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Abstract

Artificial intelligence (AI) holds the potential to revolutionize medicine
and healthcare, especially in diagnosis and treatment. However, integrat-
ing AI into medicine presents several challenges that demand immediate
consideration. This study examines three key aspects: explainability, re-
producibility, and the scarcity of data due to privacy concerns. Explain-
ability is vital for increasing trust in AI systems, especially in medical
applications where decisions directly impact patient well-being. Repro-
ducibility ensures the reliability of machine learning models across differ-
ent settings. In this work, a new algorithm is proposed to compute average
explanations to enhance these aspects. This approach aims to provide con-
sistent and reproducible explanations, particularly in validation settings,
contributing to the transparency and reliability of AI in medical decision-
making. Additionally, privacy regulations intensify the scarcity of medical
data, which prevents the development of effective AI models. In response,
this investigation explores the potential of applying swarm learning (SL).
Swarm learning is a recently proposed technology that empowers collabo-
rative model training across decentralized data and computational sources
while preserving data privacy. This innovative approach overcomes data
scarcity issues and ensures compliance with stringent privacy regulations,
preparing for a more robust AI development in the medical domain. This
study underscores the necessity of addressing critical aspects such as ex-
plainability, reproducibility, and privacy concerns when deploying AI for
healthcare applications.
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Abbreviations

The following abbreviations are used in this manuscript:
ABIDE Autism Brain Imaging Data Exchange
ADOS Autism Diagnostic Observation Schedule
ADNI Alzheimer’s Disease Neuroimaging Initiative
AI artificial intelligence
AUC area under the curve
CortexVol cerebral cortical gray matter volume
CI confidence interval
CT average cortical thickness
CV cross-validation
EHR electronic health record
EPVS enlarged perivascular spaces
eTIV estimated intracranial volume
FA fractional anisotropy
FD fractal dimension
FL federated learning
GI average gyrification index
GM gray matter
ICBM international consortium for brain mapping
lGI local gyrification index
LIME local interpretable model-agnostic explanations
MAE mean absolute error
MD mean diffusivity
ML machine learning
MRI magnetic resonance imaging
nCV nested cross-validation
NKI Nathan Kline institute
ReLU rectified linear unit
ROC receiver operating characteristic
ROI region of interest
SD standard deviation
SHAP Shapley additive explanations
SL swarm learning
SVD small vessel disease
TD typical development
URI uniform resource identifier
WM white matter
XAI explainable artificial intelligence
XGBoost extreme gradient boosting



Chapter 1

Introduction

1.1 Critical aspects of artificial intelligence in medicine

In recent years, the spread of artificial intelligence has increased in many
research fields. Applications of machine learning (ML) methods have been
widely used to solve various complex challenges across multiple applica-
tion areas, such as medical, financial, environmental, marketing, security,
and industrial applications [Shehab et al., 2022]. In the healthcare context,
the role of AI is becoming crucial year after year: more computationally
efficient algorithms now offer unique opportunities to enhance diagno-
sis and improve approaches to precision medicine. Despite the enormous
potential shown by AI in research, its deployment in the real world still
needs to be improved. Indeed, with the increase in the use of artificial
intelligence, significant challenges are arising [Saw and Ng, 2022]. These
critical aspects can be summarized in three key points:

• Explainability: AI models are often difficult to trust and understand;

• Reproducibility: the results of AI models proposed in published paper
journals are difficult to reproduce;

• Privacy and Scarcity of Data: Data are often scarce due to the rareness
of diseases or privacy issues.

Indeed, in recent years, a growing amount of scientific literature has
claimed a need for reproducible and explainable artificial intelligence in
medicine [Loftus et al., 2022, Ciobanu-Caraus et al., 2024, Moassefi et al.,
2023].

6



1.1 Critical aspects of artificial intelligence in medicine 7

The role of explainability is crucial in healthcare and related fields be-
cause both patients and clinicians need to have tools to trust machine
learning models.

The reproducibility of machine learning models is crucial to reproduce
models many times, and we need to have the same results for the same
experiments and data.

The scarcity of medical data is often due to privacy issues but also due
to the rareness of the diseases, which leads to having too low of an amount
of data eligible for the training of robust machine learning models.

In this work, we focused our research activities on these critical aspects
of artificial intelligence in medicine.

Explainability

Explainability is the branch of artificial intelligence that focuses on making
machine learning models clear and trustworthy. Indeed, ML models are
often considered to be black box models, in which it is difficult or impossible
to argue why a model is making a specific decision or had that particu-
lar prediction. For this purpose, many techniques of explaining models
were born in the past years. Here we present three of the most known
techniques used for tabular data in healthcare [Di Martino and Delmastro,
2023]:

• Deep Learning Important FeaTures (DeepLIFT) [Shrikumar et al.,
2017]: a recursive prediction explanation method for deep learning
models.

• Local Interpretable Model-agnostic Explanations (LIME) [Ribeiro et al.,
2016]: interprets individual model predictions based on a local ap-
proximation of the model around a given prediction.

• SHapley Additive eXplanations (SHAP) [Lundberg and Lee, 2017a]:
a framework for interpreting predictions based on classical Shapley
values from game theory by assigning to each feature an importance
value for every sample.

In the next chapters, we will introduce these three methods for enhanc-
ing the interpretability of machine learning models. Notably, our explo-
ration will focus on adopting SHAP as a preferred method for rendering
machine learning models transparent and interpretable. We will focus on
the unique attributes of SHAP that position it as a powerful tool in unrav-
eling the decision-making processes of complex models, emphasizing its
capacity to offer insightful and intuitive explanations.
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Reproducibility

One of the challenges in machine learning research is to ensure that pre-
sented and published results are consistent and reliable [Pineau et al.,
2021]. Reproducibility, that is, obtaining similar results as shown in a sci-
entific paper using the same code and data (when available), is necessary
to verify the reliability of research findings. The training of many machine
learning models makes use of randomness, and this is especially true for
deep learning models. One attempt at creating trustworthy analyses with
machine-learning models revolves around reporting analysis details such
as hyperparameter values, model architectures, and data-splitting proce-
dures. Unfortunately, such reporting requirements are insufficient to make
analyses trustworthy.

For machine learning models in the life sciences to become trusted, sci-
entists must prioritize computational reproducibility [Heil et al., 2021]. To
improve this phenomenon, many authors repeat the training procedure
tens of times, changing the random seeds during the process and taking a
final average performance of the model based on these repetitions [Li et al.,
2020, Kim, 2009, Burman, 1989, Vanwinckelen and Blockeel, 2012]. More-
over, when the datasets available have a low number of samples (which
is very common in medical research), it is recommended to use valida-
tion methods to get the maximum possible amount of information using
all the samples during the training process. One approach in Medicine is
the repetition of a nested cross-validation (nCV) loop [Mueller and Guido,
2017]. NCV is a procedure that helps examine the unbiased generalization
performance of the trained models and simultaneously performs hyperpa-
rameters optimization [Mueller and Guido, 2017]. This class of method-
ologies allows authors to assess more robust, consistent, and reproducible
models.

Data privacy issues

Recent medical applications are primarily dominated by ML models to as-
sist expert decisions, leading to innovations in radiology, genomics, and
modern healthcare systems in general [Aouedi et al., 2023]. Despite the
profitable usage of AI-based algorithms, these data-driven methods often
need help with issues such as the scarcity and privacy of user data and the
difficulty of institutions exchanging medical information. Several machine
learning and deep learning algorithms have been applied to facilitate clin-
ical diagnosis, but such tools often require large clinical datasets for train-
ing [Chishti et al., 2020, Al’Aref et al., 2018]. In medicine and healthcare,
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one of the significant problems for artificial intelligence is the need for
large amounts of data [Saw and Ng, 2022]. Limited samples often charac-
terize single-center studies in the medical domain due to the complexity
and high costs of patient data collection [Shaikhina and Khovanova, 2017].
On the one hand, this is due to the rareness of diseases [Holzinger, 2018],
leading to the hospitals having a meager amount of patient samples to an-
alyze. On the other hand, scarcity of data is given by the fact that hospitals
do not want or are not allowed to share their data due to privacy policies
[Rieke et al., 2020]. This leads hospitals to train machine learning models
on very restricted datasets. In conventional centralized approaches, aggre-
gating diverse datasets for comprehensive learning is impeded by strict
privacy protocols, making it challenging to develop robust and generaliz-
able models. To address this issues, in the recent years data augmentation
techniques and generative AI in general has become more and more popu-
lar in the medical field [Chlap et al., 2021], giving clinicians the possibility
to train models on big synthetic datasets. However, data augmentation
techniques may be limited by serious challenges in building an appropri-
ate generative model given the high intercorrelation of the medical data
[Murtaza et al., 2023].

An other approach to face the scarcity of data is the use of decentralized
learning, where models in different locations are trained on their local data
and merged to obtain a final model. Recently, swarm learning appeared
as a valuable approach in the medical field, allowing patient data to stay
where it is generated. Swarm learning is a decentralized and collaborative
approach to machine learning where a group of individual machine learn-
ing models, called nodes work together to collectively solve a problem or
perform a task without centralized control [Warnat-Herresthal et al., 2021].
Unlike traditional machine learning models that rely on a central server or
coordinator, swarm learning distributes the learning process across multi-
ple nodes. Each node independently processes data and contributes to the
overall learning task. Nodes in a SL system communicate and share in-
formation. This collaboration allows the swarm to benefit from individual
nodes’ different sample information, leading to improved overall perfor-
mance. Swarm learning addresses privacy concerns by allowing data to
remain on individual nodes: instead of sharing raw data, nodes exchange
model updates or aggregated information, enabling collaborative learning
without compromising the privacy of individual data. Swarm learning is
inherently scalable, as new nodes can quickly join the swarm, contributing
additional computational resources and knowledge. This makes it well-
suited for applications like medicine and healthcare, where the amount of
data or computational requirements may vary between different hospitals.
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Swarm learning leverages the concept of distributed learning, where the
overall model is built through the collaboration of multiple nodes. Since
a SL setting allows many centers to train a model together while keeping
training data decentralized, it can protect privacy-sensitive medical data.
In the concluding phase of this work, we will get deep into the dynamics
of swarm learning behavior by systematically exploring various data con-
figurations between the nodes. This investigation analyzes how swarm
intelligence adapts and performs across diverse scenarios.

1.2 Scientific proposal

This work will explore these three critical aspects of artificial intelligence
for medicine. The first part of this work will go deep into the field of
explainability and reproducibility of SHAP. In the second part, the focus
will be on the scarcity and privacy of data in the medical field, introducing
the concept of swarm learning.

In Chapter 2, three tools for explainability used for tabular data are in-
troduced: DeepLIFT, LIME, and SHAP. In Chapter 3, the main validation
methods used in machine learning to validate models and performances
are explained. In Chapter 4, a new method for reproducing consistent and
reproducible explanations of models is proposed, implementing SHAP
values in validation techniques. In Chapter 5, two works are presented,
in which our approach was implemented to obtain representative and re-
producible explanations in predicting autism disorder and dementia tran-
sition using machine learning. In Chapter 6, the concept of swarm learning
is introduced, a recent machine learning technique to overcome privacy
issues in artificial intelligence for medicine, and its performances in differ-
ent scenarios are investigated.



Chapter 2

Explainable artificial intelligence

2.1 Explainability

Explainability is the concept that a machine learning model and its output
can be explained in a way that “makes sense” to a human being at an
acceptable level. It can be formally defined as follows [Chazette et al.,
2021]:

A system S is explainable with respect to an aspect X of S relative to
an addressee A in context C if and only if there is an entity E (the
explainer) who, by giving a corpus of information I (the explanation
of X), enables A to understand X of S in C.

The explainability of AI algorithms is becoming more and more critical
in many fields of research [Miller, 2019, Cirillo et al., 2020, Arrieta et al.,
2020], especially in Medicine. Clinicians must trust algorithms when a
prediction occurs and make crucial decisions that can have physical and
psychological implications for patients. Therefore, an explainable model
should clarify how it arrived at a specific decision and its relevant features.
In Medicine, explainability is thus necessary for AI to ensure concordance
with medical goals [Adadi and Berrada, 2018].

In our quest for transparent and explainable machine learning models,
we will present in the next chapters a new algorithm that leverages rep-
resentative SHAP values to enhance model explainability. Before delving
into this new approach, we will precede the introduction of our new al-
gorithm by exploring and incorporating various other state-of-the-art ex-
plainability techniques. Let us introduce the first two explanability meth-
ods, DeepLIFT and LIME.

11
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2.2 DeepLIFT

Learning Important Features Through Propagating Activation Differences,
or DeepLIFT, is an explainability method that decomposes the output pre-
diction of a neural network on a specific input by backpropagating the
contributions of all neurons in the network to every feature of the input
[Shrikumar et al., 2017]. This technique works only with Deep learning
models, such as artificial neural network (ANN). Indeed, it propagates an
essential signal from an output neuron backward through the layers to
the input in one pass, like similar backpropagation approaches [Simonyan
et al., 2013, Selvaraju et al., 2017]. DeepLIFT explains the difference in
output from some reference output in terms of the difference of the input
from some reference input [Shrikumar et al., 2017]. This reference input
is an input image which is used to explain the input pixel: The reference
input represents some default or neutral input chosen according to what is
appropriate for the problem. Let us represent some target output neuron
of intereset and let x1, x2, . . . , xn represent some neurons in some interme-
diate layer. Let y0 represent the reference activation function y. We define
the quantity ∆y as the difference from reference: ∆y = y− y0. DeepLIFT
assigns contribution scores C∆xi∆y to ∆xi such that it satisfies the first ax-
iom:

• Axiom 1. Conservation of Total Relevance: Sum of relevance of
all inputs must equal the difference between the score of the input
image and the baseline image, at every neuron: Given a reference
input vector x0 with score y0 and an input vector x with score y, we
define:

∆x = x− x0 (2.1)
∆y = y− y0 (2.2)

The definition of the Contribution is given by:

n

∑
i=0

C∆xi∆yi = ∆y (2.3)

C∆xi∆yi can be considered as the amount of difference-from-reference in
y that is attributed to the difference-from-reference of xi. Furthermore,
C∆xi∆yi can be non-zero even when ∂y

∂xi
is zero. This allows DeepLIFT to ad-

dress a limitation of gradients, which cause noisy attribution maps. For a
given input neuron x and target neuron y, we define the multiplier m∆xi∆y
following the second axiom:
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• Axiom 2. Back Propagation/Chain Rule: The contribution per input
follows the chain rule like gradients. The definition of contribution
per input is given by:

m∆xi∆yi =
C∆xi∆yi

∆xi
(2.4)

and following the chain rule we obtain:

m∆xi∆yi =
n

∑
i=0

m∆x∆yi m∆yi∆z (2.5)

So the multiplier m∆xi∆yi is the contribution of ∆xi to ∆yi divided by ∆xi.
However, it can be essential to treat positive and negative contribu-

tions differently, so let us consider a neuron y with inputs x such that
y = f (x1, x2, ...xn). For every neuron y , we introduce ∆y+ and ∆y− to
represent the positive and negative components of ∆y, such that:

∆y = ∆y+ + ∆y− (2.6)
C∆x∆y = C∆x∆y+ + C∆x∆y− (2.7)

In the paper, the authors present two different rules for assigning scores:

• Rescale rule: this rule applies nonlinear transformations that take
a single input such as rectified linear unit (ReLU) [Agarap, 2018] or
sigmoid functions, so we set ∆y+ and ∆y− proportional to ∆x+ and
∆x− as follows:

∆y+ =
∆y
∆x

∆x+ = C∆x+∆y+ (2.8)

∆y− =
∆y
∆x

∆x− = C∆x−∆y− (2.9)

Ande we get:

m∆x+∆y+ = m∆x−∆y− = m∆x∆y =
∆y
∆x

(2.10)

• RevealCancel rule: this rule treats the positive and the negative con-
tributions separately. Instead of assuming that ∆y+ and ∆y− are pro-
portional to ∆x+ and ∆x− and that m∆x−∆y− = m∆x+∆y+ = m∆x∆y as
is done for the Rescale rule, we define them as:

∆y+ =
1
2
( f (x0 +∆x+)− f (x0))+

1
2
( f (x0 +∆x−+∆x+)− f (x0 +∆x−))

(2.11)
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∆y− =
1
2
( f (x0 +∆x−)− f (x0))+

1
2
( f (x0 +∆x++∆x−)− f (x0 +∆x+))

(2.12)

m∆x+∆y+ =
C∆x+∆y+

∆x+
=

∆y+

∆x+
(2.13)

m∆x−∆y− =
C∆x−∆y−

∆x−
=

∆y−

∆x−
(2.14)

where x0 is the reference activation of the input.

DeepLIFT works by comparing the activations of neurons on the actual in-
put to the activations of the neurons on a “reference” or “baseline” input
and backpropagating an importance signal (“contribution scores”) in such
a way that the sum of contributions across all input features will equal
the difference of the output activation from its reference value. Using the
difference-from-reference allows information to propagate even when the
gradient is zero. Essentially, DeepLIFT digs back into the feature selection
of the neural network and finds neurons and weights that significantly af-
fect output formation. It gives separate consideration to positive and neg-
ative contributions. However, DeepLIFT is model-specific because it is de-
signed specifically for deep neural networks, more specifically Keras and
TensorFlow models; it is not compatible with other machine learning mod-
els that are not based on neural networks, like extreme gradient boosting
(XGBoost) [Chen and Guestrin, 2016a] or support vector machines (SVM)
[Cortes and Vapnik, 1995].
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2.3 Local Interpretable Model-agnostic Explana-
tions (LIME)

Local Interpretable Model-agnostic Explanations (LIME) is an explainabil-
ity framework that enables the generation of local explanations of black-
box models performing superpixel occlusion. LIME was developed by the
University of Washington researchers [Ribeiro et al., 2016] to study what
happens inside an algorithm by capturing feature interactions. This tech-
nique generates the explanations by approximating the model by an in-
terpretable one, such as a linear model, based on the perturbations of the
original model. It performs various multi-feature perturbations around a
particular prediction and measures the results. The critical aspect behind
LIME is that it is much easier to approximate a model by a simple model
locally, in the neighborhood of the prediction we want to explain, instead
of trying to resemble a model globally.

We define a vector x ∈ Rd to be the original representation of an in-
stance being explained, and we define x′ ∈ {0, 1}d to denote a binary
vector for its interpretable representation. For image classification, an in-
terpretable representation may be a binary vector indicating the presence
or the absence of a contiguous patch of similar pixels. We define an ex-
planation as a model g ∈ G where G ∈ {0, 1}d is a class of potentially
interpretable models, such as linear models, where g acts over the absence
or presence of interpretable components. As not every explanation may
be simple enough to be interpretable, let Ω(g) be a measure of complex-
ity of the explanation g ∈ G. For example for linear models, Ω(g) may
be the number of non-zero weights. Let the model being explained be
f : Rd → R. We further use πx as a proximity measure between an in-
stance z to x, so as to define locality around x. Also, let L(g, f , πx) be a
measure of how unfaithful g is in approximating f in the locality defined
by πx. In order to ensure both interpretability and local fidelty, we mini-
mize L(g, f , πx) while having Ω(g) be low enough to be interpretable by
humans. The explanations produced by LIME is obtained by the following
equation:

ξ(x) = argminL(g, f , πx) + Ω(g) (2.15)

Presenting the explanation as an optimization problem to find a trade-
off between the local fidelity of the explanation and its interpretability it
offers no guarantees that the explanations are faithful and stable. Using
neighborhood-around explanation instances, it may fall into a curse of di-
mensionality trap. To overcome this issue, an idea worth pursuing is an
axiomatic approach based on the Shapley values [Shapley, 1952]. They
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are classic game theory solutions for the distribution of credits to players
participating in a cooperative game. Such an approach addresses another
limitation of LIME: the ordering of variables impacts the contributions cal-
culated, especially for non-additive models. Shapley-based approaches
reduce this issue by averaging the value of a variable’s contribution or a
large number of possible orderings. Shapley values are a particular ex-
ample of perturbation-based methods, known as the unique methods that
satisfy specific properties, where no hyperparameters are required.

2.4 SHapley Additive exPlanations (SHAP)

Shapley values

Shapley values are a concept taken from the cooperative game theory and
are used to attribute a player’s contribution to the result of a game [Shap-
ley, 1952]. Let us consider a cooperative game where a set of players col-
laborate to create some value. If we can measure the total result of the
game, Shapley values capture the marginal contribution of each player to
the result. Now, let us imagine a machine learning model as a game in
which features cooperate to produce a model output and associate each
feature with a contribution to the Shapley value. A Shapley value for a
feature is computed by the difference between the prediction of the model
output with that feature and the prediction of the model without that fea-
ture. This method requires to re-train the model on all features subsets
S ⊆ F, where F is the set of all features. If we consider a generic model f ,
we can denote as fS∪{i} a model trained with the i-th feature present and
fS a model trained without the i-th feature. Then, predictions from the
two models are compared on the difference fS∪{i}(xS∪{i})− fS(xS), where
xS and xS∪{i} represent the values of the input features in the set S and
S ∪ {i}, respectively. We need to sum this term over all the possible com-
binations of subsets S to get ϕi, the marginal value of adding feature i-th
to the training. This can be accomplished by adding the weighted aver-
age among all possible differences that give the Shapley value of the i-th
feature, as follows:

ϕi =
1
|F| ∑

S⊆F\{i}

(
|F| − 1
|S|

)−1

[ fS∪{i}(xS∪{i})− fS(xS)] , (2.16)

where |S| and |F| are the cardinalities of S and F, respectively. The com-
binatorial term calculates how many permutations of each subset size we
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have when constructing it among all remaining features excluding feature
i. We then use this combinatorial term to divide the marginal contribution
of the feature i to all groups of size |S|. Also, we have to divide them by
the number of features participating in the model prediction, i.e., the total
number of features F. This term is needed to average out the effect of how
much the feature i contributes regardless of the size of the total number
of features. We can use these values as contributions of the features for
the model output. Indeed, we can define an explanation model g as a linear
function of the feature contributions [Lundberg and Lee, 2017b]:

g(z) = ϕ0 +
M

∑
i=1

ϕizi , (2.17)

where ϕ0 is the SHAP value equal to E[ f (z)], i.e., the average of the sam-
ples’ outcomes, zi are binary variables with zi ∈ {0, 1}, M is the number of
input features, and binary values refer to the presence (1) or absence (0) of
a feature. For Lundberg and Lee there are three favorable properties that
an explanation model should satisfy [Lundberg and Lee, 2017b]:

local accuracy: the explanation model g(x′) matches the model out-
put f (x) when x′ is in the neighborhood of x.

consistency: if a model changes so that the marginal contribution
of a feature value increases or stays the same (regardless of other
features), the Shapley value also increases or stays the same.

missingness: a missing feature does not contribute to the explana-
tion of the model output.

Shapley values satisfy the first two of these properties, but still cannot
handle missing values. In order to satisfy also the missingness property,
Lundberg and Lee proposed the SHAP values, explained in the next lines.

SHAP values

SHAP values are the classical Shapley values of a conditional expectation
function of the original model f [Lundberg and Lee, 2017b]. Since most
models cannot handle arbitrary patterns of missing input values, Lund-
berg and Lee approximated missing values with values of the dataset picked
randomly to cancel their statistical power [Lundberg and Lee, 2017b]. For
this reason, SHAP values provide the unique additive feature importance
measure that adheres to all the properties, including the missingness prop-
erty. A single SHAP value is a real number that refers to a single feature of
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a sample. The sign of the SHAP value tells us in which direction the fea-
ture drives the output of a specific sample, while the absolute value tells
us the impact of that feature. The sum of the SHAP values for a given sam-
ple ∑M

i=1 ϕi = f (x)− E[ f (z)] provides the difference between the output
prediction and the base value, which is the value of a feature-less model,
i.e., the average of the samples’ outcomes E[ f (z)].

The SHAP method is preferable to other explanation methods because
it satisfies the properties of local accuracy, consistency, and missingness
[Lundberg and Lee, 2017b]. A comparison between SHAP and other XAI
methods (e.g., LIME) has already been explored in the literature (see, e.g.,
[Lombardi et al., 2021, Antwarg et al., 2021]). In particular, Lombardi et
al. [Lombardi et al., 2021] showed that SHAP values can provide more
reliable explanations, i.e., less influenced by small variations of the train-
ing set. However, since SHAP depends on inherently stochastic model
predictions, the explanations might exhibit variability in different training
iterations. Moreover, SHAP framework has been proposed for hold-out
strategies [Batunacun et al., 2021, Bi et al., 2020b, Kim and Kim, 2022, Chen
et al., 2019, Rodrı́guez-Pérez and Bajorath, 2020], where SHAP values are
computed only when a final model is trained. For this reason, extending
its application across diverse validation scenarios is essential. Some au-
thors adopted the SHAP method with CV strategies [Parsa et al., 2020, Bi
et al., 2020a, Feng et al., 2021, Deb and Smith, 2021, Wang et al., 2021, El-
Sappagh et al., 2021], but SHAP was used only after the CV procedure
on often unclear portions of the dataset. To overcome this issue, in Chap-
ter 4, we propose a method that enables us to get consistent explanations
of trained machine learning models in a repeated nested cross-validation
procedure. By incorporating SHAP into different validation strategies and
conducting multiple repetitions, we aim to ensure that the explanations
generated remain consistent and robust across various training instances
of the same model. This approach allows for a thorough examination
of the algorithm’s generalizability across diverse datasets. However, it’s
important to note that our algorithm is versatile and adaptable to vari-
ous validation methods beyond the presented framework. Recognizing
the significance of employing appropriate validation techniques, the next
chapter will comprehensively introduce and discuss the main validation
methods suitable for our algorithm.



Chapter 3

Validation Methods

This Chapter introduces the concept of validation in machine learning. Model
validation is a core component of developing machine learning or artifi-
cial intelligence that assesses the ability of an ML or statistical model to
produce predictions with enough accuracy and performance. It is an es-
sential step in developing any ML or AI system, as it helps ensure that
the model performs as intended and can handle unseen data. With proper
model validation, the confidence in its ability to generalize well on unseen
data can be high. Furthermore, validation helps determine the best model,
parameters, and accuracy metric for the given problem.

Model validation also allows for comparing different models, allowing
us to choose the best one for the task. Furthermore, it helps determine the
model’s accuracy when presented with new data.

19
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3.1 Holdout Validation

Figure 3.1: Example of hold-out method. The original dataset is divided in train-
ing set and test set. The training set is used to train the model and the test set is
used to assess the model performance with unseen data.

Holdout validation is the most common approach for evaluating ML mod-
els. In this approach, the available data are partitioned into training, val-
idation, and test sets. The proportion of the available data used for each
set depends on the number of available data points, the data variability,
and the characteristics of the used model. Generally, the proportion of the
validation set assigned to the training data must be significant when work-
ing with small datasets. Typically, 70% of the available data are used for
training, 15% for validation, and the remaining 15% for testing the model,
although the percentage allocations can vary.

Due to the intrinsic size of validation sets and better representation of
the data, the ratio between validation and training sets can be smaller as
datasets grow. The training and validation sets are used to build the mod-
els. Model parameters are learned from the training set. Model hyperpa-
rameters are determined using the validation data during a process called
hyperparameter tuning. Models are trained, tuned and then evaluated on
the test set to estimate their generalization error (i.e. the error of the result-
ing model when applied to unseen data). Training and tuning the models
should not use the test data; otherwise, the generalization error estimate
would be overoptimistic and inaccurate. Because of its computational effi-
ciency, the holdout validation strategy is frequently employed for training
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deep learning models with big datasets. However, this method is often
criticized, for not utilizing the entire dataset for small datasets. It is possi-
ble that a tiny test set will not yield a trustworthy estimate of model perfor-
mance, and that the performance measures depend on the selection of the
test. It is frequently impossible to choose a test set big enough to be reflec-
tive of the underlying data for small datasets. Furthermore, fewer samples
are available to train the model when a bigger test set is employed, which
has an adverse effect on the final model’s performance.

Also, when fine-tuning a model using this approach, the resulting model
may be sensitive to the choice of the validation set, resulting in models
with low ability to generalize.

3.2 Cross-Validation

Cross-Validation (CV) is a resampling approach used to evaluate ML mod-
els. This method provides an unbiased estimation of model performance
[Hastie, 2013]. This approach tends to give a more accurate estimate of
generalization error when dealing with small datasets than hold-out val-
idations. In the following section, we introduce different types of cross-
validation.

K-fold cross-validation

In k-fold cross-validation, samples are divided into k non-overlapping splits
(or folds) (Figure 3.2). Next, the model is trained k times, and each time,
the model is trained on the k− 1 folds and validated on the remaining kth
fold. This way, each of the different k folds is selected only once to be the
validation set. Then, the average performance obtained by the k various
trainings of the model is used as the estimate of the validation error. This
technique requires much more computational time than hold-out strate-
gies because it includes k different trainings of the model. However, the
variance of the performance measure is reduced, and the resulting esti-
mate is more consistent than one single hold-out validation method.
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Figure 3.2: k-fold Cross validation with k = 5.

The choice of the number of folds k depends on the computational time
and the number of samples of the whole dataset. However, 10-fold and 5-
fold CV is the most widely used for evaluating ML models [Hastie, 2013].
When dealing with unbalanced datasets, namely datasets where one class
of samples is much more frequent than the others, k-fold CV may lead to
unstable performance measures. In the stratified k-fold CV, each k folds are
sampled so that the distribution of the classes in each fold is almost the
same in the whole dataset.

Nested cross-validation

Most ML models use several hyperparameters. When developing ML so-
lutions, it is standard practice to tune these hyperparameters. Conducting
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experiments to find the hyperparameter values that yield the best results is
standard practice. When using multiple models to find the best hyperpa-
rameter values for a CV, which divides data into training and validation
sets, the validation error that results is frequently over-optimistic when
used to estimate generalization error. Consequently, a test set should be
kept private and out of the model training and hyperparameter tweak-
ing processes. A trustworthy estimate of generalization error can be ob-
tained from the model’s performance on this test set. For small datasets,
choosing a single subset of data as the test set yields estimates for gener-
alization errors that have high variance and are sensitive to the composi-
tion of the test set. Nested cross-validation (nCV) is used to address this
challenge. Indeed, nCV helps examine the unbiased generalization perfor-
mance of the trained models and simultaneously performs hyperparam-
eters optimization [Mueller and Guido, 2017]. NCV consists of an outer
cross-validation loop and an inner cross-validation loop. The outer loop
uses different train, validation, and test splits (Figure 3.3). The inner loop
takes a train and validation set chosen by the outer loop. The model with
different hyperparameters is trained using the training set, and the best
hyperparameters are determined based on the performance of the trained
models on the validation set. In the outer loop, generalization error is es-
timated by averaging test error over the test sets in the outer loop.
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Figure 3.3: Nested Cross validation with 5 folds for the outer loop and 5 folds for
the inner loop.

3.3 Boostrap Resampling

The bootstrap method is a resampling technique used to estimate statistics
on a population by sampling a dataset with replacement [Dixon, 2006].

It can estimate summary statistics, such as the mean or standard devi-
ation.

A desirable property of the results from estimating ML model perfor-
mance is that the estimated value can be presented with confidence inter-
vals, a feature not available with other methods such as cross-validation.
This method draws a sample of size n from the whole dataset D. Then, the
sampling distribution is created by resampling observations with replace-
ment from D m times, with each resampled set having n observations.
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Therefore, by resampling the D dataset m times, it would be as if m
samples were drawn from the original population, and the estimates de-
rived would be representative of the theoretical distribution under the tra-
ditional approach (Figure 3.4).

Increasing the resamples m will not improve the data’s information.
The amount of information within the set depends on the sample size n,
which will remain constant throughout each resample.

Figure 3.4: Bootstrap resampling.
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3.4 Reproducibility and Explainability

Reproducibility is a key concept not only in artificial intelligence research
but also in science in general: a scientific experiment must replicate the
same results given the same initial conditions every time it is performed.
In the same way, ML models need to provide consistent and robust results
when performed multiple times. In the Machines Learning field, Repro-
ducibility can be defined as [Gundersen and Kjensmo, 2018]:

Reproducibility in empirical AI research is the ability of an indepen-
dent research team to produce the same results using the same AI
method based on the documentation made by the original research
team.

This concept is particularly valid in artificial intelligence for medicine and
related fields, where clinicians and patients need consistent and trustwor-
thy AI suggestions for diagnosis and treatments. The problem of repro-
ducibility in science has been debated for the past few decades, especially
in Medicine and Healthcare [Beam et al., 2020, Rajpurkar et al., , Haibe-
Kains et al., , Stower, 2020, Walsh et al., 2021].

The main problem of this concept is the fact that one of the main char-
acteristics of many machine learning strategies is their inherent stochastic
nature [Sabuncu, 2020], which leads the performance not to be precisely
reproducible. For example, even the choice of random seeds in many ma-
chine learning models (whenever they are present) could lead to the high
variability of the performance between two different training procedures
of the same model [Amir et al., 2021]. To reduce this phenomenon, many
authors repeat the training procedure tens of times, changing the random
seeds during the process and taking a final average performance of the
model based on these repetitions (see, e.g., [Li et al., 2020, Kim, 2009, Bur-
man, 1989, Vanwinckelen and Blockeel, 2012]). Furthermore, due to the
frequent scarcity of data in medical research [Lee Choong Ho, 2017], one
approach is the repetition of a nested cross-validation loop [Mueller and
Guido, 2017]. This method is especially effective when the data is rela-
tively low because it allows for training and testing a model, often using
broad, non-overlapping folds of the dataset. This approach allows the pos-
sibility of testing the model on all dataset subjects and obtaining an aver-
age performance. These fundamental concepts also have to be transferred
to Explainability. A given explanation of a model has to be consistent and
the same explanation for every repetition of a machine learning experi-
ment. It is imperative that the explanations provided by a model remain
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consistent and reliable across multiple repetitions of an experiment. Fur-
thermore, in scenarios of limited data availability, particularly common in
medical research, the repetition of a nested cross-validation loop emerges
as a valuable approach. This method, discussed in the next chapter, proves
effective in training and testing models across diverse, non-overlapping
folds of the dataset, contributing to a more robust and reliable evaluation
of model performance. In the upcoming discussion, we will delve into the
application of SHAP values within a repeated nested validation setting,
shedding light on their role in enhancing both performance and explain-
ability.



Chapter 4

Representative SHAP values

The study reported in this chapter refers to the published journal paper
entitled ”Explanations of Machine Learning Models in Repeated Nested Cross-
Validation: An Application in Age Prediction Using Brain Complexity Features”,
Scheda R., Diciotti S.

In the previous chapters, the critical role of reproducibility and ex-
plainability discussed. It has been shown how these concepts are inte-
gral components of a robust machine learning framework, emphasizing
the crucial requirement that explainability must possess the attribute of
being reproducible. In this work, it’s proposed a general method to obtain
representative SHAP values within a repeated nested cross-validation pro-
cedure and separately for the training and test sets of the different cross-
validation rounds to assess the real generalization abilities of the expla-
nations. This method was applied to predict individual age using brain
complexity features extracted from Magnetic Resonance Imaging (MRI)
scans of 159 healthy subjects. In conclusion, this proposed method allows
a rigorous assessment of the SHAP explanations of a trained model in a
repeated nested cross-validation setting.

28
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4.1 Introduction

SHAP is a powerful XAI framework for interpreting predictions based on
classical Shapley values from game theory by assigning to each feature
an importance value for every sample [Shapley, 1952]. As mentioned in
Chapter 2, despite other explainability methods, SHAP is a preferable ex-
plainability technique because it satisfies the properties of local accuracy,
missingness, and consistency. SHAP method is also preferable because it
allows us to get global explanations but also sample-level explanations of
a machine learning model [Lombardi et al., 2021].

Nevertheless, since SHAP values depend on the model predictions,
variability in the performance of re-trained models may lead to the vari-
ability of SHAP values with the risk of reducing the consistency of the
model’s explainability. Moreover, SHAP framework has been proposed
for hold-out strategies [Batunacun et al., 2021, Bi et al., 2020b, Kim and
Kim, 2022, Chen et al., 2019, Rodrı́guez-Pérez and Bajorath, 2020], where
SHAP values are computed only when a final model is trained.

To make explanations consistent and reproducible, it becomes neces-
sary to integrate SHAP values computation within different validation
techniques such as repeated CV and repeated bootstrap resampling. By
embedding SHAP values computations within these validation frameworks,
we ensure a better understanding of feature contributions that are sen-
sitive to the model’s predictive capabilities and resilient to potential bi-
ases or variations in the training data. For these reasons, in this study,
we extended the use of SHAP values for a repeated nCV setting by es-
timating representative SHAP values, obtained by averaging patient-level
SHAP values of each feature across different folds and repetition of the
nested CV. Moreover, we consider it essential to evaluate the SHAP val-
ues separately for the training and test set of the different cross-validation
rounds to evaluate the generalization abilities of the SHAP explanations
of a trained model. To test our method, we applied representative SHAP
values computed in nCV to two regression and one classification task in
predicting individual age using brain complexity features from two pub-
lic, and international neuroimaging datasets of in-vivo MRI scans for a
total of 159 healthy subjects (age range 6–85 years).
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4.1.1 Computing SHAP values in repeated nested cross-
validation

Let us consider a dataset composed of N samples with M features and a
K-fold nCV procedure (see Figure 4.1).

Figure 4.1: Schematic representation of the computation of representative SHAP
values. SHAP values of training and test folds are computed separately for each
round of the outer CV. Then, SHAP values are averaged over the training folds.
This procedure is repeated K times, and SHAP values for the training and test sets
are averaged over the R repetitions. (Image adapted from [Yagis et al., 2021].)

This strategy involves nesting two K-fold CV loops where the inner
loop is used to optimize, e.g., model hyperparameters. The outer loop
gives an unbiased estimate of the performance of the best model [Mueller
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and Guido, 2017]. The procedure starts by splitting the dataset into K folds
(outer CV): one fold is kept as a test set of the outer CV, while the other
K− 1 folds (the training set of the outer CV) are, in turn, split into K inner
folds, i.e., K− 1 for training and the Kth for validation, to provide an unbi-
ased evaluation of the model fit on the inner training set while tuning the
model’s hyperparameters. Once the best combination of hyperparameters
that maximized the performance metrics in the validation set has been
found, the model with that combination of hyperparameters is re-trained
on the outer training set and tested on the test set kept out from the outer
CV. The nested CV is repeated R times with different random seeds to
make different data splitting of the K folds. This procedure can be used
both for regression and classification tasks.

The pseudo-code for the computation of representative SHAP values
in the training and test sets of the outer CV is illustrated in Algorithm 1.
For each repetition r of the outer CV loop, we compute SHAP values ϕir

nk
of every sample n and feature i for the k round (split iteration) of the outer
CV separately for the training and test using the SHAP python module
Explainer [Lundberg, 2018c]. Then, for each sample n, we compute a rep-
resentative SHAP value for the training (ϕtrain)

ir
n and test (ϕtest)ir

n sets. For
the training set, we compute (ϕtrain)

ir
n as the average of the SHAP values

overall the K− 1 folds of the outer CV as follows:

(ϕtrain)
ir
n =

1
K− 1

K−1

∑
k=1

(
ϕir

nk

)
. (4.1)

Since, in the r repeated CV, a sample n belongs to one fold used as a test
only, namely fold k∗, the representative SHAP value of the test set of that
sample n is simply

(ϕtest)
ir
n = ϕir

nk∗ . (4.2)

Finally, after the R repeated CVs, the final representative SHAP values
for the sample n and feature i are then obtained by averaging over the R
repetitions in both the training and test sets:

(ϕ̄train)
i
n =

1
R

R

∑
r=1

(ϕtrain)
ir
n , (4.3)

(ϕ̄test)
i
n =

1
R

R

∑
r=1

(ϕtest)
ir
n . (4.4)
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Algorithm 1 N number of samples; M: Number of features; K: Number of
folds; R: Number of repetitions.

X ← Dataset # Data table with N samples and M f eatures (N rows×M columns)
y← Target
model ← Classi f ier
Explainer ← SHAP.Explainer() # Shap f unction which computes SHAP values
train f olds shap values← 0 # Initialized matrix (N rows×M columns)
test f olds shap values← 0 # Initialized matrix (N rows×M columns)
for r in 1, . . . , R do

f old splits← split(K)
innerCV( f old splits, model)
outerCV(innerCV, K). f it(X, y)
for k in f old splits do

X train, y train← f old splits.train(k)
X test, y test← f old splits.test(k)
best k model ← outer CV[k].best model
best k model. f it(X train, y train)
train shap values← Explainer(best k model(X train))
test shap values← Explainer(best k model(X test))
train f olds shap values← train f olds shap values + train shap values

K−1
test f olds shap values← test f olds shap values + test shap values

end for
end for
average train f olds shap values = train f olds shap values/R # ϕ̄train
average test f olds shap values = test f olds shap values/R # ϕ̄test

Experimental tests: age prediction using features of brain complexity

Individual age prediction using neuroimaging data is a popular approach
for identifying biomarkers supporting brain health [Franke and Gaser,
2019]. In this context, biomarkers quantifying brain complexity, includ-
ing the local gyrification index (lGI) and the fractal dimension (FD) of the
cerebral gray and white matter, have been proved to have predictive capa-
bilities in age prediction [Franke and Gaser, 2019, Marzi et al., 2020, Madan
and Kensinger, 2016]. In a previous paper, we used two public datasets to
show that, among others, our implementation of the fractal dimension us-
ing an automated selection of the fractal scale within which the cerebral
cortex manifests the highest statistical self-similarity yielded the most ac-
curate machine learning models for individual age prediction [Marzi et al.,
2020].

To prove the utility of computing the SHAP values in repeated nCV,
in this study, we considered two regression and one classification task
for age prediction using features of brain complexity extracted from MRI
data [Marzi et al., 2020]. In particular, we used the high-resolution pub-
lic and international T1-weigthed datasets of healthy children and ado-
lescents [Nathan Kline Institute (NKI)—Rockland Sample Pediatric Mul-
timodal Imaging Test–Retest Sample—NKI2 dataset [Nooner et al., 2012]]
and adults [International Consortium for Brain Mapping (ICBM) dataset
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[Kötter et al., 2001]]. Briefly, the NKI2 dataset comprises MRI examina-
tions of 73 healthy pediatric subjects aged 6 to 17 years (43 males and
30 females, age 11.8 ± 3.1 years, mean ± standard deviation). The ICBM
dataset comprises MRI examinations of 86 healthy adult and elderly sub-
jects ranging from 19 to 85 years (41 males and 45 females, age 44.2 ± 17.1
years). For classification purposes, we also considered a dichotomous task
defined as the prediction of a young group vs. an elder group in the ICBM
dataset. The young group consisted of subjects having age ≤ 30 years (25
subjects – 9 males and 16 females, 22.6 ± 3.3 years) and the elder group of
subjects having age ≥ 56 years (28 subjects - 11 males and 17 females, 64.9
± 8.2 years).

The extraction of features of brain complexity from MRI data has been
described in detail previously [Marzi et al., 2020]. Briefly, a completely
automated cortical reconstruction of each subject’s structural T1-weighted
MRI scan was performed by employing the FreeSurfer image analysis
suite (http://surfer.nmr.mgh.harvard.edu/) [Fischl, 2012], a dedicated
brain segmentation software [Rosas et al., 2002, Han et al., 2006, Lee et al.,
2006, Kang et al., 2012, Keller et al., 2013, King, 2014]. This includes re-
moval of non-brain tissue using a hybrid watershed/surface deformation
procedure, automated Talairach transformation, segmentation of the sub-
cortical white matter and deep gray matter volumetric structures, intensity
normalization, tessellation of the gray/white matter boundary, automated
topology correction [Fischl et al., 2001] and surface deformation following
intensity gradients to optimally place the gray/white and gray/cerebrospinal
fluid borders at the location where the greatest shift in intensity defines
the transition to the other tissue class. The local cortical gyrification lGI
was computed following a surface-based approach [Schaer et al., 2008].
Briefly, in each vertex, a spherical region of interest is delineated on an
outer envelope (ROIO) that tightly wraps the pial cortical surface, and its
corresponding region of interest on the pial cortical surface (ROIP) is iden-
tified using a matching algorithm based on geodesic constraints. Thus, the
lGI is derived as the ratio between ROIP and ROIO areas, quantifying the
amount of cortex buried within the sulcal folds in the surrounding spher-
ical region. Then, we averaged the lGI within the entire cortex to obtain
a gyrification index (GI) representative of the cortical complexity of each
subject. Moreover, we recorded the following FreeSurfer’s outputs: the
cerebral cortical gray matter volume (CortexVol), the estimated intracra-
nial volume (eTIV), and the average cortical thickness (CT) throughout
the cerebral cortex.

Lastly, we estimated the FD of the cerebral cortex of each subject using
four different strategies for the selection of spatial scales. They include

http://surfer.nmr.mgh.harvard.edu/
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the use of (1) a priori selection of the interval equal to [4 mm–256 mm]
(inspired by Kiselev et al. [Kiselev et al., 2003]) (FDA priori #1) (2) a priori se-
lection equal to 5–40% of the smallest Euclidean dimension of the cerebral
cortex [Goñi et al., 2013] (rounded to the nearest power of 2) (FDA priori #2),
(3) an automated selection of spatial scales, within which the cerebral cor-
tex manifests the highest statistical self-similarity [Marzi et al., 2018, Pan-
toni et al., 2019a] (FDAuto Marzi et al. 2018), (4) an improved automated selec-
tion of the interval of spatial scales, based on the search of the interval of
spatial scales which presents the highest rounded R2

adj coefficient and, in
case of equal rounded R2

adj coefficient, preferring the widest interval in the
log–log plot (FDAuto f ractalbrain) [Marzi et al., 2020, Marzi et al., 2021a, Pani
et al., 2022b].

We predicted individual age using an XGBoost model - an XGBoost
regressor or classifier for regression and classification tasks, respectively.
XGBoost is a tree-based machine learning model widely used to achieve
cutting-edge performance on a variety of recent machine learning chal-
lenges [Chen and Guestrin, 2016b]. As inputs, we thus used nine features:
the four implementations of the FD of the cerebral cortex, the volume of
the cerebral cortex (i.e., CortexVol), the average cortical thickness (i.e., CT),
the average gyrification index (i.e., GI), the estimated total intracranial vol-
ume (i.e., eTIV), and sex. The models’ hyperparameters were chosen from
a hyperparameter space through a random search based on the average
performance of the model. The hyperparameters space was defined as
follows: the minimum loss reduction required to make a further partition
on a leaf of the tree gamma ∈ {0.6, 0.7, 0.8}, the subsample ratio of columns
when constructing each tree colsample bytree ∈ {0.25, 0.5, 0.75, 1}, the max-
imum depth of a tree max depth ∈ {2, 3, 4}, the minimum number of in-
stances needed to be in each node min child weight ∈ {2, 3, 5}, the num-
ber of decision trees n estimators ∈ {5, 10, 20, 100} and the ratio of training
data randomly sampled prior to growing trees subsample ∈ {0.1, 0.2, 0.4}.
Moreover, since SHAP has an optimized implementation for tree-based
models (called TreeExplainer), using XGBoost, we can compute SHAP val-
ues in polynomial time compared to model agnostic explainers for this
class of models [Lundberg et al., 2020]. We adopted a repeated (100 times)
nCV strategy, and we chose a 5-fold CV in both the inner and outer loops
because it offers a favorable bias-variance trade-off [Hastie, 2013].

The performance in the regression and classification tasks has been
measured through the mean absolute error (MAE) and area under the Re-
ceiver Operating Characteristic (ROC) curve (AUC), respectively. The av-
erage MAE or AUC from all repetitions was computed to get a final model
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assessment score.

Figure 4.2: Results for the NKI2 regression task in a 5-fold nCV over 100 repeti-
tions. Top row: beeswarm summary plots of representative SHAP values for the
training (on the left) and test sets (on the right). The given SHAP explanation
is represented by a single dot on each feature row for each sample (i.e., subject).
The SHAP value of each feature determines the x position of the dot, and dots pile
up along each feature row to show density. Color is used to display the original
value of the feature. Bottom row: summary bar plot representing global feature
importance as represented by the mean absolute SHAP value for that feature over
all the given samples for the training (on the left) and test sets (on the right).

4.2 Results

For the two regression tasks, we obtained an MAE of 1.61 ± 0.14 years
(mean ± standard deviation) in the NKI2 dataset and 12.13 ± 0.86 years
in the ICBM dataset. For the classification task, we obtained a ROC AUC
value of 0.881 ± 0.068 and balanced accuracy of 0.77 ± 0.06 (Figure 4.5).
The point in the ROC curve with the minimum distance from the ideal
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classifier (at coordinates (0,1)) showed specificity = 0.8, and sensitivity =
0.826.

The beeswarm summary plots of representative SHAP values and av-
erage impact for training and test sets of the regression tasks computed us-
ing our method, in nCV over 100 repetitions, are shown in Figure 4.2 and
4.3 for the NKI2 and ICBM datasets, respectively. The beeswarm summary
plots show how the top-ranking features in a dataset impact the model’s
output. The given representative SHAP explanation is depicted by a sin-
gle dot on each feature row for each sample (i.e., subject). The SHAP value
of that feature determines the x position of the dot, and dots pile up along
each feature row to show density. Color is used to display the original
value of a feature [Lundberg, 2018b]. The average impact is represented
by bar plots showing global feature importance as the mean absolute rep-
resentative SHAP value for that feature over all the given samples [Lund-
berg, 2018a].

The same plots for the classification task using the ICBM dataset are
shown in Figure 4.4.
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Figure 4.3: Results for the ICBM regression task in a 5-fold nCV over 100 repe-
titions. Top row: beeswarm summary plots of representative SHAP values for
the training (on the left) and test sets (on the right). The given SHAP explanation
is represented by a single dot on each feature row for each sample (i.e., subject).
The SHAP value of each feature determines the x position of the dot, and dots pile
up along each feature row to show density. Color is used to display the original
value of the feature. Bottom row: summary bar plot representing global feature
importance as represented by the mean absolute SHAP value for that feature over
all the given samples for the training (on the left) and test sets (on the right).
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Figure 4.4: Results for the ICBM classification task in a 5-fold nCV over 100 rep-
etitions. Top row: beeswarm summary plots of representative SHAP values for
the training (on the left) and test sets (on the right). The given SHAP explanation
is represented by a single dot on each feature row for each sample (i.e., subject).
The SHAP value of each feature determines the x position of the dot, and dots pile
up along each feature row to show density. Color is used to display the original
value of the feature. Bottom row: summary bar plot representing global feature
importance as represented by the mean absolute SHAP value for that feature over
all the given samples for the training (on the left) and test sets (on the right).
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Figure 4.5: Average (and ± 99.9% confidence interval (CI) ) ROC curve of the
model trained in the classification task in a 5-fold nCV over 100 repetitions us-
ing the ICBM dataset. The point in the ROC curve with the minimum distance
from the ideal classifier (at coordinates (0,1)) is represented in blue (at coordinates
(0.200, 0.826)). The ROC curve of a random classifier is overlayed in red as a ref-
erence.

4.3 Discussion

In this study, we proposed a method to compute representative SHAP
values in a repeated nested CV procedure. As for the standard perfor-
mance of machine learning models, in which average performance metrics
are usually given, also representative explainable values acting as a final
assessment of the behavior of the entire model, are essential. Whereas
current literature mainly focuses on SHAP values computed on the entire
dataset, we propose separate representative SHAP values for the training
and test sets to allow a rigorous assessment of the generalization abilities
of the SHAP explanations of a trained model.

Based on traditional Shapley values [Shapley, 1952], SHAP uses a game-
theoretic framework to reframe the task of explaining the contribution of
different features to the model output for a particular instance. However,
since the SHAP values depend on the model predictions, variability in the
performance of re-trained models leads to variability of the model’s ex-
plainability through SHAP values. An example of this effect is shown in
Figure 4.6 in which we report the frequency with which each feature was



4.3 Discussion 40

identified as the most important (highest impact as measured by the abso-
lute value of the SHAP value over all the given samples) across all outer
CV test folds in 100 repetitions for each regression/classification task.

Figure 4.6: Relative frequency of neuroimaging features. For each regres-
sion/classification task, the frequency with which each feature was identified as
the most important (highest impact as measured by the absolute value of the
SHAP value over all the given samples across all outer CV test folds in 100 repe-
titions is shown.

It is apparent that the most impactful feature changes over the differ-
ent folds and repetitions. Still, the order of the most impactful features in
a single iteration may differ between training and test sets - see, e.g., the
summary bar plot representing global feature importance for the regres-
sion task using the NKI dataset in Figure 4.7.
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Figure 4.7: Summary bar plot representing global feature importance for a single
iteration of the regression task using the NKI dataset, separately, for the training
(on the left) and test sets (on the right). The order of the most impactful features
in one iteration differs between training and test sets.

Previously, SHAP values were estimated for the test set of a single nCV
repetition, thus generating potentially unstable explanations [Beebe-Wang
et al., 2021, El-Sappagh et al., 2021, Siciarz et al., 2021]. Blüthgen et al. pro-
posed SHAP values in the test sets of a repeated CV without detailing
the procedure adopted and considering only the average impact on model
output magnitude, thus losing information about the sign of the SHAP
values which inform the positive/negative association with each feature
[Blüthgen et al., 2021]. In two recent works [Lombardi et al., 2021, Lom-
bardi et al., 2022], the average of SHAP values of samples in test sets
among 100 repetitions of an ML model has been applied. In [Lombardi
et al., 2021], the authors trained a deep neural network (DNN) model for
age prediction using MRI data from the Autism Brain Imaging Data Ex-
change (ABIDE I) dataset collected from 17 international sites. For hyper-
parameter tuning, they used a leave-one-site-out CV where the data from
one site was adopted as a test set to evaluate the model’s performance
while the data from all other sites was used as a training set. After each
CV, they randomly under-sampled the training set 100 times by removing
a percentage of the samples in each iteration to produce small variations
of the composition of the set and trained the DNN model to predict the
subjects’ age. They tested the DNN models on each test set sample, col-
lecting 100 MAEs and SHAP values and averaging them for each sample.
In [Lombardi et al., 2022], the authors adopted a leave-one-subject-out CV
strategy using MRI data from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) dataset, i.e., they split the dataset into as many sets as the
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number of subjects. One subject was randomly selected for testing, while
the others were used to train the model. For each CV (over 100 repeti-
tions), they randomly under-sampled the training set multiple times by
selecting a fixed amount of samples for each diagnostic category from the
training set. Then, a random forest model was trained within each CV
round based on a grid search and nested k-fold stratified CV. The tuned
model was tested on each sample of the test subject, and SHAP values
were computed 100 times and averaged for each sample. Basically, in their
first work, the authors trained multiple times the same model on different
portions of training datasets [Lombardi et al., 2021], whereas, in the other
study, they added hyperparameter tuning within the repetitions to select
the best model given by the different subsets [Lombardi et al., 2022].

Our method allows to estimate representative SHAP values, separately
for the training and test sets, in a repeated nCV setting following a well-
documented algorithm accompanied by the source code. This will enable
other researchers to apply the procedure in their own studies. It differs
from the Lombardi et al. approach [Lombardi et al., 2021, Lombardi et al.,
2022] for two main reasons: i) we repeatR times the nested CV rather than
generating repeated under-sampled training set in a single nested CV, ii)
our proposed method allows to separately compute representative SHAP
values for the training and test sets - coherently averaged, sample by sam-
ple, among folds and repetitions. This gives the user a stronger under-
standing of the average behavior of the model’s interpretability in a very
robust and popular validation setting, i.e., the repeated nested CV. More-
over, our method can be easily applied to simpler validation schemes, in-
cluding repeated hold-out procedures and any machine learning model in
a regression or classification task.

Our results on individual age prediction using brain complexity fea-
tures are consistent with previous findings [Marzi et al., 2020]. We pre-
viously showed a monotonic decrease in structural complexity (in terms
of FDAuto f ractalbrain) of the cerebral cortex with age during almost all the
lifespan [Marzi et al., 2020] and, more recently, that the cardiorespira-
tory fitness is positively associated with cortical gray matter complexity in
the temporal lobe, a region which is particularly sensitive to normal and
pathological aging [Pani et al., 2022b]. In the present study, as expected,
low values of brain complexity (FDAuto f ractalbrain) and cortical thickness
give a positive contribution to the model output (individual age) in both
children and adults (see the beeswarm plots in Figures 4.2, 4.3 and 4.4).
In other words, we confirmed that a lower brain complexity and corti-
cal thinning are valuable predictors of older subjects both in a young and
adult cohort. Moreover, our results support that our latest development of
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the fractal dimension (FDAuto f ractalbrain) [Marzi et al., 2020] is more predic-
tive of individual age than other implementations. This result strengthens
the importance of the selection of the interval of spatial scales for an ade-
quate characterization of the structural complexity of the cerebral cortex,
especially fascinating when using ultrahigh-field MRI [Marzi et al., 2021a].
Moreover, FDAuto f ractalbrain was the most impactful neuroimaging feature
for predicting the age in children (NKI2 dataset) and the second most im-
portant feature for adults (ICBM dataset), with an impact on the model
output close to that of the first top-ranking CT feature (see Figures 4.3 and
4.4). This result confirms the ability of the fractal dimension of the cerebral
cortex, besides that of cortical thickness and gyrification, in characterizing
brain maturation and aging, as previously observed for neurodegenera-
tion [King et al., 2010]. In addition, we showed that the global feature im-
portance of the FDAuto f ractalbrain was consistently greater than that of the
GI - a well-established index of the structural complexity of the human
cortex.

As expected, feature rankings were not consistently the same in the
training and test sets. Indeed, whereas the same ranking was observed
for the ICBM regression task (see Figure 4.3), this was not the case for
the NKI2 regression task (see Figure 4.2) and ICBM classification task (see
Figure 4.4), in which only the first three and four top-ranking features were
identical, respectively.

The main limitation of our proposed method is the computation time.
Indeed, while the SHAP’s explainer TreeExplainer, tailored for the tree-
based models as the XGBoost, is very efficient, the model agnostic SHAP
explainer is computationally demanding, especially within repeated nested
cross-validation. Still, we considered the age prediction task using brain
complexity features to exemplify the use of SHAP in repeated nCV. We re-
fer to more specialized literature for improving age prediction using, e.g.,
functional connectivity features extracted by functional MRI [Monti et al.,
2020] and electroencephalography (EEG) data [Al Zoubi et al., 2018] that
could also potentially use recent deep learning progresses [Zhang et al.,
2021, Zhao et al., 2022].

4.4 Conclusions

We proposed a method to compute representative SHAP values of the be-
havior of a machine learning model in a repeated nested cross-validation
procedure, separately for the training and test sets. This will allow a rig-
orous assessment of the SHAP explanations of a trained model. Future
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efforts should focus on developing integrated frameworks for the train-
ing, test, and explainability of AI models designed in machine learning
pipelines independently of the validation strategy.



Chapter 5

Representative SHAP values in
artificial intelligence for
neuroscience

In the previous chapter, it was presented a new algorithm designed to
compute SHAP values within the context of repeated nested cross-validation.
The significance of this algorithm lies in its capacity to enhance the robust-
ness of interpretability of machine learning models in different validation
settings. Based on this, this chapter showcases the application of our algo-
rithm in two distinct papers focused on diagnostics in neuroscience. The
first paper explores the utilization of our algorithm for the diagnosis of
autism spectrum disorder, leveraging tabular data. The second paper con-
cerns the prediction of dementia transition diagnosis, employing tabular
data extracted from MRI images. These contributions underscore the al-
gorithm’s versatility and practical implications in addressing critical chal-
lenges within healthcare, improving understanding, and early detection
of neurodevelopmental and neurodegenerative disorders.

45
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5.1 Explainability in autism spectrum disorder
diagnosis

The study reported in this section refers to the published journal paper en-
titled ”Early prediction of Autism Spectrum Disorders through interaction anal-
ysis in home videos and explainable artificial intelligence”, Paolucci, C; Giorgini,
F; Scheda, R; Alessi, FV; Diciotti, S.

This work proposes an AI pre-screening tool for early Autism Spec-
trum Disorders (ASD) diagnosis with the aim of creating an easily admin-
istrable tool for observers useful to identify potentially alarming signs in
pre-verbal interactions. These features are evaluated using an explainable
artificial intelligence algorithm using representative SHAP values to as-
sess which of the proposed new interaction features was more effective in
classifying individuals with ASD vs. healthy subjects. We used a rating
scale with three core sections: sensorimotor, behavioral, and emotional,
each further divided into four sub-features. By seeing home videos of
children doing everyday activities, two experienced observers rated each
sub-feature from 1, corresponding to typical interactions, to 8 correspond-
ing to extremely atypical interactions. Then, a machine learning model
based on XGBoost was developed to identify ASD children. The classi-
fication obtained had an area under the receiver operating curve of 0.938
and 0.914 for the two observers, respectively. Representative SHAP values
demonstrated the significance of early detection of body-related sensori-
motor features.

5.1.1 Introduction

The prevalence of ASD in Europe is 12.2 per 1000 children [Salari et al.,
2022]. Early diagnosis of ASD has proven to be crucial in achieving effec-
tive treatment [Gabbay-Dizdar et al., 2022], thereby improving the lives
of ASD infants and their families [Elder et al., 2017, Franz and Dawson,
2019, Rotholz et al., 2017, van ’t Hof et al., 2021, Volkmar, 2014]. This work
seeks to develop easily understandable and administrable tools to iden-
tify potentially alarming behaviors, which is usually considered a precious
achievement by scholars concerned by very early diagnosis [Daniels and
Mandell, 2014]. Indeed, evident signs of impairments and atypicality that
can lead to ASD can be seen by looking at embodied and prelinguistic in-
teractions between infants and caregivers when the toddler is between 9
and 18 months old [Gallagher and Hutto, 2008, Paolucci, 2020, Trevarthen
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and Hubley, 1978]. As several retrospective studies show [Alonim et al.,
2021], early symptoms and behaviors related to ASD can be seen long be-
fore the infant enters the linguistic phase. It is difficult to provide a di-
agnosis before the age of two years and a half, which usually follows the
observation of a linguistic skills development delay in children [van ’t Hof
et al., 2021]. Critical issues can also be found within screening tests such
as the Autism Diagnostic Observation Schedule (ADOS) [Luyster et al.,
2009]. These tests are typically used to screen the general community or
a population that is already at risk, identify cases of ASD, and separate
them from other conditions that have similar symptoms. This test con-
sists of a series of highly structured activities, during which examiners
assess the presence of specific behaviors that are natural to a neurotypical
subject and usually lacking or deficient in ASD subjects. Hence, ADOS
mostly succeeds for two reasons: i) the observer is a highly competent
subject, usually a neuropsychiatrist; ii) ADOS is a highly grammaticalized
test carried out in a controlled laboratory situation. However, observers
like caregivers, teachers, or parents have difficulty identifying warning
signs without any expertise, even if they are the ones who spend most of
the time with later ASD-diagnosed infants. Furthermore, the dynamics
of daily activities shared between caregivers and infants are not as struc-
tured and schematic as those that makeup ADOS tests, with the conse-
quence that even if caregivers had this kind of expertise, it would be diffi-
cult for them to apply it in daily, unplanned interactions. This implies that
non-expert observers risk not identifying potential warning signs from the
earliest months of life. This work tries to overcome this issue, develop-
ing easily understandable and administrable tools for teachers, parents or
caregivers, the non-competent observers who spend most of the time with
future ASD children. To test the validity of this methodology, we used
representative SHAP values to evaluate which of the newly proposed in-
teraction features were more effective in classifying individuals with ASD
compared to controls.

5.1.2 Materials and methods

Feature extraction

We tried to analytically distinguish the main areas involved in a caregiver-
infant interaction through a simplified system in which the observer only
needs to look at the attunement between the child and the caregiver dur-
ing their interaction. Thus, our idea of attunement upon which the do-
mains structuring our methodology (see Sensorimotor dimension: A – the
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SENSORIMOTOR DIMENSION BEHAVIOURAL DIMENSION EMOTIONAL DIMENSION
A-The bodies B -The doing C-The feelings
A1-The space B1-The doing together C1-The feeling together

A2-The body of the other B2-The mutual gaze while doing together C2-The emotional gaze
A3-The infant’s own body B3-Joint attention C3-The facial expression
A4-Degree of attention
to the motor sanction of
the caregiver

B4-Degree of attention
to the behavioural sanc-
tion of the caregiver

C4-Degree of attention
to the emotional sanc-
tion of the caregiver

Table 5.1: Description of the features.

bodies; Behavioural dimension: B – the doing; Emotional dimension: C
– the feeling) is not aimed at analyzing or considering infants’ specific
cognitive competences and skills. Instead, following a semiotic perspec-
tive, our methodology focuses on their general capacity and willingness
to manage the meaning production and recognition through the various
phases of the practices in which they are involved. Thus, our method-
ology aims at analysing and evaluating infants’ competence to manage
sense-making processes through interaction. In this vein, our methodol-
ogy is consistent with the methodological criteria and aims of ADOS-2, the
goal of its activities being “not to test specific cognitive abilities or other
skills, but to present tasks that are sufficiently intriguing so that the child
or adult being assessed will want to participate in social interchanges”
[Lord, 1999]. As our addressee is an ordinary observer, we have operated
with a view to simplification to reduce the heterogeneity and complexity
of the searchable signs identified in the diagnostic screening tests. Sim-
plification means that all signs must be summed up in a small number of
things to look for that a caregiver can easily evaluate. The hardest part
of this work has been removing all of the semiotic technicalities that have
been used in order to accomplish that and ending up with something that
can be told in a very simple and clear way: if the infant attunes to the care-
giver, he/she is essentially a typical-developing infant; if not, the child
needs to be monitored, as children who do not tune in to their caregivers
during interactions often receive a diagnosis of ASD or other neurodevel-
opmental disorders later. The main aspect that makes the system very
simple is that one only needs to observe the attunement between the in-
fant and the caregiver during their interaction. So, what can be attuned in
an interaction? We have identified three main dimensions of attunement:
A) the bodies; B) the doing; C) the feelings, a sensorimotor, a behavioral,
and an emotional dimension (See Table 5.1).
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Sensorimotor dimension: A - The bodies

The four items structuring this first dimension aim to analyze infant-caregiver
interaction on its sensorimotor features. Indeed, infants later diagnosed
with ASD present a lack of motor control, as they seem not able to coordi-
nate and balance the movements between limbs, trunk, and head [Teitel-
baum et al., 1998].

This first dimension presents four signs useful to identify sensorimo-
tor anomalies, which prevent the development of an attuned dynamic of
interaction. The four aspects considered are:

Space (A1): Examines the distance between subjects, the movement to-
wards/away from each other, and the typicality of the infant’s approach to
caregivers or other infants. ASD children may display differences in per-
sonal space interactions, such as staying too close or maintaining excessive
distance.

Body of the Other (Bodily Attunement - A2): Assesses the extent to
which the child adapts their body to caregivers or other children during
physical encounters. ASD infants often fail to adapt their posture and
movements to align with another person’s, appearing rigid, controlled,
and inattentive.

Infant’s Own Body (A3): Measures the child’s overall body posture
and movement style, including non-interactive situations. Infants later di-
agnosed with ASD may exhibit sensorimotor deficiencies, repetitive body
movements (stimming), and rigid postures.

Degree of Attention to Motor Sanction of the Caregiver (A4): Focuses
on the child’s attention and anticipation of caregivers’ body movements,
especially during actions requiring a specific reaction from the infant. ASD
infants may show a reduced ability to react appropriately to others’ ac-
tions, and mimic behaviors are often absent or reduced.

Behavioural dimension: B - The doing

The second dimension of analysis focuses on the observable behaviors of
infants referred as the ”doing” dimension, divided into four categories:

Doing Together (B1): Measures the child’s spontaneous participation
in shared activities, especially in unstructured and unplanned situations.
It assesses the child’s ability to fluently adapt to changes in a game or task
and play a role within it. The evaluation aligns with the core activities and
criteria of ADOS.

Mutual Gaze While Doing Together (B2): Examines the frequency
and style of the child’s eye contact with caregivers or other infants during
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shared activities. Reduced or absent eye contact and a lack of attention to
others’ faces may indicate potential ASD-related concerns.

Joint Attention (B3): Measures the extent to which the child’s attention
synchronizes with the caregiver’s during shared games or tasks. Difficulty
in attuning attention, reduced communication, and a lack of engagement
with others may be warning signs, as the child may appear isolated and
less responsive to the surrounding social context.

Degree of Attention to Behavioral Sanction of the Caregiver (B4):
Assesses how well the infant perceives, is aware of and reacts appropri-
ately to context-relevant actions and gestures made by the caregiver dur-
ing shared activities. This includes the child’s understanding of the mean-
ing of actions, games, or tasks and their responsiveness to encouragement
and instructions. Children with ASD may exhibit less responsiveness to
positive gestures, hindering their social learning and ability to form social
bonds.

Emotional dimension: C - The feelings

The third dimension of analysis focuses on emotions in the context of in-
teractions. It examines how these children respond to changes in others’
emotions, emphasizing that attunement does not mean sharing the same
emotion but involves considering and adjusting to the emotions of others.
The dimension is subdivided into four categories:

Feeling Together (C1): Measures how the infant and caregiver adjust
their emotional states in response to each other. It looks for signs of the
infant becoming happy when the caregiver is happy and the ability to ad-
just this emotion based on subtle cues from the caregiver. Attunement
involves a dynamic and spontaneous adaptation of emotional states be-
tween the infant and caregiver.

Emotional Gaze (C2): Evaluates the frequency of eye contact between
children and caregivers outside of task-related contexts. Natural and spon-
taneous eye contact contributes to the overall quality of interaction. A po-
tential concern arises if the child shows disinterest in making eye contact
or seems to avoid it, especially when interacting with others.

Facial Expressions (C3): Measures the extent to which the child imi-
tates or reacts spontaneously to caregivers’ facial expressions. Unlike the
general emotional state assessed in C1, this category focuses on specific fa-
cial expressions and how the child responds to the caregiver’s emotional
cues. An alarming situation may occur if the child remains unaware of the
meaning behind the caregiver’s facial expressions.



5.1 Explainability in autism spectrum disorder diagnosis 51

Degree of Attention to Emotional Sanction of the Caregiver (C4): As-
sesses how attentive the child is to the caregiver’s emotional cues and re-
quests. An alarming situation may be indicated if the child shows less
interest in the emotional states of others, fails to respond to prompts, or
does not exhibit the expected emotional reactions in line with the care-
giver’s cues.

5.1.3 The tool and the rating procedure

Based on these domains articulating the interactions between infants and
caregivers, we built a tool, in which items and rating systems aim at in-
dividuating signs of potential concern. Indeed, one of the main problems
in ASD screening tests concerns its questions and rating criteria. Thus, in
order to bring forth the ecological approach implied by our observational
methodology, which emphasizes the prominence of the occurring situa-
tion and contextual variabilities of the behaviors, we associated each item
of the three dimensions with a rating scale from 1 to 8. In particular, as
detailed in the manual using video examples, 1 stands for a very typical
interaction (high level of attunement) while 8 stands for a very atypical
interaction (low level of attunement). Depending on the severity of the
condition and the number of anomalies detected, we divide each field into
a range of possible concerns – where 1–2 means no concern, 3–4 means
light concern, 5–6 means mild concern, and 7–8 means severe concern.
This approach has the major advantage of sterilizing the observers’ emo-
tions and points of view. Indeed, the observers do not make any diagnosis:
they simply evaluate a behavior. The observers also have the possibility
not to rate one (or more) of the features if the home video they are watch-
ing is not explicit on that particular aspect (too short, unclear, etc.) or if
they feel unsure or incapable of doing so. However, in the first case, they
are invited to insert a “not readable” value in the sheet, while, in the sec-
ond case, they are encouraged to get acquainted with the videos and with
the system, trying to read the manual again and train themselves with
new material. It will be the system that will later tell whether the child
recorded in that particular interaction is behaving typically or not (see Re-
sults). They were home videos of i) children who were later diagnosed
with ASD when they were 9–18 months old and ii) typically developing
children who were used as a control group.

We recruited a total of 32 children with a diagnosis of ASD (10 indi-
viduals, 2 females) and typical development (TD) children (22 individu-
als, 10 females). At the recruitment stage, the children were between 18
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months and 11 years old, while all the collected videos show them in-
teracting with caregivers during their 9–18 months period. All partici-
pants were recruited after the project dissemination through social media
and word of mouth. ASD and TD children were sex-matched (χ2 = 1.9,
p− value = 0.16). A total of 67 home videos were collected (28 for the ASD
group; 39 for the TD group); for each child, we collected 1.86 ± 1.3 (mean
± standard deviation) videos for the ASD group and 1.77 ± 1.0 for the TD
group. Each video was made by parents or caregivers when the children
were aged 9–18 months. They were recorded using smartphone cameras
during their daily activities to cover the aspects of the three dimensions of
interaction.

Measurement of the inter-observer agreement

We measured the inter-observer agreement of the features using the lin-
early weighted kappa statistic [Altman, 1999]. We adopted the classes of
interpretation of the kappa statistic proposed by Landis and Koch [Lan-
dis and Koch, 1977] for descriptive purposes. Accordingly, a kappa value
below 0 indicates poor agreement, between 0 and 0.20 a slight agreement,
between 0.21 and 0.40 a fair agreement, between 0.41 and 0.60 a moderate
agreement, between 0.61 and 0.80 a substantial agreement and between
0.81 and 1 an almost perfect agreement (see Table 5.2).

ASD vs. TD classification through an XAI approach

We built a machine learning model for ASD/TD children classification
based on XGBoost. We fed the machine learning model by all attunement
features and the sex of the children. We trained and tested the ASD vs. TD
binary classification task using nested CV [Mueller and Guido, 2017]. In
particular, in this study we performed a nested CV loop with a stratified
child-based group data splitting scheme to examine the unbiased general-
ization performance of the trained model and, at the same time, perform
hyperparameters optimization (See Fig. 5.1) [Mueller and Guido, 2017].
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Figure 5.1: Five-fold nested CV with a stratified child-based group data splitting
scheme.
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In particular, this strategy involves nesting two k-fold CV loops where
the inner loop is used for optimizing model hyperparameters, and the
outer loop gives an unbiased estimate of the performance of the best model.
The stratified child-based group data splitting scheme in the inner and
outer CV prevents data leakage, i.e., videos belonging to the same child
may be included, at the same time, in the training/validation/test sets.
Briefly, we start by splitting the dataset into k folds (outer CV); one fold is
kept as a test set of the outer CV, while the other k-1 folds (the training set
of the outer CV) are split into k inner folds (k− 1 for training and the kth
for validation). Specifically, we used a 5-fold nested CV because it offers a
favorable bias-trade-off [Hastie, 2013, Lemm et al., 2011]. The models’ hy-
perparameters are chosen from the hyperparameter space through a grid
search based on the average performance of the model over the validation
sets of the inner folds. In particular, we varied the gamma hyperparam-
eter of the XGBoost in the set {0, 1, 2}, maximum depth in {4, 5, 6, 7, 8},
minimum child weight in {1, 2, 3, 4, 5}, and maximum delta step in {1,
3, 5, 7}. Once the best combination of hyperparameters that maximized
the area under the Receiver Operating Characteristic (ROC) curve in the
validation sets of the inner CV has been found, the model with that combi-
nation of hyperparameters is re-trained on the outer training set and tested
on the test set kept out from the outer CV. This procedure is repeated for
each fold of the outer CV. Before training each XGBoost classifier in the
inner and outer CV, we first applied feature imputation, i.e., we replaced
missing features with the average value of that feature in the set. Sec-
ondly, the set was standardized, i.e., each feature was rescaled to have
zero mean and unit variance. For each iteration of the inner and outer
CVs, these transformations were applied to the training, test, and valida-
tion sets using Python scikit-learn transformers, thus not using test data
in any way during the learning process, – preventing any form of peeking
[Diciotti et al., 2013]. Performance was quantified in terms of the AUC
of the ROC curve in the test sets of the outer CV. The point of the ROC
curve with minimum distance from the ideal observer’s performance (0,1)
was also computed for both observers. Since the performance may vary
depending on how the data are split in each fold of the CV, we repeated
the nested CV procedure ten times. We took the average and standard de-
viation of the results from all repetitions to get a final model assessment
score. Since we were interested in explaining the model predictions, we
adopted representative SHAP values [Scheda and Diciotti, 2022]. Accord-
ingly, for each model of the outer CV, SHAP values were computed to
produce an average and standard deviation of the feature importance ex-
planation for the final model. The training, validation, and test of the XAI
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models were carried out using a custom code in Python language (v. 3.8.8)
using the following modules: matplotlib v.3.4.1, numpy v.1.21.3, pandas
v.1.2.3, scikit-learn v.1.1.dev0 [Pedregosa et al., 2011], seaborn v.0.11.2, and
xgboost v.1.4.2. The total computation time for the training, validation,
and test was about 40 min on all cores of a Linux workstation equipped
with a 4-core (4 threads) Intel i7-7500U CPU and 8 GB RAM.

Feature Observer #1 Observer #2 Weighted Kappa Statistic
TD group ASD group TD group ASD group

A1 1.54± 1.2 (10.2%) 4.42± 2.3 (25.0%) 1.63± 1.2 (10.3%) 3.84± 2.6 (32.1%) 0.81
A2 1.54± 0.9 (5.1%) 5.64± 1.77 (21.4%) 1.63± 1.0 (5.1%) 4.91± 2.0 (21.4%) 0.85
A3 1.92± 1.4 (2.6%) 6.36± 1.7 (0.0%) 1.95± 1.4 (2.6%) 5.82± 2.1 (0.0%) 0.89
A4 2.03± 1.4 (12.8%) 6.34± 1.8 (17.9%) 2.06± 1.6 (12.8%) 5.23± 2.2 (21.4%) 0.81
B1 1.54± 1.1 (5.1%) 4.96± 2.7 (14.3%) 1.54± 1.2 (5.1%) 5.21± 2.6 (14.3%) 0.95
B2 1.65± 1.3 (5.1%) 5.48± 2.36 (3.6%) 1.68± 1.5 (5.1%) 5.61± 2.4 (0.0%) 0.90
B3 1.76± 1.4 (5.1%) 5.20± 2.6 (10.7%) 1.68± 1.4 (5.1%) 5.10± 2.4 (10.7%) 0.94
B4 1.63± 1.4 (5.1%) 5.11± 2.6 (3.6%) 1.66± 1.5 (2.6%) 5.28± 2.6 (10.7%) 0.94
C1 1.51± 1.0 (10.3%) 6.12± 2.1 (7.1%) 1.34± 0.95 (10.3%) 6.08± 2.3 (7.1%) 0.91
C2 1.65± 1.6 (5.1%) 5.88± 2.3 (10.7%) 1.65± 1.6 (5.1%) 5.88± 2.2 (7.1%) 0.98
C3 1.53± 1.3 (7.7%) 6.00± 2.2 (7.1%) 1.50± 1.3 (12.8%) 6.23± 2.2 (7.1%) 0.94
C4 1.63± 1.3 (10.3%) 6.24± 2.2 (10.7%) 1.53± 1.1 (12.8%) 6.00± 2.2 (10.7%) 0.93

Table 5.2: Descriptive statistics of the features measured by both observers
[mean± SDa(%unassigned)]. a SD: standard deviation.

5.1.4 Results

The model trained with features extracted by observers #1 and #2 reached
an AUC of 0.938 and 0.914, respectively – thus indicating an excellent per-
formance of the classification models (see Figure 5.2). The point of the
ROC curve with minimum distance from the ideal observer’s performance
(0,1) corresponds to a sensitivity = 0.89, specificity = 0.86 for observer #1
and sensitivity = 0.85, specificity = 0.86 for observer #2.
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Figure 5.2: ROC curve, in the test set of the outer CV, along with one standard de-
viation and 99.9% confidence interval curves of the models trained with features
extracted by (a) observer #1 (AUC =0.938± 0.015), and (b) observer #2 (AUC =
0.914± 0.021). The point of the ROC curve with minimum distance from the per-
formance of the ideal observer (0,1) is indicated with a red point and corresponds
to a sensitivity = 0.89, specificity = 0.86 for observer #1, and sensitivity = 0.85,
specificity = 0.86 for observer #2.

In the global feature plot, each feature’s global importance is assumed
as the mean absolute SHAP value for that feature over all the given sam-
ples expressing the average impact on model output magnitude. In Fig-
ure 5.4, we showed the ranking of the feature importance, i.e., the SHAP
strength (the absolute value of the SHAP values) for both observers. As
an example, in Figure 5.3, we plotted the beeswarm plots for the mod-
els trained in the first repetition. These plots are designed to show an
information-dense summary of how the principal features in the dataset
impact the model’s output. For each video, the given explanation is rep-
resented by a single dot on every single feature. The SHAP value of that
feature defines the x position of the dot, and dots “pile-up” along each fea-
ture row to show density. Colors are used to display the original value of a
feature. In other words, from these plots, we can see the value of SHAP for
each sample and each feature. The SHAP value of a given sample (a dot
point in the graph) takes on a different color (from blue to pink) whether
it has a high or low value, while it takes a different position in the graph
(from the base value of SHAP to the right or left), based on its impact on
the decision of the model. Therefore, if we observe a SHAP value colored
pink and located to the right, the feature has considerably affected the
model’s decision. In particular, for observer #1, high values of feature A2



5.1 Explainability in autism spectrum disorder diagnosis 57

move the model’s output toward the ASD group, while for observer #2, a
low value of feature C1 moves the model’s output toward the TD group.
For both observers, the model gave considerable importance to the sex of
the children, and if the sex is male (coded as ‘1’) the model’s output moves
toward the ASD group.

Figure 5.3: The SHAP beeswarm plot is shown for the models trained in the first
repetition for (a) observer #1 and (b) observer #2 (see Table 5.1 for the description
of the features). High feature values for sex are coded for “male”.

Figure 5.4: Representative SHAP values (average and standard deviation of the
absolute values among the ten repetitions) for (a) observers #1 and (b) #2 (see
Table 5.2 for the description of the features). The first ten features in the ranking
have been shown only.
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5.1.5 Discussion

In this study, we predicted ASD classification through interaction features
extracted according to our observational methodology by experienced ob-
servers watching children’s videos during their daily activities [Paolucci,
2021]. We found that the inter-observer agreement between the two ob-
servers was almost perfect. Then, we trained a machine learning model
with features extracted by observers #1 and #2, reaching excellent AUC
in discrimination ASD vs. TD children (Fig. 5.2). Then, we gave XAI
interpretability through representative SHAP values to evaluate which
of the newly proposed features were effective in classifying individuals
with ASD compared to healthy individuals. For observer #1, the features
A3 and A2 both concern “The bodies” and the sensorimotor dimension,
which were the most crucial in classifying ASD vs. TD subjects, while ob-
server #2 individuated feature A3 was the third most salient. Maybe this
“supremacy” and heuristics of the body – if compared to the doing and
the emotions – to reveal ASD in prelinguistic infants during secondary
intersubjectivity is worth further reflection. As previously stated (see In-
troduction), the classical cognitive sciences thought of cognition as a rep-
resentational mental faculty, in which perception used to be conceived
as the input and action as the output. Indeed, according to this model,
cognition was grounded on largely disembodied mental computations, in
which the body certainly played a secondary role, albeit a secondary one,
compared to the centrality of the mind and its meta-representational abili-
ties. The classical way of thinking, diagnosing, and understanding autism
spectrum disorders has been strongly influenced by this framework: ASD
has been considered a Theory of Mind disorder. In other words, ASD was
regarded as a disturbance of the metarepresentation capacity of the con-
stitutive type of mind that enables us to make cognitive sense of the ac-
tions of others. Indeed, classical and impactful studies, such as those by
Baron-Cohen [Baron-Cohen et al., 1985, Baron-Cohen, 1995, Baron-Cohen,
2000] have linked the inability of ASD children to pass meta transactional
tests of false belief well into adulthood (and beyond) precisely to a deficit
in their social cognition skills. However, as cognitive sciences gradually
abandoned the so-called model which identified cognition with the pro-
cessing of mental representations while increasingly considering percep-
tion and action as constituent parts of cognition, the centrality of the the-
ory of mind for ASD began to weaken. On the other hand, the prob-
lematic nature of this centrality fits perfectly with the following finding:
typical-developing children themselves do not pass theory-of-mind tests
until about age 3–4 years, whereas we are capable of discriminating be-
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tween population groups with ASD and control groups much earlier with
excellent performance. Thus, the AI analysis presented here shows that
the body-related signs are the most effective in discriminating between
ASD and the control group. In particular, attunement to the other’s body
(A2) and the signs related to owning one’s body (A3) seem to be extremely
revealing of a possible future typical autism spectrum disorder, even in
very young children, and also in contrast to the other signs from the other
two dimensions. It should be noted that the most important features are
not exactly the same between the two observers. However, the XAI model
clearly points us in the right direction: aiming for a simplification of the
system that preserves its performance and robustness while at the same
time indicating which of the core signs may better reveal a potential ASD
case than others. This was made possible by the SHAP approach which
can compute the importance of each feature. However, this study has sev-
eral limitations. The first concern relates to the observer. Two competent
observers have led this pilot study, but the ideal aim of the methodology
is to be efficient and apt for non-competent observers. The second concern
concerns the sample size, consisting of relatively few children. Thirdly,
a disproportion between male and female children is denoted by a small
number of females (i.e., 12 out of 32 total children). This condition is fre-
quently encountered in the study of ASD. It is partly due to genetic rea-
sons and partly because the clinical scales used to date are mainly made on
male subjects, thus resulting in females being underdiagnosed. Therefore,
the results might be more calibrated to males than both sexes. Eventually,
the most rated features are not completely consistent with one another.
The common features statistically evaluated as salient by both observers
are A2 and A3, respectively relating to infants’ capacity to adapt his/her
body to caregivers or other children during physical encounters (A2) and
overall body posture style and movement style, even in non-interactive
situations (A3). The prominence of bodily features seems to confirm Teit-
elbaum and colleagues’ study [Teitelbaum et al., 1998], in which, through
the analyses of recorded home videos, they identified anomalies in sen-
sorimotor and bodily movements for ASD disorders since the very first
months of life. However, despite the inconsistency in the overall balance
between the most rated features, the results generated by our AI system
prove to be highly sensitive and specific for individuating potential sig-
nals. More observers will perform future analyses to determine if it will
be possible to individuate a more consistent number of features rated sta-
tistically, possibly to create an even simpler yet sensible and specific set of
items. In conclusion, our results suggest that examining videos of children
engaged in their daily activities through an explainable machine learning
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algorithm allows the validation of the effectiveness of some of the con-
stituent features of the proposed scale in classifying ASDs.
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5.2 Explainability in dementia transition diagno-
sis

The study reported in this section refers to the published journal paper en-
titled ”Fractal dimension of the cortical gray matter outweighs other brain MRI
features as a predictor of transition to dementia in patients with mild cognitive
impairment and leukoaraiosis”, Marzi C, Scheda R, Salvadori E, Giorgio A,
De Stefano N, Poggesi A, Inzitari D, Pantoni L, Mascalchi M, Diciotti S.

In this work, representative SHAP values were used for evaluating
the most important features in predicting the transition to dementia. In-
deed, this longitudinal study sought to investigate MRI characteristics that
could potentially anticipate the shift to dementia in mild cognitive impair-
ment (MCI) patients with T2 hyperintensities in the cerebral white mat-
ter (WM), known as leukoaraiosis. Over two years, 64 participants with
MCI and moderate to severe leukoaraiosis underwent baseline MRI ex-
aminations and annual neuropsychological assessments. Demographic,
neuropsychological, and MRI features at baseline were assessed as poten-
tial predictors of clinical transition. These encompassed visually assessed
MRI traits like lacune count, microbleeds, and dilated perivascular spaces,
as well as quantitative MRI parameters such as volumes of cortical grey
matter (GM), hippocampus, T2 hyperintensities, and diffusion indices of
cerebral WM. Additionally, we explored advanced quantitative features,
including the fractal dimension of cortical GM and WM, derived from 3D-
T1 weighted images, serving as an indicator of tissue structural complex-
ity. Representative SHAP values brought out Cortical GM FD as the most
influential predictive feature of the transition. Moreover, representative
SHAP values of the combined quantitative neuroimaging features demon-
strated superior performance compared to visually assessed MRI features
in forecasting the transition to dementia.

5.2.1 Introduction

Mild cognitive impairment is a condition marked by inconsistent cogni-
tive function impairment that does not disrupt daily activities [Gauthier
et al., 2006]. Over fifty percent of individuals with MCI advance to de-
mentia within the subsequent five years [Gauthier et al., 2006]. Given the
overlap of vascular and neurodegenerative diseases in the elderly popula-
tion and their potential involvement in both MCI and dementia [Jellinger,
2013], discerning the specific contributions of each to the transition to de-
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mentia can pose a challenging task. Alterations in the subcortical white
matter (WM) of the brain, characterized by areas of reduced density on
computed tomography or hyperintensities on T2-weighted MR images,
known as leukoaraiosis, are linked to modifications in the diffusion of
water protons. This phenomenon is observed in T2-weighted hyperin-
tense and seemingly normal-appearing WM [O’Sullivan, 2008]. These
WM changes are prevalent among elderly individuals whose cognitive
abilities range from standard to mild cognitive impairment (MCI) and de-
mentia [O’Sullivan, 2008, Fazekas et al., 1987, Golomb et al., 1995, Inz-
itari et al., 2009]. Leukoaraiosis, along with lacunes and microbleeds,
is a marker of small vessel disease (SVD) [Jokinen et al., 2015, Jokinen
et al., 2020, Lambert et al., 2016, Williams et al., 2017, Williams et al.,
2019, Zeestraten et al., 2017] but, overall, it is a nonspecific finding being
observed in elderly subjects with preserved cognition and patients with
Alzheimer’s disease (AD) [Fazekas et al., 1987, Golomb et al., 1995, Bracco
et al., 2005, O’Sullivan, 2008, Bilello et al., 2015]. The Vascular MCI (VMCI)
Tuscany study was aimed to identify clinical, neuroimaging, and biolog-
ical markers predictive of transition to dementia in patients with MCI
and leukoaraiosis [Poggesi et al., 2012]. Visually assessed MRI features
of brain damage in the VMCI Tuscany included the number of lacunes,
microbleeds [Valenti et al., 2016], and dilated perivascular spaces [Mas-
calchi et al., 2014]. Quantitative MRI assessment included volumes of the
entire cortical gray matter (GM), hippocampus, and T2 hyperintense WM
[Giorgio et al., 2019], and diffusion properties of the T2 hyperintense and
normal-appearing WM [Mascalchi et al., 2014, Ciulli et al., 2016]. We also
considered advanced quantitative features such as the fractal dimension
(FD) of the cortical GM and WM [Pantoni et al., 2019a] – indices of tis-
sue structural complexity extracted from 3D-T1 weighted images [Marzi
et al., 2020]. In this study, our objective was to assess the capabilities of de-
mographic, neuropsychological assessments, visually assessed MRI fea-
tures, and quantitative MRI features in predicting the transition to demen-
tia over a 2-year span.
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5.2.2 Materials and Methods

Feature Patients without Transition (N=46) Patients with Transition (N=18)
Demographic
Age (years) 73.96± 6.67 [61.12, 89.03] 76.34± 6.693 [59.80, 84.09]
Sex 22 female and 24 male patients 8 female and 10 male patients
Education 8.17± 4.25 [3, 18] 7.44± 4.30 [2, 18]
Neuropsychological Tests
MoCA 21.23± 4.62 [11.95, 29.29] 18.93± 3.95 [13.10, 25.24]
ROC-F Immediate Copy 23.68± 7.21 [5.59, 35.58] 21.27± 10.61 [4, 36]
SDMT 39.18± 10.03 [22.02, 59.94] 31.18± 5.38 [24.67, 43.49]
Stroop 33.44± 23.81 [−3.45, 114.57] 51.59± 36.02 [8.83, 155.09]
TMT-A 61.47± 47.97 [3.77, 202.2] 64.47± 43.15 [8.42, 152.92]
VS 32.84± 8.61 [14.3, 50.17] 29.08± 7.78 [15.41, 41.27]
Visually Assessed MRI Features
Lacunar Infarcts 2.02± 0.80 [1, 3] 2.28± 0.83 [1, 3]
Cerebral Microbleeds 0.91± 2.57 [0, 15] 2.24± 5.77 [0, 18]
EPVS Basal Ganglia 1.67± 0.82 [0, 4] 1.83± 0.62 [1, 3]
EPVS Centrum Semiovale 1.89± 0.77 [1, 3] 1.44± 0.70 [1, 3]
Quantitative MRI Features
WM Lesion Load 0.07± 0.04 [0.01, 0.20] 0.09± 0.05 [0.02, 0.20]
WM Volume 0.15± 0.01 [0.12, 0.17] 0.14± 0.01 [0.13, 0.16]
GM Volume 0.12± 0.01 [0.10, 0.14] 0.11± 0.01 [0.10, 0.12]
Hippocampal Volume 0.0023± 0.0005 [0.0010, 0.0031] 0.0020± 0.0002 [0.0020, 0.0024]
WM FD 2.45± 0.04 [2.35, 2.51] 2.43± 0.04 [2.36, 2.49]
GM FD 2.34± 0.02 [2.30, 2.38] 2.33± 0.02 [2.27, 2.36]
Median FA 0.37± 0.02 [0.33, 0.41] 0.36± 0.02 [0.32, 0.40]
Median MD 0.82± 0.05 [0.7, 0.9] 0.82± 0.04 [0.8, 0.9]

Table 5.3: Descriptive statistics of demographic, neuropsychological, visually as-
sessed MRI, and quantitative MRI features for patients with and without a 2-year
transition to dementia.

In this study the dataset was composed by a cohort of 64 patients with MCI
and leukoaraiosis as part of the VMCI Tuscany study. The participants
were selected from a single center, and they underwent baseline MRI and
annual neuropsychological testing over a period of two years. After two
years, 18 (28.1%) participants had converted from MCI to dementia. As
described in Table 5.3, the features considered for this study can be divided
in four categories:

Demographic features : Age, Sex, Education.

Neuropsycological tests : Each patient underwent a comprehensive
neuropsychological evaluation developed for patients with SVD and
MCI [Salvadori et al., 2016], including both global cognitive functioning
test (i.e., Montreal Cognitive Assessment (MoCA) [Nasreddine et al.,
2005, Conti et al., 2015] and second-level tests covering different cog-
nitive domains (i.e., Visual Search (VS) [Sala et al., 1992], Symbol Digit
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Modalities Test (SDMT) [Nocentini et al., 2006], Trail Making Test (TMT),
Part A , Color Word Stroop Test (Stroop) [Caffarra et al., 2002], and im-
mediate copy of the Rey-Osterrieth Complex Figure (ROC-F)).

Visually Assessed MRI features : An experienced observer visually
assessed the number of lacunes (fluid-filled cavities in the brain tissue),
cerebral microbleeds (tiny areas of bleeding in the brain), and enlarged
perivascular spaces (EPVS) (abnormal expansion of narrow fluid-filled
channels surrounding blood vessels in the brain).

Quantitative MRI features : The WM lesion load was calculated as the
total lesions’ volume normalized by the individual cerebral WM vol-
ume. The FreeSurfer image analysis suite v. 5.3 (http://surfer.nmr.
mgh.harvard.edu/) performed cortical reconstruction and volumetric
segmentation of the WM, cortical GM, and hippocampus on T1-weighted
images [Fischl, 2012]. We separately computed the hippocampus, WM,
and cortical GM volumes in the left and right hemispheres. Then we
considered the average value of the volume of each structure in the
left and right hemispheres and subsequently normalized them to es-
timated eTIV. The fractal analysis was carried out using the fractalbrain
toolkit version 1.1 [Marzi, 2023]. In this study, we examined the frac-
tal properties of WM and cortical GM by calculating and averaging the
FD from the left and right hemispheres of each structure. Finally, frac-
tional anisotropy (FA) and mean diffusivity (MD) were computed: FA
describes the degree of anisotropy of water molecules, and MD pro-
vides a measure of the directions of diffusion of water molecules. Figure
5.5 shows the extraction procedure of the brain MRI features considered
in the present investigation and partially described in detail previously
[Pantoni et al., 2019b].

http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
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Figure 5.5: Schematic representation of the MRI features extraction for predicting
the transition to dementia.

Machine learning system

To forecast the transition to dementia, we used an explainable machine
learning framework fed by baseline demographical, neuropsychological,
visual, and quantitative MRI features. During the training phase, miss-
ing values in the data were imputed by replacing them with the average
value of the corresponding feature. Additionally, standardization was per-
formed by rescaling each feature to have a mean of zero and a variance of
one. These imputation and standardization techniques were exclusively
learned during the training phase and subsequently applied in the vali-
dation and testing phases, leading to an unbiased generalization perfor-
mance. The explainable ML framework was trained, validated, and tested
through a repeated stratified nested validation procedure (Figure 5.6).
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Figure 5.6: Machine learning validation scheme: 100-times repeated stratified
nested validation procedure. In the figure, we chose a dataset comprising ten
samples to illustrate the bootstrap resampling procedure with comprehensive re-
placement. When applying bootstrap resampling to our actual dataset, which
contains 64 subjects, we obtain an outer training set consisting of 64 instances
(some of which are repeated) and an outer test set that comprises the unique in-
stances not included in the training set, referred to as the out-of-bag samples. The
outer training set was then used for an inner subject-level 5-fold CV for hyperpa-
rameter optimization.
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We chose a bootstrap resampling for the outer split and a 5-fold CV for
the inner loop. We selected a number of the folds equal to 5 because it
offers a favorable bias-variance trade-off [Hastie, 2013]. In detail, for each
repetition of the bootstrap resampling, the entire dataset was divided into
an outer training set by sampling, with replacement, the instances con-
tained in the original dataset. The outer test set included the unique in-
stances not selected for the training set, i.e., the out-of-bag samples. The
outer training set was then used for an inner subject-level 5-fold CV for
hyperparameters optimization. The subject-level splitting ensures that the
repetitions present in the outer training set are either in the inner train-
ing set or in the inner validation set, preventing data leakage [Yagis et al.,
2021]. Once the combination of hyperparameters values that minimized
the out-of-sample prediction error [Hastie, 2013] has been found in the in-
ner CV, the model with that combination of hyperparameters’ values is
re-trained on the outer training set and tested on the unseen outer test
set, thus preventing any form of peeking effect [Diciotti et al., 2013]. The
stratified sampling ensured that samples possessing a particular charac-
teristic, i.e., the transition to dementia, were selected in the same pro-
portion in the training, validation, and test sets as they existed in the
entire dataset. The stratified nested validation was repeated 100 times
with different bootstrap data splitting to attenuate the dependencies of the
model from the training data, along with reducing performance estima-
tion variance while maintaining a minimal bias [Molinaro et al., 2005, Kim,
2009]. The explainable ML framework utilized in this study employed an
XGboost model. The model’s hyperparameters were selected through a
random search within the inner CV process. The hyperparameter space
was defined as follows: the minimum loss reduction required for fur-
ther partitioning a leaf node of the tree g ∈ {0.6, 0.7, 0.8}, the subsam-
ple ratio of columns used when constructing each tree colsample bytree
∈ {0.25, 0.5, 0.75, 1}, the maximum depth of a tree max depth ∈ {2, 3, 4},
the minimum number of instances required in each node min child weight
∈ {2, 3, 5}, the number of decision trees n estimators ∈ {5, 10, 20, 100}, and
the ratio of training data randomly sampled before growing trees subsam-
ple ∈ {0.1, 0.2, 0.4}.

For each repetition of the stratified nested validation, the classifier per-
formance was evaluated on the outer test set using the area under the ROC
AUC curve. The mean AUC and the 90% confidence interval (CI) were re-
ported as the final performance. To verify whether the performance of our
classifier was significantly superior to that of a random guessing classi-
fier [Fawcett, 2006], we compared the AUC values with the value 0.5, i.e.,
the chance-level performance, through a one-tailed Wilcoxon signed rank
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with a significance level of 5%. We built a median ROC curve by con-
sidering the coordinates of the ROC curve obtained from the data of the
outer test set at each repetition of the stratified nested validation. The opti-
mal operating point on the median ROC curve was identified as the point
with the highest Youden’s index, denoted as J = sensitivity + specificity – 1
[Youden, 1950]. To obtain the feature contributions, representative SHAP
values were computed for the outer test set during each repetition of the
repeated nested validation. They were subsequently averaged, in absolute
value, across patients [Scheda and Diciotti, 2022]. Therefore, we obtained
100 global SHAP values for each feature and calculated the median over
the repetitions as the final global feature importance. The global contri-
bution of the top-ranking predictive feature was compared to the second
feature of the ranking through a one-tailed Wilcoxon signed rank with
a significance of 0.05. In addition to assessing the individual contribu-
tions of each feature towards predicting the transition to dementia, we
also averaged the SHAP values over specific feature categories (i.e., the
sum of the SHAP values of all features belonging to a category divided by
the total number of features in the category). These categories included
demographics (Age, Sex, Education), adjusted neuropsychological scores
(MoCA, TMT-A, ROC-F immediate copy, SDMT, Stroop, VS), visually as-
sessed MRI features (Lacunar infarcts, Cerebral microbleeds, EPVS basal
ganglia, EPVS centrum semiovale), and quantitative MRI features (WM
lesion load, GM FD, WM FD, hippocampal volume, GM volume, WM vol-
ume, Median MD, Median FA). By grouping the SHAP values according to
these feature categories, we comprehensively understood their combined
contributions to predicting the transition to dementia.
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5.2.3 Results

To forecast the transition to dementia, the mean ROC AUC was 0.69 with
a 90% CI of (0.53, 0.85). The AUC value of our classifier was significantly
higher than the chance-level performance (one-tailed Wilcoxon signed rank
p-value < 0.001). Through ROC curve analysis (Figure 5.7), we identified a
specific operating point that maximized the Youden’s index, gaining a sen-
sitivity of 0.67 and a specificity of 0.67. The GM FD was the top-ranking
predictive feature (Figure 5.8).

Figure 5.7: Median receiver operating characteristic (ROC) curve of the model
trained using nested validation over 100 repetitions. The gold point on the ROC
curve corresponds to the coordinates (0.33, 0.67) where the maximal Youden’s in-
dex is achieved. The red overlay represents the ROC curve of a random classifier,
serving as a reference. The dotted and dashed purple curves indicate the 25th and
75th percentiles, respectively.
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Figure 5.8: A box plot showing each feature’s mean absolute SHAP values, sorted
in ascending order. The volume and the FD of a specific brain structure are de-
fined as the average values among the left and right hemispheres. Volumes were
subsequently normalized to eTIV. EPVS, enlarged perivascular spaces; FD, frac-
tal dimension; GM, gray matter; MoCA, adjusted Montreal Cognitive Assessment
score; SDMT, adjusted symbol-digit modality test score; WM, white matter.

The median absolute SHAP value of the GM FD was significantly higher
than that of the second-ranking feature, i.e., hippocampal volume (one-
tailed Wilcoxon signed rank p-value < 0.001). The main important pre-
dictive features were the SDMT score, cortical GM volume, Stroop score,
EPVS centrum semiovale, WM FD, age, MoCA score, and WM lesion load.
The aggregated quantitative neuroimaging features exhibited superior pre-
dictive capabilities compared to visually assessed MRI features (Figure
5.9). Figure 5.10 illustrates the visualization of mean SHAP values corre-
sponding to specific features within individual samples (subjects). These
visualizations aim to provide a concise representation of how the dataset’s
features influence the model’s output. A single dot for every feature de-
picts each subject. A feature’s SHAP value determines the dot’s horizontal
position, and dots accumulate along each feature’s row to depict density.
Colors are utilized to indicate the original feature values. In essence, these
plots enable us to observe the SHAP value for each feature in every sam-
ple. In these graphical representations, a dot’s color varies (from blue to
pink) according to whether the feature value is high or low. Additionally,
its position on the graph shifts (from the base SHAP value to the right or
left) based on its influence on the model’s decision (i.e., its SHAP value).
As depicted in Figure 5.10, most dots associated with cortical GM FD are
shaded pink and positioned towards the left. This indicates that a lower
FD value, showing decreased cortical GM structural complexity, signifi-



5.2 Explainability in dementia transition diagnosis 71

cantly impacts the model’s decision, guiding it toward the transition to
the dementia class.

Figure 5.9: A box plot illustrating the averaged absolute SHAP values over each
category (i.e., a sum of the SHAP values of all features belonging to a category
divided by the total number of features in the category).
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Figure 5.10: Beeswarm summary plot depicting representative SHAP values.
Each feature row for each sample (i.e., subject) is represented by a single dot,
with the x position determined by the corresponding SHAP value. Dots accumu-
late along each feature row to indicate density. The color of each dot represents
the original value of the feature. A specific brain structure’s volume and the FD
are defined as the average values among the left and right hemispheres. Volumes
were subsequently normalized to eTIV. EPVS, enlarged perivascular spaces; FA,
fractal anisotropy; FD, fractal dimension; GM, gray matter; MD, mean diffusiv-
ity; MoCA, adjusted Montreal Cognitive Assessment score; ROC-F, adjusted Rey-
Osterrieth Complex Figure immediate copy score; SDMT, adjusted symbol-digit
modality test score; TMT-A, adjusted trail making test-A score; VS, adjusted vi-
sual search score; WM, white matter.

5.2.4 Discussion

Predicting the transition to dementia in patients with MCI is of utmost
importance as it could enable the implementation of therapies aimed at
slowing or halting the progression of the disease. Interestingly, represen-
tative SHAP values have shown that the FD of the cortical GM emerged
as the most remarkable best predictor for this transition. Furthermore,
FD and volume of the cortical GM exhibited superior predictive perfor-
mance compared to the WM lesion load, diffusion-derived indices, and
FD of the cerebral WM. Notably, when features of the same type were ag-
gregated, quantitative neuroimaging features demonstrated superior pre-
dictive capability compared to neuropsychological tests, visually assessed
MRI features, and demographic factors. Our findings confirm that corti-
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cal GM is closely associated with leukoaraiosis, as demonstrated by pre-
vious studies[Lambert et al., 2015, Ye et al., 2015, Heinen et al., 2020].
Moreover, our results highlight the contribution of GM atrophy to tran-
sition to dementia in patients with MCI and leukoaraiosis [Jokinen et al.,
2012, Jokinen et al., 2020, Bilello et al., 2015, Wu et al., 2019, Fan et al.,
2021]. Specifically, it has been observed that cortical atrophy associated
with leukoaraiosis exhibits a distinct distribution in the dorsolateral pre-
frontal, parietal, and posterior-superior temporal cortices, differing from
the cortical changes associated with normal aging [Lambert et al., 2015, Ye
et al., 2015, Heinen et al., 2020]. Additionally, studies have indicated a
correlation between the progression of cortical atrophy and leukoaraio-
sis over time [Lambert et al., 2016]. Furthermore, hippocampal and me-
dial temporal lobe atrophy have been identified as underlying factors con-
tributing to cognitive deficits in patients with leukoaraiosis [Bastos-Leite
et al., 2007, Jokinen et al., 2020, Chen et al., 2021, Fan et al., 2021, Sun et al.,
2022] and has been associated with the transition to dementia in these in-
dividuals [Jokinen et al., 2012, Jokinen et al., 2020]. The exact nature of
cortical changes concerning leukoaraiosis and SVD remains uncertain, as
some studies suggest they may be secondary effects of leukoaraiosis/SVD
[Bastos-Leite et al., 2007, Jokinen et al., 2020, Chen et al., 2021]. In contrast,
others propose a dual pathology involving accompanying AD [Jellinger,
2013, Ye et al., 2015, Wu et al., 2019]. Notably, our study reveals that
subtle changes in cortical GM, manifested as decreased FD, better antic-
ipate transitioning from MCI to dementia than overt cortical atrophy. In
parallel, it is well-established that ”invisible” changes in terms of subtle
T2 signal changes [Jokinen et al., 2015] or diffusion properties [Zeestraten
et al., 2017, Williams et al., 2019, Egle et al., 2022] can be observed in the
normal-appearing WM of patients with leukoaraiosis. These changes are
predictive of cognitive decline. In line with these findings, our study sug-
gests that FD of the WM may serve as an additional marker for the sub-
tle structural changes occurring in the WM of patients with leukoaraiosis.
The findings of this study further strengthen the evidence that FD pro-
vides supplementary information beyond what is offered by other con-
ventional structural features [Free et al., 1996, Im et al., 2006, Sandu et al.,
2008b, Sandu et al., 2008a, Sandu et al., 2014a, Sandu et al., 2014b, Sandu
et al., 2022, King et al., 2009, King et al., 2010, Madan and Kensinger,
2016, Madan and Kensinger, 2018, Marzi et al., 2018, Marzi et al., 2020,
Marzi et al., 2021b, Marzi et al., 2022, Pantoni et al., 2019a, Pani et al.,
2022a, Nazlee et al., 2023] and have potential relevant practical and di-
agnostic implications, particularly regarding the MRI evaluation of the
cortical GM. The FD measurement can be derived from standard high-
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resolution 3D T1-weighted images commonly included in clinical MRI
protocols. This means that FD assessment does not necessitate additional
dedicated acquisitions, such as magnetization transfer imaging, which is
capable of detecting subtle microstructural changes in the cortical GM in
both inherited and sporadic AD [Ginestroni et al., 2009, Mascalchi et al.,
2013]. By contrast, nuclear medicine techniques for assessing cortical GM
metabolism or amyloid deposits for the differential diagnosis of patients
with leukoaraiosis have not been widely implemented [Ye et al., 2015, Al-
tomare et al., 2023]. Therefore, using FD measurement from standard
MRI scans may represent a valuable and accessible tool in clinical practice
for evaluating cortical GM alterations without requiring additional spe-
cialized imaging techniques. We acknowledge several limitations in our
study. First, the relatively small sample size and the fact that the study was
conducted at a single center may impact the generalizability of our find-
ings. The sample was collected in a highly qualified referral university
hospital where patients fulfilling admission criteria were consecutively
identified and carefully evaluated before enrollment. Of course, this can-
not support the full generalizability of results. Therefore, further valida-
tion in independent samples would enhance the robustness and generaliz-
ability of the results. Second, considering the whole brain structures rather
than regional FD differences does not allow for demonstrating the dis-
tributed microstructural or overt changes known to occur in vascular MCI
and dementia. Lastly, longitudinal MRI data would be valuable to eluci-
date the underlying mechanisms better. Unfortunately, such longitudinal
data are not available for our study. In conclusion, our study highlights
that the transition from MCI to dementia in patients with leukoaraiosis is
associated with subtle alterations in the cerebral cortical GM and WM re-
flected by altered FD. Our findings suggest that the FD changes observed
in the cortical GM exhibit a stronger predictive value for future transition
than other brain measurements. The FD of the cortical GM emerges as a
biomarker potentially more sensitive than other brain measurements for
predicting the transition to dementia.



Chapter 6

Swarm learning

This final chapter will focus on the concept of swarm learning. Nodes
in a swarm learning system communicate and share information. Swarm
learning addresses privacy concerns by allowing data to remain on indi-
vidual nodes: instead of sharing raw data, nodes exchange model updates
or aggregated information, enabling collaborative learning without com-
promising the privacy of individual data. Different scenarios will be in-
vestigated with multiple types of data, analyzing different behaviors and
capabilities of this recently-proposed technique.

75
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6.1 Introduction

Several machine learning and deep learning algorithms have been applied
to facilitate clinical diagnosis, but such tools often require large clinical
datasets for training [Chishti et al., 2020, Al’Aref et al., 2018]. The chal-
lenge of acquiring sufficiently large and diverse datasets for training ma-
chine learning models in the medical field persists due to various factors.
Not only do single-center studies face limitations in sample size due to the
intricacies and expenses associated with collecting patient data [Shaikhina
and Khovanova, 2017], but the scarcity of data is exacerbated by the rar-
ity of certain diseases [Holzinger, 2018]. In addition to a lack of patient
samples, hospitals face stringent privacy policies that restrict or prevent
sharing sensitive medical information [Rieke et al., 2020]. This leads hos-
pitals to train machine learning models on very restricted datasets. Conse-
quently, healthcare institutions often find themselves constrained to train
machine learning models on poor datasets, impeding the robustness and
generalizability of the algorithms. In response to these challenges, emerg-
ing techniques such as Federated learning (FL) have recently gained pop-
ularity. Distributed learning approaches like FL enable model training
across multiple institutions without compromising data privacy, offering
a promising avenue to address the data scarcity issue and enhance the per-
formance of machine learning models in medical diagnosis and treatment
planning. Here we distinguish the different types of learning:

• Local learning: data and computation at different and disconnected
locations;

• Central learning: Data and algorithms are centralized in one cloud-
based framework;

• Federated learning: data and training being kept private but param-
eters are orchestrated by a central parameter server;

• Swarm learning: Data is kept private, and each node exchanges pa-
rameters to train a common model.

Google first introduced Federated learning in 2017 [McMahan et al., 2017]
to improve text prediction in mobile keyboards using machine learning
models trained by data across multiple devices. This new technology does
not require uploading personal data to a central server to train the models,
which was a breakthrough in traditional machine learning to address data
privacy issues. Swarm learning (SL) is a new kind of distributed learning,
which has been recently proposed as a more secure decentralized learning
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for deep learning models [Warnat-Herresthal et al., 2021]. The basic con-
cept of swarm learning is that in contrast to FL, swarm learning has no a
central server that coordinates the merging of the model’s parameters. In-
deed, each server or center is a peer, and at each synchronization step the
coordinator server changes. Swarm Learning is based on Blockchain tech-
nology, ensuring secure and tracked training between the centers [Warnat-
Herresthal et al., 2021].

6.2 Methods

In an SL framework, each center, with its private data, becomes a swarm
node, which communicates with other swarm nodes (or peers) through the
swarm network, which is essentially a blockchain overlay on the underlying
network connection between the nodes. Here, we introduce the workflow
and the processes behind swarm training (see Figure 6.1).

Enrollment

The swarm learning process begins with enrollment, or registration, in the
Swarm smart contract by each node. Each node subsequently records its
relevant attributes in the contract, such as the uniform resource identifier
(URI) from which its own set of other nodes can download trained param-
eters.

Local model training

Nodes next proceed to train the local copy of the model iteratively over
multiple rounds, each called an epoch. During each epoch, every node
trains its local model using one or more data batches for a fixed number
of iterations. After reaching the number, it exports the parameter values
in a file in its local filesystem. Subsequently, it signals other nodes that it
is ready for the parameter-sharing step.

Parameter sharing

This step starts once the number of nodes ready for the parameter sharing
step reaches a specific minimum threshold value specified during initial-
ization. It begins with electing the epoch leader, whose role is to merge
the parameters derived after local training on all nodes. This selection is
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Figure 6.1: Schematic flow chart of swarm training.

rapid and takes place at the culmination of each epoch. Using the predeter-
mined leader election algorithm, one of the nodes emerges as a leader and
then downloads the parameter files from each other before the parameter-
merging step.

Parameter merging

The leader then merges the parameter files downloaded. The framework
supports multiple merge algorithms such as mean and weighted mean, de-
fined in equation 6.1:

Pm =
∑n

k=1(wkPk)

∑n
k=1 wk

(6.1)
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in which PM is the m−merged parameter, Pk is the parameter from the
kth node, wk is the weight of the kth node, and n is the number of nodes
participating in the merge process. Using the merge algorithm chosen,
the leader combines the parameter values from all nodes to create a new
file with the merged parameters and signals to the other nodes that a new
file is available. Each node then downloads the file from the leader and
updates its local model with the new set of parameter values.

Stopping criterion

Finally, the nodes evaluate the model with updated parameter values us-
ing their local data to calculate various validation metrics. The values ob-
tained from this step are shared. In the official paper presenting swarm
learning [Warnat-Herresthal et al., 2021], authors validate local models
with the same test set for each node in order to compare local validation
metrics. As each node completes this step, it signals to the network that
the update and validation step is complete. In the meantime, the leader
keeps checking for the updated complete signal from each node. When it
discovers that all merge participants have signaled completion, the leader
merges the local validation metric numbers to calculate the global metric
numbers. The synchronization step is then marked as complete. After-
ward, the system’s current state is compared against the stopping crite-
rion, and if it is found to be met, the SL process is halted. Otherwise, the
steps of local model training, parameter sharing, parameter merging, and
stopping criterion check are repeated until the criterion is fulfilled.

6.2.1 Swarm Learning with MNIST dataset

To study the effectiveness of swarm learning, we investigated the swarm
learning tool with our servers. We set up three different nodes on the same
server (see Figure 6.2): each node had a different portion of the original
dataset, trained the local model and merged the parameters with the other
nodes, and at the end, each node tested its model with the test set. In
order to compare the metrics results, we tested the models of each node
with the same test set. The neural network consists of one input layer, one
hidden layer, and one output layer. The input layer is densely connected
and consists of 512 nodes, a rectified linear unit activation function (ReLU
[Agarap, 2018]), and a dropout rate of 20%. The output layer is densely
connected and consists of ten nodes and a sigmoid activation function.
The model is configured for training with Adam optimization [Kingma
and Ba, 2017] and to compute the sparse cross-entropy loss between true
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and predicted labels. The model is used for training both the individual
nodes and SL. The model is trained over 25 epochs, with a batch size of 64.

MNIST dataset

Figure 6.2: Schematic representation of swarm learning set up using the MNIST
dataset.

The MNIST dataset [Deng, 2012] is a collection of grayscale images repre-
senting handwritten digits, ranging from 0 to 9 (see Figure 6.3).

Figure 6.3: Example samples of the MNIST dataset.

Each image in the dataset is a 28x28 pixel square, and it captures the
subtle variations in handwriting styles among different individuals. Ini-
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tially created for training and testing algorithms for recognizing hand-
written characters, the MNIST dataset has become a standard benchmark
for evaluating the performance of various machine learning models. The
MNIST dataset consists of two principal subsets: a training set and a test
set. The training set typically contains 60,000 images, while the test set
contains 10,000. The dataset ensures a balanced distribution of digits across
both subsets, making it suitable for assessing the generalization ability of
classification models.

6.2.2 Swarm Learning with real medical dataset

To study the effectiveness of swarm learning in a real medical scenario,
we also investigated the swarm learning tool with three different servers
with real medical data. We set up one swarm node in each server: one
in Bologna and two servers in Verona (Figure 6.4). Each node had a dif-
ferent portion of the original dataset, trained the local model, and merged
the parameters with the other nodes, and at the end, each node tested its
model the test set. In order to compare the metrics results, we tested the
models of each node with the same test set. The neural network consists
of one input layer, three hidden layers, and one output layer. The three
hidden layers are densely connected and consist of 16 nodes, a rectified
linear unit activation function (ReLU [Agarap, 2018]). The output layer
is densely connected and consists of one node and a sigmoid activation
function. The model is configured for training with Adam optimization
[Kingma and Ba, 2017] and to compute the binary cross-entropy loss be-
tween true and predicted labels. The model is used for training both the
individual nodes and SL. The model is trained over 25 epochs, with a batch
size of 64.

MIMIC III dataset

The MIMIC-III (Medical Information Mart for Intensive Care III) dataset
[Johnson et al., 2016] is an extensive and comprehensive electronic health
record (EHR) dataset widely used in medical research, particularly in the
field of critical care. This dataset comprises deidentified health data from
over 40,000 patients admitted to the Beth Israel Deaconess Medical Center
in Boston, Massachusetts, USA, spanning 11 years. It encompasses di-
verse clinical information, including vital signs, laboratory results, med-
ications, diagnoses, procedures, and demographics. The dataset reflects
the complexity of critical care scenarios, capturing the dynamic nature of
patient conditions over time. The dataset is organized into various tables,
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each representing different aspects of patient care. The tables are linked
through unique patient identifiers, enabling researchers to perform com-
plex queries and analyses across multiple dimensions. The data includes
time-stamped events, facilitating temporal analyses, and developing pre-
dictive models for patient outcomes. The features considered in this anal-
ysis were: heart rate, respiratory rate, saturation of peripheral oxygen (or
SpO2), systolic arterial blood pressure, diastolic arterial blood pressure.

Figure 6.4: Schematic representation of swarm learning using the MIMIC III
dataset.

6.3 Results

MNIST dataset

In Figure 6.5, we divided the original dataset into three equal proportions.
We can see that the swarm model performs slightly better than the model
of the single nodes. However, the central model, which is trained on the
entire original dataset, outperforms the swarm model.
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Figure 6.5: Boxplots of accuracy for each node, with portions 33% in the first
node, 33% in the second node, and 33% in the third. Box plots are given by 10
different trainings using 10 random shuffles of the data with different random
seeds. Orange line in within boxplot represents the mean; box limits, 1st and 3rd
quartiles; remaining dots: outliers.

In Figure 6.6, we divided the original dataset in three non overlapping
sets, in which we divided the digits in the different sets: in the first set, we
put the digits {0, 1, 2} in the first node, {3, 4, 5} in the second, {6, 7, 8, 9}
in the third. This figure shows the incredible power of swarm learning:
even if the three different servers never see some of the digits during the
training, the swarm model performs almost like it has seen all the digits.
Thinking about real scenarios, even if a center or hospital never registers
a specific patient sample in its dataset, thanks to a swarm model, the hos-
pital’s model would predict well new diagnoses of the same type.
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Figure 6.6: Boxplots of accuracy for each node, in which we divided the different
classes of digits: {0,1,2} digits in the first node, {3,4,5} digits in the second node,
and {6,7,8,9} in the third node. Box plots are given by 10 different trainings us-
ing 10 random shuffles of the data with different random seeds. The orange line
within the boxplot represents the mean; box limits, 1st and 3rd quartiles; remain-
ing dots: outliers.

In Figure 6.7a, we can see that we divided the dataset in different pro-
portions. On the left, the proportions were: (1%,98%,1%). We can see
that the local training with 98% of the training set outperforms the per-
formance of the other two nodes, which is consistent with the fact that it
had much more data. We can also see that the central model performs the
same amount as for node 2, while the performance accuracy of the swarm
node lies between the performances of the three nodes.

In Figure 6.7b, we can see a similar behavior, but in that case scenario,
the proportions of the dataset were: (49%,49%,2%). Also, in this case, the
swarm model performs worse than the first two nodes, which had the
most significant proportions of the dataset. This indicates that the swarm
model performs very well when the amount of data is uniform between
the nodes, but when the training set is strongly unbalanced between the
nodes, the swarm model performs worse than the other nodes. Notice
also that the central model, which is trained on all the original datasets, is
always the best.

Next, we ran the same experiments, but despite using simple average
as a merging algorithm, we used weighted average this time. In this case,
the swarm learning package allows setting a weight w with integer values
with w ∈ [0, 100] for the weighted mean. In Figure 6.8, we firstly set a
value of w = 90 for the second node, which had proportion 98% of the
dataset, and a value of w = 1 to the other nodes (Figure 6.8a). We can see
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(a)

•••• First node: 1%

• Second node: 98%

• Third node: 1%

(b)

•••• First node: 49%

• Second node: 49%

• Third node: 2%

Figure 6.7: Box plots are given by 10 different trainings using 10 random data
shuffles with different random seeds. The orange line within the boxplot repre-
sents the mean; box limits, 1st and 3rd quartiles; remaining dots: outliers.

that the swarm model performs almost like the second node, which is the
node with the highest value of w. On the right instead (Figure 6.8b), we
set a value of w = 90 for the third node, which had only 1% of the dataset.
In this case, we can see that the swarm model follows the performance of
the third node, leading to a rapid decrease in performance. We can see the
same behaviour in Figure 6.9, where both in 6.9a and 6.9b, the performance
of the swarm learning model follows the performance of the node with the
highest weight.

MIMIC dataset

In Figure 6.10, we can see that we divided the dataset in different pro-
portions. On the left, the proportions were: (33%,33%,33%). We can see
that the local training with 98% of the training set outperforms the per-
formance of the other two nodes, which is consistent with the fact that it
had much more data. We can also see that the central model performs the
same amount as for node 2, while the performance accuracy of the swarm
node lies between the performances of the three nodes. In Figure 6.10c, we
can see similar behavior, but in that case scenario, the proportions of the
dataset were: (49%,49%,2%). Also, in this case, the swarm model performs
worse than the first two nodes, which had the most significant propor-
tions of the dataset. This indicates that the swarm model performs very
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(a)

•••• Weight first node: 1

• Weight second node: 90

• Weight third node: 1

(b)

•••• Weight first node: 1

• Weight second node: 1

• Weight third node: 90

Figure 6.8: Box plots are given by 10 different trainings using 10 random data
shuffles with different random seeds. The orange line within the boxplot repre-
sents the mean; box limits, 1st and 3rd quartiles; remaining dots: outliers.

(a)

•••• Weight first node: 1

• Weight second node: 90

• Weight third node: 1

(b)

•••• Weight first node: 1

• Weight second node: 1

• Weight third node: 90

Figure 6.9: Box plots are given by 10 different trainings using 10 random data
shuffles with different random seeds. The orange line within the boxplot repre-
sents the mean; box limits, 1st and 3rd quartiles.
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well when the amount of data is uniform between the nodes, but when the
training set is strongly unbalanced between the nodes, the swarm model
performs worse than the other nodes. Notice also that the central model,
which is the model trained on all the original datasets, is always the best.

(a)

•••• First node: 33%

• Second node: 33%

• Third node: 33%

(b)

•••• First node: 98%

• Second node: 1%

• Third node: 1%

(c)

•••• First node: 49%

• Second node: 49%

• Third node: 2%

Figure 6.10: Box plots are given by 10 different trainings using 10 random shuffles
of the data with different random seeds. Orange line in within boxplot represents
the mean; box limits, 1st and 3rd quartiles; remaining dots: outliers.

Next, also in these case, we repeated the same experiments but using
weighted average as merging algorithm. This time, we set a value of w
for each node that corresponds to the percentage of the training data of
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that node; for example, if in one node there is 70% of the original dataset
as training set, the value of the weight will be w = 70 (see Figure 6.11a).
In Figure 6.11c and Figure 6.11b we can see that the performance of the
swarm model follows the performance of the nodes which had the max-
imum percentage of the original dataset. This is coherent to the fact that
the value of weight w reflects the amount of the data in that node.

(a)

•••• First node: 70%

• Second node: 20%

• Third node: 10%

(b)

•••• First node: 98%

• Second node: 1%

• Third node: 1%

(c)

•••• First node: 49%

• Second node: 49%

• Third node: 2%

Figure 6.11: Box plots are given by 10 different trainings using 10 random shuf-
fles of the data with different random seeds. The orange line within the boxplot
represents the mean; box limits, 1st and 3rd quartiles; remaining dots: outliers.
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6.4 Discussion

Acknowledging that swarm learning is a nascent tool in machine learn-
ing, it is essential to recognize that ongoing research and advancements
are crucial for refining algorithms and optimizing the performance of the
swarm model. In the published paper [Warnat-Herresthal et al., 2021] pre-
senting swarm learning, authors investigated different configurations of
the training, varying the number of samples between the nodes, and also
different types of distributed data of heterogeneous diseases (COVID-19,
tuberculosis, leukemia, and lung pathologies). However, they do not al-
ways compare SL-trained models with the central server model, where the
model is trained on the whole dataset in a single server. Moreover, the au-
thors used only a simple average as merging algorithm without analyzing
different configurations with different weights for the nodes.

In addition to the published work on SL [Warnat-Herresthal et al., 2021],
very few new works have been published on SL applications in the med-
ical field [Saldanha et al., 2022, Saldanha et al., 2023]. In particular, both
published works describe the application of SL on pathology images of
gastric and colorectal cancer.

Similarly to the obtained results, Saldanha et al., in both of their works
[Saldanha et al., 2022, Saldanha et al., 2023] showed that the central model
metrics consistently outperform or, in some cases, perform on par with SL
models. This indicates some limitations of this new technology.

However, despite this aspect, the capacity of SL to collaborate on model
training without exchanging sensitive data presents a pragmatic solution
for medicine. In a real world scenario involving several hospitals, shar-
ing the parameters of a swarm model, the collective intelligence derived
from diverse datasets becomes a driving force for improving artificial in-
telligence in medicine. As swarm learning matures, discoveries and algo-
rithmic enhancements will play a pivotal role in maximizing the efficacy
of this innovative approach in healthcare applications.

From a forward-looking perspective, further investigations focus on
the assessment of the performance of the swarm learning technology through
deeper analyses of different configurations of the framework, such as in-
creasing the number of nodes, different proportions of the dataset within
different nodes, and different weights of the nodes for the weighted av-
erage as merging algorithm. Moreover, further investigations will rely on
implementing explainability techniques such as representative SHAP val-
ues and validation techniques within the swarm learning context.



Chapter 7

Conclusions

This work highlights the potential of artificial intelligence in healthcare,
particularly in diagnosis and treatment. However, the successful integra-
tion of artificial intelligence into medical practices faces significant chal-
lenges that require immediate attention. The investigation has focused
on three crucial aspects: explainability, reproducibility, and the scarcity of
data due to privacy concerns.

Explainability is critical in building trust in AI systems, especially in
medical applications where decisions directly impact patient well-being.
For this reason, this work might give a contribution to the research do-
main proposing a new algorithm to compute representative SHAP values,
average explanations which need to enhance reproducibility of explain-
ability tools within different nested validation techniques. This approach
contributes to the transparency and reliability of AI in medical decision-
making, ensuring consistent explanations across various settings.

The scarcity of medical data, amplified by stringent privacy regula-
tions, poses a significant obstacle to developing effective AI models. Swarm
learning is an innovative solution which overcomes data scarcity issues
and ensures compliance with privacy regulations, laying the foundation
for developing more robust AI solutions in the medical domain. However,
since swarm learning is a recently proposed technique, a sistematic analy-
sis of its performance is lacking. To address this challenge, an exploration
of its potential has began in this work, evaluating the performance of the
swarm learning framework with different configurations of the dataset in
a swarm network with 3 nodes. However, the performance of a central
model trained with the whole dataset still outperform the swarm learning
model. For this reason, further research may focus on the application of
generative AI and data augmentation techniques to enhance the perfor-
mance of the models.

90
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This research underscores the importance of addressing key consider-
ations such as explainability, reproducibility, and privacy concerns when
deploying AI for healthcare applications. By tackling these challenges, the
responsible and effective implementation of machine learning in the med-
ical field is possible, ultimately enhancing patient care and advancing the
potential of AI-driven solutions in healthcare.
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[Rodrı́guez-Pérez and Bajorath, 2020] Rodrı́guez-Pérez, R. and Bajorath,
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