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Introduction

This doctoral dissertation introduces three novel chapters, each contributing to
the enhancement of Vector Autoregressive (VARs) models for forecasting and
policy analysis in macroeconomics.

The first chapter introduces a "theory-coherent" shrinkage prior for Time-
Varying Parameters Vector Autoregressive (TVP-VAR) models to address the
limitations of the traditional TVP-VAR models, which often suffer from over-
fitting, leading to imprecise estimates of the time-varying parameters and inac-
curate forecasts. This approach leverages a theoretical framework derived from
underlying economic theory to form a prior for time-varying parameters. The
resulting TVP-VAR, which encodes the restrictions implied by the economic
theory as a prior - hence labeled Theory Coherent TVP-VAR (TC-TVP-VAR) -
significantly improves both inference precision and forecast accuracy over stan-
dard TVP-VAR models. An application demonstrates enhanced forecast accu-
racy of GDP growth and the inflation rate from a TC-TVP-VAR that exploits
the standard 3-equations New Keynesian block to form a prior for the time-
varying parameters. Then, a second application demonstrates the usefulness
of the proposed shrinkage prior for impulse response analysis. In particular,
the application shows that the proposed prior allows estimating more precisely
the effects of macroeconomic shocks inside and outside the Zero Lower Bound
(ZLB) period, allowing to address the inferential challenges faced by the stan-
dard TVP-VAR model. On US data, the application finds convincing evidence
of a different propagation of risk premium shocks inside and outside the ZLB.

The second chapter focuses on the crucial task of monitoring macroeco-
nomic risks, proposing a VAR model with stochastic volatility and time-varying
skewness for modeling and forecasting macroeconomic risk. The chapter devel-
ops efficient posterior simulation samplers for Bayesian estimation of stochastic
volatility VAR models with time-varying skewness featuring both Skew-Normal
and Skew-t shocks. By applying these models to predict downside risks to GDP
growth in the US, the chapter demonstrates their competitiveness compared
to semi-parametric approaches such as quantile regression. Furthermore, the
estimation of a medium-scale model on US data highlights the relevance of
time-varying skewness in macroeconomic and financial shocks.
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Finally, the third chapter exploits a Bayesian VAR model with stochastic
volatility and time-varying skewness to estimate the degree of labor at risk in
the euro area and the United States. Examining the asymmetry of shocks to
changes in the unemployment rate as a function of real activity and financial risk
factors, the chapter uncovers time-varying volatility and skewness in the condi-
tional distribution of the changes in the unemployment rate. The multivariate
nature of the model also allows for the measurement of stagflation risk, revealing
an increasing risk for the euro area in 2022. This chapter underscores the im-
portance of labor at risk in understanding the inflation-unemployment trade-off.

Collectively, these three chapters contribute novel insights and methodolo-
gies to the field of macroeconomic analysis, providing advanced tools for pol-
icymakers and researchers to navigate the complexities of dynamic economic
systems.
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This paper introduces a novel “theory coherent” shrinkage prior for time

varying parameters VARs. The proposed prior can be used to sharpen inference

about the time varying parameters by leveraging on prior information from an

underlying economic theory about the macroeconomic variables in the model.

The paper reveals that exploiting prior information from conventional economic

theory to form a prior for the time varying parameters significantly improves

inference precision and forecast accuracy over the standard TVP-VAR. More

specifically, using the classical 3-equation New Keynesian block to form a prior

for the TVP-VAR substantially enhances forecast accuracy of output growth

and of the inflation rate in a standard model of monetary policy. Additionally,

prior information from economic theory can be used to address the inferential

challenges faced by the standard TVP-VAR during the zero lower bound period.
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1 Introduction

Over the past four decades vector autoregressive models have become the leading tool

for description, forecasting, structural inference and policy analysis of macroeconomic

data (Sims, 1980; Stock and Watson, 2001). A natural progression in the literature

was to allow for time-varying parameters to capture changes in the complex dynamic

interrelationship among the variables in the system (Cogley and Sargent, 2002; Prim-

iceri, 2005; Cogley and Sargent, 2005). On one side, this class of models known as

Time Varying Parameters VARs (TVP-VARs) can be flexible enough to fit many dif-

ferent forms of structural instabilities and evolving nonlinear relationships among the

macroeconomic variables. On the other side, due to the growing number of parame-

ters, they can easily become too flexible with adverse consequences on the precision

of inference and on the reliability of the forecasts.

In this paper I propose to use economic theory to sharpen inference in TVP-

VARs. The approach consists in exploiting prior information coming from a more

tightly parameterized model derived by an underlying economic theory about the

macroeconomic variables in the system. This prior information provides a set of

economically grounded (fuzzy) restrictions which are incorporated into a shrinkage

prior for the TVP-VAR. The resulting model, that I label Theory Coherent TVP-VAR

(TC-TVP-VAR), is a flexible statistical model for the data that leverages on economic

theory to enhance inference about the time varying parameters. In the TC-TVP-VAR,

two crucial hyper-parameters govern the behavior of the time varying coefficients: the

first one determines their intrinsic time variation, while the other one determines their

degree of theory coherence stemming from the amount of shrinkage towards the cross-

equation restrictions implied by the economic theory. Importantly, the TC-TVP-

VAR can incorporate both constant and time varying restriction functions for the

time varying parameters, thereby extending the DSGE-VAR toolkit developed in Del

Negro and Schorfheide (2004). Both the optimal amount of intrinsic persistence and

the degree of theory coherence of the time varying parameters can be optimally tuned
5



by maximizing the marginal data density of the TC-TVP-VAR which is available in

closed form. Moreover, the TC-TVP-VAR can also be used as a tool for learning

about the deep parameters from the underlying economic theory. As a matter of fact,

the deep parameters from the economic theory are another set of hyper-parameters

of the model that are indirectly estimated by projecting the TVP-VAR estimates

onto the restrictions implied by the model from the economic theory. Thus, in this

approach, learning about the deep parameters from the economic theory happens

indirectly through learning about the TVP-VAR parameters.

In the paper I show that incorporating the restrictions implied by the economic

theory into a prior for the coefficients of TVP-VARs can be beneficial to improve

forecast accuracy and to obtain more precise estimates of typical objects of inter-

est such as the impulse response functions. In particular, I find that encoding the

restrictions from a conventional three equations New Keynesian model into a prior

for the parameters of a trivariate TVP-VAR for output growth, inflation rate and

the interest rate improves both point and density forecast accuracy of both output

growth and the inflation rate at all the horizons considered (one quarter ahead, two

quarters ahead and one year ahead). Then, I exploit the TC-TVP-VAR to investi-

gate whether the US economy’s performance was affected by a binding zero lower

bound (ZLB) constraint as predicted by a standard New Keynesian model. Indeed,

according to a standard New-Keynesian model, the economy is expected to exhibit a

different response to demand and supply shocks when the ZLB constraint is in effect.

However, and more importantly, the short length of the ZLB period in the US makes

the standard TVP-VAR unfit to detect the change in the responses predicted by the

NK model (Benati and Lubik, 2023). In other words, whether or not there was a

change in the response of the economy during the ZLB as predicted by a standard

NK model, cannot be directly inferred by using a standard TVP-VAR. Based on a

simulation study, I show that the TC-TVP-VAR can in principle be used to solve

this inferential problem. In particular, I exploit the time varying restriction functions
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implied by a medium scale NK model that accounts for forward guidance and the

ZLB period to parametrize the shrinkage prior in the TC-TVP-VAR. I show that this

approach allows to estimate more precisely the response of the economy to macroeco-

nomic shocks inside and outside the ZLB period, solving the inferential problems of

the standard TVP-VAR. Finally, estimating the model on US data, I find that there

are convincing evidences supporting a change in the response of the economy to risk

premium shocks inside the ZLB period similar to the one predicted by a standard

NK model. This finding has clearly important policy implications for the conduct of

fiscal and macroprudential policies at the ZLB.

Related Literature This paper shows how to exploit prior information grounded

on the basis of an economic theory to impose parsimony on the coefficients of TVP-

VARs. In this aspect, the contribution conceptually borrows from ideas from the

seminal work of Ingram and Whiteman (1994) and operationally from the insights

in Del Negro et al. (2004) which show how to exploit the non-linear cross equation

restrictions implied by a DSGE to form a prior for the parameters of a constant param-

eters VAR model. Extending the framework of Del Negro et al. (2004) to TVP-VARs

is important at least for two reasons. First, because in macroeconomic applications

the assumption of constant coefficients is often restrictive. Indeed, instabilities in the

autoregressive coefficients of VARs used to model the dynamics of key macroeconomic

indicators such as output and inflation have been widely documented in the literature

(Cogley et al., 2002; Primiceri, 2005; D’Agostino, Gambetti, and Giannone, 2013).

Especially in this setting, as the model becomes more flexible, additional shrinkage

can be particularly beneficial to reduce overfitting. Second, because economic the-

ories themselves might imply time-varying restriction functions for the coefficients.

For example, macroeconomic theories assuming rational expectations extended so as

to allow some parameters to vary according to Markov process with given transi-

tion probabilities, lead to state space representation with time varying coefficients
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(Farmer, Waggoner, and Zha, 2009). At the same time, solutions for linear stochastic

rational expectations models in the face of a finite sequence of anticipated structural

changes lead to state space representation with time varying coefficients (Cagliarini

and Kulish, 2013).1 Likewise, outside the rational expectation framework, macroeco-

nomic theories that assume learning can lead to state space representation with time

varying coefficients (Milani, 2007). In all those cases, the proposed TC-TVP-VAR

can be used both to incorporate the implied time varying restrictions into a prior for

the time varying coefficients of the VAR and to estimate the deep parameters of the

underlying economic model. In this sense, the paper is also related to the strand of

literature that exploits an auxiliary flexible statistical model for the data to make

indirect inference on the deep parameters of a structural model from the economic

theory (see for example Gallant and McCulloch (2009) Fessler and Kasy (2019)).2

The paper is also related to the increasing number of studies that has recently fo-

cused on the issue of mitigating complexity and over-parametrization in TVP-VARs.

One strand of literature has focused on identifying fixed versus time varying coeffi-

cients, by concentrating on the variance selection problem in the generic state equa-

tions of each of the TVP-VARs’ coefficients. (Frühwirth-Schnatter and Wagner, 2010;

Belmonte, Koop, and Korobilis, 2014; Kalli and Griffin, 2014; Bitto and Frühwirth-

Schnatter, 2019; Huber, Koop, and Onorante, 2021). This literature has produced

shrinkage priors for variances aimed at “automatically” reducing time-varying coef-

ficients to static ones if the model is overfitting.3 While treating the coefficients of

the model as independent stochastic processes and just focusing on the problem of

1Another notable case within the rational expectations framework are models log-linearized
around time varying trend for inflation (Cogley and Sbordone, 2008; Ascari and Sbordone, 2014;
Ascari, Bonomolo, and Haque, 2023).

2In the TC-TVP-VAR the structural parameters from the underlying economic theory are es-
timated by implicitly minimizing the weighted discrepancy between the unrestricted TVP-VAR
estimates and the restriction functions. This approach can be thought as a Bayesian version of
Smith Jr. (1993) as in Del Negro et al. (2004).

3Similarly, from a frequentist perspective, Coulombe (2021) showed that time varying parameters
can be framed as ridge regressions problems and used cross validation to tune the optimal amount
of time variation in each of the state equations of the coefficients of the TVP-VAR.
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tuning the optimal amount of time variation of the single coefficients, this strand of

literature typically entirely neglects co-movement and correlation among the coeffi-

cients. However, in macroeconomic applications, the high degree of co-movement in

the parameters is an empirical regularity. This fact was already found and stressed

by Cogley et al. (2005) in one of the papers that introduced TVP-VARs in the field.

In the same paper, the authors envisaged that the reduced-form parameters should

move in a highly structured way because of the cross-equation restrictions suggest-

ing that “a formal treatment of cross-equation restrictions with parameter drift is a

priority for future work” (p. 274). More in line with these considerations, a smaller

number of studies (Wind and Gambetti, 2014; Stevanovic, 2016; Chan, Eisenstat,

and Strachan, 2020) proposed to use a factor structure to model the time variation

of the parameters. Despite being compatible with the idea of the coefficients varying

in a highly structured way because of the cross-equation restrictions associated with

macroeconomic equations, this approach is purely statistical and abstracts from any

macroeconomic theory disciplining the behavior of the coefficients. This paper fills

this gap in the literature by showing how to exploit prior information grounded on the

basis of an economic theory to state a priori a plausible correlation structure among

the time varying parameters of the model. While focusing on economic theory as a

source of potentially useful information on the time varying parameters, the paper

methodologically contributes to literature on priors for TVP-VARs, by specifying a

joint shrinkage prior for the whole history of the time varying parameters. This is

done by writing the TVP-VAR in static compact form and exploiting band matrices

to specify a joint prior for the time varying parameters.

Finally, the paper is more broadly related to the econometric literature showing

that moment conditions from economic theory can successfully be exploited for fore-

casting macroeconomic and financial variables (Giacomini and Ragusa (2014) and

Carriero, Clark, and Marcellino (2021) most notably).
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Outline The paper is organized as follows. In section 2 I introduce the TC-

TVP-VAR, presenting an analytical derivation of the proposed theory coherent prior

and a simulation from the prior to showcase its main properties. In addition, I

discuss the fit-complexity trade-off linked to the calibration of the hyper-parameters

determining the intrinsic persistence of the time varying-coefficients and the degree of

shrinkage towards the restrictions from the theory. I conclude section 2 by presenting

an MCMC sampler used for estimation of the TC-TVP-VAR. Afterwards, in section

3 I exploit the well known 3-equations New Keynesian (NK) block to form a prior

for the parameters of a TVP-VAR for GDP growth, inflation and the interest rate

for the US economy. I compare the forecasts from a TC-TVP-VAR that encodes the

restrictions from the NK model as a prior for the time varying coefficients to the

forecasts from a standard TVP-VAR, showing that the former outperforms the latter

both in terms of point and density forecast accuracy. Then, in section 4 I conduct a

simulation study and show that a standard TVP-VAR struggles to detect the change

in the response of the economy to macroeconomic shocks during the ZLB period as

predicted by a standard NK model. I show that the TC-TVP-VAR can be used to

solve this inferential problem. Finally, I use the TC-TVP-VAR to investigate whether

the US economy was affected by a binding ZLB. Section 5 concludes.

2 Theory coherent TVP-VAR

The construction of a theory coherent prior builds on the idea that an economic the-

ory implies restrictions on the parameters of the TVP-VAR. Intuitively we can find

out these restrictions by specifying a prior distribution on the deep parameters from

the theory, simulating the data from the theory and then estimating a TVP-VAR on

the simulated data. Imposing a prior on the deep parameters from the theory will

then induce a prior on the parameters of the TVP-VAR encoding the restrictions im-

plied by the economic theory. Based on this idea, in this section I derive analytically

10



a prior for a TVP-VAR which is theory coherent, in the sense that it centers the

time varying coefficients on the cross equation restrictions implied by an underlying

economic theory about the variables in the system. I consider the case in which the

population moments implied by the model from the economic theory are available

in closed form as a function of the deep structural parameters. De facto, this allows

to avoid stochastic simulation of the artificial observations from the economic theory

and write the prior for the time varying parameters of the VAR directly as a function

of the deep structural parameters from the economic theory.

Notation Before moving on, I introduce some notations conventions used in

the paper. Scalars are in lowercase and normal weight. Vectors are in lowercase and

in bold. Matrices are in uppercase and bold.

2.1 Construction of the prior

A TVP-VAR is given by:

y′
t︸︷︷︸

1×N

= x′
t︸︷︷︸

1× k

Φt︸︷︷︸
k ×N

+ u′
t︸︷︷︸

1×N

ut ∼ N (0N×1,Σu) (1)

vec(Φt) = vec(Φt−1) + ηt ηt ∼ N (0,Ω) (2)

where yt is an N dimensional random vector observed for t = 1, . . . , T periods,

xt = [1,y′
t−1, . . . ,y

′
t−p]

′, p is the lag order and k = 1+Np is the number of coefficients

in each equation of the VAR. For convenience, we can rewrite the TVP-VAR in (1)

in “static” compact form as

Y︸︷︷︸
T ×N

= X︸︷︷︸
T × Tk

Φ︸︷︷︸
Tk ×N

+ U︸︷︷︸
T ×N

U ∼MVN(0,Σu, IT ) (3)
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and the state equations in (2) as

HTkΦ = Φ00 + η (4)

which graphically is




Ik 0 . . . 0

−Ik Ik . . . 0

0 −Ik
. . . 0

...
...

...
...

0 0 −Ik Ik




︸ ︷︷ ︸
HTk




Φ1

Φ2

Φ3

...

ΦT




︸ ︷︷ ︸
Φ

=




Φ0

0

0
...

0




︸ ︷︷ ︸
Φ00

+




η1

η2

η3

...

ηT




︸ ︷︷ ︸
η

In this representation, the matrix Φ stores the matrices with the time varying coef-

ficients one on the top of the other, for all the time periods t = 1, . . . , T . I assume

that an hyperparameter λ governs the serial correlation of the coefficients stored in

the matrices Φ1, . . . ,ΦT . In particular, I assume that the variance covariance matrix

Ω has the Kronecker structure Ω = Σu⊗ (λ2Ik)
−1. This assumption implies that the

variance in the state equation of the coefficients is proportional to the variance of the

innovations of the equation to which the coefficients appertain σ2
ii. In practice this

means that the generic state equation of the coefficient attached to the jth regressor

in the ith equation reads as follows

ϕ
(i)
jt = ϕ

(i)
jt−1 + η

(i)
jt η

(i)
jt ∼ N

(
0,
σ2
ii

λ2

)
(5)

with i = 1, . . . , N and j = 1, . . . , k. As λ → 0 the variance of the Normal prior

centering a coefficient at time t on the realization at time t − 1 increases, meaning

that this prior becomes more and more diffuse and the coefficients of two consecutive

time periods are not forced a priori to be close to each other. Conversely as λ → ∞
the prior centering the coefficient at time t on the realization at time t − 1 becomes
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more and more tight. Clearly the calibration of λ involves a fit complexity trade off

since by letting λ → ∞ we allow the coefficient at time t to be arbitrary distant

from the coefficient at t− 1 up to the point that we can almost fit the data perfectly

in sample.4 Exploiting representation (4) and the Kronecker structure of Ω, we can

conclude that equation (4) implies a joint normal prior for Φ, that is

vec(Φ|Σu, λ) ∼ N (vec (H−1
TkΦ00︸ ︷︷ ︸
Φ0

),Σu ⊗ (λ2H ′
TkHTk)

−1

︸ ︷︷ ︸
Ψ(λ)

) (6)

since |HTk| = 1, HTk is always invertible and the determinant of Jacobian matrix

of the linear transformation cancels out.5 Combining this prior for the time varying

parameters with an Inverse-Wishart prior for Σu

p(Σu) ∼ IW(S, ν) (7)

leads to

p(Φ,Σu|λ) ∼ NIW (8)

Equation (8) states a prior for the time varying parameters and the variance co-

variance matrix of the innovations of the TVP-VAR which is conditional on λ, the

crucial hyper-parameter determining the amount of time variation of the coefficients

in the state equations (2). 6 Importantly, this prior is conjugate to the Gaussian

likelihood. We exploit the conjugacy to update equation (8) with the artificial obser-

vations from the theory and obtain a Normal-Inverse-Wishart prior which is theory

coherent, meaning that it is centered on the restrictions from the economic theory.7

4This point will be covered more in detail in Section 2.4.
5Notice that this is true also if we consider an AR(1) dynamics for the time varying coefficients. In

that case the elements off the main diagonal of the band matrix HTk would store the AR coefficients
of the state equations.

6To be precise this prior is also conditional on Φ0, S and ν. However, for the purpose of the
paper I will consider Φ0, S and ν as fixed.

7Note that equivalently we can consider a flat prior for Σu, that is:

p(Σu) ∝ |Σu|−
N+1

2 (9)
13



In the specific, updating (8) with observations from the theory we get

p(Φ,Σu|λ,θ, γ) = c(λ,θ, γ)−1p(Φ,Σu|λ)p(Y (θ)|γ,Φ,Σu) (10)

where p(Y (θ)|Φ,Σu, γ) is the likelihood of γ simulated samples of Y (θ) from the

theory and

c(λ,θ, γ) =

∫ ∞

−∞
p(Φ,Σu|λ)p(Y (θ)|γ,Φ,Σu)dΦdΣu (11)

is an integrating constant which ensures that the prior density is proper and inte-

grates to one.8 Equation (10) makes clear that the theory-coherent prior for (Φ,Σu)

is obtained estimating a TVP-VAR on the simulated data from the theory. As a

matter of fact, equation (10) is just the posterior distribution of (Φ,Σu) obtained by

updating the hierarchical prior p(Φ,Σu|λ) with the likelihood of γ simulated sam-

ples of observations generated by the model from the theory. As in Del Negro et al.

(2004), in p(Y (θ)|Φ,Σu) I replace the sample moments Y (θ)′Y (θ), Y (θ)′X(θ),

and X(θ)′X(θ) by their expected values, obtaining 9

p(Y (θ)|γ,Φ,Σu) = (2π)−
γTN

2 |Σu|−
γT
2 exp

[
−1

2
tr
(
(Σ−1

u )(γΓyy(θ)− γΦ′Γxy(θ))− γΓyx(θ)Φ+ γΦ′Γxx(θ)Φ)
)]

(12)

This step is meant to avoid stochastic simulation of the artificial observations from the

economic theory and it let us write the likelihood of the artificial observations directly

as a function of the vector of deep parameters from the economic theory θ.10 It is

easy to show that (10) is also Normal-Inverse-Wishart since it is de-facto obtained as

the posterior distribution that combines a Normal-Inverse Wishart prior for (Φ,Σu)

with a Gaussian likelihood for the simulated data from the theory. Therefore the

theory coherent prior in equation (10) takes the form

8In the appendix A.1.3 I report the details on the integrating constant.
9The notation Y (θ) makes clear that we are conditioning on the vector θ.

10Details on Γxx, Γyy, Γxy are reported in the appendix A.1.2.
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p(Σu) ∼ IW
(
S, ν

)

p(vec(Φ)|Σu) ∼ N (vec(Φ),Σu ⊗Ψ)
(13)

S = S + γΓyy(θ)+Φ0
′(λ2H ′

TkHTk)Φ0 −Φ′Ψ−1Φ (14)

ν = ν + Tγ (15)

vec(Φ) = vec(
(
γΓxx(θ)+ λ2H ′

TkHTk

)−1
(γΓxy(θ)+ λ2H ′

TkHTkΦ0)) (16)

Ψ =
(
γΓxx(θ)+ λ2H ′

TkHTk

)−1
(17)

This prior for Φ encompasses two different pieces of information about the time vary-

ing coefficients. The first piece of information is their intrinsic persistence determined

by the shrinkage hyperparameter λ. The second instead, is the degree of theory co-

herence determined by the shrinkage hyperparameter γ which defines the tightness

of the Normal prior around the restriction function defined by the economic theory

Φ(θ)∗ = Γxx(θ)
−1Γxy(θ) (18)

which implies Φt = Γ−1
xx,tΓxy,t for t = 1, . . . , T where Γxx,t ≡ E[xtx

′
t|θ] and Γxy,t ≡

E[xty
′
t|θ]. A couple of considerations are worthwhile. First, the assumption of

a unique hyperparameter λ determining the amount of time variation of the time

varying coefficients can be easily replaced by assuming λj’s hyper-parameters with

j = 1, . . . , k such that Ω can be factorized as

Ω = Σ⊗ (Λ′
kΛk)

−1 (19)

where Λk = diag(λ1, . . . , λk) and the Kroneker structure of the Normal-Inverse-

Wishart prior (6) is preserved. Keeping the assumption of a Kronecker structure

allows to have a closed form expression for the likelihood of γ, λ and θ marginally

of the time varying parameters Φ1, , . . . ,ΦT and of Σu. In practice this allows to
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make inference on Φ,Σu, the shrinking hyper-parameters γ and λ and also on the

deep parameters from the theory θ jointly as in Del Negro et al. (2004). Second, the

population moments encoded in the TVP-VAR Γxx, Γxy, Γyy, which are assumed to

be available in closed form as function of the deep parameters from the theory θ might

not be available in some applications. If it is the case, these moments can be obtained

by stochastic simulation as in Loria, Matthes, and Wang (2022). Furthermore, and

more importantly, the moments stored in the matrices Γxx, Γxy, Γyy can be either

constant or time varying conditionally on the deep parameters from the theory. That

is, the prior in (13) can accommodate theories which imply both constant and time-

varying restrictions. This is the main innovation to the DSGE-VAR toolkit developed

by Del Negro et al. (2004).

2.2 Simulation of the prior

To showcase the properties of the proposed theory coherent prior, figure 1 shows

random draws for the time series of a generic ϕ
(i)
jt coefficient of the TVP-VAR for

t = 1, . . . , 250 from the prior. The dashed black line represents the restriction func-

tion (18) defined by the economic theory for that coefficient, that I label ϕ
(i)
jt (θ)

∗.

Just for illustrative purposes for now I consider the case of a constant restriction

function, however having time varying moments stored in the matrices Γxx and Γxy

conditionally on the deep parameters of the theory, would directly imply a time vary-

ing restriction function trough (18). The first row shows five draws from the theory

coherent prior for different values of λ conditioning on a positive γ, meaning that for

a given degree of theory coherence I change the value of hyper-parameter which de-

termines the persistence of the coefficient. When λ = 0, the draws for the coefficient

ϕ
(i)
jt are independent for t = 1, . . . , T and centered on the restriction function coming

from the theory. Hence, nothing prevents a coefficient at time t to be arbitrary distant

from a coefficient at time t − 1 except the fact both coefficients are centered, with

a precision determined by γ, on the restriction function defined by the theory. As λ
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increases the time series of the coefficient becomes more and more persistent up to

the point that when λ is very big, the coefficient becomes almost constant over time.

Instead, in the second row, I let the degree of theory coherence change conditionally

on a given intrinsic persistence of the time varying coefficients. In other words, I

show random draws for ϕ
(i)
jt for different values of γ conditionally on λ > 0. When

γ = 0, the coefficients are just random walks with variance equal to σii

λ2 , and they

are completely unrelated to the restriction function implied by the economic theory

ϕ
(i)
jt (θ)

∗.11 As γ increases the draws for the coefficient are centered on the restriction

function defined by the theory with an increasing precision and on the limit, with

γ → ∞, they go to ϕ
(i)
jt (θ)

∗.12 Importantly, the hyperparameter γ is contempora-

neously shrinking all the time varying coefficients ϕ
(i)
t,j in the equations of the VAR

towards the restrictions implied by the economic theory. This reflects the idea that

it is economic theory that a priori postulates a plausible correlation structure among

the coefficients of VAR model through the restriction function in (18).

11Note that the draws fore the time varying coefficients were initiated near the restriction functions
just for visualization purposes.

12The coefficients would have a degenerate distribution, with point mass on the restriction func-
tion.
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Figure 1: Each subfigure presents five draws from the theory coherent prior for a generic
coefficient of the TVP-VAR for different values of the hyperparameters λ (shrinkage towards
constant) and γ (theory coherent shrinkage). The first row, presents draws for λ = 0, λ > 0
and a big λ, conditionally on γ > 0. The second row presents draws for γ = 0, γ > 0 and
a big γ, conditionally on λ > 0. The dashed black line represents the restriction functions
coming from the theory.

18



It is important to remark that this framework can accommodate both constant

and time-varying restrictions for the coefficients through (18). This allows to extend

the DSGE-VAR toolkit developed in Del Negro et al. (2004) to a broader set of cho-

sen economic theories, which might imply time varying restriction functions for the

parameters of the VAR. To show this property, I exploit the medium scale New Key-

nesian model in Del Negro, Giannoni, and Schorfheide (2015) to parametrize a prior

for a medium scale TVP-VAR for output growth, consumption growth, investment

growth, real wage growth, hours worked, inflation and the Fed Fund rate. The NK

model accounts for the ZLB and forward guidance and it is solved using the method

proposed by Cagliarini et al. (2013) for linear rational equation expectation systems

in the face of anticipated structural changes. The solution of the model implies a

state space representation that exhibits time varying coefficients. Once the popu-

lation moments implied by the state space representation are used to parameterize

(18) we obtain time varying restrictions functions for the time varying coefficients.13

Figure 2 makes this point by showing the implied time varying restrictions on the

coefficient of the first lag of the inflation rate in the equation of the Fed Fund Rate.

Together with the time varying restriction function, the figure shows draws from the

prior for different values of the hyper-parameter γ conditioning on a given value of

λ and a set of structural parameters of the NK model. As expected, as γ increases

the draws for the time varying coefficient are centered with increasing precision on

the restriction function defined by the economic theory. More in the specific, while

outside the zero lower bound the Fed Fund rate is expected to increase when the

lagged value of inflation increases, inside the zero lower bound the interest rate is not

expected to respond to the lagged value of the inflation rate and therefore the prior

mean for this coefficients becomes centered around zero.

13The details on the derivation of the moments are available in the section 4.
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Figure 2: The figure shows draws from the prior for the coefficient on the first lag
of the inflation rate in the equation of the Fed Fund rate for different values of the
hyperparameter γ. The model is a seven variable TVP-VAR for the US economy. The
dashed black line represents the restriction function implied by the medium scale NK
model.
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2.3 Conditional posterior of Φ and Σu

It is straightforward to derive the posterior distribution of (Φ,Σu) conditional on the

hyper-parameters λ, γ and on the deep parameters from the theory θ since this is just

a Normal-Inverse-Wishart distribution obtained by updating a Gaussian likelihood

with the Normal-Inverse-Wishart prior (13), namely

p(vec(Φ)|Σu, γ, λ,θ,Y ) ∼ N (vec(Φ̃),Σu ⊗ Ψ̃)

p(Σu|γ, λ,θ,Y ) ∼ IW
(
S̃, ν̃

) (20)

vec(Φ̃) = vec(
(
X ′X + γΓxx(θ)+ λ2H ′

TkHTk

)−1
(X ′Y +γΓxy(θ)+λ

2H ′
TkHTkΦ0))

(21)

Ψ̃ =
(
X ′X + γΓxx(θ)+ λ2H ′

TkHTk

)−1
(22)

S̃ = Y ′Y + S +Φ′Ψ−1Φ− Φ̃′Ψ̃−1Φ̃ (23)

ν̃ = ν + T (24)

Equation (21) makes it clear that thanks to the conjugacy of the prior the formula for

the mean of the conditional posterior of Φ boils to a standard OLS regression formula

based on a sample augmented with a set of dummy observations that determines

the degree of persistence of the time varying coefficients and another set of dummy

observations that centers the coefficients on the restriction function implied by the

theory. While the first set of dummy observations shapes the correlation of the time

varying coefficients over time by imposing a set of linear restrictions as a function of

the hyper-parameter λ, the second set of dummy observations induces at each time

period a correlation structure implied by the non-linear cross equation restrictions

coming from the theory, as a function of the deep parameters from the theory θ and

of the shrinking parameter γ.14 It is worth to remark that from a computational

perspective equation (21) makes the estimation of the time varying coefficients very

14In the appendix A.1.1 I show that thanks to the Kronecker structure of the prior (6) the time
variation of the coefficients can be modelled by dummy observations.
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efficient since it allows to draw all the history of the time varying coefficients in all

the equations of the VAR in a single step, avoiding forward filtering and backward

smoothing algorithms à la Carter and Kohn (1994). 15

2.4 λ, γ and fit complexity trade off

Tuning of the optimal degree of theory coherence and the intrinsic amount of time vari-

ation of the coefficients is a delicate matter, since it clearly involves a fit-complexity

trade off. As a matter of fact, very low values of both γ and λ imply a priori that

the coefficients in two consecutive time periods can potentially be very distant from

each others and from the restriction functions defined by the theory.16 Intuitively,

this model will fit the data very well in sample but will perform badly for forecasting

out-of-sample. Indeed, decreasing γ and λ will in general increase in-sample fit of the

model at the expense of out-of-sample accuracy. Based on this argument, I recom-

mend to base the optimal choice of both the hyper-parameters on the maximization of

the marginal likelihood of the model or equivalently on the maximization of the pos-

terior of the hyper-parameters λ and γ under a flat prior for these hyper-parameters.

This translates into maximizing the one-step-ahead out-of-sample forecasting ability

of the model. Indeed, the log-marginal likelihood (or Bayesian evidence) can be in-

terpreted as the sum of the one step-ahead predictive scores, since it is equivalent to

the scoring rule of the form

S(Y ) =
T∑

t=1

s(yt|yt−1) =
T∑

t=1

log(p(yt|yt−1)) (25)

15Indeed, as in the precision sampler by Chan and Jeliazkov (2009), we can draw all the latent
states from t = 1, . . . , T in a single step and thanks to the Kronecker structure of the posterior, we
can do it for all the N equations of the TVP-VAR jointly. More in general, the Kronecker structure
(19) coupled with the precision sampler by Chan et al. (2009) can be exploited to estimate medium
to large scale TVP-VARs.

16When both γ = 0 and λ = 0 the model is left totally unrestricted, with the prior variance
covariance of the coefficients being equal to infinity. Clearly, in this case there are more parameters
than you can feasibly estimate with a flat prior meaning that the conditional posterior of Φ cannot
be computed due to the non-invertibility of X′X (this can be seen from equation (20)).
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An attractive feature of the TC-TVP-VAR is that the marginal likelihood p(Y |γ, λ,θ)
obtained by integrating out Φ,Σu from the conditional posterior p(Φ,Σu|λ,θ, γ,Y )

is available in closed form and it is equal to

p(Y |λ,θ, γ) = (π)−
TN
2

ΓN

(
ν̃
2

)
|S̃|− ν̃

2 |Ψ̃|N2
ΓN

(
ν
2

)
|S|−

ν

2 |Ψ|N2
(26)

As a consequence, calibrating γ and λ to maximize (26) corresponds to finding γ

and λ maximizing the one-step-ahead out-of-sample forecasting ability of the model.

This strategy of estimating hyper-parameters by maximizing the marginal likelihood

is an empirical Bayes method which has a clear frequentist interpretation. In what

follows, and in particular in the estimation algorithm detailed in the next section 2.5

I will regard γ and λ as random variables and perform full posterior inference on the

hyper-parameters, but analogously maximizing the posterior of the hyper-parameters

will correspond to maximizing the one-step-ahead out of sample forecastability of the

model. Following the same steps as in Giannone, Lenza, and Primiceri (2015), we

can rewrite equation (26) as

p(Y |λ,θ, γ) ∝ |(V post
ε )−1V prior

ε |
T+ν

2

T∏

t=1

|Vt|t−1|−
1
2 (27)

where V post
ε and V prior

ε are the posterior and prior means (or modes) of the residual

variance, while Vt|t−1 is equal to the variance (conditional on Σu) of the one-step-

ahead forecast of y, averaged across all possible a-priori realizations of Σu. Complete

formulas of these objects are reported in the appendix A.1.4 and are the analog of

the formulas reported in Giannone et al. (2015). Equation (27) makes clear that the

marginal likelihood involves two terms: a reward for model fit, |(V post
ε )−1V prior

ε |
T+ν

2

and a penalty term for model complexity
∏T

t=1 |Vt|t−1|−
1
2 . Figure 3 plots the model

fit term and the penalty term of the marginal likelihood as a function of the two

hyper-parameters γ and λ conditionally on a set of deep parameters from the theory
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θ. As λ decreases the tightness of the prior centering each coefficient on its realization

in the previous period eases and in sample model fit improves, meaning that V post

decreases. However, at the same time, as λ decreases Vt|t−1 increases, since the

variance (conditional onΣ) of the one-step-ahead forecast of y increases. Analogously,

as γ decreases the restriction functions from the theory become less and less binding,

meaning that the model will fit better in sample, namely V post decreases, but the

variance of the one step ahead forecast error Vt|t−1 will increase.

Figure 3: The figure shows the model fit term (on the left) and the penalty term (on the
right) of the marginal likelihood (26) as a function of the hyper-parameters λ (persistency)
and γ (theory coherence).

2.5 Estimation

In this section I describe a posterior simulation sampler to make inference on the

TVP-VAR parameters Φ and Σu and on the shrinkage hyper-parameters λ and γ

together with the deep parameters from the theory θ .17 We can simulate draws from

the posterior p(Φ,Σu, λ,θ, γ|Y ) exploiting the factorization:

p(Φ,Σu, λ,θ, γ|Y ) = p(Φ,Σu|λ,θ, γ,Y )p(λ,θ, γ|Y ) (28)

17For the purpose of the paper we fix Φ0 = Φ̂0 and S = Ŝ = diag(ŝ21, . . . , ŝ
2
N ) and ν = N + 2.

Alternatively inference on these hyper-parameters can be made by extending the Random Walk
Metropolis step in the MCMC sampler described below.
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This factorization makes clear that we can sample from the posterior of Φ,Σu,θ, γ, λ

building a MCMC algorithm that iterates the following two steps:

1. Draw from p(λ,θ, γ|Y ) ∝ p(Y |λ,θ, γ)p(λ,θ, γ).

2. Draw from p(Φ,Σu|λ,θ, γ,Y )

In the first step, estimation of both the shrinkage parameters γ and λ and of deep

parameters from the theory θ happens by posterior evaluation of

p(λ,θ, γ|Y ) ∝ p(Y |λ,θ, γ)p(θ)p(γ)p(λ) (29)

where p(γ) and p(λ) are the priors for the shrinkage hyper-parameters 18 while p(θ)

is the prior of the deep parameters from the theory. Hence, learning about the

structural parameters happens implicitly by projecting the VAR estimates onto the

restrictions implied by the model from the theory. More precisely, the estimates

of the deep parameters minimizes the weighted discrepancy between the TVP-VAR

unrestricted estimates and the restriction function (18). This approach can be thought

as a Bayesian version of Smith Jr. (1993) and was pioneered by Del Negro et al. (2004).

In particular, the TVP-VAR is used to summarize the statistical properties of both the

observed data and the theory-simulated data and an estimate of the deep parameters

from the theory is obtained by matching as close as possible TVP-VAR parameters

from observed data and from the simulated data.19 To sample from p(λ,θ, γ|Y ) I

consider a two blocks random walk metropolis algorithm. This is basically a Gibbs

Sampler where in the first block, I draw the hyper-parameters γ and λ conditionally on

θ while in the second block I draw θ conditionally on the shrinking hyper-parameters

γ and λ. Step 2, instead, consists just on Monte Carlo draws from the posterior of

(Σu,Φ) conditional on λ, γ and θ which is the Normal-Inverse-Wishart distribution

in (20) that is:

18For both γ and λ I consider the Uniform prior γ ∼ U(0, bγ) and λ ∼ U(0, bλ) where bγ = 1010

and bλ = 1010
19See Proposition 1 and Proposition 2 in Del Negro et al. (2004) for further details on this.
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2.1) p(Σu|Φ, λ,θ, γ,Y ) ∼ IW
(
S̃, ν̃

)

2.2) p(vec(Φ)|Σu, λ,θ, γ,Y ) ∼ N (Φ̃,Σu ⊗ Ψ̃)

In this approach, the time varying parameters and the variance covariance matrix

are drawn in a single step from their Normal-Inverse-Wishart conditional posterior

distribution. It is worth to mention that in the case we allow for regressor specific

shrinkage hyper-parameters λj for j = 1, . . . , k nothing changes conceptually, since

the algorithm should just be adapted to draw all the λj’s hyper-parameters together

with γ in the second block of the random walk metropolis in Step 1. 20 As a

last note, to let the estimated path of time varying coefficients Φ1, . . . ,ΦT and the

estimate of the hyper-parameter λ less affected by the choice of the initial condition

Φ0 I assume that in equation (4) η1 ∼ N (0,Σu ⊗ 5(
∑Tpre

t=1 xtx
′
t)

−1) such that Φ1 ∼
N (Φ̂0,Σu ⊗ 5(

∑Tpre

t=1 xtx
′
t)

−1) where Tpre is the size of a pre-sample of observations

while Φ̂0 = 0.

3 Forecasting with the TC-TVP-VAR

In this section I consider the problem of forecasting the rate of growth of GDP, the

inflation rate and the Fed Fund rate using a trivariate TVP-VAR model. In the

specific, I estimate a trivariate TVP-VAR for the US economy using data from 1970

up to 2019 and I compare the forecast accuracy of a standard TVP-VAR model to

the forecasts from a TC-TVP-VAR.

3.1 Small scale New Keynesian model for the US economy

In the TC-TVP-VAR I exploit the New Keynesian model in Del Negro et al. (2004) to

parametrize the theory coherent prior. The conceptual framework commonly denoted

20Formulas for the marginal likelihood and the conditional posterior distribution of Φ and Σu can
be found in the appendix A.1.5.
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as the 3-equation New Keynesian model constitutes the nucleus of Michael Woodford’s

book “Interest and Prices” (Woodford, 2003) and underpins most of modern monetary

macroeconomics models.21 More specifically, the structural model is composed by an

IS curve (30), a New Keynesian Phillips curve (31), a monetary policy rule (32) and

two equations that describe the dynamics for the log-deviation from the steady state

of technological process (33) and government spending (34), namely

ŷt = Et[ŷt+1]−
1

τ

(
R̂t − Et[π̂t+1]

)
+ (1− ρg)ĝt +

ρz
τ
ẑt (30)

π̂t =
γ̃

r∗
Et[π̂t+1] + κ(ŷt − ĝt) (31)

R̂t = ρRR̂t−1 + (1− ρR)(ψ1π̂t + ψ2ŷt) + εR,t εR,t ∼ N (0, σR) (32)

ẑt = ρz ẑt−1 + εz,t εz,t ∼ N (0, σz) (33)

ĝt = ρgĝt−1 + εg εg,t ∼ N (0, σg) (34)

The population moments needed to parametrize the prior are derived from the state-

space representation of the New Keynesian model obtained by solving the system

of non-linear rational expectation equations. In particular, the non-linear rational

expectation equations are solved using the method based on matrix eigenvalue de-

composition by Sims (2002) leading to a solution which has the form

st = T (θ)st−1 +R(θ)ϵt (35)

that is complemented with the set of observation equations

yt = D + Bst (36)

which look like:

Y GRt = ln(γ̃) + ∆ŷt + ẑt (37)

21See Del Negro et al. (2004) for the more in depth details on the New Keynesian Model.
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INFLt = ln(π∗) + π̂t (38)

ln(INTt) = 4ln(r∗) + 4ln(π∗) + 4R̂t (39)

and relate the unobservable latent states in (35) to the observed time series of output

growth, inflation rate and the Fed Fund rate. Equations (35) and (36) are used to

derive the population moments needed to parametrize the prior. The population

moments Γxx(θ), Γxy(θ), Γyy(θ) are derived conditioning on θ, the vector of the

deep parameters of the NK model

θ = [ln(γ̃), ln(π∗), ln(r∗), κ, τ, ψ1, ψ2, ρR, ρg, ρz, σ
2
R, σ

2
g , σ

2
z ] (40)

3.2 Forecast comparison

Table 1 shows the comparison of the forecasts from a standard TVP-VAR model and

the TC-TVP-VAR model. The forecasting exercise is designed such that I compute

the recursive one quarter, two quarters, and one year ahead forecasts starting from

1985-Q1 up to 2019-Q4.22 To compare relative point forecast accuracy, in the table

I report the Root Mean Squared Error (RMSE) while for evaluating density fore-

cast accuracy I report the average Cumulative Ranked Probability Scores (CRPS). In

the table I also include the results concerning the forecasts from a constant param-

eters VAR with flat prior and a constant parameters Bayesian VAR (BVAR) with

Minnesota type of prior.23 Overall, the TC-TVP-VAR provides the most accurate

point and density forecasts for both output growth and inflation rate, outperforming

the standard TVP-VAR model at all the horizons considered. For forecasting out-

put growth, the standard TVP-VAR performs poorly relative to the TC-TVP-VAR,

but also to the constant parameters BVAR with Minnesota prior, suggesting that

the model tends to fit some noise in the time series of output growth. In line with

the previous forecasting literature, allowing for time variation of the parameters of

22Details on the data can be found in the appendix A.2.1
23Appendix A.2.2 the reports details on the competing forecasting models.
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Table 1: Point and density forecast accuracy 1985Q1 - 2019Q4

GDP growth Inflation rate Interest Rate
RMSE CRPS RMSE CRPS RMSE CRPS

a) One quarter ahead
VAR flat prior 0.4417 0.3703 0.3451 0.2877 0.0402 0.0954
B-VAR min 0.3422 0.3584 0.2854 0.2637 0.0403 0.0936
Standard TVP-VAR 0.4283 0.3853 0.3362 0.2682 0.0451 0.1096
TC-TVP-VAR 0.3027 0.3485 0.2715 0.2461 0.0608 0.1312

b) Two quarters ahead
VAR flat prior 0.5045 0.3885 0.4771 0.3423 0.1384 0.1784
B-VAR min 0.3990 0.3909 0.3819 0.3110 0.1303 0.1709
Standard TVP-VAR 0.5131 0.4151 0.3362 0.2911 0.1548 0.2037
TC-TVP-VAR 0.3340 0.3668 0.3183 0.2722 0.1689 0.2096

c) One year ahead
VAR flat prior 0.4278 0.3728 0.4965 0.3675 0.4475 0.3385
B-VAR min 0.4037 0.4065 0.4099 0.3393 0.4142 0.3229
Standard TVP-VAR 0.6472 0.4775 0.2855 0.3039 0.5665 0.3854
TC-TVP-VAR 0.3617 0.3887 0.2758 0.2802 0.5156 0.3593

Notes: The Table reports the Root Mean Squared Error (RMSE) and the average
Cumulative Ranked Probability Scores (CRPS). In bold the best model according to
each forecast metric.

the VAR is important for obtaining accurate forecasts of the inflation rate, as the

standard TVP-VAR outperforms both the VAR with flat prior and the BVAR with

the Minnesota prior. However, economic shrinkage is helpful to obtain more reliable

point and density forecasts when modelling the time variation of the coefficients. In-

deed the TC-TVP-VAR outperforms the standard TVP-VAR at all the horizons. As

a caveat, the standard Minnesota prior centering the autoregressive coefficients on

a random walk process outperforms the other competitors, including the TC-TVP-

VAR, for forecasting the Fed Fund Rate. This result is consistent with the results of

the forecasting exercise in Del Negro et al. (2004) which use the same small scale NK

model to parametrize a prior for a constant parameters VAR.
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4 Response analysis at the ZLB with the TC-TVP-

VAR

TVP-VAR are extensively used in applied research not only to make forecasts, but

also to infer changes in the response of the economy to macroeconomic shocks. In this

section, I show that the proposed shrinkage prior can be useful also to enhance infer-

ence on the impulse response functions estimated from a TVP-VAR. Recent studies

in empirical macroeconomics have used TVP-VARs to assess whether the US econ-

omy’s performance was affected by a binding ZLB constraint (Debortoli, Gaĺı, and

Gambetti, 2019; Benati et al., 2023). As a matter of fact, according to a standard

New-Keynesian model, the economy is expected to exhibit different responses when

the ZLB constraint is in effect. For example, the model predicts a distinct response

of output and inflation following both demand and supply shocks when the conven-

tional stabilizing monetary policy response to aggregate shocks is constrained as a

consequence of the Federal Funds Rate hitting the ZLB. Figure 4 makes this point,

by showing the responses to a pure demand shock - the risk premium shock 24 - in the

Smets et al. (2007) model version considered in Del Negro et al. (2015).25 The fig-

ure plots the cumulative response of output growth and the response of the inflation

rate to an exogenous risk premium shock that reduces households’ required return of

assets, decreasing firms’ cost of capital. As expected, when monetary policy is con-

strained by the policy rate hitting the zero lower bound, the response of both output

and inflation to the risk premium shock is magnified on impact with the effects of the

shock taking much more quarters to be reabsorbed by the economy.

24The risk premium shock in Smets and Wouters (2007) is an exogenous term which affects the
intertemporal margins entering both the consumption and investment Euler equation. In contrast to
a discount factor shock, the risk premium shock helps explaining the co-movement of consumption
and investment. More details on the risk premium shocks are presented in the Appendix A.3.2.

25In the model, the ZLB period is treated as in Del Negro et al. (2015), and more details on the
model will be explained in the next subsection.
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Figure 4: The two plots show the cumulative response of output growth (on the left) and
the response of the inflation rate (on the right) to a risk premium shock inside and outside
the ZLB period in the New Keynesian model.

Despite the sharp difference in the propagation of the shocks in the economy inside

and outside the zero lower bound period predicted by a standard NK model, empirical

evidences investigating this issue are mixed and many studies do not find substantial

evidence supporting a different response of the US economy during the zero lower

bound period. For example, Debortoli et al. (2019), support the irrelevance hypothesis

i.e. the hypothesis that the economy’s performance has not been affected by a binding

ZLB constraint, embracing the view that unconventional monetary policy have been

effective at getting around the zero lower bound (ZLB) constraint. Benati et al. (2023)

recently showed that, given the short length of the zero-lower-bound period, inference

based on a standard TVP-VAR where the time varying parameters are regarded as

slow moving stochastic processes, doesn’t allow to capture the changing relationship

among the macroeconomic variables during the ZLB period predicted by the New

Keynesian model. In what follows, based on a simulation study, I also find that a

standard TVP-VAR struggles to detect the change in the responses of the economy

in the ZLB period generated by a NK model. I show that the TC-TVP-VAR can in
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principle be used to solve this inferential issue and therefore to recover the distinct

response of the economy during the zero lower bound period.

4.1 Medium scale NK model accounting for ZLB and forward

guidance

The New Keynesian model is the version of the Smets et al. (2007) model considered

in Del Negro et al. (2015). The model features price and wage stickiness, investment

adjustment costs, habit formation in consumption and 7 shocks being monetary policy

shocks, technology shocks, price mark-up shocks, wage mark-up shocks, risk premium

shocks, fiscal policy shock and shocks to the marginal efficiency of capital. In the

model the monetary policy rule accounts for ZLB period and forward guidance.26

More specifically, when accounting for the zero lower bound and forward guidance

the solution of the model implies a state state space representation which exhibits

time varying coefficients. The solution method follows the approach developed by

Cagliarini et al. (2013) for linear stochastic rational expectations models in the face

of a finite sequence of anticipated structural changes. In particular, it is assumed

that at a given period t, agents expect the nominal interest rate to be at the ZLB for

H̄ periods. That is, the monetary policy rule

Rt = ρRRt−1+(1−ρR)
(
ψ1(πt − π∗

t ) + ψ2(yt − yft )
)
+ψ3

(
(yt − yft )− (yt−1 − yft−1)

)
+rmt

(41)

becomes

Rτ = −R∗ (42)

26The log-linearized equilibrium conditions of the model can be found in the appendix A.3 The
model is labelled ”SW” in Del Negro et al. (2015) and assumes a constant inflation target.
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for τ = t, . . . , t + H̄ while it is determined by (41) for τ > t + H̄. This implies that

the equilibrium conditions

Γ2,τEτ [sτ+1] + Γ0,τsτ = Γc,τ + Γ1,τsτ−1 +Ψτετ (43)

differ over time depending on whether τ ≤ t+ H̄, with the row corresponding to the

policy rule differing across τ . Following Cagliarini et al. (2013) the solution for the

linear rational expectations model under anticipated structural variations takes the

form

sτ = C(τ,H̄)
τ + T (τ,H̄)

τ sτ−1 +R(τ,H̄)
τ ϵτ (44)

where C(τ,H̄)
τ T (τ,H̄)

τ and R(τ,H̄)
τ are computed by recursion

C(τ,H̄)
τ = (Γ2,τT (τ,H̄)

τ+1 + Γ0,τ )
−1(Γc,τ − Γ2,τC(τ,H̄)

τ+1 ) (45)

T (τ,H̄)
τ = (Γ2,τT (τ,H̄)

τ+1 + Γ0,τ )
−1Γ1,τ (46)

R(τ,H̄)
τ = (Γ2,τT (τ,H̄)

τ+1 + Γ0,τ )
−1Ψτ (47)

starting from T (τ,H̄)

t+H̄+1
= T , C(τ,H̄)

t+1+H̄
= 0 and where the superscript (t, H̄) is used to

indicate that the solution is obtained under the assumption that the announcement

of zero interest rates for a duration of H̄ periods was made in period t. Following Del

Negro et al. (2015) to measure the number of quarters H̄ that the Federal Funds Rate

is expected to remain at the ZLB I exploit information based on the overnight index

swap (OIS) rates. In particular I identify the ZLB period as the quarters in which

the OIS rate is lower then 0.35. This classification leads to the same ZLB period

considered in Benati et al. (2023) and Debortoli et al. (2019) namely 2009Q1-2015Q3

(28 quarters). Following Chen, Cúrdia, and Ferrero (2012) I assume that the number

of quarters such that the policy rate is expected to stay fixed, is at most equal to four.

According to the model’s solution, the matrices C(τ,H̄)
t , T (τ,H̄)

t ,R(τ,H̄)
t characterize the
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transition equation of a time varying coefficients state space model

yt = D + Bst + vt (48)

st = Ct + Ttst−1 +Rtϵt (49)

where the constant matrices D, B and time varying matrices Ct, Tt, Rt depend on

the structural parameters θ while vt is a measurement error. 27 Therefore, while

the space representation of the model’s solution features time varying coefficients,

the deep structural parameters of the NK model θ are constant. Defining T zlb the

first period inside the ZLB and T̄ zlb the last period inside the ZLB, for t < T zlb and

t > T̄ zlb we have Rt = R̄ and Tt = T̄ and Ct = 0. Therefore the state space model

becomes

yt = D + Bst (50)

st = T̄ st−1 + R̄εt (51)

Hence, for t = 1, . . . , T zlb − 1 and t = T̄ zlb +1, . . . , T the moments Γxx,t = E[xtx
′
t|θ],

Γxy,t = E[xty
′
t|θ] and Γyy,t ≡ E[yty

′
t|θ] needed to parameterize the prior are com-

puted assuming E[sts′t] = E[st−1s
′
t−1] and solving the Lyapunov equation

E[sts′t] = T̄ E[st−1s
′
t−1]T̄ ′ + R̄ΩR̄′ (52)

As for the periods inside the ZLB, namely for T zlb ≤ t ≤ T̄ zlb , E[sts′t] and the implied

population moments are computed recursevely according to the low of motion implied

by (48) and (49).

27Details for the observation equations are in the appendix A.3 together with the list of the deep
structural parameters θ (appendix A.3.1).
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4.2 Simulation study

As anticipated above and shown in figure 4, the NK model predicts a distinct response

of the economy to a risk premium shock inside and outside the ZLB period. Condi-

tioning on the vector of deep parameters of the NK model, I simulate data from the

state space representation (48) and (49).28 In the simulation I consider artificial sam-

ples with T = 139 mimicking quarterly observations for the period 1985Q1-2019Q3.

The length of the ZLB period is 28 quarters, covering the period 2009Q1-2015Q3. I

estimate a standard TVP-VAR model (Chan et al., 2009) on the simulated data to

understand whether the model is able to recover the change in the response of the

economy during the ZLB period generated by the NK model.29 Figure 5 shows the

estimated responses of output and inflation to a risk premium shock obtained from

a standard TVP-VAR. The figure plots the responses of output growth (cumulative)

and the inflation rate to a one standard deviation risk premium shock in two reference

dates, one outside and the other one inside the ZLB period. In order to identify the

shocks in the structural TVP-VAR I exploit the true impact matrix of the NK model

given by
∂yt

∂ϵ′t
= B(θ)Rt(θ)Ω(θ)︸ ︷︷ ︸

A0,t(θ)NK

(53)

where Ω(θ) = diag(σ2
g , σ

2
b , σ

2
µ, σ

2
z , σ

2
λf
, σ2

λw
, σ2

r) is the diagonal matrix containing the

volatility of the structural shocks. As figure 5 shows, despite conditioning on the

correct identification scheme to identify the structural shocks, inference based on a

standard TVP-VAR struggles to provide convincing evidences supporting a distinct

response of both output growth and the inflation rate to a risk premium shock inside

and outside the ZLB period. As a matter of fact, the estimates of the impulse

responses are so imprecise that the model doesn’t allow to detect any change in

28Parameters are calibrated according to the posterior mode in Del Negro et al. (2015)
29The standard TVP-VAR model is the model in Chan et al. (2009). To estimate the model I use

the MATLAB codes kindly made available by Joshua Chan on his personal website.
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the response of the economy inside and outside the ZLB. 30

Figure 5: Estimated 90th − 10th credible sets of the cumulative response of output growth
(on the left) and of the response of the inflation rate (on the right) to a risk premium shock
inside (shaded red) and outside (shaded grey) the ZLB period by a standard TVP-VAR on
data simulated from the NK model.

Figure 6, instead, shows the responses obtained by estimating a TC-TVP-VAR

that exploits the NK model as a prior for the time varying coefficients. The moment

matrices Γxx, Γxy, Γyy used to parametrize the Normal-Inverse-Wishart prior are

derived from the equations of the state representation (48) and (49). Clearly, due to

the time variation of the coefficients in the state space representation, the moments

of the structural model are time varying with E[xtx
′
t|θ], E[xty

′
t|θ] and E[yty

′
t|θ]

changing over time. This, in turns, implies time varying restriction functions for the

coefficients of the TVP-VAR encoded in Φ(θ)∗ = Γxx(θ)
−1Γxy(θ). Since the time

varying restrictions incorporate the change in the response of the economy foreseen by

the NK model, the responses of output growth and the inflation rate to the risk pre-

mium shock are more precisely estimated as the time varying coefficients are shrinked

towards these restrictions. This is shown in figure 6, which plots the responses of out-

put growth and of the inflation rate to a risk premium shock for different fixed values

30As shown in the appendix in figure 8, this result is not driven by this specific simulated sample
of artificial observations.
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of γ, that is for a different amount of shrinkage towards the restrictions implied by

the NK model.31 As the figure shows, a sufficiently high γ is needed to detect a

precise and distinct response of the economy inside and outside the ZLB period as

predicted by the NK model. As γ increases and gets big enough, we get more and

more precise estimates of the time varying coefficients. This allows to detect the dif-

ferent propagation of the shocks inside and outside the ZLB period, as predicted by

the New Keynesian model. Letting γ → ∞ the estimated model is a restricted TVP-

VAR in which the time varying coefficients exactly satisfy Φ(θ)∗ = Γxx(θ)
−1Γxy(θ).

As expected, the estimated responses from this model almost exactly resemble the

responses from the NK model (panel (d)).

4.3 Estimating the TC-TVP-VAR on US data

When analyzing real data, it is reasonable to think of the NK model just as an ap-

proximate (most likely misspecified) tightly parameterized representation of the true

data generating process. In other words, we do not expect the restrictions implied by

the NK model to hold exactly. However, when encoded into a prior, these restrictions

might prove to be useful to get more precise estimates of the time varying coefficients

and of nonlinear functions of these coefficients, such as the impulse response func-

tions. In particular, in our context, shrinkage might turn out to be particularly useful

to detect the change in the response of the economy during the ZLB period predicted

by the NK model. In order to analyze to what extent the data support the chang-

ing behavior during the ZLB, my approach consists in exploiting the New Keynesian

model as a prior for the TC-TVP-VAR. The extent to which the predictions from the

New Keynesian model will be supported by the data will depend on the estimated

posterior distribution of γ, the hyper-parameter governing the degree of shrinkage of

the parameters towards the restriction implied by the New Keynesian model. If the

31Also in this case, in the TC-TVP-VAR we condition on the correct identification scheme for the
structural shocks.
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(a) γ = 10

(b) γ = 100

(c) γ = 300

(d) γ = ∞

Figure 6: Estimated 10th − 90th credible sets of the cumulative response of output growth
(left) and the response of the inflation rate (right) to a risk premium shock inside (shaded
red) and outside (shaded grey) the ZLB period for different values of γ. Data are simulated
from the NK model. Horizons are in quarters. a) γ = 10 b) γ = 100 c) γ = 300 d) γ = ∞.
For γ = ∞ the figure also reports the true responses from the NK model.
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posterior distribution of γ is concentrated relatively far from zero, the coefficients of

the TVP-VAR will be shrinked towards the restrictions implied by the NK model and

the estimated responses from the TC-TVP-VAR will resemble the predictions of the

NK model. This would happen in practice if the restrictions from the NK model find

enough support on the data. Conversely, if the restrictions from the NK are deemed

implausible by the data, the posterior distribution of γ will be concentrated around

zero and the estimates of the time varying coefficients will not reflect the restrictions

coming from the prior. The estimated model is a 7-variable TC-TVP-VAR for the

US economy including output growth, consumption growth, investment growth, real

wage growth, hours worked, inflation and the Fed Fund rate and it is estimated over

the sample 1985Q1-2019Q3.32 In order to identify the shocks in the structural TVP-

VAR, I exploit the impact matrix of the NK model. The deep parameters of the NK

model are treated as unknown and estimated along with the other parameters of the

model, which implies that on impact there is uncertainty on the effect of the shocks

on the variables of the system. Figure 7 shows the estimated responses from the TC-

TVP-VAR where the hyper-parameter γ is estimated along with the other parameters

of the model. The posterior distribution of γ is estimated to be concentrated far from

zero, meaning that the time varying restriction functions from the NK model find

sufficient support on the data. This, in turns, is reflected on the estimates of the

10th−90th credible sets which provide some evidences supporting a distinct responses

of the economy inside and outside the ZLB period. As predicted by the NK model,

the estimates suggest that when monetary policy is constrained by the nominal rate

hitting the ZLB, the risk premium shock is reabsorbed at a much slower pace by the

economy. Following the positive demand shock both output growth and the inflation

rate increase, with the effect on output growth being more precisely estimated at

shorter horizons. The effect on output peaks after almost two quarters outside the

ZLB period, while about after five quarters inside the ZLB period. As for inflation,

32Details on the variables and their transformation are available in the appendix A.3.
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the effect peaks after one quarter outside the ZLB period and after two quarters inside

the ZLB period. After the peak, the effect of the risk premium shock on both output

and inflation dies at a much slower pace inside the ZLB period, as foreseen by the

NK model. Clearly, given the symmetric nature of the impulse response functions in

our econometric model, figure 7 implies that in the face of an increase in the risk pre-

mium, the economy would experience more persistent decreases of both inflation and

output inside the ZLB period. Hence, risk premium shocks become more important

when the ZLB binds as found in Gourio and Ngo (2020). More in general, this find-

ing is compatible with the findings in Aruoba, Mlikota, Schorfheide, and Villalvazo

(2022), which building on Mavroeidis (2021) develop a structural VAR in which an

occasionally-binding constraint generates censoring of one of the dependent variables.

They find that the presence of the ZLB is empirically relevant for the propagation of

macroeconomic shocks. Differently from both Mavroeidis (2021) and Aruoba et al.

(2022), but similarly to Debortoli et al. (2019) and Benati et al. (2023) our approach

assumes the ZLB period to be completely observable. As well, while both Mavroeidis

(2021) and Aruoba et al. (2022) leverage censoring to find identifying information

on the propagation of macroeconomic shocks we directly resort to economic theory

encoded in the NK model to identify the macroeconomic shocks. One key difference is

that while in Aruoba et al. (2022) the structural coefficients switch across unobserved

regimes, in our TVP-SVAR the autoregressive time varying parameters are allowed

to slowly drift inside, outside and in the transition to and from the ZLB period. 33

33As for the impact matrix A0,t(θ), in our framework deterministically changes over time (condi-
tioning on the NK parameters θ) as a function of H̄t, the number of periods agents think the ZLB
remains binding.
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Figure 7: Estimated 90th − 10th credible sets of the cumulative response of output growth
(on the left) and of the response of the inflation rate (on the right) to a risk premium shock
inside (shaded red) and outside (shaded grey) the ZLB period from the TC-TVP-VAR on
US data.

5 Conclusion

TVP-VAR are flexible statistical models used both for prediction and policy analysis

in macroeconomics. Despite their flexibility allows to capture changes in the dynamic

relationship among the macroeconomic variables, these models can easily become too

flexible with the risk of over-fitting the data. This translate into poor forecasting

performances and imprecise inference on the time-varying parameters and of typical

objects of interests such as the impulse responses. On the other side, models from the

economic theory typically provide a more tightly parameterized representation of the

macroeconomy and therefore have the opposite tendency of fitting the data rather

poorly. This paper exploits the restrictions implied by economic theory to formulate

a prior for the parameters of TVP-VARs so as to enhance inference within this class

of models. More specifically, the paper introduces a shrinkage prior that centers the
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time varying coefficients at each time period on the cross equation restrictions im-

plied by an underlying economic theory about the variables in the system. The paper

shows that “economic shrinkage” can be successfully used to obtain more accurate

forecasts and more precise estimates of the impulse response functions. Furthermore,

exploiting the restrictions of the classical 3-equation New Keynesian block to form a

prior for the TVP-VAR through the proposed framework improves both point point

and density forecast accuracy of both output growth and inflation at all the horizons

considered. Furthermore, the paper exploits a medium scale New Keynesian model

that accounts for forward guidance and the Zero Lower bound period, to formulate a

prior for a medium scale TVP-VAR. Using this theory coherent shrinkage prior allows

to estimate more precisely the response of the economy to macroeconomic shocks in-

side and outside the ZLB period, helping to solve the inferential problems faced by

the standard TVP-VAR. On US data, the paper finds indeed a distinct effect of a pure

demand shock - the risk premium shock - inside and outside the ZLB period, with the

effects of the shock reabsorbing at a much slower pace inside the ZLB period. This

finding has important implications for the conduct of both fiscal and macroprudential

policy at the ZLB.

Future research For future research the prior proposed in this paper could be

modified to accommodate for multiple competing theories à la Loria et al. (2022). As

well, the model could be extended to embed stochastic volatility, but this extension is

non-trivial since in TVP-VARs a la Primiceri (2005) stochastic volatility breaks the

Kronecker structure of the likelihood. More in general, restrictions from economic

theory could successfully be used to reduce overfitting and sharpen inference in non-

parametric VARs and Gaussian Procesess VARs (Hauzenberger, Huber, Marcellino,

and Petz, 2022).
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A Appendix

A.1 Theory Coherent TVP-VAR

A.1.1 Time Varying Parameters by dummy observations

Starting from:

y′
t︸︷︷︸

1×N

= x′
t︸︷︷︸

1× k

Φt︸︷︷︸
k ×N

+ ut︸︷︷︸
1×N

ut ∼ N (01×N ,Σu)

we can write the TVP-VAR in static compact form as:

Y︸︷︷︸
T ×N

= X︸︷︷︸
T × Tk

Φ︸︷︷︸
Tk ×N

+ U︸︷︷︸
T ×N

U ∼MVN(0, IT ,Σu)

Suppose we want to specify independent RW stochastic processes for all the coeffi-

cients in Φ as:

ϕ
(i)
jt = ϕ

(i)
jt−1 + η

(i)
jt η

(i)
j ∼ N

(
0,

Σii

λ2j

)
(54)

for t = 1, . . . , T i = 1, . . . , N and j = 1, . . . , k. Defining Λk = diag(λ1, . . . , λk) we

can use a set of dummy observations to model the time variation of the coefficients.

The dummy observations imply the linear fuzzy restrictions in (54) on the coefficients

in Φ, in the specific we can write:




ΛkΦ0

0

0
...

0




︸ ︷︷ ︸
Y ∗

=




Λk 0 . . . 0

0 Λk . . . 0

0 0 . . . 0
...

...
...

...

0 0 0 Λk







Ik 0 . . . 0

−Ik Ik . . . 0

0 −Ik . . . 0
...

...
...

...

0 0 −Ik Ik




︸ ︷︷ ︸
X∗




Φ1

Φ2

Φ3

...

ΦT




+




u∗
1

u∗
2

u∗
3

...

u∗
T




︸ ︷︷ ︸
U∗

(55)
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Y ∗ = X∗Φ+U ∗ (56)

This is just another way of writing:




Ik 0 . . . 0

−Ik Ik . . . 0

0 −Ik . . . 0
...

...
...

...

0 0 −Ik Ik




︸ ︷︷ ︸
HTk




Φ1

Φ2

Φ3

...

ΦT




︸ ︷︷ ︸
Φ

=




Φ0

0

0
...

0




︸ ︷︷ ︸
Φ00

−




Λ−1
k 0 . . . 0

0 Λ−1
k . . . 0

0 0 . . . 0
...

...
...

...

0 0 0 Λ−1
k




︸ ︷︷ ︸
Λ−1




u∗
1

u∗
2

u∗
3

...

u∗
T




(57)

Since the generic tth block of dimension k ×N reads as follows :

Φt = Φt−1 +Λ−1
k u∗

t vec(ut) ∼ N (0,Σu ⊗ Ik) (58)

defining ηt = Λ−1
k ut we obtain:

vec(ηt) ∼ N (0,Σu ⊗ (Λ′
kΛk)

−1) (59)

that is equivalent to the dynamic linear model :

y′
t︸︷︷︸

1×N

= x′
t︸︷︷︸

1× k

Φt︸︷︷︸
k ×N

+ u′
t︸︷︷︸

1×N

ut ∼ N (0N×1,Σu) (60)

vec(Φt) = vec(Φt−1) + ηt ηt ∼ N (0,Σ⊗ (Λ′
kΛk)

−1) (61)

where Ω = (Λ′
kΛk)

−1
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A.1.2 Details on the moment matrices

The likelihood of the observations simulated from the model of the economic theory

Y (θ) is:

p(Y (θ)|Φ,Σu) = (2π)−
TN
2 |Σu|−

T
2 exp

[
−1

2
tr
(
(Σ−1

u )(Y (θ)′Y (θ)−Φ′X(θ)′Y (θ))− Y (θ)′X(θ)Φ+Φ′X(θ)′X(θ)Φ)
)]

(62)

Considering γ replications of Y (θ) we get

p(Y (θ)|Φ,Σu) = (2π)−
γTN

2 |Σu|−
γT
2 exp

[
−1

2
tr
(
(Σ−1

u )(γY (θ)′Y (θ)− γΦ′X(θ)′Y (θ))− γY (θ)′X(θ)Φ+ γΦ′X(θ)′X(θ)Φ)
)]

(63)

Next, following the approach of Del Negro et al. (2004) we replace the sample moments

X(θ)′X(θ), X(θ)′Y (θ), Y (θ)′Y (θ) by their expected values. Taking expectations

conditionally on θ we define:

Γxx(θ) ≡ E[X ′X|θ] =




Γxx,1(θ) 0k . . . 0k

0k Γxx,2(θ) . . . 0k

... 0k
. . . 0k

0k . . . 0k Γxx,T (θ)




(64)

Γxy(θ) ≡ E[X ′X|θ] =




Γxy,1(θ)

Γxy,2(θ)

. . .

Γxy,T (θ)




(65)

Γyy(θ) ≡ E[Y ′Y |θ] =
T∑

t=1

Γyy,t(θ) (66)

where Γxx,t = E[xtx
′
t|θ], Γxy,t = E[xty

′
t|θ] and Γyy,t ≡ E[yty

′
t|θ] for t = 1, . . . , T .

Substituting in the likelihood we get

p(Y (θ)∗|γ,Φ,Σu) = (2π)−
γTN

2 |Σu|−
γT
2 exp

[
−1

2
tr
(
(Σ−1

u )(γΓyy(θ)− γΦ′Γxy(θ))− γΓyx(θ)Φ+ γΦ′Γxx(θ)Φ)
)]

(67)
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A.1.3 Integrating constant of the theory coherent prior

The integrating constant of the Normal-Inverse-Wishart prior

c(λ,θ, γ) =

∫ ∞

−∞
p(Φ,Σu|λ)p(Y (θ)|γ,Φ,Σu)dΦdΣu (68)

is given by:

c(λ, θ, γ) = (π)−
γN
2

ΓN

(ν
2

)
|S|

−ν

2 |Ψ|N2
ΓN

(
ν
2

)
|S|− ν

2 |Ψ|N2
(69)

where the definitions for S, Ψ, Φ,Ψ, S, Ψ, are given above in the text while ΓN(.)

is the Gamma function.

A.1.4 Marginal likelihood and fit-complexity trade off

The marginal likelihood is given by:

p(Y |λ,θ, γ) = (π)−
TN
2

ΓN

(
ν̃
2

)
|S̃|− ν̃

2 |Ψ̃|N2
ΓN

(
ν
2

)
|S|−

ν

2 |Ψ|N2
(70)

Following the same steps as in (Giannone et al., 2015) it can be re-written as :

p(Y |λ,θ, γ) = const|(V post
ε )−1V prior

ε |
T+ν

2

T∏

t=1

|Vt|t−1|−
1
2 (71)

where

vec(ε̂t) = vec(Y −XΦ̃) (72)

V prior
ε = E[Σ] =

S

ν −N − 1
(73)

V post
ε = E[Σ|Y ] =

S + ε̂′ε̂+ (Φ̃−Φ)′Ψ−1(Φ̃−Φ)

T + ν −N − 1
(74)
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Vt|t−1 =
S

ν −N − 1
⊗ (

1 +X ′
t(X

′
t−1Xt−1 +Ψ−1)−1Xt

)
(75)

const =

(
1

π

)NT
2 ΓN

(
T+ν

2

)

ΓN

(ν
2

) (T + ν −N − 1)ν/2

(ν −N − 1)T+ν/2
(76)

A.1.5 Formulas with distinct λj for j = 1, . . . , K

In the case we consider regressor specific hyper-parameters λj with j = 1, . . . , K,

defining Λk = diag(λ1, . . . , λk) the theory coherent prior becomes:

p(vec(Φ)|Σu,Λ,θ, γ) ∼ N (vec(Φ),Σu ⊗Ψ) (77)

vec(Φ) = vec((γΓxx(θ)+H ′
TkHTk(IT ⊗Λ′

kΛk))
−1

(γΓxy(θ)+H ′
TkHTk(IT⊗Λ′

kΛk)Φ0))

(78)

Ψ = ((γΓxx(θ)+H ′
TkHTk(IT ⊗Λ′

kΛk))
−1

(79)

p(Σu|Λ,θ, γ) ∼ IW
(
S, ν

)
(80)

S = S + γΓyy(θ)+Φ0
′(H ′

TkHTk)(IT ⊗Λ′Λ)Φ0 −Φ′Ψ−1Φ (81)

ν = ν + γ (82)

The formula of the conditional posterior of Φ and Σu becomes

p(vec(Φ)|Σu,Λ,θ, γ,Y ) ∼ N (vec(Φ̃),Σu ⊗ Ψ̃)

p(Σu|Λ,θ, γ,Y ) ∼ IW
(
S̃, ν̃

) (83)

vec(Φ̃) = vec(
(
X′X + γΓxx(θ)+H ′

TkHTk(IT ⊗Λ′
kΛk)

)−1
(X′Y +γΓxy(θ)+H ′

TkHTk(IT⊗Λ′
kΛk)Φ0))

(84)

Ψ̃ = (X ′X + γΓxx(θ)+H ′
TkHTk(IT ⊗Λ′

kΛk))
−1

(85)

S̃ = Y ′Y + S +Φ′Ψ−1Φ− Φ̃′Ψ̃−1Φ̃ (86)
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ν̃ = ν + T (87)

The marginal likelihood is just (26), updated with the new definitions of ν, S, Ψ,

Φ,Ψ̃, S̃, Ψ̃.

A.2 Forecasting exercise and small scale NK model

A.2.1 Data

The data for the out of sample forecasting exercise in Section 3 are taken from the

FRED-QD Dataset from the Federal bank of St. Louis. The series IDs of the time

series are GDPC1, CPIAUCSL, FEDFUNDS. Quarterly GDP growth and quarterly inflation

rate are obtained transforming the series according to ∆%yt = 100
(

yt−yt−1

yt−1

)
. As for

the Fed Funds interest rate it is transformed by taking the logarithm.

A.2.2 Competing models in the forecasting exercise:

The competing models in the out of sample forecasting exercise in Section 3 are

• A constant parameters VAR with flat prior.

• A constant parameters VAR with Normal Inverse-Wishart prior.

• A TVP-VAR model.

The VAR with Normal Inverse-Wishart prior is given by:

Y = XΠ+U U ∼MVN(0,Σu, IT ) (88)

where Y is T ×N , X is T × k with k = Np+1, Π is k× n , U is T ×N and MVN

stands for the matricvariate normal. The prior for the autoregressive coefficients and

the variance covariance matrix is:

vec(Π) ∼ N (vec(µΠ),Σu ⊗ΩΠ) (89)
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Σ ∼ IW(S0, v0) (90)

where vec(Π) centers the non-stationary series on a random walk process and the

stationary ones on a white noise process and ΩΠ is a diagonal matrix with first

element element equal to

ω1 = 100 (91)

and

ωs =
θ1
σ2
i l

2
(92)

for the other elements s = 2, . . . , Np with θ1 = 0.1 and σ2
i is set equal to σ̂2

i being

the estimated variance of the ith variable in a VAR model using a pre-sample of

observations. l is the lag order of the variable associated to that variable. S0 is set

equal to Ŝ0 the variance covariance matrix estimated variance from a VAR model on

a pre-sample of observations and v0 = N + 2. The standard TVP-VAR model and

the corresponding choice of the prior distributions follows Chan et al. (2009). The

model is given by:

y′
t︸︷︷︸

1×N

= x′
t︸︷︷︸

1× k

Φt︸︷︷︸
k ×N

+ u′
t︸︷︷︸

1×N

ut ∼ N (0N×1,Σu) (93)

vec(Φt) = vec(Φt−1) + ηt ηt ∼ N (0,Ω) (94)

where Ω = diag(ω1, . . . , ωNk)
34

ωi ∼ IG
(
ν, s2

)
(95)

where ν = 3 s2 = 0.005 and the prior for the variance covariance matrix is set as in

the constant parameter BVAR with Normal-Inverse-Wishart prior.

34Note that in this model the variances in the state equation of the time varying coefficients are
not constrained to be proportional across equations (the structure of Ω is not constrained to be a
Kronecker product Ω = Σu ⊗Λk).
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A.2.3 Prior for the DSGE parameters

Table 2: Prior distribution for the parameters of the New Keynesian model

Parameter Prior distribution Mean Standard Deviation

ln(γ̃s) Normal 0.500 0.250
ln(π∗) Normal 1.000 0.500
ln(r∗) Gamma 0.500 0.250
κ Gamma 0.300 0.150
τ Gamma 2.000 0.500
ψ1 Gamma 1.500 0.250
ψ2 Gamma 0.500 0.200
ρR Beta 0.500 0.250
ρg Beta 0.800 0.100
ρz Beta 0.300 0.100
σR Inverse Gamma 0.251 0.139
σg Inverse Gamma 0.630 0.323
σz Inverse Gamma 0.875 0.430

The table reports the details on the prior distribution of the parameters of the New Keynesian model.
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A.3 Medium scale New Keynesian model

The model is taken from Del Negro et al. (2015) and it is a version of the popular

medium scale New Keynesian model in Smets et al. (2007). The set of log-linearized

equilibrium conditions of the model is

ct = − (1− he−γ)

σc(1 + he−γ)
(Rt−Et[πt+1]+bt)+

(he−γ)

(1 + he−γ)
(ct−1−zt)+

1

(1 + he−γ)
Et[ct+1+zt+1]+

(σc − 1)

σc(1 + he−γ)

w∗l∗
c∗

(it−Et[lt+1])

(96)

qkt = S ′′e2γ(1 + β̄)

(
it −

1

1 + β̄
(it−1 − zt)−

β̄

1 + β̄
Et[it+1 + zt+1]− µt

)
(97)

k̄t =

(
1− i∗

k∗

)
(k̄t−1 − zt) +

i∗
k∗
it +

i∗
k∗
S ′′e2γ(1 + β̄)µt (98)

rk∗
rk∗ + (1− δ)

Et[r
k
t+1] +

1− δ

rk∗ + (1− δ)
Et[q

k
t+1]− qkt = Rt + bt − Et[πt+1] (99)

kt = ut − zt + k̄t−1 (100)

1− ψ

ψ
rkt = ut (101)

mct = wt + αlt − αkt (102)

kt = wt − rkt + lt (103)

yt = Φp(αkt + (1− α)lt) + I{ρz < 1}(Φp − 1)
1

1− α
z̃t (104)

yt = gt +
c∗
y∗
ct +

i∗
y∗
it +

rk∗k∗
y∗

ut − I{ρz < 1} 1

1− α
z̃t (105)

gt = ρggt−1 + σgεg,t + ηgzσzεz,t (106)

πt = κmct
ιp

1 + ιpβ̄
πt−1 +

β̄

1 + ιpβ̄
Et[πt+1] + λf,t (107)

wt =
(1− ζwβ̄)(1− ζw)

(1 + β̄)ζw((λw − 1)ϵw + 1)
(wh−wt)−

1 + ιwβ̄

(1 + β̄)
πt+

1

1 + β̄
(wt−1−zt−ιwπt−1)+

β̄

1 + β̄
Et[wt+1+zt+1+πt+1]+λw,t

(108)

wh
t =

1

1− he−γ
(ct − he−γct−1 + he−γzt) + νllt (109)
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λf,t = ρλf
λf,t−1 + σλf

ελf ,t − ηλf
σλf

ελf ,t−1 (110)

λw,t = ρλwλw,t−1 + σλwελw,t − ηλwσλwελw,t−1 (111)

Rt = ρRRt−1+(1−ρR)
(
ψ1(πt − π∗

t ) + ψ2(yt − yft )
)
+ψ3

(
(yt − yft )− (yt−1 − yft−1)

)
+rmt

(112)

Et[R̃
k
t+1 −Rt] = bt (113)

R̃k
t+1 − πt =

rk∗
rk∗ + (1− δ)

rkt +
(1− δ)

rk∗ + (1− δ)
qkt − qkt−1 (114)

bt = ρbbt−1 + σbεb,t (115)

µt = ρµµt−1 + σµεµ,t (116)

z̃t = ρz z̃t−1 + σzεz,t (117)

rmt = ρrz̃t−1 + σrεr,t (118)

The observation equations are:

Output growth = γ + 100(yt − yt−1 + zt) (119)

Consumption growth = γ + 100(ct − ct−1 + zt) (120)

Investment growth = γ + 100(it − it−1 + zt) (121)

Real wage growth = γ + 100(wt − wt−1 + zt) (122)

Hours worked = l̄ + 100lt (123)

Inflation = π∗ + 100πt (124)

FFR = R∗ + 100(Rt) (125)

Data sources and transformations are as in Del Negro et al. (2015) to which I refer

for further details. During the ZLB period, the observation equation for the interest
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rate includes a measurement error, namely:

FFR = R∗ −R∗ + vr,t (126)

with E[vr,t] = 0 and var(vr,t) = 0.001. This is to account for the fact that the Fed

Fund Rate was not exactly equal to zero, remaining slightly above zero in the ZLB.
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Figure 8: Estimated 10th and 90th credible intervals of responses of output growth (cumulative) and inflation rate inside (in
shaded red) and outside (in shaded grey) the ZLB period from a standard TVP-VAR on distinct simulated samples from the NK
model. The dotted line plots are the responses inside (in red) and outside (in black) the ZLB period in the NK model.
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A.3.1 Prior for the structural parameters

Table 3: Prior distribution for the parameters of the New Keynesian model

Parameter Prior distribution Mean Standard Deviation Parameter Prior distribution Mean Standard Deviation

ψ1 Gamma 1.500 0.250 ρR Beta 0.750 0.100
ψ2 Gamma 0.120 0.050 ψ2 Beta 0.500 0.200
ψ3 Gamma 1.12 0.050 ψ3 Inverse-Gamma 0.10 2.000
ζp Beta 0.500 0.100 ζw Beta 0.500 0.100
α Normal 0.300 0.050 π∗ Gamma 0.750 0.400
Φ Normal 1.250 0.120 γ Normal 0.400 0.100
h Beta 0.700 0.100 S ′′ Normal 4.000 1.500
νl Normal 2.000 0.750 σc Normal 1.500 0.370
ιp Beta 0.500 0.500 ιw Beta 0.500 0.150
r∗ Gamma 1.500 0.250 ψ Beta 0.500 0.150
ρz Beta 0.500 0.200 σz Inverse-Gamma 0.100 2.000
ρb Beta 0.500 0.250 σb Inverse-Gamma 0.100 2.000
ρλf

Beta 0.500 0.200 σλf
Inverse-Gamma 0.100 2.000

ρλw Beta 0.500 0.200 σλw Inverse-Gamma 0.100 2.000
ρµ Beta 0.500 0.200 σµ Inverse-Gamma 0.100 2.000
ρg Beta 0.500 0.200 σg Inverse-Gamma 0.100 2.000
ηλf

Beta 0.500 0.200 ηλf
Beta 0.500 0.200

ηgz Beta 0.500 0.200
The table reports the details on the prior distribution of the parameters of the medium scale New Keynesian model which accounts for the
ZLB period and forward guidance. The choice of the prior follows Del Negro, Giannoni, and Schorfheide (2015).
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A.3.2 Risk premium shocks

Risk premium shocks in the Smets et al. (2007) are financial shocks that drive a wedge

between the risk-free interest rate and the actual interest rates faced by borrowers.

Figure 9 shows the impulse response functions to a negative risk premium shock in

the Smets et al. (2007) model. The shock propagates through the economy like a

pure demand shock, by raising both real activity and inflation.

Figure 9: The figure shows the impulse response functions to one standard deviation
risk premium shock in the Smets and Wouters (2007) model.

Considering a standard VAR model with the seven variables of the Smets et al.

(2007) model augmented with the Excess Bond Premium (EBP) series by Gilchrist

and Zakraǰsek (2012), we think of the orthogonal component of the EPB as akin to

the risk premium shocks in the Smets and Wouters model. Figure 10, shows the

impulse response function to a one standard deviation shock to the EBP Gilchrist

et al. (2012). The shocks are identified through recursive identification by ordering

the EBP series last in the VAR, that is allowing the excess bond premium series to

contemporaneously respond to the other shocks in the VAR.
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Figure 10: The figure reports the impulse response functions to a negative one stan-
dard deviation shock to the excess bond premium of Gilchrist and Zakraǰsek (2012).
In red the posterior median, while in blue dotted line the 84th−16th credible intervals.

.
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Aruoba, S. Borağan, Marko Mlikota, Frank Schorfheide, and Sergio Villalvazo (2022).

“SVARs with occasionally-binding constraints”. In: Journal of Econometrics 231.2.

Special Issue: The Econometrics of Macroeconomic and Financial Data, pp. 477–

499.

Ascari, Guido, Paolo Bonomolo, and Qazi Haque (2023). “The long-run phillips curve

is... a curve”. In.

Ascari, Guido and Argia M. Sbordone (2014). “The Macroeconomics of Trend Infla-

tion”. In: Journal of Economic Literature 52.3, pp. 679–739.

Belmonte, Miguel A.G., Gary Koop, and Dimitris Korobilis (2014). “Hierarchical

Shrinkage in Time-Varying Parameter Models”. In: Journal of Forecasting 33.1,

pp. 80–94.

Benati, Luca and Thomas A. Lubik (June 2023). Impulse Response Analysis at the

Zero Lower Bound. Diskussionsschriften dp2306. Universitaet Bern, Departement

Volkswirtschaft.
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Modelling and Forecasting Macroeconomic Risk with Time

Varying Skewness Stochastic Volatility Models ∗
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Abstract

Monitoring downside risk and upside risk to the key macroeconomic indicators is critical

for effective policymaking aimed at maintaining economic stability. In this paper I propose

a parametric framework for modelling and forecasting macroeconomic risk based on stochas-

tic volatility models with Skew-Normal and Skew-t shocks featuring time varying skewness.

Exploiting a mixture stochastic representation of the Skew-Normal and Skew-t random vari-

ables, in the paper I develop efficient posterior simulation samplers for Bayesian estimation

of both univariate and VAR models of this type. In an application, I use the models to

predict downside risk to GDP growth in the US and I show that these models represent a

competitive alternative to semi-parametric approaches such as quantile regression. Finally,

estimating a medium scale VAR on US data I show that time varying skewness is a relevant

feature of macroeconomic and financial shocks.
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1 Introduction

Central banks and policy institutions play a critical role in maintaining financial stability and

fostering economic growth. A key challenge they face is effectively monitoring the likelihood

of severe events that could have adverse effects on the economy. Failing to adequately assess

these risks can lead to underestimation of potential losses and insufficient policy responses. To

address this challenge, it is essential to develop econometric tools that can accurately predict and

assess tail risk in macroeconomic outcomes. In this paper, I propose an econometric framework

specifically designed for modeling and forecasting macroeconomic tail risk. The framework

relies on fully parametric univariate and multivariate stochastic volatility models with Skew-

Normal and Skew-t shocks featuring stochastic skewness. These models aim to capture and

predict persistent time-varying asymmetries in the future distribution of the variables of interest.

Capturing these asymmetries is especially relevant given the risk management nature of the

problem of policymaking faced by central banks and policy institutions (Kilian et al. 2003).

The paper begins by extending the well-known univariate stochastic volatility model intro-

duced by Jacquier et al. (1994) to explicitly account for time-varying conditional skewness in the

predictive distribution of a single target variable. Then, building upon the univariate approach,

the paper introduces a Bayesian Vector Autoregressive (VAR) model with stochastic volatility

and time-varying skewness. By allowing to track changes in the shape of the predictive distri-

bution of multiple time series, this model is suitable for quantification and forecasting of tail

risk to multiple target variables. Importantly, the model retains all the advantages and familiar

toolkit for policy analysis and scenario analysis associated to the VAR framework. The model

is estimated through an efficient Gibbs sampler that exploits a convenient mixture stochastic

representation of the Skew-Normal and Skew-t shocks. To test the effectiveness of the proposed

framework, I use the time-varying skewness stochastic volatility models to monitor downside risk

to GDP growth in the US economy. The findings of this analysis align with the main conclusions

of Adrian et al. (2019), revealing a nonlinear and asymmetric impact of financial conditions on

the future distribution of GDP growth. Additionally, the models provide slightly more accurate

out-of-sample forecasts of downside risk compared to quantile regression, which is often consid-

ered as the benchmark model in this literature. Furthermore, estimating a medium-scale VAR

model of monetary policy, I show that shocks to financial and macroeconomic time series exhibit

both time-varying volatility and time-varying skewness, suggesting that taking into considera-
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tion both of these features might be of particularly relevance for accurately assessing upside and

downside risk to macroeconomic indicators.

Related literature A fast-growing body of studies recently used univariate quantile re-

gression methods for modelling and predicting asymmetries in the future distribution of the

macroeconomic variables of interest. For example, Giglio et al. (2016) used predictive quantile

regression to investigate whether systemic risk indicator and financial distress indicators predict

changes in the lower quantiles of future macroeconomics shocks. As well, Kiley (2018) used

quantile regression to examine fluctuations in the risk of a large increase in unemployment.

More recently, Adrian et al. (2019) used a two step-procedure based on predictive quantile re-

gression and quantile interpolation to model changes in downside risk to future GDP growth as

a function of current financial and economic conditions.1 Despite its popularity, the quantile

regression method of Adrian et al. (2019) typically fails in the presence of a large information

set where fully parametric models often produce more accurate forecasts of downside risks (Car-

riero et al. 2020). As a matter of fact, when using quantile regression, including multiple lags

of the dependent and independent variables so as to capture the rich autocorrelation structure

of macroeconomic and financial time series becomes very impractical and often leads to impre-

cise estimates of the coefficients and problems such as quantile crossing. Moreover, the entire

predictive distribution of the target variables can only be obtained in two steps by interpolating

the estimated quantiles with a flexible distribution. In the light of these limitations a new wave

of studies have recently brought some evidences in favour of the use of fully parametric models

to assess and predict tail risk to macroeconomic outcomes. Brownlees et al. (2021) for exam-

ple, show that standard GARCH models have superior forecasting performance with respect to

quantile regression methods for forecasting downside risk to GDP growth. As well, Carriero et

al. (2020) show that a Bayesian VAR with stochastic volatility performs comparably to quantile

regression for estimating and forecasting tail risks. Here I follow and extend this line of research

by considering fully parametric models featuring both time varying volatility and time varying

skewness, as recently done by Delle Monache et al. (2021), Iseringhausen (2021), Wolf (2021)

1. The two step approach based on quantile regression of Adrian et al. (2019) gained substantial popularity
in the literature and has been employed in many other frameworks to assess and predict tail risk to economic
outcomes. Among the others, López-Salido et al. (2020) used the two step approach of Adrian et al. (2019) for
assessing and predicting downside and upside risk to inflation while Gelos et al. (2022) used the same approach
for predicting the probability of large capital out-flows and in-flows to emerging markets.
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and Montes-Galdón et al. (2022). While the first three contributions are all univariate 2 in this

paper I model time varying volatility together with time varying skewness both in a univariate

and in a multivariate framework. The main advantages of the multivariate framework is that

it allows to jointly model the dynamic relationship between the target variables and the risk

factors and to explicitly model tail risk to multiple macroeconomic outcomes of interest. The

multivariate model that I propose in this paper is a VAR model in which Bayesian shrinkage can

be conveniently used to avoid over-fitting when exploiting a potential large information set due

both to the inclusion of larger number of macroeconomic variables and of a meaningful number of

lags needed to properly account for the rich autocorrelation structure of the macroeconomic and

financial time series. The model features two distinct stochastic processes respectively governing

the time varying volatility and the time varying skewness of the shocks. By considering distinct

stochastic processes for the skewness and the volatility of the shocks, this model is different

from the Bayesian VAR with Skew-Normal shocks introduced by Montes-Galdón et al. (2022)

where the latent stochastic process governing the shape of the shocks influences not only the

conditional skewness, but also the conditional mean and the conditional variance of the variables

in the system. As well, the model differs from Karlsson et al. (2023) who recently proposed a

general class of generalized hyperbolic skew Student’s distribution with stochastic volatility for

the shocks of the VAR in which the time variation in the volatility of the shocks drives also time

variation in their skewness. To my knowledge, this is the first paper that estimates a VAR with

two distinct stochastic processes for the volatility and the skewness of the shocks.

Outline The rest of the article is organized as follows. In Section 2.1 I present the uni-

variate stochastic volatility models with Skew-Normal and Skew-t shocks featuring time varying

skewness. Then in Section 2.2 I exploit the same conceptual framework to model time varying

skewness together with time varying volatility in the shocks of a VAR model. In both sections I

present posterior simulation samplers used for Bayesian estimation of these models. In Section 3

I and use the models to predict downside risk to GDP growth and compare the forecasting per-

formances to the popular two step approach based on quantile regression by Adrian et al. (2019).

2. Delle Monache et al. (2021) propose a score driven model with Skew-t innovations. Iseringhausen (2020)
is the first paper to introduce time varying conditional skewness in a univariate stochastic volatility model by
exploiting a Noncentral-t distribution for the innovations. Wolf (2021) exploits the Skew-Normal distributions
but considers a different parametrization for the shocks with respect to the univariate model that I consider in
Section 2.1 relying as well on a different estimation strategy.
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Finally, in Section 4 I estimate a medium scale VAR model and show that many macroeconomic

and financial variables exhibit time varying conditional skewness.

2 Models

2.1 Univariate time varying skewness stochastic volatility model

Stochastic volatility models currently represent the state of the art for modelling and forecast-

ing macroeconomic and financial time series. The basic stochastic volatility model of Jacquier

et al. (1994) specifies a log-normal auto-regressive process for the conditional variance with in-

dependent innovations in the conditional mean and conditional variance equation. In a second

contribution, Jacquier et al. (2004) introduce a stochastic volatility model that features cor-

relation between the volatility and mean innovations (leverage effects) allowing for conditional

skewness, but without modelling it explicitly. Cappuccio et al. (2004) present a stochastic volatil-

ity model where the shocks feature a Skew-GED distribution while Abanto-Valle et al. (2015)

introduce a stochastic volatility with Skew-t innovations. Both contributions explicitly model

conditional skewness, but do not allow for time varying conditional skewness. Here I present

a direct extension of the univariate stochastic volatility model of Jacquier et al. (1994) that

instead explicitly allows for time varying conditional skewness.

In order to model asymmetries in the conditional distribution of the dependent variable,

I assume that the innovations in an otherwise standard stochastic volatility model follow a

potentially asymmetric distribution, being the Skew-Normal (Azzalini 1986) and the Skew-t

(Azzalini et al. 2003) distribution. The Skew−Normal(ζ, ω2, λ) is an asymmetric distribution

fully characterized by three parameters: the location parameter ζ, the scale parameter ω2 and

the shape parameter λ. The shape parameter λ governs the skewness of this distribution. As

λ = 0 the Skew-Normal becomes symmetric and collapses to the Normal. Positive values of λ

are associated with a right skewed distribution while negative values of λ are associated with a

left skewed distribution. 3 To model time variation in the shape of the shocks, I treat the shape

parameter λ as an additional stochastic process in the model:

yt = xtπ +
√
htεt εt ∼ Skew-Normal(ζt, ω

2
t , λt) (1)

3. See Appendix A.1 for details on the Skew-Normal and Skew-t.
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log(ht) = φhlog(ht−1) + ηt ηt ∼ N (0, σ2
η) (2)

λt = φλλt−1 + ξt ξt ∼ N (0, σ2
ξ ) (3)

where yt is the dependent variable observed over the periods t = 1, . . . , T , while xt is a row

vector of that might contain lags of the dependent variable and other exogenous regressors and

π is the column vector of coefficients. I assume that the Skew-Normal shocks have zero mean

and unit variance, that is E[εt] = 0 and var(εt) = 1, which implies the following constraints on

the location and scale parameters:

ζt = −ωtδt
√

2

π
∨ t (4)

ω2
t =

[
1− 2

π
δ2
t

]−1

∨ t (5)

where δt = λt√
1+λ2t

, with −1 < δt < 1. This parametrization ensures that E[yt|It−1] = xtπ. In

this regard, it is important to remark that imposing ζt = 0 instead of (4) would imply E[εt] 6= 0,

and in general E[εt|It−1] 6= 0.4 As well, this parametrization ensures that yt features both time

varying conditional volatility and time varying conditional skewness with the former exclusively

governed by the stochastic process in equation (2) while the latter by the stochastic process in

(3).5

In order to explicitly model heavy-tails, together with time-varying skewness, I also consider

an alternative specification where the innovations are distributed as a Skew − t(ζt, ω2
t , λt, ν)

(Azzalini et al. 2003). The parameter of the degrees of freedom ν determines the tail thickness

of the Skew-t distribution: as ν → ∞ the Skew-t converges to the Skew-Normal while when

λ = 0 the Skew-t collapses to a Student-t with ν degrees of freedom. In this case the constraints

4. Imposing ζt = 0 instead of (4) leads to a model with a time varying intercept, shifting the conditional mean
of yt proportionally to λt−1.

5. It is possible to have a model that features both time varying volatility and time varying skewness by
assuming:

yt = xtπ + εt εt ∼ Skew-Normal(ζt, ω
2
t , λt)

λt = φλλt−1 + ξt ξt ∼ N (0, σ2
ξ)

assuming E(εt) = 0 (hence (4) still holds) and imposing ω2 = 1 which implies var(εt) 6= 1 =
(

1− 2δ2t
π

)
. However,

in this case the parameter λt would drive both conditional skewness and conditional volatility. This is not desirable
in general, since we might want to model these two distinct features using different dynamics.
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on the location and scale parameters that ensure E[εt] = 0 and var(εt) = 1 become:

ζt = −ωtδtk1

√
2

π
∨ t (6)

ω2
t =

(
k2 −

2

π
k2

1δ
2
t

)−1

∨ t (7)

where k1 =
√

ν
2

Γ( ν−1
2

)

Γ( ν
2

) , k2 = ν
ν−2 and Γ(.) is the Gamma function. This stochastic volatility

model with Skew-t shocks includes as special cases both the stochastic volatility model with

heavy tails without conditional skewness of Jacquier et al. (2004) and the model with heavy

tails and constant conditional skewness of Abanto-Valle et al. (2015).6 It is straightforward to

modify this specification by assuming a different dynamics for the log-volatility and the shape

parameter in the state equations (2) and (3). For example if we suspect that some of the

variables in xt affect not only the conditional mean, but also the conditional variance and the

conditional skewness of yt, we can include them in the state equations of these two distinct

stochastic processes. For example, as it will be shown in the application to the Growth at

Risk framework in Section 3, motivated by the findings of Adrian et al. (2019) and subsequent

work by Delle Monache et al. (2021), Montes-Galdón et al. (2022) and Wolf (2021) I consider

a specification in which financial condition affect not only the conditional mean but also the

conditional skewness of the future GDP growth distribution.

2.1.1 Priors and estimation of the univariate TVSSV model

This section develops a posterior simulation sampler which allows for Bayesian estimation of the

univariate models presented above. For what concerns the specification of the prior distribution

for the parameters of the model, I assume a Normal prior for the regression coefficients (π) and

for the coefficients in the state equations (φλ and φh) while I specify an Inverse Gamma Prior

for the variances of the innovations to the log-volatility and to the shape parameter (σ2
η and

σ2
ξ ). The estimation strategy leverages on the fact that εt ∼ Skew Normal(ζt, ω

2
t , λt) has the

6. The stochastic volatility model with heavy tails of Jacquier et al. (2004) is a particular version of this model
where the shape parameter is constant and equal to 0, that is λt = 0 ∨ t. As well, the stochastic volatility model
with skewness and heavy tails of is a particular version of this model where σ2

ξ → 0 and φλ = 1, namely the shape
parameter λt is constant.
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following stochastic representation :

εt = ζt + δtωtvt +
√

(1− δ2
t )ωtzt (8)

where vt
i.i.d∼ Truncated Normal[0,∞)(0, 1) and zt

i.i.d∼ N (0, 1). Equation (8) implies that condi-

tioning on the mixing variable vt and on δt, which is one to one map to λt, the random variable

εt is distributed as a Normal . This result greatly simplifies the derivation of the full conditional

distributions in the Gibbs Sampler and allows to exploit and adapt many of the results used for

the estimation of the standard stochastic volatility model with Gaussian innovations (Jacquier

et al. 1994). In particular, in the model with Skew-Normal shocks, once I have obtained a

draw from the full conditional posterior distribution of the mixing variable vt and from the

full conditional distribution of the shape parameter λt, I can exploit the conditionally Normal

distribution of εt in the derivation of formulas of the conditional distributions of the other pa-

rameters and the latent states of the model. Moreover ζt, ωt and δt are neither parameters nor

latent states to be estimated. ζt and ωt satisfy the constraints (4) and (5) and ensure the correct

parameterization of the shocks at each time period t = 1, . . . , T , while δt is a one to one map to

λt, namely δt = λt√
1+λ2t

.

Table 1 presents the details on the Gibbs Sampler while Appendix A.2 reports the derivations

of the full conditional posterior distributions. In Step 1) I sample the mixing variables {vt}Tt=1

from the full conditional posterior distribution p(vt|Θ,λ,h,y) which is a Truncated Normal

distribution. Steps 2) 3) 4) 5) 6) are pretty standard: I draw the regression coefficients π in

the observation equation (1) and the autoregressive coefficients and the variances in the two

state equations (2) (3) from their respective full conditional posterior distributions. In Step 7)

and Step 9) I draw the initial states for the volatility h0 and the shape parameter λ0, while in

Steps 8) and 10) I draw the entire history for the volatilities and the shape parameters. Since

it is not feasible to directly sample from the full conditional distributions of the volatilities

p(h1, . . . , hT |Θ,v,λ,y) and the shape parameters p(λi1, . . . , λiT |Θ,v,h,y) I rely on the particle

filter to approximate these distributions. In alternative to the particle step, to draw both the

log-volatilities and the shape parameters it is possible to consider an independence Metropolis

Hastings step but I experienced that the algorithm based on the particle filter has smaller
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mixing times.7 In the particle approximation, I use the transition equations (2) and (3) as

importance densities and compute the weights accordingly. The details on the particle steps

used to approximate the full conditional posterior distribution of the volatilities and the shape

parameters can be find in Table 4 in the Appendix A.4. As well, in the Appendix A.4, I report

the details on the steps of the alternative algorithm which relies on the independence Metropolis

Hastings steps to draw the volatilities and the shape parameters.

Table 1: MCMC algorithm for the univariate TVSSV model

MCMC for the univariate TVSSV model

Initialize Θ(0), s(0)

For m = 0 : Total MCMC draws

1) Draw {vt}T
(m+1)

t=1 from p(v1 . . . , vT |Θ(m),λ(m)),h(m),y)

2) Draw π(m+1) from p(π|Θ(m),v(m),λ(m)),h(m),y)

3) Draw σ2(m+1)

η from p(σ2
η |Θ(m), v(m),λ(m)),h(m),y)

4) Draw σ2(m+1)

ξ from p(σ2
ξ |Θ(m), v(m),λ(m)),h(m),y)

5) Draw φ
(m+1)
h from p(φh|Θ(m), v(m),λ(m)),h(m),y)

6) Draw φ
(m+1)
λ from p(φλ|Θ(m), v(m),λ(m)),h(m),y)

7) Draw h
(m+1)
0 from p(h0|Θ(m),v(m),λ(m)),h(m),y)

8) Draw {ht}T
(m+1)

t=1 from p(h1, . . . , hT |Θ(m),v(m),λ(m),y)

Particle Step

9) Draw λ
(m+1)
0 from λ

(m+1)
0 from p(λ0|Θ(m),v(m),λ(m),h(m),y)

10) Draw {λt}T
(m+1)

t=1 from p(λi1, . . . , λiT |Θ(m),v(m)),h(m),y)

Particle Step

end

To estimate the version of the model with Skew-t innovations, I just exploit the fact that

εt ∼ Skew-t(ζt, ω
2
t , λt, ν) has in turn a convenient stochastic representation, namely:

εt = ζt + δtωto
−0.5
t vt +

√
(1− δ2

t )ωto
−0.5
t zt (9)

vt
i.i.d∼ Truncated Normal[0,∞)(0, 1), zt

i.i.d∼ N (0, 1) and ot
i.i.d∼ G(ν2 ,

ν
2 )

This is the same same representation of the Skew-Normal except for the additional mixing

variable ot. Therefore, conditioning on both the two mixing variables mt = {vt, ot} and on δt,

which is a one to one map with λt, the shock εt is distributed as a Normal. Therefore, also in this

case, I can exploit and adapt the derivations of the standard model with Gaussian shocks when

7. In the particle steps, in order to alleviate path degeneracy, I exploit the Ancestor Sampling procedure
developed in Lindsten et al. (2014) which enables fast mixing even when using seemingly few particles. Lindsten
et al. (2014) study the properties of the sampler and provide the formal proof for the convergence of the algorithm.
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deriving the full conditional posterior distribution in the Gibbs Sampler. In order to estimate the

model it is just needed to consider a further initial step to draw from p(o1 . . . , oT |Θ,v,λ,h,y),

namely: 8

Draw {ot}T
(m+1)

t=1 from p(o1 . . . , oT |Θ(m),v(m),λ(m)),h(m),y)

and then adapt Steps 2) to 10) in Table (1) with the new formulas of the full conditional

distributions derived by conditioning on the further mixing variables {ot}Tt=1. In this case, since

it is not possible to directly sample from the full conditional distribution of the mixing variable

ot, I use Metropolis Hastings to simulate draws from this distribution. Appendix A.3 reports

the details of this step.

2.2 Time varying skewness stochastic volatility VAR model

Given the risk management nature of the problem of policymaking, it is often the case that the

objective of interest is to quantify and predict tail risk to multiple macroeconomic outcomes

(Kilian et al. 2003). In particular, from a modelling perspective, we might be interested in

a multivariate model that can characterize asymmetries in the future distribution of multiple

macroeconomic time-series. VAR models (Sims 1980) emerged as the natural tool to capture

the rich dynamic interrelationship between multiple macroeconomic time series. They currently

represent the workhouse in empirical macroeconomics and are routinely used for forecasting and

policy analyses (Stock et al. 2001). In this section I exploit the conceptual framework presented

in the previous section to jointly model the dynamic behaviour of multiple time series in a

Bayesian VAR model and capture time varying skewness in the conditional distribution of the

variables in the system. The model is given by:

yt = Π0 + Π1yt−1 + . . .+ Πpyt−p +A−1H0.5
t εt (10)

where yt is an N ×1 vector of variables observed over the periods t = 1, . . . , T . Ht is a diag-

onal matrix that contains the volatilities on its main diagonal, namely Ht = diag(h1,t . . . , hN,t)

and A−1 is a lower triangular matrix with ones on its main diagonal. The log-volatilities evolve

8. In the estimation of the model with heavy tails (Skew-t shocks), I fix the tail thickness parameters ν to 5.
Given the relative short time series length of macroeconomic data, it is particularly difficult to make inference on
this parameter. In general, you can draw this parameter adding another Metropolis Hastings step to draw from
p(ν|Θ,v,o,λ,y)
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over time according to:

log(hi,t) = φh,ilog(hi,t−1) + ηi,t ηi,t ∼ N(0, σ2
η,i) (11)

for i = 1, . . . , N . In the Gaussian stochastic volatility model of Cogley et al. (2005) and Primiceri

(2005) it is assumed εt ∼ N(0, I). In our specification, εt is a vector of Skew-Normal shocks,

namely:

εt = [ε1t, . . . , εNt]
′ εit ∼ Skew-Normal(ζit, ω

2
it, λit) (12)

where the shape parameters λit evolve according to:

λi,t = φλ,iλi,t−1 + ξi,t ξi,t ∼ N(0, σ2
ξ,i) (13)

In order to have E[εt] = 0 and var(εt) = I the shocks are parameterized imposing the constraints

on the location parameters ζit and on the scale parameters ωit discussed in the previous section.

As in the univariate framework, I can explicitly model heavy-tails, together with time-varying

skewness, by considering an alternative specification where:

εt = [ε1t, . . . , εNt]
′ εit ∼ Skew-t(ζit, ω

2
it, λit, ν) (14)

The model nests the constant coefficients version of the popular VAR model with stochastic

volatility introduced by Cogley et al. (2005) and Primiceri (2005) and considered in Carriero

et al. (2019).9 In these models, as long as the short run restrictions implied by the Cholesky

ordering are satisfied, the shocks can be interpreted as structural.10 This means that, other

than for forecasting purposes, the model can be practically used for policy analysis and struc-

tural scenario analyses. Also in this multivariate framework it is straightforward to modify the

specification of the state equations of the log-volatilities and the shape parameters by assuming

a different dynamics in (11) and (13). For example, as it will be shown in the empirical applica-

9. As well, the stochastic volatility VAR with fat tails in Clark et al. (2015) is also a special case of this model
with λi,t = 0∨ i, t. Karlsson et al. (2023) stochastic volatility model VAR with Skew-t orthogonal residual is as
well a particular version of this model with φλi = 1 and σ2

ξ,i → 0 ∨ i.
10. It is worth to mention that due to the “Cholesky type” specification of the stochastic volatility VAR model

considered here, the order in which the variables enter in the VAR matters not only for the identification of the
shocks but also for the estimation of the model. This is fact was stressed first by Primiceri (2005) and more
recently by Arias et al. (2021) and Chan et al. (2021). On the lines of the work of Chan et al. (2021) I am
currently working on a order invariant version of the model considered in this paper.
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tion in Section 3, I can capture the nonlinear relationship between two variables in the VAR by

including the lags of one variable in the state equations of the log-volatility and/or the shape

parameter of the shocks to the other variable.

2.2.1 Priors and estimation of the TVS-SV VAR

For what concerns the choice of the prior distributions for the parameters of the model, I assume a

Normal prior for the autoregressive coefficients vec(Π). As well, following Cogley et al. (2005),

I specify a Normal prior for the free elements in the matrix A. Finally, as in the univariate

framework, I specify independent Inverse Gamma priors for the variance of the innovations

to the log-volatilities and to the shape parameters (σ2
η,i and σ2

ξ,i) and Normal priors for the

coefficients in the state equations (φh,i and φλ,i). The estimation strategy for the VAR model is

just a generalization of the one for the univariate model that again leverages on the stochastic

representation of the Skew Normal (8) and Skew-t (9) shocks. Exploiting this representation, I

can write the vector of Skew-Normal shocks εt as follows: 11

εt = ζt + Ωt∆tvt + Ωt(IN −∆2
t)

0.5zt (15)

where:

ζt = [ζ1,t, . . . , ζN,t]
′

Ωt = diag(ω1t . . . ωNt)

∆t = diag(δ1t . . . δNt)

vt = [v1,t, . . . , vN,t]
′ vi,t ∼ TruncatedNormal(0,∞)(0, 1)

zt = [z1,t, . . . , zN,t]
′ zit ∼ N(0, 1).

As in the univariate framework, I can exploit this result when deriving the full conditional

posterior distributions of the parameters and the unobserved states in the Gibbs Sampler. As

a matter of fact, also in this case, ζit and ωit respectively stored in the column vector ζt and

in the diagonal matrix Ωt are neither parameters nor latent states to be estimated. ζit and ωit

are fixed to satisfy the constraints (4) and (5) and ensure the correct parameterization of the

shocks in each equation of the VAR i = 1, . . . , N and at each time period t = 1, . . . , T . As well,

11. Note that the powers on the matrices refer all to diagonal matrices. For example (IN − ∆2
t) =

diag(
√

1− δ21,t, . . . ,
√

1− δ2N,t) or afterwords O−0.5
t = diag

(
1√
o1,t

, . . . , 1√
oN,t

)
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the elements in the diagonal matrix ∆t (that is δit) are one to one map of the latent states λit.

Table (2) presents the details of the sampler. In Step 1) I draw the mixing variables {vit}Tt=1

for i = 1, . . . , N . In Step 2) I draw the coefficients of the VAR coefficients adapting to my

framework the correct version of the triangular algorithm developed in Carriero et al. (2019)

and corrected in Carriero et al. (2022). This approach allows to reduce the computational

burden associated to the system-wide estimation of Bayesian VAR with stochastic volatility and

non-conjugate priors by exploiting a triangularization of the system. In Step 3), I adapt the

approach of Cogley et al. (2005) to draw the free elements in the matrix A. In Step 4) 5) and 6)

7) I draw the variances and the autoregressive coefficients of the state equations while in Step 8)

and 10) I draw the initial state for the volatilities hi0 and the shape parameters λi0 . In Step 9)

and 11) I draw the entire path for the volatilities and the shape parameters, using the Particle

Step with Ancestor Sampling described in Table 4 in the Appendix A.4.

Table 2: MCMC algorithm for the TVSSV VAR model

Particle Gibbs Sampler for the TVSSV-VAR model

Initialize Θ(0), s(0),v(0)

For m = 0 : Total MCMC draws

1) Draw {vit}T
(m+1)

t=1 from p(vi1 . . . , viT |Θ(m), s(m),Y ) i = 1, . . . , N
2) Draw Π(m+1) from p(Π|Θ(m),v(m), s(m),Y )

3) Draw A(m+1) from p(A|Θ(m),v(m), s(m),Y )

4) Draw σ2(m+1)

ξ,i from p(σ2
ξ,i|Θ(m), s(m), v(m),Y ) i = 1, . . . , N

5) Draw σ2(m+1)

η,i from p(σ2
η,i|Θ(m), s(m), v(m),Y ) i = 1, . . . , N

6) Draw φ
(m+1)
h,i from p(φh,i|Θ(m), s(m), v(m), Y ) i = 1, . . . , N

7) Draw φ
(m+1)
λ,i from p(φλ,i|Θ(m), s(m), v(m),Y ) i = 1, . . . , N

8) Draw h
(m+1)
i,0 from p(hi,0|Θ(m),v(m), s(m),Y ) i = 1, . . . , N

9) Draw {hit}T
(m+1)

t=1 from p(hi1, . . . , hiT |Θ(m),v(m), s(m),Y ) i = 1, . . . , N
Particle step

10) Draw λ
(m+1)
i,0 from λ

(m+1)
i,0 from p(λi,0|Θ(m),v(m), s(m),Y ) i = 1, . . . , N

11) Draw {λit}T
(m+1)

t=1 from p(λi1, . . . , λiT |Θ(m),v(m), s(m),Y ) i = 1, . . . , N
Particle step

end

As in the univariate framework, it is easy to adapt the sampler to a version of the VAR model

with Skew-t shocks. In this case (9) becomes:

εt = ζt + Ωt∆tO
−0.5
t + Ωt(In −∆2

t)
0.5O−0.5

t zt (16)

where Ot = diag(o1t . . . oNt) oit ∼ Gamma(ν2 ,
ν
2 ).
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It is enough to adapt the Gibbs Sampler by adding another initial step to draw the mixing

variables {oit}Tt=1 for i = 1, . . . , N

Draw {oit}T
(m+1)

t=1 from p(oi1 . . . , oiT |Θ(m),v(m), s
(m)
t ,Y ) i = 1, . . . , N

and then to update the formulas of the full conditional posterior distributions in order

to account for the extra terms. Again I use Metropolis Hastings to simulate draws from

p(oi1 . . . , oiT |Θ,v, st) for i = 1, . . . , N , since it is not directly possible to sample from these

distributions.

3 Growth at Risk

The work of Adrian et al. (2019) (henceforth ABG) pioneered a recently growing body of re-

search, which examines the main sources of tail risk to GDP growth in relationship to changes

in economic and financial conditions. This section compares the out of sample Growth-at-Risk

(GaR) estimates for the U.S from our time varying skewness stochastic volatility models to the

two step approach based on quantile regression of ABG . In order to model asymmetric changes

in the conditional distribution of GDP growth as a function of changes in financial conditions,

I consider the following specification of the univariate TVSSV model:

gdpgrowtht = π0 + π1gdpgrowtht−1 + π2gdpgrowtht−2 + π3NFCIt−1 +
√
htεt

εt ∼ Skew −Normal(ζt, ωt, λt)
or

εt ∼ Skew − t(ζt, ωt, λt, ν)

(17)

log(ht) = φhlog(ht−1) + ηt ηt ∼ N (0, σ2
η) (18)

λt = φλλt−1 + β1NFCIt−1 + ξt ξt ∼ N (0, σ2
ξ ) (19)

In this specification the NFCI directly affects the conditional skewness of the future GDP growth

distribution. More specifically, the coefficient β1 captures changes in the skewness of the con-

ditional distribution of GDP growth as a function of financial conditions. This coefficient is

meant to capture the non-linear relationship between deteriorating financial conditions and fu-

ture GDP growth distribution found in ABG. Since our focus is to model the asymmetric effect

of the NFCI on the future GDP growth distribution, I threat the log-volatilities as exogenous
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autoregressive processes, not affected by the NFCI. As a matter of fact, augmenting the state

equation for the log-volatilities with the NFCI index, as it is done in the state equations of the

shape parameters, implies that financial conditions would affect symmetrically both a upper and

the lower quantiles of the future GDP growth distribution. Together with the univariate model,

I consider as well a bivariate TVSSV-VAR(2) model where yt = [gdpgrowth,NFCI]′ and:

yt = Π0 + Π1yt−1 + Π2yt−2 +A−1H0.5
t εt

εit ∼ Skew-Normal(ζit, ω
2
it, λit)

or

εit ∼ Skew − t(ζit, ωit, λit, ν)

(20)

log(hit) = φh,ilog(hit−1) + ηit ηit ∼ N (0, σ2
i,η) i = gdpgrowth, NFCI (21)

λgdpgrowth,t = φλ,1λgdpgrowth,t−1 + β1NFCIt−1 + ξgdpgrowth,t ξi,t ∼ N(0, σ2
ξ,i) (22)

λNFCI,t = φλ,2λNFCI,t−1 + ξNFCI,t ξi,t ∼ N(0, σ2
ξ,i) (23)

In this VAR, the dynamic relationship between GDP growth and financial conditions in

modelled jointly. In particular, in this specification, due to the triangular structure of A−1

shocks to GDP growth contemporaneously affect the financial markets, while shocks to NFCI

do not affect GDP growth within the quarter. To understand whether the models perform well

in forecasting downside risk, in what follows I will compare the forecast from the TVSSV models

to the forecasts from the quantile regression based method of ABG. Their approach is based on

a two step procedure where in the first step they use predictive quantile regression to estimate

the quantiles of the conditional distribution:

Q̂gdpgrowtht+h|It(τ) = β̂τXt for τ = 0.05, . . . , 0.95 (24)

Then, in the second step, the estimated quantiles are interpolated using a flexible Skew-t

distribution, so as to obtain a complete predictive density for GDP growth. We specify equation

(24) collecting two lags of GDP growth and one lag of NFCI in the vector Xt, so as to capture

changes in the future GDP growth distribution as a function of current financial and economic

conditions.
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3.1 Results

This section presents the results from the estimates of both the univariate TVSSV models

and the VAR TVSSV models with Skew-Normal and Skew-t shocks. The estimation sample

starts in 1971Q1 and the forecasting exercise covers the period 1995Q1 - 2019Q4. Fig. 1

presents the estimated posterior distribution for the coefficient β1 from the univariate time

varying skewness stochastic volatility model. This is the coefficient that in the state equation of

the skewness parameter (22) summarizes how the shape of the conditional distribution of GDP

growth changes as a function of financial conditions in the previous quarter. As shown in Fig.

1, tighter financial conditions (increases in the NFCI) are on average associated to a decrease

in the skewness of current GDP growth (the posterior mean estimate is β̂1 = −0.26). Hence,

equation (19), captures the main finding of ABG, which is that deteriorating financial condition

are associated to movements in the lower quantiles of future GDP growth distribution.

Figure 1: Posterior estimate of β1

Note: The figure shows the estimated posterior distribution of the coefficient on the NFCIt−1 in the equation of the shape
parameter in the TVSSV model with Skew-t shocks.

Ascertained that the model is able to capture the same asymmetric effect of financial con-

ditions on the future GDP growth distribution found in ABG, it is important to understand

what is the potential of the model to assess and predict risk out of sample. Fig. 2 shows the

out-of-sample forecasts of Growth at Risk and Expected Shortfall for the 5th, 10th and 20th

percentiles while Fig. 3 shows the one quarter ahead estimated recession probability. I report

the results from the stochastic volatility stochastic skewness model with Skew-t shocks, since the

results from the model with Skew-Normal shocks do not differ qualitatively. The figure shows
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that during the Financial Crisis our parametric models predicts as much downside risk to GDP

growth as the quantile regression method of ABG. As shown in Fig. 3 both the TVSSV and the

TVSSV-VAR models, assign higher probability of recession to the mild contraction of the U.S.

economy following the dotcom bubble in 2000s with respect to the two step method based on

quantile regression.

Figure 2: One quarter ahead Growth at Risk (GaR) and Expected Shortfall (1995Q1-2019Q4)

Note: The figure shows the estimated 5th, 10th, 20th percentiles of the one quarter ahead GDP growth predictive distribution
(left panel) and the 5th, 10th, 20th one quarter ahead expected shortfall (right panel). In blue estimates from the two step
quantile regression based method by ABG, in red from the TVSSV univariate model with Skew-t shocks and in yellow the
estimates from the TVSSV VAR model.
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Figure 3: One quarter ahead recession probability (1995Q1-2019Q4)

Note: The figure shows the estimated one quarter ahead recession probabilities. In blue estimates from the two step quantile
regression based method by ABG, in red from the TVSSV univariate model with Skew-t shocks and in yellow the estimates
from the TVSSV VAR model.

In terms of forecast accuracy, Table 3 compares the forecasts from our parametric approaches

to the forecasts from the method of ABG. The first two columns report the results for the

average Log Scores and the average Cumulative Ranked Probability Scores (CRPS), since these

two measures are the most commonly used to evaluate the relative density forecast accuracy

of different models. 12 Looking at average Logscores, the first column reports the difference

between the forecasts from two step procedure of ABG and the forecasts from the time varying

skewness stochastic volatility models (values greater than zero are associated to more accurate

density forecast w.r.t ABG). According to the average Log-scores, our parametric models provide

more accurate one quarter ahead density forecasts with respect to ABG. In parenthesis I report

the p-values from the Diebold and Mariano test (Diebold et al. 1995) of equal forecast accuracy

12. Defining y the realization of the series to predict, f(.) the density forecast and F (.) corresponding the
cumulative distribution, Logscores and CRPS are respectively defined as:

Logscores(f, y) = −log(f(y)) (25)

CRPS(f, y) =

∫ ∞

−∞
PS(F (z),1{y ≤ z})dz =

∫ 1

0

QSα(F−1(α), y)dα (26)

where PS(F (z),1{y ≤ z}) = (F (z) − 1{y ≤ z})2 is the Brier probability score and QSα(F−1(α), y) = 2(1{y ≤
F−1(α)} − α)(F−1(α)− y) is the Quantile Score.
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and find that for the TVSSV with Skew-t shocks I am able to reject the null hypothesis of

equal forecast accuracy. For what concerns average CRPS, on the second column, the table

reports the ratio with respect to the model of ABG (values lower than 1 are associated to more

accurate density forecast with respect to ABG). As you can notice, based on this metrics, the

time varying skewness stochastic volatility models perform as good if not even better than the

two step procedure based on quantile regression. However, in all the cases I am not able to

reject the null of equal forecast accuracy.

Since I aim to assess the ability of the model to correctly characterize downside risk predic-

tions, on the third column I report the average Quantile Weighted CRPS introduced by Gneiting

et al. (2011) 13 and on the fourth, fifth and sixth column I report the average Quantile Scores

for the 5th, 10th and 20th percentiles commonly associated with the tick loss function (Giacomini

et al. 2005). Also in this case I report the ratio with respect to the two step approach based on

quantile regression (values lower than 1 are associated to more accurate density forecast with

respect to ABG) and the p-values from the Diebold-Mariano test in parenthesis. As you can

notice, in terms of the ability of the model to correctly characterize downside risk predictions,

I find that the stochastic volatility models performs comparably if not even better than ABG.

In particular for the TVSSV-VAR with Skew-t shocks I am able to reject the null of equal

forecast accuracy with respect to ABG. The time series with the CRPS and left Tail Weighted

CRPS, can be found in the Appendix B.3 (Fig. 6). As well, in the Appendix B.3 the histogram

with the PITs (Fig. 7) reveals that the forecasts from the TVSSV models, are better-calibrated

with respect to the forecasts from the two-step quantile regression based method. Summing

up, TVSSV models are able to reproduce the main finding in ABG, namely that deteriorating

financial conditions are associated to shifts of the lower quantiles of the future GDP growth

distribution. At the same time TVSSV models perform comparably if not even better than

quantile regression based methods for forecasting macroeconomic tail risk.

13. The Quantile Weighted CRPS are computed as:

twCRPS =

∫ ∞

−∞
PS(F (z),1{y ≤ z})2w(z)dz =

∫ 1

0

QSα(F−1(α), y)v(α)dα (27)

where v(α) = (1− α)2 assigns higher weights to the lower quantiles of the distribution function.
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Table 3: One quarter ahead out of sample forecasts (1995Q1-2019Q4)

Log scores CRPS TwL CRPS QS5th QS10th QS20th

ABG 2.4840 1.1943 0.3623 0.2503 0.3926 0.5842
TVSSV Skew Normal 0.1946 0.9757 0.9777 1.0334 0.9858 0.9832

(0.1788) (0.7380) (0.2282) (0.6027) (0.3838) (0.3278)
TVSSV Skew-t 0.3530 0.9609 0.9823 1.0334 0.9911 0.9882

(0.0276) (0.8659) (0.3045) (0.4725) (0.4472) (0.3934)
TVSSV VAR Skew Normal 0.1620 0.9805 0.9644 0.9678 0.9718 0.9666

(0.2287) (0.6781) (0.1669) (0.4038) (0.3209) (0.2589)
TVSSV VAR Skew-t 0.0662 0.9700 0.9610 1.0119 0.9979 0.9633

(0.1050) (0.5942) (0.0366) (0.5493) (0.4778) (0.1052)

Note: For the average Logscores, the first row reports the values from the ABG method while the
other rows report the difference between the two step procedure and the time varying skewness
stochastic volatility models. For the other metrics I report the ratio w.r.t the ABG method.
Inside the parenthesis p-values from the one sided Diebold-Mariano w.r.t the two step method
of Adrian et al. (2019). The bold character indicates rejection of equal forecast accuracy at 5%.

4 Time varying skewness in a medium scale VAR

One of the main advantages of the VAR model presented in Section 2.2 is that it allows to

explicitly capture time varying conditional skewness of multiple time series. In this section I

estimate a medium scale VAR model which includes macroeconomic and financial monthly time

series and I investigate the time varying asymmetric behaviour of the shocks to the variables in

the system. I consider a VAR model with 8 variables being Real personal consumption expen-

ditures, Industrial Production, Unemployment Rate, average Weekly Hours Worked, Consumer

Price Index, Fed Funds Rate, the spread between 10-Year Treasury and the Fed Funds Rate,

the spread between Moody’s Baa Corporate Bond and the Fed Funds Rate and the Standard

and Poors Index. The variables are in monthly frequency and are taken from the FRED-MD.14

I present the results from the VAR with Skew-t shocks.15 I include 13 lags and assume a Min-

nesota prior structure for the variance covariance matrix of the regression coefficients. 16 The

estimation sample is January 1965 - December 2019. Fig. 4 shows the estimated volatilities

while Fig. 5 shows the estimated shape parameters. The dotted line in blue are the 85th − 15th

credible sets while the red line is the estimated posterior median.

It is interesting to notice that shocks to the CPI were on average positively skewed before the

2000s while became left skew for the rest of the sample that ends on 2019. This switch in the sign

of the shape parameter indicates that conditionally on the past and on the contemporaneous

14. Table 7 in the Appendix reports the variable transformation.
15. For the VAR with Skew-Normal the estimated path for the volatilities and shape parameters are almost the

same.
16. See the Appendix for the details on the hyper-parameters of the Minnetota Prior.
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realization of Real Personal Consumption Expenditures, Industrial Production, Unemployment

Rate and average Weekly Hours Worked, the distribution of CPI was right skewed in the 1980s,

becoming instead left skew from the 2000s. In other words, risk switched from the upside to the

downside. As for the monetary policy shocks, in the 1980s large positive hikes of the Fed Fund

Rate were more frequent, while from the early 2000s large negative shocks to the Fed Fund Rate

become more likely. Shocks to the average Weekly Hours Worked are skewed to the left over the

entire sample, which means that negative large shocks have been systematically more frequent

than positive large shocks. As well, shocks to the stock market (SP 500 index) are skewed to

the left over the entire sample. This is in line with the large body of the financial econometrics

literature that studies conditional skewness in asset returns (Harvey et al. 2000). As for the

spread between 10-Year Treasury and the Fed Funds Rate and the spread between Moody’s Baa

Corporate Bond and the Fed Funds Rate, for most of the sample both the shocks are skewed

to the right meaning that the probability of large positive shocks has been greater than the

probability of large negative shocks. This finding vanishes starting from 2009 and might be

linked to the unconventional monetary policy following the Great Financial Crisis.

Figure 4: Estimated volatilities

Note: The figure shows the estimated volatilities of the shocks in the TVSSV-VAR with Skew-t shocks. In red the estimated
median, in blue dashed lines the 85th − 15th credible sets.
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Figure 5: Estimated shape parameters λt

Note: The figure shows the estimated shape parameters of the shocks in the TVSSV-VAR with Skew-t shocks. In red the
estimated median, in blue dashed lines the 85th − 15th credible sets.

5 Conclusion

In this paper I propose a fully parametric framework based on time varying skewness stochastic

volatility models with Skew-Normal and Skew-t shocks for assessing and forecasting macroeco-

nomic tail risk. First, I consider an extension of the univariate stochastic volatility model of

Jacquier et al. (1994) that explicitly accounts for time varying skewness in the predictive dis-

tribution of the dependent variable. Then, I introduce a Bayesian VAR model with stochastic

volatility and stochastic skewness to provide an explicit treatment of conditional skewness when

modelling the dynamics of multiple time series. I compare the time varying skewness stochastic

volatility models to the quantile regression method of Adrian et al. (2019) to assess and predict

tail risk to GDP growth. I find that the time varying skewness stochastic volatility models con-

sidered in this paper are able to reproduce the main findings of Adrian et al. (2019), that is the

nonlinear and asymmetric effect of financial conditions on the future GDP growth distribution.

The models predict as much risk as quantile regression during the Financial crisis while provide

slightly more accurate out of sample forecasts of downside risk over the entire sample. Finally,

estimating a standard medium scale VAR model I find that time varying skewness is a relevant
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feature of macroeconomic and financial shocks.

Future research For future research, the VAR model considered in this paper could be

used to study the probability of joint tail events and for constructing structural scenarios of

“at-risk” measures. For example, it could be used to study and assess stagflation risk, or to

analyze scenarios for inflation at-risk and labour-at risk under different monetary policy paths.

As a methodological extension, particularly interesting would be to consider an order invariant

version of this model.
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A Appendix

A.1 Skew Normal and Skew-t: distributions and parameterization

The Skew Normal (Azzalini 1986) distribution is:

p(εt|ζ, ω2, λ) =
2

ω
φ

(
εt − ζ
ω

)
Φ

(
λ

(
εt − ζ
ω

))

where φ(.) and Φ(.) are respectively the pdf and cdf of the standard Normal. In general,

εt ∼ Skew −Normal(ζ, ω2, λ) has the following stochastic representation:

εt = ζ + δωvt +
√

(1− δ2)ωzt (28)

where:

vt
i.i.d∼ Truncated Normal[0,∞)(0, 1)

zt
i.i.d∼ N (0, 1)

δ = λ√
1+λ2

, with −1 < δ < 1.

The mean and the variance of εt are given by:

E[εt] = ζ + ωδ

√
2

π
(29)

var(εt) = ω2

(
1− 2δ2

π

)
(30)

Assuming E[εt] = 0 and var(εt) = 1 leads to the following constraints on the location and

scale parameters: ζ = −ωδ
√

2
π and ω2 =

(
1− 2δ2

π

)−1
. Once we impose these constraints on

the location and scale parameters, with λ = 0 the distribution collapses to the Standard Normal.

The Skew-t distribution (Azzalini et al. 2003) is:

p(εt|ζ, ω2, λ, ν) =
2

ω
tν

(
εt − ζ
ω

)
Tν+1


λ

(
εt − ζ
ω

)√√√√
ν + 1

ν
(
εt−ζ
ω

)2


 (31)

where t(.) and T (.) are respectively the pdf and cdf of the Student-t with ν degrees of

freedom. εt ∼ Skew-t(ζ, ω2, λ, ν) has the following stochastic representation:
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εt = ζ + δωo−0.5
t vt +

√
(1− δ2)ωo−0.5

t zt (32)

where:

vt
i.i.d∼ Truncated Normal[0,∞)(0, 1)

zt
i.i.d∼ N (0, 1)

ot
i.i.d∼ G(ν2 ,

ν
2 )

δ = λ√
1+λ2

, with −1 < δ < 1.

The mean and the variance of εt are given by:

E[εt] = ωδk1

√
2

π
(33)

var(εt) = ω2

(
k2 −

2

π
k2

1δ
2

)
(34)

with k1 =
√

ν
2

Γ( ν−1
2

)

Γ( ν
2

) , k2 = ν
ν−2 .

Assuming E[εt] = 0 and var(εt) = 1 leads to the following constraints on the location and

scale parameters: ζ = −ωδk1

√
2
π and ω2 =

(
k2 − 2

πk
2
1δ

2
)−1

. Once we impose these constraints

on the location and scale parameters with λ = 0 the distribution collapses to a Student-t distri-

bution properly re-scaled to have unit variance (and zero mean).

A.2 Full conditional posterior distributions

A.2.1 Univariate time varying skewness stochastic volatility model: skew normal

shocks

The full conditional distribution of {vt}Tt=1 is given by:

p(vt|.) ∝ exp
[
−1

2

(
1

(1− δ2t )
v2t −

2δth
−0.5
t

ωt(1− δ2t )
(yt − xtπ − ζt

√
ht)vt

)]
I(0 ≤ vt <∞) (35)

this is a Truncated Normal
(
δth
−0.5
t [yt−xtπ]−δtζt

ωt
, 1− δ2

t

)
[0,∞)
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The full conditional distribution of π is Normal:

f(π|.) ∼ N(µπ,Σπ) (36)

µπ = Σπ

(∑T
t=1

1
σ2
t
x′tỹt + Σπ

−1µπ

)

Σ
−1
π = Σπ

−1 +
∑T

t=1
1
σ2
t
x′txt

where

ỹt ≡ yt −
√
htζt −

√
htωtδtvt

σ2
t ≡ htω2

t (1− δ2
t )

while µπ and Σπ are the prior mean and variance covariance matrix.

The full conditional distribution of φh is a Normal :

f(φh|.) ∼ N (µ̄φh , σ̄
2
φh

) (37)

σ̄2
φh

=

(
T∑

t=1

log(ht−1)2

σ2
η

+
1

σ2
φh

)−1

(38)

µ̄φh = σ̄2
φh

(
µ
φh

σ2
φh

+

T∑

t=1

log(ht−1)log(ht)

σ2
η

)
(39)

where µ
φh

and σ2
φh

are prior mean and variance.

The full conditional distribution of σ2
η is an Inverse Gamma :

p(σ2
η |.) ∝

(
1

σ2
η

)T
2

exp

[
T∑

t=1

− 1

2σ2
η,i

(ln(ht)− φhln(ht−1))2

]
exp

[
−
sσ2
η

σ2
η

]
σ2

−ν
σ2η−1

η (40)

where sσ2
η

and ν2
ση are the hyper-parameters of the Inverse Gamma prior.

The full conditional distribution of φλ is a Normal :

f(φλ|.) ∼ N (µ̄φλ , σ̄
2
φλ

) (41)

σ̄2
φλ

=

(
T∑

t=1

λ2
t−1

σ2
ξ

+
1

σ2
φλ

)−1

(42)

µ̄φλ = σ̄2
φλ

(
µ
φλ

σ2
φλ

+

T∑

t=1

λt−1λt
σ2
ξ

)
(43)
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where µ
φλ

and σ2
φλ

are prior mean and variance.

The full conditional distribution of σ2
ξ is an Inverse Gamma:

p(σ2
ξ |.) ∝

(
1

σ2
ξ

)T
2

exp

[
T∑

t=1

− 1

2σ2
ξ

(λit − φλλit−1)2

]
exp

[
−
sσ2
ξ

σ2
ξ

]
σ
2−ν

σ2
ξ
−1

ξ (44)

where sσ2
ξ

and νσ2
ξ

are the hyper-parameters of the Inverse Gamma prior.

The full conditional distribution of h0 is N (µ̄h0, σ̄h0)

µ̄h0 = σ̄h0


µh0

σ2
h0

+

log(h1)
φh
σ2
η

φ2h


 (45)

σ̄h0 =

σ2
h0
σ2
ξ

φ2h

σ2
h0 +

σ2
η

φ2h

(46)

where µλ0 and σ2
λ0

are the prior mean and variance.

The full conditional distribution of h is given by:

p(h|.) =

T∏

t=1

p(ht|ht−1, ht+1, .) (47)

p(ht|.) ∝ h−1,5
t exp




−1

2

(
yt − xtπ −

√
htζt −

√
htωtδtvt√

htωt(1− δ2t )0.5

)2

− 1

2

(lnht − µht )2
σ2
ht




 (48)

µht = φh
φ2h+1

(lnht+1 + lnht−1)

σ2
h =

σ2
η

φ2h+1

(49)

The full conditional distribution of λ0 is N (µ̄λ0, σ̄λ0)

µ̄λ0 = σ̄λ0


µλ0
σ2
λ0

+

λ1
φλ
σ2
ξ

φ2λ


 (50)

σ̄λ0 =

σ2
λ0
σ2
ξ

φ2λ

σ2
λ0

+
σ2
ξ

φ2λ

(51)

where µλ0 and σ2
λ0

are the prior mean and variance.

The full conditional distribution of λ is given by:
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p(λ|.) =
T∏

t=1

p(λt|λt−1, λt+1, .) (52)

p(λt|.) ∝ ω−1
t (1− δ2t )−0,5exp


−1

2

(
yt − xtπ −

√
htζt −

√
hto
−0.5
t ωtδtvt√

hto
−0.5
t ωt(1− δ2t )0.5

)2

− 1

2

(λt − µλt )2
σ2
λt


 (53)

µλt = φλ
φ2λ+1

(λt+1 + λt−1)

σ2
λ =

σ2
ξ

φ2λ+1

(54)

A.2.2 Univariate time varying skewness stochastic volatility model: skew-t shocks

The full conditional distribution of {vt}Tt=1 is given by:

p(vt|.) ∝ exp
[
−1

2

(
1

(1− δ2t )
v2t −

2o0.5t δth
−0.5
t

ωt(1− δ2t )
(yt − xtπ − ζt

√
ht)vt

)]
I(0 ≤ vt <∞) (55)

this is a truncated normal N
(
δto

0,5
t h−0.5

t [yt−xtπ]−δto0.5t ζt
ωt

, 1− δ2
t

)
[0,∞)

The full conditional distribution of {ot}Tt=1 is given by:

p(ot|.) ∝ o
ν+1
2
−1

t exp

[
−ot

2

(
νt +

h−1
t (yt − xtπ −

√
htζt)2

ω2
t (1− δ2t )

)]
exp

[
(yt − xtπ −

√
htζt)(h

−0.5
t o0.5t δtvt)

ωt(1− δ2t )

]
(56)

The full conditional distribution of π is Normal:

f(π|.) ∼ N(µπ,Σπ) (57)

µπ = Σπ

(∑T
t=1

1
σ2
t
x′tỹt + Σπ

−1µπ

)

Σ
−1
π = Σπ

−1 +
∑T

t=1
1
σ2
t
x′txt

where:

ỹt ≡ yt −
√
htζt −

√
hto
−0.5
t ωtδtvt

σ2
t ≡ htω2

t o
−1
t (1− δ2

t )

The full conditional distribution of ht is given by:

p(h|.) =
T∏

t=1

p(ht|ht−1, ht+1, .) (58)

p(ht|.) ∝ h−1,5
t exp




−1

2

(
yt − xtπ −

√
htζt −

√
hto
−0.5
t ωtδtvt√

hto
−0.5
t ωt(1− δ2t )0.5

)2

− 1

2

(lnht − µht )2
σ2
ht




 (59)
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lµht =
φh

φ2
h + 1

(lnht+1 + lnht−1)

σ2
h =

σ2
η

φ2
h + 1

(60)

The full conditional distribution of λt is given by:

p(λ|.) =
T∏

t=1

p(λt|λt−1, λt+1, .) (61)

p(λt|.) ∝ ω−1
t (1− δ2t )−0,5exp


−1

2

(
yt − xtπ −

√
htζt −

√
hto
−0.5
t ωtδtvt√

hto
−0.5
t ωt(1− δ2t )0.5

)2

− 1

2

(λt − µλt )2
σ2
λt


 (62)

lµλt =
φλ

φ2
λ + 1

(λt+1 + λt−1)

σ2
λ =

σ2
ξ

φ2
λ + 1

(63)

The full conditional distribution of v = v1, . . . , vT is given by:

p(v|.) =

T∏

t=1

p(vt|.) (64)

p(vt|.) ∝ exp
[
−1

2

(
1

(1− δ2t )
v2t −

2o0.5t δth
−0.5
t

ωt(1− δ2t )
(yt − xtπ − ζt

√
ht)vt

)]
I(0 ≤ vt <∞) (65)

this is is a Truncated Normal
(
δto

0,5
t h−0.5

t [yt−xtπ]−δto0,5t ζt
ωt

, 1− δ2
t

)
[0,∞)

A.2.3 VAR with Skew Normal shocks

The full conditional distribution of vec(Π) is N (vec(µ̄Π), V̄Π), where:

µ̄Π = V̄Π

[
vec

(
T∑

t=1

Xtỹ
′
tΣ
−1
t

)
+ VΠ

−1vec(µΠ)

]
(66)

with ỹt ≡ yt −H0.5
t A−1ζt −H0.5

t A−1Ωt∆tvt and:

V̄Π = VΠ
−1 +

T∑

t=1

(Σ−1
t ⊗XtX

′
t) (67)

where Σt ≡ A−1Htω
2
t (I−∆2

t)A
′−1 while µΠ and VΠ are the prior mean and variance covariance

matrix.

The full conditional distribution of the elements in A is derived adapting our framework to
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the approach of Cogley et al. (2005). Considering the system:

Aut = H0.5
t εt (68)

since εit = ζit + ωitδitvit + ωit

√
1− δ2

itzit we have :

u1t =
√
h1t(ζ1t + ω1tδ1tv1t + ω1t

√
1− δ21tz1t)

u2t = −a21u1t +
√
h2t(ζ2t + ω2tδ2tv2t + ω2t

√
1− δ22tz2t)

u3t = −a31u1t − a32u2t +
√
h3t(ζ3t + ω3tδ3tv3t + ω3t

√
1− δ23tz3t)

...
...

...

uNt = −aN1u1t − aN2u2t . . .− aN,N−1u2t +
√
hNt(ζNt + ωNtδNtvNt + ωNt

√
1− δ2NtzNt)

(69)

therefore :

u1t −
√
h1t(ζ1t + ω1tδ1tv1t) =

√
h1tω1t

√
1− δ21tz1t

u2t −
√
h2t(ζ2t + ω2tδ2tv2t) = −a21u1t +

√
h2tω2t

√
1− δ22tz2t

u3t −
√
h3t(ζ3t + ω3tδ3tv3t) = −a31u1t − a32u2t +

√
h3tω3t

√
1− δ23tz3t

..

.
..
.

..

.

uNt −
√
hNt(ζNt + ωNtδNtvNt) = −aN1u1t − aN2u2t . . .− aN,N−1u2t +

√
hNtωNt

√
1− δ2NtzNt

Since I condition on the parameters, the mixing variables and the latent states I can define

ũit = uit −
√
hit(ζit + ωitδitvit) for i = 1, . . . , N and σ̃2

it =
√
hitωit

√
1− δ2

it and derive the full

conditional posterior for the elements of A by exploiting the system of equations:

ũ1t = σ̃2
1tz1t

ũ2t = −a21u1t + σ̃2
2tz2t

ũ3t = −a31u1t − a32u2t + σ̃2
3tz3t

...
...

...

ũNt = −aN1u1t − aN2u2t . . .− aN,N−1u2t + σ̃2
NtzNt

(70)

where zit ∼ N (0, 1). Assuming a Normal prior for the elements in A and defining ai the

vector that collects the free elements in the ith row of the A matrix, I can use standard linear

regression results to show that the full conditional posterior of ai is given by ai ∼ N (µ̄a,i, V̄a,i)

where:

µ̄a,i = V̄a,i(Va,i
−1µa +

∑T
t=1 σ̃it

2−1u′itũit)

V̄a,i = (Va,i
−1 +

∑T
t=1 σ̃it

2−1
u′ituit)

−1
(71)

where uit is the vector colleting the right hand variables of the ith equation in the system

above (70) with i = 2, . . . , N and µa and Va,i are the prior mean and variance covariance matrix
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of the free elements of the ith row of A.

A.2.4 VAR with Skew-t shocks

The full conditional distribution of vec(Π) is N (vec(µ̄Π), V̄Π), where:

µ̄Π = V̄Π

[
vec

(
T∑

t=1

Xtỹ
′
tΣ
−1
t

)
+ VΠ

−1vec(µΠ)

]
(72)

with ỹt ≡ yt −H0.5
t A−1ζt −H0.5

t A−1Ωt∆tO
−0.5
t vt and:

V̄Π = VΠ
−1 +

T∑

t=1

(Σ−1
t ⊗XtX

′
t) (73)

where Σt ≡ A−1Htω
2
t (I −∆2

t)O
−1
t A

′−1 while µΠ and VΠ are the prior mean and variance

covariance matrix.

The full conditional for A is derived following the same steps in the VAR with Skew-normal

shocks just by considering that (69) becomes:

u1t =
√
h1t(ζ1t + ω1tδ1to

−0.5
1t v1t + ω1t

√
1− δ21to−0.5

1t z1t)

u2t = −a21u1t +
√
h2t(ζ2t + ω2tδ2to

−0.5
2t v2t + ω2t

√
1− δ22to−0.5

2t z2t)

u3t = −a31u1t − a32u2t +
√
h3t(ζ3t + ω3tδ3to

−0.5
3t v3t + ω3t

√
1− δ23to−0.5

3t z3t)

...
...

...

uNt = −aN1u1t − aN2u2t . . .− aN,N−1u2t +
√
hNt(ζNt + ωNtδNto

−0.5
Nt vNt + ωNt

√
1− δ2Nto

−0.5
Nt zNt)

(74)

A.3 Metropolis Hastings Step to draw the mixing variable o

In the time varying skewness stochastic volatility models with Skew-t shocks, the full conditional

distribution of {ot}Tt=1 is given by:

p(ot|.) ∝ o
ν+1
2
−1

t exp

[
−ot

2

(
νt +

h−1
t (yt − xtπ −

√
htζt)2

ω2
t (1− δ2t )

)]
exp

[
(yt − xtπ −

√
htζt)(h

−0.5
t o0.5t δtvt)

ωt(1− δ2t )

]
(75)

Since it is not possible to directly sample from this full conditional distribution, I use

Metropolis Hastingss step to draw from this conditional distribution. I use as proposal

Gamma
(
ν+1

2 , 1
2

[
ν +

h−1
t (yt−xtπ−

√
htζ)2

ω2
t (1−δ2t )

])
. The acceptance probability in the Metropolis
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Hastings step is:

p = exp

[
(yt − xtπ −

√
htζt)h

−0.5
t o∗

0.5

t δtvt
ωt(1− δ2

t )
− (yt − xtπ −

√
htζt)h

−0.5
t om

0.5
t δtvt

ωt(1− δ2
t )

]
(76)

where o∗ is a new draw from the proposal and om is the previous draw.

A.4 Particle Step in the Gibbs Sampler

Table 4 presents the details on the Particle Step used in the Gibbs Sampler to draw the volatilities

and the shape parameters. st stands for the generic unobserved latent state being log(ht) in

Step 5) and λt in Step 7) of the Gibbs Sampler in Table 1. As anticipated above a valid particle

approximation to the Gibbs Sampler requires a Conditional Sequential Monte Carlo update

which guarantees that a pre-specified path of the state variables is ensured to survive all the

resampling steps (Andrieu et al. 2010). Hence, if I consider a generic iteration m+1 of the Gibbs

Sampler, when usingK particles to approximate p(h1, . . . , hT |Θ,v,λ) and p(λi1, . . . , λiT |Θ,v,h)

, only K − 1 particles are generated while the Kth particle is set to the pre-specified path h
(m)
1:T

and λ
(m)
1:T . In the particle approximation I use the transition equations (2) and (3) as importance

densities gθ(st) and compute the weights accordingly. I refer to the original paper, Lindsten

et al. (2014) for the details on the Ancestral Sampling step, that for t > 2 artificially assign a

history to the partial pre-specified path s
(m)
t:T .

Table 4: Particle Step in the Gibbs Sampler

Particle Step with Ancestor Sampling

Draw sk1 ∼ gθ(s1) for k = 1, . . . ,K − 1

Set sK1 = s
(m)
1

Compute wk1 = W1(sk1) and normalize the weights for k = 1, . . . ,K

for t = 2 : T

Re-sampling step: sample {skt−1}Kk=1 with probabilities given by {wkt−1}Kk=1

Draw skt ∼ gθ(st) for k = 1, . . . ,K − 1

Set sKt = s
(m)
t

Ancestral sampling step

Compute wkt = Wt(skt ) and normalize the weights for k = 1, . . . ,K

end

Draw j with Pr(j = k) ∝ wkT

In alternative to the particle step, it can also be considered an independence Metropolis

Hastings step to draw the log-volatilities and the shape parameters. In particular, I considered
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a log-normal proposal density for the volatility (on the lines of Cogley et al. (2005)) as:

q(ht) ∝ h−1
t exp

[
−(lnht − µht)2

2σ2
h

]
(77)

with µht and σh defined in equations (49) for the Skew-Normal case and (60) for the Skew-t.

The acceptance probabilities in the model with Skew-Normal and Skew-t shocks are respectively

given by:

p =

h∗
−0,5

t exp

[
− (yt−xtπ−

√
h∗t ζt−

√
h∗tωtδtvt)

2

2h∗tω
2
t (1−δ2t )

]

hm
−0,5
t exp

[
− (yt−xtπ−

√
hmt ζt−

√
hmt ωtδtvt)

2

2hmt ω
2
t (1−δ2t )

] (78)

p =

h∗
−0,5

t exp

[
− (yt−xtπ−

√
h∗t ζt−

√
h∗t o
−0.5
t ωtδtvt)2

2h∗t o
−1
t ω2

t (1−δ2t )

]

hm
−0,5
t exp

[
− (yt−xtπ−

√
hmt ζt−

√
hmt o

−0.5
t ωtδtvt)2

2hmt o
−1
t ω2

t (1−δ2t )

] (79)

where h∗t is the new draw from the proposal distribution, while hmt is the previous draw. Instead,

for the shape parameters, I considered a Normal proposal:

q(λt) ∼ N(µλt , σ
2
λ) (80)

with µht and σh defined in equations (54) for the Skew-Normal case and (63) for the Skew-t.

The acceptance probabilities in the model with Skew-Normal and Skew-t shocks are respectively

given by:

p =

ω∗
−1

t (1− δ∗2t )−0,5exp

[
− (yt−xtπ−

√
htζ∗t −

√
htω∗t δ

∗
t vt)

2

2htω∗
2
t (1−δ∗2t )

]

(ωmt )−1(1− δm2

t )−0,5exp

[
− (yt−xtπ−

√
htζmt −

√
htωmt δ

m
t vt)

2

2htωm
2

t (1−δm2
t )

] (81)

p =

ω∗
−1

t (1− δ∗2t )−0,5exp

[
− (yt−xtπ−

√
htζ∗t −

√
hto
−0.5
t ω∗t δ

∗
t vt)

2

2hto
−1
t ω∗2t (1−δ∗2t )

]

(ωmt )−1(1− δm2

t )−0,5exp

[
− (yt−xtπ−

√
htζmt −

√
hto
−0.5
t ωmt δ

m
t vt)

2

2hto
−1
t ωm

2
t (1−δm2

t )

] (82)

where ω∗t , ζ
∗
t , δ
∗
t are functions of the new draw from the proposal λ∗t , while ωmt , ζ

m
t , δ

m
t are λmt

are functions of the previous draw λmt .
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B Appendix

B.1 Priors and hyper-parameters

Table 5 and Table 6 report the specification of the priors and the choice of the hyper-parameters

used for the estimation of the models in the empirical application.

Table 5: Priors for the parameters of the TVSSV model

Parameter Prior

σ2
ξ InverseGamma(5, 0.16)

σ2
η InverseGamma(5, 0.16)

φh,λ N (1, 0.01)
β1 N (0, 10)
πi N (µπ, σπ,i)

log(h0) N
(
ĥ0, 100

)

λ0 N (0, 10)

ĥi,0 is the estimated variance from an AR(4) model to each series using an initial sample of 40

observations. In the application in Section 3 I assume that the elements of π namely πi are

centered in zero, namely µπ,i = 0 and the variances σπ,i are set following Carriero et al. (2015).

For the VAR I consider the following priors:

Table 6: Priors for the parameters of the VAR TVSSV model

Parameter Prior

vec(Π) N (vec(µΠ),VΠ)

aij N (0, 100)

where the elements of vec(µΠ) are equal to zero for the coefficients on the cross-equation lags

and for the intercept. The coefficients of the own lags are centered in 0 for stationary variables

and on 1 for non-stationary variables.

VΠ has the Minnesota type prior:

vij,l =





θ1
lθ4

if i = j

σ2
i θ1θ2
σ2
j l
θ4

if i 6= j
(83)

where I set θ1 = 0.04 θ2 = 0.025 θ3 = 100 θ4 = 2. We estimate σ2
i from univariate

AR(12) regressions.
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B.2 Variables in the medium scale VAR

Table 7: Variable transformations

Variable Transformation

Real personal consumption expenditures log
Industrial Production log
Unemployment Rate level
Avg Weekly Hours Worked log
Consumer Price Index log
Fed Funds Rate level
10-Year Treasury Yield - Fed Funds Rate level
Moody’s Baa Corporate Bond Yield - the Fed Funds Rate level
Standard and Poors index log
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B.3 Other Figures

Figure 6: CRPS and Tail Weighted CRPS (left tail)

Note: The figure above shows the time series of the Cumulative Ranked Probability Scores (CRPS), while the figure below
shows the time series of the Left Tail Weighted CRPS (Gneiting et al. 2011). In blue estimates from the two step quantile
regression based method by (Adrian et al. 2019), in red from the TVSSV univariate model with Skew-t shocks and in yellow
the estimates from the TVSSV VAR model.

102



Figure 7: Probability Integral Transforms

Note: Probability Integral Transforms of the forecasts from the quantile regression based method, the univariate time varying skewness stochastic volatility models with
Skew-Normal and Skew-t shocks, and the VARs with varying skewness and stochastic volatility with Skew-Normal and Skew-t shocks
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Abstract

We propose a Bayesian VAR model with stochastic volatility and time varying skewness

to estimate the degree of labour at risk in the euro area and in the United States. We

model the asymmetry of the shocks to changes in the unemployment rate as a function

of real activity and financial risk factors. We find that the conditional distribution of the

changes in the unemployment rate displays time-varying volatility and skewness, with peaks

coinciding with the Global Financial Crisis and the COVID-19 pandemic. We take advantage

of the multivariate nature of our parametric model to measure stagflation risk defined as the

possible joint event of large increases in the unemployment rate and large annual rates of

inflation. We find an increasing risk of stagflation for the euro area in 2022 while in the

United States stagflation risk increased earlier in 2021 and started decreasing more recently.

Notwithstanding the significantly high levels of inflation, stagflation risks have been contained

by the resilient performance of the labour market in both areas. Labour at risk is therefore

important for the assessment of the inflation-unemployment trade-off.
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1 Introduction

The cyclical asymmetry of business cycles is a longstanding topic in the economic literature,

which can be traced back to Mitchell (1927) and Keynes (1936). Key to this idea is the fact

that, on average, contractions in economic activity are briefer and more violent than economic

expansions. The asymmetry of cyclical developments is historically salient in the labour market,

being identified using both the unemployment rate (Neftçi (1984), DeLong et al. (1986), Falk

(1986)) and total employment (McKay et al. (2008), Ferraro et al. (2022)). The number of

persons losing their jobs and becoming unemployed rises abruptly during recessions. Conversely,

unemployed workers take their time to slowly get back into employment, with the unemployment

rate decreasing (or employment increasing) at a slower pace during economic expansions.

More generally, the cyclical asymmetry in the labour market can be related to the assessment

of tail risks. These tail risks can be estimated to account for the possible worst case scenarios

that could occur in case of economic downturns. Hence, the assessment of tail risks merits the

attention of policymakers, who attempt via their policy actions to mitigate some of the welfare

losses arising in case a recession occurs and the tail risks are realised.

In this paper, we tackle this topic from a quantitative perspective and estimate the degree of

tail risks in the labour market at any given point in time both in the euro area and in the United

States. To do so, we propose a fully parametric econometric model with skew-normal shocks

featuring both stochastic volatility and stochastic skewness. Our formulation is part of the

more general class of Bayesian VAR (BVAR) models with stochastic volatility and time varying

skewness discussed in Renzetti (2023). We use this model to extract out-of-sample forecasts

that allow us to monitor the degree of “labour-at-risk” and the probability of large increases

in the unemployment rate over time. Moreover, we take advantage of the multivariate nature

of our parametric model to measure stagflation-risk both the euro area and the US, which we

define as the possible joint event of large increases in the unemployment rate and large annual

rates of inflation.

There are several channels that could be behind the cyclical asymmetry of the labour market.

On the one hand, it is important to quantify the relationship between the cyclical developments in

real activity, which can be symmetric or not, and those in the labour market. For example, in the

standard “DMP” model with search and matching frictions (Diamond (1982), Mortensen (1982),

Pissarides (1985)), shocks to labour productivity can drive the asymmetry in the unemployment
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rate via asymmetric fluctuations in the rate of job destruction (Andolfatto (1997)). This implies

that even when the business cycles are symmetric, the economy can be faced with sudden and

large increases in unemployment during recessions. This could indicate that the Okun’s law

breaks down during recessions or is at the very least non-linear and state-dependent.

On the other hand, external frictions can simultaneously make both the real output and

the labour market to be asymmetric. For example, downward nominal wage rigidities in New

Keynesian models inhibit the necessary real wage cuts needed during recessions, thus leading to

stronger declines in vacancy posting and employment during downturns than in models featuring

symmetric wage adjustment costs (Abbritti et al. (2013)). Also, financial frictions could also

induce skewed business cycles, by magnifying the impact of a downturn while leading to a more

gradual recovery in a learning model by restricting information after the crisis (Ordoñez (2013)).1

We embed these mechanisms in our BVAR model by considering a specification at the

monthly time frequency with the changes in the unemployment rate, a variable proxying for

changes in real activity (the PMI output for the euro area and the CFNAI for the US), and

a measure proxying for changes in financial conditions (the CISS indicator for the euro area

and the NFCI for the US). By doing so, we allow the unemployment rate to move either driven

by shocks specific to the labour market, as a response to shocks to real activity in a standard

Okun’s law framework, or as a response to shocks to financial conditions.

We allow for the skewness of the shocks specific to the labour market to be state dependent

and change as a function of real activity and financial conditions. In simple terms, the labour

market is more likely to be faced with strong adverse shocks that increase the unemployment rate

substantially when the economy is in a bad state of the world. This bad state of the world can

vary between a very sharp slow down of the economy or a prolonged recession for real activity,

or instead a strong tightening of financial conditions. This implies that during bad states of the

world, shocks to the monthly changes in the unemployment rate become asymmetric and right-

skewed, meaning that large increases in the unemployment rate become more likely in these

periods than in good times. By allowing the distribution of the shocks to the unemployment

rate to shift as a function of (lagged) real activity and financial risk factors, the model is in

this way able to capture possible non-linear relationships between real activity and the labour

1. Regarding alternative mechanisms we highlight, for example, the role of worker-level heterogeneity in models
with search and matching frictions in matching the asymmetric response of the employment rate to shocks over the
business cycle (Ferraro (2018)). We notice also that micro-level evidence points towards firms following concave
hiring rules, making them slower to hire after good shocks and quicker to fire after bad shocks (Ilut et al. (2018)).
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market, and to cater for the role of financial frictions. We find that the skewness of the shocks

to the labour market is on average positive in both economies and more time-varying in the

euro area, increasing further and often peaking in economic downturns as financial conditions

deteriorate and economic activity plunges.

Our paper is related to the growing strand of literature aimed at assessing and quantifying

tail risk to macroeconomic outcomes. Methodologically, this literature traditionally relies on

quantile regression based methods, such as those used by Giglio et al. (2016) and Adrian et

al. (2019). Most of the literature on the assessment of tail risks to macroeconomic outcomes

focus uniquely on output growth and inflation. Considerably less attention has been devoted to

the analysis of tail risks in the labour market. The exception is Kiley (2022), who provides an

assessment of tail risks to the US unemployment rate using quantile regressions.

We depart away from quantile regressions and propose a fully parametric model to assess tail

risks in the labour market. In this sense, our work is more closely linked to a recent strand in

the literature that proposes the usage of fully parametric models to assess and predict tail risks,

as in López-Salido et al. (2020), Plagborg-Møller et al. (2020), Carriero et al. (2020a), Carriero

et al. (2020b), Delle Monache et al. (2021), Brownlees et al. (2021), Wolf (2021), Iseringhausen

(2023), or Montes-Galdón et al. (2022), to provide some examples. Similarly to our own con-

tribution, this strand of literature argues that fully parametric models are more flexible than

quantile regression based methods, while simultaneously achieving a similar forecasting perfor-

mance.2 We exploit our model to further extend our analysis and incorporate also information

on inflation rates to analyze labour market risk and inflation risk jointly. In the specific, we

use the augmented setup to assess the joint probability for the economy to experience simulta-

neously large increases in the unemployment rate and large annual inflation rates. We find an

increasing risk of stagflation for the euro area in 2022 while in the United States stagflation risk

increased earlier in 2021 and started decreasing more recently. Notwithstanding the significantly

high levels of inflation, stagflation risks have been contained by the resilient performance of the

2. It should be noted that both Wolf (2021) and Iseringhausen (2023) employ also stochastic volatility models
with asymmetric shocks and stochastic skewness. However, both models are univariate. Our model is multivariate
and allows to jointly model the dynamic relationship between the risk factors and the target variables. As well
the multivariate nature of our model allows us to assess tail risk to multiple target variables (unemployment rate
and inflation). Relatedly, Chavleishvili et al. (2019) extend the quantile regression based methods to a quantile
VAR (QVAR) model framework. This methodology allows to model the interaction between any quantiles of the
endogenous variables. The increased flexibility comes at the cost of highly complex modelling assumptions and
estimation algorithm. For this reason, we leave the comparison of the forecasting performance and labour-at-risk
measurement between our application and a QVAR model for the labour market for future research.
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labour market in both areas. When using the model for forecasting we find a similar result in

our application to the euro area or US labour markets. In particular, our BVAR with stochastic

volatility and time varying skewness displays a forecasting performance that is at least as good

as, but often superior in terms of density forecast accuracy to other benchmarks including the

quantile regression based methods from Adrian et al. (2019), a standard BVAR model, and a

BVAR model with stochastic volatility.

This paper is organised as follows. Section 2 describes the data we use and the main features

of the unemployment rate, which motivate our modelling choice to assess tail risks. Section 3

describes our BVAR model with stochastic volatility and time varying skewness, and our appli-

cation of this model to tackle the cyclical asymmetry in the labour market. Section 4 presents

most of our empirical results, focusing first on the in-sample assessment of the model, then on

the construction of our “labour-at-risk” measure, and finally on the out-of-sample forecasting

performance of the model. Section 5 extends our BVAR model application to assess probabilities

and risk of joint events, applied to measuring the risk of stagflation. Section 6 concludes.

2 Data description

We work with monthly data from January 1999 to September 2022 for the euro area and from

January 1971 to September 2022 for the United States. For both regions, we use the unemploy-

ment rate to account for the conditions of the labour market and two risk factors: (i) a monthly

indicator for real economic activity, which allows us to account for the reaction of the labour

market as a response to changes in economic activity; and (ii) a monthly indicator for financial

conditions, which we use to cater for the role of financial frictions in shaping movements in real

activity and in the labour market.

For the euro area, the unemployment rate is obtained from the ECB Statistical Data Ware-

house. We use the Purchasing Manager Index (PMI) Output from S&P Global to proxy for the

developments in real activity.3 This indicator tracks the assessments by corporate executives

regarding the immediate reactions of their firms to idiosyncratic events over time, and contain

in this way information on the cyclical developments in real activity. As proxy for financial

3. As a robustness check, we consider instead the Eurocoin indicator provided by the Bank of Italy as a proxy
for real activity. From a qualitatively point of view our results do not change. For space considerations, we do not
report the results in the text, although they can be provided upon request. We decided to use the PMI output
as it allows for a better forecasting performance to our empirical application.
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conditions we use the Composite Indicator of Systemic Stress (CISS), which is the most widely

used indicator for financial conditions in the euro area in the literature assessing tail risks to

macroeconomic outcomes (Kremer et al. (2012), Figueres et al. (2020)). This indicator aims to

track the current level of frictions, stresses and strains in the financial system. It is available at

daily frequency and we obtain a monthly series by averaging over the daily observations.

For the United States, we calculate the unemployment rate in two steps. First, we construct

the number of unemployed workers by obtaining the difference between the civilian labour force

and the civilian employment. We then construct the unemployment rate as the ratio between

this measure of unemployment and the civilian labour force.4 To proxy for the developments in

real economic activity, we use the National Activity Index provided by the Federal Reserve of

Chicago (CFNAI), which compares the growth rate of the economy to its historical trend. To

gauge the state of financial conditions in the US, we borrow from the growth-at-risk literature,

and use the National Financial Conditions Index (NFCI) from the Federal Reserve of Chicago,

which is comparable in scope to the CISS indicator for the euro area. Both the CFNAI and the

NFCI indicators are available at a weekly time frequency. Therefore, we aggregate the weekly

observations each month by taking their average over the month.

Figure 1 for the euro area and Figure 2 for the US show the time series of the month on

month changes in the unemployment rate together with the selected real activity and financial

conditions indicators. Both in the euro area and in the US, as the economy enters into the

recession, financial conditions indicators rise first and the real activity indicators plunge, with

the unemployment rate displaying sharp and fast increases. In the next paragraph we describe

in more detail the (a)symmetry of the monthly changes in the unemployment rate over the

business cycle in both areas.

2.1 Asymmetry of changes in the unemployment rate

The unemployment rate in the euro area decreased by almost four percentage points between

April 1998 and September 2022. However, the long-term decline in the unemployment rate did

not happen at a constant pace over time. The unemployment rate tends to decrease during

expansions and to increase during recessions with the speed of changes in the unemployment

rate depending on the state of the business cycles. In Table 1, we show the peak-to-trough

4. We obtain data on civilian employment and labor force from the FRED-MD database, provided by the
Federal Reserve Bank of St. Louis. The source code for the civilian employment is LNS12000000 (or alternatively
CE16OV), while for the civilian labour force is LNS11000000 (or alternatively CLF16OV).
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Figure 1: MoM changes in the unemployment rate and PMI output and CISS

Notes: The figure shows the time series of the month-on-month changes in the unemployment rate, toghether with the PMI Output
(minus 50 divided by 100) and the CISS. The shadow bands are for the EACN recessions periods.

Figure 2: MoM changes in the unemployment rate and CFNAI and NFCI

Notes: The figure shows the time series of the month-on-month changes in the unemployment rate, toghether with the CFNAI
and the NFCI. The shadow bands are for the NBER recessions periods.
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Table 1: Unemployment rate in the EA and the US - peak-to-trough and trough-to-peak changes

Region Peak Trough Months
Peak-to-Trough

Trough Peak Months
Trough-to-Peak

(per month) (per month)

EA

Apr-98 (*) Mar-08 119 -0.03
Mar-08 Jun-09 15 0.16 Jun-09 Sep-11 27 0.03
Sep-11 Mar-13 18 0.10 Mar-13 Dec-19 81 -0.06
Dec-19 Jun-20 6 0.09 Jun-20 Sep-22 (**) 27 -0.05

US

Nov-48 Oct-49 11 0.38 Oct-49 Jul-53 45 -0.12
Jul-53 May-54 10 0.33 May-54 Aug-57 39 -0.05
Aug-57 Apr-58 8 0.41 Apr-58 Apr-60 24 -0.09
Apr-60 Feb-61 10 0.17 Feb-61 Dec-69 106 -0.03
Dec-69 Nov-70 11 0.21 Nov-70 Nov-73 36 -0.03
Nov-73 Mar-75 16 0.23 Mar-75 Jan-80 58 -0.04
Jan-80 Jul-80 6 0.26 Jul-80 Jul-81 12 -0.05
Jul-81 Nov-82 16 0.22 Nov-82 Jul-90 92 -0.06
Jul-90 Mar-91 8 0.16 Mar-91 Mar-01 120 -0.02
Mar-01 Nov-01 8 0.16 Nov-01 Dec-07 73 -0.01
Dec-07 Jun-09 18 0.25 Jun-09 Feb-20 128 -0.05
Feb-20 Apr-20 2 5.64 Apr-20 Sep-22 (**) 29 -0.39

Notes: Peaks and trough dates are taken from the CEPR for the euro area, and the months are adjusted to the end of the quarter announced by
the CEPR as the relevant business cycle date, and from the NBER for the US. (*) our data for the unemployment rate in the euro area starts in
April 1998. It is therefore not a trough, but our earliest comparison to the March 2008 peak. (**) our data stops for both the euro area and the US
in September 2022. This is the latest comparison we have for the latest trough in each region.

(downturns) and trough-to-peak (expansions) changes in the unemployment rate in the euro area.

In expansions, the unemployment rate decreased mildly by between -0.03 and -0.06 percentage

points per month. The euro area unemployment rate even increased slightly in the expansion

between the end of the Global Financial Crisis in 2009 Q2 and the start of the Sovereign Debt

Crisis in 2011 Q3. By contrast, the unemployment rate increased at a more pronounced pace

during recessions, rising on average by between 0.09 and 0.16 percentage points per month.

This pattern also implies that the unconditional distribution of the changes in the euro area

unemployment rate is skewed to the right (see Figure 3).

The longer time series data for the United States shows a more cyclical unemployment

rate than that observed for the euro area. By September 2022, the US unemployment rate

was at levels broadly comparable to those observed in 1948. However, the US unemployment

rate displays a similar cyclical asymmetry to that of the euro area. Economic expansions are

linked with small average decreases in the unemployment rate on a magnitude of -0.06 percentage

points per month. Not considering the current expansion following the COVID-19 pandemic, this

average monthly decrease in the unemployment rate would be even milder, at -0.04 percentage
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Figure 3: Unconditional distribution of month-on-month changes in the unemployment rate in
the euro area

Notes: The figure shows the histogram and the estimated distribution of the month-on-month changes in the unemployment rate from January 1999
to September 2022 in the euro area.

points per month. By contrast, the US unemployment rate increases considerably faster during

contractions at an average of 0.34 percentage points per month, or at 0.25 percentage points when

we exclude the COVID-19 pandemic contraction. These results also imply that the unconditional

distribution of the month-on-month changes in the US unemployment rate is markedly skewed

to the right (see Figure 4), similarly to that observed for the euro area.

Hence, in both regions downturns are considerably shorter than upturns. These results taken

together confirm that contractions are briefer and more violent than expansions in the euro area

and the US labour markets. They also imply that the risks around the unemployment rate

outlook are not symmetric, as the likelihood of large increases in the unemployment rate has been

historically higher than the likelihood of large decreases. The steepness of the monthly changes

in the unemployment rate is also visible when we extract the residuals from an autoregressive

model regression to account for potential dynamic or slower movements in the unemployment

rate over time. Both in the euro area and in the US, the symmetry of the residuals changes over

time, with the residuals more right skewed during recessions than during expansions.5

In more technical terms, we use the normality test proposed by Bai et al. (2005) to assess the

skewness of the changes in the unemployment rate in both the euro area and in the US. 6 We

5. See Figure 23, 24, 25, 26 in the Appendix A.6.
6. Details on how the statistic is computed can be found in the Appendix A.1
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Figure 4: Unconditional distribution of month-on-month changes in the unemployment rate in
the US

Notes: The figure shows the histogram and the estimated distribution of the month-on-month changes in the unemployment rate from January 1971
to September 2022 in the US.

Table 2: Bai et al. (2005) skewness statistic

MoM changes QoQ changes YoY changes Level

Euro Area 1.7884∗ 1.704∗ 1.5888 1.3458
US 0.9908 1.0261 1.0165 2.1551∗∗

Notes: Bai et al. (2005) skewness statistic. ∗ indicates rejections of the null hypothesis at 90% CI and ∗∗ indicates rejections of the null hypothesis
at 95% CI.

calculate this statistic for the month-on-month, quarter-on-quarter, and year-on-year changes in

the unemployment rate, and also to the level of the unemployment rate. We report the results

of this test in Table 2 for our final sample from January 1999 to September 2022 for the euro

area and from January 1971 to September 2022 for the United States.

The skewness statistic from Bai et al. (2005) rejects the normality of both the month-on-

month and quarter-on-quarter changes in the unemployment rate in the euro area, and it rejects

the normality of the unemployment rate levels in the US. Both results highlight that there is

cyclical asymmetry in the unemployment rate. For the United States, the adjustment of the

unemployment rate during the COVID-19 pandemic and ensuing recovery exhibited a set of

outliers that shifted the skewness statistic. When applied to the sample ending in December

2019, we find also a statistically significant skewness for the month-on-month changes in the US

unemployment rate.

More generally, we find that the skewness of the changes in the unemployment rate is time-
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Figure 5: Bai et al. (2005) skewness statistic in the euro area

Notes: The figure shows the time series of the Bai et al. (2005) skewness statistic for the month-on-month changes in the unemployment rate in the
euro area computed using expanding recursive windows of 8 years. The dashed horizontal black lines shows the 90% confidence interval.

varying in both the euro area and the US. To showcase this, we compute the skewness statistic

from Bai et al. (2005) for the distribution of the month-on-month changes in the unemployment

rate on an expanding recursive window that comprises the first eight years of data for each region

and adds one month of data at the time before calculating again the skewness statistic. The

skewness statistics for the expanding windows are reported for the euro area in Figure 5 and for

the United States in Figure 6. In September 2022, the expanding window covers the full sample

and mimics the results in Table 2. For the euro area, the skewness statistic started very low

and increases to a high level close to the 90% confidence band over the entire sample. Skewness

becomes statistically significant in the euro area with the onset of the COVID-19 pandemic,

with the skewness statistics increasing outside the 90% confidence interval.

The time variation in the skewness of the month-on-month changes in the unemployment

rate is even more prevalent in the US. The skewness statistic is statistically significant during

the period comprising the oil prices shocks and the Volcker’s recession in the late 1970s and

early 1980s, and then again following the Global Financial Crisis. The COVID-19 pandemic

shifted the skewness statistic because of the unique timing and magnitudes of the monthly

changes in the unemployment rate. As shown in Table 1, the unemployment rate increased by

5.6 percentage points per month between February 2020 and April 2020 and it decreased at a
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Figure 6: Bai et al. (2005) skewness statistic in the US

Notes: The figure shows the time series of the Bai et al. (2005) skewness statistic for the MoM changes in the unemployment rate in the United
States computed using expanding recursive windows of 8 years. The dashed horizontal black lines shows the 90% confidence interval.

faster pace from May 2020 onwards over a relatively longer period of time. These results mark

the importance of catering for the time-variation in the skewness of the unemployment rate in

a time series modelling approach and provides the main motivation for our empirical model in

the next section.

3 Model

3.1 Time varying skewness stochastic volatility VAR model

The time varying asymmetry of the unemployment rate leads to time varying tail risks that

should be considered by any model that attempts to predict any future dynamics in the labour

market. In this section we propose a fully parametric econometric model to provide a meaningful

characterisation of tail risk in the labour market both the euro area and the United States.

Our model is a standard VAR model equipped with stochastic volatility and skew normal

shocks.7 These additional features are designed to capture both shifts in the volatility and in

the skewness of the shocks to the endogenous variables in the VAR. The exact specification is:

7. This class of models is comprehensively covered in Renzetti (2023), with an application for the “growth-at-
risk” literature.
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yt = Π0 +Π1yt−1 + . . .+Πpyt−p +A−1H0.5
t εt (1)

εit ∼ Skew normal(ζit, ωit, λit)

where yt is the vector of endogenous variables, observed for t = 1, . . . , T periods (months)

and i = 1, . . . , N with N being the number of endogenous variables. As endogenous variables,

we consider the month-on-month changes in the unemployment rate, a monthly real activity

indicator, the PMI output for the euro area and the CFNAI for the US, and a monthly indicator

for financial conditions, the CISS indicator for the euro area and the NFCI for the US.

The matrix A−1 is a lower triangular matrix with ones on the main diagonal, Ht =

diag(h1,t, . . . , hN,t) is the diagonal matrix collecting the volatilities of the shocks and εt is a

column vector collecting the skew normal (as in Azzalini (1986)) shocks εit.

In general the shape parameter λit shifts both the mean and the variance of skew normal

distribution. To interpret εit as structural shocks in the VAR model, we then re-parametrize the

skew normal distribution parameters ζit and ωit such that E[εt] = 0N and E[εtε′t] = IN . That

is, we ensure that the elements in εt are unpredictable in terms of their mean and that they

have unit variance. This ensures as well that the elements on the diagonal matrix Ht provide

the sufficient information on the variances of the shocks while the shape parameters λit carry

sufficient information on the skewness of the shocks. In more detail, this re-parameterization

implies the following constraints on the location and scale parameters of the shocks:

ζi,t = −ωi,tδi,t

√
2

π
∀i, t (2)

ω2
i,t =

[
1− 2

π
δ2i,t

]−1

∀i, t (3)

where δi,t =
λi,t√
1+λ2

i,t

, with −1 < δi,t < 1. The re-parameterized skew normal shocks are identified

and interpreted as structural shocks assuming the short run restrictions implied by the ordering

of the variables in the model (Cholesky identification).8 We order the financial conditions

indicator last, so as to allow financial markets to adjust within the month to shocks to real

activity and to the labour market. The unemployment rate is ordered second and it is allowed

8. It is worth to mention that as discussed in Primiceri (2005) and recently outlined in Arias et al. (2021) the
ordering of the variables in this model matters not only for the identification of the shocks but also for estimation.
This occurs because the Normal prior on the free elements of the lower triangular matrix A induces a priori an
asymmetric prior for the variance-covariance matrix of the reduced-form residuals.
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to adjust within the month to shocks to the labour market and real activity, but not to shocks

to financial conditions. This follows the standard Okun’s law, which relates real activity and

the labour market. Finally, we order the real activity indicator first, assuming that shocks to

the labour market and to financial conditions affect the real activity indicator with one month

of lag.

To capture changes over time in the size of the shocks, the log-volatilities are assumed to be

independent stochastic processes which evolve over time according:

log(hi,t) = log(hi,t−1) + ηi,t ηi,t ∼ N (0, σ2
i,η) (4)

where i = {PMI,∆U,CISS} for the euro area and i = {CFNAI,∆U,NFCI} for the US, and

where ∆U stands for the month-on-month changes in the unemployment rate. 9

On the other hand, to capture changes in the symmetry of the shocks, it is assumed that

the shape parameters λit are another set of independent stochastic processes with their own

dynamics. In general, positive (negative) values of λi,t are associated to right (left) skewed

shocks and right (left) skewed shocks decrease the likelihood of left (right) tail events while

correspondingly increase the likelihood of right (left) tail events. For example, when the shape

parameters of the shocks to the labour market is positive, namely λ∆U,t > 0, the labour market

shock is skewed to the right, and large increases in the unemployment rate become more likely

as a consequence of this shock. We consider a specification in which the endogenous variables

on real activity and financial conditions can be thought as risk factors affecting the skewness of

the shocks to the labour market. In intuitive terms, this implies that the monthly changes to

the unemployment rate are more likely to be hit by adverse right skewed shocks when the state

of the economy is weak, either via a bad performance of real activity or a strong tightening of

financial conditions. In practice, we assume that these risk factors provide information on the

evolution of the shape parameter of shocks to the unemployment rate over time, following:

λ∆U,t = ϕ1,∆Uλ∆U,t−1 + ϕ2xt−1 + ξ∆U,t ξ∆U,t ∼ N (0, σ2
ξ,∆U ) (5)

where xt−1 is a vector that includes a constant and the lagged risk factors, being {PMIt−1, CISSt−1}
for the euro area and {CFNAIt−1, NFCIt−1} for the US. This setup makes the monthly changes

in the unemployment rate to be our target variable and enables to capture persistency and state

9. CISS, NFCI and CFNAI are demeaned, while the PMI is rescaled subtracting 50 from the original value.
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dependence in the shape of the shocks to the unemployment rate in connection to past devel-

opments in real activity and in the financial conditions.10 The coefficients in the vector ϕ2

determine the relationship between the risk factors and the shape of the shocks. When this

coefficient is positive, an increase in the risk factors in associated to an increase of the skewness

of the shock, that is to a shift of the conditional quantiles of the change in the unemployment

rate to the right; conversely, when this coefficient is negative, increases of the risk factors are

associated to a decrease in the skewness of the shocks, that is, to a shift of the conditional

quantiles of the change in the unemployment rate to the left.

In their turn, in the model, shocks to real activity and to financial conditions are allowed

to be potentially asymmetric with the degree of asymmetry changing over time. In particular,

we assume that the shape parameters of the shocks to the real activity and financial conditions

indicators follow independent AR(1) stochastic processes

λi,t = ϕ1,iλi,t−1 + ξi,t ξit ∼ N (0, σ2
ξ,i) (6)

for i = {PMI,CISS} in the euro area and i = {CFNAI,NFCI} for the US.

Given that the risk factors influence not only the conditional mean of the changes in the

unemployment rate through equation (1) but also the conditional skewness via equation (5), this

model can capture the potential non-linear effects of real activity and financial conditions on the

unemployment rate, similarly to the quantile regression framework by Kiley (2022). However

our approach displays some advantages with respect to the methods based on univariate quantile

regressions. First, our Bayesian VAR model allows to properly address the rich autocorrelation

structure of macroeconomic time series and to exploit a potentially richer information set that

is coherent over time, while this is in general more difficult in the univariate quantile regression

framework. Second, we can obtain the entire predictive distribution for the changes in the

unemployment rate in a single step, without the need of relying on quantile interpolation methods

as it is done in the “at-risk” literature following the paper of Adrian et al. (2019). Third, we

can jointly model the multivariate dynamics of all endogenous variables in our model, which

in the case of our application are the changes the unemployment rate, the indicator for real

activity, and the indicator for financial conditions. Quantile regression based methods focus

instead on one target variable in a partial equilibrium without accounting explicitly for general

10. It is important to notice that in our specification the risk factors do not enter the variance of the shocks,
thus only moving the asymmetric shape of the distribution of shocks.
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equilibrium feedback effects over time. Fourth, our flexible structure allows us to assess tail risks

simultaneously in multiple target variables. We will develop on this in Section 5, where we use

an augmented version of our model to quantitatively assess the risk of stagflation in the euro

area and in the US. Finally, a more general advantage of our BVAR methodology is that even

by adding time varying skewness to the model we are still able to use all the standard tools used

for policy evaluation and scenario analysis that are traditionally used in the VAR literature,

which are not readily available to univariate quantile regression based methods.11

3.2 Priors and estimation

The equations of the time varying skewness stochastic volatility VAR model form a non-linear

and non-Gaussian state space model. The model is estimated using the Gibbs sampler algorithm

described by Renzetti (2023). The estimation strategy goes around the potential difficulties

arising because of non-Gaussianity of shocks by leveraging on the normal mixture representation

of the skew normal distribution with a truncated normal used as the mixing distribution and

by exploiting the triangularization of the VAR system as in Carriero et al. (2019) to draw the

parameters and the mixing variables equation by equation.12 The Gibbs sampler algorithm

includes particle steps to approximate the full conditional posterior distributions of the log-

volatilities and the shape parameters.13 The transition equations of the latent states are used

as importance densities in the particle steps. 14

As for the specification of the prior distribution for the parameters of the model, we specify a

Normal prior for the autoregressive coefficients stored in the matrices Πj with j = 0, . . . , p with

Minnesota type variance covariance matrix (Litterman (1986)). Following Cogley et al. (2005),

we specify a Normal prior for the free elements in the matrix A. We also assume a Normal

11. Multivariate quantile regression based methods (as in Chavleishvili et al. (2019)) mitigate a large share of
the disadvantages faced by univariate quantile regressions. The main difference between our model and a QVAR is
that we use a simpler and fully parametric structure that allows us to extend the model in a more straightforward
way that is also more efficient from a computational perspective.
12. See Appendix A.2 and in particular equation (13) for further details on the mixture representation.
13. It is worth to remark that in addition to referring to a multivariate model, the estimation algorithm is

conceptually different from Wolf (2021) since the algorithm used in this paper leverages on the normal mixture
representation of the skew normal random variable as detailed in the Appendix A.2. In particular, the estimation
procedure exploits the fact that conditionally on the vector of mixing variables vt, on the elements of the diagonal
matrix ∆t (which are one to one map to the shape parameters λ1,t, . . . , λN,t) and on the log-volatilities the state
space is Gaussian. Further details on this difference can be found in Renzetti (2023).
14. In order to alleviate path degeneracy in the underlying conditional sequential Monte Carlo sampler, we

exploit the ancestor sampling procedure that enables a fast mixing even when using seemingly few particles.
The ancestor sampling procedure was developed by Lindsten et al. (2014), who provide a formal proof for the
convergence of the algorithm and a comprehensive study on the properties of the sampler.
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prior for the initial state of the log-volatilities log(hi,0), for the shape parameters λi,0, for the

coefficients in the state equations of the shape parameters ϕ1,i and for the elements of ϕ2. Finally,

we assume an Inverse Gamma prior for the variance of the innovations in the state equations

of the the log-volatilities and the shape parameters . Table 6 in Appendix A.3 summarises our

choices on the priors and relevant hyperparameters.

The steps of the Gibbs sampler to simulate draws from the joint posterior distribution of the

parameters Θ, the latent states s (i.e., the log-volatilities and the shape parameters), and the

mixing variables v, are as follows:

1. Draw the path for the mixing variables {vit}Tt=1 from p(vi1 . . . , viT |Θ, s,Y ) for i =

1, . . . , N .

2. Draw the VAR coefficients Π from p(Π|Θ,v, s,Y ). The coefficients are drawn equation

by equation exploiting the triangular algorithm developed in Carriero et al. (2019).

3. Draw the free elements in the lower triangular matrix A from p(A|Θ,v, s,Y ).

4. Draw the variances in the state equations of the shape parameters σ2
ξ,i from p(σ2

ξ,i|Θ, s, v, Y )

for i = 1, . . . , N .

5. Draw the autoregressive coefficients in the state equations of the shape parameters ϕ1,i

from p(ϕ1,i|Θ, s, v, y) for i = 1, . . . , N . and the coefficients of the risk factors in the state

equation of the shape parameter of the target variable from from p(ϕ2|Θ, s, v, Y ).

6. Draw the variances in the state equations of the log-volatilities σ2
η,i from p(σ2

η,i|Θ, s, v, Y )

for i = 1, . . . , N .

7. Draw the initial states for the volatilities hi,0 from p(hi,0|Θ,v, s,Y ) for i = 1, . . . , N .

8. Draw the initial states for the shape parameters λi,0 from p(λi,0|Θ,v, s,Y ) for i = 1, . . . , N .

9. Draw the path of the shape parameters {λit}Tt=1 from p(λi1, . . . , λiT |Θ,v, s,Y ) for i =

1, . . . , N using the particle approximation.

10. Draw the path of the volatilities {hit}Tt=1 from p(hi1, . . . , hiT |Θ,v, s,Y ) for i = 1, . . . , N .

using the particle approximation.
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The Markov Chain Monte Carlo (MCMC) algorithm consists of 50,000 draws, with the initial

30,000 draws discarded as burn-in. In the particle steps, we use 100 particles to approximate

the full conditional posterior distribution of the volatilities and 150 particles to approximate the

full conditional posterior distribution of the shape parameters.

4 Results

4.1 In-sample analysis

We start by examining the in-sample performance of our time varying skewness and stochastic

volatility (TVSSV) VAR model. The starting point is to assess the estimated impulse response

functions (IRFs) of our model. In particular, for both the euro area and the US, the IRFs

identify that an expansionary shock to real activity implies a decrease in the unemployment

rate, while not having a strong impact on the financial conditions. Similarly, a shock to the

labour market that increases the unemployment rate has no impact on financial conditions but

induces instead a feedback loop that decreases real activity. Finally, a shock that tightens the

financial conditions induces a slow down in real activity and increases the unemployment rate.

The IRFs unveil that the model is able to capture important relationships such as the Okun’s

law, in which improvements in real activity are associated with declines in the unemployment

rate, and the fact that the tightening of financial conditions induces on average a slowdown in

real activity and an increase in the unemployment rate.

In the model the likelihood of good and large shocks versus bad and large shocks is state

dependent and changes over time as a function of real activity and financial conditions. This

reflects the idea that large adverse shocks are more likely to occur during recessions, as these

are periods when real activity is depressed and financial conditions are tight. We include this

potential non-linearity via equation (5), which allows for past developments in real activity and

financial conditions to act as risk factors affecting the shape of the unemployment rate shocks.

Table 3 presents the estimated posterior median of these coefficients and their 15th-85th credible

sets. For the US we report the estimates both from the model estimated using observations up

to February 2020 and the full sample in which we include time fixed effects in equation (5) to

account for the Covid period.15

As it would be expected, the shape parameter of shocks to the unemployment rate is esti-

15. The time fixed effects cover the period from March 2020 up to July 2020.
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Figure 7: Estimated impulse response functions from VAR model for the euro area

Notes: In the first row we report the impulse response functions (IRFs) to a one standard deviation shock to the real
activity indicator (PMI Output). In the second row we report instead the IRFs to a one standard deviation shock to the
monthly changes in the unemployment rate, and in the third row the IRFs to a one standard deviation shock to the financial
conditions indicator (CISS).

Figure 8: Estimated impulse response functions from VAR model for the US

Notes: In the first row we report the impulse response functions (IRFs) to a one standard deviation shock to the real activity
indicator (CFNAI). In the second row we report instead the IRFs to a one standard deviation shock to the monthly changes
in the unemployment rate, and in the third row the IRFs to a one standard deviation shock to the financial conditions
indicator (NFCI).
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Table 3: Coefficients in the state equation of the shape parameter λ∆u

Euro area ϕλt−1
ϕPMIt−1

ϕCISSt−1
cλ

0.7314 -0.0200 0.3120 0.3669
[0.5845 0.8526] [−0.0438 0.0043] [−0.3336 1.0671] [0.7180 0.1345]

US ϕλt−1
ϕCFNAIt−1

ϕNFCIt−1
cλ

Full sample 0.7536 -0.0061 0.0046 0.2576
[0.5842 0.8782] [−0.0688 0.0613] [−0.1824 0.2110] [0.0635 0.5155]

Pre-Covid 0.6880 -0.0230 0.0123 0.1753
[0.5367 0.8256] [−0.1605 0.0973] [−0.1824 0.2110] [−0.0116 0.4277]

Notes: The Table reports the posterior median estimates with 85th and 15th credible sets in brackets of the coefficients of the risk factor in the
state equation for the shape parameters of the shocks to the change in the unemployment rate. For the US we report estimates based both on full
sample and pre-Covid.

mated to increase – thus leading to extreme adverse shocks becoming more likely to materialise

– following weaker developments in real activity and/or tighter financial conditions, both for

the euro area and for the US. This is reflected by the sign of the estimated posterior median

coefficients. However, for both areas the 15th-85th credible sets for these coefficients are wide

and include zero. Shocks to the changes in the unemployment rate exhibits both time varying

volatility and time varying skewness. In particular, Figure 9 and Figure 10 shows the estimated

paths for the volatility and the shape parameters in the euro area and in the United States.16

For the euro area, the volatility of unemployment rate shocks increased gradually over time

from 1999 to 2015. The same pattern occurred in the United States over the same period. The

volatility of unemployment rate shocks is however more time-varying in the US over the same

period than in the euro area, although this is partially due to the longer data availability. In

general, the volatility of unemployment rate shocks is broadly countercyclical in both areas, usu-

ally increasing during recessions and decreasing during expansions. However, it did not move

similarly across all business cycles. For example, the increase in volatility during the Global

Financial crisis and Sovereign Debt crisis were quite limited in the euro area. For the United

States, the volatility of the unemployment rate shocks did not increase during the recessions in

the early 1980s and increased instead right after the start of the economic recovery. Both areas

recorded a strong increase in the volatility of unemployment rate shocks during the COVID

pandemic. This strong increase in the unemployment rate shocks volatility was considerably

more pronounced for the United States, reaching historical magnitudes as the unemployment

rate suddenly increased from 3.5% in February 2020 to 14.7% in April 2020. In the euro area

the volatility of unemployment rate shocks also increased but the magnitudes remained moder-

ate, as European countries benefited from the widespread use of job retention schemes, which

16. In the Appendix, Fig 27 we report the estimates based on pre-covid sample for the US.
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protected employment relations between firms and employees during the pandemic.

Shocks to the unemployment rate are on average right skewed both in the euro area and

the United States. In the euro area the shape parameter ruling the skewness of unemployment

rate shocks moves countercyclically over time and increases further during recessions as financial

conditions tighten and real activity plunges. This pattern is more pronounced in the euro area

than in the US.

Figure 11 and Figure 12 shows the contemporaneous contribution of the real activity and

the financial risk factors to the skewness parameter of the labour market shocks over time. At

the starting of the financial crisis, first worsening financial conditions and then the plunge in

economic activity led to right skewed shocks to the labour market. In the euro area, worsening

financial conditions predominantly contributed to the right skewness of the labout market shocks

during the period of the Sovereign Debt Crisis, while the plunge in economic activity was the

main contributor for the increase in the skewness of the shocks during the Covid crisis. In the

US, the financial conditions risk factor played a predominant role in explaining the positive

skewness to the labour market shocks both in the 80’s and during the financial crisis. Instead,

the extraordinary increase in the skewness of labour market shocks experienced during the

Covid-period can be attributed almost entirely to the idiosyncratic component.

4.2 Labour at risk

The positive skewness of unemployment rate shocks in our VAR model implies that the unem-

ployment rate is more likely to increase at a faster pace when real activity is weaker or when

financial conditions are tighter. These “bad” states of the world increase the likelihood of ad-

verse shocks to the unemployment rate to occur. For policymakers this raises two important

questions – how many jobs can be at risk in case the economy is suddenly hit by a series of large

adverse shocks? And how likely is this to happen over the next year?

We define “labour-at-risk” (LaR) to be the lowest predicted increase in the unemployment

rate following a series of shocks, after excluding all the more favourable outcomes that could

occur at a given joint probability level. We denote this probability level to be α. Moreover, we

estimate our measure of labour-at-risk for a given h-periods ahead horizon. This is,

LaR(α)t+h = F−1
∆hUt+h

(α) α ∈ (0, 1) (7)
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Figure 9: Estimated volatility and shape parameter of shocks to changes in the unemployment
rate

Notes: The figure shows the time series of the estimated volatilities and shape parameters of the shocks to changes in the unemployment rate in the
trivariate TVSSV VAR model for the euro area. The shadow bands are for the EACN recessions periods.

Figure 10: Estimated volatility and shape parameter of shocks to changes in the unemployment
rate for the US

Notes: The figure shows the time series of the estimated volatilities and shape parameters of the shocks to changes in thew unemployment rate in
the trivariate TVSSV VAR model for the US. The shadow bands are for the NBER recessions periods.
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Figure 11: Contemporaneous contributions to the skewness parameter of the labour market
shocks over time in the Euro Area

Notes: The bar chart presents the contribution to the skewness parameter of the real activity (PMI) and the financial (CISS)
risk factors over time in the euro area.

Figure 12: Contemporaneous contributions to the skewness parameter of the labour market
shocks over time in the US

Notes: The bar chart presents the contribution to the skewness parameter of the real activity (CFNAI) and the financial (NFCI)
risk factors over time in the US.
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Figure 13: One month ahead predictive distribution of changes in the unemployment rate and
80th percentile labour-at-risk for the euro area

Notes: The figure shows the one month ahead predictive distribution for the month-on-month changes in the unemployment rate from January 2007
to September 2022 in the euro area. In red the part of the distribution on the right of the estimated 80th percentile.

Where F−1 is the inverse predictive cdf of the change in the unemployment rate. In simple

terms, we define labour-at-risk (α) to be the α percentile of the predictive distribution of changes

in the unemployment rate h-periods ahead (∆hUt+h). We follow Kiley (2022) and focus on

α = 0.8, that is, we look to the minimum increase in the unemployment rate that would occur

in case the economy was hit by shocks in the set of the 20% most adverse shocks to real activity,

labour market, and financial conditions. Figure 13 for the euro area and Figure 14 for the United

States show the one month ahead predictive densities for the changes in the unemployment rate

in our model. For the euro area, we compute the predictive distribution of changes in the

unemployment rate from January 2007 to September 2022. For the United States, we take

advantage of the longer time series available and plot the predictive distribution of changes in

the unemployment rate from January 1999 to September 2022. In red, we highlight the possible

changes in the unemployment rate that would be equal or higher than our labour-at-risk measure

at the 80th percentile.

The predictive distribution of the changes in the unemployment rate changes over time

reflecting any shift in its conditional mean, in its conditional variance in its conditional skewness.

Hence, shifts in the conditional mean, in the conditional variance and in the conditional skewness
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Figure 14: One month ahead predictive distribution of changes in the unemployment rate and
80th percentile labour-at-risk for the US

Notes: The figure shows the one month ahead predictive distribution for the month-on-month changes in the unemployment rate from January 1999
to September 2022 in the US. In red the part of the distribution on the right of the estimated 80th percentile.

contribute jointly to the determine the time variation of our labour-at-risk measure. Figure 15

and Figure 16 show the estimated labour-at-risk for the euro area and the United States in

a two-dimensional setup. Instead of focusing only on the predicted labour-at-risk one month

ahead, we look also at different forecast horizons, and in particular we highlight the predicted

labour-at-risk both one quarter ahead and one year ahead. We compare our estimates of labour

at risk with those that would arise from the two-step approach from Adrian et al. (2019) that

is based on quantile regressions, together with the realised value for the corresponding change

in the unemployment in the same period and within the same horizon. The two econometric

approaches provide observationally similar estimates for labour-at-risk.

Our labour-at-risk measure targets well on average the realised changes in the unemploy-

ment rate during recessions in both the euro area and the United States. These are periods

characterised by sudden increases in the unemployment rate, implying that our labour-at-risk

measure provides information on the amount of jobs that are at risk in case the economy is hit by

recessionary shocks. The temporary layoffs following the COVID pandemic and the associated

lockdowns in the United States provided a unique set of shocks that our labour at risk measure

was not able to fully cater for. Hence, the increase in the unemployment rate in the early 2020
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Figure 15: Estimated labour-at-risk 80th percentile for the euro area

Notes: The figure shows the estimated one month ahead (first panel), one quarter ahead (second panel), and one year ahead (third panel) estimated
80th percentile of the predictive distribution of the month-on-month change in the unemployment rate (labour-at-risk) in the euro area. In red
the estimates according to the TVSSV VAR model, in yellow the estimates according to the two-step quantile regression based method by Adrian
et al. (2019) and in black the realization.

Figure 16: Estimated labour-at-risk 80th percentile for the US

Notes: The figure shows the estimated one month ahead (first panel), one quarter ahead (second panel), and one year ahead (third panel) estimated
80th percentile of the predictive distribution of the month-on-month change in the unemployment rate (labour-at-risk) in the US. In red the estimates
according to the TVSSV VAR model, in yellow the estimates according to the two-step quantile regression based method by Adrian et al. (2019)
and in black the realization.
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was an outlier considerably stronger than predicted by our labour at risk measure. For the euro

area the decrease in real activity and increase in financial tightening were good predictors of

the increase in the unemployment rate over the same period as the amount of temporary layoffs

was limited via the widespread use of job retention schemes, which mitigated strongly possible

increases in the unemployment rate. Hence, for the euro area, the increases in the unemploy-

ment rate during the COVID pandemic were considerably closer to our labour-at-risk estimate.

By contrast, and as expected, our measure of labour-at-risk is higher and far from the realized

change in the unemployment rate during recoveries and expansions, as the unemployment rate

usually decreases in those periods.

Relatedly, we use our model to estimate the conditional probability of “large” changes in

the unemployment rate given the other variables in the model. At any given horizon h-months

ahead we compute the probability of changes in the unemployment rate to be larger than a

given threshold. This is calculated by computing the ratio between the number of simulated

posterior draws in which changes in the unemployment rate exceed the threshold of interest, over

the total number of simulated posterior draws. To identify the threshold across the different

horizon, we look to the unconditional distribution of monthly, quarterly and yearly changes

in the unemployment rate for both the euro area and the US. We denote large swings in the

unemployment rate at the 20th percentile (i.e., a large downward swing) and 80th percentile

(i.e., a large upward swing) in this distribution.17

Figure 17 show these probabilities for the euro area and Figure 18 for the United States.

For the euro area, the periods in which the predicted probability of a quarterly change in the

unemployment rate is higher coincide with the three recessions observed during our sample, in

which real activity plunged and financial conditions tightened substantially.18 Outside these

recessionary periods, the model predicts only low probabilities of large increases in the unem-

ployment rate for the euro area at 20% or below. More recently, the probability of a large yearly

17. For the euro area, large upward swings are identified when the increase in the unemployment rate is larger
than 0.05 percentage points for h = 1 (one month ahead), 0.13pp for h = 3 (one quarter ahead), and 0.51pp for
h = 12 (one year ahead). Conversely, large downward swings for the euro area are identified for decreases in the
unemployment rate stronger than -0.08pp for h = 1, -0.23pp for h = 3, and -0.84pp for h = 12. For the US,
large upward swings are identified for increases in the unemployment rate larger than 0.13pp for h = 1, 0.20pp
for h = 3, and 0.83pp for h = 12, while large downward swings for decreases in the unemployment rate stronger
than -0.15pp for h = 1, -0.28pp for h = 3, and -0.81pp for h = 12. Details on the percentiles of the unconditional
distribution can be found in Table 7.
18. We focus on the quarterly probabilities for two reasons. First, the monthly thresholds are relatively low

and more prone to short-term corrections. Second, the predicted yearly increases in the unemployment rate have
larger uncertainty bands and are usually less timely for policymakers.
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Figure 17: Predicted probability of large changes in the unemployment rate for the euro area

Notes: The figure shows the estimated one month ahead (first panel), one quarter ahead (second panel), and one year ahead (third panel) probability
of changes in the month-on-month change unemployment rate larger than the unconditional 20th percentile (in blue) and 80th percentile (in red) in
the euro area.

Figure 18: Predicted probability of large changes in the unemployment rate for the US

Notes: The figure shows the estimated one month ahead (first panel), one quarter ahead (second panel), and one year ahead (third panel) probability
of changes in the month-on-month change unemployment rate larger than the unconditional 20th percentile (in blue) and 80th percentile (in red) in
the US.
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upward swing in the unemployment rate in the euro area increased during 2022, reaching almost

40% in September 2022 (the last observation in our sample). Conversely, the probability of

large downward swings in the unemployment rate is higher during the expansionary periods and

practically null during recessions. Similar results are obtained for the United States, although

the probabilities of large swings in the unemployment rate are more symmetric during expan-

sion periods than for the euro area. The post-pandemic period in the US was characterised

by an increase in both the probabilities of large upward swings and large downward swings in

the unemployment rate, as a result of the strong increase in the volatility of the changes in the

unemployment rate that stemmed from the large reallocation flows that followed the temporary

layoffs and Great Resignation, and the re-entry of these workers back into the US labour market.

4.3 Out-of-sample forecast accuracy

To assess the forecast accuracy of our model, we compare the forecasts from our time vary-

ing skewness VAR model with stochastic volatility (BVAR-TVSSV) to the forecasts from other

competing models: (i) a Bayesian VAR model with Independent Normal Inverse-Wishart prior

(BVAR), (ii) a Bayesian VAR model with stochastic volatility (BVAR-SV), and (iii) the quan-

tile regression based method proposed by Adrian et al. (2019). This set of competing models

allows us to assess the relative importance of accounting for modelling different features such as

stochastic volatility, time varying skewness, and non-linearities among the risk factors and the

target variables. On the one hand, the BVAR-SV, BVAR-TVSSV and quantile regression allow

to capture time varying conditional volatility, while the simple BVAR cannot. On the other

hand, only the BVAR-TVSSV and the quantile regression based method allow to account for

time varying conditional skewness and the for the potential nonlinear effect of the real activity

and financial risk factors on the labour market.19

The forecasting exercise is designed such that we compute the recursive one month, one

quarter, and one year ahead forecasts on starting in January 2007 for the euro area and in

January 1999 for the US. The forecast accuracy is evaluated using an expanding window over

the sample between January 2007 and September 2022 for the euro area, described in Table 4,

and over the sample between January 1999 and September 2022 for the United States, showcased

in Table 5. We highlight the best performer according to various metrics in bold. These metrics

comprise the average Root Mean Squared Error (RMSE) to evaluate point forecast accuracy,

19. Details on the competing models are presented in the Appendix A.4.
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Table 4: Forecast accuracy January 2007 - September 2022 in the euro area

RMSE CRPS LTw-CRPS RTw-CRPS QS 20th QS 80th

a) One month ahead change
BVAR 0.0051 0.0399 0.0117 0.0126 0.0176 0.0202
BVAR SV 0.0050 0.0396 0.0116 0.0126 0.0175 0.0201
BVAR TVSSV 0.0049 0.0395 0.0115 0.0126 0.0180 0.0212
Quantile regression 0.0049 0.0396 0.0120 0.0123 0.0194 0.0206

b) One quarter ahead change
BVAR 0.0298 0.0964 0.0277 0.0313 0.0418 0.0521
BVAR SV 0.0285 0.0936 0.0263 0.0310 0.0384 0.0514
BVAR TVSSV 0.0276 0.0926 0.0257 0.0310 0.0382 0.0524
Quantile regression 0.0270 0.0949 0.0304 0.0281 0.0508 0.0455

c) One year ahead change
BVAR 0.8184 0.4726 0.1300 0.1583 0.1948 0.2775
BVAR SV 0.5974 0.4265 0.1085 0.1538 0.1540 0.2735
BVAR TVSSV 0.5797 0.4212 0.1055 0.1538 0.1469 0.2747
Quantile regression 0.5303 0.4568 0.1488 0.1387 0.2450 0.2238

Notes: The Table reports the average Root Mean Squared Error (RMSE), Average Cumulative Ranked Probability
Score, and Quantile Scores for the 20th and 80th percentiles. In bold, the best model according to each forecast metric.

the average Cumulative Ranked Probability Scores (CRPS) to evaluate overall density forecast

accuracy, the average right and left tail CRPS (Gneiting et al. 2011) to evaluate density forecast

accuracy on the tails of the predictive distributions, and the average quantile scores at the 20th

and 80th percentiles to evaluate the accuracy for targeted percentiles.20

Our BVAR TVSSV model is almost always the best performer both for euro area and for

the US in terms of density forecast accuracy, as measured by the CRPS. When it is not the

best model, it nevertheless provides accurate and a competing forecasts to the other models.

Both quantile regression based model and our BVAR TVSSV model provide the most accurate

forecasts according to the RMSE for the euro area, suggesting the importance of accounting for

the non-linear effects of real activity and financial conditions on the unemployment. For the

US, BVAR TVSSV and BVAR SV provide most accurate point forecasts. For what concerns

density forecast accuracy, for both areas we find that our BVAR TVSSV model and the BVAR-

SV often provide the most accurate density forecasts out of sample, outperforming both the

simple BVAR and the quantile regression based model. This result confirms the importance of

modelling changes in the conditional variance in order to obtain accurate density forecasts of

the unemployment rate, consistently with Carriero et al. (2020a, 2020b). Regarding the density

forecast accuracy on the tails, the best performers are often the BVAR TVSSV for the left tail

and the quantile regression based model for the right tail according both to the tail weighted

CRPS and the quantile scores metrics.

20. The details about the forecasts metrics can be found in the Appendix A.5
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Table 5: Forecast accuracy January 1999 - September 2022 in the US

RMSE CRPS LTw-CRPS RTw-CRPS QS 20th QS 80th

a) One month ahead change
BVAR 0.7309 0.1683 0.0520 0.0551 0.0817 0.0868
BVAR SV 0.4176 0.1355 0.0337 0.0512 0.0461 0.0835
BVAR TVSSV 0.4128 0.1337 0.0333 0.0505 0.0489 0.0854
Quantile regression 0.4240 0.1432 0.0441 0.0468 0.0699 0.0735

b) One quarter ahead change
BVAR 3.4308 0.3669 0.1136 0.1210 0.1800 0.1930
BVAR SV 1.2565 0.2819 0.0684 0.1094 0.0965 0.1798
BVAR TVSSV 1.2572 0.2823 0.0687 0.1091 0.1010 0.1847
Quantile regression 1.3636 0.3004 0.0935 0.0988 0.1492 0.1559

c) One year ahead change
BVAR 14.8082 0.8996 0.2562 0.3111 0.3965 0.5239
BVAR SV 3.1297 0.7385 0.1674 0.2989 0.2268 0.5108
BVAR TVSSV 3.1475 0.7369 0.1670 0.2979 0.2233 0.5088
Quantile regression 3.5671 0.7723 0.2205 0.2694 0.3469 0.4360

Notes: The Table reports the average Root Mean Squared Error (RMSE), Average Cumulative Ranked Probability
Score, and Quantile Scores for the 20th and 80th percentiles. In bold, the best model according to each forecast metric.

As a caveat, the performance of our model is sometimes not as good as that of quantile

regression based methods on the right tail, while it is always outperforming quantile regression

on the left tail. This comes from the fact that the median estimate of the shape parameter

of the shocks to changes in the unemployment rate is estimated to be persistently positive for

all the sample in analysis. That is, the model at times efficiently assigns low probability to

large decreases in the unemployment rate while assigning sometimes too high probability to

large increases. This comes from the flexible but parametric nature of our model which allows

the shape of the distribution of shocks to vary over time according to a persistent stochastic

process. This feature allows for the model structure to be easily augmented to extend the analysis

towards a multivariate setting, which we will explore in the next section where we assess the

risk of stagflation.

5 Stagflation risk

The recent sudden increase in inflation rates in both the euro area and the United States gave

rise to a discussion on whether these economies would enter into a stagflation period. The term

was initially coined by the British politician Iain Macleod in 1965, and was later used to assess

the macroeconomic situation in the United States in the early 1970s. Stagflation is loosely

defined as periods of low or negative output growth, an increasing or persistently high level of

unemployment, and an inflation rate that is high by historical standards (Ha et al. (2022)). We
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exploit the multivariate nature of our model to study stagflation risk. In particular we analyze

how stagflation risk has changed over time both in the euro area and in the US, by disentangling

the risk deriving from an increasing probability of large upswings in the unemployment rate and

the risk deriving from an increasing probability of large inflation rates.

To do so, we extend our model to include monthly data on inflation rates. For the euro area

we use the Harmonized Index of Consumer Prices (HICP) for all items and for the United States

we use the Consumer Price Index (CPI) for all items.21 We slightly adjust our BVAR TVSSV to

account for the year-on-year changes in the unemployment rate and the yearly inflation rate, πt.

We denote yt = [PMIt,∆
12Ut, πt,CISSt] for the euro area and yt = [CFNAIt,∆

12Ut, πt,NFCIt]

for the United States, where ∆hUt = Ut −Ut−h. The risk factors are left unaltered compared to

the model in Section 3, but are now allowed to affect the shape of the shocks both to changes

in the unemployment rate and to inflation,

λ∆12U,t = ϕ1λ∆12U,t−1 + ϕ2xt−1 + ξ∆12U,t ξ∆12U,t ∼ N (0, σ2
ξ,∆12U )

λπ,t = ρ1λπ,t−1 + ρ2xt−1 + ξπ,t ξπ,t ∼ N (0, σ2
ξ,π)

where xt−1 is the vector of lagged real activity and financial risk factors. This specification

is in line with López-Salido et al. (2020), who document a nonlinear relation between financial

conditions and inflation using quantile regression and a Markov switching model.

We define stagflation risk as the joint probability that the yearly changes in the unemploy-

ment rate and inflation rates are above their given thresholds at any given point in time. In this

way, we consider as stagflation periods those with a large increase in the unemployment rate

over a year and with high inflation levels. These thresholds are identified by making use of the

information in the unconditional distribution of yearly changes in the unemployment rate and

inflation rates for both the euro area and the United States over time. We use the wider sample

for the United States to calibrate our threshold for inflation in the two areas with data from

1984 onwards. 22 The 80th percentile of the distribution of US inflation rates stands at 4%.

For the yearly changes in the unemployment rate, we set the threshold at 0.5 percentage points.

21. The series for the HICP can be obtained from the ECB Statistical Data Warehouse and the series for the
CPI is obtained from the FRED-MD database with the code CPIAUSL.
22. The correlation between the inflation rates in the euro area and in the US stands at above 85% between

January 1999 and September 2022, and inflation rates moving in a broadly synchronised way for both areas. Hence,
we use the historical distribution of inflation rates in the US as an approximation for the historical distribution
of inflation rates in the euro area.
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Figure 19: One quarter ahead probability of stagflation in the euro area

Notes: The figure shows the estimated one quarter ahead probability of the change in the year-on-year unemployment rate being greater than 0.5pp
(in red), the year-on-year inflation rate being greater than 4% (in blue) and the probability of both events occurring (in black) in the euro area.
The shadow bands are for the EACN recessions periods.

This corresponds to the 80th percentile for the euro area since 1999 and to the 83rd percentile

for the US since 1984.

We assess the risks of stagflation in Figure 19 for the euro area. In particular, we show the

estimated one quarter ahead joint probabilities on yearly changes in the unemployment rate

exceeding the 0.5 percentage points and inflation surpassing 4%. We decompose the stagflation

risk by displaying separately the labour at risk channel (in red) and the inflation risk channel

(in blue).23 The models are estimated with data available up to September 2022, implying that

we assess the risk of stagflation up to December 2022.

There was only a limited risk of stagflation in the euro area since 2007. The probability of

stagflation reached around 10% in December 2008 during the Global Financial crisis, first with

an increase in inflation risk and later with a strong increase in the amount of labour at risk.

During the Sovereign Debt crisis there was a high degree of labour at risk but no inflation risk.

The risk of stagflation decreased and remained virtually null until the second half of 2022, when

it started increasing driven by the persistently high levels of inflation and a gradually increasing

23. We compute the joint probability of two variables exceeding a given threshold at a given horizon h by
computing the ratio between the number of draws in which the two variables exceed the threshold over the total
number of draws.
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Figure 20: Contour plot for one quarter ahead joint predictive densities for πyoy and ∆Uyoy in
the euro area: December 2008 vs December 2022

Notes: The figure shows the contours from one quarter ahead bivariate predictive density for the year-on-year change in the unemployment rate
and year-on-year inflation rate for December 2008 and September 2023 in the euro area. The contours identify 20% 50%, 80% and 90% of the
bivariate predictive density. The area inside the red-dotted rectangle signals year-on-year inflation greater than 4% and changes in the year-on-year
unemployment rate greater than 0.5pp.

degree of labour at risk in the economy. Figure 20 provides further information on the risk

of stagflation by contrasting the contour plots for the 20th, 50th, 80th and 90th percentiles of

the bivariate predictive densities for inflation and yearly changes in the unemployment rate in

the euro area between December 2008, using data up to September 2008, and December 2022

using data up to September 2022. While the stagflation risk reached similar magnitudes in

both periods, it was closer to both borders of the stagflation area in 2008, with a more limited

inflation risk and a slightly higher labour at risk. By contrast, there is a higher uncertainty

in the estimate of stagflation risk in 2022 as the volatility of the bivariate predictive density is

wider.

In Figure 21 we show the estimated one quarter ahead joint probabilities of yearly changes in

the unemployment rate exceeding the 0.5 percentage points and inflation surpassing 4% for the

US. The period considered runs from from January 1980 up to December 2022. In the early 80s,

during the recession following the Oil Crisis both high predicted probabilities of large increases

in the unemployment rate and in the inflation rate contributed to high stagflation risk. Instead,

after July 1984 until 1990, stagflation risk has been muted in the US. As a matter of fact, while
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Figure 21: One quarter ahead probability of stagflation in the US

Notes: The figure shows the estimated one quarter ahead probability of the change in the year-on-year unemployment rate being greater than 0.5pp
(in red), the year-on-year inflation rate being greater than 4% (in blue) and the probability of both events occurring (in black) in the US. The
shadow bands are for the NBER recessions periods.

inflation risk remained relatively high until January 1985 increasing a second time in the late 80s,

the estimated probability of large increases in the unemployment rate remained very low in the

entire period 1984-1990. As the recession started in July 1990, stagflation probabilities increased

and reached almost 85 % in March 1990. At the end of the recession, a decrease in the inflation

risk that preceded a decrease in the estimated probability of large increases in the unemployment

rate induced a decrease in the stagflation risk. Afterwards, stagflation risk remained muted for

almost 19 years, with large predicted increases in the unemployment rate during the dot-com

bubble not followed by expected large inflation rates. Stagflation risk reemerged at the burst

of the financial crisis. As a matter of fact, our estimated measure for stagflation risk increased

above 90% in the second half of 2008 and around 40% in 2010. In 2021, with the increase in

energy prices, the probability of stagflation risk increased in the US, but remained contained

and decreased in 2022 due to the strong performance of the US labour market, which points in

our model to a lower risk of unemployment with the inflation risk remaining instead elevated.

A comparison between the estimated stagflation risk for October 2008, using data up to July

2008, and December 2022 using data up to September 2022 is showcased in Figure 22. It unveils

that the current economic juncture is considerably more uncertain than that in 2008, similarly
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Figure 22: Contour plot for one quarter ahead joint predictive densities for πyoy and ∆Uyoy in
the United States: October 2008 vs December 2022

Notes: The figure shows the contours from one quarter ahead bivariate predictive density for the year-on-year change in the unemployment rate and
year-on-year inflation rate for July 2009 and September 2023 in the US. The contours identify 20% 50%, 80% and 90% of the bivariate predictive
density. The area inside the red-dotted rectangle signals year-on-year inflation greater than 4% and changes in the year-on-year unemployment rate
greater than 0.5pp.

to what happened for the euro area. However, and in contrast to what was observed for the

euro area, this uncertainty seems to be more prevalent in the predicted degree of labour at risk.

6 Conclusion

We develop a BVAR model with time varying skewness and stochastic volatility that caters for

the fact that the unemployment rate changes are asymmetric over the business cycles, declining

slowly and on average during economic expansions and rising suddenly and violently during

downturns. The model is applied to both the euro area and the United States to capture

and quantify the degree of labour-at-risk in the economy, providing policymakers with timely

information about possible risks affecting the labour market and showing how much can the

unemployment rate increase at any given moment in time if the economy is hit by a persistent

series of negative shocks. Movements in the average response of the unemployment rate and

in the asymmetry of labour market shocks depend both on the developments in real activity

or on the tightening of financial conditions. Further, we use our BVAR to track stagflation

risk in the economy, defined as the joint event of both a high degree of labour at risk and a
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high inflation risk. The analysis of joint risks could prove important for the assessment of the

unemployment-inflation trade-off and of the scope of monetary policy. Our work provides also

the foundation for embedding asymmetric shocks as part of the toolkit used for the estimation

of medium-scale DSGE models.
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Brownlees, Christian, and André B.M. Souza. 2021. “Backtesting global Growth-at-Risk.” Jour-

nal of Monetary Economics 118:312–330.

Carriero, Andrea, Todd E Clark, and Massimiliano Marcellino. 2019. “Large Bayesian vector au-

toregressions with stochastic volatility and non-conjugate priors.” Journal of Econometrics

212 (1): 137–154.

. 2020a. Capturing Macroeconomic Tail Risks with Bayesian Vector Autoregressions.

Working Papers 20-02R. Federal Reserve Bank of Cleveland, January.

140



Carriero, Andrea, Todd E. Clark, and Massimiliano Marcellino. 2020b. Nowcasting Tail Risks to

Economic Activity with Many Indicators. Working Papers 20-13R2. Federal Reserve Bank

of Cleveland, May.

Chavleishvili, Sulkhan, and Simone Manganelli. 2019. Forecasting and stress testing with quantile

vector autoregression. Working Paper Series 2330. European Central Bank.

Cogley, Timothy, and Thomas J. Sargent. 2005. “Drifts and volatilities: monetary policies and

outcomes in the post WWII US.” Monetary Policy and Learning, Review of Economic

Dynamics 8 (2): 262–302.

Delle Monache, Davide, Andrea De Polis, and Ivan Petrella. 2021. Modeling and forecasting

macroeconomic downside risk. Temi di discussione (Economic working papers) 1324. Bank

of Italy, Economic Research and International Relations Area, March.

DeLong, Brad, and Larry Summers. 1986. “Are Business Cycles Symmetrical?” In American

Business Cycle: Continuity and Change, edited by Robert Gordon, 166–79. Chicago: Uni-

versity of Chigago Press.

Diamond, Peter A. 1982. “Aggregate Demand Management in Search Equilibrium.” Journal of

Political Economy 90 (5): 881–894.

Falk, B. 1986. “Further Evidence on the Asymmetric Behaviour of Economic Time Series over

the Business Cycle.” Journal of Political Economy 94:1096–1109.

Ferraro, Domenico. 2018. “The asymmetric cyclical behavior of the U.S. labor market.” Review

of Economic Dynamics 30:145–162.

Ferraro, Domenico, and Giuseppe Fiori. 2022. “Search Frictions, Labor Supply, and the Asym-

metric Business Cycle.” Board of Governors of the Federal Reserve System, International

Finance Discussion Papers no. 1355.
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A Appendix

A.1 Bai et al. (2005) test for skewness

Under the null hypothesis of no asymmetry Bai et al. (2005) test statistic is:

π̂3 =

√
T µ̂3

s(µ̂3)

d−→ N (0, 1) (8)

where µ̂3 is the sample estimate of the third central moment of the distribution and s(µ̂3) =

(α̂2Γ̂22α̂
′
2)

1
2 α̂2 = [1,−3σ̂2]. σ̂2 is a consistent estimate of the variance σ2 and Γ̂22 is a consistent

estimate of the 2 × 2 sub-matrix of Γ = limT→∞ T E[Z̄Z̄] where Z̄ is the sample mean of Zt,

defined as the deviation of the empirical centered first three moments from the Gaussian’s one,

namely:

Zt =




(Xt − µ)3 − µ3

(Xt − µ)

(Xt − µ)2 − σ2




The long run variance is estimated following Newey et al. (1987).

A.2 TVSSV-VAR with Skew normal shocks

The TVSSV VAR(p) model with Skew Normal shocks is given by:

yt = Π0 +Π1yt−1 + . . .+Πpyt−p +A−1H0.5
t εt (9)

εit ∼ Skew normal(ζit, ωit, λit)

log(hi,t) = log(hi,t−1) + ηi,t ηi,t ∼ N (0, σ2
i,η) (10)

with i = {PMI,∆U,CISS} for the euro area and i = {CFNAI,∆U,NFCI} for the US.

λ∆U,t = ϕ1λ∆U,t−1 + ϕ2xt−1 + ξ∆U,t ξ∆U,t ∼ N (0, σ2
ξ,∆U ) (11)

λi,t = ϕ1λi,t−1 + ξi,t ξit ∼ N (0, σ2
ξ,i) (12)

with i = {PMI,CISS} for the euro area and i = {CFNAI,NFCI} for the US. The Skew

normal (Azzalini 1986) distribution is:
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p(εt|ζ, ω2, λ) =
2

ω
ϕ

(
εt − ζ

ω

)
Φ

(
λ

(
εt − ζ

ω

))

where ϕ(.) and Φ(.) are respectively the probability density function and the cumulative density

function of the Standard Normal. The mean and the variance of εt are given by E[εt] = ζ+ωδ
√

2
π

and var(εt) = ω2
(
1− 2δ2

π

)
. Assuming E[εt] = 0 and var(εt) = 1 implies the following con-

straints on the location and scale parameters ζ = −ωδ
√

2
π and ω2 =

(
1− 2δ2

π

)−1
.

To estimate the TVSSV model we exploit the fact that εt ∼ Skew − Normal(ζ, ω2, λ) has

the following stochastic representation:

εt = ζ + δωvt +
√

(1− δ2)ωzt (13)

where vt
i.i.d∼ Truncated normal[0,∞)(0, 1) zt

i.i.d∼ N (0, 1) and δ = λ√
1+λ2

, with −1 < δ < 1.

Using the stochastic representation in equation (13) for the shocks, we can write the VAR

system as:

yt = Π0 +Π1yt−1 + . . .+Πpyt−p +A−1H0.5
t (ζt +Ωt∆tvt +Ωt(In −∆2

t)
0.5zt) (14)

where:

ζt = [ζ1,t, . . . , ζN,t]
′

Ωt = diag(ω1t . . . ωNt)

∆t = diag(δ1t . . . δNt)

vt = [v1,t, . . . , vN,t]
′ vi,t ∼ TruncatedNormal(0,∞)(0, 1)

zt = [z1,t, . . . , zN,t]
′ zit ∼ N(0, 1).

This representation implies that conditionally on the mixing variables in vt, on the volatilities

stored in the matrix Ht and on the elements in the diagonal matrix ∆t, which are one to one

map of the shape parameters (since they are defined as δit =
λit√
1+λ2

it

), the likelihood is Gaussian.

This allows to resuscitate and adapt many of the closed form formulas for the full conditional

posterior distributions for the parameters of the model from the standard Gaussian stochastic

volatility VAR model (Carriero et al. 2019). As a matter of fact, the diagonal elements in

the vector ζt and in the diagonal matrix Ωt are neither parameters nor latent states to be

estimated. They satisfy the constraints (2) and (3) so that the parameterization of the shocks is
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correct. The diagonal elements in ∆t satisfy δit =
λit√
1+λ2

it

. The elements in the diagonal matrix

Ht = diag(h1t, . . . , h1N ) and the shape parameters λit are instead latent states satisfying the

transition equations (10) (11) and (12). For further details on the estimation of the model see

Renzetti (2023).

A.3 Priors of the TVSSV-VAR

Table 6 presents the details on the priors for the parameters of the time varying skewness

stochastic volatility model:

Table 6: Priors for the parameters of the TVSSV-VAR model

Parameter Prior

vec(Π) N (vec(µΠ),ωΠ)

aij N (0, 100)
ϕi,1 N (1, θ1)
ϕ2 N (µϕ2 ,Σϕ2)

log(hi0) N (hi0, 100)
λi0 N (0, 10)
σ2
i,ξ InverseGamma(5, 0.16)

σ2
i,η InverseGamma(5, 0.16)

Notes: The table presents the prior distribution of the parameters of the TVSSV-VAR model.

where ωΠ has the Minnesota type (Litterman 1986) prior:

vij,l =





θ1
lθ4

if i = j

σ2
i θ1θ2
σ2
j l

θ4
if i ̸= j

(15)

The elements of vec(µΠ) are equal zero for the coefficients on the cross-equation lags and equal

to one for the coefficients of the own lags. As for the hyper-parameters, we set θ1 = 0.04 θ2 =

0.25 θ3 = 100 θ4 = 2. We estimate σ2
i from univariate AR(12) regressions. For the initial

state of the volatility, the prior mean hi0 where hi,0 is the estimated variance from an AR(4)

model to each series using as sample the first 40 observations. For the Normal prior for the

coefficients on the risk factors in the state equation for the shape parameters of the shocks

to changes in the unemployment rate ϕ2 we assume a mean µϕ2 = [0, . . . , 0]′ and variance

covariance matrix Σϕ2 = diag
(

θ1θ5
σ2
1 l

θ4
, . . . θ1θ5

σ2
J l

θ4

)
with θ5 = 0.1.
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A.4 Competing models in the forecasting exercise:

In Section 4.2 we compare the forecasts from the time varying skewness stochastic volatility

VAR model to the forecasts from:

• A Bayesian VAR with Independent Normal Inverse-Wishart prior.

• A Bayesian VAR with stochastic volatility.

• The two step approach based on quantile regression and Skew-t interpolation by (Adrian

et al. 2019).

A.4.1 Bayesian VAR with Independent Normal Inverse-Wishart prior

The Bayesian VAR with Independent Normal Inverse-Wishart prior is given by:

Y = XΠ+U U ∼ MVN(0,Σ, IT ) (16)

where Y is T ×N , X is T ×k with k = Np+1, Π is k×n , U is T ×N and MVN stands for the

matricvariate normal. The prior for the autoregressive coefficients and the variance covariance

matrix is:

vec(Π) ∼ N (vec(µΠ),ΩΠ) (17)

Σ ∼ IW(S0, v0) (18)

vec(Π) and ΩΠ have the same structure in A.3, and we assume S0 = (T − 2)diag(σ2
1. . . . , σ

2
N )

where we estimate σ2
i from univariate AR(12) regressions v0 = N + 2.

A.4.2 Bayesian VAR with stochastic volatility

The BVAR with SV is given by:

yt = Π0 +Π1yt−1 + . . .+Πpyt−p +A−1H0.5
t εt (19)

εit ∼ N (0, 1)

where A−1 is a lower triangular matrix with ones on the main diagonal, Ht = diag(h1,t, . . . , hi,t)

is the diagonal matrix collecting the volatilities of the shocks and εt is a column vector collecting

147



the Normal shocks. The log-volatilities evolve according to:

log(hi,t) = log(hi,t−1) + ηi,t ηi,t ∼ N (0, σ2
i,η) (20)

with i = {PMI,∆U,CISS} for the euro area and i = {CFNAI,∆U,NFCI}. As for the prior

for the free elements in A−1 and vec(Π) and ΩΠ, have the same structure in A.3 as well we

assume the same Inverse Gamma prior for σ2
i,η.

A.4.3 Quantile regression and Skew-t interpolation

Following Adrian et al. (2019) we adopt a two-step procedure to estimate the entire predictive

distribution of changes in the unemployment rate as a function of real and financial risk factors.

In the first step, we use predictive quantile regression to estimate the quantiles of the conditional

distribution, namely:

Q̂∆Ut+h|It(τ) = β̂τ
1∆Ut + β̂τ

2realriskt + β̂τ
3financialriskt

for τ = 0.05, . . . , 0.95 realriskt = PMI and financialriskt = CISS for the euro area and

realriskt = CFNAI and financialriskt = NFCI for the US. Then, in the second step, the

estimated quantiles we interpolate using a flexible Skew-t distribution, so as to obtain a complete

predictive density for the dependent variable.

A.5 Forecasts metrics

Defining y the realization of the series to predict, f(.) the density forecast and F (.) corresponding

the cumulative distribution, CRPS are defined as:

CRPS(f, y) =

∫ ∞

−∞
PS(F (z),1{y ≤ z})dz =

∫ 1

0
QSα(F

−1(α), y)dα (21)

where

PS(F (z),1{y ≤ z}) = (F (z)− 1{y ≤ z})2 (22)

is the Brier probability score and

QSα(F
−1(α), y) = 2(1{y ≤ F−1(α)} − α)(F−1(α)− y) (23)
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is the Quantile Score. The Quantile Weighted CRPS are computed as:

twCRPS =

∫ ∞

−∞
PS(F (z),1{y ≤ z})2w(z)dz =

∫ 1

0
QSα(F

−1(α), y)v(α)dα (24)

where v(α) = (1−α)2 assigns higher weights to the lower quantiles of the distribution function.
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A.6 Additional figures

Figure 23: Residuals from autoregressive fit to changes in the unemployment rate in the euro
area distinguishing recessions form normal times

Notes: The figure shows the estimated distribution of the residuals of an autoregressive model for the changes in the unemployment rate in the euro
area for recession periods, identified by the EABCN and for normal times.

Figure 24: Residuals from autoregressive fit to changes in the unemployment rate in the US
distinguishing recessions form normal times

Notes: The figure shows the estimated distribution of the residuals of an autoregressive model for the changes in the unemployment rate in the US
for recession periods, identified by the NBER and for normal times.
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Figure 25: Squared and cubed residuals from autoregressive fit to changes in the unemployment
rate in the euro area

Notes: The figure shows the time series of the squared and cubed residuals from autoregressive model to changes in the unemployment rate in the
euro area. The shadow bands indicate the EACN recessions periods.

Figure 26: Residuals from autoregressive fit to changes in the unemployment rate in the US
distinguishing recessions form normal times

Notes: The figure shows the time series of the squared and cubed residuals from autoregressive model to changes in the unemployment rate in the
US. The shadow bands indicate the NBER recessions periods.
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Figure 27: Estimated volatility and shape parameter of shocks to changes in the unemployment
rate for the US pre-covid

Notes: The figure shows the time series of the estimated volatilities and shape parameters of the shocks to changes in thew unemployment rate in
the trivariate TVSSV VAR model for the US. The shadow bands are for the NBER recessions periods.

Figure 28: Contemporaneous contributions to the skewness parameter of the labour market
shocks over time in the US pre-covid

Notes: The bar chart presents the contribution to the skewness parameter of the real activity (CFNAI) and the financial (NFCI)
risk factors over time in the US.
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Figure 29: Standard normal and Skew normal distributions

Notes: The figure shows the Standard normal distribution together with the Skew normal distribution with shape parameter λ = 4 re-parameterized
to have zero mean and unit variance.

A.7 Additional tables

Table 7: Percentiles of Ut+h − Ut

Percentiles
Euro Area United States

h = 1 h = 3 h = 12 h = 1 h = 3 h = 12

10% -0.11 -0.28 -0.94 -0.23 -0.43 -1.12

15% -0.09 -0.25 -0.89 -0.18 -0.33 -0.91

20% -0.08 -0.23 -0.84 -0.15 -0.28 -0.81

25% -0.07 -0.20 -0.80 -0.12 -0.24 -0.69

50% -0.03 -0.09 -0.36 -0.01 -0.06 -0.29

75% 0.03 0.06 0.34 0.10 0.13 0.38

80% 0.05 0.13 0.51 0.13 0.20 0.83

85% 0.07 0.18 0.70 0.17 0.33 1.27

Notes: The table shows the percentiles of the distribution of the month on month, quarter on quarter and year on year
changes in the unemployment rate for the euro area and the United States.

153


