Crystal engineering for solid-state electrolytes: exploring order-to-disorder phase transition dynamics

Ocak, Samet (2024) Crystal engineering for solid-state electrolytes: exploring order-to-disorder phase transition dynamics, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Nanoscienze per la medicina e per l'ambiente, 36 Ciclo.
Documenti full-text disponibili:
[img] Documento PDF (English) - Accesso riservato fino a 1 Maggio 2027 - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (5MB) | Contatta l'autore

Abstract

This doctoral research addresses the critical need for advanced solid-state electrolytes to overcome current energy storage and harvesting device limitations by using crystal engineering tools. The study explores two distinct material classes that undergo order-to-disorder phase transitions. The first investigation focuses on R-(+)-(3)-hydroxyquinuclidinium salts [QH]X, with X representing SO42−, BPh4−, BF4−, or PF6−. By employing diverse anions, we can gain a more all-encompassing comprehension of plastic phase transitions, which expose distinctive characteristics determined by anion size, shape, and charge. Solid solutions of [QH](PF6)x(BF4)1−x demonstrate a novel phenomenon called "reordering frustration," that expands the plastic phase range. In parallel, a set of methanesulfonate salts (MS) is characterized, featuring diverse globular cations, including the achiral 3-quinuclidonium [QHco]+, the racemic (3)-hydroxyquinuclidinium [QHrac]+, and the enantiopure (3)-hydroxyquinuclidinium R-[QH]+. Despite their high compositional similarity, only the enantiopure salt R-[QH]MS exhibits a reversible plastic transition at elevated temperatures. The second aspect explores supramolecular complexes of 18-crown-6 ether with solid acids containing hydrogen sulfates and selenates of alkali metals (K+, Rb+, Cs+). Analyzing diverse interactions sheds light on superprotonic phase transitions. When 18-crown-6 forms supramolecular complexes with solid acids KHSO4 and RbHSO4, it leads to solid-solid transitions resulting in superprotonic phases. These crystalline solids exhibit enhanced proton conductivity, which is confirmed by impedance spectroscopic measurements. A comprehensive study that combines structural and spectroscopic analyses shows that the conduction characteristics are closely related to the initiation of dynamic motions within anhydrous crystalline materials, specifically 18-crown-6∙KHSO4 and 18-crown-6∙RbHSO4. Incorporating 18-crown-6 ether into the hydrogen selenate salt structures significantly reduces the superprotonic phase transition temperatures compared to pure solid acids. Among the 18-crown-6 ether complexes, the phase transition temperature decreases notably from 18-crown-6∙KHSeO4 to 18-crown-6∙CsHSeO4. However, the Rb-complex, 18-crown-6∙RbHSeO4, exhibits a second-order phase transition at higher temperatures compared to the other two compounds in the series.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Ocak, Samet
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
36
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Crystal Engineering, Plastic Crystals, Supramolecular Interactions, Order-Disorder Phase Transitions, X-ray Diffraction, Impedance Spectroscopy, Ionic Conduction
URN:NBN
Data di discussione
21 Giugno 2024
URI

Altri metadati

Gestione del documento: Visualizza la tesi

^