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Abstract 

Human mobility, a vital sign of health, involves intricate coordination among the physiological 

systems. Any system disruptions likely result in reduced mobility, in turn leading to adverse clinical 

outcomes, such as the loss of independence and mortality. The consequences of the loss of mobility 

extend beyond personal well-being to societal and healthcare implications, calling for collaborative 

efforts to develop innovative solutions. Novel technologies such as wearable sensors and 

computational simulations have revolutionised the understanding of human mobility, offering 

unprecedented insights into human biomechanics. The availability of miniaturised wearable sensors, 

and advanced data processing algorithms, enable the monitoring of real-world mobility over long 

periods of time and to extract various parameters of clinical interest (e.g., cadence, gait asymmetry), 

also in pathological populations exhibiting atypical or slow gait. Concurrently, advancements in the 

field of in silico medicine have shifted the paradigm in the analysis of human biomechanics. 

Computer models, especially musculoskeletal dynamics models, can predict the human body’s 

behaviour, offering various potential applications in clinical settings, such as personalised treatment 

or surgical plans. Understanding the limitations and potential errors of these technologies is crucial. 

Moreover, before any such technologies can be marketed or used in the clinics, their credibility must 

be established. This process requires rigorous testing procedures (against established gold standards) 

and remains complex, time-consuming, and occasionally expensive and ambiguous. In this context, 

this PhD thesis aimed to investigate and (eventually) perform the credibility assessment of two 

models: analytics software for wearable sensor data and (neuro)musculoskeletal dynamics models for 

identifying the primary cause for the loss of muscle force (i.e., dynapenia), mirroring the two distinct 

projects (i.e., the Mobilise-D and the ForceLoss projects, respectively). Both projects focused on 

conditions that negatively impact human movement (Parkinson’s disease, multiple sclerosis, chronic 

obstructive pulmonary disease and proximal femur fracture in Mobilise-D, and the loss of muscle 

force in ForceLoss), and shared the need for the identification of a process to perform the credibility 

assessment for the respective solutions, intended for drug development and clinical decision-making. 

The Mobilise-D project, EU-funded, focused on the use of mobility-related parameters extracted by 

analytics software from continuous wearable sensor data as a new mobility biomarker for drug 

development. To deeply understand the regulatory processes needed for the qualification of this new 

methodology, engagements with the regulatory authorities (i.e., the European Medicine Agency – 

EMA – and the Food and Drug Administration – FDA) have occurred. Positive and constructive 

feedback were received in response to two requests for qualification advice to the EMA on the use of 

real-world mobility to generate evidence for inclusion in the marketing authorisation of new 
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medicines and from an interaction with the FDA CDRH Division through which we sought advice 

on the process to achieve the regulatory qualification (certification) of the Mobilise-D analytics 

software as a Software as Medical Device. On the other hand, the ForceLoss project delved into the 

use of subject-specific musculoskeletal models to support the differential diagnosis of dynapenia. A 

new framework was designed by combining both experimental measurements and computer models 

and simulations to enable the identification of the primary causes of dynapenia. Before applying the 

pipeline on twenty osteoarthritic patients candidates for primary total knee arthroplasty surgery, the 

framework was tested on a control group of healthy subjects. 

In addition to the credibility assessment of a new methodology in a shared clinical context related to 

the loss of mobility, the overarching goal was to lower the barriers by sharing the acquired and 

processed experimental data as well as the insights derived from engagements with regulatory 

authorities. 
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Thesis overview 

Hereafter, the structure of this thesis will be outlined, and a broad overview of the chapters will be 

provided. In brief, over the three years of my PhD, I have been involved in two projects: Mobilise-D 

and ForceLoss, funded by the European Union and the Italian Ministry of Health, respectively. 

Despite an apparently different focus, the two projects share the clinical context, i.e., human 

movement, and the fact that the solutions developed within required a credibility assessment. In fact, 

both technologies are intended to be used as a tool for clinical decision-making. For the Mobilise-D 

project, the new methodology consists of the analytics software used to extract parameters (e.g., real-

world walking speed) from raw data recorded continuously for seven days by wearable sensors. In 

the ForceLoss project, the focus is on musculoskeletal models. 

The thesis is structured into five chapters as follows. 

Chapter 1 – Introduction 

A general introduction to human mobility and the interconnection of different physiological human 

systems is provided. Current and innovative solutions to quantify mobility, giving a brief overview 

of their history, are then explored. Finally, the concept of credibility (of a new methodology) is 

introduced. 

Chapter 2 – Credibility of mobility monitoring software 

The chapter focuses on the Mobilise-D project and the work carried out as part of the regulatory work 

package (WP5). Following a brief description of the relevant regulatory pathways, both with the 

European and the United States regulatory agencies, the focus will move to the regulatory science 

and the activities required and undertaken to assess the credibility of the Mobilise-D analytics 

software. In particular, two different approaches to demonstrate the credibility of such new 

technology, which come from different perspectives, will be detailed. 

Chapter 3 – Differential diagnosis of dynapenia by means of subject-specific musculoskeletal models 

Firstly, the ForceLoss project (context, aims, hypothesis and the experimental protocol) is explained. 

Then, a general description of all the methodologies (i.e., magnetic resonance images, dynamometry 

test, neuromusculoskeletal models, etc…) required for the study is provided. 

Chapter 4 – Forceloss: a simulation framework for the differential diagnosis of dynapenia by means 

of subject-specific musculoskeletal model 
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This chapter provides the methodology of the ForceLoss project. A first validation of the ForceLoss 

framework, on a cohort of healthy females, is provided, while the application to the patients cohort is 

just introduced and explored in terms of feasibility and expectations since the enrolment of patients, 

elected for total knee arthroplasty, is still ongoing. 

Chapter 5 – General discussion and conclusion 

In this final chapter, a general discussion is provided, followed by closing remarks and a final 

reflection on the main topic embracing both the Mobilise-D and ForceLoss projects. 
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Chapter 1 – INTRODUCTION 

The first chapter briefly explains the clinical context of this thesis: mobility intended as the capacity 

to move around and as a result of the intricate interactions between multiple physiological systems. 

After a general introduction, the focus will be on wearable sensors and musculoskeletal models, that 

represent the two most innovative solutions to monitor and study human movement. The second part 

of this chapter revolves around the concept of credibility, meant as the fundamental procedure for 

gaining trust in a new methodology, concentrating on the credibility assessment of a new medical 

product and the certification process for the different types of software employed in the medical field. 

The intention is to provide a basic overview of the regulatory pathways and sufficient details to 

understand the following chapters. Finally, the aims of the thesis are presented. 

1.1. The Human Movement as an interplay of physiological systems 

Mobility, i.e., the ability to move oneself around freely and easily [1], is a complex and dynamic 

interplay of multiple organ systems within the human body. It goes beyond the simple act of walking 

and includes a wide spectrum of movements essential for activities of daily living (ADLs), functional 

independence, and overall well-being. As the sixth vital sign [2], mobility represents an important 

marker of health. Mobility impairment is associated to numerous adverse events [3], and an 

individual’s ability to move is strongly linked to his health status and quality of life [4,5]. Mobility 

has become even more of a concern now that the world’s population is rapidly ageing. In the last 

decades, the average life expectancy increased of 20 years, and according to the World Health 

Organization, the number of people older than 60 years is expected to double by 2050 [6]. 

Mobility is the result of the seamless orchestration of various physiological systems, including the 

neuromuscular, musculoskeletal, cardiovascular, respiratory, and sensory systems [7]. The basis for 

human movement lies in the neuromuscular system, which governs the initiation, coordination, and 

control of movements. The central nervous system (CNS) plays a key role in the control of mobility 

by exercising its influence through various cognitive, sensory, autonomic, and motor networks [8]. 

Signals from the brain instruct muscles to contract and relax in a synchronised manner, facilitating 

precise and coordinated movements. The musculoskeletal system, consisting of bones, muscles, 

joints, and connective tissues, provides the structural framework for mobility. Bones offer support 

and protection, muscles generate the force required for movement, while healthy joints enable 

coordinated motion [9]. The cardiovascular system plays a vital role in mobility by ensuring adequate 

oxygen delivery to various tissues and organs [10]. The respiratory system, encompassing the lungs 

and airways, is integral to mobility. Efficient respiratory function menages the exchange of oxygen 
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and carbon dioxide, ensuring an ample oxygen supply to muscles and thus allowing activities of 

different intensities [11]. Finally, sensory systems, including vision, proprioception, and vestibular 

function, contribute crucial information for maintaining balance, coordinating movements, and 

navigating the surrounding environment [7]. Vision aids in spatial awareness and proprioception 

provides a sense of body position, and the vestibular system contributes to equilibrium [12]. Due to 

the intrinsic interplay of these physiological systems, a disruption of one or more systems directly 

and adversely affects mobility. Dysfunction in the neuromuscular system can impair mobility, leading 

to conditions such as muscle weakness [13], postural instability [14], or coordination deficits [15]. 

Moreover, neuromuscular disorders affect the interaction between the nervous system and muscles, 

impacting the ability to walk, maintain balance, or perform ADLs [13]. A few examples of 

movement-related disorders due to neuromuscular dysfunction are Parkinson’s disease, multiple 

sclerosis, Huntington’s disease, muscular dystrophy and poliomyelitis. Musculoskeletal disorders, 

like osteoporosis or osteoarthritis, as well as other conditions such as injuries or fractures compromise 

the structural integrity and function of this system, directly resulting in reduced and impaired mobility 

[16–18]. Sarcopenia [19], the loss of skeletal muscle mass with advancing age, and the subsequent 

loss of muscle strength referred to as dynapenia [20] highly affect mobility [21,22]. Cardiovascular 

diseases, such as congestive heart failure or coronary artery disease, can compromise the heart’s 

ability to supply sufficient blood, adversely impacting mobility. Poor circulation can lead to fatigue, 

weakness, and impaired mobility [23,24]. Furthermore, decreased endurance, reduced mobility, and 

difficulties in maintaining physical activities can be caused by high blood pressure or hypertension, 

as well as by peripheral artery disease and heart rhythm disorders, such as arrhythmias [25]. 

Respiratory conditions, such as chronic obstructive pulmonary disease or asthma, can limit mobility 

by causing shortness of breath and reducing overall endurance and balance [26,27]. Impairments in 

sensory function can lead to difficulties in spatial orientation, affecting the precision and safety of 

movements [28,29]. Individual’s mobility capacity is even more undermined by the combination of 

systems disruptions. An evident example is the frailty syndrome, one of the most prevalent and 

significant geriatric syndromes, characterised by age-related declines in physiological functionality, 

involving multiple organ systems and leading to adverse and unfavourable health outcomes (e.g., 

higher risk of falls) [30–32]. A reduced and impaired mobility is one of the main negative 

consequence affecting a frail person, together with weakness, slowness, low level of physical activity, 

poor endurance and weight loss [31]. Even if the aetiology of frailty is unclear, it has been observed 

that there might be two possible pathways for the onset of frailty: one as a result of physiological 

changes associated with ageing that are not related to specific diseases (such as ageing-related 

sarcopenia); the other as a conclusive common pathway linked to severe disease or comorbidity, as 
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indicated by elevated rates of poor health status and a more extensive range of subclinical 

physiological changes observed in frail individuals. 

To sum up, as people get older, they are more likely to become frail and to develop chronic disease, 

musculoskeletal disorders and pathological health conditions (i.e., osteoarthritis, hip fracture, or 

sarcopenia) that directly affect their ability to move around [1]. Regardless of the underlying health 

condition, several studies have proven that the loss of mobility or an abnormal gait (e.g., a slow 

walking speed) are associated with higher fall risk and hospitalisation, greater morbidity and 

mortality, cognitive decline, and loss of independence [33–38]. Moreover, the consequences of 

mobility loss, associated with the population ageing, have a great impact not only on the personal life 

of people, leading to a reduction of the quality of life, but also on the society and the healthcare 

system. More frequent hospitalisations, higher need assistance and long-term care increase the 

healthcare costs [3]. Recently, the concept of healthy ageing has been introduced and has become of 

primary importance. Healthy ageing does not mean that people get older free of disease, but it is about 

creating the environments and the structures to enable well-being and independence in older age. 

Since the consequences of the loss of mobility, even more so in an older population, are a current and 

urgent issue, the cooperation of industries, researchers and individuals is required to develop and 

implement innovative and feasible solutions. 

1.2. Mobility quantification: previous, current and innovative solutions 

When considering the quantification of mobility, there is often an inclination to focus solely on 

laboratory tests; however, a comprehensive approach to mobility quantification should encompass 

various facets, including the perception of movement, to provide a holistic understanding. Recently, 

three different constructs to describe/characterise mobility have been introduced [39]: 

- Mobility capacity. It refers to the ability of an individual to move and the intensity that a 

person uses while performing an assigned motor task. 

- Mobility perception. It captures the patients’ subjective experience of their mobility through 

patient-reported outcome measures or clinical-assigned scores. 

- Mobility performance. It refers to the intensity, quality and extension of patients’ mobility as 

observed in the real-world environment and monitored for multiple days or, in general, for a 

sufficiently long period of time to be considered representative of daily life. 

Mobility capacity 

The quantification of mobility capacity, aimed at studying and identifying its principles and its 

biomechanical causes and effects, has always sparked interest. The current gold standard for gait 
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analysis is the stereophotogrammetric system, which allows precise three-dimensional measurements 

to be obtained from stereoscopic images. Stereophotogrammetry has roots in the pioneering 

experiments of Eadweard Muybridge in the late 19th century [40]. Muybridge’s setup consisted of 

24 cameras placed in line at a constant distance from one to another to produce a detailed and 

chronological record of the subjects’ and animals’ motion, posing the basis for photogrammetry 

methodologies [41]. Muybridge was the first to demonstrate that all four of a horse’s hooves are off 

the ground simultaneously during a gallop (Figure 1.1.A). Another of Muybridge’s noteworthy works 

is The Woman Walking Downstairs, which is considered one of the earliest attempts to objectively 

study the biomechanics of the human body during everyday tasks (Figure 1.1.B).  

 

Few years later, in 1882, Étienne-Jules Marey, a French scientist and photographer, invented the 

chronophotographic gun, a modified shotgun capable of capturing 12 consecutive frames per second 

on a photosensitive disc. His most known works focused on animals, such as a study on how falling 

cats land on their feet (Figure 1.2.A), and secondary on the biomechanics of human walking, further 

improving existing photographic techniques by incorporating markers on the subject’s body (Figure 

1.2.B) [42]. 

 

A 

 
 

B 

 

Figure 1.1 The pioneering works of Edwing Muybridge: (A) the Horse in Motion (1878), and (B) the Woman Walking Downstairs 
(1887). 

 

 

A 

 
 

B 

 

Figure 1.2 The two main work of Marey: (A) the Falling cat (1894), and (B) the Walk (1886). 
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Finally, the work by Braune and Fischer on human biomechanics and gait analysis, often involving 

cadaveric dissections and detailed anatomical measurements, laid the groundwork for subsequent 

advancements in motion capture techniques like the stereophotogrammetry [43]. Nowadays, 

stereophotogrammetry is the gold standard for motion analysis, allowing for the acquisition of 

immediate marker positions on the skin surface, utilising either traditional photography or 

optoelectronic sensors [44]. Stereophotogrammetric systems typically consist of multiple cameras 

strategically positioned to capture overlapping views of a target area or object (Figure 1.3), allowing 

for the triangulation of points in space and enabling the creation of three-dimensional reconstructions 

[45]. Modern stereophotogrammetric systems often incorporate optoelectronic sensors, infrared 

cameras (e.g., Vicon system [46]), and automated algorithms, contributing to improved accuracy, 

reduced setup times, and enhanced ease of use [42]. In addition to this technology, for a more 

comprehensive analysis, dynamometers, like force plates, are used to measure external forces (e.g., 

ground reaction forces) [47], while electromyography (EMG) allows recording the electrical activity 

of muscles [48]. In clinical settings, the 6-minute walking test [49], the Timed Up and Go test [50], 

and the L-test [51] are just a few examples of gait analysis tests used to quantify the mobility capacity 

of a person. Although these tests allow us to quantify mobility directly, they suffer from inherent 

limitations. 

Typically, clinical tests are conducted in an instructed and supervised environment, lacking the 

person’s genuine intent during the investigation [52]. Moreover, recent studies have demonstrated 

that these assessments fail to provide insights into the real-life performance of ADLs (e.g., going for 

a walk, shopping, taking the stairs, or having a bath, and social interactions) [53–55]. Finally, 

symptoms such as motor and nonmotor fluctuations, early morning dystonia, and various daily life 

 

Figure 1.3 Stereophotogrammetric system with two force plates, placed in the centre of the field to acquire the ground reaction forces 
in addition to the subject’s movement. 
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issues like sleep problems, which are not evident in a clinical setting but significantly impact 

individuals’ experiences, are unlikely to be captured [52]. 

Mobility perception 

In parallel, to quantify mobility perception, various patient-reported outcomes (PROs), which 

encompass questionnaires and diaries, have been developed. PROs are self-reported measures and 

thus primarily capture individuals’ subjective experiences and perceptions of their mobility and 

related aspects, like daily function [52]. However, it is important to consider potential biases to which 

PROs are susceptible, such as the recall bias [56], the testing bias, or the mood influences [57] when 

interpreting mobility-related PROs. Additionally, cultural background, knowledge, beliefs, and 

misinterpretations of standardised questions, physical symptoms, and reactions can further influence 

PROs [58]. Some examples of questionnaires are the Movement Disorder Society-sponsored Unified 

Parkinson’s Disease Rating Scale part II (MDS-UPDRS-II) for Parkinson’s Disease patients [59] and 

the Multiple Sclerosis Walking Scale-12 (MSWS-12) for multiple sclerosis cases [60]. 

Mobility performance 

To overcome the limits of the abovementioned tests, the attempt to find innovative ways for 

quantifying mobility performance has spurred an intense research activity, which has produced a new 

generation of wearable sensors, able to quantify mobility continuously for multiple days [39,61]. 

Moreover, in parallel with the advances in wearable technology, another innovative methodology 

(i.e., musculoskeletal modelling) for studying human movements has arisen. 

1.2.1. Wearable sensors 

The definition of wearable technology has varied throughout the years since its development from 

the early 13th century till nowadays, and researchers approaching the concept from various 

perspectives contribute to distinct interpretations in this field [62]. The first agreed definition dates 

back to the mid-20th century, with the first modern wearable computer, a timing device hidden in a 

shoe capable of accurately predicting the landing place of a roulette ball [63,64]. From the 2000s, 

wearable technologies, also referred to as wearable devices, are compact electronic mobile devices 

designed to be worn on the body, often integrated into clothing and accessories (e.g., smart watches, 

bracelets, rings), or in their mini-invasive versions such as micro-chips or smart tattoos [65] (Figure 

1.4). Wearable technologies can be classified according to their application/functionality (e.g., for 

education and professional sports or in the healthcare system) or based on the wearable device types 

[65]. The best-known intended use of wearable sensors belongs to the consumer market, as wearable 

sensors are mainly employed as activity trackers [66,67], for monitoring daily activities like step 
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count [68], basic heart rate [69], and body temperature [70], with the primary aim of promoting 

increased physical activity among average users. 

 

The great spread of wearable technologies is attributable to their low cost, ease of use, small size, and 

portability [71]. However, initially, the use of wearable sensors was limited to healthy subjects 

because of their low reliability and accuracy and the drawbacks that they suffer from [66,72]. These 

limitations, together with technological advancements (e.g., in miniature devices [73]) , have driven 

intense research activities, which resulted in the development of new wearable sensors that can be 

used on patients, assisting clinical-decision making. Several clinical studies have been recently 

conducted to validate the performance of wearable sensors to monitor physiological data over 

extended durations, aiming to enhance the clinical care of patients (e.g., for patients affected by 

congestive heart failure [74] or for patients with PD [75]). 

Wearable sensors now allow the quantification of real-life mobility for a period of time sufficiently 

long to be considered representative of daily life [39,61], thus allowing the quantification of mobility 

performance. Wearable inertial measurement units (IMUs) are the most commonly used sensors for 

monitoring human movement [76] and consist of accelerometers, gyroscopes and magnetometers 

(three per type, orthogonally placed, to three-dimensionally quantify movement). This represents the 

hardware component necessary for recording data. Specific software then elaborates and processes 

the raw recordings to extract parameters used to characterise mobility, such as average walking speed, 

cadence, step/stride time, length or turn duration, and angle [77]. To date, there is a lack of 

standardisation and consensus on the (correct/best) IMU placement, highlighted by the various (body) 

locations where sensors [78] can be worn on (e.g., ankles [79], wrists [80], or lower back [81]). 

Among all, the lower back has been recently identified as the ideal sensor location to reliably and 

consistently measure/extract mobility outcomes as well as the most preferred location by the users 

[82]. Wearable IMUs used for the gait analysis were initially unable to characterise gait in patients 

 

Figure 1.4 Wearable technologies, including smart T-shirt or pressure insoles, highly differ in applications, shapes and body locations. 

Smartwatch

Pressure insole

Lower-back worn 
IMU sensorSmart clothes

Smart glasses
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with slow speed (i.e., gait speed lower than 0.05 m/s) [81,83], since the algorithms for extracting and 

processing the signals were developed using data from healthy and fit people [72,84,85]. However, a 

great research activity in this field resulted in the development of the so-called second-generation 

mobility monitors (i.e., a new generation of multi-sensor IMUs). Although the hardware part of the 

wearable IMUs remained similar, the software for signal processing has been innovated and become 

more and more sophisticated to be able to analyse abnormal gait and slow speed [86–88]. 

1.2.2. Musculoskeletal models 

Over the past 20 years, in parallel with significant advances in wearable sensors and miniaturised 

technologies, another innovative methodology for the study and analysis of human movement has 

emerged: musculoskeletal (MSK) modelling. MSK models are computational representations of the 

human body and, specifically, of the MSK system, combining anatomy, physiology, biomechanics, 

and engineering (see Figure 1.5). 

While introducing MSK modelling, it is necessary to make a distinction between generic and 

personalised (i.e., subject-specific) models. Due to the high complexity of the MSK system, the 

generation of subject-specific MSK models is far from easy. Initially, only generic MSK models, 

which were defined using cadaveric data (from a small pool of subjects) [89–96], were used because 

of the time-consuming process and the amount of data (e.g., medical images, kinematics data) needed 

to generate personalised models [97]. However, generic MSK models hardly represent a specific 

individual, let alone children or minorities, as their constitutive properties and characteristics are 

based on cadaveric data [98–100]. The easier access to subject-specific data (e.g., medical images), 

 

Figure 1.5 Musculoskeletal dynamics model of the lower limb, where each muscle is represented with (one or multiple) actuator(s). 
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the advancements in the software technologies [101,102] to develop MSK models and in simulation 

environments [103,104] contributed to a wider (although still limited) adoption of personalised 

models of the MSK system in various fields and disciplines. MSK models and biomechanical 

simulations, which fall in the in silico medicine category, have shown to have great potential in 

orthopaedics, allowing the estimation of quantities which would be impossible to measure without 

invasive surgery (e.g., joint contact force) [105], and predicting various musculoskeletal outcomes 

after orthopaedic surgeries [106–108]. Moreover, these models have been employed to explore the 

impact of sub-optimal control on joint forces [109], and act as a stratification tool in the treatment of 

juvenile idiopathic arthritis [110,111]. Finally, personalised MSK models have allowed to improve 

the diagnosis and the treatment of patients affected by MSK disorders [112,113] and used in defining 

rehabilitation programs [110,114]. However, the wide-scale use of the MSK models is limited by 

both the complexity of representing the high variability of the human system and, above all, the 

validation of models and the assessment of their credibility. 

1.3. The concept of credibility 

Credibility is a multifaceted concept, but its definition varies based on the field where it is applied. 

In general, the credibility of a new methodology refers to the trustworthiness, and reliability of that 

methodology, whether it is a new medical product or a MSK model. In the context of new medical 

products, credibility is central to gaining the trust of healthcare professionals, regulatory bodies, and 

patients. The credibility of a medical product is intricately tied to its safety, and efficacy. Similarly, 

in the field of MSK models, credibility is essential for the acceptance and use of these computational 

representations of the MSK system in the clinical setting. The accuracy of these models in simulating 

human motion and estimating internal forces, such as muscle and joint forces, establishes their 

credibility. Rigorous validation against empirical data and continuous refinement contribute to the 

credibility of MSK models, enabling researchers and practitioners to trust the insights derived from 

these computational tools. 

Historically, the concept of credibility was introduced in the medical field as a foundation upon which 

trust of a new medical product was built, referring to the extent to which such a new product is 

considered trustworthy, effective, and safe for its intended medical purposes. A key role in this 

process is played by health authorities, such as the Food and Drug Administration (FDA) in the United 

States (US) or the European Medicines Agency (EMA) in Europe, which are responsible for 

regulatory approval. In general, before a new product can be put on the market, evidence of the safety 

and efficacy of such a new product for the intended and declared use must be presented to the 

country’s regulatory agency [115]. Evidence has been historically provided through controlled 
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experiments, referred to as clinical or pre-clinical trials (whether humans are involved or not, 

respectively). While, traditionally, the assessment of safety and efficacy relied on supervised 

experiments conducted in vitro and in vivo, either in animals or in humans, regulatory authorities in 

the US and in Europe have recently started to consider the use of in silico trials (i.e., that rely on 

computational models and simulations) as a means to provide evidence for regulatory approval 

[116,117]. However, there is still an ongoing debate regarding how to establish the credibility of in 

silico methods, in contrast with the well-established practices for the credibility assessment of in vitro 

and in vivo tests [118–121]. 

1.3.1. Marketing authorisation of medical products: drugs vs medical devices 

Before any new medical product can be marketed, it must obtain the marketing authorisation from 

regulatory agencies (e.g., EMA and FDA). This authorisation is granted when a company developing 

and marketing a medical product presents extensive technical, pre-clinical, and clinical evidence 

demonstrating the safety, efficacy, and quality of the new product. This evidence must be generated 

using clinical, statistical, or instrumental methodologies deemed appropriate by the regulators 

[122,123]. The regulatory process to obtain marketing authorisation differs based on the type of 

medical product. Historically, the main distinction among medical products was between medicines 

(i.e., drugs) and medical devices. However, the initial clear division between drugs and medical 

devices started to fade since more complex medical products have been developed (e.g., drug-eluting 

stents, which are a combination of different types of medical products) [124]. The EMA defines drugs 

as “any substance or combination of substances presented for treating or preventing disease in human 

beings or animals. Any substance or combination of substances which may be administered to human 

beings or animals with a view to making a medical diagnosis or to restoring, correcting or modifying 

physiological functions in human beings or in animals is likewise considered a medicinal product” 

[125]. A medical device is instead “any instrument, apparatus, appliance, material or other article, 

whether used alone or in combination, including the software necessary for its proper application 

intended by the manufacturer to be used on human beings for the purpose of: 

- diagnosis, prevention, monitoring, treatment or alleviation of disease, 

- diagnosis, monitoring, treatment, alleviation of or compensation for an injury or handicap, 

- investigation, replacement or modification of the anatomy or of a physiological process, 

- control of conception” [126]. 

The choice of the regulatory framework for certifying a new medical product is guided by the country 

where the new product will be sold, and it differs from country to country. While the principles are 
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similar, the details can vary considerably (see Table 1.1, where the main steps in the regulatory 

framework for a medical device, outlining the difference between the American and European 

pathways, are summarised).  
Table 1.1 Differences between the European and US regulatory processes for the qualification and/or marketing authorisation of new 
medical products. 

Regulatory system CE Marking (Europe)12 FDA approval3 

Risk class of the 
product 

Risk classification is based on 18 rules 
that guide the identification of which class 
risk the device is. Moreover, the class of 
risk of the device is based on the intended 
use and on the consequences of the 
clinical decision informed by the software 
itself: 

Class IIa: software intended to provide 
information which is used to make 
decisions for diagnosis or therapeutic 
purposes. 

Class III: if such decisions have an impact 
that may cause death or an irreversible 
deterioration of a person’s state of health. 

Class IIb: if such decisions have an impact 
that may cause a serious deterioration of a 
person’s state of health or a surgical 
intervention. 

Class I: All other device. 

Risk class is defined mostly by similarity. If 
a device is “substantially equivalent” to 
another already FDA-approved, the 
simplified 510(k) premarket submission can 
be used. 

Class I: low-risk devices 

Class II: medium-risk devices 

Class III: high-risk devices 

Required pre-
clinical and 
clinical tests 

The European system is based on a 
hierarchy of requirements: it starts with 
essential requirements that all medical 
devices must have, outlined in Annex I of 
Directive 93/42; it follows a hierarchical 
system always based on harmonised ISO 
standards 

Based on the risk classes, there is a precise 
FDA procedure to follow among the 510(k) 
premarket submission, De Novo, 
Humanitarian Device Exemption, and 
Premarket Approval 

Technical 
Documentation 

A technical file with a pre-defined 
structure must be drafted 

Market notification or market approval based 
on the selected FDA procedure 

Implement 
Quality 

According to ISO 13485:20164 
FDA requires Current Good Manufacturing 
Practices (CGMP), with the details of the 
requirements, and recommends as the best 

 
1 https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02017R0745-20230320  
2 https://health.ec.europa.eu/system/files/2021-10/mdcg_2021-24_en_0.pdf 
3 https://www.fda.gov/medical-devices/overview-device-regulation/regulatory-controls  
4 https://www.iso.org/standard/59752.html  

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02017R0745-20230320
https://health.ec.europa.eu/system/files/2021-10/mdcg_2021-24_en_0.pdf
https://www.fda.gov/medical-devices/overview-device-regulation/regulatory-controls
https://www.iso.org/standard/59752.html
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Management 
System 

reference for the certification of CGMP the 
ISO 13485:20161 

Hereafter, a brief mention of the regulatory authorities in Europe and in the US is provided [127]. In 

the US, the FDA is the unique authority that deals with food, drugs, medical devices, tobacco 

products, vaccines, cosmetics, and other products. For each product, the FDA has a specific centre to 

address the requests. For example, the Center for Devices and Radiological Health (CDRH) is 

responsible for the certification process of medical devices (i.e., by assuring the safety, efficacy, and 

high quality of medical devices), while the Center for Biologics Evaluation and Research (CBER) 

regulates biological products for human use. In Europe, regulatory authorities differ on whether the 

medical product is a drug or a medical device. For drugs with a significant therapeutic, scientific, or 

technical innovation, the EMA represents the sole regulator for the scientific evaluation, supervision 

and safety monitoring of medicines in the EU. Otherwise, manufacturer must both apply the European 

standards and the guidelines developed by national regulatory agencies (e.g., the Italian Medicines 

Agency in Italy, or the Federal Institute for Drugs and Medical Devices in Germany) for receiving 

marketing authorisation. For the medical device, the only valid technical standards are produced by 

the European Standards Organisation, such as the European Committee for Standardization (CEN). 

The International Organization for Standardization (ISO) represents another important source of 

technical standards; even if the ISO is not a European standard, the majority of the ISO standards are 

harmonised and recognised as equivalent to CEN standards.  

The qualification process of a novel methodology for drug development provided by the EMA can 

be pursued through the submission of a request for qualification opinion, often preceded by one or 

multiple requests for qualification advice. The latter is meant for submitters seeking for preliminary 

feedback or guidance provided during the early stages of development or submission of a proposal 

for a novel methodology. A Qualification Advice (QA) is not a formal regulatory decision but serves 

as valuable input to the developers, helping them to refine their approach before pursuing a formal 

qualification opinion. A Qualification Opinion (QO) reports the agency’s official position on whether 

a specific novel methodology is considered acceptable for use in the development and evaluation of 

medicines. This procedure is similar to the Biomarker Qualification Program (BQP), i.e., the US 

equivalent regulatory pathway for new medicinal products. Hereafter, a more detailed description of 

the different regulatory qualification procedures in Europe and in the US is provided. 

Regulatory qualification in Europe 

For the European market, the EMA has devised a voluntary procedure to achieve the regulatory 

qualification of new (health) biomarkers (e.g., Mobilise-D digital mobility biomarkers or DMOs), as 
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outlined in the Qualification of novel methodologies for drug development5 guidance for applicants 

(and schematized in Figure 1.6). 

The qualification process involves the Scientific Advice Working Party (SAWP) and the Committee 

for Medicinal Products for Human Use (CHMP) and may result in two potential outcomes: CHMP 

QA or CHMP QO. The overall duration of the QA process is approximately 160 days, while the QO 

process takes up to 250 calendar days. The procedure initiates with the submission of a Letter of 

Intent (LOI) and a draft dossier 60 days prior to the official start of the request, allowing flexibility 

in deciding between QA or QO pathways. On the regulator’s side, a qualification team (QT), 

including coordinators (SAWP or CHMP) and subject experts relevant to the technology’s Context 

of Use (CoU), is typically formed within the first few weeks of application. This marks the official 

start of the procedure (i.e., day 0), followed by several discussions during QT and SAWP meetings, 

as well as meetings with the applicant, where a list of questions is issued and discussed, leading to 

the issuance of a draft report at day 70. On day 90, the SAWP provides a recommendation on whether 

to pursue the QO or QA pathway based on the request type and available data. If the applicant opts 

for a QA, this will be adopted by the CHMP at the first CHMP Meeting on Day 100. A Letter of 

Support may be drafted and published on the EMA website, which summarizes the QA received. 

Alternatively, if sufficient information is available, a draft QO is issued, discussed, and adopted 

during the first and second CHMP meetings (day 100 and 130, respectively). Following CHMP 

adoption, the QO undergoes a 6-week public consultation period to gather opinions from the scientific 

 
5 https://www.ema.europa.eu/en/documents/regulatory-procedural-guideline/qualification-novel-methodologies-
drug-development-guidance-applicants_en.pdf  

 
Figure 1.6 The entire workflow for the qualification of a new methodology for medicine development to EMA. Adapted from [14] 
under the terms of the CC BY 4.0 license. Copyright © 2020 by the authors. (CHMP: Committee for Human Medicinal Products; 
SAWP: Scientific Advice for Working Party). 
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https://www.ema.europa.eu/en/documents/regulatory-procedural-guideline/qualification-novel-methodologies-drug-development-guidance-applicants_en.pdf
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community. By the subsequent 15 days, the QO is adopted and published. The described qualification 

procedure is not exempted from the fee payment, computed according to the Explanatory note on 

general fees payable to the European Medicines Agency as of 1 April 20236 document. However, 

discounts apply to Small Medium-Sized Enterprises. 

Regulatory Qualification in the US 

In the US, the qualification of biomarkers falls under CDER BQP as part of the broader Drug 

Development Tools (DDTs) Program [123]. DDTs encompass various methods and materials aimed 

at facilitating drug development, covering biomarkers, clinical outcome assessments, animal models, 

and more. The BQP process does not involve any fees. Typically, each biomarker undergoes a 

separate submission for qualification unless multiple biomarkers are intended to be combined to 

represent a single CoU. The qualification framework consists of three main stages, as depicted in 

Figure 1.7. An additional initial meeting (stage 0) may be scheduled to interact with the regulatory 

board before starting the official qualification procedure [123]. 

 

The LOI is an initial communication from the applicants, providing an overview of the biomarker, 

outlining the purpose and goals of the qualification process, and describing the CoU. The BQP, 

submitted in stage 2, is a comprehensive document detailing the strategy, methods, and study design 

for validating the biomarker. The BQP provides a roadmap for the qualification process, outlining the 

scientific and regulatory approach to demonstrate the biomarker’s reliability and relevance for its 

intended use. The full qualification package includes a detailed report on the validation studies 

conducted to support the biomarker’s qualification, presenting the comprehensive scientific evidence 

and data, demonstrating the biomarker’s reliability and its suitability for its intended CoU, based on 

 
6 https://www.ema.europa.eu/en/documents/other/explanatory-note-general-fees-payable-european-medicines-
agency-1-april-2023_en.pdf  

 
Figure 1.7 The framework of the FDA Biomarker Qualification Program procedure. 
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the recommendation from the previous stages. At each stage, a three-step procedure involving initial 

assessment by the FDA, comprehensive scientific review, and evaluation by the DDT Committee is 

required to receive the acceptance or the qualification (for stage 1 or 2 and for the stage 3, 

respectively). The timeframe for the review at each of the three main stages is 3, 6, and 10 months 

[123]. 

In the next section, the focus is on medical device software, a recent – yet important – subgroup of 

medical devices that has been historically excluded from the first definition of medical device. 

1.3.2. Software as a Medical Device 

According to the International Medical Device Regulators Forum (IMDRF), which is a worldwide 

group of medical device regulators with the aim of accelerating and harmonising the medical device 

regulatory pathway, software as a medical device (SaMD) is defined as “software intended to be used 

for one or more medical purposes that perform these purposes without being part of a hardware 

medical device: 

- SaMD is a medical device and includes in-vitro diagnostic medical device; 

- SaMD is capable of running on general-purpose (non-medical purpose) computing platforms; 

- “without being part of” means software is not necessary for a hardware medical device to 

achieve its intended medical purpose; 

- Software does not meet the definition of SaMD if its intended purpose is to drive a hardware 

medical device. 

- SaMD may be used in combination (e.g., as a module) with other products including medical 

devices; 

- SaMD may be interfaced with other medical devices, including hardware medical devices and 

other SaMD software, as well as general purpose software 

- Mobile apps that meet the definition above are considered SaMD”7. 

It is interesting to note that the inclusion of software within the definition of medical devices has 

evolved over time both in the European and the American context. Hereafter, as an example, the 

history of the SaMD in Europe is provided. Initially, the software was not considered in the quality 

assurance process, and the risk factor associated with the software was not taken into account. In 

Europe, only in the early 1900s, the first standard (i.e., the ISO/IEC 9126 Software Engineering – 

 
7 https://www.imdrf.org/sites/default/files/docs/imdrf/final/technical/imdrf-tech-131209-samd-key-definitions-
140901.pdf  

https://www.imdrf.org/sites/default/files/docs/imdrf/final/technical/imdrf-tech-131209-samd-key-definitions-140901.pdf
https://www.imdrf.org/sites/default/files/docs/imdrf/final/technical/imdrf-tech-131209-samd-key-definitions-140901.pdf
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Product Quality8) for the quality assurance of software was published. A few years later, software 

technologies started to be seen as a continuously varying and updating models, hence a new standard 

was published: the ISO9000-3 Quality Management and Quality Assurance Standards9, which 

introduced the concept of development, supply, installation and maintenance of computer software 

for assessing the software quality. At the beginning of the 21st century, when the software started to 

be used to program a medical device (e.g., programmable pacemakers) or represented itself as a 

medical device (e.g., the surgical planning software in computer-assisted surgery), the medical device 

definition was expanded by including the software alone (i.e., as stand-alone software) or in 

combination. Therefore, in 2007, the concept of SaMD was introduced. The Medical Device 

Regulation (MDR) (EU) defines a SaMD, but referring to medical device software, as the “software 

that is intended to be used, alone or in combination, for a purpose as specified in the definition of a 

“medical device” in the medical devices regulation10 or in vitro diagnostic medical devices 

regulation11”12. In this thesis, the terms SaMD and medical device software will be used as synonyms. 

From a regulatory point of view, the certification framework differs based on the nature of the 

software (i.e., whether it has measuring or predictive capabilities). 

1.3.2.1. Certification of medical device software with measuring capabilities 

SaMD with measuring capabilities, e.g., Endosize software (Endosize; Therenva, Rennes, France) 

[128], is certified following well-established procedures and standards. According to the IMDRF, all 

SaMD used in clinical settings shall undergo a clinical evaluation (see IMDRF/SaMD 

WG/N41FINAL:2017 document13). The mentioned document represents the basis on which both the 

European and the American guidelines for the certification process of the SaMD are based (e.g., in 

the EU context, Medical Device Coordination Group MDCG 2020-1 guidance14). The clinical 

evaluation consists of a set of activities for the determination of clinical safety, effectiveness, and 

performance. In this process, the technical and clinical validation are pivotal. The technical validation 

quantifies the ability of a SaMD to accurately, reliably and precisely generate the intended technical 

output from the input data, while the clinical validation seeks to demonstrate that the SaMD can 

generate clinically relevant output in accordance with its intended purpose. All these procedures are 

 
8 https://www.iso.org/standard/16722.html  
9 https://www.iso.org/standard/26364.html  
10 Article 2(1) of Regulation (EU) 2017/745 – MDR 
11 Article 2(2) of Regulation (EU) 2017/746 – IVDR 
12 https://health.ec.europa.eu/system/files/2020-
09/md_mdcg_2019_11_guidance_qualification_classification_software_en_0.pdf  
13 https://www.imdrf.org/sites/default/files/docs/imdrf/final/technical/imdrf-tech-170921-samd-n41-clinical-
evaluation_1.pdf  
14 https://health.ec.europa.eu/system/files/2020-09/md_mdcg_2020_1_guidance_clinic_eva_md_software_en_0.pdf  

https://www.iso.org/standard/16722.html
https://www.iso.org/standard/26364.html
https://health.ec.europa.eu/system/files/2020-09/md_mdcg_2019_11_guidance_qualification_classification_software_en_0.pdf
https://health.ec.europa.eu/system/files/2020-09/md_mdcg_2019_11_guidance_qualification_classification_software_en_0.pdf
https://www.imdrf.org/sites/default/files/docs/imdrf/final/technical/imdrf-tech-170921-samd-n41-clinical-evaluation_1.pdf
https://www.imdrf.org/sites/default/files/docs/imdrf/final/technical/imdrf-tech-170921-samd-n41-clinical-evaluation_1.pdf
https://health.ec.europa.eu/system/files/2020-09/md_mdcg_2020_1_guidance_clinic_eva_md_software_en_0.pdf
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referred to as metrological methodologies and aim to verify the metrological performances of the 

device/software. Moreover, because of the changing nature of the software (i.e., it can always be 

modified or updated), the concept of life cycle of the software was introduced. The CEI/IEC 62304: 

Medical device software – Software life cycle processes15 standard defines guidelines for the software 

life cycle processes to ensure the secure development and maintenance of the SaMD.  During the life 

cycle of the software, the manufacturer must:  

- keep the clinical evaluation updated, drafting the associated documents, including the Post 

Market Clinical/Performance Follow-up as described in the MDCG 2020-1 guideline; 

- carry out continuous risk management as shown in the ISO 1497116; 

- establish and maintain a quality management system. For this purpose, based on the company 

and the software product, the two reference standards are the IEC 6230417 and the ISO 

1348518; 

- apply for a type-examination from a Notified Body that shows that the product complies with 

the provisions of the MDR. 

Since the FDA has recognised as consensus standard the international harmonized standard within 

the EU (i.e., CEI/IEC 62304), all the information described above are also applied to the American 

context. 

1.3.2.2. Certification of medical device software with predictive capabilities: Credibility 

The term predictive SaMD encompasses a range of software technologies, from embedded software 

based on math models with predictive capabilities to digital patient technologies. A digital twin (DT), 

i.e., a computer model informed with data of a specific subject (subject-specific model) that can 

predict quantities about that subject which may or may not be difficult to measure directly, represents 

a relatively recent example of a predictive SaMD. The first certified DT (i.e., the HeartFlow software 

[129,130]) dates back to 2014. Other examples of SaMD are the in silico trials, predictive software 

technologies that are not used directly for the treatment of people in healthcare but that contribute to 

the development (discovery, design) and the risk reduction (including regulatory assessment) of 

medical products employed for clinical decision-making. In silico methods aim to reduce, refine and 

replace in vivo and in vitro experiments (1) by limiting the number of animals/patients enrolled in the 

clinical trial, their duration, and/or the number of measurements conducted during in vitro and in vivo 

 
15 https://www.iso.org/standard/38421.html  
16 https://www.iso.org/standard/72704.html  
17 https://www.iso.org/standard/38421.html  
18 https://www.iso.org/standard/59752.html  

https://www.iso.org/standard/38421.html
https://www.iso.org/standard/72704.html
https://www.iso.org/standard/38421.html
https://www.iso.org/standard/59752.html
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experiments, (2)  redesigning the study to either eliminate or alleviate the suffering experienced by 

animals or mitigate the risks for humans participating in experiments, and (3) by replacing the 

experiments on the animal or human with computational modelling and simulations [131]. 

Since medical device software with predictive capabilities has started to be used in the healthcare 

[132,133] to support the clinical decision for a specific subject, the need for a different certification 

process became apparent and led to the definition of a verification, validation and uncertainty 

quantification process applied to the medical field. 

The general concept of verification, validation, and uncertainty quantification 

In many engineering fields (e.g., aerospace, automotive, civil industries) where computer models are 

used to support product development, well-established procedures, known as Verification, Validation 

and Uncertainty Quantification (VVUQ, or simply V&V), are used for assessing model credibility 

[115,121,134]. Hereafter, a brief description of the VVUQ practice and its main components is 

provided. 

- Context of Use. It represents the first step in the process of establishing the credibility of a 

model. It includes a comprehensive description of how the model will be employed. Precise 

details must be outlined, including the specific decisions informed by the model, the role of 

the predicted quantities in these decisions, the structure predictive model, the required inputs 

and their determination process, the uncertainty associated with these inputs, and the potential 

range of values assumed by the inputs while using the model in the CoU. 

- Verification. Typically, it consists of both code and model verification. Code verification 

ensures the quality of the software used for solving the model, employing practices from 

software engineering such as regression tests and the stability of the numerical algorithms. 

Model verification assesses approximation errors, focusing on quantifying the error resulting 

from the approximated solution of the mathematical model. Once code verification is 

completed, any remaining approximation error is attributed solely to the numerical solution – 

and not to coding errors. Model verification methods vary based on the model’s structure and 

the numerical methods employed. Usually, for mechanistic approaches, the so-called 

benchmark tests are conducted to verify the model by solving problems with known solutions, 

or the model’s results are compared against outcomes computed using already validated 

software. 

- Validation. This is an important step in the process of establishing the credibility of the 

models. It involves a quantitative comparison between the model predictions and 

experimental or clinical data computed using a higher-order precision instrument. Validation 



 

 21 

becomes even more important when models are used in clinical decision-making and, above 

all, in high-risk applications since a less accurate model prediction can lead to poorer (or even 

wrong) clinical decisions. 

- Uncertainty Quantification. It estimates how stochastic errors affecting the input propagate 

through the model into the outputs. Integral to uncertainty quantification, the sensitivity 

analysis also plays a crucial role in the VVUQ process. It evaluates which elements of the 

input set are the main drivers of output variability, providing essential insights into the 

model’s behaviour. 

Another fundamental element that has a key role in the credibility assessment is the applicability, 

which refers to the extent to which the model predictions are credible while changing the initial 

conditions. 

1.3.3. Risk-based credibility assessment: the ASME V&V-40:2018 technical standard 

The most known technical standards that rely on and develop the VVUQ concept are produced by the 

American Society of Mechanical Engineering (ASME) standard committee. From the early 2000s, 

the ASME has defined and published standards to guide the VVUQ processes in different fields, 

initially in solid and fluid mechanics, and lately (i.e., at the end of 2018) for establishing the credibility 

of computational models applied to medical devices [135]. In particular, the ASME V&V-40 

standards introduce a risk-informed framework for assessing the credibility of a computational model. 

Unlike other methodologies that serve as guidelines, the emphasis of ASME V&V-40 is on 

determining “how much” V&V is necessary to ensure model credibility and not on “how to” perform 

it. The risk associated with using the computational model to inform a decision should determine the 

level of evidence required. In the AMSE V&V-40, the model credibility refers to the trust gained 

through the collection of evidence in the predictive capability of a computational model [136], and it 

is established through the verification and validation activities. Verification is defined as “the process 

of determining that a computational model accurately represents the underlying mathematical model 

and its solution from the perspective of the intended uses of modelling and simulation”, while 

validation is “the process of determining the degree to which a model or a simulation is an accurate 

representation of the real world from the perspective of the intended uses of the model and 

simulation”. The steps of the ASME V&V-40 framework are briefly described in the following: 

- Definition of the question of interest, which is the scientific question to be addressed by 

modelling. 

- Definition of the context of use, the complete description of the planned methodology and the 

related purpose of use.  
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- Assessment of the model risk, considering the possibility for the computational model to 

contribute to decisions that could lead to harm or undesirable outcomes for patients. Model 

risk is determined by two factors: the model influence (i.e., the impact of the computational 

model on decision-making) and the decision consequences (i.e., the consequences of adverse 

outcomes arising from an incorrect decision based on the model).  

- Establishing the credibility goals by planning the verification and validation of credibility 

factors listed in Table 1.2 (some or all based on the risk analysis). 

- Perform credibility activities, which include technical and clinical validation. 

The ASME V&V-40 is based on the VVUQ methodology, but it introduces variations, such as the 

risk assessment or the evaluation of human errors (use error, Table 1.2). The additional and final steps 

involve the draft of the conclusive documents reporting all the evidence for the assessed credibility.  
Table 1.2 The 13 credibility factors as presented in the ASME V&V-40 standard represent the goals for assessing the credibility. 
Reproduced with permission from [136]. Copyright © 2019, Wolters Kluwer Health. 

Activities Credibility factors 

Verification 

Code 
Software quality assurance 

Numerical code verification 

Calculation 

Discretization error 

Numerical solver error 

Use error 

Validation 

Computational model 
Model form 

Model inputs 

Comparator 
Test samples 

Test conditions 

Assessment 
Equivalency of input parameters 

Output comparison 

Applicability 
Relevance of the quantities of interest 

Relevance of the validation activities to the 
context of use 

 

1.4. Aims of the thesis 

The aim of my PhD is to understand and, in part, implement the steps required to perform the 

credibility assessment of two different models: (1) the analytics software used to extract mobility-

related parameters from continuous recordings of wearable sensors and (2) the MSK models 
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employed to simulate a maximum voluntary isometric contraction test of the knee extensor (to 

identify the primary cause for the loss of muscle force). The work attempts to meet these aims by 

dividing it into several objectives, such as interacting with the regulatory authorities to define the 

right certification process and defining a new protocol to perform the differential diagnosis of 

dynapenia by combining different instrumental measurements. 

1.4.1. Advancing the state of the art: novel contributions of the thesis  

The projects developed as part of this thesis focused on original and innovative solutions to tackle 

highly relevant societal themes in healthcare. On one hand, the activities carried out within the 

Mobilise-D project were aimed to facilitate/promote the use of wearable sensors for continuous 

movement assessment in the real world to support the development and approval of new drugs to 

slow down or revert disease progression in clinical indications where (the loss of) mobility is a 

concern. The focus was on the procedures to certify the device-agnostic multi-module software 

developed by the technical experts in the Consortium that is capable of extracting mobility-related 

parameters. Interactions with regulatory bodies have been instrumental in clarifying and defining the 

steps, previously nebulous and intricate, required for the certification of new medical devices, such 

as those developed in the Mobilise-D project. The insights gained from these regulatory exchanges 

have not only streamlined the approval process for the Mobilise-D device but also provided a valuable 

framework that can aid any entity, including Small Medium-Sized Enterprises, in navigating the 

complexities of medical device certification. On the other hand, the MSK modelling and simulation 

framework developed as part of the ForceLoss project by combining experimental data and in silico 

methods promises to enable the differential diagnosis for the loss of muscle force, which is currently 

not possible – with traditional measures. Peculiar to the project, is the use of MSK models as 

falsification tool to test different clinical hypotheses. 

1.4.2. The effect of COVID-19 on the projects 

It is important to emphasise that, as with many other projects, the progression of both the Mobilise-

D and the ForceLoss projects was impacted by the unforeseen challenges posed by the COVID-19 

pandemic. In the Mobilise-D project, the pandemic and related shortages of electronic components, 

which limited the availability of wearable sensors, slowed the data acquisition process for the 

technical validation study, which was crucial for fine-tuning the software pipeline. This challenge 

necessitated adjustments to the project timeline and methodology, underscoring the need for 

flexibility in managing research projects during unprecedented global health crises. 

Similarly, in the ForceLoss project, besides the data collection challenges, which were already slowed 

by COVID-19, especially given the involvement of elderly participants, the project faced additional 
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delays due to equipment delivery issues, further compounded by the global electronics shortage. To 

mitigate the impact of these delays, for the first part of the ForceLoss study, which saw the enrolment 

of healthy young adults, an isometric dynamometer – which was readily available – was used instead 

of the isokinetic dynamometer. 
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Chapter 2 – CREDIBILITY OF MOBILITY 

MONITORING SOFTWARE 

The current chapter focuses on the credibility assessment of a new medical product, specifically the 

analytics software developed in the Mobilise-D project to extract mobility-related parameters from 

real-world activity recordings using a wearable sensor over multiple days. Following a brief overview 

of the Mobilise-D project and its aim(s), the analytics software pipeline will be described in detail, 

and two possible regulatory pathways to seek its certification will be illustrated. In fact, while a 

metrological characterisation is the best-known procedure for assessing the credibility of such a new 

technology, one could think of applying the ASME V&V-40 technical standards. The latter remains 

an unexplored pathway, to date, which requires further discussion. A summary of interactions had 

with the FDA CDRH Division on the feasibility and suitability of such an approach will conclude the 

chapter. 

2.1. The Mobilise-D project 

The Mobilise-D project (Connecting digital mobility assessment to clinical outcomes for regulatory 

and clinical endorsement, www.mobilise-d.eu [39,137]) is a 5-year project funded by the Innovative 

Medicines Initiative 2 Joint Undertaking under grant agreement No 820820 and receives support from 

the European Union’s Horizon 2020 research and innovation program and the European Federation 

of Pharmaceutical Industries and Associations. The Mobilise-D consortium includes more than 30 

international partners among leading international universities, academic hospitals, and some of the 

world’s largest pharmaceutical and technical companies. The foundation of the project is the 

importance of mobility as an essential marker of health. People’s walking ability, specifically when 

characterised by a slower walking speed, correlates with increased mortality, morbidity, cognitive 

decline, dementia, and a higher risk of falling [37,38,138,139]. Even though the prevalence of 

mobility challenges is anticipated to surge with the ageing population, evaluating individuals’ 

mobility, especially in their everyday lives (i.e., mobility performance), is still a challenging task. 

Mobilise-D is set to establish a comprehensive system for monitoring and assessing people’s gait 

using a single lower-back worn sensor. The Mobilise-D consortium aims to demonstrate that digital 

mobility outcomes (DMOs) observed in real-world scenarios can effectively predict relevant clinical 

outcomes, offering an improved, safer, and more expedited approach to advancing the development 

of innovative medicines. The project concentrates on four different conditions that have in common 

a direct impact on mobility but different aetiology, such as Parkinson’s disease (PD), chronic 

obstructive pulmonary disease (COPD), multiple sclerosis (MS), and hip fracture recovery/proximal 

http://www.mobilise-d.eu/
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femur fracture (PFF). The outcomes of Mobilise-D will enhance the precise evaluation of daily life 

mobility in both clinical trials and patient treatment. This, in turn, will contribute to advancements in 

care, making it more effective and tailored to individual needs. 

Hereafter, a brief description of the patient groups recruited in the Mobilise-D project is provided, 

together with an overview of the clinically accepted tests to assess mobility capacity and mobility 

perception for each of the four clinical indications. 

Parkinson’s disease 

Parkinson’s disease is a progressive neurodegenerative disorder that predominantly affects movement 

control. The hallmark symptoms of PD include tremors, bradykinesia (slowness of movement), 

rigidity, and postural instability [140,141]. As the disease advances, individuals may also experience 

non-motor symptoms such as cognitive impairment, mood disturbances, and autonomic dysfunction. 

While the exact cause of PD remains unclear, a combination of genetic and environmental factors is 

believed to contribute to its onset [142]. Disease severity is typically assessed through the Hoehn and 

Yahr (H&Y) scale, which is frequently employed to stage the progression of PD based on motor 

impairment [143]. In clinical studies, the H&Y score is complemented by the revised version of the 

Unified PD Rating Scale sponsored by the Movement Disorders Society (MDS-UPDRS) [59,144], 

the current gold standard to assess mobility capacity (Part II) and performance (Part III) in 

Parkinsonian patients [59]. The latter involves a clinician-assessed evaluation of motor function, 

providing a standardized method to assess the severity of motor symptoms. 

Multiple sclerosis 

Multiple Sclerosis is an immune-inflammatory and degenerative disease of the central nervous 

system, and it is the main cause of non-traumatic disability in young and middle-aged adults [145]. 

Even if the initial clinical course is highly variable, the onset of mobility problems shows in around 

70-95% of the cases [146]. Difficulties in mobility, such as gait impairment, loss of balance and poor 

coordination, are among the most common deficits in MS patients [147]. Therefore, mobility 

disability represents the most challenging sign of MS [86] and the major contributor to poor quality 

of life. In clinical settings, the gold standard for assessing disabilities in MS is the Expanded 

Disability Status Scale (EDSS), which focuses on ambulatory aspects. The EDSS, typically drawn up 

by a neurologist, ranges from 0 to 10, with incremental steps of 0.5 and grades 4.0 to 7.5 related to 

walking disability. Other accepted measures are the timed 25-foot walk component of the MS 

Function Composite scale and clinical questionnaires (e.g., MS Walking Scale) [86]. 
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Chronic Obstructive Pulmonary Disease 

Chronic Obstructive Pulmonary Disease is a progressive respiratory condition characterised by 

persistent airflow limitation, typically associated with chronic bronchitis and emphysema [148]. One 

of the key diagnostic measures and indicators of COPD severity is forced expiratory volume in one 

second (FEV1) [149]. The FEV1 value is a clinically accepted endpoint, useful for assessing the 

degree of airflow obstruction and for categorizing the severity of the disease (four stages of severity). 

Individuals with COPD may experience symptoms such as shortness of breath and chronic cough that 

impact individuals’ capacity to move around. Based on the guidelines given by the EMA [150], for 

COPD patients, cycle ergometry or the 6-Minute Walking Test (6MWT) are the recommended tests 

to assess mobility capacity. These tests are frequently supplemented by a disease-specific 

questionnaire (e.g., the COPD Assessment Test [151]) for evaluating patients’ mobility perception. 

An example of PRO widely used to assess the effects of breathlessness on mobility and physical 

activity is the Saint-George Respiratory Questionnaire [152]. 

Proximal Femur Fracture 

A proximal femur fracture refers to a break in the upper part of the thigh bone close to the hip joint. 

This type of fracture is common among the elderly population, often resulting from falls or other 

traumatic events. Proximal femur fractures can significantly impact mobility and independence, 

requiring prompt and comprehensive assessment for effective management. For PFF, the Short 

Physical Performance Battery, which consists of a static balance task, a five times chair-raise test, 

and a 4m walk test at preferred gait speed, represents the clinical test frequently used [153,154]. There 

is no specific questionnaire to evaluate patients’ perception after hip fractures. However, the use of a 

general quality of life questionnaire (EQ-5D), in which a component is focused on mobility, is 

accepted [155]. Additionally, it is recommended to assess pain, ADL function, fear of falling and 

cognitive capacity as co-variates. 

Before delving into the description of possible regulatory pathways for the qualification of the 

Mobilise-D new technologies, in the next sections, the hardware and software components developed 

by the Mobilise-D consortium will be outlined. 

2.1.1. The hardware component 

Wearable IMU sensors have been demonstrated to be a novel technology that is low-cost, simple, 

accurate [156] and capable of being used in the real world, including the home environment and the 

community. They showed potential for measuring and monitoring real-world walking speed (RWS) 

and other DMOs [157,158]. However, to ensure reliable and accurate collection of data, the hardware 

component has to satisfy a set of minimum specifications (e.g., in terms of signal-to-noise ratio, and 
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sensors’ drift). Battery life is of utmost importance, even more so in the context of the Mobilise-D 

project (aiming at recording data continuously for 7 days). In the Mobilise-D project, the choice of 

the hardware fell on the DynaPort MoveMonitor (DynaPort MM+, McRoberts, The Hague, The 

Netherlands. Figure 2.1.A), a class I medical device, CE-marking according to Directive 93/42/CEE, 

produced by one of the Mobilise-D consortium’s partners. The McRoberts device, a lower-back IMU 

sensor worn at the level of the fifth lumbar vertebra (through a belt), was employed in both the 

technical validation study (TVS) and the clinical validation study (CVS). The specifications of the 

McRoberts device (Table 2.1) represented the reference wearable device specifications. The device’s 

wearability and acceptability were taken into account and assessed [159] as patients were asked to 

wear the sensor for a long period of time and instructed to remove it only during the bath because the 

sensor was not waterproof [77]. 

At a later stage, a second device, the Axivity Ax6 sensors (Axivity Ltd, Newcastle upon Tyne, United 

Kingdom. Figure 2.1.B), was selected to supplement the stock of Dynaport MM+ to ensure both the 

TVS and CVS could be completed as planned. The Axivity AX6 sensor was selected as a valid 

alternative device as it could be configured with the same sampling frequency and sensor ranges 

reported in Table 2.1, therefore satisfying the minimum metrological specifications required. 

Moreover, the accelerometers and the gyroscopes included in the adopted wearable device were 

equivalent in terms of ranges and resolutions to those of the DynaPort MM+. 
Table 2.1 Specifications of the McRoberts Dynaport MM+ IMU. Adapted from [77], Copyright © 2021, BMJ Publishing Group Ltd. 
All rights reserved. Re-use permitted under CC BY-NC. 

Dimensions Weight Battery life Sensors Sampling 
frequency 

Sensor 
range 

Sensor 
resolution 

106.5´58´11.5 
mm 55 g 7+ days 

Tri-axial 
accelerometer 100 Hz ±8 g 1 mg (at ±8 g) 

Tri-axial 
gyroscope 100 Hz ±2000 dps 70 mdps (at 

±2000 dps) 

A 

 

B 

 

Figure 2.1 Wearable sensors employed in both the TVS and CVS: (A) the McRoberts DynaPort MM+ and (B) the Axivity Ax6. 
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2.1.2. The analytics software 

The software component allows to extracting the mobility-related parameters (i.e., the DMOs), 

starting from the raw data acquired using wearable sensors. According to the Mobilise-D approach, 

the software is independent of the hardware component as long as the latter meets the abovementioned 

set of specifications (e.g., on the number of sensors, battery life and other metrological 

characteristics). In the project, the software component consists of the Mobilise-D analytics software, 

which showed to be highly accurate, compared to gold standard measurements, even when used to 

monitor subjects who walk slowly or irregularly [77]. This is achieved by transforming what was 

originally a simple signal processing software into a sophisticated multi-module software, which 

takes in input the raw signals of the IMU and produces an estimation of various DMOs in output. The 

Mobilise-D analytics software comprises several modules (Figure 2.2). 

 
Figure 2.2 The Mobilise-D analytics software for the estimation of DMOs from the raw IMU data. 

First, the IMU data are pre-processed to increase the quality of the signals, thereby reducing the noise. 

This is a critical step, as a wrong upstream analysis would have a negative impact on the efficacy and 

accuracy of the calculated/extracted DMOs. Once processed, the IMU data enter the gait sequence 

detection module. As IMUs continuously record for several days at a time, all sorts of activities 

performed by individuals in their daily lives are recorded. Thus, it is important to isolate the intervals 

of walking activity for which DMOs will be extracted. Once the gait sequences are isolated, the 

corresponding data are analysed within the stride detection module. A gait sequence is defined as a 

succession of strides, each consisting of two subsequent steps, defined in turn by two events (i.e., an 

initial contact and a final contact between the foot and the ground) [160]. The stride detection module 

is one of the key modules of the Mobilise-D pipeline, which allows the derivation of numerous 

mobility-related metrics, such as the stride length, defined as the distance covered by two consecutive 

placements of the same foot, which is tightly related to cadence and real-world walking speed. If a 
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finer granularity is required, the data flow in the Right/Left detection module enables the extraction 

of DMOs at the walking bout (WB) level. A walking bout is a walking sequence containing at least 

two consecutive strides of both feet (i.e., R-L-R-L-R-L or L-R-L-R-L-R). Moreover, since a WB may 

be interrupted by resting periods or other activities (e.g., turning, stair climbing), additional 

algorithms have been included in the Mobilise-D analytics software pipeline (e.g., walking context 

module, Figure 2.2). For more details, the reader is referred to Appendix A at the end of the thesis. 

Regulatory strategy: credibility of hardware-independent software 

As briefly mentioned in the previous section, while defining a comprehensive approach to assessing 

mobility based on continuous monitoring in real-world settings, the Mobilise-D project aimed to 

develop an analytics software that could be independent of the hardware component without losing 

high accuracy even when used to monitor subjects who walk slowly or irregularly. In this scenario, 

the software should be certified for clinical use as a SaMD. 

2.1.3. WP5 – regulatory qualification 

In the Mobilise-D project, seven different work packages (WPs) collaborate to provide validated 

DMOs, such as RWS, extracted by the Mobilise-D analytics software to monitor disease status and 

progression in healthy conditions where mobility is a concern from recordings of mobility in real-

world scenarios. Among all, WP5 – regulatory qualification, is responsible for the regulatory aspects 

and has the objective of pursuing regulatory qualification for DMOs derived from wearable sensors 

and encouraging global health authorities and health technology assessment bodies for the regulatory 

approval in using wearable mobility sensors in the evaluation of safety and efficacy for new medicinal 

products. Additionally, it seeks to enhance the role of wearable mobility sensors in clinical practice 

as a technology for both drug development (see Section 2.2) and individual patient care (see Section 

2.3). To achieve these goals, WP5 is actively engaging with competent authorities, such as the EMA 

in Europe and the FDA in the US. In parallel, WP5 investigated the best pathway for the credibility 

assessment of the Mobilise-D analytics software. Two main regulatory strategies have been foreseen. 

One is to assess the credibility of the software, considering it with measuring capabilities and thus 

evaluating it using a metrological methodology. That means the definition of an extensive technical 

validation protocol [77] followed by clinical validation activities [161]. Alternatively, if the software 

pipeline is intended as a black box with predictive capabilities, one may decide to assess its credibility 

according to the ASME VV-40:2018 standards [135]. The effort done so far by WP5 in terms of 

regulatory qualification of the new methodologies introduced in the Mobilise-D project and the 

feedback received by the regulatory authorities is described in the next sections. 

 



 

 31 

Personal contribution to the Mobilise-D project 

The Mobilise-D project relied on the efforts of a large Consortium comprising both academic and 

industrial partners all over Europe. As part of the Regulatory Work Package (WP5), I was directly 

involved in most of the regulatory activities that took place throughout my PhD. While I was only 

partially involved in the interactions with EMA (i.e., in relation to the two QAs), I had a leading role 

in the preparation (drafting) and submission of the Pre-submission request to the FDA CDRH division 

– with the support from the other team members. 

2.2. The credibility of software for mobility monitoring in regulatory drug trials 

As introduced in section 1.3.1, before any new medical product can be marketed in the European 

Union (EU), it must obtain marketing authorisation from EMA, as well as from FDA in the American 

context. To this end, the qualification process of a novel methodology for drug development provided 

by EMA can be pursued through the submission of a request for qualification opinion, often preceded 

by one or multiple requests for qualification advice. Instead, the American equivalent process to the 

QA/QO with the EMA is known as the Biomarker Qualification Program with the FDA. Currently, 

there are no accepted mobility-related parameters (DMOs) to serve as a biomarker for mobility 

performance in drug trials [39,162]. The sole exceptions are two recent QOs from the EMA 

specifically endorsing the use of the DMOs as a secondary endpoint [163,164], highlighting the 

complexity of the qualification process. To attain such recognition globally, a crucial prerequisite is 

the demonstration of both technical and clinical validity for each designated CoU within the 

regulatory framework. The Mobilise-D consortium aims to introduce five distinct CoUs for using 

DMOs to assess mobility performance across various health conditions. Four contexts are tailored to 

individual cohorts (PD, COPD, MS, and PFF), while one proposes a disease-independent DMO. Two 

main different strategies can be pursued to achieve regulatory approval for DMOs, wherein DMOs 

inform the safety or efficacy of new medical products like drugs or digital therapeutics (as in the 

Mobilise-D project) [39]. One strategy involves proposing DMOs as primary clinical endpoints to 

quantify mobility performance directly. Alternatively, a more conservative approach is taken, 

considering mobility as a secondary DMO, also referred to as a digital mobility biomarker. The latter 

is relevant for health conditions where mobility outcomes are already accepted for disease 

monitoring. Demonstrating both technical and clinical validity, including construct validity, 

predictive capacity, and change detection, is essential for these biomarkers.  

Engaging in early dialogues with regulatory authorities, WP5 adopted a staged approach to regulatory 

qualification, receiving positive advice for a validation protocol, which is further detailed in the 

following sections. 
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2.2.1. Qualification advice procedures with the EMA 

Based on early interactions with the EMA board, and because of the high complexity of the request, 

WP5 outlined the qualification strategy, involving a two-part advisory process [162,165]. 

First request for qualification advice 

The first request for QA to EMA was submitted in October 2019, with the main intention of laying 

the foundation for the general qualification about the use of DMOs as an additional monitoring 

biomarker in assessing the efficacy of treatments for the cohorts selected in the Mobilise-D project. 

In this initial stage [162], a preliminary version of the briefing document was submitted together with 

a letter of intent and to limit the complexity of the request, the defined CoU focused only on PD. The 

proposed validation protocol was disease-independent, device-agnostic, and based on separating the 

validation of the device from the validation of the analysis of the data collected using that device 

[165]. Moreover, the validation included extensive technical and clinical validation involving 

controlled and unsupervised experiments for the assessment of construct validity, predictive capacity, 

and the ability to detect change. To this end, two different approaches [39] were implemented: (i) 

using one disease-specific primary endpoint to reflect disease-related priorities for clinical validation 

of DMOs and (ii) using a disease-independent outcome, like the Late-Life Functional Disability 

Instrument (LLFDI), which is an indicator of function and disability in older adults, to inform about 

the properties of DMOs in different clinical populations with various mobility impairment patterns. 

Also, secure data management was planned to ensure data integrity in the data transfer, storage, and 

analysis. A positive qualification advice was obtained [166], in particular, EMA considered 

acceptable in the proposed validation protocol. 

Second request for qualification advice 

At a second stage [165], in June 2020, a new request for qualification advice was submitted to the 

EMA to seek feedback on additional CoUs, where the DMOs were to be used as monitoring 

biomarkers for the remaining clinical indications of interest (COPD, MS, PFF), to predict clinical 

outcomes, both global (i.e., LLFDI) and disease-specific. In particular, the disease-specific endpoints 

proposed by the applicants were the following: fall frequency for both PD and MS patients; 

occurrence of moderate to severe exacerbations for patients with COPD; and admission to care or 

nursing home after PFF. The EMA endorsed the general concept of the proposed clinical validation 

process, which involved 2400 enrolled patients (i.e., 600 subjects for each of the four healthy 

conditions) in a 24-month observational study. The concept of mobility performance was considered 

to have the potential to offer valuable supplementary insights into mobility disability in all four 

targeted diseases: PD, MS, COPD, and PFF. The Letter of Support published in May 2021 [167] 
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highlighted the lack of an established gold standard to reference, given that mobility performance 

was a novel outcome without prior evaluation. As a result, the observations might or might not align 

with other recognised mobility outcomes (i.e., mobility capacity or mobility perception) [167]. 

Originally, in the light of the advice received, a third submission was planned [39] where the 

qualification advice on the use of DMOs as biomarkers predictive of relevant clinical endpoints was 

investigated. In particular, WP5 wanted to seek clarification from EMA experts regarding the best 

DMO that can be used as a surrogate biomarker to predict (i) for COPD, moderate-to-severe 

exacerbation necessitating significant changes in treatment or emergency room/hospital admission; 

(ii) for PFF, prevention of admission to a long-term care facility or other forms of assisted living 

settings; (iii) for MS and PD: against self-reported falls. However, this third stage has not been 

actuated yet because it was included in the second request for QA [165]. 

2.2.2. Qualification program procedures with the FDA 

In parallel with the submissions to EMA, WP5 started to approach the FDA board to present the 

overall project and seek information about the most appropriate regulatory strategy for the Mobilise-

D technologies [168]. A pre-LOI meeting has already been held, narrowing the CoU to the patients 

with MS only. Based on the first feedback received and the two QAs provided by the EMA, the next 

planned step is to submit a qualification plan to the FDA through the CDER Clinical Outcome 

Assessment Qualification Program [165], but only once the full clinical studies’ results will be 

available, thus after the end of the Mobilise-D project. 

2.3. The credibility of software for mobility monitoring for clinical use 

Another aim of the Mobilise-D consortium is to demonstrate that real-world DMOs can effectively 

predict clinical outcomes, offering a better, safer, and quicker approach for mobility monitoring for 

clinical use. Currently, there is a lack of robust validation studies for real-world digital mobility 

measurements, necessitating a technical validation study as the initial step for clinical and healthcare 

adoption and use. To ensure clinical suitability, the software must obtain certification as a SaMD 

since it was developed as a standalone component with measuring capabilities, which involves 

evaluation through metrological methodologies. However, given the close similarity of the software 

to a predictive model, an alternative approach could involve assessing its reliability using the ASME 

V&V-40 technical standard [135]. This assessment would be based on the aspects of verification, 

validation, and uncertainty quantification. 

Hereafter, these two possible regulatory pathways are better described. 
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2.3.1. Mobility monitoring software as a measurement device: metrological validation 

Metrological validation refers to the definition of an experimental protocol where well-established 

tests are implemented to compare the outcomes from the tested device with measurements acquired 

using gold standard instrumentations or measuring instruments with at least one order of precision 

higher than that of the tested device. The technical validation protocol proposed by the Mobilise-D 

consortium (WP2) was defined to compare the DMOs extracted using the Mobilise-D analytics 

software with measurements acquired using stereophotogrammetry and wearable sensors already 

validated. In the TVS of the Mobilise-D project [77], a wearable device (i.e., the McRoberts device) 

and the algorithms have been validated to measure the RWS as a primary DMOs, and other secondary 

DMOs (e.g., walking bout, stride/step duration, cadence, turning, stride length). The study involved 

120 participants from six groups across five clinical sites in three European countries, including 

patients with COPD, PD, MS, PFF, congestive heart failure, and healthy older adults (HAs). 

Validation occurred in both laboratory and home settings, assessing the algorithm’s viability. The 

study also included an observational component to evaluate both participants’ and professionals’ 

experiences with the device in terms of usability and acceptability. All the gathered information has 

contributed to defining the inclusion and exclusion criteria for each condition. For all the groups, 

participants were recruited only if able to walk independently for at least 4 m, read, write, and give 

informed consent, continuously wear the sensor, and having a Montreal Cognitive Assessment [169] 

higher than 15, while exclusion criteria (for the clinical cohorts) were whether a medical condition 

could interfere with the patient’s compliance or in the three months prior the inclusion other adverse 

health conditions had occurred (e.g., myocardial infarction, stroke). See Table 2.2 for the summary 

of the inclusion/exclusion criteria specific to each cohort; for further details, see Mazzà et al. [77]. 

The TVS involved a comprehensive protocol combining laboratory and unsupervised real-world 

assessments in three different experimental conditions (see Table 2.3) over nine days: (1) laboratory-

based structured activities, (2) 2.5 hours of unsupervised real-world, and (3) continuous monitoring 

for a period of 7 days. The tested wearable sensor (i.e., the DynaPort MM+) was attached to the lower 

back using an elastic waistband and Velcro strap. In the in-lab activities, the stereophotogrammetric 

system was used as a gold standard for the validation of the DMOs during supervised and controlled 

motor tasks, which mimicked activities of daily life. In the other two contexts of assessment, both in 

the real-world, the INertial module with DIstance Sensors and Pressure insoles (INDIP) represented 

the reference system [170–172]. To assess the impact of contextual confounding factors, an additional 

system, developed as a mobile app (Aeqora App) and capable of detecting outdoor walking, gradient 

changes during uphill and/or downhill walking, was used. 
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Moreover, a Bluetooth beacon (BlueBeacon Tag, BlueUp) was used to monitor the activity of the 

walking aid, when employed [77]. 

 

As a consequent step of the technical validation, extensive clinical validation is also required to have 

approval by the regulatory authorities. The clinical validation, which is still ongoing, includes the 

recruitment of 2400 participants (600 for each of the four cohorts selected in the Mobilise-D project). 

It is important to note that the TVS represents a huge endeavour, that has to be conducted at every 

change of the tested device (e.g., an update of the software). These reasons, associated with the high 

costs require for the TVS, represent non-negligible factors. 

Table 2.2 Summary table with the inclusion and exclusion criteria of the enrolled cohorts. Adapted from [77], Copyright © 2021, 
BMJ Publishing Group Ltd. All rights reserved. Re-use permitted under CC BY-NC. 

Cohort Inclusion criteria Exclusion criteria 

PD 
- Aged over 18 years old 

- Diagnosis of PD based on the Movement 
Disorders Society criteria 

- Impaired mobility related to non-PD 
causes 

MS 
- Aged over 18 years old 

- Diagnosis of MS according to the revised 
McDonald’s criteria 

- Impaired mobility related to non-MS 
causes 

COPD 

- Aged over 45 years old 

- Diagnosis of COPD (post-bronchodilator 
forced expiratory volume in the first second to 
forced vital capacity ratio <0.70) 

- Clinical stability (i.e., at least four weeks 
without antibiotics and/or oral corticosteroids) 

- Current or ex-smokers with a smoking history 
equivalent to at least ten pack years 

- With major lung surgery and/or lung 
tumour 

- Primary respiratory diseases due to other 
causes (e.g., asthma) 

- Impaired mobility related to non-COPD 
causes 

PFF 

- Aged over 65 years old 

- Surgical treatment for a low-energy fracture of 
the proximal femur of the hip and pelvis within 
the last 12 months 

- Impaired mobility related to non-PFF 
causes 

HA - 65+ years of age  
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2.3.2. Mobility monitoring software as a predictive device: model credibility 

The Mobilise-D analytics software is a highly sophisticated multi-module software that takes in input 

the raw signals of the IMU and produces an estimation of various DMOs in output. From this 

perspective, the analytics software could be considered a predictive model that predicts the DMOs 

starting from raw data acquired by wearable sensors. Therefore, the credibility of the software could 

be assessed based on the ASME V&V-40:2018 standard [135] (see section 1.3.3). 

This represents an innovative regulatory process, and it was thus appropriate to investigate its 

feasibility and correctness. The Q-submission program [168] developed by the FDA provides an 

overview of the mechanisms available to submitters through which they can request feedback in 

writing or during a meeting with the FDA board, and it was identified as the best solution to have 

interactions with the regulatory authority about the feasibility of such a new regulatory methods. 

Specifically, a Pre-Submission form, included in the Q-Submission program, which is a voluntary 

formal written request to obtain FDA feedback prior to an intended submission or to help guide 

product development and/or application preparation [173], was submitted. The submitters can also 

decide the method to receive the FDA feedback: written feedback only, teleconference or in-person 

meeting. The form is exempted from the payment of a fee, and based on the Pre-Submission 

timeframe reported in the FDA guideline the first written feedback is sent to the submitters by 70 

days from the acceptance of the request. A bit longer time (i.e., 90 days) can be required to have also 

Table 2.3 Overview of the experimental protocol employed to validate the algorithms both in laboratory settings and real-world 
contexts. Adapted from [77], Copyright © 2021, BMJ Publishing Group Ltd. All rights reserved. Re-use permitted under CC BY-
NC. 

Experimental 
conditions Mobility activities Reference systems 

In-lab 

- Timed Up and Go (TUG) Test (3 meters) 

- Straight Walking Test 

- L Test 

- Surface Test 

- Hallway Test 

- Simulated Daily Activities 

Stereophotogrammetric system 

Real-world 
(2.5 hours) 

Out-of-lab, free-living in habitual environments chosen by 
each participant among home, work, and/or outdoor 

INDIP 

Mobile Phone with Aeqora App 

Beacon 

Real-world 
(7 days) Unsupervised daily living 

Mobile Phone with Aeqora App 

Beacon 
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a face-to-face meeting. In the form, the focus was only on patients affected by MS to reduce the 

overall complexity of the submission (i.e., narrowing down the Context of Use) and in line with the 

previous interaction of the Mobilise-D consortium with the US regulatory Agency (see section 2.2.2). 

The Pre-Submission form consisted of several sections (Table 2.4); the key parts of the dossier were 

(1) the description of the overall aim of the request, the intended use (of the software pipeline) and 

the list of specific questions to the Agency (on which we sought to receive feedback), and they are 

detailed hereafter. 

 

Aim of the Q-Submission 

The aim of the request for feedback for Medical Device Submissions (Q-submission program) was 

to receive feedback on the regulatory assessment of the Mobilise-D analytics software pipeline when 

used in the clinical management of patients affected by MS. In particular, the FDA was queried on 

whether: 

1) the Mobilise-D software could be submitted as a standalone device and specifically as 

Software as Medical Device (SaMD) to make it independent from the IMU used to collect the 

data; 

2) the appropriate regulatory pathway was a De Novo submission or a Premarket Notification 

510(k); 

Table 2.4 Summary of the sections and their contents of a Pre-Submission form. 

Section Contents 

Cover letter 

Contact information 

Q-Submission type 

Feedback required (in case of request of meeting, preferred 
dates and times, planned attendees) 

Purpose The overall purpose of the Q-Sub, including goals for the 
outcome of the interaction with the FDA 

Device or Product Description Description of device functions and the scientific basis of the 
device 

Proposed Indications for Use or Intended 
Use The aim for which the device has been designed  

Regulatory History Listing of any relevant previous communications with the 
FDA about the subject device 

Questions The core of the form, which includes all the matters the users 
want to receive feedback about 
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3) the ASME V&V-40:2018, intended for the assessment of the credibility of predictive models 

as medical device development tools, could also be used to evaluate the credibility of 

predictive SaMD; 

4) the accuracy of the software in estimating specific digital mobility outcomes should have been 

formulated as a metrological validation or as the credibility assessment of an orchestration of 

predictive models. To this purpose, we presented two possible validation pathways for the 

Mobilise-D software following a metrological validation or following ASME V&V-40:2018 

standard. 

Proposed Intended Use  

The Mobilise-D analytics software is used to process raw signals from patients affected by MS, 

collected by a wearable Inertial Measurement Unit that satisfies certain technical specifications. The 

software outputs are the DMOs (e.g., the real-world walking speed) that are used to quantify the 

mobility performance of the patient, and they will supplement the clinical scales used to evaluate the 

individual progression of the disease, such as the EDSS. As clinical outcomes, the DMOs computed 

by the Mobilise-D analytics software can provide additional and supporting information useful for 

clinical decision-making on the status of MS patients. 

 

Questions 

Question #1: Mobilise-D analytics software as a SaMD 

The Mobilise-D Analytics Software is designed to be device-agnostic; the software can compute 

DMOs from the raw recordings of any single wearable IMU as long as it satisfies a set of minimum 

specifications. Consequently, we believe that the analytic software can be identified as a Software as 

Medical Device (SaMD) and that can be considered independent from the hardware, as a standalone 

device. Does the Agency agree? 

Applicant’s position 

In the first two years of the project, the Mobilise-D consortium conducted a rigorous study to show 

the device-agnostic feature of its methodologies. The TVS, its outcomes and the resulting list of 

minimal requirements are detailed in peer-reviewed scientific papers [39,77,162]. Leveraging on the 

results of the TVS, the Mobilise-D consortium would like to treat the analytics software pipeline as 

a SaMD and plans to assess its credibility independently from that of the hardware component. 
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Question #2: Certification of the Mobilise-D analytics software 

The Mobilise-D analytics software consists of several modules for processing the raw data recorded 

by a wearable sensor. The intended use is the quantification of the mobility performance in Multiple 

Sclerosis patients by computing the DMOs, which can be used as supporting tools for clinical 

decision-making. The premarket notification 510(k) and the De Novo application are two suitable 

regulatory pathways to certify this software. Based on our research in the 510(k) database, we believe 

the De Novo request is the right pathway to submit. Does the Agency agree? 

Applicant’s position 

The research in the lists of all the medical devices cleared through the CDRH Premarket Notification 

510(k) process led us to believe that De Novo submission could represent the most suitable regulatory 

pathway to certify the Mobilise-D analytics software, considered as a SaMD. We did not find any 

previously legally marked device that shares the same intended use as the predicate, and therefore, 

no substantial equivalence could be demonstrated. 

 

Question #3: Credibility assessment of the Mobilise-D analytics software based on VV-40 

The ASME V&V-40:2018 is intended to assess the credibility of predictive models as medical device 

development tools. Does the Agency agree that the same technical standard can also be used to assess 

the credibility of predictive software as a medical device? 

Applicant’s position 

The Mobilise-D analytics software pipeline comprises several modules to process the raw data 

recorded – continuously, over 7 days - by the wearable sensor (hardware component), thus predicting 

an output (i.e., DMOs). This analytics software consists of both physics-based and data-driven 

algorithms. As a whole, it could be considered a model that takes in input for the raw data and predicts 

the DMOs. The ASME V&V40-2018 standard regulates the process to assess the credibility of a 

predictive model and, as suggested in the FDA guideline [173], could in principle be applied to the 

several modules of the Mobilise-D software pipeline. 

 

Question #4: Metrological validation vs. model credibility 

The Mobilise-D analytics software is a complex pipeline combining signal processing, data-driven 

modelling, and knowledge-driven modelling. As such, the evaluation of its accuracy and precision in 

quantifying specific digital mobility outcomes could be conducted in two ways. In the first, we would 
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assume the software is part of the metrological process, treat it as a black box, and simply compare, 

in terms of precision and accuracy, for each digital mobility outcome the value provided by the 

software with that measured by some instrumentation of an accuracy class superior to that we expect 

for the Mobilise-D software. The second is to treat the software as an orchestration of predictive 

models and conduct a risk-based verification, validation, and uncertainty quantification analysis for 

each software module and the whole orchestration separately. Can the Agency advise if at least one 

of these approaches is considered adequate, and if they are both considered adequate, which one is 

preferred? 

Applicant’s position 

The most common way to evaluate the validity of the DMOs is the so-called technical validation. It 

consists of the metrological characterisation of the Mobilise-D analytics software by comparing 

DMOs predicted by the Mobilise-D pipeline and the same DMOs measured with gold-standard 

systems, which have an expected accuracy significantly higher than that of the mobility monitors. 

A second possibility is to consider the Mobilise-D analytics software as a set of predictive models 

and, therefore, to assess its validity following the ASME V&V-40:2018 standard. 
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Chapter 3 – FORCELOSS: AN OVERVIEW OF 

SCIENTIFIC RATIONALE AND ENABLING 

TECHNOLOGIES 
This chapter introduces the ForceLoss project, the second project in which I am actively participating. 

The primary objective of the project is to establish a novel framework for supporting the differential 

diagnosis of dynapenia by integrating experimental measurements with computational modelling. My 

contributions extend to defining the experimental protocol in the laboratory and configuring the 

acquisition of medical images. However, the significant work I did lies in the computational aspect, 

including the generation of musculoskeletal (MSK) models and the execution of simulations. 

Following a brief overview of the clinical context and project objectives, the chapter provides a 

comprehensive description of all the experimental techniques and methodologies employed in the 

ForceLoss project. 

3.1. The ForceLoss project 

The ForceLoss project aims to address this complexity by developing an experimental protocol 

integrating medical imaging (specifically magnetic resonance imaging – MRI), dynamometry, 

electromyography (EMG), and subject-specific computer modelling to support the differential 

diagnosis of dynapenia. With ageing, human muscles naturally become weaker, even in healthy 

individuals [1]. The loss of muscle force is referred to as dynapenia [2], which is both a physiological 

and/or pathological process commonly observed in the ageing population. Usually, dynapenia is 

confused with sarcopenia [3], the age-related loss of muscle mass affecting around 10% of elders [4]. 

This confusion arises from the high complexity of the problem, as the elderly experience functional 

decline for various reasons, including generalised sarcopenia, fat inclusion due to selective sarcomere 

loss, activation inhibition (e.g., arthrogenic muscle inhibition after knee surgery), poor neuromuscular 

control, musculoskeletal disorders or neurological conditions [5,6]. However, the primary causes of 

dynapenia can be identified in a diffuse or selective sarcopenia, a lack of activation (inhibition), or 

suboptimal motor control [7,8]. Moreover, muscular weakness causes the elders’ physical 

dysfunction, increased fall risk, and mortality [9–11], thus making early diagnosis as well as the 

identification of the aetiology and potential treatments crucial. Existing methods, such as maximal 

isometric contraction test [2], MRI and high-resolution MRI [12], Multi-Channel surface 

Electromyography (MC-EMG) [13–15], and tetanic Superimposed Neuro-Muscular Electrical 

Stimulation (SNMES) [13,16], each offer valuable insights into aspects of dynapenia but fall short of 
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providing an integrated diagnosis. For example, the most common approach to globally examine 

whether neural deficits contribute to a loss in strength involves the adoption of a SNMES to muscle 

while the individual is engaged in a maximal voluntary contraction [3].  

Commonly, the differential diagnosis of dynapenia begins with a detailed medical history and 

physical examination, involving a comprehensive assessment to differentiate the dynapenia from 

other conditions with similar symptoms. Clinicians evaluate the patient’s history of muscle weakness, 

functional limitations, and any associated symptoms such as fatigue or difficulty with activities of 

daily living. To gather valuable information, diagnostic tests may be performed. These include muscle 

strength testing using dynamometry, assessment of muscle mass through techniques like dual-energy 

X-ray absorptiometry or bioelectrical impedance analysis (BIA) [23,24], and evaluation of muscle 

function and performance using standardised tests such as the Timed Up and Go test [25] or the Short 

Physical Performance Battery [26]. Laboratory investigations may be conducted to rule out 

underlying medical conditions contributing to muscle weakness, such as inflammatory myopathies, 

neurological disorders, or endocrine abnormalities [27,28]. Additionally, imaging studies such as 

MRI [29] or EMG [14] may be utilised to assess muscle structure and function. To this end, in cases 

of dynapenia, the necessity to pinpoint the primary cause is crucial due to the variety of medical 

specialists involved depending on the underlying issue. For patients suspected of sarcopenia, a referral 

to a geriatrician or an endocrinologist may be appropriate. These specialists are adept at managing 

age-related physiological changes and hormonal imbalances. If neuromotor deficits are suspected as 

the cause, a neurologist would be the specialist of choice, given his expertise in disorders that affect 

the nervous system and its control of muscle functions. A clinical neurophysiologist would be 

consulted for issues specifically related to muscle innervation. Each of these specialists brings a 

distinct set of skills and knowledge, making it imperative to accurately diagnose the root cause of 

dynapenia to ensure the most effective treatment plan. 

The ForceLoss project, which aims to conduct a differential diagnosis of dynapenia, combines 

established diagnostic tests (e.g., dynamometry, EMG, BIA, and MRI) used in such analyses with 

innovative techniques previously unexplored, such as neuromusculoskeletal (NMSK) dynamics 

models. The use of subject-specific computer models, often referred to as digital patients or digital 

twins emerges as a promising solution for complex differential diagnoses. Once validated, these 

predictive models can simulate various scenarios, aiding in differential diagnoses with high 

explanatory power due to their mechanistic nature. While the development of subject-specific NMSK 

dynamics models dates back several years, recent applications have showcased their effectiveness in 

clinical decision support. These models have been employed to explore the impact of sub-optimal 

control on joint forces [17], act as a stratification tool in the treatment of Juvenile Idiopathic Arthritis 
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[18,19], and predict various musculoskeletal outcomes after orthopaedic surgeries [20–22]. The 

integration of these models into clinical practice represents a significant step towards enhancing 

diagnostic accuracy and guiding effective treatments in cases of dynapenia. 

Two different clinical trials were specifically designed for the ForceLoss project and consisted of the 

enrolment of 20 healthy adults (Personalised Modeling and Simulation Procedures for the 

Differential Diagnosis of Dynapenia: a Study on Healthy Volunteers. Clinical Trials ID: 

NCT050915021) and 20 total knee replacement patients (Personalised Modeling and Simulations for 

the Differential Diagnosis of Dynapenia: Study on Patients With Osteoarthritis (ForceLoss II). 

Clinical Trials ID: NCT057953482), respectively. All the participants enrolled in the study signed 

informed consent prior to participating in the study, in accordance with the local Ethical Committee 

approval (CE AVEC: 216/2020/Sper/IOR).  

The general common aims of the ForceLoss project are twofold: 

1. develop, optimise, and assess an experimental protocol for performing dynamometry tests 

aimed at estimating the maximal voluntary isometric force of the muscle groups involved in 

knee flexion-extension, as well as the relative activation of various muscle groups through 

EMG recordings and its difference from the maximal tetanic isometric force induced with 

SNMES; 

2. develop, optimise, and (eventually) validate a modelling and simulation framework for 

generating subject-specific NMSK dynamics models, informed by the data from a MRI of the 

lower limbs and EMG signals recorded during the dynamometry test, employed for the 

simulation of such dynamometry test. 

Table 3.1 summarises with greater detail the differences in terms of hypothesis and aims of the two 

ForceLoss clinical studies, referred to as ForceLoss: Part I – Healthy Volunteers and ForceLoss: Part 

II – Osteoarthritic Patients, respectively. 
Table 3.1 Overview of the two ForceLoss clinical trials, focused on healthy volunteers and osteoarthritic patients, respectively. 

 
ForceLoss: Part I 

Healthy Volunteers3 

ForceLoss: Part II 

Osteoarthritic Patients4 

Ages Adults: 20-40 years old Older adults: 60-85 years old 

Hypothesis The use of subject-specific NMSK models to simulate a MVIC test of the knee extensors, 
informed by experimental measures may be employed in the differential diagnosis of dynapenia 

 
1 https://clinicaltrials.gov/study/NCT05091502  
2 https://clinicaltrials.gov/study/NCT05795348  

https://clinicaltrials.gov/study/NCT05091502
https://clinicaltrials.gov/study/NCT05795348
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Aims 

- Experimental protocol; 

- Modelling and simulation 
framework, assessing both 
feasibility and reliability of the 
proposed procedures. 

- Experimental protocol previously developed and 
tested on healthy volunteers with additional measures 
(involuntary muscle contraction, a hand-grip test, bio-
impedance and clinical questionnaires); 

- Modelling and simulation framework to include one 
additional step (to check for muscle inhibition). 

Inclusion 
criteria Body mass index: [15-30 kg/m2] 

- Diagnosis of Primary Arthrosis at the knee (according 
to the American College of Rheumatology criteria), 
subjects elected for total knee arthroplasty; 

- Body mass index: [18.5-30 kg/m2]; 

- Health status: 1 or 2 (according to the American 
Society of Anesthesiology classification); 

- Suspected systemic sarcopenia due to aging or 
localized sarcopenia due to disuse. 

Exclusion 
criteria 

- Neurological, rheumatic or 
tumoral diseases; 

- Pathologies or physical 
conditions incompatible with 
the use of magnetic resonance 
imaging and 
electrostimulation (i.e., active 
and passive implanted 
biomedical devices, epilepsy, 
severe venous insufficiency in 
the lower limbs, pregnancy); 

- Previous interventions or 
traumas to the joints of the 
lower limb. 

- Neurological, rheumatic or tumoral diseases, diabetes, 
inguinal or abdominal hernia; 

- Severe Hypertension (Level 3) and/or cardio-
pulmonary insufficiency; 

- Diagnosis of Osteonecrosis in the lower limb joints; 

- Pathologies or physical conditions incompatible with 
the use of MRI and electrostimulation (i.e., active and 
passive implanted biomedical devices, epilepsy, severe 
venous insufficiency in the lower limbs); 

- Previous interventions or traumas to the joints of the 
lower limb. 

3 https://clinicaltrials.gov/study/NCT05091502  
4 https://clinicaltrials.gov/study/NCT05795348 

Each subject has to attend an experimental session to measure the maximum voluntary isometric 

contraction (MVIC) of the quadriceps and, for the patients, also the tetanic isometric contraction 

enforced by the electrical stimulation. For each individual, a subject-specific MSK model is 

generated, with an increasing level of personalisation of muscle properties (i.e., the maximal isometric 

force – MIF – and the maximum activation level). The proposed framework for the digital twin-

assisted differential diagnosis of dynapenia includes the following steps (see Figure 3.1): 

- If the experimental MVIC torque is significantly lower than that of the age-matched healthy 

population, the subject is affected by dynapenia. 

- If, for the patients affected by dynapenia, even with the inclusion of the patient-specific 

muscle maximal isometric force values (computed using the patient-specific muscle volumes 

segmented from the medical images of the individual), the digital twin predictions are higher 

than those experimentally measured, then the dynapenia is entirely due to sarcopenia. 

https://clinicaltrials.gov/study/NCT05091502
https://clinicaltrials.gov/study/NCT05795348
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- If, even with the inclusion of patient-specific muscle activation levels (calculated from the 

EMG measurements), the predicted torque remains higher than the measured torque, it is 

plausible to conclude that the subject, in addition to some degree of sarcopenia, is also affected 

by some neuromuscular problems (e.g., muscle inhibition or suboptimal motor control). 

- If the predicted torques are comparable to that obtained by forced SNMES contraction, then 

the dynapenia is entirely due to activation inhibition. Otherwise, if, even with the inclusion of 

the electrical stimulation, the MVIC torque predicted by the model overestimates the 

experimentally measured one, then the dynapenia is due to problems in the motor control. To 

confirm this, an EMG-assisted simulation will be run while defining the activation of each 

muscle based on the measured EMG signals and including a patient-specific suboptimal 

control. That should bring the predicted value close to the measured torque and confirm that 

the patient also has neuromuscular control problems. 

 
Figure 3.1. The framework for the differential diagnosis of dynapenia, proposed in the ForceLoss project 

Personal contribution to the ForceLoss project 

My primary responsibilities within the project included data processing, model development, and the 

execution of simulations. Additionally, support was provided to the research team in data collection, 

ranging from MRI to laboratory testing. 
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3.2. Experimental measurements 

The ForceLoss protocol (mentioned above) includes the acquisition of an MRI of the lower limbs and 

the performance of an MVIC test of the knee extensors and flexors while the EMG signals are 

recorded. Differences in the designed protocols for the two clinical trials are summarised in Figure 

3.2. A doctor first visited both the volunteers and the patients to verify their eligibility for the study. 

The visit also included familiarisation with the instrumentations (in particular, the isometric chair 

dynamometer or the Biodex dynamometer for the healthy adults and the patients, respectively). After 

the enrolment, each subject had to do an MRI of the lower limbs, which took approximately 30 

minutes, and, on a separate day within the following week, to perform the dynamometry test (after 

placing the electrodes for surface EMG and the warm-up exercises). The dynamometry test consisted 

of the repetition of three contractions of the knee extensors and flexors at four (for the volunteers) or 

at three (for the patients) different knee flexion angles. In addition to the warm-up exercises, upon 

request of the clinical partners, patients were administered two clinical questionnaires (i.e., Western 

Ontario and McMaster Universities – WOMAC – and Karolinska Sleepiness Scale – KSS) to collect 

information on the level of pain and functionality of the joint perceived by the patients, and were 

asked to perform a hand-grip test as well as to undergo a bioelectrical impedance analysis. 

  

The following sections briefly describe the various clinical and experimental tests and measures 

performed in the ForceLoss clinical studies. 

  

 

Figure 3.2 The ForceLoss framework designed for the two clinical studies (in the white boxes the clinical tests in common between 
ForceLoss Part I and Part II are shown, while the grey boxes include the examinations performed only by the osteoarthritic patients). 

 

Magnetic resonance 
imaging

Subject preparation
EMG site identification and placement

Questionnaires
(WOMAC and KSS)

Hand-grip test Bioelectrical
impedance analysis

Warm-up exercises
10 minutes warm-up on ergometer
Sit-to-stand-to-sit
10-meter walk
Submaximal contractions

Voluntary isometric 
dynamometry test

Involuntary isometric 
dynamometry test 

(SNMES)
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3.2.1. Magnetic Resonance Imaging 

MRI is a non-invasive, high-resolution medical imaging technique that is considered the gold 

standard for in vivo studies of muscular morphology and body composition, together with Computed 

Tomography (CT) [30]. Unlike other imaging modalities such as X-rays or CT scans, MRI does not 

involve ionising radiation. Despite these advantages, MRI has drawbacks, such as the high cost of 

scanners [31]. Furthermore, individuals with metallic implants cannot undergo MRI due to safety 

concerns and potential image distortion (i.e., artifacts) [32]. This restriction extends to those with 

claustrophobia, given the confined space inside an MRI scanner [33]. Additionally, the quality of 

MRI images relies on the subject’s ability to remain motionless for extended periods (typically 20 to 

90 minutes). Even minimal movements, such as tremors or shifts, can compromise image 

interpretation [34]. Various MRI acquisition sequences have been developed over the years to 

emphasise specific details based on clinical interest and application. In the ForceLoss project, the 

proprietary Dixon sequence was chosen for its high versatility and because of the different subjects 

enrolled in the study, using a GE Healthcare 3.0T scanner. 

Dixon sequence 

The Dixon sequence offers a versatile approach to imaging by providing four distinct series of images. 

This sequence initiates with the acquisition of in-phase and out-of-phase images, which are 

subsequently combined to reconstruct images exclusively highlighting either fat or water. The Dixon 

sequence’s adaptability is particularly advantageous, enabling its application for various purposes, 

such as the segmentation of different tissues. One notable benefit is its ability to capture microscopic 

fat infiltration. This sequence has gained increasing interest due to its comparative advantages over 

traditional imaging technique. 

3.2.2. Maximum Voluntary Isometric Contraction test 

The MVIC test is a standardised method for the measurement of muscle strength during a static 

contraction. This test is particularly useful in evaluating an individual’s maximal strength within a 

specific muscle group (e.g., knee flexors or extensors, hip ab/adductors), and it is commonly 

employed in the sports science [35], rehabilitation [36], and exercise physiology to determine baseline 

strength, track progress, or identify muscular imbalances [37]. Accurate and consistent MVIC testing 

provides valuable information for designing personalised training programs and rehabilitation 

protocols, quantifying overall muscular performance, or monitoring the force loss in patients affected 

by neuromuscular disease. During the MVIC test, participants are instructed to exert their maximum 

muscle contraction while maintaining an isometric position (i.e., a fixed joint angle and moment arm). 

Several methods and instrumentations can be employed for measuring muscle strength. The choice 
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of the technique depends on factors such as specific research or clinical goals, available resources, 

and the environment in which the testing will be conducted. Independently from the instrumentations, 

the MVIC test can be affected by inaccuracies due to intrinsic (e.g., muscle pain [38], personal 

ambition [39]) and extrinsic (e.g., test protocols, verbal encouragement, visual feedback) factors [40]. 

Successful testing relies on the patient’s ability to fully cooperate and exert maximum effort. 

Conditions during testing, like fatigue, may also affect the reliability of results, and motivating 

patients to maintain effort throughout the entire session can be challenging. 

Isokinetic dynamometer 

Isokinetic dynamometers (IKDs), such as the Biodex (Biodex Medical Systems, Shirley, New York) 

dynamometer, are sophisticated devices designed to measure and assess muscle strength and joint 

performance, providing precise control over the speed of movement, ensuring a constant angular 

velocity throughout the range of motion [41]. The IKDs are equipped with computerised systems that 

precisely regulate the speed of movement, allowing for concentric, eccentric and isometric 

contractions, providing a comprehensive understanding of muscle function and potential weaknesses 

[42]. Moreover, they enable several configurations for assessing muscle function in different joints, 

including the knee, shoulder, and ankle. Their high precision, reproducibility and reliability, as well 

as their versatility of isokinetic dynamometers, make them the gold standard for measuring the MVIC 

test [43–45]. These devices are particularly valuable in clinical and research settings, providing 

detailed information about muscle strength imbalances, joint stability, and functional capacity. 

Isokinetic testing is commonly employed in rehabilitation programs [41] for various musculoskeletal 

conditions, as it allows clinicians to assess and monitor progress while customising treatment plans 

based on accurate and reliable data. The equipment allows for the isolation of specific muscle groups 

(e.g., knee flexors or extensors). Straps and belts prevent compensatory movements in other body 

segments and preserve the alignment between the dynamometer and the rotational axis of the joint of 

interest, ensuring reliable data acquisition [46,47]. However, wide-scale use is limited due to high 

cost, large dimensions, and the lack of portability. These can be limiting factors, especially for smaller 

clinics or facilities with budget constraints or in certain settings, such as home-based evaluations. 

Isokinetic dynamometers also require regular maintenance to ensure accurate and reliable results. 

This includes calibrations, software updates, and periodic checks of mechanical components, adding 

to the overall operational costs [48]. 

Isometric dynamometer 

The isometric chair dynamometer (like the COR1, OT Bioelettronica, Turin, Italy) is a specialised 

equipment designed for assessing and measuring isometric strength in various muscle groups, 
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particularly those involved in knee extension/flexion [44,49,50]. The device typically consists of an 

ergonomic chair equipped with a load cell, adjustable straps to secure the user’s body, and a digital 

display or computer interface to provide real-time feedback on force exertion [210]. Isokinetic 

dynamometers remain the gold standard even for isometric measurements, but isometric chair 

dynamometers represent a cheaper but more reliable alternative [216]. 

In the ForceLoss project, both the Biodex and the COR1 dynamometers have been employed for the 

MVIC test of the knee extensors/flexors. The hand-grip dynamometer has been used by the patients 

only.  

Hand-grip dynamometer 

The hand-grip dynamometer is a portable device designed for assessing the strength of the hand and 

forearm muscles [180,217]. Consisting of a handle equipped with an adjustable tension gauge, this 

tool measures the force applied during a maximal isometric grip. The JAMAR Hydraulic Hand 

Dynamometer (Model J00105, Lafayette Instrument Company, United States of America) is the most 

frequently used dynamometer and has been considered the gold standard against which other devices 

are validated [218,219]. One of the primary advantages of the hand-grip dynamometer is its ease of 

use and portability. Additionally, hand-grip dynamometers are relatively cost-effective compared to 

more complex muscle strength assessment tools [220]. However, the simplicity of this device is 

accompanied by limitations. The results may be influenced by factors such as hand position and the 

individual’s technique, introducing variability [218]. Furthermore, hand-grip dynamometers 

predominantly focus on specific muscle groups, providing valuable insights into upper body strength 

(i.e., strength assessments of hand and forearm strength) but not a comprehensive evaluation of 

overall body strength. 

3.2.3. Electromyography 

EMG is an experimental technique that evaluates and records the electrical activity produced by 

skeletal muscles in response to nerve stimulation, standing at the intersection of physiology and 

technology [221]. This diagnostic technique offers a profound insight into the electrical activity of 

muscles, allowing measurement of muscular performance [222,223], helping in decision-making both 

before and after surgery [224] and in understanding neuromuscular disorders [225,226], guiding 

rehabilitation strategies [227], and improving personalised sports activities [228]. The principles of 

EMG are grounded in the intricate relationship between nerves and muscles, involving the detection 

and amplification of the electrical signals produced by muscle fibres in response to neural stimuli. As 

a muscle contracts, motor units are recruited, and the motor neurons emit electrical impulses known 

as action potentials [229]. EMG electrodes placed on the skin or inserted into muscles capture these 
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electrical signals, which are then amplified and displayed as waveforms. The amplitude, frequency, 

and duration of these signals provide valuable information about the muscle’s health, activity, and 

potential abnormalities. Based on the type of EMG, which can be surface or intramuscular [230], 

there are different types of electrodes: 

- skin surface electrodes (for surface EMG): these are non-invasive electrodes placed on the 

skin above the muscle of interest and embedded in adhesive pads. Their main limitation is that 

only superficial muscles can be detected. Signal quality can also be affected by external 

factors such as skin impedance, sweat, and movement artefacts, leading to potential 

interference and inaccurate recordings. Moreover, surface electrodes may pick up signals from 

neighbouring muscles, resulting in cross-talk artefacts, where the electrical activity of one 

muscle interferes with the recording of another; 

- needle and fine wire electrodes (for intra-muscular EMG): these electrodes are inserted 

directly into the muscle tissue, offering more precise recordings by capturing signals from 

deeper muscle layers and allowing the recording of a single muscle activity. While more 

invasive, the intramuscular electrodes are affected by little cross-talk concern. However, the 

repeatability of the measure by repositioning the needle or the wire is nearly impossible. 

Finally, fine wire electrodes offer enhanced mobility and are often employed for dynamic 

studies involving joint movements; 

Typically, bipolar electrode configurations and differential amplification are used for kinesiological 

EMG measures. 

EMG processing 

The EMG processing consists of several steps, including rectifying and differently filtering, which is 

required to extract the EMG envelope from the raw data. Prior to amplification, the amplitude range 

of the EMG signal is 0-10 mV (+5 to -5) [231]. The main steps of the EMG signal processing include 

a pre-filtering for eliminating the various types of noises that contaminate the raw signal (e.g., the 

dominant concern for the ambient noise arises from the 60 Hz (or 50 Hz) radiation from power 

sources) [232], followed by rectification, extraction of the envelope and the (optional) normalisation. 

Hereafter a more detailed explanation is explored. 

Raw EMG signals are initially filtered, usually using a zero-lag 4th order Butterworth bandpass filter 

with 10-500 Hz cut-off frequencies [233]. The frequency lower than 10 Hz are usually cut, since the 

frequency of the motion noise ranges usually between 1 to 10 Hz and has a voltage comparable to the 

amplitude of the EMG [232]. Subsequently, the full wave rectification represents a commonly used 

pre-processing procedure to convert to positive amplitude, transforming all negative amplitudes into 
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positive values by relocating negative spikes to the positive domain or reflecting them across the 

baseline. This not only enhances readability but also facilitates the application of standard amplitude 

parameters, such as mean, peak/max value, and area, to the curve, given that the raw EMG typically 

has a mean value of zero. The next step is the smoothing of the signal, and two main approaches can 

be implemented: the linear envelope and the root mean square. For the former [234,235], a zero-lag 

4th order Butterworth lowpass filter with a cut-off frequency around 4-6 Hz is used [236], while the 

latter reflects the power of the signal and has a window with a time duration that ranges between 20 

ms (in case of fast movements like jump, reflex studies) and 500 ms (for slow or static activities) 

[228]. The last step in the signal processing is the amplitude normalisation. This is an optional step 

implemented to overcome one of the primary limitations in the EMG analysis: the strong influence 

of detection conditions on microvolt-scaled amplitude data, leading to significant variability between 

electrode sites, subjects, and even repeated measures. The outcome of normalisation methods leads, 

therefore, to the elimination of detection condition influence, resulting in rescaled data presented as 

a percentage of the selected reference value. Different normalisation approaches exist, including 

normalisation to the internal mean value, a specific trial, or the EMG level of a submaximal reference 

activity. The most popular one is the maximum voluntary contraction (MVC) normalisation, where 

the EMG signal is finally divided by the maximum EMG amplitude recorded during a participant’s 

MVC of the muscle of interest. For example, according to [228], the MVC test for knee extensors is 

performed by performing a leg extension while the subject is seated with the knee flexed between 70° 

and 90°. MVC normalisation helps account for individual variations in muscle strength and electrode 

placement. Moreover, it allows researchers and clinicians to compare and analyse EMG signals across 

different subjects, sessions, or experimental setups, providing a relative measure of muscle activation. 

In the ForceLoss project, the EMG signals were processed as shown in Figure 3.3 following the steps 

described above. As the task of interest (MVIC test) was performed in isometric conditions, as 

suggested in the literature [285], the RMS envelope was deemed more representative (than the linear 

envelope) and ultimately used to inform the subject-specific models. The envelopes were then 

normalised - for each muscle - to the maximal value observed across different tasks (i.e., sit-to-stand 

and MVIC tasks). 
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Figure 3.3. EMG signal elaboration from the raw data to the RMS or linear envelope. 

3.2.4. Superimposed neuromuscular electrical stimulation 

SNMES is an experimental method which involves applying electrical impulses either to nerves or 

muscles concurrently engaged in voluntary muscle contraction, effectively overlaying external 

stimuli onto the existing neural drive [237]. SNMES is typically applied using two electrodes 

positioned on the skin over a muscle belly or muscle group, specifically targeting the motor points 

[238]. The targeted application of SNMES allows for a refined and individualised approach to 

rehabilitation [239,240]. Moreover, this technique is adapted to a wide range of therapeutic 

applications by incorporating it into exercise training programs to optimise strength gains [237] and 

improve muscle function [241]. However, even if the SNMES has shown a strong potential in 

enhancing as well as preserving muscle function, there is still a lack of clear consensus on the 

effectiveness of such a technique [210,215,216]. The stimulation is not without limitations, including 

patient discomfort, muscle fatigue, and muscle damage [238,244]. 

3.2.5. Bioelectrical Impedance Analysis 

BIA is a method used to assess body composition by measuring the impedance of electrical flow 

through body tissues. The basic principle is that different tissues (such as muscle, fat, and bone) have 

different electrical conductivities, allowing for the estimation of body fat and lean body mass [245]. 

During BIA, a small, safe electrical current is passed through the between surface electrodes typically 

placed on hand and foot [245]. The impedance encountered by the electrical current as it travels 

through the body is then used to calculate various body composition parameters, such as resistance, 



 

 53 

reactance, total body water, fat-free mass, and body fat percentage. BIA is a quick, non-invasive, 

inexpensive and relatively simple method for assessing body composition,  commonly used in clinical 

settings and research studies [246]. However, it’s important to note that BIA measurements can be 

influenced by factors like hydration status, body position, and variations in electrical conductivity 

among individuals [247]. Multiple studies have demonstrated the relationship between dynapenia and 

body fat mass [190,248]. In particular, individuals diagnosed with dynapenia present with a higher 

body fat mass in the legs compared to their healthy counterparts. This underscores the significance 

of BIA as a clinical test to assess the presence of dynapenia. 

3.3. Musculoskeletal dynamics models 

The MSK dynamics models are rigid segments connected by idealised joints and actuated by muscles. 

Human models are mathematical representations of the human body and its structures (e.g., skeleton 

and musculature) that allow the analysis of human movement and quantities (e.g., muscle forces and 

joint reaction forces) that can be difficult (or even impossible) to measure experimentally. Like any 

model (e.g., fluid dynamics modelling, mechanical models), the MSK dynamics model is an 

approximation of the human body, and it thus implies heavy simplifications. Hereafter, I list the most 

important idealisations and their consequences and their advantages. 

In modelling, while introducing simplifications, users must be aware and always keep in mind the 

maximum level of idealisation that does not compromise the prediction accuracy of their own model. 

While defining a model, there is continuous research on the balance between idealisations and 

computational costs. Increasing the complexity of a model a priori does not always represent the best 

solution, but modelling with a higher level of detail depends on the model application. 

3.3.1. The idealised features 

Modelling human movement uses the mathematical approach referred to as rigid multibody 

dynamics, which represents the human body as a set of infinitely rigid bodies linked by joints. 

The bodies 

The bodies can represent a specific bone or a group of bones (e.g., in an MSK dynamics model, the 

body tibia usually consists of two bones, the tibia and the fibula). Bones are idealised as infinitely-

rigid segments, each characterised by physical dimensions, mass, centre of mass position and moment 

of inertia. The inertial properties of each body take into account both the skeletal structure (i.e., the 

bones) and the corresponding body segment, which includes soft tissues like muscles, skin and fat. 

The infinitely-rigid assumption implies that each segment does not deform under any loading 

condition. From a kinematic point of view, this simplification allows to characterise the motion of 
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each body by the description of the motion of a single reference system. Each unconstrained body 

segment has, in theory, six degrees of freedom (DoFs) in the three-dimensional Euclidean space (i.e., 

three translations and three rotations). If modelling the bones more accurately (i.e., considering bone 

deformation when loaded), the computational cost of a dynamic simulation (e.g., gait analysis) would 

be too high to make the model impossible to use. However, depending on the application, this 

assumption can be valid or seen as an oversimplification that might lead to inaccurate results. In 

addition to simplifying human movement analysis, bone idealisation also simplifies the model of joint 

mechanics by limiting joint movements to single translations/rotations or a combination of them. 

Based on the data available, body dimensions and properties can be obtained through two main 

approaches: by scaling them from a generic model (constructed from anthropometric cadaveric 

datasets) using subject-specific anthropometric measurements or by segmenting them from medical 

images (e.g., computed tomography – CT – or magnetic resonance imaging – MRI). 

The joints 

The joints link consecutive bones and represent human internal articulations (e.g., elbow, wrist, hip, 

knee, ankle). In human bodies, joints are complex structures made up of bones, muscles, and other 

soft tissues and have multi-axial movements. In MSK modelling, joints are non-deformable and 

frictionless, and, as a result, forces and moments are transferred through the joints in equal and 

opposite ways. Moreover, the idealised joints present zero and infinite stiffness, respectively, in the 

unconstrained and constrained directions, thus reducing the DoFs of each body segment. The majority 

of the lower-limb joints are synovial, whose mechanical behaviour is viscoelastic (i.e., joint stiffness 

depends on the velocity) and whose kinetic friction coefficient is around 0.003 [249] and as low as 

0.002 [250]. The model’s prediction is, therefore, unlikely to be significantly affected by the 

assumption of frictionless articulation. Moreover, the resultant frictional forces are of lower-order 

magnitude and thus have negligible respect to the other forces (both internal and external) involved 

in human movement. In the MSK systems, the joint locations and orientations are typically defined 

based on well-established guidelines, an example of which is the one provided by the International 

Society of Biomechanics (ISB). In general, the location of each joint is then defined relatively to the 

two rigid segments it links and to the DoFs it allows. The joint location and orientation are defined 

based on the anatomical definitions following the ISB recommendation [251]. The most important 

joints of the lower limb are idealised, as shown in Table 3.2. 

If the ball-and-socket joint for the hip is a common feature of all the lower-limb models, the 

idealisation of the knee as a planar joint with a prescribed translation between the femur and tibia 
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based on the flexion-extension angle is not shared by the different models. Some models also include 

the intra-extra rotation and the ab-adduction in addition to the flexion/extension movement [252]. 
Table 3.2 The most commonly implemented idealisation of the most important joints of the lower limbs. 

Lower-limb human articulation Idealised joint DoFs 

Hip Ball-and-socket 3 DoFs: intra-extra rotation, ab-adduction, 
flexion/extension 

Knee Planar 1 DoF: flexion/extension 

Ankle Hinge 1 DoF: flexion/extension 

Subtalar Hinge 1 DoF: flexion/extension 

 

The muscles 

Finally, bones are moved by muscles. The complexity of muscles, in terms of their anatomy, their 

way of acting, and their functions, requires the assumption of several great idealisations. Firstly, 

muscles connect just bones to one another. Secondly, the three-dimensional aspect is always 

represented by one-dimensional unilateral actuators. This assumption can be considered valid for 

fusiform muscles, whereas several actuators have to be defined for representing a single pennated 

muscle that thus acts along different lines of action (e.g., in MSK dynamics models, the gluteus 

medius is usually represented by three actuators). Thirdly, muscle contractile function and force 

generation are characterised just by mechanical properties, while the complex interaction between 

these structures and the nervous system is completely excluded. In MSK modelling, the minimal 

information required for the definition of a muscle is the geometry and the maximal force that a 

muscle can generate. The muscle path is defined by two main points, the origin and the insertion, 

respectively. Additional points (i.e., the via points) and parametric surfaces (i.e., the wrapping 

surfaces around which the muscle line of action wraps) can be added to make the muscle path more 

physiological and prevent it from penetrating the bones. Other features that characterise each muscle 

are pennation angle, optimal fibre length, tendon slack length, and activation dynamics (e.g., 

activation and deactivation times). Over the years, muscles have been modelled differently (e.g., 

Huxley-type model [253], continuum model [254], non-linear analytic model [255], Hill-type model 

[256]). However, in the majority of MSK dynamics models, the skeletal muscles are represented as a 

Hill-type muscle model (e.g., Thelen [257] or Millard [258]). Since this model is computationally 

less expensive than its alternatives, it is the model implemented by the widely used MSK modelling 

software (e.g., OpenSim [103,259] and AnyBody [104,260]). 
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Since the subject-specific MSK dynamics models that I have generated implement the Millard2012 

Muscle Model, which is based on the Hill-type muscle, a description of this muscle model is provided 

in the next paragraph. However, for a more detailed and comprehensive description, refer to the 

systematic review by Caillet et al. [256]. 

The Millard’s muscle model 

In Millard’s models, musculotendon actuators are modelled assuming they are massless, frictionless 

and extensible strings, with all the fibres aligned, parallel, of equal length and coplanar. Moreover, to 

mimic the biological property of muscles to keep their volumes constant, when the muscle is 

stretching, its area and height remain constant while the pennation angle (i.e., the angle the fibre 

makes with the tendon, a) varies (Figure 3.4). 

 

As mentioned above, Millard’s models are based on the generalised Hill-type muscle model, which 

consists of three main components (Figure 3.5): an active contractile element (CE) in parallel to a 

passive elastic element (PE) and another passive spring that represents the tendon (T). The CE 

represents the muscle fibre responsible for contraction and relaxation movements. Also referred to as 

an active element, it generates the active force of muscles and is thus related to the muscle length. 

The passive PE takes into account the elasticity and the activation-independent force generated while 

the muscle is stretched. Finally, the T element represents a passive component and accounts for the 

activity of tendons and other elastic tissues responsible for the quick length change. 

The behaviour of Hill-type based muscle models is described by four characteristic curves: active-

force-length, passive-force-length, force-velocity and tendon-force-length curves (Figure 3.6). In 

MSK modelling, muscles exhibit a behaviour highly dependent on the fibre length and the fibre 

velocity. The active force of a muscle (Figure 3.6.A) varies non-linearly with the length of the muscle 

itself; it has its peak (𝑓!") at the optimal fibre length (𝑙!") and decreases while the muscle varies its 

length (both lengthening and shortening). Differently, as shown in Figure 3.6.C, the passive force 

exponentially increases when the muscle length exceeds its optimal fibre length, producing force 

 

Figure 3.4 Schematic geometric representation of muscle fibres and tendons employed for musculotendon modelling. Adapted from 
[258]. 

 



 

 57 

regardless of whether the muscle is activated. The force generated by muscle fibres also depends on 

the shortening velocity of the fibres themselves.  

 
With a relation represented in the force-velocity curve (𝑓#(ν%")) shown in Figure 3.6.B, during non-

isometric contractions, the muscle generates a force which varies non-linearly with its rate of 

lengthening (the tilde is used to indicate forces, velocities, muscle lengths, and tendon lengths that 

are normalised by 𝑓!", 𝑣$%&" , 𝑙!", and 𝑙'(, respectively). Muscles and bones are attached through 

tendons, which are modelled as non-linear elastic elements and generate the force according to the 

tendon-force-length curve (Figure 3.6.D). 

 

 

Figure 3.5 The Hill-type musculotendon model components include 𝑓𝑇 (tendon force), 𝑓𝑀 (muscle force), 𝑙𝑇 (tendon length), 𝑙𝑀𝑐𝑜𝑠𝛼 
(length of the muscle in the direction of the tendon, with α as the pennation angle), 𝑓𝑇(𝑙𝑇) (tendon-force-length curve), 𝑓𝑃𝐸(𝑙'𝑀) 
(passive force-length curve), and the contractile element (CE) – 𝑎𝑓𝐿(𝑙'𝑀)𝑓V(𝜈*𝑀) (active force-length curve, where 𝑎 is the muscle 
activation, 𝑓𝐿(𝑙'𝑀) is the active force-length curve, and 𝑓V(𝜈*𝑀) is the force-velocity curve). The figure is adapted from Millard et al. 
2013 [251]. 

 

 

Figure 3.6 Musculoskeletal curves characteristic of every Hill-type based model: (A) active force length curve, (B) force velocity 
curve, (C) passive force length curve, and (D) tendon force length curve. Adapted from [251]. 
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The model described above is referred to as the Equilibrium Musculotendon Model, in contrast with 

the other Millar’s models (i.e., the Damped Equilibrium Musculotendon Model and the Rigid-Tendon 

Musculotendon Model. For the exact equations describing these models or any further information, 

refer to [258].  

3.3.2. Model personalisation 

MSK dynamics models can be categorised as generic models or personalised models based on the 

level of detail they incorporate concerning different aspects such as bone geometries, mass properties, 

joint models, muscular pathways and properties, and neuromotor control models implemented in the 

neuromusculoskeletal models. 

Generic model vs personalised 

Generic MSK dynamics models are computational models that integrate physiological parameters 

developed from cadaveric databases and are thus representative of a generic population [89–93]. Until 

the last decade, generic MSK models were more commonly employed, as model personalisation relies 

on accurately modelling skeletal anatomy, muscle architecture, and decoding neuromuscular control, 

which is not trivial and requires specialized skillset and dedicated tools. To make generic models 

more representative of a specific individual, various scaling methods been suggested to incorporate 

physiological fidelity, also integrating in vivo observations. The main advantage of the generic 

models is the straightforward implementation compared to subject-specific models, as they do not 

require individualised data such as subject-specific anatomy, muscle properties, or joint kinematics 

(even if some measurements like motion capture of standing trial are required). This ease of 

implementation made them particularly useful for large-scale studies or simulations. However, a 

significant limitation is their lack of individualisation since they do not account for inter-individual 

variability, limiting the accuracy of predictions for specific individuals [261,262]. As a result, 

pathological conditions or certain populations, like children, are not adequately captured by generic 

models [263]. This limits their effectiveness in studying conditions where individualised anatomical 

details play a crucial role. 

In recent years, personalised MSK dynamics models have gained increased prominence, largely 

attributable to the growing availability of advanced tools and technologies. The surge in 

computational power, coupled with advancements in imaging techniques and software tools for 

generating MSK dynamics modelling, has facilitated the creation of more sophisticated and 

individualised MSK dynamics models. These personalised models offer a higher degree of accuracy 

by tailoring the representation of an individual’s anatomy and biomechanics, allowing for a more 

precise simulation of their musculoskeletal system. Additionally, the expanding accessibility of 
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medical imaging data, such as MRI and CT scans, has provided researchers and clinicians with the 

necessary inputs for generating personalised MSK dynamics models. The use of these advanced tools 

not only enhances the accuracy of the models but also enables a more comprehensive understanding 

of individual variations in musculoskeletal structure and function, paving the way for personalised 

diagnostics, treatment planning, and rehabilitation strategies. The model personalisation can be done 

on different levels. Concerning the skeletal model, bone segmentation allows for more personalised 

joint definitions. For the muscular properties (e.g., MIF, musculotendon lengths), which highly 

influence the model’s behaviour, several methods exist and have been implemented (see Table 3.3 

for the different implementation of the MIF), highlighting the complexity of the problem and the lack 

of standardisation. For example, if muscle segmentations are available, the MIF is usually defined 

according to the following equation: 

 𝑀𝐼𝐹$ = 𝜎
𝑉$ 	cos 𝛼
𝑂𝐹𝐿  Eqn. 

3.4 

where Vm is the volume of the muscle m, a is the pennation angle and s is the specific tension. 
Table 3.3 Various implementation of the maximum isometric force (MIF) proposed by the different authors. 

MIF definition Description Reference 

𝑀𝐼𝐹!"#
𝑚
𝑚!"#

𝑙!"#$%

𝑙$%  

𝑴𝑰𝑭𝒈𝒆𝒏 = MIF of the generic model 

𝒎 = subject’s mass 

𝒎𝒈𝒆𝒏= mass of the generic model 

𝒍𝒈𝒆𝒏𝑴𝑻 = musculotendon length of the generic model 

𝒍𝑴𝑻= musculotendon length 

Correa et Pandy, 2011 [99] 

𝑀𝐼𝐹!"# +
𝐻
𝐻!"#

-
+

 

𝑴𝑰𝑭𝒈𝒆𝒏 = MIF of the generic model 

𝑯 = subject’s body height 

𝑯𝒈𝒆𝒏= body height of the generic model 

Steele et al., 2012 [264] 

𝑉$
𝑂𝐹𝐿 𝜎 

𝑽𝑴 = muscle volume 

𝑶𝑭𝑳 = optimal fibre length 

𝝈 = specific tension 7𝟔𝟎 𝑵
𝒄𝒎𝟐: 

Handsfield et al., 2014 [265] 

(𝑉$𝑉%)
𝑂𝐹𝐿 𝜎 

𝑽𝑴= muscle volume fraction 

𝑽𝑻= total leg volume 

𝑶𝑭𝑳= optimal fibre length 

𝝈 = specific tension 7𝟔𝟎 𝑵
𝒄𝒎𝟐:  

Rajagopal et al., 2016 [92] 

Luis et al., 2022 [266] 
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𝑀𝐼𝐹!"# +
𝑚
𝑚!"#

-

(
)

 

𝑴𝑰𝑭𝒈𝒆𝒏 = MIF of the generic model 

𝒎 = subject’s mass 

𝒎𝒈𝒆𝒏= mass of the generic model 

Van der Krogt et al., 2016 [267] 

𝑀𝐼𝐹!"#
𝑚
𝑚!"#

 

𝑴𝑰𝑭𝒈𝒆𝒏 = MIF of the generic model 

𝒎 = subject’s mass 

𝒎𝒈𝒆𝒏= mass of the generic model 

Modenese et al., 2018 [105] 

𝑉$
𝑂𝐹𝐿 𝜎 

𝑽𝑴 = muscle volume 

𝑶𝑭𝑳 = optimal fibre length 

𝝈 = specific tension 7𝟔𝟏 𝑵
𝒄𝒎𝟐: 

van Veen et al., 2019 [268] 

 

3.4. Simulation environment 

In this thesis, OpenSim was the software used for all the simulations. OpenSim is an open-source 

software package that enables users to define, build, and analyse MSK dynamics models, as well as 

conduct dynamic simulations of movement. It represents a powerful and free tool for the worldwide 

biomechanical community and serves as a platform for sharing models, results and simulation codes. 

Based on the application and the available data, two simulation pipelines are implemented in 

OpenSim: the inverse problem and the forward problem. 

In the inverse methods, the data obtained from observed moments represent the starting point to 

compute quantities involved in generating that movement and that are a function of the model’s states 

(e.g., to predict joint angles and coordinates, joint moments and torques, muscle forces, muscle 

activity, musculotendon dynamics). Typically, the states of the model include its coordinates, 

coordinate velocities, muscle activations, and muscle fibre lengths. 

On the contrary, the forward problem predicts the observed moments by implementing muscle-driven 

forward simulations of movement from the neural commands, which include muscle excitations, joint 

torques, and/or other applied forces. 

In the next paragraph, a more detailed description of the Static Optimization tool and how it works is 

provided since it represents the simulation environment used in this thesis. 

3.4.1. Static Optimisation 

Static optimisation (SO) is an extension of the inverse dynamics analysis that further solves the net 

joint moments into individual muscle forces at each instant in time on the basis of prescribed 

performance criteria, such as minimising the sum of the squared muscle forces. In general, SO solves 
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the muscle redundancy problem predicting muscle activations and forces by satisfying three main 

conditions: the joint equilibrium at each instant of time, the tetanic force of each muscle as an upper 

bound of force a muscle can generate, and the prescribed optimisation criterion. The motion of the 

model is entirely determined by its generalised positions, velocities, and accelerations. Based on the 

well-known kinematic, SO resolves the equations of motion, determining the unknown generalised 

forces. This process is conducted under specific muscle activation-to-force conditions, chosen 

between the two following conditions: 

ideal force generators: 

 
5(𝑎$𝐹$))𝑟$,+

,

$-.

= 𝜏+ 
Eqn. 

3.5 

or constrained by force-length-velocity properties: 

 
59𝑎$𝑓(𝐹$) , 𝑙$, 𝑣$)𝑟$,+;
,

$-.

= 𝜏+ 
Eqn. 

3.6 

while minimising the following objective function implemented in OpenSim: 

 
𝐽 = 5(𝑎$)/

,

$-.

 Eqn. 

3.7 

where n is the number of muscles of the model, am is the activation level of the muscle m, 𝐹$)  is the 

maximum isometric force of the muscle, lm is its length, and vm its shortening velocity, 𝑓(𝐹$) , 𝑙$, 𝑣$) 

is the force-length-velocity surface; rm,j and 𝜏+ are, respectively, its moment arm and the generalised 

force acting about the jth joint axis, and p is a user-defined constant (usually set at 2 to implement the 

optimal control, thus minimising muscle activations). Other objective functions have been 

implemented, such as the muscle forces [269] or the joint contact forces [268], to better represent the 

population and the task that users wanted to study. 

3.5. Model credibility assessment 

Over the last two decades, there has been a proliferation of MSK modelling and simulation in the 

biomechanics research community. However, the lack of standardised verification and validation 

practices continues to pose a significant obstacle to large-scale adoption and clinical use. This has 

spurred intense research activity, which resulted in a few attempts [270–272]. In general, for the 

credibility assessment of the MSK dynamics models, VVUQ procedures must be followed, and the 

ASME V&V-40:2018 standard is the reference to pursue credibility. To sum up, model verification 

focuses on the implementation and numerical accuracy of the model, while model validation assesses 
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how well the model represents the real world and experimental data. The primary objective of the 

validation process is to evaluate a computer simulation’s ability to predict specific variables of 

interest by comparing computational results with experimental data. The validation process involves 

comparing results, extrapolating predictions to intended conditions, and determining the accuracy for 

the intended use. In musculoskeletal modelling, validation includes aspects like validation 

experiments and model calibration. However, the level of accuracy required for validation depends 

on the application rather than the model itself, and it is the users’ responsibility to assess whether a 

model is accurate enough for their intended purpose. 

To date, there is no literature on the application of the ASME V&V-40 standard to MSK models, 

unlike its use in other fields such as computational fluid dynamics modelling [136]. This gap can be 

attributed primarily to two factors: the lack of standardised procedures for generating these models 

and the recent introduction of the standard [273]. However, to minimise the influence of the modeler, 

the ForceLoss project has adopted existing procedures for generating MSK models. These procedures 

have previously undergone extensive development, rigorous testing, validation, and, in some 

instances, successful application in clinical contexts. Bones and soft tissues have been manually and 

semi-automatically segmented by the same expert operator using Mimics v25 (Mimics Innovation 

Suite, Materialise, Leuven, Belgium), ensuring consistent and replicable segmentation procedures 

[274]. Subsequently, skeletal models have been generated, and muscle paths were integrated using 

the nmsBuilder software [101]. This software adheres to ISB recommendations [251] for joint 

definitions and uses anatomical landmarks for muscle path registration. It has the important advantage 

of reducing the overall time to generate the MSK models and has been extensively utilised, 

establishing it as a consolidated protocol [275–277]. Moreover, the definition of the patellofemoral 

joint aligned with validated techniques found in existing literature, particularly in applications such 

as gait analysis [275,278,279]. Finally, muscle properties (e.g., OFL and TSL) were 

morphometrically optimised, utilising a procedure [280] widely adopted within the field [275,281–

284]. This approach ensured that the models were constructed upon robust foundations since it 

leveraged the existing knowledge and methodologies in the biomechanics research community to 

advance the project’s goals. 
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Chapter 4 – FORCELOSS: A SIMULATION 

FRAMEWORK FOR THE DIFFERENTIAL 

DIAGNOSIS OF DYNAPENIA BY MEANS OF 

SUBJECT-SPECIFIC MUSCULOSKELETAL MODEL 

This chapter explores the ForceLoss project, comprising of one study on healthy young volunteers 

(Part I – Healthy Volunteers) and one study on patients waiting for a total knee arthroplasty (Part II 

– Osteoarthritic Patients). The chapter consists of three sections (i.e., material and methods, results 

and discussion). Since the data collection on the patients’ cohort is still in progress, this chapter will 

focus on the methods. Building on the information provided in Chapter 3, the methods section of the 

present chapter will provide further details on the specific implementation of said methods in the 

ForceLoss studies. The results section will report on the main findings from the study on healthy 

volunteers. To enhance comprehension and avoid confusion, the reader is referred to Figure 3.2, 

which shows the experimental protocols and implementations for ForceLoss Part I and Part II – 

highlighting the key differences.. 

4.1. Materials and Methods 

Upon completion of the study, the full experimental dataset will include anatomical and experimental 

data from a total of forty subjects. To date, the data collection on the healthy cohort has been 

completed, while the data collection on the patients’ cohort is still ongoing (see Tables 4.1 and 4.2 

for participants demographics). . Both studies were approved by the local Ethical Committee (CE 

AVEC: 216/2020/Sper/IOR and CE-AVEC 30/2021/Sper/IOR) and have been recorded on the 

ClinicalTrials registry (Clinical Trials ID: NCT05091502, and ClinicalTrials ID: NCT05795348, for 

the Part I and Part II, respectively). The entire study was conducted in accordance with the Declaration 

of Helsinki and each participant gave written informed consent prior to participating in the study. All 

the subjects were enrolled based on the inclusion/exclusion criteria described in Table 3.1 and each 

patient was evaluated for health condition using a standard clinical protocol involving a clinical team 

of an orthopaedic surgeon and a physiatrist. 

The experimental protocol of both studies was structured similarly, consisting of two distinct 

sessions: one for MRI scanning and the other to performing the MVIC test, within a week, ensuring 

that the MRI accurately reflects the current muscle condition. In the study involving TKA patients, 

additional tests of clinical interest were collected, further details of which are provided below. From 
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the collected data, four models per subject were generated, each with increasing levels of 

personalisation. These models were then used to replicate the experimental tests (MVIC tests) in 

silico. During each personalised step, a simulation of the MVIC test was conducted, and the predicted 

MVIC torque was compared with the experimental measurements 

ForceLoss - Part I 

The demographics of the twenty healthy volunteers enrolled in the ForceLoss - Part I project have 

been reported in Table 4.1 (Age: 32±6 years old, Height: 168±8 cm, Mass: 65±15 Kg, BMI: 23±3 

Kg/m2). 

 

Table 4.1 Subject data: age, height, mass, body mass index (BMI), and physical activity (1 – sedentary; 2 – some physical activity; 3 – 
regular physical activity and training; 4 – regular hard physical training for competition sports). *Participant excluded from the study.  

Subject 
Age 

(years) 

Height 

(cm) 

Mass 

(kg) 

BMI 

(kg/m2) 

Physical 
activity 

level 
Dominant leg 

Female 1 27 170 56 19 3 R 

Female 2 26 158 52 21 2 R 

Female 3 39 167 53 19 3 R 

Female 4 38 166 66 23 3 R 

Female 5 33 155 50 21 3 R 

Female 6 28 158 55 22 3 R 

Female 7 29 160 50 20 3 R 

Female 8 26 165 49 18 3 R 

Female 9 25 158 52 21 3 R 

Female 10* 36 163 57 21 2 R 

Male 1 31 178 85 26 2 R 

Male 2 27 170 59 20 3 R 

Male 3 26 170 81 28 3 R 

Male 4 33 177 85 27 3 R 

Male 5 31 178 98 30 3 R 

Male 6 21 181 78 23 3 R 

Male 7 40 173 73 24 3 R 

Male 8 39 180 77 23 3 R 

Male 9 40 170 60 20 3 R 

Male 10 29 170 75 25 3 R 
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The data from one female adult (i.e., subject 10) were excluded from the study due to her lack of full 

cooperation, resulting in data that were deemed to be of poor quality. 

ForceLoss - Part II 

The demographics of the osteoarthritic patients already enrolled are shown in Table 4.2 (Age: 74±4 

years old, Height: 168±9 cm, Mass: 72±17 Kg, BMI: 25±5 Kg/m2). The enrolment was conducted by 

the physiatrist following a consultation or directly by the orthopaedic team responsible for the TKA 

surgical procedure, ensuring adherence to the defined inclusion and exclusion criteria provided in 

Table 3.1. 

 

4.1.1. Magnetic Resonance Imaging 

MRI scans were collected using a Discovery MR750w 3.0T scanner (GE Healthcare, Chicago, IL-

USA). Full lower limb MRIs, covering the region from L3 vertebra to the toes, were acquired with 

subjects laying on a bed in supine position. Depending on the patient’s height, the scan was performed 

in four or five overlapping sections to ensure complete coverage of the region of interest, using two 

specific coils to increase the quality of the images (Figure 4.1). The overlap between consecutive 

Table 4.2 Patients demographics: sex, age, height, mass, body mass index (BMI), and the examined leg.  

Subject Sex 
Age 

(years) 

Height 

(cm) 

Mass 

(kg) 

BMI 

(kg/m2) 
Examined leg 

TKA01 Female 70 165 73 26 R 

TKA02 Female 80 165 67 24 R 

TKA03 Female 75 167 80 28 R 

TKA04 Male 79 180 81 25 R 

TKA05 Female 72 162 59 22 R 

TKA06 Male 71 184 110 32 L 

TKA07 Male 72 168 70 24 L 

TKA08 Female 72 150 47 20 L 

TKA09 Female 78 158 70 28 R 

TKA10 Female 78 154 63 26 R 

TKA11 Female 76 175 68 22 R 

TKA12 Female 67 170 54 18 R 

TKA13 Male 70 176 100 32 L 

TKA14 Female 70 178 70 22 L 
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sections was set to 20 slices (minimum), with further adjustments made for the final segment when 

necessary due to equipment limitations. The overall acquisition took around 20-30 minutes, yielding 

four sequences (i.e., water- and fat-suppression, in-phase, and out-of-phase) since the proprietary 

Dixon sequence was chosen, with a slice thickness of 3.94 mm, a slice increment of 2.0 mm, and a 

pixel size of 0.4688 x 0.4688 mm. 

 

Image elaboration 

The images (i.e., DICOM files) were then imported into Mimics v25 (Mimics Innovation Suite, 

Materialise, Leuven, Belgium) and merged into a single file. For a comprehensive quantitative 

analysis, the volumes of bones, muscles, and soft tissues were manually or semi-automatically 

segmented by a single expert operator as outlined in Table 4.3. 

Specifically, the semi-automatic segmentation was employed only for the muscles by means of the 

Muscle Segmentation Tool, part of the Mimics Innovation Suite license (Materialise, Leuven, 

Belgium), an atlas-based tool that requires a 2D mask of all muscle tissues as input. The MST 

functions by comparing the voxels in the mask against those in the available atlases, utilising a vote-

based system to determine the appropriate muscle mask assignment for each pixel. The process is 

executed by dividing into upper and lower sections of the left and right leg (see Figure 4.2). 

Figure 4.1 3T MRI scanner at the Rizzoli Orthopaedic Institute, with the patient on the resonance table covered by two proprietary 
coils to increase the quality of the signal and, thus, the final images. 
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The significant advantage of the muscle segmentation tool is to drastically reduce the time required 

to segment the individual muscle volumes, compared to a manual segmentation. Despite the muscle 

segmentation tool yielding good results, manual post-processing remained necessary to refine the 3D 

volume reconstructions. Particular attention was given to the four knee extensor muscles: rectus 

femoris (RF), vastus intermedius (VI), vastus lateralis (VL), and vastus medialis (VM) – of primary 

interest for the ForceLoss study. 

 

4.1.2. Maximum voluntary isometric contraction test 

The MVIC protocol required subjects to perform a minimum of three contractions in both extension 

and flexion at a knee flexed at different angles. Each maximal contraction was to be held for 

Table 4.3 Bones and muscles geometries segmented. Bone complexes manually segmented and the list of the muscles was semi-
automatically segmented using the Muscle Segmentation Tool, with either low or high manual editing a posteriori. 

Bones  Muscle 

Group 
name Bones contained 

 Semi-Automatic 
segmentation 

(Muscle 
Segmentation Tool) 

pelvis ilium, pubis, ischium, sacrum  thigh and shank 
muscles* (n = 37) 

femur_r femur  
*rectus femoris, 

vastus intermedius, 
vastus lateralis, vastus 
intermedius were also 

manually edited 
starting from the 

results of the semi-
automatic 

segmentation 

patella_r patella 
 

tibia_r tibia, fibula  

talus_r talus 
 

calcn_r 
calcaneus, cuboid, navicular, 
lateral/ intermediate/ medial 

cuneiform, metatarsals 

 

toes_r phalanges 
   

 

Figure 4.2 Coronal view of the results of the muscle segmentation tool applied to the left upper leg (i.e., left thigh). 
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approximately 6 seconds, with a recovery period of at least 90 s between contractions to allow for 

sufficient rest. If the force measured during the third contraction exceeded the second by at least 10%, 

additional contractions, up to a fourth or more, were conducted to ensure maximum force output was 

achieved. The subjects were asked to sit upright on the chair with their arms across their chest 

throughout all the MVIC testing procedures; they were strapped to the chair to minimise movements 

of the trunk and the tested leg, allowing the isometry of the test. Throughout each contraction, subjects 

received verbal encouragement from the operators and real-time visual feedback on the torque being 

generated to promote maximal effort. 

ForceLoss - Part I 

For healthy volunteers, the torque data were gathered using a load cell with the sensitivity of 2 mV/V 

and full scale equal to 100 kg, integrated into the COR1 dynamometer chair (OT Bioelettronica, Italy, 

Figure 4.3). Each subject performed the knee flexions and extensions with his/her dominant leg at 4 

different angles of knee flexion: 45°, 60°, 75°, and 90°. The order of the angles of MVIC test was 

chosen randomly at the beginning of the experimental protocol.  

 

The MVIC test was preceded by a 10-minute warm-up exercise on the cycle ergometer at zero 

resistance, followed by a sit-to-stand task, a 6-meter walk, and 8 submaximal contractions, performed 

both in flexion and extension. 

ForceLoss - Part II 

All MVIC tests were performed with the participant’s dominant leg using the Biodex System 4 PRO 

 
Figure 4.3 Dynamometer chair OT Bioelettronica used for the MVIC test of the healthy adults. 



 

 69 

dynamometer (Biodex Medical Systems, Inc., New York, USA, see Figure 4.4). Each subject was 

asked to perform at least three contractions (leg extension) at two different angles of knee flexion and 

always in the following order: 75°, and 90°. Where possible, depending on the level of pain and 

fatigue of the patients, three maximal contractions in flexion with the knee flexed both at 75° and 

90°and/or additional maximal extensions in a third configuration (knee flexed at 60°)were performed 

(see Table 4.4 for the details). 

The subjects were asked to hold the maximal contraction for 6 s maximum, with a resting time 

between consecutive contractions of 90 s. 

 

 

Figure 4.4 Biodex System 4 PRO dynamometer used in the laboratory to acquire torque data with patietnts. 

Table 4.4 Details of the MVIC tests performed by each subject. 

Subject 
MVIC 

Extension Flexion 
60° 75° 90° 60° 75° 90° 

TKA01 V V V V V V 
TKA02 V V V - - - 
TKA03 V V V V V V 
TKA04 - V V - - - 
TKA05 V V V - V - 
TKA06 - V V - - - 
TKA07 - V V - - - 
TKA08 V V V V V V 
TKA09 V V V - V V 
TKA10 V V V - V V 
TKA11 - V V - V V 
TKA12 - V V - V V 
TKA13 - V V - - - 
TKA14 - V V - V V 
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Prior to performing the MVIC tests, each patient answered two clinical questionnaires (i.e., the 

WOMAC3 and KSS4). Moreover, BIA and hand-grip tests were acquired as clinical measurements 

for the quantification of body fat and muscle mass, and the strength of the upper limb muscles, 

respectively. The warm-up included the same exercises as for healthy adults, with the exception of 

the cyclo-ergometer. 

Torque elaboration 

The dynamometry data recorded during the experiment were first converted from V to Nm applying 

a scaling factor provided by the manufacturers. Then, the torque signals were filtered using a zero-

lag 4th order Butterworth low pass filter with a 5 Hz cut-off frequency [285] to remove sudden small 

bursts due to the noise. In order to find the MVIC torques, the 1st derivative of the torque data was 

computed and the 1000-ms plateau region [286] with the highest mean was defined as the MVIC 

torque. The plateau was defined as a sequence of 2000 consecutive samples (1000 ms) where the 

derivative was equal to 0 (± 0.5). 

4.1.3. Electromyography 

During the initial setup and the MVIC tests, EMG data were collected from eight primary lower limb 

muscles involved in the knee extension and flexion. Upon the patient’s arrival, an expert operator 

marked the electrode placement sites, prepared the skin, and placed the electrodes as per the SENIAM 

guidelines [234]. The muscles recorded included the biceps femoris, semitendinosus, rectus femoris, 

vastus medialis, and vastus lateralis on the dominant leg, as well as the vastus lateralis and biceps 

femoris on the non-dominant leg. Bipolar surface electrodes recorded the muscle activity, except 

during ergometer exercises for healthy volunteers.  

EMG elaboration 

The EMG signals underwent initial processing with a zero-lag 4th order Butterworth bandpass filter, 

utilizing cut-off frequencies between 20-500 Hz [233]. RMS envelopes of the EMG signals were then 

computed using a 500-ms time window [287]. To finalize the process, the EMG signals were 

normalized against the maximum values recorded during various activities, such as sit-to-stand and 

MVIC tasks, for each muscle. 

4.1.4. Superimposed neuromuscular electrical stimulation (patients cohort only) 

Following the MVIC test, the subjects were asked to perform an additional set of maximal 

contractions (only in extension, with the dynamometer arm fixed at 75°). When the plateau of torque 

 
3 https://www.fisioscience.it/wp-content/uploads/2021/02/womac-italiano-pdf.pdf  
4 https://www.kneesociety.org/assets/docs/Knee-Society-Score-PREOP_ITA.pdf  

https://www.fisioscience.it/wp-content/uploads/2021/02/womac-italiano-pdf.pdf
https://www.kneesociety.org/assets/docs/Knee-Society-Score-PREOP_ITA.pdf
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was reached (approximately 2-3 seconds after onset) a neuromuscular electrical stimulation was 

delivered to induce the tetanic activation of the vastus medialis. Two reusable wetted rubber electrodes 

were placed medially on the anterior aspect of the upper thigh and on the anterior aspect of the lower 

thigh (the anode and the cathode, respectively), to stimulate a representative (i.e., greater than 20%) 

sample of the muscle belly. A doublet of single square-wave stimuli was delivered through a constant 

current high voltage stimulator (Digitimer DS7AH, Hertfordshire, UK). The stimulus consisted of 2 

square pulses, each with a 100-µs duration, 300 V maximal voltage, and intensity adjusted from 200 

to 500 mA, with a 10 ms interpulse interval. The intensity of the stimuli was selected based on the 

stimulation required to reach at least 25% of the peak torque previously recorded. A resting period of 

3 minutes was granted between contractions to avoid muscle fatigue, and to allow for a full recovery after 

the stimulation. The Power1401 data acquisition system (CED, Cambridge, UK) was used for an 

adequate synchronization between dynamometry data and SNMES, that were visualized and recorded 

in Spike II v10 (Cambridge Electronic Designed Limited-CED, Cambridge, UK). 

4.1.5. BIA (patients cohort only) 

All the patients were asked to lie down on a physiotherapy bed. Electrodes were respectively placed 

on a hand and foot, using a foot-to-hand bioimpedance technology at 50 kHz frequency. The whole-

body BIA was assessed using the BIA 101 BIVA Pro device (Akern Systems, Firenze, Italy), a small 

machine to which the electrodes were connected. The device gave as outputs the resistance (Rz) and 

reactance (Xc), and the phase angle (q). Using equations provided by the vendor, the raw measures 

were employed to estimate the fat-free mass (FFM), the fat mass, and the percentage of FFM. 

4.1.6. Hand-grip test (patients cohort only) 

Following the BIA analysis, the patients were asked to perform an hand-grip test. The test consisted 

of the repetition of at least three maximal contractions interspersed by 90 s of rest time while holding 

a hydraulic dynamometer (Jamar) in the dominant hand, with the elbow flexed at 90°. In case the 

maximal contraction force value (in kg) was scored at the third contraction, a fourth attempt was 

requested. Throughout all the tests, verbal encouragement was provided to elicit maximal 

contractions. 

4.1.7. Modelling pipeline 

Subject-specific models have been generated starting from the segmentations of bones, muscles and 

soft tissues, previously segmented in Mimics v25 (Mimics Innovation Suite, Materialise, Leuven, 

Belgium), following the pipeline proposed by Modenese and colleagues [105]. In nmsBuilder 

software [101], a MSK model for each subject (i.e., both volunteer and patient) was created, each 

comprising of seven segments (pelvis, thigh, patella, shank, talus, calcaneus, and toes), 13 degrees of 
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freedom and 40 muscles. Each model’s kinematic chain was crafted by fitting analytical shapes (i.e., 

cylinders or spheres) to the bones’ articular surfaces, establishing joint reference systems necessary 

for defining the joint centres and orientation of axes, using the MeshLab software [288]. Moreover, 

patellar movements were modelled to capture the 3D motion with a single degree of freedom 

dependent to the knee joint, ensuring accurate representation of joint mechanics. The three-

dimensional motion of the patella during flexion-extension was enabled by parameterising splines, 

which were adapted from existing literature [89,92]. These splines were scaled to each patient based 

on palpated anatomical landmarks and adjusted to ensure that the patella correctly articulated with 

the femur [278]. In nmsBuilder, the inertial properties of each segment were also defined (assuming 

the densities equal to 1.42 g/cm3 and 1.02 g/cm3, respectively for bones and soft tissues [289,290]), 

and muscle-tendon units were personalised based on individual anatomical data. Muscles were 

modelled as Hill-type actuators [291], described by Millard et al. [258], and their behaviour was 

adjusted to prevent unrealistic penetrations into bone, using wrapping geometries when necessary. 

Each muscle’s line of action was checked against the segmented muscle volumes, with minimal 

manual adjustments made where required. Muscle parameters such as pennation angle, optimal fibre 

length (OFL), and tendon slack length (TSL) were initially derived from the generic Full Body model 

[92] and then anthropometrically scaled to fit each subject’s specific dimensions [280]. The maximal 

isometric force (MIF) for each muscle was recalculated differently based on the level of 

personalisation of the MSK dynamics model. 

Personalisation of Muscle Properties 

Based on the personalisation of two muscle properties (i.e., the MIF and the activation level), four 

different subject-specific models of each subject were generated. 

Initially, the base model, referred to here as MgenPCSA, utilised MIF values of a generic healthy age-

matched population, scaled according to a linear regression model [265], based on the height and 

mass of the subjects being studied. Subsequent enhancements were made by incorporating 

experimentally collected and processed data, leading to the development of three additional models. 

The MssPCSA model incorporates subject-specific PCSA obtained from MRI scans for defining MIF 

values according to the following equations (Eqn. 4.1) and (Eqn. 4.2): 

 𝑃𝐶𝑆𝐴0 = 𝑉$0 cos 𝜃 𝑙!⁄  Eqn. 

4.1 
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 𝑀𝐼𝐹0 = 𝜎𝑃𝐶𝑆𝐴0 Eqn. 

4.2 

where Vm is the i-th muscle volume, θ is the pennation angle, lo the OFL and σ the specific tension, 

set 60 N/cm2 and in line with literature data [92,265]. The MssPCSAssEMG model was based on the 

MssPCSA model, with the inclusion of adjusted maximal control settings for the quadriceps muscles 

(RF, VI, VL, VM) based on EMG data, deviating from the default maximal activation value of 1.  

The last model (i.e., MgenPCSAssEMG) built upon the MgenPCSA framework but integrated EMG-based 

maximal activations similar to the adjustments seen in the MssPCSAssEMG model. For the latter two 

models, the peak values of the normalised RMS envelopes for the knee extensors were utilised to 

regulate the quadriceps activation levels to mirror experimental data accurately. Where experimental 

data were lacking, specifically for the VI muscle, activation levels were inferred from the mean 

activations of the VL and VM muscles [292,293], reflecting the synchronised activity pattern 

commonly seen among the three vastii muscles [294–297]. The varying degrees of personalisation 

across these MSK models are detailed in Table 4.5.  

 

4.1.8. Biomechanical simulations 

Each model was placed in a seated position, with the hip and the knee flexed at 80° and 90°, 

respectively, to mimic the experimental setup. The boundary conditions (i.e., human-seat 

interactions) were simplified by locking the pelvis translations, not allowing the pelvis body to move 

in space throughout the simulation. This is a common approach [257,298] to simulate a maximal 

isometric leg extension task when the forces transferred from the seat to the human body are unknown 

due to the lack of experimental data. Nonetheless, it ensures the model is dynamically consistent. 

In OpenSim [103], once the boundary conditions were defined, a Static Optimization (SO) simulation 

was run hypothesising optimal muscle control (i.e., minimising the sum of squared muscle activations 

[299]) while (i) imposing a static kinematics (i.e., the degrees of freedoms in the model were kept 

constant throughout the whole simulation) and (ii) applying a constant flexion torque at the knee joint 

(Figure 4.5). The external torque was iteratively increased in 1 Nm steps until the model was unable 

Table 4.5 Summary of the different personalisation steps of the models (ss = subject-specific). 

 ss bones 
ss muscle 

volume/force 
ss muscle 

ac0va0on level 
MgenPCSA V X X 
MssPCSA V V X 
MssPCSAssEMG V V V 
MgenPCSAssEMG V X V 
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to sustain it (i.e., due to quadriceps weakness). The last torque value prior to failure was considered 

to be the model’s MVIC torque. 

 

4.1.9. Simulation environment 

The core of the ForceLoss solution is the simulation framework, which was specifically devised to 

support the differential diagnosis for dynapenia. In this, personalised MSK dynamics models serve 

as falsification tools to test different clinical hypotheses, allowing to discard the less plausible ones 

(i.e., those that cannot explain the experimentally observed loss of muscle force) and to identify the 

potential primary cause of dynapenia. More specifically, the framework is developed in multiple 

stages (referred to Figure 3.1), to exploit the collected data fully and gradually. At each step, the MSK 

dynamics models are progressively personalised and subsequently employed to replicate - in silico - 

the MVIC test. The maximal torques predicted by the model are then compared to the experimental 

values measured by the dynamometer to reach an informed decision. However, prior to deploying the 

comprehensive ForceLoss framework, an essential preliminary study was conducted utilising data 

from healthy subjects. This initial investigation is essential for evaluating the accuracy with which 

models could be constructed and the MVIC test could be replicated in silico, given that complete data 

on elderly subjects were not initially available and still remain incomplete. 

For each healthy volunteer, four subject-specific MSK dynamics models were generated with 

increasing level of personalisation and, at each step, used to simulate a computational MVIC test. 

Initially, a base model was created using average PCSA values derived from healthy adult data 

(MgenPCSA), with muscles allowed to reach tetanic contraction (maximal activation level set at 1) to 

predict the MVIC torque. If the predicted MVIC torque significantly exceeded the measured value, 

the simulation was repeated using the MssPCSA model, which incorporates subject-specific PCSA 

values. If the model’s prediction continued to exceed the experimental value, even after incorporating 

Figure 4.5 Imposed boundary condition in the MVIC simulation. 
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patient-specific PCSA values, EMG data from the MVIC test were used to adjust for non-pathological 

submaximal activation levels (MssPCSAssEMG). Lastly, a fourth model (i.e., MgenPCSAssEMG) was 

developed to assess if personalised muscle activation levels alone, without using subject-specific 

muscle volume segmentations, could accurately simulate the experimental MVIC torque. 

The ForceLoss simulation framework 

The framework starts once the diagnosis of dynapenia has been confirmed, i.e., if the measured 

maximal torque significantly falls below the normative ranges reported for an age-matched healthy 

population. 

An initial image-based model is developed using the available MRI data. This base model (MgenPCSA) 

features MIF values derived from data from an age-matched healthy population; thus, it does not 

account for the actual muscle size/volume. As is, the model – de facto representative of a healthy 

individual of the size of the subject under study – should, in principle, overestimate the experimental 

values.    

At this point, the MIF values in the model are personalised based on the muscle volumes segmented 

on the medical images. The eventual presence of sarcopenia is thus accounted for. The updated model 

(MssPCSA) is employed to perform the in silico MVIC test. If the predicted torques approximate the 

experimental findings well, sarcopenia is reasonably assumed to be the entire cause of dynapenia. 

Otherwise, alternative clinical scenarios are explored.  

First, the experimental torque is compared to the maximal torque observed while delivering 

neuromuscular electrical stimulation (i.e., during the involuntary contraction). In case of 

disagreement, if the predicted torque is higher than the voluntary contraction torque, but comparable 

to that obtained by forced involuntary contraction, then the dynapenia is attributed to muscle 

activation inhibition. 

Finally, if the model so informed predicts an MVIC torque that exceeds the experimentally measured 

torque and from the EMG data reveals atypical muscle activations, an EMG-assisted simulation is 

conducted, thus verifying the potentially suboptimal motor control as a cause underlying the 

dynapenia. 

4.2. Results 

ForceLoss - Part I 

In the following, preliminary results using data from the healthy cohort are presented. In particular, 

the results obtained from the data of the nine healthy young females showed that introducing a second 

level of personalisation using MRI or EMG data decreased the mean relative error from about 25% 
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with the base model (MgenPCSA) to roughly 15%, with no significant differences in performance 

between the MssPCSA and MgenPCSAssEMG models. Further reductions in relative error to 5% were 

achieved when both anthropometric measurements and subject-specific muscle activations (the 

MssPCSAssEMG model) were employed. 

On an individual basis (Figure 4.6), the MgenPCSA model accurately reflected experimental data for 

only one (of nine) subjects (Figure 4.6.A, subject 7). Refinements using segmented muscle volumes 

to adjust the MIF values significantly lowered the simulated extension torque, aligning it more closely 

with the measured values. Of note, for subjects 6 and 8, the MssPCSA model’s predictions were less 

accurate than those of the MgenPCSA model (respectively, 169 vs 162 Nm, and 187 vs 174 Nm 

compared to the real value of 146 Nm and 127 Nm). Figure 4.6.C). Incorporating EMG data to 

specifically limit the maximum activation levels of the quadriceps muscle (MssPCSAssEMG) significantly 

improved model predictions, lowering the prediction error to 6% or less – on average - for all nine 

subjects, demonstrating a substantial enhancement over previous models.

While the use of MgenPCSAssEMG models allowed to minimise the mean error across participants, for 

four subjects the difference between experimental and simulated values remained lower than the 10% 

error threshold (135 vs 134 Nm, 122 vs 114 Nm, 135 vs 146 Nm, 127 vs 127 Nm, respectively for 

subject 1, 5, 6 and 8). 

 

 
Figure 4.6 The one-to-one comparison between the maximal torque predicted by the simulation (purple dot) and the real data (black 
square) is provided for the nine healthy female subjects using the different models: (A) MgenPCSA, (B) MgenPCSAssEMG, (C) MssPCSA, and 
(D) MssPCSAssEMG. 
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ForceLoss - Part II 

As mentioned at the start of this chapter, the acquisition of patient data is still ongoing and the data 

processing has just begun. Therefore, the only findings shown relate to the data acquisition. All the 

data included in the data collection protocol that have been recorded for the first fourteen enrolled 

patients are summarised in Table 4.5. 

 

4.3. Discussion 

The primary objective of the ForceLoss project is to demonstrate the feasibility of a framework for 

the differential diagnosis of dynapenia in orthopaedic patients who are candidates for TKA. However, 

prior to realising this goal, it is essential that both the MSK model and the simulation framework 

undergo rigorous testing and validation. 

In the initial phase, data from healthy volunteers were employed to set up and test the simulation 

environment where to conduct an MVIC test in silico, integrating experimental data (e.g., EMG 

recordings, dynamometry data, and medical images) and computational tools (i.e., personalised MSK 

models). This phase also involved a preliminary validation wherein the simulated outcomes were 

compared against experimental measurements. Additionally, this study sought to determine the 

minimal level of personalisation necessary to achieve accurate enough predictions, i.e. within 10% 

of the experimentally measured values. For each of the nine healthy young female volunteers, four 

MSK models with varying degrees of personalisation were generated using MRI data. The muscle 

properties within these models were tailored based on several criteria: generic muscle volumes 

representative of an age-matched population (MgenPCSA), PCSAs derived from medical imaging data 

Table 4.5 Clinical measurements and data acquired in the experimental protocol for each patient, including medical images, isometric 
dynamometry test, involuntary contractions, bio-impedance analysis and had-grip dynamometry. 

Subject MRI MVIC SNMES BIA Hand-grip (kg) 

TKA01 V V V - V 

TKA02 V V V - V 

TKA03 V V V - V 
TKA04 V V V V V 

TKA05 - V - V V 

TKA06 V V V V V 

TKA07 V V V V V 

TKA08 V V - V V 

TKA09 V V V V V 

TKA10 V V V V V 

TKA11 V V V V V 

TKA12 V V V V V 

TKA13 V V - V V 

TKA14 V V V V V 
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(MssPCSA), muscle maximum activation levels (MgenPCSAssEMG) based on the available surface EMG 

data, or a combination of PCSAs and muscle maximum activation levels (MssPCSAssEMG). 

Our preliminary findings revealed that digital twins could predict maximal knee extension torques 

close to the in vivo experimental MVIC torque values observed in a healthy female cohort. However, 

the sole use of anthropometric measurements derived from medical images was not sufficient to 

achieve acceptable prediction errors (i.e., <10%). To meet the set threshold of accuracy personalised 

muscle activation levels (i.e., MssPCSAssEMG) were to be enforced. It is important to note that the 

experimental MVIC torques (measured with the dynamometer arm set at 90°) were in agreement with 

previous literature for an age-matched population [300–302]. Nonetheless, when using population 

data to scale the PCSAs, the models tended to overestimate the experimental values. By incorporating 

personalised information from MRI data to adjust the MIF values (MssPCSA), the prediction error was 

generally reduced (compared to the results from the MgenPCSA models), and for three subjects it fell 

within the predefined 10% threshold. However, only the combined personalisation of both MIF values 

and maximal activation levels (extracted from experimental EMG data) enabled to achieve low errors 

for all participants. 

The entire study is not devoid of limitations. Firstly, the lack of kinematic data to accurately depict 

knee joint motion during the MVIC test necessitated maintaining a static pose throughout the 

simulation. Secondly, the inability to directly measure certain muscle parameters such as OFL and 

TSL from the available data (i.e., proprietary Dixon medical images) [303] compelled the use of 

alternative computational methods, as ensuring that the force-length-velocity relationships of the 

generic Full Body Model and the ratios between OFL and TSL were preserved [280]. Furthermore, 

one notable constraint is the reliance on images from high-cost 3T MRI equipment, which incurs 

significant expenses. However, recent advancements in technology suggest that the estimation of 

muscular geometries could be achieved using more accessible 3D ultrasound technologies [304]. This 

shift could potentially reduce both the computational costs and time required for the proposed 

pipeline.  Additionally, recent advancements in motor unit (MU)-driven musculoskeletal modelling 

now enable the simulation of peak firing rates across complete populations of MUs within a muscle, 

providing more accurate estimates of muscle-tendon force [305,306]. These developments suggest 

that incorporating newer emerging technologies could significantly enhance the effectiveness and 

efficiency of musculoskeletal modelling and, therefore, the ForceLoss project, making it a more 

viable option for widespread clinical application. 

The next step will be to  develop subject-specific MSK dynamics models for each of the elderly 

participants enrolled in the ForceLoss – Part II study (similarly to what it is hereby presented for a 
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cohort healthy young adult females), and to use them to perform a MVIC test in silico. If the 

experimental data will highlight a reduced muscle force, compared to normative data from an age-

matched healthy population, the first simulation (employing MgenPCSA) will be used to confirm the 

diagnosis of dynapenia. More specifically, if the predicted values will be significantly larger than the 

corresponding experimental data, the subject will be considered by all means dynapenic. The model 

will be then personalised to account for subject-specific muscle volumes; if the prediction will be in 

good agreement with the experimental value, the dynapenia will be assumed to be primarily caused 

by sarcopenia. If the values will still differ, the actual tetanic force of the knee extensors will be 

reduced to account for submaximal activation. In case this level of personalisation did not produce 

good agreement between the model and experiment, further analysis of the EMG signals will be 

conducted to investigate possible muscle coordination problems. Moreover, to take into account 

possible problems in the motor control, the framework will be complemented with two additional 

steps, where experimental superimposed neuromuscular electrical stimulation data and EMG-assisted 

simulations will come into play. 

For elderly subjects, the limitations previously noted can be further compounded by additional 

challenges inherent in assessing this demographic. Despite the exclusion criteria, due to the nature of 

aging, it is possible that in some cases, subjects may not be fully suitable for all tests. Consequently, 

these patients may not undergo all planned measurements or analyses. For example, one patient (i.e., 

TKA05) could not undergo subject-specific modelling due to a metallic pin that interfered with MRI 

scans. Additionally, cardiovascular issues prevented the use of electrical stimulation for some 

patients, which significantly limited the evaluation options available for confirming muscle function 

and diagnosing conditions accurately. Moreover, the limited availability of materials necessary for 

conducting bio-impedance analysis further complicated data collection. The onset of fatigue also 

markedly affected compliance with the MVIC protocol among patients, underscoring the important 

role of motivation in tasks requiring maximal voluntary contractions (and, thus, without 

neuromuscular electrical stimulation). These instances highlight the complex considerations involved 

in conducting research with elderly populations, where adaptations may be necessary to accommodate 

individual health statuses while striving to achieve research objectives. 
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Chapter 5 – GENERAL DISCUSSION AND 

CONCLUSION 

The beginning of the last century has witnessed remarkable advances in technologies employed in 

the study of human movements. These technological innovations, including wearable sensors and 

computational simulations, have revolutionised the study of human mobility, offering unprecedented 

insights into biomechanics and enhancing our understanding of various physiological processes. 

Wearable sensors have been demonstrated to be capable of providing researchers with data acquired 

continuously over long periods of time and in the real world while people perform their daily 

activities, thus allowing the quantification of mobility performance. The widespread adoption of this 

technology has been driven by the great advances in device miniaturisation and the development of 

a new generation of algorithms that enable accurate and reliable measurements of mobility-related 

parameters in subjects with slow or pathological gait. 

In parallel, the rise of in silico medicine has led to a paradigm shift in the analysis of human 

biomechanics. Computer models, especially musculoskeletal dynamics models, allow researchers to 

simulate and predict the behaviour of the human body under various conditions or computing 

properties (e.g., internal joint contact forces) that are difficult or even impossible to measure without 

resorting to invasive procedures. The application of computational simulations extends beyond basic 

biomechanics, with potential implications for clinical practice. In silico medicine facilitates the 

development of personalised treatment plans by simulating the effects of interventions, predicting 

outcomes, and optimising therapeutic strategies. For instance, orthopaedic surgeons can use the 

outcomes of the simulations to plan surgeries, assess the impact of different procedures, and tailor 

interventions to individual patients. 

However, the interpretation of the results obtained with the above technologies demands a deep 

understanding of their limitations and potential sources of error. Before these technologies can be 

used, their credibility must be assessed, specifically when employed to interpret, diagnose, and predict 

treatments or diseases. Indeed, the credibility assessment of such methodologies remains a 

challenging and complex endeavour, characterised by its time-consuming, expensive, and 

occasionally ambiguous nature. Validating the accuracy and reliability of wearable sensors and 

computational models requires rigorous testing against established gold standards. 

In this context, the focus of this PhD project was to investigate the regulatory pathway for the 

credibility assessment of different models: the software pipeline to elaborate IMU data and extract 

digital mobility outcomes, and subject-specific (neuro)musculoskeletal models. After briefly 
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outlining how the knowledge gained from the Mobilise-D project has been and could be applied to 

the ForceLoss project to simplify the narrative and enhance readability and comprehension, the 

discussion will be structured into two sub-sections. 

The bridge between Mobilise-D and ForceLoss projects 

In Mobilise-D, interactions with regulatory agencies, including both the EMA and the FDA, were 

essential to gain insights into the procedures required for a credibility assessment aimed at obtaining 

marketing authorization for a medical device, specifically the Mobilise-D analytics software 

(combined with a wearable sensor) to extract mobility-related parameters. The knowledge derived 

from these interactions was subsequently leveraged in the ForceLoss project. Based on the FDA’s 

response to the Pre-submission request, it has been confirmed that the ASME V&V-40 standard can 

indeed be applied to MSK models. Moreover, looking further, the ForceLoss project could be 

potentially used as a stratification tool during the patient enrolment phase of drug trials (i.e., 

leveraging MSK models to differentiate dynapenic patients and identify those who exhibit sarcopenia 

without other concurrent factors). In this regard, the information gained from interactions with the 

EMA and FDA during the Mobilise-D project could be valuable for qualifying the ForceLoss 

methodology. Specifically, the knowledge acquired during the qualification advices with the EMA 

for Mobilise-D’s novel methodology for drug development could be applicable to ForceLoss. 

5.1. On the Mobilise-D project 

The rapid proliferation of wearable sensor technologies and, in particular, the concurrent rapid 

evolution of data processing algorithms, not solely based on physics laws anymore but with more 

numerous data-driven components, represents a significant facet of contemporary research. 

Notwithstanding, the regulatory authorities have struggled to keep pace, raising concerns about 

ethical implications, data privacy, and the potential for misuse. 

In this regard, this PhD thesis tried to delve into the transformative impact of these advancements, 

emphasising the shift from traditional physics-based algorithms to more adaptive, data-driven 

methodologies. While these developments hold immense promise for enhancing our understanding 

of biomechanics and human movements, a critical observation emerges regarding the regulatory 

framework surrounding these innovations. The metrological approach is the only approach currently 

accepted to demonstrate the credibility of such a methodology, but it is not exempt from limitations 

and disadvantages. The Mobilise-D technical validation study, for example, was a huge and expensive 

endeavour that involved the enrolment of patients in five sites across Europe and Israel. Moreover, in 

case of any changes in the software, like an update or a modification, a new study must be designed 

and conducted, with obvious feasibility (and economical) issues that make it virtually impossible for 
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any manufacturer to afford it. Yet, there is a lack of globally recognised alternatives for assessing the 

credibility and, thus, obtaining regulatory approval, which calls for a harmonised and agile regulatory 

response that aligns with the dynamic nature of recent technologies. The current discussion must 

address the need for regulatory frameworks that can adapt to the dynamic nature of the advancements 

in the software component of wearable sensors, ensuring a balanced integration that upholds ethical 

standards in the face of rapidly evolving technological landscapes. The Mobilise-D project has 

highlighted that the marked distinction between metrological and verification and validation (e.g., the 

risk-based process developed in the ASME V&V-40:2018) approaches needs to be overcome with 

the aim of reducing the time and effort for the certification procedure. 

Future developments 

In the regulatory context, a structured report that functions as a guideline for industries navigating the 

regulatory pathway for technology qualification approval, similar to the one proposed by the 

Mobilise-D project, could prove useful. It would serve as a comprehensive resource offering insights 

into the qualification process, aligning with regulatory standards. The two letters of support published 

by the EMA in response to the request for qualification advice submitted by the Mobilise-D 

consortium already encapsulate the collaborative efforts and regulatory milestones achieved with the 

EMA. Furthermore, ongoing efforts are underway to enhance transparency and share crucial insights 

into the regulatory landscape highlighted in the feedback from the FDA staff from the CDRH in 

response to a pre-submission form. This submission sought to explore and determine the optimal 

regulatory process for certifying the Mobilise-D analytics software, investigating alternative 

certification pathways to overcome the limitations of the currently approved methodologies. Sharing 

all the different feedbacks received in the field of the regulatory certification from various regulatory 

agencies (i.e., both the EMA and the FDA) could represent a rigorous and well-informed document 

of reference for the regulatory pathways. This comprehensive report could be a valuable resource for 

the manufacturers or the industries, providing important information to ensure alignment with 

international regulatory standards and fostering a more collaborative and informed approach to the 

technology’s qualification approval process. 

5.2. On the ForceLoss project 

Overall, the ForceLoss project sought to enable the differential diagnosis of dynapenia in elderly 

subjects waiting for a total knee arthroplasty through a comprehensive approach, combining 

experimental measurements such as medical images, electromyography, dynamometry tests, 

bioelectrical impedance analysis, and neuromuscular electrical stimulation with computer models and 

simulations. The project was structured into two parts, driven by both organisational considerations 
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and differences in the population enrolled. The ForceLoss: Part I study aimed to define, test and 

validate a new simulation framework devised to support the differential diagnosis of dynapenia using 

the data collected on twenty healthy adults, representing the reference dataset. The second part of the 

ForceLoss project is the more clinically oriented part as it involves the enrolment of twenty subjects, 

scheduled for primary total knee arthroplasty surgery and affected by dynapenia. The main objective 

of ForceLoss: Part II is to demonstrate the applicability of the framework, with the addition of steps 

to test different (clinical) factors possibly contributing to dynapenia. 

In the last two decades, the use of musculoskeletal modelling and simulations in clinical settings (e.g., 

to plan surgeries or treatments, or as tools to support clinical decision-making) has increased, opening 

up new perspectives in healthcare. However, the credibility assessment to evaluate the level of 

reliability of the model’s predictions still represents a bottleneck for large-scale use, primarily due to 

the limited reproducibility of models. Ideally, a model based on the same data should yield identical 

outcomes, suggesting that the modelling and simulation strategy does not influence the results. 

Contrarily, evidence [307,308] shows that due to the absence of standardised procedures universally 

recognised as valid, the personal choices of each modeller, influenced by their prior knowledge and 

experience, significantly affect the model generation, leading to highly variable results. Regulatory 

agencies are aware of these challenges and recognise computational modelling as a regulatory science 

priority [309]. From a practical standpoint, the recent introduction of the ASME V&V-40 standard 

supports the advancement of credibility methods and exemplifies efforts to bring rigor and 

transparency to computational modelling. This standard, which provides a structured approach for 

model verification and validation, has proven useful in enhancing model credibility, particularly in 

finite element models [136]. Nonetheless, due to the novelty of this standard, its application to 

musculoskeletal modelling has not yet been documented in the literature. Musculoskeletal models, 

crucial for biomechanical analysis and medical diagnostics, would greatly benefit from such 

standardised validation processes. The implementation of these standards can help overcome current 

challenges by providing a methodological framework for evaluating the accuracy and appropriateness 

of model choices, thereby enhancing their trustworthiness and clinical applicability. As the field 

progresses, it is crucial that these computational tools undergo rigorous testing and validation, 

following protocols similar to those in other scientific fields, to ensure their efficacy and safety in 

clinical decision-making [273,307]. 

However, hereafter it is provided a possible way to apply the ASME V&V-40, comprehensive of a 

broader validation, to the MSK models as defined in the ForceLoss project. 
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Hypothetical application of the ASME V&V-40 to the MSK model 

The ASME V&V-40 framework includes four main steps (Table 5.1). Initially, it requires the 

definition of the question of interest, specifying the problem or decision scenario where the model 

will be applied. Following this, the COU is detailed, outlining the model’s scope and its specific role 

in addressing the question. The process continues with an assessment of model risk, which involves 

evaluating the potential for the model’s use to result in decisions that could cause patient harm or 

other undesirable outcomes. This risk is viewed as a combination of the model’s impact on decision-

making and the consequences of any adverse outcomes due to incorrect decisions based on the model. 

Finally, credibility factors are established for various elements of the verification and validation 

process. These goals, driven by the risk analysis, ensure that the model is both safe and effective for 

its intended use [136]. 

 

Based on the model risk, the credibility factors and the rigor required must be defined (low-medium 

level as shown in Table 5.1). For a full and comprehensive credibility assessment all the thirteen 

credibility factors, as specified within the ASME VV40 standard, should be evaluated. For instance, 

the initial selection for the rigor level of the credibility factor for the validation assessment (i.e., output 

comparator) was defined as Comparison performed by determining the difference between 

computational results and experimental results. Nonetheless, it would be more suitable to adopt a 

higher accuracy level, specifically Uncertainty in the output of the computational model or the 

comparator was used in the output comparison [136], to improve the precision and dependability of 

the evaluation. 

Table 5.1 Hypothetical question of interest, context of use, model influence and decision consequence for the ForceLoss project. 

Question of interest Can the MSK model accurately predict the MVIC torque of the knee 
extensors? 

Context of use MSK model to support the differential diagnosis of dynapenia 

Model Influence Low à the model influence is low because the differential diagnosis of 
dynapenia is based on the clinicians’ diagnosis and just supported by the model 

Decision consequence Low/Medium à if the model wrongly influences the clinicians’ decision, the 
disease progresses and patient’s health status does not get better. 

Model risk Low-Medium (Level 2 out of 5) 
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Limitations 

Several limitations were encountered in the ForceLoss project. The lack of kinematic data to 

accurately describe knee joint motion during the execution of the MVIC test compelled the use of a 

completely static pose while simulating the test. This choice was driven (justified) by the isometric 

nature of the experimental test. However, although the participants were kept in position by means of 

seatbelts and straps throughout the execution of the entire test, (minimal) leg motion could be 

observed. Moreover, in the definition of important muscle parameters, such as optimal fibre length 

and tendon slack length, it was necessary to resort to the use of morphometrically scaled generic 

values derived from the Full Body model. In vivo measurements of the subject-specific 

musculotendon properties are difficult to accurately estimate. The mentioned limitations are related 

to the modelling and simulations and, therefore, are shared by both parts of the ForceLoss project. 

Moreover, significant limitations arose in the experimental protocol with the osteoarthritis patients, 

as, for various reasons, the dynapenic subjects were unable to carry out the experimental protocol in 

its entirety. The majority of the patients experienced difficulties in performing flexions and due to 

fatigue onset, combined with the ageing and the clinical status, reduced the MVIC protocol to two 

angles of knee flexion (75° and 90°) and mostly to extension only. The common perception of feeling 

unmotivated is noteworthy, particularly since maximal contraction without neuromuscular electrical 

stimulation relies completely on voluntary effort, coupled with the emotional stress of having to 

undergo a surgery. Finally, unprecedented inconveniences occurred due to the Covid-19 pandemic, 

including delays in the delivery of instrumentations (e.g., the Biodex dynamometer delivered with a 

delay of almost two years) or the highly limited use of the hospital clinics for research that caused a 

consistent shift of the enrolment, and affected the performance of all subjects, who were asked to 

wear a face mask while performing the MVIC task. 

The latter issue highlighted the need for open-access datasets, which could be exploited or combined 

to existing datasets to develop and test new computational modelling approaches, and – by extension 

– to advance the biomechanical field. Despite a noticeable trend, over the past few years, to share not 

only the results of a research but also the associated datasets, some more efforts in this sense are still 

required. The open-source data availability would facilitate the establishment of large normative 

databases, to ease the generation and validation of models in different clinical settings. The ForceLoss 

project will contribute in this regard, since the project fits into the wider In Silico World project, 

which aims to accelerate the adoption of in silico methodologies by lowering barriers related to the 

development and validation of model, encouraging and promoting the sharing of data. 
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An additional limitation of these models is the absence of a comprehensive sensitivity analysis 

specifically focused on patellar positioning. Variations in the location of the patella directly impact 

the biomechanical outputs of the model, which could lead to inaccuracies in the simulation results. In 

this work, to limit the modeller’s influence, the patellofemoral joint was defined employing existing 

techniques already implemented in the field [92,275,310]. This approach, aimed at minimising the 

variability introduced by the personal choices of the modeller, is indicative of a broader methodology 

that was consistently applied across all other steps of the modelling process, ensuring uniformity and 

rigour in the development of the musculoskeletal model. Both bones and soft tissues were segmented 

manually and semi-automatically using Mimics v25 (Mimics Innovation Suite, Materialise, Leuven, 

Belgium) by the same expert operator, ensuring consistent and replicable segmentation procedures. 

This was followed by the generation of skeletal models and the integration of muscle paths using 

NMSBuilder software, which aligns with ISB recommendations for joint definitions and uses 

anatomical landmarks for muscle path registration. Muscle properties such as the length of both the 

fibres and the tendon were morphometrically optimised using a widely accepted procedure, grounding 

the model development in established biomechanical research methodologies. These foundational 

practices have enhanced the project's validity, with initial validation efforts in the ForceLoss project 

comparing the experimentally measured maximal torque against the simulated outputs. 

Future developments 

The ForceLoss project is still ongoing, and thus, the application of the proposed framework to support 

the differential diagnosis of dynapenia must be validated on a larger cohort (i.e., including also the 

ten healthy male adults) and tested on the twenty osteoarthritic patients. 

For the ForceLoss: Part I – Healthy Volunteers project, the results obtained with the data of the ten 

healthy female adults that led to a good agreement between simulation outcomes and the 

experimentally measured maximal torque must be confirmed using the models of the ten healthy male 

adults. 

The ForceLoss: Part II – Osteoarthritic Patients study is still at its origin, with the enrolment and the 

data collection still ongoing. The future works will be to test and verify the protocol defined to support 

the differential diagnosis of dynapenia on all the twenty dynapenic and osteoarthritic patients. 

To sum up, the advances in miniature technologies and in silico medicine have ushered in a new era 

of understanding human movements. Wearable sensors have been proven to enable unprecedented 

insights into mobility, allowing the quantification of mobility performance. In addition, computer 

models and simulations are a promising and increasing tool for research and applications in clinical 

practice. However, the credibility assessment of these methodologies remains a critical yet 
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challenging aspect. Overcoming the barriers to validation, standardising protocols that have not been 

updated to keep pace with these advances, and addressing the limitations of these technologies are 

essential steps towards ensuring their reliability and widespread adoption in the study and application 

of human movement analysis. 
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Appendix A – Description of the Mobilise-D analytics 

software 

The Mobilise-D analytics software was implemented to be the optimal analytical pipeline for the 

quantification of DMOs (e.g., step detection, real-world walking speed) from raw IMU data (Figure 

2.2). 

Pre-processing  

The input to the entire pipeline is the raw IMU data, which are pre-processed to increase the quality 

of the signal and, thus, to reduce noise, as follows: 

1. IMU orientation is estimated with a 6D-IMU (3D accelerometer, 3D gyroscope) 

complementary filter, allowing alignment of the IMU sensor with the vertical gravity vector 

[307]. Additionally, the principal component analysis technique is used to align the IMU 

signals with the direction of the body movement [308]. 

2. Detrending, low/high/band-pass filters with various cut-off frequencies, continuous wavelet 

transform and 1D morphological filters [309] are applied in the pre-processing step. 

Gait sequence detection 

Once processed, the IMU data enters the gait sequence detection (GSD) block, where it is analysed 

to identify the gait sequences (defined as a repetitive pattern delimited by two consecutive contacts 

of the same foot and the ground). This is a crucial block, as any errors at this stage would propagate 

to the subsequent blocks. The selected algorithm consists of a succession of several signal smoothing 

and enhancement stages of the raw signal. Locomotion detection is based on the detection of peaks 

associated with heel-strike events. To be insensitive to sensor placement and orientation, the 

algorithm is based on the acceleration norm (accN), which includes all the components of the 

acceleration (i.e., vertical accv, antero-posterior accAP and medio-lateral accML acceleration), defined 

as: 

𝑎𝑐𝑐𝑁 = E𝑎𝑐𝑐#1 	+ 	𝑎𝑐𝑐231 	+ 	𝑎𝑐𝑐"41 . 

The raw acceleration norm is first resampled at 40 Hz to correspond to a lower frequency adapted for 

long-term monitoring setups; the signal is then detrended and low-pass filtered [310]. The accN is 

further processed with a convolutional wavelet transform (scale 10, gauss2) and three consecutive 

mild Gaussian weighted moving filters over a window length corresponding to about 0.25 s, to obtain 

accN enhanced (accN-enh). A data-adaptive threshold is used to identify the potential step-related 
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peaks, by means of the Hilbert transform and adaptive smoothed envelope of the accN-enh, followed 

by detection and statistical description of peak amplitudes in accN-enh during all detected walking 

periods. The threshold is selected as the 5th percentile of peak amplitude distribution (i.e., the value 

over which 95% of the peaks may be found) [311]. 

Stride detection 

The algorithm selected for the step/stride detection combines different processing techniques. The 

vertical component of the acceleration is firstly detrended and low-pass filtered (cut-off frequency 

fc=3.2 Hz), then numerically integrated and differentiated using a continuous wavelet transform (scale 

9, gauss2) [312]. Each step is identified by detecting the maximal peaks between zero-crossings, that 

represent the initial contacts [313,314]. 

Stride length 

The stride length estimation algorithm is a biomechanical-based approach. The inverted pendulum 

model is used to describe the human body segments (and their biomechanics) during walking. 

Assuming a compass gait type, the centre of mass (CoM) changes in height and moves in the sagittal 

plane following a circular trajectory. The step length depends on this height changes according to the 

following equation: 𝑆𝐿 = 2√2𝑙ℎ	 − 	ℎ1 , where l is the pendulum length (i.e., the leg length) and h is 

equal to the change in the height of the CoM. The vertical component of the acceleration is double 

integrated and high-pass filtered with a fourth-order Butterworth (respectively, the acceleration is 

filtered using the cut-off frequency fc = 0.1 Hz, and the vertical speed using the cut-off frequency 

fc=1 Hz) to extract the vertical displacement of the CoM. The h parameter is then computed as the 

difference between the highest and the lowest position of the CoM during a step cycle [313–315]. 

Cadence 

To extract cadence, a time-domain approach is employed, which includes the following list of steps: 

- Savitzky-Golay filter (order=7, frame length =21) 

- Detrending, LPF (FIR, fc=3.2 Hz) 

- Continuous Wavelet Transform (scale 10, ‘gaus2’)  

- Savitzky-Golay filter (order=5, frame length =11) 

- Continuous Wavelet Transform (scale 10, ‘gaus2’)  

- Gaussian smoothing  

- Morphological filters: opening and closing  
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- Difference signal: closing-opening 

Savitzky-Golay filter is used for smoothing noise data by fitting successive adjacent data points with 

a low-degree polynomial by the method of the linear least squares (i.e., the convolution process). 

Continuous Wavelet Transform is a frequency domain filtering of the signal that allows to achieve a 

varying time-frequency localization. It uses short wavelets to ensure high-time localization at the 

expense of limited information on the frequency content, and conversely, long wavelets to analyse 

low frequencies precisely but with limited time localization. 

Opening and closing are methods based on the morphological filters and are defined as follows: 

Opening: (𝑓 ∘ 𝑘)(𝑚) 	= 	 [(𝑓 ⊖ 𝑘)⊕ 𝑘](𝑚) 

Closing: (𝑓 ⋅ 𝑘)(𝑚) 	= 	 [(𝑓 ⊕ 𝑘)⊖ 𝑘](𝑚), 

where f(m) is the measured data and k(m) is a structuring element [309]. 

Real-World walking speed 

Real-World walking speed is mathematically computed by combining the cadence and the stride 

length. 

𝑊𝑎𝑙𝑘𝑖𝑛𝑔𝑆𝑝𝑒𝑒𝑑0 =
∑ 67809:_6/::9!
"_$%&'()*
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Where i=1, …, n are the different WBs, Stride_speedk is the stride speed of the k – stride in the 

relevant i– WB, n_STRIDEi is the number of correct strides identified in the relevant i – WB. 

Left/Right stride detection 

Initial contacts are classified left or right using a pre-trained linear support vector machine with 

features from vertical and anterior-posterior angular velocity signals. 

A combination of the vertical, 𝑔𝑦𝑟@, and the anterior-posterior, 𝑔𝑦𝑟%/, angular acceleration (i.e., a 

subtraction, 𝑔𝑦𝑟A!$B = 𝑔𝑦𝑟@ 	− 	𝑔𝑦𝑟%/ ), was used as input for the left/right detection. A support-

vector machine approach in an individual leave-one-participant-out cross-validation was 

implemented and evaluated. 

Table A.1 summarises all the main information about each block (e.g., input). 
 Table A.1 Summary of the main information about the algorithms used to extract each DMO. 

Modules Input Output 
Data-driven 

or 
mechanistic 

Refs 
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Gait 
sequence 
detection 

vertical acceleration 

anterior-posterior acceleration 

medio-lateral acceleration 

vertical acceleration 

anterior-posterior acceleration 

window size for convolution 

overlap of windows 

motion threshold 

DD [311] 

Step 
detection 

Vertical acceleration 

array of gait sequences 

detected N initial contacts time 
relative to the beginning of the 
recording or the test/trial 

refinement of the beginning of the 
gait sequences provided from the 
Gait sequence detection step 

refinement of the termination of the 
gait sequences provided from the 
Gait sequence detection step 

M [310–
312] 

 

Step length 

Vertical orientation 

sampling frequency 

array of gait sequences 

initial contacts time 

leg length 

calibration factors 

A vector structure containing: 

start of N-th GS 

stop of N-th GS 

estimated stride length-per-second 
[m] of N-th GS 

mean of stride length [m] estimated 
for N-th GS 

std of stride length [m] estimated 
for N-th GS 

covered distance [m] of N-th GS 

shows if there is a warning for N-th 
GS (1 means yes) 

M [313–
315] 

Cadence 

norm of the 3d-accelerometer 
signal 

sampling frequency 

array of gait sequences 

A vector structure containing: 

start of N-th GS 

stop of N-th GS 

estimated cadence-per-sec 
[steps/min] of N-th GS 

mean of cadence [steps/min] 
estimated for N-th GS 

std of cadence [steps/min] 
estimated for N-th GS 

number of steps of N-th GS 

M [309,311] 

Real-world 
walking 
speed 

cadence 

array of gait sequences 
Real-world walking speed 

M  

Left/right 
stride 
detection 

vertical angular velocity 

anterior-posterior angular 
velocity 

Detected initial contacts time with 
the “L” and “R” labels assigned 

DD [316] 
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array of initial contacts 
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