guide the development process itself with the goal

of addressing the above mentioned challenges. We introduce automated machine

learning (AutoML) as a key concept – a higher-level approach to machine learning

158 CHAPTER 7. BEYOND SYMBOLIC AI: ARGUMENTATION FOR ML

that seeks to automate the process of selecting and tuning ML models. While

AutoML simplifies some aspects of ML development, it can also lead to reduced

control and understanding for data scientists, adding another layer of opacity. In

the remaining of this chapter, we will discuss how structured argumentation can

help address these challenges, offering Data Scientists a symbolic interface to input

their expertise and steer the ML system’s development in a transparent manner.

Let us start refreshing some notions already introduced in Section 2.3. In a

machine learning (ML) project, the Data Scientist (DS) starts by gathering raw

data from various sources, like data lakes. They gain an understanding of both

the data and the problem at hand, and convert this understanding into specific

constraints. This leads to the design and training of an ML model, which is

eventually integrated into the existing data platform. This integration forms an

ML pipeline, which includes a series of data pre-processing steps followed by the

ML task. The DS selects from a wide range of algorithms and sets numerous

hyperparameters. The effectiveness of the solution hinges on choosing the optimal

combination of algorithms and hyperparameters from a vast array of possibilities.

Automated machine learning (AutoML) tools aid the DS in constructing the

ML pipeline. These tools use advanced optimization techniques to efficiently navi-

gate the extensive solution space. AutoML is known for delivering accurate results

even with limited time or iterations. It’s crucial for the DS to input their domain

knowledge into the system to guide the AutoML tool away from invalid solutions.

Despite this, the complexity of AutoML tools can be overwhelming, making it

challenging for the DS to fully grasp and control the process, as noted in the work

by Xin et al. [Xin et al., 2021] on AutoML automation challenges.

The need for a Human-centered and explainable framework for AutoML is

real [Gil et al., 2019, Lee and Macke, 2020, Wang et al., 2019a] (or even manda-

tory in recent analytic scenarios where the user is interacting with mixed-reality

and smart assistants [Francia et al., 2019, Francia et al., 2022]). It is crucial for

the DS to augment her knowledge by learning new insights (e.g., new constraints)

from the retrieved solutions. Indeed, the DS requires understanding the AutoML

process in order to trust the proposed solutions [Drozdal et al., 2020]. Some works

[Gil et al., 2019, Lee and Macke, 2020, Wang et al., 2019a] prescribe the usage of

a Human-centered framework for AutoML, yet they only suggest design require-

CHAPTER 7. BEYOND SYMBOLIC AI: ARGUMENTATION FOR ML 159

7.1. PROBLEM FORMULATION

Figure 7.1: Integrating HAMLET with the CRISP-DM process model.

ments. Alternatively, the authors in [Ono et al., 2021] have proposed a tool that

visualizes the best and the worst solutions retrieved by an AutoML tool. We claim

that a Human-centered framework should provide the mechanisms to: (i) help the

DS to structure her knowledge about the problem in an effective search space; and

(ii) augment the knowledge initially possessed by the DS with the one produced

by the AutoML optimization process.

For this purpose, we introduce HAMLET (Human-centered AutoMl via Logic

and argumEnTation; Figure 7.1), a framework that enhances AutoML with struc-

tured argumentation to: structure the constraints and the AutoML solutions in

a Logical Knowledge Base (LogicalKB); parse the LogicalKB into a human- and

machine-readable medium called Problem Graph; devise the AutoML search space

from the Problem Graph; and leverage the Problem Graph to allow both the DS

and an AutoML tool to revise the current knowledge.

7.1 Problem Formulation

HAMLET intersects two research areas, automated machine learning and ar-

gumentation. Once defined the right language for encoding the DS and Au-

toML knowledge, a structured argumentation model (e.g., an ASPIC+ instance

160 CHAPTER 7. BEYOND SYMBOLIC AI: ARGUMENTATION FOR ML

7.1. PROBLEM FORMULATION

[Calegari et al., 2021c]) can support HAMLET with the formal machinery to build

an argumentation framework upon the data, while abstract argumentation would

dispense the evaluation tools.

Figure 7.1 illustrates the overview of HAMLET. When addressing end-to-end

data analysis, a DS usually follows a process model such as CRISP-DM. The

DS starts by collecting raw data in an arbitrary format. Then, “Domain Under-

standing” is conducted. The DS works in close cooperation with domain experts

and enlists domain-related constraints (i.e., intrinsic of the problem). Follows

“Data Understanding”, devoted to data analysis, and to extract data-related con-

straints (e.g., defined by the data format). Domain and Data Understanding

might be repeated many times until the DS is satisfied by the acquired knowledge.

Once confident, the DS investigates different solutions throughout “Data Pre-

processing”, “Modelling”, and “Evaluation”. Data Pre-processing and Modelling

are conducted to effectively build the solution, while Evaluation offers a way to

measure its performance. Such a solution consists of a ML pipeline: a sequence of

Data Pre-processing transformations ending with an ML task. The DS instantiates

different pipelines among a large set of algorithms; the performance are affected

by both the algorithms and some exposed hyperparameters. While seeking the

best performing and valid solution, the DS should consider the already known

constraints – domain- and data-related – and the ones she discovers during Data

Pre-processing and Modelling, respectively: transformation- and algorithm-related

constraints (e.g., due to the intrinsic semantic of transformations and algorithms

at hand). Finally, the process concludes with the “Deployment” of the solution.

HAMLET intersects CRISP-DM, allowing the DS to inject and augment her

knowledge while automatizing the exploration towards the solution (i.e., instan-

tiate the best ML pipeline). We now dig the foundation of HAMLET by incre-

mentally introducing the concepts necessary to move from AutoML to logic and

argumentation. To support the reader, we summarize the main notation in Ta-

ble 7.1.

We provide a formalization necessary to move from single algorithms to the

optimal pipeline. For the sake of clarity, we refer to a Classification task, but the

formalization also holds for supervised ML tasks in general.

CHAPTER 7. BEYOND SYMBOLIC AI: ARGUMENTATION FOR ML 161

7.1. PROBLEM FORMULATION

Table 7.1: Main symbols used in the formalization.

Symbol Meaning

A Algorithm
h Algorithm hyperparameter
S Step
P Pipeline
λ∗ Instance of *
Λ∗ Domain of *
Λ Search space

Definition 49 (Dataset). A dataset X is a matrix where data items (i.e., rows)

are characterized by features (i.e., columns).

Definition 50 (Algorithm). An algorithm A is a function that transforms an in-

put dataset X ′ into a new dataset X ′′. The algorithm exposes a (possibly empty) set

H of hyperparameters. Each hyperparameter h ∈ H has a domain Λh. We call the

algorithm domain ΛA the Cartesian product of all hyperparameter domains (i.e.,

ΛA = Λh1 × . . .×Λh|H|). We call algorithm instance λA ∈ ΛA an algorithm whose

hyperparameters have been assigned with values from their respective domains.

A Classification algorithm returns a vector (i.e., a matrix with a single column)

of labels Y out of the input dataset X ′.

Definition 51 (Step). A step S is a set of alternative algorithms with the same

goal. The step domain is defined as a disjoint union of the algorithm domains

ΛS = ΛA1
·∪ . . . ·∪ ΛA|S|.

Where ·∪ combines the domains of the given algorithms, while retaining the

original domain membership (i.e., it is possible to refer to the domain of each

algorithm included in a step).

We identify two types of steps: Data Pre-preprocessing steps (e.g., Discretiza-

tion, Normalization) shape the dataset for the last mandatory step, which fulfill

the task—Classification in this case.

Example 16 (Algorithm and step). Examples of steps are Normalization (N),

Discretization (D), and Classification (Cl). An algorithm for Classification is De-

cision Tree (Dt) [Breiman et al., 1984], examples of hyperparameters for Dt are

162 CHAPTER 7. BEYOND SYMBOLIC AI: ARGUMENTATION FOR ML

7.1. PROBLEM FORMULATION

its maximum depth (N+) and the minimum samples split (N+) required to split a

node; hence ΛDt = N+×N+. An example of algorithm instance is λDt = {depth =

3, samples split = 10}.

Definition 52 (Pipeline). Given a (possibly empty) set of Pre-processing steps

S = {S1, . . . , S|S|} and a Classification algorithm A from the Classification step, a

pipeline P is a sequence that concatenates steps from S and A. The domain of a

pipeline is ΛP = ΛS1 × . . .× ΛS|S| × ΛA. We call pipeline instance λP a sequence

of algorithm instances λP = ⟨λA1 , . . . , λA|P |⟩ such that λP ∈ ΛP .

Example 17 (Pipeline and pipeline instance). Given the pre-processing steps Nor-

malization (N) and Discretization (D), the possible pipelines for the DecisionTree

(Dt) are:

P1 = ⟨Dt⟩ P2 = ⟨D,Dt⟩ P4 = ⟨D,N ,Dt⟩

P3 = ⟨N ,Dt⟩ P5 = ⟨N ,D,Dt⟩

Given Binarizer (B) and KBinsDiscretizer (Kb) as algorithms of Discretization

(D), and MinMaxScaler (Mm) and StandardScaler (Ss) and as algorithms of

Normalization (N), we provide examples of instances of P2 and P4:

λP2 = ⟨λB, λDt⟩, λP4 = ⟨λKb, λMm, λDt⟩

λB = {thr = 5.5}, λKb = {n bins = 3, . . .}

λMm = {∅}, λDt = {depth = 3, . . .}

Figure 7.2 depicts the pipeline domain ΛP4 and the pipeline instance λP4.

Depending the on the involved algorithms, their order and hyperparameters,

the search space – out of which the best pipeline instance is select – is defined as

follows. While, its extraction is later discussed in Algorithm 1.

Definition 53 (Search space). The search space Λ is the Cartesian product of the

domain of the Classification step and the disjoint union of the all partial permu-

tations of the pre-preprocessing steps domains.

AutoML optimizes the exploration of such space. However, it is not only about

algorithms and hyperparameters but also about constraints.

CHAPTER 7. BEYOND SYMBOLIC AI: ARGUMENTATION FOR ML 163

7.1. PROBLEM FORMULATION

thr

5.5

Figure 7.2: Examples of the pipeline domain ΛP4 and pipeline instance λP4 , for the
sake of visualization we omit the third dimension representing the domain of the Decision
Tree. Green (or red) circles represent valid (or invalid) sub-regions of the search space;
Normalization is not allowed in the pipeline. The rectangle represents a zoom in the
domain of the Binarizer algorithm.

Definition 54 (Constraint). A constraint C ⊆ Λ is a region of search space that

is either mandatory or forbidden. Given a pipeline instance λP ∈ ΛP ⊆ Λ

• a mandatory constraint C is fulfilled if λP ∈ C;

• a forbidden constraint C is fulfilled if λP /∈ C.

Example 18 (Constraint). Given the Normalization step (N) and Decision Tree

(Dt) as a Classification algorithm, an example of algorithm-related constraint is

“forbid N in pipelines with Dt”. This discards all the pipelines containing both

Normalization and Decision Tree. Figure 7.2 depicts the effects of the constraint

on the pipeline domain ΛP4.

Considering all the constraint combinations is overwhelming and, additionally,

conflicts might occur; for instance in the case of ethical [Harrison and Rubinfeld, 1978]

and legal fields that easily inject conflicting constraints into the search space.

Definition 55 (Constrained pipelines optimization). Given a search space Λ and

a set of constraints C, finding the best pipeline instance λ̂P is defined as λ̂P =

164 CHAPTER 7. BEYOND SYMBOLIC AI: ARGUMENTATION FOR ML

7.1. PROBLEM FORMULATION

argmaxλP∈ΛP
metric(λP), where metric(λP) is the function evaluating the good-

ness of λP and the explored pipelines fulfill the constraints in C.

AutoML is not explainable, hence it does not provide the DS with feedbacks

that would help her to augment the knowledge about the problem. It is necessary

to represent both (i) the DS knowledge about the problem and (ii) the outcome of

the AutoML tool in a uniform human-readable medium. The former helps to drive

the optimization process, the later augments the knowledge about the problem

by learning from the explored configurations of pipeline instances—deriving new

constraints that increase the DS awareness.

We leverage argumentation as the key element in defining a common structure

(i.e., a uniformed human- and machine-readable medium) on which the knowledge

of both the DS and the AutoML tool can be combined fruitfully. In a way, our

approach follows the steps of the well known logical based expert systems, of

which it is possible to find a great number of successful examples [Tan, 2017].

Argumentation provides the tools to cope with one of the distinctive features of

the knowledge we want to deal with: inconsistency. Indeed, the ML process is

the product of possible attempts, validated or refuted by a consequent evaluation.

Hence, the mechanism used to encode the knowledge is required to manage this

constant revision process.

Let us start from the Argumentation Framework described in Section 2.1. Re-

membering the concept of an Argumentation System as outlined in Definition 3,

we need to establish a Logical Language L, which will form the foundation for

the set of rules R used to define how elements from the language are combined

together, and a conflict function ▷. In the following two definitions, we specialize

L into the language LML expressing all the basic elements of an AutoML problem

and R into a Logical Knowledge Base written in the language LML.

Definition 56 (AutoML language). Given an argumentation language L, we de-

fine the AutoML language LML as L∪W , with W the following set of predicates1:

• step(S) with S ∈ L, representing a step S in the pipeline;

1For the sake of conciseness, when writing statements of the AutoML language, the letters S
(and A) refer to the name of the step (and algorithm)

CHAPTER 7. BEYOND SYMBOLIC AI: ARGUMENTATION FOR ML 165

7.1. PROBLEM FORMULATION

• algorithm(S, A) with S,A ∈ L, representing an algorithm A for the step S;

• hyperparameter(A, h, t) with A, h, t ∈ L, representing an hyperparameter h

for the algorithm A of type t (e.g., numerical, categorical);

• domain(A, h, Λh) with A, h,Λh ∈ L, representing an hyperparameter h for

the algorithm A with domain Λh;

• pipeline(⟨S1, . . . , Sn⟩, A) with S1, . . . , Sn, A ∈ L, representing a pipeline con-

sisting of the sequence of steps ⟨S1, . . . , Sn⟩ and the Classification algorithm

A;

• mandatory(⟨S1, . . . , Sn⟩, Z) with S1, . . . , Sn, Z ∈ L, representing a constraint

imposing the steps ⟨S1, . . . , Sn⟩ on the pipelines with algorithm A (Z = A)

or on all the Classification pipelines (Z = Cl);

• forbidden(⟨S1, . . . , Sn⟩, Z) with S1, . . . , Sn, Z ∈ L, representing a constraint

forbidding the steps ⟨S1, . . . , Sn⟩ on the pipelines with algorithm A (Z = A)

or on all the Classification pipelines (Z = Cl);

• mandatory order(⟨S1, . . . , Sn⟩, Z) with S1, . . . , Sn, Z ∈ L, representing a

constraint imposing the sequence of steps ⟨S1, . . . , Sn⟩ on the pipelines with

algorithm A (Z = A) or on all the Classification pipelines (Z = Cl).

Definition 57 (Logical Knowledge Base). Given the language LML, we call Logical

Knowledge Base (LogicalKB) the set of rules for a given AutoML problem.

In other words, the DS leverages an intuitive logical language (i.e., LML), and

enlists the constraints one-by-one (i.e., in the LogicalKB). In our vision, the Logi-

calKB consists of (i) a set rules specified by the DS and a (ii) set of common rules

that enable the automatic derivation of pipelines and constraints. Besides, the DS

community could create a shared LogicalKB derived from the available literature

and similar real-case problems.

Example 19 (Logical Knowledge Base). We focus on Discretization (D), Nor-
malization (N) and Classification (Cl) steps, and, for brevity, only define the Clas-

sification algorithms: Decision Tree (Dt) and K-Nearest Neighbors (Knn).

166 CHAPTER 7. BEYOND SYMBOLIC AI: ARGUMENTATION FOR ML

7.1. PROBLEM FORMULATION

(a) (b) (c)

Figure 7.3: Examples of Problem Graphs. Green nodes are valid arguments, red ones
are refuted. Arrows are attacks.

define Discretization step

s1 : ⇒ step(D).
define Normalization step

s2 : ⇒ step(N).

define Classification step

s3 : ⇒ step(Cl).
DT is a Classification algorithm

a1 : ⇒ algorithm(Cl, Dt).
Knn is a Classification algorithm

a2 : ⇒ algorithm(Cl, Knn).
Forbid Normalization when using DT

c1 : ⇒ forbidden(⟨N⟩, Dt).

s1, s2, and s3 represent the steps; a1 and a2 represent the algorithms; finally, c1

represent the algorithm-related constraint from Example 18, namely “forbid N in

pipelines with Dt”.

When applying constraints, they can be conflicting. The conflict relation ▷

reifies the constraints from Definition 54 through the conflict function cML.

Definition 58 (AutoML Conflict). The conflict function cML is a function from

CHAPTER 7. BEYOND SYMBOLIC AI: ARGUMENTATION FOR ML 167

7.1. PROBLEM FORMULATION

LML to 2LML that given a statement from LML returns the set of conflicting state-

ments.

We support both the AutoML conflicts on “pipeline vs constraint” and “con-

straint vs constraint”. Formally, let us consider two lists of steps α = ⟨. . . , Si, Sj, . . .⟩
and β = ⟨. . . , Sy, Sx, . . .⟩.

• Pipeline vs constraint: return the constraints conflicting with pipelines.

cML(pipeline(β,A)) =

{mandatory(α,A) | ∃Si ∈ α s.t. Si /∈ β} ∪

{forbidden(α,A) | ∀Si ∈ α, Si ∈ β} ∪

{mandatory order(α,A) | ∃Si, Sj ∈ α, Sx, Sy ∈ β,

Si = Sx, Sj = Sy s.t. i < j, x > y}

Intuitively, a pipeline pipeline(⟨Si, Sj⟩, A) is conflicting with a mandatory

constraint if the pipeline does not contains at least a mandatory step (e.g.,

the pipeline is conflicting with mandatory(⟨Sj, Sk⟩, A)), with a forbidden

constraint if the pipeline contains all the forbidden steps (e.g., the pipeline is

conflicting with forbidden(⟨Sj⟩, A)), and with amandatory order constraint

if the pipeline contains at least two steps that are not in the mandatory order

(e.g., the pipeline is conflicting with mandatory order(⟨Sj, Si⟩, A)).

• Constraint vs constraint: return the constraints conflicting with other con-

straints.

cML(forbidden(β,A)) = {mandatory(α,A) | ∀Sj ∈ β, Sj ∈ α}

cML(mandatory(β,A)) = {forbidden(α,A) | ∀Sj ∈ α, Sj ∈ β}

cML(mandatory order(β,A)) =

{mandatory order(α,A) | ∃Si, Sj ∈ α, Sx, Sy ∈ β,

Si = Sx, Sj = Sy s.t. i < j, x > y}

Intuitively, mandatory and forbidden constraints are in conflict if all the for-

bidden steps are included in the mandatory constraint (i.e.,mandatory(⟨Si, Sj, Sk⟩, A))

168 CHAPTER 7. BEYOND SYMBOLIC AI: ARGUMENTATION FOR ML

7.1. PROBLEM FORMULATION

and a forbidden(⟨Si, Sj⟩, A))), this hold symmetrically for forbidden and

mandatory constraints. Two mandatory order constraints are in conflict if

they contain at least two steps in different order (i.e.,mandatory order(⟨Si, Sj, Sk⟩, A))
and a mandatory order(⟨Sj, Si⟩, A))).

Example 20 (AutoML conflict). With reference to the LogicalKB in Example 19,

let us consider the set of rules that represent the pipelines related to Dt:

pipeline ending with a DT

p1 : ⇒ pipeline(Dt).
Discretization and DT

p2 : ⇒ pipeline(⟨D⟩, Dt).
Normalization and DT

p3 : ⇒ pipeline(⟨N⟩, Dt).
Discretization , Normalization , and DT

p4 : ⇒ pipeline(⟨D, N⟩, Dt).
Normalization , Discretization , and DT

p5 : ⇒ pipeline(⟨N , D⟩, Dt).

In this case, c1 (i.e., “forbid N in pipelines with Dt”) is in conflict with the

pipeline statements p3, p4, and p5 since they contain N and Dt.

Starting from the language LML, a set of rules in this language, and the conflict

function cML, we can derive arguments and attacks – and consequently the entire

argumentation framework – as per Definition 6, Definition 8 and Definition 9. The

evaluation of the argumentation framework is performed through Dung’s grounded

semantics [Dung, 1995a].

Throughout the rest of the chapter we will refer to an argument with the set of

rules used to generate it (e.g., given r :⇒ c and r1 : c⇒ d, we will write r and r1

when referring to the rules and {r} and {r, r1} for – respectively – the argument

with conclusion c using r and the argument with conclusion d using r and r1).

We also refer to the graph in which nodes are arguments and edges are attacks

from the argumentation framework as Problem Graph.

The benefits of the Problem Graph are two-fold. First of all, it can be leveraged

by both DSs and domain experts to: understand, summarize and visualize the

current knowledge. Second of all, it is straightforward to convert such a graph

CHAPTER 7. BEYOND SYMBOLIC AI: ARGUMENTATION FOR ML 169

7.1. PROBLEM FORMULATION

of constraints into a space of possible solutions (i.e., exploiting argumentation

semantics, it is easy to obtain all the sets of arguments – constraints and pipelines

– which hold together).

Example 21 (Problem Graph). Figure 7.3a illustrates the Problem Graph ex-

tracted from the LogicalKB introduced in Example 19 and 20 and evaluated under

grounded semantics. Arguments are represented as nodes, attacks as arrows and

the colors represent the state of the arguments according to the semantics: red for

refuted arguments, and green for the ones in the extension. The arguments are

identified through the set of rules used to build them. In the upper part of the

figure, we have a group of undefeated arguments, namely {s1}, {s2}, {s3}, {a1},
and {a2}, representing the basic knowledge used to setup the AutoML search space

(i.e. steps and algorithms). Then, we have an argument for every pipeline in Ex-

ample 20: from {p1} to {p5} the pipelines regarding Dt, from {p6} to {p10} the
ones regarding Knn. Finally, we can observe three different attacks: from {c1} to
{p3}, {p4}, and {p5}, in accordance with the conflicts identified in Example 20.

The arguments in the extension give us all the information that we should use

during the AutoML optimization process – i.e. we should discard all the pipelines

refuted by the constraint argument ({c1}), and focus on the remaining part of the

search space.

The use of argumentation relieves the DS of the burden of manually consid-

ering all the effects of the possible constraints. It is important to notice that,

although the increased degree of automation, the Problem Graph allows the DS

and domain experts to correct, revise, and supervise the process. Accordingly,

possible inconsistencies – due to diverging constraints – can be verified by the DS

using her knowledge.

Any change in the LogicalKB translates into a change in the Problem Graph,

allowing the DS and domain experts to visualize it and argue about it. The re-

vision of the Problem Graph is the key element in the process of augmenting the

knowledge: the DS and domain experts can consult each other and discuss how

the new insights relate to their initial knowledge. Indeed, thanks to the nature of

the Problem Graph, it would be extremely easy to identify new possible conflicts

and supporting arguments. Furthermore, AutoML can update the Problem Graph

170 CHAPTER 7. BEYOND SYMBOLIC AI: ARGUMENTATION FOR ML

7.2. HAMLET

given an algorithm , create a pipeline including only such

algorithm

hc0 : algorithm(Cl, A) ⇒ pipeline(⟨ ⟩, A).

given some steps and an algorithm , create a pipeline

including such steps and algorithm

hc1 : step(S1),. . .,step(Sn), algorithm(Cl, A) ⇒ pipeline(

⟨S1, . . . , Sn⟩, A).

given constraints on the Pre -processing steps required for

Classification ...

... apply this constraints to all Classification

algorithms

hc2 : mandatory(⟨S1, . . . , Sn⟩, Cl), algorithm(Cl, A) ⇒ mandatory(

⟨S1, . . . , Sn⟩, A).

hc3 : forbidden(⟨S1, . . . , Sn⟩, Cl), algorithm(Cl, A) ⇒ forbidden(

⟨S1, . . . , Sn⟩, A).

hc4 : mandatory_order(⟨S1, . . . , Sn⟩, Cl), algorithm(Cl, A) ⇒
mandatory_order(⟨S1, . . . , Sn⟩, A).

Figure 7.4: A subset of rules from the LogicalKB.

by extracting constraints from the performed exploration, and transposing them

into the LogicalKB. For instance, the DS may not have considered that the dataset

contains missing values. AutoML helps in identifying the new data-related con-

straint “require Imputation (I) in all the pipelines” and adds it to the LogicalKB

(mandatory(⟨I⟩, Cl)).
The described process is compliant with and augments the CRISP-DM process.

The inferred/learned knowledge is automatically handled throughout iterations,

supporting the DS in the whole analysis in a continuous revision of the constraints.

7.2 HAMLET

HAMLET iterates over three phases (Figure 7.1): (i) the generation of Problem

Graph and search space out of the LogicalKB, (ii) the exploration of the search

space in compliance with the specified constraints, and (iii) the augmentation of

the LogicalKB through a rule recommendation.

The framework is available at https://github.com/QueueInc/HAMLET, and it

is composed of two sub-modules. The first, written in Kotlin and running on the

CHAPTER 7. BEYOND SYMBOLIC AI: ARGUMENTATION FOR ML 171

https://github.com/QueueInc/HAMLET

7.2. HAMLET

JVM, exposes a graphical interface on which the DSs can compile and revise the

LogicalKB. The module is also responsible for the generation and evaluation of

the Problem Graph; it implements the structured argumentation functionalities as

specified in Section 7.1 using Arg2P [Calegari et al., 2021c]. The second module,

written in Python, is responsible for performing the AutoML optimization and the

extraction of the new constraints from the explored space.

7.2.1 Generation of Problem Graph and Search Space

In Section 7.1, we defined the LogicalKB as the set of rules specified by the DS

using her knowledge. The LogicalKB also includes a set of hard-encoded rules

representing inferences necessary to characterize the AutoML problems. These

rules are joined to the ones defined by the DS and used to build the Problem

Graph (i.e., argumentation framework).

A subset of rules is shown in Figure 7.4. The first two (hc0 and hc1) define how

to automatically derive a pipeline using algorithms and steps. The construction

of pipelines can be completely automated and the DS should be dispensed from

manually enumerating all the possible pipelines as in Example 20. In particular,

the correct set of rules is built dynamically using the steps and algorithms provided

by the DS, then they are used to derive all the arguments for the possible pipelines.

The last three rules (hc2, hc3 and hc4) encode constraints – mandatory, forbidden,

mandatory order – on all the available algorithms with a single statement (e.g.,

mandatory(⟨D⟩, Cl)): it will be automatically used by the framework to derive the

constraints for all the specific algorithms in the theory.

Example 22 (Hard-coded rules). With reference to Example 21 and Figure 7.4,

we add rule c2 for a new data-related constraint.

mandatory Norm. in Class. pipelines

c2 : ⇒ mandatory(⟨N⟩, Cl)

From the rule c2, the hard-coded rules generate the two arguments c2’ = {c2,
a1, hc2} (i.e., mandatory(⟨N⟩,Dt)) and c2’’ = {c2, a2, hc2} (i.e., mandatory(⟨N⟩,Knn))
that are specific for the Classification algorithms in the LogicalKB.

However, {c1} (i.e., forbidden(⟨N⟩,Dt); is in conflict with c2’. Depending

on her experience, the DS decides to resolve the conflict by specifying an ordering

172 CHAPTER 7. BEYOND SYMBOLIC AI: ARGUMENTATION FOR ML

7.2. HAMLET

over the rules in the LogicalKB—the framework is based on ASPIC+ thus it fully

supports the use of preferences. Let us assume the use of the last-weakest ordering

as defined in Definition 21. Assuming that the DS prefers c1 to hc2, the argument

{c1} is preferred to c2’ and the attack from the latter is not considered in the

final graph. Figure 7.3b shows the updated graph. Firstly, we observe the support

relation between {c2} and the generated constraints c2’ and c2’’. Since {c1} has
no attackers, it is added to extension. Consequently, c2’ is refuted and the the

pipelines attacked by it are correctly reinstated.

Given the Problem Graph (we recall that the Problem Graph contains all the

generated pipelines – including their partial permutations), the search space can

be extracted as in Algorithm 1. We iterate over all the generated pipelines in the

Problem Graph and we recursively build their domain: the pipeline domain is the

Cartesian product of the step domains, the step domain is the disjoint union of

the algorithm domains (we leverage the disjoint union since each algorithm can

be picked as an alternative to the others), the algorithm domain is the Cartesian

product of its hyperparameters; the domain of a hyperparameter is given by defi-

nition. Finally, the search space is the disjoint union of all the alternative pipeline

domains.

Noticeably, while the search space could be constrained during its construction

(e.g., by simply adding an “if” condition to check the validity of each pipeline

at Algorithm 1 line 10), current AutoML frameworks leverage optimization tech-

niques that do not allow the explicit exclusion of regions from the search space.

As a consequence, we need to produce the entire search space first.

7.2.2 Exploration of a Constrained Search Space

The Problem Graph is not only used to build the entire search space but it is

also evaluated to understand which pipelines are invalid and which constraints are

valid. Hence – through the Problem Graph – we enhance AutoML exploration by

combining the following techniques.

(i) Invalid pipelines are used to discourage the exploration of such a portion of

the search space (we recall that a pipeline has a domain – a region of the

CHAPTER 7. BEYOND SYMBOLIC AI: ARGUMENTATION FOR ML 173

7.2. HAMLET

Algorithm 1 Search Space from the Problem Graph

Require: PG(N, E): Nodes and Edges of a Problem Graph
Ensure: Λ: Search Space

1: procedure GetDomain(A)
2: ΛA ← ∅
3: for each h ∈ A do ▷ For each hyperparameter in the algorithm...
4: ΛA ← ΛA × Λh ▷ Compute Cartesian product of hyperpar. domains
5: end for
6: return ΛA ▷ Return the algorithm domain
7: end procedure

8: Λ← ∅ ▷ Initialize the search space
9: for each pipeline(α,A) ∈ N do ▷ For each argument that is a pipeline with α steps and

alg. A...
10: ΛP ← GetDomain(A) ▷ Init. pipeline domain with algorithm domain
11: for each S ∈ α do ▷ For each step in the pipeline...
12: ΛS ← ∅ ▷ Init. the step domain
13: for each A ∈ S do ▷ For each algorithm in the step...
14: ΛS ← ΛS ·∪GetDomain(A) ▷ Add alg. to step domain
15: end for
16: ΛP ← ΛP × ΛS ▷ Add step domain to pipeline domain
17: end for
18: Λ← Λ ·∪ ΛP ▷ Add pipeline domain to the search space
19: end for
20: return Λ ▷ Return the search space

search space – in which several pipeline instances are parametrized). First,

we sample such regions of the search space, then we enforce a knowledge

injection mechanism through warm-starting (i.e., the process of providing

previous evaluations that help the model to converge faster). For instance,

with reference to Example 22, we sample some pipeline instances from the

pipelines that have been discarded (from {p3} to {p7}); then, we label such
samples as invalid and provide them to the AutoML tool, helping the opti-

mization algorithm to focus only on the valid portions of the space.

(ii) Valid constraints – expressed as conjunctions of Boolean clauses – are used

to discard the invalid pipeline instances that still are encountered by the

AutoML tool. Indeed, since the sampling from (i) is non-exhaustive, it can

happen that small portions of invalid regions could still be explored.

Our AutoML implementation is based on FLAML [Wang et al., 2021a], which

174 CHAPTER 7. BEYOND SYMBOLIC AI: ARGUMENTATION FOR ML

7.2. HAMLET

mixes Bayesian Optimization with CFO (Frugal Optimization for Cost-related

Hyperparameters). In a standard Bayesian process, an increasingly accurate model

is built on top of the previously explored pipeline instances to suggest the most

promising ones among the remaining. The pipeline instances keep being explored,

updating the model, until a budget in terms of either iterations or time is reached.

With CFO, there is also an estimation of the evaluation time to consider the

frugality of the suggested pipeline instances – hence favoring the ones requiring a

smaller amount of time. Throughout the exploration, different solutions are tested,

which contribute to augmenting the global knowledge about the problem.

7.2.3 Knowledge Augmentation through Rule Recommen-

dation

New constraints are automatically mined out of the pipeline instances explored by

AutoML and recommended in our logical language as rules. Then, the DS decides

which rules are accepted and added to the LogicalKB.

At this stage, we leverage frequent pattern mining techniques to learn con-

straints in an unsupervised manner. Frequent pattern mining is the task of find-

ing the most frequent and relevant patterns in large datasets (e.g., finding the

products frequently bought together in the domain of market basket analysis); de-

pending on the constraint type, we look for (sub)sets [Srikant and Agrawal, 1995]

or (sub)sequences [Srikant and Agrawal, 1996] frequently recurring among the ex-

plored pipelines. Since a pipeline instance is a sequence of algorithms, the set of

the explored pipeline instances can be directly mapped into a transactional dataset

[Srikant and Agrawal, 1995] where each pipeline instance is a transaction and each

step – inferred from the algorithm – is an item.

We recommend the same constraints we support at the argumentation level

(i.e., mandatory, forbidden, mandatory order) so that AutoML can be as ex-

pressive as the DS. For mandatory and forbidden constraints we look for (sub)sets

[Srikant and Agrawal, 1995] frequently recurring among the explored pipelines.

Specifically, we split the explored pipeline instances by the applied Classification

algorithm, set a minimum frequency (i.e., support) threshold to 50% (i.e., to be

retrieved, a set/sequence must occur at least in 50% of the explored instances),

CHAPTER 7. BEYOND SYMBOLIC AI: ARGUMENTATION FOR ML 175

7.2. HAMLET

and extract frequent maximal2 itemsets. The recommendation depends on the

constraint.

• mandatory: we consider only the patterns with good performance (i.e., 0.7 ≤
metric ≤ 1.0);

• forbidden: we consider only the patterns with bad performance (i.e., 0.0 ≤
metric ≤ 0.3);

• mandatory order: the same considerations of the mandatory constraints

stand, except that we look for (sub)sequences [Srikant and Agrawal, 1996] of

length 2 to discover ordering dependencies in pairs of steps as in [Giovanelli et al., 2021a].

We leveraged well-known implementations [Raschka, 2018] and [Wang et al., 2022]

for itemsets and sequences mining, respectively. Finally, we return to the DS only

the top-10 rules sorted by descending support; we allow the DS to explore all the

rules on-demand.

The thresholds act as filters on the extracted rules since we cannot burden the

user with the investigation of hundreds of recommendations. As to the intervals,

our rationale is simple: we only want to recommend as mandatory (order) the

rules that achieved “good performance” and as forbidden the rules that achieved

“bad performance”. Since we handle classification pipelines that mainly refer to

(balanced) accuracy/F1 score/recall, we mapped “good” in the interval [0.7, 1.0]

and “bad” in the interval [0, 0.3]. For the frequent pattern extraction, we consider

only the pipeline instances falling in these intervals. As to the support, 50%

ensures that the pattern recurs on many of the explored instances and empirically

showed to be a good threshold to have good efficiency in the extraction of frequent

patterns.

Example 23 (Rules Recommendation). With reference to the Problem Graph

in Example 22, the AutoML results are filtered according to the chosen metric,

the algorithm [Raschka, 2018] is applied, and let us assume that the rule c3 is

recommended:

2Maximal itemsets are patterns that are not contained in any other. For instance, given two
frequent patterns, {a, b, c} and {a, b}, the former is maximal while the latter is not.

176 CHAPTER 7. BEYOND SYMBOLIC AI: ARGUMENTATION FOR ML

7.3. EXPERIMENTAL EVALUATION

c3 : ⇒ mandatory(⟨D⟩, Dt).

The constraints specifies “mandatory D in pipelines with Dt”. As a matter of

fact, it is well known that Discretization improves the performance of tree-based

algorithms giving to them the ability to apply multiple split in the decision nodes.

Figure 7.3c shows the effect of the applied constraint: a new portion of the search

space is excluded from the extension ({p1}).

7.3 Experimental Evaluation

The performance of HAMLET depends on (i) the rules encoded in the LogicalKB

and (ii) the rules recommended after each run. To test both the effectiveness and

efficiency of our approach, we define three experimental settings.

• PKB (Preliminary Knowledge Base), HAMLET starts with a preliminary

LogicalKB constraining the search space from the first iteration, and no rule

mining is applied. The preliminary LogicalKB consists of the rules discovered

in [Giovanelli et al., 2021a] and some well-known from the literature (e.g.,

suggested by scikit-learn3). The complete knowledge base can be found in

the Github repository.

• IKA (Iterative Knowledge Augmentation), HAMLET starts with an empty

LogicalKB, and all the rules recommended after each run are applied to

extend the LogicalKB.

• PKB+IKA, HAMLET starts with a preliminary LogicalKB, and the rules

recommended after each run are applied to extend the LogicalKB.

HAMLET run 4 times in every setting – intuitively, four runs of knowledge aug-

mentation – the budget assigned to each run is 125 pipeline instances in 900 seconds

(15 minutes). We also test against a baseline: we let AutoML explore 500 pipeline

instances (= 125 · 4) in a single run with a time budget of 3600 seconds (= 900 · 4;
1 hour).

3https://scikit-learn.org/stable/auto_examples/preprocessing/plot_discretizat

ion.html

CHAPTER 7. BEYOND SYMBOLIC AI: ARGUMENTATION FOR ML 177

https://scikit-learn.org/stable/auto_examples/preprocessing/plot_discretization.html
https://scikit-learn.org/stable/auto_examples/preprocessing/plot_discretization.html

7.3. EXPERIMENTAL EVALUATION

Table 7.2: Algorithms and number of hyperparameters for each of the steps in HAM-
LET. Algorithm names and hyperparameters are imported from the scikit-learn Python
library.

Step Algorithm #Hyperparameters

Imputation SimpleImputer 1
IterativeImputer 2

Normalization StandardScaler 2
MinMaxScaler 0
RobustScaler 2
PowerTransformer 0

Discretization Binarizer 1
KBinsDiscretizer 3

Feature Eng. SelectKBest 1
PCA 1

Rebalancing NearMiss 1
SMOTE 1

Classification DecisionTreeClassifier 7
KNeighborsClassifier 3
RandomForestClassifier 7
AdaBoostClassifier 2
MLPClassifier 6

For such an evaluation, we derive a search space out of 6 steps, 5 Data Pre-

processing steps (Imputation, Normalization, Discretization, Feature Engineering,

and Rebalancing) followed by the final Classification task. Since the tests are run

on datasets from OpenML [Vanschoren et al., 2013] – a well-known repository for

data acquisition and benchmarking – and it provides already-encoded datasets, we

do not consider the encoding step. Except for that, we included all the Data Pre-

processing steps and algorithms available in the scikit-learn [Pedregosa et al., 2011]

Python library (plus imbalance-learn [Lemâıtre et al., 2017] for Rebalancing trans-

formations). The leveraged steps, algorithms per step, and hyperparameters per

algorithm are reported in Table 7.2.

The OpenML-CC18 suite is a well-known collection of 72 datasets for bench-

marking. Given the time-consuming computation of each dataset (8 hours per

dataset = 2 hours for the baseline + 6 hours for HAMLET in the three settings)

– in this preliminary evaluation – we select a representative subset of datasets ac-

178 CHAPTER 7. BEYOND SYMBOLIC AI: ARGUMENTATION FOR ML

7.3. EXPERIMENTAL EVALUATION

Table 7.3: Dataset descriptions.

OpenMLID a Dataset Instances Features Classes

40983 wilt 4839 L 6 L 2 L

40499 texture 5500 L 41 L 11 H

1485 madelon 2600 L 501 H 2 L

1478 har 10229 L 562 H 6 H

1590 adult 48842 H 9 L 2 L

– – – H – L – H

– – – H – H – L

554 mnist 784 70000 H 785 H 10 H

–
Not Applicable

H
The value v is high for the meta-feature F if v ≥ 1

|F |
∑

f∈F f

L
The value v is low for the meta-feature F if v < 1

|F |
∑

f∈F f

a
Datasets are available at https://www.openml.org/d/<OpenMLID>

cording to three meta-features provided by OpenML: number of instances, number

of features, and number of classes. For each of the considered meta-features, we

search for datasets with either high or low values, and we select the representa-

tives that maximize the overall dataset diversification. Table 7.3 illustrates the 6

datasets that have been identified; note that some combinations of meta-features

have no representative dataset in the suite. Among these, we do not report the

results for the dataset mnist 784 since the number of explored pipeline instances

is insufficient to validate the result (i.e., due to the time necessary to run a single

pipeline instance, only 50 instances were explored out of 1000).

7.3.1 Effectiveness

We employ balanced accuracy as the quality metric. For instance, in case of (two)

binary classes, such a score is

Balanced accuracy =
1

2

(
TP

TP + FN
+

TN

TN + FP

)
where TP and TN stand respectively for True Positive and True Negative (i.e.,

number of instances that have been correctly assigned to the positive and negative

CHAPTER 7. BEYOND SYMBOLIC AI: ARGUMENTATION FOR ML 179

https://www.openml.org/d/<OpenMLID>

7.3. EXPERIMENTAL EVALUATION

wilt texture madelon har adult
0.75

0.80

0.85

0.90

0.95

1.00

Ba
la

nc
ed

 a
cc

ur
ac

y

baseline PKB IKA PKB + IKA

Figure 7.5: Results assessing the effectiveness of HAMLET w.r.t. the baseline.

0 20 40 60
Optimization time (m)

0.413

0.525

0.638

0.75

0.862

0.975

Ba
la

nc
ed

 a
cc

ur
ac

y

wilt

0 20 40 60
Optimization time (m)

0.839

0.871

0.902

0.934

0.966

0.997
texture

0 20 40 60
Optimization time (m)

0.587

0.644

0.702

0.76

0.817

0.875
madelon

0 20 40 60
Optimization time (m)

0.669

0.727

0.785

0.843

0.901

0.959
har

0 20 40 60
Optimization time (m)

0.704

0.724

0.745

0.765

0.785

0.805
adult

baseline PKB IKA PKB + IKA

Figure 7.6: Results assessing the performance of HAMLET through the optimization
time.

47.2 49.8 52.3 54.8 57.4
Optimization time (m)

0.874

0.89

0.907

0.924

0.941

0.958

Ba
la

nc
ed

 a
cc

ur
ac

y

wilt

55.0 56.0 57.0 58.0 59.0
Optimization time (m)

0.995

0.995

0.996

0.996

0.997

0.997
texture

46.3 49.0 51.8 54.5 57.3
Optimization time (m)

0.86

0.862

0.865

0.867

0.87

0.872
madelon

51.8 53.4 55.1 56.7 58.4
Optimization time (m)

0.948

0.95

0.952

0.954

0.956

0.957
har

45.9 48.7 51.5 54.4 57.2
Optimization time (m)

0.761

0.768

0.776

0.783

0.791

0.798
adult

baseline PKB IKA PKB + IKA

Figure 7.7: Comparison of the best pipeline instances characterized by optimization
time and (balanced) accuracy, bigger circles represent settings that dominate the others.

180 CHAPTER 7. BEYOND SYMBOLIC AI: ARGUMENTATION FOR ML

7.3. EXPERIMENTAL EVALUATION

classes), and FP and FN stand respectively for False Positive and False Negative

(i.e., number of instances that have been mistakenly assigned to the positive and

negative classes). The formulation generalized to more than 2 classes can be found

at [Brodersen et al., 2010]. The score avoids inflated performance estimations on

imbalanced datasets. For balanced datasets, the score is equal to the conventional

accuracy (i.e., the number of correct predictions divided by the total number of

predictions), otherwise it drops to 1
#classes

.

Figure 7.5 illustrates the performance achieved by the baseline and the three

settings of HAMLET. HAMLET is clearly beneficial since in all datasets the frame-

work overcomes the baseline. The preliminary results highlight that both the

LogicalKB and rule recommendation play important roles:

• When we warm-start the exploration with a non-empty LogicalKB (PKB),

in all datasets HAMLET overcomes the baseline.

• When we only leverage rule recommendation (IKA), we achieve results that

are better than or equivalent to PKB, indeed we are injecting in the Logi-

calKB new rules that are tailored to the dataset.

• The synergy of PKB+IKA performs better than PKB in adult, worse in

wilt, and the two are comparable in the other datasets. On the one hand,

the PKB act as a warm start mechanism that speeds up the optimization; on

the other hand, if not aligned with the recommended rules, it can mitigate

the benefits of IKA. This proves to be a promising direction that further

requires investigation since merging the words will require further studies.

Indeed, it is worth noting that the recommended rules can be overlapping

with the ones in the LogicalKB, highlighting the need to improve the recom-

mendation process by also considering the rules that are already present in

the LogicalKB.

In PKB+IKA, IKA can introduce rules that contradict the ones in the Log-

icalKB of PKB; for instance when the PKB contains rules that are not “repre-

sentative” of the dataset/algorithms in use. We believe that this is an added

value of HAMLET since “incomplete” (or even wrong) LogicalKBs can be correct-

ed/refined by a data-driven approach. Finally, PKB+IKA and IKA are likely to

CHAPTER 7. BEYOND SYMBOLIC AI: ARGUMENTATION FOR ML 181

7.3. EXPERIMENTAL EVALUATION

wilt texture madelon har adult
0.75

0.80

0.85

0.90

0.95

1.00

Ba
la

nc
ed

 a
cc

ur
ac

y

HAMLET Auto-sklearn H2O

Figure 7.8: Results assessing the performance of HAMLET w.r.t. Auto-sklearn
[Feurer et al., 2019] and H2O [LeDell and Poirier, 2020].

produce different rules, since in PKB+IKA the LogicalKB biases the exploration

of the search space from the beginning (acting as a warm start mechanism).

Figure 7.8 compares HAMLET against two well-known AutoML frameworks:

Auto-sklearn [Feurer et al., 2019] and H2O [LeDell and Poirier, 2020]. In four

datasets out of five, HAMLET outperforms or is comparable to the two frame-

works. Additionally, the added value of HAMLET is explainability. Hamlet is

a human-in-the-loop AutoML framework tailored to the needs of DS that (i) en-

ables the injection of their experience into the exploration process as well as (ii) the

spreading and sharing of knowledge bases that encode what DSs have understood

by the optimization of their pipelines.

7.3.2 Efficiency

Figure 7.6 shows how settings converge to the optimal pipeline instance. Notice-

ably, PKB and PKB+IKA start with higher accuracy than IKA and the baseline

in four datasets out of five, proving how the preliminary LogicalKB warm starts

182 CHAPTER 7. BEYOND SYMBOLIC AI: ARGUMENTATION FOR ML

7.3. EXPERIMENTAL EVALUATION

wilt texture madelon har adult
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f t
im

e

argum. PKB
automl PKB

argum. IKA
automl IKA

argum. PKB + IKA
automl PKB + IKA

Figure 7.9: Computational time of the argumentation and AutoML processes.

the exploration. However, time and #iterations alone are not fair metrics for

comparison; for instance, an optimization strategy could privilege simple algo-

rithms taking small amounts of computational time but producing worse results

than “more complex” algorithms. In the direction of multi-objective optimiza-

tion (exploration time should be minimized while accuracy should be maximized),

Figure 7.7 depicts which settings dominate the others using the Skyline operator

[Borzsony et al., 2001]. A setting dominates another one if it is as good or better

in all dimensions (time and accuracy) and better in at least one dimension (time

or accuracy). PKB dominates in 80% of the datasets, IKA in 40%, PKB+IKA

in 20%, and the baseline in 40%. Noticeably, the baseline is selected as dominat-

ing only in madelon and har datasets due to the fact that converges faster than

HAMLET (although it converges to a pipeline instance with lower accuracy).

Finally, Figure 7.9 depicts the overhead introduced by the argumentation frame-

work in HAMLET that, at maximum, is 20% of the computational time in the

adult dataset. This proves that the argumentation time is marginal with respect

to the duration of the optimization process. As expected, PKB+IKA shows the

highest overhead since the number of rules to manage is the highest.

CHAPTER 7. BEYOND SYMBOLIC AI: ARGUMENTATION FOR ML 183

7.3. EXPERIMENTAL EVALUATION

184 CHAPTER 7. BEYOND SYMBOLIC AI: ARGUMENTATION FOR ML

Chapter 8

Conclusions

As we approach the conclusion of this thesis, it is essential to revisit the goals that

have guided this research and to reflect on the contributions made. At its incep-

tion, this thesis set out with the objective of enhancing the field of argumentation

theory, particularly focusing on its application within the area of computational

legal reasoning. One of the primary goals was also to bridge the gap between the-

oretical models of argumentation and their practical applications, ensuring that

these models are not only academically robust but also practically applicable in

real-world scenarios.

To achieve this, the thesis proposes several innovations. Firstly, it introduces

significant advancements in the ASPIC+ framework for meta-argumentation. This

enhancement is crucial for enabling a more dynamic and nuanced representation

of arguments, especially relevant in complex domains where arguments are often

interwoven with intricate conflicts and interpretations. Also, the integration of the

burden-of-persuasion concept into the structured meta-argumentation frameworks

marks a significant stride in aligning computational models with the intricacies of

legal processes.

Another cornerstone of this research is the development of the Arg2P frame-

work. This technological innovation is designed to handle the nuances of argumen-

tation in legal and AI contexts, managing inconsistent information and adapting

to various argumentation needs. Moreover, its modularity and integration with

logical programming make it a valuable tool in the realm of intelligent systems.

CHAPTER 8. CONCLUSIONS 185

The final goal of this thesis, bridging argumentation and sub-symbolic AI, is

epitomised in the selection of AutoML as the intersection area and the introduction

of the HAMLET framework. This choice underscores the growing importance of

making automated machine learning processes more interpretable and aligned with

human reasoning, particularly in terms of ethical and legal considerations. This

integration opens new avenues for the development of AI methodologies with a keen

sense of responsibility, ensuring their application aligns with established standards

and principles.

The contributions of this thesis hold particular significance in the context of

legal reasoning, a domain where the precision and nuance of argumentation are

paramount. The advancements in the ASPIC framework, with its enhanced capac-

ity for meta-argumentation, bring a renewed level of sophistication to computa-

tional models of legal argumentation. This enhancement allows for a more intricate

representation and analysis of legal arguments, closely mirroring the complexity

and depth of human legal reasoning. The ability to encode conflicts, rules and

preferences and develop meta-arguments within this framework aligns computa-

tional argumentation more closely with the multifaceted nature of legal discourse,

where arguments are often layered and interdependent. Furthermore, the integra-

tion of the burden of persuasion concept, provides a more accurate and nuanced

approach to modelling legal arguments, enabling AI systems to better replicate

the decision-making processes found in human legal systems.

The Arg2P framework, as a practical embodiment of these theoretical advance-

ments, demonstrates the feasibility of applying enhanced argumentation models in

real-world legal scenarios. Its adaptability and capability to handle complex, in-

consistent information make it a valuable tool for legal professionals and AI systems

dealing with legal data. This framework can significantly aid in the processing,

analysis, and simulation of legal arguments, paving the way for more sophisticated,

AI-driven legal reasoning tools.

In the larger context of legal reasoning, all these contributions represent a

step towards the development of AI systems that can effectively and ethically

assist in legal decision-making processes. The enhanced argumentation models

and tools introduced in this thesis provide a foundation for AI applications in law

that are more transparent, reliable, and aligned with human legal reasoning. This

186 CHAPTER 8. CONCLUSIONS

alignment is crucial in an era where AI’s role in legal processes is rapidly expanding,

necessitating solutions that are both technologically advanced and deeply attuned

to the nuances of legal practice.

While we have summarised the main contributions of this thesis, it is equally

important to acknowledge the areas that remain open and present opportunities

for future development.

The exploration of meta-argumentation within the ASPIC+ framework sets a

foundation for future research, aimed at expanding beyond the grounded semantics

which is the primary focus of this investigation. Formal proofs provided herein

are confined to grounded semantics, as delineated in the introduction, but the

potential for expansion into other Dung’s semantics is both vast and compelling.

The enhancements introduced to the ASPIC framework have already imbued it

with newfound flexibility, yet the possibilities for further expansion are extensive.

The domain of discourse in argumentation is rich and varied, and this foray into

the meta aspect is likely to unravel new questions, fostering deeper insights and

solutions. It is an intriguing prospect to examine the applicability and suitability of

these introduced mechanisms to broader and more diverse argumentative contexts.

On the technological front, the thesis delves into both algorithmic and tech-

nological aspects. In terms of algorithms, the focus is on enhancing the efficiency

of the structured resolution process. Again, the primary focus of the work is cen-

tred on grounded semantics. While this approach aligns with the thesis’s focus

and proves sufficient within its scope, the potential for expansion to other clas-

sical semantics is evident and worthwhile. Moreover, the dynamic nature of the

computer science landscape presents numerous opportunities for innovative devel-

opment, particularly in integrating these tools more effectively in the IT world.

This approach is not just about enhancing argumentation tools for academic ex-

ploration, but about making them practically viable and valuable in real-world IT

scenarios.

On the same line, the Arg2P technology, as introduced in this thesis, represents

only the foundational steps in what promises to be a significant journey in the

field of argumentation in AI. While fundamental elements and some additional

features have been implemented, this is merely the beginning of its developmental

trajectory. The potential for further enhancement and expansion is vast, with the

CHAPTER 8. CONCLUSIONS 187

integration of both existing and new elements from the argumentation theoretical

background being key to its evolution.

The theoretical landscape of argumentation is both rich and multifaceted, often

finding its existence primarily in academic discourse. By bringing these theoretical

concepts to life, even if it means compromising certain features or properties for

efficiency, Arg2P can serve as a critical step in integrating argumentation more

broadly within the AI panorama. This endeavour is not just about improving

specific features of the framework; indeed, every aspect of Arg2P holds potential

for enhancement. For each feature that has been implemented, there are likely

numerous ways it could be refined or re-imagined.

However, the focus should not solely be on technological advancement but also

on fostering a community around Arg2P. This community-building is crucial to

ensure that Arg2P evolves beyond a prototype and becomes a widely used and

continuously developed tool in the field of argumentation technologies. The aim

is to avoid the fate of becoming another forgotten project, but rather to establish

Arg2P as a cornerstone in the ongoing discourse and development of argumentation

technologies. Building such a community would encourage collaborative improve-

ment, diverse application, and sustained innovation, ensuring that the framework

remains relevant and valuable in advancing the integration of argumentation in

AI.

Moving to the last part of this thesis, AutoML is chosen as the focal point for

this intersection due to its pivotal role in simplifying and automating the complex

process of model selection, configuration, and optimisation in Machine Learning.

However, the current iteration of HAMLET, while advanced in imposing technical

constraints on the ML pipeline, does not yet fully address aspects such as hyper-

parameter optimisation. Expanding HAMLET to incorporate such features would

not only enhance its power but also increase its practical applicability in a broader

range of ML scenarios.

More intriguing, however, is the potential of HAMLET to encode more abstract

constraints, particularly those related to ethical and regulatory preferences. The

recent surge in research aimed at quantifying and evaluating the ethics of AI models

offers a rich tapestry of criteria that can be integrated into AutoML frameworks.

Embedding these ethical considerations into HAMLET could change the way Data

188 CHAPTER 8. CONCLUSIONS

Scientists control the optimisation and development of ML models, ensuring that

these models adhere not only to technical specifications but also to ethical and

regulatory standards.

The legal implications of such an integration are profound. By incorporating

ethical and regulatory constraints into the ML development process, HAMLET

can ensure that the resulting models are not only efficient and accurate but also

compliant with legal and ethical guidelines. This is particularly crucial in sectors

where AI decisions have significant societal impacts, such as healthcare, finance,

and public policy. The ability to encode and enforce these constraints within the

AutoML process can lead to more responsible and trustworthy AI systems, aligning

technological advancements with societal values and legal requirements.

In conclusion, this thesis embodies a significant effort to advance argumen-

tation theory, especially within the realms of computational legal reasoning and

the field of sub-symbolic AI. By enhancing the ASPIC+ framework and pioneer-

ing the development of the Arg2P and HAMLET frameworks, this research has

effectively bridged the gap between theoretical models and practical applications.

More importantly, it has underscored the fundamental role of argumentation the-

ory in the AI landscape, drawing a crucial link with the evolving technological

panorama. Setting aside all the technical advancements and theoretical explo-

rations, the foremost aspiration of this thesis is singular and clear: to contribute

to the positioning of argumentation theory as an indispensable component in the

responsible development and application of future AI systems. It is with this in-

tention that the work presented here was undertaken, and it is with this hope that

it is concluded. May this contribution serve as a meaningful step in the direction

of realising a future where AI systems are not only advanced in their capabilities

but also guided by the principles of sound reasoning and argumentation.

CHAPTER 8. CONCLUSIONS 189

190 CHAPTER 8. CONCLUSIONS

Bibliography

[Alsinet et al., 2010] Alsinet, T., Béjar, R., and Godo, L. (2010). A characterization of collective
conflict for defeasible argumentation. In Computational Models of Argument, volume 216 of
Frontiers in Artificial Intelligence and Applications, pages 27–38. IOS Press.

[Alsinet et al., 2012] Alsinet, T., Béjar, R., Godo, L., and Guitart, F. (2012). Using answer set
programming for an scalable implementation of defeasible argumentation. In IEEE 24th In-
ternational Conference on Tools with Artificial Intelligence, pages 1016–1021. IEEE Computer
Society.

[Amgoud et al., 2004] Amgoud, L., Cayrol, C., and Lagasquie-Schiex, M. (2004). On the bipo-
larity in argumentation frameworks. In 10th International Workshop on Non-Monotonic Rea-
soning (NMR 2004), pages 1–9.

[Andrighetto et al., 2013] Andrighetto, G., Governatori, G., Noriega, P., and van der Torre,
L. W. (2013). Normative multi-agent systems, volume 4 of Dagstuhl Follow-Ups. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.

[Arsénio et al., 2014] Arsénio, A., Serra, H., Francisco, R., Nabais, F., Andrade, J., and Ser-
rano, E. (2014). Internet of Intelligent Things: Bringing artificial intelligence into things
and communication networks. In Inter-cooperative Collective Intelligence: Techniques and
Applications, volume 495 of Studies in Computational Intelligence, pages 1–37. Springer.

[Bao et al., 2017] Bao, Z., Cyras, K., and Toni, F. (2017). ABAplus: Attack reversal in abstract
and structured argumentation with preferences. In PRIMA 2017: Principles and Practice of
Multi-Agent Systems, volume 10621 of Lecture Notes in Computer Science, pages 420–437.
Springer.

[Baroni et al., 2011a] Baroni, P., Caminada, M., and Giacomin, M. (2011a). An introduction to
argumentation semantics. Knowledge Engineering Review, 26(4):365–410.

[Baroni et al., 2011b] Baroni, P., Caminada, M., and Giacomin, M. (2011b). An introduction to
argumentation semantics. The Knowledge Engineering Review, 26(4):365–410.

[Baroni et al., 2011c] Baroni, P., Caminada, M., and Giacomin, M. (2011c). An introduction to
argumentation semantics. The knowledge engineering review, 26(4):365–410.

[Baroni et al., 2018] Baroni, P., Gabbay, D., Giacomin, M., and van der Torre, L. (2018). Hand-
book of Formal Argumentation. London, England: College Publications.

[Barringer et al., 2012] Barringer, H., Gabbay, D. M., and Woods, J. (2012). Modal and tem-
poral argumentation networks. Argument & Computation, 3(2-3):203–227.

BIBLIOGRAPHY 191

BIBLIOGRAPHY

[Bench-Capon et al., 1993] Bench-Capon, T., Coenen, F., and Orton, P. (1993). Argument-
based explanation of the British nationality act as a logic program. Information and Commu-
nications Technology Law, 2(1):53–66.

[Bench-Capon, 2002] Bench-Capon, T. J. M. (2002). Value-based argumentation frameworks.
In 9th International Workshop on Non-Monotonic Reasoning (NMR 2002), pages 443–454.

[Besnard et al., 2014a] Besnard, P., Garcia, A., Hunter, A., Modgil, S., Prakken, H., Simari, G.,
and Toni, F. (2014a). Introduction to structured argumentation. Argument & Computation,
5(1):1–4.

[Besnard et al., 2014b] Besnard, P., Garćıa, A. J., Hunter, A., Modgil, S., Prakken, H., Simari,
G. R., and Toni, F. (2014b). Introduction to structured argumentation. Argument & Compu-
tation, 5(1):1–4.

[Besnard et al., 2014c] Besnard, P., Garćıa, A. J., Hunter, A., Modgil, S., Prakken, H., Simari,
G. R., and Toni, F. (2014c). Introduction to structured argumentation. Argument & Compu-
tation, 5(1):1–4.

[Bistarelli and Santini, 2011] Bistarelli, S. and Santini, F. (2011). Conarg: A constraint-based
computational framework for argumentation systems. In IEEE 23rd International Conference
on Tools with Artificial Intelligence, pages 605–612. Institute of Electrical and Electronics
Engineers.

[Boella et al., 2009a] Boella, G., Gabbay, D. M., van der Torre, L., and Villata, S. (2009a).
Meta-argumentation modelling I: Methodology and techniques. Studia Logica, 93(2–3):297.

[Boella et al., 2009b] Boella, G., Gabbay, D. M., van der Torre, L. W. N., and Villata, S. (2009b).
Meta-argumentation modelling I: methodology and techniques. Studia Logica, 93(2-3):297–
355.

[Borzsony et al., 2001] Borzsony, S., Kossmann, D., and Stocker, K. (2001). The skyline opera-
tor. In Proceedings 17th international conference on data engineering, pages 421–430. IEEE.

[Breiman et al., 1984] Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984).
Classification and Regression Trees. Wadsworth.

[Brodersen et al., 2010] Brodersen, K. H., Ong, C. S., Stephan, K. E., and Buhmann, J. M.
(2010). The balanced accuracy and its posterior distribution. In 20th International Conference
on Pattern Recognition, ICPR 2010, Istanbul, Turkey, 23-26 August 2010, pages 3121–3124.
IEEE Computer Society.

[Bryant et al., 2006] Bryant, D., Krause, P. J., and Vreeswijk, G. (2006). Argue tuProlog: A
lightweight argumentation engine for agent applications. In Computational Models of Argu-
ment, volume 144 of Frontiers in Artificial Intelligence and Applications, pages 27–32. IOS
Press.

[Calegari, 2018] Calegari, R. (2018). Micro-Intelligence for the IoT: Logic-based Models and
Technologies. PhD thesis, Alma Mater Studiorum—Università di Bologna, Bologna, Italy.

[Calegari et al., 2021a] Calegari, R., Ciatto, G., Mascardi, V., and Omicini, A. (2021a). Logic-
based technologies for multi-agent systems: A systematic literature review. Autonomous
Agents and Multi-Agent Systems, 35(1):1:1–1:67.

192 BIBLIOGRAPHY

BIBLIOGRAPHY

[Calegari et al., 2019] Calegari, R., Contissa, G., Lagioia, F., Omicini, A., and Sartor, G. (2019).
Defeasible systems in legal reasoning: A comparative assessment. In Araszkiewicz, M. and
Rodŕıguez-Doncel, V., editors, Legal Knowledge and Information Systems. JURIX 2019: The
Thirty-second Annual Conference, volume 322 of Frontiers in Artificial Intelligence and Ap-
plications, pages 169–174. IOS Press.

[Calegari et al., 2021b] Calegari, R., Omicini, A., and Sartor, G. (2021b). Explainable and
ethical AI: A perspective on argumentation and logic programming. In Baldoni, M. and
Bandini, S., editors, AIxIA 2020 – Advances in Artificial Intelligence, volume 12414 of Lecture
Notes in Computer Science, pages 19–36. Springer Nature.

[Calegari et al., 2021c] Calegari, R., Pisano, G., Omicini, A., and Sartor, G. (2021c). Arg2P:
An argumentation framework for explainable intelligent systems. Journal of Logic and Com-
putation.

[Calegari et al., 2021d] Calegari, R., Riveret, R., and Sartor, G. (2021d). The burden of per-
suasion in structured argumentation. In Maranhão, J. and Wyner, A. Z., editors, ICAIL’21:
Proceedings of the Seventeenth International Conference on Artificial Intelligence and Law,
ICAIL’21, pages 180–184. ACM.

[Calegari and Sartor, 2020a] Calegari, R. and Sartor, G. (2020a). Burden of persuasion in ar-
gumentation. In Ricca, F., Russo, A., Greco, S., Leone, N., Artikis, A., Friedrich, G., Fodor,
P., Kimmig, A., Lisi, F., Maratea, M., Mileo, A., and Riguzzi, F., editors, 36th Interna-
tional Conference on Logic Programming (ICLP 2020), volume 325 of Electronic Proceedings
in Theoretical Computer Science, pages 151–163. Open Publishing Association.

[Calegari and Sartor, 2020b] Calegari, R. and Sartor, G. (2020b). A model for the burden of per-
suasion in argumentation. In Villata, S., Harašta, J., and Křemen, P., editors, Legal Knowledge
and Information Systems. JURIX 2020: The Thirty-third Annual Conference, volume 334 of
Frontiers in Artificial Intelligence and Applications, pages 13–22, Brno, Czech Republic. IOS
Press.

[Caminada, 2015] Caminada, M. (2015). A discussion game for grounded semantics. In The-
ory and Applications of Formal Argumentation, volume 9524 of Lecture Notes in Computer
Science, pages 59–73. Springer.

[Caminada and Amgoud, 2007a] Caminada, M. and Amgoud, L. (2007a). On the evaluation of
argumentation formalisms. Artificial Intelligence, 171(5—6):286–310.

[Caminada and Amgoud, 2007b] Caminada, M. and Amgoud, L. (2007b). On the evaluation of
argumentation formalisms. Artificial Intelligence, 171(5—6):286–310.

[Caminada and Amgoud, 2007c] Caminada, M. and Amgoud, L. (2007c). On the evaluation of
argumentation formalisms. Artificial Intelligence, 171(5–6):286–310.

[Caminada and Uebis, 2020] Caminada, M. and Uebis, S. (2020). An implementation of
argument-based discussion using ASPIC-. In Computational Models of Argument, volume
326 of Frontiers in Artificial Intelligence and Applications, pages 455–456. IOS Press.

[Carrera and Iglesias, 2015] Carrera, Á. and Iglesias, C. A. (2015). A systematic review of
argumentation techniques for multi-agent systems research. Artificial Intelligence Review,
44(4):509–535.

BIBLIOGRAPHY 193

BIBLIOGRAPHY

[Ciatto et al., 2021] Ciatto, G., Calegari, R., and Omicini, A. (2021). Lazy stream manipulation
in Prolog via backtracking: The case of 2p-kt:. In Faber, W., Friedrich, G., Gebser, M.,
and Morak, M., editors, Logics in Artificial Intelligence, volume 12678 of Lecture Notes in
Computer Science, pages 407–420. Springer. 17th European Conference, JELIA 2021, Virtual
Event, May 17–20, 2021, Proceedings.

[Ciatto et al., 2020] Ciatto, G., Calegari, R., Siboni, E., Denti, E., and Omicini, A. (2020).
2P-Kt: logic programming with objects & functions in Kotlin. In Calegari, R., Ciatto, G.,
Denti, E., Omicini, A., and Sartor, G., editors, WOA 2020 – 21th Workshop “From Objects
to Agents”, volume 2706 of CEUR Workshop Proceedings, pages 219–236, Aachen, Germany.
Sun SITE Central Europe, RWTH Aachen University.

[Cossentino et al., 2018] Cossentino, M., Lopes, S., Nuzzo, A., Renda, G., and Sabatucci, L.
(2018). A comparison of the basic principles and behavioural aspects of Akka, JaCaMo and
Jade development frameworks. In Proceedings of the 19th Workshop “From Objects to Agents”,
volume 2215 of CEUR Workshop Proceedings, pages 133–141. CEUR-WS.org.

[Craven and Toni, 2016] Craven, R. and Toni, F. (2016). Argument graphs and assumption-
based argumentation. Artificial Intelligence, 233:1–59.

[Craven et al., 2013] Craven, R., Toni, F., and Williams, M. (2013). Graph-based dispute deriva-
tions in assumption-based argumentation. In Theory and Applications of Formal Argumenta-
tion, volume 8306 of Lecture Notes in Computer Science, pages 46–62. Springer.

[Crisan and Fiore-Gartland, 2021] Crisan, A. and Fiore-Gartland, B. (2021). Fits and starts:
Enterprise use of automl and the role of humans in the loop. In Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems, pages 1–15.

[da Costa Pereira et al., 2017] da Costa Pereira, C., Tettamanzi, A. G. B., Liao, B., Malerba,
A., Rotolo, A., and van der Torre, L. W. N. (2017). Combining fuzzy logic and formal
argumentation for legal interpretation. In Proceedings of the 16th edition of the International
Conference on Articial Intelligence and Law, ICAIL 2017, London, United Kingdom, June
12-16, 2017, pages 49–58.

[Denti et al., 2005] Denti, E., Omicini, A., and Ricci, A. (2005). Multi-paradigm Java-Prolog
integration in tuProlog. Science of Computer Programming, 57(2):217–250.

[Drozdal et al., 2020] Drozdal, J., Weisz, J., Wang, D., Dass, G., Yao, B., Zhao, C., Muller, M.,
Ju, L., and Su, H. (2020). Trust in automl: exploring information needs for establishing trust
in automated machine learning systems. In Proceedings of the 25th International Conference
on Intelligent User Interfaces, pages 297–307.

[Dung, 1995a] Dung, P. M. (1995a). On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence,
77(2):321–358.

[Dung, 1995b] Dung, P. M. (1995b). On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence,
77(2):321–358.

[Dung and Thang, 2018] Dung, P. M. and Thang, P. M. (2018). Fundamental properties of
attack relations in structured argumentation with priorities. Artificial Intelligence, 255:1–42.

[Dung et al., 2019] Dung, P. M., Thang, P. M., and Son, T. C. (2019). On structured argu-
mentation with conditional preferences. In The Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI 2019, pages 2792–2800, Honolulu, Hawaii, USA. AAAI Press.

194 BIBLIOGRAPHY

BIBLIOGRAPHY

[Dvorák et al., 2020] Dvorák, W., Rapberger, A., Wallner, J. P., and Woltran, S. (2020).
ASPARTIX-V19 - an answer-set programming based system for abstract argumentation. In
Foundations of Information and Knowledge Systems—11th International Symposium, volume
12012 of Lecture Notes in Computer Science, pages 79–89. Springer.

[Falkner et al., 2018] Falkner, S., Klein, A., and Hutter, F. (2018). Bohb: Robust and efficient
hyperparameter optimization at scale. In International Conference on Machine Learning,
pages 1437–1446. PMLR.

[Feurer et al., 2019] Feurer, M., Klein, A., Eggensperger, K., Springenberg, J. T., Blum, M.,
and Hutter, F. (2019). Auto-sklearn: efficient and robust automated machine learning. In
Automated Machine Learning, pages 113–134. Springer, Cham.

[Francia et al., 2022] Francia, M., Gallinucci, E., and Golfarelli, M. (2022). COOL: A framework
for conversational OLAP. Inf. Syst., 104:101752.

[Francia et al., 2019] Francia, M., Golfarelli, M., and Rizzi, S. (2019). Augmented business
intelligence. In Song, I., Romero, O., and Wrembel, R., editors, Proceedings of the 21st
International Workshop on Design, Optimization, Languages and Analytical Processing of Big
Data, co-located with EDBT/ICDT Joint Conference, DOLAP@EDBT/ICDT 2019, Lisbon,
Portugal, March 26, 2019, volume 2324 of CEUR Workshop Proceedings. CEUR-WS.org.

[Frazier, 2018] Frazier, P. I. (2018). A tutorial on bayesian optimization. CoRR, abs/1807.02811.

[Gabbay, 2009] Gabbay, D. M. (2009). Semantics for higher level attacks in extended argumen-
tation frames part 1: Overview. Studia Logica, 93(2-3):357–381.

[Garćıa et al., 2020] Garćıa, A. J., Prakken, H., and Simari, G. R. (2020). A comparative study
of some central notions of ASPIC+ and DeLP. Theory and Practice of Logic Programming,
20(3):358–390.

[Garćıa and Simari, 2004] Garćıa, A. J. and Simari, G. R. (2004). Defeasible logic programming:
An argumentative approach. Theory and Practice of Logic Programming, 4(1-2):95–138.

[Gil et al., 2019] Gil, Y., Honaker, J., Gupta, S., Ma, Y., D’Orazio, V., Garijo, D., Gadewar, S.,
Yang, Q., and Jahanshad, N. (2019). Towards human-guided machine learning. In Proceedings
of the 24th International Conference on Intelligent User Interfaces, pages 614–624.

[Giovanelli et al., 2021a] Giovanelli, J., Bilalli, B., and Abelló, A. (2021a). Data pre-processing
pipeline generation for autoetl. Information Systems, page 101957.

[Giovanelli et al., 2021b] Giovanelli, J., Bilalli, B., and Abelló, A. (2021b). Effective data pre-
processing for automl. In Proceedings of the 23rd International Workshop on Design, Opti-
mization, Languages and Analytical Processing of Big Data (DOLAP), volume 2840 of CEUR
Workshop Proceedings, pages 1–10. CEUR-WS.org.

[Golovin et al., 2017] Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro, J., and Sculley,
D. (2017). Google vizier: A service for black-box optimization. In Proceedings of the 23rd ACM
SIGKDD international conference on knowledge discovery and data mining, pages 1487–1495.

[Gordon et al., 2009] Gordon, T. F., Governatori, G., and Rotolo, A. (2009). Rules and norms:
Requirements for rule interchange languages in the legal domain. In Governatori, G., Hall,
J., and Paschke, A., editors, Rule Interchange and Applications, International Symposium,
RuleML 2009, volume 5858 of Lecture Notes in Computer Science, pages 282–296. Springer.

[Gordon et al., 2007] Gordon, T. F., Prakken, H., and Walton, D. (2007). The Carneades model
of argument and burden of proof. Artificial Intelligence, 171(10-15):875–896.

BIBLIOGRAPHY 195

BIBLIOGRAPHY

[Gordon and Walton, 2016] Gordon, T. F. and Walton, D. (2016). Formalizing balancing argu-
ments. In Computational Models of Argument, volume 287 of Frontiers in Artificial Intelligence
and Applications, pages 327–338. IOS Press.

[Harrison and Rubinfeld, 1978] Harrison, D. and Rubinfeld, D. (1978). Hedonic housing prices
and the demand for clean air. Journal of Environmental Economics and Management, 5:81–
102.

[Hewitt et al., 1973] Hewitt, C., Bishop, P. B., and Steiger, R. (1973). A universal modular
ACTOR formalism for artificial intelligence. In 3rd International Joint Conference on Artificial
Intelligence, pages 235–245. William Kaufmann.

[Hulstijn and van der Torre, 2004] Hulstijn, J. and van der Torre, L. W. (2004). Combining
goal generation and planning in an argumentation framework. In International Workshop on
Non-monotonic Reasoning (NMR’04), pages 212–218.

[Jung et al., 2001] Jung, H., Tambe, M., and Kulkarni, S. (2001). Argumentation as distributed
constraint satisfaction: Applications and results. In 5th International Conference on Au-
tonomous Agents (Agents ’01), pages 324–331.

[Khuat et al., 2022] Khuat, T. T., Kedziora, D. J., and Gabrys, B. (2022). The roles and
modes of human interactions with automated machine learning systems. arXiv preprint
arXiv:2205.04139.

[Kok et al., 2012] Kok, E. M., Meyer, J.-J. C., Prakken, H., and Vreeswijk, G. A. (2012). Test-
ing the benefits of structured argumentation in multi-agent deliberation dialogues. In 11th
International Conference on Autonomous Agents and Multiagent Systems, volume 3, pages
1411–1412, Valencia, Spain. International Foundation for Autonomous Agents and Multia-
gent Systems.

[Kotthoff et al., 2019] Kotthoff, L., Thornton, C., Hoos, H. H., Hutter, F., and Leyton-Brown,
K. (2019). Auto-weka: Automatic model selection and hyperparameter optimization in weka.
In Automated Machine Learning, pages 81–95. Springer, Cham.

[Kraska et al., 2013] Kraska, T., Talwalkar, A., Duchi, J. C., Griffith, R., Franklin, M. J., and
Jordan, M. I. (2013). Mlbase: A distributed machine-learning system. In Cidr, volume 1,
pages 2–1.

[Krippendorff, 2004] Krippendorff, K. (2004). Intrinsic motivation and human-centred design.
Theoretical Issues in Ergonomics Science, 5(1):43–72.

[Kröll et al., 2017a] Kröll, M., Pichler, R., and Woltran, S. (2017a). On the complexity of
enumerating the extensions of abstract argumentation frameworks. In Sierra, C., editor,
26th International Joint Conference on Artificial Intelligence (IJCAI 2017), pages 1145–1152.
IJCAI.org.

[Kröll et al., 2017b] Kröll, M., Pichler, R., and Woltran, S. (2017b). On the complexity of
enumerating the extensions of abstract argumentation frameworks. In Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, pages
1145–1152, Melbourne, Australia. ijcai.org.

[LeDell and Poirier, 2020] LeDell, E. and Poirier, S. (2020). H2o automl: Scalable automatic
machine learning. In Proceedings of the AutoML Workshop at ICML, volume 2020.

[Lee and Macke, 2020] Lee, D. J.-L. and Macke, S. (2020). A human-in-the-loop perspective on
automl: Milestones and the road ahead. IEEE Data Engineering Bulletin.

196 BIBLIOGRAPHY

BIBLIOGRAPHY

[Lehtonen et al., 2017] Lehtonen, T., Wallner, J. P., and Järvisalo, M. (2017). From structured
to abstract argumentation: Assumption-based acceptance via AF reasoning. In Symbolic and
Quantitative Approaches to Reasoning with Uncertainty, volume 10369 of Lecture Notes in
Computer Science, pages 57–68. Springer.

[Lehtonen et al., 2020] Lehtonen, T., Wallner, J. P., and Järvisalo, M. (2020). An answer set
programming approach to argumentative reasoning in the ASPIC+ framework. In 17th Inter-
national Conference on Principles of Knowledge Representation and Reasoning, pages 636–
646.

[Lemâıtre et al., 2017] Lemâıtre, G., Nogueira, F., and Aridas, C. K. (2017). Imbalanced-learn:
A python toolbox to tackle the curse of imbalanced datasets in machine learning. Journal of
Machine Learning Research, 18(17):1–5.

[Modgil and Bench-Capon, 2011] Modgil, S. and Bench-Capon, T. J. M. (2011). Metalevel ar-
gumentation. Journal of Logic and Computation, 21:959–1003.

[Modgil and Caminada, 2009] Modgil, S. and Caminada, M. (2009). Proof theories and algo-
rithms for abstract argumentation frameworks. In Argumentation in Artificial Intelligence,
pages 105–129. Springer.

[Modgil and Prakken, 2010] Modgil, S. and Prakken, H. (2010). Reasoning about preferences
in structured extended argumentation frameworks. In Baroni, P., Cerutti, F., Giacomin, M.,
and Simari, G., editors, Computational Models of Argument. Proceedings of COMMA 2010,
pages 347–58. IOS.

[Modgil and Prakken, 2013] Modgil, S. and Prakken, H. (2013). A general account of argumen-
tation with preferences. Artificial Intelligence, 195:361–397.

[Modgil and Prakken, 2014a] Modgil, S. and Prakken, H. (2014a). The ASPIC+ framework for
structured argumentation: a tutorial. Argument & Computation, 5(1):31–62.

[Modgil and Prakken, 2014b] Modgil, S. and Prakken, H. (2014b). The ASPIC+ framework for
structured argumentation: a tutorial. Argument & Computation, 5(1):31–62.

[Müller et al., 2013] Müller, J., Hunter, A., and Taylor, P. (2013). Meta-level argumentation
with argument schemes. In International Conference on Scalable Uncertainty Management,
volume 8078 of Lecture Notes in Computer Science, pages 92–105, Washington, DC, USA.
Springer, Springer.

[Muller et al., 2019] Muller, M., Lange, I., Wang, D., Piorkowski, D., Tsay, J., Liao, Q. V.,
Dugan, C., and Erickson, T. (2019). How data science workers work with data: Discovery,
capture, curation, design, creation. In Proceedings of the 2019 CHI conference on human
factors in computing systems, pages 1–15.

[Niskanen and Järvisalo, 2020] Niskanen, A. and Järvisalo, M. (2020). µ-toksia: An efficient
abstract argumentation reasoner. In 17th International Conference on Principles of Knowledge
Representation and Reasoning, pages 800–804.

[Nute, 2001] Nute, D. (2001). Defeasible logic. In Proceedings of the 14th International Confer-
ence on Applications of Prolog, INAP 2001, pages 87–114. The Prolog Association of Japan.

[Ogunniye et al., 2018] Ogunniye, G., Toniolo, A., and Oren, N. (2018). Meta-argumentation
frameworks for multi-party dialogues. In International Conference on Principles and Practice
of Multi-Agent Systems, volume 11224 of Lecture Notes in Computer Science, pages 585–593,
Tokyo, Japan. Springer, Springer.

BIBLIOGRAPHY 197

BIBLIOGRAPHY

[Oliva et al., 2008] Oliva, E., McBurney, P., and Omicini, A. (2008). Co-argumentation artifact
for agent societies. In Parsons, S., Rahwan, I., and Reed, C., editors, Argumentation in Multi-
Agent Systems, volume 4946 of Lecture Notes in Computer Science, chapter 3, pages 31–46.
Springer. 4th International Workshop (ArgMAS 2007), Honolulu, HI, USA, 15 May 2007.
Revised Selected and Invited Papers.

[Oliva et al., 2009] Oliva, E., Viroli, M., Omicini, A., and McBurney, P. (2009). Argumentation
and artifact for dialog support. In Rahwan, I. and Moraitis, P., editors, Argumentation in
Multi-Agent Systems, volume 5384 of LNAI, chapter 7, pages 107–121. Springer. 4th Inter-
national Workshop (ArgMAS 2008), Estoril, Portugal, 12 May 2008. Revised Selected and
Invited Papers.

[Olivieri et al., 2021] Olivieri, F., Governatori, G., Cristani, M., and Sattar, A. (2021). Com-
puting defeasible meta-logic. In Logics in Artificial Intelligence, pages 69–84, Cham. Springer
International Publishing.

[Omicini and Calegari, 2019] Omicini, A. and Calegari, R. (2019). Injecting (micro)intelligence
in the IoT: Logic-based approaches for (M)MAS. In Lin, D., Ishida, T., Zambonelli, F.,
and Noda, I., editors, Massively Multi-Agent Systems II, volume 11422 of Lecture Notes in
Computer Science, chapter 2, pages 21–35. Springer.

[Omicini and Mariani, 2013] Omicini, A. and Mariani, S. (2013). Agents & multiagent systems:
En route towards complex intelligent systems. Intelligenza Artificiale, 7(2):153–164.

[Ono et al., 2021] Ono, J. P., Castelo, S., Lopez, R., Bertini, E., Freire, J., and Silva, C. T.
(2021). Pipelineprofiler: A visual analytics tool for the exploration of automl pipelines. IEEE
Transactions on Visualization and Computer Graphics, 27(2):390–400.

[Ossowski, 2012] Ossowski, S., editor (2012). Agreement Technologies, volume 8 of Law, Gover-
nance and Technology Series. Springer Netherlands.

[Paulson, 2018] Paulson, L. C. (2018). Computational logic: its origins and applications. Pro-
ceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 474(2210).

[Pedregosa et al., 2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830.

[Peng et al., 2020] Peng, D., Dong, X., Real, E., Tan, M., Lu, Y., Bender, G., Liu, H., Kraft,
A., Liang, C., and Le, Q. (2020). Pyglove: Symbolic programming for automated machine
learning. Advances in Neural Information Processing Systems, 33:96–108.

[Perrone et al., 2021] Perrone, V., Donini, M., Zafar, M. B., Schmucker, R., Kenthapadi, K., and
Archambeau, C. (2021). Fair bayesian optimization. In Proceedings of the 2021 AAAI/ACM
Conference on AI, Ethics, and Society, pages 854–863.

[Pfisterer et al., 2019] Pfisterer, F., Thomas, J., and Bischl, B. (2019). Towards human centered
automl. arXiv preprint arXiv:1911.02391.

[Pisano et al., 2020] Pisano, G., Calegari, R., Omicini, A., and Sartor, G. (2020). Arg-tuProlog:
A tuProlog-based argumentation framework. In Calimeri, F., Perri, S., and Zumpano, E.,
editors, CILC 2020 – Italian Conference on Computational Logic. Proceedings of the 35th
Italian Conference on Computational Logic, volume 2710 of CEUR Workshop Proceedings,
pages 51–66, Aachen, Germany. Sun SITE Central Europe, RWTH Aachen University, CEUR-
WS.

198 BIBLIOGRAPHY

BIBLIOGRAPHY

[Pisano et al., 2021] Pisano, G., Calegari, R., Omicini, A., and Sartor, G. (2021). A mechanism
for reasoning over defeasible preferences in Arg2P. In Monica, S. and Bergenti, F., editors,
CILC 2021 – Italian Conference on Computational Logic. Proceedings of the 36th Italian
Conference on Computational Logic, volume 3002 of CEUR Workshop Proceedings, pages 16–
30, Parma, Italy. CEUR-WS.

[Podlaszewski et al., 2011] Podlaszewski, M., Caminada, M., and Pigozzi, G. (2011). An im-
plementation of basic argumentation components. In 10th International Conference on Au-
tonomous Agents and Multiagent Systems, volume 3, pages 1307–1308. International Founda-
tion for Autonomous Agents and Multiagent Systems.

[Prakken, 2005] Prakken, H. (2005). Ai & law, logic and argument schemes. Argumentation,
19(3):303–320.

[Prakken, 2010] Prakken, H. (2010). An abstract framework for argumentation with structured
arguments. Argument and Computation, 1(2):93–124.

[Prakken and Sartor, 1996] Prakken, H. and Sartor, G. (1996). A dialectical model of assessing
conflicting arguments in legal reasoning. Artificial Intelligence and Law, 4:331–68.

[Quemy, 2019] Quemy, A. (2019). Data pipeline selection and optimization. In DOLAP.

[Raschka, 2018] Raschka, S. (2018). Mlxtend: Providing machine learning and data science
utilities and extensions to python’s scientific computing stack. The Journal of Open Source
Software, 3(24).

[Rienstra et al., 2011] Rienstra, T., Perotti, A., Villata, S., Gabbay, D. M., and van der Torre,
L. W. N. (2011). Multi-sorted argumentation. In Modgil, S., Oren, N., and Toni, F., editors,
Theorie and Applications of Formal Argumentation – First International Workshop, TAFA
2011, volume 7132 of Lecture Notes in Computer Science, pages 215–231. Springer.

[Riveret et al., 2019] Riveret, R., Rotolo, A., and Sartor, G. (2019). A deontic argumentation
framework towards doctrine reification. Journal of Applied Logics—IfCoLog Journal of Logics
and their Applications, 6(5):903–940. Special Issue: Reasoning for Legal AI.

[Rotolo et al., 2015] Rotolo, A., Governatori, G., and Sartor, G. (2015). Deontic defeasible
reasoning in legal interpretation: Two options for modelling interpretive arguments. In Pro-
ceedings of the 15th International Conference on Artificial Intelligence and Law (ICAIL’05),
pages 99–108. ACM.

[Snaith and Reed, 2012] Snaith, M. and Reed, C. (2012). TOAST: online ASPIC+ implementa-
tion. In Computational Models of Argument, volume 245 of Frontiers in Artificial Intelligence
and Applications, pages 509–510. IOS Press.

[Srikant and Agrawal, 1995] Srikant, R. and Agrawal, R. (1995). Mining generalized association
rules.

[Srikant and Agrawal, 1996] Srikant, R. and Agrawal, R. (1996). Mining sequential patterns:
Generalizations and performance improvements. In International conference on extending
database technology, pages 1–17. Springer.

[Tan, 2017] Tan, H. (2017). A brief history and technical review of the expert system research.
IOP Conference Series: Materials Science and Engineering, 242.

[Toni, 2013] Toni, F. (2013). A generalised framework for dispute derivations in assumption-
based argumentation. Artificial Intelligence, 195:1–43.

BIBLIOGRAPHY 199

BIBLIOGRAPHY

[Toni, 2014] Toni, F. (2014). A tutorial on assumption-based argumentation. Argument &
Computation, 5(1):89–117.

[van Gijzel and Prakken, 2012] van Gijzel, B. and Prakken, H. (2012). Relating Carneades with
abstract argumentation via the ASPIC+ framework for structured argumentation. Argument
& Computation, 3(1):21–47.

[Vanschoren et al., 2013] Vanschoren, J., van Rijn, J. N., Bischl, B., and Torgo, L. (2013).
Openml: networked science in machine learning. SIGKDD Explorations, 15(2):49–60.

[Vartak et al., 2015] Vartak, M., Ortiz, P., Siegel, K., Subramanyam, H., Madden, S., and Za-
haria, M. (2015). Supporting fast iteration in model building. In NIPS Workshop LearningSys,
pages 1–6.

[Vasconcelos et al., 2002] Vasconcelos, W. W., Sabater, J., Sierra, C., and Querol, J. (2002).
Skeleton-based agent development for electronic institutions. In 1st International Joint Con-
ference on Autonomous Agents and Multiagent Systems: Part 2 (AAMAS ’02), pages 696–703,
New York, NY, USA. ACM.

[Vreeswijk, 1997a] Vreeswijk, G. (1997a). Abstract argumentation systems. Artif. Intell., 90(1-
2):225–279.

[Vreeswijk, 1997b] Vreeswijk, G. (1997b). Abstract argumentation systems. Artificial Intelli-
gence, 90(1–2):225–279.

[Walton et al., 2021] Walton, D., Macagno, F., and Sartor, G. (2021). Statutory Interpretation.
Pragmatics and Argumentation. Cambridge University Press.

[Walton et al., 2008] Walton, D., Reed, C., and Macagno, F. (2008). Argumentation Schemes.
Cambridge University Press, United Kingdom.

[Wang et al., 2021a] Wang, C., Wu, Q., Weimer, M., and Zhu, E. (2021a). Flaml: A fast and
lightweight automl library. Proceedings of Machine Learning and Systems, 3:434–447.

[Wang et al., 2021b] Wang, D., Andres, J., Weisz, J. D., Oduor, E., and Dugan, C. (2021b).
Autods: Towards human-centered automation of data science. In Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems, pages 1–12.

[Wang et al., 2020] Wang, D., Ram, P., Weidele, D. K. I., Liu, S., Muller, M., Weisz, J. D.,
Valente, A., Chaudhary, A., Torres, D., Samulowitz, H., et al. (2020). Autoai: Automating
the end-to-end ai lifecycle with humans-in-the-loop. In Proceedings of the 25th International
Conference on Intelligent User Interfaces Companion, pages 77–78.

[Wang et al., 2019a] Wang, D., Weisz, J. D., Muller, M., Ram, P., Geyer, W., Dugan, C.,
Tausczik, Y., Samulowitz, H., and Gray, A. (2019a). Human-ai collaboration in data sci-
ence: Exploring data scientists’ perceptions of automated ai. Proceedings of the ACM on
Human-Computer Interaction, 3(CSCW):1–24.

[Wang et al., 2019b] Wang, Q., Ming, Y., Jin, Z., Shen, Q., Liu, D., Smith, M. J., Veeramacha-
neni, K., and Qu, H. (2019b). Atmseer: Increasing transparency and controllability in auto-
mated machine learning. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems, pages 1–12.

[Wang et al., 2022] Wang, X., Hosseininasab, A., Colunga, P., Kadioglu, S., and van Hoeve, W.-
J. (2022). Seq2pat: Sequence-to-pattern generation for constraint-based sequential pattern
mining. Proceedings of the AAAI Conference on Artificial Intelligence, TBD(TBD):TBD.

200 BIBLIOGRAPHY

BIBLIOGRAPHY

[Wooldridge et al., 2005] Wooldridge, M., McBurney, P., and Parsons, S. (2005). On the meta-
logic of arguments. In Proceedings of the Fourth International Joint Conference on Au-
tonomous Agents and Multiagent Systems, pages 560–567, New York, NY, USA. Association
for Computing Machinery.

[Xin et al., 2018] Xin, D., Ma, L., Liu, J., Macke, S., Song, S., and Parameswaran, A. (2018).
Accelerating human-in-the-loop machine learning: Challenges and opportunities. In Proceed-
ings of the second workshop on data management for end-to-end machine learning, pages 1–4.

[Xin et al., 2021] Xin, D., Wu, E. Y., Lee, D. J. L., Salehi, N., and Parameswaran, A. G. (2021).
Whither automl? understanding the role of automation in machine learning workflows. In
CHI ’21: CHI Conference on Human Factors in Computing Systems, pages 83:1–83:16. ACM.

[Yaghini et al., 2021] Yaghini, M., Krause, A., and Heidari, H. (2021). A human-in-the-loop
framework to construct context-aware mathematical notions of outcome fairness. In Proceed-
ings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, pages 1023–1033.

BIBLIOGRAPHY 201

	Introduction
	Background
	Argumentation
	Meta-Argumentation

	Argumentation Technologies
	Abstract argumentation
	Structured argumentation

	Automated Machine Learning
	Towards Human-centered AutoML Approaches

	A Meta-Argumentation Framework
	Reasoning with Rules
	Reasoning with Conflicts
	Reasoning with Preferences
	Mixing Everything Together
	Reasoning with Burden of Persuasion
	Object-level argumentation
	Meta-level argumentation
	Burden of persuasion as meta-argumentation

	Optimising the Argumentation Resolution Process
	Structured Reasoning
	Distributed Reasoning
	The master-slave actor model

	Meta Burden of Persuasion

	Towards a General Argumentation Technology: Arg2P
	Components & Requirements
	The argumentation pipeline
	Requirements

	The Arg2P technology
	Arg2P as a 2P-Kt extension

	An Arg2P Instance: ASPIC and more
	Engine interface
	Language Parser
	Core modules
	Deontic rules and conflicts
	Burden of Persuasion
	The parallel library

	Legal Reasoning
	Meta-Argumentation for Interpretative Reasoning
	Computable Law via Arg2P
	Autonomous cars & Legal Reasoning
	More on legal reasoning
	Arg2P for Conformity Assessment of EU Regulations

	Beyond symbolic AI: Argumentation for ML
	Problem Formulation
	HAMLET
	Generation of Problem Graph and Search Space
	Exploration of a Constrained Search Space
	Knowledge Augmentation through Rule Recommendation

	Experimental Evaluation
	Effectiveness
	Efficiency

	Conclusions
	Bibliography

