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Abstract

Aim: This thesis integrates new open-source algorithms for the monitor-
ing of ecosystem heterogeneity through remote sensing. The project is or-
ganized into three distinct parts, focusing on the measurement of spatial
patterns, temporal trends, and spatiotemporal patterns.

Methods: Due to its widespread use in ecological research, the algorithms
presented in this thesis were developed using the R software. i) Chapter
1 introduces the functions included in rasterdiv package for the calcu-
lation of spatial heterogeneity. In Chapter 2 is described a new function
(RaoAUC()) for the computation of spatial heterogeneity that summarizes
the information of parametric Rao index in a single metric. ii) Chapter 3
introduces the helical graphs, a novel visualization method for temporal
trends in biodiversity drivers, plotting the mean values of a variable cal-
culated at various points in time against the corresponding rate of change
of the selected variable. iii) Chapter 4 presents a new method to quantify
and visualize spatiotemporal heterogeneity change of an area exploiting
beta diversity measures.

Study Areas: i) For testing the algorithms, in Chapter 1 a Global image
from Copernicus Proba-V NDVI was used to test all rasterdiv metrics.
RaoAUC() function was tested on two areas afflicted by fire in Chapter 2: 1)
two multispectral images of an area in Kangaroo Island (AU) from Coper-
nicus Sentinel 2 before and after the fire; 2) two hyperspectral images from
an area near Santa Barbara (California, USA) before and two years after the
fire. ii) In Chapter 3, the helical graphs were tested on two forest biomes,
tropical and boreal forests of Northern Emisphere. ii) The spatiotempo-
ral map from two CORINE landcover images (1990 and 2018) of Italy in
Chapter 4.

Results and Discussions: i) The metrics tested in Chapter 1 offer insights
into various facets of spatial heterogeneity, integrating available informa-
tion of Earth surface properties, including aspects of functional (structural,
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biophysical and biochemical), taxonomic, phylogenetic and genetic diver-
sity. The RaoAUC() function tested in Chapter 2, binding different hetero-
geneity metrics, emerges as a valuable tool for identifying areas suscep-
tible to environmental changes. ii) Chapter 3 proved that helical graphs
efficiently highlight temporal trends of environmental variables and can
be exploited in various applications. iii) The spatiotemporal maps devel-
oped in Chapter 4 are not only intuitive and easily interpretable but also
provide a quantitative measure that seamlessly integrates into modeling
frameworks. These maps contribute to a comprehensive understanding of
temporal landscape dynamics, enhancing the ability to monitor and ana-
lyze environmental changes over time.

Conclusion: The algorithms presented in this thesis have proven their ef-
ficacy, interpretability, and versatility, contributing valuable insights into
distinct aspects of ecosystem heterogeneity.
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Introduction

Ecosystem Heterogeneity

The current global state of biodiversity has emerged as a central concern in
social and political discourse (IPBES, 2019). In contemporary times, biodi-
versity is undergoing a decline at an unprecedented rate, with the extinction
of species reaching exponential proportions (Pimm et al. , 2014). Human ac-
tivities pose a significant threat to the integrity of Earth’s ecological systems,
resulting in profound alterations to natural environments and disruptions of
ecosystems’ equilibria (Sage and Kubien, 2007; Steffen et al., 2004). These
activities contribute directly to habitat degradation, overexploitation of land
and sea, the proliferation of invasive species, increased pollution, and climate
change associated with global warming (Risser et al., 2000). Consequently,
there is an urgent need for coordinated actions and policies directed towards
the conservation and restoration of ecosystems and species (Chiarucci , 2007).
In this context, monitoring key variables influencing biodiversity patterns
and changes is essential for making well-informed decisions regarding con-
servation policies (Jetz et al. , 2019).

Recognized as a significant driver of biodiversity, ecosystem heterogene-
ity has been established as a key factor governing species diversity patterns
across space (Stein et al. , 2014), as it plays a pivotal role in driving various
ecological processes and functions. This influence extends to species diver-
sity patterns and changes (Rocchini et al., 2018a), metapopulation dynamics
(Fahrig , 2007), population connectivity (Malanson and Cramer , 1999), and
gene flow (Lozier et al., 2013). Ecosystem heterogeneity enhances the avail-
ability of niche space, provides refuges, and creates opportunities for isola-
tion and adaptation. Consequently, it contributes to the promotion of species
coexistence, persistence, and diversification (Stein et al. , 2014; Tews et al.,
2004). Therefore, its study is fundamental to understand spatial patterns in
the distribution of species diversity.

Ecosystem heterogeneity has been conceptualized in diverse ways within
the literature: (i) as the horizontal component of habitat variation (Li & Reynolds,
1995), (ii) encompassing the spatial and temporal variation of qualitative and
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quantitative descriptors of the variable of interest (August, 1983), (iii) de-
fined as the spatially structured variability of the habitat (Ettema and War-
dle , 2002), or (iv) as within-habitat variability (Heaney, 2001; Hortal et al.,
2009). In this thesis, ecosystem heterogeneity will serve as an umbrella con-
cept encapsulating the degree of non-uniformity in land cover, vegetation,
and physical factors such as topography, soil, topoclimate, and microclimate
(Stein et al. , 2014).

Remote Sensing

Remote sensing involves acquiring data from a distance, often employing
aircraft or satellites equipped with diverse sensors capable of detecting and
recording information about the Earth’s surface or atmosphere (NASA Earth-
data , 2024). These sensors can capture a spectrum of data in the form of elec-
tromagnetic radiation, spanning visible light, infrared, or microwave signals
(Zhu et al. , 2018). The satellite images obtained through these sensors are
called bands (Zhu et al. , 2018). These bands can be characterized as two-
dimensional arrays of pixels, with each pixel assigned a specific value repre-
senting the reflectance of a portion of the electromagnetic radiation, which is
then converted into a digital number (Gomarasca , 2009).

The spectral resolution of a satellite image is determined by the number
of bands captured by the sensors (Zhu et al. , 2018). This resolution can be
classified into two main categories: multispectral and hyperspectral (Nalepa
, 2021). Multispectral imaging, characterized by a relatively small number of
bands, is particularly useful for land cover classification, providing valuable
information about different surface features (Nalepa , 2021). On the other
hand, hyperspectral imaging involves capturing tens to hundreds of bands,
enabling a more detailed analysis of materials and their specific spectral sig-
natures (Nalepa , 2021).

Satellite images also provide a dual perspective with both spatial and
temporal resolutions (Wulder et al. , 2008). Spatial resolution defines the
size of pixels detected by sensors, measured in meters, determining the level
of detail captured in the imagery (Wulder et al. , 2008). On the other hand,
temporal resolution specifies how frequently a satellite revisits or captures
images of the same location over time, influencing the frequency of updates
and monitoring intervals (Wulder et al. , 2008).

Numerous satellite missions play a crucial role in Earth observation, with
some of the most notable ones being Landsat, Sentinel and MODIS (Fu et al.
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, 2020). The Landsat program, inaugurated in 1972, stands as a cornerstone,
delivering multispectral imagery with moderate spatial resolution (NASA ,
1972). Complementing this, the Sentinel series, integral to the Copernicus
program led by the European Space Agency (ESA), encompasses satellites
such as Sentinel-1 and Sentinel-2, offering a comprehensive suite of radar and
optical imagery suitable for all-weather monitoring (ESA , 2014). Another
significant contributor is the Moderate Resolution Imaging Spectroradiome-
ter (MODIS), situated aboard NASA’s Terra and Aqua satellites, providing
global coverage essential for climate studies and environmental monitoring
(NASA MODIS Land Science Team , 2020).

This huge amount of data collected through remote sensing serves a myr-
iad of applications, proving invaluable in ecosystem monitoring, agriculture,
urban planning, disaster management, forestry, and geological exploration
(Khorram et al. , 2012). This thanks to the estimation of several metrics from
different compartments of the Earth system (land, ocean, atmosphere and
cryosphere), such as precipitation patterns, global temperatures, snow cover,
aerosol concentrations and vegetation indexes (Khorram et al. , 2012).

Ecosystem heterogeneity, a key factor influencing biodiversity, can be ef-
fectively quantified using remote sensing imagery (Rocchini et al., 2021).
The Spectral Variation Hypothesis (SVH) serves as the theoretical founda-
tion for this calculation, positing that the spatial variability in the remotely
sensed signal, manifested as spectral heterogeneity in an image, correlates
with ecosystem heterogeneity (Palmer et al., 2002). This relationship posi-
tions spectral heterogeneity as a potent proxy for species diversity (Palmer et
al., 2002).

Spectral heterogeneity in a satellite image refers to the continuous vari-
ability of pixel values (Rocchini et al., , 2010). This variability in spectral
reflectance is influenced by various factors, including the scale dimensions
of the sensor (spatial, spectral, radiometric), viewing/illumination geometry,
and biophysical properties of vegetation in the environment (such as struc-
ture, chemical constituents, and physiological processes) (Rocchini et al., ,
2010). Leveraging spectral heterogeneity allows for the detection of hotspots
of plant biodiversity over space (Rocchini et al., 2018b). By capturing and
quantifying the intricate spectral variations, remote sensing proves to be a
valuable tool in unraveling the complexities of ecosystem heterogeneity and
its role in supporting biodiversity (Rocchini et al., 2021).
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R software in ecological research

The widespread use of the R software for ecological analyses is owed to the
collective efforts of numerous researchers who have contributed to the cre-
ation and documentation of well-established packages (Borcard et al. , 2011).
Introduced in 2000, R has significantly transformed the approach and dis-
semination of research, fostering global collaborations and swiftly resolving
common research challenges. At its core, R represents an integrated suite of
software facilities for data manipulation, calculation, and graphical display
(Venables et al. , 2019). It utilizes a programming language called ’S’ and
encompasses tools for data handling, analysis, and graphical representation
(Venables et al. , 2019). Recognized as a statistical system by many users, R
hosts a plethora of classical and modern statistical techniques, with some in-
tegrated into the base R environment, while many others are contributed by
users and uploaded to repositories like CRAN (https://CRAN.R-project.
org) or platforms such as Github (https://www.github.com). With thou-
sands of contributed packages, written by diverse authors, the R ecosystem
serves various purposes. These packages implement specialized statistical
methods, provide access to data or hardware, and complement textbooks
(Venables et al. , 2019).

A distinctive feature of R lies in its adherence to the software freedom
philosophy, a concept founded by Richard Stallman in 1985. Stallman’s phi-
losophy, embodied in the concept of ’copyleft’, opposes copyright restric-
tions (Rocchini & Neteler , 2012). Following the Free Software Definition, R
upholds four fundamental freedoms that software must embody to be con-
sidered free (Vainio & Vaden , 2007):

• Freedom 0: The freedom to run the program for any purpose.

• Freedom 1: he freedom to study how the program works and adapt it
to user needs, with access to the source code.

• Freedom 2: The freedom to redistribute copies, enabling collaboration.

• Freedom 3: The freedom to improve the program and release improve-
ments to the public, with access to the source code.

The explicit use of free and open-source software, coupled with code
availability, is essential for fostering completely open science. R, in this con-
text, enables the development of packages and the sharing of code with other

https://CRAN.R-project.org
https://CRAN.R-project.org
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users through repositories like CRAN (https://CRAN.R-project.org and its
mirrors), Bioconductor (https://www.bioconductor.org), GitHub (https:
//www.github.com) and Omegahat (http://www.omegahat.net) (Venables et
al. , 2019).

Outline of the thesis

The objective of the thesis is to advance open-source algorithms for the mon-
itoring of spatiotemporal patterns of ecosystem heterogeneity using remote
sensing. The work is organized into three distinct parts: the first comprises
two chapters dedicated to the measurement of spatial heterogeneity. The sec-
ond part delves into the representation of temporal trends, while the third
part introduces a method designed for monitoring spatiotemporal hetero-
geneity, retaining information on both temporal trends and spatial patterns.
This structured approach allows for a comprehensive exploration of ecosys-
tem dynamics, providing valuable insights into the interplay between spatial
and temporal aspects of environmental heterogeneity.

Part I

• Chapter 1: This paper introduces the R package rasterdiv, a compre-
hensive toolkit featuring various functions for the calculation of spatial
heterogeneity. Each metric employed in these functions is meticulously
described, accompanied by a global application showcasing the versa-
tility and applicability of each metric. The package serves as a valuable
resource for researchers and practitioners seeking robust tools for the
assessment and analysis of ecosystem heterogeneity using R.

• Chapter 2: This paper presents a novel function, (RaoAUC()), designed
for the computation of spatial heterogeneity. The newly introduced
metric, AUC, serves to consolidate the information offered by the para-
metric Rao index, which can compute multiple metrics by altering a
single parameter. The algorithm underwent testing on both theoretical
and empirical examples, leveraging multi and hyperspectral images to
demonstrate its efficacy and versatility. This contribution enriches the
rasterdiv R package, offering a new refined and flexible metric for
their investigations.

https://CRAN.R-project.org
https://www.bioconductor.org
https://www.github.com
https://www.github.com
http://www.omegahat.net
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Part II

• Chapter 3: This paper introduces a novel visualization method for de-
picting temporal trends in biodiversity drivers. Inspired by the work
of statistician Danny Dorling and illustrator Kirsten McClure, the heli-
cal graphs illustrate the mean values of a variable calculated at various
points in time against the corresponding rate of change of the selected
variable. To evaluate their effectiveness, the helical graphs were ap-
plied to a 20-year time series of the NDVI index (an indicator of veg-
etation productivity) in two distinct forest biomes: tropical and bo-
real. This innovative visualization approach provides a nuanced and
insightful representation of temporal trends, contributing to the explo-
ration and understanding of biodiversity dynamics over time.

Part III

• Chapter 4: This chapter presents a novel method for visualizing maps
that depict spatiotemporal heterogeneity patterns. The algorithm ap-
plies the Jaccard index, a beta diversity metric, on landcover maps,
where the land cover classes are used as proxies for species. The metric
is computed between two images captured at distinct time points, pro-
viding a quantitative measure of the change in land cover composition.
The chapter includes a case study that demonstrates the application
and effectiveness of the proposed method in capturing and visualizing
spatiotemporal heterogeneity patterns over time.

The algorithms presented in this thesis have demonstrated their utility, in-
terpretability, and versatility. Each algorithm provides valuable insights into
different facets of ecosystem heterogeneity, effectively exploiting both spatial
and temporal dimensions. Furthermore, these algorithms have been made
accessible to the scientific community by being published in public reposito-
ries (CRAN and GitHub), facilitating their widespread use and contribution
to advancing research in the field.
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1.1 Abstract

The variation of species diversity over space and time has been widely recog-
nised as a key challenge in ecology. However, measuring species diversity
over large areas might be difficult for logistic reasons related to both time
and cost savings for sampling, as well as accessibility of remote ecosystems.
In this paper, we present a new R package - rasterdiv - to calculate diversity
indices based on remotely sensed data, by discussing the theory beyond the
developed algorithms. Obviously, measures of diversity from space should
not be viewed as a replacement of in-situ data on biological diversity, but
they are rather complementary to existing data and approaches. In practice,
they integrate available information of Earth surface properties, including
aspects of functional (structural, biophysical and biochemical), taxonomic,
phylogenetic and genetic diversity. Making use of the rasterdiv package
can result useful in making multiple calculations based on reproducible open
source algorithms, robustly rooted in Information Theory.

Keywords: biodiversity; ecological informatics; modelling; remote sens-
ing; satellite imagery.

1.2 Introduction

Back in 1872, Ludwig Eduard Boltzmann (Boltzmann, 1872) introduced the
first measure of entropy, later called marginal entropy and restructured by
Claude Elwood Shannon under a mathematical theory umbrella (Shannon,
1949). As such, it became one of the cornerstones of ecological theory and
was adopted widely in ecological practice for measuring biodiversity and its
change. Concerning biological entropy, the variation of species diversity over
space and time has been widely recognized as a key challenge in ecology
and was associated with analytic geometric models focusing either on the
spatial component of species dispersal (Palmer, 2007; Gorelick, 2008) or on
environmental drivers (Kreft and Jetz, 2007).

To address this issue, many spatio-statistical models have been proposed
to model biological entropy using data from ecological surveys (Bachl et al.,
2019). However, the statistical clarity (sensu Dushoff et al. (2019)) of such
models strictly depends on a high in-situ data uncertainty, which propagates
through all inferential steps (Meyer et al., 2016; Rocchini et al., 2019). Fur-
thermore, measuring species diversity over wide areas might be difficult for
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logistic reasons related both to time and sampling costs (Chiarucci et al., 2011;
Hernandez-Stefanoni et al., 2012) and to theoretical and practical constraints,
which are mainly related to two sources of uncertainty. The first is the uncer-
tainty associated with the detectability and the determination of individual
plants or animals species. The second is the one linked to different sampling
strategies (McGlinn and Palmer, 2009) or efforts (Rocchini et al., 2019) per
area, or, in the worst case, to the impossibility of getting information about
the real grain (sensu Scheiner et al. (2000)) sampled (Hobohm, 2003). In the
absence of such information, it becomes excessively challenging to properly
address the modifiable areal unit problem (MAUP), which in this case is
the sensitivity of biodiversity to scale (Jelinski and Wu, 1996). This is true,
even though evidence exists for a chance to rely, in some instances, on expert
knowledge to build straightforward and robust diversity maps worldwide
(Hobohm et al., 2019).

Accordingly, algorithms based on remote sensing and spatial ecology might
help estimating the variation of biodiversity over space and time (Skidmore
et al., 2011; Schimel and Scheiner, 2019) and represent a powerful first ex-
ploratory tool to detect the spatial variability accross the landscape. The
relationship between ecological processes (and functions) and the remotely
sensed diversity can rely on the definition of niche proposed by Kroes (1977),
and according to which a niche is the biotic structural and functional part of
the ecosystem. Strictly speaking, such definition can be profitably used to
measure spatial heterogeneity in ecosystems in order to convey information
on their potential functions (Schneider et al., 2017).

From this point of view, the development of Free and Open Source algo-
rithms to measure diversity from space would be beneficial to allow high
robustness and reproducibility of the proposed approaches (Rocchini and
Neteler, 2012). Furthermore, their intrinsic transparency, community-vetoing
options, sharing and rapid availability are also valuable additions and rea-
sons to move to open source options. Among the different open source pack-
ages, the R software environment is certainly one of the most widespread
worldwide and different packages have been devoted to remote sensing for:
i) raster data management (raster package, Hijmans and van Etten (2020)),
ii) remote sensing data analysis (RStoolbox package, Leutner et al. (2019)), iii)
spectral species diversity (biodivMapR package, Féret and Boissieu (2020)), iv)
Sparse Generalized Dissimilarity Modelling based on remote sensing data
(sgdm package, Leitao et al. (2012)), v) entropy-based local spatial associa-
tion (ELSA package, Naimi et al. (2019)), vi) landscape metrics calculation
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(landscapemetrics package, Hesselbarth et al. (2019)), to name just a few.
Reader can also refer to https://cran.r-project.org/web/views/Spatial.
html for the CRAN Task View on analysis of spatial data.

However, currently no package provides a flow of functions grounded on
Information Theory related to abundance based measures, by further intro-
ducing distances and going back to Information Theory again by generalised
entropy. In this paper we introduce a new R package which provides such a
functions’ throughput workflow. The aim of this manuscript is to encompass
the theory beyond the algorithms developed in the rasterdiv package (cur-
rently available at: https://github.com/mattmar/rasterdiv), relying on the
definition given by Gorelick (2011b):

“Theory is neither mathematical nor abstract. Theory is the creative, inductive,
and synthetic discipline of forming hypothesis [...]”

1.3 Information Theory

One of the mostly used metrics for measuring remotely sensed diversity is
related to the entropy measurement firstly introduced by Shannon (Shannon,
1949).

Given a sample area with N pixel values and pi relative abundances for
every i 2 {1, . . . , N}, in decreasing order, the Shannon index is calculated as:

H = �
N

Â
i=1

pi ln pi (1.1)

Taking into account only the most abundant pixel value, the Berger-Parker
(Berger and Parker , 1970) index is given by:

IBP = p1 (1.2)

In remote sensing applications, the derivation of synthetic indices of any
sort (i.e., diversity) is often performed by sequentially considering only small
chunks of the whole image. These chunks are commonly defined as ’kernel’,
’windows’ or ’moving windows’. From now on, we will use this terminology
to indicate the local space of analysis.

Both indices can be calculated in rasterdiv on a numerical matrix by us-
ing a moving window and applying the command Shannon and BergerParker.

https://cran.r-project.org/web/views/Spatial.html
https://cran.r-project.org/web/views/Spatial.html
https://github.com/mattmar/rasterdiv
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Shannon(x, window=3)

BergerParker(x, window=3)

where x and window represent the input numerical matrix (raster file) and
the side of the moving window on which the calculation is performed. Ad-
ditional arguments common to all functions in the package are np which sets
the number of parallel processes among which to split the calculation of the
index, cluster.type which defines the type of protocol to spawn parallal
processes (default is “MPI”) and debugging that, if set as TRUE, will run the
function in verbose mode.

FIGURE 1.1: Berger-Parker index measuring the most abun-
dant spectral value (Equation 1.2). All the indices in this
paper are calculated starting from a Copernicus Proba-
V NDVI (Normalised Difference Vegetation Index) long
term average image (June 21st 1999-2017) at 5km grain,
also provided into the rasterdiv package as a free de-
fault set which can be loaded by the function data(). A
generally low value of the index (based on the most abun-
dant spectral value) is found, since spectral input values
are generally different from each other in a moving win-
dow. This figure has been generated by the command bpa <-
BergerParker(ndvi17_r,window=9,np=8,cluster.type="SOCK").
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FIGURE 1.2: Shannon index calculated on a Copernicus
Proba-V NDVI image at 5km. Shannon’s H is generally
high since it only considers relative abundance of spec-
tral values, which are generally different from each other.
This figure has been generated by the command sha <-
Shannon(ndvi17_r,window=9,np=8,cluster.type="SOCK").

Both indices obey to the relative abundance of values. The most simple
Berger-Parker index equals the relative proportion of the most abundant class
in a moving window (Figure 1.1). Hence, low values of Berger-Parker are ex-
pected for continuous satellite data, given the high variability of reflectance
values. In contrast, in the Shannon index, the abundance of every single
numerical category (pixel value) is taken into account. This might lead to
taking into account the turnover among values, since the higher the turnover
the lower the dominance of a single class (Figure 1.2). However, Shannon’s
H is unable to discern situations where there is a high richness (number of
numerical categories) and a low evenness from those where there is a low
richness but a high evenness.
To better account for evenness, the Pielou index (Pielou, 1966) can be cal-
culated by simply standardising the Shannon index on the maximum pos-
sible Shannon index attainable given the same richness value. The latter is
attained when the maximum potential evenness of pixel values/numerical
categories is reached, i.e. when they are equally distributed over space.

E =
H

Hmax
(1.3)

Hmax corresponds to the natural logarithm of the number of pixel values.
Using rasterdiv, the Pielou index can simply be calculated as:

Pielou(input, window=3)
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Figure 1.3 reports an example with a moving window of 9x9 pixels.

FIGURE 1.3: Pielou index calculated on a Copernicus Proba-
V NDVI image at 5km. A flattening effect with respect
to Shannon’s H is found, due to the standardisation on
the maximum possible Shannon entropy (see Equation 1.3).
This figure has been generated by the command pie <-
Pielou(ndvi17_r,window=9,np=8,cluster.type="SOCK").

1.4 Solving the non-dimensionality of Shannon’s
H’: the Rao’s Q diversity index

Both Shannon’s H and Pielou’s E are dimensionless. In other words, they
consider differences in the relative abundance among pixel values, but not
their relative spectral distance, i.e. the distance among spectral values. For
instance, let A = (1, 2, 3, 4, 5, 6, 7, 8, 9) and B = (1, 102, 103, 104, 105, 106, 107,
108, 109) be two theoretical arrays of values. In both cases, values are different
from each other; hence, despite their relative numerical distance the Shannon
index will always be maximum, i.e. H = log(9) = 2.197225 reducing E =

H/Hmax = 1.
In remotely sensed imagery this is a crucial point since it might happen

that contiguous zones could have similar (but not equal) reflectance values.
For instance, the diversity of a homogeneous surface like water could be
overestimated if spectral distances are not considered.

To overcome this issue, the Rao’s Quadratic diversity (hereafter Rao’s Q,
Rao (1982)) could be applied by not only taking into account relative abun-
dance but also the spectral distance among different pixel values.
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Given the values of different pixels i and j, the Rao’s Q consider their
pairwaise distance dij as:

Q =
N

Â
i=1

N

Â
j=1

dij ⇥ pi ⇥ pj (1.4)

Hence, an array with different but spectrally close values will lead to a
high Shannon’s H but a low Rao’s Q. On the contrary, an array with different
and distant values in the spectral space will lead to both a high Shannon’s H
and a high Raos’ Q.

Moving towards a 2D spatial extent, let M be a 2D matrix M =

0

B@
l1 l2 l3

l4 l5 l6

l7 l8 l9

1

CA

formed by pixels with a certain reflectance value l in a single band for in-
stance. For simplicity, let us consider an 8-bit band, i.e. containing 256 pos-
sible values. As a consequence, deriving Rao’s Q involves calculating a dis-
tance matrix Md for all the pixel values:

Md =

0

BBBBBBB@

dl1,l1 dl1,l2 dl1,l3 · · · dl1,ln

dl2,l1 dl2,l2 dl2,l3 · · · dl2,ln

dl3,l1 dl3,l2 dl3,l3 · · · dl3,ln
...

...
... . . . ...

dln,l1 dln,l2 dln,l3 · · · dln,ln

1

CCCCCCCA

(1.5)

Thus, according to Equation 2.2, Rao’s Q is related to the sum of all the
pixel values pairwise distances, each of which is multiplied by the relative
abundance of each pair of pixels in the analysed image d⇥ (1/N2). In other
words, Rao’s Q is the expected difference in reflectance values between two
pixels drawn randomly with replacement from the evaluated set of pixels.
The distance matrix can be built in several dimensions (layers), thus allow-
ing to consider more than one band at a time. As a consequence, Rao’s Q can
be calculated in a multidimensional (multi-layers) system.

In rasterdiv package Rao’s Q is calculated as:

spectralrao(x, distance_m="euclidean", window=3,
mode="classic", shannon=FALSE, na.tolerance=0.0)

The distance_m argument includes different types of distances, such as
the Euclidean, Manhattan and Canberra distances, to make the calculation.
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Obviously, it is suggested to make use of a different distance when a multi-
spectral set is used; otherwise all the considered distances in just one band
will reduce to the Euclidean one (Figure 1.4).

In fact it is automatically demonstrated that in one dimension DM : (x, y) 7!
Â |xi � yi|=DE : (x, y) 7!

p
Â (xi � yi)2 where DM and DE are the Manhattan

and the Euclidean distances, respectively.
The Canberra distance is derived from the Manhattan distance by stan-

dardizing separately the absolute differences of each band with the sum of
both values, and thus will also equal DE in one dimension, such that: DC :

(x, y) 7! Â
|xi � yi|
|xi|+ |yi|

=DE : (x, y) 7!
p

Â (xi � yi)2.

FIGURE 1.4: Rao’s Q index calculated on a Copernicus
Proba-V NDVI image at 5km. Differenly from the orig-
inal Shannon’s formula, Rao’s Q also considers the dis-
tance among different values by better discriminating
the queues of the diversity distribution from very low
diversity (e.g. deserts and ice fields) to very high di-
versity (e.g. upper highly-complex mountain ranges).
This figure has been generated by the command rao <-
Rao(ndvi17_r,dist_m="euclidean",window=9,shannon=FALSE,np=8,

cluster.type="SOCK",na.tolerance=0.5).

1.5 Solving the intrinsic continuity of spectral data:
Cumulative Residual Entropy

As previously stated, spectral data are continuous variables that are approx-
imate to discrete (the so called “digital number”) for practical reasons. As
such, the fact that two different pixels should be counted or not in a cate-
gory depends from the whim of the normalisation of the signal when Digital
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Numbers (DNs) are generated. Shannon index is built strictly for a non or-
dered finite set of categories. For continuous variables, a derivative version
of Shannon index was proposed, but soon it was clear that it had very dif-
ferent properties than categorical formulation (Jumarie, 1990; Michalowicz et
al., 2013). Rao et al. (2004) proposed a Cumulative Residual Entropy (CRE)
to build a consistent Shannon-like index for continuous variables. It is based
on residual cumulative probability (P(X >= xi)), that can be estimated in a
robust manner from empirical mono-dimensional distributions by counting
for each value the number of observations with equal or larger values and
then dividing by the total. CRE is defined as follow:

CRE = �
Z inf

0
P(X � x) log P(X � x)dx (1.6)

and to estimate it from an empirical distribution, the following approach is
advised:

CRE = �
N

Â
i=1

P(X � xi) log P(X � xi)dx

dx = (xi � xi�1)

(1.7)

where X is the sorted vector of N observations. In practice, the approach is
similar to the Rao’s Q, given that a coefficient d, representing the disparity of
the observations, is used to weight the diversity estimate based on probabil-
ity. The difference resides in that the disparity in this continuous measure is
absolute, while in Rao’Q it is relative between two observations.

This difference makes more complex the generalisation to a multi-layer,
where this time the uni-dimensional cumulative residual probability is sub-
stituted with a multivariate one. For instance, here is an example making use
of three layers / bands:

X = [x0, x1, ..., xN ], Y = [y0, y1, ..., yN ], Z = [z0, z1, ..., zN ]

CRE = �
N

Â
i=1

N

Â
j=1

N

Â
k=1

Pcr(X, Y, Z)i,j,k log Pcr(X, Y, Z)i,j,kdxidyidzi

dxi = (xi � xi�1)

Pcr(X, Y, Z)i,j,k = P(X � xi; Y � yj; Z � zk)
(1.8)

The calculation of the cumulative residual probability Pcr(X, Y, Z) in an
efficient way is based on: i) calculating a contingency array with a certain
dimension for each band, and then ii) performing a reverse cumulative sum
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along each dimension as follows:

8I, J, K 2 [0, ..., N]

P(X, Y, Z)I,J,K = P(X = xI , Y = yJ , Z = zK)

Pcr(X|Y, Z)I,J,K =
I

Â
i=0

P(X, Y, Z)(N�i),J,K

Pcr(X, Y|Z)I,J,K =
J

Â
j=0

P(X|Y, Z)(I,(N�j),K

Pcr(X, Y, Z)I,J,K =
K

Â
k=0

P(X, Y|Z)I,J,(N�k)

(1.9)

In rasterdiv Cumulative Residual Entropy can be calculated as:

CRE(x, window=3)

producing a map such as that achieved in Figure 1.5.

FIGURE 1.5: Cumulative Residual Entropy calculated
on a Copernicus Proba-V NDVI image at 5km. This
figure has been generated by the command cre <-
CRE(ndvi17_r,window=9,np=8,cluster.type="SOCK",na.tolerance=0.5).

1.6 Solving point descriptors of diversity: the Rényi
and Hill generalised entropy

The metrics described above represent point descriptors of diversity, each of
which is able to represent only a part of the whole diversity spectrum that
can be attained. There is actually no single measure that could be adopted
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to represent all the different aspects of diversity with an intrinsic fallacy in
considering a ‘true’ diversity (Gorelick, 2011a).

Rényi (1970) firstly proposed a measure which is able to represent several
diversity metrics in just one formula, by only changing one parameter (a in
the original version of his manuscript). Given a sample area with N pixel
values and pi relative abundances for every i 2 {1, . . . , N}, the Rényi index
is:

Ha =
1

1� a
⇥ ln

N

Â
i=1

pa
i (1.10)

Changing the parameter a will lead to different indices starting from the
same formula (Hill, 1973). As an example, when a=0, H0 = ln(N) where
N=richness, namely the maximum possible Shannon index (Hmax). In prac-
tice, with a = 0, all the spectral values equally contribute to the index, with-
out making use of their relative abundance. For a ! 1, the Rényi will equal
Shannon H, according to the l’Hospital’s rule, while for a=2 the Rényi index
will equal the ln(1/D) where D is the Simpson’s dominance (Simpson, 1949).
The theoretical curve relating the Rényi index and a is a negative exponen-
tial, i.e. it decays until flattening for higher values of a, where the weight
of the most abundant spectral values is higher with small differences among
the attained diversity maps (Ricotta et al. (2003a)).

In rasterdiv the Rényi index is calculated as:

Renyi(x, window=3, mode ="single", alpha=1, base=exp(1))

where x and window are the input set and the window size of analysis, as
in previous functions (Figure 1.6). The mode can be i) "single" to compute the
Rényi index for just one alpha value, ii) "iterative" to compute the Rényi
index for all the integer values of alpha in a given interval, or "sequential"
to compute the Rényi index for all the alpha values in a given vector. alpha
indicates the a vale in Equation 1.10. Its default value is 1. In "single" mode,
alpha has to be a numerical value greater than 0; in "iterative" mode, alpha
has to be a length 2 vector and in "sequential" mode, alpha has to be a
vector of length at least 2. base is a numerical value, which let the user choose
the base of the logarithm in Rényi index formula. Its default value is exp(1).
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FIGURE 1.6: Rényi index calculated on a Copernicus Proba-
V NDVI image at 5km, considering different a values,
from 0 to 2. With a ! 1, the diversity map is equal to
the Shannon’s map of Figure 1.2. Increasing a will create
a flattening of the index with a lower ability to discern
differences among different maps (Ricotta et al., 2003a).
This figure has been generated by the command ren <-
Renyi(ndvi17_r,window=9,np=8,cluster.type="SOCK",alpha=c(0,0.5,1,2)).

Hill (1973) was the first ecologist applying the generalised entropy con-
cept initially developed by Rényi (1970). In particular, since no particular
formula would have a preeminent advantage over the others (Hill, 1973), the
Hill’s generalised entropy Na was based on the effective number of species of
Ha, namely the number of species that would lead to Ha if they were equally
abundant. In our case, the “species concept” is translated to the “spectral
values” concept. Hence, Na is the effective number of spectral values that
would give Ha as an output. Na can thus be calculated as:

Na =

 
N

Â
i=1

pa
i

! 1
1�a

(1.11)

As for the Rényi generalised entropy, changing a will let the index transform
in many other widely used indices, which are point descriptions of diversity,
i.e. peculiar cases of the Hill’s generalised theory. Hence, for a = 0, N0 = N,
where N is the total number of spectral values in the window of analysis; for
a = 1, N1 = exp H; for a = 2, N2 = 1/S, where S is the Simpson’s index,
and for a = •, N• = 1

IBP
, where IBP is the Berger-Parker index (Figure 1.7).

We refer to Ricotta et al. (2003a) and Ricotta et al. (2003b) for a concise review
on the theoretical properties of the Rényi and the Hill’s generalised entropy,
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respectively. In rasterdiv, the Hill’s generalised entropy can be calculated
as:

Hill(x, window=3, mode ="single", alpha=1, base=exp(1))

The Hill’s generalised entropy can be computed for i) one a value in
single mode, or ii) all the integer values of a in a given interval (iterative
mode). We refer to Chao et al. (2016) for a complete overview of the Hill’s
numbers application in ecology.

FIGURE 1.7: Another generalised entropy measure of
diversity: the Hill index, for which the same reason-
ing of the Rényi index holds true. The maps are de-
rived from a Copernicus Proba-V NDVI image at 5km.
This figure has been generated by the command hil <-
Hill(ndvi17_r,window=9,np=8,cluster.type="SOCK",alpha=c(0,0.5,1,2)).

1.7 Discussion

In this paper, we provided a full description of the main functionalities of
the new R package rasterdiv. The rasterdiv package provides an unprece-
dented suite of functions to calculate different indicies for estimating diver-
sity from space and to perform a first exploration of potential biodiversity
hotspots worldwide at a glance. Of course, measures of diversity from space
should not be viewed as a replacement of in-situ data on biological diver-
sity, but they are rather complementary to existing data and approaches. In
practice, they integrate available information of Earth surface properties, in-
cluding aspects of functional (structural, biophysical and biochemical), taxo-
nomic, phylogenetic and genetic diversity (Laliberté et al., 2019).
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Obviously, in most of the Information Theory based metrics, only one
layer can be used, considering those indices related to relative abundance,
apart from the Rao’s Q and the Cumulative Residual Entropy (CRE). In the
Rao’s Q index, multidimensional systems can be used to calculate spectral
distance (see also Nakamura et al. (2020) on the dimensionality of diversity),
while in the CRE it is possible to calculate a multidimensional cumulative
distribution to be used in the estimates (Drissi et al., 2008). In general, re-
motely sensed data are actually the approximation of more complex systems,
which depends on the original radiometric and spectral resolution. In ecolog-
ical terms, such original spectral space formed by many bands is analogous
to the Hutchinson’s hypervolume, in which a geometrical order is given to
those variables shaping species’ niches (Hutchinson, 1959; Blonder, 2018). In
this case, the spectral space is expected to be related to both species niches
and their relative diversity. The use of such spaces is an efficient approach to
figure out the diversity of an area and potentially guide field sampling and
monitoring schemes (Rocchini et al., 2008, 2018).

Concerning the data being used, spectral diversity measures computed
from satellite images represent a valid alternative to class-based land cover
maps for investigating landscapes heterogeneity (Rocchini et al., 2014). For
instance, a highly fragmented landscape characterised by a mosaic of crops
and seminatural forests suffers from oversimplification when investigated
through land cover classes (Amici et al., 2018), while it should present higher
spectral diversity values compared to more homogeneous landscapes within
the same study area (Rocchini, 2007). Several studies have already acknowl-
edged the importance of computing continuous spectral diversity measures
from spectral bands in order to better understand and discriminate the vari-
ous landscape components (Karlson et al., 2015; Godinho et al., 2018; Ribeiro
et al., 2019; Doxa et al., 2020). This said, caution is warranted when making
use of continuous data, by seriously considering the radiometry of pixel val-
ues. As an example, relying on continuous NDVI (Normalised Difference
Vegetation Index) values, ranging from -1 to 1 with float (decimal) preci-
sion data, will lead to a high neighbouring diversity which could actually
be the effect of data binning rather than of a biological underlying pattern.
In general, an 8-bit image with a range of integer values/classes from 0 to
255 would be preferable. In this paper, we made use of an 8-bit NDVI layer
rescaled from Copernicus data. However, a multispectral system reduced to
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one single layer through the first component of a Principal Component Anal-
ysis, or similar multidimensionality reduction techniques, would also be use-
ful (Féret and Boissieu, 2020). In fact, NDVI assumes a biomass-grounded
reflectance model, while the direct use of the original spectral data (digital
numbers) does not generally require any assumptions about the biology of
objects being sensed.

As remotely sensed estimates of diversity are currently based on rela-
tively long time series, they might allow a more general forecasting frame-
work of future shifts in rates of diversity change. This is particularly im-
portant when aiming at finding potential indicators of diversity change in
time (Schmeller et al., 2018). On this point, it has been widely demonstrated
that remotely sensed diversity might be in line with most of the spatially-
constrained Essential Biodiversity Variables proposed by Skidmore et al. (2015).

The rasterdiv package might also be particularly useful when aiming at
calculating diversity directly from climate data, derived from remote sensing
(Metz et al., 2014). This could allow analysing diversity based on the main
drivers of biological diversity in the field, rather than on the patterns result-
ing from pure spectral response. This is true when considering both wide
climatic variations at global scale and microclimate variations at the scale of
individuals (Zellweger et al., 2019). Due to unprecedented rates of climatic
changes, the adaptation of species to climate change is a benchmark in ecol-
ogy. Hence, estimating diversity from climate gridded data could improve
our understanding of the variability of species ranges at different spatial and
temporal scales (Senner et al., 2018).

1.8 Conclusion

Measuring diversity from above and delivering rapid and robust knowledge
about diversity over wide regions could be of crucial importance for guid-
ing management practices. From this point of view, the spatial variation of
the spectral signal has an intrinsic cumbersome relation with the spatial au-
tocorrelation (sensu Laliberté (2008)) of pixel values over space (and time,
e.g. Rocchini et al. (2019)), which renders the proposed rasterdiv package
a powerful tool to monitor the variation of ecosystems properties over space
and time, and thus their change (Rocchini et al., 2018).

As previously stated, no single measure provides a full description of all
the different aspects of diversity. That is why, the rasterdiv package can
result useful in making multiple calculations based on reproducible open
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source algorithms, robustly rooted on Information Theory from which the
different indices are extracted.
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2.1 Abstract

Spatio-ecological heterogeneity is strongly linked to many ecological pro-
cesses and functions such as plant species diversity patterns and change,
metapopulation dynamics, and gene flow. Remote sensing is particularly
useful for measuring spatial heterogeneity of ecosystems over wide regions
with repeated measurements in space and time. Besides, developing free
and open source algorithms for ecological modelling from space is vital to
allow to prove workflows of analysis reproducible. From this point of view,
NASA developed programs like the Surface Biology and Geology (SBG) to
support the development of algorithms for exploiting spaceborne remotely
sensed data to provide a relatively fast but accurate estimate of ecological
properties in vast areas over time. Most of the indices to measure hetero-
geneity from space are point descriptors : they catch only part of the whole
heterogeneity spectrum. Under the SBG umbrella, in this paper we provide
a new R function part of the rasterdiv R package which allows to calculate
spatio-ecological heterogeneity and its variation over time by considering all
its possible facets. The new function was tested on two different case stud-
ies, on multi- and hyperspectral images, proving to be an effective tool to
measure heterogeneity and detect its changes over time.

2.2 Introduction

The concept of spatiotemporal heterogeneity is crucial in ecological mod-
elling to link spatial patterns to the generating processes and to the functional
networking among organisms (Borcard et al., 1992). In ecological research,
the search for new methods underlying spatiotemporal patterns in ecosys-
tem heterogeneity has been a recurring theme (Rocchini and Ricotta, 2007;
Atluri et al., 2018). Spatio-ecological heterogeneity, in this paper considered
as the degree of non-uniformity in vegetation, land cover, and physical fac-
tors (soil, topography, microclimate and topoclimate; (Stein et al. , 2014), has
been proven to be strongly linked to many ecological processes and func-
tions such as plant species diversity patterns and change (Rocchini et al.,
2018), metapopulation dynamics (Fahrig , 2007), and gene flow (Lozier et al.,
2013). Indeed, an increase of spatial heterogeneity means an increase in the
availability of ecological niches, provision of refuges at relatively short dis-
tances and opportunities for spatial isolation and local adaptation (Stein et al.
, 2014). As a consequence, species coexistence, persistence and diversification
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are generally in strict relation with the degree of environmental heterogene-
ity available within the landscape (Stein et al. , 2014; Tews et al., 2004). The
development of new methods for measuring spatio-ecological heterogene-
ity is also fundamental to make estimations of its change in time in order to
improve conservation planning (Skidmore et al., 2021).

In this context, NASA developed programs like the Global Ecosystem Dy-
namics Investigation (GEDI, gedi.umd.edu/) or the Surface Biology and Ge-
ology (SBG) mission (science.nasa.gov/earth-science/decadal-sbg) ex-
ploiting spaceborne remotely sensed data to provide a relatively fast but
accurate estimate of spatio-ecological heterogeneity in vast areas over time.
In fact, spectral heterogeneity of an optical image - associated with the re-
flectance values of the pixels - can be a proxy of the spatio-ecological het-
erogeneity (Rocchini, 2007). Hence, the variation of spatio-ecological hetero-
geneity in space and time (e.g., phenological cycles) can be effectively in-
ferred using remote sensing (Schneider et al., 2017).

Therefore, the measure of ecosystem heterogeneity over time from satel-
lite through Free and Open Source Software and algorithms allows robust, re-
producible and standardized estimates of ecosystem patterns and processes
(Rocchini and Neteler, 2012). Also, its use brings many advantages: avail-
ability, transparency and shareability. In this context, the R platform is one
of the most used statistical and computational environment in ecology, par-
tially thanks to the continuous development of relevant packages. In partic-
ular, the rasterdiv package (Marcantonio et al. , 2021; Rocchini et al., 2021;
Thouverai et al., 2021) allows to calculate a plethora of different indices to
measure spatio-ecological heterogeneity from space.

Most of the algorithms have been related to Information Theory relying
on abundance-based metrics, starting from Shannon’s index (Shannon, 1949)
(see section 2.3). However, some information about the spectral distance
among pixel reflectance values might be lost if not considered in the calcula-
tion (Rocchini et al., 2017). Currently, the candidate for solving the problem
is Rao’s Quadratic Entropy index (hereafter Rao’s Q) (Rao, 1982): this index,
besides the relative abundance of pixel values in a given moving window or
polygonal area, incorporates also their spectral distances (section 2.3). Both
Shannon and Rao’s Q indices are point descriptors of heterogeneity, namely
they can only show part of the whole heterogeneity spectrum. Recently Roc-
chini et al. (2021) proposed an implementation of the Rao’s Q index by pa-
rameterizing the original formula, and allowing the whole continuum of het-
erogeneity to be measured thanks to Rao’s Q continuous profiles (see section

gedi.umd.edu/
science.nasa.gov/earth-science/decadal-sbg
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2.3).
This paper aims to show how to make proper use of the Rao’s continuum

heterogeneity variation profile by proposing a new R function – integrated
into the rasterdiv R package (Marcantonio et al. , 2021) which calculates
AUC, the area under the curve formed by applying the parametric Rao’s Q
index (see section 2.3). Two case studies on multi- and hyperspectral satellite
images are also provided in order to verify if the new metric proposed could
be an effective tool for the study of spatio-ecological heterogeneity.

2.3 The algorithm

2.3.1 The theory

Algorithms that aim to measure environmental heterogeneity through re-
mote sensing data can rely on the moving window technique, which di-
vides remotely sensed imagery into user-defined squares (windows) to de-
rive measures of heterogeneity. Examples are included in the rasterdiv R
package (Rocchini et al., 2021). One of the most used metrics included in the
package is the Shannon entropy index H (Shannon, 1949):

H = �
N

Â
i=1

pi ln pi (2.1)

where the relative abundance of every pixel reflectance value calculated
as the ratio between the actual value of the pixel i 2 {1, ..., N} and the sum of
the pixel values of the moving window (pi) in an image of N pixels is consid-
ered. It is usally calculated of one layer images, such as a vegetation index or
the first axis of a PCA. However, Shannon’s H does not consider the spectral
distances among pixel reflectance values, overestimating the heterogeneity
of homogeneous surfaces (Rocchini et al., 2017). For instance, when using
Shannon’s H, spectral values differing by a few decimals will be treated the
same as spectral values differing by several order of magnitudes. To over-
come this issue, Rao’s Q index (Rao, 1982) can be used to include the pixel’s
spectral distances in the calculation:

Q =
N

Â
i=1

N

Â
j=1

dij ⇥ pi ⇥ pj (2.2)

where dij is the spectral distance between pixel i and pixel j and pi and pj

are the relative abundances of the pixels i and j in an assemblage of N pixels.
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The spectral distance between pixels dij can be calculated over any number
of layers and using any metric for the calculation of pairwise distances. For
example, in the rasterdiv package, the Rao function permits the calculation
of Rao’s Q chosing from "euclidean", "manhattan", "canberra", "minkowski"
and "mahalanobis" as the type of distance calculated (Marcantonio et al. ,
2021). Both Shannon’s H and Rao’s Q are point descriptors of heterogeneity,
showing only one part of its potential spectrum. Therefore, the use of gener-
alized entropies, where one single formula represents a parameterized ver-
sion of an index, provides a continuum of heterogeneity metrics reflecting all
the characteristics of the heterogeneity spectrum. Rocchini et al. (2021) pre-
sented a parametric version of Rao’s Q allowing the characterisation of the
dimensionality of heterogeneity in different ecosystems:

Qa =

 
N

Â
i,j=1

wijda
ij

! 1
a

(2.3)

where dij is the spectral distance between pixel i and pixel j and wij is
the combined probability (1/N2) of extracting pixels i and j in this order in
an image of N pixels. In other words, parametric Rao’s Q is a generalized
mean that measures the expected distance between two randomly chosen
pixels regulated by the parameter a. The a parameter provides a continuum
of potential diversity indices by regulating the weight of dij with the highest
values obtaining different types of means as it is increasing ([a ! 0] ) geo-
metric, [a = 1] ) arithmetic, [a = 2] ) quadratic, [a = 3] ) cubic, and so
on till [a! •]) maxd).

In this paper, we propose to calculate the area under the curve (AUC)
constructed by applying the index parametric Rao’s Q over a sequence of a

values. We want to verify if AUC can be used to quantify the width of the
diversity spectrum calculated with parametric Q for each pixel, resulting in
an image that can be exploited to monitor the change in the heterogeneity
spectrum over time for a selected area.

2.3.2 The R function

The function rasterdiv::RaoAUC() exploits the function rasterdiv::paRao()
to define the values of the parametric Rao’s Q using a vector of alphas de-
cided by the user. Accordingly, the values of parametric Rao’s Q are calcu-
lated building a moving window around every pixel of the remote sensing
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image for every alpha selected. Then, the integral of the curve formed by the
values of the parametric Rao’s Q index obtained for every pixel is calculated.

2.4 Examples

In this section, we present one theoretical examples and two case studies for
the new R function proposed (RaoAUC()). Specifically, AUC was calculated
for one layer, multi- and hyperspectral satellite images of areas afflicted by
a sudden event that changed the spatio-ecological heterogeneity of the area.
We choose two images per case study of two different moments in time and
calculated the difference between the two, highlighting the increase in het-
erogeneity.

2.4.1 A theoretical example

In this section, we will show how to use the function accRao() from the
rasterdiv package to calculate the accumulation function (integral) of Rao
values obtained using a range of alpha-values. We used a raster for the global
average NDVI rescaled at 8-bit available from rasterdiv. This raster was
first cropped on the islands of Sardinia and Corsica. In order to simulate the
effects of an ecological perturbation, for example widespread drought, we
created a new raster with perturbed NDVI values for these two islands. Pix-
els with NDVI higher than 150 were decreased using values from a normal
distribution centered on 50 with a standard deviation of 5. Then, we applied
accRao() both on the original and simulated raster by using alphas ranging
from 1 to 10:
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1RaoAUC.before  accRao(
alphas = 1:10, #range of alphas

3

x = ndvi.before , #raster layer
5

dist_m = "euclidean", #method for the
7#calculation of the

#spectral distance
9

window = 3, #dimension of the moving window
11

method = "classic", #specifies if the function
13#is applied on a single

#layer or on a
15#multidimensional system

17rasterAUC = TRUE , #specifies if the output
#will be a raster layer or

19#a matrix

21na.tolerance = 0.4, #proportion of NA values
#tolerated

23

np = 1 #number of cores which will be spawned
25)

27RaoAUC.after  accRao(alphas=1:10,
x = ndvi.after ,

29dist_m = "euclidean",
window = 3,

31method = "classic",
rasterAUC=TRUE ,

33na.tolerance=0.4, np=1)

Afterwards, the difference between the two rasters, before and after the
simulated perturbation, was calculated (Figure 2.1). Also, the average para-
metric Rao of the images in Figure 2.1 was calculated for every a value, and
the resulting curves are showed in Figure 2.2.



2.4. Examples 41

FIGURE 2.1: From left to right: the NDVI images of Sardinia
and Corsica before and after the simulated perturbation, the
correspondent AUC images and their difference after - before

the simulated perturbation.

FIGURE 2.2: Three curves representing respectively: the mean
values of parametric Rao’s Q (i) before (yellow) and (ii) after
(grey) the simulated ecological perturbation (drought) of Fig-
ure 2.1, their correspondent confidence intervals and (iii) their
difference (after - before, dashed line) over increasing alphas.

accRao() function derives the value of parametric Rao for each pixel us-
ing a moving window algorithm. To illustrate how this methodology works,
we applied paRao() on a single group of neighbor pixels, which represents a
moving window, from the two NDVI rasters and with alphas ranging from 1
to 10 as follows:
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#Selection of the 3x3 window
2ndvi.pix.b  ndvi.before[41:43,

21:23,drop = FALSE]
4ndvi.pix.a  ndvi.after[41:43, 21:23,drop=FALSE]

6#Set the alpha interval
alphas  1:10

8

#Set the number of pixels in the selected window
10N  3^2

12#Function to calculate paRao over the set alphas
RaoFx  function(alpha ,N,D) {

14( sum((1/(N^4)) * D^alpha )*2)^(1/alpha)
}

16

#Calculation of paRao before
18rao.b  sapply(alphas , function(a) {

RaoFx(alpha = a, N = N,
20D = as.vector(ndvi.pix.b))})

22#Calculation of paRao after
rao.a  sapply(alphas , function(a) {

24RaoFx(alpha = a, N = N,
D = as.vector(ndvi.pix.a))})

From the values obtained (a parametric value for each alpha), the area
under the curve was calculated integrating the results (Figure 2.3):
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1#Calculation of AUC before
RaoAUC.bf  approxfun(x = alphas , y = rao.b)

3RaoAUC.b  integrate(RaoAUC.bf, lower = 1,
upper = 10, subdivisions = 500)

5

#Calculation of AUC after
7RaoAUC.af  approxfun(x = alphas , y = rao.a)

RaoAUC.a  integrate(RaoAUC.af, lower = 1,
9upper = 10, subdivisions = 500)

FIGURE 2.3: Curves representing the values of parametric
Rao’s Q for one pixel before (yellow) and after (grey) the sim-
ulated ecological perturbation (drought) of Figure 2.1 over in-
creasing alphas. The area under the curve (AUC) is highlighted.

2.4.2 Empirical examples

In this section, the accRao() function is tested on two real-world case studies
by comparing remotely sensed images before and after a perturbation event.
AUC is calculated on multi- and hyperspectral images, exploiting the infor-
mation that every band holds to estimate the spatio-ecological heterogeneity.

Example 1: Fire spread in the Kangaroo island (Australia)

This section focuses on the major fire-affected area of Kangaroo Island in
January 2020, in particular on Flinders Chase NP and the associated Ravine
Des Casoars Wilderness Protection Area. Two cloudless images from Coper-
nicus Sentinel-2 (https://scihub.copernicus.eu/) with a spatial resolution

https://scihub.copernicus.eu/
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of 10m before (January 2019) and after (January 2021) were compared (Figure
2.4).

FIGURE 2.4: On top left, the Kangaroo Island before and after
the fires (the area used for the analysis is highlighted) and the
selected area before and after the fire in RGB false color (NIR,
red, green); on the right the correspondent AUC images and

their difference after - before the fire.

The accRao() function was applied on the 2 multispectral images (Red,
Green, Blue and NIR bands) using a moving window of 9⇥9 pixels and the
parameter alpha was set to a range of 1 to 5:

1#accRao () function
accRao(alphas = 1:5, x = kanga_multi ,

3dist_m = "euclidean", window = 9,
method = "multidimension", rasterAUC = TRUE ,

5na.tolerance = 0.9, np = 1)

Subsequently, the difference between the obtained AUC images was cal-
culated, with positive values meaning an increase in spatio-ecological hetero-
geneity (Figure 2.4). In this case, the AUC of Rao’s Q profiles succeeded to
highlight areas where the perturbation (fire) event caused an increase of spa-
tial heterogeneity of vegetation which was more homogeneous (continuous
woodland cover) before the perturbation.
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Example 2: Post fire in Santa Barbara, California

For the last empirical examples two hyperspectral images of a postfire scene
in Santa Barbara (California) were downloaded from AVIRIS https://aviris.
jpl.nasa.gov/ platform. The first image is from June 2009, the second from
June 2011 in order to visualize the recovery of the vegetation after the fire
event (see Figure 2.5).

FIGURE 2.5: Post fire in Santa Barbara 2009 (left) and 2011
(right). The area within the square is the studied area.

The accRao() function was applied over all the 224 bands of the two im-
ages using a moving window of 9⇥9 pixels and setting the a parameter to a
range of one to 5:

1#accRao () function
accRao(alphas = 1:5, x = santabarbara_hyper ,

3dist_m = "euclidean", window = 9,
method = "multidimension", rasterAUC = TRUE ,

5na.tolerance = 0.9, np = 1)

Subsequently, the difference between the obtained AUC images was cal-
culated as in the previous examples (Figure 2.6). The difference between the

https://aviris.jpl.nasa.gov/
https://aviris.jpl.nasa.gov/
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obtained AUC highlights subtle changes of spatio-ecolocical heterogeneity in
the studied area between 2009 and 2011.

FIGURE 2.6: From the top: RGB images of the study area (Santa
Barbara, CA) in 2009 and 2011, the correspondent AUC images

and their difference 2011 - 2009.

2.5 Discussion

The study of landscape structure has been steadily growing in recent years
(e.g., Lichstein et al., 2002; Saravia, 2015) with the development of several
methodologies and approaches, which have been tested ecosystems and sup-
ported in the scientific literature (see Bar-Massada and Wood, 2014). In par-
ticular, the use and availability of remote sensing data have made it possible
to assess specific heterogeneity patterns over various ecosystems, with in-
creasing performance in terms of spectral/spatial/temporal characteristics,
opening up new possibilities for exploring complex ecological processes.

Using our algorithm, environmental heterogeneity is estimated by the
range of spectral values associated to the spatial variability within a given
habitat. Hence, environmental heterogeneity can be evaluated contiguously,
from regional to continental extents, according to the remote sensing data
used and the spatial extent of the analysis. Among the heterogeneity met-
rics, parametric Rao’s Q adds a layer of information to classical estimates of
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heterogeneity from remotely sensed multispectral data. This index considers
pairwise pixel spectral distance to separate areas with high richness but low
evenness from those with low richness but high evenness (Rocchini et al.,
2017).

In addition, the parametric Rao’s Q can be calculated in a multivariate
system such as a multi-temporal system, i.e. long time series, in order to
improve the assessments and prediction of changes in spatio-ecological het-
erogeneity over space and time (Rugani and Rocchini, 2016). Also, by con-
sidering multiple bands, it has a higher capability to discern subtle diversity
changes over the landscape (Torresani et al., 2019).

In this paper, all the potential facets of heterogeneity were investigated by
parameterizing the Rao’s Q metric and calculating the area under the curve of
continuous entropy profiles. This would be particularly useful when dealing
with multitemporal sets, with increases or decreases of heterogeneity pro-
voked by different ecological processes like drought (subsection 2.4.1, see
also Jiao et al., 2020) and fire (subsection 2.4.2, see also Chuvieco and Kasis-
chke, 2007; subsection 2.4.2).

The application of AUC on Rao’s Q in before / after ecological pertur-
bation scenarios can help pointing out areas with the highest difference in
spectral heterogeneity, by considering the whole heterogeneity continuum.
For example, subsection 2.4.2 of two postfire scenes shows the sensibility
of the algorithm in highlight even subtle landscape changes using multiple
bands for the analysis. Heterogeneity of ecosystems is multifaceted in its
very nature. As stressed by (Gorelick, 2011) there is no "true heterogeneity"
measurement since important holistic aspects of ecosystems are inevitably
lost once making use of single metrics. From this point of view, the proposed
generalized entropy, based on a parameterization of the Rao’s Q entropy (and
its area under the curve) can help catching the multidimensionality of ecosys-
tem heterogeneity components (Nakamura et al., 2020), avoiding the intrinsic
fallacy of a single best index of true heterogeneity (Gorelick, 2011).

Moreover, the Rao’s Q original formula directly takes into account the
distance among values (pixel reflectances once applied to remote sensing im-
agery). This leads to the possibility of accounting for the turnover among
reflectances, also known as beta-diversity in ecology (Rocchini et al., 2018).
Since little consensus has been reached as to general measures of heterogene-
ity / beta-diversity measurement in literature (Koleff et al., 2003), the afore-
mentioned use of a generalized metric like the parametric Rao’s Q helps de-
tecting gradients in reflectance beta-diversity change (turnover) over space,
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otherwise hidden when relying on point descriptors of heterogeneity, i.e. sin-
gle metrics like the commonly used Shannon and Simpson indices in remote
sensing applications (Nagendra, 2002). In other words, while a wide range
of approaches has been used to catch the variation of ecosystem proper-
ties, finding ways to generalize heterogeneity measurement could represent
a consistent approach to describe heterogeneity patterns change in space and
time (Haralick & Kelly , 1969).

The use of a continuum of diversities as in the parametric Rao’s Q leads to
the understanding of hidden parts of the whole diversity of dimensionalities
(Nakamura et al., 2020). Increasing alpha in Equation 2.3 will increase the
weight of higher distances among different values until reaching the maxi-
mum distance value possible (Rocchini et al., 2021). For this reason, spatio-
ecological heterogeneity values of the parametric Rao’s Q increase with each
alpha progressively added to the calculation constructing a curve for ev-
ery moving window built around each pixel (Rocchini et al., 2021). Conse-
quently, applying an integral, it is possible to calculate the area under every
pixel’s window area curve obtaining a new spatio-ecological heterogeneity
metric, AUC. Hence, the accRao() function can highlight the differences be-
fore and after an ecological perturbation both in the theoretical and in the em-
pirical examples (Figures 2.1, 2.4 and 2.6) showing the change in the whole
heterogeneity continuum and being able to detect both: (i) spatially wide
heterogeneity change patterns, as in the Kangaroo Island’s fires example (see
subsection 2.4.2), as well as (ii) spatially localized differences in space and
time, as in the post fire in Santa Barbara example (see subsection 2.4.2).

The three examples proposed in section 2.4, show the application of AUC
on one layer (subsection 2.4.1), multispectral (subsection 2.4.2) and hyper-
spectral 2.4.2 satellite images. However, for the hyperspectral images it is
difficult to address a cause for the heterogeneity change: because of the high
number of bands exploited for the analysis we can’t know which ones weight
more in the measure of the index. Analysis like the Principal Component
Analysis (PCA) or correlation matrices can help to highlight the bands which
give more contribution in the calculation of the spatio-ecological heterogene-
ity.

Also, in the empirical case studies only a range of alpha between 1 and
5 was tested because of the high computational complexity of the function
accRao() as it is now. We are actually working to speed up the algorithm, so
it would be interesting in a future study to test different ranges of alpha. In
this context, it would also be helpful the study of the influence of the number
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of bands and their resolution on the measure of AUC, as highlighted by the
Santa Barbara subsection (see subsection 2.4.2).

In conclusion, the integration over an alpha range is more convenient
than having to choose a single alpha level as the most representative level
of diversity. This task is often complicated as there is no direct interpreta-
tion for the meaning of indexes calculated with different alphas. Here, we
propose the way forward to re-conciliate the advantage of having a single
metrics without the need of choosing a single alpha value.

2.6 Conclusion

In this paper, we provided a practical demonstration of the effectiveness of
a method that can supply meauseres of generalized entropy at different spa-
tial scales and in different contexts. Generalized means represent an effective
tool to develop a unifying notation for a large family of parametric diversity
and dissimilarity functions (Ricotta et al., 2021). Indeed, binding different
heterogeneity metrics in order to analyze ecosystem changes proved to be a
reliable approach to enhance the output information. Although remote sens-
ing data have long held the promise of transforming environmental monitor-
ing efforts, publicly accessible tools leveraging these data to achieve action-
able in-sights have been lacking. We suggest that Rao’s AUC can be useful
to identify areas more vulnerable to environmental changes , and to develop
and implement appropriate habitat management plans and environmental
policies.
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3.1 Abstract

Global change caused by human activity (e.g., land fragmentation, deforesta-
tion, pollution, anthropization of natural landscapes ) has several effects on
the biomes of the Earth, leading to alterations in the functioning of ecological
systems. In this context, remote sensing represents an important tool to as-
sess ecosystem changes, as it allows to collect a huge amount of data at differ-
ent temporal and spatial resolutions concerning various compartments of the
Earth system (land, ocean, atmosphere, and cryosphere). This information
can be used to estimate precipitation patterns, global temperatures, snow
cover and aerosol concentrations. The aim of this work is to exploit this wide
availability of data to display the ecosystem changes using a new visualiza-
tion method: the helical graphs. The helical graphs represent the change of
a variable over time, reporting on the y-axis its moving averages and on the
x-axis its rates of change. These new charts were tested on the NDVI index
retrieved from Google Earth Engine (https://earthengine.google.com/) to
visualize trends on selected biomes of the Earth (tropical and boreal forests).
The results show that the helical graphs are a useful tool to highlight trends
that might not be easily detected in a time series. In conclusion, the helical
graphs can have a lot of application in ecology, especially exploiting the wide
amount of data available thanks to the remote sensing.

3.2 Introduction

Nowadays, human activities are menacing the integrity of Earth’s ecological
systems, leading to heavy alterations of natural environments and to the dis-
ruption of ecosystems’ equilibria (Sage and Kubien, 2007; Steffen et al., 2004).
This phenomenon, known as “Global Change”, includes land fragmentation,
deforestation, pollution, anthropization of natural landscapes and alterations
in the functioning of ecological systems (Risser et al., 2000). Among the lat-
ter, world’s forests play a significant role in biodiversity maintenance and
climate regulation, so that monitoring their change is important for biodiver-
sity conservation, management of ecosystem services, and climate protection
(Anderson-Teixeira et al., 2021). The impact of global change on forests is al-
tering their function across different latitudes, so it is important to study its
effects under different climatic conditions (Hansen et al., 2013). The conse-
quences of global change are spreading faster and at a larger scale, becoming
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more difficult to track them using solely ground-based monitoring (Rocchini
et al., 2021).

In this context, remote sensing represents an important tool to assess
ecosystem changes, as it allows to collect a huge amount of data at different
temporal and spatial resolutions (Campbell and Wynne , 2011). This technol-
ogy allows the estimation of several metrics from different compartments of
the Earth system (land, ocean, atmosphere and cryosphere), such as precipi-
tation patterns, global temperatures, snow cover and aerosol concentrations
(Khorram et al. , 2012). Therefore, satellite images can be employed in a
wide variety of studies, for instance to measure ecosystem (Rocchini et al.,
2021) and species (Chapangu et al., 2020) diversity, study species (Alessi et
al., 2021) and biomass (Santoro et al., 2021) distribution, evaluate variations
in temperature, precipitation, wind direction, UV-B radiations and pollutants
(Carey et al., 2001), assess changes in land cover (Boyd et al., 2002), estimate
carbon stocks (Chapangu et al., 2020), assess endangered species’ habitat al-
teration (Cazzolla Gatti and Velichevskaya, 2020), and monitor spatial status
of coastal areas threatened by sea level rise and human activities (Ahmed et
al., 2009).

In all these applications, global change is monitored by observing and re-
porting differences in the value of some important systemic variables (i.e.,
precipitation, diversity indices, fragmentation, etc.) between two or more
points in time. To visualize these trends, different graphical methods have
been proposed. One example is the use of different colors for different rates
of change between two satellite images taken at two points in time (Ah-
mad, 2012), anomaly maps (Das and Srinivasan, 2009), and time-series plots
(where time is reported on the x-axis and the target variable on the y-axis)
(Du Toit et al., 1986). However, these visualization methods sacrifice some
of the information for the sake of simplicity, while in some applications it
may be critical to report additional details to understand ecological changes
(Cooksey, 2020). This information should still be condensed in a single graph
to remain easy to interpret. A solution is represented by the "Helical Graphs"
(H-graphs) proposed by the statisticians Danny Dorling and the illustrator
Kirsten McClure, which merge information on the direction of a metric to-
gether with the direction of the change between time points (Dorling, 2020).

In this paper, we focus on the vegetation state of tropical and boreal forests,
given their ecological importance and their different climatic conditions. Also,
as for the tropical forests, we report a local study in Brazil comparing differ-
ent land use types. the Normalised Difference Vegetation Index (NDVI) is
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employed to monitor the ecosystems over time. NDVI represents the pro-
ductivity of the area over which is calculated, serving as a proxy for the
photosynthetic portion of the ground biomass, and it is often used to detect
changes in ecosystems over large areas (Huang et al., 2020).

The aim of this paper is to explore the use of H-graphs to visualize the
change in vegetation biomass on two world’s major forests biomes, in order
to evaluate the opportunity of applying this alternative display for ecological
temporal trends.

3.3 Study Areas

3.3.1 Tropical forests

Tropical forests are located between 23.5orth and 23.5outh of the equator
(Gillman et al., 2015). They are characterised by dense tree cover, typically
with a high diversity of trees, lianas and epiphytes (Murphy and Bowman,
2012). The canopy isgenerally dominated by evergreen broadleaves (Lewis,
2006), although moist- and drought-adapted deciduous trees are also present
(Ravindranath and Sukumar, 1998).The climate of tropical forests is char-
acterized by wet and dry seasons, which can vary greatly in their length
and their intensity (Windsor, 1990). However, tropical forests are known for
being the wettest of all biomes, with more than 1.5 m of rainfall annually
(Lewis, 2006). Temperatures span between 20° and 30°C, but there are also
areas where temperatures can be less than 20°C (Taylor et al., 2017).

This biome, even though covering only ca. 10% of the Earth’s land sur-
face, is of global importance as it stores and processes large quantities of
carbon via photosynthesis and respiration (Malhi and Grace, 2000). For this
reason, small changes within the tropical forest biome can potentially lead to
major impacts at a global scale, on both the rate and magnitude of climate
change and the conservation of biodiversity (Lewis, 2006). Nowadays, trop-
ical forests are under pressure by human activities and their consequences,
which include climate change. At the same time, they form the most di-
verse biome on Earth, housing over half of the planet’s biodiversity (Lewis et
al., 2015), including the majority of tree species (Cazzolla Gatti et al., 2022).
Tropical rainforest ecozones account for 32% of total forest loss (Hansen et
al., 2013), mainly due to agricultural production (Gibbs et al., 2010).
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3.3.2 Boreal forests

Theh boreal forests biome is located around the northern circumpolar belt
and dominated by coniferous vegetation (Apps et al., 1993). The climate is
governed by strong seasonal variation (Thiffault, 2019) and the mean annual
precipitation is less than 900 mm/yr (Binkley and Fisher, 2012). Despite this
reduced rainfall regime, low temperatures and high cloud cover lead to low
evaporative stress (Binkley and Fisher, 2012). Snow cover persists at least five
to eight months (Shugart et al., 1992). Boreal forests are particularly endan-
gered by climate change. As a matter of fact, it is warming faster than other
biomes, approximately twice as quick as the global average (IPCC, 2007). The
main cause of forest loss and decreased vegetation biomass in boreal forests
are fires which, however, are often a consequence of logging activities (Caz-
zolla Gatti et al., 2021) and can be followed by higher photosynthetic activity
due to the recovery of herbaceous and deciduous vegetation (Fiore et al.,
2020).

3.4 Materials and Methods

3.4.1 Helical graphs theory

Helical Graphs can help visualizing the change of a variable over time. The
values of the studied variable at different points in time are reported as mov-
ing averages on the y-axis, while its rate of change between measurements
is reported on the x-axis. Generally speaking, the x-axis represents the rate
of change of the moving average; hence the direction of the curve represents
a decrease or an increase of the mean. In particular, a curve that tends to
the right indicates a general increase of the mean between two points in
time, while a curve that tends to the left shows a general decrease. For in-
stance, given N values of a variable vi to monitor over the times ti, for every
i 2 0, 1, 2, . . . , N, mi is the value represented on the y-axis of the H-graph,
calculated as the moving average of vi, vi�1 and vi+1. Similarly, the rate of
change rci associated to mi, is calculated as the difference between vi+1 and
vi�1. Accordingly, the moving averages and the rates of change are calcu-
lated considering the values included between a certain distance in time be-
fore and exactly the same distance in time after the selected point in order to
smooth the timelines for a better visualization of the data (Dorling, 2020).
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3.4.2 Helical graphs implementation

As previously stated, two forest biomes with significantly different climatic
conditions and vegetation dynamics were selected for the analysis from Din-
erstein et al. (2017) classification: boreal forests and tropical forests. The
tropical forests biome was retained as a macro-group including "Tropical
and Subtropical Moist Broadleaf Forests" and "Tropical and Subtropical Dry
Broadleaf Forests".

[b]0.9

FIGURE 3.1: Boreal forests biome

[b]0.8

FIGURE 3.2: Tropical forests biome

We also compared the tropical forest with other land use types at local
scale using a land use map of Brazil for the year 2000 from MAPBIOMAS
(https://mapbiomas.org/en/project) and selected three land cover types to
compare (forest, forest plantation and crops) to provide a more local focus.
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FIGURE 3.3: Land use map of Brazil downloaded from
https://mapbiomas.org/en/project representing in green the
tropical forest, in blue the forest plantations and in orange the

crops.

We chose the NDVI index to represents the temporal trend of vegetation
productivity over time for the selected areas. The monthly average NDVI for
the tropical and boreal forests areas selected from the classification map of
biomes and for the land cover types areas selected from the Brazil land use
map was calculated from year 2000 to year 2021 using Google Earth Engine
(Gorelick et al., 2017) through the R package "rgee" (R Core Team, 2021; Ay-
bar et al., 2020). The data were retrieved from global MODIS NDVI products
MOD13Q1 at a resolution of 250 m that provides for two to four images per
month. Only the values of the northern hemisphere were selected taking sea-
sonal fluctuations into consideration and excluding pixels with bad quality
(ex cloudy areas or areas covered by snow).

NDVI ranges from -1 to 1 and is calculated from multispectral images as:

NDVI =
NIR� Red
NIR + Red

(3.1)

where NIR is the near-infrared radiation (773 — 895 nm) and Red is the red
band (610 — 690 nm).

For the construction of the helical graphs, the moving averages and the
rates of change were calculated using R (R Core Team, 2021). The data were
smoothed using LOESS (locally estimated scatter-plot smoothing) local re-
gression using the function “loess” of “stats” package. The parameter span
of the function indicating the degree of smoothing a was set to 0.4 and 0.1
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respectively for the moving averages and rates of change of the monthly val-
ues for the biomes NDVI. As for the local study the span was set to 0.5. The
degree of the smoothing is set to obtain the best possible visualization of the
data in order to better fit seasonal variation depending on the case study. The
complete code is available in Appendix 1.

3.5 Results and Discussion

In this study, we visualized the change in time of two of the world’s major
forest biomes, tropical and boreal forests. Specifically, we used NDVI (an
index calculated from the NIR and Red bands of multispectral satellite im-
ages) as a proxy of vegetation productivity and biomass (Myneni et al., 1995).
This index is also related to canopy properties such as leaf area index (LAI)
and fractional vegetation cover (i.e. the fraction of ground covered by green
vegetation) (Carlson and Arthur, 2000).

FIGURE 3.4: Helical graphs representing the variation from
year 2000 to year 2021 of the tropical (A) and the boreal (B)
forests. On the y-axis, the NDVI values at different time points,
on the x-axis its change rate. Every arrow represents a year:
even years are displayed as dark green, odd years as light

green.

Figure 3.4 A, shows the helical graph of the variation of the NDVI index
from year 2000 to year 2021 for the tropical forests. The rate of change oscil-
lates between ˘0.02 and 0.03 and the NDVI goes from a value of 0.36 in the
year 2000 to a value of 0.52 in 2021. The graph shows an increasing trend
for the NDVI of tropical forests, which could be attributed to Global Change.
In fact, rising temperatures and CO2 concentration in the atmosphere may
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lead to greaterprimary productivity and, consequently, to an overall increase
in NDVI values (Norby et al., 1999; Paruelo et al., 2004). Despite this biome
being increasingly threatened by deforestation, the NDVI kept increasing in-
stead of decreasing, presumably because forested areas are often replaced by
crops (Benhin, 2006). In a recent study conducted by Irteza et al. (2021), no
significant NDVI differences were observed between exotic plantations and
forests, so loss of natural forest is not necessarily related to the index.

The helical graph of the variation of the NDVI index from 2000 to 2021
for the boreal forests is reported in Figure 3.4 B. The rate of change oscillates
between ˘0.04 and 0.04 and the NDVI goes from a value of 0.24 in 2000 to
a value of 0.36 in 2021. The graph shows an increasing trend interrupted
by two decreases between years 2000 and 2005 and between years 2010 and
2013. These oscillations are probably related to El Nino–Southern Oscillation
(ENSO) events, correlated with massive droughts and increased tree mortal-
ity, as well as larger and more frequent forest fires (Chunming et al., 2020).
Droughts can induce the spread of massive die-back infections, whose ex-
tent and effects can be compared to those of fires (Michaelian et al., 2011).
Even insect outbreaks (such as the spruce beetle which is decimating entire
forests in Alaska) are increasing due to global change (Soja et al., 2007). Also,
between 2011 and 2013 boreal forests experimented a huge tree cover loss
mainly due to wildfires in Canada and Russia (the trend can be spotted from
the helical graph in Fig. ??) (Sizer et al., 2015). Nevertheless, the increase
of NDVI values - despite the oscillations - can be caused by the recovery of
herbaceous and deciduous vegetation. In addition, with boreal forest species
being adapted to lower temperatures, the increase in global temperatures is
menacing the native species of this biome (Frelich et al., 2021). Therefore,
the observed increase in NDVI values could also be determined by the en-
croachment of species that are adapted to higher temperatures that replace
the native species in the deforested areas (Kuuluvainen and Gauthier, 2018).

Concerning the test of the helical graphs at local scale, higher NDVI val-
ues for the forest, followed by forest plantation and crops were found (Figure
3.3).
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FIGURE 3.5: Helical graph of the NDVI variation from year
2000 to year 2021 of Brazil’s forest, forest plantations and crops.
On the y-axis, the NDVI values at different time points, on the

x-axis its rate of change.

Figure 3.5 shows the highest NDVI values for forests, followed by forest
plantations and crops. Moreover, we can observe almost the same curve for
forests and forest plantations: an increase of NDVI beginning in 2003 until
2010, then a drop up to 2015, followed by another increase. This trend could
be associated to the drought-related increase tree mortality linked to ENSO
events in 2010 and at the end of 2015 (Celso et al., 2019). As for the crops, the
observed trend is probably due to the crop rotation and to their conversion
in pastures.

Considering the trends shown by the helical graphs, at large scale the use
of NDVI to detect the changes at biome scale might not be the best choice,
as there is no discrimination of landscape/land use types. Moreover, human
intervention (e.g. disturbance) or local climatic effects might be effectively
considered only at a regional scale. Strictly speaking, at a local scale, it might
be easier to understand NDVI trends and make assumptions on landscape
change, thanks to the selection of specific land use types.

This said, the helical graphs proposed in this work help visualize global
change effects at biome scale by using a relatively simple but informative
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variable. However, NDVI is only one of the numerous indexes that can
be retrieved from satellite images to study vegetation dynamics or other
phoenomena: H-graphs can be applied to different metrics and exploited
for various purposes. Also, the possibility of visualizing the rates of change
in the same graph as the absolute metric values has the advantage of easing
the understanding of the magnitude of the change relative to a given index.
Although satellite imageries and line charts are certainly easy and fast to be
comprehended, in a multitemporal trend it is crucial to detect how a variable
is changing, assessing both the entity and the velocity of the change. For this
reason, the H-graphs should be considered particularly suited for this kind
of analysis.

At the same time, this visualization technique emphasizes subtle changes,
highlighting errors in the data and making them more prominent. However,
to reduce the statistical noise it is sufficient to smooth the data points over
a larger time period (Dorling, 2020). The implementation of smoothed data
has the advantage of showing trends when they would not so easily be iden-
tifiable by simply plotting absolute values (Cleveland and Devlin, 1988).

3.6 Conclusions

This study illustrates how multitemporal remotely sensed data can be dis-
played in an innovative way, using the H-graphs initially proposed by Dor-
ling (2020).

The reported trends are certainly in line with what emerges from the sci-
entific literature: NDVI data displayed as H-graphs have given new insights
on general vegetation responses to global change, in particular those related
to biomass and photosynthetic activity. Both the analysed biomes showed
an increasing trend in terms of their NDVI values, although there was some
oscillation for Boreal Forests values. The analysis could be further improved
by considering the variables influencing vegetation growth in the analytical
framework, such as precipitation (Ding et al., 2007). Moreover, the availabil-
ity of longer time series could better depict long-term trends.

H-graphs proved to be a practical tool to draw generalised trends rela-
tive to smoothed data, diminishing the influence of outliers. They can be
exploited in many applications, such as showing trends of ecological global
data in the educational literature or making early assumptions about time se-
ries trends, before deciding to expand the analytical framework or deepen an
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analysis. Hence, we propose these graphs as a valid approach for visualizing
trends in multitemporal ecological studies as well as other research fields.



67

Bibliography

Ahmad, F., 2012. Detection of change in vegetation cover using multi-spectral
and multi-temporal information for district Sargodha, Pakistan. Sociedade
& Natureza, 24(3). https://doi.org/10.1590/S1982-45132012000300014.

Ahmed, M.H., El Leithy, B.M., Thompson, J.R., Flower, R.J., Ramdani, M., Ay-
ache, F. and Hassan, S.M., 2009. Application of remote sensing to site char-
acterisation and environmental change analysis of North African coastal
lagoons. Hydrobiologia, 622:147–171. https://doi.org/10.1007/s10750-
008-9682-8.

Alessi, N., Wellstein, C., Rocchini, D., Midolo, G., Oeggl, K., Zerbe, S.,
2021. Surface Tradeoffs and Elevational Shifts at the Largest Italian Glacier:
A Thirty-Years Time Series of Remotely-Sensed Images. Remote Sensing,
13(1):134. https://doi.org/10.3390/rs13010134.

Anderson-Teixeira, K.J., Herrmann, V., Banbury Morgan, R., Bond-Lamberty,
B., Cook-Patton, S.C., Ferson A.E., Muller-Landau, H.C., Wang, M.M.H.,
2021. Carbon cycling in mature and regrowth forests globally. Environmen-
tal Research Letters, 16(5). https://doi.org/10.1088/1748-9326/abed01

Aybar, C., Wu, Q., Bautista, L., Yali, R., Barja, A., 2020. rgee: An R package
for interacting with Google Earth Engine Journal of Open Source Software
URL https://github.com/r-spatial/rgee/.

Apps, M.J., Kurz, W.A., Luxmoore, R.J., Nilsson, L.O., Sedjo, R.A., Schmidt,
R., Simpson, L.G. and Vinson, T. S., 1993 Boreal forests and tundra. Water,
Air and Soil Pollution, 70:39–53. https://doi.org/10.1007/BF01104987.

Benhin, J.K.A., 2006. Agriculture and Deforestation in the Tropics: A Crit-
ical Theoretical and Empirical Review. AMBIO: A Journal of the Human
Environment, 35(1):9-16. https://doi.org/10.1579/0044-7447-35.1.9.

Binkley, D. and Fisher, R., 2012. Ecology and Management of Forest Soils.
John Wiley & Sons Ltd. https://doi.org/10.1002/9781119455745.

Elisa Thouverai



68 BIBLIOGRAPHY

Boyd, D.S., Foody, G.M., Ripple, W.J., 2002. Evaluation of approaches for
forest cover estimation in the Pacific Northwest, USA, using remote sens-
ing. Applied Geography, 22(4):375-392. https://doi.org/10.1016/S0143-
6228(02)00048-6.

Campbell, J.B. and Wynne, R.H., 2011. Introduction to Remote Sensing, Fifth
Edition. The Guildford Press.

Carey, C., Heyer, W.R., Wilkinson, J., Alford, R.A., Arntzen, J.W., Halliday,
T., Hungerford, L., Lips, K.R., Middleton, E.M., Orchard, S.A., Rand, A.S.,
2001. Amphibian Declines and Environmental Change: Use of Remote-
Sensing Data to Identify Environmental Correlates. Conservation Biology,
15:903-913. https://doi.org/10.1046/j.1523-1739.2001.015004903.x.

Carlson, T. N. and Arthur, S. T., 2000. Impact of land use - land cover changes
due to urbanization on surface microclimate and hydrology: A satellite
perspective: Global and Planetary Change. Global and Planetary Change,
25(1):49-65. https://doi.org/10.1016/S0921-8181(00)00021-7.

Cazzolla Gatti, R., Reich, P. B., Gamarra, J. G., Crowther, T., Hui, C., Morera,
A., ..., Liang, J., 2022. The number of tree species on Earth. Proceedings of
the National Academy of Sciences, 119(6).

Cazzolla Gatti, R., Velichevskaya, A., Dudko, A., Fabbio, L., Notarnicola, C.,
2021. The smokescreen of Russian protected areas. Science of The Total En-
vironment, 785:147372.

Cazzolla Gatti, R., Velichevskaya, A., 2020. Certified “sustainable” palm oil
took the place of endangered Bornean and Sumatran large mammals habi-
tat and tropical forests in the last 30 years. Science of The Total Environ-
ment, 742:140712.

Celso H. L., S.J., Liana O., A., Alindomar L., S., Catherine T., A., Ricardo, D.,
Mikhaela A. J. S., P., Thales V., P., Rennan A., P., Luiz E. O. C., 2019. Fire
Responses to the 2010 and 2015/2016 Amazonian Droughts. Frontiers in
Earth Science, 7:2296-6463.

Chapungu, L., Nhamo, L., Cazzolla Gatti, R., Chitakira, M., 2020. Quanti-
fying changes in plant species diversity in a savanna ecosystem through
observed and remotely sensed data. Sustainability, 12(6):2345.

Chunming, S., Ying, L., Cong, G., Qiuhua, W., Lifu, S., 2020. Drought-
Modulated Boreal Forest Fire Occurrence and Linkage with La Nina



BIBLIOGRAPHY 69

Events in Altai Mountains, Northwest China. Atmosphere 11, 9:956.
https://doi.org/10.3390/atmos11090956

Cleveland, W.S. and Devlin, S.J., 1988. Locally Weighted Regres-
sion: An Approach to Regression Analysis by Local Fitting.
Journal of the American Statistical Association, 83(403):596-610.
https://doi.org/10.1080/01621459.1988.10478639.

Cooksey R.W. (2020) Descriptive Statistics for Summarising Data. In: Il-
lustrating Statistical Procedures: Finding Meaning in Quantitative Data.
Springer, Singapore.

Das, M., Srinivasan, P. (2009), Anomaly detection and spatio-temporal anal-
ysis of global climate system. Proceedings of the Third International Work-
shop on Knowledge Discovery from Sensor Data, Association for Comput-
ing Machinery. https://doi.org/10.1145/1601966.1601989.

Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N. D., Wikra-
manayake, E., ..., Saleem, M., 2017. An Ecoregion-Based Approach
to Protecting Half the Terrestrial Realm. BioScience, 67(6):534–545.
https://doi.org/10.1093/biosci/bix014.

Ding, M., Zhang, Y., Liu, L., Zhang, W., Wang, Z., Bai, W., 2007. The relation-
ship between NDVI and precipitation on the Tibetan Plateau. Journal of
Geographical Sciences, 17:259–268. https://doi.org/10.1007/s11442-007-
0259-7.

Dorling, D., 2020. Slowdown: The End of the Great Acceleration and Why It’s
Good for the Planet, the Economy, and Our Lives. Yale University Press.

Du Toit, S.H.C., Steyn, A.G.W., Stumpf, R.H., 1986. Graphical Exploratory
Data Analysis. Springer-Verlag New York.

Fiore, N.M., Goulden, M.L., Czimczik, C.I., Pedron, S.A., Tayo, M.A., 2020.
Do recent NDVI trends demonstrate boreal forest decline in Alaska?. En-
vironmental Research Letters, 15:095007. https://doi.org/10.1088/1748-
9326/ab9c4c.

Gibbs, H.K., Ruesch, A.S., Achard, F., Clayton, M.K., Holmgren, P.,
Ramankutty, N., Foley, J.A., 2010. Tropical forests were the pri-
mary sources of new agricultural land in the 1980s and 1990s, Pro-
ceedings of the National Academy of Sciences, 107(38):16732-16737.
https://doi.org/10.1073/pnas.0910275107.



70 BIBLIOGRAPHY

Gillman, L.N., Wright, S.D., Cusens, J., McBride, P.D., Malhi, Y., Whittaker,
R.J., 2015. Latitude and productivity. Global Ecology and Biogeography,
24:107-117. https://doi.org/10.1111/geb.12245.

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R.,
2017. Google Earth Engine: Planetary-scale geospatial analysis for every-
one.

Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A.,
Tyukavina, A., ..., Townshend, J.R.G. (2013), High-Resolution Global
Maps of 21st-Century Forest Cover Change. Science, 342(6160):850–853.
https://doi.org/10.1126/science.1244693.

Huang, S., Tang, L., Hupy, J.P., Wang, Y., Shao, G., 2020. A commen-
tary review on the use of normalized difference vegetation index (NDVI)
in the era of popular remote sensing. Journal of Forestry Research,
https://doi:10.1007/s11676-020-01155-1.

IPCC, 2007. Climate Change 2007: The Physical Science Basis, Contribution
of Working Group I to the Fourth Assessment Report of the Intergovern-
mental Panel on Climate Change. Cambridge Univ Press, Cambridge, UK.
https://www.ipcc.ch/.

Irteza, S.M., Nichol, J.E., Shi, W., Abbas, S., 2021. NDVI and Flu-
orescence Indicators of Seasonal and Structural Changes in a Trop-
ical Forest Succession. Earth Systems and Environment, 5:127–133.
https://doi.org/10.1007/s41748-020-00175-5.

Khorram, S., Koch, F.H., van der Wiele, C.F., Nelson, S.A.C., 2012. Remote
Sensing. Springer.

Kuuluvainen, T., Gauthier, S., 2018. Young and old forest in the boreal: critical
stages of ecosystem dynamics and management under global change. For.
Ecosyst., 5:26. https://doi.org/10.1186/s40663-018-0142-2

Frelich, L.E., Montgomery, R.A., Reich, P.B., 2021. Seven Ways a Warm-
ing Climate Can Kill the Southern Boreal Forest. Forests 12:560.
https://doi.org/10.3390/ f12050560

Lewis, S. L., 2006. Tropical forests and the changing earth system.
Philosophical Transactions of the Royal Society B: Biological Sciences,
361(1465):195–210. https://doi.org/10.1098/rstb.2005.1711.



BIBLIOGRAPHY 71

Lewis, S.L., Edwards, D.P., Galbraith D., 2015. Increasing hu-
man dominance of tropical forests. Science, 349(6250):827-832.
https://doi.org/10.1126/science.aaa9932.

Malhi, Y., Grace, J., 2000. Tropical forests and atmosphericcar-
bon dioxide. Trends in Ecology and Evolution, 15:332–337.
https://doi.org/10.1016/S0169-5347(00)01906-6.

Michaelian, M., Hogg, E.H., Hall, R.J. and Arsenault, E., 2011. Mas-
sive mortality of aspen following severe drought along the southern
edge of the Canadian boreal forest. Global Change Biology, 17:2084-2094.
https://doi.org/10.1111/j.1365-2486.2010.02357.x.

Murphy, B.P., Bowman, D.M., 2012. What controls the distribu-
tion of tropical forest and savanna?. Ecology Letters, 15:748-758.
https://doi.org/10.1111/j.1461-0248.2012.01771.x.

Myneni, R. B., Hall, F. G., Sellers, P. J., Marshak, A. L., 1995. The interpretation
of spectral vegetation indexes. IEEE Transactions on Geoscience and Re-
mote Sensing, 33(2):481-486. https://doi.org/10.1109/TGRS.1995.8746029.

Norby, R.J., Wullschleger, S.D., Gunderson, C.A., Johnson, D.W., Ceule-
mans, R., 1999. Tree responses to rising CO2 in field experiments: im-
plications for the future forest. Plant, Cell & Environment, 22:683-714.
https://doi.org/10.1046/j.1365-3040.1999.00391.x.

Paruelo, J.M., Garbulsky, M.F., Guerschman, J.P. and Jobbágy, E.G.,
2004. Two decades of Normalized Difference Vegetation Index
changes in South America: identifying the imprint of global
change. International Journal of Remote Sensing, 25(14):2793–2806.
https://doi.org/10.1080/01431160310001619526.

R Core Team, 2021. R: A language and environment for statistical com-
puting. R Foundation for Statistical Computing, Vienna, Austria. URL
https://www.R-project.org/.

Ravindranath, N.H., Sukumar, R., 1998. Climate Change and Tropical Forests
in India. In: Markham A. (eds) Potential Impacts of Climate Change on
Tropical Forest Ecosystems. Springer, Dordrecht.

Risser, G.P., Clarke, J.N., Dale, V., Field, C., Lewis, M.W. Jr., Lubchenco, J., ...,
Ustin, S., 2000. Global Change Ecosystems Research (Chapter: Definitions



72 BIBLIOGRAPHY

and Implications of Global Change). National Academy Press Washington
DC.

Rocchini, D., Salvatori, N., Beierkuhnlein, C., Chiarucci, A., de Boissieu,
F., Förster, M., ..., Féret, J.B., 2021. From local spectral species
to global spectral communities: A benchmark for ecosystem diver-
sity estimate by remote sensing. Ecological Informatics, 61:101195.
https://doi.org/10.1016/j.ecoinf.2020.101195.

Sage, R.F., Kubien, D.S. 2007. The temperature response of C3 and
C4 photosynthesis. Plant, Cell and Environment, 30:1086-1106.
https://doi.org/10.1111/j.1365-3040.2007.01682.x.

Santoro, M., Cartus, O., Carvalhais, N., Rozendaal, D., Avitabile, V., Araza,
A., ..., Willcock, S., 2021. The global forest above-ground biomass pool for
2010 estimated from high-resolution satellite observations. Earth System
Science Data, 13(8):3927-3950.

Sizer, N., Petersen, R., Anderson, J., Hansen, M., 2015. Tree Cover
Loss Spikes in Russia and Canada, Remains High Globally.
https://www.wri.org/insights/tree-cover-loss-spikes-russia-and-canada-
remains-high-globally (accessed 20/05/2022).

Shugart, H.H., Leemans and R., Bonan, G.B., 1992. A Systems Analysis of the
Global Boreal Forest, Cambridge University Press.

Soja, A.J., Tchebakova, N.M., French, N.H.F., Flannigan, M.D., Shugart,
H.H., Stocks, B.J., Sukhinin, A.I., Parfenova, E.I., Chapin, F.S., Stack-
house, P.W., 2007. Climate-induced boreal forest change: Predictions ver-
sus current observations. Global and Planetary Change, 56(3–4):274-296.
https://doi.org/10.1016/j.gloplacha.2006.07.028.

Steffen, W., Sanderson, R.A., Tyson, P.D., Jäger, J., Matson, P.A., Moore III,
B., Oldfield, F., Richardson, K., Schellnhuber, H.J., Turner, B.L., Wasson,
R.J., 2004. Global Change and the Earth System. A Planet Under Pressure.
Springer.

Taylor, P.G., Cleveland, C.C., Wieder, W.R., Sullivan, B.W., Doughty, C.E.,
Dobrowski, S.Z., Townsend, A.R., 2017. Temperature and rainfall interact
to control carbon cycling in tropical forests. Ecology Letters, 20:779-788.
https://doi.org/10.1111/ele.12765.



BIBLIOGRAPHY 73

Thiffault, E., 2019. Chapter 5 - Boreal forests and soils, Editor(s): Busse,
M., Giardina, C.P., Morris, D.M., Page-Dumroese, D.S. Developments
in Soil Science, Elsevier, 36:59-82. https://doi.org/10.1016/B978-0-444-
63998-1.00005-7.

Windsor, D.M., 1990. Climate and Moisture Variability in a Tropical
Forest : long-term records from Barro Colorado Island, Panamá.
Smithsonian Institution contributions to the earth sciences, 29: 1-145.
https://doi.org/10.5479/si.00810274.29.1.



74

Chapter 4

Mapping diversity: how do
heterogeneity patterns change in
space and time?

To be published as:
Thouverai, E., Bazzichetto M., Sperandii M.G., Apruzzese M., Merelli P.,

and Rocchini D. Mapping diversity: how do heterogeneity patterns
change in space and time?

Elisa Thouverai



4.1. Abstract 75

4.1 Abstract

Human activities have several effects on the biomes of Earth, such as land
fragmentation, deforestation, pollution, anthropization of natural landscapes,
and alterations in the functioning of ecological systems. Remote sensing is
an important tool for assessing ecosystem changes because it allows the col-
lection of long time series of data that can be used to assess land cover and
vegetation state of a chosen area. In this study, we employed Jaccard in-
dex, a beta diversity metric to produce a map that shows the variation of
spatial heterogeneity over time. The moving window technique was used.
Each chunk was considered as a plot and the pixels as species, and the se-
lected metric was calculated for every image of the time series. This ap-
proach enabled us to calculate a value of beta diversity for every pixel, pro-
viding information about the variation of spatial heterogeneity over time.
We chose Italy as the study area to test this workflow, specifically retriev-
ing two landcover maps for years 1990 and 2018 from Corine Land Cover
(https://land.copernicus.eu/pan-european/corine-land-cover). The result-
ing maps are intuitive, easy to interpret, and provide information about both
the spatial pattern and the change in time of land cover.

4.2 Introduction

Landscapes serve as a manifestation of the intricate interplay between the
natural environment and human activities (Antrop , 1998). These diverse
terrains are delineated by distinct land cover classes, including vegetation,
inland water, bare soil, and human infrastructure (Gómez et al. , 2016). Rec-
ognized over the past 15 years, changes in land cover and land-use practices
have emerged as significant global environmental transformations in their
own right (Turner , 2002). Moreover, these changes are intricately linked
with various environmental concerns, such as climate change, carbon cycle
dynamics, biodiversity loss, agricultural sustainability, and the availability
of safe drinking water (Lepers et al. , 2005). The measure of non-uniformity
in land cover is called heterogeneity (Stein et al. , 2014).

Heterogeneity plays a crucial role as a driver for biodiversity (Ettema
and Wardle , 2002). It exerts influence over various ecological processes and
functions, impacting patterns and changes in species diversity (Rocchini et
al., 2018), metapopulation dynamics (Fahrig , 2007), population connectiv-
ity (Malanson and Cramer , 1999), and gene flow (Lozier et al., 2013). This
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variability increases the availability of niche space, provides refuges, and of-
fers opportunities for isolation and adaptation. Consequently, it enhances
species coexistence, persistence, and diversification (Stein et al. , 2014; Tews
et al., 2004).

Remote sensing emerges as a valuable tool for deciphering heterogeneity
patterns across both space and time, as it allows to collect a huge amount
of data at different temporal and spatial resolutions (Campbell and Wynne
, 2011). This technology allows the estimation of several metrics from dif-
ferent compartments of the Earth system, encompassing tasks such as the
generation of land cover maps (Khorram et al. , 2012). Metrics derived from
remote sensing products provide a means to quantitatively discern and track
temporal changes in heterogeneity and its correlation with biodiversity dy-
namics (Tuanmu and Jetz , 2015). In this context, the R platform stands out as
one of the most widely employed statistical and computational environments
in ecology, a reputation bolstered by the ongoing development of pertinent
packages. Notably, the R package rasterdiv, as introduced by Marcantonio
et al. (2021); Rocchini et al. (2021); Thouverai et al. (2021), facilitates the cal-
culation of a wide array of indices for producing maps representing spatial
heterogeneity using satellite imagery, but lacking the temporal component.

Considering the pivotal role of heterogeneity as a driver of biodiversity
and the escalating rate of landscape change, the significance of developing
methods to monitor its transformation, both in space and in time, is becom-
ing increasingly imperative (Bradshaw and Fortin , 2014). In this context,
beta diversity metrics, traditionally employed to discern species turnover be-
tween two communities (González-Megías and Sánchez-Piñero , 2011), can
be leveraged to calculate shifts in heterogeneity.

The aim of this work is to introduce a novel method for generating maps
that illustrate spatio-temporal heterogeneity. This approach aims to facilitate
the monitoring of environmental heterogeneity, encompassing both spatial
and temporal dimensions.

4.3 Materials and Methods

4.3.1 Data

Two landcover maps, corresponding to the years 1990 and 2018, were ac-
quired using Google Earth Engine (GEE) to generate a map illustrating changes
in heterogeneity. The selected landcover datasets were sourced from the
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CORINE (Coordination of Information on the Environment) database. Italy
was chosen as the primary study area (Fig. 4.1), owing to its distinctive and
diverse landscape.

FIGURE 4.1: CORINE landcover second level map of Italy of
years 1990 (left) and 2018 (right).

Additionally, a regional examination was conducted on Sicily (Fig. 4.2) to
assess the algorithm’s performance at a finer scale.
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FIGURE 4.2: CORINE landcover second level map of Sicily of
years 1990 and 2018.

4.3.2 The Algorithm

The temporal variation in environmental heterogeneity was assessed using
the Jaccard index (Jaccard, 1901), a beta diversity metric that quantifies the
dissimilarity between two sites:

Jaccard =
b + c

a + b + c
(4.1)

Here, a represents the number of common species, while b and c denote
the unique species found in the two compared sites.

The classes represented in the two landcover images were utilized as
proxies for species. Employing the moving window technique, a specific area
around each pixel was taken into account. The Jaccard index was then com-
puted for each window, quantifying the difference in landcover composition
between the two images.
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A moving window of size 3x3 was used for the analysis in this paper. The
choice of the moving window size is a critical factor that can significantly
influence the results of the analysis. To assess its impact, a focused test was
conducted on the province of Siracusa in Sicily, comparing the outcomes gen-
erated by four different moving window sizes.

4.4 Results

FIGURE 4.3: On the left, temporal change map of Italy calcu-
lated using the Jaccard index. On the right, the correspondent
alluvial plot representing the change in class of the pixels in

Sicily from 1990 to 2018.

Figure 4.3 provides a comprehensive visualization of the landcover degree
of change in Italy from 1990 to 2018, employing the Jaccard Index. The map
on the left illustrates the spatial distribution of change, with areas exhibit-
ing higher degrees of change highlighted in light green/yellow. Notably,
South Italy appears to undergo more pronounced changes. The alluvial plot
on the right complements the map by detailing which specific land cover
classes have experienced alterations. This combined representation offers a
nuanced understanding of the temporal dynamics, emphasizing the regions
and land cover classes contributing significantly to the observed changes in
the landscape over the specified time period.
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FIGURE 4.4: Map of Italy representing the Jaccard index gain
and loss of landcover classes between years 1990 and 2018.

In Figure 4.4, the representation highlights regions where there is either a
gain or loss of land cover classes, signifying an increase or decrease in hetero-
geneity, respectively. This visualization provides valuable insights into the
dynamics of land cover changes, emphasizing the areas where the landscape
has become more diverse (gain) or more uniform (loss) over the specified
period.

FIGURE 4.5: On the left, temporal change map calculated using
the Jaccard index of Sicily. On the right, the correspondent allu-
vial plot representing the change in class of the pixels in Sicily

from 1990 to 2018.
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In Figure 4.5, the focus on Sicily is presented, emphasizing the hotspots
of land cover changes within the region. The left side illustrates the Jaccard
index, highlighting areas with significant alterations in land cover over time.
On the right, the corresponding alluvial plot provides insights into the spe-
cific classes that underwent changes, offering a detailed breakdown of the
transitions in land cover types.

4.5 Discussion

In this paper, we introduced a novel approach that harnesses beta diversity
measures to generate maps depicting temporal heterogeneity based on land
cover maps. The effectiveness of the method was assessed using CORINE
land cover maps of Italy for the years 1990 and 2018.

The temporal beta map of Italy (Fig. 4.3) reveals a notable concentra-
tion of areas experiencing landscape changes, particularly in the North-West
Alps, South Italy, and Sicily. The accompanying alluvial plot aligns with the
findings of Malandra et al. (2018), indicating an increase in forest cover and
a corresponding decrease in grasslands. The plot also depicts a discernible
transition between different agricultural practices, likely a primary driver for
the detected land cover changes. Furthermore, Figure 4.4 illustrates a general
decrease in land cover classes, suggesting a reduction in overall heterogene-
ity across Italy.

In the Sicily case study (Fig. 4.5), the region exhibiting the most significant
changes, a notable reduction in grassland areas is evident, giving way to an
increase in forested areas, crops, and regions characterized by little or no
vegetation. Additionally, a discernible shift is observed from arable lands
and permanent crops to areas exhibiting a more heterogeneous agricultural
landscape.

The novel method, utilizing beta diversity measures to depict temporal
heterogeneity, has demonstrated notable efficiency in capturing areas under-
going substantial changes. The application of this method effectively high-
lights regions characterized by pronounced temporal shifts, providing a clear
visual representation of dynamic landscape alterations over time. Moreover,
the computed values of the beta diversity index offer a quantitative measure
that can be seamlessly integrated into modeling frameworks. This dual capa-
bility of effectively highlighting areas with significant change and providing
a quantifiable index enhances the method’s utility in comprehensively ana-
lyzing and understanding temporal landscape dynamics.
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In this study, temporal maps for Italy and Sicily were computed using a
3x3 moving window. The selection of an appropriate window size is a crucial
aspect in remote sensing metric computation, primarily influenced by the
image scale and spectral bands used in the calculation (Ozkan and Demirel ,
2021). Figure 4.6 illustrates the computation of the Jaccard index for the city
of Siracusa in 1990 and 2018, employing four different moving window sizes.

FIGURE 4.6: On the left, four temporal change maps calculated
using the Jaccard index of Siracusa province (years 1990 and
2018). The temporal maps were calculated with 3x3, 7x7, 11x11
and 15x15 moving window sizes. On the right, a histogram

with the pixel values frequencies of the maps.

The histogram depicting the frequency of pixel values reveals a reduction
in extreme values of beta diversity (0 and 1) and an increase in intermediate
values as the moving window size expands. This trend is also observable in
the temporal maps, where green areas grow larger with an increase in the
moving window size. The 3x3 moving window encompasses a smaller area,
with fewer pixels, elevating the likelihood of either none or all of them being
different in the two years. This accounts for the presence of more extreme val-
ues. However, a larger moving window includes more pixels, increasing the
probability of discovering new land cover classes that underwent changes.
Consequently, a zero Jaccard index in smaller windows may transform into
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an intermediate value. Similarly, with a Jaccard index of one, enlarging the
moving window can result in the encounter of more homogeneous areas,
reducing the number of distinct land cover classes between the two years,
resulting in the transition from one to an intermediate value.

At this juncture, it can be inferred that the expansion of the moving win-
dow introduces more disturbance, illustrated by the thicker green border sur-
rounding the yellow areas in the temporal maps of the Siracusa province.
Nevertheless, it’s important to consider that the study area has experienced
substantial changes between the years 1990 and 2018, evident in the presence
of several yellow areas. In the context of a larger study area or an area un-
dergoing more modest changes, a larger moving window may prove advan-
tageous in detecting subtle changes that might go unnoticed with a smaller
window. Hence, the selection of the moving window size should be made
judiciously, taking into account the characteristics of the study area and the
properties of the analyzed images. It is advisable to experiment with and
test different solutions to determine the most suitable moving window size
for the specific context.

In conclusion, the dual ability of our approach to effectively highlight sig-
nificant changes and provide a quantifiable index offers a valuable contribu-
tion to the comprehensive understanding and analysis of temporal landscape
dynamics. This study underscores the need for a thoughtful consideration of
moving window size, particularly in areas with distinct temporal dynamics,
to enhance the reliability and applicability of the proposed method. Addi-
tionally, it emphasizes the necessity for further development to incorporate
more than two images in the analysis. This improvement would prevent the
loss of valuable information regarding the temporal trend, enabling a more
nuanced and accurate representation of temporal landscape dynamics.
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