

DOTTORATO DI RICERCA IN

INGEGNERIA E TECNOLOGIA DELL'INFORMAZIONE PER IL
MONITORAGGIO STRUTTURALE E AMBIENTALE E LA GESTIONE DEI

RISCHI - EIT4SEMM

Ciclo 36

Settore Concorsuale: 09/E3 - ELETTRONICA

Settore Scientifico Disciplinare: ING-INF/01 - ELETTRONICA

HARDWARE-SOFTWARE CO-DESIGN FOR LARGE-SCALE STRUCTURAL
HEALTH MONITORING

Presentata da: Amirhossein Moallemi

Supervisore

Luca Benini

Esame finale anno 2024

Coordinatore Dottorato

Luca De Marchi

Co-supervisore

Davide Brunelli

1 Amirhossein Moallemi

ALMA MATER STUDIORUM-UNIVERSITÀ DI BOLOGNA

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND INFORMATION
ENGINEERING

’GUGLIELMO MARCONI’

36th Cycle Degree in ENGINEERING AND
INFORMATION TECHNOLOGY FOR

STRUCTURAL AND ENVIRONMENTAL
MONITORING AND RISK MANAGEMENT -

EIT4SEMM
DEI

Thesis in

Hardware-Software Co-design for Large-scale Structural
Health Monitoring

CANDIDATE:

Amirhossein Moallemi

Advisor:

Prof. Dr. Luca Benini

Co-Advisor:

Dr. Davide Brunelli

Final Exam year 2024

Wisdom is a constant evolution of knowledge and experience.

i Amirhossein Moallemi

ABSTRACT

Modern Structural Health Monitoring (SHM) systems currently utilize a combination of low-
cost, low-energy sensors and processing units to monitor the conditions of target facilities.
However, utilizing a dense deployment of sensors generates a significant volume of data that
must be transmitted to the cloud, requiring high bandwidth and consuming substantial power,
particularly when using wireless protocols. The current cloud-based solutions cannot scale if
the raw data has to be collected from thousands of buildings. To optimize the energy budget
and generated data of the monitoring system, it is crucial to reduce the size of the raw data
near the sensors at the edge. However, existing compression techniques at the edge suffer
from a trade-off between compression and accuracy and long latency, resulting in high energy
consumption. This work presents a full-stack deployment of efficient and scalable data reduc-
tion and anomaly detection pipelines for SHM systems, which does not require transmitting
raw data to the cloud but relies on edge computation. First, we design and evaluate an edge
SHM sensor node featuring a low-cost MEMS-based sensor network, two computational units,
and a wireless communication unit. Then, we benchmark three lightweight algorithmic ap-
proaches of anomaly detection, i.e., Principal Component Analysis (PCA), Fully-Connected
AutoEncoder (FC-AE), and Convolutional AutoEncoder (C-AE) implemented on the SHM
node. By doing so, we decrease network traffic by ≈ 8 · 105×, from 780KB/hour to less than
10 Bytes/hour for a single node installation and minimize network and cloud resource utiliza-
tion, enabling the scaling of the monitoring infrastructure. Further, in another framework, we
show a parallelized version of an unconventional data reduction method suited for vibration
analysis based on System Identification models, which does not require retraining. Featuring
the parallel nature of this algorithm, it can leverage the unique capabilities of GAP9, a multi-
core RISC-V MCU based on the parallel ultra-low power (PULP) architecture, making the
System Identification deployable at the node level. Compared to the sequential implementa-
tion, we achieve a maximum execution time reduction of ≈ 60× and power consumption of
just 48.3mW while preserving the spectral accuracy of the models. Finally, we propose our
last SHM application to take a step forward in Traffic Load Estimation via the SHM system.
This novel signal processing and classification pipeline is able to differentiate vehicles into
three categories: light, i.e., less than 10 tons; heavy, i.e., between 10 and 30 tons; and super
heavy, i.e., above 30 tons, using only features extracted from vibration data with an accuracy
of 96%, utilizing the mean-shift, an unsupervised clustering model. This method can poten-

ii

tially be a more cost-effective and scalable solution for monitoring bridge loads compared to
Weight-in-Motion systems, as it leverages existing SHM infrastructure and low-cost MEMS
sensors to provide real-time information on vehicular loads.

Real-life case studies over bridges in Italy demonstrate that by combining near-sensor com-
putation of lightweight algorithms, smart pre-processing, and low-power wide-area network
protocols (LPWAN), we can significantly reduce data communication and cloud computing
costs, while anomaly detection accuracy is not adversely affected at the edge.

iii Amirhossein Moallemi

ACKNOWLEDGMENTS

I first would like to thank my supervisor, Luca Benini, for all his support, input, and valuable
supervision during my PhD journey.

I also would like to thank Michele Magno, Tommaso Polonelli, Andrea Acquaviva, Victor
Javier Kartsch Morinigo, and Davide Brunelli for providing essential suggestions and oppor-
tunities to learn from the projects that I was involved in during my PhD.

Further, I would also like to thank all my colleagues in unibo at Micrel Lab, specially Flavio
Di Nuzzo, Alessio Burrello, Marco Guermandi, Luca Zanatta, Emanuele Parisi, and ETH
Zurich (PBL group) Denis Mikhaylov, Luca Pascarella, and Michael Jost for their contribution
to what I was able to achieve and learning process during my Ph.D.

Next, I also want to mention the spiritual support I got from my dear friends Laura Zunarelli,
Sebastian Frey, Julian Moosmann, Nazareno Bruschi, Seyed Ahmad Mirsalari, and Amirhos-
sein Kiamarzi during these years

Finally, I would like to give special thanks to my parents, who dedicated their unconditional
support during my three years of Ph.D., and my sister, who helped me in numerous ways to
achieve the best.

iv

CONTENTS

Abstract ii

Contents vi

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Main Contributions . 3
1.2 Manuscript organization . 4

2 Literature Review 6
2.1 Accelerometers Technology . 7
2.2 SHM frameworks . 8
2.3 Anomaly Detection at the edge . 9

2.3.1 Statistical data modeling . 9
2.3.2 Deep Neural Networks . 10
2.3.3 Data Reduction . 11

2.4 System Identification at the edge . 12
2.5 SHM systems for vehicle Calssification . 13

3 Background 14
3.1 Data Compression Models . 15

3.1.1 System Identification . 15
3.1.2 PCA . 16
3.1.3 Autoencoders . 16

3.2 Clustering . 17
3.2.1 K-means . 17
3.2.2 Mean shift . 17
3.2.3 Gaussian Mixture Models . 18

v

3.2.4 Mathematical Comparison of Methodologies 18

4 Tiny Detector Framework 19
4.1 Hardware Standalone Design . 19

4.1.1 Power Supply unit . 20
4.1.2 Sensing Unit . 22
4.1.3 Metrological characterization . 24
4.1.4 Computational Unit . 24
4.1.5 Transmission Unit . 27

4.2 Final Framework . 29
4.3 Experimental Results . 29

4.3.1 Noise Analysis . 30
4.3.2 Time Analysis . 30
4.3.3 Frequency Analysis . 31

5 Applied Signal Processing 33
5.1 Data-driven Vs Model-Based Algorithm . 34

5.1.1 SHM Installation . 34
5.1.2 Methods: Anomaly Detection in an SHM framework 36
5.1.3 Deployment: Sensor Vs. Cloud . 39

5.2 Results: Data-Driven Vs Model-Based . 42
5.2.1 Algorithm Exploration . 42
5.2.2 Hyperparameters exploration . 45
5.2.3 Implementation . 50

5.3 System Identification . 53
5.3.1 Case Study . 53
5.3.2 Methods: Sequential Vs. Parallel Tall Skinny QR 54

5.4 Results: System Identification Parametric Methods 57
5.4.1 Data Compression . 57
5.4.2 Implementation . 58

5.5 Vehicle Classification . 60
5.5.1 Case Study . 60
5.5.2 Methodology: Vehicle Classification in SHM context 63

5.6 Results: Vehicle Classifications . 68
5.6.1 Feature Extraction & Data Labelling 69
5.6.2 Algorithm Exploration . 71
5.6.3 Hyperparameter Exploration . 72

6 Conclusion 75

Bibliography 77

vi Amirhossein Moallemi

LIST OF TABLES

2.1 Structural Health Monitoring studies over the last years. Performance results
refer to the distinction of damaged from non-damaged data samples. Perfor-
mance is in terms of Accuracy unless it is mentioned. Abbreviations: FP: False
positives, FN: False Negative. 9

4.1 Sensor characterization values provided by manufacturer 23
4.2 Estimation of Noise in the time and frequency domain 30
4.3 In-time Analysis for the Lab and Beam experiments. 30
4.4 In-frequency Analysis for the Lab and Beam experiments. 31

5.1 Performance of our pipeline changing anomaly detection algorithm with dis-
crete wavelet transform, frequency, and time data as input space domain. . . . 43

5.2 Comparison of our proposed solution with state-of-the-art methods applied to
our dataset. The 60min post-processing is identically applied to all methods. 48

5.3 Deployment metrics of PCA algorithm with CF = 16, output dimension = 60
minutes, and variable input dimension. Time and Energy are only for one
inference. 50

5.4 NB-IoT deployment cost for the scenarios of our pipeline Esleep = 390 (mJ) is
the energy consumption of the node in PSM. Eacq = 52.596 (mJ) is the energy
consumption to acquire 1 second of data . 52

5.5 Performance indicators for varying Np and Ns/1p when parallelizing the AR
and ARMA SysId models on the GAP9 platform. 59

5.6 Time intervals of each day for the dataset. 61
5.7 Frequency analysis results of 15 minutes in 4 different time zones of the day . 64
5.8 Comparison between k-means and mean-shift for considering all the spans

together for the training set while sweeping over different micro-clusters . . . 73
5.9 Comparison between the best case Classification Accuracy for different scenarios 74

vii

LIST OF FIGURES

1.1 IoT-based SHM systems. In Panel A, the raw signal is gathered from the sen-
sors and sent to the cloud through a gateway to analyze the structure’s condi-
tion. In Panel B, the safe/damage condition is directly computed on the node. 2

1.2 Hierarchical chain of this work’s contributions. 3

4.1 GAP9 structures [103] . 26
4.2 The final block diagram schematic of the SHM sensor-node. 28

5.1 Overview of the installed monitoring system on the viaduct. Five sensors are
linked to a gateway for streaming data to the cloud. The grey box showcases
the main components of a sensor node. 35

5.2 The proposed framework to analyze the condition of a viaduct starting from
raw acceleration data. In the top part of the figure, we show the hyper-parameter
tuning (in red) and the initial training steps done before the monitoring system
was activated for the first time. In the middle, we show the inference steps to be
done continuously for safe/anomaly condition assessment. In the bottom part,
we show the possibility of updating the signal reconstruction algorithms after
the pipeline detects an abnormal event to avoid the increase of false-positive
alarms due to the bridge’s static deformation caused by wind or aging. 36

5.3 Top panel: Twelve minutes of mean-centered raw acceleration data of the z−
axis of the middle sensor installed on a bridge span. Peaks are associated
with vehicle passages. Left panel: Zoom of a 5-second window containing
the oscillation associated with the passage of a vehicle. Right panel: The
frequency response of the window of the signal is highlighted with the dashed
rectangle. 37

5.4 PCA output mean square error (MSE) on the test dataset. The input window
dimension is set to 5 seconds. The solid line is obtained by applying the post-
processing with window dimension = 1 h. 38

5.5 Three deployment scenarios of our anomaly detection pipeline. Green arrows
highlight the inference steps, while red ones highlight the re-training and up-
dating of the model over time. 40

viii

LIST OF FIGURES

5.6 ROC curve for different input signal domains, i.e., time, frequency, and time-
frequency. 44

5.7 The energy filtering step impacts the PCA output MSE. In the top panel, we
show the MSE when the energy filtering is not applied. In the bottom panel,
we show the improved result with its application. 45

5.8 Effect of input-output dimensions sweep on the performance of the best detec-
tor (PCA). 46

5.9 MSE distribution while changing CF parameter 47
5.10 Performance of the PCA classifier while sweeping over several severities of

anomalies w.r.t real case scenario of the bridge. 47
5.11 CF tuning versus accuracy, memory, and energy. Horizontal red line points to

the limit of MCU memory. Dotted lines represent not deployable solutions. . 51
5.12 Two different implementations of the QR decomposition deployed to solve

the System Identification model parameters. Panel A: The sequential imple-
mentation of QR decomposition at the edge processing each chunk of data
sequentially. Panel B: The parallel implementation of QR decomposition at
the edge processing multiple chunks of data simultaneously. 54

5.13 Workflow of the proposed P-TSQR-based SysId approach proposed in this
application in which merely modal parameters are transmitted to the cloud
replacing the raw data. 55

5.14 PSDs of the AR/ARMA models in a particular configuration (Np = 25 Ns1p =
35), comparison between GAP9 and Matlab 58

5.15 Time gain achieved by moving from sequential to parallel implementation. . . 60
5.16 The real-life case study used for vehicle classification application. Panel A:

The weight-in-motion (WiM) system stores several metrics, such as weight
and velocity. Panel B: Block diagram of the 5 spans of the viaduct under study.
Panel C: SHM Framework for data acquisition installed under the viaduct. . . 61

5.17 The proposed framework of this work: (A) Two data acquisition systems of
our system, namely, Accelerometer and Weight-In-Motion device. (B) Data
pre-processing chain applied to 2D raw vibration to extract a 1D trace show-
cases the raw data. P1 to P4 are the L2-norm of the x-z plane, band pass
Butterworth filter, overlap windowing, and energy smooth trace, respectively.
Finally, the smooth traces are applied to PCA to extract two thresholds for
vehicle identification. (C) Vehicle identification and feature extraction. (D)
Labeling the extracted features by coinciding with WIM data. (E) Training
and (F) Different validation studies. 63

5.18 The preprocessing chain applied to the raw data: A) Acceleration Raw data of
z axis on top and x axis at the bottom, B) Result of the L2 normalization of
x − z axes, C) Result of the 4th order filter applied to the normalized values
at the former step. D) Extracted energy values as the signature of each vehicle
passage. 64

5.19 From raw data to the boxed version of each vehicle passage. Panel A) 15
minutes of raw data B) Boxed vehicles. 66

5.20 Distribution of clusters for a portion of SHM dataset showing 4micro classes
in light blue, dark blue, green, and red and thresholds to classify vehicles into
three macro classes, i.e., Light, heavy, and super heavy. 68

ix Amirhossein Moallemi

LIST OF FIGURES

5.21 Four different vehicle identicator metrics, namely Grossweight (panel A), Ve-
locity (panel B), Momentum (panel C), and Kinetic energy(panel D) vs. the
maximum amplitude of each vehicle event. In green the light class, in orange
the heavy class, and in red super heavy class vehicles. 69

5.22 Gross weight distribution of EU - laws . 70
5.23 Distribution of the extracted features over the gross weight. In green, the light

class; in orange, the heavy class; and in red, super heavy class vehicles. . . . 70
5.24 Classification Accuracy for the two scenarios of the unsupervised classification

of vehicles . 71
5.25 Result of varying clusters of clustering methods. 72
5.26 Span Exploration Results in the two scenarios described in Sec. 5.5.1 73

x Amirhossein Moallemi

CHAPTER

1

INTRODUCTION

Large-scale civil infrastructures have shown a worldwide expansion in recent years due to in-
creasing investments of the top economies in the world [31, 42]. Other than civil structures,
the safety of aerospace vehicles, industrial machines, and humongous electrical generators is
another critical issue that took the government’s attention in the last decades to tackle the envi-
ronmental impacts affecting such complex systems [92,93]. Remarkably, these infrastructures
are evolving into increasingly sophisticated and complex systems. Indeed, advancements in
technology and engineering have led to the appearance of long-span viaducts, extensive under-
ground tunnels, and sprawling skyscraper districts in modern cities. Although these innovative
complex structures enrich cities’ landscapes, they present new challenges in design, construc-
tion, and, most importantly, ongoing maintenance [71]. Despite recent achievements in struc-
tural design ensuring the robustness of the structures, continuous and hazardous vulnerabilities
persist. Threats such as extreme weather conditions (e.g., high winds, heavy rainfall), the im-
pact of massive vehicular loads, and the ever-present risk of earthquakes remain significant
concerns [54, 112]

For instance, evaluating the performance of bridges is essential in managing transporta-
tion infrastructure systems in EU countries, given the continuous increase in traffic loads and
structural aging. Hence, optimizing one of the bottlenecks of transportation systems, i.e.,
viaducts, is a relevant study case for governments, where countries like Italy have more than
30K long-span bridges and viaducts at the country level [28]. In particular, increasing traf-
fic loads represent a key factor to consider when assessing existing structures, often standing
out as the most substantial variable action impacting bridge performance. The recent tragic
incident involving the Polcevera viaduct’s collapse in Genoa, Italy, resulting in the loss of
over 40 lives, serves as a heartbreaking reminder of the critical need for proactive structural
monitoring and maintenance. This incident emphasizes the limitations of periodic or sporadic
human-assisted assessments of structures. It has become increasingly evident that traditional
approaches to structural health monitoring are insufficient to guarantee safety and infrastruc-
ture integrity. Consequently, a paradigm change towards continuously observing structural
integrity and automatic anomaly detection is becoming a key requirement for civil infrastruc-

1

CHAPTER 1. INTRODUCTION

Figure 1.1: IoT-based SHM systems. In Panel A, the raw signal is gathered from the sensors
and sent to the cloud through a gateway to analyze the structure’s condition. In Panel B, the
safe/damage condition is directly computed on the node.

ture maintenance [43, 73].
In the last two decades, the new field of Structural Health Monitoring (SHM) has emerged,

exploring a wide range of techniques to continuously assess the conditions of structures, which
are susceptible to various damaging phenomena [44]. To effectively assess the integrity of a
structure, an SHM system includes data acquisition, data transmission, data processing, and
data interpretation steps [84, 87]. Moreover, the new field of automated SHM, which tracks
the real-time online state of structures using dense sensor networks, is gaining prominence to
replace traditional SHM approaches [24, 95]. This idea, coupled with the advancements in the
Internet of Things (IoT) [9], presents a transformative shift in monitoring large structures, of-
fering cost-effective alternatives to traditional human crew deployments [50]. Each distributed
sensor network over the target structure in the modern SHM systems embeds several low-cost
sensors and a computational unit that can sense and transmit data to the centralized resources,
i.e., the cloud, where information is stored and further processed to assess the level of struc-
tural integrity [32, 96]. A simple block diagram of such approaches is shown in Fig. 1.1-A.
This multi-level architecture allows for efficient and comprehensive structural health monitor-
ing in real-time, enabling timely interventions and maintenance strategies. Among the various
monitoring techniques, vibration-based monitoring, in particular, is one of the most effective
techniques for inspecting structures in the dynamic regime, i.e., structures that are completely
characterized by frequency-related quantities [57, 93].

The amount of information and data gathered by new-generation SHM systems is exponen-
tially growing, moving from a few measurements every hour from a few sensors to continuous
high-frequency data streams from dense sensor networks [6, 40]. Indeed, this sensor-to-cloud
continuous streaming generates a big volume of data, in the range of hundreds of MB to even
GB per day for each individual structure with a dense SHM system monitoring the struc-
ture [72], leading to expensive and non-scalable solutions that barely adapt to large-scale sce-
narios [77]. Moreover, the continuous flow of long-time acquisition sessions requires large
bandwidths and grid-based powering since the transmission phase is costly in energy con-
sumption and can rapidly exhaust the capacity provided by battery-operated supplies [109].
Hence, network throughput and storage capabilities in the cloud have become major concerns
in modern SHM systems, indicating the need to offload a portion of the computing work-
load to the processors near the sensors, i.e., the edge. Indeed, to overcome the challenges of
streaming MB throughput and large volumes of data, embedded signal processing algorithms
directly near the sensors could minimize the volume of data transmitted and enhance the en-
ergy efficiency of the system [68]. This introduces a new trend of intelligent SHM systems
based on edge processing to avoid communicating raw data to the cloud. In this paradigm,

2 Amirhossein Moallemi

CHAPTER 1. INTRODUCTION

Figure 1.2: Hierarchical chain of this work’s contributions.

raw data is processed near the sensors, reducing network traffic drastically from hundreds of
MB to even less than MB per day between the edge sensor and the cloud [123]. Furthermore,
reducing the network’s throughput not only solves issues such as data security and storing an
enlarged amount of data but also decreases energy consumption and cloud maintenance bud-
gets [86]. However, implementing advanced signal processing, machine learning, and deep
neural networks on resource-constrained computational units at the edge is not intuitive due to
limitations such as limited memory sources and long inference time [22].

1.1 Main Contributions
This study addresses the challenges in deploying complex signal processing algorithms on
resource-constrained devices at the edge to explore the potential transition from cloud to
edge computing for Structural Health Monitoring applications. By doing so, these modern
SHM systems provide promising approaches with more than ten years of battery lifetime and
country-level scalability by avoiding streaming, processing, and storing raw sensor data in the
cloud and instead transmitting reduced extracted features to the cloud.

An essential step in moving from cloud to edge is to use a sensor node equipped with wire-
less communication capable of performing real-time structural health monitoring. So far, the
proposed SHM sensor nodes feature low-cost MEMS sensors and communicate data through
the wire and wireless protocols. However, the computational unit of such nodes demands
long latency to infer advanced signal processing. Hence, an SHM sensor node has been re-
designed, utilizing two computational units, including a multi-core unit designed explicitly for
inferring machine learning and advanced signal processing. Furthermore, different techniques
have been proposed for anomaly detection over structures in literature, ranging from simple
regressive models [39] to deep neural networks [115]. However, they are usually tested on
simulated data, not taking into account real-condition perturbations such as wind or climate
fluctuations [52, 104]. Besides that, these techniques are typically deployed on cloud servers.
Hence, they imply comprehensive data collection from the sensor network. This work presents
two novel frameworks for data compressing and anomaly detection from extreme edge sensors
to overcome challenges such as long latency and energy consumption. Fig. 1.2 shows the
hierarchical presentation of the main contributions of this work.

In particular, this work presents the following contributions to show the feasibility of a
paradigm shift from cloud to edge by studying big-volume data sets collected over real-life
study cases in Italy:

3 Amirhossein Moallemi

CHAPTER 1. INTRODUCTION

• Chap. 4 introduces an SHM sensor based on low-cost MEMS accelerometers featuring
a single-core computational unit running on RTOS for data acquisition and communica-
tion combined with a multi-core processing unit merely for inferring advanced machine
learning and deep neural network.

• Sec. 4.1.2 provides an investigation of the measurement accuracy of analog and digital
MEMS configured in High-Performance and Low-Power mode compared with a seismic
piezoelectrical accelerometer using both in-lab experiments and measurements taken on
a real-world structure.

• Sec. 5.1, compare data-driven and model-driven unsupervised anomaly detection ap-
proaches to monitor the behavior of the viaduct, namely a Principal Component Analy-
sis (PCA) model and two autoencoders. By deploying a real-life dataset, the PCA shows
the best performance with 98.8% accuracy in detecting the structural changes after the
interventions. Further, an assessment of the anomaly detection approach’s robustness in
depth is made by synthetically generating new anomalies from the original real-life one.

• Sec. 5.1 also provides the implementation of the anomaly detection pipeline on a low-
power microcontroller for online inference with ≈ 74 uJ energy consumption for each
inference. This study shows the trade-off between accuracy and power consumption
by tuning the hyperparameters of our best-performing anomaly detector, the PCA. This
section shows that by increasing the Compression Factor (CF) of the PCA (i.e., the ratio
of the original space and the latent space) from 16 to 24, the framework still achieves
92.97% accuracy in detecting structural changes (i.e., distinguishing anomalies from
normal samples) while consuming only 39 uJ per inference.

• Sec. 5.3 presents a parallel implementation of output-only system identification algo-
rithm for data compression on a multi-core RISC-V MCU, GAP9, achieving a maximum
worst-case execution time of 1.65 s @110MHz clock system, with an energy consump-
tion of 80.1mJ.

• Sec. 5.5 presents a framework to classify vehicles into three classes with a classification
accuracy of 96.87% in the best-case scenario using a real-case viaduct scenario with raw
data acquired from the accelerometers and labeled data captured by Weight-In-Motion
(WiM) from a viaduct in regular operation on a highway in northern Italy.

• Sec. 5.5 presents a comparison between the unsupervised Machine Learning models,
namely K-means, mean shift, and Gaussian Mixture Model (GMM), showing that mean-
shift outperforms k-means by an average of 3.91%, while it is more robust than GMM
since the mean-shift has a standard deviation of 3.60% in classification accuracy for
different sections of the bridge whereas it is 5.91% for GMM.

1.2 Manuscript organization
This work provides different sections of a paradigm shift from the cloud to the edge near
the sensors by tackling different challenges of big data datasets on real-world case studies.
To delve into it, in Chap. 2, we review the related works in the literature, providing the gap
between the current work and previous works. Further, Chap. 3 provides a background review
of the methods utilized for anomaly detection, data compression, and vehicle classification.
Then, the Chap. 4 chapter describes the design flow of the SHM sensor node used in this

4 Amirhossein Moallemi

CHAPTER 1. INTRODUCTION

work. Chap. 5 provides the main algorithmic contribution of this work, where three different
frameworks are discussed for data reduction and anomaly detection at the edge, followed by
unsupervised classification of the vehicles deploying SHM sensor node vibration data. Finally,
Chap. 6 concludes this work.

5 Amirhossein Moallemi

CHAPTER

2

LITERATURE REVIEW

This chapter provides a literature review of this manuscript’s applications and research domain.
The first two sections are hardware-oriented, which guided the design choices we made in our
SHM ad hoc sensor node, while the last sections are more software-oriented, justifying the gap
between the current and SToA work in the SHM domain.

In the first part of this chapter, we review the latest works focusing on characterizing low-
cost MEMS-based sensors and the feasibility of replacing costly piezoelectric sensors with
such sensors. Further, we provide the most recent commercial and custom SHM sensor node
designs.

In the second part of this chapter, we focus more on the recent lightweight, embeddable
solutions deployable at the edge, providing automated low-latency real-time responses for
structural maintenance. At first, we study the key anomaly indicators suitable for resource-
constrained devices at the edge to detect anomalous behavior of the structure. Further, we
present a literature review of an unconventional data reduction technique at the edge, namely,
system identification and its different implementations on computational-limited tiny devices.
Finally, we tackle one of the most recent applications of the SHM system, i.e., Traffic Load
Estimation (TLE), by reporting the challenges and solutions in recent works.

6

CHAPTER 2. LITERATURE REVIEW

2.1 Accelerometers Technology
In recent years, MEMS technology has become important for several applications, such as bio-
engineering [83], automation [67], and structural health monitoring [32]. Since their introduc-
tion, the reliability and performance of such sensors compared to the earlier, more expensive
ones have challenged the community. Some works in the literature provided generic reviews
comparing wireless MEMS-based accelerometer sensor boards for SHM [92] and Seismol-
ogy [38]. Several evaluations characterized early analog MEMS performances with lab-based
frames. For example, the work in [7] compared one analog MEMS-based with PCB accelerom-
eters for modal analysis with three different excitations. Further, [3] delved more into analog
MEMS by characterizing four different sensors in noise level, frequency, and sensitivity met-
rics. To avoid the relatively high noise level of the early MEMS accelerometer, the work
in [59] designed two custom sensors for SHM applications with low bandwidth, thus resulting
in a diminished noise level of MEMS.

More advanced analog and digital MEMS with deployability in embedded systems have
been introduced to the community during the last decade, opening an ocean of options. To
characterize these new MEMS, [90] evaluated two analog and four digital commercial MEMS
sensors targeting frequency and damping identification for civil structures. By experimenting
on a small concrete slab structure, they conclude that low-cost MEMS are feasible options to
replace expensive piezoelectric ones. However, to conduct this conclusion, testing conditions
differ for each sensor type, thus introducing heterogeneity in the dataset. Similarly, [97] com-
puted displacement over a small-scale reinforced concrete (RC) beam to detect cracks exploit-
ing four different accelerometer sensors. Although MEMS performed better to detect early
cracks in the beam, PZT detected the final failure of the structure. Small RC structures char-
acterized sensors better than steel-frame; nevertheless, a real-life scenario with a long, aged
concrete highway where ambient noise plays a critical role is missing in the above-mentioned
characterizations.

The work [16] provides the most reliable digital and analog sensors characterization by
prototyping a self-made tri-axial accelerometer, i.e., Kionix KXR94-2050, and a referenced
accelerometer PCB 356A16, to validate the applicability of MEMS practically over the cable-
stayed bridge in Italy. Experimental Model Analysis (EMA) and Finite Element Analytical
estimations (FEA) demonstrate that MEMS accelerometers can be a reliable substitute for
expensive piezoelectric sensors. In a similar vein, we further investigate two scenarios (one real
case and one laboratory) targeting a variety of low-cost commercial MEMS accelerometers.

Compared to other works, we initially characterize analog and digital MEMS vs piezoelec-
tric sensors in real-life case experiments. Furthermore, benefiting from recent digital MEMS’s
high-performance and low-power features, we characterize these modes in both the time and
frequency domains.

7 Amirhossein Moallemi

CHAPTER 2. LITERATURE REVIEW

2.2 SHM frameworks
Developing embedded monitoring devices featuring IoT systems for civil structures has been
actively investigated in recent years [2, 36, 88]. Two important features to achieve in modern
SHM systems are the energy consumption and computational power of such systems, which
guarantee long-lasting devices. To merge to an optimum solution for a real-time, zero-latency,
(ultra) low-power SHM system, we can summarize two categories: i) Customized SHM nodes
and ii) Commercial nodes.

The earliest wireless monitoring system was developed by [69], introducing computational
power near the sensor. Furthermore, recent studies mainly focus on low-energy radio trans-
mission and high computational power near the node to automate the structural monitoring at
the edge. For instance, Polonelli et.al [85] designed an SHM monitoring node for tracking
cracks in concrete and other construction material structures utilizing a LoRAWAN communi-
cation unit, making it suitable for long-lasting deployment as it guarantees more than 10 years
of battery lifetime. However, the bandwidth and sample rate of crack metering are orders
of magnitude lower than what is needed for vibration-based SHM. Focus on much higher
bandwidth vibration-based analysis, which is as essential for SHM as static analysis since it
provides complementary information [45, 125]. For instance, Muttillo et.al [75] designed an
IoT sensor system for structural damage indicator evaluation following the criteria of low-
power and computationally powerful systems. They propose a grid-powered IoT system that
acquires synchronized MEMS-based accelerations that communicate to the gateway via the
RS485 transceiver module. They show that the acquired data from two nodes can detect dam-
ages over an in-lab experimental setup.

Moreover, in [45], is another low-cost distributed system that is designed to execute a
digital filtering step on a low-cost microcontroller STM32 to reduce the signal-to-noise ratio of
MEMS devices, which was a new step in executing signal processing on resource-constrained
devices. However, transmitting data via WiFi protocol. The two former cases are unsustainable
grid-based systems consuming high energy.

The most recent battery-based SHM systems are proposed in [33], where a combination
of cost-effective MEMS accelerometer and Narrowband IoT protocol (NB-IoT) to establish
a long-distance connection with 4G infrastructure networks are the two key features makes
this node suitable for long-term monitoring. Indeed, they show that a more than ten-year
lifetime is achievable with a 17000 mAh battery or completely energy-neutral operation with
a small solar panel. Similarly, STM32 has introduced a MEMS-based, multi-sensor, battery-
based commercial node (STWIN) [98], specifically for condition monitoring and predictive
maintenance applications. The STWIN core system board features several wired and wireless
connectivity options with an ultra-low-power microcontroller based on the high-performance
RISC core, operating at up to 120 MHz and equipped with 640 Kb SRAM and 2 MB Flash
memory.

In our SHM customized sensor node, we follow the direction of the two aforementioned
works in [33, 98], optimizing the computational sources and power management systems. In
particular, we deploy a wide range of sensors proposed in [98] by means of embedded analog
and digital accelerometer on-board while adding connectors to add other sensors to the board
which is not present in [33]. Further, we follow the work in [33] to use NB-IoT as a trans-
mission unit as they showed a ten-year battery lifetime. The main contribution of our node
compared to the previous works in literature is adding a multi-core computational source on
board, which is solely placed for performing ML/DNN algorithms at the edge.

8 Amirhossein Moallemi

CHAPTER 2. LITERATURE REVIEW

Structure Sensors Data Type Detection Model Train Device Test Device Performance

Statistical Data Modelling

Ling et al. [62]
Simulated Steel

Frame Structure
120 Acceleration

Autoregressive

model
Remote Server Remote Server [23] 1 FP, 1 FN

Santos et al. [35]
Simulated Five

Bay Structure
4×29 Acceleration

FFT +

Peak Detection
N.A. MICAz [29] 0 FN, 2 FP

Verma et al. [105]
Simulated Steel Beam

Bridge

2

14
Acceleration

Features +

Gaussian Model
N.A. N.A.

85-96%

96.3-100%

Deep Neural Networks
Acvi et al. [11] BM benchmark [37] 12 Acceleration 1D-CNN Intel core-i7 [55] Intel core-i7 [55] N.A.

Data reduction

Liu et al. [64]
Simulated Lab-Scale

Bridge
5 Acceleration Autoencoder N.A. N.A. N.A.

Nie et al. [78]
Simulated Lab-Scale

Bridge

9

24
Acceleration FMPCA Laptop Remote Server

100%

100%

Our Work Real Viaduct 1 Acceleration AE / PCA STM32L476 STM32L476 98.8%

Table 2.1: Structural Health Monitoring studies over the last years. Performance results refer
to the distinction of damaged from non-damaged data samples. Performance is in terms of
Accuracy unless it is mentioned. Abbreviations: FP: False positives, FN: False Negative.

2.3 Anomaly Detection at the edge
Structural Health Monitoring systems have become widespread in the last decade. They are
usually based on sensor networks to monitor the structure’s vibration under test [65]. An essen-
tial expected function of a modern SHM system is the automated detection of structural anoma-
lies. To solve this problem, we can distinguish between three main classes of approaches: i)
statistical data modeling, ii) machine learning, and iii) data reduction approaches. Table 2.1
summarizes the embedded SHM solutions deployable at the edge.

2.3.1 Statistical data modeling
The first approaches in continuous SHM systems were based on modeling data distribution and
extracting abnormal patterns. Ling et al. [62] exploit auto-regressive (AR) and auto-regressive
with extra input (ARX) models to detect anomalies on a simulated steel frame structure to
localized damage pattern recognition problems in SHM. The authors compute a set of statisti-
cal features on a cluster of nodes where sensors communicate via Random Gossip protocol to
detect and localize the damage, implying that an individual node cannot detect damages to the
structure. Although they report at most 1 False Negative (FN) and 1 False Positive (FP) de-
tection, they performed experiments with four laboratory computed datasets. Similarly, auto-
regressive models are employed in, e.g., [47, 48, 117] to extract features from raw vibration
data. One of the most recent works is Entezami et al. [39], which proposes an anomaly de-
tection framework exploiting the recorded raw vibrations dataset of the Tianjin Yonghe cable-
stayed bridge in China. First, an auto-regressive moving average (ARMA) extracts features
to reduce data occupation. Then, a k-Nearest Neighbours algorithm classifies the samples,
achieving as low as 1.56% of misclassification. Despite the optimal results achieved, this
work relies on a set of hand-tuned parameters, which impair the model’s generality over time.
To retrain these parameters, these models need the entire history of the data, which (i) is not
always available and (ii) causes the system to necessitate a single cloud orchestrating unit.

The most recent study based on data modeling is [105], which takes advantage of real-case
vibration data of a bridge in China and datasets from laboratory structures. They propose an

9 Amirhossein Moallemi

CHAPTER 2. LITERATURE REVIEW

approach called "in-network damage detection on edge" to detect bridge structure damage.
They collect statistical features of the input data into an m-dimensional feature vector. Then,
they fit a Gaussian distribution model on the training set and consider anomalies as the tail
of this distribution. Although the trained model’s accuracy on the recorded Yonghe Bridge in
China reaches 100%, it decreases to 96% for the secondary simulated structure case. Further-
more, for all the experiments in this work, accuracy varies between 85%-100%. This high
fluctuation in performance is due to the reduced number of extracted features, which impairs
the capability of this approach to model the structure’s behavior in different positions with
several sensors. While the lack of adjustability to the structure’s behavior over time is a limit
of their work, we propose a solution to update the model adaptively after a behavior change
has been observed.

Santos et al. [35] is the only approach fully deployed on the edge. It computes the Fast
Fourier Transformation (FFT) of input vibration data and the difference in peak frequency
of each consecutive 0.5 s time window at the node. Then, computed natural frequencies are
sent to sensor heads (i.e., Gateway) to estimate the structure’s status using a threshold-based
algorithm, which results in a perfect damage detection with only 2False Positives (FP). Trans-
mitting only natural frequencies causes network traffic of 6.72 kB/h. In a similar vein, we
further decrease network traffic to only 10B/h by applying the Principal Component Analysis
for data compression and classification directly on the node. Noteworthy, as demonstrated in
Sec. 5.2.1, employing frequency features strongly impairs anomaly detection performance on
our structure, making this approach unsuitable for our problem. Similar to Santos et al. [35],
other works, e.g., [119, 122, 126], study the pros and cons of cloud computing and edge com-
puting in the context of SHM systems.

To the best of our knowledge, all statistical data-modeling approaches exploited expensive
piezoelectric accelerometers to collect data. In contrast, in our frameworks, we replace such
sensors with low-cost, low-power (but higher noise) MEMS accelerometers.

2.3.2 Deep Neural Networks
In [1, 11], the authors present two DNN-based approaches. A 1D-CNN is used in [1] to esti-
mate the Probability of Damage (PoD) on the BM benchmark [37]. A PoD close to 0 points to
the normal case, whereas a PoD of 1 corresponds to the damaged condition. Evaluating nine
scenarios of increasing damage severity shows that their 1D-CNN correctly ranks the scenarios
from one to nine by correctly predicting an increasing damage condition. Compared to con-
ventional 2D CNNs, 1D CNNs require less computational complexity and thus take less time
to train the model. However, this model still requires data generated by a cluster of nodes, not
a single node, to achieve high accuracy, which is unsuitable for online training on-edge nodes.

On a totally different input data, images, Wu et al. [111] present an approach for online
inference. The authors exploit two deep convolutional neural networks, namely VGG16 and
ResNet18, for crack and corrosion detection of structures from image data. They apply ag-
gressive pruning to reduce the complexity while maintaining a high detection accuracy (they
reduce VGG16 memory footprint to 44MB and ResNet18 to 2MB). Running the algorithms
on a Jetson TX2 platform, the authors achieve 94.6%-98.5% detection accuracy for crack de-
tection on different nuclear power plant structures and 82.8% detection accuracy in corrosion
images of different metallic surfaces. Despite the performance, we do not employ deep super-
vised neural networks since they require a large training labeled dataset that is unavailable in
our case of application provided in Sec. 5.1, and, more in general, labeled anomaly data is not
available in typical structural health monitoring installations.

10 Amirhossein Moallemi

CHAPTER 2. LITERATURE REVIEW

2.3.3 Data Reduction
The last category of works exploits compression algorithms for damage detection. These al-
gorithms first compress and reconstruct the input data and then compute the difference be-
tween original and reconstructed signals. The higher the difference between the original and
the reconstructed signals, the higher the probability of damage. In this context, autoencoder
(AE) neural networks are among the most popular approaches. For example, [64] uses an
AE for damage diagnosis on a laboratory’s synthetic bridge for indirect bridge monitoring
scenarios, outperforming all other anomaly detection algorithms with MSE ≈5 in comput-
ing 30 levels of damage severity. Given the promising performance of the method, we also
test autoencoder-based anomaly detection in our work. Furthermore, linear processing-based
compression methods such as principal component analysis (PCA) also achieve good perfor-
mance in SHM for damage detection (e.g., [4,12,74,78]). For example, [78] describes moving
PCA on vibration data. They show the effectiveness of compression by evaluating the model
over a laboratory beam bridge and recorded data of a bridge in Guangdong, China, with 100%
damage identification. Even though the works mentioned above can reach perfect accuracy,
training, and inferring are performances on unconstrained remote devices (e.g., i7intel pro-
cessor) after data transmission and collection.

In our application, we aim to tackle these models’ generalizability and deployability by
introducing a new lightweight pipeline. Compared to other SHM works, we propose a method
to constantly update the anomaly detector, tackling the time variability of the structure dynamic
over time; also, our approach entirely relies on unsupervised data, not necessitating labels as
other DNN-based approaches. Finally, to the best of our knowledge, we are the first to deploy
and analyze the performance of a complete anomaly detection pipeline on an in-situ sensor
network utilizing real-life SHM system installation on a viaduct.

11 Amirhossein Moallemi

CHAPTER 2. LITERATURE REVIEW

2.4 System Identification at the edge
Implementing data reduction techniques at the sensor level is crucial to minimize the amount of
data transmitted, resulting in shorter transmission times and negligible impact on sensor energy
budgets [19]. Different reduction techniques for vibration data were successfully implemented
onboard, spanning from Principal Component Analysis (PCA) to Compressed Sensing (CS).
For example, in [19, 26], authors’ embedded lightweight versions of PCA in microprocessors,
reaching a compression level of 1.4× and 15×, respectively. In [127], an adapted version
of CS has been presented to handle vibration data showing good performances for reduction
levels up to 6×. However, all these strategies present some drawbacks, such as the fact that
they need training data for the optimal definition of compression parameters, along with the
limited compression level they can allow for to ensure a sufficient quality in the retrieved
structural properties [127].

Alternatively, System Identification (SysId) has been proposed in [123] as an unconven-
tional but promising data compression method for vibration data processing, allowing up to
50× dimension reduction, which is at least an order of magnitude higher than the ones men-
tioned above. SysId is a signal-processing technique that builds a mathematical model of a
dynamic system based on a linear time-invariant filter, whose taps, also called model param-
eters (Θ), can reproduce the observed system dynamics. By knowing model parameters, the
power spectrum can be computed, from which all the frequency-related properties of the struc-
ture (e.g., natural frequencies) can be extracted. The advantage of SysId is that just a dozen
model parameters are sufficient to accurately replicate the observed system response, even for
the most complicated geometries [25]. Thus, by transmitting Θ instead of raw data, which
usually amounts to thousands of samples, one can reach very large compressing factors.

However, implementing SysId algorithms involves computationally and memory-intensive
operations. Few attempts have been made in the literature to implement SysId in near-sensor
scenarios. One of the very first implementations can be found in [60], in which authors suc-
ceeded in porting SysId filters on the Imote sensor platform; nonetheless, the limitations on
storage constraints of this board forced the adoption of input-output correlation-based schemes,
which are not compatible with the execution of output-only solutions as the ones of real inter-
est for on-condition maintenance where the exciting stimulus is always non-measurable. These
issues were overcome in a more recent work [123] by resorting to advanced algebraic proce-
dures taken from the big data processing framework, which allowed the fitting output-only
models on a prototype sensor equipped with an STM32L5 based on an ARM Cortex-M33 mi-
crocontroller unit (MCU). Nevertheless, the implementation offered in [123] suffers from one
crucial limitation, which is the long execution time (greater than 120 s in the most cumbersome
scenario) due to the sequential nature of the computational workflow forced by the single-core
architecture of the computing processor. Eventually, this evidences the lack of on-sensor SysId
implementations compatible with continuous and real-time diagnostic functionalities.

In this application, we offer a significant step forward in deploying SysId as an effective
data compression technique for extreme edge sensors by tackling the challenges of long latency
and high power consumption.

12 Amirhossein Moallemi

CHAPTER 2. LITERATURE REVIEW

2.5 SHM systems for vehicle Calssification
Although the recent advancements in traffic estimation show promising practical models, there
is still a need for accurate and real-time classification of vehicles in terms of dynamic weight
estimation over bridges [49]. While using WiM measurements provides a precise assessment
of the weight of vehicles passing over a bridge, WiM systems are expensive to install and
maintain. Such systems are constrained to limitations concerning scalability and maintenance
costs (e.g., [51]); hence, alternatives based on vibrations could provide more cost-effectiveness
with the same accuracy as the WIM system. Various studies have shown excellent results using
different sensors such as magnetic sensors [34], smart cameras [58], accelerometers, infrared,
ultrasonic, and fiber optic acoustic sensors [79], and each of them requires specific algorithms
correlated to the type of data. Moreover, the location of the deployed sensors and the traffic
flow variability significantly impact vehicle identification performance. For example, using
smart cameras, in [58], permits traditional object detectors and random forests algorithms to
detect, classify, and count vehicles on public bridges (up to 92.1% accuracy) in heavy traffic
situations. Nevertheless, the light level of the bridge can often reduce the performance to
74.8% remarkably. Magnetic sensors with adaptive thresholds and classification trees are
used by [34, 108] and achieve 84.7% to 99.9% performance depending on the type of traffic
flow. It is worth noticing that [34] shows the highest accuracy because of a specific, unrealistic
deployment and test, i.e., slow speed by one vehicle all the time. Other works [63,79,114] use
other types of sensors, such as fiber optic sensors and infrared, to achieve high performance
but share similar issues or are too expensive for the deployment, e.g., single roadside-installed
sensor fiber strips become unfeasible outside urban environments.

MEMS accelerometers can be used for Vehicle classification and are becoming an in-
teresting solution because of the cheap infrastructure setup. These devices already used for
SHM [118, 124] demonstrated to be very accurate and comparable to the other technolo-
gies [33,46]. For example, [8] compared analog MEMS-based accelerometers with traditional
SHM instrumentation for modal analysis with three different excitations. The quality of the
measures in terms of noise level, frequency, and sensitivity metrics was comparable. [80] pro-
vides the most reliable analysis of digital and analog MEMS sensors, where several commer-
cial MEMS devices were used as a reliable replacement for expensive piezoelectric sensors.
Moreover, it examines a real case and a laboratory scenario to demonstrate the MEMS appli-
cability for SHM on real bridges.

Pioneering work [18] shows how a four-step algorithm can turn a MEMS-based SHM in-
stallation into a Vehicles and Traffic Estimation system. However, [18] has not provided any
evaluation of the vehicle classification, as they merely provide a student test for the two clus-
ters. The most recent work for traffic load estimation [20] deploys a supervised ML algorithm
(Support Vector Machine) reaching only an absolute error between the estimated label and the
labeled data of 0.47 for light vehicles and 0.21 for heavy vehicles on a 60 s window. However,
collecting labeled datasets at the country level is not feasible. Further, grouping vehicles into
two groups is not sufficient enough to adequately estimate the dynamic load over the viaduct.

In this application, we offer a step forward in deploying vibration-based SHM systems for
traffic load estimating by proposing a framework to classify vehicles into three classes: light,
heavy, and super-heavy, utilizing an unsupervised ML clustering approach, i.e., mean shift.
Further, we evaluate our framework by labeled data captured by Weight-In-Motion (WiM)
from a viaduct in regular operation on a highway in northern Italy.

13 Amirhossein Moallemi

CHAPTER

3

BACKGROUND

This chapter briefly discusses the background knowledge of signal processing and machine
learning algorithms used to develop pipelines and different applications.

It describes different data compression algorithms that can be used to reduce the volume
of data sent to the cloud, leading to decreasing maintenance costs in structural systems. At
last, three unsupervised clustering algorithms are described to develop vehicle classification
pipelines in Sec. 5.5.

14

CHAPTER 3. BACKGROUND

3.1 Data Compression Models

3.1.1 System Identification
System Identification (SysId) models are suite algorithms building a mathematical model for
the observed signal in the form of a causal linear time-invariant filter whose frequency re-
sponse function can be used for spectral analysis. They are built on top of AutoRegresive
(AR) models, deploying regression techniques to solve the transfer function of the mentioned
filter.

Let x[k] and y[k] be the input and output of the system at timestamp kTs, where Ts is the
sampling frequency of the system. Then, the most generic autoregressive equation at sample
k ∈ {0, 1, 2, ..., N − 1} is demonstrated at Eq.3.1 in which q and p indicate the number of
parameters retains memory of previous p input and q output instances. Thus, Np = p + q + 1
is the total number of model coefficients to be resolved. Further, θ and γ are the feedback and
feed-forward taps of the corresponding filter.

y[k] +

q∑
i=0

θy[k − iTs] =

p∑
s=0

γx[k − sTs] (3.1)

Notice that the mentioned taps (θ and γ) of the filter are called model parameters whose knowl-
edge is sufficient to estimate the power spectral density of the input signal. As mentioned, they
can be obtained by solving the autoregressive equations. In the field of structural analysis,
only the output response of a structure is captured, without any information obtained from
the input that caused such an excitation. This leads to the description of two output-only AR
models for extracting filter taps, namely AutoRegressive (AR) and AutoRegressive Moving
Average (ARMA), while other methods are not discussed in this manuscript. Since the input
is unknown to solve Eq. 3.1, the input signal is estimated with a Gaussian term with zero mean
and determined variance (e[k] in Eq. 3.2, 3.3). Thus, the Eq. 3.1 can be derived to be written
as Eq. 3.2 and Eq. 3.3 for AR and ARMA models, respectively.

y[k] +

q∑
i=0

θy[k − iTs] = e[k] (3.2)

y[k] +

q∑
i=0

θy[k − iTs] = e[k] +

p∑
s=0

γx[k − sTs] (3.3)

By means of algebraic manipulation of the former two equations, i.e., Eq. 3.2, 3.3, all the
structural features of interests can be obtained either in time (filter impulse response function
- IRF) or frequency (frequency response function - FRF) in the form of 3.4.

Hy(f) =

p∑
s=0

γse
−j2πfsTs

1 +

q∑
i=0

θie
−j2πfiTs

(3.4)

Finally, the power spectral density of the system can be extracted as the square magnitude of
the FRF response, which can be derived from Eq.3.4.

The length N is conveniently selected proportionally to Np according to N = NpNs/1p,
Ns/1p being the number of time samples necessary to identify one single model parameter

15 Amirhossein Moallemi

CHAPTER 3. BACKGROUND

accurately. Note that Ns/1p shall be determined by the complexity of the dataset and the use
case of the structure under study. The lower Ns/1p is, the less accurate the estimated Power
Spectral Density of the observed signal. Therefore, SysId aims at computing the Np model
parameters, a task that can be fulfilled by means of ordinary least-squares (OLS) applied to the
linear regression form of Eq. (3.2) and (3.3), which generically reads as

Y = ΨΘ (3.5)

with Y ∈ RN×1 and Ψ ∈ RN×Np being the measured vibration response and the regression
matrix, respectively1.

3.1.2 PCA
Principal Component Analysis (PCA) is a method to deal with high dimensional correlated
data by transforming them into minimally correlated data [30]. Exploiting the covariance ma-
trix of high dimensional data, the PCA projects it into a new space where the axes correspond
to the eigenvectors of the covariance matrix, ordered by the value of their eigenvalues. PCA
reduces data size by preserving only directions that retain most of the information [120] (the
ones with the associated higher eigenvalues). Considering a M × N dimensional data ma-
trix x =

[
x1, x2, x3, ... , xN

]
where xk is a column vector of M features representing a

sample, its normalized covariance matrix is

Σ =
1

N − 1

N∑
k=0

(xk − x̃)(xk − x̃)T (3.6)

where Σ is a square M ×M matrix. Its diagonal holds the variance of each individual sample,
and off-diagonal values are covariances of sample combinations. Using eigenvalue decompo-
sition, we can write

Σ = V ΛV −1. (3.7)

where V columns represent the eigenvectors, and the principal diagonal of Λ contains cor-
responding eigenvalues. It can be proven that Vk ∈ Rk is a basis of the sub-space of di-
mensions Rk which retains the highest similarity with the original one. Thus, the sub-space
representation of the X can be extracted by Eq. 3.8 deploying the set of eigenvectors chosen
for compressing the data.

Z(x) = V ⊤X (3.8)

Further, to reconstruct the original signal from the sub-space (Z(x)), one can use Eq. 3.9 to
obtain the high dimensional signal [106].

X ′(Z(x)) = Z(x)V ⊤ (3.9)

3.1.3 Autoencoders
Autoencoders are neural networks composed of two or more layers used to compress data and
detect anomalies [82]. Autoencoders can be segmented into two parts: Encoder and Decoder.
The encoder, fE(x), projects the input data x ∈ RM into a lower-dimensions hidden space

1For the definition of Ψ, see [123]

16 Amirhossein Moallemi

CHAPTER 3. BACKGROUND

h ∈ Rk, exploiting one or multiple layers, either fully connected, convolutional or recurrent
[81]. An example of a single-layer encoder is

h = fE(x) = Φ(WEx+ bE) (3.10)

where W is the weight matrix, Φ is the activation function of a single layer, and x is the input
vector to the network. The decoder fD(h) projects back the compressed signal h to its original
space, creating a new signal x̄ ∈ RM as

x̄ = fD(h) = Φ(WDh+ bD). (3.11)

The model’s training favors the similarity of x and x̄ without employing data labels, teach-
ing the encoder to find the best-hidden space that mainly preserves the features of the original
one. During training, the loss function is represented by a similarity metric between the origi-
nal and the reconstructed signal.

The same metrics are also exploited to employ the autoencoder as an anomaly detector.
Reconstructed signals, similar to those encountered during training, result in a low reconstruc-
tion error. On the other hand, reconstructing signals with different characteristics than those
used for training are badly reconstructed. To detect anomalies, only normal signals are fed to
the autoencoder for training. Therefore, new anomalous signals encountered during the test
phase are poorly reconstructed, with a higher mean square error (MSE), and thus identified as
anomalies.

3.2 Clustering
This section briefly introduces the three unsupervised algorithms deployed in this work: K-
means, mean shift, and Gaussian Mixture Models (GMM). Consider the M×N data-matrix, as
a dataset to be clustered into C classes, where M represents the number of samples and N rep-
resents the number of features (xi) in each sample (X), hence X =

[
x1, x2, x3, ... , xN

]
.

3.2.1 K-means
K-means is one the most popular unsupervised “machine learning” (ML) models to classify
non-labeled data [10, 66]. It aims to separate data into C clusters to optimize a clustering
criterion: inertia or within-cluster sum-of-squares. The feature space is initially populated
with C clusters, to which samples are then allocated. To determine the distance between each
node and a cluster centroid (D), Eq. 3.12 is deployed. Each sample is then assigned to the
closest centroid, where this centroid has the smallest Euclidean distance from it.

D = ||xi − ci||2 ∀ci ∈ C and ∀xi ∈ X (3.12)

The process continues with the computation of a new cluster centroid. By calculating the
arithmetic mean of all samples in the cluster, the new centroid is found. Finally, the K-means
algorithm converges when the centroid movements become insignificant, or the maximum
number of iterations is reached.

3.2.2 Mean shift
Mean shift is another unsupervised ML method that targets finding the dense area, i.e., modes
of the data, in a discrete dataset [27]. Similar to k-means, mean-shift is an iterative non-
parametric algorithm that converges when the cluster’s center stops fluctuating. Let initial

17 Amirhossein Moallemi

CHAPTER 3. BACKGROUND

point C with a radius r be the starting point of the algorithm. Further, at each iteration of the
algorithm kernel function, K(xi − x) is applied to the point in the neighborhood of the given
point xi to weigh them for re-computing the mean. Finally, the weighted mean of the density
in the window r can be computed with Eq .3.13.

m(x) =

∑
xi∈N(x)

K(xi − x)xi∑
xi∈N(x)

K(xi − x)
(3.13)

Where N(x) is the neighborhood of the x. The difference m(x)−x is called the mean-shift,
and m(x) is the new x in Eq .3.13.

3.2.3 Gaussian Mixture Models
According to Gaussian models, data can be represented as a combination of a finite number
of Gaussian Distributions (GD), each with unknown covariance and mean parameters. The
central objective is determining the optimal GD parameters for the given dataset [17]. Initially,
the number of the GDs and initial parameters, namely mean and covariance, are randomly
set. With the randomly chosen parameters, the algorithm extracts a probability that a sample
belongs to a particular cluster. Intuitively, a point closer to the Gaussian centroid is likelier to
belong to that cluster. Further, with the computed probabilities, the Gaussian Mixture Model
defines a new set of parameters for each GD in the mixture to maximize the probabilities of
the samples within the cluster. Note that the update of new parameters is performed via an
expectation-maximization algorithm for the mixture of GD. In conclusion, the convergence of
the GMM occurs in the absence of any modifications to its parameters [17].

3.2.4 Mathematical Comparison of Methodologies
The similarity in the preceding model, as discussed earlier, prompts a review of the distinctions
among these models. The aforementioned mathematical models, i.e., K-means, mean shift, and
GMMs, could be distinguished via centroids’ updating approach at each algorithm iteration. To
be exact, K-means and mean shift algorithms diverge in their approach to updating the central
point of the centroid. Specifically, while K-means employs an arithmetic mean calculation
using all data points within a cluster, mean shift computes a weighted average of these samples
instead. Further, the mean shift differs from the GMMs since it is a non-parametric method.
The dataset determines the more intricate specifications of mean shift, thereby resulting in a
gradient that deviates from the Gaussian model’s bell shape. Finally, one may argue that K-
means and GMMs are similar; however, GMMs are more flexible due to the standard deviation.
This allows the model’s shape not to be constrained to the circle and take any other possible
eclipse.

18 Amirhossein Moallemi

CHAPTER

4

TINY DETECTOR FRAMEWORK

4.1 Hardware Standalone Design
This section provides an in-depth analysis and design choices for the SHM node that we devel-
oped. Initially, this section provides an introduction to the power management unit, translating
the input voltage to 6 different domains. Further, it provides an evaluation methodology to
characterize MEMS-based sensors vs traditional accurate, costly piezoelectric accelerome-
ters in the time and frequency domain. Next, the two microprocessors used in the board are
described, in which STM32L4 single-core ARM-based one is used for acquisition and com-
munication to the cloud while the multi-core RISCV-based one is merely used for the ML or
neural network inference. Lastly, we describe wire and wireless communication units used to
stream raw data or extracted features to the cloud.

19

CHAPTER 4. TINY DETECTOR FRAMEWORK

4.1.1 Power Supply unit
SHM systems featuring accurate piezoelectric sensors are powered on a grid-based system,
consuming a large amount of energy [127]. Lately, new MEMS-based SHM systems have
merged, proposing battery-based systems that guarantee ten years of lifetime [33]. Further,
sustainability is another major concern in the emerging SHM sensor nodes, which require
an energy-harvesting system to recharge batteries for the in-field installation. This section
presents different sections of our power supply unit, enabling both battery-based and power-
grid-based solutions for the sensor node.

Voltage Regulators

This section describes the three different DC-DC voltage regulators used to convert the input
voltage to 3.3V, by RT8097AHGE, a buck converter with only 22 µA quiescent current, 2.7V
with LDK130M-R which used in the [98] to powerup the analog parts of the MCU and ease
audio signal read-out for the MCU, and finally a 1.8V, ST1PS01EJR another buck conver-
tor with 500 nA to distinguish the GAP9 from the ST MCU power domains. Combining the
former three sub-domains would provide analog and digital domains for the proposed SHM
node. We selected the former devices to deploy based on two criteria: (i) low quiescent cur-
rent to minimize the overall power consumption of the node and (ii) programmability of the
mentioned converters to provide a flexible power management system in idle cases.

RT8097AHGE

The RT8097A is a 2A synchronous step-down DC-DC converter designed for simplicity and
efficiency. An input supply voltage within the range of 2.7V to 6V is provided, and it is
equipped with an internal 0.6V reference voltage to optimize performance. It operates at a
nearly constant switching frequency across line, load, and output voltage conditions. Oper-
ating in automatic power saving mode, the converter maintains high efficiency during light
load operation, an essential feature for systems with different subsystems, such as the load
for this converter. Safety features include input under-voltage lockout, output under-voltage
protection, and over-temperature protection (thermal shutdown), ensuring secure and smooth
operation across diverse operating conditions.

LDK130M-R

The LDK130 voltage regulator is a low-dropout design offering a maximum current output of
300mA, operating within an input supply voltage range of 1.9V to 5.5V—ceramic capacitors
on the output guarantee the stabilization of this converter. It includes a very low drop voltage
(<100mV), minimal quiescent current (30 µA), making it particularly well-suited for applica-
tions requiring low power in battery-operated devices. An enable logic control function allows
the LDK130 to enter shutdown mode, effectively reducing total current consumption to less
than 1 µA. Moreover, the device is equipped with short-circuit constant current limiting and
thermal protection features, enhancing its overall reliability and safety.

ST1PS01EJR

The ST1PS01 is a compact synchronous step-down converter with nano-quiescent properties,
capable of delivering an output current of up to 400mA within an input voltage range of 1.8V
to 5.5V. Its main application is tailored for high-efficiency cases. Moreover, this converter

20 Amirhossein Moallemi

CHAPTER 4. TINY DETECTOR FRAMEWORK

allows dynamic output voltage selection through two digital control inputs. The output voltage
can be set at 0.62V to 3.3V. Thanks to its enhanced peak current control, the ST1PS01
achieves remarkably high-efficiency conversion using only a 2.2 µH inductor and two small
capacitors. The incorporation of advanced design circuitry minimizes quiescent current to
nano amper. This converter also features an automatic power save mode that will be deployed
with light loads. During the power saving mode, most of the internal blocks are turned off,
reaching an ultra-low power consumption.

Charger Controller

The STNS01 is a linear charger designed for single-cell Li-Ion batteries and incorporates an
LDO regulator and various battery protection functions. This device allows the programming
of the fast-charge current through an external resistor. Precharge and termination currents are
scaled accordingly, with a floating voltage value set at 4.2V. The input supply voltage acts
as a dual purpose, charging the battery and providing power to the voltage regulator. Without
a valid input voltage and a non-empty battery, the STNS01 automatically switches to battery
power. Device protection circuitry is provided against potential damage during fault condi-
tions. The STNS01 also integrates over-discharge and overcurrent protection circuitry. Ad-
ditionally, it includes a charger enabling input, enabling the cessation of the charging process
upon detection of battery over temperature by external circuitry. It enables shutdown mode,
significantly reducing battery power consumption to less than 500 nA, maximizing battery life.

System Design

The system can be powered by two approaches: via battery or a mini-USB of type B; thus, one
can use the system in the battery-based or grid-based supply via USB. Further, the compatible
battery charger with an integrated power switch can also be used for Li-Ion/Li-Polymer to
recharge the battery while deploying an energy harvester.

To optimize the system’s power consumption, the power domain is split into three main do-
mains, including an analog part and two different digital domains. This branching enables each
part of the system to act individually and switch to idle mode without interfering with other
parts of the system. The LDK130M-R converter is deployed to translate the input voltage into
a stable output 2.7V for analog domains of the system. Notably, the always-on computational
source of our design features from analog domains requires its specific power reference.

In the digital domain phase, ST1PS01EJR converts the input voltage to a stable 1.8V with
400mA output current for the multi-core processor power domain. Since the GAP9 platform
is an ultra-low power design, it can be switched on with a maximum 1.8V and consumes
a maximum of 150mA quiescent current in fully operation mode. Further, since the GAP9
is used only for advanced signal processing applications or ML and DNN inference models,
this section of the node can be turned off without touching other parts of the system. The
RT8097AHGE provides power to the digital domain, which provides 3.3V in its output with
2A output current. To further optimize the power consumption and also detach each part of
the digital domain from one another, this portion is divided into four parts, namely MCU, NB-
IoT, sensors, and Sd-Card domains, as shown in Fig. 4.2. The MCU is only connected to the
STM32L496ZGT6P. Further, the NB-IOT is connected to the NB-IoT module and the CAN,
which acts as the wired connection port. Moreover, sensors are powered on by the sensor
section. Finally, the SD-card domain is used to power the SD-card logger part. In this way,
one can also measure each part of the system’s current consumption individually.

21 Amirhossein Moallemi

CHAPTER 4. TINY DETECTOR FRAMEWORK

4.1.2 Sensing Unit
Resolution is one of the most essential performance requirements for SHM applications. So
far, high-accurate, low-noise density piezoelectric-based sensors are widely recognized as the
most accurate transducers for such operations [90]. In the last decades, MEMS (Micro-Electro-
Mechanical Systems) capacitive accelerometers have also been introduced, and experiments
have been conducted with such scenarios. Their meager cost and power permit the design
and deployment of a steady measurement infrastructure for continuous monitoring to scale up
to hundreds of measurement points for a single building, which is unfeasible using piezo ac-
celerometers, two orders of magnitude more expensive. Nevertheless, MEMS accelerometers
do not outperform piezo accelerometers because commercial devices are designed to measure
larger bandwidth signals and are characterized by lower sensitivity, thus requiring complex sig-
nal conditioning electronics to achieve acceptable noise floor [16]. For this reason, to unveil
the potential of these devices, a comparison with piezo accelerometers and a characterization
of representative MEMS devices, currently missing in the literature, is needed. This section
presents the characterization in both time and frequency domains of representative MEMS de-
vices, focusing on SHM application-specific metrics and using either a laboratory set-up or a
real infrastructure.

Sensors

This section describes the three different sensor technologies chosen for the comparisons to
choose the best ones for our sensor node, including a highly accurate expensive piezoelec-
tric as the ground-truth sensor, PCB393B12, an ultra-compact linear low-cost analog MEMS,
namely LIS344ALH, and a dual-mode always-on 3D digital MEMS, namely ISM330DHCX.
Other than SHM, innovative infrastructure and inertial navigation are fields of interest for such
sensors. We selected the devices to test based on two criteria: (i) comparing elder analog
MEMS devices with more recent digital ones and (ii) selecting a digital device that works in
both Low-Power and High-Performance modes. Table 4.1 provides each sensor’s nominal and
mechanical characterization.

PCB393B12

The PCB393B12 is a uni-axial Integrated Circuit Piezoelectric (ICP) accelerometer sensor
benefiting from a low-cost coaxial cable connector to interface with the data logger. This
sensor operates by applying a constant current signal. The ICP technology converts the high-
impedance acquired data to a low-impedance output signal capable of unconditionally trans-
mitting lines with long cables. Furthermore, the low-noise output voltage is compatible with
data analysis methodologies. Fields like smart infrastructure, earthquake detection, and struc-
tural monitoring are the main applications of such sensors.

LIS344ALH

The LIS344ALH is an ultra-compact three-axis linear accelerometer, including a sensing ele-
ment and an IC interface system. The sensing element is fabricated by the STMicroelectronics
(ST) production line for sensors and actuators in silicon, and it is adept at detecting acceler-
ations. Similarly, the IC interface is manufactured, deploying the CMOS process with a high
level of integration developed by ST. The primary task of the IC interface is to convert the in-
formation acquired by the sensing element into an analog signal for the external world. Other

22 Amirhossein Moallemi

CHAPTER 4. TINY DETECTOR FRAMEWORK

Sensor Range Noise Voltage Signal Type Signal Interface Temp. ODR
[±g] [µg/

√
Hz] [V] [◦C] [Hz]

PCB 0.5 0.3 − 1.3 18.0 − 30.0 Analog ADC -50 − 180 0.15 − 1000
LIS 2,6 50 2.4 − 3.6 Analog ADC -40 − 85 1.00 − 500
ISM 2,4,8,16 60.0 − 100.0 1.7 − 3.6 Digital I2C,SPI -40 − 105 1.60 − 6667

Table 4.1: Sensor characterization values provided by manufacturer

than condition monitoring, its other applications are gaming, robotics, and inertial navigation.

ISM330DHCX

The ISM330DHCX is a system-in-package including a high-performance 3D digital accelerom-
eter and 3D digital gyroscope tailored for Industry 4.0 applications. The manufacturing pro-
cess for various sensing elements and IC interfaces is similar to the one described in Sec. 4.1.2.
Since it is a digital system, it introduces adjustability to the system. For instance, a set of pro-
gramable computational features such as a Machine Learning (ML) core, an accessible and
programmable Finite State Machine (FSM), and 9 kB FIFO to store data temporarily and per-
form real-time analysis provide the user with an intelligent sensor at low power. Furthermore,
this accelerometer benefits from two modes, namely, high-performance and low-power, where
these modes can be used to reduce the system’s total energy consumption.

Experiment Description

In-Lab

This experiment utilized a Material Test System (MTS) shaker to excite vertically the sensors
described in Sec. 4.1.2 with sinusoidal stimuli. It was carried out to investigate the performance
of measurement systems benefiting from commercial MEMS and piezoelectric accelerometers.
Since structures operate under low frequency, we fixed the excitation frequency of the shaker at
10Hz while sweeping the amplitude range of the excitation from 30 to 250µm. The intuition
behind this experiment was to simulate various ranges of input excitation to estimate real-life
random value input excitations in long-span bridges or structures. A plate is attached to the
shaker, holding the mounted sensors. Screws fix the MEMS sensors, and the piezo one is
attached to the bottom of the plate by a steel magnet connector.

Concrete Beam

To assess the performance of devices under test in a real-world scenario, we carried out a set
of measurements on a concrete beam. The beam comprised a concrete slab supported by two
steel towers at each end. The total length of the beam is 25.9m, while the width is 1.6m. The
experiment started by charging the beam with an even number of plates (1×1×0.25m), each
weighing 1800 kg. After charging four plates over the beam, additional wedges were added to
the towers holding the beam to avoid rigid torsion rotation. The experiment aimed to charge
and discharge the beam until cracks appeared and ended after charging the beam with twelve
plates on top of it.

23 Amirhossein Moallemi

CHAPTER 4. TINY DETECTOR FRAMEWORK

4.1.3 Metrological characterization
The primary task of structural health monitoring is to collect building health information, un-
veiling potentially harmful issues such as damage and aging. In dynamic monitoring appli-
cations, a set of sensors collect accelerometric data to feed modal identification algorithms
and perform early damage detection and structural health assessment analysis. We compare
accelerometer performance in the frequency and time domain by analyzing the measurements
taken during the two experiments described in Sec. 4.1.2.

We first set the relevant metrics for damage detection to evaluate measurement quality in
the time domain. Structural vibrations can be modeled as dampened oscillations depending on
three parameters, namely frequency, amplitude, and damping factor. As such, by fitting the
sensor measurements with this model using the Ordinary Least Squares method, we evaluate
the accuracy of the selected accelerometers in inferring these structural parameters. The model
for the In-Lab experiments, described in Eq. 4.1, is parametric with respect to signal amplitude
(c0), frequency (c1) and phase (c2).

flab(t) = c0sin(c1t+ c2) (4.1)

Eq. 4.2 approximates the dynamic behavior of the beam as a single degree of freedom spring-
mass-damper system. For this purpose, a further coefficient (c3) is introduced to model the
decay factor of structural oscillations in time.

fbeam(t) = c0e
−c3tsin(c1t+ c2) (4.2)

The frequency-domain analysis focuses on assessing the quality of the power spectral
density (PSD) that can be obtained when analyzing the measurements of the different de-
vices. Describing the accuracy of the PSD of a signal is of paramount importance since most
frequency-domain modal identification and damage detection algorithms are built on top of
PSD computation. For each experiment, we estimate the PSD of the measured signal using
the Welch method, choose the most prominent peak and compute three metrics: (i) natural
frequency, (ii) amplitude, and (iii) width. Peak frequency is an important parameter to assess
structural health, and several state-of-the-art damage detection pipelines observe shifts in the
natural frequencies of a structure to detect anomalies [15]. Peak amplitude and width are also
relevant since they play a role in estimating modal shape and structural damping, two modal
parameters that can be observed to detect changes in structural dynamic behavior. According
to the Half-Power method, peak width is estimated as the distance between the peak intercepts
at amplitude p/

√
2, where p is the peak height. For the in-lab experiment, the most prominent

peak corresponds to the tone in the spectrum corresponding to the frequency of the sinusoidal
input stimulus applied by the MTS machine. Instead, for beam measurements, the most promi-
nent peak represents the first modal frequency of the structure. To complete frequency domain
analysis, we estimate device noise from a “silent” portion of the real-life experiments where no
excitation was applied to the sensors. We estimate noise in the frequency domain, computing
the square root of the average of the noise PSD, and in the time domain, computing the root
mean square (RMS) of the measured noise signal.

4.1.4 Computational Unit
Resource constraint devices near the sensors are not merely devoted to reading and transmit-
ting data to the storage facilities. Technological advancements have led to advanced systems
capable of performing signal processing, as well as lightweight ML and DNN networks. The
current SHM sensor nodes deploy single-core devices as the main processing unit. These

24 Amirhossein Moallemi

CHAPTER 4. TINY DETECTOR FRAMEWORK

devices at the edge are in charge of processing lightweight and low-latency algorithms. More-
over, such devices provide Real-Time Operating Systems (RTOS) capabilities to parallelize
several tasks in the system. However, memory limitations and energy consumption at full
operation mode are two key challenges for such devices. More powerful devices in terms of
memory and execution time have been promoted in the last few years, supporting not only
hierarchical memory up to the range of MB but also featuring a cluster of cores supporting
parallel computing to replace sequential implementations deployed on single-core devices.

In this vein, we used a single-core device at the main core of the SHM node, which acts
as a three-gate port, one for sensor readout, data handling, and data transmission. Further, the
multi-core MCU is deployed to translate the raw data into knowledge via time and frequency
domain analysis. Furthermore, this multi-core device is designed and optimized for inferring
lightweight ML and DNN networks, making it a perfect match for data-driven applications on
the edge.

STM32L

The STM32 MCU processor family covers a wide range of single-core microcontrollers target-
ing three different criteria, i.e., high-performance with real-time constraints providing digital
signal processing capabilities (F & H Series), ultra-low power consumption (L Series), and
wireless connectivity for IoT use-cases (W Series). STM32 MCUs are Arm®Cortex®-M-
based devices with a 32-bit instruction set architecture (ISA) [116]. The nominal operation
frequency of these devices varies from a few MHz to a maximum of 400MHz depending on
the series. They are mostly single-core devices featuring Real-Time-Operating free Systems
(RTOS) to handle several tasks in near real-time. Next, they include a wide range of periph-
erals, making them suitable for embedded systems, enabling acquisition and processing at the
edge. The STM32 memory is limited to 1.4MB of Static SRAM (SRAM) as the primary
working memory to store variables and stack data. This technology does not require to be pe-
riodically refreshed to maintain its contents, unlike dynamic RAM (DRAM), and is faster than
Flash memory. In particular, H series devices’ SRAM is in the range of 564 kB to 1.4MB,
while F series covers less RAM with 32 kB to maximum 256 kB. Further, the Flash memory
provided in each series varies between 1 to 2MB, used to store code and make data persistent
when the device is turned off. For the context of this work, we have used L & F Series to
develop the monitoring firmware of the monitoring devices.

Gap9

The recent resource-constrained processors deployed at the extreme edge are single- or multi-
core devices that GAP9 MCU [103] is an ultra-low-power multi-core microprocessor targeted
for IoT applications at the extreme edge. Most of these devices are based on either 32-bit or
64-bit instruction sets for arithmetic operations, in which GAP9 fits in the 32-bit category for
floating point and up to 64-bit for fixed point operation. Compared to the other processors,
the Floating Point Unit (FPU) of GAP9 also supports 16-bit and 16-bit alt operations along
with 32-bits. GAP9 features a single-core MCU-class core (fabric controller) orchestrating
system-level operations (e.g., system boot and I/O connectivity) and a 9-core compute clus-
ter to support parallel execution. All the cores adhere to the RISC-V standard and support
the PULP ISA extensions [91]. The nominal frequency of the cluster can be increased up to
370MHz while keeping the power consumption in the nominal operating mode below 50mW.
Conversely, other multi-core RISCV-based MCUs or dual-core ARM Cortex devices provide
fewer cores with the same or smaller clock frequency. For instance, GAP8 is a multi-core

25 Amirhossein Moallemi

CHAPTER 4. TINY DETECTOR FRAMEWORK

Figure 4.1: GAP9 structures [103]

parallel platform, an older version of the save RISC-V ISA family, with 9 cores, one fabric
controller, and 8 cluster cores. The lack of FPU in GAP8 and the maximum frequency of
250MHz of its fabric controller and 175MHz for cluster cores are the main differences from
GAP9. Another example is the ESP32 MCU series, which are dual-core processors with CPU
clock frequency in the range of 80 to 240MHz with 32-bit RISC architecture. Other multi-
core devices based on Cortex Arm architecture are dual-core systems with symmetric (same)
or asymmetric (different) processing cores. For instance, STM32H745ZIT6 is a dual-core
microcontroller combining an Arm Cortex-M7 core running at 480MHz and a second Arm
Cortex-M4 processor running at 240MHz. However, less current consumption and a number
of cores make GAP9 a suitable MCU for parallelizable applications. GAP9 speeds up the exe-
cution of Digital Signal Processing (DSP) algorithms thanks to dedicated ISA extensions such
as post-incremented Load (LD) and Store (ST), hardware loops, and packed Single Instruction
Multiple Data (SIMD) instructions [103] and 4 dedicated floating-point units (FPUs) shared
among the cores supporting 16-bit and 32-bit precision operations.

Fig. 4.1 depicts a simplified block diagram of the GAP9 architecture. It has a hierarchical
memory architecture with 128 kB of single clock latency tightly coupled data memory, namely,
L1 , as well as L2 SRAM with 1.6MB and an L2 non-volatile memory of 2MB. Moreover, L1

interconnect minimizes access contentions to the SRAM banks via a word-level interleaving
scheme to evenly distribute the requests. Similar to memory, GAP9 also has a hierarchical
program cache featuring 8 512-B private per core. Next, a joint combination of a parallel code
and the 4 kB shared cache with two-cycle latency maximizes efficiency. Finally, the event unit
embedded in GAP9 is a hardware unit accelerating the fine-grained parallel thread dispatching
and synchronization, critical tasks for many applications exploiting single program multiple
data parallelization schemes. Further, this unit is in charge of clock gating of the idle cores
waiting for synchronization and enables resuming execution in two cycles [91].

26 Amirhossein Moallemi

CHAPTER 4. TINY DETECTOR FRAMEWORK

4.1.5 Transmission Unit
Transmitting data is another major challenge in SHM sensor nodes. Most nodes that deploy
piezoelectric accelerometers as their sensor unit send data to a local storage unit, e.g., Personal
Computer (PC), via wire connections. Further, with the emergence of Internet of Things (IoT)
technology, Wireless Sensor Networks (WSN) were promoted to deploy a chain network from
sensor nodes to the cloud. In such scenarios, the data collected by the sensors is transmitted to
the Gateway through wire-based protocols (CAN) or wireless (Bluetooth). Further, Gateway
transmits data to the cloud using more stable, long-distance, free bandwidth, and power-hungry
protocols such as WiFi. Most recent SHM sensor nodes like [33] deploy NB-IoT, a low-
power extension of the LTE (4G Long Term Evolution) developed for long-battery lifetime and
low-cost applications. The GW is avoided in such designs since the SHM node can directly
communicate with the cloud via the sim card and NB-IoT module. In our design, we examined
two widely utilized transmission methods in Sensor Networks for the Internet of Things, which
are also addressed in the literature:

• Wire-based Transmission (CAN): This method involves a wired connection, explicitly
utilizing the Controller Area Network (CAN). CAN facilitates the close connection of
multiple nodes, enabling seamless communication. This configuration is particularly ad-
vantageous when deploying sensor nodes in a typical Wireless Sensor Network (WSN)
environment.

• Wireless Transmission (NB-IoT): The second approach involves wireless communica-
tion using the Narrowband Internet of Things (NB-IoT). This wireless unit allows the
sensor node to operate as a stand-alone unit, providing the capability for both static
and dynamic analysis. NB-IoT’s wireless nature enhances flexibility and independence,
making it suitable for scenarios where a wired connection may be impractical or restric-
tive.

By considering both wire-based (CAN) and wireless (NB-IoT) transmissions, our work aims
to explore and leverage the strengths of each method to enhance the overall capabilities and
adaptability of sensor nodes for data transmission.

CAN

The Controller Area Network (CAN) protocol is a widely used communication protocol to
collect data in a short distance. Despite its initial development for automotive applications, it
has been utilized in various other industries. CAN benefit from a multi-master bus, allowing
any node on the network to act as a sender or receiver. Further, its asynchronous operation
calls for no master-slave connection between nodes. Moreover, the nodes on the network can
send messages independently when they have data to transmit. Such communication is event-
driven, with nodes responding to messages as they occur. CAN robustly detect and handle
transmission errors, reporting them back to the node so that the affected message can be re-
transmitted. Another major key that suits CAN as a communication unit for SHM applications
is high data rate support from 125 kbps to 1Mbps, ensuring a real-time transition.

NB-IoT

NB-IoT, short for Narrowband Internet of Things, is a low-power extension of LTE (4G Long
Term Evolution), specifically designed for applications requiring a long battery lifetime and

27 Amirhossein Moallemi

CHAPTER 4. TINY DETECTOR FRAMEWORK

Figure 4.2: The final block diagram schematic of the SHM sensor-node.

cost-effectiveness. The primary features of NB-IoT include low power consumption, long
coverage, and backward compatibility [110]. One of the significant advantages of NB-IoT is
its ability to operate with low power consumption, ensuring battery-based systems’ long life-
time. Additionally, it offers extended coverage, making it suitable for applications in diverse
environments, e.g., Agriculture and Structure monitoring. The standardization of NB-IoT by
3GPP for Low Power Wide Area Networks (LPWANs) enhances its widespread adoption.
The power consumption of NB-IoT devices can vary based on environmental factors such as
country-specific regulations and network operator settings. These variations can significantly
impact the overall performance of end devices. The adaptability of NB-IoT makes it a com-
pelling choice for a wide range of applications, contributing to the growth of the Internet of
Things ecosystem.

A comparison between different wireless connectivity is introduced in the work presented
by Polonelli et al. [14]. Further, in [33], they investigated wireless connectivity methods, pro-
viding an exploration of the most suitable NB-IoT module and configuration. Further, this
work [33] characterizes the energy consumption of two different NB-IoT modules in good
(−95dBm < RSSI1), medium (−110dBm < RSSI < −95dBm), and bad (RSSI <
−110dBm) coverages, concluding that BC95-G is a preferable node for SHM systems, ensur-
ing a long lifetime. Therefore, we use it for our design as the NB-IoT module.

The BC95-G is a high-performance NB-IoT module that supports multiple frequency bands,
all while maintaining low power consumption. It is designed to be compatible with the Quectel
GSM/GPRS, which provides a flexible and scalable platform. This feature allows for a smooth
migration from GSM/GPRS to NB-IoT networks, enhancing adaptability. Utilizing surface-
mounted technology, the BC95-G ensures durability and ruggedness, making it suitable for
challenging environments. Its compact form factor, ultra-low power consumption, and ex-
tended temperature range make it an optimal choice for IoT applications. The main applica-
tions of BC95-G deployment include smart metering, bike sharing, smart parking, smart city
infrastructure, security and asset tracking, home appliances, and agricultural and environmen-
tal monitoring. The module can provide a comprehensive range of data transmission services
to fulfill various client-side demands.

1(Received Signal Strength Indicator)

28 Amirhossein Moallemi

CHAPTER 4. TINY DETECTOR FRAMEWORK

4.2 Final Framework
Fig. 4.2 presents the final design of the proposed SHM sensor node. The final design includes
a sensing unit, a communication unit, two computational units, and a power management
replicating a standard SHM node. In this section, we finalize the hardware design by exploring
different configurations of the designed node. In the power management unit, the input accepts
two different power modes, one with the battery, as shown, and one with a micro USB. The
node can be battery- and grid-based as the DC-DC converters accept up to 5V. Further, the
digital domain is split into four different sections with different headers, whereas each header
can be used to detach a specific unit from the system’s digital domain. Further, these headers
can be used to measure the whole system or a specific part.

In the sensing unit, we included a low-noise, analog MEMS accelerometer reaching an
acceptable acquisition accuracy as shown in Sec. 4.3. Moreover, we also considered the IMU
accelerometer to enable processing not only at the MCU level but also at the sensor level. The
deployability of these sensors is a user-defined configuration, as one can record acceleration
using both or either. The footprint used for the IMU is standard; hence, one can use all the
commercial IMUs from STM32 company. This allows us to quickly replace a new version of
IMUs with more computational power than the older ones. A humidity and temperature sensor
is also embedded in the system to monitor how weather can affect the structure under study.

The acquired data by sensors can either be stored locally on the SD Card, which accepts
maximum 32MB of data, or sent to the communication unit to be transmitted to the cloud. The
communication unit benefits from a wireless NB-IoT module that can transmit data directly
to the cloud, avoiding the gateway. Moreover, a couple of sensors can be connected by wire
via a CAN connection. Since using NB-IoT continuously to transmit data is energy-costly, we
added the CAN connection, allowing sensor-fog-cloud paradigms.

The computational unit has two main components: a single-core STM32L4R5ZI and
a multi-core PULP-based GAP9. The single-core MCU is the always-on unit, whereas the
GAP9 is activated only when an inference is required. When the single-core MCU collects an
informative data window, an interrupt will trigger on GAP9 to switch to the total operating
mode. Afterward, GAP9 replies with an acknowledgment pin to receive and start processing
the window. At the end of processing, the results are sent back to the single-core device to
be transmitted to the cloud. The single-core MCU handles the system by running an RTOS
with five tasks: two for acquisition, one for data processing, and two for data transmission to
the cloud. The acquisition task handles data from the two sensors with a ping-pong topology,
benefiting the best use of the Direct Memory Access (DMA) unit embedded in the single-core
device. Furthermore, a low-pass filter is applied to the acquired signals to reduce the noise level
of the acquired data. The filtered data are forwarded to the processing task to be processed by
the GAP9 processor or stored in the system’s SD CARD. Finally, the communication tasks are
in charge of reading and transmitting the stored data in the SD CARD, which are either raw
filtered data or extracted features, which is the outcome of the processing unit. The transmis-
sion task is highly reliable against packet loss as it re-transmits the packet in case of package
loss or broken link.

4.3 Experimental Results
In this section, our main focus is on analyzing the evaluation of the two MEMS used in the
SHM node with the accurate piezoelectric accelerometer employing the three domains pro-
posed in Sec. 4.1.3. Utilizing a lab-scale shaker, we first evaluate the performance of each

29 Amirhossein Moallemi

CHAPTER 4. TINY DETECTOR FRAMEWORK

PCB LIS ISMH ISML

µg/
√
Hz 10.28 23.98 65.86 436.20

mgRMS 0.06 0.12 0.35 2.19

Table 4.2: Estimation of Noise in the time and frequency domain

Experiment
Signal Frequency [Hz] Signal Amplitude [mg]

PCB LIS ISMH ISML PCB LIS ISMH ISML

LAB
30µm 10.0 10.0 10.0 9.9 10 9 10 24

250µm 10.0 10.0 10.0 9.9 91 86 100 120

Experiment Signal Frequency [Hz] Decay Factor [1e-3]

BEAM 5.50 5.54 5.59 5.57 8.3 8.6 8.3 11.6

Table 4.3: In-time Analysis for the Lab and Beam experiments.

sensor by sinusoidal excitations with a small and large amplitude. Then, we study the results
achieved in the in-lab experiments with a real-life scenario on a concrete beam.

4.3.1 Noise Analysis
Ambient noise is a consistent, non-zero element present in acquisition systems. A low noise
level is essential in designing analog and digital devices such as sensors to avoid the inference
of small valuable signals and noise.

Since the advanced processing methodologies that assess a structure’s condition deploy
both the time and frequency domain, we performed noise analysis in the time and frequency
domain. Table 4.2 indicates that the piezoelectric sensor, PCB393B12, benefits from the low-
est noise level with only 0.06mgRMS and 10.28µg/

√
Hz for the time and frequency domain,

respectively. The second best place is analog MEMS, where the noise level is approximately
double that of the PCB sensor. On the contrary, the noise level of the digital MEMS ac-
celerometer increases drastically where Table 4.2 reports that ISM in low-power suffers from
2.2mgRMS to 436.2µg/

√
Hz, i.e. one order of magnitude higher than the piezoelectric sensor

in both time and frequency domain. The former difference is due to the low power consumption
of the digital sensors since there is a trade-off between noise level and power consumption. To
conclude, the results in Table 4.2 show that the costly piezo sensor benefits from a low noise
level; thus, it could be the best choice for monitoring systems with no constraint on power
consumption. However, analog MEMS can provide a similar noise level for dense scalable
monitoring systems with constraints on budget and power.

4.3.2 Time Analysis
Recent studies have demonstrated the feasibility of deploying raw time-series signals as input
features to monitor large-scale structures, especially damage detection methodologies. There-
fore, we fit a model based on the formulation described in Sec. 4.1.3. For the in-lab experi-
ments, we fit the acquired data of a sinusoidal impulse where the two critical parameters are
signal amplitude and frequency. Next, we study the signal frequency and decaying exponen-
tial factors for the real-life experiment. Table 4.3 reports the result of the fitted models for the
former parameters.

30 Amirhossein Moallemi

CHAPTER 4. TINY DETECTOR FRAMEWORK

Experiment Peak Frequency [Hz] Peak Amplitude [mg] Peak Width [Hz]

PCB LIS ISMH ISML PCB LIS ISMH ISML PCB LIS ISMH ISML

LAB 30µm 10 10 10 10 0.05 0.04 0.05 0.05 0.1 0.1 0.1 0.1
250µm 10 10 10 10 4.80 4.23 4.50 4.03 0.1 0.1 0.1 0.1

Experiment Peak Frequency [Hz] Peak Amplitude [µg] Peak Width [Hz]

BEAM 5.5 5.5 5.5 5.5 5.39 3.53 5.60 6.79 0.4 0.4 0.4 0.4

Table 4.4: In-frequency Analysis for the Lab and Beam experiments.

For the in-lab experiment, the small amplitude stimuli, i.e., 30µg, Table 4.3 reports that it
is more complicated for digital MEMS in LP mode to fit the exact amplitude of the stimuli
compared to the piezo one. However, the digital sensor in HP mimics the piezo by zero error.
In low-power mode, ISM deviates from the nominal value because the signal with a small
amplitude is equal to the noise level; hence, the fitting algorithm is not capable of finding the
optimum solution for the data. By increasing the nominal value to 250µg, ISM in low-power
mode error is less than 30%, while for the other two cases, the error diminishes to less than
10% compared to the piezo one, indicating that MEMS operates better with larger signals than
smaller ones. Furthermore, all the sensors can perfectly fit the signal’s frequency with a slight
error for the ISM in LP mode compared to the nominal value. For the real-life experiment,
we consider the value obtained by the piezo as the most accurate one, with a 5.5Hz signal
frequency and 8.3m decaying factor. The bottom part of Table 4.3 reports that ISM in HP and
LIS can mimic the behavior of the piezo with the same decaying factor, whereas the ISM in LP
decays faster by 41.20%. Next, the signal frequency section of Table 4.3 reports that LIS has
the closest estimation to the piezo with only 0.04Hz difference, while ISM has a similar error
with 0.09Hz and 0.07Hz for HP and LP modes compared to the piezo sensor, respectively.
In conclusion, MEMS-based sensors imitate the piezo manners in acquiring frequency and
amplitude signals in the time domain. However, the ISM in low-power decays faster than the
other two sensors due to low sampling rate and high noise level.

4.3.3 Frequency Analysis
Frequency Analysis is one of the primary methods civil engineers use to monitor structures’
modification and identify damages by deploying metrics like peak frequency, amplitude, and
width. We utilize the PSD method described in Sec. 4.1.3 to extract former frequency param-
eters. For the in-lab experiment, we translated 3 minutes of time-series acquired acceleration
into smaller non-overlapping 10-second windows, resulting in 18 windows (3×60

10
= 18). Fur-

thermore, for the real-life experiment, we deployed only one event with 15 s captured by all
the sensors to avoid any heterogeneity in the frequency domain evaluation. Consider that a
window size of more than 10 seconds does not impact the result of PSD since no structural
response lasts more than 10 seconds. However, windows of less than 5 seconds cause a drop
in the accuracy of frequency analysis.

The first part of Table 4.4 reports the results obtained for the LAB experiments. The ex-
citation stimuli applied by the shaker have a frequency of 10 Hz, which is captured as the
first natural frequency by all the sensors in all scenarios. Notice that ISM in LP mode works as
accurately as the piezoelectric sensor, even in the smallest input range. Compared to the piezo-
electric sensor, the most accurate sensor, the results reported in the peak amplitude section of
Table 4.4 indicate 11.5%, 4.0%, and 3.4% deviation for LIS, ISM in HP, and ISM in LP mode
in peak frequencies’ amplitude identification, respectively. Considering the width of the natu-

31 Amirhossein Moallemi

CHAPTER 4. TINY DETECTOR FRAMEWORK

ral frequency, the last section of Tab. IV indicates a narrow window for all the peak frequen-
cies, fixed at 0.1Hz for all the sensors. Furthermore, the second part of Table 4.4 reports the
result of the real-life event. Considering the peak frequency, the piezo sensor identifies 5.5Hz,
further characterized by the MEMS sensor. The peak amplitude section of Table 4.4 demon-
strates that similar to the Lab experiment, the analog MEMS deviates the most by 1.86µg, i.e.,
34.5% compared to the piezo one. Notice that digital MEMS in the LP mode also reports
1.4µg (25%) mismatch compared to the accurate piezo sensors and with dissimilarities close
to analog ones. This mismatch is due to the low sampling rate of both MEMS, which cannot
capture the whole amplitude of the exciting stimuli. Finally, the peak width section in Table 4.4
provides similar results to that of peak amplitude, in the sense that digital MEMS, ISM in HP
mode, is capable of following piezo sensor, whereas analog and digital MEMS in LP mode
deviates from piezo by 0.03Hz. The former results mainly characterize two outcomes. The
former is both analog and digital MEMS sensors are feasible candidates to replace the costly,
power-hungry piezo sensors, whereas the latter is the fact that low sampling frequency can
achieve reasonable accuracy modal frequency analysis and peak width up to maximum 7%
error rates. Although deploying a lower sampling rate impacts parameters like network traffic,
it performs less accurately than a high sampling rate, given the peak amplitudes parameter.

32 Amirhossein Moallemi

CHAPTER

5

APPLIED SIGNAL PROCESSING

This chapter is dedicated to explaining the three applications that have been developed, show-
casing the feasibility of shifting partially or fully processing workloads from the cloud to the
edge near the sensors. In the first application, two key challenges, automating anomaly de-
tection and doing so in a scalable manner, are discussed. An anomaly detection pipeline is
developed and deployed at three levels: cloud, edge-cloud, and entirely on the edge. Further,
in the following section, the data reduction algorithm is discussed to show the pros and cons of
parallelizable tasks in single-core and multi-core scenarios supporting our sensor node design,
including an ultra-low power parallel computational engine described in Chap. 4. Finally, the
last section focuses on one of the latest fields in SHM systems, which is to deploy a vibration-
based system as a traffic load estimator to cluster vehicles based on their gross weight. The
solutions proposed for this application are among lightweight signal processing approaches
already present in embedded system applications.

33

CHAPTER 5. APPLIED SIGNAL PROCESSING

5.1 Data-driven Vs Model-Based Algorithm
This section describes the main contribution of this application. A novel SHM system, pipeline,
and its deployment to augment the SHM installations to automatically raise integrity alarms
is discussed. First, the installed SHM systems and the viaduct, along with the benchmark
acquired from the bridge, are described. Then, the complete pipeline, comprising a step of
initial training, the in-field estimation, and the possibility of an online update of the models,
is discussed. Finally, the proposed solutions to efficiently embed the pipeline inside the exist-
ing system, reducing energy consumption and network traffic while maximizing the system’s
scalability for large SHM installations is presented.

5.1.1 SHM Installation
Bridge Structure

The vibration data analyzed in this work comes from a viaduct located in northern Italy on
the ss335 state highway, which is composed of 18 different sections. In year 2019 , the viaduct
underwent a technical intervention to strengthen the structure of a viaduct section, with a corre-
sponding change in the vibration signal produced by its structure. Before the intervention, this
section has been instrumented with five SHM nodes to monitor viaduct vibration, as illustrated
in Fig. 5.1. For this reason, in this application, we analyze the unique situation of accelera-
tions gathered before and after this strengthening intervention. We use these data as a proxy
for an abrupt change in the viaduct structure caused, for example, by external factors such as
an earthquake. After the intervention, we consider the vibrations raw data as the normal data
produced by a ’sane’ viaduct. Conversely, the accelerations measured before the intervention
are used as the ’anomaly’, given the high degradation of the bridge’s structure.

SHM Network

The depicted installation is a vibration-based SHM system, which exploits acceleration gath-
ered from the sensors to detect damages and monitor the viaduct’s health condition. Fig. 5.1
shows the installation composed of five nodes connected via CAN-BUS to transmit data to a
gateway: in the baseline setting, no computation is performed on the nodes or the gateway.
Nodes gather and transmit data to the gateway. The gateway sends the sensor’s data to the
cloud for storage purposes. All the data processing is then carried out daily on the cloud.

The gateway is a Raspberry Pi 3 module B (RPi3), an edge computer actively employed in
many fields such as robotics, smart sensors, or SHM. It includes a Broadcom BCM2837 SoC,
with 64-bit 4-core Cortex-A53 running at 1.2GHz and 1.2GB of DDR2 RAM. The gateway
supports the Linux operating system, allowing for typical Python applications deployment
for either communication (e.g., an MQTT broker [53]) and in-field machine learning (e.g.,
Keras [102], scikit-learn [94]).

The sensor node is represented in the lower part of Fig. 5.1. It is composed of the LIS344ALH
analog tri-axial accelerometer [99], the HTS221 temperature and humidity sensor [100], and
an STM32L476VGTx microcontroller as a computational core. The core features a floating-
point unit and a digital signal processing (DSP) library, which has been used in our work to
optimize the algorithm deployment. The microcontroller unit is an ARM 32-bit Cortex-M4
running at 80MHz, with 96 kB of SRAM and 1MB of Flash memory. This node samples
the acceleration with the internal ADC at a frequency of 25.6 kHz. For increasing the bit-
resolution, windows of 256 samples are filtered with a 6-state FIR filter and reduced to a single

34 Amirhossein Moallemi

CHAPTER 5. APPLIED SIGNAL PROCESSING

Figure 5.1: Overview of the installed monitoring system on the viaduct. Five sensors are linked
to a gateway for streaming data to the cloud. The grey box showcases the main components of
a sensor node.

value, thus obtaining a final sampling rate of 100Hz.

Benchmark

Our test dataset comprises 25 days of continuous monitoring of the viaduct with 5 sensors
described in Sec. 5.1.1. For our analysis, we consider the central sensor of the chain, which is
most influenced by the viaduct vibration. Note that using a higher number of sensors does not
improve the accuracy in this case, but it is still feasible. The data are composed of 5 days before
the maintenance intervention, labeled as anomalies, and 20 days after, labeled as normal data.
We select as the test set all the 5 days of anomalies and 5 days of normal data to have a balanced
test dataset. We divided the remaining 15 days of normal data into a validation set (5 days) and
a training set (10 days). Note that anomalies are used neither in training nor validation datasets,
given that all analyses are unsupervised. The anomalies are used in our results only to assess
the classification accuracy of our approaches. To the best of our knowledge, considering the
viaduct’s unique condition, this is the first anomaly labeled data from a real-life viaduct.

35 Amirhossein Moallemi

CHAPTER 5. APPLIED SIGNAL PROCESSING

Figure 5.2: The proposed framework to analyze the condition of a viaduct starting from raw
acceleration data. In the top part of the figure, we show the hyper-parameter tuning (in red)
and the initial training steps done before the monitoring system was activated for the first time.
In the middle, we show the inference steps to be done continuously for safe/anomaly condition
assessment. In the bottom part, we show the possibility of updating the signal reconstruction
algorithms after the pipeline detects an abnormal event to avoid the increase of false-positive
alarms due to the bridge’s static deformation caused by wind or aging.

5.1.2 Methods: Anomaly Detection in an SHM framework
As shown in Fig. 5.2, our pipeline comprises three main blocks (from left to right in the figure).
First, a series of transformations, such as windowing, data filtering, and feature extraction,
is applied. Then, the signal compression-decompression algorithm for anomaly detection is
applied. We tested three algorithms: i) PCA, ii) a fully connected autoencoder, and iii) a
convolutional autoencoder. Finally, the MSE between the decompressed and original signals
is computed to detect the structural integrity of the viaduct. An average over time is calculated
to smooth the damage detection, reducing false alarms.

Pre-processing

This step covers the windowing of the raw signal, the energy extraction, and, eventually, the
application of the FFT if needed. We used a single acceleration axis for our analysis, namely
the z-axis (i.e., vertical axis) of the sensor installed in the middle of the section since it contains
the most critical information about the bridge.

As Fig. 5.2 shows, data processing starts by dividing acceleration raw data into non-
overlapping windows, similar to [19]. We explore window dimensions of 1 to 10 seconds
to balance accuracy with algorithm complexity. Noteworthy, given the hardware-related con-
straints such as limited memory and hard time constraints, different window dimensions can
fit different use cases.

After, we check the energy of the windowed signal. In our case, the analyzed bridge
does not experience heavy traffic; hence, it often results in low-vibration windows containing
only the white noise of the sensor. Therefore, we designed an energy-based window cleaning
to eliminate non-informative windows. To this end, the energy of each window is extracted
and compared to a trained energy threshold. Windows with an energy lower than the trained
threshold are removed from further analysis.

36 Amirhossein Moallemi

CHAPTER 5. APPLIED SIGNAL PROCESSING

Figure 5.3: Top panel: Twelve minutes of mean-centered raw acceleration data of the z− axis
of the middle sensor installed on a bridge span. Peaks are associated with vehicle passages.
Left panel: Zoom of a 5-second window containing the oscillation associated with the passage
of a vehicle. Right panel: The frequency response of the window of the signal is highlighted
with the dashed rectangle.

The energy of each window is computed as:

E =

Wd∑
i=1

X2
i (5.1)

where Wd is the width of each window. The search for energy threshold is done by exploiting
the iterative steps of Alg. 1. At each step, increasing the threshold leads to removing a higher
percentage of the windows. Alg. 1 stops when the reconstructed signal of not filtered-out win-
dows drops below a predetermined Quality of Service (QoS), namely the average reconstructed
signal-to-noise ratio (RSNR), computed as RSNR = 20 log10

(
∥x∥2

∥x−x̂∥2

)
, with x, the original

signal, and x̂, the reconstructed one. Based on [19] and considering a compression factor of
15× as in [19], we set this lower bound average RSNR to 16 dB. Fig. 5.3 shows acceleration

Algorithm 1 Energy Filtering
1: Input: Xtrain,Xval

2: th = 10−10

3: do
4: th+ = 2−8

5: Xtrain,Xval← filter (Xtrain,Xval, th)
6: W ← pca(Xtrain)
7: Xr ← XvalWW⊺

8: S ← RSNR(X,Xr)
9: while S < 16 dB

10: Output: th

data and highlights the portion of the signals selected by the tuned energy threshold with a

37 Amirhossein Moallemi

CHAPTER 5. APPLIED SIGNAL PROCESSING

Figure 5.4: PCA output mean square error (MSE) on the test dataset. The input window
dimension is set to 5 seconds. The solid line is obtained by applying the post-processing with
window dimension = 1 h.

green background. Fig. 5.3-B and Fig. 5.3-C show a zoom of peak 2 in the time and fre-
quency domain. As detailed in Sec. 5.2.2, applying this energy filtering improves the accuracy
of all our analyses.

Signal Reconstruction

We process the non-discarded windows with different compression-decompression models.
The similarity of the original with the reconstructed signal is then used to detect anomalies.

This phase is split into two steps: i) compression and ii) reconstruction of input pre-
processed signals. We test one model-driven method, namely the PCA, and two data-driven
approaches, a fully connected autoencoder and a convolutional autoencoder, as anomaly de-
tectors. We impose a compression factor of the input signal of 16× before reconstruction. In
PCA, we keep the top 16 principal components. In the fully connected autoencoder, we em-
ployed 16 neurons in the hidden layer. In the convolutional autoencoder, we utilized a stride
over convolutional layers of the encoder part of 32 , reducing from 500 to 16 the dimension
of the signal before the transposed convolutions. The PCA and fully connected autoencoder
perform the same number and type of operations (two matrix multiplications, A × B, and B
× C, with dimensions A 1×500 , B 500×16 and C 16×500) and only differ in the train-
ing approaches: the first one is model-based, while the second is trained via a data-driven
back-propagation. The convolution autoencoder comprises 8 hidden layers followed by ReLU
activations. Adam optimizer, along with 80 epochs, is used to train this model.

Anomaly Detection

We use the difference between the original and reconstructed signals as an anomaly detection
score. A higher difference implies a worse reconstruction. In particular, we compute the mean

38 Amirhossein Moallemi

CHAPTER 5. APPLIED SIGNAL PROCESSING

square error (MSE) as described in Eq. 5.2:

MSE = ||xi − x̄i||L2 =
1

n

n−1∑
i=0

(xi − x̄i)
2 (5.2)

where x is the original signal, x̄ is the reconstructed signal, and n is the number of samples in
a window.

Our reconstruction algorithms are trained solely with normal data using an unsupervised
process. Therefore, the algorithms should reconstruct normal data with low MSE, while they
cannot reconstruct anomalies that show a different signal dynamic not seen during the training,
leading to a higher MSE. A threshold to distinguish the two data classes can be thus statistically
derived solely by normal validation data. To compute it, in our case, we compress a validation
set of normal data using different compression algorithms. Then, we select the threshold as
the mean of the MSE over all the data compressed plus three times its standard deviation
(th = µ + 3 × σ). Noteworthy, we set this threshold to have only 0.01% of statistical false
positive errors. The results of this procedure are shown in Fig. 5.4, where PCA is used to
compute MSE over normal and abnormal data.

We propose an average over time of the soft predictions (MSE values) to further reduce
false alarms. We explore windows between 15min to 4 h, showing that a larger window pos-
itively correlates with better accuracy, increasing the gap between reconstructed normal data
and reconstructed anomalies but causing larger delays in prediction.

Algorithm Phases: Train, Detect, Re-Train

Our pipeline is characterized by three main phases (Fig. 5.2, top-down), namely i) an initial al-
gorithm selection, parameter tuning, and model training, ii) the continuous bridge monitoring,
and iii) a re-training phase to adapt the model to slow modifications of the bridge dynamic.

The first phase, training, begins with an ablation study over the possible hyper-parameters:
the input window dimension, the tuning of the energy filtering step, the anomaly detection
models parameters, and the post-processing. After defining the parameters, the chosen model
is trained with the normal data of the viaduct.

The second phase, continuous monitoring, exploits the best solution found during the train-
ing to perform a long-term online detection of the viaduct damages.

The last phase, re-training, involves updating the model parameters over time to adapt to
the temporal-changing dynamic of the signal. This step is primary for this kind of analysis
since modal analysis shows that light stresses such as wind or traffic load cause slow structural
modifications, resulting in slightly different signal dynamics. Further, in SHM scenarios, false
alarms can not be tolerated since they can trigger critical alarms, causing a bridge maintenance
intervention with a consequently high cost.

5.1.3 Deployment: Sensor Vs. Cloud
Deploying our proposed anomaly detection pipeline (Fig. 5.2) is not trivial due to problems
such as the scalability in the number of nodes or the lifetime of the nodes. Data communication
costs become critical when multiple streams must be transmitted to the cloud. At the same
time, the limited memory footprint of tiny edge devices is a major constraint for on-sensor
computing. Therefore, we here discuss three deployment scenarios of our anomaly detection
pipeline on our SHM system, composed of the sensor network installed on the viaduct and the
cloud that augments the system with data storage and computation capabilities. Specifically,

39 Amirhossein Moallemi

CHAPTER 5. APPLIED SIGNAL PROCESSING

Figure 5.5: Three deployment scenarios of our anomaly detection pipeline. Green arrows
highlight the inference steps, while red ones highlight the re-training and updating of the model
over time.

we discuss the trade-offs of performing the three phases (i.e., training, anomaly detection, and
re-training) of our algorithm either on the cloud, on the nodes, or as a mix of them. Noteworthy,
these reasonings also hold for much bigger SHM installations of hundreds of nodes, where the
scalability issues and the data storage can be the real bottleneck of the system.

Cloud Computing

As shown in Fig. 5.5-1, transmitting all the data to the cloud while having no processing in
the sensor network causes i) a high data communication cost, ii) the necessity of cloud data
storage, and iii) a daily cloud computation of anomalies, alarms, and, less frequently, the iv)
re-training of the model.

Data transmission to the cloud is the first issue in this scenario. Although several cost mini-
mization techniques, such as new communication paradigms [32,76] or edge data-reduction [19],
have been introduced recently, data communication still represents the highest installation cost
over months in terms of energy. Using one of the most efficient standard protocol stacks avail-
able today, the Narrow Band Internet of Things (NB-IoT) [121], which has demonstrated opti-
mal performance in the SHM field, the system consumes up to 0.94 J for a typical transmission
of 500 bytes in the open space, decreasing the maximum lifetime of the SHM nodes and thus
needing solutions such as energy harvesting [107] or a wired sensor. Furthermore, the different
cloud service providers such as Amazon, Microsoft, and Google account for data computation
costs as pay-to-go, with the client paying for the computational time exploited [56], also mak-
ing the money invested in this service not negligible. Therefore, a complete cloud paradigm
for anomaly detection causes a higher maintenance cost and shortens the lifetime of the SHM

40 Amirhossein Moallemi

CHAPTER 5. APPLIED SIGNAL PROCESSING

nodes, demanding more frequent interventions on the installation.

Sensor Interface with Cloud

Involving sensors in the computation reduces the costs of the anomaly detection pipeline. The
anomaly detection model is exported to the sensor to predict the viaduct behavior, while the
model re-training is still performed in the cloud. Fig. 5.5-2 shows the overall functionality of
this approach. In green, we highlight the anomaly detection pipeline; in red, we highlight the
model update over time. Note that while we can reduce both the traffic (streaming only data
when we decide to start a re-training) and the cloud computation (only the re-training function
is executed on the cloud), cloud storage and processing cost still remain an issue for this kind
of scenario, making the scalability an open problem in this kind of approaches.

In our use case, we deploy the anomaly detection pipeline on the node for this scenario
while keeping the data streaming to the cloud for algorithm re-training. After the on-cloud
algorithm re-training, the new model is deployed on the nodes.

Sensor Computing

To also eliminate the communication costs for re-training, we propose to move both the com-
putation of the online anomaly detection and the update of the node’s model on the sensor.
Using this approach, after the initial training, done once per SHM installation, no further com-
putation is required from the cloud. Each SHM installation can be considered a standalone
unit without the need for cloud communication unless an anomaly is detected. In this scenario,
scalability is no longer a problem since the cloud only monitors and initializes the sensors’
status and initialize them. Fig. 5.5-3 highlights the steps of this approach.

For our use case, while the porting of the anomaly detector is trivial, training PCA on a
memory-constrained device entails many challenges, such as storing the covariance matrix in a
memory-constrained microcontroller. Further, storing many data on local nodes is impossible,
given the low FLASH memory. Thus, we employ streaming PCA, previously deployed on a
sensor node in [19], which aims at finding a compression matrix sequentially to avoid i) storing
lots of data at the edge and ii) computing the entire covariance matrix [113]. Compared to [19],
instead of employing the PCA only for data compression, we also use it to perform anomaly
detection at the edge of the sensor network.

41 Amirhossein Moallemi

CHAPTER 5. APPLIED SIGNAL PROCESSING

5.2 Results: Data-Driven Vs Model-Based
This section mainly focuses on analyzing the proposed framework in Fig. 5.2. Using grid
search over different hyperparameters and framework elements, we explore our pipeline’s per-
formance while changing its blocks (e.g., anomaly detection techniques) and the block’s pa-
rameters (e.g., by presence or absence of the energy filtering while tuning its threshold). After,
we examine our best detector’s robustness, artificially changing the severity of the anomaly
in the dataset and correlating severity with algorithm performance. Then, we compare the
proposed anomaly detectors with state-of-the-art ones. To be fair, we reproduced the state-of-
the-art algorithms and applied them to our data using the same input window dimension and
post-processing.

The second phase of this section will analyze several deployments of the best algorithm
found in the performance analysis, namely, the PCA, on the processing unit introduced in
Sec. 5.1.1, the STM32L476VGTx. All pipeline steps, including data processing, signal recon-
struction, and anomaly detection, have been deployed using optimized C code and the FreeR-
TOS operating system. Initially, we tuned the CF of PCA with multiple input dimensions
against memory constraints to realize the utmost limit of PCA deployment with a floating-
point compression matrix. We further address each case’s energy consumption and execution
time to report its pros and cons. We then fix CF for the best performance and perform inter-
ference with MCU to compare its performance with the offline version. Finally, we present a
comparison of the best solutions to show the pros and cons of the three scenarios discussed in
Sec. 5.1.3.

5.2.1 Algorithm Exploration
Notations & Benchmark

First, we introduce the notations and metrics we use to evaluate this application’s different
methods and hyperparameters. We use three metrics for performance assessment:
i) accuracy, the total correctly classified windows

Acc. =
TP + TN

TP + FP + TN + FN

ii) sensitivity, the percentage of correctly detected anomalies

Sens. =
TP

P
=

TP

TP + FN

iii) specificity, the percentage of correctly classified normal windows

Spec. =
TN

N
=

TN

FP + TN

Where P are the positives, N the negatives, TP are the true positives, TN are the true neg-
atives, FP are the false positives, and FN are the false negatives. Furthermore, we use Area
Under Curve (AUC) to assess the performance of our models. For our purpose, we consider
the "anomalies" as positives prior to the intervention, while the negatives are windows of "nor-
mal" data after the intervention. With Compression Factor (CF), we point to the ratio between
high-dimensional original space and algorithms-reduced data space, i.e., the projected PCA
data and the latent autoencoder data. Finally, we define the input dimension, the length of each
non-overlapping window in the data processing step, and the output dimension, the total time
considered after averaging multiple windows before final classification.

42 Amirhossein Moallemi

CHAPTER 5. APPLIED SIGNAL PROCESSING

Algorithm Domain Acc. Spec. Sens.

PCA
Raw 98.8 % 100 % 97.33%
FFT 77.22 % 99.20 % 50.63 %
DWT 84.36 % 96.79 % 74.44 %

FC Autoencoder
Raw 68.75 % 99.73 % 44.04 %
FFT 56.02 % 96.54 % 23.61 %
DWT 69.99 % 97.87 % 47.66 %

Conv. Autoencoder
Raw 50.6 % 67.2 % 37.1 %
FFT 56.30 % 85.28 % 32.66%
DWT 52.12 % 100 % 13.83 %

Table 5.1: Performance of our pipeline changing anomaly detection algorithm with discrete
wavelet transform, frequency, and time data as input space domain.

Model selection & Data domain

Modal analysis is the gold standard used to analyze the dynamic characteristics of large-scale
buildings [101]. On the other hand, previous studies have demonstrated the feasibility of us-
ing raw time series for anomaly detection [19]. Hence, both time and frequency domains
are promising directions to analyze. Therefore, we test three anomaly detectors fed with fre-
quency and time inputs. We selected PCA and Autoencoders as detectors given their already
demonstrated success in anomaly detection and, more precisely, on SHM tasks [70]. For this
comparison, we fix the input window dimension to 5 s of accelerometer output samples and
the output dimension to 60min. The compression factor is fixed to 16 ; therefore, we select the
most significant 32 principal components for PCA while ensuring the innermost latent dimen-
sion of both fully connected and convolutional autoencoders has a dimension of 32

Table 5.1 and Fig. 5.6 report the evaluation results on the three models using the 10 days
of the test set, using both the input data domains. As previously described, to report accuracy,
sensibility, and specificity, we use a threshold on the output MSE of µ + 3×σ. On the other
hand, the Receiver Operating Characteristics (ROC) curve is threshold-independent. Using
time-domain input, PCA outperforms both the other two models, reaching 98.8%, 100% and
97.33% of accuracy, specificity, and sensitivity, respectively, and an approximate 1.00AUC.
Notice that PCA is the only method to remove all the false alarms in the system, preventing
sending false alarms to bridge maintainers.

Although the fully connected autoencoder mimics the PCA model (i.e., with the same ma-
trix multiplications of the PCA algorithm), it shows a lower performance (≃ 30.00% drop of
accuracy) than PCA due to two factors. First, given the small size of our training set, which
negatively affects the data-driven model’s performance, it reaches an AUC of only 0.97 Fur-
ther, the threshold chosen while analyzing only normal data does not permit high accuracy by
favoring the specificity. MSE achieved by both anomalies and normal data is very near the
test set using frequency domain input data. Therefore, a small modification in the threshold
can also impair the accuracy, leading to low sensitivity. Note that we choose this threshold
with statistical consideration on the validation dataset, ensuring a specificity > 99.9% on the
validation set, but without any assumptions on the sensibility. On the other hand, the convo-
lutional autoencoder does not show promising results, with a very low sensitivity of 37.10%.
This low sensitivity is probably due to the high number of parameters that overfit the training
dataset, not allowing it to reach the performance of the other methods.

Comparing frequency and time domains, we first visually analyze the input data. We notice

43 Amirhossein Moallemi

CHAPTER 5. APPLIED SIGNAL PROCESSING

Figure 5.6: ROC curve for different input signal domains, i.e., time, frequency, and time-
frequency.

a slightly different waveform between anomalies and normal data in the time domain, given
by higher variations in amplitude and lower frequencies in anomalies. These changes are
also noticeable in the power spectrum, with a slight deviation in the first natural component
of the viaduct. Therefore, we feed our algorithm with either raw data or FFT of each input
window. Since the viaduct’s natural frequency is relatively low, we cut the frequency spectrum
between 0−25Hz. Although we can reach high AUCs of 0.92 and 0.88 for our best models
with the FFT pre-processing, we see an improvement using time-domain data. Moreover, our
unsupervised threshold training does not allow us to reach a satisfactory accuracy on frequency
data. Even though FFT shows a slight difference, it is prone to spectrum leakage due to
the measured signal’s non-stationarity or non-linearity [61]. To avoid possible spectrum loss,
we also evaluate Discrete Wavelet Transform (DWT) approximation coefficients to represent
different time and frequency resolutions simultaneously. Thus, we use the DWT coefficients
of each 5s window as one other possible input to our anomaly detectors. DWT results reveal
that we can reach as high AUC as FFT with 0.92 and 0.93 for the superior models in the
pipeline. Similarly to FFT, due to unsupervised threshold training, DWT does not reach an
adequate accuracy, with only 84% and 69.99% for the former algorithms. Table 5.1 and
Fig. 5.6 summarize the time (Raw data), frequency (FFT), and time-frequency (DWT) results.
At the end of this exploration, we select the PCA and the time domain as the best competitors,
and we, therefore, use them in subsequent analysis and deployment on edge nodes.

44 Amirhossein Moallemi

CHAPTER 5. APPLIED SIGNAL PROCESSING

Figure 5.7: The energy filtering step impacts the PCA output MSE. In the top panel, we show
the MSE when the energy filtering is not applied. In the bottom panel, we show the improved
result with its application.

5.2.2 Hyperparameters exploration
Energy Filtering

In Sec. 5.1.2, we propose filtering non-informative windows to train models with only the
most energetic windows, thus removing windows where the viaduct does not vibrate under
the passage of vehicles. Our hypothesis is that including all the windows leads to higher
reconstruction errors of normal and abnormal data while the gap between the two errors is
reduced. Fig. 5.7 quantifies this claim, showing classification with and without the energy
filtering block. We can observe that the PCA is strongly affected if we omit this filtering step,
with a severe drop of specificity/sensitivity (up to ≃ 41%). Notably, the PCA’s poor perfor-
mance is due to the aforementioned increase of MSE of normal windows, whose average move
from 0.31 to 0.70 This experiment confirms our initial idea, given that non-energetic windows
only contain white noise, which is not autocorrelated. Thus, it is impossible to compress and
reconstruct with PCA, leading to high reconstruction errors, similar to anomalies. Therefore,
adding this block allows for a strong improvement in the detector performance. The energy
filtering is not only beneficial for accuracy but also for computation, reducing the total number
of processed windows by ∼17% on average, thus reducing the total consumed energy.

Input & Output Dimension Exploration

Fig. 5.8 shows the tuning of input and output dimensions, with twenty combinations of four in-
put dimensions and five output dimensions. Input dimension variation is not positively/negatively
correlated with algorithm performance. We notice that using 5 s (grid search between 1 ,2 ,5 ,
and 10 s) outperforms the other input dimension values from Fig. 5.8. On the other hand, using
smaller windows reduces the computation and, thus, the energy consumption of the algorithm
execution, leading to a trade-off between energy consumption vs. accuracy. We will better
study this trade-off in the following sections.

Contrary to the input dimension, an increase in the output dimension positively correlates
with the framework’s performance, resulting in a trade-off in delay vs accuracy. However,

45 Amirhossein Moallemi

CHAPTER 5. APPLIED SIGNAL PROCESSING

Figure 5.8: Effect of input-output dimensions sweep on the performance of the best detector
(PCA).

since viaduct structure modifications are slow, very low delays are not required. Therefore, we
decided to use 60min of output dimension, which almost saturates performance for 5-second
windows while having a reasonable delay. Increasing the output dimension to 120 and 240min
impressively provides better accuracy. However, the choice of the output dimension, which
strongly affects the delay in detecting the status of an anomaly in the viaduct, is related to the
specific use case or necessity of the system. For instance, choosing 240min as a dimension
leads to the perfect distinction of anomalies and safe time slots (100% accuracy) but causes a
delay of 4 h in the notification of the damage alarm.

Compression factor

We also explore different compression factors for PCA to analyze its effect on the framework’s
overall performance. Intuitively, preserving more high-dimensional space elements does not
guarantee enhancement in overall performance since they can improve the reconstruction of
both normal and abnormal data. For this reason, starting from our initial value of 16 , we
further explore CFs = 4 , 8 , 24 , and 32

Fig. 5.9 shows the distribution of MSE values of anomalies and normal data with four val-
ues. As expected, a lower compression factor leads to an overall better reconstruction of all the
data (0.05− 0.30MSE with CF = 4) while using a higher CF (CF = 24) causes a higher re-
construction error (0.4−0.9MSE). On the other hand, none of these conditions implies higher
accuracy, given that the critical metric that leads to high classification accuracy is the gap be-
tween the two data distributions. Exploring the different values, we find that the original CF
value and similar CF = 16 is the sweet spot in this trade-off, leading to a reasonable reconstruc-
tion of normal data (0.1−0.4MSE) and a poor reconstruction of anomalies (0.4−0.8MSE).
As visually noted, the distance between the means of the two distributions is maximized for
CF = 16 , with a value of 0.30 Simultaneously, other CFs, 4 , 8 , and 24 , only present 0.05 ,
0.09 , and 0.21 distances, respectively. Similar to the input data dimension, this parameter af-
fects both the computation and memory footprint of the algorithm and will be further explored
in the following sections.

Synthetic Experiments

Lastly, we artificially generated degradations to monitor the robustness of the best-trained
detector,i.e., PCA. To inject different sets of anomalies, we modified the distance between the

46 Amirhossein Moallemi

CHAPTER 5. APPLIED SIGNAL PROCESSING

Figure 5.9: MSE distribution while changing CF parameter

Figure 5.10: Performance of the PCA classifier while sweeping over several severities of
anomalies w.r.t real case scenario of the bridge.

47 Amirhossein Moallemi

CHAPTER 5. APPLIED SIGNAL PROCESSING

two peaks of normal and anomaly in spectrum density and transformed them back to the time
domain. We take each 15min of the dataset, process with FFT, and gradually close the two
peaks of first natural frequency between anomalies and normal data between 0 to 200% of the
actual distance in the dataset. Note that 100% corresponds to the original real-life anomaly.
Finally, we transform the data back to the time domain prior and use these new data to test the
algorithm. Reducing the gap between the two peaks allows the detector to produce data that is
more similar to normal data, implying a harder task for the detector. Fig. 5.10 shows the result
of this experiment. Reducing the distance to lower than 75% of the original distance causes
the detector to reduce its sensitivity, starting to classify anomalies as normal cases. Note that
specificity is constant since the anomaly threshold does not change, given that it is computed
only with unmodified normal data.

Model Comparison

In this section, we compare our anomaly detectors with methods presented in Sec. 2.3. To
do this, we reproduce the pipeline shown in Fig. 5.2, substituting the anomaly detection algo-
rithm with the state-of-the-art ones but keeping the pre-processing and post-processing steps
unchanged.

We compare the PCA with four other statistical-based approaches based on frequency peak
detection [35], Multivariate Gaussian Distribution [105], and AutoRegressive models [21]. We
do not add supervised deep learning methods to the comparison since they require labels for
normal and anomaly cases, which are unavailable at training time in normal SHM use cases.
Table 5.2 showcases the comparison in terms of accuracy, specificity, and sensitivity.

The literature about anomaly detection in SHM shows that autoregressive moving average
(ARMA) residuals are damage-sensitive features of structures [21, 48]. Entezami et al. [39]
propose a novel approach to extract these features for big data (GBs). We reproduced their
approach on our data, training two different statistical distances, L1 distance and Mahalanobis
Square Distance (MSD), to distinguish the normal and abnormal data. Table 5.2 shows that
L1 achieves an overall better accuracy (+22.78%) than Mahalanobis Square Distance (MSD).
Santos et al. [35] propose to extract frequency information from the signal and perform the
classification based on the position of the main peak of the spectrum. However, in our use case,
this method achieves an accuracy of only 67.79%. This result further proves that frequency
features are unsuitable for distinguishing safe and anomalous time windows on our dataset.
Finally, we investigated a recent study that targets edge computing [105], exploiting seven

Method Acc. Spec. Sens.
State-of-the-art algorithms
FFT + peaks detection [35] 67.79 % 99.2% 43.09 %
MGD [105] 59.48 % 95.66% 10.25 %
AR features + MSD [21] 58.43 % 85.90% 36.82%
AR features + L1 81.11 % 88.49% 71.80%
Our Work
Raw + PCA 98.80% 100% 97.33%
DWT + FC Autoencoders 69.99% 97.87 % 47.66%
FFT + 1D-CNN Autoencoders 56.30% 85.28% 32.66%

Table 5.2: Comparison of our proposed solution with state-of-the-art methods applied to our
dataset. The 60min post-processing is identically applied to all methods.

48 Amirhossein Moallemi

CHAPTER 5. APPLIED SIGNAL PROCESSING

statistical features (i.e., mean, mean square, variance, standard deviation skewness, kurtosis,
and crest factor) together with a multivariate Gaussian model to predict anomalies in vibrating
systems. However, this method also fails in our use case, with a drop in accuracy to ≈ 60%.

In a nutshell, the results in Table 5.2 show that correlation and autocorrelation of 1-D
vibrations are promising solutions (exploited by both PCA and AR models) to detect anomalies
in viaducts.

49 Amirhossein Moallemi

CHAPTER 5. APPLIED SIGNAL PROCESSING

Input dim. FLASH [kB] RAM [kB] Time [ms] Energy [uJ]
1 32.82 11.12 0.754 3.35
2 40.63 19.95 1.568 12.9295
5 91.04 77.55 6.428 73.96
10 276.54 Overflow - -

Table 5.3: Deployment metrics of PCA algorithm with CF = 16, output dimension = 60 min-
utes, and variable input dimension. Time and Energy are only for one inference.

5.2.3 Implementation
CF tuning Vs. Metric Figures

Starting from the accuracy results shown in Sec. 5.2.2 and Sec. 5.2.1, we extensively explore
the trade-off between accuracy, memory, and energy consumption by modifying both the CF
and the input dimension, with a fixed output dimension of 60min. We show the results of our
exploration in Fig. 5.9. As previously mentioned, CF = 16 results in the best accuracy, with
67.34%, 76.29%, 98.82%, and 97.33% for input dimensions of 1 ,2 ,5 , and 10 s, respectively.
Despite the higher accuracy of CF = 16 , increasing the CF allows for reducing both the mem-
ory footprint and energy consumption. For instance, from the first graph of Fig. 5.9, we can
notice that using CF = 24with a window of 5 s still allows us to reach an acceptable accuracy of
92.97%. Contrarily, using a lower CF causes i) higher energy, ii) higher memory consumption,
and iii) lower accuracy, excluding these CF values from the trade-off choice. Therefore, We fix
the search space to CF ∈ [16 ,32]. We also remove the 10 s input dimension since its compres-
sion matrix does not fit the small 96 kB RAM (dotted line in the second graph of Fig. 5.11).
In this region, we found that the only points that reach an accuracy > 80% are achieved for
CF = 16 or CF = 24 and input dimension = 5 s. Target application and deployment scenarios
can choose the best trade-off between former parameters. Given our pipeline, we found that
the largest model that fits the MCU memory is the one with CF = 16 and an input dimension
of 5 s, achieving 98.82% accuracy with a 73.96 µJ energy consumption per inference.

Table 5.3 underlines memory footprint, latency, and energy consumption with a fixed CF
of 16 and different input dimensions. Since increasing input dimension corresponds to a more
extensive PCA compression matrix, a higher input dimension requires more FLASH space
(e.g., 91.04 kB for 5 s). Although the compression matrix is not a problem (roughly 10% of
total FLASH for 5 s), the reconstruction procedures occupy up to 77.55 kB (81 %) of RAM
for 5 seconds. Such a high usage area puts a solid constraint for embedding the PCA for larger
input dimensions, given the option to run other tasks for data gathering. Despite the optimal
solution obtained with 5 s, reducing the input dimension to 1 second allows us to maintain an
accuracy of 67.34%, with a latency reduction of 8.5× and 9.5× lower energy consumption.
While the former factor brings no obstacle to the system due to the sampling rate (100Hz),
the latter causes a shorter node lifetime, creating a trade-off between accuracy vs. energy
consumption.

Cloud vs. Node costs

Narrowband IoT (NB-IoT) is a recent protocol standardized by 3GPP for Low Power Wide
Area, an extension of LTE (4G Long Term Evolution) designed for long battery and low-cost
applications where it can virtually work everywhere [14].

NB-IoT consumes more energy per payload packet than other similar technologies. How-

50 Amirhossein Moallemi

CHAPTER 5. APPLIED SIGNAL PROCESSING

Figure 5.11: CF tuning versus accuracy, memory, and energy. Horizontal red line points to the
limit of MCU memory. Dotted lines represent not deployable solutions.

ever, since it has no limitation on the number of bytes sent in a single connection to the cell,
it is a prominent transmission protocol in the LPWAN category [14]. NB-IoT deployment of
nationally licensed connectivity (e.g., LTE bands) implies no band usage limitation and no
latency for streaming acquired data to the cloud. Since in the SHM field, data streaming need
not be continuous, and data can be grouped in big batches and sent with a single connection
to the cloud, NB-IoT can be an ideal communication option for SHM systems. Therefore, we
use NB-IoT to gauge the benefits of the different scenarios introduced in [32].

Fig. 5.2 shows all the options for training and inference. The cloud-based method contin-
uously streamlines the data to the cloud for training and detection phases. In contrast, sensor
computation only reports the structure’s status to the cloud hourly. We want to quantify these
scenarios regarding energy consumption and transition costs to develop a scalable solution for
SHM applications.

Table 5.3 reports the deployment results of model inference at the node. The best solution
in terms of accuracy, i.e., the PCA with 5 s input window dimension, consumes 73.96 µJ.
Exploiting a smaller input window dimension, i.e., 1 s, only consumes 3.35 µJ. Although
smaller input windows are 3× more energy efficient, the degradation in terms of accuracy
compared to bigger ones is too critical. Furthermore, compared to the cloud paradigm analysis
presented in Table 5.4, the energy consumption of the processing unit is negligible. With this
in mind, energy consumption is the only counter-effect of larger input dimensions, while other
factors like memory footprint and execution time are satisfied. Hence, we keep 5 s of input
dimensions to preserve the performance.

The node installed on the viaduct works with an output sampling rate of 100Hz; thus,
it generates 100 16-bit samples per second. Therefore, the node generates 200B per second,
leading to 720 kB per hour. To estimate this node’s energy consumption with the NB-IoT pro-
tocol, we use the estimations provided in [32], where diversity in the payload for each packet
affects the node’s power consumption. We decided to use a payload of 1300B for this ex-
periment. This selection of payload can send 650 (13002) samples per packet. Hence, we
need 554 packets to transmit 720 kB of hourly data. Notice that we send one hour of acquired
data all at the same time to leave NB-IoT in the power sleep mode (PSM) for most of the
time, reducing the total power consumption. However, storing an hour of data further adds a
cost of storage (≈ 1 J/h) to an off-chip memory (e.g., a micro SD card). Table 5.4 summa-
rizes the energy consumption regarding different sections of both the training and inference
parts. It shows that exploiting the full deployment of the cloud computing approach consumes
312.84 J/h, which is reduced to 63.50 J/h for the localized sensor deployment of our pipeline.
An approximate 5× drop in energy consumption for the latter case is due to the low traffic
load transmitted to the cloud.

On the other hand, if we bring all the computation to the node where the node only sends
the structure’s status to the cloud, we can reduce the traffic of the system to only 3B (i.e.,

51 Amirhossein Moallemi

CHAPTER 5. APPLIED SIGNAL PROCESSING

Scenario Network Traffic (B/H) NB-IoT E. [J] (1h) Node Comp. E. [J] (1h) Gathering E. [J] (1h)
Inference
Cloud Computation 780 kB 248.85 + Esleep 1.208 62.4
Sens. Inference + Cloud Train 3 B 0.7130 + Esleep 0.005 62.4
Sensor Computation 3B 0.7130 + Esleep 0.005 62.4
Train
Cloud Computation 780 kB 248.85 + Esleep 1.208 62.4
Sens. Inference + Cloud Train 780 kB 248.85 + Esleep 1.208 62.4
Sensor Computation 0 B Esleep 0.00162 62.4

Table 5.4: NB-IoT deployment cost for the scenarios of our pipeline
Esleep = 390 (mJ) is the energy consumption of the node in PSM.
Eacq = 52.596 (mJ) is the energy consumption to acquire 1 second of data

"OK" or "NOK"). Given the small number of generated data by the node, for this case, we
can tune the payload of the NB-IoT module to only 10B (the smallest possible number) for
each packet. Then, we only transmit one packet to the cloud, leading to less than 1 J energy
consumption. Although our solution reduces transmission costs to the cloud, allowing scalable
solutions for large-scale structures, it consumes a high energy rate at the node. Table 5.4 also
reports different sides of the transmission vs. node energy consumption trade-off for both
training and inference phases. The high traffic rate during inference (∼ 780 kB/hour) for a
complete cloud-based approach prohibits its utilization for large-scale SHM scenarios. On the
contrary, our solution reduces the traffic of only 10B/h to the cloud and is extendable to large-
scale systems. On the other hand, the node computation energy is always negligible compared
to the energy required to gather the acceleration data, thanks to i) the initial energy-filtering of
the windows and ii) the lightweight algorithm employed (PCA).

52 Amirhossein Moallemi

CHAPTER 5. APPLIED SIGNAL PROCESSING

5.3 System Identification
This section provides a novel data reduction technique for vibration-based systems by estimat-
ing the acquired signal’s power spectrum density (PSD) on a multi-core device at the extreme
edge to overcome memory limitation while optimizing the energy consumption of the in-situ
sensor node for the SHM system. Initially, we briefly discuss the case study of this work and
the benchmark used to validate the implementation of the multi-core device at the edge. Fur-
ther, we present the pipeline used to solve system identification models on resource-limited
devices, comparing its parallel and sequential types of implementations.

5.3.1 Case Study
Vibration data collected from a four-storey frame structure under white noise base excitation
with a sampling rate of 50Hz were used for testing and validating the implementation on the
target device, i.e., GAP9 Sec. 4.1.4. All the possible combinations of Np (model order of
the AR model) and Ns/1p (number of samples per each model order) values were explored by
varying the former quantity between 9 and 57 (step size equal to 8), whereas the latter was
swept between {25 , 30 , 35 }. The search space for Np has been selected to model a wide
range of target structures, considering that the number of parameters typically settles below a
couple of dozens, even for the most complicated systems [25]. Besides, the choice for Ns/1p,
which is responsible for the length of time series to be processed, has been selected to meet the
storage capabilities of the computing unit even in the most cumbersome configurations. We
show in Sec. 5.4.1 that the selected upper boundaries are large enough for robust modeling of
the PSD of the input signal, which is, however, large enough for robust modeling.

Output-only SysId models for vibration analysis

Two output-only SysId models have been implemented on the target platform since they are
among the most effective for processing ambient-excited vibration data: the Autoregressive
(AR) and Autoregressive with Moving Average (ARMA) [89]. Given an N -long discrete
time-series sampled at regular intervals kTs (k being the generic time index), the mathematical
formulation of the AR and ARMA models are described by Eq. 3.2 and Eq. 3.3, respectively
in Sec. 3.1.1. In these expressions, Np = p+ q + 1 is defined as the model order, while e[k] is
assumed equal to a zero–mean white noise Gaussian term with prescribed variance, serving as
a proxy of the unknown input force. The length N is conveniently selected proportionally to
Np according to N = NpNs/1p, Ns/1p being the number of time samples necessary to identify
one single model parameter accurately. Therefore, SysId aims at computing the Np model
parameters, a task that can be fulfilled by means of ordinary least-squares (OLS) applied to the
linear regression form of Eq. 3.2 and Eq. 3.3, which generically reads as

Y = ΨΘ (5.3)

with Y ∈ RN×1 and Ψ ∈ RN×Np being the measured vibration response and the regression
matrix, respectively1.

1For the definition of Ψ, see [123]

53 Amirhossein Moallemi

CHAPTER 5. APPLIED SIGNAL PROCESSING

Figure 5.12: Two different implementations of the QR decomposition deployed to solve the
System Identification model parameters. Panel A: The sequential implementation of QR de-
composition at the edge processing each chunk of data sequentially. Panel B: The parallel
implementation of QR decomposition at the edge processing multiple chunks of data simulta-
neously.

5.3.2 Methods: Sequential Vs. Parallel Tall Skinny QR
Factorizing the regression matrix via QR decomposition, i.e., Ψ = QR, is required to reduce
the phenomena of numerical instability and rounding effects of the OLS algorithm employed
in conventional SysId solutions. This yields the solution of (5.3) to be computed as

Θ = R−1QTY (5.4)

However, the memory requirements for standard QR decomposition make it inapplicable in
most extreme-edge computing domains. Thus, two approaches are studied in the literature to
tackle memory limitations at the edge. The State-of-the-Art approach [123] is deemed to solve
the problem sequentially since it targets a single-core device at the edge while we introduce
the parallelized version of the same approach in this chapter. In Fig. 5.12-A, the sequential
implementation of the QR is presented, which focuses on splitting the computation of the
input matrix Φ ∈ RN×Np into the subsequent decomposition of smaller size Φ̂ ∈ RNr×Np , with
Nr = N/Nc, Nc the number of partitions (chunks) the matrix is divided in. Sequential Tall-
Skinny QR, a procedure based on the iterative QR factorization of the vertical concatenation of
the previous-step R matrix and the next chunk [123].

Parallel tall-skinny QR for SysId

The parallel tall-skinny QR decomposition (P-TSQR), a different QR decomposition algo-
rithm suited for big data processing frameworks [13], is proposed in this work. P-TSQR has to
be preferred over other QR decomposition methods since its parallel implementation scheme
(doable for a multi-core processing framework) allows to significantly speed up the computa-
tion time over sequential (S-TSQR) variants, such as those exploited in [123] to accomplish
the same task.

Given a generic input matrix A ∈ RM×N (M ≫ N) to be decomposed and supposing that
Nc chunks (or cores) are available for parallelization, P-TSQR follows a binary tree imple-
mentation requiring L = log2Nc iterations. The latter is depicted in Fig. 5.12-B and can be
described as:

54 Amirhossein Moallemi

CHAPTER 5. APPLIED SIGNAL PROCESSING

Figure 5.13: Workflow of the proposed P-TSQR-based SysId approach proposed in this appli-
cation in which merely modal parameters are transmitted to the cloud replacing the raw data.

• stage 1: A is divided into Nc partitions of dimension Z = M/Nc. For each i-th
chunk Ai1 ∈ RZ×N , the QR decomposition is computed independently, leading to
Ai1 = Qi1Ri1, with Ri1 ∈ RN×N and Qi1 ∈ RZ×N the factorizing matrices.

• next stages: at generic stage l ∈ [2, . . . , L], the Ri1 matrices are vertically concatenated
two-by-two into Nc/l matrices Ail = [Ri(l−1) R(i+1)(l−1)] ∈ R2N×N which are then
decomposed by a new step of QR factorization.

The whole computation ends for l = L resulting in a single RL1 ∈ RN×N matrix, that is indeed
the R matrix that would have been obtained by directly decomposing the whole initial matrix
A, and a certain number of Qil matrices, that can reconstruct the original Q matrix.

Implementation comparison of S-TSQR & P-TSQR

The first noticeable difference between the STSQR and the PTSQR lies in the dimension of the
matrices to be decomposed: indeed, considering the same starting matrix Φ ∈ RN×Np divided
into Nc chunks, the STSQR computes a single QR decomposition of a Nr × Np matrix, then
Nc−1 factorizations of a 2Nr×Np matrices, for a total of Nc decompositions (reminding Nr ≫
Np). Instead, the PTSQR performs Nc factorizations of Nr×Np matrices in the first iteration,
while the other steps involve much smaller 2Np × Np matrices. Even though the number of
QR decompositions is more remarkable for the PTSQR, the difference in the dimension of the
matrices to be elaborated resulted in a considerable difference in the computation time. Further,
the structure of the TSQR algorithm enables parallel computing, making it a superior solution
for the new generation of edge devices that benefit from multi-core system architectures.

Another consideration regards the memory limitations for the entire computation. Parallel
and Sequential QR decompositions themselves do not tackle the memory obstacles of the QR

55 Amirhossein Moallemi

CHAPTER 5. APPLIED SIGNAL PROCESSING

factorization because all the intermediate Q matrices must be stored for the final parameter es-
timation; thus, the total Q matrix has the same size as the original Φ matrix. An additional step
at the end of each QR decomposition addresses the aforementioned memory issues. Specifi-
cally, the vector coefficients are updated at each decomposition of Q. This is feasible due to
QT and observing the particular structure of the Q matrix built on every PTSQR step, the com-
putation of QTY equals to multiply over time every individual Q to the respective section of
the vector coefficient. This avoids storing every Q matrix at each iteration nor computing the
total Q matrix.

Data Compression

One may wonder how the system identification methods can act as a data compression tech-
nique to mitigate the data traffic load to the cloud. The pipeline developed in this application
is shown in Fig. 5.13 indicates that only modal parameters, i.e., θ and γ are sent to the cloud
instead of the raw data. By doing so, system identification can reach up to 50 or even more
compression ratio. As it is shown in Sec. 5.4, 35 samples are sufficient to estimate one single
coefficient with the current PTSQR implementation efficiently. Thus, the length of the entire
signal is 35× NO. of parameters. The number of parameters is usually below 20 , even for
the most complicated geometries is dependent on the number of relevant frequencies in the
spectrum.

56 Amirhossein Moallemi

CHAPTER 5. APPLIED SIGNAL PROCESSING

5.4 Results: System Identification Parametric Methods
In this section, we focus on analyzing the results of the proposed pipeline in Fig. 5.13 on a
multi-core device, namely GAP9. We explore all combinations of Np and Ns/p values pre-
sented in Sec. 5.3.1 to find the optimum solution balancing the PSD estimation accuracy vs.
memory limitation trade-off at the multi-core source-constrained device at the edge. The first
section describes the PSD estimation accuracy of the GAP9 vs. the ground-truth results ob-
tained from the MATLAB running on the Intel core device using an evaluation metric called
Itakura Saito Spectral Divergence (ISD).

The second section provides a comparison between the SToA model, i.e., Sequential Tall
Skinny QR [123], and our implementation on GAP9, which parallelizes the QR showcasing
the feasibility of deploying such a system on the multi-core devices for the two output-only
models, namely AR and ARMA with the configurations presented in Sec. 5.3.1. We discuss
three main aspects of our implementation, i.e., execution time, memory footprint, and energy
consumption of the current solution, showing the optimizations compared to the SToA model.

5.4.1 Data Compression
The Itakura Saito Spectral Divergence (ISD) has been exploited to evaluate the level of spectral
superimposition between the Power Spectral Densities (PSD) obtained via built-in MATLAB
utilities (PSDMAT (f)) and the one estimated from the GAP9 coefficients (PSDGAP9(f)):

ISD =
1

N

N∑
f=1

[
PSDGAP9(f)

PSDMAT (f)
− log

(
PSDGAP9(f)

PSDMAT (f)

)
− 1

]
(5.5)

PSD curves can be easily computed by moving Eq. 3.2) and Eq. 3.3) in the frequency domain,
depending on the selected AR/ARMA model. ISD ranges between 0 and 1 , with ISD =0a
perfect match between the curves, and ISD = 1 indicates the worst case between the curves.
Fig. 5.14 highlights one of the cases ((Np, Ns/p) =(24 ,35)) of the end-to-end application to
estimate PSD of the input signal. Notice that the difference between the two cases is that the
modal parameters of the system identification model are computed on GAP9 and MATLAB.
Fig. 5.14 imposes that the two cases are identical to one another in identifying the main eigen
frequencies to detect damages due to the work presented in [123].

Further, the numerical values of ISD are reported in Table 5.5 supports the visual compar-
ison provided in Fig. 5.14. As can be observed, all the values are stably below 1.05 · 10-2 even
for the worst-performing configuration, proving the spectral accuracy of the deployed SysId
models. Additionally, it is worth observing that these results compare favorably with respect
to the benchmark solution in [123], in which a maximum ISD of 0.93 · 10-2 was scored when
working with the same time series.

57 Amirhossein Moallemi

CHAPTER 5. APPLIED SIGNAL PROCESSING

A. ARMA model B. AR model

Figure 5.14: PSDs of the AR/ARMA models in a particular configuration (Np = 25 Ns1p =
35), comparison between GAP9 and Matlab

5.4.2 Implementation
Execution Time

Minimizing the algorithmic latency is fundamental to deploying near-sensor streaming data
analysis. Accordingly, the execution time necessary to process one batch of SysId model pa-
rameters has been quantified by measuring the number of cycles Ncycles given the operating
frequency Fck of the processor, i.e., Exe. Time = Ncycles/Fck. In order to perform a fair com-
parison with the setup in [123], GAP9 was clocked at Fck = 110MHz. Results are summarized
in Table 5.5.

As expected, the highest computational time is associated with the maximum Np = 57 and
Ns/1p = 35 parameters, i.e., those yielding to the longest vector to be processed (corresponding
to 1995 time samples). More in detail, the largest AR and ARMA model requires 0.83ms and
1.65ms, respectively, which are almost 47× and 24× smaller than the time taken to acquire
the input signal, the latter amounting to 1995/50Hz ≈ 40 s. Consequently, the devised pipeline
proves to be compatible with the real-time execution of SysId at the sensor level.

More importantly, these outcomes significantly outperform the sequential SysId implemen-
tation in [123], characterized by worst-case execution times of 52.80 s and 99.12 s for the same
parameters. Evidence is proved in Fig. 5.15, which showcases the time gain when moving
from the sequential to the parallel implementation, expressed as the ratio between the execu-
tion time required when running in the STM32L5 board with respect to the one scored by the
GAP9 platform. Independently from the considered Ns/1p, the gain achieved by the parallel
solution follows a linear trend, moving from a minimum of 5.44× (Np = 9, Ns/1p = 25) to
a maximum of 60.11× (Np = 57, Ns/1p = 35) in case the ARMA model is considered. The
same speed-up ranges from 6.75× to 63.85× for the AR counterpart. Three main reasons
can motivate this significant improvement: i) hardware accelerators for matrix multiplication
embedded in GAP9, ii) switch of paradigm from the sequential implementation of QR decom-

58 Amirhossein Moallemi

CHAPTER 5. APPLIED SIGNAL PROCESSING

ISD [a.u.] E [mJ] Memory [KBytes] Execution time [ms]
Ns/1p Ns/1p Ns/1p Ns/1p

25 30 35 25 30 35 25 30 35 25 30 35

A
R

M
A

9 2.18e-05 3.21e-05 8.07e-06 0.74 0.82 0.75 18.44 22.46 26.88 15.80 17.50 16.00
17 5.33e-03 9.04e-04 2.43e-03 2.75 3.21 3.18 70.80 86.58 103.93 58.60 68.10 67.70
25 1.36e-03 2.39e-05 9.30e-03 6.94 8.29 8.77 157.19 192.46 231.25 147.00 176.00 186.00
33 5.29e-04 4.76e-03 1.13e-02 13.80 16.30 17.20 277.61 340.11 408.86 290.00 345.00 360.00
41 1.05e-02 8.79e-04 9.25e-03 25.90 28.40 30.40 432.07 529.53 636.75 545.00 600.00 635.00
49 2.93e-03 5.64e-03 6.42e-03 41.20 46.00 51.50 595.71 733.06 884.46 863.00 965.00 1070.00
57 9.8e-04 4.55e-03 3.03e-03 62.90 69.50 80.10 843.07 1033.65 1243.38 1300.00 1440.00 1650.00

A
R

9 2.68e-04 2.41e-04 3.70e-05 0.33 0.43 0.40 15.18 17.93 20.88 6.80 9.10 8.40
17 8.74e-04 9.20e-04 8.02e-04 1.26 1.50 1.70 57.74 68.44 79.93 26.80 31.80 36.10
25 8.23e-04 7.88e-04 7.12e-04 3.41 4.52 4.71 127.80 151.65 177.25 72.10 95.90 100.00
33 5.51e-04 5.42e-04 4.71e-04 7.03 8.28 8.76 225.36 267.55 312.86 148.00 175.00 183.00
41 13.40e-04 11.70e-04 1.16e-04 12.70 13.60 15.30 350.43 416.15 486.75 264.00 286.00 320.00
49 9.13e-04 1.63e-04 3.72e-04 20.80 24.30 25.60 502.99 597.44 698.93 434.00 508.00 535.00
57 1.35e-04 3.87e-04 3.87e-04 32.60 34.30 39.40 683.05 811.43 949.38 681.00 721.00 827.00

Table 5.5: Performance indicators for varying Np and Ns/1p when parallelizing the AR and
ARMA SysId models on the GAP9 platform.

position to the parallel version of it, i.e., moving from one core to 8 cores deployment, and
iii) in the case of sequential implementation, a large matrix should be segmented to multiple
chunks to execute a matrix multiplication, whereas the large L2 memory in GAP9 (compared
with a maximum of 256KBytes of RAM for the STM32L522 board) allows for the large
matrix multiplications to be executed without chunking.

Memory footprint

The precision of SysId routines increases when working with longer time series; however,
limitations have to be respected when dealing with memory-constrained devices. Hence, the
memory footprint of the models has been evaluated to find the maximum SysId configuration
(Np,Ns/1p) compatible with the available GAP9 storage capabilities. The memory column in
Table 5.5 specifies the space occupied in the L2 memory for each combination, showing that
the ARMA model utilizes, in general, nearly 1.3× more memory than the corresponding AR
model. This result is coherent with the inherently more complex nature of the ARMA rou-
tines [123]. Further, Table 5.5 reports that Np = 57 and Ns/1p = 35 put a tight constraint
for embedding the ARMA model in GAP9 when precision is set to float32, as this con-
figuration requires 1.2MBytes. Nevertheless, this hardware constraint is compatible with the
majority of civil and industrial facilities [25].

Energy Consumption

Low energy consumption plays a crucial role in a sustainable battery-based system in long-
term monitoring. Table 5.5 reports energy consumption for one run of the SysId deploying
AR and ARMA model. Noticeably, the energy demanded by ARMA is, on average, double
the energy consumed by AR due to the two-step nature of the adopted ARMA algorithm.
This is mainly due to the longer execution time of the ARMA models; however, notice that
since both models computationally use merely matrix multiplication, they yield similar power
consumption of 48.3mW.

59 Amirhossein Moallemi

CHAPTER 5. APPLIED SIGNAL PROCESSING

10 20 30 40 50
Np

10

20

30

40

50

60
G

ai
n

[a
.u

.]
ARMA

Ns/1p
25
30
35

10 20 30 40 50
Np

10

20

30

40

50

60

G
ai

n
[a

.u
.]

AR

Ns/1p
 25
 30
 35

Figure 5.15: Time gain achieved by moving from sequential to parallel implementation.

5.5 Vehicle Classification

5.5.1 Case Study
Bridge Structure

The case study is a roadway bridge in Italy, made of 18 spans, 2 layers, and 583m long. The
structure is a girder bridge in reinforced concrete with an isostatic statical scheme. All the
spans have the same length, equal to 20m, except for the first span, which is 10m long, and
the 10th span, which is 29.5m long.

SHM Framework

The data acquisition systems deployed for this work are divided into two sections: i) sensor
nodes and ii) Weight in Motion (WiM). Sensor nodes are massively installed over the bridge
to acquire acceleration data. In contrast, WiM captures metrics like Gross Weight, Velocity,
and number of vehicle axles. Fig. 5.16-A shows the block diagram scheme of how the WiM
system and viaduct are distanced from each other. Further, Fig. 5.16-B displays the front look
of the viaduct where only one lane of the bridge with the installed SHM system is shown.

Sensor Nodes

The SHM system consists of 282MEMS biaxial clinometers, 142MEMS triaxial accelerome-
ters, and three gateways that transmit the data to the cloud. Sensor data is collected by the
gateways and transmitted to the cloud through an LTE modem embedded in the gateway.
Fig. 5.16-C highlights the in-situ sensor node used to acquire data. The MEMS accelerom-
eters are connected via CAN-BUS to the gateway. They are three axes linear accelerometers

60 Amirhossein Moallemi

CHAPTER 5. APPLIED SIGNAL PROCESSING

Figure 5.16: The real-life case study used for vehicle classification application. Panel A: The
weight-in-motion (WiM) system stores several metrics, such as weight and velocity. Panel B:
Block diagram of the 5 spans of the viaduct under study. Panel C: SHM Framework for data
acquisition installed under the viaduct.

Day Time Interval [AM] Type of dataset

1 1:00 - 6:00

Trainning Set
2 1:00 - 4:00
3 1:00 - 4:30
4 1:00 - 8:00

5 1:00 - 4:30 Validation Set

Table 5.6: Time intervals of each day for the dataset.

with ±2 g full scale and 100Hz sample rate. Accelerometers are equally distributed between
the 18 spans. On each span, the accelerometers monitor the external two beams, and, for each
beam, three sensors were installed at the quarter, the third, and the midspan of the beam.

WiM

The WiM sensors are placed about 600m before the viaduct in a section without highway exits
or parking areas. The WiM measurement system is directly connected to a laptop to store the
acquired data. It can provide several features about the traffic on the bridge, including the lane
of the detected vehicle, its length, weight and speed, and the number of vehicle axles.

Dataset

The sensor node and WiM acquisition systems captured data for five days over the bridge;
hence, our dataset comprises four training days and one validation day. Table 5.7 reports
the time interval of each day in the dataset, which is mostly focused on the night since the
bridge experiences low traffic volume. Further, we could label the data from four bridge spans
in each time interval of Table 5.7. It should be noted that the quantity of samples differs
across different intervals due to potential lane changes or velocity reductions made by vehicles.

61 Amirhossein Moallemi

CHAPTER 5. APPLIED SIGNAL PROCESSING

As a result, vibrations may not be discernible from the accelerometer’s perspective and can
therefore have minimal impact. Considering the time interval of Table 5.7 for the four spans,
four scenarios are constructed. Each span yields a Ti and a Vi ∀i ∈ [1, 2, 3, 4], corresponding

training and validation set of each span, respectively. Further, we can define Ttot =
4∑

i=1

Ti,

and Vtot =
4∑

i=1

Vi, which include all the spans together for training and validation of this

work’s framework. In this context, we can define four different scenarios for the training and
validation set, which are:

• SC 1: a Ti as the training set and a Vi as the validation set

• SC 2: Ttot for the training set and Vi as the validation set.

• SC 3: Ttot for the training set and Vtot as the validation set.

• SC 4: Ttot for the training set and Vi as the validation set with redundancy in classifica-
tion.

62 Amirhossein Moallemi

CHAPTER 5. APPLIED SIGNAL PROCESSING

Figure 5.17: The proposed framework of this work: (A) Two data acquisition systems of our
system, namely, Accelerometer and Weight-In-Motion device. (B) Data pre-processing chain
applied to 2D raw vibration to extract a 1D trace showcases the raw data. P1 to P4 are the L2-
norm of the x-z plane, band pass Butterworth filter, overlap windowing, and energy smooth
trace, respectively. Finally, the smooth traces are applied to PCA to extract two thresholds
for vehicle identification. (C) Vehicle identification and feature extraction. (D) Labeling the
extracted features by coinciding with WIM data. (E) Training and (F) Different validation
studies.

5.5.2 Methodology: Vehicle Classification in SHM context
This part describes the main contribution of this section, which is a framework to classify
the vehicles based on their gross weights. Similar to [18], the raw vibration data are fed to
a preprocessing chain to extract a smooth trace that eases identifying vehicle passage over
the viaduct. Next, Principal Component Analysis (PCA) is applied to the smooth traces to
identify the vehicle’s passage. Furthermore, for an individual vehicle’s passage, five different
features, namely, Maximum Amplitude, Time duration, Standard Deviation (std), Mean, and
Line Length, are computed to represent each vehicle. Then, the labeling step is performed
to label the extracted features. WiM data are aligned with the extracted features to label the
data. Finally, K-means, Mean Shift, and GMMs are deployed to cluster data into three clus-
ters,i.e., Light, Heavy, and Super-heavy classes. Fig. 5.17 illustrates the main framework of
this work, distributing it in Data Acquisition (Sec. 5.5.1), Data preprocessing (Sec. 5.5.2),
Vehicle identification and Feature extraction (Sec. 5.5.2), Vehicle labeling (Sec. 5.5.2), and
vehicle classification (Sec. 5.5.2).

Pre-Processing

The preprocessing stage is split into two primary sections. The initial section receives a 2D
plane of raw vibration data, specifically along the x − z axis, and derives informative 1D
traces from it. These traces are coupled with Principal Component Analysis (PCA) to cal-
culate two thresholds for boxing a vehicle passage event. Subsequently, a vehicle detection
phase is performed utilizing the 1D traces joined with the two thresholds of the PCA analysis.
Fig. 5.18 showcases the different stages of the data preprocessing chain. In the following, we
will discuss each step of this chain.

L2 Normaliztion

To combine the information of two bridge axes, i.e., x and z axis, an L2 normalization is
performed to convert 2D information into 1D. L2 normalization can be extracted as follows:

| · |L2 =
√
(x− x)2 + (z − z)2

63 Amirhossein Moallemi

CHAPTER 5. APPLIED SIGNAL PROCESSING

Figure 5.18: The preprocessing chain applied to the raw data: A) Acceleration Raw data of z
axis on top and x axis at the bottom, B) Result of the L2 normalization of x−z axes, C) Result
of the 4th order filter applied to the normalized values at the former step. D) Extracted energy
values as the signature of each vehicle passage.

Where x and z stand for the mean of the axis during a reference period of 5 minutes free of
peaks. Fig. 5.18-B highlights the difference between the raw data and the L2 normalization
This step is more beneficial for low-energy vibration caused by light vehicles that are non-
trivial to identify.

4th order Butterworth filter

Time [Hour] 4 12 18 22
Frequency Mode [Hz] 4.34 4.07 4.27 4.55

Table 5.7: Frequency analysis results of 15 minutes in 4 different time zones of the day

Structures Oscillate in relatively low frequencies in the range of a few Hz. Therefore, a
Butterworth filter is applied to the normalized 2D data in order to separate low-frequency sig-
nals from high-frequency noise. Moreover, when it comes to a viaduct where the passage of
vehicles may intertwine, shortening the damping time is advantageous in detecting all peaks
and preventing any overlap among vehicle passages. This measure proves critical for efficient
traffic flow management in such structures. Consequently, a 4th-order Butterworth filter is em-
ployed to maintain the desired spectral range in the viaduct’s scenario,i.e., 0− 15Hz. Finally,
Table 5.7 reports the spectrum analysis over several vehicle passages over the day, indicating
that the natural frequency of the viaduct is placed approximately at 4Hz.

Energy Extraction

The energy of the filtered vibrations can be computed as follows:

E =
100∑
t=0

S2
i

Where Si is overlapped shifting windows of 1-second data, notice that we take overlapping
windows to avoid data loss. [18] shows that a duration of 1 second is sufficient to ensure the
detection of a vehicle vibration trigger signal.

64 Amirhossein Moallemi

CHAPTER 5. APPLIED SIGNAL PROCESSING

Energy Smoothing

Finally, we apply exponential smoothing to the computed energies. It aids in decreasing the
oscillation amplitude damping, considering the history of the signal. Consider that energetic
windows corresponding to the traces with larger amplitude could cause multiple informative
vehicle passages to be missed. To mitigate this variability, an energy smoothing technique is
employed. This energy filtering can be mathematically formulated as

E[t] = α ∗ E[t] + (1− α) ∗ E[t− 1]

with E the energy and α the smoothing factor. In this work, we set α = 0.7. Finally, panel D
in Fig. 5.18 depicts the final 1-D traces deployed for vehicle identification of our work.

Energy Threshold

According to Fig. 5.18, each peak’s damping times differ; hence, it is necessary to customize
the identification process for individual vehicle vibration traces. To achieve this objective,
the algorithm described in Sec. 5.5.2 has been developed by incorporating two distinct energy
levels: a high threshold for initiating and a low threshold for terminating a vehicle passage.
To discriminate between an informative window, i.e., vehicle passage, and a non-informative
one, i.e., white noise, Alg. 1 is a promising solution. Hence, such a solution is deployed to
determine the high threshold value for the vehicle identification algorithm, which is 2.56E− 7
in our case study. In a nutshell, the energy level is computed via Principal Component Analysis
(PCA). Alg. 1 presents the algorithm’s pseudocode, where the reconstruction error, namely
RSNR2, determines the breaking point of the algorithm. Initially, an infinitesimal threshold
is set for window cancellation, which is ascended at each iteration. Thus, it remains more
informative at each iteration and has fewer non-informative windows. According to [19],
RSNR = 16dB is sufficient to reconstruct the original signal’s structure. The high threshold
computed for our case is 2.56E − 7. Further, the low threshold is empirically chosen as 0.1
of the high threshold coinciding with the noise level of the accelerometer sensors deployed for
acquisition.

Vehicle Identification & Feature Extraction

Initially, this module details the approach for defining a bounding box around each vehicle
and subsequently presents the statistically extracted features for the classification of vehicles.
These extracted characteristics are established attributes in time-series data classification do-
mains such as EEG [5] and vibration signals preprocessing [18].

Vehicle Identification

The literature [18] suggests using only one threshold for triggering and ending the vehicle
passage event; however, we decided to deploy two thresholds to capture the whole passage
time of the vehicle. Further, given the unique structure of the viaduct understudy, having one
threshold would lead to very small windows for light vehicle passage, which would cause a loss
of information for the given event. While the high threshold initiates the vehicle passage event,
the low threshold is set at the noise level ending a vehicle passage event. Empirically, it is
determined as an order of magnitude less than the high threshold. This ensures that any energy

2Reconstructed Signal to Noise Ratio = 20 log10

(
∥x∥2

∥x−x̂∥2

)

65 Amirhossein Moallemi

CHAPTER 5. APPLIED SIGNAL PROCESSING

Figure 5.19: From raw data to the boxed version of each vehicle passage. Panel A) 15 minutes
of raw data B) Boxed vehicles.

level below this threshold is considered noise and not part of a vehicle passage event. Finally,
Fig. 5.18-D showcases the result of vehicle boxing for 45 minutes of data. As mentioned,
since the damping time of a vehicle passage event is more than the duration of one window,
i.e., 1 second, we define two thresholds to box a vehicle passage. The high threshold is set for
initiating, and the low threshold is for terminating a vehicle passage event. Sec. 5.5.2 describes
the algorithm to compute the high threshold.

Let us define an informative window of a vehicle passage as V and a non-informative
window as W . Thus, two consecutive windows can be V −W , W −W , W − V , and V − V .
Initially, the tracking flag is set high, indicating we are waiting to trigger a vehicle passage
event. Monitoring two consecutive windows of 1 second, whenever the algorithm experiences
a W−V case, it considers it a vehicle passage and sets the flag to low to search for the stopping
point. Similar to the triggering event, when we have a consecutive sequence of V −W , the
algorithm sets it as the end point of the vehicle passage. This algorithm is repeated for the
whole dataset to extract all the vehicle passages. Fig. 5.19 shows 15 minutes of the raw data
indicating the transition from the raw vibration to energy-smooth signals, where each vehicle
passage event is boxed. Finally, when the borders of the vehicle are defined, we extract the
features described in Sec. 5.5.2 for each vehicle passage event.

Feature Extraction

The algorithm described in Sec. 5.5.2 results in different windows of time; thus, to charac-
terize all vehicles with the same basis, we extracted features vastly deployed in the litera-
ture [cite a few]. Four macro statistical features for each vehicle passage event are consid-
ered: Maximum Amplitude, Mean, Standard Deviation, and Line Length [41]. Let’s consider
Xk = [x0, x1, ..., xN−1] a time series array corresponding to the vehicle event k, where N is
the number of samples in the box of the detected vehicle. The extracted features can be defined
as follows:

1. Maximum Amplitude = max(Xk)

2. Time = T@(N − 1)− T@(0)

3. Mean = 1
N
∗
∑N−1

i=0 xi

4. Standard Deviation =
√∑N−1

i=0
(xi−µ)2

N

66 Amirhossein Moallemi

CHAPTER 5. APPLIED SIGNAL PROCESSING

5. Line Length = 1
N
∗
∑N−1

i=1 |xi − xi−1|

In Sec. 5.6.1, we show that only four features are useful for vehicle classification with our
dataset.

Data Labelling

To assess the performance of vibration-based systems and obtain the accuracy of classifying a
vehicle, vision-based systems are deployed at the field to label each vehicle passage. However,
data extracted from vision-based systems help allocate the vehicle type, leaving out the gross
weight and velocity of an individual vehicle passage, which are essential features of bridge
integrity. A data labeling step is performed to establish a link between the extracted features
and the gross weights of a given vehicle to assign WiM metrics to extracted features from the
SHM system.

We employed timestamps generated from the WiM and SHM systems to establish a link
between the two sets of data. Given that the WiM system is positioned within 600 meters of
the bridge, we deemed it appropriate to consider a time interval of 2 minutes between vehicle
event times and corresponding WiM data. Due to the bridge’s massive weight, certain light
vehicles (less than 2 tons) were only captured by the WiM system rather than accelerometers.
Consequently, more vehicle passage events are recorded by the former compared to the latter.
In each instance of labeling vehicle events in time slots, we connected heavy vehicles with
passages identified by accelerometers. Furthermore, when there was more than one occurrence
per minute, k number of heavy cars were assigned sequentially with k different vehicle events
as captured through accelerometers’ readings. Sec. 5.6.1 details the result of the link between
the WiM and SHM system features. Alg. 2 showcases the labeling algorithm’s pseudocode,
where the number of the captured vehicles by the SHM system, i.e., accelerometer, determines
the number of the vehicles we are linking between the accelerometers and WiM system’s
metrics.

Algorithm 2 Data Labelling
1: Input: DataWiM , DataAcc.

2: for ts ∈ Unique Ts of DataAcc. do
3: Acclts ← all vehicles ∈ ts of DataAcc.

4: WiMts ← all vehicles ∈ [ts-2, ts] of DataWiM

5: AcclNum ← Number of Vehicles in Acclts
6: VehicleWiM ← Append(heaviest ∈Wimts)×AcclNum

7: DataWiM ← Remove(VehicleWiM ∈ DataWiM)
8: end for
9: Output: VehicleWiM , DataAcc.

Vehicle Classification

The features obtained from the accelerometer sensors are utilized in unsupervised classification
algorithms to classify vehicles into three categories. The classification process is based on a 4D
space consisting of the aforementioned extracted features: Maximum Amplitude, Mean, Std,
and Line Length for each vehicle passage event. In this study, we have categorized vehicles
into three macro clusters according to their gross weight: light class (less than 10 tons), heavy
class (between 10 to 30 tons), and super-heavy class (above 30 tons). This categorization has

67 Amirhossein Moallemi

CHAPTER 5. APPLIED SIGNAL PROCESSING

Figure 5.20: Distribution of clusters for a portion of SHM dataset showing 4micro classes
in light blue, dark blue, green, and red and thresholds to classify vehicles into three macro
classes, i.e., Light, heavy, and super heavy.

been established due to the bridge maintenance constraint that requires alarming in case of
massive dynamic weight over the bridge, which may result in its collapse or severe damage.
The classification is done in two steps. The first is unsupervised classification, followed by
a weight assigned to each vehicle passage. In the phase of unsupervised classification, three
methods (K-means, mean shift, and GMMs) are utilized to cluster vehicles, as detailed in
Sec. 3.2. K-means and GMMs necessitate a predetermined number of clusters for grouping
input data. Conversely, the mean shift algorithm identifies the required number of clusters
based on its kernel size. The intuitive choice of classes to start for K-means and GMMs is
three because a vehicle passage would be in one of three categories: light, heavy, and super-
heavy. However, we explore a range between 3-8 microclusters to obtain an optimal number
for K-means and GMMs while keeping macro classes limited up to 3 in our final classifier.
Meanwhile, we evaluate various neighborhood bandwidth sizes [0.1−0.25] through the mean
shift algorithm, automatically determining optimal numbers for clusters by adjusting kernel
size accordingly. For the weight assignment stage, we deploy statistical features of training
sets to decide the cluster of each class. Fig. 5.20 shows the pdf of the microclusters in the
training set with 6 centroids and the macro clusters’ boundaries. In order to come back to
3 macro clusters from the higher micro clusters, we considered the statistical metrics of the
training set. If the mean of the Gross weight of a vehicle in a micro class fits within the
boundary of a macro class,i.e., 10 tons, 30 tons, and above 30 tons, we consider that micro
class as light, heavy, or super-heavy, respectively.

5.6 Results: Vehicle Classifications
This section is dedicated to validating the best features, classifiers, and labeling metrics for
clustering vehicles into the three classes with the pipeline presented in Sec. 5.5.2.

In the first section, we justify the choices for the extracted features in the time domain to
select a set of statistical features for the classification problem. Next, we report the result of the
labeling procedure described in Sec. 5.5.2. Then, we explore different vehicle classification
methods to find our framework’s optimum configuration (Fig. 5.17).

In the second part of this chapter, we examine the hyperparameters of the unsupervised

68 Amirhossein Moallemi

CHAPTER 5. APPLIED SIGNAL PROCESSING

vehicle classification pipeline, namely, the number of classification clusters, exploring differ-
ent spans and the final classification described in Sec. 5.5.2 to explore all the aspects of the
system.

5.6.1 Feature Extraction & Data Labelling

Figure 5.21: Four different vehicle identicator metrics, namely Grossweight (panel A), Veloc-
ity (panel B), Momentum (panel C), and Kinetic energy(panel D) vs. the maximum amplitude
of each vehicle event. In green the light class, in orange the heavy class, and in red super heavy
class vehicles.

The standard European laws for vehicle classification are based on the number of axles of
a vehicle, grouping them into 13 different classes. However, these laws do not consider the
gross weight and velocity of a vehicle passage, which could affect the viaduct infrastructure’s
safety, maintenance, and durability. Considering the WiM dataset, Fig. 5.22 depicts the statis-
tics of each class in terms of gross weight, which is a critical metric for bridge dynamic weight
load. Fig. 5.22 presents that classes with more axles are not necessarily the heaviest and most
energetic vehicles to imperil the viaduct’s integrity. Thus, a new metric must be deployed to
classify vehicles as harmful or harmless to the bridge. Fig. 5.21 showcases one of the extracted
features, namely the maximum amplitude of each vehicle passage for four different energetic
metrics, i.e., Gross weight, Velocity, Momentum, and Kinetic energy, correlating the extracted
feature to each metric over the second span of the bridge. For instance, lighter vehicles tend to
have lower maximum amplitudes, while heavier ones possess more energy, resulting in higher
maximum amplitudes. Fig. 5.21 shows that gross weight and maximum amplitude increase
together as the light vehicles have less maximum amplitude and heavier vehicles contain more
energy; hence, they tend to have higher maximum amplitude. In contrast, an examination
of velocity reveals that the maximum amplitude of vehicles exploring the whole space and
clustering is not feasible for vehicle classification in terms of the harmfulness to bridge infras-
tructure. Further, an evident result of velocity is that vehicles with higher velocities are the
light ones with a small maximum amplitude. Further, Momentum and Kinetic energy mimic
the Gross weight metric, indicating a similar or less interesting correlation to the maximum
amplitude; thus, we deploy the gross weight of each vehicle to label them, which is the critical
energetic metric to cluster each vehicle passage. As a result, in this application, we deploy
gross weight as a new metric instead of the number of axles to monitor the dynamic motion
over the bridge.

As described in Sec. 5.5, we extracted 5 statistical features for an individual vehicle trace.
Fig. 5.23 shows a positive correlation between the four features, i.e., Maximum Amplitude,

69 Amirhossein Moallemi

CHAPTER 5. APPLIED SIGNAL PROCESSING

Figure 5.22: Gross weight distribution of EU - laws

Figure 5.23: Distribution of the extracted features over the gross weight. In green, the light
class; in orange, the heavy class; and in red, super heavy class vehicles.

Mean, standard deviation, and line length, with the gross weight. However, the time duration
of each vehicle passage does not contain any information in distinguishing vehicles as light
vehicles could cause damping for a long period and gradually reach the noise level of the
sensors; hence, we discard the time duration for the unsupervised classification.

70 Amirhossein Moallemi

CHAPTER 5. APPLIED SIGNAL PROCESSING

(a) Classification accuracy of the three un-
supervised clustering models over different
spans of the viaduct.

(b) Effect of modifying mean-shift kernel size
in clustering.

Figure 5.24: Classification Accuracy for the two scenarios of the unsupervised classification
of vehicles

5.6.2 Algorithm Exploration
We have investigated three unsupervised clustering methods for categorizing vehicles into
three distinct classes: light, heavy, and super-heavy. Deploying scenario 01 in Sec. 5.5.1 with
all the datasets’ spans, the clustering results show promising classification based on the ex-
tracted features. Fig. 5.24a shows that classification accuracy differs from 50% worse case to
84.37%, the best case considering only 3 clusters. Further, the mean shift method surpasses the
other classification approaches regarding classification accuracy with 84.37% of classification
accuracy. Furthermore, the mean shift algorithm exhibits superior robustness and adaptability
to diverse data distributions compared to other methods. Notice that while the span moves from
02 to 05, there is a fluctuation of up to 9% for the mean shift, whereas other classification al-
gorithms display variations ranging between 10% to 35%, changing the training set from one
span to another. Finally, Fig. 5.24a depicts that GMMs share similarities with mean shift and
K-means, making them highly comparable in classification accuracy. One can achieve similar
results to either of the aforementioned methods by simply altering the variance parameter.

In conclusion, the mean shift method is preferable for analyzing and clustering vehicles
based on their impact on bridge infrastructure.

Mean Shift Kernel Sweep

As mentioned, we labeled four spans of the bridge in our dataset. Further, since the mean shift
is the promising method for classifying the vehicles, we delved into mean shift by performing
an exploration over the kernel size of the mean shift, sweeping it from 0.1 to 0.25 According to
Fig. 5.24b, the kernel size of 0.1 is the best size for the mean shift algorithm varying the spans
of the bridge with a classification accuracy of above 80%. However, span number 2 shows
a noticeable performance with a kernel size of 0.15 , resulting in a classification accuracy of
96%, which is due to the training and validation set distributions of that span. Further, the
hyperparameter exploration over the mean-shift classifier indicates the sensitivity of each span
and chosen parameters in the pipeline; hence, deploying a robust classification requires an
in-depth knowledge of the structure.

71 Amirhossein Moallemi

CHAPTER 5. APPLIED SIGNAL PROCESSING

Figure 5.25: Result of varying clusters of clustering methods.

5.6.3 Hyperparameter Exploration
In this section, we examine the hyperparameters of the unsupervised vehicle classification
pipeline, namely, the number of classification clusters, exploring different spans and the final
classification described in Sec. 5.5.2 to explore all the aspects of the system.

Micro-Clustering

To achieve better classification accuracy, we increased the number of clusters for methods like
k-means clustering and GMMs with the intuition of enhancing the trained model. Additionally,
exploring different bandwidths for the mean-shift algorithm could also contribute to improv-
ing classification accuracy. Thus, this section explored a range of clusters from 3 to 8while
keeping the final classification classes as 3. Note that we are still considering scenario 1 for
training and validating our methods while increasing each clustering method’s clusters.

Fig. 5.25 presents the impact of increasing the number of microclusters on classification
accuracy, highlighting a significant improvement in most cases with an increase of up to 12%.
Nonetheless, it is noteworthy that this relationship is not monotonic due to variations observed
while we increase the number of clusters. For instance, mean-shift reaches an accuracy of 96%
with a bandwidth of 0.15 for span 2 and then reaches the best accuracy with a bandwidth of
0.1 for the other spans with an accuracy of 80.64%, 81.25%, and 82.35%, respectively. Fur-
ther, considering K-means clustering, the accuracy reaches its highest value with 3 clusters for
span 2; however, this method behaves better as we increase the number of clusters in the other
spans. The reason for these fluctuations is our limited dataset and the different distribution of
the data during the different spans, which might not always produce the most accurate clas-
sification with increasing clusters. Considering GMMs, having 8 clusters leads to the highest
classification accuracy across the majority of the spans. In conclusion, it is essential to note
that increasing the number of clusters may not always result in improved classification accu-
racy. Therefore, it is essential to carefully consider the optimal number of clusters for a given
dataset before applying any clustering algorithm.

72 Amirhossein Moallemi

CHAPTER 5. APPLIED SIGNAL PROCESSING

(a) Span Exploration - SC01 (b) Span Exploration - SC02

Figure 5.26: Span Exploration Results in the two scenarios described in Sec. 5.5.1

Span exploration

As described in Sec. 5.5.2 and Sec. 5.5.1, we labeled four bridge spans to make the dataset
for vehicle classification. Further, by deploying these spans, we end up having four scenarios
for training and validating the proposed pipeline. Thus, we described different training and
validation scenarios with these four spans.

Fig. 5.26b highlights the result of scenarios 2 and Table 5.8 reports for scenario 3 described
in Sec. 5.5.1, where we combine all the spans together to define the training set. Notice that
we perform such an idea to increase training samples in the given 4D space with the intuition
to enhance the trained model. Considering Fig. 5.26, we notice that increasing the training
dataset size impacts the k-means progressively, where we observe an increase in span 03 and
04 by 3% and 7%, respectively, whereas it causes a decrease of 6% for span 02, considering
the best number of micro-clusters for each model. Despite K-means, an increase in training
set size is ineffective for the mean shift algorithm, where we face a drop of accuracy in spans
02 and 04 by 6% and 3%, respectively, while the classification accuracy faces an insignificant
alteration for the other two spans.

Further, Table 5.8, which reports the result of merging the test sets together to form a
unique test set, and it can be seen that the models lose their robustness to larger test sets with
different samples where 7.76% and 5.45% drop in accuracy observed by k-means and mean-
shift, respectively. In conclusion, while increasing the training set could benefit training a

K - Means NO. micro Clusters SC 03 SC 04 Equal SC 04 Weighted
3 77.51 75.00 79.16
4 74.41 83.33 75
5 76.74 79.16 75
6 75.96 75 70.83
7 75.19 75 70.83
8 75.19 75 70.83

Mean Shift NO. Quantile
0.25 77.51 79.16 79.16
0.2 79.84 83.33 83.33
0.15 78.29 91.66 91.66
0.1 78.29 87.5 87.5

Table 5.8: Comparison between k-means and mean-shift for considering all the spans together
for the training set while sweeping over different micro-clusters

73 Amirhossein Moallemi

CHAPTER 5. APPLIED SIGNAL PROCESSING

Scenario 02 Spans K-Means Mean-Shift
02 75.00 90.62
03 80.64 80.64
04 78.12 78.12
05 85.29 85.29

Scenario 03 - 77.53 79.84
Scenario 04 Voting Paradigm

Equal 83.33 91.66
Weighted 79.16 91.66

Table 5.9: Comparison between the best case Classification Accuracy for different scenarios

robust model, considering an individual node to classify a vehicle passage is more promising
than taking a cluster of nodes to classify a vehicle passage.

Redundant Vs. Non-redundant clustering

To combine the outcome of each span for the classification of a vehicle, we adopted two
voting paradigms, namely equal weight and weighted. We described in Sec. 5.6.3 that although
a larger training set affects the robustness of the trained model, a combination of spans as
a unique classifier drops the classification accuracy. Thus, we decided to explore another
direction in utilizing several sensor outcomes to make a unique decision. In the equal-weighted
scenario, all the spans hold the same weight. i.e., 25%, for the final decision of the vehicle’s
class. Regarding an equal vote for a vehicle passage, we refer to the decision of span 02 since it
is the closest span to our golden model, i.e., the WIM system. In the weighted voting paradigm,
we give more merit to the spans closer to the golden model, i.e., span 02, by assigning it
a weight of 50%, while the remaining spans have 25%, 12.5%, and 12.5%, respectively,
for the final decision of a vehicle’s class. Notice that this allocation of weights is based on
the assumption that spans closer to the golden model would have a higher level of accuracy.
However, when there is no WIM present in the scenario, weight can be assigned by taking into
account other relevant factors, such as the precision of individual sensors or the distance of
each span from the entrance/exit of the roadway. Table 5.8 displays the classification accuracy
of the two voting paradigms and training and validation scenario number 4. Comparing the two
voting paradigms, equal voting surpasses weighted one for the k-means algorithm by 4.17%,
while the voting topology does not affect the mean shift. Further, Considering the best cases of
scenarios 3 and 4, where we train and validate on spans together with different paradigms, we
observe that voting paradigms effectively increase the classification accuracy by 5.80% and
1.03% for k-means and mean shift, respectively.

Despite that, varying the perspective toward a cluster of spans to classify a vehicle passage
improves the classification accuracy, comparing the results of single node classification, i.e.,
scenario 2, and a cluster of nodes classification. i.e., scenarios 3 and 4, Table 5.9 reports
that no absolute approach surpasses the other one. However, considering K-means, we face
that single-node classification excels by 1.96%, whereas in mean-shift, the story is reversed,
and voting paradigms report better classification accuracy with a minimal increase of 1.00%
compared to the single-node evaluation. Thus, scenarios 02 and 04 are selected based on the
application and the available dataset.

74 Amirhossein Moallemi

CHAPTER

6

CONCLUSION

This work presented a paradigm shift from cloud to edge computing for SHM systems on real-
life case studies utilizing homogenous big data sets featuring MEMS-based accelerations data
acquired from long-span viaducts.

In the node design phase, we provided an experimental evaluation of analog and digital
MEMS accelerometers for structural health monitoring applications to justify replacing the
traditional costly piezoelectric accelerometer with the latest generation of MEMS accelerom-
eter. We discussed the two criteria by which sensors are evaluated, which are the time and
frequency domain. Noise analysis of the sensors shows that the piezoelectric sensor is the
less noisy device, with only 10.28µg/

√
(Hz). While in-lab experiments show that MEMS

low-cost sensors mimic piezo sensors for modal frequency analysis, we show in the real-life
experiment that MEMS-based accelerations diverge maximum by 1.6% error.

In the first signal processing application, we proposed an efficient damage detection so-
lution at the edge, simultaneously reducing network traffic and energy consumption while
anomaly detection accuracy is not adversely altered compared to cloud-based systems. This
application initially discussed a new damage detection pipeline comprising a pre-processing
step, an anomaly detection algorithm, and a post-processing step. Comparing PCA and two
different autoencoders, we show that PCA outperforms the other two methods by approxi-
mately 30% and 48% on the SHM dataset collected on a real-standing Italian bridge. We
show that by tuning the hyperparameters of the proposed pipeline, we further improve the ac-
curacy in detecting anomalies by 20%. Additionally, we demonstrate embedding our tuned
pipeline on a tiny low-power device, moving the damage detection to the edge of the network.
By doing so, we reduce the data traffic by a factor of ≈ 8 · 105×, from 780KBytes/hour to
10Bytes/hour, compared to a cloud-based anomaly detection solution. Further, we reduce the
power computation for the node by 5×.

Secondly, we studied an unconventional data reduction algorithm, namely system identi-
fication, to reduce its latency and energy consumption by moving from sequential to parallel
implementation. This application presented a parallelized implementation of a vibration com-
pression algorithm based on system identification, which is necessary to decrease the volume

75

CHAPTER 6. CONCLUSION

of data transmitted to the cloud, using an ultra-low-power multi-core platform, namely GAP9,
as the computing platform. We showed that by shifting the paradigm from sequential to par-
allel implementation, an improvement up to ≈ 60× could be attained in terms of execution
time, which is fundamental to avoid the long latency of the sequential version and enables
the in-field deployment of the SysId algorithm for streaming vibration data processing. Fur-
ther, we showed that the most power-hungry deployment of the model consumes 48.3mW
per each run of the algorithm, making it suitable for long-term self-sustainable battery-based
monitoring systems.

Lastly, we proposed an unsupervised clustering framework to classify vehicles into three
classes of light, heavy, and super heavy deploying accelerometer data acquired from an 18-
span viaduct in the North of Italy. This application discussed a new vehicle classification
pipeline divided into a pre-processing step, a feature extraction step, and an unsupervised
classification step. we compared 3 state-of-the-art algorithms named K-means, mean shift, and
GMMs for clustering the vehicles, showing that mean shift is more robust along all the spans
with a classification accuracy over 77% in the worst case and 84.37% in the best-case scenario.
Moreover, we performed a hyperparameter exploration over the radius of the mean shift kernel,
and we showed that the best result is with 0.15 cases since it reaches a classification accuracy
of 96.87% with span number 2. Further, in a more detailed comparison, we compared the
performance of the K-means, mean shift, and GMMs algorithm varying their hyperparameters,
such as the number of clusters and the bandwidth, showing that the mean shift increases its
performances from 6% up to 10%.

76 Amirhossein Moallemi

BIBLIOGRAPHY

[1] O. Abdeljaber, O. Avci, S. Kiranyaz, M. Gabbouj, and D. J. Inman. Real-time vibration-
based structural damage detection using one-dimensional convolutional neural net-
works. Journal of Sound and Vibration, 388:154–170, 2017.

[2] M. Abdulkarem, K. Samsudin, F. Z. Rokhani, and M. F. A Rasid. Wireless sensor
network for structural health monitoring: A contemporary review of technologies, chal-
lenges, and future direction. Structural Health Monitoring, 19(3):693–735, 2020.

[3] C. Acar and A. M. Shkel. Experimental evaluation and comparative analysis of com-
mercial variable-capacitance mems accelerometers. Journal of micromechanics and
microengineering, 13(5):634, 2003.

[4] E. Akintunde, S. E. Azam, A. Rageh, and D. Linzell. Full scale bridge damage detection
using sparse sensor networks, principal component analysis, and novelty detection. In
Proceedings, volume 42. MDPI, 2019.

[5] A. S. Al-Fahoum and A. A. Al-Fraihat. Methods of eeg signal features extraction us-
ing linear analysis in frequency and time-frequency domains. International Scholarly
Research Notices, 2014, 2014.

[6] A. Alamri, W. S. Ansari, M. M. Hassan, M. S. Hossain, A. Alelaiwi, and M. A. Hossain.
A survey on sensor-cloud: architecture, applications, and approaches. International
Journal of Distributed Sensor Networks, 9(2):917923, 2013.

[7] A. Albarbar, A. Badri, J. K. Sinha, and A. Starr. Performance evaluation of mems
accelerometers. Measurement, 42(5):790–795, 2009.

[8] A. Albarbar, A. Badri, J. K. Sinha, and A. Starr. Performance evaluation of mems
accelerometers. Measurement, 2009.

[9] S. S. Arslan, R. Jurdak, J. Jelitto, and B. Krishnamachari. Advancements in distributed
ledger technology for internet of things, 2020.

77

BIBLIOGRAPHY

[10] D. Arthur and S. Vassilvitskii. K-means++: The advantages of careful seed-
ing. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’07, page 1027–1035, USA, 2007. Society for Industrial and Ap-
plied Mathematics.

[11] O. Avci, O. Abdeljaber, S. Kiranyaz, B. Boashash, H. Sodano, and D. J. Inman. Effi-
ciency validation of one dimensional convolutional neural networks for structural dam-
age detection using a shm benchmark data. In Proc. 25th Int. Conf. Sound Vib.(ICSV),
pages 4600–4607, 2018.

[12] M. R. Azim and M. Gül. Data-driven damage identification technique for steel truss
railroad bridges utilizing principal component analysis of strain response. Structure and
Infrastructure Engineering, 17(8):1019–1035, 2021.

[13] G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H. D. Nguyen, and E. Solomonik. Re-
constructing householder vectors from tall-skinny qr. In 2014 IEEE 28th International
Parallel and Distributed Processing Symposium, pages 1159–1170. IEEE, 2014.

[14] M. Ballerini, T. Polonelli, D. Brunelli, M. Magno, and L. Benini. Nb-iot versus lorawan:
An experimental evaluation for industrial applications. IEEE Transactions on Industrial
Informatics, 16(12):7802–7811, 2020.

[15] F. Barchi, L. Zanatta, E. Parisi, A. Burrello, D. Brunelli, A. Bartolini, and A. Acquaviva.
Spiking neural network-based near-sensor computing for damage detection in structural
health monitoring. Future Internet, 2021.

[16] C. Bedon, E. Bergamo, M. Izzi, and S. Noè. Prototyping and validation of mems ac-
celerometers for structural health monitoring—the case study of the pietratagliata cable-
stayed bridge. Journal of Sensor and Actuator Networks, 7(3):30, 2018.

[17] C. M. Bishop and N. M. Nasrabadi. Pattern recognition and machine learning, volume 4.
Springer, 2006.

[18] A. Burrello, D. Brunelli, M. Malavisi, and L. Benini. Enhancing structural health
monitoring with vehicle identification and tracking. In 2020 IEEE International
Instrumentation and Measurement Technology Conference (I2MTC), pages 1–6. IEEE,
2020.

[19] A. Burrello, A. Marchioni, D. Brunelli, S. Benatti, M. Mangia, and L. Benini. Embed-
ded streaming principal components analysis for network load reduction in structural
health monitoring. IEEE Internet of Things journal, 8(6):4433–4447, 2020.

[20] A. Burrello, G. Zara, L. Benini, D. Brunelli, E. Macii, M. Poncino, and D. J. Pagliari.
Traffic load estimation from structural health monitoring sensors using supervised learn-
ing. Sustainable Computing: Informatics and Systems, 35:100704, 2022.

[21] E. P. Carden and J. M. Brownjohn. Arma modelled time-series classification for
structural health monitoring of civil infrastructure. Mechanical systems and signal
processing, 22(2):295–314, 2008.

[22] G. Carvalho, B. Cabral, V. Pereira, and J. Bernardino. Edge computing: current trends,
research challenges and future directions. Computing, 103:993–1023, 2021.

78 Amirhossein Moallemi

BIBLIOGRAPHY

[23] P. E. E. R. Center. Home page, 1998.

[24] H.-F. Chang and T.-K. Lin. Real-time structural health monitoring system using internet
of things and cloud computing. arXiv preprint arXiv:1901.00670, 2019.

[25] E. N. Chatzi and C. Papadimitriou. Identification methods for structural health
monitoring, volume 567. Springer, 2016.

[26] Q. Chen, J. Cao, and Y. Xia. Physics-enhanced pca for data compression in edge de-
vices. IEEE Transactions on Green Communications and Networking, 6(3):1624–1634,
2022.

[27] Y. Cheng. Mean shift, mode seeking, and clustering. IEEE transactions on pattern
analysis and machine intelligence, 17(8):790–799, 1995.

[28] P. Croce. Impact of road traffic tendency in europe on fatigue assessment of bridges.
Applied Sciences, 10(4):1389, 2020.

[29] I. Crossbow Technology. MICAz datasheet.

[30] Z. Cui, F. Li, and W. Zhang. Bat algorithm with principal component analysis.
International Journal of Machine Learning and Cybernetics, 10(3):603–622, 2019.

[31] H. V. Dang, H. Tran-Ngoc, T. V. Nguyen, T. Bui-Tien, G. De Roeck, and H. X. Nguyen.
Data-driven structural health monitoring using feature fusion and hybrid deep learning.
IEEE Transactions on Automation Science and Engineering, 18(4):2087–2103, 2020.

[32] F. Di Nuzzo, D. Brunelli, T. Polonelli, and L. Benini. Structural health monitoring
system with narrowband iot and mems sensors. IEEE Sensors Journal, 21(14):16371–
16380, 2021.

[33] F. Di Nuzzo, D. Brunelli, T. Polonelli, and L. Benini. Structural health monitoring
system with narrowband iot and mems sensors. IEEE Sensors Journal, 2021.

[34] H. Dong, X. Wang, C. Zhang, R. He, L. Jia, and Y. Qin. Improved robust vehicle
detection and identification based on single magnetic sensor. Ieee Access, 6:5247–5255,
2018.

[35] I. L. Dos Santos, L. Pirmez, É. T. Lemos, F. C. Delicato, L. A. V. Pinto, J. N. De Souza,
and A. Y. Zomaya. A localized algorithm for structural health monitoring using wireless
sensor networks. Information Fusion, 15:114–129, 2014.

[36] K. Dragos and K. Smarsly. A comparative review of wireless sensor nodes for structural
health monitoring. In Proc. of the 7th International Conference on Structural Health
Monitoring of Intelligent Infrastructure. Turin, Italy, volume 1, page 2015, 2015.

[37] S. J. Dyke, D. Bernal, J. Beck, and C. Ventura. Experimental phase ii of the structural
health monitoring benchmark problem. In Proceedings of the 16th ASCE engineering
mechanics conference, 2003.

[38] A. D’Alessandro, S. Scudero, and G. Vitale. A review of the capacitive mems for
seismology. Sensors, 19(14):3093, 2019.

79 Amirhossein Moallemi

BIBLIOGRAPHY

[39] A. Entezami, H. Sarmadi, B. Behkamal, and S. Mariani. Big data analytics and struc-
tural health monitoring: A statistical pattern recognition-based approach. Sensors,
20(8):2328, 2020.

[40] A. Entezami, H. Shariatmadar, and S. Mariani. Fast unsupervised learning methods
for structural health monitoring with large vibration data from dense sensor networks.
Structural Health Monitoring, 19(6):1685–1710, 2020.

[41] R. Esteller, J. Echauz, T. Tcheng, B. Litt, and B. Pless. Line length: an efficient fea-
ture for seizure onset detection. In 2001 Conference Proceedings of the 23rd Annual
International Conference of the IEEE Engineering in Medicine and Biology Society,
volume 2, pages 1707–1710. IEEE, 2001.

[42] C. R. Farrar and K. Worden. Structural health monitoring: a machine learning
perspective. John Wiley & Sons, 2012.

[43] E. Figueiredo and J. Brownjohn. Three decades of statistical pattern recognition
paradigm for shm of bridges. Structural Health Monitoring, 21(6):3018–3054, 2022.

[44] P. F. Giordano, S. Quqa, and M. P. Limongelli. The value of monitoring a structural
health monitoring system. Structural Safety, 100:102280, 2023.

[45] A. Girolami, D. Brunelli, and L. Benini. Low-cost and distributed health monitoring
system for critical buildings. In 2017 IEEE Workshop on Environmental, Energy, and
Structural Monitoring Systems (EESMS), pages 1–6. IEEE, 2017.

[46] A. Girolami, D. Brunelli, and L. Benini. Low-cost and distributed health monitoring
system for critical buildings. In 2017 IEEE Workshop on Environmental, Energy, and
Structural Monitoring Systems (EESMS), pages 1–6, 2017.

[47] Y. Goi and C.-W. Kim. Damage detection of a truss bridge utilizing a damage indicator
from multivariate autoregressive model. Journal of Civil Structural Health Monitoring,
7:153–162, 2017.

[48] M. Gul and F. N. Catbas. Damage assessment with ambient vibration data using a novel
time series analysis methodology. Journal of Structural Engineering, 137(12):1518–
1526, 2011.

[49] Y. Guo, B. Li, M. D. Christie, Z. Li, M. A. Sotelo, Y. Ma, D. Liu, and Z. Li. Hy-
brid dynamic traffic model for freeway flow analysis using a switched reduced-order
unknown-input state observer. Sensors, 20(6):1609, 2020.

[50] R. Hassan, F. Qamar, M. K. Hasan, A. H. M. Aman, and A. S. Ahmed. Internet of things
and its applications: A comprehensive survey. Symmetry, 12(10):1674, 2020.

[51] T. Haugen, J. R. Levy, E. Aakre, and M. E. P. Tello. Weigh-in-motion equipment–
experiences and challenges. Transportation Research Procedia, 14:1423–1432, 2016.

[52] S. HekmatiAthar, M. Taheri, J. Secrist, and H. Taheri. Neural network for structural
health monitoring with combined direct and indirect methods. Journal of Applied
Remote Sensing, 14(1):014511–014511, 2020.

[53] HiveMQ. HiveMQ documentation v4.5, 2019.

80 Amirhossein Moallemi

BIBLIOGRAPHY

[54] F. Iasha and P. A. Darwito. Design of algorithm control for monitoring system and
control bridge based internet of things (iot). In 2020 International Conference on Smart
Technology and Applications (ICoSTA), pages 1–6. IEEE, 2020.

[55] Intel. Intel® core™ i7-4910mq processor specification page.

[56] Z. Juhasz. Quantitative cost comparison of on-premise and cloud infrastructure based
eeg data processing. Cluster Computing, 24(2):625–641, 2021.

[57] A. Kamariotis, E. Chatzi, and D. Straub. A framework for quantifying the value
of vibration-based structural health monitoring. Mechanical Systems and Signal
Processing, 184:109708, 2023.

[58] S. Kamkar and R. Safabakhsh. Vehicle detection, counting and classification in various
conditions. IET Intelligent Transport Systems, 10(6):406–413, 2016.

[59] S. Kavitha, R. J. Daniel, and K. Sumangala. High performance mems accelerometers
for concrete shm applications and comparison with cots accelerometers. Mechanical
Systems and Signal Processing, 66:410–424, 2016.

[60] J. Kim and J. P. Lynch. Autonomous decentralized system identification by markov
parameter estimation using distributed smart wireless sensor networks. Journal of
Engineering Mechanics, 138(5):478–490, 2012.

[61] P. Kuwałek, P. Otomański, and K. Wandachowicz. Influence of the phenomenon of
spectrum leakage on the evaluation process of metrological properties of power quality
analyser. Energies, 13(20):5338, 2020.

[62] Q. Ling, Z. Tian, Y. Yin, and Y. Li. Localized structural health monitoring using energy-
efficient wireless sensor networks. IEEE Sensors Journal, 9(11):1596–1604, 2009.

[63] H. Liu, J. Ma, T. Xu, W. Yan, L. Ma, and X. Zhang. Vehicle detection and classifi-
cation using distributed fiber optic acoustic sensing. IEEE Transactions on Vehicular
Technology, 69(2):1363–1374, 2019.

[64] J. Liu, S. Chen, M. Bergés, J. Bielak, J. H. Garrett, J. Kovačević, and H. Y. Noh. Diag-
nosis algorithms for indirect structural health monitoring of a bridge model via dimen-
sionality reduction. Mechanical Systems and Signal Processing, 136:106454, 2020.

[65] Y. Liu, T. Voigt, N. Wirström, and J. Höglund. Ecovibe: On-demand sensing for railway
bridge structural health monitoring. IEEE Internet of Things Journal, 6(1):1068–1078,
2018.

[66] S. Lloyd. Least squares quantization in pcm. IEEE transactions on information theory,
28(2):129–137, 1982.

[67] L.-A. Louizos, P. G. Athanasopoulos, and K. Varty. Microelectromechanical systems
and nanotechnology: A platform for the next stent technological era. Vascular and
endovascular surgery, 46(8):605–609, 2012.

[68] S. Lu, J. Lu, K. An, X. Wang, and Q. He. Edge computing on iot for machine signal
processing and fault diagnosis: A review. IEEE Internet of Things Journal, 2023.

81 Amirhossein Moallemi

BIBLIOGRAPHY

[69] J. P. Lynch, A. Sundararajan, K. H. Law, H. Sohn, and C. R. Farrar. Design of a wireless
active sensing unit for structural health monitoring. In Health Monitoring and Smart
Nondestructive Evaluation of Structural and Biological Systems III, volume 5394, pages
157–168. SPIE, 2004.

[70] J. Mao, H. Wang, and B. F. Spencer Jr. Toward data anomaly detection for automated
structural health monitoring: Exploiting generative adversarial nets and autoencoders.
Structural Health Monitoring, 20(4):1609–1626, 2021.

[71] M. Mishra, P. B. Lourenço, and G. V. Ramana. Structural health monitoring of civil
engineering structures by using the internet of things: A review. Journal of Building
Engineering, 48:103954, 2022.

[72] A. A. MOALLEMI, L. ZANATTA, A. BURRELLO, M. SALVARO, M. LONGO,
P. DARO, F. BARCHI, D. BRUNELLI, L. BENINI, and A. ACQUAVIVA. Unsuper-
vised vehicle classification using a structural health monitoring system. STRUCTURAL
HEALTH MONITORING 2023, 2023.

[73] M. Morgese, F. Ansari, M. Domaneschi, and G. P. Cimellaro. Post-collapse analy-
sis of morandi’s polcevera viaduct in genoa italy. Journal of Civil Structural Health
Monitoring, 10:69–85, 2020.

[74] L. E. Mújica, M. Ruiz, F. Pozo, J. Rodellar, and A. Güemes. A structural damage detec-
tion indicator based on principal component analysis and statistical hypothesis testing.
Smart materials and structures, 23(2):025014, 2013.

[75] M. Muttillo, V. Stornelli, R. Alaggio, R. Paolucci, L. Di Battista, T. de Rubeis, and
G. Ferri. Structural health monitoring: An iot sensor system for structural damage
indicator evaluation. Sensors, 20(17):4908, 2020.

[76] C. Negru, F. Pop, O. C. Marcu, M. Mocanu, and V. Cristea. Budget constrained
selection of cloud storage services for advanced processing in datacenters. In
2015 14th RoEduNet International Conference-Networking in Education and Research
(RoEduNet NER), pages 158–162. IEEE, 2015.

[77] H. X. Nguyen, S. Zhu, and M. Liu. A survey on graph neural networks for microservice-
based cloud applications. Sensors, 22(23):9492, 2022.

[78] Z. Nie, E. Guo, J. Li, H. Hao, H. Ma, and H. Jiang. Bridge condition monitoring using
fixed moving principal component analysis. Structural Control and Health Monitoring,
27(6):e2535, 2020.

[79] E. Odat, J. S. Shamma, and C. Claudel. Vehicle classification and speed estimation
using combined passive infrared/ultrasonic sensors. IEEE transactions on intelligent
transportation systems, 19(5):1593–1606, 2017.

[80] E. Parisi, A. Moallemi, F. Barchi, A. Bartolini, D. Brunelli, N. Buratti, and A. Acqua-
viva. Time and frequency domain assessment of low-power mems accelerometers for
structural health monitoring. In 2022 IEEE International Workshop on Metrology for
Industry 4.0 & IoT (MetroInd4.0&IoT), pages 234–239, 2022.

82 Amirhossein Moallemi

BIBLIOGRAPHY

[81] C. S. N. Pathirage, J. Li, L. Li, H. Hao, W. Liu, and P. Ni. Structural damage identifica-
tion based on autoencoder neural networks and deep learning. Engineering structures,
172:13–28, 2018.

[82] C. S. N. Pathirage, L. Li, W. Liu, and M. Zhang. Stacked face de-noising auto encoders
for expression-robust face recognition. In 2015 International Conference on Digital
Image Computing: Techniques and Applications (DICTA), pages 1–8. IEEE, 2015.

[83] A. Pedrocchi, S. Hoen, G. Ferrigno, and A. Pedotti. Perspectives on mems in bioengi-
neering: A novel capacitive position microsensor [and laser surgery and drug delivery
applications]. IEEE Transactions on Biomedical Engineering, 47(1):8–11, 2000.

[84] T. Polonelli, A. Bentivogli, G. Comai, and M. Magno. Self-sustainable IoT wireless
sensor node for predictive maintenance on electric motors. In 2022 IEEE Sensors
Applications Symposium (SAS), pages 1–6. IEEE, 2022.

[85] T. Polonelli, D. Brunelli, M. Guermandi, and L. Benini. An accurate low-cost crackme-
ter with lorawan communication and energy harvesting capability. In 2018 IEEE 23rd
International Conference on Emerging Technologies and Factory Automation (ETFA),
volume 1, pages 671–676. IEEE, 2018.

[86] T. Polonelli, J. Deparday, I. Abdallah, S. Barber, E. Chatzi, and M. Magno. Instru-
mentation and measurement systems: Aerosense: A wireless, non-intrusive, flexible,
and mems-based aerodynamic and acoustic measurement system for operating wind
turbines. IEEE Instrumentation & Measurement Magazine, 26(4):12–18, 2023.

[87] T. Polonelli, H. Müller, W. Kong, R. Fischer, L. Benini, and M. Magno. Aerosense:
a self-sustainable and long-range bluetooth wireless sensor node for aerodynamic and
aeroacoustic monitoring on wind turbines. IEEE Sensors Journal, 23(1):715–723, 2022.

[88] P. Ragam and N. Devidas Sahebraoji. Application of mems-based accelerometer wire-
less sensor systems for monitoring of blast-induced ground vibration and structural
health: a review. IET Wireless Sensor Systems, 9(3):103–109, 2019.

[89] E. Reynders. System identification methods for (operational) modal analysis: review
and comparison. Archives of Computational Methods in Engineering, 19:51–124, 2012.

[90] R. R. Ribeiro and R. d. M. Lameiras. Evaluation of low-cost mems accelerometers for
shm: Frequency and damping identification of civil structures. Latin American Journal
of Solids and Structures, 16, 2019.

[91] D. Rossi, F. Conti, M. Eggiman, A. Di Mauro, G. Tagliavini, S. Mach, M. Guermandi,
A. Pullini, I. Loi, J. Chen, et al. Vega: A ten-core soc for iot endnodes with dnn ac-
celeration and cognitive wake-up from mram-based state-retentive sleep mode. IEEE
Journal of Solid-State Circuits, 57(1):127–139, 2021.

[92] A. Sabato, C. Niezrecki, and G. Fortino. Wireless mems-based accelerometer sensor
boards for structural vibration monitoring: A review. IEEE Sensors Journal, 17(2):226–
235, 2016.

[93] S. S. Saidin, S. A. Kudus, A. Jamadin, M. A. Anuar, N. M. Amin, A. B. Z. Ya, and
K. Sugiura. Vibration-based approach for structural health monitoring of ultra-high-
performance concrete bridge. Case Studies in Construction Materials, 18:e01752, 2023.

83 Amirhossein Moallemi

BIBLIOGRAPHY

[94] scikit-learn developers. scikit-learn user guide, 2017.

[95] C. Scuro, F. Lamonaca, S. Porzio, G. Milani, and R. Olivito. Internet of things (iot)
for masonry structural health monitoring (shm): Overview and examples of innovative
systems. Construction and Building Materials, 290:123092, 2021.

[96] P. Shah, A. K. Jain, T. Mishra, and G. Mathur. Iot-based big data storage systems in
cloud computing. In Proceedings of Second International Conference on Smart Energy
and Communication: ICSEC 2020, pages 323–333. Springer, 2021.

[97] A. Sivasuriyan and D. S. Vijayan. Performance of rc beams utilizing various sensors un-
der fundamental static loading. International Journal of System Assurance Engineering
and Management, pages 1–8, 2022.

[98] STMicroelectronics.

[99] STMicroelectronics. LIS344ALH datasheet, 2008.

[100] STMicroelectronics. HTS221 datasheet, 2016.

[101] J. Su, Y. Xia, and S. Weng. Review on field monitoring of high-rise structures. Structural
Control and Health Monitoring, 27(12):e2629, 2020.

[102] K. D. Team. Developers guide documentation, 2020.

[103] G. Technologies. GreenWaves Technologies gap9 official description, 2014.

[104] P. Thaprasop, K. Zhou, J. Steinheimer, and C. Herold. Unsupervised outlier detection
in heavy-ion collisions. Physica Scripta, 96(6):064003, 2021.

[105] R. K. Verma, K. Pattanaik, P. Dissanayake, A. Dammika, H. Buddika, and M. R.
Kaloop. Damage detection in bridge structures: An edge computing approach. arXiv
preprint arXiv:2008.06724, 2020.

[106] R. Vidal, Y. Ma, and S. S. Sastry. Principal Component Analysis, pages 25–62. Springer
New York, New York, NY, 2016.

[107] H. Wang, A. Jasim, and X. Chen. Energy harvesting technologies in roadway and bridge
for different applications–a comprehensive review. Applied energy, 212:1083–1094,
2018.

[108] Q. Wang, J. Zheng, H. Xu, B. Xu, and R. Chen. Roadside magnetic sensor system for ve-
hicle detection in urban environments. IEEE Transactions on Intelligent Transportation
Systems, 19(5):1365–1374, 2017.

[109] X. Wang, W. Wu, Y. Du, J. Cao, Q. Chen, and Y. Xia. Wireless iot monitoring system
in hong kong–zhuhai–macao bridge and edge computing for anomaly detection. IEEE
Internet of Things Journal, 2023.

[110] Y.-P. E. Wang, X. Lin, A. Adhikary, A. Grovlen, Y. Sui, Y. Blankenship, J. Bergman, and
H. S. Razaghi. A primer on 3gpp narrowband internet of things. IEEE communications
magazine, 55(3):117–123, 2017.

84 Amirhossein Moallemi

BIBLIOGRAPHY

[111] R.-T. Wu, A. Singla, M. R. Jahanshahi, E. Bertino, B. J. Ko, and D. Verma. Pruning deep
convolutional neural networks for efficient edge computing in condition assessment of
infrastructures. Computer-Aided Civil and Infrastructure Engineering, 34(9):774–789,
2019.

[112] R. Xi, Q. He, and X. Meng. Bridge monitoring using multi-gnss observations with high
cutoff elevations: A case study. Measurement, 168:108303, 2021.

[113] P. Yang, C.-J. Hsieh, and J.-L. Wang. History pca: A new algorithm for streaming pca.
arxiv (2018). arXiv preprint arXiv:1802.05447, 1802.

[114] Z. Ye, H. Xiong, and L. Wang. Collecting comprehensive traffic information using pave-
ment vibration monitoring data. Computer-Aided Civil and Infrastructure Engineering,
35(2):134–149, 2020.

[115] L. Yi, X. Deng, L. T. Yang, H. Wu, M. Wang, and Y. Situ. Reinforcement-learning-
enabled partial confident information coverage for iot-based bridge structural health
monitoring. IEEE Internet of Things Journal, 8(5):3108–3119, 2020.

[116] J. Yiu. The Definitive Guide to ARM® Cortex®-M3 and Cortex®-M4 Processors.
Newnes, 2013.

[117] L. Yu and J.-H. Zhu. Nonlinear damage detection using higher statistical moments of
structural responses. Struct. Eng. Mech, 54(2):221–237, 2015.

[118] L. Zanatta, F. Barchi, A. Burrello, A. Bartolini, D. Brunelli, and A. Acquaviva. Dam-
age detection in structural health monitoring with spiking neural networks. In 2021
IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4. 0&IoT),
pages 105–110. IEEE, 2021.

[119] P. S. Zarrin, C. Martin, P. Langendoerfer, C. Wenger, and M. Diaz. Vibration anal-
ysis of a wind turbine gearbox for off-cloud health monitoring through neuromorphic-
computing. In IECON 2021–47th Annual Conference of the IEEE Industrial Electronics
Society, pages 1–5. IEEE, 2021.

[120] X. Zhao, W. Lin, and Q. Zhang. Enhanced particle swarm optimization based on prin-
cipal component analysis and line search. Applied Mathematics and Computation,
229:440–456, 2014.

[121] N. Zhou, W. Lin, W. Feng, F. Shi, and X. Pang. Budget-deadline constrained approach
for scientific workflows scheduling in a cloud environment. Cluster Computing, pages
1–15, 2020.

[122] L. Zhu, Y. Fu, R. Chow, B. F. Spencer Jr, J. W. Park, and K. Mechitov. Development
of a high-sensitivity wireless accelerometer for structural health monitoring. Sensors,
18(1):262, 2018.

[123] F. Zonzini, V. Dertimanis, E. Chatzi, and L. De Marchi. System identification at the
extreme edge for network load reduction in vibration-based monitoring. IEEE Internet
of Things Journal, 9(20):20467–20478, 2022.

85 Amirhossein Moallemi

BIBLIOGRAPHY

[124] F. Zonzini, A. Girolami, L. De Marchi, A. Marzani, and D. Brunelli. Cluster-based
vibration analysis of structures with gsp. IEEE Transactions on Industrial Electronics,
68(4):3465–3474, 2021.

[125] F. Zonzini, M. M. Malatesta, D. Bogomolov, N. Testoni, A. Marzani, and L. De Marchi.
Vibration-based shm with upscalable and low-cost sensor networks. IEEE Transactions
on Instrumentation and Measurement, 69(10):7990–7998, 2020.

[126] F. Zonzini, F. Romano, A. Carbone, M. Zauli, and L. De Marchi. Enhancing
vibration-based structural health monitoring via edge computing: A tiny machine
learning perspective. In Quantitative Nondestructive Evaluation, volume 85529, page
V001T07A004. American Society of Mechanical Engineers, 2021.

[127] F. Zonzini, M. Zauli, M. Mangia, N. Testoni, and L. De Marchi. Model-assisted com-
pressed sensing for vibration-based structural health monitoring. IEEE Transactions on
Industrial Informatics, 17(11):7338–7347, 2021.

86 Amirhossein Moallemi

	Abstract
	Contents
	List of Tables
	List of Figures
	Introduction
	Main Contributions
	Manuscript organization

	Literature Review
	Accelerometers Technology
	SHM frameworks
	Anomaly Detection at the edge
	Statistical data modeling
	Deep Neural Networks
	Data Reduction

	System Identification at the edge
	SHM systems for vehicle Calssification

	Background
	Data Compression Models
	System Identification
	PCA
	Autoencoders

	Clustering
	K-means
	Mean shift
	Gaussian Mixture Models
	Mathematical Comparison of Methodologies

	Tiny Detector Framework
	Hardware Standalone Design
	Power Supply unit
	Sensing Unit
	Metrological characterization
	Computational Unit
	Transmission Unit

	Final Framework
	Experimental Results
	Noise Analysis
	Time Analysis
	Frequency Analysis

	Applied Signal Processing
	Data-driven Vs Model-Based Algorithm
	SHM Installation
	Methods: Anomaly Detection in an SHM framework
	Deployment: Sensor Vs. Cloud

	Results: Data-Driven Vs Model-Based
	Algorithm Exploration
	Hyperparameters exploration
	Implementation

	System Identification
	Case Study
	Methods: Sequential Vs. Parallel Tall Skinny QR

	Results: System Identification Parametric Methods
	Data Compression
	Implementation

	Vehicle Classification
	Case Study
	Methodology: Vehicle Classification in SHM context

	Results: Vehicle Classifications
	Feature Extraction & Data Labelling
	Algorithm Exploration
	Hyperparameter Exploration

	Conclusion
	Bibliography

