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Abstract

This dissertation focuses on the well-known issue of mass conservation in
the context of the finite element technique for computational fluid dynamic
simulations. Specifically, non-conventional finite element families for solving
Navier-Stokes equations are investigated to address the mathematical con-
straint of incompressible flows. Raviart-Thomas finite elements are employed
for the achievement of a discrete free-divergence velocity. Quadrilateral and
hexahedral finite element spaces are considered to investigate the error con-
vergence of different variables. In particular, the proposed algorithm projects
the velocity field into the discrete free-divergence space by using the lowest-
order Raviart-Thomas element. This decomposition is applied in the context
of the projection method, a numerical algorithm employed for solving Navier-
Stokes equations. Numerical examples validate the approach’s effectiveness,
considering different types of computational grids.

Additionally, the dissertation considers an interface advection problem us-
ing marker approximation, in the context of multiphase flow simulations. A
C++ library is presented, where the implemented algorithm is able to initial-
ize, advect, and reconstruct a marker cloud performing a best-fit quadratic
interpolation. Several numerical tests, equipped with an analytical velocity
field for the surface advection, are presented to demonstrate the robustness
of the algorithm. Lastly, a comparison with an interpolated velocity by using
Raviart-Thomas basis functions is shown, with the aim of maintaining zero
divergence, mitigating the classical issue of finite element mass loss.





Introduction

In the context of incompressible flow simulations, Computational Fluid Dy-
namics codes play a pivotal role. In particular, divergence-free fields are
crucial for mass conservation in numerical simulations of engineering appli-
cations (multiphase flows, porous-media flows, etc.). Typically, commercial
codes employ finite element (FEM) and finite volume (FVM) methods to
approximate solutions of the physics problem, both widely applicable across
various engineering domains.

While FEM and FVM methods share popularity and similar computa-
tional costs, the finite volume method is usually preferred for fluid dynamic
simulations due to concerns about mass conservation related to the finite ele-
ment method. Nevertheless, achieving the desired exact divergence-free field
across the discrete domain remains challenging for both methods.

This study addresses the challenge of obtaining a finite element approx-
imation of the solution for the Navier-Stokes system, specifically aiming for
a divergence-free velocity field over the discrete domain. This is achieved
through the utilization of Raviart-Thomas basis functions [1].

When dealing with fluid dynamics simulations, the mathematical analy-
sis of the specific partial differential equations is fundamental for obtaining
reliable numerical results [2]. Focusing on the incompressible Navier-Stokes
equations, the literature of the past fifty years has increasingly emphasized
the use of mixed finite elements [3, 4, 5, 6], where different types of nu-
merical discretizations are employed to represent different variables. Indeed,
this spatial discretization approach has proven to yield convergent numeri-
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cal schemes, theoretical convergence rates, and other specific advantageous
properties.

Naturally, in the framework of finite element discretization, the flexibility
of mixed methods arises from the relaxation of the divergence constraint
[7]. However, this relaxation entails a cost, which becomes evident when
considering a standard error estimate for the considered equation.

To provide a brief example and without giving extensive details, that
are explained in the following chapters, when dealing with error estimate for
the velocity field in the Navier-Stokes system, non-divergence mixed finite
elements present a connection between the discretized velocity and the con-
tinuous pressure [8]. For certain finite element families, this mathematical
connection became a numerical drawback, since convergence issues may arise.

In order to describe divergence-free discretization, various approaches
have been proposed in the literature, such as the Scott-Vogelius element
and the discontinuous Galerkin method, [9, 10, 11, 12, 13, 14, 15]. Despite
these efforts, the mathematical problem, commonly referred to as poor mass
conservation [16], remains a subject of ongoing interest. Indeed, some stabi-
lization techniques have been proposed in order to overcome this issue, such
as the grad-div stabilization [17] or a transformation on the continuous pres-
sure [18]. In this context, a few examples dealing with poor mass conservation
are reported in Chapter 4.

Moreover, some remarks can be pointed out regarding the set of equations
described by the incompressible Navier-Stokes system. The existence of the
solution depends on the divergence operator. In particular, certain surjectiv-
ity properties are required, such as the well-known inf-sup condition, which
is a sufficient condition in order to find a unique solution for a saddle point
problem.

In addition, the problem must also preserve the invariance property, en-
suring that a change in the external body force by adding a gradient field,
has an effect only in the pressure solution, but not in the velocity.

As pointed out in [19], a lack of L2−orthogonality between discretely-
divergence-free vector and irrotational fields, such as the pressure gradient,
may generate a poor momentum balance which translates into a misleading
term, causing a poor mass conservation.

This thesis aims to analyze a finite element family designed to address the
numerical challenges associated with maintaining a divergence-free velocity
field. Specifically, within the framework of mixed problems, the Raviart-
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Thomas finite element family assumes an important role, suitable for resolv-
ing partial differential equations subject to divergence constraints.

The examination of this problem is carried out in the context of both
coupled and split pressure-velocity formulations of the momentum equation.
Indeed, the coupled incompressible Navier-Stokes system is known for its
high computational effort, leading to the development of various numerical
algorithms for treating the split system, resolving velocity and pressure fields
separately [20] decreasing the computational burden. We recall that the cou-
pling between velocity and pressure is due to the incompressibility constraint,
resulting in saddle-point matrices in discrete form.

To address these challenges, Chorin and Temam introduced the projection
method, splitting the Navier-Stokes system into two distinct steps: one for
resolving the velocity field and another for the pressure field [21, 22]. This
approach has proven to reduce the computational effort and has consequently
encouraged the development of various projection methods in recent years
[23].

Moreover, the requirement for a divergence-free velocity gains significance
in certain fluid dynamic simulations, especially in scenarios involving mul-
tiphase flows where mass conservation is crucial for reliable numerical out-
comes. This thesis aims to address this mathematical constraint by leveraging
a divergence-free representation of the velocity field, in the context of mul-
tiphase flows. Specifically, the multiphase problem considered involves the
surface advection of a single phase using marker technique approximation.

This methodology has gained interest, particularly in interface tracking
within multiphase flow simulations. Different approaches have been explored
[24, 25], focusing on marker reconstruction. This thesis introduces a novel
numerical algorithm for surface advection on two-dimensional domains, em-
phasizing marker reconstruction by using the best-fit quadric interpolating
equation. Various functions designed to manage marker positions and de-
fine interfaces between phases are described, and a comparison between two
different types of discrete velocity representation is presented.

The thesis is structured as follows: Chapter 1 outlines the mathematical
framework with a description of the problem related to the divergence-free
constraint. Chapter 2 provides an overview of finite element discretization,
with specific attention to the Raviart-Thomas finite elements within quadri-
lateral and hexahedral elements. In Chapter 3 an overview of the projection
method is presented, including the algorithm proposed for the resolution of
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the Navier-Stokes system. Chapter 4 presents the numerical results focusing
on the Raviart-Thomas approximation in the context of the velocity orthog-
onal decomposition and for the projection technique. Finally, Chapter 5
focuses on the multiphase flow problem, explaining the algorithm for surface
marker advection and presenting numerical test results, including the code
coupling for the employment of Raviart-Thomas velocity representation.



CHAPTER 1

Divergence-Free Mixed
Methods

In the following chapter, the main basic properties regarding the numerical
solution of the Navier-Stokes equations will be introduced. In particular,
the mathematical framework will be described, with a major effort on the
divergence-free constraint.

1.1 Mathematical Notations

To present and describe the Navier-Stokes equation mathematically, the typ-
ical weak formulation requires foundational concepts from variational calcu-
lus, such as appropriate Sobolev spaces [26]. We can start by introducing
the vector space of infinitely differentiable scalar function f as C∞(Ω). Here,
differentiability is understood in the classical sense, with the domain Ω as-
sumed to be bounded. For the functions with compact support within the
domain Ω, we can define the subspace C∞

0 (Ω). Employing bold symbols, we
denote similar spaces for vector-valued functions, defining therefore C∞(Ω)
and C∞

0 (Ω). Moving forward, we consider Ω ⊂ R2 as a Lipschitz region,
where ∂Ω is locally represented by a Lipschitz function. This contextual
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description leads us to introduce

L2(Ω) :=
{
f :

∫
Ω

|f 2|dΩ < ∞
}
, (1.1)

the space comprising square-integrable functions with norm

||f ||0 :=
(∫

Ω
|f 2|dΩ

) 1
2
. (1.2)

The inner product on the Hilbert space L2(Ω) is represented as

(f, g) =
∫

Ω
f g dΩ , (1.3)

where, naturally, ||f ||20 = (f, f). Additionally, we denote the space of func-
tions that are almost everywhere bounded as

L∞(Ω) :=
{
f : ess sup

x∈Ω
|f(x)| < ∞

}
, (1.4)

with the norm
||f ||∞ := ess sup

x∈Ω
|f(x)| . (1.5)

Furthermore, we define L2
0(Ω) as the space of square-integrable functions with

vanishing mean.
The Sobolev spaces for integers k ≥ 0, are defined as follows:

Hk(Ω) :=
{
f ∈ L2(Ω) : ∂αf ∈ L2(Ω), for |α| ≤ k

}
, (1.6)

W∞(Ω) := {f ∈ L∞(Ω) : ∂αf ∈ L∞(Ω), for |α| ≤ k} , (1.7)

where the non-negative integer indices α = (α1, α2) denote the order of the
partial derivatives, i.e. |α| := α1 + α2, and ∂αf = ∂α1

x ∂α2
y f . The respective

norms and semi-norms are defined as

||f ||k :=
 ∑

|α|≤k

||∂αf ||20

 1
2

, (1.8)

|f |k :=
 ∑

|α|=k

||∂αf ||20

 1
2

, (1.9)

||f ||k,∞ := max
|α|≤k

||∂αf ||∞ , (1.10)

|f |k,∞ := max
|α|=k

||∂αf ||∞ . (1.11)



1.1. Mathematical Notations 9

Additionally, by introducing the fractional-order Sobolev space on the bound-
ary ∂Ω we have

H
1
2 (∂Ω) :=

{
f ∈ L2(∂Ω) : |f | 1

2 ,∂Ω < ∞
}
, (1.12)

with the corresponding norm and semi-norm given by

|f | 1
2

:=
(∫

∂Ω

∫
∂Ω

|f(s) − f(t)|2
|s− t|2

ds dt

) 1
2

, (1.13)

||f || 1
2

:=
(
||f ||20,∂Ω + |f |21

2 ,∂Ω

) 1
2 . (1.14)

For vector-valued functions such as u = (u1, u2), we can consider the following
norms on (Hk(Ω))2 and (W k

∞(Ω))2

||u||k := (||u1||2k + ||u2||2k) 1
2 , (1.15)

||u||k,∞ := max {||u1||k,∞, ||u2||k,∞} . (1.16)

With the previously defined functional spaces, we can now introduce
the space used for the mixed formulation of second-order elliptic problems.
Hence, considering a vector-valued function, we define the space H(div,Ω)
as

H(div,Ω) =
{
v ∈ L2(Ω) : ∇ · v ∈ L2(Ω)

}
, (1.17)

that is a Hilbert space equipped with the norm

||v||H(div) =
(
||v||20 + ||∇ · v||20

) 1
2 . (1.18)

It is important to note that H1(Ω) is continuously embedded in H(div,Ω).
For the sake of completeness, some basic definitions are also reported for

the space H(curl,Ω). Giving a domain Ω ∈ R3, it is possible to define

H(curl,Ω) :=
{
χ ∈ (L2(Ω))3 : curlχ ∈ (L2(Ω))3

}
. (1.19)

In this case, the curl operator is defined as usual

curlχ = ∇ × χ := det


i j k
∂

∂x1

∂

∂x2

∂

∂x3
χ1 χ2 χ3

 , (1.20)

with its standard norm defined as

||χ||2curl,Ω := |χ|20,Ω + | curlχ|20,Ω . (1.21)

It is now possible to introduce the trace map with a trace lemma [27, 28].
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Lemma 1.1. The trace map γ, with γf = f |∂Ω, for a smooth function f ,
can be extended as a continuous map from H1(Ω) onto H 1

2 (∂Ω)

γ : H1(Ω) → H
1
2 (∂Ω) , (1.22)

with a positive constant C(Ω) such that

||γf || 1
2 ,∂Ω ≤ C(Ω)||f ||1,Ω . (1.23)

Considering that γ is a continuous map between H1(Ω) and H
1
2 (∂Ω),

following [29] we get a continuous right inverse

E : H
1
2 (∂Ω) → H1(Ω) (1.24)

with
γEg = g , ∀ g ∈ H

1
2 (∂Ω) . (1.25)

It is crucial to consider the normal component of a vector-valued function
concerning the boundary of the given domain. With a Lipschitz domain Ω,
we affirm the existence of the unit outward normal ν to the boundary ∂Ω
at almost every point. Consequently, for a smooth vector function f defined
on Ω, the closure of Ω, we establish the existence of f · ν at almost every
point ∂Ω. For Dirichlet boundary values problems, we introduce the following
lemma [30].

Lemma 1.2. Let g ∈ H
1
2 (∂Ω) and denote

⟨g,f · ν⟩ :=
∫

∂Ω
gf · νds, f ∈ H(div,Ω) . (1.26)

Hence, we have that

|⟨g,f · ν⟩| ≤ ||Eg||1,Ω||f ||H(div), ∀f ∈ H(div,Ω), (1.27)

with E defined in Lemma 1.1.

Proof. Following Lemma 1.1, consider the extension of g into H1(Ω) as p =
Eg. Thus,

∇ · (pf) = p∇ · f + ∇p · f . (1.28)
If we integrate over the domain Ω and apply the divergence theorem, we get∫

∂Ω
gf · νds =

∫
Ω

(p∇ · f + ∇p · f) dΩ . (1.29)

Applying the Cauchy-Schwartz inequality we obtain∣∣∣∣∫
∂Ω
gf · νds

∣∣∣∣ ≤ ||p||1,Ω||f ||H(div) . (1.30)
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Before giving an extensive mathematical description of the problem, we
recall some points already stated in the introduction, in order to better un-
derstand the reason of the following analysis. Therefore, consider a domain
Ω ⊂ Rd, with d ∈ {2, 3} and a time interval (0, T ), with T < ∞. Hence, the
Stokes equations can be expressed as

−ν∆u + ∇p = f , (1.31a)
−∇ · u = g , (1.31b)

u|∂Ω = 0 , (1.31c)

where g = 0 for an incompressible fluid. For this type of equation, an a priori
error estimate reads as,

||u − uh||1,h ≤ C1h
k|u|k+1 + C2

ν
hk|p|k , (1.32)

where polynomial finite elements are considered. In particular, the order k
is chosen for the velocity discretization, while an order k − 1 is set for the
discrete pressure [3, 4]. The term C2

ν
hk|p|k represents the drawback when

dealing with non-divergence mixed finite elements, showing the connection
between the discrete velocity uh and the continuous pressure p. In addition,
we recall that the inf-sup condition must be satisfied since we aim to find a
unique solution for the equations’ system. Specifically, this condition reads
as

inf
q∈L2

0(Ω)⧹{0}
sup

u∈H1
0 (Ω)⧹{0}

(∇ · u, q)
||∇u||L2(Ω)||q||L2(Ω)

≥ β > 0 . (1.33)

Differently, the constraint −∇ · u = g does not hold.
Moreover, as it will be described in the next sections, the invariance prop-

erty must be preserved, ensuring that the velocity solution is not affected as
the pressure by a change in an external body force, which is a gradient field.
Hence, we have that

f → f + ∇ψ ⇒ (u, p) → (u, p+ ψ) . (1.34)

In fact, the additional force, given by ∇ψ, is balanced by the pressure gra-
dient, since no-slip boundary conditions do not affect the pressure.

After this brief example, we proceed now to introduce the saddle-point
variational formulation of a generic second-order elliptic problem [31] in order
to generalize the Stokes equation. Initially, we define

V := H(div,Ω) and V 0 := {v ∈ V : v · ν = 0 on ∂Ω} , (1.35)
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where V 0 represents a subspace of H(div,Ω), possessing the same norm
as H(div,Ω). Moreover, it is known that for a Neumann boundary value
problem, such as the Stokes equation, the pressure p is uniquely defined in
L2(Ω)/R, implying that the pressure is unique up to a constant. Hence, we
introduce

W ≡ L2(Ω) and W 0 ≡ W/R , (1.36)

where W 0, a subspace of L2(Ω), is equipped with the same norm as L2(Ω).
We can now introduce a generic second-order elliptic problem, written in

the following form,
−∇ · (a∇p) = f in Ω ,

p = 0 in ∂Ω ,
(1.37)

where the function a = a(x) is a function bounded above and below by a
positive constant. For several applications, the variable of interest has the
form of

u = −a∇p , (1.38)

and thus a mixed finite element method is preferred in order to approximate
simultaneously the variables u and p. Specifically, the problem (1.37) can be
reformulated into the following first-order system


u + a∇p = 0 in Ω ,

∇ · u = f in Ω ,

p = 0 in ∂Ω .

(1.39)

The system of equation (1.39), is often denoted as the Darcy problem
and represents a simplified model for a single phase flow considering a porous
media. This formulation is often preferred since in the context of porous
media flow the vector field u is more important than the pressure p. Hence,
the need to accurately compute a locally conservative velocity approximation
is desired.

If we define µ(x) = 1/a(x), it is possible to rewrite the first equation of
(1.39) in the following form

µu + ∇p = 0 in Ω. (1.40)
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Therefore, integrating by parts after the multiplication by suitable test func-
tions, we obtain the standard weak formulation of a mixed problem∫

Ω
µu · v dx −

∫
Ω
p∇ · v dx = 0 ∀v ∈ V 0 , (1.41a)∫

Ω
w∇ · u dx =

∫
Ω
fw dx ∀w ∈ W 0 . (1.41b)

Referring to [31], two bilinear forms are now introduced

(a)M(u,v) = (µu,v) ,
(b)B(u, w) = (∇ · u, w) .

(1.42)

We exploit (1.42), to rewrite the weak formulation in (1.41), in order to obtain
the equivalent saddle-point variational problem:

Problem 1.1. find {u, p} ∈ V 0 ×W 0 such that

(a)M(u,v) −B(v, p) = 0 , v ∈ V 0 ,

(b)B(u, w) = (f, w) , w ∈ W 0 .
(1.43)

Following the work of [32, 33] we can state the theorem for existence and
uniqueness.

Theorem 1.1. Let M and B defined as (1.42), and consider a constant
α > 0 such that

M(v,v) ≥ α||v||2H(div) , ∀v ∈ V 0 , (1.44)

i.e., M(·, ·) is V0-elliptic, with

V0 :=
{
v ∈ V 0 : B(v, w) = 0, ∀w ∈ W 0

}
. (1.45)

Suppose also that there exists a constant β > 0 such that

sup
v∈V 0

B(v, w)
||v||H(div)

≥ β||w||0 , ∀w ∈ W 0 , (1.46)

i.e., B(·, ·) satisfies the inf-sup condition [32]. Then, problem (1.1) is well
posed, therefore it has a unique solution (u, p) ∈ V 0 ×W 0, satisfying

||u||H(div) + ||p||0 ≤ C(α, β)||f ||W ′ , (1.47)
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where
||f ||W ′ := sup

w∈W 0

|I|
||w||0

, (1.48)

and
I =

∫
Ω
f w dΩ . (1.49)

Note that the constant C(α, β) depends only on α and β.

For the non-homogeneous Dirichlet boundary value problem of the Stokes
equation, we can state an equivalent saddle-point variational form:
Problem 1.2. find {u, p} ∈ V ×W such that

(a)M(u,v) −B(v, p) = ⟨g,v · ν⟩ , v ∈ V , (1.50)
(b)B(u, w) = (f, w) , w ∈ W . (1.51)

Moreover, for this formulation, it is possible to derive theorems concerning
existence and uniqueness [32, 33]. Specifically, the inf-sup condition described
as

sup
v∈V

B(v, w)
||v||H(div)

≥ β||w||0 , ∀w ∈ W , (1.52)

holds for a constant β > 0.

1.2 Helmholtz-Hodge decomposition
In this section, we expand upon the previous results, by introducing ad-
ditional properties and statements regarding the Stokes equation. Subse-
quently, we introduce the Helmholtz-Hodge decomposition and projector,
which will have a major role in the context of mixed finite element meth-
ods for the Stokes discretization. The forthcoming results are taken from
[8], where the interested reader can find also the detailed proofs, which, for
brevity, will be omitted here.

Revisiting our framework, we consider a bounded domain Ω equipped with
a Lipschitz continuous boundary ∂Ω. Let f ∈ L2(Ω) be the body force and
the right-hand side of the continuity equation defined as g ∈ L2(Ω). The well-
established variational solution of the incompressible Stokes equations (1.31)
is the pair (u, p) ∈ X × Y := H1

0 (Ω) × L2
0(Ω) that satisfies the following

equations set

a(u,v) + b(v, p) = (f ,v) ∀v ∈ X , (1.53a)
b(u, q) = (g, q) ∀q ∈ Y , (1.53b)
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where the bilinear forms are defined as a(u,v) = ν(∇u,∇v) and b(u, q) =
−(∇ ·u, q). Naturally, the operator (·, ·) represents the L2 inner product over
Ω and ν is the kinematic viscosity. We recall that the subscript 0 stands for
functional spaces with vanishing mean.

We can introduce now the distributional divergence and the weak diver-
gence.

Lemma 1.3. Let ψ ∈ H1(Ω) and w ∈ H1(Ω). The following expression
holds ∫

Ω
ψ∇ · w dx = −

∫
Ω
∇ψ · w dx +

∫
∂Ω
ψw · n ds . (1.54)

In this case, the surface integral represents the duality pairing between the
space H 1

2 (∂Ω) and H− 1
2 (∂Ω).

The previous lemma allows defining the distributional divergence.

Definition 1.1. Let w ∈ L1(Ω) a vector field. We call distributional diver-
gence of w the mapping C∞

0 (Ω) → R defined as

ψ 7→ −
∫

Ω
∇ψ · w dx . (1.55)

In order to introduce the next definition, we need to define the space
L1

loc(Ω), which is the space of locally integrable function. With the term
’locally’ we mean that the function is integrable on every compact subset of
its definition domain. We can define now the weak divergence.

Definition 1.2. Let w ∈ Lp(Ω) with p > 1 a vector field. If there exists
a function ρ ∈ L1

loc(Ω) such that is possible to represent the distributional
divergence as

−
∫

Ω
∇ψ · w dx =

∫
Ω
ψρ dx ∀ψ ∈ C∞

0 (Ω) , (1.56)

the function ρ is defined as the weak divergence of w, i.e. ρ := ∇ · w.
Moreover, if the vector field w is divergence-free, we have∫

Ω
∇ψ · w dx = 0 ∀ψ ∈ C∞

0 (Ω) . (1.57)

Note that if we consider a divergence-free vector field, it will be orthog-
onal in the L2(Ω) scalar product to a gradient field with compact support.
However, this property is not usually satisfied for classical mixed methods,
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which rely on the conventional discrete inf-sup condition. Consequently, the
lack of pressure-robustness may arise for certain mixed methods.

Regarding the divergence constraint equation (1.53b), if we consider a
test function q ∈ L2

0(Ω) ∩ C∞
0 (Ω) and we apply the divergence theorem we

obtain ∫
Ω
∇q · u dx =

∫
Ω
q g dx . (1.58)

In this case, we consider −g as the weak divergence of u. In addition, if the
field u ∈ H1(Ω) satisfies no-slip boundary conditions, applying the diver-
gence theorem we obtain

0 =
∫

∂Ω
u · n ds =

∫
Ω
∇ · u dx , (1.59)

through which, we can state that ∇ · u ∈ L2
0(Ω). Therefore, choosing q =

∇ · u − g such that
||∇ · u + g||L2(Ω) = 0 , (1.60)

we have that ∇ · u = −g in the sense of L2(Ω).
The H(div,Ω) space can be also described with the following definition,

through which for functions u ∈ H(div,Ω) Lemma 1.3 is still valid.

Definition 1.3. Consider the Hilbert space of vector fields equipped with a
weak divergence. This space is defined as

H(div,Ω) :=
{
u ∈ L2(Ω) : ∇ · u ∈ L2(Ω)

}
, (1.61)

where ∇ · u is understood in the sense of Definition 1.2, since ∀p ≥ 1 Lp is
a subspace of L1

loc.

It is now possible to introduce the Helmholtz-Hodge decomposition.

Lemma 1.4. Let Ω be a connected domain and consider a generic vector field
f ∈ L2(Ω). For every f exists a vector field f0 ∈ H(div,Ω) and a scalar
function ϕ ∈ H1(Ω)/R such that the following statements hold

1. f = f0 + ∇ϕ,

2. ∇ · f0 = 0,

3. (f0,∇ψ) = 0 , for all ψ ∈ H1(Ω).

Moreover, the decomposition is unique.
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Definition 1.4. We call the Helmholtz-Hodge projector of f the function
f0 := P(f).

The Helmholtz-Hodge projector allows us to establish results concerning
existence, uniqueness, and stability estimates.

Lemma 1.5. Consider a function f ∈ L2(Ω) and g ∈ L2
0(Ω). For the

Stokes problem in equation (1.31) we have a unique solution equipped with
the following stability estimates:

||∇u||L2(Ω) ≤ CP

ν
||P(f)||L2(Ω) + 1

β
||g||L2(Ω) , (1.62)

||p||L2(Ω) ≤ CP

β
||f ||L2(Ω) + 1

β2 ||g||L2(Ω) , (1.63)

(1.64)

where β is the usual inf-sup constant in equation (1.52).

We can state a corollary regarding the Helmholtz-Hodge projector.

Corollary 1.1. A gradient field ∇ϕ with ϕ ∈ H1(Ω)/R is equipped with an
Helmholtz projector P(∇ϕ), such that P(∇ϕ) = 0.

Considering the first statement of Lemma 1.4 we can derive another
lemma, which confirms the fact that the pressure field is determined up to
an additive constant, expressed by the scalar field ψ.

Lemma 1.6. Consider the right-hand side of the Stokes equation, f ∈ L2(Ω).
If we change f → f + ∇ψ, with ψ ∈ H1(Ω)/R, the solution will change as
(u, p) → (u, p+ ψ).

1.3 Error analysis of mixed methods
In this section, we summarize the primary concept regarding the error anal-
ysis for the velocity error ||∇(u − uh)||L2(Ω), and its relationship with the
pressure in standard mixed methods. The finite element solution of a generic
elliptic problem, such as the Stokes equations, arises from a pair of finite-
dimensional spaces defined by piecewise polynomials. Considering a partition
τh of Ω, we can consider the pair of conforming piecewise polynomials spaces
as the set given by Xh × Yh ⊂ X × Y . A standard solution for a Galerkin
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finite element method for the Stokes equation is the pair (uh, ph) ∈ Xh × Yh

such that

a(uh,vh)+b(vh, ph) = (f ,vh) ∀vh ∈ Xh , (1.65a)
b(uh, qh) = (g, qh) ∀q ∈ Yh . (1.65b)

The problem in equation (1.65) describes a mixed finite element method, dis-
tinguished by the inclusion of two finite element spaces. It is widely acknowl-
edged in the literature that in order to reach the existence and uniqueness of
a solution, the choice of the finite element spaces Xh and Yh must follow com-
patibility criteria. For the Stokes equations, these criteria are reflected in the
discrete inf-sup condition. Specifically, ensuring the existence and stability
of a solution to the preceding problem necessitates the fulfillment of

inf
qh∈Yh⧹{0}

sup
vh∈Xh⧹{0}

(∇ · vh, qh)
||∇vh||L2(Ω)||qh||L2(Ω)

≥ βh > 0 . (1.66)

Moreover, ensuring stability and achieving optimal convergence rates neces-
sitates βh ≥ β0 > 0 as h → 0+. Furthermore, due to the problem’s linearity,
we can guarantee the uniqueness of the velocity, regardless of the finite ele-
ment space chosen for the velocity discretization. Extending this notion, the
uniqueness of the pressure can also be ensured. Given the linearity and finite
dimensionality of the problem, the existence of a solution is a consequence of
this uniqueness. The discrete divergence operator ∇·h : Xh → Yh is defined
by using the L2−projection

(∇ ·h vh, qh) = (∇ · vh, qh) ∀qh ∈ Yh . (1.67)

Throughout the years, various finite element pairs have been investigated
to fulfill the discrete inf-sup condition (1.66). One popular family of finite
elements among these is the Taylor-Hood finite element pair Pk/Pk−1, with
k ≥ 2.

In the finite element framework, the representation of the divergence con-
straint exists exclusively through the second equation in (1.65). While for
the standard Taylor-Hood pair, the relationship ∇ ·h Xh = Yh holds, it is
generally untrue that ∇ · Xh ̸⊂ Yh. This latter relationship is crucial for
the vanishing of the divergence norm, i.e. ||∇ · uh||L2(Ω) = 0. References
in literature, such as [34], have demonstrated that for standard Taylor-Hood
element of type P2/P1, the quantity ||∇ · uh||L2(Ω) can become large.
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We define now the finite and infinite space of a weakly divergence-free
vector. If we consider a function u ∈ X, the divergence-free subspace is
described as

Xdiv := {u ∈ X : b(u, q) = 0 ∀q ∈ Y } . (1.68)
The discrete version follows as

Xh,div(g) := {uh ∈ Xh : (∇ · uh, qh) = (g, qh) ∀qh ∈ Yh} . (1.69)

For cases with g = 0, we consider Xh,div = Xh,div(0), defining the space of
discrete divergence-free functions. Moreover, since ∇ · Xh ̸⊂ Yh, a function
f ∈ Xh,div will be not in general divergence-free in the sense of L2(Ω), and
therefore we can say that Xh,div ̸⊂ Xdiv. On the other hand, we know that the
inclusion Xh,div ⊂ Xh ⊂ X holds, and therefore we can use the space Xh,div

to take the test function for the problems in the equation (1.53) and its finite-
dimensional version of (1.65). Since we are dealing with these test functions,
we can derive the error equation subtracting the previous equations (infinite
and finite version of the Stokes problem, i.e. equations (1.53) and (1.65))
and considering that qh = 0, a necessary condition to have b(vh, qh) = 0 with
||∇ · vh||L2(Ω) ̸= 0 always. Therefore, we obtain

a(u − uh,vh) + b(vh, p− ph) = 0 ∀vh ∈ Xh,div . (1.70)

The specific choice of the test functions allows removing the discrete pressure
from the equation due to the orthogonality, i.e., b(vh, ph) = 0. However,
we can not remove the continuous pressure from the error equation because
Xh,div ̸⊂ Xdiv, resulting in a dependency between the velocity error and
pressure. The objective now is to obtain the best error estimate for the
velocity field while explicitly considering the dependency on the pressure
error approximation. We start with a decomposition of the velocity error
introducing an arbitrary ũh ∈ Xh,div,

u − uh = (u − ũh) − (uh − ũh) := η − ϕh . (1.71)

If we take vh = ϕh as a test function and we add to the right-hand side of
the error equation the term b(vh, qh) since it is equal to zero for arbitrary
qh ∈ Yh, we obtain

a(η,ϕh) − a(ϕh,ϕh) + b(ϕh, p) − b(ϕh, qh) = 0 ∀qh ∈ Yh . (1.72)

After, rearranging these terms we have

ν||∇ϕh||2L2(Ω) = ν(∇η,∇ϕh) − (∇ · ϕh, p− qh) ∀qh ∈ Yh . (1.73)
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We can apply the Cauchy-Schwarz inequality to the right-hand side terms
obtaining

ν(∇η,∇ϕh) ≤ ν||∇η||L2(Ω)||∇ϕh||L2(Ω) , (1.74)
−(∇ · ϕh, p− qh) ≤ ||∇ · ϕh||L2(Ω)||p− qh||L2(Ω) . (1.75)

Moreover, considering that for homogeneous Dirichlet boundary conditions
with constant equal to 1 holds ||∇ · ϕh||L2(Ω) ≤ ||∇ϕh||L2(Ω), we can divide
by ν||∇ϕh||L2(Ω) ̸= 0 obtaining

||∇ϕh||L2(Ω) ≤ ||∇η||L2(Ω) + ν−1||p− qh||L2(Ω) ∀qh ∈ Yh . (1.76)
If we apply the triangle inequality to ϕh and η we have

||∇(u − uh)||L2(Ω) ≤ 2 inf
ũh∈Xh,div

||∇(u − ũh)||L2(Ω)+

+ν−1 inf
qh∈Yh

||p− qh||L2(Ω) . (1.77)

From the error bound presented in (1.77), it becomes evident that the opti-
mal approximation error for the pressure is connected to the velocity error.
Specifically, the error tends to increase if the pressure approximation is large
or if we have a small viscosity ν.

At this point, we can summarize the different interpretations regarding
divergence-free functions that have been introduced.

• Strong divergence-free: refers to the classical strong formulation of the
Navier-Stokes equations, where the velocity u is pointwise divergence-
free considering classical derivatives.

• Weak divergence-free: refers to the weak formulation of the Navier-
Stokes equation, for which the function v ∈ X satisfies the relation
||∇ · v||L2(Ω) = 0.

• Discrete weakly divergence-free: describes a function vh that is in Xh,div.
It holds that a strong divergence-free function is weak and discrete divergence-
free, and a weak divergence-free function is also discrete divergence-free.
However, usually, a discrete divergence-free function might not be strong
or weak divergence-free.
Remark 1.1. The divergence error of the velocity is bounded by the gra-
dient error, i.e., ||∇ · (u − uh)||L2(Ω) ≤ ||∇(u − uh)||L2(Ω). Consequently,
the incompressibility constraint leads to ||∇ · uh||L2(Ω) ≤ ||∇(u − uh)||L2(Ω).
Therefore, we can conclude that large errors in ||∇(u−uh)||L2(Ω) result in a
poor mass conservation.
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1.4 Pressure-Robust mixed method
In this subsection, we aim to address the constraints arising from the rela-
tionship between ∇ ·Xh and Yh, i.e. ∇ ·Xh ̸⊂ Yh. In particular, we focus on
stable conforming element pairs that satisfy ∇ ·Xh ⊂ Yh, ensuring Xh ⊂ X

and Yh ⊂ Y , with X, Y defined as in (1.53). Our primary objective is to
demonstrate the independence of the velocity error from the pressure norm
by strictly including Xh,div in Xdiv. To achieve these results, following [35],
we can introduce the Fortin operator πF , as a consequence of the inf-sup
stability of the element pair (Xh, Yh). Precisely, we define πF : X → Xh

such that

(∇ · v, qh) = (∇ · πF (v), qh) ∀v ∈ X ,∀qh ∈ Yh , (1.78)

where ||∇πF (v)||L2(Ω) ≤ CF ||∇v||L2(Ω).
We now present similar stability estimates, as introduced in Lemma 1.5,

but for the discrete solution.

Lemma 1.7. Consider a finite element pair solution for the Stokes problem
(uh, ph) ∈ Xh × Yh, with Xh ⊂ X and Yh ⊂ Y , that satisfies the discrete
inf-sup condition (1.66). If ∇ · Xh ⊂ Yh, for f ∈ L2(Ω) and g ∈ Y , the
pair (uh, ph) is a solution for the Stokes problem with the following stability
estimates

||∇uh||L2(Ω) ≤ CP

ν
||P(f)||L2(Ω) + 1

βh

||g||L2(Ω) , (1.79)

||ph||L2(Ω) ≤ CP

βh

||f ||L2(Ω) + 1
β2

h

||g||L2(Ω) . (1.80)

In this case P(·) represents the Helmholtz-Hodge projector previously in-
troduced in the Definition 1.4.

Lemma 1.8. Consider the finite element spaces Xh ⊂ X and Yh ⊂ Y , with
∇·Xh ⊂ Yh and the discrete inf-sup condition satisfied. Then, for all w ∈ X

and wh ∈ Xh,div(g) we have

inf
wh∈Xh,div(g)

||∇(w − wh)||L2(Ω) ≤ (1 + CF ) inf
vh∈Xh

||∇(w − vh)||L2(Ω) . (1.81)

Lemma 1.9. Consider the finite element spaces Xh ⊂ X and Yh ⊂ Y , with
∇ · Xh ⊂ Yh and the discrete inf-sup condition satisfied. Consider the L2

projection of p ∈ Y , i.e. πYh
p ∈ Yh defined as

(p− πYh
p, qh) = 0 ∀ qh ∈ Yh . (1.82)
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Then, we have the following a priori error estimates for the unique discrete
pair solution (uh, ph) of the equation (1.65)

||∇(u − uh)||L2(Ω) ≤ 2 inf
wh∈Xh,div(g)

||∇(u − wh)||L2(Ω) (1.83)

≤ 2(1 + CF ) inf
wh∈Xh

||∇(u − wh)||L2(Ω) , (1.84)

||πYh
p− ph||L2(Ω) ≤ ν

βh

||∇u − uh||L2(Ω) , (1.85)

||p− ph||L2(Ω) ≤ ||p− πYh
p||L2(Ω) + ν

βh

||∇(u − uh)||L2(Ω) . (1.86)

The previous lemma states an important result. The first set of inequal-
ity estimates demonstrates that the velocity error remains independent of
the pressure error. This characteristic distinguishes pressure-robust mixed
methods, a feature absent in classical mixed methods. Moreover, the sec-
ond inequality illustrates that continuous pressure can be approximated by
discrete pressure, with an additional term dependent only on velocity. Note
that the discrete inf-sup constant only appears in the pressure estimates, and
due to its scaling by ν, its value is usually negligible. Concerning velocity
estimates, the classical constant 1/βh is replaced by the Fortin constant CF .

Lastly, we present the discrete version of Lemma 1.6.

Lemma 1.10. Consider the finite element spaces Xh ⊂ X and Yh ⊂ Y ,
with ∇ · Xh ⊂ Yh and the discrete inf-sup condition satisfied. For the pair
(uh, ph), discrete solution of the problem (1.65), the change f → f + ∇ψ

in the right-hand side, with ψ ∈ H1(Ω)/R, affects only the discrete pressure
solution as (uh, ph) → (uh, ph + πYh

ψ).

1.5 Remark about vorticity equation
In this section, we explore another aspect differentiating classical mixed meth-
ods from pressure-robust methods, considering the vorticity equation in both
continuous and discrete settings.

1.5.1 Continuous setting
Consider v ∈ Xdiv ∩ C∞

0 (Ω) as a divergence-free vector in a 3-dimensional
space. This implies the existence of a vector potential ξ ∈ C∞

0 (Ω), that
satisfies the relation v = ∇ × ξ. In addition, let the pair solution for the
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Stokes system (u, p) ∈ H3(Ω) ∩ H1(Ω), with the curl of body force square-
integrable, i.e. ∇ × f ∈ L2(Ω).

Using v to test the momentum equation of the Stokes system (1.53) and
integrating by part we obtain

(−ν∆u,∇ × ξ) + (∇p,∇ × ξ) = (f ,∇ × ξ) , (1.87)

where the vorticity ω has been introduced, which is defined as ω := ∇ × u.
Considering that ∇ × (∇p) ≡ 0, we obtain

(−ν∆ω, ξ) = (∇ × f , ξ) , (1.88)

that can be seen as a classic diffusion equation

−ν∆ω = ∇ × f . (1.89)

Note that the vorticity equation perfectly satisfies the invariance property
defined in Lemma 1.6 because, considering two body forces, i.e. f and f +
∇ϕ, we obtain the same right-hand side for equation (1.89) since

∇ × (f + ∇ϕ) = ∇ × f . (1.90)

This establishes that, as in the case of the equation for the explicit velocity
u, also for the vorticity equation ω the addition of a force described by the
gradient of a scalar field ∇ϕ, produces only an influence on the pressure
solution.

We underline that the formal vorticity equation in (1.89) has been derived
starting from the strong form corresponding to the weak formulation of the
velocity equation, i.e.

a(u,v) = (f ,v) = (P(f),v) ∀v ∈ Xdiv . (1.91)

The latter equation, with the addition of the condition −∇ ·u = g, uniquely
defines the velocity field u. The Helmholtz projector in equation (1.91) shows
that the dependence of the formal vorticity equation in (1.89) relies on ∇×f

and not on f .
Moreover, note that for classical mixed methods, the L2-orthogonality

between discrete divergence-free test functions and gradient fields is relaxed.

Remark 1.2. Following a theorem presented in [36], we underline the im-
portance of the operators already presented, i.e. the divergence and the curl
of a vector field.
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Consider a simply connected bounded region Ω ∈ R3, where the surface
∂Ω is described by the union of a finite number of disjoint closed surfaces
in C2. Hence, there is a unique vector field v ∈ L2(Ω), which satisfies the
following expressions

∇ · v = g in Ω, ∇ × v = ω in Ω, v · n = 0 in ∂Ω , (1.92)

where g ∈ L2
0(Ω), ω ∈ C1(Ω) with ∇ · ω = 0. The preceding theorem states

that a vector field can be completely determined by having information about
its divergence, and its curl, together with additional boundary data.

1.5.2 Discrete setting
Following the analogy of the continuous equation, testing the vorticity equa-
tion with a discrete divergence-free function leads to a discrete vorticity equa-
tion formulated by a weak application of the curl operator.

We introduce now the discrete Helmholtz projector Ph : L2(Ω) → Xh,div,
defined as the L2-projection onto Xh,div. Therefore, if we are dealing with
a pressure-robust test function, i.e. Xh,div ⊂ Xdiv, since we have that
Ph(∇ϕ) = 0 for all ϕ ∈ H1(Ω), a discrete vorticity equation can be obtained
as

a(uh,vh) = −ν(∆u,vh) . (1.93)

Hence, the latter equation is pressure-independent for all vh ∈ Xh,div.
On the other hand, for classical mixed methods which hold Xh,div ̸⊂ Xdiv,

we have

a(uh,vh) = (Ph(f),vh) = −ν(∆u,vh) + (Ph(∇p),vh) , (1.94)

for all vh ∈ Xh,div. In addition, considering the definition of Ph, integrating
by part we have that (πYh

p,∇ · vh) = 0, which leads to the approximation
estimate for the L2−projection

|(Ph(∇p),vh)| = |(∇p,vh)| = |(p,∇ · vh)| = |(p− πYh
p,∇ · vh)| ≤

≤ Chk|p|Hk(Ω)||∇ · vh||L2(Ω) ,
(1.95)

where in this case the pressure p is assumed to be sufficiently regular.
Note that for classical mixed method, we have an additional term in

equation (1.94), i.e. (Ph(∇p),vh) with vh ∈ Xh,div. This is a discrepancy
from a pressure-robust method, for which equation (1.93) holds. Naturally,
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the previous consistency error decreases with optimal order in the case of
sufficient regularity of p, even though the flow problem configuration may
produce arbitrarily large errors.





CHAPTER 2

Finite Element Discretization

2.1 Basic Properties

2.1.1 Partition of Domain
In this section, fundamental insights into domain partitioning will be pre-
sented. Establishing a finite element approximation within a domain Ω de-
mands maintaining specific continuity properties at the interfaces between
its constituent elements.

Consider a domain Ω partitioned into subdomains, such that Ω = ∪m
r=1Kr,

where the generic element Kr can take the form of a triangle or a quadrilateral
in the case of a bi-dimensional domain (tetrahedron or hexahedron for three
dimensions). An example of a generic domain Ω is depicted in Figure 2.1.
Denote with Lh the partition of Ω in m elements, each equipped with ei edges
(for instance ei, with i = 1, 2, 3 or i = 1, 2, 3, 4). We shall also denote the
interface between elements Ki and Kj as

eij = ∂Ki ∩ ∂Kj . (2.1)

Moreover, we define also εh as

εh =
⋃
ij

eij

⋃
Γh =

⋃
i

∂Ki , (2.2)
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Ω

Figure 2.1: Generic domain Ω divided in m non-regular quadrilateral ele-
ments.

where Γh is the set of the boundary edges or faces. It is important to note
that in this work only compatible meshes are taken into account, avoiding
situations where a mesh contains hanging nodes. Additionally, following the
literature notation, the mesh size is represented by the index h, which is also
used for the maximum diameter of the element. We now reformulate the
functional spaces, previously described, but in the context of a partitioned
domain. Starting with a scalar field v, we define X(Ω) as

X(Ω) :=
{
v ∈ L2(Ω) : v|Ki

∈ H1(Ki) ,∀i
}

=
∏
r

H1(Kr) , (2.3)

equipped with the norm

||v||2X(Ω) :=
∑

r

||v||21,Kr
. (2.4)

Regarding vector-valued fields, we define also the space Y (Ω) as

Y (Ω) : =
{
q ∈ L2(Ω) : q|Ki

∈ H(div, Ki) , ∀i ∈ N, i ≤ m
}

=

=
∏
r

H(div, Kr) ,
(2.5)

with the norm
||q||2Y (Ω) :=

∑
r

||q||2div,Kr
. (2.6)

Lastly, we define the space W (Ω) as

W (Ω) : =
{
χ ∈ L2(Ω) : χ|Ki

∈ H(curl, Ki) ,∀i ∈ N, i ≤ m
}

=

=
∏
r

H(curl, Kr) ,
(2.7)
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with the norm equal to

||χ||2W (Ω) :=
∑

r

||χ||2curl,Kr
. (2.8)

At this point, it is important to introduce other spaces, that are subsets
of the spaces introduced above. Therefore, we can consider a partition of
the domain boundary Γ = D ∪ N |D ∩ N = ∅, where the boundary Γ has
been divided considering different types of boundary conditions, i.e. D for
Dirichlet and N for Neumann. Hence, we define

H1
0,D(Ω) :=

{
v ∈ H1(Ω) : v|D = 0

}
⊂ X(Ω) , (2.9)

where naturally we have H1
0,D(Ω) = H1

0 (Ω) if D = Γ and H1
0,D(Ω) = H1(Ω)

if D = ∅. Likewise, we have

H0,N(div,Ω) :=
{
q ∈ H(div,Ω) : ⟨q · n, v⟩ = 0 ,∀v ∈ H1

0,D(Ω)
}

⊂ Y (Ω) ,
(2.10)

with H0(div,Ω) = H0,N(div,Ω) if N = Γ. Lastly, we recall another subspace
of H(div,Ω) defined as

H0(div,Ω) := {q ∈ H(div,Ω) : ∇ · q = 0} . (2.11)

Considering now a function v ∈ H1(Ω) and a function q ∈ H(div,Ω),
denoting the vector normal to Γr = ∂Kr as nr, we have that∑

r

⟨q · nr, v⟩Γr = ⟨q · n, v⟩Γ , (2.12)

where the operator ⟨·, ·⟩ represents the duality product between H 1
2 (Γr) and

H− 1
2 (Γr). Therefore, inside each element, we can apply the Green formula

obtaining

⟨q · n, v⟩Γ =
∑

r

{∫
Kr

∇ · qvdx+
∫

Kr

q · ∇vdx
}
. (2.13)

As described in [37] we have the following propositions:
Proposition 2.1. For the space H1

0,D(Ω) we have that

H1
0,D(Ω) =

{
v ∈ X(Ω) :

∑
r

⟨q · nr, v⟩ = 0, ∀q ∈ H0,N(div,Ω)
}
. (2.14)

Proposition 2.2. For the space H0,N(div,Ω) we have that

H0,N(div,Ω) =
{
q ∈ Y (Ω) :

∑
r

⟨q · nr, v⟩ = 0, ∀v ∈ H1
0,D(Ω)

}
. (2.15)

We can conclude that a function q ∈ Y (Ω) is in H(div,Ω) if and only if
the normal trace is continuous at the interface.
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2.1.2 Change of variable
In the framework of finite element approximation, the coordinate changes
play a fundamental role, allowing the use of a reference element in which
the computation is performed. In this section, the Piola’s transformation is
introduced, in order to equip the finite element discretization with an essential
component.

Consider a reference domain K̂ ⊂ Rn. Let ∂K̂ be its boundary and
denote by n̂ the outward-oriented normal. Additionally, since we are dealing
with integral relations, we define dx̂ the Lebesgue measure on K̂ and with
dσ̂ the superficial measure on ∂K̂. We can introduce a smooth mapping
F : Rn → Rn, where ‘smooth’ implies at least C1 continuity. Consequently,
the mapping between the element and the reference element is given by

K = F(K̂) . (2.16)

In this context, it can be asserted that the element K is the image of K̂ under
the diffeomorphism F .

We define with DF(x̂) the Jacobian matrix of the transformation, assum-
ing that DF(x̂) is invertible for any x̂ and that F is globally invertible on
the element K. Therefore, the following relationship holds

DF−1(x̂) = (DF(x̂))−1 . (2.17)

In the case where the transformation F(x̂) is linear, i.e. F(x̂) = x0+Bx̂, the
map is said affine. In addition, the Jacobian matrix is constant, DF(x̂) = B.
We report now some definitions and properties regarding the transformation
and its related Jacobian matrix. Specifically, we define the L∞(K̂) norm of
a function x̂ → ||DF(x̂)||, namely the matrix norm of DF(x̂), as

||DF||∞ := sup
x̂∈K̂

(
sup
ξ∈Rn

|DF(x̂)ξ|
|ξ|Rn

)
. (2.18)

Likewise, we have the norm of the inverse matrix defined as

||DF−1||∞ := sup
x∈K

(
sup
ξ∈Rn

|(DF−1(x))ξ|
|ξ|Rn

)
. (2.19)

Finally, we define the determinant of the matrix as

J (x̂) := | det DF(x̂)| , (2.20)
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where, for x̂ ∈ ∂K̂ we also have

Jn̂(x̂) := J (x̂)||(DF−1)tn̂||Rn . (2.21)

We now apply the previous definitions, with functions belonging to the
classical spaces already introduced.

Sobolev Spaces Hs(Ω) Functions

We introduce now some properties related to generic functions v ∈ Hs(Ω),
where the index s represents an integer number. Consider a scalar function
defined on K̂, i.e. v̂(x̂). On the real element K, we define v(x) = F (v̂(x̂))
as

v := v̂ ◦ F−1 . (2.22)

Therefore, we have that the gradient reads as

∇v = (DF−1)t∇v̂ ◦ F−1 = F ((DF−1)t∇v̂) , (2.23)

with the following integral relations∫
K
F (v̂) dx =

∫
K̂
v̂J dx̂ , (2.24)∫

∂K
F (v̂) dσ =

∫
∂K̂
v̂Jn̂ dσ̂ . (2.25)

Without the proof, some inequalities regarding the semi-norms on the element
and the reference element are now reported.

Lemma 2.1. The mapping described by F is an isomorphism from L2(K̂)
onto L2(K) and from H1(K̂) onto H1(K), where the following inequalities
hold:

|v|0,K ≤
(

sup
x̂

J (x̂)
)1/2

|v̂|0,K̂ , (2.26)

|v̂|0,K̂ ≤
(

inf
x̂

J (x̂)
)−1/2

|v|0,K , (2.27)

|v|1,K ≤
(

sup
x̂

J (x̂)
)1/2

||DF−1||∞|v̂|1,K̂ , (2.28)

|v̂|1,K̂ ≤
(

inf
x̂

J (x̂)
)−1/2

||DF||∞|v|0,K . (2.29)
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Moreover, if the mapping F between real and reference element is affine,
following [38], we have that

|v|m,K ≤ c(detB)− 1
2 ||B||m|v̂|m,K̂ , (2.30)

and in the same fashion

|v̂|m,K̂ ≤ c(detB)− 1
2 ||B||m|v|m,K , (2.31)

with the constant c depending only on the space dimension n and m.

Space H(div,Ω) Functions

One of the main features of functions in H(div,Ω) is the use of normal com-
ponents as degrees of freedom. In fact, remembering the Proposition 2.2, we
understand how a function belonging in H0,N(div,Ω) is defined as the sum-
mation over every element such that the dot product between the fluxes of
the function, i.e. v · nΓ, and the test function is equal to zero. On the other
hand, the transformation previously described does not preserve the normal
components, and besides, we are not able to map H(div, K̂) into H(div, K).
For this reason, it is necessary to introduce the Piola’s transformation, which
is a contravariant transformation. For a vector-valued function q̂ ∈ (H1(K̂))n

we consider the mapping

G(q̂)(x) := 1
J (x̂)DF(x̂)q̂(x̂) , with x = F(x̂) . (2.32)

In a bi-dimensional case, the previous definition takes the following form
∂q1

∂x

∂q1

∂y

∂q2

∂x

∂q2

∂y

 = 1
J

(DF)


∂q̂1

∂x

∂q̂1

∂y

∂q̂2

∂x

∂q̂2

∂y

 (DF−1) , (2.33)

where, since we have an invariance of the trace matrix with a change of
variable, the following relation holds

∇ · q = 1
J
∇ · q̂ . (2.34)

Following the idea presented in [39, 40] we report other important lemmas.
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Lemma 2.2. Consider the transformations v = F (v̂) and q = G(q̂). The
following integral relations hold∫

K
q · ∇v dx =

∫
K̂
q̂ · ∇v̂ dx̂ ∀ v̂ ∈ L2(K̂) , (2.35)∫

K
v∇ · q dx =

∫
K̂
v̂∇ · q̂ dx̂ ∀ v̂ ∈ L2(K̂) , (2.36)∫

∂K
q · nv dσ =

∫
∂K̂

q̂ · n̂v̂ dσ̂ ∀ v̂ ∈ L2(∂K̂) . (2.37)

Note that, from the last relation in Lemma 2.2, with the new transforma-
tion G the normal trace in H− 1

2 is preserved.

Lemma 2.3. The mapping G is an isomorphism of H(div, K̂) onto H(div, K)
and of H0(div, K̂) onto H0(div, K), for which holds that

|q|0,K ≤
(

inf
x̂

J (x̂)
)−1/2

||DF||∞|q̂|0,K̂ , (2.38)

|q̂|0,K̂ ≤
(

sup
x̂

J (x̂)
)1/2

||DF−1||∞|q|0,K , (2.39)

|∇ · q|0,K ≤
(

inf
x̂

J (x̂)
)−1/2

|∇ · q̂|0,K̂ , (2.40)

|∇ · q̂|0,K̂ ≤
(

sup
x̂

J (x̂)
)1/2

|∇ · q|0,K . (2.41)

In the case the transformation F is affine and q ∈ Hm(div,Ω), i.e.

Hm(div,Ω) := {q ∈ (Hm(Ω))n : ∇ · q ∈ Hm} , (2.42)

the following lemma holds

Lemma 2.4. Having a vector function q ∈ Hm(div,Ω) and an affine map-
ping F , since B = DF , we have that

|q|m,K ≤ (detB)− 1
2 ||B−1||m||B|||q̂|m,K̂ , (2.43)

|∇ · q|m,K ≤ (detB)− 1
2 ||B−1||m|∇ · q̂|m,K̂ . (2.44)

Having the definition of the transformation F , we can now define also the
normal vector and the tangent vector on ∂K. Considering the unit normal
n̂ to ∂K̂, we have that

n(x) = [DF ]−T · n̂(x̂)
|| [DF ]−T · n̂(x̂)||

. (2.45)
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In the same way, considering the unit tangent vector t̂ to ∂K̂, we have that

t(x) = DF · t̂(x̂)
||DF · t̂(x̂)||

. (2.46)

2.1.3 De Rham Diagram
With the name of De Rham Diagram we refer to a mathematical tool that
has been investigated and developed for the description of the setting for
functional space and finite element approximation. An important review of
this topic can be found in [41, 42, 43, 44].

Following [8], we start considering the sequence of mapping calling de
Rham complex in the two-dimensional case, considering a minimal L2 smooth-
ness

R → H1(Ω) curl−−→ H(div,Ω) div−→ L2(Ω) → 0 , (2.47)

where, naturally, the curl operator is defined as curl := (∂/∂x2,−∂/∂x1)t.
Following classical literature results [3], the complex is said exact if the do-
main Ω is simply connected, i.e. each operator has a range that is the kernel
of the succeeding one. To fix the main ideas, we have that

• a curl-free function f ∈ H1(Ω) implies that f is constant;

• a solenoidal vector-valued function v ∈ H(div,Ω) is equal to the curl
of f , i.e. v = curlf , with f ∈ H1(Ω);

• the map operator div: H(div,Ω) → L2(Ω) is a surjective function.

Regarding a finite element analysis, we can define a subcomplex of (2.47),
considering a finite element space Υh ⊂ H1(Ω), Wh ⊂ H(div,Ω) and Qh ⊂
L2(Ω) characterized by the following mapping

R → Υh
curl−−→ Wh

div−→ Qh → 0 . (2.48)

Naturally, considering standard conforming finite element spaces we obtain
a discrete complex of (2.47) [44, 45]. This subcomplex, when the domain Ω
is simply connected, becomes exact as the continuous setting. This means
that if we consider a finite element pair Υh × Wh (Wh × Qh), we obtain a
stable finite element pair with respect to the curl (divergence) operator. For
instance, consider the well-known Lagrange finite element space as Υh, the
Raviart-Thomas or Brezzi-Douglas-Marini finite element space (which are
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described in the next sections) for Wh space and the space of discontinuous
piecewise polynomial functions for Qh. Hence, being equipped with exactness
properties of the subcomplex means that, for example, the operator div :
Wh → Qh is a surjective function, that also has a bounded right-inverse
independent of h. Thus, the inf-sup condition follows as

sup
w∈Wh

(∇ · w, q)
||w||H(div)

≥ β||q||L2(Ω) ∀q ∈ Qh. (2.49)

Because of the minimal smoothness equipping the Hilbert spaces, the complex
(2.47) does not apply well to the Stokes problem. In fact, referring to [13,
46, 47], a Stokes complex has been introduced and defined as

R → H2(Ω) curl−−→ H1(Ω) div−→ L2(Ω) → 0 , (2.50)

where the exactness of the subcomplex results, as above, from a simply
connected domain. In particular, we have that for an incompressible fluid,
divergence-free functions v ∈ H1(Ω) are connected to the stream-function
z ∈ H2(Ω), since v = curlz holds. Also in this case, the generic inf-sup con-
dition (1.33) is valid, since the operator div : H1(Ω) → L2(Ω) is a surjection.

Similarly to the complex (2.47), it is possible to find the finite element set-
ting for the Stokes complex (2.50), described with the following subcomplex
of standard finite element spaces

R → Σh
curl−−→ Xh

div−→ Yh → 0 , (2.51)

where, naturally we have that Σh ⊂ H2(Ω), Xh ⊂ H1(Ω) and Yh ⊂ L2(Ω).
This last subcomplex, if exact, produces a finite element pair Xh × Yh sat-
isfying the discrete inf-sup condition with a bounded right-inverse. A map-
ping such as (2.51) satisfies the property that ∇Xh = Wh, and hence the
considered finite element pair implies divergence-free approximations. The
previous mapping can be exploited to develop a pair Xh ×Yh satisfying these
properties. Note the presence, for this pair, of H2(Ω)-conforming relatives
that describe the local and global properties of these spaces. Therefore, the
subcomplex (2.50) is satisfied by every divergence-free finite element pair
equipped with an H2 relative.
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2.2 Finite Element Approximation

2.2.1 Space H1(Ω)
Standard method on Affine Meshes In this section, we revisit fun-
damental properties related to finite element approximation within H1(Ω),
particularly concerning conforming methods. With these methods, we mean
the use of finite dimensional subspaces of the approximated function space,
hence also said as an internal approximation (for the nonconforming method
an extension of the function space to approximate is performed in order to
find a new finite element subspace, and therefore in this sense is considered
as an external approximation).

If we consider a standard partition of the domain Ω with polygonal el-
ements, the conforming approximation in H1(Ω) is translated to a space of
continuous functions characterized by a finite number of degrees of freedom.
In particular, this condition is satisfied by using piecewise polynomial func-
tions, through which a function approximation inside an element reads as

vh|K = v̂ ◦ F−1 , (2.52)

where the standard transformation to the real element is represented by K =
F(K̂) and v̂ is the approximating polynomial function. If the continuity is
reached considering a specific degree of freedom for v̂, the resulting vh|K is
still a polynomial function only with affine transformation. Given an element

F

K̂

K

(0, 0) (1, 0)

(0, 1)

Figure 2.2: Affine transformation of a triangle.

K and the space Pk(K) of polynomial functions with degree ≤ k, an affine
finite element can be represented for instance in Figure 2.2 by using the affine
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transformation
F(x̂) = x0 +Bx̂ , (2.53)

for which, since detB ̸= 0, the real element K is still a triangle. Choosing a
suitable order of degree of freedom, the reference polynomial function reads
P̂ = Pk(K̂). Moreover, the dimension of Pk(K) for a bi-dimensional case is
equal to 1

2(k+1)(k+2). Note that, when triangular elements are considered,
the transformation is always an affine isomorphism.

F
K̂ K

(−1,−1) (1,−1)

(−1, 1) (1, 1)

Figure 2.3: Affine transformation of a quadrilateral. Specifically, it is repre-
sented by a Q1 isoparametric element.

Another classical finite element family is the isoparametric quadrilateral
element. The reference element in Figure 2.3 is the square K̂ = [−1, 1] ×
[−1, 1]. In addition, we can define with n = 2, the space of polynomials with
degree ≤ k1 for x1 and ≤ k2 for x2 as

Pk1,k2(K) :=
p(x1, x2) : p(x1, x2) =

∑
i≤k1,j≤k2

aijx
i
1x

j
2

 . (2.54)

Therefore, defining also Qk(K) := Pk,k(K), always for a bidimensional case,
the previous quadrilateral is equipped with P̂ = Qk(K̂), where the transfor-
mation F is applied to each component of Qk(K̂). Note that, in order to
have a general straight-side quadrilateral as in Figure 2.3, the transformation
can be considered as F ∈ (Q1(K̂))2. Furthermore, consider that an affine
isomorphism applied on a quadrilateral element can produce only parallel-
ograms, therefore we are not able to mesh every domain (for instance by
using parallelograms it is not possible to mesh a triangle). On the contrary,
a generic bilinear transformation of a square can produce arbitrary convex
quadrilaterals, that can be useful in order to mesh generic polygons [48].
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Some considerations are now reported concerning the analysis of a func-
tion approximation by using finite element spaces. Consider a general set of
degrees of freedom {l̂i} on K̂. The interpolate r̂hv̂ of a function v can be
defined as

l̂i(r̂hv̂) := M(v̂) 1 ≤ i ≤ dim P̂ , (2.55)

where a well-defined continuous form is required for the operator M . There-
fore, we have the following definition

(r̂hv̂)(âi) = v̂(âi) , (2.56)

which holds only if v̂ is a continuous function. For example, considering
Lagrange type elements in R2 or R3, we have that v̂ ∈ H2(K̂) is a sufficient
condition for (2.56), and consequently r̂v̂ represents the Lagrange interpolate
of v̂ in the classical sense. At this point, it is possible to state the following
proposition

Proposition 2.3. Consider an affine mapping F , i.e. F(x̂) = x0 + Bx̂. If
rhpk = pk, for any pk ∈ Pk(K), the following inequality holds for v ∈ Hs(Ω)

|v − rhv|m,K ≤ c||B−1||m||B||s|v|s,K , (2.57)

with m ≤ s, 1 < s ≤ k + 1.

An important lemma is now reported

Lemma 2.5 (Bramble-Hilbert’s lemma). Consider a continuous linear form
L on Hk+1(Ω), such that L(pk) = 0, for any pk ∈ Pk(Ω). Hence, there exists
a constant c, which depends on L and Ω, such that

|L(v)| ≤ c|v|k+1,Ω . (2.58)

In order to expand this discussion, it is important to introduce some vari-
ables related to finite element discretization. For this reason, giving hK the
diameter of K and ρK the diameter of the largest ball that can be inscribed
in the element K, the regularity assumption for the finite element requires
that

hK

ρK

≤ σ , (2.59)

where σ is called therefore regularity constant. In particular, the family
partition of the domain Th is said shape-regular uniformly in h if

σK ≤ C ∀K ∈ Th . (2.60)
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The previous condition can also be reformulated as a condition on the angle
element, excluding degenerate ones. The following corollary holds

Corollary 2.1. Consider a regular family of affine partitions (Th)h≥0. Hence,
there exists a constant c which depends on k and σ such that

|v − rhv|1,K ≤ chk|v|k+1,∆K , (2.61)

where ∆K is defined as

∆K :=
{
K ′ : K̄ ′ ∩ K̄ ̸= 0

}
. (2.62)

Quadrilateral Finite Element on Non-Affine Meshes In this section,
we underline some results regarding non-affine meshes and how they can po-
tentially lead to problematic properties in the finite element approximation
of elliptic equations. A domain triangulation denoted as Th, serves as the
mesh, and it is defined as affine if the mapping FK from the reference ele-
ment K̂ to the real element K is represented by affine functions for every
element K ∈ Th. For such cases, the Jacobian matrix DFK becomes con-
stant. However, non-affine meshes, equipped therefore with a nonconstant
Jacobian matrix associated with the elements, may result in a degradation of
the approximation properties. In this context, only quadrilateral or hexahe-
dral elements can be characterized by this problematic aspect. Specifically,
this topic has been investigated in the context of quadrilateral finite element
in H(div,Ω) for vector-valued functions in a bidimensional domain in [49]
and in H(div,Ω) for scalar functions in [48].

Consider K̂ a reference triangle, with its image K = Fk(K̂). If we assume
a smooth function v̂ : K̂ :→ R, we obtain the corresponding mapped function

v = v̂ ◦ F−1
K : K → R , (2.63)

equipped with the linear interpolant rhv : K → R. In the case of an affine
mapping FK (triangle with straight sides), since the Jacobian matrix is con-
stant, i.e. DF(x̂) = B, considering the Corollary 2.1 we have

|v − rhv|1,K ≤ chK |v|2,K . (2.64)

Furthermore, we know from the estimate (2.31) that the following estimate
holds

|v̂|2,K ≤ c| det(B)|−1/2||B||2|v|2,K ≤ c| det(B)|−1/2h2
K |v|2,K . (2.65)
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On the contrary, for non-affine mesh, since the relation (2.31) is not valid,
the nonconstant Jacobian gives the following estimate

|v̂|2,K ≤ c| inf
x̂

(J (x̂))|−1/2
(
||DF||2

L∞(K̂)|v|2,K + ||D2F||L∞(K̂)|v|1,K

)
, (2.66)

where, since the term ||DF||2
L∞(K̂) ∼ O(h2

K), the optimal order approximation
can incur in some problems, even though ||D2F||L∞(K̂), i.e. the norm of the
Hessian matrix, can be a lower order term.

2.2.2 Space H(div,Ω)
In this section, we aim to describe a suitable criterion to understand if a finite
element space is a subspace of H(div,Ω). Therefore, considering the shape-
regular triangulation Th of the domain Ω, we define with εh the set of edges
or faces, considering respectively a bi-dimensional or a three-dimensional do-
main. Moreover, we define the set of boundary edges/faces with εB

h ⊂ εh,
namely the variable e ∈ εB

h if e ∩ ∂Ω ̸= 0, and the set of interior edges/faces
with εI

h := εh\εB
h . An important lemma regarding the normal component

of finite element subspace of H(div,Ω) is now reported without giving the
proof [8].

Lemma 2.6. Let Th the partitioned domain Ω and consider a space of piece-
wise polynomials function Wh. Since Wh ⊂ H(div,Ω), we have continuity
across interelement boundaries e ∈ εI

h of the normal components.

Naturally, the space Wh represents in the context of the Stokes equation
the finite element space for the velocity field. Furthermore, this lemma does
not hold necessarily for the tangential components. Among the finite element
spaces satisfying the previous lemma, i.e. conforming subspaces of H(div,Ω),
we can introduce the Raviart-Thomas space of order k ≥ 0 (RT k) and the
Brezzi-Douglas-Marini space of degree k ≥ 1 (BDMk) [50, 51, 52, 53]. Given
an element K of the partitioned domain Ω, the local Raviart-Thomas space
of order k ≥ 0 is defined as

RT k(K) = Pk(K)n + xPk(K) . (2.67)

Therefore, we define the spaces as

RT k := {wh ∈ H0(div,Ω) : wh|K ∈ RT k(K) ∀K ∈ Th} , (2.68)
BDMk := {wh ∈ H0(div,Ω) : wh|K ∈ Pk(K) ∀K ∈ Th} , (2.69)
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where, we have used the space H0(div,Ω) = {v ∈ H(div,Ω) : v · n|∂Ω = 0}.
Moreover, Pk = Pn

k (Pk) represents the space of globally continuous vector
(scalar)-valued piecewise polynomials of degree not exceeding k.

Specifically, to introduce these new approximating spaces a triangular
element is considered now as a reference element. However, note that the
same spaces on rectangular elements are equipped with analogous properties,
therefore the error estimates that are presented are valid for both elements.

We report now some basic properties regarding the space RT k(K). Let
Fi, i = 1, . . . , n + 1 the edges of the element K, with ni their outward unit
normal. The following lemma holds

Lemma 2.7. The following statements hold:

(a)

dimRT k(K) = n

(
k + n

k

)
+
(
k + n− 1

k

)
=

=
(k + 1)(k + 3) for n = 2 ,

1
2(k + 1)(k + 2)(k + 4) for n = 3 .

(2.70)

(b) If v ∈ RT k(K), we have that v · ni ∈ Pk(Fi) for i = 1, . . . , n+ 1.

(c) If v ∈ RT k(K), satisfies the relation ∇ · v = 0, we have that v ∈ Pn
k .

The idea is now to construct an interpolator operator able to map these
basis functions, i.e. we define ΠK as

ΠK : H1(K)n → RT k(K) . (2.71)

It is notable that we consider the interpolation of H1(Ω)n functions, even
though this remains valid for less regular functions. In particular, the defini-
tion of ΠK is related to the following lemma

Lemma 2.8. Let a function v ∈ H1(K). Therefore, there exists a unique
interpolator ΠKv ∈ RT k(K) that satisfies∫

Fi

ΠKv · nipk ds =
∫

Fi

v · nipk ds ∀ pk ∈ Pk(Fi), i = 1, . . . , n+ 1 . (2.72)

Moreover, if k ≥ 1 we have∫
K

ΠKv · pk−1 dx =
∫

K
v · pk−1 dx ∀ pk−1 ∈ Pn

k (K) . (2.73)
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Figure 2.4: Lowest order Raviart-Thomas triangular element on the left and
tetrahedral element on the right.

We present now the theorem [50] concerning the optimal order estimates
for the interpolation with the Raviart-Thomas basis function.

Theorem 2.1. For every function v ∈ Hm(K) with 1 ≤ m ≤ k + 1, there
exists a constant C which depends on k, n (the dimension of v) and the
regularity constant σ such that

||v − ΠKv||L2(K) ≤ Chm
K ||∇mv||L2(K) . (2.74)

From the previous definitions, the global Raviart-Thomas finite element
spaces can be introduced. In this case, the mesh-size h has to be defined
as h = maxK∈Th

hK . Moreover, we assume that the hypothesis of regularity
condition (2.59) is satisfied in any element K ∈ Th. Therefore, the global
space can be defined as

RT k(Th) := {v ∈ H(div,Ω) : v|K ∈ RT k(K) ∀k ∈ Th} . (2.75)

We now introduce the global operator

Πh : H(div,Ω) ∩
∏

K∈Th

H1(K)n → RT k , (2.76)

where specifically
Πhv|K = ΠKv ∀K ∈ Th . (2.77)
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Recalling Lemma 2.8, it is important to note that by definition we have
ΠKv ∈ RT k(K). To verify whether Πhv ∈ RT k, we need to ensure that
Πhv ∈ H(div,Ω). In particular, applying the divergence theorem, we know
that the continuity of the normal component across the edges elements is a
necessary condition for a piecewise polynomial vector-valued function to be
in H(div,Ω). Therefore, the continuity of the normal component of Πhv,
since v ∈ H(div,Ω), follows from the property (b) of Lemma 2.7 considering
the degrees of freedom described in (2.72) defining ΠK .

In order to complete the description of the finite element subspaces re-
quired for the approximation of the mixed problem, it is important to intro-
duce the approximating subspace of the scalar variable, which, in our context,
represents the pressure. Note that the formulation resulting from the classical
Darcy problem does not have any derivatives of the pressure (1.41). In addi-
tion, even in the Stokes equation, it is possible to overcome any derivatives
of the pressure, since with a standard procedure the strong form of the equa-
tion is integrated and changed in the weak one, which does not include the
pressure gradient after integration by part of that term. Consequently, the
requirement of a continuity property for the pressure does not hold. Given
these considerations, we introduce the standard space of piecewise polynomial
functions with degree k, not necessarily continuous, as

Pd
k (Th) := {q ∈ L2(Ω) : q|K ∈ Pk(K) ∀K ∈ Th} , (2.78)

where the superscript d considers the possibility of discontinuous functions.
We report now another lemma regarding properties of Πh and Pd

k

Lemma 2.9. Let Πh be the global Raviart-Thomas operator. Thus, it satisfies

∫
Ω
∇ · (v − Πv)q dx = 0 (2.79)

∀v ∈ H(div,Ω) ∩ ∏
K∈Th

H1(K)n and ∀q ∈ Pd
k . In addition, the following

identity holds

∇ · RT k = Pd
k . (2.80)

The previous properties and definitions can also be summarized by using
the commutative diagram tool. In particular, considering the L2-projection
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Ph : L2(Ω) → Pd
k , we have that

H1(Ω)n div−−→ L2(Ω)

Πh

y
yPh

RT k
div−−→ Pd

k −→ 0 .

(2.81)

Note that in this case to simplify the notation, the subspace H1(Ω)n has
been used instead of the more complete space H(div,Ω) ∩ ∏

K∈Th
H1(K)n.

Having introduced the finite element subspace for the approximation of the
elliptic mixed problem (1.41), it is possible now to report some error estimates
results for the solution pair (uh, ph) ∈ RT k × Pd

k , for which we recall the
finite element discretization∫

Ω
µuh · v dx −

∫
Ω
ph∇ · v dx = 0 ∀v ∈ RT k (2.82a)∫

Ω
q∇ · uh dx =

∫
Ω
fq dx ∀q ∈ Pd

k . (2.82b)

Lemma 2.10. Let u and uh be the solution of the infinite (1.41) and finite
(2.82) mixed problem respectively. Then, the following error estimates hold

||u − uh||L2(Ω) ≤ (1 + ||a||L∞(Ω)||µ||L∞(Ω))||uh − Πhu||L2(Ω) . (2.83)

Naturally, in this case, µ can be connected to the dynamic viscosity and a
to the density of the Darcy/Stokes equations. Both constants are employed
for the proof of theorems and lemmas [50]. From this, it is possible to derive
an order error estimate for the velocity field u

Theorem 2.2. Let u ∈ Hm(Ω) the solution of the problem (1.39), with
1 ≤ m ≤ k + 1. If there exists a constant C that depends on ||a||L∞(Ω),
||µ||L∞(Ω), k, n (the dimension of u) and the regularity constant σ, we have

||u − uh||L2(Ω) ≤ Chm||∇mu||L2(Ω) . (2.84)

Now, since Theorem 2.1 holds, a particular case leads to

||v − Πhv||L2(Ω) ≤ Ch||v||H1(Ω) ∀v ∈ H1(Ω) , (2.85)

from which we have that [50]

||Πhv||L2(Ω) ≤ ||v||H1(Ω) . (2.86)
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Now, starting from the inequalities already introduced in Section 1.4, we
add some considerations about the error estimate for the scalar variable p.
Indeed, following [50], we present the same error estimate that we found for
the pressure-robust mixed method, knowing that now the finite element space
for the pressure, namely Y or Pd

k , is represented by piecewise polynomial
functions with degree k.

Lemma 2.11. Consider the infinite and finite pair solution of the Stokes
problem (u, p) and (uh, ph). If there exists a constant C that depends on
||a||L∞(Ω), ||µ||L∞(Ω), k, n and the regularity constant σ, we have

||p− ph||L2(Ω) ≤ C{||p− Php||L2(Ω) + ||u − Πhu||L2(Ω)} . (2.87)

Therefore, for the pressure p we have that

Theorem 2.3. Let (u, p) ∈ Hm(Ω) × Hm(Ω) the solution of the problem
(1.39), with 1 ≤ m ≤ k + 1. If there exists a constant C that depends on
||a||L∞(Ω), ||µ||L∞(Ω), k, n and the regularity constant σ, we have

||p− ph||L2(Ω) ≤ Chm{||∇mu||L2(Ω) + ||∇mp||L2(Ω)} . (2.88)

Moreover, if the coefficient a is smooth enough, considering the domain
Ω as a convex polygon, the a priori estimate

||p||H2(Ω) ≤ C0||f ||L2(Ω) , (2.89)

leads to a better estimate of the error ||Php− ph||L2(Ω).

Lemma 2.12. Consider the estimate in (2.89) and the coefficient a ∈ W 1,∞.
If there exists a constant C that depends on ||a||W 1,∞, ||µ||L∞(Ω), k, n, C0 and
the regularity constant σ, we have

||Php− ph||L2(Ω) ≤ Ch{||u − uh||L2(Ω) + ||∇ · (u − uh)||L2(Ω)} . (2.90)

Theorem 2.4. Consider the estimate in (2.89), the coefficient a ∈ W 1,∞,
the field u ∈ Hk+1(Ω) and the body force f ∈ Hk+1(Ω). If there exists a
constant C that depends on ||a||W 1,∞, ||µ||L∞(Ω), k, n, C0 and the regularity
constant σ, we have

||Php− ph||L2(Ω) ≤ Chk+2{||∇k+1u||L2(Ω) + ||∇k+1f ||L2(Ω)} . (2.91)
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Nevertheless, for the sake of completeness, we also define the rectangular
Raviart-Thomas element. In particular, giving the non-negative integer k,m,
the space of polynomials Qk,m is defined as

q(x, y) =
k∑

i=0

m∑
j=0

aijx
iyj . (2.92)

Thus, the Raviart-Thomas space on a rectangular element R is defined as

RT k(R) = Qk+1,k(R) × Qk,k+1(R) , (2.93)

where for the scalar variable the space takes the form of Qk(R).

Figure 2.5: Lowest order Raviart-Thomas quadrilateral element on the left
and hexahedral element on the right.

Considering also the three-dimensional case (generic hexahedral), the di-
mension of the space reads

dimRT k(R) =
2(k + 1)(k + 2) for n = 2 ,

3(k + 1)2(k + 2) for n = 3 .
(2.94)

If we denote the four edges of R with li, i = 1, 2, 3, 4, the interpolant operator
is equipped with the following degree of freedom∫

li
ΠTv · nipk dl =

∫
li
v · nipk dl ∀pk ∈ Pk(li), i = 1, 2, 3, 4 , (2.95)

and for k ≥ 1 we have∫
R

ΠTv · ϕk dx =
∫

R
v · ϕk dx ∀ϕk ∈ Qk−1,k(R) × Qk,k−1(R) . (2.96)
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Indeed, given the polynomial basis function q ∈ RT k(R), we have that
∇ · qk ∈ Qk ,

q · nk|li ∈ Pk(li) for n = 2 ,
q · nk|fi

∈ Qk(fi) for n = 3 .
(2.97)

Moreover, defining the particular space case of

RT 0
k(R) := {q ∈ RT k : ∇ · q = 0} , (2.98)

we have the following lemma.

Lemma 2.13. Consider a two-dimensional domain and a function q ∈
RT 0

k(R̂). Thus, there exist a function ψ ∈ Qk+1(R̂), that satisfies

q = ∇ × ψ . (2.99)

In this case we have that dimRT 0
k(R̂) = (k + 1)(k + 3).

In the following analysis, general quadrilateral elements are used instead
of triangular ones. In particular, having a generic convex quadrilateral Q as
a partition of the domain, the reference element is usually a specific rectan-
gular R = [−1, 1] × [−1, 1]. The coordinate transformation used is the Piola
transformation described in Section 2.1.2. Therefore, in order to define the
Raviart-Thomas space on the (real) element Q, consider the bilinear trans-
formation F between the vertices of R and Q, i.e. F : R → Q. Finally, the
local space RT k(Q) is defined as

RT k(Q) :=
{
v : Q → R2 : v(x) = J −1DF(x̂)v̂(x̂)

}
, (2.100)

where naturally J is the determinant of the Jacobian matrix DF associated
to the transformation F and v̂ ∈ RT k(R).

The extension of triangular and rectangular finite elements to tetrahedral
and hexahedral elements has been deeply described in [54, 51].

In the last part of this section, the finite element families described above
are discussed in the framework of free-divergence finite element discretization
for the Stokes equation. Indeed, these spaces allow the construction of inf-sup
stable pairs, considering naturally an appropriate pressure space.

For instance, we consider again the space of discontinuous piecewise poly-
nomials Pd

k , with the degree k if the velocity space is Wh = RT k or degree
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k − 1 if Wh = BDMk. If in addition, the space Pd
k has vanishing mean, we

have a finite element pair Wh × Pd
k , such that the inf-sup stability condition

holds
inf

qh∈Pd
k

\{0}
sup

wh∈Wh\{0}

∫
Ω(∇ · wh)qhdx

||wh||H(div,Ω)||qh||L2(Ω)
≥ βh , (2.101)

where we have a uniform bound from below for βh. Note that, from the space
definition, we have that ∇ · Wh ⊆ Pd

k , and therefore discrete divergence-free
functions are also weak divergence-free, i.e. the relation{

wh ∈ Wh :
∫

Ω
(∇ · wh)qh dx = 0 ∀qh ∈ Pd

k

}
(2.102)

is equal to
{wh ∈ Wh : ∇ · wh ≡ 0} . (2.103)

However, we cannot apply these functions to the Stokes problem because
of the lack of smoothness, even though the spaces are equipped with the
inf-sup stability considering the H(div,Ω) norm and the discrete divergence-
free functions are solenoidal. In fact, both subspaces RT and BDM do not
satisfy the inclusion Wh ̸⊂ H1

0 (Ω), and hence we do not have the conformity
property with respect to H1

0 (Ω). Indeed, since the gradient of functions in Wh

does not exist globally, we cannot define well the Stokes problem. Moreover,
by replacing the gradient in the Stokes formulation (1.65), we obtain that

−
∫

Ω
∆v · wh ̸= a(v,wh) (2.104)

if we consider general functions v ∈ H2(Ω) ∩ H1
0 (Ω) and wh ∈ Wh. There-

fore, the method even if non-singular is not convergent because it is not
consistent.

2.2.3 Quadrilateral approximation of scalar functions
Since the main topic of this thesis is the use of quadrilateral finite elements
in the context of divergence-free simulation, it is important to give some de-
tails about the geometrical shape of a generic quadrilateral. Indeed, certain
geometrical aspects are fundamental when error convergence of the approxi-
mated fields is discussed.

For this reason, it is possible to quantify the deviation of an arbitrary
quadrilateral from a parallelogram element [55]. We can measure this devia-
tion introducing σk as

σk := max(|π − θ1|, |π − θ2|) . (2.105)
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In this case, the angles θ1 and θ2 are respectively the angles between the
outward normals of two opposite sides of R. Therefore, we have 0 ≤ σk < π,
where σk = 0 only if R is a parallelogram. Giving the bilinear isomorphism
F , we have |F|W 2

∞(R̂) ≤ Chk(hk +σk). This enables the definition of a family
of elements which converges to an asymptotic parallelogram. In particular,
the grid must be characterized in having σk = O(hk), thus the value σk/hk

remains bounded across all the quadrilateral elements in the domain. It is
noteworthy that any polygonal shape can be meshed considering an asymp-
totically parallelogram, which is also a shape regular family of meshes where
the mesh size h is going to zero. In fact, if we consider a mesh built with
convex quadrilaterals, we can reach an asymptotically parallelogram, that is
also shape-regular if we refine every quadrilateral by dividing by four and
connecting the opposite edges.

We start with the discussion considering now a scalar function and then
move on to the next section with a discussion on vector-valued fields. Hence,
we can consider a smooth function u : Ω → R, approximated by using a space
family Vh of finite elements. If we define with k the order of the polynomial
of the reference element and with ∇h the element-by-element gradient, the
optimal approximation properties read as

inf
vh∈Vh

||u− vh||L2(Ω) = O(hk+1) , (2.106)

inf
vh∈Vh

||∇h(u− vh)||L2(Ω) = O(hk) . (2.107)

In order to satisfy the optimal approximation of the error gradient, we know
from [32] that the space of polynomial functions with order less than or equal
to k in each variable, i.e. Qk(R̂) must be in the reference element space.
Therefore, the error estimates take the form of

inf
vh∈Vh

||u− vh||L2(Ω) ≤ chk+1|u|k+1,Ω , (2.108)

inf
vh∈Vh

||∇h(u− vh)||L2(Ω) ≤ chk|∇u|k,Ω . (2.109)

Moreover, the previous estimates represent also a necessary condition, that
has been proved in [48] for a bidimensional domain and extend to a three-
dimensional domain in [56]. The previous analysis has been performed by
using and introducing a trapezoidal mesh, such as in Figure 2.6.

In particular, Boffi et al. [48] show that for certain finite element families
such as serendipity elements (for which a degree of freedom is removed from
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Figure 2.6: Trapezoidal mesh.

the element center) an optimal approximation order can not be achieved.
They suggest that the reason lies in the mesh distortion which is maintained
also for the refined grids as we can see in the trapezoidal mesh. Despite that,
if we consider the same initial trapezoidal mesh, its asymptotically affine
partition is still able to achieve an optimal approximation order.

Figure 2.7: Asymptotically trapezoidal mesh.

2.2.4 Quadrilateral approximation of vector-valued func-
tions

Necessary and sufficient conditions for optimal order approximation of vector-
valued function in H(div) have been extensively discussed [49]. In particular,
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having a smooth vector function q : Ω → R2 and considering a finite element
space Xh, an optimal convergence in L2(Ω) can be achieved if

inf
ph∈Xh

||q − ph||L2(Ω) = O(hk+1) , (2.110)

where k is the usual degree of the polynomial basis on the reference element.
Similarly, the optimal convergence in the H(div) semi-norm for the space
Xh is reached if

inf
ph∈Xh

||∇h · (q − ph)||L2(Ω) = O(hk+1) , (2.111)

where ∇h denotes the divergence operator for every element.
Indeed, if we consider general convex quadrilateral, the accuracy of some

well-known finite elements defined in H(div) is lower with respect to affine
isomorphism (triangular or general parallelogram). In the context of a generic
diffeomorphism F which maps the element K̂ to the element K, we know
that a linear transformation leads to a parallelogram, or in the case of a
diagonal linear diffeomorphism to a rectangle. However, a generic bilinear
diffeomorphism can produce an arbitrary convex quadrilateral. Following
again [49], we know that, giving V̂ the finite-dimensional space of vector
field on K̂, which is a subset of H(div), e.g. the Raviart-Thomas space
RT k, the space Pk(K̂) is strictly embedded in V̂ . We recall that Pk(K̂)
is the space of the polynomial vector function on K̂ with degree at most
k. However, V̂ does not contain the space Pk+1(K̂). An example of basis
functions for the space RT k, considering the 2(k+ 1)(k+ 2) vector fields, is
given by

(x̂i
1x̂

j
2, 0) , (0, x̂j

1x̂
i
2) , 0 ≤ i ≤ r + 1 , 0 ≤ j ≤ r . (2.112)

We have seen at the beginning of this subsection that it is possible to
estimate the error of the best approximation of a given vector (smooth) func-
tion, by using the approximating finite element function with the power of
h, i.e. the mesh size or the maximum element diameter. Therefore, with the
usual interpolant πh of the space RT k we have that

||u − πhu||L2(Ω) ≤ Chr+1|u|Hr+1(Ω) , (2.113)
||∇ · (u − πhu)||L2(Ω) ≤ Chr+1|∇ · u|Hr+1(Ω) . (2.114)
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For general shape-regular and convex quadrilateral, in [39] it has been demon-
strated that we can have

||u − πhu||L2(Ω) ≤ Chr+1[|u|Hr+1(Ω) + h|∇ · u|Hr+1(Ω)] , (2.115)
||∇ · (u − πhu)||L2(Ω) ≤ Chr|∇ · u|Hr+1(Ω) . (2.116)

Note that, an additional regularity is required for the L2 estimate of u, despite
the order in h being the same as for the parallelogram. However, we have a
degradation of the order in h considering the divergence of u.

In some scenarios, the standard shape functions are modified in order to
approximate vector fields. For instance, a lowest-order element in a bidi-
mensional domain is analyzed in [57], without however employing the Piola
transform.

The idea presented in [49], is to extend the work discussed in [48] to
vector functions, with the aim to seek the necessary conditions to have an
L2-approximation of order r+ 1 for the vector field and its divergence. From
a technical perspective, the best approximation of u ∈ Vh with an L2 error
can be of order r + 1 only if the space V̂ contains the space Sr. In this
case, the space Sr is defined as the subspace of codimension one of RT k,
described with the same vector fields in (2.112), but with the single vec-
tor field (x̂r+1

1 x̂r
2,−x̂r

1x̂
r+1
2 ) substituting the two vector fields (x̂r+1

1 x̂r
2, 0) and

(0, x̂r
1x̂

r+1
2 ). In particular, each time that Sr ⊈ V̂ , a smooth vector field u

defined in the domain Ω satisfies

inf
v∈Vh

||u − v||L2(Ω) ̸= o(hr) . (2.117)

Concerning the divergence of the field u, in order to achieve an approxima-
tion of order r + 1, we define also the space Rr, which is the subspace of
codimension one of Qr+1, i.e. the polynomial functions space of order ≤ r+1
in each variable, with the same monomials of Qr+1 except x̂r+1

1 x̂r+1
2 . In this

case, for an r + 1 order of approximation ∇ · V̂ ⊇ Rr must hold.
Consider now a simple square with the edges parallel to the reference

axes, with the bilinear transformation

FK(x̂) = xK + hKx̂ , (2.118)

where the point xK ∈ R2 represents the lower left corner of K and the
parameter hK is the side length. By using the Piola transformation PFK

on
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the approximating value function on the reference element, i.e. û ∈ L2(K̂),
we obtain

(PFK
û)(x) = h−1

K û(x̂) , (2.119)

with naturally x = FKx̂. Moreover, we have

∇ · (PFK
û)(x) = h−2

K ∇̂û(x̂) , (2.120)

with the relation ||PFK
û||L2(K) = ||û||L2(K̂).

Consider now a domain partition of Ω in Th, with a uniform mesh of n2

subsquares with length side equal to h = 1/n, and n a positive integer. We
define now the space

Vh := {u : Ω → R2|u|K ∈ PFK
V̂ ∀K ∈ Th} , (2.121)

where V̂ is a subspace of L2(K̂). With the previous definition, we are not
imposing any interelement continuity, in the sense that u is defined on the
element K̂ in agreement with functions in PFK

V̂ almost everywhere. We
have the following theorems

Theorem 2.5. Consider the finite-dimensional space V̂ , subset of L2(K̂),
and a non-negative integer r. The following conditions are equivalent:

(i) For all u ∈ Hr+1(Ω), there exists a constant C such that

inf
v∈Vh

||u − v||L2(Ω) ≤ Chr+1|u|Hr+1(Ω) . (2.122)

(ii) infv∈Vh
||u − v||L2(Ω) = o(hr) for all u ∈ Pr(Ω) .

(iii) V̂ ⊇ Pr(K̂) .

Theorem 2.6. Consider the finite-dimensional space V̂ , subset of L2(K̂),
and a non-negative integer r. The following conditions are equivalent:

(i) For all u ∈ Hr+1(Ω) with ∇ · u ∈ Hr+1(Ω), there exists a constant C
such that

inf
v∈Vh

||∇ · u − ∇ · v||L2(Ω) ≤ Chr+1|∇ · u|Hr+1(Ω) . (2.123)

(ii) infv∈Vh
||∇ · u − ∇ · v||L2(Ω) = o(hr) for all u with ∇ · u ∈ Pr(Ω) .

(iii) ∇̂ · V̂ ⊇ Pr(K̂) .
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Note that, without imposing the interelement continuity inside the defi-
nition of Vh, the divergence must be considered applied only elementwise to
v ∈ Vh.

Arnold et al. [49] have shown that for more general quadrilateral mesh in
a partitioned domain, stronger conditions on V̂ are required. In particular,
they consider a specific bilinear mapping between the unit square K̂ and the
generic quadrilateral Kα, defined by the four vertices (0, 0), (0, 1), (1, α +
1) and (0, α). With the mesh Th composed by subsquares depending on
α, as previously described, they have extended approximations properties
of finite element subspace in H(div) from rectangular elements to generic
quadrilaterals. Indeed, since by definition, we have that Sr ⊆ RT k, the
Raviart-Thomas space of order r is equipped with an L2 approximation of
order r + 1 also for generic quadrilateral meshes. Nevertheless, if we apply
the divergence operator, we obtain that ∇ · RT k = Qr does not contain Rr

even though contains Rr−1. For this reason, considering the Raviart-Thomas
space of order r, the best approximation order for the divergence operator in
L2 is only r, regarding generic quadrilateral mesh. This value is one degree
lower with respect to the more regular rectangular meshes. Thus, the space
RT 0 lacks convergence for the divergence operator, and therefore the best
approximation in the space H(div,Ω) for V̂ = RT 0 is not convergent for
general quadrilateral meshes in H(div,Ω).

2.2.5 Bochev technique
In this subsection, we recall the technique presented in [58] by Bochev et al.
in order to restore the use of lowest order Raviart-Thomas finite element for
the approximation of vector-valued functions on (shape regular) non-affine
quadrilateral elements. Bochev et al. based their new formulation consid-
ering the mimetic finite difference method [59]. The idea is to introduce
different operators in order to replace the canonical divergence and gradi-
ent. In particular, following [60, 61], we can introduce the natural mimetic
divergence DIV and the derived gradient GRAD. In particular, the new
divergence operator is defined as

∇ · u(x) := lim
x∈k;µ(k)→0

∫
∂k u · n dS
µ(k) , (2.124)

where k represents a bounded region, µ(k) its measure and ∂k its bound-
ary. With this definition, we mean a discrete operator that maps the fluxes
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of u, which are face-based values, onto cell-based constant values. Bochev
suggests that the problem with the standard divergence operator depends on
the information collected on the fluxes, and how we compute them. Indeed,
for non-affine grids the operator ∇· acts on the flux data only in an indirect
way, because of the Piola transformation on the basis functions. Therefore,
for mixed methods, the result depends on the element shape. On the other
hand, the DIV operator is able to act directly on the flux degrees of freedom,
allowing the independence of the element shape.

Considering the bilinear function FK(x̂) that maps the reference element
K̂ to the generic quadrilateral element K, and its derivative (the Jacobian
matrix) DFK(x̂), we define the measure µ as

µ(k) = det DF(0, 0)µ(K̂) , (2.125)

where naturally the point of coordinates (0,0) represents the center of the
reference element.

Consider now the standard mixed elliptic problem, involving for instance
velocity and pressure approximation, such as Stokes or Darcy equation. More-
over, consider the use of the lowest-order Raviart-Thomas space, RT 0, for
the velocity approximation and the piecewise constant space, Q0, for the
pressure approximation. Given the standard partition domain Th consider-
ing convex quadrilateral elements K, we also define the set of oriented faces
fi ∈ Th as Fh. Let now F ∗

h and T ∗
h the duals of Fh and Th, namely the collec-

tion of real numbers {Ff}, {KK} that are associated to the number of faces
and cells of the mesh. Since F ∗

h and T ∗
h are isomorphic to RT 0 and Q0, we

can use the same symbols for their elements. It is possible now to define the
natural divergence as the mapping DIV: F ∗

h → T ∗
h

DIV(uh)|K := 1
µ(K)

∑
f∈Fh(K)

σfFf , ∀K ∈ Th , (2.126)

with uh ∈ F ∗
h . Moreover, Fh(K) is the set of the oriented faces on the element

K where

σf =
1 if nf = nK

−1 if nf = −nK .
(2.127)

We can understand that the functions Ff are indeed the degrees of freedom
defining a vector field function in the space RT 0, i.e.

uh =
∑

f∈Fh

Ffuf , ∀uh ∈ RT 0 . (2.128)
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With the newly introduced operator, the discrete divergence uh ∈ RT 0 can
be replaced by using the formula in (2.126). Therefore, we reformulate the
mixed problem using the operator DIV:RT 0 → Q0. In particular for the
basis functions uf ∈ RT 0 we have

DIV(uf ) = σf

µ(K) , ∀f ∈ Fh . (2.129)

Introducing the RT 0 interpolator IRT 0 , and the interpolator IQ0 for the
space Q0, we report the following lemmas:

Lemma 2.14. The commuting diagram property can be applied pointwise to
the natural divergence DIV

W (Ω) ∇·−−→ L2(Ω)

IRT 0

y
yIQ0

RT k
DIV−−→ Q0 .

(2.130)

Lemma 2.15. The operator DIV is a surjection between RT 0 onto Q0,
equipped with a continuous lifting from Q0 into RT 0. Thus, for every qh ∈ Q0

there exists a function uh,q ∈ RT 0 that satisfies

qh = DIV(uh,q) , (2.131)
||uh,q||L2(Ω)+||DIV(uh,q)||L2(Ω) ≤ C||qh||L2(Ω) . (2.132)

Note that for standard non-affine quadrilateral elements, we usually have
that ∇·RT 0 ̸= Q0 and therefore the surjective property between the domain
and the divergence range, i.e. Q0, is not satisfied. However, the property can
be restored by using the DIV operator instead of the analytic divergence. In
this sense, Bochev asserts that “DIV provides a better approximation of ∇·
on RT 0 than the usual finite element practice of restricting the analytic op-
erator to the finite element space”. As we said before, the surjective property
equipped by the DIV operator depends on the fact the DIV acts only on the
flux data and is not influenced by the element shape, unlike the ∇· opera-
tor which acts considering the Piola transform via basis functions. Another
important lemma is reported now to show the equivalence with the standard
formulation of the divergence operator

Lemma 2.16. Let uh ∈ RT 0. Thus, we have∫
K
∇ · uh dx =

∫
K

DIV(uh) dx , with K ∈ Th . (2.133)
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Moreover, we also have that

Lemma 2.17. Consider a shape-regular partition Th of the domain Ω. Thus,
there exists a positive constant CD such that

||∇ · uh||L2(Ω) ≤ CD||DIV(uh)||L2(Ω) . (2.134)

Note that considering the reference quadrilateral element K̂, the standard
basis functions are

ûf = 1
4

[
1 ± x

0

]
or ûf = 1

4

[
0

1 ± y

]
, (2.135)

which leads to
∇x̂ · ûf = 1

4 . (2.136)

Bochev also suggests how to implement this new formulation in the frame-
work of a finite element code. In particular, considering µ(K̂) = 4, we have
that

DIV(uf )|K = σf

µ(K) = σf

4 det(DF(0, 0)) , (2.137)

where naturally the case of a bidimensional domain has been considered.
Following this suggestion, we can avoid the computation of the standard ∇·
operator for every quadrature point and the computation of det DF at the
same points. Instead, a single call to a function that computes det(DF(0, 0))
is necessary, paying attention to the value of σf which depends on the face
orientation.

Another way to reach a first-order error approximation for the divergence
operator has been introduced in [57] and is presented in the next section. In
particular, the idea proposed is a method to restore a constant divergence in
any element K ∈ Th imposing a correction on the RT 0 basis function on K̂.

The previous mimetic reformulation of the mixed problem leads to the
same linear system of equations considering the unknown coefficients for the
velocity uh ∈ RT 0 and for the pressure ph ∈ Q0. Therefore, as demonstrated
in [58] the solution of the new method is the same as the standard mixed
method. Moreover, rigorous stability proof has been proved for the mixed
problem equipped with the DIV operator. Indeed, we have

Lemma 2.18. Consider the space Zh := {uh ∈ RT 0|DIV(uh) = 0}, i.e. the
null-space of DIV. Thus, we have that the classical form ah(·, ·) is coercive
on Zh × Zh with

Ca||vh||2 ≤ ah(vh,vh) ∀vh ∈ Zh . (2.138)
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In addition, we have that the inf-sup condition is satisfied by the form bh(·, ·)
with

sup
vh∈RT 0

bh(vh, ph)
||vh||DIV

≥ Cb||ph||L2(Ω) ∀ph ∈ Q0 . (2.139)

Finally, in [58] an optimal error estimate has been proved with the fol-
lowing theorem

Theorem 2.7. Consider a shape regular partition Th, for which holds

1
α
µ(K) ≤ || det DFK ||∞,K̂ ≤ αµ(K) ∀K ∈ Th , (2.140)

where α is a positive number. Consider also, the pair solution of the mixed
problem (1.39) as (u, p) ∈ HN(div,Ω) ∩ H2(Ω) × H1

D(Ω), where H1
D(Ω) is

the subspace of H1(Ω) where the functions vanish on ΓD and HN(div,Ω) is
the subspace of H(div,Ω) equipped with v · n = 0 on ΓN . Thus, considering
the pair solution of the discretized problem (uh, ph), the following error bound
holds

||∇ · u − DIV(uh)||L2(Ω)+||u − uh||L2(Ω) + ||p− ph||L2(Ω) ≤

≤ Ch
(
||u||H2(Ω) + ||p||H1(Ω)

)
.

(2.141)

The theoretical conclusions have also been demonstrated with numerical
results, for which the first-order accuracy of the divergence velocity approx-
imation is restored by using the natural mimetic divergence operator, natu-
rally considering the case of non-affine grids. For the sake of completeness,
in the paper described above other types of finite element families have been
investigated. Specifically, for least square finite elements, the presence of a
non-affine mesh can produce a degradation of the order error approximation.
On the other hand, as we have already discussed, mixed finite elements such
as RT 0 can benefit from the introduction of the new operators, especially
when dealing with not asymptotically affine grids.

2.2.6 Shen-Boffi technique

We present now the solution proposed in [57] for the resolution of the Darcy
equation and in [62] for the eigenvalue problem of the same equation, in the
context of distorted rectangular grids. The idea is to introduce and describe
a pair solution of the mixed elliptic problem, that is related to a discrete
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velocity space Vh and a pressure space Wh satisfying the relation

Vh ⊂ V ⊂ H(div,Ω) ,
∇ · Vh ≡ Wh ⊂ W ⊂ L2(Ω) .

(2.142)

Note that the suggested technique conserves the same number of unknowns
as the implementation of the lowest-order Raviart-Thomas. Moreover, if the
generic quadrilateral elements degenerate back to parallelogram elements,
the proposed mixed method matches with the lowest-order Raviart-Thomas
finite element applied to orthogonal rectangular grids. Finally, this technique
avoids any problematic issues related to the existence and uniqueness of the
solution since it satisfies the inf-sup condition.

Consider now the characteristic function of the domain K, i.e. χ(K).
Therefore, the space of the discretized pressure can be defined as Wh =
span{χ(K)}K∈Th

. In other words, the space Wh is the space of the piecewise
constant function, and therefore we have that Wh ⊂ L2(Ω).

Concerning the velocity space, we have to add some considerations. First
of all, we want to preserve the continuity of the normal component on the
element edges. Therefore, considering the nodal bases bi ∈ Vh, i = 1, 2, 3, 4
and their restriction to the element K we want that

∇ · bi = constant ,
bi · nj|ej

= δij ,
(2.143)

where ej represents the element edges. Recalling the properties of the Piola
transform, the previous relations are equivalent to

∇̂ · b̂i = J · constant ,
b̂i · n̂j|êj

= |ei|δij ,
(2.144)

where J , the well-known determinant of the Jacobian matrix, is a linear
function of x̂ and ŷ, meanwhile |ei| represents the length of the edge i. Indeed,
we can consider the bilinear transformation between the real and the reference
element, i.e. F : K̂ → K, defined as

x = F(x̂) = x1 + x21x̂+ x41ŷ + (x32 − x41)x̂ŷ , (2.145)

where xij = xi − xj represent the four vertices of the element K (or respec-
tively K̂). Naturally, we have that

xi = F(x̂i) , i = 1, 2, 3, 4 . (2.146)
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Recalling that the Jacobian matrix and its determinant take the following
form

DF =
(
xx̂ xŷ

yx̂ yŷ

)
, J = | det DF| = xx̂yŷ − xŷyx̂ > 0 , (2.147)

with
DF−1 =

(
x̂x x̂y

ŷx ŷx

)
= 1

J

(
yŷ −xŷ

−yx̂ xx̂

)
, (2.148)

the determinant can be written also as a linear function of x̂ and ŷ

J = α + βx̂+ γŷ . (2.149)

Moreover, it is easy to compute also the area of the element K as

|K| =
∫

K
dK =

∫
K̂

J dK̂ =
∫ 1

0

∫ 1

0
J dx̂dŷ = α + β

2 + γ

2 . (2.150)

With this information, we report a lemma proved by Shen in [57].

Lemma 2.19. There exists a function b̂0 ∈ R2, defined on the reference
element K̂ that satisfies

∇̂ · b̂0 = J
K

− 1 , (2.151)

b̂0 · n̂j|ĵ = 0 , j = 1, 2, 3, 4 , (2.152)

and then, ∫
K̂
∇̂ · b̂0dK̂ = 0 . (2.153)

Note that, since the vector function b̂0 is defined as

b̂0 =
(
ζ

η

)
, (2.154)

where the two components are described as follows

ζ = βx̂(x̂− 1)
2|K|

, η = γŷ(ŷ − 1)
2|K|

, (2.155)

this new term is described with a quadratic function in the reference coordi-
nates and depends only on J .
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Now, we can introduce the new basis functions defined on K̂

b̂1 = |e1|
(

1 − x̂

0

)
− |e1|b̂0, b̂3 = |e3|

(
x̂

0

)
− |e3|b̂0,

b̂2 = |e2|
(

0
1 − ŷ

)
− |e2|b̂0, b̂4 = |e4|

(
0
ŷ

)
− |e4|b̂0 ,

(2.156)

and consider that
bi = 1

J
DF b̂i , i = 1, 2, 3, 4 . (2.157)

It can be easily seen that every relation in (2.143) and (2.144) is satisfied,
because of the choice of the new basis functions defined in (2.156). Hence, for
any u ∈ Vh, the corresponding restriction on the real elementK is determined
by

u|K =
4∑

i=1
uibi ,

ui = u · ni|ei
, i = 1, 2, 3, 4 .

(2.158)

Note now that ∇ · Vh ⊂ Wh, and since the operator ∇ : Vh → Wh is
surjective, we have that Wh ⊂ ∇ ·Vh, that leads to Wh ≡ ∇ ·Vh. Hence, the
new numerical space Vh ×Wh satisfies the relation in (2.142).

This result has been achieved through the addition of the b̂0 function,
which is equipped with quadratic terms in the x̂ and ŷ components. In fact,
despite the boundary fluxes on the edges are the same without the function
b̂0, unfortunately, the divergence of the discrete velocity space would not
be included anymore in the space of the discretized pressure, namely the
piecewise constant space.

Boffi and Gastaldi gave their interpretation in [62] about the function b̂0,
through which they denote this new element as Modified Raviart Thomas
(MRT ). First, this function vanishes if the element reduces to a parallel-
ogram (therefore if we consider an affine mapping). Additionally, its normal
component is always equal to zero on four sides of the reference element, and
for this reason, the function can be interpreted as a bubble in H(div, K̂). As
already stated, the four reference shape functions in the case of affine map-
ping are equal to the standard lowest-order Raviart-Thomas basis. Therefore,
thanks to this new term which is added to every basis function we are able
to obtain always a constant divergence of the velocity inside each element,
properties that in general are not true for meshes with a generic bilinear
mapping if we consider standard RT 0 elements.
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Furthermore, they reported an example in which, with this kind of basis
function, it is possible to represent a constant vector inside the element, even
though the Piola transformation acts on non-affine elements. This is a key
point in order to reach an optimal order approximation of the velocity diver-
gence. In fact, it is sufficient to prove that, by using a suitable combination
of the shape functions b̂i, the reference vector is the Piola transform of the
vector function in the real element (for instance u = (1, 0)T ). If we consider
the reported bidimensional case, we have the bilinear mapping between K

and K̂ defined by

F(x̂, ŷ) =
{
a1 + a2x̂+ a3ŷ + a4x̂ŷ

b1 + b2x̂+ b3ŷ + b4x̂ŷ
, (2.159)

and consequently, the Jacobian matrix reads as

DF(x̂, ŷ) =
(
a2 + a4ŷ a3 + a4x̂

b2 + b4ŷ b3 + b4x̂

)
. (2.160)

By inverting now the Piola transform for the vector u we have

û = J DF−1u =
(
b3

−b2

)
+ b4

(
x̂

−ŷ

)
. (2.161)

Finally, the expression of the vector function in the reference element is the
following

û = b3

|e1||e3|
(|e1|b̂3 − |e3|b̂1) − b2

|e2||e4|
(|e2|b̂4 − |e4|b̂2)+

+ b4

|e3||e4|
(|e4|b̂3 − |e3|b̂4) .

(2.162)

Note the difference between the coefficients of the bilinear transformation bi

and the shape functions b̂i. In the same fashion, we can find the û corre-
sponding to u = (0, 1)T .

Without providing a detailed description, we mention that in [63] an
extension of the previous idea is presented. In particular, the author suggests
that the approach of Shen [57] relies on the assumption that the velocity field
u is at most linear, and therefore the employment of a Taylor series expansion
can be justified. For this reason, in [63], the case in which u is not linear is
considered, achieving an optimal error estimate for the new proposed element
maintaining the same degree of freedom of standard RT elements.
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2.2.7 Hexahedral elements
In the last year, many authors have tried to address the problem of consid-
ering general hexahedral grids in the context of mixed finite elements. In
particular, lowest-order Raviart-Thomas finite elements seem to lack conver-
gence for general hexahedral [64, 65, 66]. In fact, as it is described later,
different authors [67, 68, 69] suggest that on general hexahedrons constant
vector fields cannot be represented by RT 0 functions. On the other hand,
considering hexahedrons with flat faces or grids with elements tending asymp-
totically to parallelepiped elements, H(div) convergence can still be reached
[70]. For example, in [69] a three-dimensional general hexahedron with flat
surfaces has been considered. They implement a composite method, by which
each hexahedron is subdivided into five tetrahedral elements, avoiding any
convergence issue. Furthermore, Brezzi et al. [65] proposed a method based
on the mimetic finite difference by which even hexahedral with non-planar
faces convergence can be obtained.

In this subsection, the extension of the previous results is described in the
framework of a three-dimensional problem. In particular, if the major part
of the discussion presented in the previous sections was related to quadri-
lateral elements, now we focus on generic hexahedral elements, to discuss
the approximation properties of finite element subspaces in H(div,Ω), with
Ω ∈ R3. An important analysis of this situation has been presented in [71],
from which is taken the following description.

We recall shortly the main results concerning the approximation theory of
vector fields in a three-dimensional case, but considering a uniform mesh, in
order to explain better than the difference with a generic hexahedral mesh.
Thus, consider a cube K, that has by definition the edges parallel to the
reference axes. In this case, the generic trilinear diffeomorphism which maps
K = DK(K̂) is linear and defined as

DK(x̂) = xK + hKx̂ , (2.163)

where the corner of smallest coordinates (x, y, z) of the real element K is
represented by xK ∈ R3 with the side length hK > 0. In this case, the Piola
transform PDK

applied to the vector function û ∈ L2(K̂) reads as

(PDK
û)(x) = h−2

K û(x̂) , (2.164)

where x = DK(x̂). Instead, for the divergence operator we obtain

∇ · (PDK
û)(x) = h−3

K ∇̂ · û(x̂) . (2.165)



64 Chapter 2. Finite Element Discretization

We can define now the domain partition Th considering n3 subcubes, with n

a positive integer, where the side length is equal to h = 1/n. Now, defining
the space V (K) = PDK

V̂K , where V̂K is a subspace of L2(K̂), we introduce
the space

Ṽh :=
{
v ∈ L2(Ω) : vK ∈ V (K), ∀K ∈ Th

}
. (2.166)

The following theorems are in analogy with Section 2.2.4 regarding the bidi-
mensional case.

Theorem 2.8. Consider the finite dimensional subspace V̂ of L2(K̂). The
following statements are equivalent:

(i) For all u ∈ H1(Ω), there exists a constant C such that

inf
v∈Ṽh

||u − v||L2(Ω) ≤ Ch||∇u||L2(Ω) .

(ii) infv∈Ṽh
||u − v||L2(Ω) = o(1) for all u ∈ P0(Ω).

(iii) V̂ ⊇ P0(K̂).

In the previous theorem, the space P0(·) represents the space of polyno-
mial vector functions of order zero, i.e. a constant function.

In addition, we have the same theorem for the divergence operator.

Theorem 2.9. Consider the finite dimensional subspace V̂ of L2(K̂). The
following statements are equivalent:

(i) For all u ∈ H1(Ω), there exists a constant C such that

inf
v∈Ṽh

||∇ · u − ∇ · v||L2(Ω) ≤ Ch||∇(∇ · u)||L2(Ω) .

(ii) infv∈Ṽh
||∇ · u − ∇ · v||L2(Ω) = o(1) for all u with ∇ · u ∈ P0(Ω).

(iii) ∇̂ · V̂ ⊇ P0(K̂).

In this case, since the velocity divergence is considered, the space P0(·)
represents the space of polynomial scalar functions of order zero. Because
in this case the interelement continuity is not imposed in the definition of
Ṽh, the divergence of the velocity is to be interpreted as the elementwise
divergence of v.
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We consider now general hexahedral elements, for which the shape regu-
larity property holds. The idea is to find the necessary condition for having an
O(h) approximation of a vector field function considering a generic trilinear
mapping. In particular, this mapping can be described as

F1 = a1 + b1x̂+ c1ŷ + d1ẑ + e1x̂ŷ + f1ŷẑ + g1ẑx̂+ h1x̂ŷẑ , (2.167a)
F2 = a2 + b2x̂+ c2ŷ + d2ẑ + e2x̂ŷ + f2ŷẑ + g2ẑx̂+ h2x̂ŷẑ , (2.167b)
F3 = a3 + b3x̂+ c3ŷ + d3ẑ + e3x̂ŷ + f3ŷẑ + g3ẑx̂+ h3x̂ŷẑ . (2.167c)

Note that, with this generic transformation, planar faces are not necessary
on the real element K. In fact, even if the element edges are always straight
segments, a planar face is obtained if and only if its four vertices lie on the
same plane.

In order to reach an approximation estimate of the type o(1) for the ve-
locity field u ∈ P0(Ω), we have seen that for affine subcubes of a domain is
sufficient to have V̂ ⊇ P0(K̂). Therefore, in the case of a general trilinear
mapping, the objective is to verify if, after the application of the Piola trans-
form between the unit reference cube and the arbitrary hexahedron, we still
obtain on the hexahedron constant vectors, i.e. the functions (1, 0, 0), (0, 1, 0)
and (0, 0, 1). In order to verify if we are able to represent these vector field
functions we apply the inverse Piola transform to the function u obtaining

û(x̂) = P−1
F u(x) = J (x̂)DF−1(x̂)u(x) . (2.168)

Thus, the Jacobian matrix reads
DF(x̂) =
b1 + e1ŷ + g1ẑ + h1ŷẑ c1 + e1ŷ + f1ẑ + h1ŷẑ d1 + f1ŷ + g1ẑ + h1ŷẑ

b2 + e2ŷ + g2ẑ + h2ŷẑ c2 + e2ŷ + f2ẑ + h2ŷẑ d2 + f2ŷ + g2ẑ + h2ŷẑ

b3 + e3ŷ + g3ẑ + h3ŷẑ c3 + e3ŷ + f3ẑ + h3ŷẑ d3 + f3ŷ + g3ẑ + h3ŷẑ

 .

(2.169)
Therefore, if we consider the vector u(x) = (1, 0, 0)T we obtain for the

respective value on the reference element

û1(x) = (c2 + e2x̂+ f2ẑ + h2x̂ẑ)(d3 + f3ŷ + g3x̂+ h3x̂ŷ) (2.170a)
− (d2 + f2ŷ + g2x̂+ h2x̂ŷ)(c3 + e3x̂+ f3ẑ + h3x̂ẑ) ,

û2(x) = −(b2 + e2ŷ + g2ẑ + h2ŷẑ)(d3 + f3ŷ + g3x̂+ h3x̂ŷ) (2.170b)
+ (d2 + f2ŷ + g2x̂+ h2x̂ŷ)(b3 + e3ŷ + g3ẑ + h3ŷẑ) ,

û3(x) = (b2 + e2ŷ + g2ẑ + h2ŷẑ)(c3 + e3x̂+ f3ẑ + h3x̂ẑ) (2.170c)
− (c2 + e2x̂+ f2ẑ + h2x̂ẑ)(b3 + e3ŷ + g3ẑ + h3ŷẑ) .
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Finally, we have for û(x̂)

û1(x̂) = A1 + (D3 − C2)x̂+ C1ŷ +D1ẑ − (E2 +G2)x̂ŷ+ (2.171a)
(E3 −G3)x̂ẑ +G1x̂

2 +H3x̂
2ŷ +H2x̂

2ẑ ,

û2(x̂) = A2 +B2x̂+ (B1 −D3)ŷ +D2ẑ + (E1 −G1)ŷx̂− (2.171b)
(E3 +G3)ŷẑ +G2ŷ

2 −H3x̂ŷ
2 +H1ŷ

2ẑ ,

û3(x̂) = A3 +B3x̂+ C3ŷ + (C2 −B1)ẑ − (E1 +G1)ẑx̂+ (2.171c)
(E2 −G2)ẑŷ +G3ẑ

2 +H2x̂ẑ
2 −H1ŷẑ

2 ,

where the coefficients of the capital letter with subscript i are combinations
of the coefficients, lowercase letter, present in the trilinear form. Just to make
an example we can define the first coefficients A1 as the combination of the
constant terms present in the first component of the reference velocity û1(x),
i.e.

A1 = c2d3 − d2c3 , (2.172)
meanwhile, for the linear term in x̂ we have for instance

D3 − C2 = (e2d3 − e3d2) − (g2c3 − c2g3) , (2.173)

and so on. The other coefficients follow the same idea in order to gather the
same order of local coordinates. In the same way, we can obtain the resulting
vectors by choosing the constant vectors (0, 1, 0) or (0, 0, 1). In particular,
we can think about A2

i , B
2
i , . . . , for the vector (0, 1, 0) and the coefficients

A3
i , B

3
i , . . . , for the vector (0, 0, 1). The linear space that we have obtained

is equipped with 20 independent parameters, and we can define it as Ŝ−
0 .

Note that even though there are 21 parameters, if we sum the coefficients B1,
C2, and D3, we obtain zero. Therefore, having only two linearly independent
coefficients, we have 20 coefficients instead of 21. It is easy to understand,
that in this context the lowest-order Raviart-Thomas element is not equipped
with a sufficient number of basis for the representation of a constant function.
In other words, with only linear basis functions a simple constant vector as
(1, 0, 0) can not be represented considering generic trilinear transformation.

Likewise, it has also been shown that to obtain an approximate estimate
for the divergence of the form

inf
v∈Ṽh

||∇ · (u − v)||L2(Ω) = o(1) , (2.174)

we should consider a sequence of a partitioned domain Th expressed with
meshes of subcubes of side h = 1/n, satisfying the relation ∇̂ · V̂ ⊇ P0(K̂).
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On the other hand, for more general hexahedral elements, stronger conditions
on V̂ are required. In particular, a necessary condition is that, after the
mapping by using the Piola transform between the unit reference cube and
the general hexahedron, it is possible to represent a constant that must be
contained in the divergence of the resulting function on the real element.

The main result is that, in order to satisfy the continuity of û · n across
the elements that share a common face, other 19 coefficients must be added
to the space Ŝ−

0 , thus leading to a final space dimension equal to 40. The
technical details can be found in [71], where necessary conditions for the
optimal approximation of the divergence are derived.

On the other hand, by restricting the set of all the possible geometric
configurations derived by a generic trilinear transformation, the number of
coefficients necessary to represent a constant vector can change. One of
these configurations is represented by hexahedrons with flat faces. However,
preliminary results in [71] seem to suggest that a linear space for the vector û
can not be obtained. Indeed, considering the more restrictive case described
by a hexahedron with flat boundary and midplane faces, the best that can
be achieved is the removal of the cubic and quartic terms. Hence, quadratic
terms are still present in the expression for the local representation of the
constant vector.

Another important discussion on the lowest-order hexahedral Raviart-
Thomas element has been proposed in [64]. Specifically, a measure of the
‘deviation’ of a hexahedron concerning a parallelepiped has been introduced.
In particular, the mapping F is decomposed as the sum of the affine part
and another component that depends on four geometrical vector parameters,
ε1, ε2, ε3, ε4, ∈ R3.

To explain the meaning of these four parameters, consider a parallelepiped
for which three vertices represent the canonical vector of the reference system,
as depicted in Figure 2.8. Thus, by displacing the remaining vertex from the
parallelepiped configuration, we obtain a generic hexahedron. The distance
between the new positions of these vertices and their original positions is
represented by the parameter εi. Hence, the mapping can be rewritten as

FK(x̂) = F l
K(x̂) + Fd

K(x̂) . (2.175)

The linear part of the mapping is defined as

F l
K(x̂) = x̂1α1 + x̂2α2 + x̂3α3 , (2.176)
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where αi := F(ei), with ei which is the canonical vector with i = 1, 2, 3. The
other component is defined as

Fd
K(x̂) = x̂2x̂3ε1 + x̂1x̂3ε2 + x̂1x̂2ε3 + x̂1x̂2x̂3(ε4 − ε1 − ε2 − ε3) . (2.177)

An important aspect is that if the faces on the real elementK are planar, then

α2

α3

α1

α2

α3

α1

ε1

ε3

ε2

ε4

Figure 2.8: Parallelepiped on the left and corresponding non-affine hexahe-
dron on the right, obtained applying the εi corner shifts.

ε4 = ε1 + ε2 + ε3, and consequently, the cubic term of the mapping vanishes.
In other words, the deviation of the vertices is not entirely arbitrary, since
choosing the new positions of three vertices determines the position of the
fourth. This situation is represented on the right in Figure 2.8, where the
hexahedron is equipped only with planar faces.

To better understand the previous technical discussion, we refer now to
[69, 68], where a trivial example of a non-regular hexahedron with a uniform
constant velocity field is analyzed. Consider the geometry depicted in Figure
2.9, i.e. a truncated pyramid P with the two horizontal bases orthogonal to
the z-axis. Thus, the bases are square with side lengths equal to s0 and s1,
respectively. Consequently, the areas of the two bases are s2

0 and s2
1. Now,

if we consider a uniform constant vector field u1(x) = (0, 0, 1)T ,∀x ∈ P ,
the only nonzero component is orthogonal to the pair of parallel faces of the
pyramid. Having a constant field, the flux through an interior horizontal
section Bz of the element P can be easily computed since it is equal to the
area of that section. Therefore, for a generic section Bz with 0 ≤ z ≤ 1 we
have ∫

Bz

u1 · nz = ((1 − z)s0 + zs1)2 , (2.178)
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s0

s1

Bz z

Figure 2.9: .

where naturally the side of the section Bz varies linearly with the coordinate
z. Then, consider a reference cube where the cross-sectional area is denoted
by B̂z, and compute the flux of a vector field u2 ∈ RT 0 by using the Piola
transformation. Hence, we have∫

B̂z

u2 · nz = (1 − z)s2
0 + zs2

1 , (2.179)

because it is well-known that the flux varies linearly when considering vector-
valued functions in RT 0. Therefore, since for a three-dimensional domain
(2.178) is different from (2.179), the Piola transformation of a RT 0 function
is not able to exactly represent a uniform flow field, even if the considered
element is as simple as a truncated pyramid. Referring to the previous space
Ŝ−

0 , in this simplified configuration, we can reduce the dimension from 40 to
28 [71].

Mesh construction

A remark on meshes discretized with generic hexahedral elements is now
reported. The creation of a hexahedral mesh with planar faces is not as
straightforward as in regular three-dimensional geometries. The deviation
from a cubic geometry must satisfy the flatness condition for every face.
Therefore, it is not sufficient to arbitrarily modify the eight vertices that de-
fine a cube. While there are several ways to build such a computational grid,
it cannot be achieved by uniformly dividing a cube with several refinements.
Instead, a replication of the ’fundamental unit grid’ has to be performed
in every spatial direction, with a scaling transformation to obtain the same
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volume as the initial cube. For this thesis, the ’fundamental unit grid’ is com-
posed of eight non-affine hexahedrons, that form a unit cube. Specifically,
each of the eight sub-cubes can be described with a two sub-set of faces:

• three faces are perpendicular to each other, and they represent and
make up the external surface of the unit cube;

• the other three faces are internal to the unit cube, and they induce the
non-affinity of the hexahedron. Indeed, these faces are not parallel to
the corresponding faces and, therefore, they are not orthogonal to each
other.

x0

x1

x2

x3

xε1

xε2

xε3

xf

π1

π2

π3

Figure 2.10: Single hexahedron formed by its eight vertices. Note that the
vertex coordinates of xf correspond to the intersection of three planes (red,
blue and green).

To construct the height sub-cubes, it is sufficient to create the first one
and generate the other cubes while respecting the constraint of the flat faces.
For instance, by fixing four vertices (x0,x1,x2,x3), it is possible to deform
the sub-cube by moving only three vertices (xε1 ,xε2 ,xε3). Note that this
movement must be executed within the plane defined by the original set of
points. The eighth point (xf ) is determined by the intersection of the three
planes (π1, π2, π3) that are created after the shift of the three vertices. Indeed,
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we know that for three points, a unique plane can be found. Therefore a flat
face can only be constructed if the fourth vertex lies on the plane formed by
the initial three vertices. A visual representation of this scenario is presented
in Figure 2.10.

With this information, the other sub-cubes can be determined, as the
coordinates of the first cube also provide the coordinates of the free vertices
for the other cubes. The procedure for these points follows the same path,
by finding three planes and solving their intersection. Moreover, if the initial
deformation ε for the first three points has the same value and if these points
lie on the hexahedron edges, it becomes possible to easily determine all 27
points coordinates of the unit cube. This can be achieved by exploiting some
geometrical relation between the coordinates inside a cube, without perform-
ing the intersection between the planes. In particular, given the displacement
ε we can define three expressions by which all coordinates can be found

d1 = 1 + ε , d2 = 1 + ε

1 + 2ε ,

d3 = 1 + 3ε
1 + 2ε , d4 = 1 + 5ε

1 + 4ε .
(2.180)

In Figure 2.11 an example of the unit cube is reported with the connectiv-
ity map of its 27 nodes on the left in the initial configuration. On the right,
the resulting geometry is depicted after applying the displacement ε to three
vertices. Moreover, in (2.181) the points coordinates are reported following
the expressions in (2.180), considering the unit cube of dimensions 2 × 2 × 2.
It is also possible to consider generic displacement for the first three vertices,
allowing for multiple εi to be imposed. However, the geometric expressions
relating the coordinates of the points to the shifts become more complex.

The eight non-affine elements are reported in Figure 2.12. Their combina-
tion produces the unit cube, as shown in Figure 2.11. Subsequently, the unit
cube needs to be mirrored three times, considering symmetry with respect to
the Cartesian planes, i.e. the planes OX,OY and OZ, to double the number
of elements in each direction. This operation is necessary since the nodes on
the external faces of the unit cube are not symmetric with respect to two
opposite faces. The procedure can be repeated several times to construct the
standard refined grids, such as 4 × 4 × 4, 8 × 8 × 8 and so on. Additionally, a
scaling factor can be applied to adjust the geometry volume to a fixed value.

A similar approach to constructing a unit reference cube with eight non-
affine hexahedrons has been proposed in [72], where three internal planes
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Figure 2.11: Unit reference cube on the left with the connectivity map for its
27 nodes. On the right, the same unit cube is built as the composition of 8
sub-cubes, which are the non-affine hexahedra elements.

are rotated around three axes. Hence, their intersections represent the edges
of the hexahedrons. In this case as well, the authors recommend repeating
the unit cube sub-mesh pattern over the domain, by applying appropriate
reflections to maintain mesh conformity.

Figure 2.12: The eight non-affine hexahedrons equipped with six planar faces.
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Points coordinates:
{P0(0, 0, 0) , P1(2, 0, 0) , P2(2, 2, 0) , P3(0, 2, 0) , P4(0, 0, 2) ,
P5(2, 0, 2) , P6(2, 2, 2) , P7(0, 2, 2) , P8(d1, 0, 0) , P9(2, d3, 0) ,
P10(d3, 2, 0) , P11(0, d1, 0) , P12(d3, 0, 2) , P13(2, d4, 2) , P14(d4, 2, 2) ,
P15(0, d3, 2) , P16(0, 0, d1) , P17(2, 0, d3) , P18(2, 2, d4) , P19(0, 2, d3) ,
P20(1, 1, 0) , P21(1, 0, 1) , P22(2, 1, 1) , P23(1, 2, 1) , P24(0, 1, 1) ,
P25(1, 1, 2) , P26(d2, d2, d2)} .

(2.181)

A non-affinity check has been performed to measure the actual skewness of
these elements. Specifically, certain coefficients of the trilinear transformation
have been computed, such as the coefficient expressed in (2.172). Considering
that flat faces are the result of a transformation for which the cubic term
vanishes, the coefficients related to the deformation from a regular cube to
a non-affine hexahedron are Gij with i, j = 1, 2, 3. Indeed, for a cube or
for affine hexahedral elements, every Gij is equal to zero. In (2.182) the
expressions for the nine Gij coefficients are reported

G11 = e2g3 − g2e3 , G12 = f2e3 − e2f3 , G13 = g2f3 − f2g3 ,

G21 = e3g1 − g3e1 , G22 = f3e1 − e3f1 , G23 = g3f1 − f3g1 ,

G31 = e1g2 − g1e2 , G32 = f1e2 − e1f2 , G33 = g1f2 − f1g2 .

(2.182)

Furthermore, these coefficients depend only on the eight vertices that
define the polyhedron, facilitating their computation. For each element, all
the Gij are non-zero, confirming the effectiveness of the algorithm used for
the non-affine mesh creation.





CHAPTER 3

Projection method for
Navier-Stokes equation

This chapter presents an overview of the projection method used for solving
the Navier-Stokes equations in incompressible flow simulations, also known
in literature as the fractional step method. This method broadly falls into
three schemes: pressure-correction, velocity-correction, and consistent split-
ting methods. The following sections offer a brief review of these methods
to better understand how this numerical scheme correlates with the finite
element discretization described in earlier chapters. In particular, some steps
present in the projection algorithm are essentially the same as the orthogonal
decomposition of the velocity. Therefore, since the decomposition is treated
by using the mixed finite element tools presented in Chapter 2, we establish
a connection to fully resolve the Navier-Stokes system of equations. The fol-
lowing description draws heavily from the comprehensive work of Guermond
et al. [23].

This numerical scheme originates from the incompressibility constraint,
which forms the central theme of this thesis. In particular, one of the main
issues related to the numerical solution of momentum and mass conservation
equations is the coupling between velocity and pressure, imposed by the
condition of zero divergence of velocity. The solution of the coupled velocity-
pressure system (3.1) can be expensive from a computational point of view,
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and this has led to the development of different numerical algorithms for the
treatment of the split system for velocity and the pressure fields. In order to
overcome these problems, many authors introduced the projection method
by which the Navier-Stokes system is subdivided into two separate steps, one
for the velocity and one for the pressure.

The first idea that appeared in literature is related to the work of Chorin
and Temam [21, 22], where the time-dependent solution of incompressible
viscous flow has been proposed. Specifically, the idea is to build a sequence
of decoupled elliptic equations for the velocity and the pressure and solve
them at each time step. Indeed, this numerical method leads to an efficient
simulation and reduces the computational effort.

Since the convergence rate of the splitting error is not affected by the
nonlinear term of the Navier-Stokes equations, the following analysis takes
into account the time-dependent Stokes equations that, considering constant
physical properties, read as

∂u

∂t
− ν∆u + ∇p = f in Ω × [0, T ] ,

∇ · u = 0 in Ω × [0, T ] ,
u|Γ = 0 in Ω × [0, T ] ,
u|t=0 = u0 in Ω ,

(3.1)

where the right-hand side of the momentum equation is a smooth source and
u0 denotes the initial value of the velocity field. Note that in this case, we
consider homogeneous Dirichlet boundary conditions, since the use of natural
boundary conditions needs more attention regarding the nonlinear term.

In order to define the time-dependent solutions, we can consider the time
step ∆t > 0 and set tk = k∆t for 0 ≤ k ≤ K = [T/∆t], where T is the upper
bound of the time interval considered, [0, T ].

3.1 Pressure-correction schemes
For every algorithm that is described in the following subsection, the error
estimates and theorem proofs can be found in [23] and references therein.

3.1.1 Non-incremental pressure-correction scheme
In this scheme, proposed originally in [21, 73], the implicit Euler scheme is
adopted. Therefore, starting with the initial value of the velocity as u0 = u0,
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at every step k ≥ 0 we determine ũk+1,uk+1, pk+1 by solving the following
equations

1
∆t(ũ

k+1 − uk) − ν∆ũk+1 = f(tk+1) , ũk+1|Γ = 0 , (3.2)


1

∆t(u
k+1 − ũk+1) + ∇pk+1 = 0, ,

∇ · uk+1 = 0 uk+1 · n|Γ = 0 .
(3.3)

Note that ũ is a fictitious velocity field, which is added (and subtracted)
to the momentum equation of the Stokes system (3.1), in order to remove
the pressure dependence from the velocity. In fact, the resulting momentum
equation is then divided into two parts: the first one corresponds to the
equation (3.2), while the other one is represented by (3.3). After that, by
applying the divergence operator to the first equation of (3.3), we obtain,

∇ · ũk+1 = −∆t∆pk+1 , (3.4)

by which we are able to find the new value of ũk+1 by solving a laplacian
equation for the pressure. Subsequently, we can correct the value of the
initial velocity u using (3.2). If the first step (3.2), takes into account the
viscous effects, the second one (3.3), known also as the projection step, ac-
counts for the incompressibility constraint. Note that the Laplacian equation
applied to the pressure requires an additional boundary condition. Typically,
an artificial Neumann boundary condition of the form ∇pk+1 ·n|Γ = 0 is ap-
plied, although this imposition lacks direct physical reasoning. An extensive
analysis of this aspect has been presented in [74].

3.1.2 Standard incremental pressure-correction scheme

To enhance the accuracy of the model, Goda in [75] suggested adding the
old value of the pressure gradient, i.e. ∇pk, in the viscous equation, i.e. the
first sub-step. Moreover, Van Kan in [76], proposed a second-order incre-
mental pressure correction scheme, by using the backward difference formula
of second order for the time derivative. In this case, the algorithm can be
expressed as follows

1
2∆t(3ũ

k+1 − 4uk +uk+1) − ν∆ũk+1 +∇pk = f(tk+1) , ũk+1|Γ = 0 , (3.5)
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1

2∆t(3u
k+1 − 3ũk+1) + ∇(pk+1 − pk) = 0 ,

∇ · uk+1 = 0 uk+1 · n|Γ = 0 .
(3.6)

Similar to the previous schemes, the presence of the hidden Laplacian equa-
tion for the pressure introduces a numerical boundary layer which is a non-
physical Neumann boundary condition on the pressure. Naturally, this factor
affects the accuracy of the scheme.

3.1.3 Rotational incremental pressure-correction scheme

An improvement to the previous schemes, specifically addressing the issue of
artificial boundary conditions for pressure, was proposed in [77]. While the
viscous step remains unchanged in comparison with the incremental-pressure
scheme, the projection sub-step is modified as follows

1
2∆t(3u

k+1 − 3ũk+1) + ∇ϕk+1 = 0 ,

∇ · uk+1 = 0 uk+1 · n|Γ = 0 ,
(3.7)

with the additional variable ϕ is defined as

ϕk+1 = pk+1 − pk + ν∇ · uk+1 . (3.8)

Manipulating the previous relations, we obtain for the pressure the following
boundary condition

∂pk+1

∂n

∣∣∣∣
Γ

= (f(tk+1) − ν∇ × ∇ × uk+1) · n|Γ , (3.9)

which is a more consistent boundary condition for the pressure. In particular,
we have now only an inexact tangential boundary condition on the velocity,
and since it is present in the operator ∇×∇× this scheme is denoted as the
incremental pressure correction scheme in rotational form.

For the previous schemes, some remarks can be stated: note that, even
though the velocity u is divergence-free, the appropriate boundary conditions
are not satisfied. The situation is opposite considering ũ, for which the
Dirichlet boundary condition holds but is not divergence-free. On the other
hand, it has been demonstrated that both variables are equipped with the
same error estimates, i.e. the same accuracy.
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3.2 Other type schemes
As the comprehensive examination of projection methods for the Navier-
Stokes equations is beyond the scope of this thesis, we briefly outline other
types of algorithms that, although not employed in our simulations, can be
used to decouple velocity and pressure.

3.2.1 Non-incremental velocity-correction scheme
In this approach, the roles of pressure and velocity are interchanged, and
therefore the first and second sub-steps are exchanged. For the references,
the interested reader can consult [78, 79]. Giving the initial value of the
velocity ũ0 = u0, we find ũk+1,uk+1, pk+1 for k ≥ 0 as

1
∆t(u

k+1 − ũk) + ∇pk+1 = f(tk+1) ,

∇ · uk+1 = 0 uk+1 · n|Γ = 0 ,
(3.10)

1
∆t(ũ

k+1 − uk+1) − ν∆ũk+1 = 0 , ũk+1|Γ = 0 . (3.11)

Notably, compared to the standard Chorin-Temam algorithm, we enforce the
following relations

∂pk+1

∂n
|Γ = f(tk+1) , (3.12)

∆ũk+1 · n|Γ = 0 , (3.13)

instead of having

∂pk+1

∂n
|Γ = 0 , (3.14)

∆ũk+1 · n|Γ = f(tk+1) . (3.15)

Another scheme discussed in [23] is the standard incremental velocity-
correction scheme, which is analogous to the incremental pressure-correction
algorithm. In this scheme, the viscous step follows the projection step, leading
to the concept of calling them projection-diffusion methods. Additionally,
the rotational form can be reformulated within the framework of incremental
velocity-correction schemes.

Lastly, consistent splitting schemes compute velocity in the first step using
an explicit formulation for pressure. Subsequently, the pressure is updated
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by considering the L2-inner product of the momentum equation with the
gradient of the test function, i.e. ∇q, which reads

∫
Ω
∇p · ∇q =

∫
Ω
(f + ν∆u) · ∇q , ∀q ∈ H1(Ω) , (3.16)

noting that (ut,∇q) = −(∇ · ut, q) = 0.

3.2.2 The implemented algorithm

In this section, the algorithm employed for the resolution of the Navier-Stokes
system in the finite element library FEMuS [80] is described. This technique
is applied for the solution of numerical problems that are presented in Section
4, where a multigrid approach is available in the numerical code. On the
other hand, several physical problems can be addressed with the FEMuS
code, from fluid-structure interaction, optimal control problems, turbulence
modeling and so on. Numerical examples of the physical problems addressed
by FEMuS can be found in [80, 81] and references therein. In this thesis,
we report numerical examples regarding only the resolution of the Navier-
Stokes system, since the topic of this work is related to numerical methods for
the equation solution. In particular, the projection technique is specifically
developed for the resolution of the momentum equation, and therefore the
employment of Raviart-Thomas finite elements for the resolution of different
physical problems has not already been investigated.

We recall the Navier-Stokes system for a generic incompressible fluid flow,
with constant physical properties

∂u

∂t
+ (u · ∇)u = −∇p+ ν∆u + f ,

∇ · u = 0 .
(3.17)

To describe the adopted pressure-velocity split algorithm, the simple Euler
scheme for the time discretization is used. Specifically, a fictitious velocity
field un∗ is introduced leading to

un∗ − un−1∗

∆t + un − un−1

∆t + (un · ∇)un = −∇pn + ν∆un + f . (3.18)

After that, following a standard approach, the equation can be subdivided in
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two different equations by introducing pn = pn−1 + δpn

un − un∗

∆t = −∇δpn , (3.19)

un∗ − un−1

∆t = −(un · ∇)un − ∇pn−1 + ν∆un + f . (3.20)

In this thesis, a different velocity-pressure split is proposed and analyzed
with the objective of exploiting the orthogonal decomposition of the velocity
field [82]. Specifically, the first equation, which solves the velocity remains
the same, i.e.

un∗ − un−1

∆t = −(un∗ · ∇)un∗ − ∇pn−1 + ν∆un∗ + f , (3.21)

while the pressure equation is not transformed into the standard laplacian
equation, thus we have

un − un∗ + ∆t∇δpn = 0 . (3.22)

The idea is to apply the orthogonal decomposition to (3.22), by using
the properties of the Raviart-Thomas finite element family. In particular, in
this thesis, Equation (3.22) is solved by considering an optimal minimization
problem. The objective is to find a field u which is the closest velocity to u∗,
under the constraint of the divergence equal to zero.

Therefore, for the velocity u∗ the solution space can be found consid-
ering the standard solution of the Navier-Stokes equations. In particular,
consider the Taylor-Hood finite element space Xh ⊂ H1(Ω). Thus, if we
have u∗

h ∈ Xh, the objective is to find the velocity uh ∈ RT 0 ⊂ H(div,Ω)
by minimizing

F(uh) = 1
2

∫
Ω
(uh − u∗

h)2dΩ, (3.23)

∇ · uh = 0 , (3.24)

over the linear function subspace RT 0 ⊆ H(div,Ω).
Naturally, for u∗

h ∈ Xh ⊂ H1(Ω), the velocity approximation is defined
as u∗

h = ∑
j u

∗
jhφj(x), where u∗

jh is the velocity field at the points j and φj(x)
indicates the Lagrangian quadratic polynomial basis functions. Instead, for
uh ∈ RT 0 ⊂ H(div,Ω), i.e. the lowest-order Raviart-Thomas subspace,
the approximation velocity reads as uh = ∑

f pfNf (x), where pf represents
the fluxes through the faces and Nf (x) corresponds to the Raviart-Thomas
vector basis functions.
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In order to derive the final system to be solved, we can consider now a
piecewise constant pressure, i.e. kh = δph ∈ Sh ⊂ L2(Ω), un

h ∈ RT 0 ⊂
H(div,Ω), which satisfies ∇ · un

h = 0. Therefore, the system to be solved is
described with the following two equations∫

Ω
δkh∇ · un

h dΩ = 0 ∀δkh ∈ Sh ⊂ L2(Ω) , (3.25a)∫
Ω
(un

h − u∗n
h )δun

h dΩ +
∫

Ω
kh∇ · δun

h dΩ = 0 ∀δun
h ∈ RT 0(Ω) , (3.25b)

where kh can be interpreted as the Lagrange multiplier of the divergence
equation.

It is worth noting that the set of equations (3.25), is only a step of the split
algorithm. Indeed, the velocity equation (3.21) is still solved by considering
standard Lagrangian finite elements, in particular the Taylor-Hood type in
our case.

On the other hand, the previous algorithm has the benefit of decreasing
the computational effort. Indeed, we recall that by using the lowest-order
RT element the velocity is determined only with four (six) degrees of freedom
for a bidimensional (three-dimensional) domain. Naturally, in this discussion,
only quadrilateral and hexahedral elements have been considered.

Hence, the local matrix is equipped only with five (seven) rows that rep-
resent the four (six) fluxes through the faces and the central value for the
pressure field, instead of using, for example, the nine nodes of a biquadratic
quadrilateral with Lagrangian basis functions. For this reason, the total num-
ber of degrees of freedom of the simulation is smaller, gaining benefits from a
computational point of view. Exploiting velocity fluxes through the element
faces as unknowns, allows to ease the global sparsity pattern of the matrix
since every row is equipped with a smaller number of entries.



CHAPTER 4

Divergence free applications

In this chapter, our goal is to showcase and discuss fluid flow simulations de-
veloped within the theoretical framework outlined in the previous chapters.
Thus, we apply the mixed finite element discretization discussed in Chapter
2 to validate arguments regarding the well-known constraint of a divergence-
free velocity field. We not only restrict the analysis to the implementation of
the divergence-free finite element but also explore how this specific configura-
tion is suitable for applying projection algorithms to solve the Navier-Stokes
equations.

In the first part, we present a trivial numerical discussion about the def-
inition of affine, non-affine, and asymptotically affine mesh, with the aim of
better understanding the well-known theoretical results. Subsequently, some
numerical tests related to the orthogonal velocity decomposition are pre-
sented, considering bidimensional and three-dimensional geometries. Error
norms are also reported in order to verify the theoretical order of conver-
gence by using Raviart-Thomas finite elements. After that, a few examples
regarding the application of the projection method are shown.
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4.1 Remark on affine quadrilateral elements

In this section, an example of an asymptotically affine quadrilateral ele-
ment is presented considering a simple geometrical example. The goal is
to numerically illustrate the reason why a multigrid refinement can over-
come the issue related to non-affine meshes. A theoretical explanation of
this problem has been provided in Section 2.2.3. In particular, we recall that
a quadrilateral mesh is asymptotically affine if σK = O(hK) [48], i.e. the
ratio σK/hK is uniformly bounded for every element of the mesh. Naturally,
hK represents the maximum element diameter, while σK has been defined as
max(|π − θ1|, |π − θ2|), where θ1 and θ2 are the angles between the outward
normal vectors of the two pairs of opposite sides.

Note that, with a multigrid refinement, we refer to the standard technique
of finding the four child elements by equally dividing by two the four edges
of the parent element. An example of this mesh is shown in Figure 2.7,
where an asymptotically trapezoidal affine mesh is shown. Otherwise, to
maintain the non-affinity characteristic throughout the entire domain and
across the different levels of refinement, it is necessary to perform a ’remesh’
of the discretized grid: the initial pattern of non-affinity must be replicated
for every direction and preserved for the entire geometry like in Figure 2.6.
Note that in this case, the ratio between the length of opposite edges does
not change with the refinement, since the angles between adjacent sides are
preserved.

Consider a simple trapezoidal element T as shown in Figure 4.1. It can
be noticed that the left and the right edges are not parallel since the point
x2 does not have the same x coordinate of point x1. In particular, we can
consider a shift toward the point x3 by a value ε. The idea is to analyze
the component values of the Jacobian matrix in comparison with a standard
square element Q.

To fix the idea, consider a square Q of dimension [0, 1]2 and the corre-
sponding trapezoidal element T , where ε = 0.2. A homogeneous refinement
has been performed on the trapezoidal mesh as depicted in Figure 4.2, and
for every level, the Jacobian matrix of the element equipped with the vertex
x0 has been computed. The comparison has been done considering the same
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x0 x1

x2x3
ε

Figure 4.1: Trapezoidal element deriving from a unit square by applying a ε
shift to a corner.

x0

Figure 4.2: Homogeneous refinement of the trapezoidal element.

child square of the initial Q. At the first level, the Jacobian matrices read,

DFQ0 =


1
2 0

0 1
2

 , DFT0 =


9 − η

20
−1 − ξ

20

0 1
2

 , (4.1)

where the respective determinants are JQ0 = 1/4 and JT0 = (9 − η)/40.
As expected, the presence of an off-diagonal element in the matrix DFT0 ,
confirms the non-affinity for the trapezoidal element. At the second level,
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the same child element has the following Jacobian matrices

DFQ1 =


1
4 0

0 1
4

 , DFT1 =


19 − η

80
−1 − ξ

80

0 1
4

 , (4.2)

where, naturally, the determinants become JQ1 = 1/16 and JT1 = (19 −
η)/320. Even if trivial, this example shows the different scaling rates of the
elements’ matrix. In fact, when we examine the off-diagonal element of the
matrix DFT1 the scaling factor is twice that of the other element in the same
column (the first goes with 4n, while the second with 2n, where n is level
number). The computations performed at further levels have confirmed this
result.

It is possible to generalize the previous analysis considering a generic shift
ε and a refinement level r. In fact, the bottom-left refined element can be
described with the following vertices: (0,0), ( 1

2r , 0), ( 1
2r − ε

2r ,
1
2r ), (0, 1

2r ). With
this notation, the Jacobian matrix can be reformulated in a generic way as

DFTr =


2−2(r+1)(2r+1 − (η + 1)ε) −2−2(r+1)(ξ + 1)ε

0 2−r−1

 =

= 1
2r+1


1 − (η + 1)ε

2r+1 −(ξ + 1)ε
2r+1

0 1

 .

(4.3)

From this notation, it is easy to understand that the off-diagonal term of the
Jacobian matrix goes faster to zero by increasing the refinement r, considering
a generic shift ε.

It is noticeable that, if the off-diagonal represents the deformation from a
squared shape, this kind of deformation tends to decrease faster with respect
to the diagonal elements, which represent the scaling factor. Therefore, if
graphically a refined trapezoid looks more and more similar to a parallelogram
shape, i.e. the generic configuration of an affine quadrilateral, the trend of
the Jacobian matrix elements values proves from a numerical perspective the
graphical intuition.

The same analysis has been carried out for a complete non-affine mesh
such as the one depicted in Figure 2.6. Also in this case, the analyzed element
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C is the bottom left trapezoid of the base mesh, defined initially with coordi-
nates (0, 0), (0.5, 0), (0.5, 2/3), (0, 1/3). The Jacobian matrix for the first and
second levels of refinement are,

DFC1 =


1
4 0

1 + η

12
3 + ξ

12

 , DFC2 =


1
8 0

1 + η

24
3 + ξ

24

 , (4.4)

where the corresponding determinants read as JC1 = (3 + ξ)/48 and JC2 =
(3 + ξ)/192. Hence, we can notice that the scaling rate is the same for every
element of the matrix since, for this mesh, the geometrical pattern of the
parent element is preserved in the four sub-elements. For this reason, the non-
affinity property does not vanish with the grid refinement and characterizes
the Jacobian matrix of every element.

4.2 Preliminary results about divergence-free
flows

In this section, we present a computational example that, while trivial, holds
significant value in understanding issues related to the divergence constraint
in standard mixed methods.

4.2.1 No-flow problem for the Stokes equations
In this numerical example, we aim to solve the stationary Stokes equations
which reads

−ν∆u + ∇p = f (4.5)
−∇ · u = g , (4.6)

where we consider no-slip boundary conditions at the domain boundary, i.e.
u|∂Ω = 0. Additionally, we impose a pressure outlet boundary condition on
the top side of the domain, setting the pressure value to zero. In particular,
we want to solve this system of equations considering a square domain, Ω =
(0, 1)2, where naturally the incompressibility constraint holds, thus g = 0, and
with the kinematic viscosity ν = 1. The geometry chosen for this simulation
is shown in Figure 4.3, where l = 1.
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Ω

∂Ω

l

l

Figure 4.3: Square domain Ω of dimension l × l, with boundary ∂Ω.

We fix the body force at the right-hand side by f = (0, Ra(1−y+3y2))T ,
where x, y are the domain coordinates and Ra is a positive parameter. The
domain is discretized with standard biquadratic elements, starting with a
mesh discretization of 4 elements, 2 for each direction. The convergence
analysis has been performed using a standard multigrid algorithm.

We find analytically and numerically that the solution to the equations
gives u = 0 and p = Ra(y3 − y2/2 + y− 3/2). While changing the parameter
Ra on the right-hand side only affects the pressure solution, we notice an
influence on the discrete velocity when using a standard finite element pair
of the Taylor-Hood type (i.e., P2 − P1).

From a numerical perspective, the simulations have been performed by
varying the Ra number. For each Ra the L2-norm of the velocity gradient
error ||∇(u − uh)||L2(Ω) has been computed, where the analytical solution
of the velocity is u = 0. This behavior, known in the literature as a lack
of robustness, is related to the discretization of the divergence constraint
for mixed methods. In fact, we recall that for the standard finite element
family of the Taylor-Hood type, if we consider the pair P2 − P1, we know
that, calling the space of the discretized velocity X2

h and X1
h for the pressure,

∇ · X2
h ⊈ X1

h.
In Figure 4.4, the plot illustrates that a change in the Ra parameter,

which affects only the right-hand side, also influences the gradient of the
velocity error. Consequently, we are not able to separate the behavior of
velocity from pressure when using a standard Taylor-Hood finite element
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Figure 4.4: Gradient of velocity error with different values of Ra (from 1 up
to 106), as a function of the level refinement nl.

discretization, since we have shown that the error on velocity depends on the
error on pressure.

4.3 Divergence-free velocity decomposition
In this section, the numerical results related to the presented orthogonal
decomposition of the velocity are shown. In particular, we aim to decompose
a vector field by following the Helmholtz theorem.

Two types of problems have been investigated to compare the results
with numerical simulations presented in the literature. The first problem
is the classical Darcy problem, which is a homogeneous Dirichlet-Neumann
boundary elliptic problem described as follows

s = −K∇p in Ω ,

∇ · s = −f in Ω ,

s · n = 0 on ∂Ω ,

(4.7)

where K is the permeability tensor divided by the viscosity and Ω represents
a polygonal domain as described in the previous sections. Therefore, consid-
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ering the spaces V 0 ⊂ H(div,Ω) as defined in (1.35) and Q = L2
0(Ω) as in

(1.36), we can reformulate the problem in the following form: find s ∈ V 0

and p ∈ Q such that(K−1s,v) + (∇ · v, p) = 0 ∀v ∈ V 0

(s, q) = −(f, q) ∀q ∈ Q .
(4.8)

Using the discretized finite element spaces of the previous sections, and con-
sidering the spaces Vh ⊂ V 0 and Qh ⊂ Q, the discrete problem reads: find
sh ∈ Vh and ph ∈ Qh such that(K−1sh,v) + (∇ · v, ph) = 0 ∀v ∈ Vh

(sh, q) = −(f, q) ∀q ∈ Qh .
(4.9)

Another formulation of the problem (4.7), with the hypothesis of free
divergence for the velocity field, is obtained setting by s = u − u∗. In
particular, the problem is strictly connected to the Helmholtz decomposition
of a vectorial field and takes the following form

u − u∗ = −K∇p in Ω ,

∇ · u = 0 in Ω ,

u · n = 0 on ∂Ω .

(4.10)

According to the Helmholtz decomposition in Lemma 1.4 and following the
functional spaces used for the system (4.7), we have that u ∈ H(div,Ω),
meanwhile u∗ ∈ L2

0(Ω). Specifically, u belongs to a subspace of H(div,Ω)
since the condition ∇ · u = 0 holds.

On the other hand, as explained in Section 3.2.2, the velocity decom-
position can be understood as a part of the second step of the projection
algorithm. For this reason, we can restrict the space of the variable u∗ and
consider H1(Ω). We recall that the Stokes equation is equipped with the
Laplace operator, which, after integrating by part for the weak formulation,
presents the gradient operator. Thus, the standard mathematical space to
be considered is H1(Ω). On the other hand, the Darcy equation in (4.7)
presents only the divergence operator, and for this reason, we can extend the
functional space for the velocity field considering a less regular solution, i.e.
the space H(div,Ω).

In the following discussion, we always consider u∗ ∈ H1(Ω) and u ∈
H(div,Ω) with the usual L2

0(Ω) space for the pressure. In particular, we
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have u ∈ V 0 since the condition u · n = 0 holds, while its orthogonal space
V ⊥ can be introduced for the pressure gradient. In fact, since V 0 is a closed
subspace of L2, we have the following decomposition

L2(Ω) = V 0 + V 0,⊥ , (4.11)

considering a standard scalar product between the spaces. Naturally, in our
context, the decomposition of the field must be applied to u∗ which still
belongs to L2(Ω) since it is in H1(Ω). Thus, u∗ is expressed as the sum of a
gradient of a scalar field (∇p) and a free-divergence field (u).

The objective of the following numerical test is to find a discretized veloc-
ity uh ∈ RT 0 ⊂ V 0 ⊂ H(div,Ω) corresponding to the divergence-free part
of the velocity field u∗ which is given analytically. Several cases have been
evaluated, differing by geometry and boundary conditions. The computations
are performed by using FEMuS code [80].

Lastly, note that the following numerical results have been obtained while
considering the theoretical issues concerning error convergence of the consid-
ered field data. Several types of discretized geometries have been investigated,
including both affine and non-affine meshes. The theoretical results presented
in Chapter 2 have been verified in both two and three-dimensional geome-
tries. For this reason, examples characterized by non-affine meshes have not
been reported. On the other hand, numerical examples where asymptotically
affine elements have been found are reported.

4.3.1 Two-dimensional problems

Non-affine mesh test

In this section, we present the numerical results concerning the systems (4.7)
in the context of a non-affine mesh. Specifically, a trapezoidal mesh has been
employed, ensuring a pair of not parallel edges for the quadrilateral element.
Figure 4.5 illustrates the discretized square geometry.

Since the first test is based on (4.7), a pressure field p has been fixed,
from which the vector s has been derived. In fact, we have that

p = 4x(1 − x)y(1 − y) , (4.12)

from which

s = ∇p =

4(1 − 2x)y(1 − y)

4(1 − 2y)x(1 − x)

 . (4.13)
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Figure 4.5: Trapezoidal mesh.

Since ∇ · u = 0 is imposed, we have that u∗ is represented only by
an irrotational field, and therefore we have that ∇ · s = −∇ · u∗. The
computations have been performed by using different refined meshes, which
maintain the same trapezoidal pattern. The error norm of the velocity, the
pressure, and the divergence of velocity have been reported in Table 4.1, as
a function of the refinements levels. In particular, the coarsest grid has 4 × 4
elements, while the finest 128×128. We recall that to be precise, the velocity
divergence ∇ · u should be understood in the sense of mimetic divergence
DIV .

In fact, as described in Chapter 2, non-affine meshes, such as the one
considered in this case, may lead to a non-convergence of the divergence error.
On the other hand, the mimetic finite difference (i.e. the Bochev technique
2.2.5) has been implemented and exploited for the computation. We recall
that, with this method, the Jacobian matrix is not computed varying the x̂

coordinates, but J F is evaluated at the center of the element.
The orders of convergence have been reported, where pu represents the

convergence rate for the velocity error, pp for the pressure error, and pd for
the divergence error. These convergence rates have been computed following
the relation

pi =
ln

(
||f − fh||0,l−1

||f − fh||0,l

)
ln(2) , (4.14)
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l ∥u − uh∥0 ∥p− ph∥0 ∥∇ · u − ∇ · uh∥0 pu pp pd

2 6.86E-08 1.86E-03 2.37E-01 - - -
3 3.31E-10 5.01E-04 6.11E-02 3.85 0.94 0.98
4 1.54E-12 1.28E-04 1.54E-02 3.87 0.99 0.99
5 7.00E-15 3.21E-05 3.86E-03 3.89 1.00 1.00
6 3.11E-17 8.03E-06 9.64E-04 3.91 1.00 1.00
7 1.37E-19 2.01E-06 2.41E-04 3.91 1.00 1.00

Table 4.1: Convergence trend of the error norm for problem (4.7), considering
a non-affine mesh, by using mimetic divergence. In the last columns, the
orders of convergence of the computed variables are reported.

where f represents the variable for which the error norm is computed, thus
u, p and ∇·u. Naturally, the L2-norm subscripts stand for the error evaluated
at the levels l and l − 1.

We can notice that the implementation of the mimetic divergence can
overcome the numerical issues related to non-affine elements since an evident
convergence can be observed for each variable. Additionally, note that also
∇ ·u is capable of converging since mimetic finite differences have been used.
In fact, as expected the order of convergence tends to 1 as described by the
theoretical discussion in Equation (2.114) and [58]. In fact, also in the latter
reference, the convergence of the velocity divergence shows a linear trend.

Plane channel test

This test considers a plane channel geometry, as shown in Figure 4.6. The
dimensions are reported in the Figure with the variables Lx and Ly. The
geometry boundaries are denoted with Γ, where Γi and Γo represent the
inlet and the outlet of the channel, while with Γw we denote the other two
boundaries.

Standard quadrilateral affine elements have been considered for mesh
discretization, avoiding the numerical issue related to distorted grids. In
fact, the finite element library has been equipped only with the lowest-order
Raviart-Thomas family, as one of the simulation objectives was to reduce
the computational effort associated with the number of degrees of freedom
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Γi

Γo

ΓwΓw

Lx = 1

Ly = 2

x

y

Figure 4.6: Channel geometry for the bidimensional velocity decomposition
test.

for every element. We recall that in this case, the number of unknowns is
only 5 for every element, i.e. the four fluxes over the faces and the piecewise
constant value of the pressure.

An analytical vector field u∗ = (u∗, v∗) ∈ H1(Ω), has been considered in
order to test the orthogonal decomposition, as explained in the introduction
of the Section 4.3. Four cases (a, b, c, d) have been investigated, changing
the boundary conditions and the vector field. Every vector field can be
decomposed by considering

u∗ = u0 + u⊥
0 , (4.15)

where u0 ∈ V 0 and u⊥
0 ∈ V 0,⊥. Two different u0 vectors have been consid-

ered, one for cases a and b, and another one for cases c and d. Specifically,
we have

ua,b
0 =


π sin2(πx) sin

(
π
y

2

)
cos

(
π
y

2

)
−2π sin(πx) cos(πx) sin2

(
π
y

2

)
 , (4.16)
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and

uc,d
0 =


π sin2

(
π
x

2

)
sin

(
π
y

2

)
cos

(
π
y

2

)
π sin

(
π
x

2

)
cos

(
π
x

2

)
sin2

(
π
y

2

)
 . (4.17)

Regarding the value of u⊥
0 the same expression has been considered for

the cases a, b and c, while for the case d we fix u⊥
0 = 0. Specifically, u⊥

0
is described with a potential function that is representative of the pressure
gradient ∇p0. In particular, we consider a pressure field described as

p0 = 1
4xy(x− 1)(y − 2) , (4.18)

from which it is easy to obtain the vector gradient which reads

∇p0 =


(
x− 1

2

)(
y(y − 2)

2

)

(y − 1)
(
x(x− 2)

2

)
 . (4.19)

Hence, these expressions are the components of the vector u⊥
0 . Therefore,

to identify the vector u∗ that has been considered for every simulation, it is
sufficient to add u0 and u⊥

0 . As an example, we report the full expression of
u∗ for the case a

u∗ =
[
u∗

v∗

]
=


π sin2(πx) sin

(
π
y

2

)
cos

(
π
y

2

)
+
(
x− 1

2

)(
y(y − 2)

2

)

−2π sin(πx) cos(πx) sin2
(
π
y

2

)
+ (y − 1)

(
x(x− 2)

2

)
 .
(4.20)

The boundary conditions imposed for the four cases are reported in Table
4.2. Note that for these simple tests, only two kinds of boundary conditions
have been investigated, i.e. a non-homogeneous Dirichlet boundary condition
for the velocity field and a homogeneous Dirichlet boundary condition for the
pressure. In fact, since the pressure field is defined up to an additive constant,
we recall that it is necessary to fix the value of the pressure at least at one
point of the domain, which can also be done by fixing the pressure value on
an entire boundary or on a single point.

The numerical pair solution (uh, ph) has been computed by solving the
system (3.25), and by exploiting a standard multigrid technique for the treat-
ment of the refined grids.
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case Γi Γo Γw Γw

a p = 0 u = u∗|Γ u = u∗|Γ u = u∗|Γ
b u = u∗|Γ u = u∗|Γ u = u∗|Γ u = u∗|Γ
c p = 0 u = u∗|Γ p = 0 u = u∗|Γ
d p = 0 u = u∗|Γ p = 0 u = u∗|Γ

Table 4.2: Boundary conditions for the four different cases of the velocity
field decomposition in a bidimensional plane channel geometry.

In the following Tables 4.3, 4.4, 4.5, 4.6 the velocity and pressure error
norms are reported, including the convergence rate. The L2 error norms are
shown changing the mesh refinement, from two up to eight levels, correspond-
ing to a number of elements varying from 256 up to 1048576.

In particular, the convergence error at the level l, which is reported in
the fifth column, can be defined as the sum of the L2 norm of velocity and
pressure error, i.e.

εl = ||u0 − uh||L2(Ω) + ||p0 − ph||L2(Ω) . (4.21)

By taking the logarithm of the ratio between the errors at two different levels,
i.e. εl and εl+1 (sixth column) we obtain an estimate of the convergence order
p, which is reported in the last column of the tables.

l nel ∥u − uh∥0 ∥p− ph∥0 εl
εl−1

εl

p

2 2.56E+02 0.4850 0.0093 0.4943 1.9792 0.9849
3 1.02E+03 0.2435 0.0040 0.2476 1.9965 0.9975
4 4.10E+03 0.1217 0.0019 0.1236 2.0031 1.0023
5 1.64E+04 0.0609 0.0010 0.0619 1.9977 0.9984
6 6.55E+04 0.0305 0.0005 0.0309 1.9996 0.9997
7 2.62E+05 0.0152 0.0002 0.0155 2.0000 1.0000
8 1.05E+06 0.0076 0.0001 0.0077 1.9990 0.9993

Table 4.3: Plane channel geometry - case a: velocity and pressure error norm
and convergence rate for different levels l of grid refinement and corresponding
number of elements nel.
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l nel ∥u − uh∥0 ∥p− ph∥0 εl
εl−1

εl

p

2 2.56E+02 0.4854 0.0091 0.4945 1.9833 0.9879
3 1.02E+03 0.2435 0.0041 0.2477 1.9969 0.9978
4 4.10E+03 0.1219 0.0020 0.1238 2.0000 1.0000
5 1.64E+04 0.0610 0.0010 0.0619 2.0001 1.0001
6 6.55E+04 0.0305 0.0005 0.0310 2.0000 1.0000
7 2.62E+05 0.0152 0.0002 0.0155 2.0000 1.0000
8 1.05E+06 0.0076 0.0001 0.0077 2.0000 1.0000

Table 4.4: Plane channel geometry - case b: velocity and pressure error norm
and convergence rate for different levels l of grid refinement and corresponding
number of elements nel.

l nel ∥u − uh∥0 ∥p− ph∥0 εl
εl−1

εl

p

2 2.56E+02 0.2431 0.0091 0.2522 1.9951 0.9965
3 1.02E+03 0.1218 0.0041 0.1259 2.0029 1.0021
4 4.10E+03 0.0609 0.0019 0.0629 2.0021 1.0015
5 1.64E+04 0.0305 0.0010 0.0314 2.0006 1.0005
6 6.55E+04 0.0152 0.0005 0.0157 2.0002 1.0001
7 2.62E+05 0.0076 0.0002 0.0079 2.0000 1.0000
8 1.05E+06 0.0038 0.0001 0.0039 2.0000 1.0000

Table 4.5: Plane channel geometry - case c: velocity and pressure error
norm and convergence rate for different levels l of grid refinement and the
corresponding number of elements nel.

We can notice a convergence rate order equal to one for every case, show-
ing therefore a reliable numerical solution for the orthogonal decomposition
considered. In fact, we know that the theoretical error norms satisfy the
following inequalities

∥u0 − uh∥0 ≤ Ch∥u∗∥1 , ∥p0 − ph∥0 ≤ Ch∥p0∥1 . (4.22)

Hence, the results confirm how the order convergence rate follows a linear
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l nel ∥u − uh∥0 ∥p− ph∥0 εl
εl−1

εl

p

2 2.56E+02 0.2431 0.009623 0.2527 2.0098 1.0070
3 1.02E+03 0.1218 0.002652 0.1245 2.0302 1.0216
4 4.10E+03 0.0609 0.000683 0.0616 2.0197 1.0141
5 1.64E+04 0.0305 0.000172 0.0306 2.0107 1.0077
6 6.55E+04 0.0152 0.000043 0.0153 2.0056 1.0040
7 2.62E+05 0.0076 0.000011 0.0076 2.0028 1.0020
8 1.05E+06 0.0038 0.000003 0.0038 2.0014 1.0010

Table 4.6: Plane channel geometry - case d: velocity and pressure error
norm and convergence rate for different levels l of grid refinement and the
corresponding number of elements nel.

behavior considering the mesh size h. In Figure 4.7, the velocity and pressure
norms trends for the four cases are shown including a comparison with a linear
and a quadratic behavior with respect to the mesh size h, as a function of
the number of points np of the grid. The error norms are represented by
marker, circular for the velocity and triangular for the pressure, while solid
and dashed lines represent the linear and the quadratic behavior respectively.
As already noted in the previous tables, it can be noticed a good agreement
with the linear trend for the velocity error norm, for every considered case.
Concerning the pressure error norm, we notice the same linear trend for the
first three cases. On the other hand, a quadratic trend seems to appear for
the fourth case. This behavior can be justified by the fact that the case d is
the only case in which we have an orthogonal decomposition that does not
consider u⊥, and therefore the function u∗ is defined only by the divergence-
free part without the gradient of a scalar function.

In Figure 4.8 the components of the velocity are reported for different
mesh refinements in order to verify the grid convergence. In particular, on
the left, the u component is shown for the case a considering a plot over the
x coordinates located at y = 0.5. Regarding the figure on the right, the v
component is shown for the case c considering a plot over the y coordinates
located at x = 0.5.

By using circular markers, the analytical velocity is represented, while the
results for different levels of refinement are represented with four different
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Figure 4.7: Velocity and pressure error norms for the channel geometry: case
a (top left), case b (top right), case c (bottom left) and case d (bottom right).
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Figure 4.8: Grid convergence for the velocity components: u for case a on the
left and v for case c on the right. Circular markers represent the analytical
velocity solution.
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types of lines. In fact, since a good approximation result has been obtained
with few refinements, only four numerical results have been shown, starting
from two up to five levels. We recall that the analytical velocity solution
represented by the circular white markers coincides with the theoretical u0

defined in (4.16)-(4.17), since our objective was to decompose the analytical
velocity u∗ in the divergence-free part u0 and its orthogonal part (the gradient
of a scalar, i.e. the pressure p).

Circular geometry

Γw

r = 1

Figure 4.9: On the left circular geometry for the bidimensional velocity
decomposition test, on the right corresponding mesh for the two levels of
refinement.

In this test, we consider a circle as the computational domain, as shown in
Figure 4.9. Hence, a circular domain has been considered with a radius r = 1,
and with the geometry boundary defined only by Γw. For a circular domain,
the quadrilateral elements are not equipped with four rectangle corners. In
fact, these elements are equipped with only one pair of opposite parallel
edges, and therefore they can be denoted as non-affine elements. On the other
hand, the grid refinement has been performed on the same mesh, leading to
asymptotically affine elements.

Two cases have been considered (a, b), changing the boundary conditions
and the analytical vector function. Also in this case, the decomposition for
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the vector field u∗ = (u∗, v∗) can be described as

u∗ = u0 + u⊥
0 , (4.23)

where u0 ∈ V and u⊥
0 ∈ V ⊥. The same u0 function has been considered for

the two cases, which reads

u0 =


4(x2 + y2 − 1)y

−4(x2 + y2 − 1)x

 , (4.24)

while the orthogonal term, u⊥
0 , is present only for the second case b. We

have already seen that the orthogonal part is represented by the gradient of
a potential function that is the pressure p0. Hence, for the case b we have

p0 = (x+ 1)3

3 , (4.25)

from which the gradient vector reads as

∇p0 =
[
(x+ 1)2

0

]
. (4.26)

Therefore for the second test case, we have that u⊥
0 = ((x+ 1)2, 0). Regard-

ing the boundary conditions, for the case a we impose a vanishing pressure
on the boundary, i.e. p = 0 on Γw. If for the case a, a homogeneous Dirich-
let boundary condition has been imposed, for the case b we impose a non-
homogeneous Dirichlet boundary condition. Specifically, we have u|Γ = u∗|Γ.
Moreover, the pressure has been set equal to 0 at the point x = (−1, 0) to fix
the constant value. The system (3.25) is solved considering RT 0 × S0

h finite
elements for the pair solution (uh, ph).

In the following Tables, 4.7 and 4.8, the velocity and pressure error norms
are reported, including the convergence rate. The L2 error norms are shown
changing the mesh refinement, from two up to eight levels, corresponding to
a grid size varying from 320 up to 43680 elements. The convergence rate
order p is defined as in the channel test, and the same considerations can be
done for the values in the table columns.

From the error Tables, 4.7 and 4.8, a perfect agreement with the value 1
is found for the order p, in both cases. The same error norms are depicted
in Figure 4.10, where a comparison with a linear and a quadratic trend is
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l nnodes ∥u − uh∥0 ∥p− ph∥0 εl
εl−1

εl

p

1 1.31E+03 0.4373 0.01037 0.4477 - -
2 5.19E+03 0.2176 0.00317 0.2208 2.0277 1.0198
3 2.06E+04 0.1087 0.00087 0.1095 2.0158 1.0113
4 8.22E+04 0.0543 0.00023 0.0545 2.0082 1.0059
5 3.28E+05 0.0272 0.00006 0.0272 2.0042 1.0030
6 1.31E+06 0.0136 0.00002 0.0136 2.0017 1.0012

Table 4.7: Circular geometry - case a: velocity and pressure error norm and
convergence rate for different levels l of grid refinement and corresponding
number of nodes nnodes.

l nnodes ∥u − uh∥0 ∥p− ph∥0 εl
εl−1

εl

p

1 1.31E+03 0.4373 0.0873 0.5246 - -
2 5.19E+03 0.2176 0.0437 0.2613 2.0075 1.0054
3 2.06E+04 0.1087 0.0219 0.1305 2.0021 1.0015
4 8.22E+04 0.0543 0.0109 0.0652 2.0005 1.0004
5 3.28E+05 0.0272 0.0055 0.0326 2.0001 1.0001
6 1.31E+06 0.0136 0.0027 0.0163 2.0000 1.0000

Table 4.8: Circular geometry - case b: velocity and pressure error norm and
convergence rate for different levels l of grid refinement and corresponding
number of nodes nnodes.

performed. The employed symbols are the same as the plane channel test.
Naturally, np and nnodes have the same meaning.

Also in this case, the simulation with a vanishing pressure term (case
a), presents a quadratic behavior for the pressure error norm. The velocity
error norms follow a linear trend considering the mesh size, confirming the
theoretical error estimate.

In Figure 4.11, the u component of the velocity is shown as a function
of the y coordinates, considering a fixed x equal to 0, for two different levels
of grid refinement and for the case a. In particular, the grid convergence is
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Figure 4.10: Convergence rate for velocity and pressure error for the circular
geometry: case a on the left, and case b on the right.
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Figure 4.11: Grid convergence for the velocity component u, considering 1
and 4 levels of refinement for the case a.

shown with a comparison with the analytical velocity, which is represented
using circular markers. Only two levels are reported since the mesh with zero
refinement is already in good agreement with the analytical result.

Note that, for the case with no levels of refinement the solution seems
to be different from zero at the boundary, despite homogeneous Dirichlet
boundary conditions have been imposed. This issue is related only to the
post-processing of the solution. In fact, we recall that the degrees of freedom
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of the system of equations correspond to the four fluxes through the element
faces. Therefore, in order to represent these fluxes on the grid nodes we
represent the velocity field as a piecewise constant solution over the cell. This
value is computed as the mean of the fluxes, where naturally the velocity is
obtained from the flux by applying the normalization by using the length of
the element edges. By increasing the grid refinement this small discrepancy
from zero in the elements close to the boundary tends naturally to zero.

4.3.2 Three-dimensional problems

Channel geometry

We now consider a three-dimensional test, which has been carried out on the
domain shown in Figure 4.12. The characteristic dimensions of the channel
are Lx = 1, Ly = 1 and Lz = 4. Moreover, the geometry boundaries are
defined with Γ, where specifically we have that the inlet and the outlet are
represented by Γi and Γo, the top and bottom faces with Γt and Γb, while
the lateral faces are Γl and Γr. Standard hexahedral elements have been
employed for the geometrical discretization, avoiding irregularity related to
surface distortion and hence non-affine properties.

Γi

Γo

Γl Γr

Γt

Γb

Lx

Ly
Lz

Figure 4.12: Three-dimensional channel geometry for the three-dimensional
velocity decomposition test.
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This test is similar to the circle test since only two cases (a, b) have been
investigated, characterized by the same u0. In this case, we have

u0 =


2π sin2(πx) sin(πy) cos(πy)z(4 − z)

−π sin(πy) sin(2πx)z(4 − z) + π

4 sin2(πy) sin
(
πz

2

)
x(1 − x)

−4π sin2(πz/4) sin(πy) cos(πy)x(1 − x)

 ,
(4.27)

where naturally the decomposition of the vector u∗ follows the same path as
the previous tests. The only difference between the two cases relies on the
u⊥ term, which is present only in the case b. Specifically, we have a pressure
field defined as

p0 = 25(x2 − x)(y2 − y) , (4.28)

from which the gradient vector reads as

∇p0 =


50(x− 0.5)(y2 − y)
50(x2 − x)(y − 0.5)

0

 . (4.29)

The set of equations in (3.25) is employed to solve (uh, ph) ∈ RT 0 × S0
h.

Concerning the boundary conditions, we impose a non-homogeneous Dirichlet
boundary condition for the velocity on every boundary, while a homogeneous
Dirichlet boundary condition for the pressure has been imposed on Γo. The
boundary conditions are summarized in Table 4.9.

Γi Γo Γl Γr Γt Γb

u = u∗|Γ p = 0 u = u∗|Γ u = u∗|Γ u = u∗|Γ u = u∗|Γ

Table 4.9: Boundary conditions for the three-dimensional channel test.

In addition, the constant for the pressure has been fixed, considering
p0 = ph = 0 at the point x = (0, 0, 0). With the same notation of previous
tests, in Tables 4.10 the error norms are reported for the velocity and pressure
field, as a function of the refinement levels. For this test, the grid size of the
mesh changes from 512 (first level), up to 2.09 ·106 (fifth level) elements. The
computed convergence rate order p is very close to 1, confirming the goodness
of the numerical results.
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l nnodes ∥u − uh∥0 ∥p− ph∥0 εl
εl−1

εl

p

2 4.91E+03 0.3818 0.00153 0.3834 1.9433 0.9585
3 3.59E+04 0.1924 0.00041 0.1929 1.9878 0.9912
4 2.75E+05 0.0964 0.00010 0.0965 1.9982 0.9987
5 2.15E+06 0.0482 0.00002 0.0483 2.0000 1.0000

Table 4.10: 3-dimensional channel geometry - case a: velocity and pressure
error norm and convergence rate for different levels l of grid refinement and
corresponding number of nodes nnodes.

l nnodes ∥u − uh∥0 ∥p− ph∥0 εl
εl−1

εl

p

2 4.91E+03 0.3818 0.1551 0.5369 2.0689 1.0489
3 3.59E+04 0.1924 0.0705 0.2629 2.0419 1.0299
4 2.75E+05 0.0964 0.0341 0.1305 2.0151 1.0109
5 2.15E+06 0.0482 0.0169 0.0651 2.0044 1.0032

Table 4.11: 3-dimensional channel geometry - case b: velocity and pressure
error norm and convergence rate for different levels l of grid refinement and
corresponding number of nodes nnodes.

In Figure 4.13, the trend of the error norms is shown in comparison with
a linear and a quadratic behavior with respect to the mesh size h. The
employed symbol and the conclusions are similar to the previous cases: if
for the velocity error norm a linear trend can be noted, for the case a the
pressure error norm seems to follow a quadratic behavior. We recall that the
case a is characterized by a vanishing u⊥ term.

Cylindrical geometry

The last test focuses on a cylindrical geometry, as shown in Figure 4.14. In
particular, the considered cylinder is described by the radius r and the height
H, for which the values are reported in the Figure. Naturally, the cylinder
axis coincides with the z-axis. The boundaries are denoted with Γi and Γo for
the inlet and outlet section, while the side wall is denoted with Γw. For this
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Figure 4.13: Convergence rate for velocity and pressure error for the 3-
dimensional channel geometry: case a on the left, and case b on the right.

geometry, the mesh discretization is based on the employing of hexahedral
elements.

It is easy to understand that, in order to represent a curved surface, the
hexahedral elements are equipped with a pair of opposite faces that are not
parallel to each other. On the other hand, since the refinement is performed
on the same mesh, the faces become more and more parallel to each other,
avoiding any problematic convergence issues.

r = 1

H = 2

Γi

Γo

Γw

Figure 4.14: Cylindrical geometry for the three-dimensional velocity decom-
position test.

A single case has been investigated, where the tested vector function is
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described only with the divergence-free term, i.e. u∗ = u0. Therefore, the
potential function, i.e. the pressure field, is equal to zero. In particular, we
have

u0 =



π cos2
(
π
x

2

)
sin

(
π
y

2

)
cos

(
π
y

2

)
−π cos2

(
π
y

2

)
sin

(
π
x

2

)
cos

(
π
x

2

)
0


. (4.30)

Regarding the boundary conditions, the pressure has been fixed equal
to zero on the outlet section, while on the remaining boundaries, a non-
homogenous boundary condition for the velocity has been imposed, u = u∗|Γ.
In Table 4.12 the error norms for the velocity and pressure field are reported.
In this case, the mesh size changes from the first level equal to 1.08 · 103

elements up to the fourth level with 5.53 · 105 elements.

l nnodes ∥u − uh∥0 ∥p− ph∥0 εl
εl−1

εl

p

1 1.31E+03 0.8303 0.0044 0.8557 - -
2 9.69E+03 0.4357 0.0015 0.4371 1.9575 0.9690
3 7.32E+04 0.2193 0.0004 0.2197 1.9895 0.9924
4 5.69E+05 0.1099 0.0001 0.1100 1.9980 0.9985

Table 4.12: Cylindrical geometry: velocity and pressure error norm and con-
vergence rate for different levels l of grid refinement and the corresponding
number of elements nnodes.

The convergence rate order p tends to 1 with increasing the mesh refine-
ment, confirming the validity of the numerical results. In Figure 4.15 the
error norm values are shown in comparison with a linear and a quadratic
trend considering the mesh size h. Despite the few points, it can be no-
ticed a difference between the velocity and pressure error norm. In fact, as
expected, the velocity error norm follows a linear behavior, while for the
pressure a quadratic trend can be observed.
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Figure 4.15: Convergence rate for velocity and pressure error for the cylin-
drical geometry.

4.4 Projection method for Navier-Stokes equa-
tions

In this section, we aim to test the employment of the Raviart-Thomas finite
element family in the framework of the projection method for the resolution
of the Navier-Stokes equation. Specifically, the system of equations (3.25),
has been adopted where we recall that the orthogonal decomposition of the
velocity field is considered as the second step of the split algorithm, i.e. the
resolution of the pressure equation.

Three cases have been investigated, considering a bidimensional and a
three-dimensional geometry: a channel, both in two and three dimensions
and a bidimensional cavity. For these tests, the same comparison has been
performed, considering three different algorithms for the numerical solution.
The first one consists of a standard coupled algorithm for the resolution of
the velocity and pressure, and by using classical lagrangian finite elements
P2 − P1 for the field discretization. The second technique is based on the
same finite element family but employs a standard projection algorithm for
the Navier-Stokes system. Lastly, the third method is characterized by the
employment of the Raviart-Thomas finite element family for the resolution
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of the pressure equation in the context of the split technique.

4.4.1 Two-dimensional channel

The first analyzed case focuses on the resolution of the Navier-Stokes equation
characterized by a low Reynolds number inside a bidimensional channel, i.e. a
laminar flow. It is well known that the solution of this kind of configuration
is expressed by the Poiseuille profile for the streamwise component of the
velocity. Indeed, we expect to obtain the classical parabolic profile.

In Figure 4.16 the investigated mesh discretizations of the channel geome-
try are reported. Note that, on the right, is reported a channel discretization
where non-affine elements have been employed. On the other hand, the multi-
grid refinement produces elements that converge to a parallelogram shape,
which is an affine element since the opposite edges are parallel. The geometry
dimensions and the boundaries are the same as the case described in Figure
4.6.

Figure 4.16: Two-dimensional Poiseuille flow: regular and irregular coarsest
mesh for the channel flow.

Considering the boundary conditions, at the inlet section Γi a fixed ve-
locity has been imposed, a standard no-slip boundary condition has been
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imposed on the wall side Γw, while an outlet-type condition has been im-
posed at the outlet section Γ0 to fix the pressure value. In Table 4.13 the
boundary conditions are summarized.

Γi Γo Γw

u = u0 p = 0 u = 0

Table 4.13: Boundary conditions for the laminar channel test.

Otherwise the previous examples, for this kind of numerical simulation it
is not possible to have an analytical solution of the velocity field. In fact,
even though a Poiseuille flow type is searched, if we consider an inlet bound-
ary condition the analytical solution for the Navier-Stokes system does not
exist. For this reason, the velocity error norm with respect to a reference
solution does not have a numerical significance. On the other hand, in or-
der to compare qualitatively the solutions with the three types of numerical
discretizations the L2 norm of the velocity field over the entire domain is
reported, for different grid refinements. In particular, for both regular and
irregular meshes, we compute the velocity norm as reported in Table 4.14.
The different methods are denoted with Pc, Ps respectively, for the coupled
and split technique with Taylor-Hood finite elements, while with RT 0 the
Raviart-Thomas finite elements.

l nel

Regular mesh Irregular mesh
Pc Ps RT 0 Pc Ps RT 0

1 6.40E+01 1.551 1.408 1.515 1.516 1.408 1.526
2 2.56E+02 1.544 1.470 1.530 1.525 1.470 1.531
3 1.02E+03 1.539 1.502 1.532 1.530 1.501 1.532
4 4.10E+03 1.536 1.517 1.532 1.532 1.517 1.532
5 1.64E+04 1.535 1.525 1.532 1.533 1.525 1.531
6 6.55E+04 1.534 1.529 1.530 1.533 1.529 1.528

Table 4.14: Two-dimensional channel test: L2-norm of the velocity field for
different levels l of grid refinement with nel number of elements, for regular
and irregular mesh.

We can notice that with the increasing of the grid refinement, the veloc-
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ity norm values tend to the same value for every method, ensuring reliable
numerical results for this test. Consider that, even if the second mesh is
characterized by non-affine quadrilateral elements, the numerical solution is
sought considering a multigrid approach. Therefore, the initial irregular mesh
tends to asymptotically affine quadrilateral elements, allowing the use of the
standard Raviart-Thomas family of order 0. The last column of Table 4.14
confirms that, with this geometry, this spatial discretization is able to find
the right numerical solution.

Naturally, different numerical aspects should be considered in order to
perform an extensive comparison between the three methods. In fact, from
a computational point of view, the simulation duration should be discussed,
since with a split technique a decrease in the computational effort is sought.
This kind of analysis will be addressed in future works.

In addition, considering the framework of a laminar flow inside a channel,
the main variable of interest is the streamwise component of the velocity field,
denoted with v. For this reason, in Figure 4.17 the velocity profile of v is
reported for the three different algorithms, as a function of the x coordinates.
The plot has been done, considering a fixed y equal to 1. Since the numerical
solutions between the two different grids are very similar, we report only the
case with regular quadrilateral elements.

Considering Figure 4.17, the type of algorithm to solve the Navier-Stokes
system is denoted with the subscript, c for the coupled system and s for the
split one. With the superscript is denoted the type of finite element fam-
ily employed for the velocity-pressure discretization, P for standard P2 − P1

lagrangian elements and with RT the Raviart-Thomas elements. The solid
line represents the reference numerical result, that is, the numerical solution
obtained with a coupled algorithm and classical Taylor-Hood lagrangian el-
ements. With the markers, the numerical solutions of the split system are
reported: the triangular markers represent the case where P2 − P1 elements
have been employed in every equation, while the circular markers represent
the solution obtained by using an RT approximation for the resolution of the
pressure equation. We can notice a good agreement of the velocity profiles
obtained by employing the three different algorithms.
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Figure 4.17: Two-dimensional channel flow (regular mesh): streamwise ve-
locity component v for coupled algorithm, split algorithm, and split algorithm
with Raviart-Thomas approximation.

4.4.2 Two-dimensional cavity
The aim of this test is to verify the convergence error rate, by considering
a cavity configuration, i.e. a rectangular closed geometry. Specifically, the
domain is described with the same channel of the previous cases, i.e. the
bidimensional channel described in Figure 4.6, where the elements employed
for the spatial discretization are standard regular quadrilateral elements. Re-
garding the velocity field, the boundary condition imposed on every edge is
a homogeneous Dirichlet boundary condition in order to have u = 0 on the
walls. Naturally, Raviart-Thomas finite elements have been employed for this
numerical simulation, in order to discuss the solution goodness in a different
setting.

In order to compute the L2 norm of the velocity error, the steady exact
Navier-Stokes solution has been imposed on the right-hand side of the equa-
tion. In fact, given a generic operator A which represents the left-hand side
terms of the Navier-Stokes equation, we aim to solve

Au = Au∗ (4.31)

for a specified u∗, which represents the desired solution. Specifically, the
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exact solution for the velocity components reads as

u∗ =
 u∗

v∗

 =


π

2 sin2(πx) sin
(
π
y

2

)
cos

(
π
y

2

)
−π sin2

(
π
y

2

)
sin(πx) cos(πx)

 . (4.32)

In Table 4.15 the velocity error norm and the corresponding order of
convergence for different levels of refinement are reported, for the RT 0 fi-
nite element approximation. The order of convergence p is reported in the
last column, computed as in the previous tests. We can notice that also in
this case, a linear trend for the velocity error norm can be observed for the
Raviart-Thomas velocity approximation.

l nel

RT 0

∥u∗ − uh∥0
εl−1

εl

p

1 6.40E+01 9.59E-01 - -

2 2.56E+02 4.86E-01 1.976 0.997

3 1.02E+03 2.44E-01 1.994 0.997

4 4.10E+03 1.22E-01 1.998 1.002

5 1.64E+04 6.10E-02 2.000 0.998

6 6.55E+04 3.05E-02 2.000 0.999

7 2.62E+05 1.52E-02 1.999 1.000

Table 4.15: Two-dimensional cavity test with projection method: velocity
error norm and convergence rate for different levels l of grid refinement and
corresponding number of elements nel, for RT 0 finite element approximation.

The same test has been computed considering also the standard Taylor-
Hood lagrangian basis function, both with a coupled and a split algorithm.
The results are reported in Table 4.16. We can notice a good convergence
trend for the velocity error for both methods, even though the order of con-
vergence p is not reported. In fact, despite these parameters appearing to
be equal to 3 for both simulations, we recall that the velocity error should
be considered together with the pressure error norm. For coupled systems
or for lagrangian-type basis functions, that are not pointwise divergence-free,



4.4. Projection method for Navier-Stokes equations 115

we know that an error in the pressure field produces an effect also the error
in the velocity. An example of this problem is reported at the beginning of
this chapter, in section 4.2.

l nel

Coupled P2 − P1 Split P2 − P1

∥u∗ − uh∥0
εl−1

εl

∥u∗ − uh∥0
εl−1

εl

1 6.40E+01 4.60E-02 - 4.56E-02 -

2 2.56E+02 5.81E-03 7.925 5.77E-03 7.905

3 1.02E+03 7.25E-04 8.018 7.23E-04 7.982

4 4.10E+03 9.05E-05 8.007 9.06E-05 7.986

5 1.64E+04 1.13E-05 8.002 1.13E-05 8.011

6 6.55E+04 1.43E-06 7.929 1.41E-06 7.995

Table 4.16: Two-dimensional cavity test with Taylor-Hood finite element
approximation: velocity error norm for different levels l of grid refinement
and corresponding number of elements nel, for coupled and split algorithm.

An interesting result has been found considering the behavior of the ve-
locity divergence. As expected, for the coupled system solved by using RT 0

approximation, the velocity divergence reaches values close to machine preci-
sion, indicating that this technique is equipped with an exact zero divergence
in every point. Considering the other two methods, the results have been
reported in Table 4.17.

It is worth noting that the velocity divergence error is different from
zero as expected. On the other hand, these values seem to converge with
a quadratic order.

4.4.3 Three-dimensional channel
This test represents the extension of the bidimensional Poiseuille flow to a
three-dimensional configuration, i.e. a regular parallelepiped. The considered
domain is the same as the three-dimensional test for the orthogonal velocity
decomposition (represented in Figure 4.12), where the characteristic lengths
have the same values (Lx = 1, Ly = 1 and Lz = 4). Moreover, regular
hexahedral elements have been employed for the domain discretization.
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l nel

Coupled P2 − P1 Split P2 − P1

∥∇ · u∗ − ∇ · uh∥0
εl−1

εl

∥∇ · u∗ − ∇ · uh∥0
εl−1

εl

1 6.40E+01 4.33E-01 - 4.42E-01 -

2 2.56E+02 1.13E-01 3.839 1.13E-01 3.92

3 1.02E+03 2.83E-02 3.978 2.83E-02 3.98

4 4.10E+03 7.09E-03 3.996 7.09E-03 4.00

5 1.64E+04 1.77E-03 3.999 1.77E-03 4.00

6 6.55E+04 4.44E-04 3.990 4.43E-04 4.00

Table 4.17: Two-dimensional cavity test with Taylor-Hood finite element
approximation: velocity divergence error norm for different levels l of grid
refinement and corresponding number of elements nel, for coupled and split
algorithm.

The flow configuration follows the same path of the bidimensional case,
and thus the fluid enters at the inlet section Γi, and exits through the outlet
section Γo. On the remaining boundaries, the standard no-slip boundary
condition has been imposed.

Regarding the reliability of the numerical solutions, the same comments
of the two-dimensional channel case can also be drawn for the case of a
three-dimensional channel. Therefore, since it is not possible to compare the
numerical solution with an analytical field, also in this case the L2-norm of
the velocity field has been computed for the three methods as an indicator
of the solution goodness. For this reason, in Table 4.18 the velocity norm
values have been reported considering three levels of refinements, for the three
techniques. The notation is the same as the two-dimensional channel test.

The L2-norm of the velocity field tends to the same value for each different
algorithm, confirming the good behavior of the numerical solution, as already
shown in the bidimensional case.

Also in this case, the same qualitative comparison between three types of
algorithms has been performed on the numerical solution. Therefore, in Fig-
ure 4.18 the streamwise velocity component w has been reported, where the
employed notation and symbols are the same as the bidimensional channel.
The w component is represented as a function of the x coordinate, with a
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l nel Pc Ps RT 0

1 2.08E+02 2.147 1.962 2.301
2 4.10E+03 2.236 2.139 2.312
3 3.28E+04 2.280 2.231 2.323

Table 4.18: Three-dimensional channel test: velocity error norm for different
levels l of grid refinement and the corresponding number of elements nel.

plot performed with a fixed y coordinate equal to 0.5.
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Figure 4.18: Three-dimensional channel flow: streamwise velocity component
w for coupled algorithm, split algorithm, and split algorithm with Raviart-
Thomas approximation.

Figure 4.18 shows good accuracy for the computed numerical solution.
Indeed, the velocity profile w obtained with a Raviart-Thomas approximation
of the pressure equation in a split system (3.25) has a similar trend to the
velocity profile obtained with a standard coupled (3.17) and split algorithm
(3.19).





CHAPTER 5

Code coupling for Multiphase
simulations

The objective of this chapter is to exploit theoretical and numerical consid-
erations about the velocity field approximation characterized by the incom-
pressibility constraint. In particular, we try to apply the resolution of the
Navier-Stokes equations previously described, in the context of multiphase
flow simulations. In fact, it is well known that mass conservation is a key
feature when numerical simulations of multiple-phase flows are considered.
This feature can be easily understood if we suppose that the density of the
considered phases is represented by a constant value. Therefore, the classical
constraint of the vanishing velocity divergence is a natural consequence, that
must be addressed with the most suitable numerical tools.

In order to exploit the divergence-free velocity approximation, we have to
describe the physical application that has been considered. Therefore, this
chapter is organized as follows: in the first part we describe the multiphase
problem and we discuss how to manage the advection of the interface of one
phase; after that, some standard benchmark applications are presented where
a comparison between finite element families for the velocity interpolation is
performed. In fact, the idea is to take advantage of a discretized divergence-
free velocity field in the context of multiphase simulations.

The numerical codes that have been used for this purpose are the finite el-
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ement libraries FEMuSTTU [83] and ProXPDE [84]. These codes are numeri-
cal libraries built for the resolution of partial differential equations developed
at the Department of Industrial Engineering of the University of Bologna
and at the Department of Mathematics and Statistics of the Texas Tech
University respectively. Indeed, this work has been performed by exploiting
the collaboration between the research group of Nuclear Power Plants, at
UNIBO, and the one of Numerical Analysis, at TTU. Each of the mentioned
codes is written in C++ and is available on the GitHub website.

5.1 Surface advection with marker technique
As mentioned earlier, the subject of the numerical simulations presented in
this chapter is related to the multiphase simulations. Additionally, our study
is focused on addressing the treatment of the interface between the multi-
phase phases. Although numerous numerical techniques and algorithms have
been developed over the years in the literature in order to address this issue
(VOF, Level Set method, etc) [85, 86, 87], our attention is drawn to the Front
Tracking Method [88]. Indeed, various approaches have already been investi-
gated considering the marker technique for the surface reconstruction [24, 25].
The basic idea of this technique is to advect a set of points, called markers,
which represent the interface, from the initial configuration and with the aim
of preserving the topology information of the interface during the simulation
transient.

In particular, a numerical library has been developed capable of initializ-
ing, advecting, and rebuilding the geometric position of a set of markers to
represent the surface with the best-fit quadric equation. These actions are
computed in every cell of the domain, where we take into account the infor-
mation of the neighboring cells for the computation of the different variables
in the algorithm, such as the color function and other parameters connected
to the markers (curvature, normal vector, etc.). We underline that the pre-
sented library has been developed and initially tested only for bidimensional
problems, and at this stage we are able to handle only cartesian grids. On the
other hand, three-dimensional examples will be investigated in the future.

In the first part of this chapter, the implemented algorithm is described,
explaining the several functions necessary for the surface advection. After
that, some standard numerical tests are presented with the aim of verify-
ing the ability of the markers to represent a multiphase surface movement.
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These tests are performed by applying analytical velocity fields on standard
geometric shapes, such as a bubble, i.e. a circumference. Finally, a compari-
son with two types of different finite element families for the approximation
of the specific analytical velocity field is presented.

5.1.1 Marker geometry initialization
The first step of the algorithm involves the implementation of an initialization
function, to define the set of the markers and their related parameters. This
function is specifically designed to define the initial geometry of the marker
cloud, representing one of the two phases within the domain. In order to
achieve this, the library is equipped with two possible methods:

i) providing an explicit set of points with related parameters;

ii) providing a generic quadric equation.

Concerning the first method, it is sufficient to provide a complete set of
points along with their geometric coordinates, normal vectors and curvature
for each marker. This allows the initialization of interface shapes that cannot
be represented with a quadric equation.

Alternatively, the second method involves providing the equation of a
generic conic equation in the form:

f(x, y) = Ax2 +Bxy + Cy2 +Dx+ Ey + F , (5.1)

where the chosen initial geometry of the marker cloud defines the coefficients
A,B,C,D,E and F . This function also allows the possibility of initializing
multiple geometries based on different chosen quadric equations. Indeed, it is
sufficient to change only the coefficients to define another initial configuration.
From an implementation perspective, specific functions have been provided
for ellipse-type geometry (which can be transformed into a circumference as
well). For example, given the center coordinates of the ellipse xc and defining
the semi-axes length with (a, b), the quadric coefficients are defined as

A = b2, B = 0, C = a2,

D = −2xcb
2, E = −2yca

2, F = x2
cb

2 + y2
ca

2 + 1 .

Having the quadric equation, markers can be inserted onto it by providing
the desired number of points for every cell. Therefore, giving np markers for
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each cell with their corresponding points coordinates xp = (xp, yp), the unit
normal vector n̂ can be calculated as

n̂ =
〈

nx√
n2

x + n2
y

,
ny√

n2
x + n2

y

〉
, (5.2)

where
nx = 2Axp +Byp +D , ny = 2Cyp +Bxp + E . (5.3)

In addition, the curvature value k is computed for each marker by using the
following expression [89]

k = A − B
C3/2 , (5.4)

where

A = 8AC2y2
p + 2C

[
(D + 2Axp)2 + 4A(E +Bxp)yp −B2y2

p

]
, (5.5)

B = −2(E +Bxp) [−AE +B(D + Axp +Byp)] , (5.6)
C =

[
(D + 2Axp +Byp)2 + (E +Bxp + 2Cyp)2

]
. (5.7)

Note that this formulation for the curvature k derives from the well-known
formula [90]

k = −dn̂

ds
· t̂ , (5.8)

where t̂ represents the unit tangent vector and s is the arc length of the curve.
Moreover, the arc length ds associated with every marker of the quadric

is considered. To evaluate it, an osculating circle is built on the quadric
connecting the arc length of a circular sector to ds. Specifically, we have

ds = Rdθ . (5.9)

The radius R and the angle dθ are evaluated with other functions, that are
described in the marker rebuilding section.

In addition to the marker initialization, another feature has been provided
to identify different phases inside the domain. In particular, at every node
of the grid, the sign of the quadric surface is considered. If a cell is equipped
with a negative sign at every node that region is regarded as the first phase,
and an internal marker is placed at the center of the cell. The advection step
is also applied to this new marker inside the cell, in order to manage the
color function variable. Otherwise, if the sign of the quadric is positive at
every grid node, it indicates the second phase. The third option arises when
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a cell has nodes with different signs of the quadric, representing the set of
the boundary cells, that are indeed cut by the surface quadric equation. An
example of boundary and interior markers is reported in Figure 5.1, showing
also the set of normal vectors for the marker present in a single cell. Note
that the interior markers are placed only in the cells for which every node is
considered inside the reference phase, i.e. the nodes equipped with the same
negative sign concerning the quadric equation.

Figure 5.1: On the left, initialization of a few cells with boundary and interior
markers. On the right, a generic cell with nine markers and their respective
normal vectors for an ellipse-type geometry initialization.

5.1.2 Color function evaluation

In the context of multiphase simulations, the tracking of the two phases is an
essential requirement. To address this need, the library includes a function
capable of evaluating the value of the color function C for every cell. This
variable serves as a tool for monitoring the phase under consideration and
represents the ratio between the area occupied by one of the two phases Ac

and the total area A of the respective cell. Indeed, the value of C varies
between 0 and 1, with the extremes of this interval representing the different
phases. To illustrate, considering a bubble (phase 1) inside a domain (phase
2), the interior phase can be associated with C = 1, while the exterior phase
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is represented by C = 0. Therefore, C can be defined as

C = Ac

A
. (5.10)

The value of Ac is computed by implementing a linear fit of the interface
cell markers, providing the best approximation of these points in the cell with
a line. In order to evaluate the area of the interior phase, the linear fit is
employed using an exact subdomain polynomial integration [91] implemented
for finite elements with linear cuts.

As a result, the value of C is piecewise constant for every cell in the
domain. On the other hand, the library also provides the evaluation of a
pointwise color function Cn, defined on the grid nodes. Note that, since the
advection of a phase can produce thin filaments, the evaluation of Cn requires
some attention. Initially, every node inside a cut cell is assigned with a value
equal to 0.75 if the sign of the quadric equation is positive. Otherwise, for
the grid nodes with negative quadric sign we fix the value at 0.25. These
values on the grid nodes remain unchanged for boundary cells, i.e. the cells
containing the markers. However, for the internal cells, described by C = 1,
a check on the nodes is performed in order to assign Cn = 1 on every node.

In Figure 5.2 a representation of C and Cn is reported for the same set
of four cells. Note the difference between the computed value of C by using
a cut-fem integration and the corresponding approximated value of Cn de-
pending mainly on the sign of the quadric. Regarding the latter, since the
example reported deals with quadrilateral finite elements, the Cn variable is
placed at the biquadratic nodes of the cell.

5.1.3 Runge-Kutta advection scheme
After the initialization routine, the marker located on the quadric equation
for each boundary cell and the central marker are ready to be advected by a
velocity field. In particular, in order to test the library the preliminary simu-
lations have been performed considering an analytical velocity field, without
implementing and resolving the Navier-Stokes type equations. In addition,
using specific velocity fields, such as periodic stream functions, allows for the
verification of the accuracy of the algorithm, as demonstrated in the results
section of this part. On the other hand, the numerical scheme adopted for
the advection does not change in the presence of a fully solved velocity field,
which derives for example from the resolution of the Navier-Stokes system in
the context of multiphase flow simulations.
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Figure 5.2: Four cells of a generic quadric surface for a markers cloud. On
the left the piecewise constant value of C and on the right the value of Cn

for every cell node.

In the library, the standard Runge-Kutta method [92] has been imple-
mented in order to move the markers in the cell. Although the simulations
performed use a 4-th order Runge-Kutta scheme, the library provides the
flexibility to perform a generic n-th order scheme. In this section, the 4th-
order scheme is described to recall standard results present in the literature
about discretized advection schemes. Therefore, considering an initial time
t0 and a fixed time step interval ∆t, the initial value problem is defined as

dx

dt
= v(x, t) , with x(t0) = x0 , (5.11)

where v is the velocity field function of the space x and the time t, and x0

represents the initial position.

To evaluate the position, i.e., the spatial coordinates xi for the i-th marker
at the time t, we need to solve the following relation

xi(t) = xi(tn−1 + ∆t) = xi(tn−1) + 1
6(k1 + 2k2 + 2k3 + k4)∆t , (5.12)
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where the coefficients ki are defined as

k1 = v (x(tn−1), tn−1) ,

k2 = v

(
x(tn−1) + k1

∆t
2 , tn−1 + ∆t

2

)
,

k3 = v

(
x(tn−1) + k2

∆t
2 , tn−1 + ∆t

2

)
,

k4 = v (x(tn−1) + k3∆t, tn−1 + ∆t) .

This numerical scheme is performed at every time step and in every cell
to represent the surface motion by moving the markers. This step serves as
the initial configuration for the next section, where, starting from the advec-
tion result, the rebuilding of the marker position is performed when certain
conditions are not satisfied. The new parameters related to the markers are
computed, and once the new markers are found from the best-fit quadric of
the cell, another time step with the Runge-Kutta method is performed.

5.1.4 Best-fit quadric equation

After the marker advection for every cell, a crucial aspect of the algorithm is
the computation of a quadric equation that represents the best-fit approxima-
tion of the marker positions. This is achieved by exploiting the information
about the marker of a single cell at a specific time step, i.e. position, normal,
along with the markers from neighboring cells. The resulting quadric equa-
tion is then selected from an ellipse, a hyperbola, or a parabola. In particular,
the least-square minimization approach is employed to determine the coeffi-
cients corresponding to these types of conics, and a criterion is implemented
to choose the best one among the three. To briefly summarize, the algorithm
for seeking the best-fit quadric equation relies solely on the relative positions
of the markers. Other aspects, such as incorporating information about the
normal vector in the minimization process, are still under investigation for
library development but are beyond the scope of this thesis.

The first step of the minimization process involves evaluating the barycen-
ter in the cell, considering a weighted set of markers instead of the classical
geometrical barycenter. This step is performed using the arc length variable s
of each marker, allowing the detection and penalization of regions with a high
density of markers (i.e. marker cluster resulting from the advection routine).
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In particular, the weighted markers are evaluated with a Gaussian distribu-
tion curve that depends on the distance between the specific marker and the
barycenter, considering also the marker of the neighboring cells. Therefore,
the square distance between the barycenter xc and the i-th with coordinate
xi is defined as

d2
i = (xi − xc)2 + (yi − yc)2 . (5.13)

The variance related to the Gaussian curve is computed as

σ2 =
∑n

i=1 d
2
i

nfσ

, (5.14)

where n represents the total number of considered markers, including the
markers of the neighboring cells. Additionally, the parameter fσ can be
chosen in order to penalize markers that are distant from the barycenter
differently. Therefore, the weight for the i-th marker can be defined using
the variance as

wi = s e−
d2

i
2σ2 . (5.15)

Having the weighted marker, the Jacobi Singular Value Decomposition
(SVD) is utilized in order to find the quadric coefficients. In particular, a
new barycenter point xg is determined, resulting from the weighted marker
as

xg =
n∑

i=1
xiwi . (5.16)

Let δi =
√

(xi − xg)2 + (yi − yg)2, and δmax = max (δi), i = 1, · · · , n and
introduce the variables

χi = xi − xg

δmax

, ψi = yi − yg

δmax

. (5.17)

With these new variables, we can build a new quadric cost function to be
minimized, i.e. ∑n

i=1 wi(Aχ2
i + Bχiψi + Cψ2

i + Dχi + Eψi + F )2. Hence,
we want to find the coefficients X = [A,B,C, . . . ] related to the new entries
of the cost function matrix M . Therefore, for every marker we can build a
corresponding row M(i, ) that fills the matrix M which is then decomposed
with the Jacobi SVD technique [93]. In particular, for a quadric interpolation,
the six matrix entries are expressed as

M(i, ) =
[
χ2

i , χiψi, ψ2
i , χi, ψi, 1

]
. (5.18)
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Since the matrix M is built, the Jacobi decomposition M = USV ∗ is
performed by exploiting the linear algebra library Eigen [94]. In particular,
considering the right singular vector V matrix, the quadric coefficients X
that represent the best-fit approximation of the marker position are taken
from the last column of V , which represents the minimum eigenvector of the
matrix [95].

On the other hand, our analysis has shown that the previous steps are
not sufficient to find the best quadric coefficients in every cell. Neglecting
information about the normal vector can lead to quadrics that are in good
agreement with the marker positions, but are not representative of the real
interface position. For example, considering a parabola quadric, a method to
mitigate this aspect is to align the quadric with the principal direction of the
marker cloud. Specifically, we can define the n × 2 matrix X, for which the
i-th row can be filled with

X(i, ) = [xi − xg, yi − yg] . (5.19)

Therefore, if we consider the square matrix B, equal to B = XTX and with
dimension 2 × 2, the eigenvector corresponding to the minimum eigenvalue
of B represents the principal direction.

After that, we consider for every marker its outer normal, i.e. n̂old
i and also

n̂i,quad representing the outer normal vector of the three evaluated quadric
(ellipse, hyperbola, parabola). Therefore, an additional cost function is built
such that, for each quadric, computes the value of the distance between the
markers and the best-fit quadric with a penalizing term. This one is evaluated
considering the dot product between the previously cited normal vectors

n̂old
i · n̂i,quad . (5.20)

Finally, the best-fit quadric corresponds to the one that is able to preserve
the direction of the normal vectors most efficiently, i.e. the conic equipped
with the lower value of the cost function previously described.

In Figure 5.3, a cell with two quadric surfaces for the markers’ approx-
imation is shown. The dotted line represents the quadric surface equation
for an ellipse, while the dashed one represents a parabola. Despite the good
approximation for both quadrics, the cost value computed for the ellipse is
lower than the parabola one. This comparison is performed in every cell in
order to determine the best quadric for the markers’ approximation, leading
to the recreation of the markers in the same cell avoiding clusters. In Figure
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5.4, an advected circle is depicted with different colored markers cell by cell,
representing the three types of quadrics used in this function. In particular,
black markers represent the parabola, red the ellipse and green the hyperbola.
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Figure 5.3: Cell with nine markers and their approximation with two kinds
of quadrics. The dashed line represents a parabola, meanwhile the dotted
one is an ellipse. The latter is chosen because of a lower cost value.

5.1.5 Rebuilding marker position
Once the best-fit quadric equation based on the advected marker positions
is found, we have the option to rearrange the markers inside the cell. This
feature gains interest since it is not possible to control the marker distribution
directly after advection. Indeed, the new marker position depends solely on
the imposed velocity field. Consequently, even if we start with a homogeneous
distribution of the marker inside the cell, this homogeneity may be lost after
advection, leading to regions with very high or low marker density. Thus, the
ability to regenerate markers with a better distribution based on the best-fit
quadric can be a useful computational tool.

Furthermore, although the distribution can be managed with the rebuild-
ing operation, we are also interested in maintaining a controlled number of
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Figure 5.4: Different kinds of quadric surfaces employed to approximate the
markers in the cells.

markers inside every cell. Hence, the library is equipped with two parameters
nmin and nmax, representing the minimum and maximum number of possible
markers inside the cell. Therefore, if the advection results in a number of
markers n for a cell that satisfies nmin ≤ n ≤ nmax, we do not apply the
rebuilding algorithm. Otherwise, we regenerate a fixed number of markers
n0 inside the cell starting from the best-fit quadric.

However, the resulting best-fit quadric does not allow for a direct remesh-
ing of the markers inside the cell. In certain situations, the quadric obtained
may have more than two intersections with the cell edges, such as four in-
tersections. This can occur, for instance, in cases where thin filaments exist,
like the tail of a very stretched bubble. From a quadric point of view, this
translates into situations such as ellipses with one semi-axis much smaller
than the other, or where both branches of a hyperbola are included in the
cell, creating four intersections. To avoid issues arising from these situations,
the library is equipped with an adaptive refinement of the cell. The square
or triangular cell is divided into four sub-cells using this algorithm, and the
process is repeated until we have only two intersections of the quadric with
the edges of the sub-cells. To subdivide the cell, projection matrices, PQ and
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PT , have been implemented in the library for the mapping between the cell
and its four sub-cells, both for quadrilateral and triangular elements. An
example of this situation is depicted in Figure 5.5, for both types of finite
elements.

PQ(x, y)

ΩQ Ωs1 Ωs2

Ωs3 Ωs4

PT (x, y)

ΩT Ωs1 Ωs2

Ωs3

Ωs4

Figure 5.5: Refinement into four sub-cells for quadrilateral and triangular
finite elements.

After the adaptive refinement, each cell has only a double intersection,
represented by x0 = (x0, y0), x1 = (x1, y1), with the edges. The goal is to
find the coordinates of the new set of markers located on the quadric. We
start by finding the center coordinates of the osculating circle to the quadric,
as

xc = (xc, yc) = xm − n̂

k
. (5.21)

In this case xm represents the mid-point between the intersections x0 and x1,
n̂ is the outward normal vector, and k is the quadric curvature evaluated at
xm. After that, we evaluate the angles between the center of the osculating
circle xc and the intersections x1 and x0 as

θ0 = arctan
(
y0 − yc

x0 − xc

)
, θ1 = arctan

(
y1 − yc

x1 − xc

)
. (5.22)

In addition, we also define other two variables representing the differences
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between these angles as

∆θ0 =
θ1 − θ0 if θ1 > θ0

2π + θ1 − θ0 if θ1 < θ0 ,
(5.23)

∆θ1 =
θ0 − θ1 if θ0 > θ1

2π + θ0 − θ1 if θ0 < θ1 .
(5.24)

Therefore, we introduce the angle θs and the angle variation ∆θ with the
following conditions

if ∆θ0 ≥ ∆θ1 → ∆θ = ∆θ1 θs = θ1 ,

if ∆θ0 < ∆θ1 → ∆θ = ∆θ0 θs = θ0 .

We define now v = ⟨vx, vy⟩ as

vx = R0 cos
(
θs + ∆θ

2

)
, vy = R0 sin

(
θs + ∆θ

2

)
, (5.25)

where R0 =
√

(x0 − xc)2 + (y0 − yc)2 represents the radius of the osculating
circle. Then, we can compute the intersection between the quadric equation
and the line passing through the circle center xc and with the direction given
by the vector v. Finally, the new marker positions are found by solving the
following relation

xn = xc + tnv , (5.26)
where tn = min(t1, t2), and t1 and t2 are the solutions of a∗t2 + b∗t+ c∗ = 0.
In this case, the normalized coefficients, defined with the ∗, are defined as
follows

a∗ = a√
a2 + b2 + c2

, (5.27)

b∗ = b√
a2 + b2 + c2

, (5.28)

c∗ = c√
a2 + b2 + c2

, (5.29)

(5.30)

where the a, b, c coefficients are defined considering the quadric coefficients,
the point xc and the vector v

a = Av2
x +Bvxvy + Cv2

y , (5.31)
b = 2Avxxc +B(vyxc + vxyc) + 2Cvyyc +Dvx + Evy , (5.32)
c = Ax2

c +Bxcyc + Cy2
c +Dxc + Eyc + F . (5.33)
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Moreover, the algorithm is also able to update the arc-length variable ds
for the new marker as

ds = R0 +Rn

2 ∆θ , (5.34)

where Rn is the distance between xn and xc defined as

Rn =
√

(tnvx)2 + (tnvy)2 . (5.35)

In Figure 5.6 a cell with two sets of markers is reported: the first one in
black is the set of markers advected from the previous iteration; in red are
reported the rebuilt markers. To fix the ideas, in the reported example we
set nmin = 9 and nmax = 12. In this case, the reconstruction of the markers
is performed because nold,RK4 = 16 > nmax. Therefore, we reduce their
population inside the cell, placing the new n0 markers (in this case n0 = 9)
on the interpolating quadric. Unlike the black markers, which are in the
position obtained from the RK4 scheme, note that the new markers are built
by placing the endpoints on the edges of the cell. The other internal markers
are located homogeneously on the approximating quadric as described before,
creating n− 1 circular sectors.

Figure 5.6: Reconstruction of the markers from the black one (the result of
the advection) to the red one (to be advected in the new time step).
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5.2 Interface advection test

In this section, numerical results are presented in order to test the algo-
rithm outlined above. In particular, standard tests from the literature are
considered benchmark results to evaluate the interface tracking. Flow fields
characterized by uniform translations and rotations are employed to move
and advect the markers in the cells. The numerical tests discussed in [24, 25]
are considered as the reference benchmark, even though other cases have been
tested and presented later. Other interface tracking tests found in the litera-
ture, such as those in [96, 97], share a similar concept. The simple advection
movements are designed to displace smooth fluid bodies within a domain and
verify the conservation of surface shape and volume.

All the tests presented are two-dimensional problems, with a velocity field
designed so that the resulting vorticity is not uniform in the domain. Conse-
quently, significant distortions occur in the fluid body interface, making the
maintenance of the interface not straightforward. Finally, cosinusoidal time-
dependence analytical velocity functions are employed, in order to achieve
the re-establishment of the initial configuration at the end of the period [98].

To facilitate quantitative comparisons of the results, the L1 error norms
presented in [24] have been computed. The relative mass error Em(t1) is
defined to compare the total volume of a phase, specifically the reference
volume, at the initial time t0 and the subsequent time t1

Em(t1) = |∑Nel
i=1 AiCi(t1) − AiCi(t0)|∑Nel

i=1 AiCi(t0)
. (5.36)

In this case, the color function value at the cell i at time t is represented by
Ci(t), Ai represents the area of the cell i meanwhile the total number of the
cells is Nel. Another error, termed geometrical error Eg(t1), is introduced as

Eg(t1) =
Nel∑
i=1

Ai|Ci(t1) − Ci(t0)| . (5.37)

As mentioned earlier, the objective is to verify whether the final shape aligns
with the initial configuration. To achieve this, we introduced and computed
another type of error, considering a circular geometry as the initial shape.
Therefore, given the center (xc, yc) and the radius R, the distance between a
marker m with position (xm, ym) and the center is computed and compared
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with the radius R:

Eal =
Nm∑

m=1

∣∣∣∣√(xm − xc)2 + (ym − yc)2 −R

∣∣∣∣ sm , (5.38)

where, for each marker, the arc length is denoted by sm.
In all computations presented, the CFL = u∆t/h has been considered,

with u representing the velocity component along the x-axis, ∆t the time
step simulation and h the grid spacing.

Single vortex test The first test conducted to evaluate the algorithm’s
performance involves the advection of a single bubble within a square domain.
The domain is defined as Ω = [−L/2, L/2]× [−H/2, H/2], where H = L = 1.
The reference phase is represented by a circular geometry centered at (0, 0.25)
with a radius of R = 0.15. The simulations were carried out using both
triangular and quadrangular mesh discretizations. For the analytical velocity
field, a sinusoidal stream-function was employed, described by the equation

ψ = 1
π

sin2(πx) sin2(πy) cos
(
πt

T

)
, (5.39)

that leads to

u = ∂ψ

∂y
= 2 sin2(πx) sin(πy) cos(πy) cos

(
πt

T

)
,

v = −∂ψ

∂x
= −2 sin(πx) cos(πx) sin2(πy) cos

(
πt

T

)
,

where T represents the vortex period. The simulation starts at t = 0 and
progresses until reaching the maximum deformation point at t = T/2, ulti-
mately returning to the initial configuration at t = T . The positions of the
markers at the initial and final configurations are then compared to assess
the errors introduced during the simulation.

The chosen test has been selected based on other tests described in the
literature. Consequently, in Table 5.1, the errors values have been compared
with those in [24], as the same test was presented in that paper and was
taken as a reference case. As expected, both errors decrease with an increase
in grid refinement. Regarding the relative mass error Em, the results are
consistent with the ones reported in [24]. In fact, it can be noticed that
with finest grid we reach the same order of magnitude, equal to 10−5. In
addition, the geometrical error Eg presents a better behavior considering the



136 Chapter 5. Code coupling for Multiphase simulations

Nlev Em Eg Em(AMS) Eg(AMS) pm pg

4 9.42 · 10−2 6.56 · 10−3 9.42 · 10−3 2.53 · 10−2 - -

5 1.03 · 10−2 7.25 · 10−4 1.94 · 10−3 2.78 · 10−3 3.20 3.18

6 7.25 · 10−4 5.12 · 10−5 2.53 · 10−4 4.78 · 10−4 3.82 3.82

7 6.47 · 10−5 4.57 · 10−6 5.95 · 10−5 1.16 · 10−4 3.49 3.49

Table 5.1: Single vortex field test with T = 8 s: values of the relative mass
error Em (5.36) and the geometrical error Eg (5.37) with CFL = 1 for dif-
ferent grid resolutions. The comparison with the results presented in [24]
(AMS) is also reported. The corresponding rates of convergence pm, pg are
reported in the last columns.

values in [24]. In fact, for every level of refinement, the error is one order of
magnitude lower than Eg(AMS). In the last columns, we report the rates
of convergence corresponding to Eg and Em. In particular, these parameters
have been defined as

pm ≈
ln
(
Em(h)
Em(h/2)

)
ln(2) , pg ≈

ln
(
Eg(h)
Eg(h/2)

)
ln(2) , (5.40)

where h represents the grid spacing for the considered mesh. For both orders
of convergence, a value close to 3 is obtained, showing approximately a cubic
convergence of the implemented algorithm.

Note that the error values are reported based on the level of mesh refine-
ment, where level 4 corresponds to a 32 × 32 grid, level 5 to a 64 × 64 grid,
level 6 to a 128 × 128 grid, and level 7 to a 256 × 256 grid.

In Table 5.2, the circular shape error Eal introduced by the definition in
(5.38) is also reported, quantifying the geometrical inaccuracy of the tracking
algorithm. The table illustrates the convergence of the error with an increase
in grid refinement. The last column presents the rate of convergence based
on the considered grids. This parameter is defined as

pal ≈
ln
(
Eal(h)
Eal(h/2)

)
ln(2) , (5.41)
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Nlev Eal pal

4 5.68 · 10−3 -

5 7.39 · 10−4 2.94

6 5.24 · 10−5 3.38

7 6.07 · 10−6 3.29

Table 5.2: Single vortex field test with T = 8 s: values of the newly introduced
geometrical error Eal (5.38) with the corresponding rate of convergence pal.

where h represents the grid spacing for the considered mesh. This value is
approximately equal to 3, indicating the good behavior of the method, as the
convergence is almost cubic.

Additionally, Figure 5.7 displays the final configuration after the advection
of the marker. This position corresponds to the time t = T = 8 seconds, i.e.,
the stream function at the final period after that the bubble has reached the
maximum distortion point at t = T/2 = 4 seconds (see Figure 5.8). It is
evident that increasing the refinement produces final configurations that are
in good agreement with the initial geometry represented by the dashed line,
which is the initial circumference. Only for coarse grids, some errors can be
noticed in reaching the initial geometrical configuration.

Double bubble vortex test The next test is conducted within the same
domain as the single bubble, i.e., Ω = [−L/2, L/2] × [−H/2, H/2], with
H = L = 1. The objective is to advect multiple regions representing the
reference phase inside Ω, starting from two initial circular geometries. The
centers of the circumferences have been fixed at (0, 0.25) and (0,−0.25), and
the same radius R = 0.15 has been considered. In this test, recalling the
algorithm described in Section 5.1.5, we have set the minimum and max-
imum number of markers for the rebuilding technique, i.e., nmin = 9 and
nmax = 12. The number of new markers n0 has been set equal to nmin. Two
types of computational grids have been considered for the numerical simula-
tion: biquadratic quadrilateral elements (QUAD9) and biquadratic triangular
elements (TRI6), in order to test the library with different space discretiza-
tions. Regarding the velocity field, as described above, a sinusoidal stream
function has been chosen to compare the initial and final geometry config-
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Figure 5.7: Single bubble test: comparison of the final interface position at
t = 8 s (circular marker) with the initial circular geometry (dashed black
line) for the meshes with 32 × 32 (top left), 64 × 64 (top right), 128 × 128
(bottom left) and 256 × 256 (bottom right) cells.

urations over multiple periods. In particular, the following stream function
has been exploited

ψ = − 1
π

sin2(πx) sin2(πy) cos
(
πt

T

)
, (5.42)

leading to the respective velocity components defined as

u = ∂ψ

∂y
= −2 sin2(πx) sin(πy) cos(πy) cos

(
πt

T

)
, (5.43)

v = −∂ψ

∂x
= 2 sin2(πx) sin(πy) cos(πy) cos

(
πt

T

)
. (5.44)

Also in this case, by using a sinusoidal function we expect to obtain the same
geometric shape at the final time step t = T as in the initial one at t = 0. This
aspect is considered as an index to check the quality of the newly proposed
algorithm. Unlike the single bubble test, the period T for this simulation
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Figure 5.8: Single bubble test: interface position at maximum deformation
(t = 4 s) for the meshes with 32 × 32 (top left), 64 × 64 (top right), 128 × 128
(bottom left) and 256 × 256 (bottom right) cells.

has been set equal to 4s, and thus the maximum deformation is reached at
t = 2s.

In Table 5.3, the Em and Eg errors are reported for different levels of
domain discretization, ranging from a 32 × 32 grid up to a 256 × 256 one.
A decrease in both error norms can be observed with an increase in grid
refinement, confirming the good behavior of the implemented algorithm.

Additionally, in the last columns, the order of convergence for Em and Eg

are reported. For both errors, the rates of convergence pm and pg, defined in
(5.40), seem to have a value between 2 and 3.

From a graphical perspective, we can compare the geometric positions of
the markers at the beginning and at the end of the periodic simulation. In
fact, we know that the advection of these points with the rebuilding routine
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Nel Em Eg pm pg

32 × 32 1.30 · 10−2 1.83 · 10−3 - -

64 × 64 1.17 · 10−3 1.66 · 10−4 3.46 3.46

128 × 128 1.85 · 10−4 2.61 · 10−5 2.67 2.67

256 × 256 3.07 · 10−5 4.34 · 10−6 2.59 2.59

Table 5.3: Double bubble test: values of the Em error and the Eg error for
different grids, with corresponding rates of convergence pm and pg.

may lead to markers deviating from the theoretical trajectory given by the
analytical velocity field. Figure 5.9 presents the final positions of the markers
after being advected for a period t = T = 4s, allowing for a comparison with
the initial configuration at t = 0. The dashed black line represents the initial
geometric configuration, considering the equations of the two circumferences
on which the markers are initially located. The circular markers represent
the markers at the end of the simulation, showing good agreement with the
initial position for every grid considered, except for the coarser grid, i.e., the
32 × 32 one, where some discrepancies can be noted.

Furthermore, in Figure 5.10, the configuration at maximum distortion,
i.e., the situation at t = T/2, is presented to illustrate the thin filaments
of the bubble tails. Specifically, the maximum stretch for the 32 × 32 and
128 × 128 computational grids is shown.

5.3 Advection test by using Raviart-Thomas
element

This section introduces the initial attempt to incorporate Raviart-Thomas
basis functions into the surface marker reconstruction framework. The pri-
mary goal is to compare the advection test using two different representations
of the velocity field. As the Navier-Stokes equation is not solved in this ap-
plication, the velocity field is imposed using an analytical function, chosen
as sinusoidal for consistency with previous tests. The comparison focuses on
how the analytical velocity field is approximated in the code. Despite having
the exact solution for the velocity, the code is structured for the resolution
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Figure 5.9: Double bubble test: reconstructed interface back to the initial
position at t = 4 s for the meshes with 32 × 32 (top left), 64 × 64 (top right),
128×128 (bottom left) and 256×256 (bottom right) cells. The initial circular
configuration is reported in a dashed line.

of dynamic simulations. These tests involve resolving the velocity field while
considering surface tension modeling on the right-hand side of the equation.

Indeed, the numerical approximation of the velocity is naturally stored
through finite element discretization, such as the classical 9 points of a bi-
quadratic quadrilateral element. In the same way, the analytical velocity is
stored based on the specific data structure arising from mesh discretization.
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Figure 5.10: Double bubble test: reconstructed interface at maximum defor-
mation at t = 2 s for the 32 × 32 (left) and 128 × 128 (right) grids.

The exact values of that field are found only in the standard degrees of free-
dom of the mesh elements. Notably, the library for marker reconstruction is
designed to handle both kinematic and dynamic two-phase flow simulations,
accommodating scenarios where the velocity field is either imposed or fully
solved.

In situations where we need to compute the velocity at points beyond the
nodes of the elements (such as marker coordinates), interpolation is used.
This is essential for marker advection, where the Runge-Kutta method re-
quires varying velocity values at different positions. This section aims to
compare two types of finite element interpolation techniques for determin-
ing the velocity field at marker locations. The standard approach involves
Lagrangian interpolation, while the alternative method employs Raviart-
Thomas interpolation.

Denoting umrk as the velocity field of the i-th marker in the cell with
coordinates xp, the comparison is performed using the following formulations

umrk =
ndof∑
i=1

uiφi(xp) umrk =
nfaces∑

i=1
bi(xp)pi , (5.45)

where ndof represents the biquadratic nodes for a quadrilateral element, and
nfaces is the number of faces of the same element. Naturally, φi represents the
biquadratic Lagrangian basis functions, while bi are the Raviart-Thomas ba-
sis functions that act on the fluxes faces pi. It is worth noting that, since the
computational domain is a classical bidimensional Cartesian mesh, any con-
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vergence issues related to using Raviart-Thomas finite elements, as described
in previous chapters, are not present in this context.

The reason behind the use of the Raviart-Thomas basis function for the
velocity field interpolation is motivated by two closely connected aspects:

• Mass Conservation in Multiphase Flow: In the context of multiphase
flow simulation, maintaining mass conservation is crucial. Since the
density of both phases is assumed constant, it is imperative to satisfy
the mass conservation equation. Ensuring a divergence-free velocity is
a key requirement and is managed through appropriate discretization
techniques. The use of a divergence-free representation of the numerical
velocity, facilitated by Raviart-Thomas finite element discretization,
addresses this constraint effectively;

• Divergence-Free Analytical Velocity Field: The analytical velocity fields
implemented for advection tests are sinusoidal functions derived from
stream functions, which are, by definition, divergence-free. Therefore,
approximating these velocity fields using H0(div) basis functions should
provide an exact representation at every physical point in the domain.
This approach helps avoid approximation errors that may arise when
using standard finite element Lagrangian interpolation.

In summary, from a computational perspective, only the function respon-
sible for Runge-Kutta advection has been modified to allow for both types
of interpolations. The application has been developed by integrating two
finite element libraries: the FEMuSTTU library [83], where routines for sur-
face marker reconstruction are implemented, and the ProXPDE library [84],
which provides the Raviart-Thomas finite element interpolation.

The approach for testing the Raviart-Thomas basis functions for velocity
field interpolation involves a single bubble advection test, similar to the initial
one. The analytical velocity field for this simulation is given by

u = 2 sin2(πx) sin(πy) cos(πy) cos
(
πt

T

)
,

v = −2 sin(πx) cos(πx) sin2(πy) cos
(
πt

T

)
.

The domain considered remains Ω = [−L/2, L/2] × [−H/2, H/2], with H =
L = 1, and the initial circular geometry is located at (0, 0.25) with a radius
R = 0.15. The period T for this test is set to 4s, implying that the maxi-
mum stretch of the bubble is reached at t = 2s. The purpose is to compare
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the performance of standard Lagrangian interpolation with Raviart-Thomas
interpolation for the velocity field in the context of the surface marker recon-
struction algorithm. The simulation is performed to evaluate how well each
interpolation scheme maintains the accuracy and conservation properties of
the marker positions during advection.

Nel EQ
m EQ

g EQ
al pm pg pal

32 × 32 1.64 · 10−2 1.00 · 10−3 9.66 · 10−4 - - -

64 × 64 9.88 · 10−4 6.69 · 10−5 8.52 · 10−5 4.05 3.91 3.50

128 × 128 2.35 · 10−4 1.65 · 10−5 1.36 · 10−5 2.07 2.02 2.64

Table 5.4: Values of the Em, Eg and Eal errors for different grids, with
respective rates of convergence for the Q2 velocity interpolation.

In Table 5.4, the error values for the Lagrangian-type interpolation, de-
noted with the superscript Q, are presented based on the number of mesh
elements Nel, ranging from a 32×32 grid to a 128×128 grid. Every computed
error shows a decrease by increasing the mesh refinement, showing the same
behavior as the previous tests. Regarding the rates of convergence of the
errors, we can notice that for pm and pg we reach a value close to 2, while pal

seems to have a value slightly bigger. We recall that the Eal error provides a
geometrical measure of the difference between a circular initial configuration,
and the corresponding final shape. For this reason, an order of convergence
of pal between 2 and 3 indicates a good behavior of the algorithm. Note the
different error values with respect to Table 5.1, since a different period for
the same single bubble simulation has been adopted.

Nel ERT
m ERT

g ERT
al pm pg pal

32 × 32 6.43 · 10−2 3.94 · 10−3 2.24 · 10−3 - - -

64 × 64 1.57 · 10−2 1.07 · 10−3 5.79 · 10−4 2.03 1.89 1.95

128 × 128 3.73 · 10−3 2.59 · 10−4 1.42 · 10−4 2.08 2.04 2.03

Table 5.5: Values of the Em, Eg and Eal errors for different grids, with
respective rates of convergence for RT 0 velocity interpolation.
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The same error analysis has been performed for the RT 0 velocity inter-
polation, and the results are reported in Table 5.5. For these simulations,
similar conclusions can be drawn regarding the evolution of errors: every
computed error decreases with the grid refinement. Regarding the rates of
convergence, similar values have been obtained for the RT 0, except for pal

which seems to be slightly lower than the one computed with the lagrangian
interpolation.

In terms of the comparison between the two techniques, it appears that
the Q2 Lagrangian interpolation provides better error results. For every error,
the order of magnitude is almost lower by one compared to the corresponding
RT 0 interpolation on the same grid. However, it is important to note that
these errors consider the entire simulation, taking into account the final values
of the color function and the marker positions. As such, these errors, as
defined, do not serve as a direct indicator of the approximation quality of the
velocity.

The numerical algorithm incorporates several functions for marker recon-
struction. Therefore, while the velocity interpolations of the marker may be
quite similar inside the cell, a small variation in the velocity field can lead to
a small change in the final position of the marker with the Runge-Kutta ad-
vection scheme. Additionally, it is on this final position that every routine of
the reconstruction library acts, and thus the resulting best-fit approximating
quadric can be different.

Moreover, it should be considered that using a H(div) velocity field the
conservation of the tangential component is not satisfied. Although this
aspect has not been thoroughly investigated, it could be a significant concern,
particularly for markers lying on the edges of the cell. As a reminder, to
rebuild the marker inside the cell on the best-fit quadric, two markers are
located at the intersections between the quadric and the cell. Naturally,
these two markers are also advected, computing the velocity interpolation on
points lying on cell edges.

In Figure 5.11, the final positions of the markers are reported for different
grid refinements obtained with the standard Lagrangian Q2 interpolation. It
is noticeable that, only for the coarser grid (32×32), some discrepancies from
the analytical circular geometry are present in the marker positions. As the
grid refinement increases, the markers reach a configuration at the end of the
period that is in perfect agreement with the initial circumference.

The same comments can be made for the RT 0 interpolation, which is
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Figure 5.11: Single bubble test with Q2 velocity interpolation: comparison
of the final interface position at t = 4 s (circular marker) with the initial
circular geometry (dashed black line) for the meshes with 32 × 32 (top left),
64 × 64 (top right) and 128 × 128 (bottom) cells.

shown in Figure 5.12. Only for the 32×32 grid, the final marker positions do
not match perfectly with the initial circular geometry. It is important to note
that this aspect is not merely a graphical consideration; it is represented by
the Eal error, which measures the discrepancies from the initial shape. For
both interpolation techniques, we observe orders of magnitude ranging from
10−3 up to 10−5, confirming the good behavior of the algorithm in regaining
the initial circumference.

As previously described, it is crucial to verify the shape configuration
when the maximum deformation is reached. For this reason, we now present
the bubble configuration at half of the period T , i.e., at t = 2 seconds, to
check if the closed surface is preserved. Despite the thin filaments in the
bubble tail, we observe that the algorithm is still able to reconstruct the
surface and rebuild the marker positions. This situation is depicted for both
techniques, in Figure 5.13 for the Q2 interpolation and in Figure 5.14 for the
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Figure 5.12: Single bubble velocity with RT 0 velocity interpolation: com-
parison of the final interface position at t = 4 s (circular marker) with the
initial circular geometry (dashed black line) for the meshes with 32 × 32 (top
left), 64 × 64 (top right) and 128 × 128 (bottom) cells.

RT 0 interpolation, across the four tested grids.
In conclusion, the coupling by using Raviart-Thomas interpolated velocity

has shown promising preliminary results, despite a slight deterioration in the
computed error norm. Further investigations are needed for the improvement
of the numerical library, in order to obtain more accurate simulation results.
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Figure 5.13: Single bubble test with Q2 velocity interpolation: interface po-
sition at maximum deformation (t = 2 s) for the meshes with 32 × 32 (top
left), 64 × 64 (top right) and 128 × 128 (bottom) cells.
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Figure 5.14: Single bubble test with RT 0 velocity interpolation: interface
position at maximum deformation (t = 2 s) for the meshes with 32 × 32 (top
left), 64 × 64 (top right) and 128 × 128 (bottom) cells.





Conclusions

This dissertation has focused on the challenges posed by mass conservation
in incompressible flow simulations, employing a finite element approach, with
a particular focus on the use of Raviart-Thomas basis functions. The main
goal was to achieve a divergence-free velocity field, crucial for accurate nu-
merical solutions in engineering applications, ranging from multiphase flows
to porous-media flows.

In the first chapter, an overview of the problem related to the divergence
constraint was explained. After the introduction regarding the notation, sev-
eral aspects have been presented, ranging from the Helmholtz decomposition
to the error analysis for mixed problems, in order to understand the different
meanings of the divergence-free constraint.

Subsequently, a wide overview of finite element discretization has been
presented. Naturally, the emphasis has been mainly placed on Raviart-
Thomas finite elements built over quadrilateral and hexahedral elements.
Specifically, this thesis has taken into account only the lowest-order Raviart-
Thomas elements. Several approaches described in the literature have been
reported to better understand convergence issues related to affine and non-
affine finite elements. Both advantages and disadvantages have been de-
scribed, with a specific focus on the three-dimensional setting.

In Chapter 3 the projection method has been described, with the aim
of reducing the computational effort of standard coupled algorithms for the
resolution of the Navier-Stokes system. Moreover, the orthogonal decomposi-
tion by using Raviart-Thomas elements has been included in a standard split
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method to take advantage of a divergence-free representation of the velocity,
for the solution of the pressure equation.

In Chapter 4 numerical results concerning the orthogonal velocity de-
composition and the employment of the projection method have been shown.
Computed convergence rates for velocity and pressure error have been proven
to agree with the theoretic discussion. All the presented results have em-
ployed computational grids for which convergence of the computed variables
can be obtained. Non-affine meshes have also been tested, where naturally
an error convergence has not been obtained.

The thesis also extended its focus to multiphase flow simulations, empha-
sizing the significance of maintaining a divergence-free velocity in scenarios
where mass conservation is critical. The novel algorithm introduced for sur-
face advection using marker techniques has shown promising results, particu-
larly in the context of interface tracking within multiphase flow simulations.
Specifically, we provide the possibility to advect a marker cloud representing
a multiphase interface, and by exploiting a best-fit interpolated quadric it is
possible to create a new set of markers that represents the surface in the new
position. An interesting comparison has been performed, exploiting specific
characteristics of lagrangian and Raviart-Thomas finite elements.

Regarding future challenges, we aim to extend the application of Raviart-
Thomas finite elements considering different physical problems, such as elec-
tromagnetism and optimal control problems. Additionally, an improvement
of the marker library is expected in order to extend the capability of the
surface reconstruction, for the analysis of physical multiphase tests such as
interface instabilities.

In summary, this dissertation has contributed to the understanding of
maintaining divergence-free fields in incompressible flow simulations. The
Raviart-Thomas finite element family emerged as a valuable tool in address-
ing this challenge, with applications ranging from the projection method for
the Navier-Stokes equations to the advection of interfaces in multiphase flows.
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séminaires de mathématiques et informatique de Rennes, no. S4, pp. 1–
26, 1974. 13, 14

[34] M. A. Case, V. J. Ervin, A. Linke, and L. G. Rebholz, “A connection be-
tween Scott–Vogelius and grad-div stabilized Taylor–Hood FE approx-
imations of the Navier–Stokes equations,” SIAM Journal on Numerical
Analysis, vol. 49, no. 4, pp. 1461–1481, 2011. 18

[35] M. Fortin, “An analysis of the convergence of mixed finite element meth-
ods,” RAIRO. Analyse numérique, vol. 11, no. 4, pp. 341–354, 1977. 21

[36] G. Auchmuty and J. Alexander, “L2-well-posedness of 3d div-curl bound-
ary value problems,” Quarterly of applied mathematics, vol. 63, no. 3,
pp. 479–508, 2005. 23

[37] D. Boffi, F. Brezzi, M. Fortin, et al., Mixed finite element methods and
applications, vol. 44. Springer, 2013. 29

[38] P. Ciarlet, The finite element method for elliptic problems. SIAM, 2002.
32

[39] J.-M. Thomas, Sur l’analyse numérique des méthodes d’éléments finis
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