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Abstract

Thanks to their data-driven nature, machine and deep learning approaches have
recently reached super-human performance, promoting the last artificial intelli-
gence (AI) spring. Accordingly, the application of such techniques to the industrial
world has vastly grown in popularity. However, the most common deep learning
models, namely neural networks (NNs), are characterised by an intrinsic trade-off
between performance and efficiency. Focusing on raw performance, recent efforts
produced highly complex NN models made of several millions or even billions of
parameters. This complexity hinders the application of AI into industrial devices
and appliances characterised by limited computational capabilities and resources.
Accordingly, in this thesis, we focus on the embedding AI into constrained de-
vices problem, to which we refer to as the open research challenge of applying
AI techniques to devices characterised by limited computational capabilities and
resources. We tackle the embedding AI task reframing the problem from a NN ef-
ficientisation perspective, where the aim is the minimisation of the resource usage
of NNs, either during their optimization process or their deployment phase. We
propose a pioneer multi-faceted approach in which we consider both (i) the avail-
able efficientisation approaches – aiming at analysing and overcoming some of their
limitations –, and (ii) to leverage Neuro-Symbolic integration (NeSy) mechanisms
to tackle the efficientisation perspective. As a result of our twofold perspective, we
shed new light on the NN efficientisation issue, highlighting the groundbreaking
opportunities available leveraging NeSy systems.

Keywords: Neural Networks · Embedded Devices · Resource-Constrained Environ-

ments · Efficientisation · Neuro-Symbolic Integration
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Failure is a part of the process.
You just learn to pick yourself back up.
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Chapter 1

Introduction

Recently, the proposal of Machine and Deep Learning (ML and DL) approaches

gave rise to the new Artificial Intelligence (AI) spring. This increased interest

in AI solutions is due to the groundbreaking performance that data-driven ML

approaches show, where, humanly-designed models semi-automatically learn task-

solving procedures from data via some sort of optimisation mechanism. The variety

of tasks which can be tackled in a data-driven way is nearly unlimited, depending

on the model and optimisation procedure considered. Accordingly, the application

of AI to the industrial world and its appliances has recently grown in popularity,

leading to ML and DL techniques becoming the de-facto solution for tackling

complex tasks concerning computer vision [Liu et al., 2020], natural language

processing [Birjali et al., 2021] and many more [Pawlicki et al., 2022]. However,

striving to reach human-like capabilities, most efforts in this field focused solely on

increasing the performance of AI technnologies – e.g., Neural Networks (NNs) –, at

the expense of their complexity. Only in the last five years, the size of the state-of-

the-art NNs have increased by a factor 1000× for natural language processing tasks

and 100× for computer vision tasks, resulting in applications targeting high-end

devices only. However, the application of such AI techniques to industrial devices

and appliances characterised by limited computational capabilities and resources

remains a fundamental issue for enabling the pervasive deployment of AI solutions.

This issue is particularly relevant in the industrial world where appliances are

developed focusing on saving costs, reducing resource consumption and relying on
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computationally—constrained components. Internet of Things platforms represent

the most relevant example – but not the only one –, given the ever increasing

success of AI-enabled applications in this realm attracting the interest of industries

and investors 1.

In this thesis, we refer to the open research challenge of applying complex

AI techniques to devices characterised by limited computational capabilities and

resources as the embedding AI into constrained devices problem. Accordingly, we

tackle the embedding task, focusing on the NN efficientisation perspective and

proposing a multi-faceted approach in which we consider both (i) exploring and

overcoming some of the limitations of the available efficientisation approaches,

and (ii) to leverage a novel family of approaches – relying on the integration of

symbolic and sub-symbolic models, namely Neuro-Symbolic integration (NeSy) –

to tackle the efficientisation perspective. This multi-faceted perspective represents

a pioneer approach in the NN efficientisation context, as it showcases the efficiency

improvements achievable through NeSy, previously ignored.

Given the relevance of the embedding task, few recent works proposed different

approaches to efficientise complex AI models such as NNs, aiming at enabling their

deployment into resource constrained devices. The set of available NN efficienti-

sation approaches can be roughly categorised as:

• pruning, representing the class of approaches that identify and remove the

non-relevant substructures of a NN [Liang et al., 2021];

• quantisation, representing the set of approaches used to reduce the precision

– e.g., floating point to integer representation – of NN weights to compress

its footprint and consume less memory [Liang et al., 2021];

• distillation, representing the set of approaches proposing to couple multiple

NNs and force the transfer of knowledge from a large model to a smaller one,

without incurring in performance degradation [Gou et al., 2021];

• architecturing, representing the class of techniques aiming at identifying ef-

ficient architectures of NNs [Ren et al., 2021];

1https://straitsresearch.com/report/artificial-intelligence-in-iot-market
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• data coresets, representing the set of approaches proposing to identify the

most relevant samples of a dataset and train the NNs model only on them,

thus reducing training time and energy consumption [Feldman, 2020];

• distributed learning, representing the class of approaches aiming at distribut-

ing the learning process among several devices [Zhang et al., 2021a].

In the remainder of the thesis we refer to these approaches as classic approaches,

as they represent the popular component of the multi-faceted approach that we

followed.

In the context of classic efficientisation approaches, we focus specifically on

architecturing, data coresets and distributed learning. The motivations for such

focus are diverse, but can be quickly summarised as follows: (i) architecturing ap-

proaches have been proven superior against pruning, quantization and distillation

approaches [Blalock et al., 2020], as the design of an ad-hoc model structure allows

for higher freedom and achievable efficiency; (ii) data coresets approaches target

explicitly the data footprint of NN models, thus representing the most effective

and popular set of approaches to reduce the resource requirements during the NN

training phase; and (iii) while it is true that distributed learning approaches re-

duce local resource consumption, the limit of the achiavable efficientisation is not

well explored in these setups, as well as the limitations that arise from the intro-

duction of a distributed framework—such as the need for resource management

schemes.

Architecturing approaches usually lack mechanisms to limit the architecture

complexity – while promoting variability – and learn their inner working princi-

ples. Therefore, we aim at overcoming such issues proposing both (i) an efficient

modular search of basic components of a NN architecture via increasing its depth;

and (ii) a three-way adversarial learning approach relying on graph neural net-

works to learn which operations and interconnections between NN components

are required for building the best performing architecture, in a single shot setup

without exploration processes.

Data coresets approaches represent a valid solution for learning with less data.

However, they usually rely on complex approaches to identify and select relevant

samples to be used for NN optimisation. These complex approaches – usually
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relying on gradient matching techniques – require large amount of resources, thus

hindering the advantages of training on fewer data. In this context, we aim at

overcoming such issue proposing to leverage a set of simple and resource efficient

properties of NN to identify clean samples to be used during training.

Distributed learning – of which Federated Learning (FL) represents the de-

facto solution – can help reducing the amount of data required for training by

leveraging the collective intelligence of distributed devices. By enabling collabo-

ration between parties, FL achieves faster convergence and better generalization

performance compared to traditional centralised learning methods. However, the

energy and resource utilization optimisation represents an overlooked issue in most

FL scenarios. Therefore, we aim at overcoming such issue proposing a novel en-

ergy and resource aware client selection approach, showcasing how it is possible

to obtain resource usage improvements only leveraging a smart client selection

mechanism, achieving minimal impact on the general FL pipeline.

In this thesis we state that, along with popular classic efficientisation ap-

proaches – e.g., architecturing, pruning, etc. –, it is worth exploring the usage of

NeSy systems to study their achievable efficiency improvements. NeSy approaches

rely on the hybridisation of symbolic and sub-symbolic realms, two components

that have been mostly considered in duality throughout AI history [Besold et al.,

2017, d’Avila Garcez et al., 2019]. Symbolic approaches usually focus on rational

intelligence – e.g., deduction, abduction, induction, etc. –, aiming at endow-

ing machines with human-like, automated reasoning capabilities [Brachman and

Levesque, 2004]. Conversely, sub-symbolic approaches mostly focus on intuitive

intelligence, aiming at enabling information mining and processing from raw data,

resulting in powerful pattern matching and recognition capabilities [Rocha et al.,

2012]. Amongst the classes of hybridisation techniques, two relevant sets of ap-

proaches propose to inject and extract symbolic knowledge into NNs, and may

come in handy when considering the efficientisation perspective. Symbolic Knowl-

edge Injection (SKI) frameworks aim at steering the NN learning process towards

a predefined goal—e.g., discrimination-free predictions. Here, the knowledge base

injected into the NN carries complex logical information which is otherwise diffi-

cult to learn and elaborate from numerical data using bare NNs. Therefore, the

simple intuition is that injection can be leveraged as a tool to remove part of the
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complexity burden from the underlying NN and obtain simpler and more efficient

sub-symbolic models. On the other hand, Symbolic Knowledge Extraction (SKE)

frameworks aim at producing symbolic knowledge that reflects the behaviour of

the NN predictor with high fidelity. Here, the complexity of the extracted symbolic

knowledge can be bounded, producing an explainable program more efficient than

the original NN model.

While being a theoretically valid assumption that NNs hybridisation results in

efficiency benefits, the state-of-the-art lacks a solid empirical proof of such phe-

nomenon. SKI approaches usually measure the quality of their injection mecha-

nism in terms of performance gain over an uneducated ML counterpart [Diligenti

et al., 2017b, Xu et al., 2018], while SKE approaches mostly focus on the fidelity

of the extracted knowledge [Hailesilassie, 2016, Johansson et al., 2022]. There-

fore, the necessity of identifying a set of Quality-of-Service (QoS) metrics for NeSy

mechanisms thoroughly analysing their efficiency improvements arises. Exploiting

this lack, we highlight efficiency gains that SKI and SKE mechanisms may obtain,

focusing on the definition of different efficiency QoS measures such as energy, mem-

ory and data savings. The proposed definitions applied to a set of state-of-the-art

injection mechanisms highlight how both SKI and SKE bear improvements in data

and energy efficiency in various contexts, providing a solid proof of the theoretically

assumption originally made.

Goals of the thesis. To summarise, the proposed thesis aims at tackling the

cumbersome task of embedding complex AI – and especially ML and DL – models

in those devices and scenarios characterised by strong resource limitations. Simi-

larly to the state-of-the-art, we focus on efficientisation of NN models as a proxy

for the embedding task, analysing the broad set of resources requiring to be ef-

ficiently minimised for enabling the embedding procedure. We propose tackling

the efficientisation issue in a multi-faceted fashion, focusing on both (i) optimising

popular approaches dealing with raw efficientisation of ML and DL systems, as well

as (ii) highlighting the efficientisation opportunities available from the integration

of symbolic components into the ML and DL pipelines—namely, NeSy. Along this

line, the goals of this thesis can be summarised as follows:

1. analysing the similarity between embedding and ML/DL efficientisation,
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characterising the set of resources to be taken into account for successful

efficientisation;

2. identifying the most common approaches for dealing with the issue of ML/DL

efficientisation in resource-constrained environment;

3. tackling few of the limitations of the current most popular approaches for

efficientisation of DL systems;

4. proposing to leverage neuro-symbolic integration techniques to tackle effici-

entisation, aiming at highlighting efficiency benefits of NeSy systems;

5. proposing a set of rigorous metrics to measure efficiency improvements ob-

tained through NeSy, along with other relevant properties such as robustness

and trustworthiness.

Structure of the thesis. Following the bi-partite approach followed to tackle

the efficientisation issue, the thesis is structured into two main parts, namely

Embedding AI via Classic Efficientisation and Efficientisation via Neuro-Symbolic

Integration.

Embedding AI via Classic Efficientisation. In Part I we focus on the set of

most classical approaches to efficientise ML and DL models, focusing on goals 1

to 3. We start from the definition of embedding and its correlation to ML and DL

models efficientisation with respect to a set of resource metrics of interest in Chap-

ter 2 and tackle goal 2 by analysing the set of available efficientisation approaches.

We refer to this available techniques as the set of classic efficientisation techniques,

focusing mostly on raw reduction of resource usage. Then, we accomplish goal 3

in Chapters 3 to 6, by identifying a set of limitations of the available approaches

and presenting how we propose to overcome such limitations.

Efficientisation via Neuro-Symbolic Integration. In Part II we focus on

leveraging NeSy approaches to efficientise ML and DL models, focusing on goals

4 and 5. We start by providing an overview of popular NeSy approaches in Chap-

ter 7, focusing particularly on SKI and SKE, representing the most useful NeSy
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tools for dealing with NN efficientisation. Thereafter, we focus firstly on SKI in

Chapter 8 and SKE in Chapter 9, showcasing their applications in the efficienti-

sation perspective. We conclude Part II, by providing an additional set of metrics

to measure relevant NeSy properties related to the efficiency perspective in Chap-

ter 10, and suggesting the possible future of NeSy trustworthiness – for which

efficiency is one key component – in Chapter 11.

Finally, Part III concludes the thesis, summarising the conclusions and sketch-

ing possible future research directions.
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Part I

Embedding AI via Classic

Efficientisation

One of the first conditions of

happiness is that the link between

man and nature shall not be

broken.

Lev Nikolàevič Tolstòj
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Chapter 2

Embedding as Efficientisation:

State of the Art

This chapter contains contributions from [Agiollo and Omicini, 2021, Agiollo et al., 2022].

To kick off our investigation we first consider what are the requirements and

goals of the integration of AI models into embedded and resource-constrained

devices task. To this end we elicit the set of limitations affecting embedded de-

vices, considering a set of popular resource-constrained boards as our targets and

showcasing their shortcomings when it comes to deploying complex ML and DL

models. These limitations are tightly linked with the devices hardware limitations,

as they are thought as flexible single-purpose devices rather than powerful mul-

tipurpose machines. The set of embedded devices limitations translate directly

into a set of resource metrics to take into account whenever dealing with such

devices. Eliciting such limitations and the corresponding metrics, we translate the

integration of AI into resource-constrained devices into the task of efficientisation

of NN models—following the state-of-the-art approaches. Accordingly, we define

the efficientisation task as the process of minimising the resource usage of NN

models, either during their optimization process or their deployment phase.

After having defined the efficientisation task, we provide an overview on the set

of available approaches to tackle this task. Depending on the particular scenario,

learning task at hand, and efficiency priority, several different techniques might

come in handy. Overall, there exists no silver-bullet solution for tackling the NN
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efficientisation problem, as each solution presents their advantages and drawbacks.

2.1 Embedding as Efficientisation

2.1.1 Limitations of Embedded Devices

The design process of low-end commercial appliances is often characterised by a

huge focus on costs saving. Indeed, even the introduction of a single hardware

component could turn out to be critical to the design of such devices—e.g., adding

a costly component to the hardware needed to build the final appliance may sub-

stantially increase its consumer price and hinder its chances of commercial success.

To account for such issue, embedded devices are usually considered as the hard-

ware platform for running specific complex tasks in these appliances. More in

detail, an embedded device is a part of the larger computing system serving a

specific purpose, via the execution of a particular task or set of tasks. Also known

as a dedicated or single-purpose device, an embedded device is embedded or in-

cluded within the larger system and is usually chracterised by limited hardware,

usually featuring (i) 8-bit microcontrollers, (ii) application-specific integrated cir-

cuits (ASICs), or (iii) dedicated digital signal processors (DSPs).

Embedded devices allow to cap the price, while achieving strong flexibility – i.e.,

most embedded devices are fully programmable – and performance—depending on

the target application. However, these devices are characterised by a set of strong

limitations when it comes to the integration of AI techniques in commercial ap-

pliances. The hardware limitation of embedded devices clashes strongly with the

ever-increasing requirements of modern AI approaches, relying on Neural Network

(NN) models. Not only embedded devices are characterised by limited compu-

tational resources – as they rely on microcontrollers, ASICs or DSPs –, but the

amount of memory at their disposal is also limited, as they mostly target scenarios

where storage of information is not considered a priority. Finally, depending on the

considered scenario, the embedded devices may be battery-powered – e.g, mobile

devices, robots, etc. –, thus requiring to take into account the energy consumption

during their deployment.

To represent faithfully the limitations of the most commonly used embedded
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devices we present them along with their computational capabilities and available

memory in Table 2.1. In this context, the FLOPS metric represents a measure of

the computational capabilities of the selected board and will be inspected more

in detail in Section 2.1.2. The limitations of the selected devices vary broadly.

The OpenMV H7 Plus microcontroller board represents the most limited device,

characterised by an Arm Cortex M7 processor with a single core, low clock speed

and small memory to obtain low power consumptions and enable the deployment

on edge and battery-powered devices. On the other hand, the Nvidia Jetson-AGX

Xavier board is characterised by high clock-speed – similar to most full-fledge

personal computers –, high amount of memory and the availability of a powerful

GPU. Depending on the scenario at hand, the selected embedded device may vary

and consequently its limitations. For example, whenever the Raspberry PI device

is used, the memory and processing power limitations represent the most relevant

aspects to consider. Meanwhile, the energy consumption aspect represents a more

relevant component whenever an Nvidia Jetson-TX1 – or similar – board is used.

Table 2.1: Comparison between available embedded devices.

Device Name RAM Cores Work Frequency #FLOPS GPU Availability

OpenMV H7 Plus [Agiollo and Omicini, 2021] 32 MB 1 480 MHz 0.48× 109 ✗

Raspberry Pi-3B+ [Sajjad et al., 2020] 1 GB 4 1400 MHz 5.3× 109
Broadcom

VideoCore IV
Odroid Xu-4 [Hossain and Lee, 2019] 2 GB 8 2000 MHz 6.25× 109 Mali-T628 MP6

Latte Panda [Hossain and Lee, 2019] 4 GB 4 1440 MHz 7.01× 109
Intel HD
Graphics

Raspberry Pi-4 [Süzen et al., 2020] 8 GB 4 1500 MHz 13.5× 109
Broadcom

VideoCore VI

Nvidia Jetson-Nano [Süzen et al., 2020] 4 GB 4 1400 MHz 472× 109
128-Core

NVIDIA Maxwell

Nvidia Jetson-TX1 [Stamoulis et al., 2018] 4 GB 4 1700 MHz 1× 1012
256-Core

NVIDIA Maxwell

Nvidia Jetson-TX2 [Süzen et al., 2020] 8 GB 6 2000 MHz 1.3× 1012
256-Core

NVIDIA Pascal

Nvidia Jetson-AGX Xavier [Jiang et al., 2021] 16 GB 8 1900 MHz 11× 1012
512-Core

NVIDIA Volta

To complete the picture of embedded device limitations, we present the re-

source requirements of available state-of-the-art NN models in Table 2.2. Most

of the available state-of-the-art NNs present footprints greater than the memory

availability of the most constrained devices of Table 2.1. Moreover, it is possible to

notice that most models are characterised by a large amount of parameters, trans-

lating directly to a large amount of computations to be run at inference time. Most
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limitations for running AI on these devices come from the computational power

of the device. Indeed, the inference process of NN models require high amount

of computational power to run quickly, thus introducing also latency limitations

on embedded devices. To this end, minimising the memory footprint of the NN

model – by reducing its number of parameters – result in smaller memory require-

ments and reduced amount of computations, thus reducing the inference latency as

well. However, the proportionality between number of parameters of a model and

its inference time is not linerar, as the nature of the NN operations might differ

vastly. Similarly, while there exists a correlation between model size and energy

consumption, this is not straightforward. For example, deeper models with fewer

parameters require large amount of computations and increased latency, as the

parallelization over consecutive layers is limited. Therefore, reducing the number

of model parameters does not represent the silver bullet solution for solving the

integration of AI into constrained devices issue.

Table 2.2: Footprints of available state-of-the-art NNs. The number of parame-
ters of each model is expressed in millions (M). The memory size is expressed in
MBs and is computed as four bytes times the number of parameters, since each
parameter is a floating point variable. FLOPs are the number of floating points
operations required to run a single instance of a given model and are indicated in
billions. The upper half refers to models targeting image classification, while the
bottom half refers to models targeting object detection.

Model #Parameters (M) Footprint (MB) #FLOPs (B)

1.0 MobileNet-224 [Howard et al., 2017] 3.3 13.2 0.28
EfficientNet-B0 [Tan and Le, 2019] 5.3 21.2 0.39
DenseNet-169 [Huang et al., 2017] 14 56 3.5
Inception-v3 [Szegedy et al., 2016] 24 96 5.7

ResNet-50 [He et al., 2016] 26 104 4.1
VGG-16 [Simonyan and Zisserman, 2015] 138 552 16

SSD300-MobileNet [Liu et al., 2016b] 6.8 27.2 1.2
EfficientDet-D0 [Tan et al., 2020] 3.9 15.6 2.5

FasterRCNN-MobileNet [Ren et al., 2015] 6.1 24.4 25.2
SSD300-Deeplab [Liu et al., 2016b] 33.1 132.4 34.9
FasterRCNN-VGG [Ren et al., 2015] 138.5 554 64.3
YOLOv3 [Redmon and Farhadi, 2018] 40.5 122 71

Inspired by these insights, in this thesis we do not focus solely on the min-

imization of NN parameters, but rather we keep a general and holistic view on

the minimisation of the required resources issue, focusing on all limitations of
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embedded devices. More in detail, we follow the state-of-the-art approaches, re-

framing the integration of AI into constrained/embedded devices problem as a

NN efficientisation task. The integration of AI into embedded devices requires the

minimisation of the resources required by NN models to be optimised and compute

their prediction. Therefore, we define the NN efficientisation task as the problem

of

minimising the resource usage of NN models, either during their opti-

mization process or their deployment phase.

To this end, we consider tackling the issue by investigating the set of techniques

that allow reducing the (i) memory and computational footprint of NN models,

(ii) their latency, (iii) their energy consumption, or (iv) the amount of data they

require to be optimised.

2.1.2 Efficientisation Metrics

Having defined the translation from the embedding problem to the NN efficienti-

sation task as the minimisation of resource usage of NN models, we now identify

the set of relevant metrics to measure for achieving resource minimisation. Ac-

cordingly, we focus on four different metrics that correlate to the limitations of

embedded devices and allow to measure effectively if – and to what extent – effi-

cientisation is effective.

Computational capabilities and requirements. To measure the computa-

tional power of devices – and compare it with the NNs computational requirements

– the FLOPS and FLOPs metrics are commonly used. FLOPS – FLoating point

Operations Per Second – refers to the number of floating point operations that

a device is capable to complete in one second. FLOPs – FLoating point OPer-

ations –, on the other hand, represents the number of floating points operations

required to run a single algorithm—e.g., NN inference. Knowing the number of

cores of a device, its clock frequency, and the number of FLOPs per clock cycle that

the device is capable to handle, it is possible to compute the theoretical FLOPS
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performance of a device by means of the following equation:

FLOPS = cores× clock frequency × FLOPs

cycle
(2.1)

For example, the OpenMV H7 Plus board – presented in Table 2.1 – runs at

480 MHz, and is capable of one FLOP per cycle. Therefore the board has a

theoretical performance of 0.48× 109 FLOPS. This measure, when compared with

the FLOPs requirements of modern NNs – see Table 2.2 –, clearly indicates the

strong limitations of that sort of device for AI applications. Indeed, the board is

theoretically capable of running a single inference of a MobileNet in

t =
FLOPs

FLOPS
= 0.583 s.

This would allow incoming inputs to be processed at a rate of 1.72 Frames Per

Second (FPS), which is not enough for most real-time commercial solutions. More-

over, real-world experiments show how the real performance of embedded devices

is far from their theoretical limit, thus increasing concerns on the applicability of

AI techniques on similar devices [Agiollo and Omicini, 2021].

The FLOPs measure represents an intrinsic metric of complexity of the model

at hand—being independent from the device on which the model is deployed.

Therefore, in this thesis, we will focus almost exclusively on the FLOPs mea-

sure, while ignoring FLOPS. Similarly, we consider an alternative measure of

FLOPs, namely MACs (Multiply-Accumulate Operations). MACs count the num-

ber of multiply-accumulate operations, which involve multiplying two numbers and

adding the result. This operation is fundamental to many linear algebra opera-

tions, such as matrix multiplications and convolutions. Therefore, they are often

used as a more specific measure of computational complexity of convolutional neu-

ral networks (CNNs).

Latency. The amount of time required for a NN model to draw a single predic-

tion is one of the most relevant and impactful efficiency measures. In this thesis,

we refer to such time-lapse as latency. Although not being totally independent

from the device on which the model is deployed, latency is proportional to model

16 CHAPTER 2. EMBEDDING AS EFFICIENTISATION



2.1. EMBEDDING AS EFFICIENTISATION

complexity. On the same hardware setup, a model achieving a smaller latency –

against a slower counterparts – highlights the model ability to compute relevant

predictions in useful time, thus suggesting lower model complexity. However, the

reduction of the model computational requirements represents only part of the

solution to achieve low latency, as the optimisation of the sequence of operations

represents a fundamental aspect to take into account. Sparsely-structured opera-

tions might slow down the inference process due to their inefficient computation

at hardware level. Moreover, input data complexity and quality might alter the

latency achieved by the predictor, as the inference over different – yet structurally

analogous – samples may take vastly different timings [Shumailov et al., 2021].

As latency represents a device-dependent measure, in the remainder of this

thesis, we assume latency to be computed by averaging the time required to draw

a number of predictions from a reference test dataset over a specific hardware

setup. More formally, we define the latency of a predictor N as the average time

required to draw a single prediction from a dataset T :

Λ(N, T,H) =
1

|T |
∑
t∈T

Θ(N, t,H),

where Θ(N, t,H) represents the time required to draw a prediction from N on the

input t over the hardware setup H.

Data footprint. NN models rely on data-driven training algorithms to learn

solving the given task. In this context, the data hungriness of NN models represent

a fundamental factor. Indeed, in the NN context there exists a direct proportion-

ality between the amount of data used for optimising the model at hand and the

corresponding achievable performance. Moreover, the quality of the data – here

intended as its representativeness of the task at hand – is crucial for the predictor

to learn effectively. Finally, inefficient data management can result in decreased

accuracy and increased energy consumption, negatively affecting the system at

hand. All such requirements make the data collection process time-costly and

possibly affected to subjectivity or uncertainty. Therefore, NN models capable of

learning similar concepts from lower amount of data are highly desirable and are

to be considered more efficient. Similarly, NN models capable of learning from the
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same amount of data, but in fewer optimisation iterations are also to be considered

more efficient. A smaller amount of data required for the optimisation procedure

also translates to fewer energy wastes and quicker convergence.

Inspired by these insights, we here define the data footprint of a given predictor

as one of the efficientisation metrics to be taken into account. Informally, the data

footprint of a predictor N is the amount of data it requires to be trained to reach

a certain performance level. Hence, assuming that a predictor N is trained on

a dataset D – of samples of potentially different dimensions –, via some training

process involving e epochs, and that it reached a performance level π(N, T ) over

a test set T – and according to some test dataset T –, we define its data footprint

as follows:

∆π(e,N,D, T ) =
e

π(N, T )

∑
d∈D

β(d)

where d is a single training sample, and β(d) is the amount of bytes required for

its in-memory representation, and π is some performance score of choice. As the

reader may notice, the data footprint is directly proportional to the number of

epochs e, to the size of the training set, and to its dimensionality; whereas it is

inversely proportional to the performance score of the resulting predictor.

Energy consumption. The development and optimisation of NN models re-

quire significant amounts of energy, especially when working with large datasets

or model architectures. Measuring the energy consumption of training and infer-

ence of neural networks is crucial for understanding the environmental impact of

these processes and identifying opportunities for improvement. Moreover, measur-

ing the energy consumption levels represents an essential task when models are

deployed on edge battery-powered devices. By monitoring energy consumption,

developers and researchers can identify areas where efficiency improvements can

be made, such as optimizing model architecture, reducing its precision, or exploit-

ing hardware acceleration. Therefore, the energy consumption metric represents a

fundamental measure to consider whenever dealing with the integration of AI sys-

tems in embedded/constrained devices. Finally, measuring energy consumption is

essential for ensuring that AI systems are not only accurate but also sustainable.

In the data-driven AI life-cycle it is possible to consider the model training and
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model deployment – where the predictor runs multiple times with a frequency de-

pending on the specific application at hand – phases as the most resource hungry.

Indeed, training requires a huge – yet predictable – amount of predictor executions

and updates, whereas deployment might be very energy demanding depending on

the predictor usage frequency and life expectation—which are typically hard to

anticipate. Accordingly, as far as energy consumption is concerned, we are inter-

ested in measuring the energy consumption of the training and deployment phases,

individually. Generally speaking, we can define the average energy consumed by

a NN predictor N on a per-single-inference basis:

Υi(N, T ) =
1

|T |
∑
t∈T

υ(N, t),

where υ(N, t) identifies a function to measure the energy consumption of a single

forward run of a NN predictorN on a single sample t. Such a function may measure

directly the battery depletion process or estimate the energy consumption level via

proxy metrics, such as the heat dissipated by the hardware running the predictor,

during the single inference N(t). To account for variability accross samples, the

considered measure estimates the inference energy consumption as the average

over a test dataset T .

Relying on the average energy consumption definition, it is possible to define

the energy consumed while training Υt as:

Υt(e,N, T ) = e ·
∑
t∈T

[υ(N, t) + β(N, t)]

Our definition assumes the training involves e epochs, and that during each epoch

the whole training set T is used to update the predictor N . The definition also

assumes β(N, t) is a function estimating the energy consumed by the optimization

phase for each data sample t—namely, the backpropagation phase.
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2.2 Efficientisation State of the Art

In this section, we give an overview on the set of popular techniques available in

the literature for tackling the NN efficientisation task. These approaches can be

roughly categorised into six classes, namely:

• neural network pruning – i.e., the process of systematically removing part of

the parameters from an existing NN model

• neural network quantization – i.e., the process of storing the weights and

activation tensors forming the NN model in a lower bit precision than the 16

or 32-bit precision they are usually trained with

• neural architecture search – i.e., the process of automating the construction

of effective structures of NNs

• knowledge distillation – i.e., the process of transferring the knowledge learnt

from a large teacher model to a small student model

• coreset construction – i.e., the process of identifying the most informative

subset of data samples, so that the model trained on the selected subset

achieves similar generalization performance to the model trained on the

whole training set

• distributed learning – i.e., the process of splitting the learning task and dis-

tribute it accross several devices.

Before delving in depth on each class of the available efficientisation approaches,

we give a brief background on Neural Network models, defining their main termi-

nologies.

Brief Background on Neural Networks. Neural networks are biologically-

inspired computational models, made of several elementary units (neurons) inter-

connected into a directed-acyclic graph (DAG) via weighted synapses. NN can

be trained on data via Stochastic Gradient Descent (SGD) and backpropaga-

tion [Hecht-Nielsen, 1988] and exploited into both supervised and unsupervised
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learning tasks such as classification, regression, and anomaly detection. More pre-

cisely, during the training phase synapses weights are optimised automatically to

minimise a given loss function over the data samples at hand, thus enabling NN

learning from data. The SGD method involves arbitrarily-sized subsets of the

dataset (a.k.a. batches) to be processed a finite – i.e., controllable – amount of

times—i.e., epochs. Hence, the complexity of SGD can be finely controlled and

adapted to the computational resources at hand—e.g., by making the learning

process incremental, and by avoiding all data to be loaded in memory. More-

over, SGD can be applied to several sorts of predictor families (there including

NN and generalised linear models), as it only requires the target loss function to

be differentiable w.r.t. the model’s parameters. For all these reasons, despite the

lack of optimality guarantees, SGD is considered as very effective, scalable, and

malleable in practice, hence it is extensively exploited in the modern data science

applications.

2.2.1 Pruning

One set of popular approaches for reducing the resource requirements of NN during

their deployment phase is neural network pruning [Blalock et al., 2020]. Network

pruning is defined as the process of systematically removing part of the parameters

from an existing network, thus reducing the network complexity while aiming at

keeping the performance degradation small. Typically, the starting NN is large

and accurate, and the goal is to produce a smaller network with similar level of

performance—e.g., accuracy. Mathematically speaking, pruning entails taking as

input a model f(W ) – where W represents the model parameters – and producing

as output a new model f(M ⊙W ). Here M ∈ {0, 1}|W | is a binary mask that fixes

certain parameters to 0, and ⊙ is the elementwise product operator. In practice,

rather than using an explicit mask, pruned parameters of W are fixed to zero or

removed entirely.

Generally speaking NN pruning algorithms require the network to be firstly

trained to convergence. Afterwards, a scoring function is defined to assign a score

to each parameter or structural element in the NN. The obtained scores are used

to prune the NN accordingly, removing less relevant elements. Pruning reduces
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the accuracy of the network, thus the NN model is trained further – i.e., fine-tuned

– to recover part of the lost performance. The overall process of pruning and fine-

tuning is often repeated several times – gradually reducing NN footprint – up until

a satisfaction criterion is met, generally based on a trade-off between the number

of parameters pruned and the obtained performance loss.

State-of-the-art pruning methods vary primarily in their choices regarding spar-

sity structure, scoring, and scheduling.

Unstructured pruning methods prune individual model’s parameters, thus pro-

ducing a sparse NN. These methods produce smaller – w.r.t. the total number of

parameters – networks which, however, may not be arranged in a fashion resulting

in computation speedups. Indeed, the intrinsic sequential nature of NN opera-

tions does not favour sparse networks for achieving faster inference time or smaller

resource consumption. Other methods consider pruning groups of parameters –

i.e., structured pruning –, removing entire neurons, filters, or channels. While

these methods usually output higher performance degradation, they enable the

exploitation of hardware and software optimized for dense computation [Li et al.,

2017].

NN parameters are usually scored based on their absolute values, trained impor-

tance coefficients, or contributions to network activations or gradients. Here, dif-

ferent approaches either assign scores locally or globally. Local scoring approaches

consider pruning the fraction of parameters resulting in the lowest scores within

each structural subcomponent of the network [Han et al., 2015]. On the other

hand, global scoring approaches compare scores to one another independently of

the part of the network in which the parameter resides [Frankle and Carbin, 2019].

Finally, available pruning methods vary depending on the amount of param-

eters/components they prune for each iteration of the pruning algorithm. The

simplest approach would be to prune all desired weights at once as done in [Liu

et al., 2017b]. Aiming at achieving higher pruning precision and smaller perfor-

mance degradation, few other approaches consider to prune a fixed fraction of

parameters iteratively over several steps [Han et al., 2015] or vary the rate of

pruning according to a specific function [Gale et al., 2019].
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2.2.2 Quantization

One popular approach for decreasing the computational time and energy consump-

tion of NN models is represented by quantization. The underlying idea of neural

network quantization it to store the weights and activation tensors forming the

NN model in a lower bit precision than the 16 or 32-bit precision they are usu-

ally trained with. Quantization represents a powerful approach for reducing the

computational requirements of NNs. For example, when moving from 32 to 8 bits,

the memory overhead of storing tensors decreases by a factor of 4 while the com-

putational cost for matrix multiplication reduces quadratically by a factor of 16.

Moreover, several reserach efforts show how NNs are generally robust to quanti-

zation manipulation. In other words, NNs can be quantized to lower bit-widths

with a relatively small impact on the obtained performance.

NN quantization approaches can be roughly categorised into two main classes of

algorithms: Post-Training Quantization (PTQ) and Quantization-Aware-Training

(QAT) [Nagel et al., 2021]. PTQ requires no re-training or labelled data and is thus

a lightweight push-button approach to quantization. PTQ is sufficient for achieving

8-bit quantization with close to floating-point accuracy. However, this often comes

at the cost of lower accuracy as compared to QAT in the low-precision regime. For

this reason, PTQ approaches often focus on the mitigation of accuracy degradation

via different strategies. For example, [Banner et al., 2019, Finkelstein et al., 2019]

observe inherent bias in the mean and variance of the weight values following

their quantization and propose bias correction methods. Similarly, [Meller et al.,

2019, Nagel et al., 2019] show that equalizing the weight ranges (and implicitly

activation ranges) between different layers or channels can reduce quantization

errors.

On the other hand, QAT requires fine-tuning and access to labeled training

data – thus increasing the resource requirements of such approaches –, but enables

lower bit quantization with competitive results. In QAT frameworks the usual for-

ward and backward pass are performed on the quantized model in floating point,

but the model parameters are quantized after each gradient update. An impor-

tant subtlety in QAT backpropagation is how the non-differentiable quantization

operator is treated. Without any approximation, the gradient of this operator is
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zero almost everywhere. Most approaches differ in the way they tackle this issue,

either ignoring the rounding operation and approximating it with an identity func-

tion [Bengio et al., 2013, Stock et al., 2021] or removing the rounding operation

in the quantization formula [Bai et al., 2019, Choi et al., 2018].

2.2.3 Neural Architecture Search

Throughout the NN training phase only network synapses weights are modified,

whereas its overall graph structure (topology henceforth) is not allowed to vary.

It is rather assumed to be manually engineered by data scientists. Therefore, NN

development workflows are deeply influenced by the choices by human experts.

Network architectures represent the most relevant aspect requiring human contri-

bution. However, as neither theorems nor methods ensure optimal results, human

choices may lead to sub-optimal or inefficient solutions.

To avoid inefficiencies introduced by human errors in NN design, neural ar-

chitecture search (NAS) has been proposed [Miller et al., 1989]. NAS automates

network architecture engineering: it aims at learning a network topology that can

achieve reasonably-good performances on specific tasks, by letting a search algo-

rithm look for the best network topology among the admissible ones. To keep the

computational complexity of NAS acceptable, several approaches have been pro-

posed in the literature. Virtually all of them try to (i) reduce the search space size

and (ii) control the whole search duration by leveraging on a greedy or evolutionary

search strategy.

A common means to restrict the search space is to assume the network topol-

ogy to be composed by a sequence of units called cells. Each cell contains a

number of blocks, connected over a DAG structure. Blocks, in turn, are groups

of neurons having a predefined internal organisation—commonly corresponding to

a particular mathematical operator. In Convolutional Neural Networks (CNNs),

for instance, blocks are commonly constrained to represent convolutional layers,

each one representing different sorts of convolutional filters—e.g. 3×3, 5×5, etc.
Directed connections among any two cells A and B are modelled as directed con-

nections among the output block of A and the input block of B.

State-of-the-art NAS approaches mostly differ in which and how many blocks
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and cells are exploited, how these can be connected with each others, or which

(meta-)heuristic the search of the optimal topology leverages upon. For instance,

a method is proposed in [Liu et al., 2018] where NN is built as a sequence of identi-

cal cells—so that only the internal structure of one cell is optimised. On the other

hand, some popular approaches consider fixing cells operations and identifying

the best cell combination that can compose the NN [Chu et al., 2020, Tan et al.,

2019]. Concerning the leveraged search meta-heuristic, several approaches con-

sider relying on evolutionary approaches, exploring different architectures through

mutations and selection [Real et al., 2019, Casale et al., 2019]. Reinforcement

learning also represents a popular meta-heuristic to search for the best compo-

sition, as it allows defining multi-objective oriented exploration algorithms [Chu

et al., 2020, Tan et al., 2019].

Although being originally defined targetting raw model performance, NAS

approaches can be applied to identify resource efficient NN architectures. Few

approaches consider incorporating a model complexity metric into the objective

function of the search process, either considering a specific hardware [Tan et al.,

2019] or defining a hardware-aware search mechanism [Cai et al., 2019]. These

approaches generally rely on directly measuring the latency [Tan et al., 2019, Xu

et al., 2020] or the computational requirements [Wu et al., 2019] – either in terms

of FLOPs or MACs – of the analysed architecture. However, although NAS can

be leveraged to identify reource-efficient architectures, these approaches are still

vastly unexplored in the NN efficientisation landscape, as they require relevant

amount of resources to explore the search space at hand. Finally, it is relevant to

notice that NAS approaches can integrate pruning [Ding et al., 2022] and quanti-

zation [Chen et al., 2018] mechanism in their exploration pipeline, helping tackling

the efficientisation task from multiple perspectives.

2.2.4 Knowledge Distillation

Knowledge distillation has received rapid increasing attention from the community

as a representative type of model compression technique. Knowledge distillation

approaches aim at effectively learning a small student NN model from a large

teacher NN model, so that the performance obtained by the small NN is similar
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to the original large model. The underlying idea behind knowledge distillation

is that the student model is supervised thorughout its training procedure by the

large teacher model, mimicking its predictive behaviour to obtain a competitive

performance [Gou et al., 2021]. Knowledge distillation represents a powerful tool

for NN model efficientisation, as it allows to define a student model whose com-

plexity can be tuned depending on the scenario at hand. However, there exists a

trade-off between the teacher-student complexity compression ratio and the per-

formance degradation achievable using knowledge distillation. Indeed, distilling a

complex large NN model usually requires a fairly complex student NN to achieve

a satisfactory level of performance.

Generally speaking, knowledge distillation approaches differ depending on how

the knowledge is transferred from the teacher model to the small student NN.

More in detail, such approaches can be roughly categorized depending on two key

components: (i) the knowledge tehy consider and (ii) the distillation algorithm.

Vanilla knowledge distillation approaches consider the knowledge stored in the

logits of the prediction of the large teacher model, defining a novel distillation

loss which aims at minimising the distance between teacher logits and student

logits [Hinton et al., 2015]. More complex approaches consider relying on the

knowledge stored in the neurons or features of the intermediate layers – as well as

structural connections between layers [Liu et al., 2019b] – of the teacher model,

similarly defining an ad-hoc distillation loss to couple the two models [Huang and

Wang, 2017].

Distillation algorithms can be categorised depending on whether the teacher

model is updated simultaneously with the student model or not, roughly identify-

ing two main categories, namely: (i) offline distillation and (ii) online distillation

Offline distillation approaches consider training first the large teacher model on

a set of training samples and subsequently distill the teacher knowledge into the

student model, keeping the teacher model fixed [Passalis and Tefas, 2018]. On

the other hand, Online distillation approaches consider to update simultaneously

both the teacher and the student model, thus defining a knowledge distillation

framework that is end-to-end trainable [Walawalkar et al., 2020].
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2.2.5 Coreset Construction

Coreset construction approaches propose to identify the most informative subset

of data samples belonging to a dataset, so that the model trained on the selected

subset achieves similar generalization performance to the model trained on the

whole training set. Identifying a smaller subset of relevant data smaples to be used

for training the NN model at hand, coreset construction approaches target directly

the minimisation of the model’s data footprint (see Section 2.1.2). Moreover, the

reduction of the number of data samples required for training a model impacts the

overall energy consumption of the optimisation process, reducing the convergence

time and the resource wastes. Therefore, coreset construction approaches represent

a very valuable solution to reduce the environmental impact of the NN and DL

models optimisation process.

We now define mathematically the coreset construction problem setup, which is

useful for understanding the problem complexity and that will be used extensively

in Chapter 5. Consider a learning task in which the given large training set is

defined as T = {(xi, yi)}|T |
i=1, where xi ∈ X is the input data sample, yi ∈ Y is the

ground-truth label of sample xi, and X and Y denote the input and output spaces,

respectively. V = {(xi, yi)}|V|i=1 defines a held-out validation set of samples used to

test the performance achieved in the learning task. In this context, given a neural

network model h with parameters θ and a loss function L, we can define the loss on

a set S of instances as L(θ,S) =
∑

i∈S L(θ,xi, yi). Similarly, LT (θ, T ) denotes the
training loss over the full training set T , and LV(θ,V) the corresponding validation
loss. In this setup, the coreset construction task aims at identifying the most

informative subset S ⊂ T such that |S| < |T | – preferably |S| << |T | –, so

that the model h(θS) trained on S achieves similar generalization performance to

the model h(θT ) trained on the whole training set T . Mathematically, we can

formulate the coreset construction problem by searching for the coreset S that

allows to minimize the validation loss of the model optimized on the same subset

of training samples S:

argmin
S⊂T

{
L
(
argmin

θ
{L(θ,S)} ,V

)}
. (2.2)
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We refer to the coreset size by the percentage of training data samples selected to

construct the coreset, namely P =
|S|
|T |

.

The most popular approaches in the coreset construction context rely on the

importance of a sample as its contribution to the loss or the gradient of the loss

function throughout training. For example, both Grad-Match [Killamsetty et al.,

2021a] and CRAIG [Mirzasoleiman et al., 2020] select the weighted subsets whose

gradients best approximate the loss gradient on the entire training dataset every

few epochs during training. CRAIG converts the gradient-distance optimization

problem into a submodular function solvable using a greedy approach. On the

other hand, GradMatch leverages an orthogonal matching pursuit algorithm to

closely match the gradient of the loss function on both training and validation sam-

ples. While effective, such approaches require frequently re-selecting the coresets

during training, thus limiting resource consumption improvements, as the coreset

selection algorithm is expensive. To overcome this issue GraNd [Paul et al., 2021]

approximates the L2 norm of the gradient early on in training averaging it over

many different training initializations.

Decision boundary-based methods select coresets relying on the assumption

that the points closest to the decision boundary are the most informative. How-

ever, measuring the sample distance from the decision boundaries remains an open

issue addressed by relying on the dissimilarity between the classification likelihood

of a sample and its neighbours [Margatina et al., 2021] or by leveraging adversarial

examples [Ducoffe and Precioso, 2018]. Few other approaches consider identifying

coreset samples, based on how well they cluster together, representing each cluster

by its centroid sample. In this context, the available approaches differ depending on

the clustering approach or metric used, such as [Chen et al., 2010] which considers

distance in the feature space, or [Har-Peled and Mazumdar, 2004] which reframes

the problem as a minimax facility location. Finally, some recent approaches con-

sider the minimization of the coreset loss directly as a bilevel optimization problem,

either maximizing the log-likelihood on a held-out validation set of samples [Kil-

lamsetty et al., 2021b], minimizing directly the loss function [Killamsetty et al.,

2021c], or leveraging submodular optimization [Iyer et al., 2021, Iyer and Bilmes,

2013].
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2.2.6 Distributed Learning

Distributed learning approaches propose to reduce the amount of data and re-

sources required for training ML and DL models by leveraging the collective intel-

ligence of distributed devices. In this context, Federated Learning (FL) approaches

are becoming increasingly popular. Most, if not all, FL scenarios consider a central

server interacting with multiple users – also called clients or workers – to train a

ML/DL model jointly. In this setup, each worker locally trains its model on its

private data, while the central server aggregates local updates upon their recep-

tion. The groundbreaking idea behind FL is that the training process of the global

model takes into account the data of all clients belonging to the federation while

never disclosing their nature. Thanks to its unique design, FL achieves high effi-

ciency improvements over centralised training approaches, thanks to its underlying

parallelisation paradigm.

Distributed learning and FL approaches can be leveraged to reduce the resource

requirements of the optimization process of large NN models. However, when con-

sidering to apply FL on embedded and resource-constrained devices, several issues

might arise and should be taken into account. For example, while FL intrinsic

parallelisation procedure may help distribute the optimisation workload accross

different devices, it may also introduce communication overhead issues and corre-

sponding resource wastes. To tackle this issue few works consider analysing the

communication scheme of FL over resource-constrained scenarios, proposing mech-

anisms to reduce the amount of interactions between the clients and the central

server [Zhang et al., 2022], or the size of each message [Shah and Lau, 2023].

Due to the limited energy budget of the resource-constrained clients and the

heterogeneity of the clients’ hardware setup, computation and communication en-

ergy consumption must be considered during the FL process. Indeed, energy

wastes may cause clients disconnections as well as convergence issues. In this

context, the joint optimisation of the energy consumed by each local client along

with the minimisation of the energy consumed by the overall federation process

represents an open problem. Therefore, few works consider tackling the energy

consumption minimisation issue either proposing to formulate the joint learning

and communication problem as an optimization problem [Yang et al., 2021b, Kim
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andWu, 2021], or to consider local energy consumption, minimising the probability

of clients disconnection from the federation [Hamdi et al., 2022b].

Finally, few approaches focus on the client selection process typical of FL. In

this context, few approaches consider selecting clients depending on their model

utility – defined as its potential improvement over the aggregated model – [Lai

et al., 2021, Arouj and Abdelmoniem, 2022]. Few other approaches consider se-

lecting the clients depending not only on their model performance, but also con-

sidering the communication burden affecting the considered client, such as [Cho

et al., 2020].

Chapter Synopsis

In this chapter we define the requirements of the integration of AI models into em-

bedded and resource-constrained devices, identifying the major limitations that

affect popular embedded devices. We reframe the integration of AI into con-

strained/embedded devices problem as a NN efficientisation task, requiring the

minimisation of the resources consumed by NN models to be optimised and com-

pute their prediction. To this end, we translate the embedded device limitations

into a set of efficientisation metrics that we will take into account for the remainder

of this thesis. Finally, to complete the NN efficientisation picture, we provide a

brief overview on the set of avaialable approaches for tackling this specific task,

focusing on their advantages and shortcomings. The key aspect to keep in mind

throughout the remainder of this thesis is that none of the available approaches

represents a silver-bullet solution, as there still are several open challenges for

enabling the integration of complex NN models in resource-constrained scenarios.
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Efficientisation via Architecture

Search

This chapter contains contributions from [Agiollo et al., 2021].

State-of-the-art neural architectures are characterised by an ever-increasing

structural complexity – in terms of layers, neurons, and their connections –, which

is expected to make neural networks even more precise and accurate. However, the

structural complexity of NN brings about a number of drawbacks. For instance, it

makes training more eager for computational resources and data. Furthermore, it

represents a bottleneck in the engineering process of DL systems—which is com-

monly performed by data scientists, manually. This is where Neural Architecture

Search (NAS) [Elsken et al., 2019, Wistuba et al., 2019] comes into play. The

general goal of NAS is to automate the identification of the best NN structure

for a given task, by defining an architecture search space and a corresponding

exploration policy (see Section 2.2.3 for more details).

Along with enabling the identification of the best NN model for a given task,

NAS approaches can be leveraged to tackle the NN efficientisation issue. Indeed,

few research efforts propose leveraging NAS to automate the identification of NN

architectures that minimise the memory footprint of the obtained model or its

latency [Tan et al., 2019, Wu et al., 2019]. Generally speaking, these approaches

model the NAS as a search problem in the space of all possible NN architectures

where the model selection policy takes into account the architecture resource us-
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age. However, no work so far focuses on controlling network structural complexity

while encouraging operations variability. Accordingly, in this chapter we propose

Shallow2Deep, a novel NAS algorithm aimed at keeping NN structural complex-

ity under control, while promoting structural variability over its elements. Our

algorithm enforces structural constraints over the searched NN architecture, lim-

iting the NN structural complexity and therefore its resource hungriness. In other

words, Shallow2Deep fits NN design by providing a means to control the depth of

a NN and specialise NN sub-components depending on their location.

Our solution differs from other NAS approaches in a number of ways. First, it

promotes local variability in NN architectures—meaning that it supports and en-

courages variability in the different layers composing a NN. Then, it favours local

specialisation of NN sub-structures—thus letting each layer of the NN specialise

on different tasks, depending on their depth. Finally, it promotes progressive com-

plexity, avoiding overthinking—a well-acknowledged [Kaya et al., 2019] tendency

of deep NN to learn too many concepts, becoming more complex than needed. We

present a full operational formalisation of the Shallow2Deep algorithm along with

a number of experiments showing its practical feasibility and versatility.

3.1 Shallow2Deep

In this section we present Shallow2Deep, a novel exhaustive NAS algorithm: we

first present its architecture design along with the corresponding search space

(Section 3.1.1), then we discuss its overall working principle, its fundamental hy-

potheses, and the details of its composing modules.

3.1.1 Architecture Design

Most popular NAS approaches blindly build a NN architecture by repeating the

same elementary structure (cell) several times—assuming that the internal struc-

ture of a cell has been manually optimised. This sounds like a reasonable approach,

considering the history of NN development and validation. Handcrafted successful

networks (e.g., VGG [Simonyan and Zisserman, 2015], ResNet [He et al., 2016],

Mobilenet [Howard et al., 2017], etc.) are composed by repetitions of a certain
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Figure 3.1: Shallow2Deep avoids architecture design limitations, common in other
NAS algorihtms. Here C = 5.

peculiar element (e.g., convolutions, skip connections, inverted mobile bottleneck,

etc.). Furthermore, repetitions lead to a reduction of the search space size, when

an effective combination of the elementary cells must be automatically computed.

However, although understandable from a computational perspective, such an

approach is not reasonable in terms of predictive capability. Relying on the same

elementary structure at different depth levels of the network architecture may hin-

der the predictive performance of the resulting NN as a whole. In fact, assuming

a particular elementary structure is good enough to let a network’s shallow 1layers

perform valuable feature extraction, it is unlikely that the same structure is equally

good to provide that network’s deep layers with more sophisticated pattern match-

ing capabilities. The different layers of a well-trained NN are expected to perform

totally different feature-mining tasks. This is why we argue that the best elemen-

tary structure for shallow and deep layers of NN are not architecturally equal.

Shallow2Deep builds on this, providing a means to look for a good cell structure

specification for both shallow and deep layers.

More precisely, Shallow2Deep constructs NN classifiers with a fixed number

C of different cells. Cells can differ in terms of the topology they assume and

the operations they apply. We define the difference between cells w.r.t. topology

and operations as structure variability. Shallow2Deep promotes local structure

variability in NN architectures, avoiding design limitations.

1By “shallow” (resp. “deep”) layers of a NN we mean the inner layers close to the input
(resp. output) neurons.
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Figure 3.2: Blocks in Shallow2Deep cells can get input from previous cell (green),
the cell before that (blue) or any other block in the cell (yellow). Cell output is
obtained concatenating outputs of all blocks belonging to the cell (black). Here
C = 3 and B = 4.

Figure 3.1 highlights the main difference among state-of-the-art NAS mech-

anisms and our approach: Shallow2Deep lets each cell vary independently from

each other. However, similarly to other authors, we assume cells to be ordered

from shallow side to the deep side. Accordingly, the 1st cell is the closest one to

the inputs, while the last one is the closest to the outputs.

In particular, Shallow2Deep lets each cell contain B blocks—being B a positive

and finite integer. Each block represents a particular sort of NN layer. Following

a convention introduced in [Ying et al., 2019], we denote by O the finite set of all

possible sorts of blocks—which in turn depend on the particular task the target NN

aims to solve. For instance, if the considered NN targets image recognition tasks,

we let O contain simple convolutions, other than the identity block—e.g. some

n×n convolutional layers (for n = 1, 3, 5, . . .), plus the identity layer f(x) = x.

Each block of the ith cell can accept as input the output of i− 1th and i− 2th

cells and of any other block in the same ith cell. However, loops and cycles among

blocks connections are not allowed. In other words, the blocks topology must be

a Directed Acyclic Graph (DAG). This is necessary to preserve the feed-forward

architecture of the NN. Furthermore, each block can provide output to any amount

of other blocks.

The whole output of a cell is attained by concatenating the outputs of all blocks

belonging to that cell, as in [Liu et al., 2018]. Figure 3.2 provides an example

of an admissible topology that can be created by blocks and cells following the

aforementioned rules.
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Figure 3.3: Shallow2Deep iteratively searches for the best structure of cells going
from shallow to deep ones. Shallow bests are searched using simple superstructures
to increase the feature expressiveness and reduce training time. Local bests are
kept fixed while deeper best are searched, reducing the complexity.

3.1.2 Search Algorithm

Virtually all NAS algorithms proposed into the literature so far deal with reduced

search spaces attained via strict architectural constraints. Conversely, our ap-

proach avoids the excessive simplification of the architectural design by allowing

the internal structure of each cell to vary. A greedy search algorithm is then em-

ployed to automate the selection of the actual cells structures, in an iterative way.

It relies on the successive search of locally-optimal cell structures proceeding from

the shallower cells to the deeper ones.

As exemplified in Figure 3.3, Shallow2Deep consists of the iterative repetition

of a local search algorithm aimed at selecting the (locally) best internal structure

of the ith cell. The search algorithm is repeated for all i = 1, . . . , C, in such a way

that the internal structure of the ith cell is only optimised after that (i− 1)th one

has already been optimised. In particular, we rely on an evolutionary algorithm to
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tackle local search. During local search, a population of NN is considered based on

the structures that need to be analysed. The NN under examination are trained

on a subset of the training set in order to find well behaving local structures—i.e.

cell. To keep the whole process time-efficient, while optimising the ith cell, all the

jth cells (j ∈ {1, . . . , i− 1}) are left unaffected by the training process. Moreover,

to maximize the knowledge extracted at the ith cell during its discovery process,

all kth cells (k ∈ {i+1, . . . , C}) are built as bare as possible. Following literature,

we consider bare cells to be composed of a single block applying a 3×3 convolution

operation [Golovko et al., 2017, Simonyan and Zisserman, 2015]. In other words,

Shallow2Deep greedly proceeds from the shallowest cell to the deepest one.

While further details concerning our design choices are provided in Section 3.2,

some insights can be provided by the way a well-trained NN operates. The shallow

layers of a NN aim to mine low level features. Complex features are extracted

by deeper layers, reliably building on top of low level information. Therefore,

Shallow2Deep searches for structures of deeper cells iteratively, building on the

knowledge acquired at previous search steps.

Cell Search

The Shallow2Deep algorithm relies on a local search of the best performing struc-

ture for each cell of the NN. The task can be accomplished through a variety

of different search algorithms, from reinforcement learning to evolutionary algo-

rithms [Zoph and Le, 2017, Yang et al., 2020]. In Shallow2Deep we exploit evolu-

tionary (a.k.a. genetic) heuristic algorithms.

Evolutionary algorithms are a family of population-based metaheuristic opti-

mization algorithms inspired by biological evolution. They commonly rely on a

set of predefined stochastic mechanisms – namely, generation, mutation, selection,

mating, fitness, etc – which let the algorithm randomly explore a vast search space

in a smart way. Technically, these algorithms attempt to solve an optimisation

problem by generating population of random solutions for the problem at hand,

and by simulating evolution for a predefined amount of iterations—a.k.a. gener-

ations. Solutions are more or less likely, to survive among generations depending

on their fitness—i.e. a measure of the quality of a particular solution w.r.t. the
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problem at hand. To prevent the search to step into local optima, evolutionary al-

gorithms may exploit a number of strategies to introduce more randomness in the

process, such as mutations—meaning that solutions may randomly mutate while

stepping through generations.

We choose to rely on evolutionary algorithms because of their (i) flexibility,

(ii) support to space pruning [Luo et al., 2020] – a feature that we plan to support

in the future –, other than (iii) the many successful works on NAS leveraging

on evolutionary approaches as well (cf. [Liu et al., 2019a, Liu et al., 2018, Ying

et al., 2019]). In particular, our evolutionary algorithm is inspired to regularised

evolution proposed in [Real et al., 2019]. However, we avoid regularisation through

aging and introduce a randomised approach to explore untouched areas of the

search space.

As any other evolutionary approach, our algorithm mimics biological evolution

by letting a population of N randomly-generated NN step through a number ν

of generations. More in details, the number of generations (i.e., ν) represents the

maximum amount of iterations that the evolutionary algorithm should perform

before returning the final solution. While transitioning between generations, NN

may probabilistically mutate, other than being allowed to survive depending on

their fitness. Accordingly, while the mutation mechanism lets the algorithm ran-

domly explore different internal structures for the ith cell, the fitness measure lets

the algorithm assess how good a particular internal structure of the ith cell actually

is. The Shallow2Deep algorithm can then go on with its iteration and focus on

the (i + 1)th cell. Once reached the νth generation, the best fitting NN is used to

determine the final interal structure to be chosen for the ith cell.

Accordingly, in the remainder of this section, we delve into the details of how

mutation and fitness actually work in the particular case of Shallow2Deep.

Algorithm stub. We denote by Pn the nth generation of the population. Sim-

ilarly, we denote by P0 the initial population, which is randomly generated. The

population size is kept fixed to throughout the local search procedure, as it is

commonly done for evolutionary algorithms. In other words, for all i ∈ {1, . . . , ν},
the population Pn is such that |Pn| = N and all the architectures of all networks

in Pn conform to the constraints described in Section 3.1.1.
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Then, our evolutionary algorithm refines the population through 3 steps which

are repeated at every generation. These steps are:

train — where all the NN in Pn are trained on (a subset of) the data set;

selection — where the NN which are not among the top-m fittest ones are re-

moved from Pn;

incubation —where Pn is enriched with new NN – attained via mutation – aimed

at replacing the ones cutted off by the selection step.

Shallow2Deep assumes the available data to be partitioned into 3 parts, namely

the training, validation, and test sets. While the train step only leverages on

the training set, the selection step evaluates the fitness measure of each network

against the validation set. The test can then be used to assess the performance of

the final network architecture output by Shallow2Deep.

Concerning the incubation step, it is aimed at helping Shallow2Deep both

from a performance-maximisation and search-space-exploration-speed perspective.

More precisely, it aims at generating new NN following two criteria:

• c networks are attained by mutating as many individuals in Pn through the

application of mutation transformation;

• r = N −m− c networks are randomly generated from the search space.

Best behaving structures mutation helps performance maximisation, enhancing

the focus on those evolutionary paths that have proven to be strong in recent

history of the population. Partially randomising incubation helps search space

exploration as it allows the evolution to look for points in the space farther apart

from previously beaten evolutionary paths.

Once all the three steps have been completed for generation n, and a new

population has been attained, Pn+1 and the evolutionary search can proceed with

generation n+1. The process is repeated ν times, after which the best performing

local structure is considered as found.
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Fitness measure. Fitness is measured on the validation set using the most

adequate performance measure for the task at hand. Accordingly, in case the

to-be-defined network targets classification tasks, accuracy or F1-score2 measures

may be used. Conversely, in the case of regression tasks, MSE3, MAE4, or R25

measures may be exploited instead.

In the particular case of image recognition tasks, classification accuracy is an

adequate choice. More complex performance metrics may consider also FLOPS [Tan

and Le, 2019] and latency [Tan et al., 2019].

Mutation. The mutation transformation is applied to some NN – referred as

the parent – in order to attain new architectures—called children. It only focuses

on the internal structure of the ith cell of the parent network, possibly affecting

some of its blocks. In particular, we rely on two possible mutations that can be

applied to the blocks of a cell (graphically depicted in Figure 3.4):

input mutation — a block B of the ith cell is selected at random, it is detached

from its previous input, and the output of either another block B′ in the

same cell or of the jth cell as whole, with j ∈ {i−1, i−2}, is used as the new

input of B—provided that the new connection does not introduce a loop or

a cycle;

operation mutation — a block B of type o ∈ O is randomly selected from the

ith, and its type is changed to some other o′ ∈ O such that o ̸= o′.

Greedy Assemble

Shallow2Deep requires several NN to be actually trained behind the scenes of its

operation. This is true, in particular, for the evolutionary algorithm described

above. In fact, while mostly focusing on one cell at a time, the algorithm must

still train at least N · ν networks – only differing for the content of the ith cell –,

C times.

2https://en.wikipedia.org/wiki/F-score
3https://en.wikipedia.org/wiki/Mean_squared_error
4https://en.wikipedia.org/wiki/Mean_absolute_error
5https://en.wikipedia.org/wiki/Coefficient_of_determination
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Figure 3.4: Mutation operations available in randomized evolution. When input
operation is applied, previous input block is linked with cell output if it has re-
mained pendent, avoiding block removal.

To keep the computational effort feasible, a number of strategies are in place.

For istance, while performing the ith evolutionary search, Shallow2Deep leaves all

cells of index j s.t. 1 ≤ j < i unaffected, and does not re-train them anymore, as

they have already been explored and trained in previous iterations. Dually, the

algorithm always assumes all cells of index j s.t. i < j ≤ C to only contain a single

block. In this way, the whole NN shallowness is preserved. In the particular case of

image recognition tasks, that block may for instance consist of a 3×3 convolutional
layer. Accordingly, during the ith evolutionary search, only cells whose index is at

least equal to i are actually trained over data, and all cells whose index is greather

than i have a very minimal structure.

In other words, once the ith local search is completed, the m best performing

structures for the ith cell are fixed, and never retrained anymore. As part of the

subsequent iterations of Shallow2Deep, the network architecture is deepened to

produce deeper and more complex NN.

3.2 Discussion

Global NN architectures are ideally composed by different local structures whose

role depends on their position in the NN. Following this idea, unlike most common

NAS frameworks, Shallow2Deep does not rely on the replication of the same cell.

Rather, Shallow2Deep exploits a progressive search of the best cells at each possible

40 CHAPTER 3. EFFICIENTISATION VIA NAS



3.2. DISCUSSION

depth level, from the shallowest to the deepest ones. We here discuss the rationale

behind Shallow2Deep progressive search.

It is well understood how the complexity of the features extracted by some NN

is proportional to the depth of the layer which recognises them [Yosinski et al.,

2015, Nguyen et al., 2016]. In fact, while layers that are closer to the input are

appointed to extract basic features – such as edges, corners, borders, etc., in image-

recognition tasks –, deeper layers aim at recognising more complex features—

such as combination of shapes, combination of textures, etc. Accordingly, shallow

networks are better suited to tackle simple tasks [Golovko et al., 2017] where only

simple features are involved. Conversely, the more complex a to-be-recognised

feature is, the deeper a layer capable to recognise it must be. This happens because

the recognition of a complex feature in a NN relies on the composition of more

basic features extracted by shallow layers. Consequently, the lower is a feature

complexity, the shallower can be the NN able to learn it. We call this phenomenon

depth-complexity proportionality assumption.

There exists a tight link between features complexity and network depth that

allows us to propose reasonable shortcuts for exhaustive architecture search meth-

ods. Shallow2Deep is designed on the assumption that simple features learnt by

shallow networks perform reliably for deeper networks as well. Indeed, deeper NN

achieve more flexible recognition capabilities than shallower ones [Nam and Han,

2016, Peng et al., 2020]. Moreover, deeper NN may attain higher generalisation

capabilities [Rolnick and Tegmark, 2018], being capable of adapting to the features

that shallow NN have learnt to recognise.

Accordingly, we argue that NN built from the sequential repetition of the same

local structure cannot achieve the astounding results that characterise state-of-

the-art NN. Conversely, we believe it is possible to search for reliable shallow

architectures and expand them in successive iterations, as done by Shallow2Deep.

The more simple concepts are reliably learnt by shallow networks, the easier it will

be to learn complex notions from their combinations. We call this phenomenon

knowledge greediness assumption.

The progressive global assemble of Shallow2Deep exploits both knowledge greed-

iness and depth-complexity proportionality assumptions to boost the overall time

complexity and performance.
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In particular, depth-complexity proportionality justifies the deepening of the

NN architecture in successive iterations, which in turns supports the trick exploited

by Shallow2Deep to speed up the local search phase. Indeed, population training

in the evolutionary local search is the most expensive and time consuming process.

Training shallower networks requires less time to complete, as the parameters to

optimize are much less.

Conversely, knowledge greediness justifies Shallow2Deep’s strategy of itera-

tively expanding the depth of the NN architecture under consideration. While

this certainly raises NN training time, it also lets deeper architectures rely on pre-

viously trained cells. In particular, to boost the overall search, Shallow2Deep fixes

the parameters of shallower cells, avoiding their re-training. This idea traces back

to the well-established idea of re-using pre-trained feature extractors in object de-

tection mechanisms [Ren et al., 2017, Li et al., 2018a]. Indeed, once a network is

deepened and its deeper cell structure is determined, the predictive performance

of the overall network does not degrade, even if shallow layers are kept fixed.

3.3 Experiments

In this section we first present the dataset used in our experiments (see Sec-

tion 3.3.1). We then introduce the Shallow2Deep implementation and the best

NN architecture obtained with it in Section 3.3.2. In Section 3.3.3 we then com-

pare obtained architecture with state-of-the-art models that leverage on the same

operation set O. We also analyse if Shallow2Deep local structures could be reused

through repetition in a NN model to obtain better performance/complexity ratio.

We make publicly available our implementation of Shallow2Deep.6

3.3.1 Dataset

To demonstrate the validity of our approach we run Shallow2Deep on the MNIST

fashion dataset [Xiao et al., 2017]. The dataset is a publicly available database

containing images of fashion products and is commonly used for training and test-

ing state-of-the-art ML systems. The fashion MNIST serves as a quick replacement

6https://github.com/AndAgio/Shallow2Deep
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of the original MNIST dataset [LeCun et al., 2010], sharing the same image size,

data format and structure of training and testing samples. The dataset contains

a total of 70,000 grayscale images – each having size of 28x28 pixels – of fashion

products from 10 different categories. The dataset was extracted scraping images

from the articles of the Zalando website7. The classes are perfectly balanced each

having 7,000 images. Finally, the training set consists of 60,000 samples, while the

test set consists of 10,000 images.

3.3.2 Shallow2Deep Architecture

We define O to be the set of available operations that can be selected for each

block of a cell. Similar to [Ying et al., 2019], in Shallow2Deep O contains simple

convolutions and identity (1×1 conv, 3×3 conv, 5×5 conv, identity). Consider now

Shallow2Deep search space S—i.e. the space that contains obtainable cells through

local search. The search space cardinality – i.e. the number of obtainable cells –

is |S| = (B + 1)! · |O|B. Let now N be the search space for the overall NN—i.e.

the set of obtainable NN architectures. Remembering that Shallow2Deep does not

rely on cell repetition, the amount of NN architectures available during the overall

architecture search is |N| = |S|C =
(
(B + 1)! · |O|B

)C
. For our experiments we set

B = 3 and C = 4, obtaining |S| = 1.54 · 103 and |N| = 5.57 · 1012. The amount

of possible NN architectures is huge, but it does not reflect the computational

complexity. Indeed, thanks to its increasing depth approach, Shallow2Deep is

capable of searching a space of size |S|C , while having complexity that is only

proportional to C · |S|
For each cell we search for the best structure using the randomised evolution

algorithm proposed in Section 3.1.2. We fix the number of generations of the

evolutionary algorithm to be ν = 5 for each cell and the population size to be

|P | = 50. During incubation we fixed the number of surviving best models to be

m = 10, the number of models obtained through mutations to be c = 20 and the

number of random models added to each generation to be r = 20. Each model is

trained for 10 epochs using learning rate λ = 0.01.

To show the effectiveness of Shallow2Deep search, we study the behaviour of

7https://www.zalando.com
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the NN population against the number of generations of the overall algorithm. In

Shallow2Deep, the user can select the number of cells C that compose the NN and

ν, the number of generations that the local search takes. Shallow2Deep iteratively

searches each of the C cells for ν generations. Therefore, the overall search of

the NN architecture takes C · ν generations to complete. We study the average

performance – i.e. classification accuracy – of the population of NN for each of the

C · ν generations. We also study the accuracy of the best NN in the population

for each of Shallow2Deep C · ν generations.

Figure 3.5 shows the behaviour of average and best NN performance against

Shallow2Deep generations. The classification accuracy increases with the number

of generations considered, showing the success of Shallow2Deep search. Accuracy

increments are limited since even 1st generation NN reach reasonable performances.

This is due to the mild complexity of the classification task over the MNIST fashion

dataset. Biggest increments in the NN accuracy are found in generations where the

cell index i is increased—i.e. local search shifts to the next cell. This behaviour

is expected as the increasing complexity – i.e. depth – of the NN extends its

reasoning capabilities. It is also interesting to notice that this behaviour is more

evident for smaller cell index i, while it becomes more attenuated for values of i

close to C. In our experiments, performance reaches stability for i = C—i.e. there

exists a negligible difference between accuracy of NN with i = C − 1 and i = C.

Stabilisation of accuracy can be considered a signal that the NN is reaching a com-

plexity limit. Surpassing this limit would increase concepts complexity while not

bringing any gain in performance, introducing possible overthinking issues [Kaya

et al., 2019]. Therefore, Shallow2Deep represents a tool to automatically identify

the NN complexity sweetspot over a certain task.

Figure 3.6 shows the architecture of the NN obtained running Shallow2Deep

on the MNIST fashion dataset.

From its architecture, we point out that Shallow2Deep NN identifies sequential

operations – i.e. blocks connected in a sequential manner inside a cell – at shallower

stages of the NN—i.e. cells 1 and 2. Going deeper in the NN architecture – i.e. cells

3 and 4 –, Shallow2Deep building procedure identifies cells composed of parallel

branches of convolutional operations. It is possible that sequential operations at

shallow sections of NN help the model to learn simple concepts at the basis of their
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Figure 3.5: Performance – i.e. classification accuracy – of NN architectures con-
sidered by Shallow2Deep for each generation. We consider both the average per-
formance and the accuracy of the best model in each generation.

reasoning — i.e. edges, corners, simple shapes, etc. Parallel operations approach

may, instead, be useful for the NN learning process when complex concepts need to

be extracted—i.e. combination of shapes, combination of textures, etc. Therefore,

deeper investigation of this result may be interesting.

3.3.3 Shallow2Deep vs. State of the Art

We now compare the performances obtained by Shallow2Deep NN against state-

of-the-art models that apply the same basic operations – i.e. convolutions and

identity – like VGG [Simonyan and Zisserman, 2015] and ResNet [He et al., 2016].

In order to make the comparison fair, we retrain the Shallow2Deep NN, VGG,

and ResNet on the MNIST fashion dataset from scratch. Training parameters are

the same for every model considered—i.e. 60 epochs and learning rate λ = 0.01.

Moreover, to study the effects of cell structure variability in NN architectures, we

consider NN models built from the repetition of single cells found by Shallow2Deep
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Figure 3.6: NN architecture discovered by Shallow2Deep algorithm.
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Model name Accuracy ± std (%) Parameters (M)
Shallow2Deep 93.26± 0.18 0.251
Shallow2Deep1 92.87± 0.17 0.165
Shallow2Deep2 93.31± 0.14 0.491
Shallow2Deep3 92.73± 0.14 0.377
Shallow2Deep4 92.28± 0.10 0.118

VGG 93.66± 0.18 0.746
ResNet 92.77± 0.09 1.626

Table 3.1: Comparison between Shallow2Deep and state-of-the-art models. We
consider also models built through repetition of single Shallow2Deep cells—e.g.
Shallow2Deep1 is the NN built from repetition of Shallow2Deep cell 1 in a sequen-
tial manner.

local search. In other words, we select Shallow2Deep cell i – i.e. the cell discovered

during ith local search step – and we build the NN model composed of 4 cells having

the same structure of cell i. We name these NN architectures Shallow2Deepi.

Table 3.1 shows the performance over the test set T– i.e., the average accuracy

and its standard deviation over 20 training runs –, the footprint – i.e. number

of weights of the NN (expressed in millions, denoted by M) – of Shallow2Deep

and state-of-the-art NN. Shallow2Deep NN with its variants reach state-of-the-art

performances over the MNIST fashion classification dataset. NN obtained using

Shallow2Deep are the most efficient if we consider the accuracy/footprint trade-

off—i.e. division between reached accuracy and number of parameters. More

in details, Shallow2Deep NN reaches accuracy comparable with VGG (only 0.4%

less), while requiring a third of the parameters. Performances obtained by the

ResNet NN over the dataset under examination are possibly due to overthinking

issues. ResNet model complexity – i.e. model footprint – is higher than necessary

for the selected task, which brings it to learn too many or too complex concepts,

decreasing overall performances.

We also analyse the effects of cell structure variability in NN architectures.

Base Shallow2Deep NN version intrinsically express high level of cell structure

variability, while its variants – e.g. Shallow2Deepi – do not. It is possible to

notice that Shallow2Deep NN outperforms 3 of its Shallow2Deepi variants out of

4 in terms of absolute performances. Moreover, Shallow2Deep NN outperforms all
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of its Shallow2Deepi variants when the accuracy/footprint trade-off is considered.

Therefore, we can safely state that cell structure variability allows NN models to

reach higher performances while being complexity-constrained.

Chapter Synopsis

In this chapter, we focus on NAS as a possible solution to the NN efficientisation

task, proposing Shallow2Deep, a novel NAS approach that limits NN complexity

and promotes local variability in their architectures. Shallow2Deep relies on suc-

cessive searches of local optima and NN expansions – i.e. depth increment – to

produce well performing NN models. We show that Shallow2Deep can effectively

achieve NN complexity reduction, while reaching performances comparable to the

state-of-the-art. The experimental analysis demonstrates how variability over lo-

cal structures that compose NN is a desirable feature to obtain small and well

performing models. This idea is in contrast with previously-proposed NN design

approaches that neglect local structure variability, opening new possibilities for

future research.
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Chapter 4

Learning vs. Searching

This chapter contains contributions from [Agiollo and Omicini, 2022].

Despite its success, Neural Architecture Search (NAS) exhibits some drawbacks,

as it relies on searching for the best architecture rather than learning architectural

criteria for building the optimal NN. Moreover, NAS approaches are not flexible

with respect to slight changes of the application scenario, require huge amount of

resources to run, and are limited by their search space specifications. Inspired by

these limitations, in this chapter we present GNN2GNN, a novel tool leveraging

graph neural networks to generate NN architectures and learn their optimal design

criteria.

GNN2GNN is a meta-learning framework exploiting Graph Neural Networks

(GNNs) to learn generating efficient NN structures. GNNs are particular mod-

els proposed to tackle graph-processing tasks via convolution-equivalent operation

over graphs [Wu et al., 2021b]. A NN structure can be seen as a Directed Acyclic

Graph (DAG) where nodes represent layers – implementing common operations

like convolution, pooling, etc. – and edges represent how the output of one layer

is fed to the following one. In this context, we propose a three-way adversarial

learning setup to allow GNN to learn the features of an efficient NN structure

and generate novel architectures. More in details, a generator GNN is trained to

produce plausible architectures, while a discriminator GNN is optimised to dis-

tinguish between generated and real architectures. Finally, a valuer GNN aims at

optimising the performance of the generated architectures. During training, the
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Figure 4.1: Left: NAS approaches rely on a recursive sampling, evaluation and
optimisation procedure. A NAS policy is used to sample architectures from the
search space. The sampled architectures are then trained and evaluated to optimise
the NAS policy depending on their performance. Once a convergence criterion is
met, NAS identifies the sub-optimal NN architecture. Right: The GNN2GNN
approach rely on a single training procedure where GNN2GNN learns to propose
effective NN architectures. The trained generator is able to produce multiple
powerful NN architectures, rather than identifying solely the local sub-optimal
NN architecture.

generator loss is defined as a mixture of the discriminator and valuer feedbacks,

therefore aiming at enabling the learning of realistic – i.e., discriminator feedback

– and powerful – i.e., valuer feedback – architectures.

Differently from NAS techniques, which aim at efficiently searching NN ar-

chitectures over a set of available ones, GNN2GNN aims at intrinsically learning

architectural criteria from a set of available architecture-performance pairs. While

NAS consider to recursively propose, evaluate and optimise a set of NN structures

(see Figure 4.1 left), we here consider learning to propose architectures from a

set of NNs in a single step—i.e., training of the generator GNN (see Figure 4.1

right). Once trained, GNN2GNN is capable of proposing multiple efficient NN

architectures at once, rather than focusing solely on the local optimum obtained

from the deployed search algorithm. Therefore, GNN2GNN significantly shifts the

paradigm of the approach to the problem of NN architecture design, from relying

on searching architectures to learning design criteria.
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4.1 Preliminaries on Graph Neural Networks

As the proposed framework relies on graph manipulation via GNNs, here we briefly

introduce Graph Neural Networks, presenting their fundamental concepts. GNNs

have been proposed as an extension of traditional NNs to enable processing of

non-rigidly structured data such as graphs. GNNs are mathematical models op-

erating upon directed graphs, whose vertices (respectively, arcs) are labelled with

vectors (or matrices, or tensors) of real numbers – xv ∈ Rd for vertex v, and

av,w ∈ Rc for the arc between vertex v and w –, each one carrying further numeric

information about the corresponding vertex (resp., arc). GNNs rely on graph con-

volution, which represents the generalisation of a 2-dimensional convolution over

graph-structured data. Graph convolution is defined over a single vertex v and its

neighbourhood N(v), and relies on three successive phases:

propagation — the information xv′ belonging to each vertex v′ ∈ N(v) is weighted

by the information av,v′ belonging to the arc among v and v′, then propagated to

vertex v;

aggregation — the information propagated from each vertex v′ ∈ N(v) to v is

aggregated via an aggregation function;

transformation — the aggregated information corresponding to vertex v is trans-

formed into a new embedding vector and assigned back to vertex v, as its new

state x′
v .

The single convolution operation is applied in parallel to each vertex inG, updating

the whole graph representation.

GNNs have proven to be successful in many tasks involving graph structured

data. Most common applications concerns computational chemistry [Fung et al.,

2021], social recommendations [Fan et al., 2019], computer vision [Wang et al.,

2019b], and many others [Hamilton et al., 2017, Yu et al., 2018]. For a compre-

hensive review of GNNs and the underlying techniques we refer interested readers

to [Wu et al., 2021b, Zhou et al., 2020].
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4.2 GNN2GNN

In this section we present our framework, namely GNN2GNN. GNN2GNN lever-

ages Graph Neural Networks to Generate Neural Networks. We first present briefly

how NN architectures can be mapped into graph structures (Section 4.2.1). We

then introduce the general pipeline for generating and processing NN architectures

(Section 4.2.2), focusing specifically on its components.

4.2.1 Neural Networks as Graphs

NN architectures are uniquely defined by a set of layers L, a set of operations

O applied on layers, and a set I of interconnections between layers. Each layer

lv ∈ L, with v ∈ [0, |L|], identifies a specific component of the NN architecture and

is characterised by a specific operation ov ∈ O. Interconnections between layers,

on the other hand, define how layers are linked to each other. An interconnection

iv,w ∈ I identifies that layers lv and lw are connected, and more specifically, it

identifies that the output of the operation ov applied at layer lv is used as an

input for the operation ow applied at layer lw. It is important to notice that,

thanks to the feedforwarding nature of standard NNs, there exists total ordering

among the layers in L and interconnections can only exist between successive

layers. Mathematically speaking, ∃iv,w ∈ I ⇐⇒ w > v.

Following the above notations, NN architectures can be mapped easily into

graph structures, specifically to DAGs. Layers in L are mapped into a set of

vertices V characterised by a set of features X representing layers operations (O),
while interconnections (I) are mapped into a set of directed edges E . Vertices –

i.e., layers –, along with their features – i.e., operations –, are defined as vectors

xv ∈ Rd, where v enumerates the graph vertices, and d represents operations

cardinality. On the other hand, the set of edges – i.e., interconnections –, is

denoted by the adjacency matrix E ∈ R|V|×|V|, where ev,w = 1 ⇐⇒ ∃iv,w.
Therefore, a NN architecture can be mapped into a DAG defined by X ∈ R|V|×d,

where rowk(X) = xv – i.e. a matrix of vertices characterised by the operations they

apply – and E—i.e., the adjacency matrix defining how operations are connected.
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4.2.2 Adversarially Generate Architectures

The proposed framework relies on a generative adversarial approach (GAN) [Good-

fellow et al., 2014], applied over graph structured data leveraging Graph Neural

Networks. The proposed framework is presented in Figure 4.2 and relies on three

components:

• A generator GNN G is in charge of proposing graph structures representing

NN architectures.

• A discriminator model D is responsible for distinguishing between NN struc-

tures proposed by G and real architectures.

• A valuer network V is responsible for predicting the architecture perfor-

mance, therefore optimising the generation towards powerful structures.

GNN2GNN relies on such triplets of GNNs to allow G to intrinsically learn optimal

architectural criteria. Indeed, the discriminator and valuer models are used during

training to optimise the generator status. More in details, the generator loss is

defined as a mixture of the discriminator and valuer feedbacks:

LG = λ · FD︸︷︷︸
D feedback

+(1− λ) · FV︸︷︷︸
V feedback

(4.1)

Here, λ represents the balancing factor between the two feedbacks. Leveraging such

mixture loss, G is capable of proposing realistic – i.e., D feedback – and powerful –

i.e., V feedback – architectures. Finally, once trained, the GNN2GNN framework

exploits solely the generator component to propose significant NN architectures.

Generator

Generating graph structures that satisfy specific properties is complex and rep-

resents an open research issue [You et al., 2018, Li et al., 2018b]. This task

complexity is three-folded:

Q1 Generate realistic structures. For a generated structure to result realistic,

the generative framework should learn which nodes should be linked and

which not.
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Figure 4.2: The GNN2GNN framework. The generator GNN produces NN archi-
tectures, starting from randomly initialised fully connected DAGs. The discrimi-
nator GNN aims at distinguishing artificial NN architectures from the real ones.
The valuer network aims at predicting architectures performance, distinguishing
between strong and weak structures or regressing their accuracy. Different colors
of graph nodes represent different operations—embeddings. Red nodes identify
input/output nodes, while green and yellow nodes may represent 3×3 convolution
and max-pooling respectively. Gray nodes represent randomly initialised node em-
beddings.

Q2 Generate realistic nodes. The generated graph should be characterised by

nodes having realistic features.

Q3 Stopping criteria. In the generating process, it is important to identify when

the generated graph structure has reached its final structure, which is non-

trivial.

To tackle the aforementioned problems and generate realistic NN architectures,

we here propose a novel generative GNN. Indeed, GNNs are particularly suited

for handling interconnections and node features, while they exhibit limitations

on stopping criteria identification. However, given the nature of available NAS

techniques and datasets, this GNNs limitation is not an issue. Indeed, available

NAS techniques restrict their searching space, limiting the number of layers –

vertices – that compose the NN architecture. Therefore, publicly available NAS

datasets build on top of this rationale, fixing the number of NN layers.

Building on top of the same rationale, we here propose a generator model that

receives as input a fully-connected DAG – i.e., where every node is connected

with every other node – having N nodes. N represents an hyperparameter of

the framework, and can be arbitrarily set depending on the features of the NAS

dataset at hand, or, on the complexity of the architecture to generate. Fixing

N immediately satisfies property Q3, implicitly setting a stopping criteria for the
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graph generation process. It is also important to notice that value N only provides

an upper limit on the number of layers composing the generated architectures.

Indeed, architectures having n ≤ N can be generated by the proposed approach,

thanks to edge removal and node isolation. Finally, node features of the input

graph are randomly initialised, mirroring the usual GAN approach.

The proposed generator framework relies on four successive steps, presented in

Figure 4.3 along with an example of input graph and generated architecture, and

explained in details below.

Graph convolution. The generator applies µ layers of graph convolution to the

randomly generated fully-connected graph received in input. Graph convolution

layers allow elaboration of the random information received, building the backbone

of the generated NN architecture. Depending on the number µ of convolutional

layers selected, we should expect more or less fine-grained embeddings as output

of this step. However, given the fully-connected nature of the input graph, a small

value of µ is enough to obtain a meaningful graph embedding.

Edge scoring & sampling. Once a proposal of fully-connected architecture

is obtained from the graph convolution layers, the generator applies a learnable

scoring function to each edge of the graph at hand. This procedure allows dif-

ferent scores to be assigned to each edge of the architecture, depending on their

relevance. To score edges we first build edge features vectors, through the con-

catenation of adjacent vertices features. Mathematically speaking, the feature

vector of edge connecting vertex v to vertex w is ev,w = xw ∥ xw, where ∥ denotes
concatenation. Once the edge feature is obtained, the edge relevance is scored

using a standard densely-connected layer followed by normalisation in [0, 1], ob-

taining e
′
v,w which represents the score given to the edge between v and w. To

avoid non-differentiability issues that may arise from scores thresholding, edges

are then sampled depending on their scores using a gumbel softmax layer. This

procedure ensures the survival of relevant – from the generator perspective – edges

only, aiming at satisfying Q1. Edge scoring and sampling are here presented as a

unique step, given their logical bond. However, it is also possible to conceive these

two as separate steps, as done in Figure 4.3 to ease reader understanding of the
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1. Graph 
Convolution

2.b. Edge
Sampling

3. Operations 
Generation

4. Graph 
Refinement

2.a. Edge
Scoring

Figure 4.3: The generator receives in input randomly initialised – gray nodes – fully
connected DAGs, and process them via graph convolution (1.). The new graph
embedding, obtained from (1.) is used to score edges (2.a.). Light gray (dark gray)
edges represent links having small (high) score. Edges are sampled (2.b.) and the
scores are propagated to the next graph convolution step to obtain operations
embedding (3.). Different colors of graph nodes represent different operations—
embeddings. Red nodes identify input/output nodes, while green and yellow nodes
may represent 3× 3 convolution and max-pooling respectively. Finally, the graph
is refined removing unsampled edges and nodes (4.).

framework.

Layers operations generation. The aim of this step is to assign one operation

to each vertex – i.e., layer – of the graph corresponding to the NN architecture.

To do so, the graph embedding obtained from the graph convolution step is com-

bined with the sampled edge scores and used as input for a new layer of graph

convolution. A softmax operation is then applied to the output of the convolu-

tional layer to produce the one-hot encoding of the operations corresponding to

each node. This specific step, aiming at identifying realistic nodes features – i.e.,

operations –, is meant to satisfy Q2. Here, the layer generation step focuses solely

on the layer type – i.e., operation to deploy –, ignoring layers dimensioning issues.

Indeed, we consider layers size to be automatically inferrable from the overall NN

architecture, as stated in [Ying et al., 2019].

Graph refinement. Finally, the generator removes unsampled edges from the

graph as well as isolated nodes, obtaining the final NN architecture. Possible cycles

and pending nodes are also removed during this step, ensuring therefore to produce

a DAG architecture. The graph-refinement operation is left as the last operation

to avoid possible non-differentiability issues which may arise from removal of nodes

or edges. However, this does not influence the generation of layer operations, since

zero-scored edges do not propagate information in the previous convolution step.
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Discriminator

The discriminator model aims at distinguishing between synthetically generated

architectures and architectures available in the dataset at hand. In the proposed

framework we build the discriminator model stacking ν layers of graph convolution,

followed by a single densely-connected classification layer. Graph convolutional

layers extract graph-structured features from the input graph, while the classi-

fication layer outputs a binary prediction. The complexity of the discriminator

model – i.e., the number of graph convolutions ν – depends on the complexity of

the architectures under inspection. Available NAS datasets consider fairly small

architectures, as they deal with identical block structures, therefore in our exper-

iments we set ν = 2.

Valuer

The valuer model aims at identifying the performance of the architectures given

as input. Structurally speaking, we build the valuer model similarly to the dis-

criminator, stacking few layers of graph convolution, followed by a single densely-

connected layer. The prediction of the valuer model over the structures generated

by G are also used for the generator optimisation, aiming to push G toward the

generation of more powerful NN architectures. Indeed, the generator model is

trained minimising a combination between the standard GAN loss and the reward

loss obtained from the valuer NN:

LG = λ · log(1−D(G(z)))︸ ︷︷ ︸
standard GAN loss

+(1− λ) · LR(V (G(z)))︸ ︷︷ ︸
reward loss

(4.2)

where z represents the randomly initialised graph used as input for G, LR rep-

resents the reward loss and λ represents a balancing factor between the two loss

terms. The definition of LR depends on the role of the final densely-connected

layer of V , which can be used either to regress the performance of the graph at

hand or to binary classify graphs—strong vs. not-strong architecture. In the first

approach, LR is represented via mean-squared error loss between the predicted

performance of generated architecture and the best performing architecture. In

the second, the reward loss is represented via cross-entropy loss between predicted
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classification and strong architecture labels. Our experiments (see Section 4.3.4)

show that the second approach is more consistent.

4.3 Experiments and Results

In this section we propose a set of experiments to show the effectiveness of GNN2GNN

for generating strong NNs. Our source code is available at https://github.com/

AndAgio/GNN-2-GNN.

4.3.1 Datasets

To test our framework performance we rely on the NAS101 [Ying et al., 2019]

and NATS [Dong et al., 2021b] benchmark datasets. Both datasets contain a set

of NN architectures along with their recorded performance over a specific image

classification task. Here, NN architectures are built from the repetition of identical

cells, which are the target of our GNN2GNN approach. NAS101 contains 423k

NN architectures trained multiple times over CIFAR-10 [Krizhevsky and Hinton,

2009]. On the other hand, NATS contains a set of 15k NN topologies trained over

three different datasets: (i) CIFAR-10; (ii) CIFAR-100; (iii) ImageNet-16-120.

However, NATS represent operations over graph edges, while GNN2GNN and

NAS101 represent operations over graph nodes, as introduced in Section 4.2.1.

Therefore, we translate NATS architectures into Section 4.2.1 form and remove

possible duplicates, thus obtaining a refined version of NATS consisting of 7K

unique architectures.

NAS101 and NATS datasets rely on similar search spaces used for the con-

struction of NNs. Indeed, both consider a small set of operations, containing:

(i) 3× 3 convolution, (ii) 5× 5 convolution, and (iii) pooling—NAS101 considers

max-pooling, while NATS examines average-pooling. NAS101 contains NN cells

with at most 7 nodes and 9 edges, while NATS examines cells with at most 8

nodes, without imposing any restriction on the number of edges.
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4.3.2 Experimental Setup

To test GNN2GNN ability to produce novel architectures and generate strong cells,

we remove part of the architectures from the training dataset. We eliminate some

randomly picked cells from the dataset, as well as the best 10% of architectures—

w.r.t. their classification accuracy. Under these settings, the generator can not

extract information from the strongest models during training, rendering the gen-

eration task more complex. Therefore, a generator capable of producing the best

10% of architectures is to be considered a strong model. N = 10 was selected since

in NAS101 there exists quite a significant performance delta between the top-10%

architectures and the rest.

Each GNN2GNN instance is trained for 20 epochs over the training set using

standard Stochastic Gradient Descent and setting the learning rate to 0.001 and

the batch size to 32. Moreover, during the first half of the training procedure we

set λ = 1. This is done to allow V properly learning to distinguish between strong

and weak architectures, before leveraging it to optimise G with backpropagation.

Indeed, backpropagating information from a partially trained V to the generator G

may increase the noise of its training, slowing down or hindering its optimisation.

Therefore, in the first 10 epochs the generator model is optimised only through

the discriminator D. After this setup period λ is set back to its desired value,

enabling the interaction between G and V as described by Equation (4.2).

4.3.3 Evaluation Metrics

Throughout our experiments, we consider only models which always output valid

NN architectures, since they output DAGs thanks to some refinement step. There-

fore, the metrics that we define refer solely to the quality of the generated archi-

tectures. Moreover, since our framework is not directly comparable with NAS

approaches, we avoid considering common NAS metrics—e.g., convergence time,

etc. Novelty measures the percentage of generated architectures not belonging to

the training set used. The Top-N metrics measure the percentage of generated

architectures that belong to the best N% of architectures in terms of classification

accuracy. Accn measures the ratio between the number of generated architectures

that reach an accuracy greater than n, and the number of generated models that
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belong to the dataset. Finally, |Acc| measures the average accuracy reached by

generated architectures.

4.3.4 Ablation Study

To identify the best hyper-parameters setup for GNN2GNN, we propose a thorough

ablation study. The ablation study is performed over the NAS101 dataset, given

its higher degree of expressiveness w.r.t. NATS.

Hyper-parameters We consider the influence of the parametric values that

may alter the generation of NN architectures. We take into account the balancing

factor λ used during training, the temperature τ of the gumbel softmax layer used

to perform edge sampling, and the number of graph convolution layers used by the

generator µ. Table 4.1 shows the results of the ablation study on such parameters.

It is possible to notice that the model is highly affected by the balancing factor λ,

which injects performance-critical information into the generator. Indeed, lever-

aging smaller λ increases the performance of the proposed architectures, as the

generator focuses more on the information received by V through backpropaga-

tion. Smaller λ values also improve GNN2GNN ability to predict more complex

models. Architectures generated using λ = 0.1 have on average twice the number

of parameters of their λ = 1 counterparts. This phenomenon is encouraging, as

it shows that GNN2GNN is capable of mapping the whole space, thanks to V .

However, smaller λ increases the risk of mode collapse issues, as highlighted by

the slight drop in novelty obtained with λ = 0.01. Finally, µ and τ do not seem

to heavily influence the GNN2GNN performance.

Valuer mode The mechanism used by the valuer network V to identify strong

and weak architectures may cause variation in the generation performance of

GNN2GNN.We distinguish between a classification-based valuer C and a regression-

based valuer R. The former identifies strong architectures as the cells belonging to

the best half of the dataset. On the other hand, in the regression-based setup, V

aims at predicting precisely the classification accuracy of a cell from its structure.

We pick the three best models in Table 4.1, retrain them using a regression-based
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Table 4.1: Ablation study over hyperparameters of G. Bold values highlight the
best setup for each metric.

Parameters
Novelty Top-5 Top-10 Top-50 Acc90 |Acc|

µ τ λ

1

0.01

1 50.13% 10.60% 13.70% 27.20% 45.58% 88.55%
0.5 71.23% 34.66% 40.20% 52.98% 75.18% 90.38%
0.1 82.32% 46.30% 50.50% 57.00% 80.50% 91.53%
0.01 81.63% 45.10% 49.40% 58.10% 80.14% 91.44%

0.1

1 51.79% 12.10% 15.40% 25.20% 40.23% 88.10%
0.5 67.81% 19.01% 22.62% 39.20% 59.23% 89.48%
0.1 82.52% 45.19% 50.53% 58.91% 80.60% 91.48%
0.01 82.47% 46.50% 52.14% 57.30% 79.32% 91.35%

2

0.01

1 51.66% 8.57% 11.40% 26.83% 41.63% 88.53%
0.5 73.84% 40.41% 45.28% 54.61% 75.01% 90.89%
0.1 82.06% 46.09% 51.03% 57.82% 81.55% 91.54%
0.01 82.23% 45.66% 50.20% 57.19% 79.69% 91.42%

0.1

1 53.57% 10.08% 12.63% 25.21% 42.15% 88.49%
0.5 68.76% 25.59% 30.84% 45.54% 69.94% 90.45%
0.1 82.60% 45.91% 52.21% 57.37% 81.79% 92.04%
0.01 81.51% 45.90% 51.10% 59.50% 79.98% 91.27%

V , and compare them against their classification-based counterparts.

Table 4.2 shows the results of the ablation study, highlighting the superiority

of the classification-based setup. Indeed, regressing exactly NN performance from

its architecture is complex, mostly since few small architectural modifications may

lead to relevant performance changes. Such variability is complex to handle in a

regression setup and hinders V ability to predict correctly cells strength.

Table 4.2: Ablation study over evaluation mode adopted by V.

Parameters
Vmode Novelty Top-5 Top-10 Top-50 Acc90 |Acc|

µ τ λ

2 0.1 0.1
C 82.60% 45.91% 52.21% 57.37% 81.79% 92.04%
R 72.10% 26.59% 32.92% 50.10% 67.11% 89.93%

1 0.1 0.01
C 82.47% 46.50% 52.14% 57.30% 79.32% 91.35%
R 71.06% 25.90% 34.13% 51.07% 65.79% 90.07%

2 0.1 0.01
C 81.51% 45.90% 51.10% 59.50% 79.98% 91.27%
R 70.33% 27.04% 33.54% 50.97% 66.43% 90.01%

In the remainder of the experiments, we build the GNN2GNN model employing

a classification-based V and the best hyperparameters values—i.e. µ = 2, τ = 0.1,

λ = 0.1, as highlighted in Table 4.1. Indeed, these values represent a good starting

point for deploying GNN2GNN over multiple scenarios, given NAS101 generality.

CHAPTER 4. LEARNING VS. SEARCHING 61



4.3. EXPERIMENTS AND RESULTS

4.3.5 Performance Comparison

To show the effectiveness of the proposed approach, we compare GNN2GNN

against other generative mechanisms. We first consider generating random NN

architectures using the Erdös–Rényi model [Erdös et al., 1960]. We then evalu-

ate the strength of our approach against two GAN-based frameworks, relying on

different generation strategies:

MOLGAN-like The model generates nodes and edges independently and simul-

taneously, recalling the approach by [De Cao and Kipf, 2018]. Two matrices

representing node types and connections between them are generated from

a random input vector and sampled using gumbel softmax.

RNN The model generates architectures starting from a single input node and

appending new vertices – with corresponding edges – until a stopping cri-

teria is met. This approach resembles the one by [Zhang et al., 2019a] and

leverages Recurrent NNs to deal with graph construction via recursive node

appending.

To make the comparison fair, both the MOLGAN-like and the RNN model are

built using the three-way NNs adversarial approach that characterises GNN2GNN.

Therefore, the three approaches differ solely on the generation criteria embodied

by the generator model G.

Table 4.3 shows the performance of the different models. GNN2GNN vastly

outperforms the counterparts, as it produces more accurate predictions for strong

NN architectures. Moreover, more than 80% of the predictions performed by

our model are NNs characterised by an accuracy greater than 90%, while the

best counterpart model – i.e., MOLGAN – fails to reach even 60%. This proves

GNN2GNN’s generation consistency. Indeed, even the simple random generation

approach can sporadically generate powerful architectures, as shown also in [Xie

et al., 2019a]. However, it suffers in terms of consistency, as it is uncommon to

obtain articulated architectures starting from a random empty graph.
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Table 4.3: Performance comparison between GNN2GNN and other GAN based
approaches to generate NN architectures.

Dataset Model Novelty Top-5 Top-10 Top-50 Acc90 |Acc|

NAS101

GNN2GNN 82.60% 45.91% 52.21% 57.37% 81.79% 92.04%
MOLGAN 65.41% 22.63% 27.29% 45.20% 59.71% 89.39%

RNN 96.34% 1.69% 2.32% 4.81% 53.04% 89.32%
Random 51.81% 11.17% 13.74% 28.43% 43.18% 88.54%

4.3.6 Resistance to Dataset Quality Degradation

To study the flexibility of our approach against poorly-constructed datasets, we

analyse GNN2GNN performance when a high number of strong models are re-

moved from the training dataset. More in details, we first remove the best N% of

models from the NAS101 training set, varying N between 10 and 90, then retrain

GNN2GNN. Table 4.4 shows these tests results. The performance loss between

different setups is minimal, highlighting GNN2GNN strength against dataset qual-

ity degradation. Indeed, even when almost all best models are removed from the

training set, GNN2GNN produces strong predictions, showing just a 3% loss in the

Top-5 metric and a 0.82% decrease of the average accuracy reached by generated

models.

Table 4.4: Performance comparison when the top N% of best architectures is
removed from the training dataset.

Dataset N Novelty Top-5 Top-10 Top-50 Acc90 |Acc|

NAS101

10% 82.60% 45.91% 52.21% 57.37% 81.79% 92.04%
20% 83.01% 45.54% 52.32% 58.48% 82.05% 91.98%
30% 83.67% 46.10% 51.07% 57.04% 80.14% 91.68%
40% 84.89% 45.80% 51.03% 58.71% 81.03% 91.55%
50% 85.00% 44.01% 48.81% 56.30% 79.24% 91.33%
60% 84.58% 44.40% 49.12% 57.72% 80.30% 91.30%
70% 84.20% 44.66% 49.38% 56.71% 79.52% 91.37%
80% 84.33% 43.90% 48.27% 55.51% 78.16% 91.27%
90% 85.71% 42.77% 46.70% 55.72% 78.24% 91.22%

4.3.7 Generalisation Between Datasets

We now consider the generalisation ability of our framework. We start by training

GNN2GNN over NATS and showing its performance. As Table 4.5 shows, the
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performance obtained over NATS are poor, probably due to the small size of

NATS—i.e., only 7K NN architectures. We then apply the generator model trained

over NAS101 to NATS, analysing its prediction performance. Table 4.5 shows the

results of our generalisation study. While still not being satisfactory, we notice that

performance strongly increase when GNN2GNN is transferred from NAS101 to

NATS. This is encouraging, especially if we consider the strong difference between

NAS101 and NATS. Indeed, only 576 NATS architectures are available also in

NAS101, and their performance vary on average by 16.183% between the two

datasets.

Table 4.5: Performance of GNN2GNN when generalising between different
datasets. Subscript refers to NATS split. C10 and C100 stand for CIFAR10
and CIFAR100, while I stands for ImageNet.

Dataset
Novelty Top-5 Top-10 Top-50 |Acc|

Train Test

NATSC10 NATSC10 76.73% 1.65% 3.39% 15.61% 68.91%
NAS101 NATSC10 73.67% 2.64% 5.08% 16.55% 70.25%

NATSC100 NATSC100 71.71% 1.30% 3.28% 13.10% 33.03%
NAS101 NATSC100 72.03% 2.64% 4.82% 16.90% 35.40%

NATSI NATSI 81.03% 0.91% 2.17% 8.42% 16.75%
NAS101 NATSI 82.30% 1.93% 3.64% 11.49% 18.84%

4.3.8 Preliminary Comparison Against NAS

GNN2GNN does not represent a traditional NAS technique, as it does not rely

on search space exploration and focuses solely on the architecture generation pro-

cedure. However, we can compare GNN2GNN against state-of-the-art NAS in

terms of the performance obtained by the generated architectures over NAS101.

Results shown in Table 4.6 are extracted from [Yu et al., 2020] and consider 1000

GNN2GNN generation samples. The average accuracy of GNN2GNN generation is

comparable with other NAS approaches. Meanwhile, results show that GNN2GNN

vastly outperforms NAS techniques in terms of best accuracy. Indeed, the best

architecture generated by GNN2GNN achieves 94.32%, while NAO tops up at

93.33%. Moreover, the architecture generated by GNN2GNN achieves a lower

rank value, meaning that they are closer to the optimal architecture. Indeed, the
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best achievable accuracy in NAS101 is 95.06%, which represents an increase of

only 0.72% compared to what GNN2GNN achieves.

Table 4.6: GNN2GNN performance against state-of-the-art NAS approaches over
NAS101. Subscript refers to the percentage of samples removed from NAS101.

Model |Acc| Best Acc Best Rank

DARTS [Liu et al., 2019a] 92.21% 93.02% 57079
NAO [Luo et al., 2018] 92.59% 93.33% 19552

ENAS [Pham et al., 2018] 91.83% 92.54% 96939
GNN2GNN90 92.04% 94.32% 5372
GNN2GNN60 91.68% 94.18% 7843
GNN2GNN30 91.30% 94.01% 9371
GNN2GNN10 91.22% 93.69% 12570

4.4 Discussion

GNN2GNN relies on an architecture-performance pairs dataset to remove part

of the complexity burden of extracting architectures performance. This might

represent a possible drawback, as it requires the training of a set of hand-crafted

NNs. However, results of Section 4.3.6 show how GNN2GNN learns to generate

effective NNs even when most – i.e., 90% – of the arch-performance pairs are

not available. Moreover, GNN2GNN does not impose any requirement on the

dataset quality, as it can generate powerful architectures even when trained on

the worst part of the dataset—i.e., worst 10%. Finally, Section 4.3.7 hints how

GNN2GNN can translate the generation process to a new setup, without requiring

the extraction of a new dataset.

Chapter Synopsis

In this chapter, we focus on overcoming the learning vs. searching issue charac-

terizing NAS approaches. To this end, we present a novel GNN-based three-way

adversarial framework for learning to generate strong NN architectures, without

relying on search space exploration. The experiments completed over two state-

of-the-art datasets highlight the strength of our approach. We show GNN2GNN
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ability to predict optimal NN architectures and its superiority against other avail-

able generation approaches. Moreover, given its flexibility against dataset quality

degradation, the proposed framework represents a step forward towards learning

architectural criteria for NNs design. Indeed, the GNN2GNN generator is capable

of predicting unseen strong architectures even when dealing with unsound dataset.

Finally, some experiments on knowledge transferability suggest the generalisabil-

ity of our approach. While aiming to overcome NAS limitations – via removal of

search algorithms – GNN2GNN can also be integrated into a NAS approach as

a proposal technique. Here, the adversarial framework characterising GNN2GNN

would require online training, similarly to other NAS approaches.
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Chapter 5

Coresets as Data Efficient

Learning

This chapter contains results of the work done during my visiting at Purdue University.

Data is expensive to gather and annotate, influencing the applicability of ML

and DL approaches in many scenarios. Moreover, we currently lack a comprehen-

sive understanding of how NNs learn from complex datasets and what constitutes

a good or clean learning example. In this context, research efforts have focused

on data efficiency – aiming at learning effective models with fewer data – and

sample importance—measuring the impact of each data sample on NN optimiza-

tion. Coresets construction approaches propose to identify relevant samples of the

dataset – either statically before the training starts or dynamically as the training

proceeds – and optimize the NN model using solely those samples [Feldman, 2020].

Alongside, several works analyse the data samples complexity characteristic, rely-

ing on different properties of the NN training behaviour, such as forgetting [Toneva

et al., 2019] and memorization [Feldman and Zhang, 2020].

Recent empirical findings seem to suggest that there exists a strong relationship

between sample complexity – also referred to as typicality [Toneva et al., 2019] or

cleanliness [Garg and Roy, 2023] – and their relevance for data efficiency. Inspired

by these findings, we propose leveraging memorization scores – as originally defined

in [Feldman and Zhang, 2020] – to identify coresets effectively. The experimental

results against several state-of-the-art approaches highlight the superiority of our
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approach for selecting small coresets. However, while memorization scores allow

us to overcome state-of-the-art approaches for coreset construction, they require

a vast amount of computational resources to be extracted on a given learning

task. For example, memorization requires training 4000 NN models to compute

the memorization scores of samples on the CIFAR100 dataset [Krizhevsky and

Hinton, 2009]. Therefore, approaches relying on memorization scores do not scale

over different datasets or learning setups. Armed with this insight, we conduct an

empirical study on a set of NN properties that may be useful for approximating

memorization scores, while requiring fewer computational resources. Specifically,

we consider both well-known properties and novel metrics, relating to various char-

acteristics of the learning task. We refer to such metrics as proxies and empirically

show their correlation with actual memorization values, along with their efficiency

improvements and limitations. Finally, we test if – and to what extent – the cor-

relation between memorization and its proxies propagate to the field of coreset

construction, thoroughly testing the performance of our coreset construction ap-

proaches – based on memorization proxies – over two datasets and against seven

state-of-the-art solutions.

5.1 Memorization for Coresets Construction

5.1.1 Coreset Construction: Problem Definition

Here, we recall briefly the definition of coreset construction given in Section 2.2.5.

Consider a learning task in which the given large training set is defined as T =

{(xi, yi)}|T |
i=1, where xi ∈ X is the input data sample, yi ∈ Y is the ground-truth

label of sample xi, and X and Y denote the input and output spaces, respectively.

V = {(xi, yi)}|V|i=1 defines a held-out validation set of samples used to test the

performance achieved in the learning task. In this context, given a neural network

model h with parameters θ and a loss function L, we can define the loss on a set S of

instances as L(θ,S) =
∑

i∈S L(θ,xi, yi). Similarly, LT (θ, T ) denotes the training

loss over the full training set T , and LV(θ,V) the corresponding validation loss. In

this setup, the coreset construction task aims at identifying the most informative

subset S ⊂ T such that |S| < |T | – preferably |S| << |T | –, so that the model
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h(θS) trained on S achieves similar generalization performance to the model h(θT )

trained on the whole training set T . Mathematically, we can formulate the coreset

construction problem by searching for the coreset S that allows to minimize the

validation loss of the model optimized on the same subset of training samples S:

argmin
S⊂T

{
L
(
argmin

θ
{L(θ,S)} ,V

)}
. (5.1)

Throughout this chapter, we refer to the coreset size by the percentage of training

data samples selected to construct the coreset, namely P =
|S|
|T |

.

5.1.2 Memorization Definition

[Feldman and Zhang, 2020] define the memorization metric to capture and quantify

how much a learning algorithm – comprised of a model, its training procedure and

a training set of data samples – memorizes each sample rather than learning to

generalize from its features. The memorization metric is formally defined as:

m(xi) = P
[
hAT (xi) = yi

]
− P

[
hAT \i(xi) = yi

]
, (5.2)

where A represents a training algorithm operating on the training dataset T to

optimize the parameters θ of model h, while T \i refers to the dataset T with (xi, yi)

removed. The intuition behind memorization formulation is that an algorithm

memorizes the label yi if its prediction at xi based on the rest of the dataset

changes significantly once (xi, yi) is added to the dataset.

5.1.3 Experiments on Memorization for Coresets

Several works show how relying on clean samples for coreset construction achieves a

relevant level of performance over small values of P [Garg and Roy, 2023, Toneva

et al., 2019]. Concurrently, the empirical results in [Feldman and Zhang, 2020]

show how memorization scores are useful for identifying and separating clean – i.e.,

low memorization – and complex – i.e., high memorization – samples. Accordingly,

we here propose to leverage memorization scores of training samples for coreset

construction procedures. We use memorization estimatemi as the selection metric,
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Figure 5.1: Coreset construction based on memorization scores against baselines
on the CIFAR100 dataset.

choosing samples with the lowest values to make up our coreset. Hence, we first

select the points with the lowest mi from pretrained networks and then train a

new randomly initialized network on these points using the standard cross entropy

loss.

We compare memorization coreset construction against 7 baseline approaches:

(i) random uniform sampling, (ii) Glister [Killamsetty et al., 2021b], (iii) CRAIG

[Mirzasoleiman et al., 2020], (iv) GraphCut [Iyer et al., 2021], (v) GraNd [Paul

et al., 2021], (vi) Forgetting [Toneva et al., 2019], (vii) Loss curvature [Garg and

Roy, 2023]. For methods that require training before coreset selection, we optimize

the model for 100 epochs before selecting the coreset. The implementation of the

baselines follows the one available in the DeepCore [Guo et al., 2022] library 1.

For each baseline and for the coreset constructed using memorization we let P
vary over the range [0.01, 0.2]. We select the CIFAR100 dataset [Krizhevsky and

Hinton, 2009] as the training target, since it allows relying on the [Feldman and

Zhang, 2020] memorization scores readily available2. Figure 5.1 shows the results

of our analysis.

Coreset construction relying on memorization scores achieves great perfor-

mance improvements over all selected baselines through most values of P . More in

1https://github.com/PatrickZH/DeepCore
2https://pluskid.github.io/influence-memorization/
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detail, the coresets obtained via mi achieves almost a 5% accuracy improvement

over the range P ∈ [0.01, 0.1]. Meanwhile, for P = 0.2 GraphCut represents the

best approach, overcoming the sample selection based on memorization. Inter-

estingly, the proposed sampling approach outperforms several popular approaches

such as CRAIG, GLISTER and Forgetting over the whole spectrum of P . These

results highlight how sampling based on memorization represents the best ap-

proach for constructing small coresets, corroborating the clean samples hypothesis.

Armed with this strong insight, we here investigate if – and to what extent – it is

possible to empirically approximate memorization scores of a dataset using some

proxy metrics, and how such proxy metrics behave for coreset construction.

5.2 Memorization Proxies

Memorization scores represent a relevant property of the learning task at hand,

allowing to identify atypical, highly ambiguous or mislabeled data samples – memo-

rized through training to optimize the loss – as well as clean examples—generalized

and not memorized. However, memorization – as defined in its original formula-

tion – requires a large amount of resources and time to be extracted. Estimating

memorization values with a standard deviation of σ requires running the training

algorithm on the order of 1/σ2 times for every data instance. [Feldman and Zhang,

2020] reduce the memorization extraction complexity by leveraging an estimator

that looks at the expected memorization of the label of xi on a random subset

of T . However, the memorization score computation on the CIFAR100 dataset

still requires training of 4000 different neural network models. This large amount

of required optimization procedures is prohibitive and does not scale whenever it

is required to compute memorization scores over a new model, dataset, or learn-

ing algorithm. Therefore, it is necessary to identify possible approximations of

the memorization scores that are less resource-demanding. To this end, we here

consider analysing six different possible proxies for memorization scores. Some of

these proxies represent well-known properties of learning algorithms while others

are completely novel. To our knowledge, this analysis represents the first attempt

to approximate memorization scores.
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5.2.1 Training History Statistics

We consider two different proxies extractable from the behaviour of the model

throughout its training history. These metrics are thought solely from data sample

complexity – typicality – perspective and thus represent the simplest possible

proxies for memorization.

Sample Forgettability. We consider example forgetting events as firstly de-

fined by [Toneva et al., 2019]. Similarly to its original formulation, we consider a

forgetting event for a single sample xi when it is misclassified during the training

process at step t + 1 after having been correctly classified at step t. Mathemat-

ically, we denote the predicted label for sample xi by model h at epoch t as

ŷti = argmax
c
{ht(xi)}. Similarly, we define a binary variable indicating whether

the example is correctly classified at epoch t as accti = 1ŷti=yi . As such, exam-

ple i undergoes a forgetting event when acci decreases between two consecutive

updates: accti > acct+1
i . The forgetting event definition perfectly resembles the

original [Toneva et al., 2019] definition. However, we here extend the forgetting

events definition to introduce the concept of sample forgettability, which identifies

the frequency of forgetting events for the sample at hand over the span of the whole

training. As such, we count the forgetting events that occurred while training for

T epochs and normalize the obtained value by T . Mathematically, the sample

forgettability is defined as:

F (xi) =

∑T
t=1 1accti>acct−1

i

T
. (5.3)

As highlighted by [Toneva et al., 2019], lower forgettability values correspond to

clean samples, while high forgettability corresponds to complex or mislabelled

samples.

E2L: Epochs to Learn. Inspired by [Toneva et al., 2019] which focused mostly

on forgetting events, we here define a novel metric to be used as a proxy for iden-

tifying the complexity of samples. More in detail, we here consider the number of

epochs required by the model to learn a sample xi and never forget it anymore.
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Studying only the number of forgetting events required by one model to learn the

sample at hand is not sufficiently expressive. Indeed, while it is reasonable for

clean samples to require few forgetting events to be correctly classified, through-

out the training process complex samples might either (i) be wrongly classified

for the majority of training after which the model learns the sample and never

forgets (resulting in low forgettability) it, or (ii) be correctly and wrongly classi-

fied, switching from a correct state to a bad one (resulting in high forgettability).

To account for such limitations of the forgettability metric, we here consider the

epochs to learn metric defined as:

E2L(xi) =


argmax

t

{
accti > acct−1

i

}
T

if accTi = 1

1 otherwise.

(5.4)

Similarly to memorization and sample forgettability, the proposed metric ranges

between 0 – when a sample xi is learnt at the very first epoch and never forgotten

– and 1—when a sample is never learnt.

Complexity Samples forgettability and E2L require the training of a single

model h over the algorithm A and the dataset T to compute the value of F (xi)

for each sample in T . In practice, as the randomness of the training algorithm

influences the outcome of F (xi), we run the training process n times and average

the obtained proxy values over the n different runs.

5.2.2 Loss Flatness

Loss curvature. [Garg and Roy, 2023] studied the second order of the loss func-

tion of trained and partially trained models over dataset samples, highlighting an

empirical correlation between the loss curvature and the samples cleanliness. In-

spired by their work, we here follow their approach and leverage the loss curvature

of trained models as a possible proxy for the memorization scores. More in detail,

given a trained models h and a loss function L, [Garg and Roy, 2023] defines the
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loss curvature metric around a sample xi as

γ(xi) = ∥∇xi
L (xi + h · z)−∇xi

L(xi)∥ , (5.5)

where z =
sign (∇xi

L(xi))

∥sign (∇xi
L(xi))∥

and h represents a hyperparameter empirically set to

h = 3. While relevant for identifying simple samples, the authors of this metric lack

comparing the obtained curvature scores with memorization, enabling our analysis.

Similarly to the sample forgettability metric, the loss curvature represents both a

possible proxy and a readily available baseline for building coresets, and will be

considered dually in our experimental evaluation of Section 5.3.

SAM’s ϵ. Inspired by the empirical findings of [Garg and Roy, 2023] on the

correlation between sample cleanliness and loss curvature, we here consider an

alternative proxy for memorization scores that relies on the loss flatness metric

as defined in [Foret et al., 2021]. More in detail, [Foret et al., 2021] defines a

Sharpness-Aware Minimization (SAM) approach as an alternative to the popular

Stochastic Gradient Descent (SGD)3 optimization algorithm. SAM relies on si-

multaneously minimizing loss value and loss sharpness to achieve generalization

benefits. To minimize sharpness, SAM’s optimization procedure relies on bound-

ing the model’s generalization ability in terms of neighborhood-wise training loss,

computing the maximum difference between the loss from the current weights w

and the losses near the current weights w + ϵ. To this end, SAM computes the

optimal ϵ by analysing the adversarial direction of the gradient to achieve the max-

imum loss difference. We consider leveraging SAM’s definition of ϵ as a possible

proxy for the memorization scores. The underlying assumption is that very flat

minima result in small ϵ values, while sharp minima correspond to high ϵ. There-

fore, ϵ can be theoretically leveraged to measure the flatness of the loss around a

given sample xi. To this end, we consider computing SAM’s ϵ per-sample rather

than per-batch and only at the end of model training. Therefore, we can define

3https://en.wikipedia.org/w/index.php?title=Stochastic_gradient_descent
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the ϵ proxy for memorization scores as:

ϵ(xi) = ρ · sign (∇xi
L(xi)) ·

|∇xi
L(xi)|√

∥∇xi
L(xi)∥

, (5.6)

where ρ represents the neighborhood size and is set to ρ = 0.5 following the

experimental findings of [Foret et al., 2021].

Complexity. Similarly to [Garg and Roy, 2023], we compute the loss flatness

metrics γ and ϵ on sample xi after the model h has been optimized on T with xi ∈
T . Therefore, similarly to the history statistics proxies, γ and ϵ require training one

single model h to compute the proxies over all training data samples. In practice,

we run the training process n times and average the obtained proxy values over

the n different runs. Finally, during our experimentation, we empirically found

that there exists no relevant difference between computing loss flatness using the

model trained on the sample – i.e., hAT – or without the sample – i.e., hAT \i –, when

the trained model does not suffer overfitting issues.

5.2.3 SAMIS: SAM - SGD

Inspired by [Kim et al., 2024], we propose a novel approach that combines both

Sharpness-Aware Minimization (SAM) and Stochastic Gradient Descent (SGD) to

approximate memorization scores in neural networks. They introduced an entropy-

based metric that leverages influence scores to assess the reliance of a model’s

prediction for a given test point on a limited subset of training data. Their find-

ings suggest that predictions for test points that are highly dependent on specific

training examples exhibit a more pronounced discrepancy in test accuracy between

models trained with SAM and those trained with SGD.

We hypothesize that this phenomenon can be extrapolated to training data

points with high memorization scores. Such points, akin to outliers, would simi-

larly exhibit a heavy dependency on a few training examples were they part of a

test set. This is because a data point with a high memorization score is, by defini-

tion, atypical. In contrast, if the data point was typical, surrounded by numerous

similar examples, it would likely have a lower memorization score if it was in the
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training set and low dependency if it was in the test set since its prediction would

be influenced by a broader array of training data. Building on this understanding,

we propose using the discrepancy in predictions between SAM and SGD models

as a proxy for memorization scores. In particular, we start from the definition

of the memorization score as the difference between model output probabilities.

The memorization definition considers the model trained on the whole dataset S
and on the dataset S\i lacking sample xi for which it is necessary to compute the

memorization score. We assume that SAM can attain higher generalization capa-

bilities than SGD and consider replacing hSGD
S with hSAM

S\i . Although this is not

a valid assumption in general, this allows replacing the expensive term of mem-

orization computation P
[
hSGD
S (xi) = yi

]
with a less computationally demanding

term P
[
hSAM
S\i (xi) = yi

]
.

We define the SAM − SGD (SAMIS) formulation as the average absolute dif-

ference in output distribution between the models obtained using SAM and SGD.

SP (xi) =

∑C
c=1|P (hα(xi) = c)− P (hσ(xi) = c)|

C
, (5.7)

where hα represents the model optimised using SAM (hSAM
S\i ), hσ its SGD counter-

part (hSGD
S\i ) and C the number of classes in the dataset at hand.

Inspired by previous works analysing loss properties, we here consider defining

a dual variant of the SAMIS metric focusing on the difference between the SAM

based training and the SGD model in terms of loss obtained on the data sample

at hand. Mathematically:

SL(xi) = |L (hα(xi), yi)− L (hσ(xi), yi)|, (5.8)

Taking into account a standard cross entropy loss function, defined as:

L = −
∑
c

yi,c · log(P [h(xi) = c]), (5.9)
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the proposed SL formulation can be rewritten as a

SL(xi) =|−log
[
P (hSAM

S\i (xi) = yi)
]

+ log
[
P (hSGD

S\i (xi) = yi)
]
|,

(5.10)

which resembles the memorization score definition of Equation (5.2) logarithmi-

cally scaled.

Complexity. Replacing hSGD
S with hSAM

S\i allows to train fewer models to approx-

imate correctly the metric, as it requires only xi to not be a part of the training

samples. Therefore, it is possible to approximate hSAM
S\i with hSAM

S\{i,j,k,...} and reuse

it for computing the proxy values for (xj), (xk) and all samples removed from the

training set. This assumption is valid when training is performed on a big enough

subset of the original training set S such that hSAM
S\i ≃ hSAM

S\{i,j,k,...} . To this end,

we consider splitting the training dataset for which it is required to compute the

SAMIS proxy into m splits – namely Sj ∀j ∈ [1,m] – such that S =
⋃m

j=1 Sj.
We then consider keeping each split as the validation set and train two models

– one using SAM, and one using SGD – on the remaining samples belonging to

S\k ∀k ∈ Sj. Thus, leveraging hSAM
S\k ∀k∈Sj

and hSGD
S\k ∀k∈Sj

it is possible to compute

the SAMIS proxy for all samples k in the split Sj. The desired approach requires

training 2 · m models to compute the proxies over all training data samples. In

practice, we run the training process n times and average the obtained proxy val-

ues over the n different runs. Therefore, overall the samis metrics require the

optimization of 2 ·m · n models to compute the memorization proxy scores with

precision. Throughout our evaluation we set m = 10 and n = 10, thus requiring

the optimization of 200 models to approximate the memorization scores.

5.2.4 Proxies Quality Analysis

To analyse the quality of the six different proxies considered, we compare them

against the memorization scores available from [Feldman and Zhang, 2020] for the

CIFAR100 dataset [Krizhevsky and Hinton, 2009]. More in detail, we compute

each proxy measure for each sample xi belonging to the training set of the CI-

FAR100 dataset over 10 different runs and consider the final proxy metrics as the
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average scores of the metrics over the 10 runs. For each run, we vary the initial

conditions by seeding differently the training procedure of the models required to

compute the proxy, but we keep the learning hyperparameters untouched. To be

as consistent as possible with the memorization setup we use the same model ar-

chitecture and same training hyperparameters of [Feldman and Zhang, 2020]. In

particular, we use a ResNet50 architecture, and SGD with momentum 0.9, a batch

size of 512 and a base learning rate of 0.4. We train each model for 160 training

epochs, in which the learning rate is scheduled to grow linearly from 0 to the base

learning rate in the first 15% of epochs, and then decay linearly back to 0 in the

remaining epochs. Finally, when the proxy values are not bounded, as it is for the

loss curvature, we normalize the score using a min-max normalization approach to

fit them in [0, 1].

Rank correlation We first consider comparing the rank correlation between

each proxy and memorization by using the Spearman rank correlation ρ. The cor-

relation between memorization and the obtained proxies averaged over a different

number of runs is shown in Figure 5.2. Interestingly, the results show how there

exists a positive non-negligible correlation between memorization scores and all

proxies. These results highlight the promising nature of all the proxies considered,

showing how it is possible to reproduce the sample ranking obtained through mem-

orization scores. More in detail, SL(xi) achieves the highest correlation reaching

up to ρ = 0.92 for k = 10, highlighting that replacing hSGD
S with hSAM

S\i repre-

sents a reasonable assumption given the generalization properties of SAM. Inter-

estingly, very simple proxies such as sample forgettability (Equation (5.3)) and

E2L (Equation (5.4)) achieve high correlation with memorization, even if defined

in a completely agnostic manner.

Correlation nature Analysing only the rank correlation coefficient is not suf-

ficiently effective for studying the similarity nature between memorization scores

and the defined proxy metrics. Therefore, we consider analysing for which values

of the memorization spectrum each proxy is capable of approximating the base-

line scores. To this end, we first analyse the number of common samples between

memorization and each proxy over different splits of the CIFAR100 dataset. We
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Figure 5.2: Correlation between memorization and proxies averaged over the num-
ber of runs.

sort the memorization scores and the proxy counterparts and split the CIFAR100

dataset into 10 splits each of which containing 5000 samples gathered from the

sorted memorization and proxies indices. For each split we compute the percent-

age of common samples between the memorization scores and the proxies, aiming

to study how the correlation varies through the memorization scores spectrum.

Figure 5.3 shows the results of such analysis. Most proxies can approximate quite

well the search for clean samples since low memorization scores have been em-

pirically linked with sample cleanliness. On the other hand, most proxies fail to

effectively approximate the high-end of the memorization spectrum, as they fo-

cus on different aspects of complex samples. Indeed, the only relevant proxy at

the highest end of the memorization scores is represented by SL(xi). A similar

visualization of such phenomenon is also made available in Figure 5.5.

Scores distribution To corroborate the findings on the correlation distribution

we analyse the values distribution for each proxy. Figure 5.3 shows how the dis-

tribution of scores differs between memorization and the considered proxies. The

obtained results support the findings of Figure 5.3, highlighting how most proxies

can approximate well – to some extent – the memorization scores distribution for

lower values of the spectrum. On the other hand, none of the proxies is capable of

approximating effectively the high end of the memorization spectrum—in which

memorization scores are characterised by a small but significant rise in memoriza-
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Figure 5.4: Histogram of memorization and proxies scores distribution.

tion values. The best proxies are the SAMIS variants which approximate very well

the memorization behaviour on its lower end of the spectrum and only miss the

small memorization rise close to 1. Meanwhile, the flatness-based proxies fail to

replicate memorization scores over its whole spectrum, as it is less likely for the

loss flatness or curvature to reach values very close to zero.

Sample visualization To investigate the discrepancy between memorization

and proxies at the high end of the memorization spectrum, we plot the 5 sam-

ples achieving the lowest and highest scores for a specific class of the CIFAR100

dataset. Figure 5.5 shows the obtained samples for the class fox. The visual results

confirm the findings on proxies correlation. Low values result in clean images of

orange foxes on a natural background, containing either a close-up of the fox’s
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Figure 5.5: Sample visualization for the class fox of the CIFAR100 dataset over
low (a) and high (b) memorization/proxies scores.

head or the full body of the fox. Several images are identical between memoriza-

tion and the proxies – especially the SAMIS variants –, showing almost perfect

correlation. These results highlight how all of the considered proxies can be used to

identify clean, simple samples independently of their capability to approximate the

memorization values. On the other hand, the samples extracted from the metrics’

highest values differ from one another, while still seemingly representing complex

– unconventional – samples. More in detail, each metric seems to focus specifically

on some of the image properties. For example, memorization seems to highlight

the colour of the fox inside the image, as the extracted samples contain only black

and white foxes. The E2L metric seems to focus on shape-based properties of the

image while disregarding the colour criterion since its images contain cropped or

further away foxes as well as hand-drawn foxes. Finally, the SAMIS images seem

to represent a mixture of colour and shape properties (images contain black foxes

as well as cropped images). It is important to notice that this analysis on colour

and shape is valid only for this specific class, as for other classes the difference

between memorization and proxies images seem to rely on other characteristics of

the class at hand.

Correlation over classes Finally, we investigate the correlation between mem-

orization and proxy scores over each of the classes composing CIFAR100 to better

understand the impact of class complexity on the proxy. SAMIS and E2L proxies
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Figure 5.6: Pearson correlation between memorization and proxies over each CI-
FAR100 class.

represent the most effective metrics, as shown in Figure 5.6. Interestingly, the

correlation behaviour of most proxies is rather turbulent. Indeed, only the metrics

reaching an overall Pearson correlation greater than 0.8 showcase a sufficiently

uniform correlation value over all classes. The girl, bear and seal classes repre-

sent the most complex instances to be well approximated by proxies. For these

instances, even the best-performing proxy suffers a decrease in correlation up to

0.2, showcasing the complexity of memorization approximation. Conversely, the

bottle, lawn mower and palm tree classes represent the easiest instances to be well

approximated.

5.3 Memorization Proxies for Coreset Construc-

tion: Experiments

In this section, we propose leveraging the proxy metrics for memorization scores for

coreset construction procedures. Similarly to the memorization coreset construc-

tion approach, we here use proxy estimate πi as the selection metric, choosing

samples with the lowest values to make up our coreset.

5.3.1 Experiments Setup

We run experiments on CIFAR10 and CIFAR100 [Krizhevsky and Hinton, 2009]

datasets. The CIFAR10 and CIFAR100 datasets contain 50000 training images

split into 10 and 100 classes respectively, where the number of samples per class

is perfectly balanced. Each data sample is a 32-by-32 RGB image.
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We compare each of the performance of the coresets constructed leveraging

each of the proxies – as well as memorization itself – against all of the baselines

considered in Section 5.1.3. Here it is relevant to notice that sample forgettability

and loss curvature proxies were already used by [Toneva et al., 2019] and [Garg

and Roy, 2023] for coreset construction, and as such we consider them both as

part of the baselines and part of the proxies. As various levels of complexity

characterise the different datasets, the proxy metrics are computed using a ResNet

architecture of slightly different sizes depending on the dataset. More in detail,

we leverage ResNet50 to compute proxies on CIFAR100 and ResNet18 for proxies

extraction on all other datasets. For each dataset the set of coreset sizes P and

the hyperparameters used for coreset training are available in Table 5.1.

Dataset P Epochs λ β λs λf

CIFAR100 [0.01, 0.2] 160 0.1 32 50 0.1
CIFAR10 [0.01, 0.1] 160 0.1 32 50 0.1
SVHN [0.01, 0.2] 30 0.1 32 10 0.1

Fashion-MNIST [0.01, 0.2] 10 0.1 32 3 0.1

Table 5.1: Coreset size and hyperparameter of coreset training used for each
dataset. λ = starting learning rate, β = batch size, λs = number of epochs after
which the learning rate decays, λf = learning rate decay factor.

5.3.2 Proxies vs. Baselines

Figures 5.7 and 5.8 show the results obtained from the comparison of the considered

proxies against the selected coreset construction baselines.

The obtained results show that selection based on memorization scores still

represent the best approach, outperforming all other coreset methods over all

datasets. SL(i) represents the best performing proxy, following closely the be-

haviour of coreset construction based on memorization. Interestingly, other highly

correlated proxies such as E2L and sample forgettability do not perform as closely

to memorization as SAMIS. This behaviour is caused by the decrease in correla-

tion for the lowest values of memorization scores that these metrics achieve (see

Figure 5.3). Overall, these results represent an encouraging finding, as they prove
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Figure 5.7: Coreset construction performance using memorization proxies against
state-of-the-art solutions on CIFAR100.
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Figure 5.8: Coreset construction performance using memorization proxies against
state-of-the-art solutions on CIFAR10.

how it is possible to approximate the expensive memorization scores mi – using

SL(i) – while retaining the same behaviour on coreset construction.

Once again, the strongest competitor is the submodular function-based method

GraphCut. We also note that for higher coresets sizes the random sampling base-

line forms a surprisingly strong approach (also noted in [Guo et al., 2022]). Fi-

nally, it is possible to notice a slight decrease in the delta of performance between

memorization coreset construction approach – along with its proxies – and the

considered baselines over larger coreset sizes—e.g., P = 0.15 and P = 0.2 for
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Figure 5.9: Cross architecture performance of proxies computed using ResNet18
and transfered to WideResNet.

CIFAR100. This behaviour hints that the amount of clean samples in the consid-

ered datasets is overabundant, as for P = 0.2 it is more effective to also consider

complex samples rather than considering only the set of top-20% clean samples.

5.3.3 Cross-Architectures Coresets

The proxy metrics considered in this chapter require less resources than memo-

rization to be computed. However, they still require training a relevant amount of

models—at least 10 in our experiments. Therefore, we here consider if – and to

what extent – memorization and proxy scores can transfer through different archi-

tectures during the coreset construction procedure. To this end, we consider train-

ing a model architecture – e.g., MobileNet – on the clean samples obtained from the

proxy scores extracted from a different model architecture—e.g., ResNet50. In our

experiments we select ResNet18 [He et al., 2016], ResNet50 [He et al., 2016], VGG-

19 [Simonyan and Zisserman, 2015], MobileNetV3Small [Howard et al., 2019], Mo-

bileNetV3Large [Howard et al., 2019] and InceptionNetV4 [Szegedy et al., 2017]

and train them using the coresets constructed with proxy measures extracted from

a ResNet18 architecture.

Figure 5.9 shows the results obtained for each proxy metric when trained over

the WideResNet architecture. We plot also the random sampling baseline – which
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forms a strong baseline as noted in Section 5.3.2 – as a reference for the expected

architecture performance. The obtained results highlight how memorization and

proxies can transfer well across different architectures, given the cleanliness of the

extracted samples. These findings suggest that the data properties identified via

proxy metrics over an architecture can generalize well to other models, thus ren-

dering the memorization proxies almost completely independent of the considered

architecture. Similar results can be obtained for all analysed architectures and are

not shown to avoid redundancy.

5.3.4 Balance Memorization and Proxies

Results in Figure 5.7 highlight a slight decrease in coreset construction perfor-

mance of memorization scores – and its proxies – at larger coreset sizes. Inspired

by such an insight, we here consider defining a weighted sampling approach for

constructing coresets based on memorization and its proxies. Rather than con-

structing coresets selecting the lowest memorization samples, we here consider

assigning a sampling probability inversely proportional to the memorization – or

proxy – score of the sample. The underlying assumption is that assigning a small,

but non-negligible sampling probability also to mildly complex data samples al-

lows to diversify the training set information in scenario where the selected coreset

size is not prohibitively small. Indeed, while training only on the lowest mem-

orization/proxy data samples is effective for very small coresets, it is also true

that clean samples are usually overabundant in common datasets, while the infor-

mation extractable from rough samples should still be taken into account during

training. To avoid sharp differences between the assigned sampling probability, we

first consider smoothing the sample scores using a sigmoid function and we apply

softmax to the corresponding output obtaining a probability distribution over all

samples. Mathematically, we denote with pi the sampling probability of sample xi

and define it as:

pi =
eσi∑
j∈S e

σi
with σi =

1

1 + eτ ·(si−κ)
, (5.11)
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Figure 5.10: Coreset construction performance when balanced sampling based on
memorization/proxies scores is considered against sampling directly the samples
resulting in the minimum memorization/proxy scores.

where si represents the memorization/proxy score of sample xi, and τ and κ repre-

sent two hyperparameters of the sigmoid function that we set empirically to τ = 8

and κ = 0.5.

The results obtained for coresets contruction over the CIFAR100 dataset us-

ing the novel balanced sampling approach are shown in Figure 5.10. As expected

the balanced sampling approach performs poorly for very small coreset sizes, as it

enables the sampling of mildly complex samples that hinder the training process

if not sorrounded by enough clean samples. On the other hand, as the coreset

size increases, the balanced sampling approach seem to catch up with the mini-

mum sampling procedure. For most of the proxies the balanced sampling approach

outperforms slightly its counterpart when the percentage of dataset samples used

to construct the coreset overcomes 0.15. These results confirm the original as-

sumption that as the training set size increases it becomes more helpful to add

complex or mildly complex samples to the learning procedure, since the amount

of information that the model can extract from only clean samples is limited. The

obtained results also seem to corroborate the overabundance of clean samples in

the CIFAR100 dataset, as for P = 0.2 it is more effective to consider complex

samples rather than considering only the set of top-20% clean samples.
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Chapter Synopsis

In this chapter, we investigate the effectiveness of leveraging data sample memo-

rization scores and their proxies for data efficient learning task. We first show that

a simple sampling of data attaining lowest memorization scores results in more

effective coresets when a small number of training examples is considered—i.e.,

few-shot learning. To account for the resource hungriness of memorization compu-

tation we analyze six different proxy metrics, showcasing their high level of correla-

tion and the nature of their similarity with memorization. Thereafter, we replicate

the memorization-based coreset construction approach leveraging the considered

proxies and compare them with state-of-the-art approaches, highlighting their ef-

fectiveness. Approximating the memorization effect facilitates the investigation of

clean vs. atypical or mislabelled data instances over large datasets where the opti-

mization of more than 1000 models would be unfeasible for most. Overall, improv-

ing the efficiency of coreset construction approaches, the proposed approach repre-

sents a step towards enabling the training of complex NNs on resource-constrained

devices.
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Chapter 6

Resource Management in

Federated Learning

This chapter contains contributions from [Agiollo et al., 2024b].

Federated Learning (FL) – the de-facto solution for distributed learning sce-

narios – reduces the amount of data and resources required for training ML and

DL models by leveraging the collective intelligence of distributed devices. How-

ever, the energy and resource utilization optimisation represents an overlooked

issue in most FL scenarios as most recent efforts focus on model performance and

privacy [Zhang et al., 2021a, Lyu et al., 2020, Agiollo et al., 2024a]. This phe-

nomenon – along with the intrinsic complexity of the performance vs. resource

consumption trade-off – hinders the adoption of FL over constrained scenarios.

Inspired by the above issue, in this chapter we introduce EneA-FL as a pioneer-

ing serverless FL framework, uniquely equipped with a smart energy management

module tailored for resource-constrained clients. Conceived to address the energy

management challenges inherent in the real-world deployment of FL solutions, this

innovative middleware is crafted to facilitate the training and deployment of FL

models across a spectrum of heterogeneous Internet of Things (IoT) devices. In

particular, the core is an orchestrator that dynamically manages the FL process

by shipping to participant nodes a containerised environment capable of moni-

toring the current status of the hosting machine in terms of: (i) computing and

networking capabilities, (ii) energy budget, and (iii) current accuracy over local
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samples.

EneA-FL dynamically assesses the effort required by each IoT client to fulfil

the specified resource constraints. Subsequently, it autonomously applies the most

suitable policy, by minimising any intervention by FL users and FL-based appli-

cation developers. Our automated energy management scheme has been tested

over a wide variety of clients and energy requirements while showing its benefits

over standard FL approaches. In particular, we tested our solution over CPU- and

GPU-enabled microcontrollers with limited computing capabilities and reduced

energy budgets [Agiollo and Omicini, 2021]. The adaptable container-based ap-

proach proposed here has shown to be able to achieve between 30% and 60% lower

energy consumption against popular client selection approaches available in the

literature.

6.1 Related Work

In this section we provide an overview of recent research efforts in the research areas

intersecting our proposal—i.e., Serverless containerisation for ML, and resource

management for FL and fog computing scenarios.

Serverless containerisation for Machine Learning: As real-world ML

applications continue to expand, there is a growing demand for significantly in-

creased computational power to execute training processes [Sevilla et al., 2022].

In this context, cloud resources prove invaluable, enabling the execution of com-

putationally intensive operations that would be impractical for individuals and

mid-sized companies. In addition, the combination of serverless paradigm with

containerisation approaches enables remarkable scalability at minimal overhead

cost [Rudyy et al., 2019]. While ML-based container orchestration [Zhong et al.,

2022, Rovnyagin et al., 2020] has demonstrated the benefits of ML in Serverless

computing, the exploration of the applicability of containerised serverless scheme

for ML is still pending validation. In this context, several works demonstrate the

minimal impact of containerisation on deep learning application performance. [Xu

et al., 2017] results pinpoint how containers have a 0.2%-0.5% overhead compared

with host execution time, proving the deep learning containerisation feasibility.

In the distributed ML realm, several works focused on serverless paradigms for
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FL, such as [Grafberger et al., 2021] where the authors illustrate the benefits of

a middleware solution that eases the interaction between multiple Software-as-a-

Service (SaaS) cloud providers. Similarly, [Singh et al., 2022] present a distributed

real-time privacy-preserving data analytic solution for smart grid systems based

on a Serverless cloud computing FL approach to predict the energy needs of Home

Area Networks (HANs). Despite the remarkable relevance of the above-mentioned

solutions, none of them have already addressed the feasibility of Serverless com-

puting for FL in a fog environment.

Resource Management in Fog Computing: Extensive analysis of resource

management in fog computing environments [Yi et al., 2015, Puliafito et al., 2019]

is meticulously explored by [Ghobaei-Arani et al., 2019], delving deeply into a com-

prehensive examination of resource management within fog computing settings.

The investigation results pinpoint task offloading [Hamdi et al., 2022a, Hussein and

Mousa, 2020] as the predominant resource management approach in the literature.

In this context, the need for ensuring transparency [Shan et al., 2019, Weiner et al.,

2022] in offloading decisions for application developers is crucial. Additionally, the

heterogeneity of mobile nodes [Zhang et al., 2017] and their energy performance

seems still underexplored. This forward-looking perspective aims to promote ef-

ficient and developer-friendly offloading strategies in the evolving landscape of

mobile computing. Relevantly, the majority of academic efforts tackle offloading

strategies by showcasing innovative solutions leveraging simulation tools [Gupta

et al., 2017, Calheiros et al., 2010, Puliafito et al., 2020] and ignoring QoS factors—

i.e., only 18% of the reviewed articles [Zhao et al., 2016, Meng et al., 2017] take

energy considerations into account. These factors represent relevant limitations

for enabling real-world deployment of such solutions.

Resource Management in Federated Learning: FL represents the most

popular technology for enabling multi-party joint training of ML models. In this

context, multiple entities collaborate to locally optimise a shared model by sending

their local updates either relying on a central controller or in a fully decentralised

fashion. Relying on the local optimisation procedure of the shared model, FL

ensures data privacy, while enforcing heavy computational constraints on the fed-

eration entities. Therefore, the application of FL to resource-constrained devices

– e.g., IoT devices, battery-powered devices, etc. – represents an open research is-
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sue [Nguyen et al., 2021, Imteaj et al., 2022]. In this context, many of the research

efforts focus on the identification of effective learning strategies to optimise local

model training. [Wu et al., 2018b] propose relying on lower bit-length integers to

reduce the computational costs of training and inference models. Similarly, tensor

rematerialisation [Jain et al., 2020], recomputation [Chen et al., 2016], and efficient

architecture strategies [Cai et al., 2020] have been proposed to reduce memory re-

quirements of NN training. Although these proposals do not target directly the

FL realm, these works focus on resource optimisation during model training and

thus can be applied to FL to achieve a more efficient federation scheme. Few works

have specifically dealt with the optimisation of resources in the field of FL when

the federation is composed of inherently constrained and heterogeneous devices—

in terms of either available energy or computational power [Trindade et al., 2021].

The problem of energy-efficient model transmission for FL over wireless communi-

cation networks is analysed in [Yang et al., 2021b], where both local computation

energy and transmission energy are taken into account, formulating the FL con-

vergence problem as a system energy minimisation problem. Meanwhile, [Zaw and

Hong, 2021] formulate an energy-conscious resource management problem for FL

where the federation clients aim to minimise time over a set of energy and com-

munication constraints. Here, the problem is formulated as a Nash equilibrium

problem [Nash Jr, 1950], solved in a decentralised fashion. In [Xu et al., 2022],

the optimisation of the local update frequency and the compression ratio of the

model to effectively decrease the time required for optimisation is proposed, thus

reducing the consumed resources. [Cui et al., 2022] aims at reducing FL resource

usage by optimising their allocation. To this extent, the authors analyse resource

block allocation introducing a mixed-integer linear programming strategy to better

allocate resource blocks over federation clients.

In this resource efficientisation context, few approaches focus on the client se-

lection process typical of FL. In this context, OORT [Lai et al., 2021] represents

the most popular node selection framework where clients are selected depending

on their model ”utility”, defined as the potential improvement over the aggregated

model. [Arouj and Abdelmoniem, 2022] propose an improved version of OORT

– to which we will refer as OORTv2 for the remainder of the chapter – prioritiz-

ing clients having higher battery levels to maximize the overall system efficiency.
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Diversely from these approaches which focus solely on the computation efficiency

perspective, [Cho et al., 2020] analyses the computation and communication ef-

ficiency perspective, proposing a power-of-choice-based solution. Total time to

convergence represents another relevant factor in FL setups, attracting several re-

search efforts such as [Kim and Wu, 2021, Wang et al., 2019a]. More in detail,

[Kim and Wu, 2021] propose to jointly optimise time to convergence and energy

consumption in data heterogeneity scenarios, proposing a reinforcement learning

client selection algorithm. Similarly, the results in [Wang et al., 2019a] highlight

reduced time execution when communication data collection and experiments up-

scaling over simulated environments are considered.

Although relevant, these approaches do not sufficiently address the academic

gap in optimizing power consumption within real and heterogeneous environments.

While some of the proposed solutions neglect to consider power consumption in-

formation entirely, others consider energy optimization as a direct consequence of

training time minimization, which is not the case when heterogeneous nodes partic-

ipate in the training process. Ultimately, none of the existing solutions prioritizes

the concerns of application developers, leading to a lack of seamless integration

in a serverless environment. The absence of consideration for developers hinders

the smooth and effortless incorporation of these solutions into real-world applica-

tions. Therefore, up to our knowledge, there exists no study on the effectiveness

of resource management solutions in FL when a set of resource bounds is con-

sidered, taking into account heterogeneous resource requirements and availability

over multiple clients. Table 6.1 summarizes the limitations of the existing solution

and highlights the academic gap that EneA-FL is meant to fill.

6.2 FL Energy Consumption Modelling in Fog

Deployment Environments

One of the objectives of fog computing in several vertical domains of applica-

tion is to process data in near real-time. Here, a set of edge nodes receives data

from IoT devices and performs stream processing with millisecond-grade response

time. Given the opportunistic and heterogeneous nature of those scenarios, the
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Table 6.1: Comparison of related work based on their features. Legend: EA =
Energy awareness, RE = Real energy data collection, NH = Node Heterogeneity,
C = Comparison with other solutions, SA = Serverless architecture.

Work EA RE NH C SA
Grafberger et al. [Grafberger et al., 2021] - X - - X

He et al. [He et al., 2021] - - - - X
Singh et al. [Singh et al., 2022] X - - - X
Yang et al. [Yang et al., 2021b] X X - - -
Zaw et al. [Zaw and Hong, 2021] X - - - -
Kim et al. [Kim and Wu, 2021] X X X - -

Xu et al. [Xu et al., 2022] - X X - -
Cui et al. [Cui et al., 2022] - X X X -
Cho et al. [Cho et al., 2020] X - - - -

Wang et al. [Wang et al., 2019a] - X - - -
Lai et al. [Lai et al., 2021] - - X X -

Arouj et al. [Arouj and Abdelmoniem, 2022] X - X X -
EneA-FL X X X X X

unavailability of a node reaching the end of its energy budget is an eventuality

to be avoided at any cost. Generally speaking, if we define E(i) as the energy

consumption of a fog node i, and consider the canonical FL scenario made up of

an arbitrary set of workers of size n and one aggregator node – where ideally, all

working nodes presents the same networking and computational capabilities – we

can compute the energy consumption of the entire system Es simply as the sum

of the individual contribution of each worker and the aggregator node. Therefore,

we can then model Es as:

Es = ΣiE(i) = n ∗ Ew + Ea,

where Ew refers to the energy consumption of a single worker and Ea to the energy

consumed for the aggregation process.

By further investigating the contribution of each node in a FL scenario, for a

generic worker w the energy consumption Ew is directly proportional to the local

model complexity – referred to as Mc(w) – and to the size of the local dataset—

referred to as Sd(w). Given that in a FL scenario all the participating nodes share
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the same model architecture, we have that:

Mc(w1) =Mc(w2) = . . . =Mc(wn−1) =Mc(wn) =Mc

Meanwhile, as far as the aggregator node a is concerned, the computation Ea is

usually an average-like operation with a limited corresponding computational cost.

However, this operation can become expensive with a high number of tensor to

be averaged. This consideration leads us to the conclusion that Ea is directly

proportional to the number of workers n.

The energy modelling scheme described above would be incomplete if the re-

lationship between energy, latency, and accuracy would not be made explicit. In

fact, the main priority of a FL pipeline is to provide the best accuracy as possible

while minimising the overall latency. While the better accuracy Acc usually corre-

sponds to a higher Mc, the minimisation of the overall latency ∆Lat is beneficial

to energy consumption, too. The optimisation of these constrains would be easy

to solve in an ideal scenario with a low level of heterogeneity among participating

working nodes. Theoretically speaking:
min(∆Lat) =∧ min(Mc)

max(Acc) =∧ max(Mc)

min(Es) =
∧ min(Mc)

(6.1)

Then, the minimisation of Mc would be beneficial for Ew, Ea and ∆Lat. In other

words, the one between Acc andMc would be the only trade-off to solve to minimise

energy consumption while satisfying QoS requirements.

Unfortunately, the erratic nature of fog environment brings into play a higher-

dimensional space of possible solutions. Given that each worker node may be

involved in more than one task and that it may have a dynamic percentage of

bandwidth at its disposal over time, the selection of a specific node during the

aggregation phase may be tricky and negatively impactful not only in terms of

Acc and ∆Lat, but also for Es. For this reason, the dynamic selection of workers

over the time is a primary task to address in order to apply FL in real-world fog

scenarios.
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6.3 The EneA-FL Serverless Middleware

In this section, we present the architecture of our novel serverless middleware

for FL in fog environments, namely EneA-FL. Inspired by the emerging Cloud

Continuum paradigm [Moreschini et al., 2022], EneA-FL presents the first mid-

dleware capable of bringing together the best characteristics of serverless and fog

computing, showcasing its applicability to FL settings with highly dynamic and

heterogeneous devices.

6.3.1 Serverless Computing and Energy Awareness in Con-

strained Scenarios

The harmonic combination of microservice architecture and energy awareness

emerges as a natural consequence of applying the serverless paradigm in fog com-

puting scenarios. The microservice architecture, with its modular and decen-

tralised approach, enables the development of flexible and scalable applications by

breaking down complex functionalities into smaller independent services, by eas-

ing software portability over heterogeneous IoT devices at the same time. Mean-

while, energy awareness focuses on optimising resource consumption and power

utilisation to achieve energy efficiency in constrained computing environments.

When integrated into fog computing, which extends cloud services to the edge

of the network, the serverless paradigm brings its on-demand execution and re-

source management capabilities. This allows applications to leverage microser-

vices while efficiently utilising resources and minimising energy consumption in the

edge and fog nodes. By combining these elements, fog scenarios can harness the

benefits of microservice-based application development while maintaining energy-

conscious operations. This fusion facilitates the creation of responsive, adaptable,

and energy-efficient systems, making it an advantageous approach for deploying

applications in dynamic and resource-constrained edge environments.

The synergy between microservice-oriented architecture and energy awareness

for serverless fog computing represents a significant step towards building sustain-

able and high-performance applications at the edge of the network. In this context,

EneA-FL is an original and relevant contribution, by providing FL developers with
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the first framework supporting the hybrid composition of serverless and fog com-

puting by taking into account the resources consumed by participating nodes. By

bridging the gap between serverless computing and fog scenarios, EneA-FL cap-

italises on the benefits of on-demand execution and resource optimisation, while

extending these advantages to the edge of the network.

6.3.2 EneA-FL Architecture

EneA-FL consists of three main modules:

Energon Prometheus1 is a well-established open-source systems monitoring and

alerting toolkit originally built at SoundCloud [Rabenstein and Volz, 2015].

Inside EneA-FL, Energon is the Prometheus-compliant exporter for IoT and

edge devices that keeps track of each participating device status in a com-

pletely transparent way. It is shipped to participating nodes as a container

that passively collects the energy metrics of the host, independently of the

local operating system and offers to the aggregator an endpoint for polling

energy and network metrics. It scrapes a wide set of Linux-based microcon-

trollers by reading specific registries at the operating system level. Energon

is published as a Pypi package2 to help the community track down the system

metrics of edge device transparently.

Furcifer A novel container orchestrator that handles the communication between

participants nodes by offering an overlay network [Lua et al., 2005] to each

node inside the cluster. This enables peer-to-peer communication between

participating nodes and corresponding containers over a virtual network

managed through a Docker DNS interface. In addition, it provides each

participating node with a kernel-compliant container-based application.

Magister A policy manager that takes care of the aggregation process by choosing

the aggregation policy and selecting the participant clients for each aggre-

gation round. It is also in charge of deciding when the learning process is

1https://github.com/prometheus/prometheus
2https://pypi.org/project/energon-prometheus-exporter/
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completed depending on the grade of satisfaction of the specified QoS re-

quirements for the FL application.

0

Figure 6.1: Serverless middleware architecture.

Energon for Transparent Energy Awareness

Energon is a modular monitoring tool for IoT and edge devices. It keeps track of an

extensible set of system metrics about energy consumption, network channel qual-

ity, and resource utilisation, among others. Collected metrics are compliant with

the Prometheus exporting standard, which was recognised as graduated project

maturity level in 2016 by Cloud Native Computing Foundation, the open-source

vendor-neutral hub of cloud-native computing. Diagnostic information can be ob-

tained by HTTP requests to the /metrics endpoint on the IoT device. This allows

both scanning with application-dependent business logic and a smooth interaction

with the Prometheus ecosystem.
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The ubiquitous nature of Energon allows the user to monitor critical metrics

and to make real-time decisions at the application level, without generating any

additional overhead for the constrained devices. When it comes to system mon-

itoring, one of the primary objectives is to minimise the additional operations

necessary to collect the desired metrics while the target applications are running.

Energon has been meticulously designed to ensure complete isolation from the

rest of the system. It operates independently and does not require any interac-

tion with the running applications, thereby eliminating any potential interference

or performance overhead caused by monitoring processes. Running as a separate

process allows Energon to efficiently collect the desired metrics and perform moni-

toring operations without being tightly coupled to the application’s execution and

its business logic. By adopting this approach, Energon efficiently and seamlessly

gathers essential metrics without impacting the performance and behaviour of the

monitored applications, making it an effective and non-intrusive solution for sys-

tem monitoring tasks. This helps developers focus solely on the development of

their applications without the need to worry about logging the device’s state for

later historical analysis or real-time decision-making.

In addition to raw data monitoring and exposition, Energon can be customised

to send an event when a specific condition is met. Inside our EneA-FL middle-

ware, Energon plays the central role of keeping the orchestrator updated about the

current state of the monitored nodes, thus allowing the policy manager (i.e., Mag-

ister) to select the best workers available in terms of residual energy, instantaneous

power consumption, and peer-to-peer communication quality. About the querying

interface, Energon wraps PromQL, the functional expression language defined by

Prometheus, with easier high-level REST APIs. Those JSON-based endpoints can

be further customised depending on QoS requirements. Scraped metrics can be

stored locally on the orchestrator side, as done inside EneA-FL, or they can be

saved on a separate database for later use—e.g., time series analysis for designing

new better policies. All metrics are stored as time series data identified by a metric

name and a set of key-value pairs. Sharding and federation are also possible with

minimal additional settings.
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Furcifer: Container Orchestrator for IoT Devices

Furcifer is a centralised microservice manager, specialised for constrained devices

and enabling communication between participant nodes. It is available in multiple

versions through a set of containers for different operating systems and architec-

tures. Furcifer is meant to fill the gap between potential policy-oriented adaptation

and the heterogeneous nature of fog computing, by exploiting container orientation

– and not virtual machines –, largely accepted as more suitable for these deploy-

ment environments. The introduction of an additional abstraction layer offered by

containers is justified by the minimal impact on system resources and the need for

higher flexibility for context adaptation purposes. In particular, when focusing on

FL deployment over edge devices, we have to consider model drifting as a critical

circumstance where model performance drops in an unpredicted manner. When

model drifting is detected, it is very likely that a new model architecture has to

be deployed on all edge devices. In a traditional setup, where all participating

nodes are executing their local training at the OS level without any kind of con-

tainerisation, a manual deployment of the updated model will have to take place,

with additional effort and substantial impracticality in real-world scenarios—e.g.,

required intervention for each participant IoT device. On the other hand, if a new

model architecture has to be deployed in a containerised environment the only

operation required by workers is to pull a new image from the container registry

offered by Furcifer. This wraps and extends Harbor3, a well-known open-source

container registry supporting Kubernetes-based applications, for fog scenarios. In

addition, since the majority of the dependencies are likely to be unchanged, only

the last layer of the image will be downloaded, minimising at the same time main-

tenance operations and bandwidth utilisation. When a container image is built,

the platform builder attempts to reuse layers from earlier builds and if a layer of

an image is unchanged, then the builder picks it up from the build cache without

any additional download. As a consequence, even if the container occupies more

memory compared with bare metal solutions, only the device initialisation phase is

affected; while real-time adaptations minimally impact the context switch latency.

Furcifer use of container images significantly simplifies the deployment and

3https://goharbor.io/
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scaling of applications. Once an updated container image is available, it can be

easily distributed to all participating edge devices through the container registry,

ensuring that the latest version of the application or model architecture is seam-

lessly deployed across the network. This streamlined process minimises manual

intervention and reduces operational overhead, making it feasible to manage a

large fleet of IoT devices efficiently. Furthermore, Furcifer overcomes the lack

of hardware acceleration support on constrained devices by integrating NVIDIA

Engine Runtime for GPU-enabled IoT devices in a transparent way. The orches-

trator checks automatically the availability of hardware acceleration and reserves

the GPU for the FL training process before it takes place. This feature has been

successfully tested inside EneA-FL on NVIDIA Jetson family boards.

In terms of storage utilisation, containers occupy a relatively larger amount of

additional space compared to OS-level applications. However, it is crucial to note

that the business-logic application and ML model utilise less than 5% of the total

space, while the majority of storage is dedicated to user libraries. This efficient

distribution means that when deploying a new model or communication strategy,

only the last layer of the image needs to be shipped to the worker node, equiva-

lent to the size of an OS-level application. Consequently, the additional storage

introduced by containerisation significantly impacts initialisation time, but once

the application is running, it does not exacerbate overall latency. This highlights

the advantage of containers in efficiently managing application dependencies and

minimising the impact on run-time performance once the containerised application

is operational. In addition to providing support for real-time adaptation scenarios

and dynamic resource allocation, Furcifer offers an essential advantage in terms

of security and isolation. Thanks to containerisation, each service and application

running on the constrained devices is encapsulated within its own container, cre-

ating a boundary that restricts its access to system resources. Isolation ensures

that if one container is compromised, the security of other containers and the

host system remains intact. This level of security is particularly crucial in edge

computing and FL environments, known to be susceptible to attacks [Lyu et al.,

2020, Agiollo et al., 2024a]. In addition, defining the communication interface at

the container level provides an additional layer of security in the system. With this

setup, any potential malicious node attempting to communicate with the central
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aggregator would face significant hurdles. Such a node would need to compro-

mise and flawlessly replicate an existing image used in the container to establish

communication.

Magister for Fog-Oriented Context Switch Decision Making

The worker selection problem in FL has been approached from various perspec-

tives, including faster convergence [Wu and Wang, 2022, Cho et al., 2020], higher

trust level [Rjoub et al., 2022], and energy-awareness [Aloqaily et al., 2022]. How-

ever, selecting the most suitable workers in terms of both energy consumption

and training speed becomes challenging in scenarios where multiple heterogeneous

devices interact and multiple tasks must be executed simultaneously. Complex-

ity arises from the diverse capabilities and resource constraints of the devices

involved, making it crucial to develop innovative and efficient approaches to ad-

dress the worker selection dilemma in such dynamic and diverse environments.

While the identification of the most efficient device can be done in a static and

self-evident way by considering the amount of FLOPS per Watt on each device, a

more dynamic adaptation is required when additional constraints take place. For

example, the most efficient device may not be available due to the limited battery

duration or to the parallel execution of a different task with higher priority. In

addition, network channel quality can also play a central role when dealing with

mobile devices. For these reasons, even though in a controlled environment a static

energy-preserving policy may be suitable, this is not applicable when moving to

real-world scenarios. A higher-dimensional space of constraints has to be taken

into account to save as much energy as possible while meeting QoS requirements.

Inside EneA-FL, Magister is the module of the container orchestrator in charge

of optimising the clients selection policy depending on the state of each worker in

terms of system metrics and QoS satisfaction. In particular, Magister takes into

account the consumed energy of participating workers, the time required to per-

form the local training procedure and the accuracy improvement compared with

the previous training epochs. Communication is not taken into account at this

level.

At the beginning of each federation round, Magister collects the clients’ re-
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source usage from Energon – using Furcifer – and selects clients accordingly. The

local training procedure is not impacted by Magister, which upon the reception

of local updates from the selected clients decides whether to keep the distributed

training process alive or to stop it—depending on the achieved QoS metrics. There-

fore, the global model aggregation process is also not affected by our solution. As

a result, Magister represents a flexible client selection component which can be

integrated with any custom training and aggregation mechanism for FL. To ef-

fectively identify the Magister smart selection process, here we analyse how the

worker selection process affects the consumed energy, execution time and accuracy

improvements. First, we define the workers available to the federation process a

W = {w1, w2, . . . wN}, where N represents the total number of workers that com-

pose the federation. Out of these N workers only a subset WS ∈ W is selected by

the aggregating entity for each round of the optimisation process. The selection

function used to identify WS is defined as S{W}, and is usually considered to be

a simple random selection process in most FL setups. Magister’s objective is to

identify some novel selection procedure S∗ minimising the amount of energy and

latency required by the federation process while maintaining the performance of

the aggregated model untouched. To this extent, we first consider the selection

function S to be dependent on the history of the federation process, accounting

for smart selection of highly impactful nodes and disregarding unreliable workers.

To identify the optimal selection function, we need to take into account the de-

pendency between the achieved performance of the aggregated global model and

the amount of energy and time spent by the FL system to reach this global op-

timum. To this end, we here define the neural network model trained by worker

wi at the tth optimisation step of the federation process as N (t)
i . Consequently,

the amount of energy used to obtained N (t)
i via local computation is defined as

Ec(N (t)
i ). The time it takes for the optimisation process in worker wi to com-

pute N (t)
i is written as τ(N (t)

i ). Meanwhile, at the aggregator node, the neu-

ral network model computed at the end of the tth federation step is defined as

N (t)
a = A{N (t)

i ∀i ∈ W
(t)
s }, where A represents a custom aggregation function

used to compute the global model from the local updates. FedAvg [McMahan

et al., 2017], where A corresponds to the average weights of the local model, rep-

resents the most popular aggregation solution thanks to its simplicity of competitor
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solutions [Pillutla et al., 2022, Ma et al., 2022]. If we consider relying on a test

set of examples to compute the goodness of the obtained aggregated global model,

we can define its performance – e.g., accuracy, f1-score, etc. – as P(N (t)
a ). The

overall aim of any FL process is to increase the performance of the aggregated

model P(N (t)
a ) at each federation step t, so that P(N (t+1)

a ) ≥ P(N (t)
a ) and the

global optimum is achieved at the end of the federated optimisation process.

To account for smart selection of the federation workers, we here consider

relying on a selection function that aims at maximising the performance of the

aggregated model, while minimising the energy and time spent. Therefore, we

would be ideally able to define a new selection function S that selects the next set

of workers W(t+1)
S , such that:

W(t+1)
S s.t.


max

(
P
(
N (t+1)

a

))
min

(∑
W(t+1)

S
E
(
N (t+1)

i

))
min

(∑
W(t+1)

S
τ
(
N (t+1)

i

)) (6.2)

However, while desirable, such a setup cannot be solved directly, as the nodes that

mostly affect the most the computation of the aggregated model N (t+1)
a cannot

be known a priori. Therefore, we here rely on the assumption that the setup

can be computed a posteriori. Thus, we aim at identifying the set of nodes that

affect mostly positively the performance of the aggregated model for previous steps

t, t − 1, . . . , 1, while consuming less resources – i.e., energy and time –, and rely

on these nodes also for aggregation step t + 1. Therefore, the selection process

becomes a combinatorial search problem, where we aim at identifying the subset

of best workers Ŵ(t)
S , such that their combination achieves high performance while

keeping both energy and time requirements under control.

As it represents a combinatorial optimisation problem, finding the optimal set

of workers Ŵ(t)
S to maximise performance and minimise resources is not scalable

when the number of workers increases. Therefore, relying on such an optimal

procedure would lead to huge computational waste from the aggregator node end.

While we aim at minimising the amount of resources spent at workers level, shifting

the computational burden to the aggregator node would not represent a feasible
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solution. Thus, we here consider relying on a simplified approach that does not

require the solution of the combinatorial optimisation problem. To this end, we

here define an effectiveness measure aiming at identifying how much the local

model update from a worker wi impacts the performance and resource consumption

of the whole federation setup.

Accordingly, we define the effectiveness metric as:

E = α ·
E
(
N (t)

i

)
max{E(t)}

+ (1− α) ·
τ
(
N (t)

i

)
max{τ (t)}

− β ·∆
(
P
(
N (t)

a

)
,P

(
N (t)

a⊖i

))
, (6.3)

where max{E(t)} represents the maximum energy spent by any worker at step t,

namely max{E(t)} = max{E
(
N (t)

j

)
∀j}. Similarly, max{τ (t)} represents the max-

imum time taken by any worker at step t, namely max{τ (t)} = max{τ
(
N (t)

j

)
∀j}.

Meanwhile, ∆ represents the difference in performance between the aggregated

model N (t)
a and the model N (t)

a⊖i obtained aggregating all workers updates except

wi. Finally, α and β represent the hyperparameters that identify the trade-off

between the relevance of energy consumption, time requirements, and the perfor-

mance improvement achieved. Intuitively, a local worker wi whose model has a

high impact and is obtained by spending little resources ensures a small score.

On the other hand, workers whose models have little-to-no impact on the model

performance and/or are obtained consuming a vast amount of resources result in

high scores. To account for devices that are not capable of sending an update to

the aggregation entity, we set a handicap value h to the effectiveness metric of

those devices that do not guarantee an update when selected, namely:

E
(
w

(t)
i

)
=

E if received update

h otherwise.
(6.4)

Finally, to take into account the reputation history of workers, we consider measur-

ing the reputation score of each worker as its average effectiveness score, namely:

R
(
w

(t)
i

)
=

∑t
l=1 E

(
w

(l)
i

)
t

. (6.5)
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Considering the reputation score of Equation (6.5), we can now redefine the prob-

lem of identifying optimal workers as the process of identifying

Ŵ(t)
S s.t. min

(
R

(
w

(t)
i

))
. (6.6)

Therefore, in our novel workers selection process, the workers selected to run the

optimisation procedure for the next aggregation step t+ 1 are

W(t+1)
S =

{
Ŵ(t)

S s.t. min
(
R

(
w

(t)
i

))
⊕ Sr

(
W − Ŵ(t)

S

)}
, (6.7)

where Ŵ(t)
S represents the set workers with optimal performance from step t –

to account for incentivisation of highly performing nodes – and Sr
(
W − Ŵ(t)

S

)
represents a random sampling – i.e., Sr – of the remaining non-optimal nodes—

i.e.,W−Ŵ(t)
S . The selection of a set of random non-optimal nodes is necessary for

the federation process to take into account nodes that were not present in previous

aggregation procedures, which may still impact positively the global model. The

cardinality of the set of optimal nodes and randomly selected ones accounts for

the trade-off between static behaviour over time and workers coverage. Thus, we

add a third hyperparameter value k that balances the cardinality of optimal nodes

and randomly selected ones. In particular, if we identify with O the cardinality

of Ŵ(t)
S – i.e., the number of optimal nodes selected from one iteration to the

next – and with R the cardinality of Sr
(
W − Ŵ(t)

S

)
—i.e., the randomly sampled

non-optimal nodes, and with nr the number of workers to be selected at each

round, we obtain O = ⌊k · nr⌋ and R = ⌈(1− k) · nr⌉. Taking into account energy

consumption, time, and reached performance level of each client in the federation –

Equation (6.3) –, EneA-FL handles device heterogeneity in terms of computational

capabilities, computational efficiency, and data availability.

6.4 Experiments

As already stated, our primary objective is to address the pressing need for more

energy-efficient and sustainable machine learning models, especially in the era of

ubiquitous data and resource constraints. By leveraging the collaborative power
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of FL, we aim at demonstrating significant energy savings without compromising

model performance.

6.4.1 FL Training Process and Model Complexity

The experiments are conducted on a real networking testbed consisting of het-

erogeneous edge devices, which mimics a real-world deployment environment with

diverse computational capabilities. We use representative datasets from LEAF4,

which includes different use case data coming from Computer Vision and Natu-

ral Language Processing areas. From LEAF we select two datasets: MNIST and

Sent140 to test the feasibility of our energy-aware Federated Learning selection on

multiple tasks. While MNIST is the distributed version of the well-known MNIST

dataset for image classification, Sent140 consists of a corpus of 1,600,000 tweets

extracted using the Twitter API for sentiment analysis. Finally, we also employ

the N-BaIoT dataset [Meidan et al., 2018] to include a dataset containing real-

istic traffic data gathered from 9 commercial IoT devices authentically infected

by Mirai and BASHLITE. Here, the malicious traffic is divided into 10 different

attack classes (e.g., network scanning and firmware) plus 1 benign class. On all

datasets, we implement a small neural network composed either of a few blocks

of convolution operations or linear ones. The corresponding model complexity is

evaluated in terms of both MAC (Multiply-Accumulate Operations) and the total

number of parameters, reported in Table 6.2. The overall model complexity of

the model for image classification on MNIST is more than three times the one for

sentiment analysis over Sent140 and 1000 times the one for attack identification

in N-BaIoT.

MAC n params
Sent140 16.106 M 2.006 M
MNIST 5.962 M 2.278 M
N-BaIoT 4.384 K 4.491 K

Table 6.2: Complexity of leveraged NN models.

4https://leaf.cmu.edu
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6.4.2 Container vs Operating System FL Training Execu-

tion

Before delving into finer details, we perform a comparison between the container-

ised FL training application and the execution at operating system level. We

execute EneA-FL with and without containerisation to estimate the additional

overhead brought by a higher level of abstraction. The training process consists of

five local epochs for each dataset where both os-level and container training execu-

tion follow the same node selection policy. For this reason, the device is selected or

ignored depending on the current state of the federation. This unveils noteworthy

similarities in their energy consumption, with a minor difference of about 5% in

terms of training time. As can be seen in Figure 6.2, both executions demonstrate

comparable energy usage, indicating that the containerisation process does not

significantly impact overall power consumption during training tasks. However,

the containerised environment exhibits a slight delay, with training times being

approximately 1-2% slower compared to the operating system level environment.

As it can be seen, the most powerful device, the Jetson AGX Orin, exhibits signif-

icant variability and dispersion in its values; while the two most efficient devices,

the Jetson Nano and the Jetson Xavier tend to manifest a consistent and steady

behaviour, in particular when equipped with hardware acceleration. Generally

speaking, over all the devices considered, the usage of GPU seemingly leads to

lower data sparsity and a more predictable trend. The overall marginal disparity

in terms of startup required time proves the minimal overhead versus the benefits

of GPU-enabled containerisation. The improved portability, isolation, and ease of

deployment remain highly advantageous, making it a viable and efficient choice

for FL training tasks in fog environments.

6.4.3 Container Startup Latency Assessment

In the dynamic landscape of IoT and serverless architecture, a crucial aspect of

consideration revolves around the comparison of container startup latencies when

utilising IoT devices with and without GPU hardware acceleration. Serverless

computing, which enables on-demand execution of functions without the need for
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Figure 6.2: Time execution and energy consumption comparison on GPU
enabled Jetson Nano over 5 training epochs.

(a) On Sent140 dataset. (b) On MNIST dataset. (c) On N-BaIoT dataset.

server management, is particularly attractive in IoT environments where data is

generated at the network’s edge. Containers, acting as self-contained units of ap-

plication code and dependencies, can significantly impact the responsiveness of IoT

applications during initialisation and deployment. By assessing and contrasting

the startup latencies with and without GPU hardware acceleration, we gain valu-

able insights into the potential performance gains and resource optimisation for

serverless architectures in the context of IoT applications. This section analyses

the minimal additional overhead given by containerisation during training execu-

tion. In particular, we evaluated the startup latency for all the devices taking into

account over 100 startup cycles.

The data presented in Figure 6.3 demonstrates the startup latencies of vari-

ous configured devices, revealing that the presence of hardware acceleration does

not result in significantly higher delays. On average, the additional latency in-

curred with hardware acceleration is merely 5-10%. Moreover, across all devices,

the observed latencies range between 200 ms and 300 ms, underscoring the min-

imal overhead introduced by containerisation techniques on the overall training

execution. These findings highlight the efficiency and effectiveness of utilising

hardware-accelerated containers, as they offer near-instantaneous startup times

while providing substantial benefits in terms of flexibility and modularity during

training processes.
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Figure 6.3: Time startup comparison of CPU containers vs. GPU-enabled
containers.

6.4.4 Energy Consumption and Training Execution Time

on IoT Devices

To evaluate the performance and the effectiveness of energy optimisation, we used

the following metrics: model accuracy, communication rounds and clock time re-

quired for convergence, and total energy consumption. We first evaluate the energy

consumption of a wide range of IoT devices commonly used in fog and edge sce-

narios. In particular, we measure the energy consumption of our models on a

Raspberry Pi model 4, a Jetson Nano developer kit, a Jetson Xavier NX board,

and a Jetson AGX Orin developer kit. In addition, each of the Jetson boards has

been tested with and without GPU support to check the energy cost of hardware

acceleration in IoT training processes. Figure 6.4 illustrates the experiments per-

formed to measure the energy consumption of all devices tested in five training

epochs. The Jetson AGX Orin developer kit is the fastest, but it is also the one

with the higher instantaneous power consumption. On the contrary, the slowest

device is the Jetson Nano without GPU, while the hardware-accelerated version

of the device appears the be the best compromise in terms of energy consumption

and training time.

Surprisingly, the use of low-resource devices, like the well-known Raspberry Pi

model 4, proves to be unfavourable in terms of both overall energy consumption
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Figure 6.4: Time execution and energy consumption on considered devices over 5
training epochs.

(a) On Sent140 dataset. (b) On MNIST dataset. (c) On N-BaIoT dataset.

and training execution time. When considering the total energy cost over the

whole training, employing a higher-powered device may lead to lower energy con-

sumption. Additionally, the experiments underscore the remarkable reduction in

training execution time achieved with higher-tier devices, exemplified by the Jet-

son AGX Orin, albeit at the expense of consuming approximately 10 times more

energy compared to other devices. On the other hand, the Raspberry Pi 4 requires

over five times more time for training execution compared to the majority of other

constrained devices. Notably, in the first two datasets, the difference in training

time between GPU-enabled devices and their CPU-limited versions is significant.

However, on the N-BaIoT dataset, this difference is minimal. As expected, in this

case, the lower complexity of the model does not benefit significantly from parallel

computation.

Figure 6.5 showcases the energy efficiency of the examined devices, determined

by computing the amount of Joules using Simpson’s rule for numerical approxima-

tion integration [Tallarida and Murray, 1987]. This method allows us to precisely

evaluate the energy consumption of each device and compare their efficiency in per-

forming the given task. By employing Simpson’s rule, we gain valuable insights into

the energy performance of the devices, providing a comprehensive understanding

of their capabilities in optimising power utilisation during the integration process.

According to the results, the Jetson AGX Orin emerges as the least efficient device

in terms of energy consumption, indicating higher energy usage during the inte-
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Figure 6.5: Ranking of overall energy consumption over considered devices.

gration process. On the other hand, the Jetson Nano and Jetson Xavier stand out

as more energy-efficient options, as they exhibit lower power consumption relative

to their execution times.

6.4.5 EneA-FL Performance Results and Discussion

In this section, we present the results obtained during the testing phase of EneA-

FL framework. More in detail, we first describe the setup used for the analysis of

our framework in Section 6.4.5. In Section 6.4.6 we perform an ablation study to

identify EneA-FL best hyperparameters. We then study the performance of the

EneA-FL framework in terms of reached accuracy when a set of resources budgets

are considered (see Section 6.4.7). Sections 6.4.8 and 6.4.9 analyse respectively

the impact of the number of selected devices per round and the inactive devices

on the performance of EneA-FL. Finally, in Section 6.4.10 we study the flexibility

of EneA-FL over variations of the distribution of device types in the federation.

Experiments setup To test the proposed EneA-FL framework we implement

a federated learning simulation tool that takes into account the testbed results

obtained in Section 6.4 to emulate the deployment of containerised workers on

each of the seven selected devices. More in detail, we implement the proposed
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framework using PyTorch5 for the definition of models and their learning process

and rely on FedAvg [McMahan et al., 2017] as the aggregation algorithm during

the FL training process. Through all our experiments, we consider a federation

network composed of 100 different workers and for each worker we identify the

probability of it being one of the seven device types considered in Section 6.4.

We refer to the distribution of these probabilities as the distribution of device

types and, apart from the experiments in Section 6.4.10, we build the federation

using a uniform distribution of device types. In particular, since we consider 7

different type of devices – see Section 6.4.4 – we deploy a federation composed by

14.29% of each device type. Thus we obtain a setup where each device type covers

one-seventh of the whole federation hardware.

The energy consumption and execution time of the local training process of

each device is emulated by the worker belonging to the federation to keep track of

the total energy consumption and total execution time. More in detail, for each

training step of the worker local training process, we perform a sampling from

the normal distribution of the energy consumption and time requirements that

characterise the device type at hand. The characteristic normal distribution is ex-

tracted from the testbed measurements obtained in Section 6.4, thus representing

faithfully the real-world energy consumption and latency of the selected devices.

The implemented framework also allows for a flexible definition of several addi-

tional options, such as device type distribution, device lifetime, data distribution,

QoS target definition and many more. The device lifetime is modelled as an ex-

ponential random variable that models the number of available federation rounds

and is used in Section 6.4.9 to assess the impact of device discharge on EneA-FL.

Meanwhile, QoS targets definition supports various types of resource budgets – in-

vestigated in Section 6.4.7 – and target performance. Finally, if not diversely spec-

ified, throughout our experiments we consider uniformly distributed data samples

over all workers belonging to the federation. For maximum results reproducibility,

the developed code and documentation for all the experiments presented in this

article are published on a dedicated EneA-FL GitHub repository6.

5https://pytorch.org
6https://github.com/AndAgio/EneA-FL
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6.4.6 Ablation study

EneA-FL relies on its Magister component for optimisation of the device selection

process throughout federation learning. In this context, the energy-aware policy

defined in Section 6.3.2 takes into account a mixture of energy consumption, la-

tency and achieved performance to promote energy-effective workers. To balance

these three components EneA-FL relies on three hyperparameters to select the

devices of each federation round, namely: (i) α, balancing energy consumed and

execution time; (ii) β, to account for local models’ accuracy; and (iii) k, adding

a randomness component to the selection process. Given the relevance of these

hyperparameters in EneA-FL we here propose an ablation study aiming to identify

the best Magister setup.

α and β values

The energy effective metric proposed in Equation (6.3) relies on α and β hyperpa-

rameters to weigh the relevance of minimal power consumption, training execution

time and achieved accuracy. By leveraging the values of α and β, EneA-FL can

balance the trade-off between energy consumption over training execution time.

Therefore, it represents a significant aspect of the identification of the best α

and β setup for running EneA-FL. Indeed, setting these hyperparameters is not a

straightforward process, as α is the component setting a trade-off between energy

and time, while β represents the parameter tuning the relevance of the achieved

accuracy. More in detail, higher values of α define an optimisation process where

the energy is considered more valuable than the execution time of the learning

step, thus giving higher priority to very efficient – possibly slow – devices. Mean-

while, smaller α prioritises raw optimisation speed over energy efficiency, valuing

faster devices that may consume more energy. On the other hand, β represents

ideally the relevance given to the reached accuracy of local models. Therefore,

higher β allows Magister to promote devices whose model reaches higher accuracy

improvements, without regarding their energy consumption and latency. Mean-

while, smaller β allows Magister to focus solely on optimisation energy and latency,

disregarding the reached accuracy.

To analyse the impact of α and β values on the federation optimisation we
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Figure 6.6: Impact of (α, β) values on energy consumption (a), time execution
(b) and rounds required to converge (c) on MNIST dataset.

let their values vary between 0 and 1, and 0 and 100 respectively. We perform

10 federation optimisation experiments for each α and β combination, setting the

number of federation rounds to 30. Training is performed over the MNIST dataset.

For each experiment, we keep track of the (i) overall energy consumption; (ii) total

execution time; and (iii) number of rounds required to converge. Here, convergence

is considered to be achieved when the global model achieves 97% of accuracy on

the test set.

Figure 6.6 shows the average values for energy, time and convergence achieved

over the 10 experiments of each α and β setup. More in detail, Figure 6.6a presents

the average energy consumption. Here, it is possible to notice that smaller α

values lead to higher energy consumption, while higher α leads to smaller energy

values, confirming the goodness of the proposed policy. Interestingly, selecting

α = 0 can lead to almost doubled energy consumption over α = 1. Meanwhile,

concerning β, it is possible to notice a slight increment of consumed energy for

higher β values. This behaviour is expected, as higher β values force Magister to

promote devices depending mostly on their models’ reached accuracy, discarding

their energy efficiency.

Figure 6.6b presents the average time execution. Here, it is possible to no-

tice that smaller α values lead to smaller latency, while higher α leads to time

increments. Meanwhile, β’s impact is less evident, probably due to the fact that

selecting devices with high accuracy improvements usually leads to improved con-

vergence time. Differently from the energy analysis, the difference in execution

time is confined as it is possible to save at most only a couple of hours when

CHAPTER 6. RESOURCE MANAGEMENT IN FL 115



6.4. EXPERIMENTS

Approach Energy Time Rounds

Standard FL 4.6 MJ 28.5 h 9.7
OORT 1.8 MJ 13.2 h 11.2

OORTv2 2.2 MJ 13.8 h 13.8
EneA-FL worst 2.1 MJ 14.1 h 10.7
EneA-FL best 1.3 MJ 12.7 h 10.8

Table 6.3: Comparison of energy consumption, time execution and rounds required
to converge on MNIST dataset between different worker selection approaches and
the best and worst (α, β) EneA-FL setups. The EneA-FL best setup is obtained
for α = 0.6, β = 40, while its worst setup is obtained for α = 0 and β = 100. For
each metric, we highlight in green the best approach.

selecting properly α and β.

Figure 6.6c presents the average number of rounds required to converge to 97%

of accuracy. Here, it is possible to notice that α and β values do not impact clearly

the convergence time. Indeed, convergence time is mostly influenced by the quality

of the data that each device holds rather than its efficiency.

Given the results of Figure 6.6, it is possible to select the best α and β for EneA-

FL. Throughout our experiments, we select α = 0.6 and β = 40 to be the best

EneA-FL setup, as it allows to consume only 1.3 MJ of energy, while requiring 12.7

hours to complete 30 federation rounds and converge in 10.8 steps. Finally, these

results show that Magister can define hybrid systems that adapt to the scenario

at hand depending on the chosen α and β values. Indeed, in a federation setup

where energy represents the most relevant component we suggest selecting high

α and small β values. Meanwhile, when the latency is the most valuable aspect

we suggest selecting small α. Finally, when both energy and latency are relevant,

Magister can reach improved efficiency by selecting a middle ground between the

previous two options.

Having obtained the best α and β setup, we compare our proposed solution

with the standard FL setup – which relies on random node selection – and the

OORT [Lai et al., 2021] and its extended version (OORTv2) [Arouj and Abdel-

moniem, 2022] in Table 6.3. For a fair comparison, we compare both the best

and worst Magister setups. The best setup is achieved for α = 0.6 and β = 40,
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Figure 6.7: Impact of k values on energy consumption (a), time execution (b)
and rounds required to converge (c) on MNIST dataset.

while the worst counterpart is obtained by selecting α = 0 and β = 100. The

results highlight that Magister offers a favourable solution for minimising energy

consumption and execution time against all baselines. Meanwhile, Magister does

not impact the convergence time—i.e., the number of rounds required to reach 97%

of accuracy. The best Magister setup consumes 3.5 times less energy than its stan-

dard FL counterpart and 30% less energy than OORT which represents the best

baseline. These findings highlight the significant advantages of the Magister ap-

proach, offering substantial energy savings and improved training efficiency when

compared to standard FL, making it a highly promising and effective solution for

FL scenarios.

k values

As expressed in Equation (6.7), Magister relies on a hybrid worker selection strat-

egy, where a portion of workers is selected from the best workers of previous rounds

and the remaining portion is picked randomly from the devices available. The ran-

dom component is used to allow Magister to explore the effectiveness of federation

devices throughout the federation history and avoid getting stuck in selecting al-

ways the same devices. The balance between the number of workers selected via

the effectiveness metric and the number of randomly selected workers is given by

the parameter k in Equation (6.7). To assess the relevance of k we compare EneA-

FL against a standard FL setup, while varying k, aiming at identifying the best k

for deploying EneA-FL.

CHAPTER 6. RESOURCE MANAGEMENT IN FL 117



6.4. EXPERIMENTS

Figure 6.7 shows the results for the ablation study on the values of k. We let

k vary between 0 and 1. Here, k = 0 represents the setup where EneA-FL and

random node selection are equivalent, as all devices are selected randomly also

in EneA-FL. Meanwhile, k = 1 represents the EneA-FL setup where workers are

only selected based on their energy effectiveness metric and no worker is selected

randomly. Figures 6.7a to 6.7c highlight that higher values of k allow the federation

to reach smaller energy consumption and execution time. Meanwhile, a similar

convergence time is achieved for all k setups. Interestingly, the results show a

high level of energy and time savings even for small values of k—e.g., k = 0.5.

As a result, Magister shows that it is possible to save a high amount of energy

and time even when a large part of the workers are selected randomly. From the

obtained results, it is possible to identify the best k value, that we select to be

equal to 0.8. We avoid considering k = 1 as we want to allow Magister to explore

all federation devices over its history. In its best setup, Magister reaches 3 times

less energy consumption, while requiring almost 2 times less time to complete the

30 federation rounds.

6.4.7 Resources Budget

In real-world scenarios, one desideratum of distributed optimisation scenarios such

as FL is to identify efficient processes over limited resources budgets. In particular,

we here consider scenarios where the federation network has a pre-defined budget

of energy or time that can be invested into the FL optimisation. Indeed, when

considering FL setups in the real world, it is common to impose an upper bound

on the time that the FL can take for optimising the model at hand. Similar

requirements can be expressed for the total amount of energy that the FL process

should take to reduce costs and have a restricted environmental impact. Therefore,

in order to assess the performance of EneA-FL over limited resource budgets, we

compare its performance – i.e., accuracy – against the available baselines when

we set energy and time limits (budgets) over the MNIST, Sent140 and N-BaIoT

datasets.

Table 6.4 shows the average performance – over 10 iterations – achieved by

the federation when training using the given energy budget. The EneA-FL pol-
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Figure 6.8: Selected devices distribution over rounds for various client selection
policies when federation is optimised given an energy budget of 1 MJ on the

MNIST dataset.

Dataset Budget Standard FL OORT OORTv2 EneA-FL

MNIST 1 MJ 95.3% 95.4% 95.7% 97.4%
Sent140 500 KJ 72.1% 72.3% 72.3% 72.5%
NBIoT 50 KJ 87.8% 87.5% 86.7% 89.3%

Table 6.4: Average accuracy on each dataset for EneA-FL against selected base-
lines when the federation is optimised given an energy budget. For each dataset,
we highlight in green the best approach.

icy vastly outperforms the selected baselines, achieving higher accuracy over all

datasets and showing a statistically significant improvement over the experiment

iterations. This is due to the higher longevity achieved by the federation when

implementing the energy management policy—i.e., Magister. Indeed, the number

of optimisation rounds that the federation can survive with the given energy bud-

get is on average more than doubled with respect to the standard FL policy. This

behaviour can be seen in Figure 6.8, where we plot the average selected devices

distribution over federation rounds on the MNIST training. On the x axis it is

possible to notice that the baselines survive at most 8 federation rounds, while

Dataset Budget Standard FL OORT OORTv2 EneA-FL

MNIST 8h 96.4% 96.2% 96.1% 97.0%
Sent140 4h 72.3% 72.5% 72.4% 72.9%
NBIoT 10m 87.9% 88.0% 87.8% 89.9%

Table 6.5: Average accuracy on each dataset for EneA-FL against selected base-
lines when the federation is optimised given a time budget. For each dataset, we
highlight in green the best approach.
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EneA-FL reaches up to 17 optimisation rounds.

To assess the effectiveness of our policy in selecting the most efficient devices,

we study the effect of the Magister policy on the device selection distribution.

We plot the average selected devices distribution over the optimisation rounds in

Figure 6.8—one box for each client selection policy. The size and the colour of

each blob represent the probability of each device type being selected for a specific

round of the federation. Interestingly, all baselines behave similarly to the random

context, where every device has the same uniformly distributed probability of be-

ing selected. Meanwhile, for EneA-FL the probability of selecting the Jetson Nano

with GPU and the Jetson Xavier with GPU increases over the number of rounds,

reaching the point where these devices represent almost the totality of devices

selected for the last time stages of the federation. Similarly, the probability of se-

lecting very slow and energy-hungry devices such as the Raspberry Pi v4 decreases

over time, enabling efficiency improvements of FL. This behaviour highlights the

quality of our policy for selecting efficient devices over their counterparts.

Table 6.5 shows the performance improvements obtained by EneA-FL against

the available worker selection approaches when time budgets are considered.

6.4.8 Number of Clients

Given the Magister focus on client selection, we here analyse the impact of the

number of selected devices per round on Magister effectiveness. The number of

workers selected at each federation step represents a fundamental parameter of FL

settings, as it defines the broadness of data gathered at each optimisation step.

Selecting a higher amount of workers for each round leads to a higher number

of updates for each round, but also to increased energy and latency. Therefore,

identifying smart workers selection policies such as Magister represents a key aspect

to efficiently optimise the federation while avoiding selecting a high number of

clients for each round.

To study the impact of the number of clients per round on the federation, we

consider selecting n workers per round and let n vary between 10 and 80. Overall

the federation consists of 100 devices, therefore n ranges from selecting only a

small portion of the federation workers to almost selecting them all. We perform
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Figure 6.9: Impact of the number of selected clients per round on energy
consumption (a), and time execution (b) on MNIST dataset. Here, we consider

training the federation to reach a target accuracy of 97%.

10 federation optimisation experiments for each n, letting the federation converge

to 97% accuracy when the optimisation process is stopped. Training is performed

over the MNIST dataset and for each experiment we keep track of the (i) overall

energy consumption; and (ii) total execution time.

Figure 6.9 shows the results of our experiments. More in detail, Figure 6.9a

presents the results concerning energy consumption. Here, it is relevant to notice

how Magister outperforms all selection baselines for almost every value of n. For

small n values – e.g. n = 30, n = 40 – EneA-FL requires almost 30% less amount

of energy to converge to the same accuracy level. Meanwhile, for higher ns the

difference is less evident. As the number of workers selected increases, Magis-

ter ends up selecting both efficient and inefficient devices – since the number of

efficient devices is limited –, therefore decreasing the advantage of smart device

selection. Concerning the total execution time (Figure 6.9b), EneA-FL seems to

perform similarly to the available client selection baselines, while outperforming

the standard FL setup.
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6.4.9 Device Discharge

One of the issues to face when dealing with FL scenarios in edge and IoT domains

is linked with the lifetime span of edge devices. In particular, in real-world setups,

it is common for the edge devices to be battery-powered. Therefore, the devices

belonging to the federation could suffer discharging issues, leaving the optimisation

process unattended. To study if – and to what extent – the proposed energy

management policy can help in these scenarios, we here study the effect of device

discharging on EneA-FL and compare it to the standard FL scenario.

We model the discharging process of devices as an exponentially distributed

event over the federation rounds that a device can complete and set its average

value to be equal to a random value between 1 and 5. Therefore, in this exper-

imental setup, each device belonging to the federation is capable of completing

a variable number of federation rounds, after which it discharges completely and

stops sending updates if selected. To account for the discharge process, the pro-

posed energy management mechanism relies on a handicap h value that is assigned

to the energy effectiveness score of each worker whenever it does not provide an

update to the aggregator (recall from Section 6.3.2). In our experiments, we set

h = 5 and measure the average number of discharged selected workers for each

round. The measurements are obtained over ten iterations of the experiments to

account for process variability.

Figure 6.10 shows the percentage of dead selected devices over the federation

round, comparing EneA-FL with the selected baselines. As expected, at first the

number of discharged devices is zero, as it is considered impossible for devices to

join the federation when already dead. The number of selected devices that can

not produce updates increases over the first few steps of the federation process for

both approaches, as it is at this point that a few devices start to drain their bat-

teries. However, after a few rounds, the behaviours of EneA-FL and the baselines

diverge. Indeed, all baselines keep selecting devices unable to produce updates,

reaching peaks of up to 80% of selected workers with drained batteries. Mean-

while, the energy management approach kicks in for EneA-FL, showing a stable

percentage of dead devices selection. EneA-FL allows for this percentage to stay

always below 40%. This is thanks to the handicap given to devices that do not
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produce any update. Moreover, it is also possible to notice that the energy man-

agement mechanism allows the federation to converge more rapidly, as the updates

are more consistently produced by workers. Finally, it is relevant to notice that

although EneA-FL assigns handicap to inactive devices, it is still impossible to

avoid completely selecting drained devices. Indeed, part of the EneA-FL selection

process is random. Moreover, it is also favourable to avoid disregarding completely

the drained devices, as they could become available once again if charged during

the federation optimisation process.

6.4.10 Impact of Device Type Heterogeneity

When considering real-world scenarios where FL frameworks can be deployed, one

commonly changing aspect is represented by the heterogeneity of device types be-

longing to the federation, along with their distribution. In this context, we refer

to device type as to their hardware component, thus indicating the seven different

devices selected for our experimentation. The distribution of these devices may

vary radically depending on the scenario at hand and this variability can impact

greatly the performance of the federation process. Therefore, it is required to anal-
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Figure 6.10: Percentage of selected dead devices for each round of optimisation.
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yse the flexibility of a given FL framework towards the different setups of device

distributions that can be encountered. Therefore, we here consider investigating

how the device distribution can impact the effectiveness of the proposed EneA-FL

framework.

To study the impact of devices distribution on EneA-FL we consider running

different experiments where the distribution of device types differ vastly. More in

detail, we focus on the devices that are found to be more efficient (see Figure 6.5)

and define three experimental setups where the probability of the federation con-

taining those devices varies. In particular, we focus on the Jetson Nano with GPU

and Jetson Xavier with GPU devices. We then define three experimental setups,

namely:

• Likely setup, where Jetson Nano with GPU and Jetson Xavier with GPU are

more likely to appear in the federation. Here, the probability of a random

device being one of these two types is equal to 0.25.

• Uniform setup, where Jetson Nano with GPU and Jetson Xavier with GPU

are equally likely to appear in the federation. Here, the probability of a

random device being one of these two types is 0.14, similarly to the uniform

device type distribution scenario considered so far.

• Rare setup, where Jetson Nano with GPU and Jetson Xavier with GPU are

less likely to appear in the federation. Here, the probability of a random

device being one of these two types is equal to 0.05.

Finally, we study whether EneA-FL and the standard FL selection policy can

select efficient devices. We focus solely on the standard FL baseline, as previous

experiments highlight the similarity between available client selection policies and

standard FL in terms of the distribution of selected devices—see Figure 6.8.

Figure 6.11 shows the distribution of the selected device types over the federa-

tion rounds for the standard FL scenario. Similarly to Figure 6.8, the size and the

colour of each blob represent the probability of each device type being selected for

a specific round of the federation. As expected, for the random selection policy,

the distribution of the selected devices follows the distribution of their deployment.

Here, the probability of an efficient device to be selected is equal throughout the
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Figure 6.11: Distribution of selected devices for the standard FL policy over
rounds when more efficient devices (Jetson Nano with GPU and Jetson Xavier
with GPU) are more likely (a), equally likely (b) or least likely to be selected.
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Figure 6.12: Distribution of selected devices for the EneA-FL policy over rounds
when more efficient devices (Jetson Nano with GPU and Jetson Xavier with
GPU) are more likely (a), equally likely (b) or least likely (c) to be selected.

optimisation, being higher for the likely setup (Figure 6.11a) and smaller for the

rare setup (Figure 6.11c).

Figure 6.12 shows the same distribution study for the EneA-FL setup. Here, it

is possible to notice that the probability of efficient devices being selected increases

over time, independently of their likelihood of being in the federation or not.

Indeed, in the likely setup (Figure 6.12a) the Jetson Nano with GPU and Jetson

Xavier with GPU end up being almost the only devices selected from the federation

mechanism. Even in the rare setup (Figure 6.12c) the Jetson Nano with GPU and

Jetson Xavier with GPU end up being frequently selected devices, although there

are only a handful of those devices in the federation. Moreover, in the rare setup

it is relevant to notice that the other type of device popularly selected ends up
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being the Jetson Orin with GPU which represents the third most efficient solution

according to our measurements. Finally, in all setups, it is possible to see that the

least efficient devices – e.g., Jetson Orin without GPU and Jetson Nano without

GPU – are also the least popular selections, independently of their proportion.

The results show the superiority of EneA-FL over the standard FL setups in

terms of flexibility against device type distribution. Indeed, EneA-FL is capable of

selecting efficient devices even when such devices represent a very small component

of the federation devices.

Chapter Synopsis

In this chapter, we tackle the frequently overlooked issue of resource management

in FL over constrained devices. We introduce EneA-FL, a novel serverless comput-

ing framework for FL in fog and constrained environments. In these environments,

the resource management of devices participating in the learning process represents

a fundamental component to take into account, as possible discharging issues and

high-update latency can hinder the overall optimisation process. To tackle this

issue, EneA-FL presents a promising solution to enhance worker selection in FL

applications focusing on energy awareness, latency reduction and performance im-

provements. To achieve its goal EneA-FL relies on three novel components, namely

(i) Energon – a novel energy monitoring tool –; (ii) Furcifer – an ad-hoc orches-

trator –; and (iii) Magister—an hybrid energy management process. EneA-FL’s

unique hybrid composition and energy-conscious approach relies on a reputation

system to balance energy, latency, and performance of each device, by selecting

the most appropriate for each learning step. Extensive experiments show that

EneA-FL yields remarkable results, demonstrating a 30% to 60% reduction in en-

ergy consumption, and faster convergence of models to the target accuracy when

compared to available client selection policies.

126 CHAPTER 6. RESOURCE MANAGEMENT IN FL



Part II

Efficientisation via

Neuro-Symbolic Integration

The optimist sees the donut, the

pessimist sees the hole.

Oscar Wilde
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Chapter 7

Background on Symbolic and

Sub-Symbolic Integration

This chapter contains contributions from [Ciatto et al., 2024].

In the ML and DL context, learning is automated via data-driven algorithms,

often implying numeric processing of data—which in turn enables the detection of

fuzzy patterns or statistically-relevant regularities in the data, that algorithms can

learn to recognise. This promotes a data-driven approach to the engineering of in-

telligent computational systems where hard-to-code tasks are (semi-)automatically

learned from data rather than manually programmed by human developers. The

data-driven nature of ML and DL approaches is fundamental to support the au-

tomatic acquisition of otherwise hard-to-formalise behaviours for computational

systems. However, flexibility comes at the cost of poorly-interpretable solutions,

as state-of-the-art sub-symbolic predictors – such as neural networks – are often

exploited behind the scenes. Recent research efforts have focused on novel AI

paradigms aiming at blending the subsymbolic perspective of ML and DL agents

with symbolic AI solutions focusing on high-level symbolic (human-readable) rep-

resentations of problems, logic, and search: this is where neuro-symbolic integration

systems (NeSy) stand today. NeSy integrate neural (subsymbolic) and symbolic

AI solutions aiming at suitably complementing their strengths and weaknesses, in-

troducing reasoning and cognitive capabilities (the symbolic way) while preserving

fast-learning capabilities (the subsymbolic way).
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While representing a popular target for attaining more interpretable AI sys-

tems, NeSy can be leveraged as a possible helping tool to tackle the NN efficienti-

zation task. NeSy systems allow to consider an a-priori knowledge that should not

be extracted and learnt from the data used to optimize the sub-symbolic predictor,

thus reducing the learning burden. Accordingly, in this chapter, we focus on the

set of NeSy approaches which can be leveraged as helping tools for tackling the

efficientization of NNs task. We do so by promoting two complementary activities,

namely symbolic knowledge extraction (SKE) and injection (SKI) from and into

sub-symbolic predictors. In both cases, “symbolic” refers to the way knowledge is

represented. In particular, we consider as symbolic any language that is intelligible

and interpretable for both human beings and computers. This includes a number

of logic formalisms, and excludes the fixed-sized tensors of numbers commonly

exploited in sub-symbolic ML.

Intuitively, SKE is the process of distilling the knowledge a sub-symbolic pre-

dictor has grasped from data into symbolic form. Generally speaking, SKE enables

the inspection of the inner operation of an opaque predictor constructing an in-

terpretable replacement (a.k.a. surrogate model) for the original predictor. In this

context, the extracted surrogate model complexity can be limited to obtain a

more efficient and resource-friendly version of the original sub-symbolic predictor.

Moreover, upon further inspection, the symbolic surrogate model can be pruned

removing its non-relevant portions, enabling efficiency fine-tuning otherwise un-

achievable leveraging only the original sub-symbolic predictor.

Conversely, SKI is the process of letting a sub-symbolic predictor follow the

symbolic knowledge possibly encoded by its human designers. It enables a higher

degree of control over a sub-symbolic predictor and its behaviour, by constraining

it with human-like common-sense—suitably encoded into symbolic form. In this

context, the injection process can remove part of the learning burden from the

data-driven nature of NN models, as the available symbolic knowledge contains

the information readily available. Therefore, SKI can reduce the learning time

by providing straight away the very knowledge that predictors would otherwise

struggle to learn by processing huge amounts of data. Moreover, SKI mitigates

the issues arising from the lack of sufficient amounts of training data – as under-

represented situations can be suitably represented in symbols –, thus enabling to
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learn from fewer data.

Apart from insights, notions such as SKE and SKI have rarely been described

in general terms into the scientific literature—despite the multitude of methods

falling under their umbrellas. Hence, the aim of this chapter is to provide general

definitions and descriptions of these topics, other than providing durable tax-

onomies for categorising present and future SKE/SKI methods. Arguably, these

contributions should take into account the widest possible portion of scientific

literature, so as to avoid subjectivity. Accordingly, we propose a systematic liter-

ature review following the three-folded purpose of (i) collecting and categorising

existing methods for SKE and SKI into clear taxonomies, (ii) providing a wide

overview of the state of the art and technology, and (iii) detecting open research

challenges and opportunities. In particular, we analyse 132 methods for SKE and

117 methods for SKI, classifying them according to their purpose, operation, ex-

pected input/output data and predictor types. For each method, we also probe the

existence/lack of software implementations. We elicit a meta-model for SKE (resp.

SKI) according to how existing and future extraction (resp. injection) methods can

be categorised and described.

7.1 Background on Symbolic Knowledge and Com-

putational Logic

Symbolic KR has always been regarded as a key issue since the early days of AI, as

no intelligence can exist without knowledge, and no computation can occur in lack

of representation. When compared to arrays of numbers, symbolic KR is far more

flexible and expressive, and, in particular, more intelligible—both machine- and

human-interpretable. Historically, most KR formalisms and technologies have been

designed on top of computational logic [Lloyd, 1990], that is, the exploitation of for-

mal logic in computer science. Consider, for instance, deductive databases [Green

and Raphael, 1968], description logics [Baader, 2003], ontologies [Cimiano, 2006],

Horn logic [McNulty, 1977], higher-order logic [Van Benthem and Doets, 2001],

just to name a few.
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Formal Logics

Many kinds of logic-based KR systems have been proposed over the years, mostly

relying on first-order logic (FOL) – either by restricting or extending it –, e.g.,

on description logics and modal logics, which have been used to represent, for

instance, terminological knowledge and time-dependent or subjective knowledge.

Here, we briefly recall the state of the art of FOL and its most relevant subsets.

First-order logic FOL is a general-purpose logic which can be used to represent

knowledge symbolically, in a very flexible way. More precisely, it allows both

human and computational agents to express (i.e., write) the properties of – and

the relations among – a set of entities constituting the domain of the discourse,

via one or more formulæ—and, possibly, to reason over such formulæ by drawing

inferences. There, the domain of the discourse D is the set of all relevant entities

which should be represented in FOL to be amenable of formal treatment, in a

particular scenario.

Informally, the syntax for the general FOL formula is defined over the assump-

tion that there exist: (i) a set of constant or function symbols, (ii) a set of predicate

symbols, and (iii) a set of variables. Under such assumption, a FOL formula is

any expression composed of a list of quantified variables, followed by a number of

literals, i.e., predicates that may or may not be prefixed by the negation operator

(¬). Literals are commonly combined into expressions via logic connectives, such

as conjunction (∧), disjunction (∨), implication (→), or equivalence (↔).

Each predicate consists of a predicate symbol, possibly applied to one or more

terms. Terms may be of three sorts, namely constants, functions, or variables.

Constants represent entities from the domain of the discourse. In particular, each

constant references a different entity. Functions are combinations of one or more

entities via a function symbol. Similarly to predicates, functions may carry one or

more terms. Being containers of terms, functions enable the creation of arbitrarily

complex data structures combining several elementary terms into composite ones.

Such kind of composability by recursion is what makes the aforementioned defini-

tion of “symbolic” valid for FOL. Finally, variables are placeholders for unknown

terms—i.e., for either individual or groups of entities.
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Predicates and terms are very flexible tools to represent knowledge. While

terms can be used to represent or reference either entities or groups of entities

from the domain of the discourse, predicates can be used to represent relations

among entities, or the properties of each single entity.

Intensional vs. extensional In logic, one may define concepts – i.e., describe

data – either extensionally or intensionally. Extensional definitions are direct rep-

resentations of data. In the particular case of FOL, this implies defining a relation

or set by explicitly mentioning the entities it involves. Conversely, intensional def-

initions are indirect representations of data. In the particular case of FOL, this

implies defining a relation or set by describing its elements via other relations or

sets. Recursive intensional predicates are very expressive and powerful, as they

enable the description of infinite sets via a finite (and commonly small) amount of

formulæ—and this is one of the key benefits of FOL as a means for KR.

Expressiveness vs. Tractability: Notable Subsets of FOL

Tractability deals with the theoretical questions: “can a logic reasoner compute

whether a logic formula is true (or not) in reasonable time?”. Such aspects are

deeply entangled with the particular reasoner of choice. Depending on which

and how many features a logic includes, it may be more or less expressive. The

higher the expressiveness, the more the complexity of the problems which may

be represented via logic and processed via inference increases. This opens to the

possibility, for the solver, to meet queries which cannot be answered in practical

time, or by relying upon a limited amount of memory—or just cannot get an answer

at all. Roughly speaking, more expressive logic languages make it easier for human

beings to describe a particular domain – usually, requiring them to write less and

more concise clauses –, at the expense of a higher difficulty for software agents

to draw inferences autonomously—because of computational tractability. This

is a well-understood phenomenon in both computer science and computational

logic [Levesque and Brachman, 1987, Brachman and Levesque, 2004], often referred

to as the expressiveness/tractability trade-off.

FOL, in particular, is considered very expressive. Indeed, it comes with many

undecidable, semi-decidable, or simply intractable properties. Hence, several rel-
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evant subsets of FOL have been identified into the literature, often sacrificing

expressiveness for tractability. Major notions concerning these logics are recalled

below.

Horn logic Horn logic is a notable subset of FOL, characterised by a good

trade-off among theoretical expressiveness and practical tractability [Makowsky,

1987].

Horn logic is designed around the notion of Horn clause [Horn, 1951]. Horn

clauses are FOL formulæ having no quantifiers, and consisting of a disjunction

of predicates, where only at most one literal is non-negated—or, equivalently, an

implication having a single predicate as post-condition and a conjunction of pred-

icates as pre-condition: h← b1, . . . , bn. There, ← denotes logic implication from

right to left, commas denote logic conjunction, and all bi, as well as h, are pred-

icates of arbitrary arity, possibly carrying FOL terms of any sort—i.e., variables,

constants, or functions. Horn clauses are thus if-then rules written in reverse order,

and only supporting conjunctions of predicates as pre-conditions.

Essentially, Horn logic is a very restricted subset of FOL where: (i) formulæ

are reduced to clauses, as they can only contain predicates, conjunctions, and a

single implication operator, therefore (ii) operators such as ∨, ↔, or ¬ cannot be

used, (iii) variables are implicitly quantified, and (iv) terms work as in FOL.

Datalog Datalog is a restricted subset of FOL [Ajtai and Gurevich, 1994], rep-

resenting knowledge via function-free Horn clauses—defined in the previous para-

graph. So, essentially, Datalog is a subset of Horn logic where structured terms

(i.e., recursive data structures) are forbidden. This is a direct consequence of the

lack of function symbols.

Similarly to Horn logic, Datalogs’s knowledge bases consist of sets of function-

free Horn clauses.

Description logics (DL) Description logics are a family of subsets of FOL,

generally involving some or no quantifiers, no structured terms, and no n-ary

predicates such that n ≥ 3. In other words, description logics represent knowledge

by only leveraging on constants and variables, other than atomic, unary, and binary
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predicates.

Differences among specific variants of DL lay in which and how many logic

connectives are supported, other than, of course, whether negation is supported

or not. The wide variety of DL is due to the well known expressiveness/tractabil-

ity trade-off. However, depending on the particular situation at hand, one may

either prefer a more expressive (≈ feature rich) DL variant at the price of a re-

duced tractability (or even decidability) of the algorithms aimed at manipulating

knowledge represented through that DL, or vice versa.

Regardless of the particular DL variant of choice, it is common practice in

the scope of DL to call (i) constant terms, as “individuals” – as each constant

references a single entity from a given domain –, (ii) unary predicates, e.g., as

either “classes” or “concepts” – as each predicate groups a set of individuals, i.e.,

all those individuals for which the predicate is true –, (iii) binary predicates, e.g.,

as either “properties” or “roles”—as each predicate relates two sets of individuals.

Following such a nomenclature, any piece of knowledge can be represented in DL

by tagging each relevant entity with some constant (e.g., an URL), and by defining

concepts and properties accordingly.

Notably, binary predicates are of particular interest as they support connecting

couples of entities altogether. This is commonly achieved via subject-predicate-

object triplets, i.e., ground binary predicates of the form ⟨a f b⟩ – or, alternatively,

f (a, b) –, where a is the subject, f is the predicate, and b is the object. Such

triplets allow users to extensionally describe knowledge in a readable, machine-

interpretable, and tractable way.

Collections of triplets constitute the so-called knowledge graphs (KG), i.e., di-

rected graphs where vertices represent individuals, while arcs represent the binary

properties connecting these individuals. These may explicitly or implicitly instan-

tiate a particular ontology, i.e., a formal description of classes characterising a given

domain, and of their relations (inclusion, exclusion, intersection, equivalence, etc.),

as well as the properties they must (or must not) include.

Propositional logic Propositional logic is a very restricted subset of FOL,

where quantifiers, terms, and non-atomic predicates are missing. Hence, proposi-

tional formulæ simply consist of expressions involving one or many 0-ary predicates
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– i.e., propositions –, possibly interconnected by ordinary logic connectives. There,

each proposition may be interpreted as a Boolean variable – which can either be

true or false –, and the truth of formulæ can be computed as in the Boolean al-

gebra. So, for instance, a notable example of propositional formula could be as

follows: p ∧ ¬q → r where p may be the proposition “it is raining”, q may be the

proposition “there is a roof”, whereas r may be the proposition “the floor is wet”.

The expressiveness of propositional logic is far lower than the one of FOL. For

instance, because of the lack of quantifiers, each relevant aspect/event should be

explicitly modelled as a proposition. Furthermore, because of the lack of terms,

entities from a given domain cannot be explicitly referenced. Such lack of expres-

siveness, however, implies computing the satisfiability of a propositional formula

is a decidable problem—which may be a desirable property in some application

scenarios.

Despite propositional logic may appear too trivial to handle common decision

tasks where non-binary data is involved, it turns out a number of apparently com-

plex situations can indeed be reduced to a propositional setting. This is the case

for instance of any expression involving numeric variables or constants, arithmeti-

cal comparison operators, logic connectives, and nothing more than that. In fact,

formulæ containing comparisons among variables or constants (or among each

others) can be reduced to propositional logic by mapping each comparison into a

proposition.

7.2 Definitions & Categorization Methodology

The goal of this chapter is to categorise the many SKE and SKI algorithms pro-

posed into the literature so far, hence shaping a clear picture of what SKE and

SKI mean today.

Following this purpose, we (i) start from broad and intuitive definitions of both

SKE and SKI (provided in Section 7.2.1); we then (ii) define a number of research

questions aimed at delving into the details of actual SKE and SKI methods; along

this line, we (iii) explore the literature looking for contributions matching the

broad definitions from step (i) (following a strategy described in Section 7.2.2).

Finally, by analysing such contributions, we (iv) provide answers for the research
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questions from step (ii) (in Section 7.3), and, in doing so, we (v) synthesise general,

bottom-up taxonomies for both SKE and SKI (in Sections 7.3.1 and 7.3.2).

7.2.1 Definitions for Symbolic Knowledge Extraction and

Injection

Here we provide broad definitions for both symbolic knowledge extraction and

injection, following the purpose of drawing a line among what methods, algorithms,

and technologies from the literature should be considered related to either SKE or

SKI, and what should not. Notably, we tune our definitions so as to comprehend

and generalise the many methods and algorithms surveyed in this chapter and

considered in this thesis. Indeed, looking for a wider degree of generality, our

definitions commit to no particular form of symbolic knowledge, nor sub-symbolic

predictor—despite many surveyed techniques come with commitments of that sort.

Hence, in what follows we write “symbolic knowledge” meaning “any chunk of

intelligible information expressed in any possibly sort of logic”, as well as any

sort of information which can be rewritten in logic form. Similarly, we write “sub-

symbolic predictor” meaning “any sort of supervised ML model which can be fitted

over numeric data to eagerly solve classification or regression tasks”.

Extraction

Generally speaking, SKE serves the purpose of generating intelligible represen-

tations for the sub-symbolic knowledge an ML predictor has grasped from data

during learning.

Definition We define SKE as

any algorithmic procedure accepting trained sub-symbolic predictors as

input and producing symbolic knowledge as output, so that the extracted

knowledge reflects the behaviour of the predictor with high fidelity.

Notably, this definition emphasises a number of key aspects of SKE which are

worth to be described in further detail.
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First, SKE is modelled as a class of algorithms – hence finite-step recipes –

characterised by what they accept as input and what they produce as output.

As far as the inputs of SKE procedures are concerned, the only explicit require-

ment is on trained ML predictors. There is no constraint w.r.t. the nature of the

predictor itself, hence SKE procedures may be designed for any possible predictor

family, in principle. Yet, this requirement implies that the predictor’s training has

already occurred, and it has reached some satisfying performance w.r.t. the task it

has been trained for. Hence, in an ML workflow, SKE should occur after training

and validation were concluded.

As far as the outputs of SKE procedures are concerned, the only explicit re-

quirement is about the production of symbolic knowledge. “Symbolic” is here

intended, in a broader sense, as a synonym of “intelligible” (for the human be-

ing), hence admissible outcomes are logic formulæ as well as decision trees, or bare

human-readable text.

In any case, for an algorithm to be considered a valid SKE procedure, the

output knowledge should mirror the behaviour of the original predictor w.r.t. the

domain it was trained for, as much as possible. This involves some fidelity score

aimed at measuring how well the extracted knowledge mimics the predictor it

was extracted by, w.r.t. the domain and the task that predictor was trained for.

This, in turn, implies that the extracted knowledge should, in principle, act as a

predictor as well, thus being queryable as the original predictor would. Thus, for

instance, if the original predictor is an image classifier, the extracted knowledge

should let an intelligent agent classify images of the same sort, expecting the same

result. The agent may then be either computational (i.e., a software program)

or human, depending on whether the extracted knowledge is machine- or human-

interpretable. Notably, the exploitation of logic knowledge as the target of SKE is

of particular interest as it would enable both options.

Injection

Generally speaking, SKI serves a dual purpose w.r.t. to SKE. In particular, SKI

aims at letting an ML predictor keep some symbolic knowledge into account when

drawing predictions.
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Definition We define SKI as

any algorithmic procedure affecting how sub-symbolic predictors draw

their inferences in such a way that predictions are either computed as

a function of, or made consistent with, some given symbolic knowledge.

This definition emphasises a number of key aspects of SKI which are worth

to be described in further detail. Similarly to SKE, it is modelled as a class of

algorithms. Yet, dually w.r.t. extraction, SKI algorithms are procedures accepting

symbolic knowledge as input and producing ML predictors as output.

About the inputs of SKI procedures, the only explicit requirement is that

knowledge should be symbolic and user-provided—hence human-interpretable.

However, since any input knowledge should be algorithmically manipulated by

the SKI procedure, we elicit an implicit requirement here, constraining the input

knowledge to be machine-interpretable as well. This implies that some formal

language – e.g., some formal logic, or some decision tree – should be employed for

knowledge representation, while free text or natural language should be avoided.

Along this line, another implicit requirement is that the input knowledge should

be functionally analogous w.r.t. the predictors undergoing injection. In other

words, if a predictor aims at classifying customer profiles as either worthy or un-

worthy for credit, then the symbolic knowledge should encode decision procedures

to serve the exact same purpose, and observe the exact same information.

About the outcomes of SKI procedures, our definition identifies two relevant

situations—which are not necessarily mutually-exclusive. On the one side, SKI

procedures may enable sub-symbolic predictors to accept symbolic knowledge as

input. SKI procedures of this sort essentially consist of pre-processing algorithm

aimed at encoding symbolic knowledge in sub-symbolic form, hence enabling sub-

symbolic predictors to accept them as input. In this sense, SKI procedures of

this sort enable sub-symbolic predictors to (learn how to) compute predictions as

functions of the symbolic knowledge they were fed with—assuming it has been

conveniently converted into sub-symbolic form. On the other side, SKI procedures

may alter sub-symbolic predictors so that they draw predictions which are consis-

tent with the symbolic knowledge—according to some notion of consistency. SKI

procedures of this sort essentially affect either the structure or the training process
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of the sub-symbolic predictors they are applied to, in such a way that the predictor

must then keep the symbolic knowledge into account when drawing predictions.

In this sense, SKI procedures of this sort force sub-symbolic predictors to learn

not only from data but from symbolic knowledge as well.

In any case, regardless of their outcomes, SKI procedures fit the ML workflow

in its early phases, as they may affect both pre-processing and training.

Notably, consistency plays a pivotal role in SKI, dually w.r.t. what fidelity does

for SKE. Along this line, our definition involves some consistency score aimed at

measuring how well the predictor undergoing injection can take advantage from

the injected knowledge, w.r.t. the domain and the task that predictor was trained

for. So, for instance, if a knowledge base states that loans should be guaranteed

to people from a given minority – as long as annual income overcomes a given

threshold –, then any predictor undergoing injection of that knowledge base should

output predictions respecting that statement—or at least minimise violations w.r.t.

it.

7.2.2 Review Methodology

The overall review workflow is inspired by the goal question metric approach

by [Caldiera and Rombach, 1994]. In short, the workflow requires some clear

research goal(s) to be fixed, and then decomposed into a number of research

question the survey will then provide answers to. To produce such answers, the

workflow requires of course scientific papers to be selected, and analysed. To serve

this purpose, the workflow requires a pool of queries to be identified. Such queries

must be performed on most relevant bibliographic search engines (e.g., Google

Scholar, Scopus). Finally, the workflow requires the query results to be selected

(or excluded) for further analyses following a reproducible criterion. Any subse-

quent analysis is then devoted to answer the aforementioned research questions,

hence drawing useful classifications and general conclusions.

For the sake of reproducibility, in the remainder of this subsection we delve

into the details of how our review on symbolic knowledge extraction and injection

is conducted.

We start by defining three different research goals (G):
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G1 – “understanding which are the features of SKE algorithms”,

G2 – “understanding which are the features of SKI algorithms”.

G3 – “probing the current level of technological readiness of SKE/SKI technolo-

gies”.

Then, we break them down in the following research questions (RQ):

RQ1 (from G1) – “which sort of ML predictors can SKE be applied to?”

RQ2 (from G1) – “is there any requirement on the input data for SKE?”

RQ3 (from G1) – “which kind of SK can be extracted from ML predictors?”

RQ4 (from G1) – “for which kind of AI tasks can SKE be exploited?”

RQ5 (from G1) – “how does SKE work?”

RQ6 (from G2) – “which sorts of ML predictors can SKI be applied to?”

RQ7 (from G2) – “which kind of SK can be injected into ML predictors?”

RQ8 (from G2) – “for which kind of AI tasks can SKI be exploited?”

RQ9 (from G2) – “how does SKI work?”

RQ10 (from G3) – “which and how many SKE/SKI algorithms come with runnable

software implementations?”

Notice that research questions about SKE are analogous to those about SKI. In

both cases, research questions are devoted to clarify which kind of information can

SKE (resp. SKI) methods accept as input (resp. produce as output), how do they

work, which AI tasks they can be used for (e.g., regression, classification), and

which ML predictors they can be applied to (e.g., NN, SVM, etc.).

In order to answer the research questions above, we identify a number of queries

to be performed on widely-available bibliographic search engines. In detail, queries

involve the following keywords:
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• (‘rule extraction’ ∨ ‘knowledge extraction’) ∧ (‘neural networks’ ∨ ‘support

vector machines’)

• (‘pedagogical’ ∨ ‘decompositional’ ∨ ‘eclectic’) ∧ (‘rule extraction’ ∨ ‘knowl-

edge extraction’)

• ‘symbolic knowledge’ ∧ (‘deep learning’ ∨ ‘machine learning’)

• ‘embedding’ ∧ (‘knowledge graphs’ ∨ ‘logic rules’ ∨ ‘symbolic knowledge’)

• ‘neural’ ∧ ‘inductive logic programming’

As far as bibliographic search engines are concerned, we exploit Google Scholar1,

Scopus2, Springer Link3, ACM Digital Library4, and DBLP5.

For each search engine and query pair, we consider the first two pages of re-

sults. For each result, we inspect the title, abstract, and – in case of ambiguity

–, the introduction, while trying and classifying it according to three disjoint cir-

cumstances: (i) the paper is a primary work describing some SKE or SKI method

matching the broad definitions from 7.2.1, (ii) the paper is a secondary work sur-

veying some portion of literature overlapping SKE or SKI (or both), (iii) the paper

is unrelated w.r.t. to both SKE and SKI, hence it is not relevant for this chap-

ter. Notably, secondary works selected in step (ii) are valuable sources of primary

works, hence we recursively explored their bibliographies to further select other pri-

mary works. In particular, in this phase we leverage upon relevant secondary works

such as [Andrews et al., 1995, Besold et al., 2017, Calegari et al., 2020, Wang et al.,

2017, d’Avila Garcez et al., 2001, Guidotti et al., 2018, Hailesilassie, 2016, Huys-

mans et al., 2006b, von Rueden et al., 2021, Xie et al., 2019b, Zilke et al., 2016]—

which we acknowledge as noteworthy (even though less extensive) surveys in the

field of SKE or SKI.

We select 249 primary works, of which 132 works concern SKE, and 117 concern

SKI. We then analyse each primary work individually, in order to provide answers

1https://scholar.google.com
2https://www.scopus.com
3https://link.springer.com
4https://dl.acm.org
5https://dblp.uni-trier.de
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to the aforementioned research questions. While doing so, we construct bottom-up

taxonomies for both SKE and SKI.

Finally, we inspect each primary work for assessing its technological status. In

particular, we look for runnable software implementations corresponding to the

method described in the primary work. In case no software tool is clearly men-

tioned in the primary work, or if the software is not technically accessible (e.g.,

Web site or repository is private or non-reachable) at the time of writing this chap-

ter, then we consider the method as lacking software implementations. Otherwise,

we further distinguish among methods coming with reusable software libraries, and

methods coming with experimental code. In the first case, the software is ready

for re-use, either because it is published on public software repositories such as

PyPi, or because it is structured in such a way to let users exploit it for custom

purposes. Vice versa, if the software is tailored on the experiments mentioned in

the primary work, then we consider it experimental.

7.3 Categorization Results

This section summarises the results of our literature analysis. In particular, an-

swers for the research questions outlined in Section 7.2.2 are provided here.

Accordingly, we group research questions according to their main focus (SKE

or SKI), and we answer to each question individually—grouping answers when

convenient, for the sake of conciseness. Answers consist of brief statistical reports

showing the distribution of the surveyed SKE/SKI methods w.r.t. some dimension

of interest for either SKE or SKI. Interesting dimensions are presented on the fly, as

part of our answers. This is deliberate, since we select as ‘interesting dimension’

any relevant way of clustering the surveyed methods. In other words, we let

taxonomies emerge from the literature rather than super-imposing any particular

view of ours.

7.3.1 Symbolic Knowledge Extraction

By building upon secondary works, such as the work by [Calegari et al., 2020] and

the survey of [Andrews et al., 1995], we identify three relevant dimensions by which
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SKE methods can be categorised, namely: (i) the learning task(s) they support;

(ii) the method’s translucency; (iii) the shape of the extracted knowledge. By

analysing the surveyed SKE methods, we find these categories adequate. However,

we identify new dimensions, namely: (iv) the sort of input data the predictor

undergoing extraction is trained upon, and (v) the expressiveness of the extracted

knowledge. In what follows we answer research questions RQ1–RQ5 and RQ10

by focusing on such dimensions, individually. Conversely, in the supplementary

materials, we provide an overview of the 132 methods selected for SKE.

RQ1: Which sort of ML predictors can SKE be applied to? RQ5: How

does SKE work?

Answers for questions RQ1 and RQ5 are deeply entangled, as they are both

related to SKE methods’ translucency. Translucency deals with the need of SKE

methods to inspect the internal structure of the underlying black-box model, while

producing the extracted rules.

SKE methods provide for translucency in two ways [Andrews et al., 1995], and

can be labelled accordingly as

decompositional if the method needs to inspect (even partially) the internal

parameters of the underlying black-box predictor, e.g., neuron biases or con-

nection weights for NN, or support vectors for SVM;

pedagogical if the algorithm does not need to take into account any internal

parameter, but it can extract symbolic knowledge by only relying on the

predictor’s outputs.

Along this line, we observe that surveyed SKE methods can be grouped into as

many big clusters, depending on how they treat the predictor undergoing extrac-

tion.

W.r.t. RQ1, it is worth highlighting that pedagogical methods can be applied

to any sort of supervised ML predictor, in principle—despite the literature may

only report particular cases of application to specific predictors. Conversely, each

decompositional method focuses on a specific sort of supervised ML predictor.

Hence, decompositional SKE methods can be further categorised w.r.t. which sort
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Figure 7.1: Venn diagram categoris-
ing SKE methods w.r.t. translucency :
pedagogical (P) or decompositional
(D). For decompositional methods,
we report the target predictor type:
ANN⟨n⟩ = artificial NN (possibly,
having exactly ⟨n⟩ layers), CNN =
convolutional NN, GNN = graph
NN, FNN = fuzzy NN, SVM = sup-
port vector machines, DTE = deci-
sion tree ensembles, LC = linear clas-
sifiers.

of supervised ML predictors they are tailored upon. As detailed by Figure 7.1, the

translucency is far from uniform for SKE methods. Indeed, nearly a half of the

surveyed methods are pedagogical, while the rest are tailored on feed-forward NN

(possibly, with fixed amounts of layers), SVM, linear classifiers, or decision tree

ensembles.

W.r.t. RQ5, it is worth highlighting that pedagogical methods treat the under-

lying predictor as an oracle, to be queried for predictions the symbolic knowledge

shall emulate. Conversely, decompositional methods must look into the internal

structure of predictors, hoping to detect meaningful patterns. For instance, SKE

methods focusing on NN may try to interpret inner neurons as meaningful expres-

sions combining their ingoing synapses.

RQ2: Is there any requirement on the input data for SKE?

This question can be answered by looking at the accepted input data type of the

surveyed SKE methods. In most cases data is structured, i.e., it consists of tables

of numbers, where features are of three different sorts:

binary if the feature can assume only two values, generally encoded with 0 and

1 (or -1 and 1, or true and false);

discrete if the feature can assume values drawn from a finite set of admissible

values; notably, when this is the case, data science identifies two relevant sub-

sorts of features: ordinal if the set of admissible values is ordered (hence,
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Figure 7.2: Venn diagram cat-
egorising SKE methods w.r.t.
the input data type required by
the underlying predictor: bi-
nary (B), discrete (D), contin-
uous (C), images (I), text (T),
graphs (G).
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enabling the representation of the feature via some range of integer numbers),

or categorical if that set is unordered (hence, enabling the representation

of the feature via one-hot encoding);

continuous if the feature can assume any real numeric value.

Alternatively, data may consist of

images i.e., matrices of pixels, possibly with multiple channels;

text i.e., sequences of characters of arbitrary length;

graphs i.e., data structures of variable size, consisting of nodes/vertices intercon-

nected by edges/arcs.

In Figure 7.2, we report absolute occurrence of the sorts of input features accepted

by the surveyed SKE methods, as described by their authors. As the reader may

notice, the vast majority of surveyed methods are tailored on structured data with

continuous and/or discrete features.

RQ3: Which kind of SK can be extracted from ML predictors?

Broadly speaking, any extracted SK should mirror (i.e., mimic) the operation of

the ML predictor it has been extracted from. For supervised ML, this means

the extracted knowledge should express a function, mapping input features into

output features (e.g. classes, for classification tasks). Functions can be represented

in symbols in several ways. Indeed, the SK extracted by the surveyed methods

comes in various form.
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Figure 7.3: Venn diagram
categorising SKE methods
w.r.t. the output knowl-
edge’s shape: rule lists (L),
decision trees (DT) or ta-
bles (TA), knowledge graphs
(KG).

Notably, such forms can be categorised under both a syntactic or semantic

perspective. There, syntax refers to the shape of the extracted SK, whereas se-

mantic refers to what kind of logic formalism the extracted knowledge may leverage

upon—which is a matter of expressiveness.

Shape of the extracted knowledge As far as syntax is concerned, deci-

sion rules [Freitas, 2014, Huysmans et al., 2011, Murphy and Pazzani, 1991]

and trees [Breiman et al., 1984, Quinlan, 1993] are the most widespread human-

comprehensible formats for the output knowledge, thus the vast majority of sur-

veyed methods adopt one of these. However, other solutions have been exploited

as well—e.g., decision tables. In all cases, however, a common trait is that func-

tions of real numbers are expressed by using symbols to denote the same input and

output features the underlying ML predictor was trained upon.

W.r.t. surveyed SKE methods, we identify four major admissible shapes:

lists of rules, i.e. sequences of logic rules to be read in some predefined order;

decision trees , i.e. hierarchical decision rules to be followed to compute a prec-

tion;

decision tables i.e., concise visual rule representations specifying one or more

conclusions for each set of different conditions. They can be exhaustive – if all

the possible combinations are listed –, or incomplete—otherwise. Generally

speaking, decision tables are structured as follows: there is a column (row)

for each input and output variable and a row (column) for each rule. Each

cell cij (cji) contains the value of the j-th variable for the i-th rule.

knowledge graphs see Section 7.1.
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Figure 7.3 sums up the occurrence of the different shapes of output rules required

for SKE algorithms. As the reader may notice, the majority of the surveyed

methods target rule lists. Arguably, this trend may be motivated by the great

simplicity of rule lists, in terms of readability, and their algorithmic tractability.

Expressiveness of the extracted knowledge Despite the extracted knowl-

edge may contain statements of different shapes (e.g., rules, trees, tables), the

readability, conciseness, and tractability of the extracted rules heavily depend on

what can those statements contain—which, in turn, dictate what can (or cannot)

be expressed. In the general case, statements may contain predicates or relations

among the symbols representing input or output features. These may (or may not)

contain logic connectives as well as arithmetic or logic comparators. SKE meth-

ods can be categorised w.r.t. which and how many ways of combining symbols are

admissible within statements.

Along this line, we identify five major formats for statements in the surveyed

SKE methods:

propositional rules are the simplest format, where statements consist of propo-

sitions – i.e. symbols denoting boolean input/output features –, possibly in-

terconnected via logic connectives (negation, conjunction, disjunction, etc.).

Notice that statements containing relations (e.g., arithmetic comparisons)

among single, continuous features and constant values are indeed proposi-

tional as well.

fuzzy rules are propositional rules where the truth value of conditions and con-

clusions are not limited to 0 and 1, but can assume any value ∈ [0, 1];

oblique rules have conditions expressed as inequalities involving linear combina-

tions of the input variables. This is different from the propositional case, as

features may be compared to other features (rather than constants alone).

m-of-n rules are particular sorts of rules where boolean statements are grouped

by n and each rule is true only if at least m literals (out of n) are true, with

m ≤ n. Notice that m-of-(X1, . . . , Xn) is just a concise way of writing the

disjunction among the conjunction of all possible m-sized combinations of
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ing SKE methods w.r.t. the output
knowledge’s expressiveness : proposi-
tional (P), M -of-N (MN), fuzzy (F),
or oblique (O) rules; or triplets (T).

n boolean literals X1, . . . , Xn. Hence, m-of-n rules are just a concise way

of writing rules of other sorts: if X1, . . . , Xn are all predicative statements,

then the expression m-of-(X1, . . . , Xn) is predicative as well—and the same

is true if X1, . . . , Xn are oblique statements.

triplets see Section 7.1.

Figure 7.4 summarises the occurrence of the different SK formats produced by

the surveyed SKE algorithms. As the reader may notice, the vast majority of

surveyed SKE methods produce predicative rules, i.e. rules composed of several

boolean statements about individual input features, possibly interconnected via

logic connectives. Arguably, this trend may be motivated by the great tractability

of propositional rules, and by their simplicity. In fact, to construct propositional

rules, SKE algorithms may follow a divide-et-impera approach by focusing on each

single input feature at a time—hence enabling the simplification of the extraction

process itself.

RQ4: For which kind of AI tasks can SKE be exploited?

MLmethods are commonly exploited in AI to serve specific purposes, e.g. classifica-

tion, regression, clustering, etc. Regardless of the particular means by which SKE

is attained, extraction aids the human users willing to inspect how those methods

work. However, the particular AI tasks ML predictors have been designed for play

a pivotal role in determining what outputs users may expect from those predictors.

A similar argument holds for extraction procedures, as the extracted knowledge

should reflect the inner behaviour of the original predictor. Along this line, it is

interesting to categorise SKE methods w.r.t. the AI task they assume for the ML

predictors they are applied to.
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Figure 7.5: Venn dia-
gram categorising SKE
methods w.r.t. the tar-
geted AI task : classifi-
cation (C) or regression
(R).
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Figure 7.6: Pie chart cate-
gorising SKE methods pres-
ence/lack of software im-
plementations. There, ‘L’
denotes the presence of a
reusable library, ‘E’ denotes
experiment code, and ‘?’ de-
notes lack of known tech-
nologies.
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Figure 7.5 summarises the occurrence of tasks among the surveyed SKE meth-

ods. Notably, most of them can be applied uniquely to classifiers, whereas a small

portion of them is explicitly designed for regressors. Only few methods can handle

both categories.

In general, we observe how the surveyed methods are tailored on either clas-

sification or regression tasks—when not both. In either cases, surveyed methods

focus on supervised ML tasks. To the best of our knowledge, currently, there are

no SKE procedures tailored on unsupervised or reinforcement learning tasks.

RQ10: which and how many SKE algorithms come with runnable soft-

ware implementations?

Among the 132 surveyed methods for SKE, we found runnable software implemen-

tations for 27 (20.5%). Of these, 10 consist of reusable software libraries, while the

others are just experimental code. Figure 7.6 summarises this situation. In the

supplementary materials, we provide details about these implementations—there

including the algorithm they implement and the link to the repository hosting the

source code.
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Summary about SKE

Table 7.1 summarises our analysis regarding the 132 surveyed SKE methods. No-

tably, the table enumerates SKE methods in chronological order (w.r.t. publication

year), grouping them by five-year periods. Furthermore, coherently w.r.t. the sec-

tions above, the table reports the translucency, the required task and input type,

and the output format and shape of each surveyed method.

Table 7.1: Summary of the knowledge-extraction algorithms. Values from the
columns “Translucency”, “Task”, “Input”, “Expressiveness”, “Shape”, and “Tech-
nology” refer the corresponding figures from Section 7.3.1.

# Method Trans. Task Input Express. Shape Tech.

1 [Breiman et al., 1984] P C+R C+D P DT L6,7

2 [Quinlan, 1986] P C D P DT E6

3 [Saito and Nakano,

1988]

P C D P L ?

4 [Clark and Niblett,

1989]

P C C+D P L E8

5 [Masuoka et al., 1990] D (ANN3) C C F L ?

6 [Hayashi, 1990] D (ANN) C B F L ?

7 [Towell and Shavlik,

1991]

D (ANN) C D MN L ?

8 [Berenji, 1991] D (ANN) C C F L ?

9 [Brunk and Pazzani,

1991]

P C C+D P L ?

10 [Murphy and Pazzani,

1991]

P C D MN DT ?

11 [Horikawa et al., 1992] D (ANN) C C F L ?

12 [Tresp et al., 1992] D (ANN) R C P L ?

13 [Towell and Shavlik,

1993]

D (ANN) C D P L ?

14 [Thrun, 1993] D (ANN) C C P+MN L ?

15 [Cohen, 1993] P C C+D P L ?

16 [Quinlan, 1993] P C C+D P DT L9

17 [Fu, 1994] D (ANN) C D P L ?

18 [Halgamuge and

Glesner, 1994]

D (ANN) C C F L ?

19 [Mitra, 1994] D (ANN) C C+D F L ?

20 [Craven and Shavlik,

1994]

P C B P+MN L E7

6https://scikit-learn.org/stable/modules/tree.html
7https://github.com/psykei/psyke-python
8https://github.com/alessiamondolo/cn2-rule-based-classifier
9https://en.wikipedia.org/wiki/C4.5_algorithm#Implementations

CHAPTER 7. BACKGROUND ON NESY 151

https://scikit-learn.org/stable/modules/tree.html
https://github.com/psykei/psyke-python
https://github.com/alessiamondolo/cn2-rule-based-classifier
https://en.wikipedia.org/wiki/C4.5_algorithm#Implementations


7.3. CATEGORIZATION RESULTS

Table 7.1: Summary of the knowledge-extraction algorithms (Continued).

# Method Trans. Task Input Express. Shape Tech.

21 [Fürnkranz and Wid-

mer, 1994]

P C D P L E10

22 [Sestito and Dillon,

1994]

P C C+D P L ?

23 [Pop et al., 1994] P C B P L ?

24 [Andrews and Geva,

1995]

D (ANN) C C+D P L ?

25 [Matthews and Jagiel-

ska, 1995]

D (ANN) C B F L ?

26 [Matthews and Jagiel-

ska, 1995]

D (ANN) C B F L ?

27 [Cohen, 1995] P C C+D P L L11

28 [Setiono and Liu, 1996] D (ANN3) C B P L ?

29 [Tickle et al., 1996] P C B P L ?

30 [Yuan and Zhuang,

1996]

P C D F L ?

31 [Craven and Shavlik,

1996]

P C B P+MN DT E12,7

32 [Hong and Lee, 1996] P C C F L ?

33 [Setiono and Liu, 1997] D (ANN3) C C+D O L ?

34 [Setiono, 1997] D (ANN3) C D P L ?

35 [Nauck and Kruse,

1997]

D (ANN) C D F L ?

36 [Saito and Nakano,

1997]

D (ANN) R C P L ?

37 [Beńıtez et al., 1997] D (ANN) C C F L ?

38 [Ishibuchi et al., 1997] P C C F L ?

39 [Taha and Ghosh,

1999]

D (ANN) C C P L ?

40 [Taha and Ghosh,

1999]

D (ANN) C C+D P L ?

41 [Krishnan et al., 1999b] D (ANN) C B P L ?

42 [Nauck and Kruse,

1999]

D (ANN) R D F L E13

43 [Taha and Ghosh,

1999]

P C B P L ?

44 [Krishnan et al., 1999a] P C C P DT ?

45 [Schmitz et al., 1999] P C+R C+D P DT L14

46 [Hong and Chen, 1999] P C C F L ?

47 [Setiono, 2000] D (ANN3) C B MN L ?

10https://github.com/buoto/irep-rule-induction
11https://github.com/imoscovitz/wittgenstein
12https://github.com/abarthakur/trepan_python
13http://fuzzy.cs.ovgu.de/nefprox/
14https://github.com/fantamat/ruleex
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Table 7.1: Summary of the knowledge-extraction algorithms (Continued).

# Method Trans. Task Input Express. Shape Tech.

48 [Tsukimoto, 2000] D (ANN) C C+D P L ?

49 [Kim and Lee, 2000] D (ANN4) C C+D P DT ?

50 [Setiono and Leow,

2000]

D (ANN) R C+D P+MN+O DT ?

51 [Zhou et al., 2000] P C C+D P L ?

52 [Hong and Chen, 2000] P C C F L ?

53 [Sato and Tsukimoto,

2001]

D (ANN3) C C+D P DT E15

54 [Parpinelli et al., 2001] P C C+D P L L16

55 [Castillo et al., 2001] P C+R C+D F L ?

56 [Saito and Nakano,

2002]

D (ANN) R C+D P L ?

57 [Setiono et al., 2002] D (ANN3) R C+D P L ?

58 [Liu et al., 2002] P C C+D P L ?

59 [Boz, 2002] P C C+D P DT ?

60 [Markowska-Kaczmar

and Trelak, 2003]

P C C+D F L ?

61 [Zhou et al., 2003] P C C+D P L ?

62 [Setiono and Thong,

2004]

D (ANN3) R C+D P L ?

63 [Fu et al., 2004] D (SVM) C C+D P L ?

64 [Markowska-Kaczmar

and Chumieja, 2004]

P C C+D P L ?

65 [Rabuñal et al., 2004] P C C+D P L ?

66 [Chen, 2004] P C C P L ?

67 [Liu et al., 2004] P C C+D P L E17

68 [Browne et al., 2004] P C C+D P+MN DT ?

69 [Zhang et al., 2005] D (SVM) C C P L ?

70 [Barakat and

Diederich, 2005]

D (SVM) C C P DT ?

71 [Fung et al., 2005] D (LC) C C P L ?

72 [Chaves et al., 2005] D (SVM) C C F L ?

73 [Torres and Rocco,

2005]

P C C+D P+MN DT ?

74 [Etchells and Lisboa,

2006]

P C C+D P L ?

75 [He et al., 2006] P C C+D P DT ?

76 [Huysmans et al.,

2006a]

P R C P L E7

77 [Bader et al., 2007] D (ANN) C B P L ?

78 [Schetinin et al., 2007] D (DTE) C C+D P DT ?

79 [Chen et al., 2007] D (SVM) C C P L ?

15https://github.com/zju-vipa/awesome-neural-trees
16https://github.com/febo/myra
17https://rdrr.io/github/adriansidor/antminer/src/R/antminer3.R
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Table 7.1: Summary of the knowledge-extraction algorithms (Continued).

# Method Trans. Task Input Express. Shape Tech.

80 [Barakat and Bradley,

2007]

D (SVM) C C+D P L ?

81 [Saad and Wunsch II,

2007]

P C C+D O L E14

82 [Martens et al., 2007] P C C+D P L ?

83 [Núñez et al., 2008] D (SVM) C C P+O L ?

84 [Setiono et al., 2008] P C C+D P+O L ?

85 [Odajima et al., 2008] P C D P L ?

86 [König et al., 2008] P C+R C+D P+F DT ?

87 [Bader, 2009] D (ANN) C B P L ?

88 [Martens et al., 2009] D (SVM) C C+D any any ?

89 [Lehmann et al., 2010] P C B P L ?

90 [Augasta and Kathir-

valavakumar, 2012]

P C C+D P L ?

91 [Sethi et al., 2012] P C C+D P TA ?

92 [Zilke et al., 2016] D (ANN) C C+D P DT E14

93 [Chan and Chan, 2017] D (ANN) R C P L ?

94 [Biswas et al., 2017] P C C+D P L ?

95 [Yedjour and Benyet-

tou, 2018]

P C B P L ?

96 [Chakraborty et al.,

2018]

P C C+D P+O L ?

97 [Obregon et al., 2019] D (DTE) C C+D P L ?

98 [Chan and Chan, 2020] D (ANN) R C P L ?

99 [Wang et al., 2020] D (DTE) C C P L ?

100 [Chen et al., 2020] D (ANN) C I P L E18

101 [Mahdavifar and Ghor-

bani, 2020]

D (ANN) C B P L ?

102 [Vasilev et al., 2020] D (ANN) C C+D P DT ?

103 [Odense and d’Avila

Garcez, 2020]

D (ANN) C I MN L ?

104 [Jia et al., 2020] D (ANN) C I P DT ?

105 [Li et al., 2020] D (ANN) C C F L ?

106 [Hayashi and Takano,

2020]

D (ANN) C C+D P L ?

107 [Chakraborty et al.,

2020]

D (ANN) C C+D P L ?

108 [Sabbatini et al., 2021] P R C P L E7

109 [Yu and Liu, 2021] D (ANN) C C P L ?

110 [Yan et al., 2021] D (ANN) C C P DT ?

111 [Dattachaudhuri et al.,

2021]

P C C+D P L ?

112 [Dong et al., 2021a] D (DTE) C C+D P L ?

18https://github.com/SeekingDream/FSE20_DENAS
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Table 7.1: Summary of the knowledge-extraction algorithms (Continued).

# Method Trans. Task Input Express. Shape Tech.

113 [Shams et al., 2021] D (ANN) C C P L L19

114 [Yedjour, 2021] P C C+D P L ?

115 [Marshakov, 2021] D (ANN) C C F L ?

116 [Yang et al., 2021a] D (GNN) C G KG T E20

117 [Bastos et al., 2021] D (GNN) C T KG T E21

118 [Horta et al., 2021] D (ANN) C I KG T ?

119 [Bologna, 2021] D (DTE) C C P L ?

120 [Espinosa Zarlenga

et al., 2021]

D (ANN) C C P L E19

121 [Sabbatini and Cale-

gari, 2022]

P R C P L E7

122 [Johansson et al., 2022] P R C P DT ?

123 [Barbiero et al., 2022] D (ANN) C I P L L22

124 [Ferreira et al., 2022] D (ANN) C I P L ?

125 [Diao et al., 2022] D (ANN4) C C+D P L ?

126 [Barbado et al., 2022] D (SVM) C C+D P L L23

127 [de Campos Souza and

Lughofer, 2022]

D (FNN) C C+D F L ?

128 [Salimi-Badr and

Ebadzadeh, 2022]

D (FNN) R C F L ?

129 [Irfan et al., 2022] D (CNN) C I P L ?

130 [Sabbatini and Cale-

gari, 2023]

P C+R C P DT E7

131 [Obregon and Jung,

2023]

D (DTE) C C+D P L E24

132 [Ciravegna et al., 2023] P C C+D P L L25

7.3.2 Symbolic Knowledge Injection

As far as SKI is concerned, we take into account no prior taxonomy. Indeed, despite

the methods surveyed in this subsection come from well-studied (yet disjoint)

research communities – such as neuro-symbolic computation [Besold et al., 2017]

and knowledge graph embedding [Wang et al., 2017] –, we are not aware of any

prior work attempting to unify these research areas under the SKI umbrella.

19https://github.com/mateoespinosa/remix
20https://github.com/BUPT-GAMMA/CPF
21https://github.com/ansonb/RECON
22https://github.com/pietrobarbiero/pytorch_explain
23https://github.com/AlbertoBarbado/rule_extraction_xai
24https://github.com/jobregon1212/rulecosi
25https://github.com/pietrobarbiero/logic_explained_networks
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Along this line, we cluster the surveyed SKI methods according to four or-

thogonal dimensions, namely: (i) the type of SK they can inject, (ii) the strategy

they follow to attain injection, (iii) the kind of predictors they can be applied

to, (iv) the aim they pursue while performing injection. In what follows, we an-

swer research questions RQ6–RQ10 by focusing on such dimensions, individually.

Conversely, in the supplementary materials, we overview the 117 methods selected

for SKI.

RQ7: Which kind of SK can be injected into ML predictors?

Generally speaking, SKI methods support the injection of knowledge expressed

by various formalisms—despite each surveyed method focuses on some particular

formalism. Along this line, a key discriminating factor is whether the chosen

formalism is machine-interpretable or not—other than human-interpretable.

W.r.t. the formalism the input knowledge should adopt to support SKI, we

may cluster the surveyed methods into two major groups, namely:

logic formulæ or knowledge bases (KB) (i.e., sets of formulæ) adhering to

either FOL or some of its subsets, which are therefore both machine- and

human-interpretable. Here, admissible sub-categories reflect the kinds of

logics described in Section 7.1. Ordered by decreasing expressiveness, these

are:

full first-order logic formulæ including recursive terms, possibly contain-

ing variables, predicates of any arity, and logic connectives of any sorts,

possibly expressing definitions;

Horn logic (a.k.a. Prolog-like) where knowledge bases consist of head–

body rules, involving predicates and terms of any sorts;

Datalog i.e., Horn clauses without recursive terms (only constant or vari-

able terms allowed);

modal logics i.e., extensions of some logic above with modal operators

(e.g., □ and ♢), denoting the modality in which statements are true

(e.g., when, in temporal logic);
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Figure 7.7: Venn diagram cate-
gorising SKI methods w.r.t. the
input knowledge type: knowledge
graphs (KG), propositional logic
(P), first-order logic (FOL), ex-
pert knowledge (E), Datalog (D),
Horn logic (H), or modal logic
(M).

knowledge graphs i.e., a particular application of description logics aimed

at representing entity–relation graphs;

propositional logic where expressions are simply expressions involving boolean

variables and logic connectives.

expert knowledge i.e., any piece of human- (but not necessarily machine-) in-

terpretable knowledge by which data generation can be attained. This might

be the case of physics formulae, syntactical knowledge, or any form of knowl-

edge that is usually held by a set of human experts, and, as such, is only

accessible to human beings. For this reason, expert knowledge injection re-

quires some data to be generated to reify its information in tensorial form.

Of course, expert knowledge may be cumbersome to extract and requires

human engineers to take care of data generation before any injection can

occur.

In Figure 7.7 we categorise the surveyed SKI methods w.r.t. their formalism of

choice. There, KG are the most prominent cluster (including almost a half of the

surveyed methods), whereas model logic is the smallest one. Methods tailored on

FOL or its subsets (apart from KG) form another relevant cluster. Among the

FOL subsets, propositional logic plays a pivotal role, as it involves the relative

majority of methods.

Notably, as long as the logic formalism is concerned, we consider and report

the actual logic used in the papers. Indeed, this is rarely explicitly stated by the

authors into their papers. So, we deduce the actual logic used by each SKI method

from the constraints its logic is subject to, according to its authors.
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Figure 7.8: Structuring strategy: a (portion of a) neural network is constructed,
mirroring the symbolic knowledge.

Figure 7.9: Guided learning strategy.

RQ9: How does SKI work?

By analysing the surveyed SKI methods, we acknowledge great variety in the actual

way injection is performed. Arguably, however, such variety can be tackled by

focusing on tree major strategies, depicted in Figures 7.8 to 7.10 and summarised

below:

predictor structuring where (a part of) a sub-symbolic predictor (commonly,

NN) is created to mirror the symbolic knowledge via its own internal struc-

ture. In other words, a predictor is created or extended to mimic the be-

haviour of the SK to be injected. For instance, when it comes to NN, their

internal structure is crafted to represent logic predicates via neurons, and
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Figure 7.10: Embedding strategy: the symbolic knowledge is converted in tensorial
form and ML predictors are fed “as usual”.

logic connectives via synapses;

knowledge embedding where SK is converted into numeric-array form – e.g.,

vectors, matrices, tensors, etc. – to be provided as “ordinary” input for the

sub-symbolic predictor undergoing injection. In other words, numeric data

is generated out of symbolic knowledge. Any numeric representation of this

sort is called embedding [of the original symbolic knowledge]. For example,

this is the common strategy exploited by the knowledge graph embedding

community [Wang et al., 2017], as well as by graph NN [Lamb et al., 2020];

guided learning (a.k.a., constraining) where SK is used to steer the learning

process of ML predictors, by either penalising inconsistent behaviours or

by incentivising consistent behaviours w.r.t. the SK. When the predictor

undergoing injection is trained via some optimisation process involving loss

functions being minimised (e.g., NN), guided learning is achieved by altering

those loss functions in such a way that violations w.r.t. the SK increase the

loss. A dual statement holds for predictors requiring training to step through

maximization processes. The recent book by [Gori, 2018] nicely overviews

methods of these kinds.

Figure 7.11 summarises the frequency of these strategies among the surveyed SKI

algorithms. Notably, the distribution of surveyed SKI methods among the three

categories above is quite balanced.
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Figure 7.11: Venn dia-
gram categorising SKI
methods w.r.t. strategy :
structuring (S), em-
bedding (E), or guided
learning (L).
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RQ6: Which sorts of ML predictors can SKI be applied to?

Virtually all surveyed SKI methods are designed to inject knowledge into NN.

However, as our analysis spans over 2 decades, the sorts of NN supported by SKI

methods are manifold—despite each method is tailored on specific sorts of NN.

Accordingly, surveyed SKI methods can be classified w.r.t. the particular sort

of NN they support. As detailed by Figure 7.12, admissible choices along this line

fit many sorts of NN, namely:

feed-forward NN multi-layered NN where neurons from layer i are only con-

nected with layer i+ 1, and multiple (≥ 2) layers may exist;

convolutional NN particular cases of feed-forward NN, involving convolutional

layers as well;

graph NN particular cases of convolutional NN tailored on graph-like data;

recurrent NN particular cases of NN admitting loops among layers;

Boltzmann machine a particular neural architecture where connections are undirected—

i.e., every node is connected to every other node;

transformer particular case of NN that leverage a self-attention mechanism—

i.e., differentially weighting parts of the input data depending on their sig-

nificance;

auto-encoders particular case of feed-forward NN, characterised by a bottleneck

architecture used to learn reduced data encodings through learning to regen-

erate the input from the encoding;
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Figure 7.12: Venn diagram
categorising SKI methods w.r.t.
the targeted predictor type:
feed-forward (FF), convolutional
(CNN), graph (GNN) or recur-
rent (RNN) neural networks,
Boltzmann machines (BM),
Markov chains (MC), transform-
ers (TR), auto-encoders (AE),
deep belief networks (DBN),
denoising auto-encoders (DAE),
kernel machines (KM).

deep belief networks a composition of multiple Boltzmann machines, stacked

altogether, in a feed-forward fashion;

denoising auto-encoder particular case of auto-encoders working over corrupted

input.

Notable exceptions are:

kernel machines ML models relying on kernels—i.e., similarity measures be-

tween observed patterns;

Markov chains state machines with probabilities on state transitions, modelling

stochastic phenomena.

The reason why the vast majority of methods rely on (some sort of) NN is straight-

forward: methods tailored upon GNN (resp. CNN) assume the networks to accept

specific kinds of data as input, e.g. graphs (resp. images), while ordinary feed-

forward NN accept raw vectors of real numbers.

RQ8: For which kind of AI tasks can SKI be exploited?

Unlike SKE methods – which uniquely serve the purpose of inspecting black-box

predictors by mimicking the way they address supervised learning tasks –, SKI

methods from the literature may serve multiple purposes. As outlined by Fig-

ure 7.13, we identify two major purposes SKI methods may pursue, by targeting
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Figure 7.13: Venn diagram cate-
gorising SKI methods w.r.t. aim:
knowledge manipulation (M) or
enrich (E).

63 495

M
E

either symbolic or sub-symbolic AI tasks. More precisely, SKI methods may pur-

sue:

symbolic knowledge manipulation where SKI enables the sub-symbolic ma-

nipulation of symbolic knowledge, by letting sub-symbolic predictors treat

SK similarly to what done by symbolic engines. In doing so, SKI supports

symbolic-AI tasks such as

logic inference in its many forms (e.g. deductive, inductive, probabilistic,

etc.), i.e. drawing conclusions out of symbolic KB;

information retrieval looking for information in symbolic KB;

KB completion finding (and adding) missing information in symbolic KB;

KB fusion merging several KB into a single one, taking care of (possibly,

syntactically different) overlaps;

The key point here is supporting tasks where both inputs and outputs are

symbolic in nature, but leveraging upon sub-symbolic methods to gain speed,

fuzziness, and robustness against noise.

learning support (a.k.a., enrich) where SKI lets sub-symbolic methods con-

sume symbolic knowledge to either improve or enrich learning capabilities.

In doing so, SKI supports ordinary ML tasks – such as classification –, by al-

lowing ML predictors to process (or take advantage by) structured symbolic

knowledge. The underlying idea of such approaches is that there exist some

concepts that are cumbersome or troublesome to learn from examples—e.g.,

syntactical concepts, semantics, etc. Therefore, SK expressing these high-

level concepts may be injected directly into the model to be trained.
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Figure 7.14: Pie chart cate-
gorising SKI methods pres-
ence/lack of software im-
plementations. There, ‘L’
denotes the presence of a
reusable library, ‘E’ denotes
experiment code, and ‘?’ de-
notes lack of known tech-
nologies.

As the reader may note from the picture, surveyed SKI methods are quite balanced

w.r.t. the categories above, with a slight preference for SK manipulation.

RQ10: which and how many SKI algorithms come with runnable soft-

ware implementations?

Among the 117 surveyed methods for SKI, we found runnable software implemen-

tations for 60 (51.3%). Of these, 11 consist of reusable software libraries, while the

others are just experimental code. Figure 7.14 summarises this situation. In the

supplementary materials, we provide details about these implementations—there

including the algorithm they implement and the link to the repository hosting the

source code.

Summary about SKI

Table 7.2 summarises our analysis regarding the 117 surveyed SKI methods. No-

tably, the table enumerates SKI methods in chronological order (w.r.t. publication

year), grouping them by five-year periods. Furthermore, coherently w.r.t. the sec-

tions above, the table reports the strategy followed by each SKI method, as well

as type of knowledge it can inject, the type of neural network it supports, and

overall purpose it supports injection for.
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Table 7.2: Summary of knowledge-injection algorithms. Values from the columns
“Strategy”, “Input”, “Predictor”, “Purpose”, and “Technology” refer the corre-
sponding figures from Section 7.3.1.

# Method Strategy Input Predictor Purpose Tech.

1 [Ballard, 1986] S FOL BM M ?

2 [Towell et al., 1990] S P FF E L26

3 [Pinkus, 1991] S FOL BM M ?

4 [Tresp et al., 1992] L+S P FF E+M ?

5 [Giles and Omlin, 1993] S E RNN E+M ?

6 [Tan, 1997] S P FF E ?

7 [d’Avila Garcez and Za-

verucha, 1999]

S P FF M L27

8 [Basilio et al., 2001] L+S FOL FF M ?

9 [d’Avila Garcez and Gabbay,

2004]

S FOL FF M ?

10 [Bader et al., 2005] S FOL FF M ?

11 [Chang et al., 2007] E E MN E ?

12 [Bader et al., 2008] L E FF E ?

13 [Mintz et al., 2009] E KG FF M ?

14 [Nickel et al., 2011] E KG FF M L28

15 [Bordes et al., 2011] E KG FF M E29

16 [Kimmig et al., 2012] S FOL MN M L30

17 [Bordes et al., 2012] E KG FF M ?

18 [Pinkas et al., 2013] S FOL BM M ?

19 [Bordes et al., 2013] E+L KG FF M E31

20 [Socher et al., 2013] E+S KG FF M E32

21 [França et al., 2014] S P RNN M E33

22 [Wang et al., 2014] E+L KG FF M E34

23 [Garćıa-Durán et al., 2014] E+L KG FF M ?

24 [Bian et al., 2014] E+L E FF E ?

25 [Chang et al., 2014] E KG FF M ?

26 [Bordes et al., 2014] E KG FF M E35

27 [Dong et al., 2014] E KG FF M ?

28 [Fan et al., 2014] E+L KG FF M ?

29 [Wang et al., 2015] E KG FF M ?

26https://github.com/psykei/psyki-python
27https://sourceforge.net/projects/cil2p/
28https://github.com/mnick/rescal.py
29https://github.com/glorotxa/SME
30https://github.com/linqs/psl
31https://github.com/Lapis-Hong/TransE-Knowledge-Graph-Embedding
32https://github.com/dddoss/tensorflow-socher-ntn
33https://github.com/vakker/CILP
34https://github.com/thunlp/KB2E
35https://github.com/usherwang02/SemanticMatchingEnergy-Theano
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Table 7.2: Summary of knowledge-injection algorithms (continued).

# Method Strategy Input Predictor Purpose Tech.

30 [Wei et al., 2015] E KG MN M E36

31 [Rocktäschel et al., 2015] E+L KG FF M E37

32 [Lin et al., 2015] E+L KG FF M E34

33 [Yang et al., 2015] E+L KG FF M ?

34 [Che et al., 2015] L KG FF E ?

35 [Ji et al., 2015] E+L KG FF M ?

36 [Feng et al., 2016] E+L KG FF M ?

37 [Xiao et al., 2015] E+L KG FF M ?

38 [He et al., 2015] E+L KG FF M ?

39 [Tran and Garcez, 2016] S P DBN E ?

40 [Hu et al., 2016a] S P CNN E ?

41 [Guo et al., 2016] E+L KG FF M ?

42 [Nickel et al., 2016] E+L KG FF M E38

43 [Trouillon et al., 2016] E+L KG FF M E39

44 [Demeester et al., 2016] L KG FF M ?

45 [Hu et al., 2016b] S P FF E ?

46 [Mrksic et al., 2016] L KG FF E E40

47 [Liu et al., 2016a] E KG FF M ?

48 [Ji et al., 2016] E+L KG FF M ?

49 [Xiao et al., 2016b] E+L KG FF M ?

50 [Xiao et al., 2016a] E+L KG FF M ?

51 [Kipf and Welling, 2017] E+L KG GNN M L41

52 [Rocktäschel and Riedel, 2017] L+S D FF M E42

53 [Liu et al., 2017a] E+L KG FF M E43

54 [Stewart and Ermon, 2017] L E CNN E ?

55 [Allamanis et al., 2017] L P RNN E E44

56 [Diligenti et al., 2017a] L FOL KM M E45

57 [Diligenti et al., 2017b] L P CNN M ?

58 [Marino et al., 2017] E KG GNN E ?

59 [Chang et al., 2017] E E FF E E46

60 [Choi et al., 2017] E KG FF E E47

61 [Fang et al., 2017] L KG CNN E ?

36https://github.com/ZhuoyuWei/fpMLN
37https://github.com/uclnlp/low-rank-logic
38https://github.com/mnick/holographic-embeddings
39https://github.com/thunlp/openke
40https://github.com/nmrksic/counter-fitting
41https://github.com/tkipf/pygcn
42https://github.com/uclnlp/ntp
43https://github.com/quark0/ANALOGY
44https://github.com/mast-group/eqnet
45https://sites.google.com/site/semanticbasedregularization/home/software
46https://github.com/mbchang/dynamics
47https://github.com/mp2893/gram
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Table 7.2: Summary of knowledge-injection algorithms (continued).

# Method Strategy Input Predictor Purpose Tech.

62 [Xu et al., 2018] L P CNN E E48

63 [Evans and Grefenstette, 2018] L+S D FF M E49

64 [Sourek et al., 2018] S D FF M E50

65 [Velickovic et al., 2018] E+L KG GNN M E51

66 [Ma and Zhang, 2018] L KG AE E ?

67 [Zhou et al., 2018] E KG GNN E E52

68 [Liang et al., 2018] S KG FF E E53

69 [Glavas and Vulic, 2018] E+L KG FF E E54

70 [Marra et al., 2019] L P FF E E55

71 [Goodwin and Demner-

Fushman, 2019]

L KG FF E ?

72 [Sun et al., 2019] E+L KG FF M ?

73 [Zhang et al., 2019b] L KG TR E ?

74 [Peters et al., 2019] E+L KG TR E L56

75 [Daniele and Serafini, 2019] S FOL DFF E L57

76 [Fischer et al., 2019] L D DFF E E58

77 [Dong et al., 2019] S+L H FF M E59

78 [Badreddine et al., 2022] S FOL FF E+M L60

79 [Zhang et al., 2020] E+L KG FF M E61

80 [Jiang et al., 2020] S+L FOL RNN E ?

81 [Ren and Leskovec, 2020] S+L KG DFF M E62

82 [Guo et al., 2020] L+E KG FF M E63

83 [Riegel et al., 2020] S+L FOL FF M L64

84 [Yu and Liu, 2021] S P DAE E ?

85 [Manhaeve et al., 2021] S H FF E+M L65

86 [Dash et al., 2021] E P GNN E E66

48https://github.com/UCLA-StarAI/Semantic-Loss/
49https://github.com/crunchiness/lernd
50https://github.com/GustikS/GNNwLRNNs
51https://github.com/PetarV-/GAT
52https://github.com/tuxchow/ccm
53https://github.com/julianschoep/SGRLayer
54https://github.com/codogogo/explirefit
55https://github.com/GiuseppeMarra/lyrics
56https://github.com/allenai/kb
57https://github.com/DanieleAlessandro/KENN
58https://github.com/eth-sri/dl2
59https://github.com/google/neural-logic-machines
60https://github.com/logictensornetworks/logictensornetworks
61https://github.com/MIRALab-USTC/KGE-HAKE
62https://github.com/snap-stanford/KGReasoning
63https://github.com/StudyGroup-lab/SLRE
64https://github.com/IBM/LNN
65https://github.com/ML-KULeuven/deepproblog
66https://github.com/tirtharajdash/VEGNN
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Table 7.2: Summary of knowledge-injection algorithms (continued).

# Method Strategy Input Predictor Purpose Tech.

87 [Giunchiglia and Lukasiewicz,

2021]

S+L P CNN E E67

88 [Bosselut et al., 2021] S KG TR M ?

89 [Peng et al., 2021] E E TR E ?

90 [West et al., 2022] L E KG TR E ?

91 [Marino et al., 2021] S+L KG TR E L68

92 [Xie et al., 2021] S+L M RNN E ?

93 [Cheng et al., 2021] L+E H FF M ?

94 [Li et al., 2023a] S+L D GNN M ?

95 [d’Amato et al., 2021] L+E KG FF M E69

96 [Dash et al., 2022] S P GNN E E70

97 [Rodŕıguez et al., 2022] L KG CNN E E71

98 [Yu et al., 2022] S+L FOL CNN E ?

99 [Wei et al., 2022] S+L P GNN M E72

100 [Smirnova et al., 2022] L P FF E E73

101 [Magnini et al., 2022a] S D FF E E26

102 [Spillo et al., 2022] E FOL DFF E E74

103 [Tang et al., 2022] L+E FOL RNN M E75

104 [Zhu et al., 2022] L FOL GNN M E76

105 [Li et al., 2022a] L+E KG GNN M ?

106 [Sen et al., 2022] S+L D FF M ?

107 [Magnini et al., 2022c] S+L D DFF E E26

108 [Werner et al., 2023] S FOL GNN E E77

109 [Giannini et al., 2023] L FOL FF E ?

110 [Cunnington et al., 2023] S+L D FF E E78

111 [Pourvali et al., 2023] S+L FOL TR E ?

112 [Ahmed et al., 2023] L P FF E E79

113 [Marconato et al., 2023] L H DFF M+E E80

114 [Li et al., 2023b] S+L KG TR E E81

115 [Lin et al., 2023] S+L H TR E ?

67https://github.com/EGiunchiglia/C-HMCNN/
68https://github.com/facebookresearch/mmf
69https://github.com/Keehl-Mihael/TransROWL-HRS
70https://github.com/tirtharajdash/BotGNN
71https://github.com/JulesSanchez/X-NeSyL
72http://github.com/jinnanli/CogKG
73https://github.com/eXascaleInfolab/Nessy_RE
74https://github.com/giuspillo/RepoNeSyRecSys2022
75https://github.com/XiaojuanTang/RulE
76https://github.com/DeepGraphLearning/GNN-QE
77https://gitlab.inria.fr/tyrex-public/kegnn
78https://github.com/DanCunnington/FFNSL
79https://github.com/UCLA-StarAI/Semantic-Strengthening
80https://github.com/ema-marconato/NeSy-CL
81https://github.com/senticnet/SKIER
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Table 7.2: Summary of knowledge-injection algorithms (continued).

# Method Strategy Input Predictor Purpose Tech.

116 [Bai et al., 2023] L M GNN M ?

117 [Nguyen et al., 2023] L+E FOL FF M E82

7.3.3 Taxonomy Summary

Figure 7.15 summarises the taxonomies for SKE and SKI we induced from the sur-

veyed literature. Generally speaking, such taxonomies are useful tools to categorise

present (and, hopefully, future) SKE/SKI methods, and to highlight the relevant

features of each particular method. In this way, the interested readers may figure

out what to expect from any given SKE/SKI method, as well as draw general

analyses concerning the state of the art. Accordingly, in this section we analyse

our taxonomies, elaborating on the current challenges and future perspectives.

It is worth mentioning that our taxonomies involve both “stable” and “con-

tingent” categories by which SKE/SKI methods can be described. These are

represented as either white or grey boxes in Figure 7.15. Stable categories are

time-independent and they are not susceptible to change in the near future, while

contingent categories are subject to trends and may evolve. Consider for instance

SKE methods (see Figure 7.15), categorised w.r.t. their output knowledge. While

expressiveness is a stable sub-category, its actual sub-sub-categories are contingent,

meaning that new ones may be added in the future.

SKE Taxonomy

As shown in Figure 7.15, SKE methods can be classified by (i) translucency, (ii)

targeted AI task, (iii) nature of the input data, and (iv) form of the output

knowledge. W.r.t. item (i), SKE methods can either be categorised as pedagogical

or decompositional. In the particular case of decompositional methods, the actu-

ally targeted predictor is relevant too—and possibilities currently include NN, DT,

SVM, and linear classifiers. W.r.t. item (ii), SKE methods may target classifica-

tion or regression tasks, or both. In any case, they currently target supervised ML

82https://github.com/nlp-tlp/cyle
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Figure 7.15: Summary of SKE and SKI taxonomies derived from the literature.
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tasks alone. W.r.t. item (iii), SKE methods accept predictors trained upon binary,

discrete, or continuous data, as well as images, graphs and text. Finally, w.r.t.

item (iv), SKE methods may produce symbolic knowledge of different shapes, and

with different expressiveness. Shapes may currently involve rule lists, as well as

graphs, decision trees or tables. Conversely, as long as expressiveness is involved,

symbolic knowledge may be propositional or fuzzy – possibly including M -of-N -

like statements – , or be expressed as triplets or oblique rules.

About translucency It is worth stressing the relevance of pedagogical methods

from the engineering perspective. Indeed, if properly implemented, pedagogical

methods may be exploited in combination with predictors of any sorts. Of course,

they are expected to reach lower performances w.r.t. decompositional ones, as they

access less information. On the other side, decompositional methods may be more

precise at the expense of generality.

About input data We recall that binary features are particular cases of discrete

features, while discrete features are, in turn, particular cases of continuous features.

Hence, it is worthwhile noticing that extractors requiring only binary features can

be applied to categorical datasets by pre-processing discrete attributes via one-

hot encoding (OHE). Analogously, extractors requiring discrete features can work

with continuous attributes if those continuous features are discretised. Finally,

continuous features can be converted into binary ones by performing discretisation

and OHE, in this exact order.

While these transformations can always be applied in the general case, some

authors have included them in their SKE methods at the design level. Hence, some

papers explicitly account discretisation or OHE as part of the SKE methods they

propose. This is the case, for instance, of the methods enclosed in the intersection

between the “C” and “D” sets in Figure 7.2 (and labelled as “C+D” in the sup-

plementary materials). Other methods may instead rely upon other discretisation

strategies, such as the ones surveyed by [Yang et al., 2010].

About output knowledge It is worth stressing that differences among rule

lists, decision trees, and tables are mostly syntactic, as conversions among these
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forms are possible in the general case (cf. the supplementary materials for exam-

ples). As far as expressiveness is concerned, we remark that all logic formalisms

currently in use for SKE are essentially particular cases of propositional logic—

possibly, under a fuzzy interpretation. This implies that the full power of FOL is

far from being fully exploited in practice.

Finally, we point out some correlations among the expressiveness of output

rules and the nature of the predictor they are extracted from, as well as the input

data it is trained upon. For instance, SKE methods working with continuous input

data are more likely to adopt oblique rules—or, at least, propositional rules with

arithmetic comparisons. In fact, decisions are there drawn by comparing numeric

variables with constants or among each other. Another example: some decomposi-

tional SKE methods focusing upon NN adopt M -of-N statements. Arguably, the

reason is that M -of-N expressions aggregate several elementary statements into a

single formula, similarly to how neurons aggregate synapses from previous layers

in NN—hence such methods approximate neurons via M -of-N expressions.

SKI Taxonomy

As shown in Figure 7.15, SKI methods can be classified by (i) form of the input

knowledge, (ii) followed strategy, (iii) targeted predictor type, and (iv) purpose.

W.r.t. item (i), SKI methods can either accept logic formulæ or expert knowledge

as input. In the former case, current possibilities include FOL and its subsets, and

in particular knowledge graphs. W.r.t. item (ii), SKI methods may currently follow

one of three strategies, namely: predictor structuring, knowledge embedding, or

guided learning. W.r.t. item (iii), SKI methods currently mostly target NN-based

predictors, other than Markov chains and kernel machines. Finally, w.r.t. item (iv),

SKI methods may pursue two kinds of purposes, non-exclusively: manipulating

symbolic knowledge or supporting/enriching learning. In the former case, current

possibilities involve symbolic AI related tasks such as logic inference (and its many

forms), information retrieval, and KB completion/fusion.

About input knowledge and injection strategies Logic formulæ are the

most common approach to define prior concepts to be injected. This is true, in
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particular, for SKI approaches following the model structuring or guided learn-

ing strategies. Indeed, via logic formulæ, they express criteria that sub-symbolic

models should satisfy or emulate. However, methods of these sorts often require

formulæ to be grounded. Grounding introduces computational burden and hin-

ders capability of representing recursive or infinite data structures—hence limiting

what can actually be injected.

Conversely, knowledge graphs are the most common knowledge representation

approach when it comes to perform SKI following the knowledge embedding strat-

egy. This is unsurprising, given that “knowledge graph embedding” is a research

line per se.

About target predictors Neural networks play a pivotal role in SKI. Arguably,

the reason lies in the great malleability of NN w.r.t. their structure and training, as

well as their flexibility w.r.t. feature learning. In fact, NN come in different shapes

as different architectures may be constructed by connecting neurons in various

ways. This is fundamental to support SKI via predictor structuring. Furthermore,

as long as their architectures are DAG, NN can be trained via gradient descent, i.e.

by minimising a loss function of arbitrarily defined. This is, in turn, fundamental

to support SKI via guided learning. Finally, feature learning is a characterising

capability of NN, making them capable to automatically elicit the relevant aspects

they should focus upon, w.r.t. input data. This is the reason why NN are well

suited for the knowledge embedding strategy as well. Accordingly, to the best of

our knowledge, there exists no other sort of predictor having similar flexibility and

malleability.

Chapter Synopsis

In this chapter we survey the state of the art of symbolic knowledge extraction

and injection. Stemming from two original definitions, we systematically explore

the literature of both SKE and SKI, spanning a period of four decades. Our goal

is to elicit the major characteristics of SKE/SKI algorithms form the literature

(G1–G2), hence deriving general taxonomies which we hope other researchers

may exploit. Along this line, we design ten research questions (RQ1–RQ10), and
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we engineer ad hoc queries to be performed on most relevant search engines for

scientific literature. We select 249 primary works, almost evenly distributed among

SKE and SKI, other than 11 secondary works. By analysing these papers, we define

and discuss two general taxonomies for both SKE and SKI, which are general

enough to categorise present (and possibly future) methods. Roughly, surveyed

methods are categorised w.r.t. what they accept as input and produce as output

(in terms of symbolic knowledge or predictors), other than how they operate and

why. Finally, we also collect data about which and how many SKE/SKI methods

come with runnable software implementations (namely, 87, i.e., 34.9%).

This chapter will provide a useful guide for the remainder of Part II of this

thesis, where we will delve more in detail on how SKI and SKE approaches can

help tackling the NN efficientization task.
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Chapter 8

Can Symbolic Knowledge

Injection Help Efficientisation?

This chapter contains contributions from [Agiollo et al., 2022, Agiollo et al., 2023a].

SKI represents a possible solution to several issues of data-driven AI approaches

– i.e., ML and DL –, such as (i) data greediness – meaning that the learning requires

huge amounts of examples concerning the phenomena to learn –; (ii) resource

greediness – meaning that the learning process requires specialized hardware and

long time to run –; and (iii) reduced understandability—as most ML and DL

models are black-boxes.

The benefits of SKI to the training of ML predictors [Calegari et al., 2020]

include: (i) mitigating the issues arising from the lack of sufficient amounts of

training data – as under-represented situations can be suitably represented in

symbols –; (ii) reducing the learning time by providing straight away the very

knowledge that predictors would otherwise struggle to learn by processing huge

amounts of data; (iii) improving predictors’ predictive performance in corner cases

– as in the case of unbalanced and overlapping classes –; (iv) preventing predictors

from working as full black boxes during their training—hence overriding the need

for explanations; and (v) harmonising the symbolic and sub-symbolic components

of intelligent systems. Hence, ML researchers may take advantage of SKI to endow

intelligent systems with common sense – encoded in some suitable symbolic for-

malism –, and finely govern their sub-symbolic components—e.g., by tuning them
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according to the given symbolic beliefs.

It is a common practice to assess SKI mechanisms in terms of the perfor-

mance gain they introduce w.r.t. some injection-free counterpart [Diligenti et al.,

2017b, Xu et al., 2018]. However, performance gain is not the only relevant met-

ric that an AI designer may intend to optimise. For instance, when dealing with

resource-constrained environments it may be required to minimise the energy used

to train ML predictors, as well as the computational resources required for their

execution. Analogously, whenever a human being needs to interact with the intel-

ligent system under development, it is fundamental to maximise the intelligibility

of its decision-making processes. Overall, there are several aspects of sub-symbolic

predictors that designers could optimise via SKI. Along this line, we here sketch

a set of quality-of-service (QoS) metrics for SKI covering several aspects—ranging

from energy-related to computational-cost-related ones. The proposed set of QoS

metrics focuses on measuring the achievable efficiency gains attainable when lever-

aging SKI against an injection-free counterpart and represents – to the best of our

knowledge – the first attempt to introduce QoS metrics for SKI.

To measure the reliability of our metrics – along with the achievable efficiency

improvements –, we extend the PSyKI1 library, by proposing a full modelling of

the sketched QoS metrics. PSyKI represents an open source library that supports

the exploitation of SKI methods in arbitrary ML workflows [Magnini et al., 2022b].

Integrating our novel QoS metrics into the PSyKI library we enable measuring the

efficiency gains achievable by few different SKI approaches over several datasets.

The code to reproduce our experimental evaluation is made publicly available2.

As expected, the experimental results demonstrate that it is indeed possible to

leverage SKI approaches to achieve efficiency gains w.r.t. injection-free approaches,

while also proving the soundness of our QoS metrics.

8.1 Preliminary Definitions

Formally, given an injection procedure I, some symbolic knowledge K, and a sub-

symbolic predictor N aimed at solving some supervised learning task, we define

1https://github.com/psykei/psyki-python
2see https://github.com/pikalab-unibo/ski-qos-jaamas-experiments-2022
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the “knowledge-aware” predictor N̂ as the result of the application of I to K and

N :

N̂ = I(K,N)

There, we call N the uneducated predictor – as it has not yet undergone injection

–, and N̂ the educated one.

Focussing on the inputs of SKI – namely, the symbolic knowledge K and the

sub-symbolic predictor N –, nearly all SKI methods and techniques available in

the literature assume that: (i) K is a logic knowledge base of logic formulæ,

encoded via some subset of first-order logic [Smullyan, 1968], while (ii) N is a

neural network. To support this statement, we refer the reader to Table 7.2.

8.1.1 Injection Assessment

It is common for works in the SKI realm to measure the strength of their mech-

anism as the gain in performance achieved by the SKI predictor against its une-

ducated counterpart. In that case, the effectiveness of the injection mechanism I
when applied to a neural network N to inject the knowledge K is measured via

some performance score π (accuracy, F1-score, MSE, etc.), aimed at assessing the

performance of N with respect some test dataset T . More formally:

ϵK,N,π,T (I) = π(I(K,N), T )− π(N, T ) (8.1)

In other words, the effectiveness of some injection mechanism I may be assessed

differently depending on which knowledge base, neural network, and dataset it

is applied to. While being indicative of the quality of the SKI approach w.r.t.

predictive performance, that metric does not capture every aspect of the knowledge

injection, as there exist multiple properties that one may be willing to optimise

through SKI—see Section 8.2.1.

8.2 SKI Quality-of-Service Metrics Definition

In this section we propose and analyse the novel set of metrics for identifying

the quality of SKI systems. An overview of our proposals, along with a brief

CHAPTER 8. CAN SKI HELP EFFICIENTISATION? 177



8.2. SKI QUALITY-OF-SERVICE METRICS DEFINITION

classification, is provided in Section 8.2.1. Roughly speaking, we introduce metrics

for measuring SKI method’s efficiency—under multiple goodness criteria.

8.2.1 Overview

The current practice of SKI assessment relies exclusively on measuring improve-

ments in the predictive performance of some educated predictor over an equivalent

uneducated counterpart. However, predictive performance is not the only relevant

benefit of SKI one may be willing to measure.

There exist multiple aspects of neural predictors which may be affected by

SKI—and for which metrics should be defined. In the context of this thesis, we

focus on the efficiency properties of predictors and – recalling Section 2.1.2 –

consider the model’s:

memory footprint, i.e., the size of the predictor under examination;

latency, i.e., the time required to run a predictor for inference;

data efficiency, i.e., the amount of data required to train the predictor;

energy consumption, i.e., the amount of energy required to train/run the pre-

dictor;

other than, of course:

predictive performance, e.g. accuracy, F1-score, mean squared error, etc.

For the sake of brevity, we also denote as efficiency metrics any function aimed at

measuring some efficiency property.

Efficiency metrics provide a score measuring how much some efficiency property

P of a given uneducated predictor N improves in its educated counterpart N̂ . Of

course, the resulting score may be largely influenced by a number of different

aspects, such as:

(A1) Knowledge quality and coverage. The educated predictor N̂ is attained by

injecting some input knowledge K. Furthermore, both N and N̂ are aimed

at addressing the same learning task – say, classification or regression –, and
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they are both trained upon some training dataset D, which describes the

task. Questions that may arise are, for instance: (i) are K and D coherent?,

(ii) is K covering situation which the data in D exemplifies?, (iii) is K con-

sistent, coherent, and correct? (iv) can we say the same for D? Regardless

of the particular efficiency property P being measured, the resulting score

may greatly vary depending on the answers to these questions. So, in other

words, efficiency measures depend on the particular input knowledge (K)

and data (D) being used during SKI.

(A2) Baseline quality. As both the educated (N̂) and uneducated (N) predictors

are targetting the same learning task, one may wonder if N is adequate

enough to address that learning task. In this setting, questions that may

arise are: (i) is N biased [Piedmont, 2014] in statistical sense? (ii) in case it

is, can we expect N̂ to carry any observable improvement on some efficiency

measure P? (iii) can we expect N̂ to carry any observable improvement on

some efficiency measure P? (iv) event in case where N is not biased, is the

selected injection mechanism I adequate for N? From these questions we

understand that efficiency measures may also depend on the nature of the

input predictor (N), and, of course, on the injection mechanism of choice

(I).

(A3) Task at hand. The learning task targeted by both N and N̂ determines the

training dataset as well as the test dataset T . The choice of T impacts the

assessment of both N and N̂ . Therefore, it may impact the score of any

efficiency measure as well. So, efficiency measures may finally also depend

on the target learning task, and, consequently on the test data (T ).

Summarising, efficiency measures assess some injection method I in a very specific

setting that depends on (i) the particular knowledge to be injected, (ii) the sort

of predictor undergoing injection, (iii) the training and (iv) test data adopted for

training. In other terms, any efficiency measure should be parametric w.r.t. K,

N , D, and T .

Accordingly, in the following we propose the implementation and formalisation

of metrics to assess the efficiency of SKI. In particular, as discussed at the beginning
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of this section, memory footprint, latency, energy consumption, and data efficiency

are introduced as key performance indicators of SKI. Our objective is to assess the

efficiency of SKI in terms of computational resource usage, and to provide insight

into how these metrics could be used to inform the design and optimisation of SKI-

based systems. Therefore, in the following, we consider retracing the definitions

of the efficiency metrics previously proposed in Section 2.1.2 and extend them to

the SKI scenario.

8.2.2 Memory Footprint

Several metrics for measuring the memory footprint of sub-symbolic predictors

have been recently proposed in the literature [Kang et al., 2018, Wu et al., 2018a,

Liberis et al., 2021]. For instance, it is possible to measure the neural networks’

memory footprint by counting the amount of parameters they are composed by—

i.e., essentially, the amount of synapses composing each neural network [Wu et al.,

2018a]. Alternatively, some authors leverage metrics such as Floating Point OP-

erations (FLOPs) [Huang et al., 2018] or Multiplication Addition Computations

(MACs) [Cheng et al., 2019], which measure the amount of total operations or

multiplications and additions required to perform a single inference respectively.

MACs consider solely multiplications and summations as they represent the most

common computations in NNs. The available measures are indicative of the

amount of memory required either to fit the whole sub-symbolic predictor – total

number of parameters – or to run it—FLOPs and MACs. Given the proven effec-

tiveness of these metrics, we here consider leveraging them to analyse the efficiency

gain of SKI approaches. In other terms, we consider the ability of SKI mechanisms

to produce lightweight sub-symbolic predictors—in terms of memory occupation.

The key insight here is that knowledge injection may lift part of the learning

burden from the predictor at hand, by relieving the network from the need to

learn complex or data-uncovered notions via trial-and-error. Indeed, the a-priori

concepts carried by the input knowledge might now be injected instead of being

learnt in a data-driven way. As a result, the amount of notions that sub-symbolic

predictors must learn in a data-driven way might be significantly reduced. Fewer

concepts to be learned are typically associated with fewer parameters, FLOPs,
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and MACs—or, in other words, a smaller memory footprint [Wu, 2019]. In the

context of SKI, we define the memory footprint improvement score µΨ,K,N(I) as
the amount of memory saved by the educated network N̂ w.r.t. its uneducated

counterpart N . The higher the score, the more memory efficient the educated

predictor is w.r.t. the uneducated one. However, as one may measure the memory

footprint of a sub-symbolic predictor in different ways – e.g., by counting the

number of parameters, FLOPs or MACs –, our scoring function is parametric in

Ψ—which represents the memory footprint metric of choice. More formally:

µΨ,K,N(I) = Ψ(N)−Ψ(I(K,N)) (8.2)

where N̂ = I(K,N) represents the educated predictor attained by injecting K

into N .

It is worth noticing how the proposed memory footprint score may be influenced

by quality and coverage of the input knowledge (A1), as well as by the memory

footprint of the input predictor N (A2). About (A1), the reason is simple: the

better the input knowledge, the lower the expected memory requirements of the

educated predictor. Similarly, as far as (A2) is concerned, the better the input

predictor, the lower the expected memory footprint improvements of the educated

predictor. However, one may also notice from Equation (8.2) that our memory

footprint score is not parametric when the current task is taken into account

(A3). The reason is simple: the memory footprint of a neural network is not

task-dependent, as it is a structural property of the neural network itself.

Finally, we stress that memory footprint of the educated predictor is expected

to be lower than the one of the uneducated predictor. Indeed, our score is measur-

ing the memory footprint improvement. A negative score µΨ,K,N(I) means that

the educated predictor is more memory hungry than the uneducated one—i.e.,

that the SKI approach is not effective in reducing the memory footprint of the

input predictor.

8.2.3 Energy Consumption

To function effectively in resource-constrained environments, it is required for AI

systems to consume a reduced amount of energy. One approach could be to use
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energy-efficient hardware, such as low-power processors, or to use distributed and

federated learning techniques that can distribute computation complexity across

multiple devices [Savazzi et al., 2021]. Another approach could exploit more effi-

cient algorithms and data structures so as to reduce the amount of computation

required by the AI system to process data. Along that line, the integration of sub-

symbolic predictors, which require less memory and computational resources than

conventional symbolic AI approaches, could meaningfully reduce energy consump-

tion. However, improvements can still be made from an energy point of view by

making the sub-symbolic systems more efficient. For instance, several techniques

rely on ad-hoc strategies to compress or optimise sub-symbolic predictors.

In this context, we see SKI approaches as providing human designers with a

huge opportunity. In fact, the introduction of injection mechanisms in the data-

driven pipeline of sub-symbolic training mechanisms may reduce the amount of

computations required to train and run sub-symbolic predictors. Indeed, knowl-

edge injection reduces the complexity of the learning process, providing another

source of knowledge other than the training data itself. Thus, one may be in-

terested in assessing whether and to what extent SKI mechanisms contribute to

reducing the amount of computations required by a sub-symbolic predictor along

its life-cycle.

We propose a new score aimed at measuring the energy consumption of SKI ap-

proaches. This is tightly related with memory footprint score from Section 8.2.2.

Indeed, it is usually the case for smaller predictors to require fewer amounts of

energy to train and run. However, there may exist memory efficient predictors

requiring a higher amount of energy to train and run, such as sparse ones. Indeed,

sparsity induces a lower amount of operations, but is not usually effectively im-

plemented at hardware level, increasing power consumption [Huang et al., 2018].

Therefore, energy consumption is a property which is worth to be measured by

itself.

In order to analyse energy consumption as well as the possible improvements

that SKI could bring about, we first need to define the life cycle of AI predictors,

analysing hungriness of each component resource. In order to build and deploy a

data-driven AI solution, a number of stages need to be completed, namely:
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Model definition, where data scientists analyse the task at hand and select the

most adequate sorts of sub-symbolic predictors, and the most promising

hyperparameters assignments for those predictors.

Model training, where the parameters of the sub-symbolic predictor of choice

are automatically tuned on the training data via some sort of training algo-

rithm. There, the amount of training samples (as well as their dimensional-

ity) may impact energy consumption. Indeed, training algorithms commonly

require running the predictor on the data and updating it several times.

Model testing, where the predictor is tested against a – limited – set of testing

samples to check if the performance are satisfactory. As for the training case,

energy consumption here may be affected by the amount (and dimensional-

ity) of testing samples.

Model deployment, where the predictor runs multiple times, which a frequency

which really depends on the specific application at hand

From the definition of the data-driven AI life-cycle, it is possible to highlight

that the training and deployment phases are the most resource hungry. Indeed,

training requires a huge – yet predictable – amount of predictor executions and

updates, whereas deployment might be very energy demanding depending on the

predictor usage frequency and life expectation—which are typically hard to antic-

ipate. Accordingly, as far as energy consumption is concerned, we are interested

in measuring the energy consumption of the training and deployment phases, in-

dividually. More precisely, for the training phase, we are interested in measuring

the energy consumption of the training algorithm itself, hence excluding the cost

of the inferences drawn during the training process—as their cost is expected to

be analogous to the one of the deployment phase. Notably, this distinction al-

lows us to evaluate the impact of SKI during both the training and deployment

phases—which may, in general, be significantly different. In fact, we expect SKI

to decrease the energy consumption of the deployed predictors, at the price of an

increased energy consumption of the training phase.

Delving into the details of the energy consumption measurements, we start

by defining the Υi score, aimed at measuring the average energy consumed by a
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sub-symbolic predictor N on a per-single-inference basis:

Υi
υ(N, T ) =

1

|T |
∑
t∈T

υ(N, t) (8.3)

Our definition assumes a function υ(N, t) is available to measure the energy con-

sumption of a single forward run of a sub-symbolic predictor N on a single sample

t. Such a function may for instance estimate the heat dissipated by the hardware

running the predictor, during the single inference N(t). Under that assumption,

Equation (8.3) measures the average energy consumption of a sub-symbolic pre-

dictor N on a test dataset T composed by several samples.

We now define the Υt score, aimed at measuring the average energy consumed

while training a sub-symbolic predictor N on a training dataset T :

Υt
υ,γ(e,N, T ) =

γ(e,N, T )

e · |T |
−Υi

υ(N, T ) (8.4)

Our definition assumes the training involves e epochs, and that during each epoch

the whole training set T is used to update the predictor N . The definition also

assumes γ(e,N, T ) is a function estimating the overall energy consumed by the

training phase as whole—including the energy consumed by the inferences drawn

during the training process. Similarly to υ, function γ may for instance estimate

the heat dissipated by the hardware running the predictor, during the whole train-

ing process. Under such assumptions, Equation (8.4) measures the average energy

consumption required by the predictor N for a single update, during its training

on the dataset T .

We can now define the energy consumption improvement of a SKI mechanism

as the amount of energy saved by the educated predictor, compared to its une-

ducated counterpart. Again, we distinguish between energy consumption during

training and energy consumption during inference. Along this line, we introduce

two scores, namely εiυ,K,N,T (I) (resp. εtυ,γ,K,N,T (I)), aimed at measuring the en-

ergy consumption improvement of a SKI mechanism I, during inference (resp.
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training). More formally:

εiυ,K,N,T (I) = Υi
υ(N, T )−Υi

υ(I(K,N), T )

εtυ,γ,e,K,N,T (I) = Υt
υ,γ(e,N, T )−Υt

υ,γ(e, I(K,N), T )
(8.5)

where N̂ = I(K,N) represents the educated predictor attained by injecting K

into N , and T is a reference dataset of choice—most commonly, the training set

in the case of εt, and the test set in the case of εi.

It is worth noticing how the proposed energy consumption scores may be influ-

enced by all aspects (A1)–(A3). About input knowledge (A1) the reason is sim-

ple: the more complex the input knowledge, the higher (resp. lower) the expected

energy consumption of the educated predictor during training (resp. inference).

Similarly, as far as the input predictor is concerned (A2), the more energy-hungry

it is, the higher we expect the educated predictor’s energy consumption improve-

ments to be. Lastly, the task at hand (A3) has a clear effect on our scores, as

they are both parametric in the dataset—energy consumption improvements are

typically task-specific.

8.2.4 Latency

The amount of time required to draw a single prediction is one of the most relevant

and impactful efficiency measures for sub-symbolic predictors. In what follows,

we refer to such time-lapse as latency. A small latency indicates that a sub-

symbolic predictor is able to compute relevant predictions in useful time—which

is an important property in real-world applications. For instance, low latency is

essential in those scenarios where human lives depend on the timely response of

some AI system, such as intelligent transportation [Grigorescu et al., 2020] and

e-health [Esteva et al., 2021]. This is why recent research efforts in the AI field

are focussing on time-sensitive predictors.

One possible solution available to address this problem is the use of SKI ap-

proaches. By incorporating symbolic representations, SKI approaches can reduce

the amount of computations required to process data, leading to reduced latency.

Furthermore, the use of symbolic representations could help to simplify the com-
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plexity of the system, making it easier to predict the behavior of the system and

identify the root causes of an increased latency. As a result, we believe it is crucial

to measure latency in order to assess the computational efficiency of present AI

systems.

Formally, we define the latency of a predictor N as the average time required

to draw a single prediction from a dataset T :

Λ(N, T ) =
1

|T |
∑
t∈T

Θ(N, t) (8.6)

where Θ(N, t) represents the time required to draw a prediction from N on the

input t.

As far as SKI is concerned, we are interested in assessing the latency gain

brought by a given SKI mechanism I w.r.t. some uneducated predictor. Along

this line, one may be interested in figuring out whether injection increases or

decreases the latency of a given predictor. Hence, we define the latency gain

λK,N,T (I) introduced by some SKI method I as the average difference between

the inference time of the educated predictor N̂ and its uneducated counterpart N ,

over a reference test dataset T . More formally:

λK,N,T (I) =
1

|T |
∑
t∈T

(
Θ(N, t)−Θ(N̂ , t)

)
= Λ(N, T )− Λ(N̂ , T ) (8.7)

where N̂ = I(K,N) represents the educated predictor attained by injecting K

into N .

Similarly to the energy measurement, the latency metric is tightly related to

the complexity of the educated sub-symbolic predictor and therefore with mem-

ory footprint. However, like energy consumption, latency is not always directly

proportional to the amount of operations that construct the predictor at hand.

Sparsely-structured operations might slow down the inference process due to their

inefficient computation at hardware level. Moreover, input data complexity and

quality might alter the latency achieved by the predictor. Indeed, inference over

different – yet structurally analogous – samples may take vastly different timings,

as shown in the attack proposed in [Shumailov et al., 2021].

186 CHAPTER 8. CAN SKI HELP EFFICIENTISATION?



8.2. SKI QUALITY-OF-SERVICE METRICS DEFINITION

It is worth noticing how the proposed latency score may be influenced all as-

pects (A1)–(A3). About input knowledge (A1), we argue it may have both a

positive and a negative effect on the latency gain. In fact, on the one hand, some

SKI mechanisms might introduce additional computations—such as the ones re-

quired to process the input knowledgeK in structuring methods—see Section 7.3.2.

We expect this effect to be magnified in the case of large knowledge bases, as the

number of operations required to process them is expected to be higher. On the

other hand, SKI systems might also reduce the inference time of the given predic-

tor, by reducing the number of computations required to draw a prediction—likely,

at the expense of higher training times. As far as the input predictor in concerned

(A2), the more time-consuming it is, the higher we expect the educated predic-

tor’s latency gain to be. Lastly, the task at hand (A3) has a clear effect on our

score, as latencies are computed over task-specific test sets.

8.2.5 Data Efficiency

Sub-symbolic predictors which rely on data-driven training algorithms, can provide

groundbreaking performance and flexibility, but the data-driven procedure comes

with several shortcomings. These predictors require collecting significant amounts

of data samples for each task to be tackled, leading to increased data storage

and processing requirements. Furthermore, not only the quantity but also the

quality of the data – here intended as its representativeness of the task at hand

– is crucial for the predictor to learn effectively. All such requirements make the

data collection process time-costly – and depending on the application – possibly

affected to subjectivity or uncertainty—e.g., emotion recognition [Deng and Ren,

2021].

For all these reasons, recent research efforts have focused on proposing data-

frugal predictors [Sanchez-Iborra and Skarmeta, 2020]. Among them, knowledge

injection mechanisms play a significant role [Xu et al., 2018]. Indeed, leveraging a-

priori knowledge, SKI relieves the learning process from part of its computational

burdens. Concepts that an uneducated predictor would need to learn from data

might now be injected into the educated predictor, instead. Hopefully, this would

let the educated predictor’s learning process require lower amounts of data to
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attain acceptable performance levels. In this sense, SKI might be considered as a

data-efficiency mechanism.

We are here interested in computing the data-efficiency gain brought by a given

SKI mechanism w.r.t. some uneducated predictor. To do so, we firstly need to

define the data footprint of a given predictor. Informally, the data footprint of

a predictor N is the amount of data it requires to be trained to reach a certain

performance level. Hence, assuming that a predictor N is trained on a dataset

D – of samples of potentially different dimensions –, via some training process

involving e epochs, and that it reached a performance level π(N, T ) over a test set

T – and according to some test dataset T –, we define its data footprint as follows:

∆π(e,N,D, T ) =
e

π(N, T )

∑
d∈D

β(d) (8.8)

where d is a single training sample, and β(d) is the amount of bytes required for

its in-memory representation, and π is some performance score of choice. As the

reader may notice, the data footprint is directly proportional to the number of

epochs e, to the size of the training set, and to its dimensionality; whereas it is

inversely proportional to the performance score of the resulting predictor.

We define the data-efficiency gain δe,K,N,D,D′,T (I) of a given SKI mechanism

I as the difference between the data footprint of the uneducated predictor N –

trained upon some dataset D – and that of the educated predictor I(K,N)—

trained upon some other dataset D′. The score assumes that the two predictors

have been trained for the same number of epochs e, and that their performance is

assessed using the same performance score π, on the same test set T—in order to

keep the comparison fair. More formally:

δe,K,N,D,D′,T (I) = ∆π(e,N,D, T )−∆π(e, I(K,N), D′, T ) (8.9)

The simplest approach to improve data efficiency in SKI mechanisms is to re-

duce the amount of samples that compose the training dataset—i.e. |N | in Equa-

tion (8.8). However, one may also consider the option of decreasing the size of sam-

ples either by reducing their dimensionality or by compressing their representations—

in a nutshell, by reducing β(d) for all d ∈ D.
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To increase the data-efficiency gain, one may also consider engineering SKI and,

consequently, the educated predictor. Along this line, the best strategy consist in

reducing the size of the training set D′ for the educated predictor by letting the

input knowledge K compensate for such lack of data. Notably, this is possible

because our score is sensitive to both aspects (A1) and (A3). In other words,

both the input knowledge and the task at hand have a measurable effect on the

data-efficiency gain. Finally, as far as the baseline predictor is concerned (A2),

we argue that the more data hungry it is, the more the data-efficiency gain will

be.

8.3 Integration of SKI QoS Metrics into PSyKI

In this section we thoroughly discuss the PSyKI system by first providing the

reader with a comprehensive overview of the system, then delving into the specifics

of how QoS metrics are integrated into the PSyKI library.

PSyKI – acronym for “Platform for Symbolic Knowledge Injection” – is a

Python library that provides support for the injection of prior symbolic knowledge

into sub-symbolic predictors by letting the users choose the most adequate method

with respect to the ML task to accomplish [Magnini et al., 2022b]. PSyKI is a

tool for intelligent systems engineers who need to either experiment with already-

existing SKI algorithms or invent new ones.3

Currently, PSyKI can be used with predictors created by Tensorflow4 and sup-

ports the following SKI algorithms:

• KINS: Knowledge Injection via Network Structuring [Magnini et al., 2022a]

is a structuring-based injection mechanism where an ordinary multi-layer

neural network is extended with ad-hoc neural modules aimed at mimicking

the provided symbolic knowledge. The weights of the neural modules are

trained together with the weights of the original neural network.

• KILL: Knowledge Injection via Lambda Layer [Magnini et al., 2022c] is a

guided-learning-based approach that constrains the training phase as follows.

3PSyKI is public and currently available at https://github.com/psykei/psyki-python.
4https://www.tensorflow.org
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Figure 8.1: PSyKI design. Each SKI algorithm follows the workflow represented
in the figure. The four yellow boxes represent the four main steps of the workflow.
The first step is the parsing (Π) of the symbolic knowledge. The second step is
the fuzzification (ζ) of the parsed knowledge. The third step is the injection (I)
of the fuzzified knowledge into the uneducated target predictor (P ). The fourth
step is the training (T ) of the new predictor, making it educated (P ′).

Before each back-propagation step, a penalty value that represents the de-

gree of violation w.r.t. the input knowledge is added to the loss function.

Therefore, the training phase is forced to minimize the loss function and the

penalty value at the same time—hence maximising the compliance w.r.t. the

knowledge to be injected.

• KBANN: Knowledge-Based Artificial Neural Network [Towell et al., 1990]

is one of the first structuring-based SKI algorithms proposed in the literature.

It creates a NN from a set of propositional rules: each piece of each formula

is converted into partial neural structures, to be then composed in a single

network. The main difference w.r.t. to KINS is that the network created by

KBANN is entirely constructed from the knowledge, while KINS extends an

existing network with ad-hoc modules.

Essentially, PSyKI is designed around the notion of injector, whose block dia-

gram is shown in Figure 8.1. An injector is any algorithm accepting as input a ML

predictor and prior symbolic knowledge (typically logic formulæ) and producing

a new predictor as output. In order to properly perform injection, injectors may

require additional information, such as algorithm specific hyperparameters.
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psyki

ski
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Injector

predictor: Predictor
fuzzifier: Fuzzifier
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from_legacy_theory(legacy_theory): Theory
from_file(filename): Theory
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Figure 8.2: Class diagram of PSyKI. Main entities are Injector, Formula, and
Fuzzifier.

PSyKI supports the processing of symbolic knowledge represented via logic

formulæ. Based on the sort of logic adopted, user can build an abstract syntax

tree (AST) for each formula. The AST can be inspected through a fuzzifier via

pattern visitor [Gamma et al., 1993] to encode the symbolic knowledge into a

sub-symbolic form (e.g. fuzzy logic functions, ad-hoc layers). The resulting sub-

symbolic object can finally be used by an injector to create a new predictor. This

process – denoted with ζ in Figures 7.8, 7.9, 7.10 – is injector-specific; instead, the

same parser Π can be used independently of the injector for logic formulæ of the

same type.

The software is organised into well-separated packages and interfaces, so as

to ensure extensibility towards new sorts of logics and fuzzifiers—see Figure 8.2.

A formula AST is represented in the software via instances of the Formula ab-

stract class and its manifold subtypes (not shown in the figure)—aimed at covering

the many logic-specific aspects supported by PSyKI. Ad-hoc implementations of

Formula are included in PSyKI, one for each the logic formalism supported by the

framework – currently, Prolog, Datalog, and their sub-sets –, and more may be

introduced in the future by interested researchers. The same holds for fuzzifiers

(resp. injectors), i.e., sub-types of the Fuzzifier (resp. Injector) abstract class.

However, in its original state PSyKI does not include any particular facility

to assess SKI. This is why in the remainder of this chapter we propose a PSyKI
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extension aimed at supporting engineers in need of practically assessing the effici-

entisation benefits of their SKI workflows.

8.3.1 QoS Metrics Implementation in PSyKI

QoS metrics are implemented as a set of classes that extend the Metric abstract

class. Each class corresponds to a specific metric and is responsible for computing

the corresponding score. Therefore, the Metric class provides a common interface

for all metrics.

In particular, it provides two methods to compute the metric value between

two predictors. The first method is compute during training and it is used

to compute the metric during the training phase of the predictors. The second

method is compute during inference and it is used to compute the metric when

predictors are already trained. Both methods, accept the predictors to compare

as input parameters. Additional parameters can be passed to the methods to

customise the computation of the metric to meet the specific needs of the user

(e.g., training set, batch size, etc.).

Implemented metrics are:

1. Memory: memory consumption efficiency of the predictors—Equation (8.2);

2. Energy: energy consumption efficiency of the predictors—Equation (8.5);

3. Latency: latency efficiency of the predictors—Equation (8.7);

4. DataEfficiency: data efficiency of the predictors—Equation (8.9).

Metrics are included into the psyki.qos package. It is worth noting that all

the metrics can be computed using any kind of predictors: no need to have one

uneducated and one educated predictor. Instead, one can also compare, say, two

educated predictors, or two uneducated predictors of any sort.

8.4 Experiments

In this section we present several experiments aimed at assessing the effectiveness

of the proposed QoS metrics, as implemented in PSyKI. We first describe the
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Symbol Adenine Cytosine Guanine Thymine

d • • •
m • •
r • •
s • •
y • •

Table 8.1: Mapping of aggregative symbols and the four nucleotides. Each symbol
can be substituted with one base on the right that has a dot.

experimental setup, the datasets we adopt, and the rationale behind their choice.

Then, we present the results of our experiments, and we discuss them.

The design of our experiments is as follows:

1. we select three relevant classification tasks from the literature, covering differ-

ent application domains, and coming with datasets of increasing cardinality;

2. for each task and its corresponding dataset D, we (i) train some uneducated

neural predictor N over the data in D – of course performing train/test-set

splitting –, and we (ii) select some symbolic knowledge base K to be injected

in N ;

3. for each uneducated predictor N we then apply SKI multiple times, one per

each injection technique currently supported by PSyKI, namely KBANN,

KINS, and KILL—hence attaining as many educated predictors;

4. finally, for each educated predictor N̂ , we compute our QoS metrics, hence

comparing that N̂ and N w.r.t. (i) data efficiency, energy consumption,

memory footprint, latency, and accuracy variation.

The rationale behind this setup is to demonstrate the effectiveness of our QoS

metrics in assessing the efficiency SKI techniques of different sorts.

8.4.1 Datasets

We select three different datasets from the UCI repository5: BCW, PSJGS, and

CI.
5https://archive.ics.uci.edu/ml/index.php
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Breast cancer Wisconsin dataset (BCW) [Wolberg, 1992] The BCW dataset

contains 699 instances of breast cancer biopsy results, each with 9 features

– summarising biological characteristics – and one class label. Values are

integers in the range [1, 10]. The feature BareNuclei has 16 missing values,

which are replaced with the value zero. The dataset’s target variable is a

binary indicator of whether a biopsy was benign (B) or malignant (M), class

repartition is 458 and 241 respectively. The purpose of the dataset is to de-

velop predictors that can accurately diagnose breast cancer based on biopsies

using the information contained in the features.

Primate splice junction gene sequences (PSJGS) [Towell and Shavlik, 1994]

The PSJGS dataset includes information regarding gene splicing. The dataset

includes 3,190 instances, each representing a sequence of 60 DNA nucleotides.

Each nucleotide is represented by one of the four letters A (adenine), T

(thymine), C (cytosine), and G (guanine). Each sequence begins at position

-30 and ends at 30, position zero is excluded.

One DNA sequence can be classified as an exon–intron (EI) boundary, an

intron–exon (IE) boundary, or none (N) of them. Class frequencies are 50%

for N, 25% for both EI and IE.

In addition to the four nucleotides, the dataset also includes other letters that

indicate that for one specific position different nucleotides are allowed. For

our experiments, we preprocess the dataset by binarising the nucleotides. In

other words, each nucleotide is represented by a vector of 4 elements, where

each element is 0 except for the one corresponding to the nucleotide itself,

which is 1. Table 8.1 reports the complete binarisation of the nucleotides.

Census income (CI) [Kohavi and Becker, 1996] The CI dataset contains indi-

vidual information from the 1994 United States Census. The dataset contains

48,842 instances, each corresponding to one census participant. Each data

row includes information such as age, education, and occupation, as well as

income data about a single person. The purpose of the dataset is to predict

whether an individual’s annual income is greater than or less/equal than/to

50,000 USD based on their demographic information. Hence, the target vari-
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able is binary—37,155 earn less/equal than/to 50,000 USD and 11,687 earn

more than that amount per year.

For our experiments, we convert the target Income to a binary output (1 if

the income exceeds 50,000 USD and 0 otherwise). We also drop three features

– namely Fnlwgt , Education, and Race – as they are irrelevant for our exper-

iment (Fnlwgt is a similarity metric computed over the other features, the

information provided by Education is already present thanks to the feature

EducationNumeric) or possibly introduce cultural bias (Race). The remain-

ing features are discretised. In particular, CapitalGain and CapitalLoss are

binarised, while the remaining nominal categorical features are transformed

into one-hot-encoded data.

We choose these datasets because of their increasing cardinality, which ranges from

102 to 104. In this way, we are able to observe the scalability and robustness of our

predictors and metrics in handling datasets of different volume or dimensionality.

This is important to get a broader overview about the performance of the different

predictors both in terms of their accuracy and in terms of the various efficiency

metrics proposed in this work.

We divide each dataset into train and test sets, with a ratio of 2/3 and 1/3

respectively.

Finally, we attain the knowledge bases to be injected in a task-specific way. As

far as the PSJGS dataset is concerned, we rely on the knowledge base described

into the corresponding paper [Towell et al., 1990], which we suitably convert in

Prolog form. Conversely, as far as the BCW and CI datasets are concerned, we

leverage upon symbolic knowledge extraction [Sabbatini et al., 2022] to automati-

cally generate knowledge bases in Prolog form out of trained predictors. Table 8.2

lists the logic rules that constitute the symbolic knowledge used in the SKI algo-

rithms for the breast cancer dataset. A similarly-shaped knowledge has been used

also in the SKI algorithms for the census income dataset.

8.4.2 Methodology

We define and train several neural predictors, for each dataset—in particular,

one uneducated network and multiple educated counterparts. We attain educated
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Table 8.2: Knowledge used for the breast cancer dataset.

Symbolic knowledge (Prolog formalism)

diagnosis(BareNuclei ,BlandChromatin,ClumpThickness ,MarginalAdhesion,Mitoses ,

NormalNucleoli , SingleEpithelialCellSize,UniformityCellShape,UniformityCellSize, benign) : −
UniformityCellSize < 3,NormalNucleoli > 2,BareNuclei < 1.

diagnosis(BareNuclei ,BlandChromatin,ClumpThickness ,MarginalAdhesion,Mitoses ,

NormalNucleoli , SingleEpithelialCellSize,UniformityCellShape,UniformityCellSize, malignant) : −
UniformityCellSize < 3,NormalNucleoli > 2,BareNuclei > 1.

diagnosis(BareNuclei ,BlandChromatin,ClumpThickness ,MarginalAdhesion,Mitoses ,

NormalNucleoli , SingleEpithelialCellSize,UniformityCellShape,UniformityCellSize, benign) : −
UniformityCellSize > 3,BareNuclei < 0.

diagnosis(BareNuclei ,BlandChromatin,ClumpThickness ,MarginalAdhesion,Mitoses ,

NormalNucleoli , SingleEpithelialCellSize,UniformityCellShape,UniformityCellSize, malignant) : −
UniformityCellSize > 3,BareNuclei > 0,BlandChromatin > 4.

diagnosis(BareNuclei ,BlandChromatin,ClumpThickness ,MarginalAdhesion,Mitoses ,

NormalNucleoli , SingleEpithelialCellSize,UniformityCellShape,UniformityCellSize, malignant) : −
UniformityCellSize > 3,BareNuclei > 0,BlandChromatin < 4,UniformityCellSize < 4,NormalNucleoli < 1.

diagnosis(BareNuclei ,BlandChromatin,ClumpThickness ,MarginalAdhesion,Mitoses ,

NormalNucleoli , SingleEpithelialCellSize,UniformityCellShape,UniformityCellSize, benign) : −
UniformityCellSize > 3,BareNuclei > 0,BlandChromatin < 4,UniformityCellSize < 4,NormalNucleoli > 1.

diagnosis(BareNuclei ,BlandChromatin,ClumpThickness ,MarginalAdhesion,Mitoses ,

NormalNucleoli , SingleEpithelialCellSize,UniformityCellShape,UniformityCellSize, malignant) : −
UniformityCellSize > 3,BareNuclei > 0,BlandChromatin < 4,UniformityCellSize > 4,MarginalAdhesion > 1.

diagnosis(BareNuclei ,BlandChromatin,ClumpThickness ,MarginalAdhesion,Mitoses ,

NormalNucleoli , SingleEpithelialCellSize,UniformityCellShape,UniformityCellSize, malignant) : −
UniformityCellSize > 3,BareNuclei > 0,BlandChromatin < 4,UniformityCellSize > 4,MarginalAdhesion < 1,NormalNucleoli < 3.

diagnosis(BareNuclei ,BlandChromatin,ClumpThickness ,MarginalAdhesion,Mitoses ,

NormalNucleoli , SingleEpithelialCellSize,UniformityCellShape,UniformityCellSize, benign) : −
UniformityCellSize > 3,BareNuclei > 0,BlandChromatin < 4,UniformityCellSize > 4,MarginalAdhesion < 1,NormalNucleoli > 3.

diagnosis(BareNuclei ,BlandChromatin,ClumpThickness ,MarginalAdhesion,Mitoses ,

NormalNucleoli , SingleEpithelialCellSize,UniformityCellShape,UniformityCellSize, benign) : −
NormalNucleoli < 2,BareNuclei < 4.

diagnosis(BareNuclei ,BlandChromatin,ClumpThickness ,MarginalAdhesion,Mitoses ,

NormalNucleoli , SingleEpithelialCellSize,UniformityCellShape,UniformityCellSize, malignant) : −
BareNuclei > 4, SingleEpithelialCellSize < 1.

diagnosis(BareNuclei ,BlandChromatin,ClumpThickness ,MarginalAdhesion,Mitoses ,

NormalNucleoli , SingleEpithelialCellSize,UniformityCellShape,UniformityCellSize, benign) : −
SingleEpithelialCellSize > 1.

networks by applying SKI via the KINS, KILL, and KBANN algorithms—each

one exploiting some different approach to perform knowledge injection—see Sec-

tion 8.3. By constructing all such predictors, we are able to compare and evaluate

their performance and their metrics on each dataset.

For each uneducated predictor, we tune the structural hyperparameters (i.e.

amount of layers and neurons per layer) by using a grid search with cross-validation.

Networks attained via KBANN are a notable exception here, as in those cases the

entire architecture of the network is dictated by KBANN, as a function of the

input knowledge. In particular, we chose to vary the number of layers (from 1 to

3) and the number of neurons per layer (10, 50, and 100). The same process of

grid search with cross cross-validation is repeated for the “educated” predictors.

In this way, we can ensure good hyperparameters selection – in terms of predictive
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Table 8.3: Results of a comprehensive grid search on various datasets. The models
evaluated in this study are the uneducated one, and the three different educated
models with KBANN, KILL, and KINS. Note that the model used by KBANN
is identical to the model obtained via grid search for the uneducated model. The
table provides a summary of the number of layers and neurons used in each model
for each dataset.

Dataset Model Layers Neurons

BCW

Uneducated 3 [100, 10, 50]
KBANN 3 [100, 10, 50]
KILL 3 [100, 10, 50]
KINS 3 [100, 10, 10]

PSJGS

Uneducated 3 [100, 10, 10]
KBANN 3 [100, 10, 10]
KILL 3 [100, 10, 10]
KINS 3 [50, 10, 10]

CI

Uneducated 3 [10, 50, 50]
KBANN 3 [10, 50, 50]
KILL 3 [10, 50, 10]
KINS 3 [10, 50, 10]

performance –, while still keeping the computation time reasonable. Table 8.3

shows the selected hyperparameters for each dataset and predictor.

In order to tune the (hyper-)parameters of each predictor in a statistically

significant way, we repeat the training 30 times, each time with different initial

conditions and/or random seeds, grasping statistics about the average accuracy

along the way. This lets us reduce the variability of the results and obtain a

more accurate estimate of a predictor’s actual performance. The outcome of this

procedure is shown in Table 8.4.

After calculating the average accuracy, we proceed in computing predictors’

efficiency metrics, for each dataset. In particular, we compute data efficiency,

energy, memory, and latency metrics—see Section 8.2. The corresponding scores

are presented in Table 8.4, and discussed in the following section.
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Table 8.4: Comparison of the performance of different models (KBANN, KILL,
and KINS) respect to the uneducated one on three datasets (Breast Cancer, Splice
Junction, and Census Income) in terms data efficiency, energy consumption, mem-
ory usage, latency, and accuracy. Note that the train accuracy is the mean of 30
runs.

Dataset Model Set Data efficiency (KB) Energy (mWh) Memory (FLOPs) Latency (ms) Accuracy (% )

BCW

uneducated – – – – 94.53

KBANN
train

35.89
-1.47

3933 -1.70 95.45
test -0.10

KILL
train

4.09
-0.99

0 0.35 94.63
test 0

KINS
train

-9.97
-1.22

-559 -1.41 94.29
test -0.09

PSJGS

uneducated – – – – 93.91

KBANN
train

-4946.81
-4.67

-66944 -2.56 92.84
test -0.22

KILL
train

553.89
-3

0 0.04 94.02
test 0

KINS
train

-954.80
-6.53

-161779 -4.75 93.70
test -0.51

CI

uneducated – – – – 84.63

KBANN
train

1653.79
-1.41

-2468 -0.43 84.78
test -0.02

KILL
train

4016.90
-0.70

4200 0 84.81
test 0

KINS
train

4263.50
-1.41

-6220 -0.44 84.77
test -0.02

8.4.3 Discussion

In the following we thoroughly analyse and interpret the results of our experiments.

Accordingly, we examine the columns of Table 8.4 from left to right.

It is worth noticing how data-efficiency scores vary hugely across predictors

and datasets. We recall that a positive data-efficiency score indicates that the

educated predictor is more efficient than its uneducated counterpart, whereas a

negative score indicates the opposite. In general, as stated in Section 8.2, it is

important to consider how data-efficiency scores can be affected by all three aspects

(A1)–(A3). Thus, for instance, the high variation of this score points out the

importance of selecting the most appropriate predictor for a given task (A3). For

instance, the KINS-based solution has a lower data-efficiency score than the other

predictors tailored on the BCW dataset. This may indicate that KINS is not the

best solution for this task. In contrast, we note that the CI dataset shows positive

data-efficiency scores for all three predictors, indicating that, in terms of data

efficiency, an improvement is obtained by using all three SKI algorithms proposed
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in this work.

The second column of Table 8.4 shows the energy metrics for both train and

test. With regard to each predictor and dataset, we mostly see negative values

for this metric. Again, it is important to note that energy consumption scores

can be affected by a number of factors, including input knowledge (A1), input

predictor (A2), and task to be performed (A3). In most cases, the table indicates

that the KBANN-based solution consumes more energy than the other predictors.

In contrast, the KILL-based solution consumes significantly less energy than the

other predictors. Additionally, it is important to shift the emphasis towards input

knowledge (A1). As stated in Section 8.2, it is expected that the more complex

the input knowledge, the more energy the educated predictor will consume during

training. Hence, in terms of data efficiency, we argue that more complex knowledge

may produce a gain for the educated predictor—possibly at the price of higher

expenses in terms of energy consumption.

The third column of Table 8.4 shows the results of the memory metric. We

recall that a positive value here indicates that the educated predictor consumes less

memory than the uneducated one. Conversely, a negative value indicates that the

educated predictor consumes more memory. For example, in the case of the BCW

dataset and the KBANN-based solution, the educated predictor shows a positive

difference in memory consumption—which means it uses less memory than the

uneducated one. In the PSJGS dataset, both KBANN- and KINS-based solutions

show negative memory metrics. This suggests that, in this case, those educated

predictors are more memory intensive than the uneducated one. Regarding the

KILL-based solution, it often shows a memory metric of 0, indicating that there

is no difference in memory between the educated and uneducated predictors.

The fourth column of Table 8.4 shows the latency results. Comparing the

latency of educated predictors with the uneducated ones, we observe that, as far

as KILL is concerned, the results between the two solutions are very similar—i.e.,

the metric is close to 0 in both cases. KBANN and KINS, on the other hand, have

a slightly-worse latency, on all three datasets. As discussed in Section 8.2, we argue

this is due to the complexity of the injected input knowledge, which can lead to

negative effects in terms of latency—especially in structuring-type SKI methods,

such as KBANN.
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Finally, by looking at the accuracy scores – see the last column of the Table 8.4

–, we observe that the educated and uneducated predictors show very similar

results. Furthermore, the results indicate that the accuracy of all predictors on all

three datasets is very similar and consistent. In general, results suggest that all

predictors perform well and can accurately predict the results of the datasets.

To conclude, in terms of data efficiency, the educated predictor generally re-

quires less data to achieve similar accuracy than the uneducated one. This is

a positive result, as it suggests that the trained predictor is able to make accu-

rate predictions using less data, which can be a nice-to-have feature in resource-

constrained settings.

As far as energy is concerned, our results show a gain in energy during the

training phase for the uneducated predictor, but during the inference phase this

difference is close to 0. We argue that this is due to the knowledge injection process,

which in these experiments required more energy expense for the educated predic-

tor than the uneducated one. About memory, the results are somehow mixed: the

educated predictor sometimes requires more memory and sometimes less memory

than the uneducated one. Finally, as far as latency is concerned, results indi-

cate that the uneducated predictor tends to have a slightly lower latency than the

educated one.

Chapter Synopsis

In this chapter we propose a set of quality-of-service (QoS) metrics for SKI mecha-

nisms, focusing on the efficiency gains achievable through SKI. Along this line, we

formally define four metrics, namely: (i) memory footprint efficiency—i.e., gain in

terms of predictor’s complexity; (ii) energy efficiency—i.e., gain in terms of total

energy required to train and deploy a sub-symbolic predictor; (iii) latency effi-

ciency—i.e., improvements in terms of time required for inference; and (iv) data

efficiency—i.e., improvement in terms of amount of data required to optimise a

sub-symbolic predictor.

Enabled by PSyKI, we perform a number of experiments aimed at demon-

strating the effectiveness of our metrics. Overall, our experiments show that the

proposed metrics can be exploited to grasp insights about whether a given SKI
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mechanism is actually able to improve the efficiency of a given predictor or not. As

a by-product of our experiments we also show that SKI approaches sometimes help

reduce the amount of computations required to process data, leading to improved

data efficiency and reduced memory footprint.
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Chapter 9

Can Symbolic Knowledge

Extraction Help Efficientisation?

This chapter contains results of the work done during my

visiting at TU Delft and published in [Agiollo et al., 2023b].

SKI techniques have been proven useful for achieving efficiency gains by reduc-

ing the learning burden via the straight away integration of the very knowledge

that predictors would otherwise struggle to learn from huge amounts of data. On

the other hand, theoretically speaking, SKE approaches can be used to extract a

surrogate model whose complexity can be limited, thus obtaining a more efficient

and resource-friendly version of the original sub-symbolic predictor. However, this

assumption concerning SKE approaches has not been tested so far in the litera-

ture, as most SKE works focus on the fidelity of the surrogate model. Indeed, SKE

approaches are affected by a fidelity vs. complexity trade-off. To extract a high

fidelity surrogate model requires increasing its complexity, allowing it to take into

account all the intricacies of the sub-symbolic model to be replicated. Therefore, it

represents an open challenge to meaure if – and to what extent – SKE techniques

can be leveraged to achieve efficiency improvements over NNs.

Motivated by this insight we here propose to measure directly SKE efficiency.

We focus on the Natural Language Processing (NLP) domain, as it represents the

scenario where it is common for very large NN models to be used to tackle quite

simple classification tasks. In this context, we propose building global post-hoc

explainers from the output of a Local Post-hoc Explainer (LPE). We leverage a
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neuro-symbolic process [Kautz, 2022, Agiollo et al., 2023a, Agiollo and Omicini,

2023, Agiollo et al., 2022], aiming at extracting the Large Language Model (LLM)

knowledge under the form of a logic program equivalent to the sub-symbolic model

at hand, similarly to [Calegari and Federico, 2022, Sabbatini et al., 2022]. More

in detail, the presented knowledge extraction framework – namely, Global Ex-

planations from Local Post-hoc Explainers (GELPE) – relies on the LPE’s out-

puts to identify the set of most relevant components in sentences, and optimise

a transparent-by-design – such as Classification And Regression Tree (CART) –

surrogate model to mimic the LLM predictions. Once the transparent model is

optimised, an equivalent logic program is extracted from the model, allowing for

the inspection of the global reasoning process of the LLM. Identifying small and

efficient surrogate programs over several tasks, the proposed framework enables

the deployment of intelligent techniques over resource-constrained environments

where LLMs represent a limited solution [Sarkar et al., 2023, Agiollo and Omicini,

2021].

We test the proposed framework over a large set of text classification domains,

ranging from simple scenarios – e.g., spam text classification [Almeida et al.,

2011, Alberto et al., 2015] – to challenging tasks such as the Moral Foundation

Twitter Corpus (MFTC) [Hoover et al., 2020]. As the performance of the proposed

approach largely depends on the LPE technique used, we first consider analysing

how different LPEs correlate with each other. Surprisingly, our experiments show

how the explanations of different LPEs are far from being correlated, highlighting

how explanation quality is highly dependent on the chosen eXplainable AI (XAI)

approach and the respective scenario at hand. There are huge discrepancies in the

results of different state-of-the-art local explainers, each of which identifies a set of

relevant concepts that largely differs from the others—at least in terms of relative

impact scores. These results highlight the fragility of XAI approaches for NLP,

caused mainly by the complexity of large NN models, their inclination to extreme

fitting of data and the lack of sound techniques for comparing XAI mechanisms.

Under the efficientisation perspective, the proposed experiments also highlight

how GELPE enables the extraction of reliable surrogate logic programs from LLMs

with high fidelity over a broad set of datasets. The extracted knowledge is not

only faithful to the original model, but also quite simple, as the complexity of
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the logic program is kept bounded depending on the number of relevant lemmas

selected. Throughout our experimental evaluation, we analyse the computation re-

quirements of the proposed extraction process and the efficiency of the extracted

logic program. Numerical results highlight the efficiency of the extracted surro-

gate model, improving over the original LLM in terms of required processing time

and consumed energy. The results show how the proposed framework enables

the deployment of intelligent solutions over resource-constrained environments via

identifying transparent surrogate models. Also, we highlight that leveraging on

LLMs to tackle a learning task in NLP does not always represent the best op-

tion, as alternative equivalent solutions that are simple, small and transparent are

actually available.

9.1 Background: Explanations in NLP

The set of explanations extraction mechanisms available in the XAI community are

often categorised along two main axis [Guidotti et al., 2018, Adadi and Berrada,

2018]: (i) local against global explanations, and (ii) self-explaining against post-hoc

approaches. In the former context, local identifies the set of explainability ap-

proaches that given a single input produce an explanation of the reasoning process

followed by the NN model to output its prediction for the given input [Luo et al.,

2021]. In contrast, global explanations aim at expressing the reasoning process of

the NN model as a whole [Hailesilassie, 2016, Ibrahim et al., 2019]. Given the

complexity of the NN models leveraged for tackling most NLP tasks, it is worth

noticing how there is a significant lack of global explainability systems, whereas

a variety of local XAI approaches are available [Lundberg and Lee, 2017, Ribeiro

et al., 2016].

About the latter aspect, we define post-hoc as those set of explainability ap-

proaches which apply to an already optimised black-box model for which it is

required to obtain some sort of insight [Madsen et al., 2022]. Therefore, a post-hoc

approach requires additional operations to be performed after that the model out-

puts its predictions [Danilevsky et al., 2020]. Conversely, inherently explainable

– self-explaining – mechanisms aim at building a predictor having a transparent

reasoning process by design—e.g., CART [Loh, 2014]. Therefore, a self-explaining
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approach can be seen as generating the explanation along with its prediction,

using the information emitted by the model as a result of the prediction pro-

cess [Danilevsky et al., 2020].

In the context of local post-hoc explanation approaches, a popular solution in

NLP is to explain the reasoning process by highlighting how different portions of

the input sample impact differently the produced output, by assigning a relevance

score to each input component. The relevance score is then highlighted by using

some saliency map to ease the visualisation of the obtained explanation. Therefore,

it is also common for local post-hoc explanations to be referred to as saliency

approaches, as they aim at highlighting salient components.

9.2 Methodology

In this section, we present our methodology for comparing LPE mechanisms and

building global explanations from LPE’s outputs. We first overview the proposed

approach in Section 9.2.1. Subsequently, the set of LPE mechanisms adopted in

our experiments are presented in Section 9.2.2, and the aggregation approaches

leveraged to obtain global impact scores from LPE outputs are described in Sec-

tion 9.2.3. In Section 9.2.4 we present the metrics used to identify the correlation

between LPEs. Finally, in Section 9.2.5 we propose GELPE as a novel methodol-

ogy to build global explanations of LLMs on top of LPE’s outputs.

9.2.1 Overview

Measuring different LPE approaches over single local explanations is a complex

task. This is why we first consider measuring how much LPEs correlate with each

other over a set of fixed samples. The underlying assumption of our framework

is that various LPE techniques aim at explaining the same NN model used for

prediction. Therefore, while explanations may differ over local samples, one could

reasonably assume that reliable LPEs when applied over a vast set of samples

– sentences or set of sentences – should converge to similar (correlated) results.

Indeed, the underlying LLM considers being relevant for its inference always the

same set of concepts—lemmas. A lack of correlation between different LPE mech-
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anisms would hint to the existence of a conflict among the set of concepts that

each explanation mechanisms consider as relevant for the LLM—thus making at

least one, if not all, of the explanations unreliable.

We first analyse the correlation between a set of LPEs over the same pool

of samples, and define ϵNN as a LPE technique applied to a NN model at hand.

Being local, ϵNN is applied to the single input sample xi, producing as output one

impact score for each component (token) of the input sample lk. Throughout the

remainder of the chapter, we consider lk to be the lemmas corresponding to the

input components. Mathematically, we define the output impact score for a single

token or its corresponding lemma as j (lk, ϵNN (xi)). Depending on the given ϵNN ,

the corresponding impact score j may be associated with a single label, making j

a scalar value, or with a set of labels, making j a vector—one scalar value for each

label. To enable the comparison between different LPE, we define the aggregated

impact scores of a LPE mechanism over a NN model and a set of samples S as

ϵNN (S). In our framework we obtain ϵNN (S) aggregating ϵNN (xi) for each xi ∈ S
using an aggregation operation A—mathematically:

ϵNN (S) = A ({ϵNN (xi) for each xi ∈ S}) . (9.1)

By defining a correlation metric C, we obtain from Equation (9.1) the following

for describing the correlation between two LPE techniques:

C (ϵNN (S) , ϵ′NN (S)) = C
(
A ({ϵNN (xi) for each xi ∈ S}) ,

A ({ϵ′NN (xi) for each xi ∈ S})
) (9.2)

where ϵNN and ϵ′NN are two LPE techniques applied to the same NN model.

The aggregated explanations ϵNN (S) obtained from LPE’s outputs can also be

leveraged as a starting point for building transparent surrogate models of the origi-

nal LLM, as they highlight the impact of each lemma or token in the LLM decision

process. Constructing a transparent surrogate model allows for extracting expla-

nations of the global reasoning process of the black-box LLM, enabling knowledge

extraction, model debugging, and interaction with a human user. To this extent,

we here propose GELPE as a novel framework for constructing a logic program
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– represented as a set of Prolog clauses – that mimics the LLM behaviour start-

ing from a set of locally relevant lemmas ϵNN (S). More in detail, GELPE relies

on transparent-by-design models such as CART optimised over the LLM outputs,

rather than the dataset considered. The input sentences are converted in a binary

format, expressing the presence or absence of relevant lemmas and their combina-

tions. The binarised input is used to optimise the underlying CART model, from

which it is possible to extract the equivalent logic program P . Mathematically, we

represent the knowledge extraction procedure as:

P = H
{
(binϵNN (S)(xi), NN (xi)) ∀ xi ∈ S

}
, (9.3)

where H identifies the transparent-by-design models used to extract the expla-

nations logic program P , binϵNN (S) represents the binarization process used to

convert the sentence xi into a corresponding binary vector of lemmas occurences

and NN (xi) identifies the output of the LLM when fed with input sentence xi.

9.2.2 Local Post-hoc Explanations

In our framework, we consider seven different LPE approaches for extracting local

explanations j (lk, ϵNN (xi)) from an input sentence xi and the trained LLM—

identified as NN . The seven LPEs are selected in order to represent as faithfully

as possible the state-of-the-art of XAI approaches in NLP. Subsequently, we briefly

describe each of the seven selected LPEs. However, a detailed analysis of these

LPEs is out of the scope of this thesis and we refer interested readers to [Samek

et al., 2021, Danilevsky et al., 2020, Luo et al., 2021].

Gradient Sensitivity Analysis (GS)

The Gradient Sensitivity Analysis (GS) probably represents the simplest approach

for assigning relevance scores to input components. GS relies on computing gra-

dients over inputs components as
δfc(xi)

δxi,k

, which represents the derivative of the

output with respect to the the kth component of xi. Following this approach local
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impact scores of an input component can be thus defined as:

j (lk, ϵNN (xi)) =
δfτm(xi)

δxi,k

, (9.4)

where fτm(xi) represents the predicted probability distribution of an input se-

quence xi over a target class τm. While simple, GS has been shown to be an

effective approach for understanding approximate input components relevance.

However, this approach suffers from a variety of drawbacks, mainly linked with

its inability to define negative contributions of input components for a specific

prediction—i.e., negative impact scores.

Gradient × Input (GI)

Aiming at addressing few of the limitations affecting GS, the Gradient × Input

(GI) approach defines the relevance scores assignment as GS multiplied – element-

wise – with xi,k [Kindermans et al., 2019]. Therefore, mathematically speaking,

GI impact scores are defined as:

j (lk, ϵNN (xi)) = xi,k ·
δfτm(xi)

δxi,k

, (9.5)

where notation follows the one of Equation (9.4). Being very similar to GS, GI

also inherits most of its limitations.

Layer-wise Relevance Propagation (LRP)

Building on top of gradient-based relevance scores mechanisms – such as GS and GI

–, Layer-wise Relevance Propagation (LRP) proposes a novel mechanism relying

on conservation of relevance scores accross the layers of the NN at hand. Indeed,

LRP relies on the following assumptions: (i) NN can be decomposed into several

layers of computation; (ii) there exists a relevance score R
(l)
d for each dimension

z
(l)
d of the vector z(l) obtained as the output of the lth layer of the NN; and (iii) the

total relevance scores across dimensions should propagate through all layers of the
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NN model, mathematically:

f(x) =
∑
d∈L

R
(L)
d =

∑
d∈L−1

R
(L−1)
d = · · · =

∑
d∈1

R
(1)
d , (9.6)

where, f(x) represents the predicted probability distribution of an input sequence

x, and L the number of layers of the NN at hand. Moreover, LRP defines a

propagation rule for obtaining R
(l)
d from R(l+1). However, the derivation of the

propagation rule is out of the scope of this thesis, thus we refer interested readers

to [Ali et al., 2022, Bach et al., 2015]. In our experiments we consider as impact

scores the relevance scores of the input layer, namely j (lk, ϵNN (xi)) = R
(1)
d .

Layer-wise Attention Tracing (LAT)

Since LLMs rely heavily on self-attention mechanisms [Tay et al., 2021], recent

efforts propose to identify input components relevance scores analysing solely the

relevance scores of attentions heads of LLM models, introducing Layer-wise At-

tention Tracing (LAT) [Abnar and Zuidema, 2020, Wu et al., 2020]. Building on

top of LRP, LAT propose to redistribute the inner relevance scores R(l) across

dimensions using solely self-attention weights. Therefore, LAT defines a custom

redistribution rule as:

R
(l)
i =

∑
k s.t. i is input for neuron k

∑
h

a(h)R
(l+1)
k,h , (9.7)

where, h corresponds to the attention head index, while a(h) are the corresponding

learnt weights of the attention head. Similarly to LRP, we here consider as impact

scores the relevance scores of the input layer, namely j (lk, ϵNN (xi)) = R(1).

Integrated Gradient (HESS)

Motivated by the shortcomings of previously proposed gradient-based relevance

score attribution mechanisms – such as GS and GI –, Sundararajan et al. [Sun-

dararajan et al., 2017] propose a novel Integrated Gradient approach. The pro-

posed approach aims at explaining the input sample components relevance by in-

tegrating the gradient along some trajectory of the input space, which links some
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baseline value x′
i to the sample under examination xi. Therefore, the relevance

score of the input kth component of the input sample xi is obtained following

j (lk, ϵNN (xi)) =
(
xi,k − x′

i,k

)
·
∫ 1

a=0

δf(x′
i + t · (xi − x′

i))

δxi,k

dt, (9.8)

where xi,k represents the kth component of the input sample xi. By integrating

the gradient along an input space trajectory, the authors aim at addressing the

locality issue of gradient information. In our experiments we refer to the Integrated

Gradient approach as HESS, as for its implementation we rely on the integrated

hessian library available for hugging face models1.

SHapley Additive exPlanations (SHAP)

SHapley Additive exPlanations (SHAP) relies on Shapley values to identify the

contribution of each component of the input sample toward the final prediction

distribution. The Shapley value concept derives from game theory, where it rep-

resents a solution for a cooperative game, found assigning a distribution of a total

surplus generated by the players coalition. SHAP computes the impact of an in-

put component as its marginal contribution toward a label τm, computed deleting

the component from the input and evaluating the output discrepancy. Firstly

defined for explaining simple NN models [Lundberg and Lee, 2017], in our experi-

ments we leverage the extension of SHAP supporting transformer models such as

BERT [Kokalj et al., 2021], available in the SHAP python library2.

Local Interpretable Model-agnostic Explanations (LIME)

Similarly to SHAP, Local Interpretable Model-agnostic Explanations (LIME) re-

lies on input sample perturbation to identify its relevant components. Here, the

predictions of the NN at hand are explained via learning an explainable surro-

gate model [Ribeiro et al., 2016]. In detail, in order to obtain its explanations

LIME constructs a set of samples from the perturbation of the input observation

under examination. The constructed samples are considered to be close to the

1https://github.com/suinleelab/path_explain
2https://github.com/slundberg/shap
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observation to be explained from a geometric perspective, thus considering small

perturbation of the input. The explainable surrogate model is then trained over the

constructed set of samples, obtaining the corresponding local explanation. Given

an input sentence, we here consider obtaining its perturbed version via words –

or tokens – removal and words substitution. In our experiments, we rely on the

already available LIME python library3.

9.2.3 Aggregating Local Explanations

Once local explanations of the NN model are obtained for each input sentence, we

aggregate them to obtain a global list of concept impact scores. Before aggregating

the local impact scores, we convert the words composing local explanations into

their corresponding lemmas – i.e., concepts – to avoid issues when aggregating

different words expressing the same concept—e.g., hate and hateful. As no bullet-

proof solution exists for the aggregation of different impact scores, we adopt four

different approaches in our experiments, namely:

Sum A simple summation operation is leveraged to obtain the aggregated score

for each lemma. While simple this aggregation approach is effective when

dealing with additive impact scores such as SHAP values. However, it suffers

from lemma frequency issues, as it tends to overestimate frequent lemmas

with average low impact scores. Global impact scores are here defined as

J(lk, ϵNN ) =
∑N

i=1 j (lk, ϵNN (xi)). Therefore, we define A as

A ({ϵNN (xi) for each xi ∈ S}) =

{
N∑
i=1

j (lk, ϵNN (xi)) for each lk ∈ S

}
.

(9.9)

Absolute sum Here we sum the absolute values of the local impact scores –

rather than their true values – to increase the awareness of global impact

scores towards lemmas having both high positive and high negative im-

pact over some sentences. Mathematically, we obtain aggregated scores as

3https://github.com/marcotcr/lime
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J(lk, ϵNN ) =
∑N

i=1 |j (lk, ϵNN (xi)) |.

A ({ϵNN (xi) for each xi ∈ S}) =

{
N∑
i=1

|j (lk, ϵNN (xi)) | for each lk ∈ S

}
.

(9.10)

Average Similar to the sum operation, here we obtain aggregated scores aver-

aging local impact scores, thus avoiding possible overshooting issues aris-

ing when dealing with very frequent lemmas. Mathematically, we define

J(lk, ϵNN ) =
1
N
·
∑N

i=1 j (lk, ϵNN (xi)).

A ({ϵNN (xi) for each xi ∈ S}) =

{
1

N
·

N∑
i=1

j (lk, ϵNN (xi)) for each lk ∈ S

}
.

(9.11)

Absolute average Similarly to absolute sum, here we average absolute values

of local impact scores for better-managing lemmas with a skewed impact as

well as tackling frequency issues. Global impact scores are here defined as

J(lk, ϵNN ) =
1
N
·
∑N

i=1 |j (lk, ϵNN (xi)) |.

A ({ϵNN (xi) for each xi ∈ S}) =

{
1

N
·

N∑
i=1

|j (lk, ϵNN (xi)) | for each lk ∈ S

}
.

(9.12)

Since the selection of the aggregation mechanism may influence the correlation

between different LPEs, in our experiments we analyse LPEs correlation over the

same aggregation scheme. Moreover, we also analyse how aggregation impacts

the impact scores correlation over the same LPE, highlighting how leveraging the

absolute value of impact score is highly similar to adopting its true value—see

Section 9.3.3.

9.2.4 Comparing Explanations

Each aggregated global explanation J depends on a corresponding label τm since

LPEs produce either a scalar impact value for a single τm or a vector of impact
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scores for each τm. Therefore, recalling Section 9.2.3, we can define the set of

aggregated global scores depending on the label they refer to as following:

Jτm (ϵNN ,S) = {J (lk, ϵNN ) |τm for each lk ∈ S} . (9.13)

Jτm (ϵNN ,S) represents a distribution of impact scores over the set of lemmas

– i.e., concepts – available in the samples set for a specific label. To compare the

distributions of impact scores extracted using two LPEs – i.e., Jτm (ϵNN ,S) and

Jτm (ϵ′NN ,S) – we use Pearson correlation, which is defined as the ratio between

the covariance of two variables and the product of their standard deviations, and

it measures their level of linear correlation. The selected correlation metric is

applied to the normalised impact scores. Indeed, different LPEs produce impact

scores that may differ relevantly in terms of their magnitude. Normalising the

impact scores, we map impact scores to a fixed interval, allowing for a direct

comparison of Jτm over different ϵNN . Mathematically, we refer to the normalised

global impact scores as ∥Jτm∥. Therefore, we define the correlation score between

two sets of global impact scores for a single label as:

ρ (∥Jτm (ϵNN ,S)∥, ∥Jτm (ϵ′NN ,S)∥) = ρ
(
∥{J (lk, ϵNN ) |τm for each lk ∈ S}∥,

∥{J (lk, ϵNN ) |τm for each lk ∈ S}∥
)
(9.14)

where ρ refers to the Pearson correlation used to compare couples of Jτm (ϵNN ,S).
Throughout our analysis we experimented with similar correlation metrics, such

as Spearman correlation and simple vector distance – similarly to [Liscio et al.,

2023] –, obtaining similar results. Therefore, to avoid redundancy we here show

only the Pearson correlation results. Throughout our experiments, we consider a

simple min-max normalisation process, scaling the scores to the range [0, 1].

As we aim at obtaining a measure of similarity between LPEs applied over the

same set of samples, we can average the correlation scores ρ obtained for each label

τm over the set of labels T . Therefore, we mathematically define the correlation

score of two LPEs, putting together Equations (9.2), (9.13) and (9.14) as:

C (ϵNN (S) , ϵ′NN (S)) = 1

M
·

M∑
m=1

ρ (∥Jτm (ϵNN ,S)∥, ∥Jτm (ϵ′NN ,S)∥) (9.15)
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where M is the total number of labels, belonging to T .

9.2.5 GELPE: Global Explanations from LPEs

Although useful, local explanations are limited, as they do not highlight the gen-

eral reasoning principle of the underlying model, but rather focus solely on relevant

input components for a specific prediction. Aiming at overcoming such limitations,

we here present GELPE as the first – up to our knowledge – framework for ex-

tracting global explanations from LPEs. Relying on LPE outputs, GELPE allows

for the adoption of reliable local extraction mecanisms, while extending their im-

pact to the global reasoning process of the black-box model. More in detail, the

aggregated explanations ϵNN (S) obtained from LPE’s outputs are leveraged as a

starting point for building a transparent surrogate models of the original LLM.

GELPE relies on transparent-by-design models such as CART optimised over the

LLM outputs, rather than the dataset considered.

As described in Equation (9.3), during the optimisation process of the CART

model, input sentences are converted into a binary format, expressing the presence

or absence of relevant lemmas and their combinations. In order to convert a

sentence xi into its binary format, we consider the K most valuable lemmas for

each class identified during the aggregation process presented in Section 9.2.3. The

K most valuable lemmas are the ones with the highest aggregated impact scores

over a set of sample sentences. To avoid relying only on keywords, and accounting

instead for more complex constructs, we also consider the set of skipgrams built

from the combination of the single K most valuable lemmas. In this context,

skipgrams define co-occurences of relevant lemmas over a span of limited tokens

sequences [Nguyen and Grishman, 2016]. With such a procedure we build a set of

valuable lemmas and sequences L defined as:

L = {(Li), (Li, Lj), (Li, Lj, Lk), . . . ∀ i, j, k ∈ K}, (9.16)

where Li represents the lemma in the ith position of the sorted lemmas list – in

terms of relevance –, and (Li, . . . , Lj) represent the concatenation of two or more

lemmas. Once the set of most relevant lemmas and corresponding sequences L is

available, we can define the binarized version of an input sentence as the binary
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vector that identify the presence or absence of each lemma and sequence in the

considered sentence. Mathematically, the binarisation function can be defined as

the following:

xbin = binϵNN (S)(xi) = 1(xj ∈ L) ||1(skip(xj−n, . . . , xj) ∈ L) ∀ j ∈ xi, (9.17)

where xj represent the components – i.e., tokens or lemmas – of the input sen-

tence xi, skip(xj−n, . . . , xj) the corresponding skipgrams built from the last n

input components, and 1 represents the indicator function, being equal to 1 if the

lemma/skipgram belongs to L and 0 otherwise. Finally, || represents the concate-

nation operation between vectors. As an example, consider the input sentence the

dog is an animal with four legs and the set of most relevant lemmas extracted by

a given LPE to be L = {animal, face, legs}. Then the corresponding binarised

version of the input sentence is shown in Figure 9.1, where the + symbol is used to

identify the concatenation of two relevant lemmas inside a sentence—i.e., lemma1

+ lemma2 can be interpreted as lemma1 followed by lemma2.
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 the dog is an animal with four legs

Figure 9.1: Sentence binarization approach in GELPE.

The binarised input is used to optimise the underlying CART model, from

which it is possible to extract the equivalent logic program P—see Equation (9.3).

The logic program P obtained represents an explanation of the black-box LLM in

the form of a set of Prolog-like rules containing lemmas, sequences of lemmas, and

negations thereof. As GELPE relies on the CART model, the extracted rules can

only identify the presence or absence of a specific set of keywords and sequences,

which represents a limitation of such approach. However, varying the value of

K and the length and expressiveness of the skipgram construction process, the

GELPE extraction procedure can be tuned to consider sequences of lemmas as

complex as it is needed to fit well the LLM reasoning process. To keep the com-
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plexity of the extraction process under control, throughout our experiments we

consider relying at most on (2,5)-skipgrams—i.e., building sequences of lemmas

of length at most two which are contained over the span of five input tokens.

An example of the GELPE extracted knowledge, along with the analysis of its

correctness is made available in Section 9.3.4.

9.3 Experiments

In this section we present the setup and results of our experiments. More in de-

tail, we first analyse the set of datasets used in our experimental evaluation in

Section 9.3.1, along with the model training details and its obtained performance

in Section 9.3.2. We then focus on the comparison between the available LPEs,

showing the correlation between their explanations in Section 9.3.3. Section 9.3.4

presents the knowledge extraction results, analysing the performance of the knowl-

edge extractor model, along with the complexity of the extracted knowledge. Fi-

nally, we analyse the efficiency of the knowledge extraction model, showcasing the

improvements in terms of time and energy consumption over the LLM counterpart.

The source code of our framework and experiments is publicly available.4

9.3.1 Datasets

In our experiments, we aim at analysing the correlation among different LPEs and

the feasibility of global knowledge extraction from LLM over a large set of scenar-

ios. Therefore, we consider an heterogeneous set of datasets targetting text clas-

sification tasks, ranging from easy to complex setups. More in detail, we consider

targetting the SMS [Almeida et al., 2011] and YOUTUBE [Alberto et al., 2015]

spam classification datasets as easy setups, having two highly separable classes.

Here, each sample represents a text – either obtained from text messages or from

comment posted in the comments section of a youtube videos – manually labeled

as spam or legitimate (ham). Although available, the metadata information – such

as the author’s name and publication date – is not used. As a slightly more com-

plex setup, we consider the TREC [Li and Roth, 2002] dataset, containing 4,965

4https://github.com/AndAgio/SKE_NLP
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labeled questions. In this context, each sample represents a question belonging

to one of six classes – i.e., Abbreviation, Entity, Description, Human, Location,

Numeric-value – to be semantically classified. Finally, as a complex setup we select

the MFTC datasets as the target classification task.

The MFTC dataset is composed of 35,108 tweets – sentences –, which can be

considered as a collection of different datasets. Each split of MFTC corresponds to

a different context. Here, tweets corresponding to the dataset samples are collected

following a certain event or target. As an example, tweets belonging to the Black

Lives Matter (BLM) split were collected during the period of Black Lives Matter

protests in the US. The list of all MFTC subjects considered in our experiments

is the following: (i) All Lives Matter (ALM), (ii) Black Lives Matter (BLM),

(iii) Baltimore protests (BLT), (iv) 2016 presidential election (ELE), (v) MeToo

movement (MT), (vi) hurricane Sandy (SND). Each tweet in MFTC is labelled,

following the same moral theory, with one or more of the following 11 moral values:

(i) care/harm, (ii) fairness/cheating, (iii) loyalty/betrayal, (iv) authority/subver-

sion, (v) purity/degradation, (vi) non-moral. Ten of the 11 available moral values

are obtained as a moral concept and its opposite expression—e.g., fairness refers

to the act of supporting fairness and equality, while cheating refers to the act of

refraining from cheating or exploiting others. Given morality subjectivity, each

tweet is labelled by multiple annotators, and the final moral labels are obtained

via majority voting.

9.3.2 Model Training

The SMS, YOUTUBE, and TREC datasets represent standard classification tasks,

thus not requiring particular setups. Meanwhile, tackling MFTC we follow state-

of-the-art approaches for dealing with morality classification task [Kiesel et al.,

2022, Alshomary et al., 2022]. Thus, we treat the morality classification problem

as a multi-class multi-label classification task. Differently from recent approaches,

we here do not rely on the sequential training paradigm for the MFTC datasets,

but rather train each model solely on the MFTC split at hand. Indeed, in our

experiments, we do not aim at obtaining strong transferability between domains,

but rather we focus on analysing LPEs behaviour.
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SMS YOUTUBE TREC ALM BLM BLT ELE MT SND
F1 score 98.71% 95.81% 97.18% 63.04% 82.59% 64.51% 63.14% 52.16% 56.85%

Table 9.1: BERT performance over considered datasets.

For each dataset we leverage BERT as the LLM to be optimised [Devlin et al.,

2019], and define one NN model for each dataset, optimising its parameters over

the 70% of samples, leaving the remaining 30% for testing purposes. We leverage

the pre-trained bert-base-uncased model – available in the Hugging Face python

library5 – as the starting point of our training process. Each model is trained for

3 epochs using a standard binary cross entropy loss [Zhang and Sabuncu, 2018], a

learning rate of 5×10−5, a batch size of 16 and a maximum sequence length of 64.

We keep track of the macro F1-score for each model to identify its performance

over the test samples. Table 9.1 shows the performance of the trained BERT

model.

9.3.3 Local Post-hoc Explainers Comparison

We analyse the extent to which different LPEs are aligned in their process of

identifying impactful concepts for the underlying NN model. With this aim, we

train a BERT model over a specific dataset (following the approach described

in Section 9.3.2) and compute the pairwise correlation C (ϵNN (S) , ϵ′NN (S)) (as

described in Section 9.2) for each pair of LPEs in the selected set. To avoid issues

caused by model overfitting over the training set, which would render explanations

unreliable, we apply each ϵNN over the test set of the selected dataset.

Local Post-hoc Explainers Disagreement

Using the pairwise correlation values we construct the correlation matrices shown

in Figures 9.2 and 9.3, which highlight how there exist a very weak correlation

score between most LPEs over different datasets. Here, it is interesting to notice

how few specific couples or clusters of LPEs exist which highly correlate with

each other. For example, GS, GI, and LRP show moderate-to-high correlation

score, mainly due to their reliance on computing the gradient of the prediction

5https://github.com/huggingface
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to identify impactful concepts. However, this is not the case for all LPE couples

relying on similar approaches. For example, GI and gradient integration – HESS in

the matrices – show little to no correlation, although they both are gradient-based

approach for producing local explanations. Similarly, SHAP and LIME show no

correlation even if they both rely on input perturbation and are considered the

state-of-the-art.
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Figure 9.2: C (ϵNN (S) , ϵ′NN (S)) using average aggregation as A over the SMS
(left) and YOUTUBE (right) dataset.
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Figure 9.3: C (ϵNN (S) , ϵ′NN (S)) using average aggregation as A over the ALM
(left) and BLM (right) dataset.

Figures 9.2 and 9.3 highlight how the vast majority of LPE pairs show very-

small-to-no correlation at all, exposing how the selected approaches actually dis-

agree. Interestingly enough, disagreement between LPEs holds true for every
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dataset studied in our analyses, no matter the complexity or simplicity of the

learning task and the samples considered. This finding represents a fundamental

result of our study, as it demonstrates how no accordance exists between LPEs

even when they are applied to the same model and dataset, even on very simple

classification tasks such as the one represented by the SMS dataset. The reason

behind the large discrepancies among LPE might be various, but mostly bear down

to the following:

• Few of the LPEs considered in the literature do not represent reliable solu-

tions for identifying the reasoning principles of LLMs.

• Each of the uncorrelated LPEs highlight a different set or subset of reasoning

principles of the underlying model.

Therefore, our results show how complex it is to identify a set of fair and reliable

metrics to spot the best LPE or even reliable LPEs, as they seem to gather uncorre-

lated explanations. Similar results to the ones shown in Figures 9.2 and 9.3 are ob-

tained for all datasets and are made available at https://tinyurl.com/QU4RR3L.

Aggregation Affects Correlation

Since our LPE correlation metric is dependent on A, we here analyse how the

selection of different aggregation strategies impacts the correlation between LPEs.

To understand the impact of A on C, we plot the correlation matrices for a single

dataset, varying the aggregation approach, thus obtaining the four correlation

matrices shown in Figure 9.4.

From Figures 9.4c and 9.4d one could notice the strong correlation between dif-

ferent LPEs. This seems to be in contrast with the results found in Section 9.3.3.

However, the reason behind the strong correlation achieved when relying on sum-

mation aggregation is not caused by the actual correlation between explanations,

but rather on the susceptibility of summation to tokens frequency. Indeed, since

the summation aggregation approaches do not take into account the occurrence

frequency of lemmas in S, they tend to overestimate the relevance of popular con-

cepts. Intuitively, using this aggregations, a rather impactless lemma appearing
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(d) Absolute sum aggregation

Figure 9.4: C (ϵNN (S) , ϵ′NN (S)) using different aggregations over the ALM dataset.

5000 times would obtain a global impact higher than a very impactful lemma ap-

pearing only 10 times. These results highlight the importance of relying on average

based aggregation approaches when considering to construct global explanations

from the LPE outputs.

Figure 9.4 also points out how leveraging the absolute value of LPEs incurs

in higher correlation scores. The reason behind this is to be found in the impact

scores distributions. While true local impact scores are distributed over the set

of real numbers R, computing the absolute value of local impacts j shifts their

distribution to R+, shrinking possible differences between positive and negative

scores. Moreover, LPE outputs rely much more heavily on scoring positive con-
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tributions using positive impact scores, and typically give less focus to negative

impact scores. Therefore, the output of LPEs is generally unbalanced towards

positive impact scores, making negative impact scores mostly negligible.

9.3.4 Knowledge Extraction

We here analyse if and to what extent it is possible to extract a knowledge base

representing the trained LLM from each LPE, and how much these are aligned

in their process of explaining the underlying NN model. With this aim, we rely

on the GELPE global explainer construction process presented in Section 9.2.5,

extracting a set of rules representing the LLM decision process for each dataset

at hand. As the building process is dependent on the number of most impactful

lemmas, we consider varying the hyperparameter K to select the top-K relevant

lemmas for each class. After the relevant lemmas are selected, we construct the

skipgrams of relevant lemmas as the set of skipgrams occurring in the training

set that are composed from relevant lemmas only. Skipgrams are considered to

extend the capabilities of the extraction process to consider sequences of relevant

concepts rather than blindly focusing only on single tokens. Once the relevant

lemmas and skipgrams are available, we consider converting the samples of the

training set into binary vectors describing the presence or absence of each lemma

and skipgram. We optimise the CART model on the binary vectors representing

the training samples and extract the corresponding knowledge from the tree as a

set of ordered Prolog rules. To avoid incurring in an unbearable number of Prolog

clauses – that would hinder the utility of the knowledge extraction process – we

limit the depth of the CART model to be:

depth = µ · L

K ∗ |C|
, (9.18)

where L represents the number of total relevant lemmas and skipgrams identi-

fied from the LPE, |C| represents the number of classes of the classification task

at hand, and µ represents an hyperparameter that we set to µ = 5 empirically.

Throughout the remainder of this chapter, we consider leveraging the average op-

eration as the aggregation function A, as it represents the least biased aggregation
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Table 9.2: Fidelity of the extracted knowledge w.r.t. to the original BERT model
over the SMS dataset. † identifies the best LPE over a single K values, while the
green row(s) identify the overall best LPE.

LPEs
K

50 100 150 200 250

GI 87.00% 87.60% 90.20%† 91.80%† 91.60%†

GS 87.40%† 87.80%† 89.80% 90.40% 91.60%†

LAT 87.40%† 87.40% 89.00% 89.60% 91.00%
LRP 86.60% 86.40% 86.60% 87.80% 90.80%
SHAP 86.40% 86.60% 86.60% 86.40% 86.40%
HESS 86.20% 86.40% 86.80% 86.80% 86.40%
LIME 86.20% 86.20% 86.20% 86.60% 86.80%

process. However, we also experiment with other aggregation functions, such as

sum, absolute sum, and absolute average, obtaining similar results. Therefore, in

order to avoid redundancy we here show only the average aggregation results.

Knowledge Fidelity

To asses the performance of the proposed knowledge extraction process from LPEs,

we measure the fidelity of the predictions obtained using the Prolog rules against

the corresponding LLM predictions. The fidelity metric measures the percentage

of instances in which the Prolog rules predictions and model predictions are equiv-

alent, thus measuring the accuracy of the knowledge extraction process. Tables 9.2

and 9.3 presents the fidelity of the GELPE extraction process over the SMS and

YOUTUBE datasets. In those simple scenarios, the proposed approach extracts

a set of accurate rules, representing with high fidelity the decision process of the

underlying LLM. Using GELPE, we enable the extraction of simple and easy to

understand rules from the complex black-box model.

Over more complex datasets, the performance of the extracted knowledge using

GELPE varies depending on the dataset at hand. Table 9.4 shows the fidelity of

GELPE over the BLT dataset, where the explanation model achives up to 95.09%

fidelity. Meanwhile, Tables 9.5 and 9.6 presents the fidelity results over the ELE
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Table 9.3: Fidelity of the extracted knowledge w.r.t. to the original BERT model
over the YOUTUBE dataset. † identifies the best LPE over a single K values,
while the green row(s) identify the overall best LPE.

LPEs
K

50 100 150 200 250

GI 69.20% 72.40% 72.40% 76.00% 76.80%
GS 69.20% 72.40% 72.40% 78.00% 76.40%
LAT 66.00% 64.40% 70.80% 80.00% 84.40%
LRP 65.20% 65.20% 68.80% 70.00% 70.00%
SHAP 43.20% 75.20% 80.80% 80.80% 80.40%
HESS 82.40% 87.60% 86.40% 88.80% 87.20%
LIME 88.00%† 92.00%† 94.00%† 93.20%† 92.80%†

and SND datasets respectively, where the proposed GELPE extraction seems to

struggle to achieve high fidelity values. This is due to the underlying complexity

of the dataset at hand. For some tasks – e.g. YOUTUBE, BLT –, considering the

most relevant lemmas and their skipgram combinations is sufficient, while others

– e.g. ELE, SND – require a more complex understanding of the inner sentence

constructs.

As expected, increasing the number of relevant lemmas K considered to opti-

mise GELPE results in higher fidelity, as the underlying CART model takes into

account a broader set of meaningful features. However, increasing K over a cer-

tain threshold results in an unbearable rules complexity and in smaller fidelity

gains. The increment on rule complexity also hiders the understandability of the

extracted explanation, representing a fundamental concept to take into account.

This phenomenon is clearly shown in Tables 9.5 and 9.6, where the fidelity grows

up to 20% when K ranges from 50 to 250.

Interestingly, the disagreement between different LPEs seems to affect also the

performance of the obtained global explainer model. Fidelity results highlight that

GELPE explanations obtained from highly correlated LPEs such as GI and GS

achieve comparable performance level. Meanwhile, Prolog rules obtained from un-

correlated LPEs result in different fidelity level. While expected, such a behaviour
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Table 9.4: Fidelity of the extracted knowledge w.r.t. to the original BERT model
over the BLT dataset. † identifies the best LPE over a single K values, while the
green row(s) identify the overall best LPE.

LPEs
K

50 100 150 200 250

GI 92.64% 92.70% 93.18% 93.12% 92.76%
GS 93.60% 92.28% 93.18% 93.24% 92.82%
LAT 90.19% 91.74% 92.28% 92.34% 92.46%
LRP 92.28% 93.12% 93.00% 93.48% 92.88%
SHAP 95.69% 94.14% 94.14% 94.14% 94.14%
HESS 93.72% 93.84% 93.48% 93.48% 93.60%
LIME 95.27%† 95.27%† 95.09%† 95.09%† 95.09%†

represents a useful finding as it allows for the identification of more reliable LPEs,

as the ones that results in a higher level of fidelity—e.g., LIME in most scenarios.

Knowledge Complexity

The ideal extraction process is required to output a set of Prolog rules that is

as faithful as possible w.r.t. the underlying LLM. However, the dimensionality

of the extracted program should be kept small to limit the complexity burden of

the analysis process. An overly complex knowledge base would not be useful for

anlaysing the inner working principle of the explained LLM, as it would be mostly

impossible to be processed by a human interpreter. To assess the complexity of

the extracted knowledge, we consider tracking the length of the Prolog program

and its cumbersomeness. In this context, the length L represents the number of

clauses in the obtained explanation, while the cumbersomeness C represents the

average number of atoms in each clause.

For each dataset considered we keep track of L and C and analyse their vari-

ability over each LPE and K value. Tables 9.7 and 9.8 show the complexity of the

GELPE output over the YOUTUBE and ELE dataset respectively. The results

highlight the relevant difference in terms of required complexity to extract reliable

explanations when dealing with simple or complex classification tasks. Both L and
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Table 9.5: Fidelity of the extracted knowledge w.r.t. to the original BERT model
over the ELE dataset. † identifies the best LPE over a single K values, while the
green row(s) identify the overall best LPE.

LPEs
K

50 100 150 200 250

GI 68.51% 72.00% 74.67% 75.92% 76.23%
GS 68.95% 73.93% 74.74%† 74.67% 76.79%†

LAT 58.93% 61.36% 66.77% 67.45% 69.14%
LRP 72.81% 74.74%† 75.36% 75.48% 75.79%
SHAP 67.64% 68.70% 69.51% 70.50% 70.50%
HESS 68.33% 73.80% 74.05% 74.11% 74.11%
LIME 73.61%† 73.93% 74.49% 76.60%† 76.73%

C are kept small for each LPE and K combination over the YOUTUBE dataset,

while still being able to reach high fidelity (see Table 9.3). Meanwhile, the ELE

moral classification task requires to consider higher values of L and C in order to

achieve a satisfactory level of fidelity (see Table 9.5).

As expected, Table 9.7 also highlights a linear correlation between the com-

plexity of the extracted explanation and the parameter K. A higher value of K
identifies a broader set of relevant lemmas considered during the optimization of

the CART explainer, thus increasing the number of features available to construct

Prolog clauses. The increased complexity of the obtained explanation represents

a fundamental aspect to take into account when considering leveraging GELPE,

as we need for the explanations to be bounded in complexity for them to be

human-readable. The limitation of the CART depth (see Equation (9.18)) rep-

resents an helping tool from this perspective, as it allows to keep the complexity

of the explainer under control in complex setup, such as the ELE dataset. This

phenomenon can be seen in Table 9.8, where the complexity of the extracted ex-

planations remains stable over K. However, depth limitation is not drawback free,

as it hinders the achievement of high fidelity values.

CHAPTER 9. CAN SKE HELP EFFICIENTISATION? 227



9.3. EXPERIMENTS

Table 9.6: Fidelity of the extracted knowledge w.r.t. to the original BERT model
over the SND dataset. † identifies the best LPE over a single K values, while the
green row(s) identify the overall best LPE.

LPEs
K

50 100 150 200 250

GI 45.39% 58.39% 60.20% 59.84% 61.73%
GS 46.48% 57.59% 59.84% 61.00%† 62.60%†

LAT 38.63% 45.53% 49.82% 49.89% 57.30%
LRP 40.02% 49.67% 59.98% 59.62% 61.00%
SHAP 57.01% 57.23% 57.23% 57.23% 57.23%
HESS 60.49% 60.13%† 58.75% 58.53% 58.61%
LIME 61.15%† 60.06% 60.28%† 60.20% 60.13%

Knowledge Visualisation

We visualise the logic program obtained from the knowledge extraction process

to analyse their correctness and understandability. Figure 9.5 shows the logic

program P obtained from the GELPE extraction process when leveraging LIME

as LPE and K = 50 on the YOUTUBE dataset. The extracted knowledge is

characterised by a manageable complexity, having a small number of relatively

short clauses. In this context, the summation symbol + is used to identify the

concatenation of two relevant lemmas inside a sentence—lemma1 + lemma2 can be

interpreted as lemma1 followed by lemma2. Interestingly, the extracted knowledge

also shows some relevant properties, such as the identification of spam comments

as those containing certain hyperlinks (org lemma), subscription related lemmas

(sub and subscribe), as well as grammatical errors (suscribe rather than subscribe

and withing rather than within).

Figure 9.6 shows the extracted knowledge when GELPE is used with SHAP and

K over the BLM dataset. Here, it is also possible to notice relevant concepts being

extracted from the LLM decision process. For example, the proposed extraction

process allows to identify that the combination of keywords obey and rape result in

the text being considered as harmful, as well as the keyword murder. Meanwhile,

the sequence standing + injustice along with the justice keyword identify that the
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Table 9.7: Complexity of the extracted knowledge over the YOUTUBE dataset.
L represents the length of the obtained explanation – i.e., the number of clauses
–, while C represents the cumbersomeness—i.e., the average number of atoms in
each clause. The green row(s) identify the overall simplest LPE.

LPEs
K

50 100 150 200 250

GI
L = 30 L = 41 L = 40 L = 40 L = 66
C = 6.73 C = 7.71 C = 7.65 C = 7.05 C = 10.38

GS
L = 30 L = 41 L = 42 L = 37 L = 73
C = 6.63 C = 7.71 C = 7.79 C = 7.51 C = 10.59

LAT
L = 20 L = 43 L = 116 L = 75 L = 64
C = 5.65 C = 6.42 C = 10.28 C = 8.84 C = 11.23

LRP
L = 37 L = 46 L = 36 L = 32 L = 48
C = 6.51 C = 7.15 C = 7.17 C = 7.09 C = 7.81
L = 14 L = 25 L = 34 L = 36 L = 33

SHAP
C = 5.21 C = 7.04 C = 7.62 C = 7.78 C = 7.61

HESS
L = 48 L = 53 L = 55 L = 39 L = 52
C = 9.67 C = 10.36 C = 12.05 C = 11.67 C = 11.88

LIME
L = 32 L = 56 L = 57 L = 60 L = 68
C = 6.72 C = 9.29 C = 9.42 C = 11.30 C = 13.01

sentiment is fairness. These results highlight the goodness of the proposed GELPE

framework than enables the extraction of meaningful Prolog rules from the LLM

reasoning principle with high fidelity.

Resource Effeciency

The proposed GELPE framework allows for the extraction of Prolog rules from

LLM starting from LPEs outputs. In an ideal scenario, the Prolog program ob-

tained as a result of the GELPE process contains a handful of simple – i.e., short

– clauses. The execution of such simple program – surrogate of the original LLM

model – requires few computational power, as it does not rely on complex opera-

tions such as convolutions that require GPU or hardware-specific solution. How-

ever, the complexity of the GELPE output can grow quickly depending on the set

of considered lemmas and skipgrams, thus hindering its efficiency. Therefore, it is

fundamental to assess the ability of the proposed GELPE framework to produce

a resource-friendly surrogate model of the original LLM. To this end, we consider

measuring the time and energy efficiency of the original LLM model against few of
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Table 9.8: Complexity of the extracted knowledge over the ELE dataset. L repre-
sents the length of the obtained explanation – i.e., the number of clauses –, while C
represents the cumbersomeness—i.e., the average number of atoms in each clause.
The green row(s) identify the overall simplest LPE.

LPEs
K

50 100 150 200 250

GI
L = 430 L = 363 L = 353 L = 273 L = 296
C = 19.78 C = 19.68 C = 18.21 C = 15.76 C = 15.29

GS
L = 422 L = 335 L = 350 L = 269 L = 369
C = 19.58 C = 19.54 C = 18.27 C = 15.61 C = 17.94

LAT
L = 639 L = 487 L = 373 L = 379 L = 360
C = 20.52 C = 19.93 C = 19.11 C = 20.00 C = 20.47

LRP
L = 390 L = 433 L = 391 L = 375 L = 364
C = 19.85 C = 22.08 C = 18.45 C = 18.19 C = 17.93
L = 16 L = 15 L = 16 L = 16 L = 16

SHAP
C = 4.06 C = 3.93 C = 4.06 C = 4.06 C = 4.06

HESS
L = 17 L = 64 L = 71 L = 71 L = 72
C = 4.12 C = 7.84 C = 8.04 C = 8.03 C = 8.08

LIME
L = 64 L = 68 L = 71 L = 130 L = 131
C = 7.75 C = 7.94 C = 8.06 C = 10.72 C = 10.76

the Prolog programs obtained using GELPE. More in detail, we consider running

the original BERT model both in a GPU enabled scenario – using a Tesla V100S-

PCIE with 32GB of RAM – and a CPU only scenario – using an Intel(R) Xeon(R)

Gold 6226R CPU @ 2.90GHz. We consider comparing the BERT efficiency per-

formance against the most faithful Prolog program – i.e., the one obtained with

LIME as LPE – and against the simplest one—i.e., the one obtained with SHAP as

LPE. For each LPE, we consider two setups, having the lowest and highest value

of K—i.e., K = 50 and K = 250, respectively. The Prolog programs obtained

from GELPE from each LPE are run using only the CPU device. We keep track

of the average time t required to infer the prediction over a single sample and the

corresponding average energy consumed E. Table 9.9 shows the obtained results

over all datasets.

The results highlight how over simple setups such as SMS and YOUTUBE, the

surrogate model obtained using GELPE always outperforms the BERT counter-

part. This is due to the small task complexity, enabling the proposed framework

to extract a small set of simple clauses to mimic the model behaviour. Indeed, the
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Figure 9.5: Logic program P obtained from the GELPE extraction process when
leveraging LIME as LPE and K = 50 on the YOUTUBE dataset.

efficiency of the Prolog program obtained is proportional to the complexity of the

clauses to be analysed to achieve a prediction. Meanwhile, over more complex se-

tups, such as the ELE dataset, in which GELPE outputs a large set of long clauses,

it is possible to outperform the BERT counterpart only when considering a small

value of K. However, noticeably it is always possible to find a surrogate Prolog

model obtained via GELPE representing a more efficient solution than running the

LLM model over the CPU. These results highlight the advantage of leveraging a

simple rule-based approach over sub-symbolic models when hardware acceleration

is not available. As such, the proposed model represents a feasible solution for

those scenarios where the deployment setup is composed of resource-constrained

devices, such as embedded devices and micro-controllers. In this scenarios, run-

ning the original LLM would not be acceptable, due to latency and memory issues,

while GELPE’s output results in a resource efficient transparent program easily

deployable. Therefore, the obtained results show that the GELPE surrogate model

does not represent just an explainable and transparent twin of the LLM original
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Figure 9.6: Logic program P obtained from the GELPE extraction process when
leveraging SHAP as LPE and K = 100 on the BLM dataset.

model, but also an efficient one.

Chapter Synopsis

In this chapter we analyse the possible efficiency benefits arising from SKE ap-

proaches. We focus on the NLP domain, proposing to build global explainers sur-

rogates from the outputs of LPE approaches. The explanation extraction process

– namely GELPE – distills the LLM knowledge under the form of a logic program

leveraging the popular CART model. We test GELPE over a broad set of sce-

narios, highlighting its fidelity against the sub-symbolic model and the simplicity

of the extracted knowledge. Moreover, we analyse the efficiency of the extracted

logic programs, showing how it is possible to extract a logic program that is equiv-

alent to the original LLM and is faster and less energy wasteful in scenarios where

hardware acceleration is not available. Therefore, our experiments show how the

extraction process can be leveraged to enable the deployment of NLP applications

to resource-constrained environments, such as embedded devices and microcon-

trollers. These findings also highlights how – for some learning tasks – leveraging

LLMs might represents an over complication, as it is possible to achieve similar

performance using simple and small logic programs.
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Table 9.9: Resource efficiency comparison of BERT against GELPE for each
dataset. For each dataset, we highlight in blue the most energy efficient model,
in brown the least energy efficient one, in green the quickest model and in red
the slowest one.

Model
Dataset

SMS YOUTUBE TREC ALM BLM BLT ELE MT SND

BERTGPU
t = 0.017s t = 0.009s t = 0.008s t = 0.006s t = 0.006s t = 0.006s t = 0.006s t = 0.007s t = 0.006s
E = 2.841J E = 2.350J E = 0.987J E = 1.181J E = 1.209J E = 1.481J E = 1.196J E = 1.961J E = 1.148J

BERTCPU
t = 0.047s t = 0.066s t = 0.023s t = 0.027s t = 0.028s t = 0.029s t = 0.026s t = 0.049s t = 0.026s
E = 5.008J E = 7.893J E = 2.421J E = 2.940J E = 3.037J E = 3.141J E = 2.906J E = 5.576J E = 2.719J

SHAP50
t = 0.009s t = 0.004s t = 0.004s t = 0.008s t = 0.011s t = 0.005s t = 0.006s t = 0.008s t = 0.008s
E = 0.574J E = 0.223J E = 0.269J E = 0.492J E = 0.595J E = 0.307J E = 0.383J E = 0.456J E = 0.490J

LIME50
t = 0.004s t = 0.004s t = 0.010s t = 0.021s t = 0.026s t = 0.005s t = 0.015s t = 0.020s t = 0.013s
E = 0.208J E = 0.260J E = 0.592J E = 1.189J E = 1.455J E = 0.283J E = 0.891J E = 1.121J E = 0.777J

SHAP250
t = 0.010s t = 0.012s t = 0.019s t = 0.032s t = 0.035s t = 0.018s t = 0.025s t = 0.026s t = 0.034s
E = 0.556J E = 0.694J E = 1.115J E = 1.736J E = 1.968J E = 1.015J E = 1.403J E = 1.432J E = 1.859J

LIME250
t = 0.016s t = 0.034s t = 0.084s t = 0.144s t = 0.235s t = 0.024s t = 0.087s t = 0.106s t = 0.078s
E = 0.866J E = 1.789J E = 4.696J E = 7.990J E = 13.047J E = 1.388J E = 4.808J E = 5.797J E = 4.364J
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Chapter 10

Robustness of Symbolic

Knowledge Injection as a Proxy

for Efficientisation

While measuring directly the efficiency improvements achieved via SKI represents

a valid approach, we here stress the importance of measuring the injection mech-

anism robustness. Robust mechanisms can effectively incorporate new knowledge

into neural networks without causing errors or deteriorating their overall perfor-

mance. In safety-critical applications, like autonomous vehicles or medical di-

agnosis systems, a non-robust mechanism may introduce errors, leading to poor

performances. A robust mechanism can seamlessly adapt to new knowledge, ensur-

ing the quality of performance and enhancing the trustworthiness of NN systems.

Moreover, a robust mechanism represents a more efficient solution by design, as

it ensures quick adaptability to different knowledge and setups, thus avoiding ex-

pensive re-optimization procedures. Therefore, we here consider measuring the

robustness of injection approaches as a valuable proxy for the identification of

their efficiency.

Robustness can be assessed by evaluating the injected model’s ability to main-

tain its performance in the presence of data perturbations, such as noisy or cor-

rupted training samples. Measure the robustness of injection mechanisms is a

crucial stage in developing neuro-symbolic systems, and it should be included in
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the process of evaluating any SKI approach. Accordingly, in this chapter, we

present a comprehensive modelling of a new robustness metric for SKI, as well

as an empirical evaluation of this metric through PSyKI [Magnini et al., 2022b].

Our findings provide compelling evidence that the introduction of a robustness

metric for SKI is a crucial step towards enhancing the reliability and transparency

of AI systems. Finally, the proposed robustness measure directly links with the

efficiency of SKI, confirming the findings obtained in Chapter 8.

10.1 Robustness Score for SKI

In counterfactual analysis [Verma et al., 2020], it is a common practice to exploit

controlled perturbation on the training data to assess the robustness of predictors.

Taking inspiration from this technique, in this section we introduce the notion

of statistical robustness of SKI procedure. Accordingly, we consider an injection

mechanism as robust if the predictive performance of the educated predictors is

poorly affected by perturbations of the training data—as long as the perturbation

magnitude is small. The remainder of this section provides a general description

of robustness, before delving into the details of which perturbations types can be

applied to training data and how their magnitude may be measured.

Data perturbation We define data perturbation as altering a training dataset

D by adding, removing, or editing its entries, and denote it by ∆D. Accordingly,

we denote the perturbed dataset as D′ = D ◦ ∆D, where (· ◦ ·) is the perturba-

tion application operator. We also denote by ∥∆D∥ ∈ R≥0 the magnitude of the

perturbation—i.e., the scalar value quantifying the amount of changes induced by

the perturbation.

Robustness score Let D = {∆D1, . . . ,∆Dn} be a set of potential data pertur-

bations to be applied to some dataset D, let N be a predictor of any sort – trained

on D –, and let N∆D be the predictor having the same hyperparameters of N , yet

being trained upon the perturbed dataset D ◦ ∆D. Under such hypotheses, we
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define the robustness score of N w.r.t. D, as follows:

ρN,D(D) =
1

n

∑
∆D∈D

∥∆D∥ · π(N∆D, D ◦∆D)

π(N,D) (10.1)

where π is a performance metric of choice, such as accuracy, computing the per-

formance of the input predictor w.r.t. the input dataset.

As the reader may notice, robustness is directly proportional to (i) the mag-

nitude of the perturbations, and (ii) the ratio among the performance of the

perturbed predictors and the performance of the unperturbed predictor. In other

words, the robustness of a predictor increases when relatively big perturbations in

the training data have a relatively small effect on the performance of the predictor.

The robustness of some injection mechanism can be measured by applying

Equation (10.1) to some educated predictor N̂ = I(N,K,D), attained by inject-

ing the knowledge K, on some uneducated predictor N , then trained upon D—

which we denote denote by ρN̂,D(D). One may also be interested in understanding

whether some injection mechanism makes the predictor more or less robust than

its uneducated counterpart. To this end, we define the robustness gain score as

follows:

RN,D(I) =
ρN̂,D(D)

ρN,D(D)
(10.2)

Here, the robustness gain is a positive measure that indicates if the injection

mechanism I produces a more robust predictor (RN,D(I) > 1) w.r.t. its une-

ducated counterpart over data perturbation. Meanwhile, injection mechanisms

suffering data perturbations result in RN,D(I) < 1, as they produce an educated

model N̂ less effective for dealing with perturbed data. Therefore, RN,D(I) is an
easy-to-understand measure for analysing the robustness quality of a selected SKI

mechanism.

10.1.1 Measuring Data Perturbations

Equation (10.1) defines robustness by relying on the possibility of measuring the

magnitude ∥∆D∥ of any given perturbation ∆D. While being easy to model in

theory, the problem is hard to tackle in practice. Therefore, we focus on the
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simpler goal of measuring the difference among any two datasets A,B, leveraging

the Kullback-Leibler (KL) divergence [Joyce, 2011] to serve this purpose.

The KL-divergence is a statistical operator aimed at measuring the difference

among any two probability distributions α and β. In the particular case where (i) α

and β are multivariate normal distributions having the same dimensionality, and

(ii) two datasets A,B are sampled from α and β respectively, the KL-divergence

can be computed as follows:

ψ(A,B) = 1
2

[
tr(σσσ−1

B σσσA)− dim(A) + ln
(

detσσσB

detσσσA

)
+

+ (µµµB − µµµA)
⊤σσσ−1

B (µµµB − µµµA)
] (10.3)

where µµµA (resp. µµµB) represents the mean of A (resp. B), and σσσA (resp. σσσB)

represents its covariance matrix, detσσσA (resp. detσσσB) is its determinant, and

tr(σσσA) (resp. tr(σσσB)) its trace. Finally, dim(A) represents the dimensionality of

A—i.e., the amount of features each of its entries if characterised by.

The normality hypothesis may appear restrictive, as datasets A and B may, in

the general case, be sampled from unknown distributions. However, any unknown

probability distribution can be approximated by a mixture of normal distribu-

tions – as the latter are universal approximators for probability densities [Good-

fellow et al., 2016, Sec. 3.9.6] –, and the computation of the KL-divergence for a

mixture of normal distributions can be approximated to that of a single normal

distribution—as discussed in [Joyce, 2011]. So, in practice, Equation (10.3) can

be exploited to estimate the difference among any two datasets A and B.

KL-divergence for classification problems. Similarly to what done in the

previous chapters of this thesis, we here focus on multi-class classification tasks.

Therefore, we need to extend the KL-divergence measure to the cases in which

datasets comprise several classes of samples. In this context, the KL divergence is

commonly computed per-class, as different classes may come with different distri-

butions. In case K classes are available, we consider datasets as partitioned into

disjoint sub-sets, on a per-class basis: i.e., A = A1∪. . .∪AK and B = B1∪. . .∪BK ,

where Ak (resp. Bk) is the set of samples belonging to class k in A (resp. B).

We define the overall divergence score between A and B as the weighted average
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of class-specific Kullback-Leibler divergences, namely:

Ψ(A,B) =
1

|A|

K∑
k=1

ψ(Ak, Bk) · |Ak| (10.4)

where |A| (resp. |Ai|) represents the cardinality of A (resp. Ai). The weighted

average is necessary to tackle very unbalanced datasets with diverging distributions

over unpopular labels.

Accordingly, we estimate the magnitude of a perturbation ∆D transforming D

into D′ = D ◦∆D by means of the overall divergence among D and D′:

∥∆D∥ = Ψ(D,D′) (10.5)

The proposed metric lays in R≥0: it is equal to zero for two identical datasets –

i.e., when the perturbation ∆D has no effect –, and it gets higher in value as D′

differs from D—i.e., proportionally to the effect of ∥∆D∥.
It is worth highlighting that the proposed perturbation metric ∥·∥ can be ap-

plied to any sort of perturbation, as it does not take into account how the pertur-

bation ∆D affects the dataset or its samples. For this reason, the metric can be

exploited to measure the many sorts of perturbations discussed in Section 10.1.2.

10.1.2 Perturbation Strategies

Here we discuss three major perturbation strategies for altering a dataset, namely:

(i) sample drop, (ii) noise addition, and (iii) label flipping. These strategies mimic

common issues that can degrade a dataset’s quality, as they involve randomly

deleting samples, adding random noise, and randomly changing labels.

Sample Drop

This perturbation strategy mimics the effect of lacking training data. Hence,

it aims at selectively mutilating a dataset in a controlled way. This strategy is

commonly exploited to test if and to what extent neuro-symbolic approaches are

effective to deal with data scarcity [Xu et al., 2018, Deschamps and Sahbi, 2022].

CHAPTER 10. SKI ROBUSTNESS FOR EFFICIENTISATION 239



10.1. ROBUSTNESS SCORE FOR SKI

The basic idea behind sample drop is to randomly remove some samples fromD

to obtain D′. The whole process is stochastic and controlled by a single parameter,

namely the dropping probability – denoted by p ∈ [0, 1[ –, which is shared among

all data entries in D. Generally speaking, p = E[Xd] represents the mean of the

Bernoulli-distributed random variableXd ∼ B(p), dictating whether the data entry
d ∈ D should (P(Xd = 0)) or should not (P(Xd = 1)) be included inD′. Under such

hypotheses, the perturbed dataset D′ is such that D′ = {d | ∀d ∈ D s.t. Xd = 0}.
We consider constructing the set of data perturbations D = {∆D1, . . . ,∆Dn}

by applying the sample drop process on D multiple times – namely, n times – with

increasing dropping probabilities 0 < p1 < . . . < pn < 1.

Noise Addition

This perturbation strategy mimics the situation where the data sampling / acquisi-

tion process is affected by error—e.g., due to sensor noise, or human error. Hence,

it aims at degrading a dataset in a controlled way. This strategy is commonly

exploited to test if and to what extent neuro-symbolic approaches are effective to

deal with unreliable (e.g., corrupted, inconsistent) data [Raissi et al., 2019, Yazdani

et al., 2020].

The basic idea behind noise addition is to add some random noise to the data

entries in D, to obtain D′. The whole process is stochastic, and it is controlled by

a single parameter, namely the noise intensity – denoted by v ∈ R≥0 –, which is

shared among all data entries in D. Generally speaking1, v ·1 = cov(Vd) represents

the covariance matrix of the 0-mean, multi-variate, normally distributed random

variable Vd ∼ N (0, v · 1), representing the random noise to be applied to each

entry d ∈ D. Under such hypotheses, the perturbed dataset D′ can be described

as D′ = {d + Vd | ∀d ∈ D}. As the reader may notice, the perturbed dataset is

characterised by the same number of samples of D—meaning that |D| = |D′|.
We consider constructing the set of data perturbations D = {∆D1, . . . ,∆Dn}

by applying the noise addition process on D multiple times – namely, n times –

with increasing noise intensities 0 < v1 < . . . < vn.

11 is the m×m identity matrix, 0 is the m× 1 zero vector, where m is dimensionality of the
dataset.
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About discrete features. Normal noise can be applied to any continuous fea-

ture in a dataset. However, when dealing with datasets with ordinal or categorical

features, it is necessary to adjust the noise addition process to account for discon-

tinuity. Accordingly, to deal with discrete features, the additive normal noise is

discretised by replacing the distribution N (0, v · 1) with its discrete counterpart

N̄ [Canonne et al., 2020, Kairouz et al., 2021]. Overall, this means that for ordinal

features, additive noise is more likely to choose an additional ordinal value close to

the original one, whereas for categorical features, additive noise may choose an ad-

ditional ordinal value with uniform probability—analogously to the label flipping

case described below.

Label Flipping

This perturbation strategy mimics the situation where some data labelling process

is affected by error—e.g., human operator misabelling some data entries. Hence, it

aims at selectively flipping the labels of some entries in a dataset. The underlying

assumption is that the dataset consists of input and output features, and the

output ones are either binary or categorical. Therefore, this perturbation strategy

mostly makes sense for classification tasks.

The basic idea behind label flipping is to randomly alter the output features

of some data entries in D, to produce D′. Flipping, in particular, requires each

output feature to be randomly re-assigned with some value in the output domain—

of course different from the original one.

Without loss of generality, we consider the case of a single output feature having

K admissible values—i.e., K classes represented as a single categorical attribute.

Hence, for an m-dimensional dataset D, we let d ≡ (xd, yd) ∈ D denote the generic

data entry in D, where xd is the input sample, and yd ∈ {1, . . . , K} is the value

of its output feature.

Similarly to the cases above, we model label flipping as a stochastic process

controlled by the flipping probability parameter – denoted by f ∈ [0, 1[ –, repre-

senting the likelihood that the label of any given data entry may flip. Parameter

f controls the probability distribution of the random variable Yd, which represents

the novel value of the output feature for data entry d ∈ D, after flipping. In par-
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ticular, we define the probability density of Yd as follows: P(Yd = k) = f/(K − 1)

if k ̸≡ yd; otherwise P(Yd = yd) = (1− f). In other words, the value of the output

feature may flip with probability f , and in that case each value different than the

original one is equally likely to be selected.

Under such hypotheses, the perturbed dataset D′ is such that

D′ = {(xd, y
′
d) | ∀d ∈ D : Yd = y′d}. (10.6)

We consider constructing the set of data perturbations D = {∆D1, . . . ,∆Dn}
by applying the label flipping process on D multiple (i.e., n) times, with increasing

flipping probability 0 < f1 < . . . < fn < 1.

10.2 Experiments

In this section we present the setups and results of the experiments for evaluating

the effectiveness of the proposed robustness metric.

10.2.1 Datasets

We rely on three different datasets from the UCI repository2, namely the “Breast

Cancer Wisconsin” (BCW) dataset [Wolberg, 1992], the “Primate Splice Junction

Gene Sequences” (PSJGS) dataset [Towell and Shavlik, 1994], and “Census In-

come” (CI) dataset [Kohavi and Becker, 1996]. As the datasets are the same used

in the experimental evaluation of Chapter 8, we avoid a detailed description of the

datasets and refer the reader to Section 8.4.1.

10.2.2 Injected Knowledge

For our experiments we utilize specific knowledge for each dataset, using Prolog

syntax [Körner et al., 2022] for classification logic rules The PSJGS dataset already

has a knowledge base in the literature, with biological rules provided by human

domain experts [Towell et al., 1990]. We use this very knowledge as well, with the

2https://archive.ics.uci.edu/ml/index.php
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addition of an explicit third rule to classify the n class:

class(X̄, n)← ¬class(X̄, ei) ∧ ¬class(X̄, ie) (10.7)

where X̄ is an abbreviation for the full sequence of variables X−30, . . . ,X+30 that

represent the input data of a 60-basis long DNA sequence. The rule simply states

that if a record is not classified as ei or ie then it is classified as n. For the

remaining datasets – BCW and CI – there are no predefined rules in the literature.

Therefore, we define a custom set of logic rules for both of them.

10.2.3 Injectors

Similarly to what done in Chapter 8, to implement our experimental evaluation we

rely on PSyKI. Therefore, the set of injection algorithms consider in this section are

KINS, KILL, and KBANN. To avoid redundancy, we refer the reader to Section 8.3

for a detailed introduction of such algorithms.

10.2.4 Experimental Setup

For our experiments, we leverage three datasets, three input knowledge bases,

three different injectors, and three perturbation strategies. For each dataset we

train an uneducated model, which is then applied to the three injectors using the

corrisponding knowledge base. The uneducated model has two hidden layers, one

input, and one output layer, with rectified linear units (ReLU) as the activation

function, and softmax for the output layer. The number of neurons per hidden

layer changes depending on the dataset—namely, [16, 8] for BCW, [32, 16] for CI,

and [64, 32] for PSJGS. Training involves categorical cross-entropy loss function, a

batch size of 32 elements, and an epoch limit of 100.

Data perturbation is applied multiple times for each dataset-model configura-

tion, using sample drop, noise addition, and label flipping. More precisely, the

drop probability (d) parameter varies from 0.0 to 0.95 with a step of 0.05, the

flipping probability (f) parameter varies from 0.0 to 0.90 with a step of 0.08, and

the noise intensity (v) parameter varies from 0.0 to 1.0 with a step of 0.1. Each

experiment is repeated 30 times to draw statistical comparisons.
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10.2.5 Results and Discussion

Here we present the results of our experiments (Figure 10.1) over different per-

turbation strategies, grouped by the datasets and the predictors they are applied

to.

To better understand the real differences in performance between educated

and uneducated predictors—which are fairly comparable—we compare the average

accuracy of each predictor w.r.t. the uneducated one. For this purpose, we employ

the Mann-Whitney U Test [McKnight and Najab, 2010], a non-parametric test for

differences between two groups. In this setting, a p-value ≥ 0.05 indicates that

there are no significant differences between the two average accuracy distributions,

whereas a p-value < 0.05 indicates the opposite.
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Figure 10.1: Average accuracy over different datasets with different perturbation
strategies
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Table 10.1: Robustness relative scores. Bold numbers are the ones greater than 1
(i.e., the educated model is more robust than the uneducated one).

Dataset
RN,D(I) drop RN,D(I) noise RN,D(I) flip

KINS KILL KBANN KINS KILL KBANN KINS KILL KBANN

BCW 1.0493 1.0318 1.0382 0.9960 0.9985 1.0109 0.9994 1.0184 0.9520
PSJGS 1.0045 0.9968 0.8425 0.9950 0.9984 1.0145 0.9962 1.0026 1.6749
CI 0.9998 1.0039 1.0043 0.9992 1.0012 0.9965 0.9897 1.1703 0.9815

Drop

In the data drop experiments (Figure 10.1 a-c), KBANN is the only predictor

that shows significant differences w.r.t. the uneducated one. Specifically, KBANN

demonstrates improved performance on the BCW (Figure 10.1a) and CI (Fig-

ure 10.1c) datasets, but its performance on the PSJGS (Figure 10.1b) dataset

rapidly declined when 60% of the data are dropped (d = 0.6). For the other ed-

ucated predictors, KINS shows slightly better performances than the uneducated

model. In the BCW dataset its p-value = 0.01 indicates that there are significant

differences in terms of performance compared to the uneducated model.

Looking at Table 10.1, one can see the influence of the performance values on

the robustness score, e.g. for KBANN in the PSJGS dataset. Apart from this, the

educated models improve robustness in 6 out of 9 experiments.

Noise

The noise experiments (Figure 10.1 d-f) reveal that SKI mechanisms are more sen-

sitive to noisy data than missing data. In fact, the average accuracy of predictors

trained over noisy data drops more quickly than the data drop scenario. This is

due to the downward trends exhibited by all predictors since the early stages of

the curves. Indeed, Table 10.1 confirms that educated models enhance robustness

in only 3 experiments out of 9.

KBANN outperforms other SKI methods and the uneducated model in the

BCW (Figure 10.1d), but performs poorly in the CI (Figure 10.1f) dataset. In

PSJGS (Figure 10.1e) dataset, it has low performances too w.r.t. the uneducated

predictor —except for high noise levels, where it is subject to relatively slower

performance decline. This explain why in Table 10.1 KBANN’s robustness score
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shows a gain over the uneducated one. The opposite trend, on the other hand,

can be observed for the CI scenario.

Along this line, it is worth of notice observing that KINS – despite being a SKI

approach based on neural structuring like KBANN – performs noticeably lower

than KBANN in terms of robustness, regardless of the dataset. The discrepancy

may be caused by the trainable nature of KINS’ neural modules, which makes them

more prone to overfitting noisy data. It is noticeable that KILL consistently ex-

hibits similar (or worse) behaviour across all datasets than the uneducated model.

This may imply that the penalties imposed by KILL during training for performing

injection are not compensating for noise perturbations.

Label-flipping

The label flipping experiments (Figure 10.1 g-i) show that predictors behave sim-

ilarly in both BCW (Figure 10.1g) and CI (Figure 10.1i) datasets. This similarity

between all predictors can also be observed when looking at p-values which are all

close to 1—i.e. no significant difference between educated and uneducated predic-

tors. In both, BCW and CI, there is a quick degradation in performance starting

from 54% of flipped labels (f = 0.54). Conversely, for the PSJGS dataset (Fig-

ure 10.1h), the performance decline pattern is linear. One notable exception is

KBANN, that exhibits an impressive performance, retaining nearly 70% accuracy

even for highest flipping probability values (f = 0.9)—as opposed to other models

whose accuracies drop to 20%. Such behavior is further emphasised by Table 10.1,

where KBANN demonstrates a remarkable improvement in robustness w.r.t. the

uneducated model.

Except for KBANN, the other predictors exhibit similar performance trends

w.r.t. the uneducated model across all three scenarios. Looking at Table 10.1,

KBANN generally experiences a slight decrease in robustness compared to the

uneducated model—except for the PSJGS case. On the other hand, KILL emerges

as the predictor that best withstands the perturbations caused by label flipping.

Discussion These experiments demonstrate that among the introduced pertur-

bations, data drop is the one where SKI methods exhibit the greatest gains in

246 CHAPTER 10. SKI ROBUSTNESS FOR EFFICIENTISATION



10.2. EXPERIMENTS

robustness, indicating their ability to compensate for lacking data through inte-

gration of prior knowledge and confirming the findings of Chapter 8. The PSJGS

dataset is an exception, indeed the injected knowledge is far from optimal, being

good for classifying only one class out of three. In this case, poor prior knowledge

combined with missing data may hinder the model from learning underlying pat-

terns. For noise perturbations, the SKI methods employed prove insufficient to

improve robustness. For label flipping perturbations, the constraining method—

KILL—demonstrates good robustness across all three datasets, suggesting that

penalty added during training is sufficient to compensate for label flipping. The

exception of KBANN on PSJGS likely stems from its strong adherence to the in-

jected knowledge, which provides useful joint information on splice junctions and

mitigates the influence of flipped labels.

Chapter Synopsis

In this chapter we propose a novel metric to assess the robustness of SKI mech-

anisms. As such, we define three different types of data perturbation strategies

and a way to assess their intensity. We also provide a formula to calculate the ro-

bustness score of a predictor, assessing its robustness when the data is perturbed.

Furthermore, we introduce a comparison to better understand whether the SKI

predictor is better (or not) than its uneducated counterpart from a robustness

perspective.

Overall, our experiments indicate that our proposed metric can be used to ef-

fectively determine the robustness of the performance variations obtained through

SKI. The experimental findings highlight how SKI approaches represent a valu-

able approach for achieving robustness in the data-drop scenario. Moreover, SKI

approaches seem to achieve better results when part of the data labels are not

fully reliable—i.e., label flipping scenario. These findings highlight once again the

strenght of SKI models for learning from fewer data and/or mislabeled data, thus

identifying a more data efficient solution with respect to standard NN models.
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Chapter 11

Measuring Other Relevant

Properties of Neuro-Symbolic

Integration

This chapter contains contributions from [Agiollo and Omicini, 2023].

Resource efficiency represents one of the pillars of AI trustworthiness as defined

by the Ethics Guidelines for Trustworthy AI1 released by the European Union (EU)

as a part of its AI strategy. However, these ethics guidelines apparently focus on

popular ML solutions in their definition process. Indeed, most trust requirements

are clearly linked with the black-box nature of ML and DL solutions—such as the

need for transparency, explanations, human interaction, and many others. The

result is the current lack of suitable definitions of the notion of trustworthiness in

terms of NeSy systems. This is why in this chapter we expand the umbrella of our

analysis and deal with the definition of trustworthiness for NeSy systems, focusing

specifically on SKI and SKE approaches. Although this analysis does not directly

help in identifying more efficient NeSy models, it represents a fundamental effort

to identify the missing components for the definition of fully trustworthy NeSy

systems. Therefore, since full trustworthiness requires maximum efficiency, we

include this chapter to shed some light on the foreseeable future developments of

1https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-

trustworthy-ai

CHAPTER 11. MEASURING NESY PROPERTIES 249

https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai


11.1. FROM TRUSTWORTHY AI TO TRUSTWORTHY NESY

NeSy systems, and to help the reader understand the open gaps in the literature

and the available opportunities.

The definition of requirements for trustworthy NeSy systems represents a fun-

damental step towards their safe adoption. However, requirements definition by

itself can not be considered as an exhaustive measure to ensure and calibrate the

trustworthiness of NeSy systems. Instead, it is of utmost significance to define

NeSy trustworthiness metrics that allow to actually measure the level of a sys-

tem trust, possibly enabling an in-depth analysis of the components raising trust

concerns. Whereas a few trustworthiness metrics definition already exist, tackling

specific components of NeSy models – such as accuracy, robustness and efficiency

as seen in the previous Chapters 8 to 10 –, the vast majority of NeSy most relevant

aspects are still unexplored. This is why in this chapter we:

• define how the AI trustworthiness requirements translate to the NeSy realm,

analysing in detail each pillar of trust and its implication on NeSy models.

• analyse the available metrics for each of the novel NeSy trust requirements

as well as the potential future directions to explore in the analysis of NeSy

trust;

• suggest some novel metrics to measure specific NeSy elements, focussing on

SKI and SKE.

11.1 From Trustworthy AI to Trustworthy NeSy

As a fundamental step of its AI strategy, the EU has defined seven key trustworthi-

ness criteria to meet during the development, deployment, and use of AI systems,

namely: (i) human agency and oversight, as the need for oversight mechanisms

enabling the informed interaction between the AI system(s) and the human(s)

counterpart; (ii) robustness and safety, as the need for accuracy, reliability, re-

silience and security of AI system(s); (iii) privacy and data governance, as the

need for ensuring legitimised access to data, while taking into account data qual-

ity and integrity; (iv) transparency, as the need for providing human users with

explanations of the AI system(s)’s decision process; (v) diversity, non-discrimi-
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nation and fairness, as the need for avoiding unfair bias while enable everyone’s

access to AI technology; (vi) environmental and societal well-being, as the need for

sustainability of AI system(s) and the transition to their environmentally friendly

development; (vii) accountability, as the need for mechanisms that ensure respon-

sibility and accountability for the behaviour and outcomes of AI systems. The

above requirements define a broad umbrella of concepts and means to identify

relevant components in the deployment of AI systems and ensure their trustwor-

thiness. However, being designed to be general enough to be applicable to any – or

at least as most as possible – AI systems, they are actually too general to be used

to define actual metrics to effectively measure every sort of AI systems. Therefore,

to make them actually working, a more detailed specification of trustworthiness

requirements is needed: in particular, the general EU pillars should be translated

into domain-specific pillars, promoting the definition of trustworthiness metrics

for each specific AI domain. Such a translation should also account for the cur-

rent bias of EU trustworthiness pillars towards subsymbolic AI systems—where,

for instance, the black-box nature of all components is given as understood when

dealing with issues such as transparency, explainability, human interaction, even

though it mostly concerns subsymbolic components only.

Thus, in the remainder of this chapter we define the pillars of trustworthi-

ness for AI systems based on Neuro-Symbolic integration. We analyse the seven

EU-defined trustworthiness criteria for AI, and translate each of them into its

NeSy counterpart, leveraging on the aspects of NeSy that promote fairness and

explainability by design. On the other hand, leveraging both symbolic and sub-

symbolic paradigms, NeSy systems may be affected by robustness, safety, and bias

issues from both sides – i.e., symbolic and subsymbolic –, hindering their overall

trustworthiness. Therefore, a fundamental issue in the NeSy context is to identify

whether and to what extent the blending of symbolic and subsymbolic techniques

can either help or hinder trustworthiness, in particular in the perspective of the

definition of ad-hoc trustworthiness metrics.
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Human Agency and Oversight

In its original formulation this requirement stresses the need for the introduction

of oversight mechanisms enabling informed interaction between AI systems and

humans counterparts. The underlying assumption here is that humans can not

understand AI system at all – or, can understand interaction with AI systems in

a very limited way – so AI systems can never be considered as trustworthy, as

humans are incapable to fix the AI system when issues arise. When taking into

account NeSy mechanisms, the symbolic and subsymbolic fusion component clearly

affects the interaction with with its human counterpart. Instead, the symbolic

component could represent the enabling agent for meaningful interaction between

human and the system, promoting human-in-the-loop, human-on-the-loop, and

human-in-command approaches.

NeSy version

The need for assessing to what extent the symbolic and subsymbolic

interaction of NeSy components helps improving informed human-

AI interaction and human oversight.

Technical Robustness and Safety

In its original formulation this requirement stresses the need for accuracy, relia-

bility, resilience, and security of AI systems. Indeed, an inaccurate or unstable AI

system can not be considered trustworthy, as its behaviour may fluctuate radically

throughout its life cycle. Let us consider for instance adversarial examples [Zhang

and Li, 2020, Serban et al., 2021], where slight perturbations of the input fed to

the AI system result in radically different outcomes: AI system of that sort are

inherently unreliable—thus untrustworthy. Even though this has motivated some

research efforts focused on the identification of robustness issues of ML/DL sys-

tems, very small light has been shed on the robustness and safety issues of NeSy

systems. NeSy relies on both symbolic and subsymbolic components, the former

being – with some exception – verifiable and stable by design while the latter lacks

of stability, verifiability or strong mathematical modeling of their behaviour and
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properties. The interaction of such elements introduces non-trivial behaviour in

NeSy systems, where the symbolic components can be used as a helping tool for

stabilising subsymbolic elements or the subsymbolic tools can be used to produce

imperfect – thus unreliable – symbolic knowledge. Therefore, we consider relevant

studying to what extent the verifiability of symbolic components alters during

the integration process, and how the (in)stability of the subsymbolic element is

impacted by the symbolic knowledge.

NeSy version

The need for assessing the impact of both symbolic (verifiable) and sub-

symbolic (not verifiable) interaction on the stability of the NeSy

system.

Privacy and Data Governance

In its original formulation this requirement stresses the need for legitimate access

to data, while taking into account data quality and integrity. This requirement

identifies the untrustworthy nature of systems optimised over unreliable data, and

promotes the introduction of open data for testing AI systems and their behaviour.

To this end, NeSy systems differ quite heavily from their pure subsymbolic AI coun-

terparts, as they – in most cases – require the processing of symbolic knowledge

and data at the same time. Therefore, it is relevant to notice that data quality

issues extend to knowledge quality issues when considering NeSy systems—even

though symbolic knowledge is typically managed explicitly by AI programmers

and is often verifiable in automatic way.

NeSy version

The need for ensuring the quality of both data and symbolic knowl-

edge of a NeSy system, along with its accessibility.
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Transparency

In its original formulation this requirement stresses the need for producing expla-

nations of the AI systems’ decision processes, deeming as untrustworthy those AI

systems for which it is complex or unfeasible to obtain an explanation of its decision

process. The definition of an AI system transparency depends on the complexity of

the process of obtaining explanations, and their understandability. Indeed, in most

AI scenarios multiple explanations can be drawn to render transparent the system

at hand, depending on the level of detail needed and the process used. While

being conceptually similar, the transparency level of NeSy systems – with respect

to their pure subsymbolic AI counterparts – may differ a lot in terms of extraction

complexity and understandability. Indeed, most NeSy systems represent a more

transparent solution by design, as they leverage symbolic components, inputs or

outputs, which are – to some extent – intrinsically understandable by humans.

Therefore, we consider relevant to assess if – and to what extent – the integration

components of NeSy impacts the transparency of the obtained system(s).

NeSy version

The need for assessing the gain in terms of transparency obtained

by a NeSy system with respect to its pure subsymbolic components.

Diversity, Non-Discrimination, and Fairness

In its original formulation this requirement stresses the need for avoiding unfair bias

and enable everyone’s access to the AI technology. Indeed, biased AI technologies

must not be deployed as they have been proven to increase the chance of harmful

events against humans. Given the relevance of fairness, several efforts have been

put in place to investigate the nature of AI mechanisms’ bias. However, biases

of pure subsymbolic models and their NeSy counterparts differ conceptually in

terms of their root causes: bias can rise in NeSy models as the consequence of

any unexpected behaviour of their subsymbolic components, or their interaction

with their symbolic elements. Indeed, similarly to what done for NeSy robustness,

here it is relevant to highlight that the bias and fairness of symbolic components
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represent a verifiable and provable variable, while its interaction with subsymbolic

elements does not, as it is not possible to define a-priori how the subsymbolic

interaction impact the overall system behaviour. Therefore, it is fundamental

for NeSy systems to consider possible biases rooted in each step of the fusion

between symbolic and subsymbolic components. This is also valid for possible

bias benefits that can be obtained from the interaction between symbolic and

subsymbolic components in NeSy, as the symbolic elements can be used to tune the

subsymbolic components to avoid biases that may arise during their optimisation.

NeSy version

The need for measuring biased and discriminative behaviour of NeSy

systems rooted in the interaction between their symbolic and subsym-

bolic components.

Environmental and Societal Well-Being

In its original formulation this requirement stresses the need for sustainability

of AI systems and the transition to their environmentally friendly development,

deeming as untrustworthy those AI systems that do not benefit all human beings,

including future generations. While measuring the impact of pure subsymbolic

AI systems on the environment has been the focus of several works in the AI

community, the in-depth analysis of how NeSy mechanism can help reducing the

environmental impact of AI. The symbolic component of several NeSy mechanism

can be leveraged as a helping tool for reducing the amount of resources required

for the optimisation of its subsymbolic component. Moreover, it is also possible

for some NeSy mechanism to leverage symbolic approaches to achieve comparable

performance – w.r.t. pure subsymbolic AI – while requiring a smaller memory

footprint—resulting in smaller latency and energy consumption. On the other

hand, the complex interaction between symbolic and subsymbolic components may

introduce an overhead in the NeSy system, causing the waste of resources and thus

decreasing the efficiency of the system. Therefore, it is necessary to define a novel

resource efficiency requirement for NeSy.
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NeSy version

The need for assessing the gain in terms of sustainability of NeSy

systems with respect to their pure subsymbolic components.

Accountability

In its original formulation this requirement stresses the need for mechanisms that

ensure responsibility and accountability for AI systems and their outcomes. At its

core, accountability can be defined as an obligation to inform about, and justify

the AI’s conduct [Novelli et al., 2023]. Therefore, the fundamental property for

AI’s accountability is represented by answerability, which is the property of an AI

system to allow for interrogation concerning a decision process. Accountability is

closely tight to transparency, as it requires for an AI system to produce justification

– a.k.a. explanations – for its actions. Therefore, a similar analysis to the one done

for transparency applies to this context, where we stress the relevance of analysing

the accountability gains obtained through symbolic and subsymbolic integration

in NeSy systems over ML/DL counterparts.

NeSy version

The need for assessing the gain in terms of answerability obtained

by a NeSy system with respect to its pure subsymbolic components.

11.2 On the Relevance of Trustworthiness Met-

rics

The trustworthy requirements proposed for both general AI and NeSy represent a

general umbrella of concepts that should be covered in the system at hand. Indeed,

none of the requirements defined so far give a specific characterisation of a target

level – e.g., target fairness – for that requirement to be considered satisfied. Such

general characterisation of trustworthiness is mainly caused by two contributing

factors, namely
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• High variability characterising AI systems. AI systems optimised to solve

different tasks are expected to differ largely in terms of inner working prin-

ciples. Therefore, identifying a common trustworthiness definition with the

due level of detail represents a complex task

• Conceptual complexity of trustworthiness building blocks. Trustworthiness is

defined as a collection of diverse features of a systems to be achieved for

it to be worthy of humans’ trust. However, some – if not most – of the

trustworthiness sub-components are not easy-to-grasp concepts in their def-

inition. For example, taking into account bias, we immediately understand

that bias must be one of the sub-components required to achieve trustwor-

thiness. However, the definition of bias by itself represents a complex task

that have bogged researchers with troublesome questions like what is bias?,

when is a system biased?, what is the minimum amount of bias for a system

to be considered as such?. Being complex in their definition, these building

blocks are also complex to measure effectively, hindering the overall level of

trust measurement.

The issues connected with the general characterisation of AI trustworthiness hinder

the applicability of such trustworthiness requirements. Indeed, while representing

a valid starting point for analysing AI trustworthiness, these requirements do not

fully allow to comprehensively grasp the extent of a system’s trustworthiness.

To this end, the definition of trustworthiness metrics – rather than requirements

or pillars – represents an open issue of the utmost importance. Trustworthiness

metrics make it possible to evaluate the extent of a system trust, allowing for a

more detailed classification of the AI components to be deployed and the ones

to block. However, the definition of a single general, flexible, and ubiquitous

trustworthiness metric is made almost impossible by the same issues that affect

the generality of trustworthiness requirements. Therefore, we here consider to

translate the trustworthiness requirements into a set of equivalent trustworthiness

metrics, taking into account the high variability characterising AI systems and the

conceptual complexity of trustworthiness building blocks.

We first consider the issue connected with the high variability characterising AI

systems. To enable the definition of rigorous trustworthy metrics, we here propose
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to consider the transition from the general AI trustworthy requirements to the

corresponding pillars for each AI branch. Section 11.1 presents a similar transition

from trustworthy AI into trustworthy NeSy. A similar transition can be identified

for each and every AI domain, obtaining domain-specific detailed trustworthiness

requirements. This step enables a stricter definition of trustworthiness for each AI

domain, making it possible to focus more specifically on the peculiar approaches,

components, and aspects that characterise the domain under analysis.

To tackle the conceptual complexity of trustworthiness building blocks, we here

propose to avoid focusing on the proposal of single, overly-complex trustworthy

metrics with the aim of obtaining a general formulation applicable to any AI sys-

tem. Rather, we suggest to tackle the measurement of systems’ trustworthiness

through the adoption of a broad set of highly-specialised metrics that analyse

single components of the trustworthiness definition. In this context, we consider

proposing a single metric or a set of metrics for each pillar/requirement of trust-

worthiness. The proposed metrics should focus on a specific issue or feature of

the AI system at hand – such as its robustness to specific input perturbation, or

the bias towards a specific group –, producing as output a single numeric value,

describing its safety level—i.e., how much that issue is alarming for the system.

Highly-specialised metrics can then be arbitrarily combined to obtain a dynamic

trustworthiness score, depending on the trustworthiness components that are to

be considered more relevant for the scenario under examination. This simplified

process allows not just the easier definition of each set of trustworthiness metric –

e.g., bias metrics, robustness metrics, etc. –, but also the evaluation of set based

on a given relevance. Consider for example a scenario where the bias requirement

should be considered as more relevant w.r.t. the human oversight requirement.

Our approach allows a higher weight to be assigned to the bias metrics before its

combination with the human oversight metrics to obtain the general trustworthy

measurement. Therefore, we here propose to tackle the trustworthiness measure-

ment issue by adopting a dynamic broad set of highly specific metrics that can be

combined depending on the given measurement requirements.
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11.3 NeSy Metrics for Trustworthiness

In this section we present the trustworthiness metrics (both available and missing

ones) for NeSy systems, specifically focusing on SKI and SKE. We analyse each

of the seven trustworthiness pillars/requirements separately to obtain a thorough

representation of the state-of-the-art and future directions.

11.3.1 Human Oversight

NeSy version of human oversight requirement is defined as the need for assessing to

what extent the symbolic and subsymbolic interaction of NeSy components helps

improving informed human-AI interaction and human oversight.

Available metrics

Most approaches to measure human oversight in AI scenarios focus on aspects

of human-AI interaction, where explanation of behaviours represents the most

important component of the interaction process. As a results, much attention has

been paid to the measurement of how explanations could guide people to respond

to and predict the AI system behaviour [de Graaf and Malle, 2017]. A large

number of studies exist in this realm, which mainly leverage on users to subjectively

rate system predictability, likability, etc.[Huang and Mutlu, 2012] While useful in

order to define systems predictability, these studies lack the assessment of human

influence and control on the AI system at hand. The reason for this is to be found

mainly on the black-box and data-driven nature of subsymbolic models that these

works take into account. Indeed, most – if not all – subsymbolic models allow

for limited control by the human users, given mostly by the data gathering and

selection process.

Missing metrics

Unlike pure subsymbolic systems, NeSy models intrinsically enable higher level of

human oversight via the integration of symbolic knowledge. However, the extent

of such oversight capabilities should be studied in depth through the proposal of

ad-hoc metrics that measure how much the behaviour of a NeSy system can be
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controlled by a human user. To this aim, in the SKI context, we consider proposing

a novel metric assessing the impact of the injection process to the underlying

model. The impact can be measured as the amount of injected knowledge that is

effectively absorbed by the underlying model. The metric would assess the level of

available human oversight in SKI systems, allowing for a precise definition of the

extent of human control. Meanwhile, the SKE context emphasises the need for

measuring the modifiability of the extracted symbolic knowledge from an initial

subsymbolic predictor. Indeed, SKE approaches by themselves do not allow for an

in-depth control of the model behaviour, but rather enable their inspection. In this

context, a desirable solution is represented by refining the extracted knowledge and

using it as input for a SKI system acting upon the same subsymbolic model. This

process would enable a sort of debugging loop of NeSy systems leveraging both

SKE and SKI, with an increased potential for human oversight. Here, we require

the definition of an ad-hoc metric capable of assessing the portion of symbolic

knowledge that can be extracted, refined and injected back in the system with it

being correctly assimilated by the model.

11.3.2 Robustness

NeSy version of the robustness requirement is defined as the need for assessing the

impact of symbolic (verifiable) and subsymbolic (not verifiable) interaction on the

stability of the NeSy system.

Available metrics

The state-of-the-art picture of NeSy robustness emphasises the lack of a common

agreement on the definition of robustness itself, thus leading to diverging works fo-

cusing on opposite aspects of NeSy systems. Indeed, in this context, several works

focus on highlighting the robustness of NeSy models in terms of their performance

over complex or out-of-distribution inputs [Li et al., 2022b, Wu et al., 2021a, Liu

et al., 2023]. Although relevant for pointing out the potential of NeSy approaches,

these works propose somehow misleading definitions of robustness, mostly focusing

on NeSy flexibility rather than its stability. NeSy systems may perform well on

complex and out-of-distribution samples, while suffering instability on small in-
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put perturbations—causing robustness collapse. Several other concepts have been

taken into account when considering NeSy robustness such as prediction coherence

and consistency [Nye et al., 2021], subsymbolic verification through neuro-symbolic

integration [Xie et al., 2022], avoidance of reasoning shortcuts [Marconato et al.,

2023] and many more. However, the majority of these approaches not only assess

an ad-hoc concept of robustness, but also focus on its qualitative evaluation thus

failing to assess the quantitative aspect required to achieve robustness metrics.

While it is true that there exists some confusion concerning the definition of

NeSy robustness, there are few relevant works aiming at defining precise robustness

metrics. More in detail, Yang et al. [Yang and Chaudhuri, 2022] present a novel

learning approach for neuro-symbolic programs, showing its robustness against in-

put perturbations in terms of provably safe portion of the learned model. In this

context, NeSy robustness against adversarial attacks represents a popular area of

research with several works aiming at proving either qualitatively [Vilamala et al.,

2023] or quantitatively [Ibarra-Vázquez et al., 2022] the safety of NeSy approaches.

Most of these works define robustness in terms of accuracy degradation over vary-

ing input perturbation intensity, independently of the input perturbation type and

magnitude.

Missing metrics

As a result of the mixed focus given to NeSy aspects when tackling robustness,

several aspect of NeSy robustness and stability have not been thoroughly analysed,

yet. Indeed, there exists the need to study if – and to what extent – the stability

and verifiability of symbolic AI components is preserved throughout the integration

process in NeSy models. In this context, focusing on the SKI realm, we suggest

that a measure of integration stability – as the portion of symbolic elements that

are correctly integrated in the injected model – is needed here. Such a metric would

basically represent the portion of symbolic control that a NeSy system can attain

during its integration step. Secondly, also those scenarios where the symbolic

elements of NeSy models suffer from some sort of imperfection have to be taken

into account. Here, it is important to measure the stability of SKI models when

the injected knowledge is altered as a result of some imperfect automation process.
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Finally, it is also relevant to measure the stability of NeSy systems over symbolic

representation variability, to assess how different symbolic representations – e.g.,

logic formulæ, knowledge graphs, etc. – may impact the integration process. To

this end, we propose to measure the performance of SKI integration when two

syntactically different yet equivalent chunks of symbolic knowledge are exploited

in the same integration process.

11.3.3 Data & Knowledge Quality

NeSy version of the data & knowledge quality requirement is defined as the need

for ensuring the quality of both data and symbolic knowledge of a NeSy system,

along with its accessibility.

Available metrics

Given the impact of data quality on the optimisation process of ML and DL

systems, several quality metrics are available, namely: (i) class overlap [Denil

and Trappenberg, 2010], (ii) boundary complexity [Lorena et al., 2019], (iii) label

noise [Northcutt et al., 2021], (iv) class imbalance [Lu et al., 2020], (v) missing

value analysis [Corrales et al., 2018], and many more. Although designed for

subsymbolic AI models, these metrics translate to the data-driven component of

NeSy systems without particular issues, especially in those systems that follow a

neural to symbolic – neuro → symbolic [Sarker et al., 2021] – pipeline such as

SKE approaches. In this context, these metrics makes it possible to check the

correctness of the information that the subsymbolic components of NeSy gather

from the data.

Missing metrics

Unlike pure subsymbolic approaches – which rely solely on data for optimisa-

tion –, NeSy models gather information from both a data-driven and a symbolic

knowledge component. In this context, it is fundamental to assess the level of

compatibility or overlap between the data and the symbolic knowledge to be com-

bined. In most NeSy systems quite a strong overlap is required between data and
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symbolic knowledge in order to avoid optimisation drift issues, where the inte-

grated knowledge contrasts concepts learnt from the data. Meanwhile, a perfect

overlap would also not be ideal in NeSy systems, as the optimisation process would

gather the same information from both data and symbolic knowledge. Therefore,

we here stress the need for new metrics that could measure the conceptual and

technical overlap between data and symbolic knowledge at hand. Another rele-

vant aspect to measure in this context is represented by the quality of the symbolic

component of the NeSy system. While symbolic AI approaches are verifiable and

deemed trustworthy, several NeSy – especially SKI – approaches rely on the inte-

gration of knowledge bases given a-priori and defined by human experts. Although

mostly reliable, knowledge bases may be either incomplete or imperfect due to the

human-centred building process. Therefore, metrics are needed that would make

it possible to score knowledge components exploited in NeSy systems.

11.3.4 Transparency

NeSy version of the transparency requirement is defined as the transparency gain

obtained by a NeSy system with respect to its pure subsymbolic components.

Available metrics

When focusing on transparency, most of the available metrics for AI and NeSy

models focus on explanations quality evaluation. Generally speaking, explana-

tions quality is characterised by several key attributes [Hoffman et al., 2018],

namely: (i) understandability – i.e., explanation complexity –; (ii) completeness

– i.e., explanation coverage –; (iii) sufficiency of detail – i.e., explanations depth

–; (iv) usefulness – i.e., explanation applicability –; and (v) feeling of satisfac-

tion—i.e., explanation interactivity. By focusing on some of the above attributes,

several works propose explainability and transparency metrics for AI and NeSy.

[Nguyen and Mart́ınez, 2020] introduce a set of metrics to evaluate interpretability

methods through measurements of simplicity, broadness, and fidelity of explana-

tions. Meanwhile, Holzinger et al. [Holzinger et al., 2020] introduce a system

causability scale to measure explanations quality, based on the notion of causabil-

ity [Holzinger et al., 2019] together with the notion of usability scale. Although
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designed for explanations in general, these metrics nicely fit in the SKE frame,

where they can be used to assess the quality of the extraction mechanism, as done

by [Lakkaraju et al., 2017] focusing on unambiguity, interpretability, and interac-

tivity of explanations.

Missing metrics

Available explainability metrics aim at measuring the quality of explanations in

absolute terms—i.e., how good are my extracted explanations? Meanwhile, our

definition of NeSy transparency requires to measure the gain in transparency ob-

tained from symbolic and subsymbolic integration. Therefore, there is the need

for novel metrics for NeSy systems comparing the quality of a system’s explana-

tions before and after symbolic and subsymbolic integration. Moreover, we here

stress the unbalanced nature of explainability metrics, as most metrics focus solely

on features of explanations that are automatically measurable – e.g., correctness,

coverage, length, etc. –, whereas there are basically no metrics focusing on hu-

man oriented specifications. A relevant issue for future research in this are is

the definition of metrics that account for the subjective human factor in expla-

nations, assessing the level of explanations satisfaction and understandability via

human-assisted experimentation. Finally, it should be noted that transparency

should not just focus on measuring the quality of the explanations that can be

obtained from a system, but should instead assess the complexity of the process

for extracting those explanations, too. Indeed, explanations obtained from a DL

model using SKE may be complete, understandable and useful, but require a high

computational burden to be extracted, rendering the overall DL and SKE process

less transparent.

11.3.5 Fairness

NeSy version of fairness requirement is defined as the need for measuring biased

and discriminative behaviour of NeSy systems rooted in the interaction between

their symbolic and subsymbolic components.
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Available metrics

Given the nuances characterising a context-dependent notion like fairness, develop-

ing quantitative formulations for fairness metrics is challenging [Chierichetti et al.,

2019]. In the general context of AI systems, fairness is generally regarded as out-

come fairness, which is the definition of equality of the decision making process

outcomes. Here, fairness can be categorised into individual vs. group notions of

fairness, and observational vs. causal approaches to assess fairness [Calegari et al.,

2023]. Observational fairness approaches are characterised by a number of ex-

isting metrics, such as: (i) independence metrics – e.g., statistical parity, group

fairness, demographic parity, etc. –; (ii) separation metrics – e.g., equal opportu-

nity, equalised odds, predictive equality, etc. –; and (iii) sufficiency metrics—e.g.,

groups calibration, predictive parity, etc.

While representing a fundamental requirement, fairness in NeSy setups is yet to

be explored in detail. Indeed, only a handful of works have investigated fairness in

NeSy systems. [Wagner and d’Avila Garcez, 2021] propose to leverage the combi-

nation of symbolic knowledge extraction from Logic Tensor Networks [Badreddine

et al., 2022] and injection of fairness constraints via continual learning to enforce

fairness. Gao et al. [Gao et al., 2022] inject a fairness-based component in the loss

function of subsymbolic models during their optimisation process to achieve higher

fairness. Beyond their obvious relevance, these work focus solely on possible fair-

ness benefits obtained through NeSy, as they rely on the application of SKI and

SKE to reduce bias issues, leveraging the general AI fairness metrics. Therefore,

available NeSy-specific fairness metrics are still missing that would aim at measur-

ing just the impact of symbolic and subsymbolic integration upon fairness. This

deficit is probably due to two aspects: (i) most observational fairness metrics are

considered to be applicable to NeSy systems without modification; and (ii) most

research focuses on measuring the fairness and assess it, rather than aiming at

identifying its root causes.

Missing metrics

In its NeSy version, the fairness requirement highlights the need to assess the

possible fairness issues or improvements that arise from the use of symbolic and
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subsymbolic integration. It is clear that this requirement is not satisfied by avail-

able fairness metrics. Indeed, although most observational fairness metrics apply

to NeSy systems, they do not allow for identification of the root causes of bias. One

approach to tackle this issue would be to measure NeSy fairness as a differential

of observational fairness between a SKI/SKE model and its ML/DL counterpart.

However, such an approach would be over-simplistic, as it would not allow the

specific sub-components of the integration process or of the symbolic knowledge

that impact fairness to be captured. One possible solution would be to measure

the fairness of NeSy systems over a set of symbolic knowledge bases, each repre-

senting a specific set of fairness goal. This process would allow fairness goal to be

decomposed into its components/elements, then measure how well a NeSy system

can enforce each fairness element.

11.3.6 Resource Efficiency

NeSy version of the resource efficiency requirement is defined as the need for as-

sessing the gain in terms of sustainability with respect to pure subsymbolic coun-

terparts.

Available metrics

When dealing with resource efficiency of AI systems in general, the detailed defi-

nition of the set of resources to take into account represents a fundamental aspect.

Several elements of the system at hand can be identified as resources, ranging from

the energy required by the system to be optimised to its scalability—e.g., overall

complexity. In this context, the previous chapters of this thesis propose a rigorous

definition of resource efficiency improvements achievable by SKI (see Chapters 8

and 10) and SKE (see Chapter 9) systems, focusing on energy, latency, memory,

and data efficiency of these models. Similarly, several other works show the data

efficiency of NeSy models – such as [Mao et al., 2019, Zhang et al., 2021b, Škrlj

et al., 2021] – even though lacking a proper definition for efficiency.
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Missing metrics

As data efficiency represents one of the declared advantages of NeSy systems,

most of the literature focuses specifically on this aspect, leaving some space for

investigation about other relevant aspects of resource efficiency. More in detail,

detailed analysis of the environmental impact of AI and NeSy models development

in terms of their carbon footprint are still mostly missings. Studying the energy

consumption of the development of a single NeSy model is not enough, as the

computation infrastructure used throughout this development – such as clusters

and cloud infrastructures – strongly impact its environmental footprint. More-

over, whereas few metrics exist that assess the efficiency of NeSy under the SKI

perspective, there are basically no metrics for resource efficiency in the SKE area.

In this context, it would be desirable to have metrics similar to the ones obtained

for SKI comparing the resource usage of the original subsymbolic model and its

symbolic emulation. Depending on the SKE approach at hand, it is possible to

consider extracting a small symbolic AI models mimicking the behaviour big DL

frameworks. The small symbolic model obtained may help hugely reducing the

amount of resources – especially energy, latency, and memory – required to deploy

the AI system. Therefore, we here suggest as a future direction to investigate

whether – and to what extent – SKE can produce small and fast counterparts of

DL models. Here, the resource efficiency metric could be simply designed as the

relative difference between the amount of resources required to run the original

DL model and its symbolic emulation.

11.3.7 Accountability

NeSy version of the accountability requirement is defined as the need for assessing

the gain in terms of answerability obtained by a NeSy system with respect to its

pure subsymbolic components.

Available metrics

As it is represented by the answerability of an AI system, accountability is closely

tight to transparency. Indeed, accountability requires the underlying system to
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be explainable, and the explanations to be correct, reliable, and comprehensible.

Correctness and reliability of explanations depend on the precision of the AI system

and its explanation construction counterpart. Therefore, most efforts in this field

focus on the explainability of the AI/NeSy system at hand. As a result, the set

of available AI and NeSy metrics for accountability is basically represented by the

same set of metrics presented in Section 11.3.4.

Missing metrics

While being tightly linked with explainability, accountability also requires the

extracted explanations to be correct and reliable. As correctness and reliability

mostly depend on the precision of the AI/NeSy system, we here propose to de-

fine novel accountability metrics by opportunistically mixing transparency metrics

(Section 11.3.4) and robustness metrics (Section 11.3.2). Therefore, accountability

metrics should be defined as the result of explainability metrics applied over a set

of input perturbations, measuring the rate of change of the obtained explanations.

Chapter Synopsis

Resource efficiency represents one of the pillars of AI trustworthiness. Therefore, in

this chapter we consider expanding the umbrella of our analysis and focus on the set

of available and missing measures of trustworthiness for NeSy systems. Although

it does not directly help in identifying more efficient NeSy models, the proposed

analysis represents a fundamental effort to identify the missing components for

the definition of fully trustworthy NeSy systems. As full trustworthiness requires

maximum efficiency, we felt the need to include this chapter to shed some light

on the foreseeable future developments of NeSy systems, and to help the reader

understand the open gaps in the literature and the available opportunities.

The notion of Trustworthy AI as defined by the EU is mostly a general one, yet

implicitly accounting for issues coming from popular ML and DL techniques—so it

fits well subsymbolic AI systems. NeSy systems call for a more specific definition

of trustworthiness, as they rely on the integration of subsymbolic and symbolic

AI where the symbolic components may affect – either positively or negatively –
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the trust level of the system. Accordingly, we show how the AI trustworthiness

requirements defined by the EU translate to the NeSy realm, focusing on the rele-

vant elements of the NeSy integration process impacting trust. First we analyse in

detail each pillar of trust and its implication on NeSy models, then we focus on the

available metrics for measuring such requirements. The state-of-the-art analysis

highlights a lack of available metrics for most trustworthiness aspects when specif-

ically considering NeSy systems. Therefore, we suggest potential future directions

to explore in the analysis of NeSy trust along with related metrics definitions. We

believe that the rigorous definition of novel trust metrics tailored to NeSy systems

is going to represent an essential step towards measurably reliable and trustworthy

AI systems based on neuro-symbolic integration.
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Part III

Epilogue

There is no real ending. It’s just

the place where you stop the story.

Frank Herbert
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Chapter 12

Conclusions

In this chapter, conclusions are drawn – analysing the achievement of this thesis’

goals – and some relevant future research directions are briefly discussed. As out-

lined in Chapter 1, this thesis tackles the complex problem of integrating powerful

AI models – especially focusing on state-of-the-art NNs – into resource constrained

devices. Coherently with goal 1, we kick off our investigation by analysing the set

of limitations that affect the most popular embedded devices and eleciting the

relationship between such limitations and a set of efficiency metrics defined for

AI systems (see Chapter 2). Accordingly, we reframe the integration of AI into

constrained/embedded devices problem as a NN efficientisation task, where effici-

entisation is defined as the issue of minimising the resource usage of NN models,

either during their optimization process or their deployment phase. We tackle the

integration/efficientisation task following a multi-faceted approach, in which we

focus both on (i) the most popular techniques available in the state-of-the-art –

aiming at overcoming some of their limitations –, as well as (ii) proposing to lever-

age a novel paradigm to efficientise NNs—namely NeSy systems. Accordingly, our

contribution is split into two major parts.

Embedding AI via Classic Efficientisation. In Part I, we focus on the clas-

sic efficientisation approaches, targetting first goal 2. To this end, we provide a

concise – yet insightful – overview of the available approaches for reducing the

resource requirements of NN models, eliciting their advantages and shortcomings

in Chapter 2. While there exists quite a few different approaches available in the
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literature, many of them consider focusing on one or few efficientisation issue at

the time, thus representing limited solutions. For example, pruning, quantization,

and architecturing approaches focus on minimising the amount of parameters of

the model under analysis, while data coresets approaches focus solely on enabling

a data-efficient learning setup, targetting the reduction of samples required to op-

timise a model. These findings highlight the lack of a silver-bullet solution for

tackling the efficientisation task. Accordingly, we consider tackling goal 3 focusing

on few different efficientisation paradigms (see Chapters 3 to 6). More in detail, we

tackle the limitations of architecturing approaches which usually lack mechanisms

to limit the architecture complexity – while promoting variability – and learn their

inner working principles in Chapters 3 and 4. Subsequently, we focus on the short-

comings of the available data coresets approaches, proposing to leverage a set of

simple and resource efficient properties of NN to identify clean samples to be used

during training in Chapter 5. Finally, we consider energy and resource utilization

optimisation in federated learning scenarios – which represents an overlooked is-

sue –, presenting a novel energy and resource aware client selection approach and

showcasing its resource friendliness in Chapter 6.

Efficientisation via Neuro-Symbolic Integration. In Part II, we explore

the usage of NeSy systems to study their achievable efficiency improvements over

classic NN models. NeSy approaches rely on the hybridisation of symbolic and sub-

symbolic realms, where symbolic approaches usually focus on rational intelligence,

while sub-symbolic approaches mostly focus on intuitive intelligence. In Chapter 7,

we give a detailed overview of the set of NeSy approaches which can be leveraged as

helping tools for tackling the efficientization of NNs task. To this end, we promote

two complementary broad set of NeSy approaches, namely symbolic knowledge

extraction and injection from and into sub-symbolic predictors.

Symbolic knowledge injection frameworks aim at steering the NN learning pro-

cess towards a predefined goal, injecting complex logical information which is oth-

erwise difficult to learn and elaborate from numerical data using bare NNs. Here,

the simple intuition is that injection can be leveraged as a tool to remove part of the

complexity burden from the underlying NN and obtain simpler and more efficient

sub-symbolic models. In Chapter 8, we validate this intuition, showcasing how
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different SKI approaches can be leveraged to achieve more efficient systems w.r.t.

purely sub-symbolic counterparts. Similarly, in Chapter 10, we define SKI robust-

ness metrics which support the findings on the achievable efficiency improvements

when leveraging SKI over uneducated counterparts. These findings represent the

partial completion of goal 4. To further investigate the feasibility of leveraging

NeSy systems for NN efficientisation, in Chapter 9, we analyse if – and to what

extent – SKE can help efficientisation. Since SKE frameworks aim at producing

symbolic knowledge that reflects the behaviour of the NN predictor with high fi-

delity, we propose to leverage them to achieve efficient replica of the starting NN

model bounding the complexity of the extracted symbolic knowledge. Our empiri-

cal findings encouragingly highlight several efficiency gains when SKE approaches

are applied to Natural Language Processing scenarios, once again showcasing the

completion of goal 4.

Thorughout Part II, we consider tackling goal 5 via the proposal of several

Quality-of-Service (QoS) metrics for NeSy mechanisms that enable the thorough

analysis of their efficiency improvements (see Chapter 8) and other relevant prop-

erties such as robustness (see Chapter 10) and trustworthiness (see Chapter 11).

The proposed QoS metrics represent a step forward in the fair measurement of the

advantages and limitations of NeSy systems, filling an open gap in the research

community.

Future Directions

This thesis dives into the NN efficientisation perspective, proposing a multi-faceted

approach in which multiple techniques are analysed, along with their limitations.

As the NN efficientisation problem represents a fundamental open research ques-

tion, several approaches have been proposed and tested in the literature. However,

while these approaches show their effectiveness, they are seen as watertight com-

partments. In the future, a relevant research direction would be represented by

the analysis of the techniques that can arise from the cross-contamination process

of classic NN efficientisation approaches. For example, leveraging coreset con-

struction approaches in combination with architecturing techniques can represent

a relevant and successful mix, in which the exploration of efficient NN architec-
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tures is boosted by the data compression achievable via coresets. Similarly, it

might represent a relevant solution to embed coresets into distributed learning

approaches, where local information about data is partially shared via synthetic

data – generated using coresets – to optimise the distributed learning process.

The extension of our analysis to a multitude of embedded devices which were

not considered thorughout the thesis would represent another relevant future di-

rection. The embedded devices considered in this thesis were selected mainly due

to budget and/or time reasons. However, the IoT world includes many devices

made of microcontrollers, such as the one based on STM321 or Expressif ESP322

that we feel would be a valuable addition to our resource-efficiency analysis. We

consider this extension to be very valuable given the added heterogeneity of results

it would bring. However, we also consider it as an engineering effort, rather than

an innovative research-oriented problem. Therefore, we believe that the set of

embedded devices considered in this thesis are sufficiently valuable to address the

research questions and goals we identified in Chapter 1 and leave the deployment

of our approaches on more embedded devices for the future.

Finally, concerning the efficientisation via neuro-symbolic integration perspec-

tive, we consider it to be a relevant future direction to be investigated by it-

self. Indeed, while this thesis showcases the achievable efficiency gains of symbolic

knowledge injection and extraction mechanisms, it is important to stress that

these results are not exhaustive. Comprehensive studies analysing the totality of

neuro-symbolic approaches – thus not only focusing on SKI and SKE – are still

missing, along with several metrics required to measure their trustworthiness. In

this context, the cross contamination of the two views on efficientisation presented

in this thesis may also represent a valuable future research direction. For ex-

ample, one may consider leveraging neural architecture search approaches in the

neuro-symbolic integration realm to explore effectively the available integration

space. Similarly, integrating distributed learning and NeSy systems may represent

an interesting – yet vastly unexplored – research direction, testing if the learning

task distribution can be effective also for neuro-symbolic models. Therefore, we

1https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-

cortex-mcus.html
2https://www.espressif.com/en/products/socs/esp32
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consider the work presented in this thesis as a stepping stone towards the compre-

hensive adoption of NeSy for efficientisation and acknowledge the current lacks in

this realm.
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P., Matjašec, U., Abraham, J., Liò, P., and Jamnik, M. (2021). REM: An integrative rule

extraction methodology for explainable data analysis in healthcare. medRxiv, pages 2021–01.

[Shan et al., 2019] Shan, F., Luo, J., Jin, J., and Wu, W. (2019). Offloading delay constrained

transparent computing tasks with energy-efficient transmission power scheduling in wireless

iot environment. IEEE Internet of Things Journal, 6(3):4411–4422.

[Shumailov et al., 2021] Shumailov, I., Zhao, Y., Bates, D., Papernot, N., Mullins, R. D.,

and Anderson, R. (2021). Sponge Examples: Energy-Latency Attacks on Neural Networks.

In IEEE European Symposium on Security and Privacy, EuroS&P 2021, Vienna, Austria,

September 6-10, IEEE, pages 212–231.

[Simonyan and Zisserman, 2015] Simonyan, K. and Zisserman, A. (2015). Very deep convolu-

tional networks for large-scale image recognition. In 3rd International Conference on Learning

Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Pro-

ceedings.

[Singh et al., 2022] Singh, P., Masud, M., Hossain, M. S., Kaur, A., Muhammad, G., and

Ghoneim, A. (2022). Privacy-Preserving Serverless Computing Using Federated Learning

for Smart Grids. IEEE Transactions on Industrial Informatics, 18(11):7843–7852.
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