Numerical algorithms for mass conservation applications

Barbi, Giacomo (2024) Numerical algorithms for mass conservation applications, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Meccanica e scienze avanzate dell'ingegneria, 36 Ciclo. DOI 10.48676/unibo/amsdottorato/11597.
Documenti full-text disponibili:
[img] Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (2MB)

Abstract

This dissertation focuses on the well-known issue of mass conservation in the context of the finite element technique for computational fluid dynamic simulations. Specifically, non-conventional finite element families for solving Navier-Stokes equations are investigated to address the mathematical constraint of incompressible flows. Raviart-Thomas finite elements are employed for the achievement of a discrete free-divergence velocity. Quadrilateral and hexahedral finite element spaces are considered to investigate the error convergence of different variables. In particular, the proposed algorithm projects the velocity field into the discrete free-divergence space by using the lowest-order Raviart-Thomas element. This decomposition is applied in the context of the projection method, a numerical algorithm employed for solving Navier-Stokes equations. Numerical examples validate the approach’s effectiveness, considering different types of computational grids. Additionally, the dissertation considers an interface advection problem using marker approximation, in the context of multiphase flow simulations. A C++ library is presented, where the implemented algorithm is able to initialize, advect, and reconstruct a marker cloud performing a best-fit quadratic interpolation. Several numerical tests, equipped with an analytical velocity field for the surface advection, are presented to demonstrate the robustness of the algorithm. Lastly, a comparison with an interpolated velocity by using Raviart-Thomas basis functions is shown, with the aim of maintaining zero divergence, mitigating the classical issue of finite element mass loss.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Barbi, Giacomo
Supervisore
Dottorato di ricerca
Ciclo
36
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Raviart-Thomas finite element, mass conservation, Navier-Stokes, free-divergence velocity, multiphase flow, surface tracking, marker technique, quadric interpolation
URN:NBN
DOI
10.48676/unibo/amsdottorato/11597
Data di discussione
3 Luglio 2024
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^