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Abstract

The constant growth in the Unmanned Aerial Systems industrial sector, and the

perspective of new applications in various, operational scenarios pose a challenge

in the development of more performing and safe systems. In this context, crucial

importance will be the development of systems with higher emergency management

capabilities and enhanced control performance.

Within the wide panorama of the UAVs, the helicopter configuration, due to

features related to variable-pitch flapping rotor, is gaining an increasing interest

w.r.t traditional multirotors. Variable-pitch flapping rotor gives the helicopter, two

relevant advantages: a major cargo capability, and the possibility to perform the

autorotation maneuver, which represents a valuable resource for improving safety.

This is a safe landing maneuver, which is performed in the case of engine failure or

severe tail damage. During the autorotation, the helicopter reaches a steady descent

condition, where the rotor is driven by the impinging flow, and a negative collective

pitch is imposed.

The main objectives of this thesis are 1) the development of the automatic au-

torotation maneuver for a small-scale helicopter, and 2) the implementation of a

nonlinear dynamic controller, allowing precise reference attitude and velocity track-
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ing. The design of a suitable maneuver has been conducted by dividing the maneuver

into its two fundamental phases and analyzing the key variables to be considered and

controlled. In particular, all the possible steady descent conditions were calculated

with a trim algorithm, and a suitable flare profile was adopted and optimized. A

PID-based control architecture has been adopted to follow the nominal autorotation

maneuver in a closed loop. Several simulations have been considered to test the

maneuver for a wide range of different initial conditions.

Also, a nonlinear dynamic inversion controller made of an inner loop for attitude

stabilization and an outer loop for velocity control has been designed. The attitude

control systems has been derived by inverting a medium-order helicopter rotational

dynamics model, while for the velocity controller, a simpler translational dynamics

system has been developed. To ensure adequate control performance, an extended

Kalman filter allowing the estimation of the inflow ratio, has been developed and

implemented. An extensive simulation campaign has been conducted in order to

validate the controller in different flight maneuvers, including the autorotation.
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a0, a1, b1 Main rotor coning, longitudinal and lateral flapping angles in rotor-hub

system (rad)
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e Flapping hinge offset (m)
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is Main rotor longitudinal tilt angle (rad)

I Inertia matrix in body axes (kg/m2)

K1 Pitch-flap coupling ratio

Mβ Blade weight moment about the flapping hinge (Nm)
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Chapter 1

Introduction

1.1 Problem definitions and motivations

The use of unmanned aerial systems for civil applications in various operational

scenarios has been steadily increasing over the last two decades, especially for remote

sensing, and enviromental applications. In this respect, the use of this relatively

novel class of vehicles is already rather common in agriculture [28], construction

sites [29, 31, 51], airports [14, 48, 49] and in many other contexts where their use

provides an advantage over traditional piloted vehicles in terms of cost reduction and

effectiveness, such as inspections, monitoring, environmental control and protection,

remote sensing, mapping services, and, in a nowadays near future, parcel delivery.

With the rapid growth of the applications, the need to guarantee publicly accept-

able levels of safety immediately became one of the most relevant issues for regulatory

authorities. If the UAS eliminates risks and dangers for the pilot on board, still high

risk is present for everything in the flight areas and on the ground (things and people)

with the related potential material and human damages. The possibility of further

1



1.1. Problem definitions and motivations 2

future developments, especially for larger autonomous aerial vehicles for transport

and urban air mobility, is strictly related to their reliability, and capabilities to han-

dle emergency situations. Thus safety standards shall be required for operating such

vehicles over populated areas.

Several studies have already carried out trying to define risk evaluation models

and risk mitigation techniques. The flight risk in these studies is a function of the

flight context (surrounded area characteristics, mission features,etc). In Ref. [4] the

risk on the ground is evaluated for a given trajectory, as a function of the popu-

lation density, the vehicle reliability, and the time of flight over a specific position.

Ref. [48] addresses the problem of collision risk for UAS operating in the airport

environment, defining a collision risk model able to introduce alert zones based on

a probabilistic conflict map. Ref. [42] compare different safety evolution models

applied to a real mission case. Several studies have also highlighted how to mini-

mize the risk avoiding dangerous areas [37] or improving vehicles’ maneuverability

and emergency-management capabilities. To this aim, the approaches to improve

vehicles safety shall include the following two aspects: i) the vehicle intrinsic safety

improvement, i.e. the study of configurations and control systems capable of making

the flight as stable and safe as possible, and, ii) the possibility of concentrate on

effective emergency management. As a result, a great effort is put in studying of ad-

vanced guidance systems ensuring obstacle detection and collision avoidance during

the flight [17, 32, 35, 44].

A crucial role is also played by the GNC technologies allowing for the real-time

tracking of planned trajectories [16, 45], and the automatic and autonomous systems
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[6].

In this context, the main purpose of the present thesis is the study, implemen-

tation and validation of the automatic helicopter autorotation maneuver, allowing

the aircraft to safely land after the engine failure. In particular, the following two

objectives have been addressed:

• The design and simulation of the automatic autorotation maneuver, by taking

into account constraints on initial conditions

• The implementation of an advanced control system based on the nonlinear

dynamic inversion technique (NDI)

For such activities, a model-based design approach has been adopted. Starting from

the mathematical model of the helicopter dynamics, a simulation environment has

been realized. Other simplified models have also been considered for the optimization

of the autorotation maneuver, for the design of the NDI controllers, and for the

development of an extended Kalman filter for the mean inflow ratio estimation.

The automatic autorotation maneuver was studied, firstly investigating the key

variables for the autorotation steady conditions, then with an off-line design of a

nominal maneuver, and finally through the design, implementation, and simulation

of a control system to perform this maneuver. The objective was to obtain a control

system to perform an automatic autorotation maneuver after a powerplant failure.

The system should bring the helicopter to the ground with acceptable residual ve-

locity avoiding crashes. No constraints were considered on the final position of the

helicopter.
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The NDI approach has been selected because it may garantee increased perfor-

mance in the case of complex dynamic systems. The proposed control architecture

is a classical nested-loop structure, where the inner loop allows the attitude stabi-

lization, whereas the outer loop provides the tracking of a commanded velocity. An

extended Kalman filter for the inflow estimation has been implemented since NDI

controller depends on the system state feedback.

1.2 The helicopter platform

Common UAVs scenarios include operations within unprepared or confined sites,

such as urban spaces, high mountain environments, natural canyons, forests, naval

ships, etc. Such scenarios require vertical takeoff/landing, hovering, and longitu-

dinal/lateral flight capabilities. This makes the helicopter configuration a suitable

candidate platform. Besides its maneuverability, the advantages of the helicopter

configuration, with respect to classical multirotor configurations, are strictly related

to the presence of a pitch variable flapping rotor. This characteristic determines

higher cargo capabilities, especially when compact dimensions are required. More-

over, helicopters generally present wider flight envelope thus wider flight possibilities.

An additional and crucial advantage is the possibility of the autorotation maneuver.

Since other emergency safety systems, as parachutes [18, 31], are less common and

less suitable for helicopters, the autorotation maneuver become a relevant resourche

to improve their reliability. Unfortunately, from the flight safety point of view, the

main limit is given by their natural instability. This made them more difficult to

stabilize and control, posing the necessity of continuous research on control systems.
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Mini-UAVs helicopters are commonly upgraded from Remote-Controlled (RC)

hobby helicopters, by assembling an avionics suite. The role of this avionics suite

is to collect and integrate various measurement signals, drive the actuators, provide

communications with a Ground Control Station (GCS), and support real-time op-

erations of automatic/autonomous flight control laws. From a control system point

of view, helicopter systems can be characterized as Multiple-Input Multiple-Output

(MIMO), under-actuated, nonlinear, and unstable dynamics. When compared to

their full-size helicopter counterparts, or even to larger-size helicopter UAVs, small

scale helicopter UAVs feature an increased power-to-mass ratio, an increase in stiff-

ness of the main rotor assembly, and a higher torque-to-inertia ratio. Consequently,

they are much more agile at the cost of higher levels of dynamics coupling and

instability [34].

A brief description of the helicopter’s main characteristics and flight is given in

the following. As with all flying systems, an equilibrium between all the forces acting

on the helicopter is what determines the flight. As visible in Fig. 1.1 three are the

main forces acting on the helicopter: the thrust T , the drag D, and the weight W .

The thrust is given by the main rotor aerodynamics and has the role of: i) overcoming

the drag with its horizontal components to guarantee the advancing motion and ii)

equilibrating the weight with its vertical component to make the system fly. The

thrust originates from the descendent airflow induced by the rotor movement; the

drag is a rearward force caused by the disruption of airflow by the moving rotors and

vehicle.

In a standard helicopter configuration, a small tail rotor is mounted at the end of
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Figure 1.1: Scheme of the main forces and moments on the helicopter

the tail boom to produce a lateral thrust Ttr. This force generates a moment about

the helicopter center of mass equilibrating the aerodynamic torque Q generated by

the movement of the main rotor in the air.

The main characteristic of the helicopter is the flapping dynamics of the rotor

blades. In the rotation around the rotor shaft, the blades generate a rotor disk

or, more properly, a rotor cone (Fig. 1.2). This is due to the equilibrium estab-

lished, for every single blade, around the rotor hub between the moments due to

the blade weight, the aerodynamic lift and the centrifugal force. The inclination

of the rotor cone depends on the flapping coefficients, namely the coning angle a0,

and the longitudinal and lateral flapping angles a1 and b1. If these angles change,

even the direction of the thrust is modified. The helicopter control is based on the

idea of changing the rotor thrust inclination to obtain different forces and moments
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Figure 1.2: Flapping angles in the longitudinal plane

equilibrium, and then different flight conditions.

The manned helicopters have four separate flight control inputs, which allow for

control of the attitude roll, pitch, and yaw angles. The controls are known as main

rotor collective, main rotor longitudinal cyclic, main rotor lateral cyclic, and tail

rotor anti-torque pedals. These pilot inputs are, in manned helicopters, connected

to the main rotor swash plate and the tail rotor pitch lever, which are the final parts

of the command chain of the system. In unmanned helicopters, all the actuators are

servos, and, since there is no reason to talk about “pedals”, the tail rotor command

is simply called tail rotor pitch. The main rotor collective changes the pitch angle of

all main rotor blades collectively, and independently of the blade rotational position.

Through the collective, one can increase or decrease the total thrust derived from the

main rotor. On the other hand, the main rotor cyclics change the pitch angle of the

main rotor blades cyclically, i.e. the pitch angle of the rotor blades change depending
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upon their position, as they rotate around the main rotor hub. A representation of

the main rotor shaws-plate is reported in Fig. 1.3: here the blade incidence varies

moving the pitch levers which tilt the swash plate that is connected to the rotor hub

through the pitch links. The swashing plate is composed of a lower non-rotating

part, connected to the pitch levers, and an upper rotating part connected to the

blades. The pitch levers are, in turn, connected to a mixing unit which receives

the pilot input by a further chain (for the manned helicopters) or by servos which

are commanded by the board computer according to remote controls and/or control

systems algorithms.

The pitch angle of every single blade varies during the rotation around the hub

as a function of the azimuth ψbl according to:

θ(ψbl) = θ0 − A1s cosψbl −B1s sinψbl (1.1)

where θ0 is the main rotor collective pitch and is imposed with a vertical movement

of the swash plate, while A1s and B1s are the lateral and longitudinal cyclic pitches

which tilt the swash plate. The fourth command of the helicopter, the tail rotor

pitch is denoted by θtr. Note that the longitudinal pitch A1s is defined to make the

swashing plate tilt laterally while the lateral pitch B1s tilts the swashing plate lon-

gitudinally (Fig. 1.4). This is because, due to the flapping dynamic characteristics,

an approximately 90° phase shift is established between the swashplate and the rotor

cone orientations.

The primary effects of the four commands are briefly listed here:
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Figure 1.3: Swash plate

• the main rotor collective θ0 is used to module the rotor thrust and to act on

the equilibrium along zb

• the lateral pitch A1s primarily induces a roll moment to the hub tilting the

rotor disk laterally

• the longitudinal pitch B1s primarily induces a pitch moment to the hub tilting

the rotor disk longitudinally

• the tail rotor pitch θtr is used to module the tail rotor thrust to equilibrate the

yaw moment due to the main rotor aerodynamic torque or to generate a yaw

moment

During nominal flight conditions, the rotor angular rate is kept constant at the
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Figure 1.4: Pitch commands at the rotor hub
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nominal value by the governor system.

One of the most important characteristics to classify the helicopters is the main

rotor hub hinge system. In the case of a fully articulated main rotor system, each

rotor blade is attached to the rotor hub through a series of hinges, which allow each

blade to move independently of the others. For the case of a full-size helicopter,

the flap hinge allows the blade to move in a plane containing the blade and the

rotor shaft; the lag hinge allows the blade to move in the plane of rotation; whereas

the pitch hinge allows the blade to rotate about its pitch (feathering) axis. Small-

scale helicopters rotor hubs typically include a pitch hinge near the shaft and a

lead-lag hinge further out, with stiff rubber rings often replacing the flap hinge in a

hingeless flap mechanism. For the purpose of helicopter flight dynamics modeling,

it is standard practice to model a hingeless rotor (and its flexible blades) as a rotor

having rigid blades attached to a virtual hinge, this latter being offset from the main

rotor axis. This virtual hinge is often modeled as a torsional spring with its stiffness.

1.3 The autorotation maneuver

Autorotation is the helicopter emergency landing maneuver. It is performed in the

case of engine failure and may allow the safe landing of rotorcraft. During the

autorotation, the rotor saves its kinetic energy, and its thrust capability, exploiting

the impinging flow derived by the descent. In full-scale helicopters the collective

pitch is set to its minimum value and, due to the blades washout, the rotor disk

preserves a lifting region keeping a controlled descent. This aerodynamic condition

is called wind-mill state. When a certain altitude has been reached, approaching
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the ground, a proper collective command and a slight positive longitudinal input are

used to exploit the residual energy in order to decelerate the vehicle. For manned

helicopters, the autorotation is a critical maneuver requiring training and experience

for the pilot. Normally, autorotation is not considered for unmanned rotorcrafts;

small-scale platforms are equipped with a shut-off system as a safety measure in the

case of control and/or power loss.

Nonetheless, for future scenarios related to urban mobility and delivery, where

UAVs are supposed to operate over populated areas, the risk of uncontrolled crashes

cannot be accepted. As a matter of fact, the use of these systems in a residential

environment or in a work/construction site exposes people to health risks. Also, a

catastrophic failure of the aircraft may cause an economic damage in the case of the

loss of an expensive payload. In this context, the capability of an UAV helicopter

to perform the autorotation maneuver becomes a valuable resource for improving its

reliability. The problem of manned helicopter autorotation has been widely addressed

and a large number of papers can be found in the scientific literature. On the

contrary, autorotation for UAVs is relatively a new topic and it’s gaining an increasing

interest among the control system community. The optimal trajectory to minimize

touch-down velocity has been evaluated in Ref. [22] by considering a very simple

model of the vertical dynamics of the helicopter. Similar optimal approaches, with

a more complex cost functions and dynamics models, have been considered in Ref.

[5, 24, 33] whereas in Ref. [43] an optimal trajectory and control system for the

tracking have been evaluated. In Ref. [27] the dynamic characteristics of a mixed

rotor-wing aircraft during autorotation have been investigated.



1.4. Introduction on the helicopter control 13

Addressing autorotation trajectory design with open loop optimal techniques

provides effective solutions but, at the same time, they are strongly affected by

initial conditions, disturbances, and model errors. Therefore, the automatic tracking

of such trajectories requires online systems to continuously run the optimal algorithm,

leading to a large computational burden. Moreover, closed-loop effective tracking is

achieved when the reference trajectories are simple functions of a few key measured

states, while the optimal solutions are commonly more complex functions. This

would introduce the need for simplifying these solutions, going through sub-optimal

trajectories. For the purpose of the present work, a simpler approach has been

preferred by focusing on the simplicity, robustness, computational cheapness, and

in-flight trackability of the reference trajectory.

The autorotation maneuver has been first divided and studied into its main

phases, then the design of a suitable nominal maneuver has been conducted and

a proper control strategy has been developed to follow the designed pattern online.

Finally, several simulations have been done to test the quality and efficiency of the

designed maneuver and the control system. The maneuver has also been simulated

with an alternative control system based on the nonlinear dynamic inversion tech-

nique.

1.4 Introduction on the helicopter control

The continuous development of unmanned aerial systems, and the challenges arising

from the new applications, make the theme of control one of the main fields of re-

search. Particular effort is put to increase the agility of these vehicles and, at the
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same time, to ensure their safety. The interest in these themes is widespread in the

academic as in the industrial field. Several possibilities are offered by scientific liter-

ature for controlling helicopters. Most of the techniques are based on nested control

logics in which the inner control loop is used to stabilize the attitude dynamics, while

the outer loop follows a commanded velocity. The traditional and simplest approach

is given by the linear control, namely the use of PID logic. A decoupling is hypoth-

esized and every single axis dynamics is studied considering linearized models. A

SISO (single input -single output) model is adopted for the control synthesis. More

elaborated models are used in the MIMO (multi input - multi output) approach. in

this case, multivariable control theories have been elaborated to take into account

the combined dynamic effect of the state variables. Several linear and nonlinear

multivariable control techniques have been developed and tested in the last decades.

One of the main categories is the Optimal control. Examples of helicopters con-

trolled with Optimal approaches can be found in Ref. [20, 36, 43]. Advanced control

techniques are represented by nonlinear control. In nonlinear control, the plant is

described by more complex models, and the control system is developed considering

its nonlinearities and trying to reduce their effects. The major advantage of nonlinear

control, and its main motivation, is related to the possibility of:

• fully exploits the physical capabilities of the aircraft;

• fully exploits the control capabilities (actuators capabilities);

• fully exploits the flight envelope;

• ensures higher robustness of the system to model uncertainties and component
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failures

Within the nonlinear control, particular interest has been put, in this thesis, on the

nonlinear dynamic inversion control NDI. In this kind of technique, the control action

is elaborated by inverting a nonlinear dynamic equation of the system. The inputs

from the pilot, or from a navigation system, are given to a reference dynamics which

is used to generate reference accelerations. These accelerations are, in turn, used to

calculate the control action on the system. The effect is to cancel the nonlinearities

of the systems imposing a desired reference dynamics. Several applications of this

technique can be found in the full-scale fixed aircraft control [50, 52], for UAVs

applications [1, 47], and in the space sector [15, 30].

1.5 Contributions

Objectives of this thesis were the study and design of the automatic autorotation

maneuver for a small-scale helicopter and the development of a controller based on

nonlinear dynamic inversion. Main contributions are reported in the following:

• the study of the autorotation steady descent conditions has been addressed by

solving a trim algorithm that includes the equilibrium around the rotor shaft.

The key variables and their role have been highlighted and discussed;

• the design of the flare profile has been conducted considering the implementabil-

ity for on-board systems as a main requirement;

• the NDI controller for a small-scale helicopter has been developed inverting a

medium-order dynamic model;
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• An inflow ratio estimation algorithm has been developed using an extended

Kalman filter where the fictitious measure is obtained measuring the helicopter

accelerations and inverting a reduced order model of the rotor thrust.

1.6 Overview of the thesis

In this section an overview of the chapters contents is given. In chapter 2 the math-

ematical model for the helicopter dynamics, used for simulations is described. Some

brief comment is also given on the several possible modeling accuracy levels and their

typical applications. Some physical insight is also given for the main rotor inflow

dynamics and flapping dynamics. In chapter 3 the offline design of the autorotation

maneuver is performed. In particular, the first phase describes the calculation of the

steady descent conditions with a trim algorithm, while the second part is dedicated to

the flare profile design and optimization. Chapter 4 reports the classical controllers

used for the attitude control and the PID based logic adopted for the automatic

autorotation phases. In chapter 5 the NDI controller is described, first giving a brief

general introduction and then applying the theory to obtain the attitude and velocity

controller. Finally chapter 6 contains the main simulation results.



Chapter 2

Helicopter mathematical model

2.1 Helicopter modeling

The development of mathematical models, capable of describing the most relevant

features of flying systems, is a fundamental need in several industrial and research

branches of the aerospace sector, especially when a model-based approach is adopted.

Depending on the model particular degree of reliability, which is in turn a function of

the its complexity and its integration with the vehicle’s data, the obtained simulation

environment can be used for several tasks: from the flight performance analysis, to

the dynamic characterization of the system, until the possibility of a platform for

the design and simulation of control systems. The latter use is the main scope of the

models implementation done in this work.

From a historical point of view, the development of helicopter models has been

based on relatively simple analytical methods until the development of computers.

After that, with the increasing computational power of computers and numerical

techniques, higher levels of modeling have been developed for the description of flex-

17
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ible blade dynamics and aerodynamic loads. Recent developments have led to full

coupling of CFD (computational fluid dynamics) and CSD (computational structure

dynamics) methods for the analysis of blade operating conditions, vibrations, and

aeroacoustic. Due to their complexity, these kind of model results not suitable for

flight mechanics analysis, especially in the first design phases, since their compu-

tational costs prevent direct dynamic simulations where fast solutions are required.

In the field of flight mechanics and dynamics added application of these models is

the validation of lower-order models when flight or wind tunnel data is not avail-

able. Besides their computational cheapness, low-order models have also at least

two additional advantages: first, the direct relations between system parameters and

variables, make these models smart tools to gain physical insight into rotorcraft be-

havior; second, they result suitable even for the development of control laws, which

are usually based on very simple (most of the time linear) models.

Two different strategies are possible in the development of low–order rotorcraft

mathematical models: building the models from first–principles (i.e. from physical

laws), or identifying the model from flight–data. The identification approach is

possible only when the system to be modeled is available or requires the development

of large databases based on the design experience of a particular company or group.

Limited exceptions to these problems are subsystem models (e.g. engine model) or

blade profile or fuselage aerodynamic models. In these cases, data may be available

provided that tests were performed for previous use of these components.

In the perspective of a first-principle model, several levels of complexity and ac-

curacy can again be recognized. A wide literature exists on the modeling approaches
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and numerical techniques for the analysis of the helicopters performance and dynam-

ics. A simplified static analysis is given in Bramwell [7] which provides also closed

formulas for the main rotor aerodynamic forces. Slightly more detailed models are

described by Padfield [19], which introduces an equivalent hinge stiffness located at

the rotor centre, and Johnson [23], Prouty [39], Arra [2], and Leishman [26] where

more extensive use of blade element theory is applied. Particular attention is put on

the tip-path-plane (TPP) dynamics and the rotor loads transmitted to the fuselage.

Correction factors are also added in these textbooks to improve the model-to-reality

performances agreement. Heffley and Minch [21] propose a minimum complexity

mathematical model for the flight simulation of conventional helicopters. Flapping

dynamics is here described by a first order dynamics for longitudinal and lateral TPP

tilt angles, whereas coning is assumed constant. A uniform static inflow is used and

rotor inplane forces are determined by thrust tilt only.

In a series of reports, Chen et al. [11, 12, 46] propose a mathematical model for

both articulated and teetering rotors. The flapping follows a tip path plane repre-

sentation, where the flapping angles distribution over the rotor disk is a first-order

harmonic series with time-variant coefficients. These coefficients follow a second or-

der linear dynamics. Linear aerodynamics is used to evaluate blade loads so that

average rotor force and moment can be evaluated analytically by integrating aerody-

namic and inertial loads along the blade span and over one rotor revolution. Static

uniform inflow is here used. This latter model, with a slightly more complex inflow

representation, has been selected in this work for the helicopter dynamics simulation.

Further complexity is reached in Tamallah [43], where the aerodynamic loads from
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the main rotor are obtained by integrating the blade element force over the blade

span at every time step. Here lag dynamics and flapping dynamics is considered for

every single blade whereas a first-order harmonic series with time-variant coefficients

is used to model the inflow ratio over the rotor disk.

The model complexity largely depends on three main points: the dynamics of the

rotor, the aerodynamics of the rotor (blades and rotor aerodynamics, inflow, wake

models) and the rotor-fuselage interaction. Main level of modellation, for the main

rotor, as defined in Ref. [19], are reported in Tab. 2.1.

2.2 Assumptions

The scope of this section is to illustrate the mathematical model used for the dy-

namic simulation of a hinge-less flybar-less small-scale helicopter, adopted for the

development and test of the automatic autorotation maneuver. The selected heli-

copter model is given by a 11 degrees of freedom non-linear dynamic system. The

forces delivered by the rotors are obtained considering linear aerodynamics applied

to the blade element theory. Aerodynamic loads on each blade are evaluated accord-

ing to a simple strip theory with a unitary tip-loss factor, neglecting compressibility

and stall effects. Blades are considered rigid and a linear twist θt along their span

is assumed. An equivalent hinge stiffness Kβ is added to consider the rigidity of the

hinge-less rotor hub of the typical small-scale helicopter. A simplified model for the

ground effect is considered whereas the presence of a reverse flow region is neglected.

The forces and moments delivered by the main and tail rotors are obtained in closed

formulas by integrating the blade-element loads on the blade span and one revolution
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Level 0 Aerodynamics linear airfoil aerodynamics
static uniform inflow with momentum theory
analytically averaged aerodynamic loads

Dynamics rigid blades, steady-state flapping, multi–blade coordinates
Level 1 Aerodynamics linear airfoil aerodynamics

dynamic inflow with momentum theory
analytically integrated aerodynamic loads

Dynamics rigid blades featuring:
1) quasi-steady motion
2) flap dynamics
3) flap+lag dynamics
4) flap+lag dynamics and quasi-steady torsion

Level 2 Aerodynamics nonlinear airfoil aerodynamics with (limited) 3-D effects
dynamic inflow with momentum theory
local effects of blade–vortex interaction
2-D unsteady aerodynamics and compressibility effects
numerically integrated aerodynamic loads

Dynamics rigid blades featuring flap+lag dynamics
low–order elastic bending and torsional blade models

Level 3 Aerodynamics nonlinear 3-D aerodynamics with full wake analysis
unsteady aerodynamics and compressibility effects
numerically integrated aerodynamic loads

Dynamics detailed structural representation with elastic modes or
finite elements

Table 2.1: Levels of rotor modelling
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around the rotor.

The subsystems considered in the evaluation of the moments and forces acting

on the system are the main rotors, the tail rotor, and the fuselage. No vertical or

horizontal surfaces have been modeled due to the limited effect they have on the flight

dynamics of small-scale helicopters. The complete helicopter forces and moments,

as the flapping dynamics model, can be found in Ref. [11, 12, 46] whereas the main

reference for the inflow model is Ref. [38].

2.3 Reference frames

Under the assumption of rigid helicopter fuselage in motion with respect to a flat,

non-rotating Earth, an approximation of an inertial frame is provided by a North-

East-Down frame, Fe = {O, xe, ye, ze}, centered in an arbitrary point O of the Earth

surface, whereas a body-frame Fb = {G, xb, yb, zb} is chosen to represent the motion

of the rotorcraft. The origin of Fb is located in the centre of mass G of the rotorcraft,

which also represents its position OG = re = (xe, ye, ze)
T . Although a helicopter

is a non-symmetric vehicle, it is possible to identify a longitudinal plane, with xb

pointing towards the front of the fuselage, zb perpendicular to xb in the longitudinal

plane, pointing downwards, and yb, normal to the longitudinal plane, completing a

right-handed triad. A local-vertical frame Flv = {G, xlv, ylv, zlv} is also considered

for guidance tasks. This frame is equivalent to the NED frame rotated around the

ze axis to follow the vehicle heading.

Other local frames are introduced for the main rotor moments and forces descrip-

tion. In particular, an hub-body frame Fh = {H, xh, yh, zh} is centered to the main
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rotor hub H and it is obtained rotating the body frame around the yb such that zh

follows the rotor shaft direction. The hub-wind frame Fhw = {H, xhw, yhw, zhw} is in

turn obtained rotating the hub-body frame around the zh to align xhw to the rotor

disk in-plane wind component.

The main matrices for the frame transformations are reported in the following.

The trigonometric functions are somewhere abbreviated as c = cos, s = sin, t = tan.

The symbol is it is used for the longitudynal shaft tilt angle, while βw is the sideslip

angle in the rotor disk plane.

body to NED matrix

Teb =


c θ c ψ cψ s θ s ϕ− c ϕ sψ s ϕ sψ + c ϕ c ψ s θ

c θ s ψ c ϕ c ψ + s θ s ϕ sψ c ϕ s θ s ψ − c ψ s ϕ

−s θ c θ s ϕ c θ c ϕ

 (2.1)

body to local-vertical

Tlv b =


c θ s θ s ϕ c ϕ s θ

0 c ϕ −s ϕ

−s θ c θ s ϕ c θ c ϕ

 (2.2)
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body to hub-body matrix

Thb =


cos is 0 sin is

0 1 0

− sin is 0 cos is

 (2.3)

hub-body to hub-wind matrix

Thwh =


cos βw sin βw 0

− sin βw cos βw 0

0 0 1

 (2.4)

2.4 State variables and commands

The state and command vectors of the system are reported below:

x = [ re; Vb; Ξ; ωb; a; ȧ; Ω; λi ]

u = [ θ0; A1s; B1s; θtr ]
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where:

re = [xe; ye; ze ] vehicle position in earth-fixed frame

Vb = [ub; vb; wb ] velocity in body frame

Ξ = [ϕ; θ; ψ ] Euler angles

ωb = [ p; q; r ] angular rates in body frame

a = [ a0; a1; b1 ] coning, longitudinal and lateral flapping angles

ȧ =
[
ȧ0; ȧ1; ḃ1

]
coning, longitudinal and lateral flapping angles time derivatives

Ω main rotor angular rate

λi main rotor induced inflow ratio

and

θ0 collective pitch

A1s lateral pitch

B1s longitudinal pitch

θtr tail rotor pitch

The state variables of the system include the global system variables and some im-

portant local variables for the main rotor whereas the command vector is made up

of main rotor collective, lateral and longitudinal pitch, and tail rotor collective pitch.
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2.5 Kinematics equations

The attitude of the rotorcraft is expressed by means of Euler Angles ϕ, θ, ψ which

vary in time as a function of ωb as follows:
ϕ̇

θ̇

ψ̇

 =


1 sinϕ tan θ cosϕ tan θ

0 cosϕ − sinϕ

0 sinϕ
cos θ

cosϕ
cos θ



p

q

r

 (2.5)

or in a contracted form:

Ξ̇ = Rωb

The velocities in NED frame are written as function of Euler angles and velocities

in body frame:


ẋe

ẏe

że

 =


c θ c ψ cψ s θ s ϕ− c ϕ sψ s ϕ sψ + c ϕ c ψ s θ

c θ s ψ c ϕ c ψ + s θ s ϕ sψ c ϕ s θ s ψ − c ψ s ϕ

−s θ c θ s ϕ c θ c ϕ



ub

vb

wb

 (2.6)

or contracted

ṙe = TebVb

2.6 Translational and Rotational dynamics

The helicopter equations of motion are obatined under the hypothesis of rigid body:

V̇b =
Fb − ω × Vb

m
(2.7)
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ω̇b = I−1(Mb − ωb × Iωb) (2.8)

The total moment and force are given summing up all the contributions of the heli-

copter subsystems, namely the main rotor, tail rotor and fuselage:

Fb = Fb,mr + Fb,tr + Fb,f +Wb (2.9)

Mb = Mb,mr +Mb,tr +Mb,f (2.10)

The weight force Wb in the body frame is reported below:

Wb = mg


− sin θ

sinϕ cos θ

cosϕ cos θ

 (2.11)

Detailed expressions of other components can be found in the following subsections.

Complete derivation of the subsystems forces and moments is reported in Ref. [11, 46]

2.6.1 Clockswise correction factor for main rotor and tail rotor models

Main helicopter model adopted in this work has been developed in Ref. [11, 12, 46].

These works considered only counter-clockwise rotors. A correction factor χ is here

introduced according to Ref. [13] for the case of clockwise rotors. In particular, the
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following matrices Π1 and Π2 will be found in the following sections:

Π1 =


1 0 0

0 χ 0

0 0 1

 (2.12)

Π2 =


χ 0 0

0 1 0

0 0 χ

 (2.13)

where χ = 1 for the counter-clockwise rotor and χ = −1 for the clockwise rotor.

2.6.2 Main rotor moments and forces

The total air velocity hitting the helicopter, written in body axes is given by:

V air
b = Vb − Tbe Vw (2.14)

where Vw is the wind velocity with respect to the ground in NED frame. Transforming

V air
b in the hub-body frame it is possible to obtain the air velocity needed for the

calculation of the main rotor aerodynamic forces:

Vh = Π1

(
Thb
(
V air
b + ωb ×GH

))
= [uh; vh;wh ] (2.15)
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where GH = rh is the hub position vector in the body frame. Also the angular rate

can be written in the hub system:

ωh = Π2 (Thb ωb) = [ ph; qh; rh ] (2.16)

We also define the advance ratio µ and the inflow ratio λ as:

µ =

√
u2h + v2h
ΩR

(2.17)

λ =
wh − vi
ΩR

= µz − λi,0 (2.18)

where vi is the mean induced velocity of the rotor. The local sideslip βw and the

rotor wake angle χ are instead defined as:

βw = arctan
vh
uh

(2.19)

χ = arctan
µ

λ
(2.20)

The main rotor presents three main active aerodynamic forces: the thrust T , the

horizontal rotor drag force H (opposite to xh when the helicopter advances) and the
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lateral force Y . Their expression in the hub-wind reference frame are:

T =
1

2
Nb ρClα cR (ΩR)2

{
1

2

(
1− ε2

)
λ+ θ0

[
1

3
+
µ2

2
(1− ε)

]
+ θt

(
1

4
+
µ2

4

(
1− ε2

))
− µ

2

(
1− ε2

)
(B1c −K1 b1)− a0

[
1

3
+
µ2

2
(1− ε)

]
K1 + a1

µ

2
ε (1− ε)− ȧ0

Ω

(
1

3
− ε

2

)
+
ḃ1
Ω

µ

4
(1− ε)2 +

µ

4

(
1− ε2

) (ph
Ω

cos βw +
qh
Ω

sin βw

)}
−Nb

Mb

g
ä0

(2.21)

CT =
T

ρπR4Ω2
(2.22)
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Hw =
1

2
Nb ρClα cR (ΩR)2

{
δ µ

2Clα

(
1− ε2

)
− 1

4
(θ0 −K1 a0)

[
2λµ (1− ε)− µ (1− ε)2

ȧ0
Ω

−
(
ε− 2

3

) (
ḃ1
Ω

− a1

)
− 2

3
a1 +

2

3

(pH
Ω
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(
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3
− 1
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+

1

4
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[
−b1

µ

4

(
1− ε2

)
+
1

4
µ (1− ε)2

(
ȧ1
Ω

+ b1

)
+

2

3
a0 +

µ

4
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1− ε2

) (
−pH
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sin βw +

qH
Ω

cos βw
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+

1

4
(B1c −K1 b1)

[
3

4
µ (1− ε)2

(
ḃ1
Ω

− a1
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+
(
1− ε2

) (
λ− a1

µ

4
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+

(
ε− 2

3

)
ȧ0
Ω

+
3

4
µ
(
1− ε2

) (pH
Ω
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qH
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+
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1

4

(
ε (1− ε)

(
ḃ1
Ω

− a1

)
4λ

−
(
1− ε2

) (
2λ

(
ḃ1

Ω
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−
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2

3
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) (
a1
ȧ0
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(
ȧ1
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3
a0

(
−pH
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qH
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(
2
(
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1

3
− ε

2
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ȧ0
Ω
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Ω

cos βw
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qH
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)
+ 4

ȧ0
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(
ḃ1
Ω

− a1

) (
1

3
− ε+ ε2

)]
+
µ

4

[
ε (1− ε)

(
a1

(
ḃ1
Ω

− a1

)

+b1

(
ȧ1
Ω

+ b1

))
+

1

4
(1− ε)2

(
b1

(
ȧ1
Ω

+ b1

)
+ a1

(
ḃ1
Ω

− a1
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− 1

2
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1− ε2

) (
a1

(
ḃ1
Ω

− a1

)
+ b1

(
ȧ1
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(2.23)
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}
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The aerodynamic moments around the hub, in the hub-wind axis are:
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(2.25)

Lw =
Nb

2

[
Kβ b1 −

eMβ

g

(
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2
)]

− Nb

2
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(2.26)
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Q =
Nb

2
ρClα cR

2 (ΩR)2
{

δ

4Clα

[
1 +

(
1− ε2

)
µ2
]
− (θ0 −K1 a0)

[
λ

3
+

(
ε

3
− 1

4

)
ȧ0
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ȧ0
Ω

+
µ

8

ḃ1
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(2.27)

In the latter expression the equivalent rotor drag coefficient δ is introduced. It

can be evaluated as:

δ = 0.009 + 0.3

(
6CT
Clα σ

)2

The terms a0, a1, b1 and their time derivatives ȧ0, ȧ1, ḃ1 refer to the flapping coeffi-
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cients. Flapping dynamics is detailed in section 2.7.

The longitudinal and lateral pitch appear in the aerodynamic forces in hub-wind

coordinates:

A1c = χA1s cos βw −B1s sin βw (2.28)

B1c = χA1s sin βw +B1s cos βw (2.29)

To obtain the main rotor forces and moments in the body axis reference frame,

starting from the previous results, three transformations need to be done:

• rotation from the hub-wind to the hub-body frame

• rotation from the hub-body to the body frame

• transport moments from the hub-body to the body frame

Forces and moments in the hub-wind frame are:

Fhw = [−Hw Yw − T ]t (2.30)

Mhw = [Lw Mw − ξ Q]t (2.31)

where ξ is the free-wheel coefficient which is null during autorotation and 1 during

the normal flight. It is added to takes into account that, thanks to the free wheel

mechanism no aerodynamic torque is discharged on the fuselage when the engine is
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slower than the rotor. Main rotor forces and moments in the body frame are then:

Fb,mr = Π1 Tbh Thw Fhw (2.32)

Mb,mr = Π2 Tbh ThwMhw +MGH Fb,mr (2.33)

where the transformation matrices have already been defined in section 2.3 and

MGH =


0 −zh yh

zh 0 −xh

−yh xh 0

 (2.34)

2.6.3 Tail rotor moments and forces

The air velocity hitting the tail rotor is

Vtr = Π1

(
V air
b + ωb ×GHtr

)
= [utr; vtr;wtr ] (2.35)

where GHtr = rtr is the tail rotor position in the body frame. The tail rotor advance

ratio µtr and the inflow ratio λtr are defined as:

µtr =

√
u2h + w2

h

Ωtr Rtr

(2.36)

λtr =
−vtr − vi,tr
Ωtr Rtr

(2.37)
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The local sideslip angle is intead:

βtr = arctan
wtr
utr

(2.38)

We also define:

ptr = χ (p cos βtr + r sin βtr) (2.39)

qtr = χ (r cos βtr − p sin βtr) (2.40)

The flapping angles, which are static variables in the case of the tail rotor, can now

be evaluated as:

a1,tr =
1

∆tr

[
K1,tr

(
1 +

3

2
µ2
tr

)
f1,tr −

(
1 +

µ2
tr

2

)
f2,tr

]
(2.41)

b1,tr =
1

∆tr

[(
1− µ2

tr

2

)
f1,tr +K1,tr

(
1 +

µ2
tr

2

)
f2,tr

]
(2.42)

where we have:

∆tr = 1− µ4
tr

4
+K2

1,tr

(
1 +

µ2
tr

2

) (
1 +

3

2
µ2
tr

)
(2.43)

f1,tr =
4

3
µtr a0,tr −

16

γtr Ωtr

ptr −
qtr
Ωtr

(2.44)

f2,tr =
8

3
K1,tr µtr a0,tr +

16

γtr Ωtr

qtr − µtr

(
8

3
θtR + 2 θt,tr + 2λtr −

ptr
Ωtr

)
(2.45)
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The tail rotor thrust and the thrust coefficient are:

Ttr = ρClα,tr ctr Rtr (Ωtr Rtr)
2

{
λtr
2
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(
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tr
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}
(2.46)

Ct,tr =
Ttr

ρ π R2
tr (Ωtr Rtr)

2 (2.47)

They depend on the inflow ratio λtr which is again a function of Ct,tr

λtr = − vtr
Ωtr Rtr

+
Ct,tr

2
√
µ2
tr + λ2tr

(2.48)

To obtain both the thrust and the inflow ratio a numeric iterative procedure need

to be implemented. The horizontal and lateral forces in the tail rotor hub-wind axes

are:

Hw,tr = ρClα,tr ctr Rtr (Ωtr Rtr)
2
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δtr µtr
2Clα,tr
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4
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}
(2.49)
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Yw,tr = ρClα,tr ctr Rtr (Ωtr Rtr)
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(2.50)

The tail rotor torque is

Qtr = ρClα,tr ctr R
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(2.51)

In the latter expression δtr is the equivalent tail rotor blade profile drag coefficient

which can be obtained as:

δtr = 0.009 + 0.3

(
6Ct,tr
σtr Clα,tr

)2

(2.52)
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In the body fram,e the forces and moments can be rewritten as:

Fb,tr =


−Yw,tr sin βtr −Hw,tr cos βtr

χTtr

Yw,tr cos βtr −Hw,tr sin βtr

 (2.53)

Mb,tr =MGHtr Fb,tr + [0 − ξ Qtr 0]t (2.54)

where ξ is the free-wheel coefficient which is 1 during normal flight and 0 in autoro-

tation and

MGHtr =


0 −ztr ytr

ztr 0 −xtr

−ytr xtr 0

 (2.55)

2.6.4 Fuselage

For the fuselage a simple aerodynamic model is adopted. The velocity of the air felt

by the fuselage, written in the body frame is:

Vf = V air
b + [0 0 wi,f ]

t = [uf vf wf ]
t (2.56)

where wi,f is the downwash induced by the rotor on the fuselage. It can be evaluated

as a polynomial function of the rotor wake angle χ and the induced velocity vi

wi,f = Pf (χ) · vi (2.57)

χ = arctan
µ

−λ
(2.58)
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The angle of attack and sideslip of the fuselage are:

αf = arctan
wf
uf

(2.59)

βf = arctan
vf

||Vf ||
(2.60)

Finally the fuselage aerodynamic forces and moments, in the local wind reference

frame centered in the fuselage pressure center can be written as:

Fw,f =


−Df

Yf

−Lf

 =
1

2
ρ V 2

f Sref


−CD(αf , βf )

CY (αf , βf )

−CL(αf , βf )


where the aerodynamic coefficients have been taken from Ref. [40].

Forces and moments in the body frame are:

Fb,f = Tf (αf , βf ) Fw,f

Mb,f = GPf × Fb,f

with GPf = rf indicating the fuselage pressure center in the body reference frame
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and the matrix Tf is defined as:

Tf (αf , βf ) =


− cosαf cos βf − sinαf sin βf sinαf

− sin βf cos βf 0

− sinαf cos βf − sinαf sin βf − cosαf


2.7 Flapping dynamics

Flapping motion of the rotor blades is due to the effect of the aerodynamic force on

every single blade. These forces, depending on the air-velocity hitting each blade, and

the pitch commands, are therefore a function of the blade position around the rotor

shaft (blade azimuth ψbl). The resultant flapping angle will then change itself during

the blade rotation. A first harmonic series is often used to describe the flapping angle

distribution around the rotor shaft. This kind of representation takes the name of

tip-path-plane representation:

β(ψbl, t) = a0(t) + a1(t) cosψbl + b1(t) sinψbl (2.61)

The time-variant flapping coefficients correspond to the coning angle a0, and the

longitudinal and lateral flapping angles a1, b1 as shown in Fig. 2.1. The dynamic

equation for the flapping coefficient is a second-order linear dynamics given by:

ä = f −D ȧ−K a (2.62)
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where the matrices D, K and f are reported in the following. A complete derivation

of the flapping dynamics can be found in Ref. [12].
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 (2.63)

K = Ω2
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(2.64)

p2 = 1 +
Kβ

Iβ Ω2
+
eMβ

g Iβ
+
γ K1

8

(
1− 4

3
ε

)
(2.65)
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Figure 2.1: Flapping coefficients and equilibrium around the blade hinge

f = Ω2
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(2.66)

Refers to nomenclature and section 2.6.2 for the main rotor inner variables defi-

nition and symbols. Complete derivation of the flapping equations can be found in

Ref. [11, 12].
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2.8 Inflow dynamics

The rotor inflow is the name given to the flowfield induced by the rotor at the rotor

disc. It contributes to the local blade incidence and dynamic pressure, then also

to the aerodynamic forces. This makes it considerably important in the helicopter

dynamics modeling. The real inflow distribution depends on several aerodynamic

effects which are difficult to model unless very complex and computationally de-

manding techniques are involved. It is commonly assumed that for flight dynamics

analysis it is sufficient to consider only the normal component of inflow (the induced

downwash). In Fig. 2.2 the air velocity components on the rotor are illustrated.

Here it is possible to distinguish two in-plane components uh, vh, and two vertical

components wh and vi. While uh,vh and wh depends on the helicopter motion and

the wind velocity, vi represents the properly said induced inflow rate or induced ve-

locity. The adimensional form of the induced velocity is given by the induced inflow

ratio:

λi,0 =
vi
ΩR

(2.67)

while we call total inflow λ the following variable:

λ =
wh − vi
ΩR

= µz − λi,0 (2.68)

The advance ratio is instead defined as in Eq. (2.36). The physical origin of the

induced velocity can be explained by the traditional momentum theory. According

to this theory the thrust delivered by the rotor is due to the mass flow induced by the

rotor. The momentum theory also evaluates the relationship between the induced
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Figure 2.2: Velocity components at the blade

velocity and the rotor thrust under the following hypothesis:

• inviscid and incompressible flow

• monodimensional steady flow across the rotor

• the rotor determines a discontinuity on the air velocity (disc actuator theory)

• well-defined slipstream between the flowfield generated by the rotor and the

external air

Writing the momentum conservation equation for such a system, a static relation

between the thrust coefficient CT and the induced inflow ratio is obtained in steady

conditions:

λi,0 =
CT

2
√
µ2 + (λi,0 − µz)

2
(2.69)
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Previous equations are related to the mean induced inflow ratio around the rotor

disc. A slightly more complex model assumes an induced flow field of the form:

λi(ψbl, r) = λi,0 + λi,s
r

R
sinψbl + λi,c

r

R
cosψbl (2.70)

where r is the position along the blade span while ψbl is the azimuth around the

rotor shaft. The coefficient λi,0 is the mean inflow ratio while λi,c and λi,s correspond

to the longitudinal and lateral inflow coefficients. Assuming time-dependent inflow

coefficients, a dynamic system has been developed by Peters at al [38]:


˙λi,0

˙λi,s

˙λi,c

 =

[
M

]−1




CT

−Clh

−Cmh

−
[
L

]−1


λi,0

λi,s

λi,c


 (2.71)

where CT is the thrust coefficient, Clh and Cmh are the roll and pitch moment coef-

ficients in hub-body frame whereas the detailed matrices M, L can be found in Ref.

[38].

A simplified dynamic-uniform model, derived from the previous one, has been

adopted for the autorotation steady descent calculation, for the flare optimization

algorithm, and for the inflow ratio estimation. This model is given below:

λ̇i,0 = fλi(x, ẋ, u) =
3 π

4

{
CT
2

− λi,0
√
µ2 + λ2

}
(2.72)
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2.9 Ground effect

When the helicopter flies close to the ground, some special characteristics in the

flight dynamic behavior appear. The most significant is the effect on the induced

velocity at the rotor and hence the rotor thrust and power required. In Ref. [10],

Cheeseman and Bennett modeled this effect according to the potential flow theory

and calculated the reduction of the induced velocity as:

δvi =
Ad vi
16 π z2g

(2.73)

where Ad is the disc area and zg is the distance of the ground below the rotor disc.

Ground effect is most significant in hover, and, below heights of the order of a rotor

radius, thrust increments of between 5 and 15% are predicted.

2.10 Rotor dynamics

Rotor dynamics can be derived from the kinetic energy theorem applied to the heli-

copter main rotor and the tail rotor velocity:

dTrot
dt

= Pactive (2.74)

Where Pactive is the power of the system, which is given by:

Pactive = [Mengine −Q] · Ω−Qtr · Ωtr (2.75)
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Considering the constant velocity ratio, due to the mechanical transmission between

the main rotor and tail rotor τ = Ωtr/Ω we can rewrite the previous equation as:

Pactive = [Mengine −Q− τQtr] · Ω (2.76)

The kinetic energy can now be written as:

Trot =
1

2
ImrΩ

2 +
1

2
ItrΩ

2
tr =

1

2

[
Imr + Itr τ

2
]
Ω2

Deriving the kinetic energy and considering the previous equations the following is

obtained:

Ω̇ =
Mengine − (Q+Qtr τ)

Imr + Itr τ 2

In normal flight, the aerodynamic torque is compensated by the engine and the

kinetic energy of the rotors is kept constant. During autorotation the engine is no

more able to deliver its power and the angular rate of the rotors changes. Tail rotor

contributions for the rotational dynamics are second-order terms and can therefore

be neglected obtaining the following equation for autorotation:

Ω̇ = − Q

Imr
(2.77)



Chapter 3

Autorotation maneuver design

3.1 Introduction

Helicopter autorotation landing is an emergency maneuver performed in the case

of a total loss of engine power. It can be divided into three phases: (i) an initial

transient after engine failure; (ii) a quasi-steady descent, and (iii) the flare and touch–

down. When the engine fails, the rotor aerodynamic torque is no longer balanced

by the engine shaft torque. If the rotor rate drops below a critical value, blades

stall, rotor thrust drops rapidly to zero and the vehicle falls along a quasi-ballistic

trajectory. Nevertheless, if the rotor collective is rapidly reduced after engine failure,

a descent trajectory is started because of thrust reduction, without the rotor losing

too much rpm. The airflow impinging on the rotor disk from below during a descent

allows the rotor to reach an autorotation condition, such that the net aerodynamic

torque vanishes, while rotor thrust can still balance helicopter weight. Depending on

airspeed magnitude and direction, it is possible to evaluate rotor rate at autorotation

Ω for each value of θ0.

50
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By properly choosing collective pitch, constant rotor velocity and sink rate are

maintained along an almost rectilinear, quasi-steady descent in autorotation. The

most critical part is the third one, that is, the final flare and touch-down, during

which the sink rate must be reduced as close as possible to zero, prior to landing the

helicopter, while minimizing the residual forward speed component. During this last

phase, the reduction of the sink rate is obtained by increasing rotor thrust, acting

on the main rotor collective, while pulling up the helicopter, for reducing forward

speed. Such a control action also increases rotor aerodynamic torque, which, in

turn, causes rotor rate to decrease. On one side, if the collective pitch increment is

too large or too early, the rotor rate drops too much before the helicopter touches

the ground, the rotor stalls, and the helicopter crashes. If, on the other hand, the

control action on θ0 is too mild or delayed, the sink rate at touch-down remains too

high, and the helicopter crashes for the opposite reason. At this stage, the rotor

kinetic energy is the only energy source available for performing the final flare and

deceleration maneuver. Hence maintaining an adequate level of rotor rpm during the

steady descent, while maintaining a sink rate and forward speed as small as possible,

is a crucial aspect of the whole autorotation maneuver design.

A large forward velocity component is also dangerous, provided that the helicopter

can crash into an obstacle, while skidding on the ground, after touch-down. Hence,

the control action on longitudinal cyclic pitch needs to be phased well with respect to

collective pitch variation. Moreover, the pitch-up attitude required for deceleration

needs to be bounded at lower altitudes, immediately prior to touch-down, to avoid

the risk of a tail-strike.
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In the next sections, the starting hypothesis and constraints, and the maneuver

design are described in detail.

Here a summary of the main steps followed for the autorotation maneuver design

is given:

• calculation of all the helicopter steady descent conditions using a trim algo-

rithm;

• design of a suitable robust flare profile easily to be implemented for on-board

systems;

• optimization of the maneuver parameters.

3.2 Maneuver definition

Some simplifications and methodological choices are introduced in the design of the

autorotation maneuver:

• the whole maneuver is assumed to be purely longitudinal and there is no con-

straint on the final position, as if the landing field is infinite;

• the design of the maneuver is performed by analyzing separately the second

steady descent phase and the final flare;

• the overall desired autorotation path is obtained by joining the trajectories

followed during these two phases;

• the initial transient is neglected, in the sense that it is assumed that the heli-

copter can achieve the required steady descent autorotation condition required
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for the second part of the maneuver simply by the application of the corre-

sponding controls at trim.

Letting utd, vtd, and wtd the inertial forward, lateral, and vertical speed components

at touch-down, respectively, considered bounds on terminal values of all relevant

variables are reported in the following

|utd| ≤ umax = 0.25m/s

|vtd| ≤ vmax = 0.25m/s

|wtd| ≤ wmax = 0.20m/s (3.1)

θtd ≤ arctan(hhel/lt)

where lt is the length of the tail boom and hhel is the distance between the center of

mass and landing gear waterlines.

3.3 Steady descent conditions

All the possible steady descent conditions have been evaluated considering the whole

helicopter mathematical model and calculating the equilibrium conditions for im-

posed values of advancing velocity ue and sink rate we.
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The following conditions are imposed for a longitudinal flight in steady state:


Ve = [ue 0 we]

T −→ Vb = Tbe Ve

ωb = [0 0 0]T

ȧ = [0 0 0]T

(3.2)

The resulting problem is given by:



V̇b =
Fb
m

− ωb × Vb = 0

ω̇b = I−1(Mb − ωb × Iωb) = 0

ä = −D ȧ−K a+ f = 0

λ̇i =
3π
4

(
CT
2

− λi
√
µ2 + λ2

)
= 0

Ω̇ = − Q
Imr

= 0

(3.3)

which can be written as: 

Fb(Ve, a, u, ϕ, θ, λ,Ω) = 0

Mb(Ve, a, u, ϕ, θ, λ,Ω) = 0

fa(Ve, a, u, ϕ, θ, λ,Ω) = 0

fλ(Ve, a, u, ϕ, θ, λ,Ω) = 0

Q(Ve, a, u, ϕ, θ, λ,Ω) = 0

(3.4)

The problem is a nonlinear system of 11 equations in 11 unknowns and it has
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been numerically solved using a Newton-like gradient method.

The resulting value of the rotor angular rate Ω, for steady descent conditions in

autorotation, over a grid of imposed advancing and vertical velocities, is reported

in Fig. 3.1 and Fig. 3.2. Here clearly appears how the resulting rotor angular

rate largely depends on the vertical velocity, while a weaker correlation exists with

the advancing velocity. Nevertheless, fixing the target rotor rate, a minimum sink

rate exists for a proper advancing velocity which corresponds to the minimum power

velocity.

In Fig. 3.3 it is possible to see how the sink rate and the rotor speed vary as a

function of the collective for a fixed advancing speed. More precisely, sink rate and

rotor angular rate decrease when high values of collective are chosen. This effect can

be easily explained by considering how the three key variables (collective, vertical

velocity, and rotor angular rate) take part in the vertical and rotational equilibrium

during autorotation. In the steady descent conditions, we have T ≈ W and it is also

T ∝ θ0,Ω
2, we. The thrust needed to equilibrate the weight force can therefore be

obtained in two conditions:

• For low values of collective and high values of rotor rate and sink rate

• For high values of collective and low values of rotor speed and rate of descent

Moreover, increasing the collective, Ω decreases faster than we because the thrust and

the aerodynamic torque on the main rotor largely depend on the angular rate. For

the same reason, advisable values of collective to be set during the steady descent, are

lower values: losing rotor energy to keep a slightly lower vertical speed, is in general
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worse than saving rotor speed (and its thrust generation capability) and obtaining

higher steady vertical velocity.

As visible in Fig. 3.1, for certain values of low vertical and horizontal speeds no

steady descent conditions are considered. This region must be avoided because it

corresponds to the vortex ring state condition which is a very critical aerodynamic

condition. After the power loss, the helicopter passes from traction condition to

windmill condition. Between these two, lays the vortex ring state which is obtained

when the rotor-induced velocity and the vertical velocity are similar: 1
2
vi < wh < 2vi

[41]. To be out of the vortex ring state during the steady descent it is necessary to

set wh > 2vi.

The exit vortex ring state curve wh = 2vi can be calculated in the ue × we plane.

The steady-state solution of the inflow dynamics equation in Eq. (2.72) gives:

λi =
CT

2
√
µ2 + λ2

(3.5)

From the vortex ring state condition, we can rewrite the induced inflow rate as

λi =
vi
ΩR

=
1

2

wh
ΩR

(3.6)

and the inflow rate as:

λ =
wh − vi
ΩR

=
1

2

wh
ΩR

(3.7)
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Considering the following simplifications:

θ ≈ 0

T ≈ mg (3.8)

wh ≈ we

uh ≈ ue → µ ≈ ue
ΩR

and putting all together we finally have:

ue,min =


√(

mg
ρA

)2
1
w2
e
− w2

e

4
if we <

√
2mg
ρA

−∞ if we ≥
√

2mg
ρA

(3.9)

So to be out of the vortex ring state during the steady descent we have to set

ue(we) > ue,min(we)

3.4 Flare profile

The flare represents the most critical phase for autorotation. During the flare, collec-

tive and longitudinal commands need to be managed to exploit rotor kinetic energy

to reduce advancing and descent velocities at touch-down. A critical issue is the

evaluation of the proper altitude at which the flare should start. An early flare can

be catastrophic since the rotor energy and its capability of delivering a thrust can

run out before touch-down leaving the helicopter in a free fall. On the other side,

a late flare hasn’t got the time necessary to decelerate the rotorcraft with a similar



3.4. Flare profile 58

Figure 3.1: Rotor angular rate for different autorotation steady descent conditions
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Figure 3.3: Sink rate and rotor angular rate as function of collective for fixed ue =
7.5m/s

bad result.

For the design of the flare, these main points have been considered:

• the flare must follow a simple trajectory where the velocity decreases getting a

minimum value at touch-down;

• the flare trajectory must be easily planned and corrected in real-time;

• a tracking system should be able to follow the path easily.

For the second and third tasks, the idea is to calculate at every time step, a reference

horizontal and vertical velocity to follow. This reference has to be a function of the

measured state. In particular, it is chosen to be a 2nd-order polynomial function of
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the altitude such as:

ue,des = αu h
2 + βu h+ γu (3.10)

we,des = αw h
2 + βw h+ γw (3.11)

The initial and final conditions on the velocity we need to consider are:



ue,des = u0 when h = h0

we,des = w0 when h = h0

ue,des = 0 when h = 0

we,des = 0 when h = 0

(3.12)

Where u0 and w0 are the steady descent conditions and h0 is the altitude at which

the flare starts. To ensure a better continuity between the steady descent condition

and the flare, zero accelerations are imposed at the initial point of the flare:


u̇e,des = 0 when h = h0

ẇe,des = 0 when h = h0

(3.13)
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Imposing the mentioned conditions to the desired form in Eq. (3.10)-(3.11) we have:



γu = 0

γw = 0

αu = −u0
h20

αw = −w0

h20

βu =
2u0
h0

βw = 2w0

h0

(3.14)

and the trajectory can be rewritten as:

ue,des(h) = −u0
h20
h2 + 2

u0
h0
h (3.15)

we,des(h) = −w0

h20
h2 + 2

w0

h0
h (3.16)

ue,des = we,des
u0
w0

(3.17)

The trajectory depends only on three parameters to be chosen: the initial altitude

for the flare h0, and the steady descent conditions u0 and w0. The time-law of the

trajectory can be calculated considering that:

we,des = −dhdes
dt

= αw h
2 + βw h (3.18)



3.5. Parameters Optimization 62

Integrating we obtain:

hdes(t) =
2h0 e

−βw t

1 + e−βw t
(3.19)

For the resulting trajectory, altitude is asymptotically zero for t→ ∞. What we will

have in practice, is that the helicopter will touch down at finite time with a residual

minimum value of velocity.

3.5 Parameters Optimization

All the autorotation maneuver, as designed here, only depends on three variables:

• the steady descent conditions: u0 and w0 (or Ω0);

• the flare initial altitude h0.

The steady descent velocities represent the kinetic energy we need to dissipate, the

rotor rate is the energy storage to be used for the braking, and the flare altitude gives

the gravitational potential energy and, at the same time, the spatial limits in which

the maneuver has to be performed. The choice is crucial and must guarantee the

maneuver success and the trajectory feasibility for the real system. Some constraints,

such as the limits on the thrust deliverable by the rotor during the flare, must

therefore be considered.

The criterion here proposed for the choice of the autorotation parameters consists

of the solution of an optimal problem. As already said, from Eq. (3.19) we have
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that zero altitude (and zero velocity) would be reached at infinite time. In reality,

at finite time the helicopter will touch down with residual velocity. The idea is to

set the final vertical velocity equal to the target velocity wtd in Eq. (3.1) and to

minimize the residual horizontal velocity imposing some constraint to guarantee the

dynamical feasibility of the trajectory. The residual vertical velocity corresponds to

a residual theoretical altitude htd and a time step ttd which can be calculated by Eq.

(3.19) as:

htd = h0

(
1−

√
1− wtd

w0

)
(3.20)

ttd =
h0
2w0

log

(
2h0
htd

− 1

)
(3.21)

At this point, the maneuver is considered terminated.

A simplified model of the dynamics is proposed for a faster resolution of the

optimization problem. The dynamic equations written in body axes are reported

below:

u̇b =
1

m
(Xfus + T sin is)− g sin θ (3.22)

v̇b =
Yfus
m

+ g sinϕ cos θ (3.23)

ẇb =
1

m
(Zfus − T cos is) + g cos θ cosϕ (3.24)

Ω̇ = − Q

Imr
(3.25)
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Simplified thrust and torque models are taken from [7]:

T = ρσA(ΩR)2
Clα
4

{
2

3
θ0
1− µ2 + 9µ4/4

1 + 3µ2/2
+ λ

1− µ2/2

1 + 3µ2/2

}
(3.26)

Q = ρσRA (ΩR)2
{
δ

8
(1 + 3µ2)− λCT

σ

}
(3.27)

Moreover the rotor dynamics Eq. (2.77) and the inflow dynamics Eq. (2.72) are

considered.

For the solution of the optimization problem, we consider a discrete time series

{k · δt}k=0,1,...Nt with δt = ttd/Nt. In the optimization algorithm, at every iteration,

fixed values of u0, w0, and h0 are taken and a known flare trajectory is obtained.

Then accelerations are known and a dynamic inversion can be done to evaluate

the attitude and the thrust for every time step. Inverting the thrust equation it is

possible to obtain the necessary collective pitch. Finally, from these values, the time

series of the rotor angular rate is given numerically integrating the discretized rotor

dynamics Eq. (2.77). Added constraints on maximum pull-up angle and velocity are

considered to ensure a smooth trajectory.
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The optimal problem can be written as:

minimize
u0, w0, h0

utd = wtd
u0
w0

(3.28a)

subject to

imposed trajectory of Eq. (3.15)-(3.17), (3.28b)

low order dynamics of Eq. (3.22)-(3.27), (3.28c)

inflow and rotor dynamics Eq. (2.72), (2.77), (3.28d)

final velocity and attitude (3.1), (3.28e)

[u0, w0,Ω0] ∈ surface of steady descent conditions, (3.28f)

θ ∈ [−θmax, θmax], (3.28g)

δθ = θk+1 − θk < δθmax ∀k ∈ [0, Nt − 1], (3.28h)

θ0 ∈ [θ0,min, θ0,max], (3.28i)

δθ0 = θ0,k+1 − θ0,k < δθ0,max ∀k ∈ [0, Nt − 1], (3.28j)

Ωtd = Ω0 −
∫ ttd

0

Q

Imr
dt > Ωtd,min (3.28k)

From the previous equations, it is clear that the solution is reached by minimizing the

velocity ratio u0/w0. By the way, by adding the constraints, the obtained solution is

not simply given by choosing the largest vertical velocity and the smallest horizontal

velocity. In particular, constraints 3.28f and 3.28h limit the maximum value of w0

and the minimum value of u0 imposing to be out of the vortex ring state. The

altitude h0 is mainly affected by the constraints 3.28g and 3.28k which limit the

minimum and maximum value respectively. The optimization problem has been
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Table 3.1: Optimization parameters and results

Algorithm parameters value unit
δt 0.01 s
Θmax 30 ◦

θ0,min −5 ◦

θ0,max 10 ◦

δΘmax 1 ◦

δθ0,max 1 ◦

Ωtd,min 60 rad/s

Optimal solution value unit
u0 5 m/s
w0 6 m/s
h0 10 m
Ω0 143 rad/s
J = utd 0.17 m/s

solved using the Matlab function fmincon which exploits an improved sequential-

quadratic optimization algorithm with trust region [9]. A trapezoidal quadrature has

been considered for the discrete-time integration and derivation of the trajectories.

The robustness of the solution has been tested for different initial guesses and time

step sizes. Negligible differences are obtained, in the optimization results, when the

time step is δt < 0.05 s, the initial guess for h0 < 20 m, and the initial guess for

u0 and w0 is in the domain of Fig. 3.1. Settings and results are reported in Tab.

3.1, while Fig. 3.4 shows the resulting nominal optimal flare profile. As expected,

an increasing collective is adopted to exploit the rotor kinetic energy allowing the

reduction of the vehicle velocity. A pitch-up is also obtained to reduce the advancing

speed.
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Figure 3.4: Off-line optimal flare profile



Chapter 4

Design of the control system

4.1 Introduction

Controlling a dynamic system means ensuring its stability and driving it to new flight

conditions using a correct command law. Several intermediate levels usually exists

between the pilot (for piloted systems) and the physical commands received by the

helicopter. In the command chain, the inner level, for the helicopter, is represented

by the pitch angles of the main rotor and tail rotor blades. Changing the blade

pitch, the angle of incidence is changed and new aerodynamic forces and moments

are established at the rotors. The command vector, as already defined, is then given

by the main rotor collective pitch θ0, the lateral and longitudinal cyclic pitches A1s

and B1s, and the tail rotor pitch θtr.

To control the helicopter, the first task is represented by its stabilization. Sta-

bilizing a helicopter is of paramount importance since, unlike fixed-wing aircraft,

helicopters are naturally unstable. This means that, for a stable flight, in manual

mode, a pilot should continuously compensate for oscillations occurring for every

68
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Figure 4.1: Global control architecture

small disturbance. The helicopter stabilization is traditionally done by stability aug-

mentation systems (SAS) which are usually based on an artificial damping obtained

giving a continuous command that is proportional to the measured angular rate and

in the opposite direction. This ensures roll and pitch stability. Once the stabilization

has been achieved, further control loops can be added so that a desired attitude or

desired velocity can be commanded to the helicopter. In Fig. 4.1 the global archi-

tecture of a traditional control system is reported. Here, an inner loop stabilizes the

pitch and roll modes and is used to follow the reference attitude, whereas an outer

velocity controller is used to follow a reference velocity. The inner structure of these

modules, together with the automatic autorotation control logic, are described in

detail in the following sections.
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4.2 Attitude control with PID

A basic stabilizer, based on PID technique is used in normal flight conditions for

pitch and roll control. The scheme is reported in Fig. 4.2. In both cases, an inner

loop controls pitch/roll rates ensuring a stabilizing artificial damping, while in the

outer loop, a desired pitch/roll angle is compared with the actual attitude and the

error generated becomes a reference for the inner loop. Finally, a proportional mixing

logic is added to reduce couplings between the two axes. The stabilizer can receive

the reference attitude from a pilot or from a velocity autopilot. The cyclic commands

generated by the pitch and roll stabilizers are mathematically described by:



A1s = A′
1s +KqpB

′
1s

B1s = B′
1s +Kpq A

′
1s

A′
1s = Pp ep +Dp ėp + Ip

∫ τ
0
ep dt

B′
1s = Pq eq +Dq ėq + Iq

∫ τ
0
eq dt

ep = Pϕ eϕ − p

eq = Pθ eθ − q

eϕ = ϕdes − ϕ

eθ = θdes − θ

(4.1)

4.3 Heading hold

The Heading Hold logic is shown in Fig. 4.3. The desired yaw rate, from the pilot

or from a outer guidance loop, is compared with the actual yaw rate and the error is
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Figure 4.2: Roll and pitch stabilizer

integrated to obtain an estimation of the yaw error. The latter is used to elaborate

a desired yaw rate with a proportional gain. Compared to the actual yaw rate, this

one generates the error used to elaborate the tail pitch. A fixed contribution θ0,tr is

added to consider the tail rotor thrust needed to balance the main rotor torque at

hovering. Another contribution is finally proportional to the main rotor collective

and takes into account how, for equilibrium, tail rotor thrust needs to modulate

as a function of the main rotor torque, and then as a function of the collective

command. This latter contribution is set to zero when the control logic switches

from the Engine ON to the autorotation controller, since in autorotation the rotor

torque is no longer transmitted to the fuselage thanks to the free-wheel mechanism.

Mathematical description of the tail rotor pitch elaborated by the heading hold is
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Figure 4.3: Heading hold

reported below: 

θtr = θ′tr + θ0,tr + Pθ0 θ0

θ′tr = Pr er + Ir
∫ τ
0
er dt

er = Pψ eψ,est − r

eψ,est =
∫ τ
0
(rdes − r) dt

(4.2)

4.4 Autorotation phases management

The control logic adopted for the automatic autorotation maneuver needs to change

during the main phases of the maneuver. In particular, a first logic needs to be

considered to recognize the failure of the powerplant and to start the autorotation

maneuver. This logic consists of checking the measured rotor rate and triggering the

maneuver when Ω < 0.95Ωnom. A second logic is responsible for starting the flare:

this is possible by measuring the altitude and triggering the flare controller when the

proper nominal altitude is reached.
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4.5 Steady descent control logic

During the steady descent, the system needs to be driven to a chosen steady state

condition, namely u0, w0, Ω0. This is done by implementing a control on the rotor

angular rate and the vertical velocity as shown in Fig. 4.4. In the first phase, the

collective pitch is set to the nominal value θ0,sd evaluated with the trim algorithm

for autorotation. When the rotor speed decreases under the nominal value, a PID

feedback control on Ω elaborates the collective pitch to reset it to its nominal steady

descent value Ω = Ω0. At the same time, the error on the advancing velocity ue−u0

generates the reference pitch angle given to the pitch stabilizer which elaborates

the longitudinal control B1s. Similar control is done for A1s where a desired zero

lateral velocity is adopted to elaborate a reference roll angle for the roll stabilizer.

Finally, the tail is controlled by the heading hold logic. In autorotation, the tail

loses its normal role because thanks to the free-wheel mechanism the rotor torque is

no longer discharged to the fuselage. Small tail contributions are necessary only at

touch down and in the first phase, just after the engine failure.

4.6 Flare controller

The flare control logic (Fig. 4.5) is made up of two main modules: a trajectory plan-

ner, and a trajectory tracker. The first one evaluates, at every time step, a desired

vertical and horizontal velocity while the tracker is an autopilot which evaluates the

errors on velocities and calculates a reference attitude and a collective command.

The desired attitude is given to the stabilizer which generates the cyclic commands.
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Figure 4.4: Steady descent controllers

According to what has been seen in section 3.4 the desired velocities are polynomial

functions of the altitude, and depend on the initial conditions u0, w0, and h0. To

ensure that the reference trajectory meets the initial and final conditions on the ve-

locities, even in case of small errors between the nominal steady descent velocities

and the actual values, when the helicopter reaches h0 and the control logic switches

from steady descent to flare controller, the actual initial velocities u0 and w0 are

saved and used to calculate the reference velocity profile for the maneuver.
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Figure 4.5: Flare controller



Chapter 5

Non-linear dynamic inversion control

5.1 Non-linear dynamic inversion control theory

Part of the project work has been dedicated to the study and implementation of ad-

vanced control techniques for the helicopter in both powered flight and autorotation

conditions. A particular interest has been put in the nonlinear dynamic inversion

control NDI, which is generally classified among the control allocation techniques.

The complete NDI controller architecture is reported in Fig. 5.1. Here the outer

loop (velocity controller) generates the desired attitude and collective pitch. The

former is sent to the inner loop which generates the necessary command action to

the plant. The nonlinear dynamic inversion is a control technique based on the

idea that it is possible to control a system by imposing a reference dynamic and

inverting the equations of motion of the system in order to follow that dynamic. A

brief description of the main algorithm is here reported. Let’s consider the dynamic

76
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Figure 5.1: NDI global control architecture

equations of a generic system:

 ẋ = f (x, u)

y = g (x)
(5.1)

and a model of the same system, affected by uncertainties ∆· assumed to be small:

 ẋm = fm (x, u) = f (x, u) + ∆f

ym = gm (x) = g (x) + ∆g
(5.2)

If a reference output yr(t), and its reference dynamics ẏr(t), ÿr(t), ... want to be

followed, the necessay command action u(x) can be obtained inverting the model

dynamics. The first step is to derive the output until an explicit dependency on u

appears. The number of the needed derivations r is the degree of the output w.r.t the

input and represents the output time derivative which can directly be commanded.
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Let’s consider a first-degree r = 1 case, for simplicity. We will have:

 ẏ = g′ (x) ẋ = g′ (x) f (x, u)

ẏm = g′m (x) ẋm = g′m (x) fm (x, u)
(5.3)

with g′ (x) ̸= 0 and g′m (x) ̸= 0. For r = 1 we will be able to directly command the

output first-order time derivative. Thus a first-order reference dynamics need to be

considered. Usually, the reference dynamics is linear and stable:

ẏr = −a (yr − yc) (5.4)

where yc is the commanded output and a > 0 is an imposed stiffness factor.

Now, calling pseudo-control the term ν = ẏr, and imposing ẏm = ẏr = ν we can

invert the dynamic equation of the model obtaining:

u = f−1
m

(
g−1
m (ν)

)
(5.5)

Giving this input to the output dynamics in Eq. (5.3) we have:

 ẏ = ν +∆ = ẏr +∆

ẏm = ν = ẏr

(5.6)

The model system follows the desired output, while the real plant output is

affected by an error ∆. Defining the output error as e = yr − y, the error dynamics
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is:

ė = ∆ (5.7)

The stability of this error dynamics is not guaranteed since it depends on the accuracy

of the model and the value of ∂∆
∂e

which is the eigenvalue of the system. It is possible

to ensure the error dynamics stability by correcting the pseudo control. A desirable

stable error dynamics can be obtained by adding terms that are proportional to the

error and its time derivatives until the (r− 1)th. An integrative term is also usually

added:

ė = ∆+ pe e+ ie

∫ τ

0

edt (5.8)

To obtain such a corrected error dynamics, a correction on the pseudo-control is

added:

ν = yr + pe e+ ie

∫ τ

0

edt (5.9)

The right choice of the control parameters pe, ie and a feasible reference dynamics

(through the choice of a) ensure the stability and a good control of the system.

5.2 Static estimation of the flapping angles

For the dynamic inversion of the helicopter model, most of the system state variables

should be known during the flight. While linear and angular velocities, as the Euler

angles, can be directly measured or estimated with integrated filters of the sensors

unit which the rotorcraft is commonly equipped with, other inner variables need

custom algorithms to be estimated during the flight. Between these variables, we have

the flapping angles and the inflow ratio. For the flapping angles, a static estimation is
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adopted here. Considering the time-scale separation between the flapping dynamics

and the attitude and velocity dynamics, especially in the case of a hinge-less small-

scale helicopter, a negligible effect is assumed for the time derivatives of the flapping

coefficients and a steady state solution ass of Eq. (2.62) is calculated to estimate the

flapping coefficients:

ass = K−1f (5.10)

The flapping coefficients are then a static function of the commands. It is useful for

the NDI, also the calculation of

∂ass
∂uatt

= K−1fuatt (5.11)

where uatt = [A1s; B1s; θtr] and fuatt defined as:

fuatt =

[
fA1s fB1s fθtr

]
=


∂f1
∂A1s

∂f1
∂B1s

0

∂f2
∂A1s

∂f2
∂B1s

0

∂f3
∂A1s

∂f3
∂B1s

0

 (5.12)

fuatt = Ω2


χγ µ sinβw ( ε2−

1
3)

2
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1
3)

2
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2

(
µ2

4

(
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2
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2

)
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2
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(5.13)
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5.3 Extended Kalman filter for the inflow estimation

For the implementation of a non-linear dynamic inversion control, the inflow ratio,

as the flapping angles, needs to be estimated. For this purpose, an extended Kalman

filter is adopted here. The dynamics of the inflow is given by Eq. (2.72) where the

actual Ct can be calculated from the thrust, which is in turn estimated as:

T̂ ≈ ||m (ae,m − g)− F̂tr|| (5.14)

where F̂tr is a model-based estimation of the tail rotor force and ae,m is the measured

acceleration of the helicopter. The filter consists of two steps:

Time propagation: prediction

x̂−k+1 = Φkx̂k (5.15)

P−
k+1 = ΦkPkΦ

t
k +Q (5.16)

Measurement update: correction

Kk = P−
k H

t
k

(
HkP

−
k H

t
k +R

)−1
(5.17)

x̂k = x̂−k +Kk

(
zk −Hkx̂k

−) (5.18)

Pk = (1−KkHk)P
−
k (5.19)

where

Φk = 1 +

(
dfλi
dλi

)
k

∆t (5.20)
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is the transition matrix, Hk = 1 is the measurement matrix, P is the error covariance

matrix, and Q, and R are the process and measurement matrices respectively. The

measure zk is a fictitious measure obtained inverting the simplified thrust model

of Eq. (3.26) where the value of the thrust is calculated as in Eq. (5.14) while the

collective, the vertical velocity in hub frame and the rotor speed are known/measured.

λ̂ =
1 + 3µ2/2

1− µ2/2

{
4T̂

ρσA(ΩR)2Clα
− 2

3
θ0

1− µ2 + 9µ4/4

1 + 3µ2/2

}
(5.21)

z = λi =
wh
ΩR

− λ̂ (5.22)

5.4 Attitude control with NDI

For the helicopter attitude controller, the output we want to command is given by

the roll and pitch angles, and the yawrate. We consider the rotational dynamics and

kinematics equations to obtain the output dynamics:

 ω̇b = I−1 (Mb (x, uatt)− ωb × (I ωb))

Ξ̇ = Rωb

(5.23)

Deriving the second equation and substituting the first one, we find an explicit

relation between Ξ̇ and the input vector for the attitude control uatt = [A1s; B1s; θtr]

Ξ̈ = Ṙ ωb +R ω̇b = Ṙ ωb +RI−1 (Mb (x, uatt)− ωb × (I ωb)) (5.24)
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Now, a second order reference linear dynamics is chosen for the roll and pitch, while

a first-order reference dynamics is sufficient for the yaw rate:

Ξ̈r =


ϕ̈r

θ̈r

ψ̈

 =


−2 ξϕωϕϕ̇r + ω2

ϕ (ϕc − ϕr)

−2 ξθωθθ̇r + ω2
θ (θc − θr)

1
τψ

(
ψ̇c − ψ̇r

)
 (5.25)

where ωϕ, ξϕ, ωθ, ξθ, τψ are gains to be properly tuned. The pseudo control is defined

as:

ν =


νϕ

νθ

νψ

 =


pϕ (ϕr − ϕ) + dϕ

(
ϕ̇r − ϕ̇

)
+ iϕ

∫ τ
0
(ϕr − ϕ) dt

pθ (θr − θ) + dθ

(
θ̇r − θ̇

)
+ iθ

∫ τ
0
(θr − θ) dt

dψ

(
ψ̇r − ψ̇

)
 (5.26)

where a PID logic, with its tunable gains, is used to stabilize the error dynamics.

It is possible to notice that no proportional and integral terms are used for the yaw

since we are commanding a yaw rate.

Imposing Ξ̈ = ν in Eq. (5.24) and inverting for Mb we obtain:

Mdes
b = I R−1

(
ν − Ṙ ωb

)
+ ωb × (I ωb) (5.27)

To calculate uatt = [A1s; B1s; θtr] is now necessary to invert the expression of the

total moment as given in Eq. (2.9) and reported below:

Mdes
b =Mb,mr +Mb,tr +Mb,f

For the sake of control, a simplification can be made of the previous equation, lin-
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earizing w.r.t the command vector uatt:

Mdes
b ≈Mb,0 +B∆uatt (5.28)

where the effectiveness command matrix B is the jacobian of Mb w.r.t. uatt. Now,

since the moment depends on the flapping angles in steady state Mb =Mb(ass, uatt)

and ass = ass(uatt), to obtain B we need to consider even the matrix fuatt as defined

in Eq. (5.12). So we have:

B =


dMb

dA1s

dMb

dB1s

dMb

dθtr

 =


∂Mb

∂A1s
+ ∂Mb

∂ass
∂ass
∂A1s

∂Mb

∂B1s
+ ∂Mb

∂ass
∂ass
∂B1s

∂Mb

∂θtr

 =
∂Mb

∂uatt
+
∂Mb

∂ass
K−1fuatt (5.29)

All the components of the matrix B have been calculated using the Matlab symbolic

toolbox and implemented for the control. A schematic recap is reported below to

understand how the command law is determined:

• the commanded/desired attitude ϕc, θc and yaw rate ψ̇c are used to elaborate

a reference dynamics Ξ̈r as in Eq. (5.25)

• the reference is used to generate the pseudo command ν in Eq. (5.26) which

also control the error

• a desired moment is generated inverting the dynamic equation Eq. (5.27)

• comparing the desired moment to the estimated actual one Mb,0 we obtain the
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command action

uatt = uatt,0 +B−1
(
Mdes

b −Mb,0

)
(5.30)

5.5 Velocity control with NDI

For the velocity control, a similar structure, with a simplified model, is considered.

The velocity controller receives commanded velocities which must be used to generate

a reference attitude for the inner loop controller and the collective pitch. So we have

the commanded velocity in the local vertical frame Vc = [Vx; Vy; Vz; ] which is used

to generate a reference first order dynamics:

V̇r = KV (Vc − V ) (5.31)

with Kv matrix of the desired time constants

Kv =


1
τx

0 0

0 1
τy

0

0 0 1
τz

 (5.32)

The pseudo control vector is given by:

ν = V̇r + Pv eV + Iv

∫ τ

0

eV dt (5.33)

where eV = V − Vr and Pv and Iv are the diagonal gain matrices. The dynamic

equations to be inverted are obtained considering the folllwing low order system
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written in the local vertical frame:
V̇x = 1

m
(T sin is cos θ − T cos is cosϕ sin θ + ξTtr sinϕ sin θ)

V̇y = 1
m
(T cos is sinϕ+ ξTtr cosϕ)

V̇z = g − 1
m
(T sin is sin θ + T cos is cosϕ cos θ − ξTtr sinϕ cos θ)

(5.34)

The previous system can be contracted in the vectorial form:

V̇ = g +
Fmr + Ftr

m
(5.35)

A simplified model for the main rotor thrust (Eq. (3.26)) has been considered:

T = ρσA(ΩR)2
Clα
4

{
2

3
θ0
1− µ2 + 9µ4/4

1 + 3µ2/2
+ λ

1− µ2/2

1 + 3µ2/2

}
(5.36)

Putting V̇ = ν and neglecting the effect of the tail rotor, an estimation of the main

rotor thrust can be evaluated from the previous equation as:

T̂ ≈ ||Fmr|| ≈ m||ν − g|| (5.37)

the estimated value of the thrust can be now used to invert the thrust model obtaining

the collective pitch:

θ0 =
3

2

(
1 + 3µ2/2

1− µ2 + 9µ2/4

){
4 T̂

ρ σ A (ΩR)2 Clα
− λ

1− µ2/2

1 + 3µ2/2

}
(5.38)

From the first equation of the dynamic system Eq. 5.34, under the hypothesis of
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small attitude angles, and again putting V̇ = ν we obtain the desired roll angle:

ϕdes =
mνy + T̂tr

T̂ cos ıs
(5.39)

where T̂tr is an estimation of the tail rotor which can be done with simple models

as the one proposed in Ref. [7]. Finally, rewriting the first line of Eq. (5.34) in the

body frame we can obtain the desired pitch angle:

θdes =
T̂ sin is −mνx
m (g − νz)

(5.40)

5.6 Automatic autorotation with NDI

The NDI controller has also been texted for autorotation. The maneuver is designed

as in chapter 3. The control logic changes when the system passes from the normal

flight to the autorotation. Even during the two phases of autorotation, the control

logic is different. More in detail, during the steady descent phase, the nominal

advancing velocity is followed by the NDI velocity controller, while the collective is

calculated in order to control the angular rate instead of the vertical velocity. So,

a constant low collective (resulting from the trim) and then a PI logic on the rotor

rate error are used to generate a collective to keep the angular rate nominal steady

descent value. For the flare, the trajectory planner calculates the reference velocity

which represents a command for the NDI velocity controller. For all the phases

the NDI attitude controller receives reference pitch and roll angles from the velocity

controller.



Chapter 6

Numerical results

6.1 Helicopter model validation

The mathematical model of the helicopter dynamics has been numerically validated.

A static validation of the helicopter model has been performed by comparing the

trim curves related to the model described in chapter 2, and the simulation results

of a higher-order model implemented in Flightlab, and available from the literature

[43]. The small-scale helicopter Align T-REX has been considered for the sake of

trim validation, and relevant parameters within the model. Main results are depicted

in Figs. 6.1-6.3, showing pilot inputs, roll and pitch angles. Results show a good

agreement. A summary of trim variables error is reported in Tab. 6.1 for each trim

curve (VN , Vup, VE). Here, the errors on the roll and pitch angles are the maximum

absolute errors, while the error considered for the inputs is normalized on every input

88
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range:

%eθ0 =
|θ0,FL − θ0,M |max

∆θ0
· 100 (6.1)

%eθtr =
|θtr,FL − θtr,M |max

∆θtr
· 100 (6.2)

%eθ0 =
|A1s,FL − A1s,M |max

∆A1s

· 100 (6.3)

%eθ0 =
|B1s,FL −B1s,M |max

∆B1s

· 100 (6.4)

where M stands for model and FL for Flightlab. Small errors are obtained for

the most important variables, namely the roll and pitch angles, and the collectives.

Slightly bigger but acceptable are the errors on the cyclic commands which are due to

the difficulties related to the dynamic modeling of the internal main rotor dynamics

(flapping and inflow dynamics). These errors don’t prevent a good description of the

main dynamic behavior of the helicopter and have a reduced importance when the

model is used for guidance, navigation and control systems design.

6.2 Autorotation results

This section addresses the main results of the complete automatic autorotation ma-

neuver. The designed maneuver has been simulated by means of the complete heli-

copter model described in chapter 2 with the controllers seen in chapter 4. The main

helicopter parameters for the Goblin Saab 700 used here, can be found in Tab. 6.2.

Several simulations have been performed. For all of them, the following assumptions

have been considered:
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Figure 6.1: Trim results comparison for different advancing velocities.
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◦ = Model, ∗ = Flightlab
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◦ = Model, ∗ = Flightlab

Table 6.1: Maximum trim errors

Maximum errors on roll and pitch angles deg
VN Vup VE

Φ 0.59 2.33 0.68
Θ 0.64 0.38 2.26

Maximum normalized errors on trim commands %
VN Vup VE

θ0 6.45 5.98 4.12
θtr 3.12 5.15 2.75
A1s 14.75 1.35 2.82
B1s 2.83 1.81 16.06
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• unlimited extended landing field and no constraints on the final position;

• engine failure happens after 2 s of a stable forward flight;

• the control system recognizes the engine failure and starts the autorotation

when Ω < Ωdecision which is set to 95% of the value for the nominal condition.

The optimal flare parameters are obtained from the flare optimization and are re-

ported in Tab. 3.1. The nominal initial condition is a forward flight with initial

velocity ui = u0, initial altitude hi = 100 m, and rotor angular rate Ωi = Ω0. The

simulation campaign addressed the following main tasks:

• test the optimized automatic autorotation in nominal conditions;

• test the influence of the flare altitude on the maneuver;

• compare simulations done at different initial altitudes, different initial cruise

velocities, and different initial rotor angular rates.

• check the robustness of guidance and control law against model parametric

uncertainties

All the controller gains, reported in Tab. 6.3 have been chosen by trial and error.

6.2.1 Results for nominal initial conditions

The first simulation is conducted considering an initial altitude of 100 m and an initial

velocity equal to that allowing the steady descent u0. Steady descent velocities and

the flare altitude h0 are provided by Tab. 3.1. In Fig. 6.4-6.6, the simulation results
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Table 6.2: Helicopter data

Inertial parameters
Parameter Symbol Value Unit
Mass m 4.8 kg
Moments of inertia Ixx 0.0465 kg/m2

Iyy 0.2971 kg/m2

Izz 0.2567 kg/m2

Products of inertia Ixy 0.0079 kg/m2

Ixz 0.0033 kg/m2

Iyz −0.0006 kg/m2

Main rotor
Parameter Symbol Value Unit
Rotor direction χ −1 —
Rotor radius R 0.79 m
Rotor inertia Imr 0.0689 kg/m2

Number of blades Nb 2 —
Hinge offest ratio ε 0.0314 —
Profile lift slope Clα 2π —
Profile chord c 0.06 m
Blade mass mb 0.2057 kg
Blade flapping inertia Iβ 0.0344 kg/m2

Equivalent rotor hinge stiffness Kβ 162.69 Nm/rad
Pitch-flap coupling ratio K1 0 —
Linear blade twist θt 0 rad/m
Solidity σ 0.0479 —
Rotor forward tilt angle is 0.0524 rad
Precone a0 0 rad
Hub position in body axes xh 0.0095 m

yh 0 m
zh −0.1810 m

Tail rotor
Parameter Symbol Value Unit
Rotor Rtr 0.115 m
Rotor inertia Imr 0.0689 kg/m2

Number of blades Nb,tr 2 —
Solidity σtr 0.1716 —
Hub position in body axes xtr −1.045 m

ytr 0.052 m
ztr −0.031 m
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Table 6.3: Controllers gains

Roll stabilizer gains value unit
PΦ 2π 1/s
Pp 7.1628e− 3 —
Ip 5.3721e− 4 —
Dp 0 —
Kpq −3.50e− 1 —
Pitch stabilizer gains value unit
PΘ 2π 1/s
Pq 8.3409e− 3 —
Iq 6.2556e− 4 —
Dq 0 —
Kqp 1e− 3 —
Heading hold gains value unit
PΨ 5.01 1/s
Pr 6.70e− 2 —
Ir 1.411e− 3 —
Pθ0 2.0614e1 —
θ0,tr 8.590e− 2 rad
Steady descent control gains value unit
Pu −6.3662e− 1 —
Iu −1.2732e− 2 —
Du 1.2732e− 2 —
Pv −6.3662e− 1 —
Iv 1.2732e− 2 —
Dv 1.2732e− 2 —
PΩ −9.00e− 3 —
IΩ −5.00e− 4 —
Flare control gains value unit
Pw 8.00e− 1 —
Iw 2e− 2 —
Dw 0 —
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Figure 6.4: Nominal autorotation maneuver: longitudinal variables

are reported. After 2 s of level flight, the engine fails, the rotor rate decreases, and

the helicopter follows a descent trajectory. The collective pitch input in Fig. 6.6 is

set to the steady descent trim value and the control system allows the rotor speed to

reach the target steady descent conditions. At t ≈ 17 s, when the helicopter reaches

the flare altitude h0, the flare phase starts: the collective pitch increases exploiting

the rotor energy to decelerate the helicopter, and around the pitch axis, a smooth

pull-up input reduces the advancing velocity. At touch down, velocities and attitude

are below the desired limits, and the maneuver is considered concluded successfully.

It’s clear from Fig. 6.5 that lateral-directional variables are controlled by roll and

yaw autopilots to obtain a quasi-purely longitudinal maneuver. Fig. 6.7 shows the

exact tracking of the velocity during the flare.
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Figure 6.5: Nominal autorotation maneuver: lateral variables
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Figure 6.8: Autorotation for three different flare altitudes

6.2.2 Effect of different altitude for the flare

In Fig.6.8 it is shown what happens when, considering the nominal initial and steady

descent conditions, different values of h0 are adopted. What appears clearly is that

the higher the flare altitude, the longer and smoother the maneuver. Then, increasing

h0 the maximum pull-up angle is reduced but also the rotor rate at touch-down

reaches reduced values. It means that a lower limit on h0 is imposed by the maximum

pitch angle and pitch rate while a higher limit is given by the stall of the rotor. As

expected, since the altitude stays between these two limits, there is no practical

influence of h0 on the final velocity. Optimization in section 3.5 is then useful to find

optimal values of u0 and w0 and a suitable value of h0.
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6.2.3 Effect of different initial velocity and altitude

Two groups of simulations are conducted in order to test the robustness of the ma-

neuver over the initial level flight conditions. Different initial velocities and altitudes

are then considered.

The effect of the initial advancing velocity on the autorotation maneuver is re-

ported in Fig. 6.9. Three different values of ui are chosen. In every case, since ui is

not so far from the steady descent value, the helicopter can get the steady descent

conditions and then correctly perform the flare. The effect of the pitch angle on

the first phase of the maneuver (when the helicopter passes from ui to u0) produces

a slight shift between the vertical velocity for the different cases, giving a slightly

different time for the flare.

Different initial altitudes are instead considered for simulations reported in Fig.

6.10. Here it is possible to see that all the simulations have good results and it is

clear that the lower the initial altitude, the shorter the steady descent phase. In

particular, for hi = 15 m this phase is practically absent.

6.2.4 Effect of different initial rotor angular rate

The effect of the initial rotor angular rate is investigated and reported in Fig. 6.11.

Again the control system demonstrates the capability of getting the steady descent

nominal angular rate, performing a good manoeuvre.
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Figure 6.9: Autorotation for three different initial velocities

Figure 6.10: Autorotation for three different initial altitudes
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Figure 6.11: Autorotation for three different initial angular rates

6.2.5 Effect of parameters uncertainties and altitude sensor error

The robustness of the designed maneuver has been tested by conducting a Monte

Carlo simulation campaign, where a normal distribution of random uncertainties on

main helicopter parameters has been considered. The key parameters taken into

account are:

• inertial parameters: total mass Mtot, inertia moment about the pitch axis Iyy;

• aerodynamic parameters: main rotor blade lift slope Clα , blade parasite drag

coefficient δ0, fuselage drag coefficient CD.

To enrich the simulation’s meaningfulness, a random uncertainty on the measured

altitude has also been introduced to test its effect on the final flare. The range of

uncertainty, for every parameter, can be found in Tab. 6.4, while the results of the
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500 simulations are reported in Tab. 6.5. The value of 0.1 m as maximum error on the

measured altitude, is compatible with the accuracy of the most common Lidar sensors

used for UAVs. The results refer to the touch-down conditions (velocity, attitude,

and angular rate), the total time, the total range, and the maximum pitch angle

during the flare. The most important result regards the touch-down velocity, which

is under the threshold of acceptable values even in the worse conditions (maximum

value of utd and wtd). Acceptable values are obtained also for the Euler angles at

touch-down and the maximum pitch angle during the flare. The low values of the

standard deviation suggest the low influence of the parameters on the maneuver

effectiveness. Slightly more variable results are obtained for the rotor angular rate.

Preliminary simulation tests showed that the final velocity and angular rate are

mostly affected by the error on the measured altitude, while a reduced effect is given

by the other parameters. Analytic estimation of this error can be done by applying

the small perturbation theory on Eq. (3.16). Deriving the latter w.r.t. the altitude

we obtain:

δwtd =
∂w(h)

∂h

∣∣∣∣
h=0

δh =
2w0

h0
δh (6.5)

In our case, considering a maximum error on the measured altitude of 0.1m, we

obtain a maximum variation on the final touch down velocity of 0.12 m/s which is

approximately equal to the difference between the maximum and mean value of wtd

in Tab. 6.5.
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Table 6.4: Uncertainties ranges

Parameters Symbol Value Unit
Mass δMtot 5 %
Pitch inertia δIyy 10 %
Blade lift slope δClα 10 %
Blade parasite drag δδ0 10 %
Fuselage drag δCD 10 %
Measured altitude δh 0.1 m

Table 6.5: Monte Carlo results

Symbol Mean Min Max St. deviation Unit
tf 20.338 18.748 22.073 0.62778 s
Sf 85.953 80.529 91.139 2.1737 m
utd 0.117 -0.00076573 0.23998 0.066143 m/s
vtd 0.0029415 0.00012312 0.0061101 0.0014016 m/s
wtd 0.15632 0.070825 0.26801 0.057433 m/s
ϕtd -0.0087451 -0.046025 0.10858 0.014204 ◦

θtd 4.017 3.4409 4.735 0.37321 ◦

θmax 12.218 11.783 12.524 0.13227 ◦

ψtd 0.55999 -1.4009 2.1083 0.55641 ◦

Ωtd 94.887 74.616 111.13 8.5593 rad/s
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6.3 Simulations with NDI control

In the following subsections, the results for four different simulations performed with

the NDI controllers are reported. A first test, for the NDI controller, was performed

to investigate how the controller follows symmetrical step inputs on the desired ve-

locity along the three local-vertical axes. A second simulation considers a circular

maneuver to see how the system responds to a commanded constant yaw rate. As a

third point, a lateral slalom maneuver is simulated for the lateral response and finally,

the automatic autorotation is performed as a longitudinal maneuver. The velocity

controller capabilities are tested by comparing the simulated velocities and attitudes

with their corresponding reference/desired signals. Also, the extended Kalman filter

behavior for the mean inflow angle estimation has been investigated during these

simulations. All the simulation results reported in the following were obtained after

an initialization phase where an advancing flight in steady condition is reached.

6.3.1 Response on step inputs

Starting from a steady level powered flight at Vx = 5 m/s, three symmetric step

inputs with a magnitude of 1 m/s are given to the desired velocity along the three

local-vertical axes, starting at time 2 s. The velocity response is given in Fig. 6.12,

where it is shown that the simulated velocity correctly follows the reference dynamics

reaching the commanded values after around 2 s. Looking at Fig. 6.13, it is possible

to notice how the pitch and roll angles are connected respectively to the advancing

and lateral velocity, and the good decoupling obtained between the longitudinal and

lateral axes. A certain coupling is still present between the pitch and yaw axes. In
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Figure 6.12: Velocity response for step input velocity with NDI control

Fig. 6.14 the behavior of the inflow estimation is reported: here it is visible how the

filter manages to properly estimate the mean inflow keeping an error bounded under

the 5% for all the simulation time.

6.3.2 Circular maneuver

A circular maneuver with a turn rate of 6 deg/s and a radius of 48 m has been

commanded and simulated. During the simulation, the commanded yaw rate corre-

sponds to the turn rate while an advancing constant velocity of 5 m/s is commanded

to the xlv axis. The results are shown in Fig. 6.15-6.18 where it is visible how the

velocity controller, as the attitude controller and the yaw rate controller properly

follow the reference signals. Even the inflow estimation error is small during all the

simulation. Finally a comparison between the ideal desired circular trajectory and
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Figure 6.13: Attitude response for step input velocity with NDI control
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Figure 6.14: Inflow filter behavior for step input velocity with NDI control
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Figure 6.15: Velocities for a circular maneuver with NDI control

the obtained trajectory in Fig. 6.18 reveals the good performance of the controller.

6.3.3 Lateral maneuver

The simulation results for a slalom maneuver are reported in Figs. 6.20-6.20. In this

simulation a constant velocity is commanded along the xlv axis while a the desired

lateral velocity has a sinusoidal time law. As can be seen in the plots, the system

adequately follows the reference velocities and attitude. In particular, an oscillating

roll angle (and a low amplitude oscillating pitch angle) are necessary for the velocity

tracking. A neglegible yaw rate is also obtained. Again, a very good estimation of

the inflow ratio is obtained and shown in Fig. 6.21.
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Figure 6.16: Euler angles and yawrate for a circular maneuver with NDI control
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Figure 6.17: Inflwo filter behavior for a circular maneuver with NDI control
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Figure 6.18: Trajectory for a circular maneuver with NDI control
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Figure 6.19: Velocities for a slalom maneuver with NDI control
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Figure 6.20: Euler angles and yaw rate for a slalom maneuver with NDI control
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Figure 6.21: Inflwo filter behavior for a slalom maneuver with NDI control
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6.3.4 Autorotation with NDI

A further test on the NDI velocity and attitude controller has been done considering

the autorotation maneuver. The initial conditions are again given by a stationary-

level flight at 5 m/s at an initial altitude of 100 m. After 2 s the engine fails,

the system recognizes the failure and the automatic autorotation maneuver starts.

The nominal steady descent conditions and flare altitude h0 are adopted in this

simulation. As specified already in section 5.6, during the steady descent the NDI

velocity controller is used to follow the nominal advancing velocity while the collective

is elaborated controlling the rotor angular rate, whereas during the flare, the reference

velocity from the trajectory planner, is tracked by the NDI controller. Results for the

velocity and the attitude are reported in Figs. 6.22-6.23 where it is possible to see

that the controller correctly drives the system through the steady descent conditions

and then the flare. In Fig. 6.24 it is possible to see the trajectory (altitude), the

magnitude of the velocity and the rotor angular rate. Here it is clear how the main

energy contributions change during the maneuver: in particular the rotor rate and

the velocity are taken almost constant during the steady descent, while during the

flare the rotor kinetic energy is used to reduce the velocity. Finally in Fig.6.26 it

is possible to see the inflow filter behavior, which results to be less accurate than

in other cases. This is probably due to the neglected effect of the fuselage which is

significantly higher for longitudinal maneuver, and especially for high vertical speed

conditions.
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Figure 6.22: Velocities during autorotation maneuver with NDI control

Figure 6.23: Euler angles and yawrate during autorotation maneuver with NDI con-
trol
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Figure 6.24: Velocity, altitude and rotor angular rate during autorotation maneuver
with NDI control

-5

0

5

10

0
 [

d
e

g
]

-2

0

2

4

A
1
s
 [

d
e

g
]

-5

0

5

B
1
s
 [

d
e

g
]

2 4 6 8 10 12 14 16 18 20 22

time [s]

-5

0

5

tr
 [

d
e

g
]

Figure 6.25: commands during autorotation maneuver with NDI control
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Figure 6.26: Inflwo filter behavior during autorotation maneuver with NDI control

6.4 Conclusions and future work

Two main research objectives have been addressed in this work: the development of

the automatic autorotation maneuver, and the development of a nonlinear dynamic

inversion controller for the helicopter.

The autorotation has been studied first, to keep its physical insight, and in the

second part, the desig of a suitable automatic maneuver has been addressed. In

particular, a trim algorithm, based on a medium-level order dynamic model, has

been developed to calculate all the possible steady descent conditions. An analy-

sis of these conditions, in terms of collective, angular rate, and velocities, has been

done to clarify the role of these variables for the equilibrium. For the design of a

suitable maneuver, the starting hypothesis is to consider three main phases: the

initial transitory, the steady descent, and the flare. The design of the flare has been
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conducted, trying to follow simplicity criteria, and defining a trajectory profile eas-

ily implementable on real-time systems. An optimization algorithm has also been

proposed for the choice of the maneuver parameters. Finally, a linear PID based

control has been adopted to perform the autorotation in a simulation environment.

The simulation results have shown that the control system correctly manages to per-

form a safe landing in autorotation for a wide range of initial conditions (altitude,

advancing velocity, and rotor angular rate). The effect of a different flare altitude

has also been investigated, showing that a range of suitable altitudes can be defined

for a safe landing. Strictly related to h0 is the pitch angle maneuver, thus a correct

choice of this parameter should ensure a good pitch profile. A Monte Carlo simu-

lation campaign was also conducted to test the effect of model uncertainties on the

algorithm. A 5% uncertainty has been considered for the total mass while a 10%

uncertainty has been taken for the longitudinal inertia, the blades lift slope and drag

coefficient, and the fuselage drag coefficient. A random error of maximum 0.1 m has

also been considered for the measured altitude. After 500 simulations, the recorded

results for the touch-down velocity, attitude, and rotor angular rate, demonstrated

the robustness of the maneuver and the control system w.r.t. helicopter parameters

uncertainties.

To improve helicopter maneuverability, a NDI controller has been developed.

The system has a nested structure with an inner attitude controller and an outer

velocity controller. For the attitude control, the inversion is made on the rotational

dynamics of the medium-order helicopter model, while a simpler model has been

considered for the translational dynamics inversion of the velocity controller. An
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extended Kalman filter has also been implemented for the inflow ratio estimation.

The simulation results have shown good control performance for various maneuvers,

in the longitudinal plane, as in the lateral one. The automatic autorotation maneuver

has also been addressed with good results.

An important enrichment of the research will be the validation of the previous

numerical results, with flight tests. The first step should be the validation of the

steady descent conditions. For this purpose, a safe flight test could be done by

performing short descents at high altitudes with the engine running a reduced angular

rate for recovery.

Another important task is the control implementation on real flight hardware.

An intermediate step will be the hardware-in-the-loop simulation, where the dynamic

behavior of the helicopter will be simulated, while the elaboration of the controls,

will be done by the real hardware.
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